
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Construction legal support for differing site
conditions (DSC) through statistical modeling and
machine learning (ML)
Tarek Said Mahfouz
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Civil and Environmental Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Mahfouz, Tarek Said, "Construction legal support for differing site conditions (DSC) through statistical modeling and machine
learning (ML)" (2009). Graduate Theses and Dissertations. 10698.
https://lib.dr.iastate.edu/etd/10698

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10698&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10698&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=lib.dr.iastate.edu%2Fetd%2F10698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10698?utm_source=lib.dr.iastate.edu%2Fetd%2F10698&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Construction legal support for differing site conditions (DSC) through
statistical modeling and machine learning (ML)

by

Tarek Said Mahfouz

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Civil Engineering (Construction Engineering and Management)

Program of Study Committee:
 Amr Kandil, Major Professor

Edward J. Jaselskis
Kelly C. Strong

Kejin Wang
Nick Pendar

Iowa State University

Ames, Iowa

2009

Copyright © Tarek Said Mahfouz, 2009. All rights reserved.

ii

DEDICATION

I would like to dedicate my doctorate research to my parents for their absolute

love, care and support, my wife Lamia Moustafa for her full support and

understanding, and my sons Youssef and Adam for all the joy that they bring to my

life.

iii

TABLE OF CONTENTS

LIST OF TABLES viii

LSIT OF FIGURES x

ACKNOWLEDGMENT xiii

ABSTRACT xiv

CHAPTER 1 (INTRODUCTION) 1

1.1 Overview: 1

1.2 Problem Statement 4

1.3 Research Objectives 7

1.4 Research Significance 11

1.5 Research Methodology 12

1.5.1 Task 1: Conduct a Comprehensive Literature Review 13

1.5.2 Task 2: Identify and Quantify Significant Legal Factors that Affect
 DSC Litigation Outcomes in the Construction Industry 13

1.5.3 Task 3: Develop a litigation Outcome Prediction Model for DSC
 Disputes in the Construction Industry. 14

1.5.4 Task 4: Automated Extraction of Significant Legal Factors 15

1.5.5 Task 5: Automated Extraction of Precedent DSC Cases. 16

1.6 Thesis Organization 18

CHAPTER 2 (LITERATURE REVIEW) 20

2.1 Introduction 20

2.2 Litigation Outcomes Prediction Models: 20

2.3 Case-Based Reasoning Models: 32

2.4 CBR in Civil, Architectural, and Construction Engineering: 33

iv

2.4.1 Architectural/Structural CBR Models: 34

2.4.2 Construction Engineering CBR Models: 40

2.5 Natural language processing (NLP): 47

2.6 Machine Learning (ML) 57

2.6.1 Type of Reasoning 57

2.6.2 Support Vector Machine (SVM) Classifiers 58

2.6.3 Naïve Bayes Classifiers 63

2.6.4 Rule Based Induction Classifiers 67

2.6.5 Latent semantic Analysis (LSA) 70

2.7 Differing Site Conditions (DSC) 80

2.7.1 Differing Site Conditions Clauses 81

2.7.2 History of Differing Site Conditions Clause (DSC) 82

2.7.3 Type of Differing Site Conditions (DSC) 84

2.8 Chapter Summary: 88

CHAPTER 3 (A STATISTICAL ANALYSIS OF FACTORS AFFECTING
LITIGATION OUTCOMES IN DIFFERING SITE CONDITIONS DISPUTES) 91

3.1 Introduction 91

3.2 Design and Implementation of Statistical Models 92

3.2.1 Data Acquisition and Preparation 93

3.2.2 Binary Probit Model Implementation 96

3.2.3 Binary Logistic Model Implementation 100

3.3 Results and Discussion 103

3.3.1 Independent Variables Estimation 103

v

3.3.2 Prediction Models 104

3.3.3 Sensitivity Analysis 113

3.4 Summary and Conclusion 116

CHAPTER 4 (DSC LITIGATION PREDICTION MODEL DEVELOPMENT
FOR THE CONSTRUCTION INDUSTRY) 120

4.1 Introduction 120

4.2 Data Preparation 123

4.3 ML Model Development and Analysis 124

4.3.1 Support Vector Machines (SVM) 125

4.3.2 Naïve Bayes Classifiers (NB) 126

4.3.3 Rule Induction Classifiers 127

4.4 Model Testing and Validation 128

4.5 ML Model Implementation 129

4.6 Results 131

4.6.1 Support Vector Machines (SVM) 131

4.6.2 Naïve Bayes Classifiers 135

4.6.3 Rule Induction Classifiers 139

4.7 Analysis and Discussion 147

4.8 Chapter Summary 154

CHAPTER 5 (AUTOMATED EXTRACTION OF SIGNIFICANT LEGAL
FACTORS) 156

5.1 Introduction 156

5.2 Data Preparation 158

5.2.1 Defining the Nature of the Problem 158

vi

5.2.2 Processing the Case Corpus 160

5.2.3 Weighting scheme development 163

5.2.4 ML Model Development 164

5.2.5 Results and Discussion 167

5.2.6 Model Validation 171

5.3 Chapter Summary 175

CHAPTER 6 (AUTOMATED EXTRACTION OF PRECEDENT DSC CASES) 176

6.1 Introduction 176

6.2 LSA Feature Space Development 178

6.3 Model Design and Implementation 179

6.4 Results and Discussion 181

6.5 Chapter Summary and Conclusion 186

CHAPTER 7 (OVERALL SYSTEM PERFORMANCE EVALUATION) 188

7.1 Introduction 188

7.2 Test Case Selection 188

7.2.1 Case 1: Horgan, v. The City of New York 189

7.2.2 Case 2: Iacobelli Construction, Inc., v. County of Monroe, Rochester
 Pure Waters District, and Calocerinos & Spina Consulting
 Engineers,P.C. 190

7.2.3 Case 3: Piper, Inc., v. New York State Thruway Authority 190

7.2.4 Case 4: Fruin-colnon Corporation, Traylor Bros., Inc. and Onyx
 Construction & Equipment, Inc., A Joint Venture, v. Niagara Frontier
 Transportation Authority 192

7.2.5 Case 5: The Foundation Company, v. The State of New York 193

7.2.6 Case 6: Charles Sundstrom et al., v. The State of New York 194

vii

7.2.7 Case 7: James F. Leary and Thomas J. Morrison, v. The State of
 New York, City of Watervliet 194

7.2.8 Case 8: Tony Carfagno and Others, Copartners Doing Business
 under the Firm Name and Style of Carfagno & Dragonetti, v. The
 City of New York 195

7.2.9 Case 9: S. Pearson & Son, Inc., v. The State of New York 196

7.2.10 Case 10: Christie v. United States 197

7.3 System Performance Evaluation 197

7.3.1 Significant Legal Factors Automated Extraction 198

7.3.2 Litigation Outcome Automated Prediction 198

7.3.3 Automated Precedent Case Extraction 199

7.4 Chapter Summary and Conclusion 200

CHAPTER 8 (CONCLUSION, CONTRIBUTIONS, AND FUTURE
RESEARCH) 202

8.1 Conclusion 202

8.2 Research Contributions 205

8.3 Future Research 207

REFERENCES 209

APPENDIX A (LIST OF LEGAL FACTORS) 225

APPENDIX B (SVM MODEL OUTPUT) 229

APPENDIX C (NAÏVE BAYES MODEL OUTPUT) 235

APPENDIX D (RULE INDUCTION MODELS OUTPUT) 246

APPENDIX E (PARSING ALGORITHM) 259

APPENDIX F (WEIGHTING ALGORITHM) 295

viii

LIST OF TABLES

CHAPTER 2

Table 2.1 Train Data for Naive Bayes Classifier 65

Table 2.2 Naive Bayes Probability Calculations for Train Data Example 66

Table 2.3 Golfer Data 68

CHAPTER 3

Table 3.1 Sample Example of 5 Cases 100

Table 3.2 Relevant statistics of Probit Model at Confidence Interval = 0.1 101

Table 3.3 Relevant statistics of Logistic Model at Confidence Interval = 0.1 102

Table 3.4 Significance of Individually Tested Variables 107

Table 3.5 Probit Model Results at a Confidence Interval = 0.1 109

Table 3.6 Logistic Model Results at a Confidence Interval = 0.1 110

Table 3.7 Analysis of Binary Choice Models Prediction (Threshold = 0.5) 112

CHAPTER 4

Table 4.1 Representation of the Year Factor 124

Table 4.2 Results of Kernel SVM Implementation 132

Table 4.3 Results of Naive Bayes Implementation 136

Table 4.4 Results of Rule Induction Classifiers Implementation 141

Table 4.5 Output Analysis of the Best Models 149

CHAPTER 5

Table 5.1 ML Developed Models 166

Table 5.2 Accuracy and Kappa Measures of Developed Models 168

ix

Table 5.3 Accuracy and Kappa Increase of Naive Bayes over Developed
Models 172

Table 5.4 Prediction Analysis of 22 Newly Introduced Cases 174

CHAPTER 6

Table 6.1 Similarity Measure of Similar Case Retrieval 182

Table 6.2 Similarity Measures by Which Each Reduced Feature Space
Retrieved the Relevant and Irrelevant Documents 184

CHAPTER 7

Table 7.1 Legal Factors Pertinent to the Evaluation Set of Cases 197

Table 7.2 Results of Automated Legal Factor Extraction Model 198

Table 7.3 Results of Automated Litigation Prediction Model 199

Table 7.4 Results of Automated Precedent Case Extraction Model 200

x

LSIT OF FIGURES

CHAPTER 1

Figure 1.1 Research Tasks and Products 17

CHAPTER 2

Figure 2.1 Maximum Margin Representation in SVM (Shawe-Taylor and
Cristianini 2000) 59

Figure 2.2 Geometric Margin Representation in SVM (Shawe-Taylor and
Cristianini 2000) 61

Figure 2.3 Hyperplane Representation in SVM (Shawe-Taylor and
Cristianini 2000) 61

Figure 2.4 Kernel Transformation (Shawe-Taylor and Cristianini 2000) 63

Figure 2.5 Naive Bayes Classifiers Algorithm (Bramer 2007) 65

Figure 2.6 Decision Tree Representation (Bramer 2007) 67

Figure 2.7 Decision Tree Representation for Golfer Example (Bramer 2007) 69

Figure 2.8 The TDIDT Algorithm (Bramer 2007) 69

Figure 2.9 Matrix representation in LSA (Landauer et al. 2007) 73

Figure 2.10 SVD Matrix Representation in LSA (Dumais 1990) 74

Figure 2.11 K Dimensional Space Representation in LSA (Dumais 1990) 75

Figure 2.12 Titles for Topics on Music and Baking (Landauer et al. 2007) 76

Figure 2.13 The 10X9 Word by Document Matrix with Word Frequencies
Corresponding to the Titles in Figure 2.12 (Landauer et al. 2007) 77

Figure 2.14 The 10X9 Weighted Word by Document Matrix Corresponding
to the Titles in Figure 2.12 (Landauer et al. 2007) 77

Figure 2.15 The SVD of the Weighted Word by Document Matrix
Corresponding to the Titles in Figure 2.12 (Landauer et al. 2007) 78

xi

Figure 2.16 The Rank-2 LSA Vector Space for the Music/Baking Titles
Collection (Landauer et al. 2007) 79

CHAPTER 3

Figure 3.1 Statistical Modeling Approach 94

Figure 3.2 Outcomes of Sensitivity Analysis 113

Figure 3.3 N&C Variation V. Prediction of Outcome 1 Occurring 117

Figure 3.4 SPECWARN Variation V. Prediction of Outcome 1 Occurring 117

CHAPTER 4

Figure 4.1 Research Approach 122

Figure 4.2 SVM Classification 125

Figure 4.3 Accuracy, Precision, Recall, F-Measure, and AUC Results of
SVM Modeling 133

Figure 4.4 +Ve and -Ve Class Results of SVM Modeling 133

Figure 4.5 Class F-Measure Results of SVM Modeling 133

Figure 4.6 Area Under Curve (AUC) Results of SVM Modeling 134

Figure 4.7 Accuracy, Precision, Recall, F-Measure, and AUC Results of
Naive Bayes Modeling 137

Figure 4.8 +Ve and -Ve Class Results of Naive Bayes Modeling 137

Figure 4.9 Class F-Measure Results of Naive Bayes Modeling 137

Figure 4.10 Area Under Curve (AUC) Results of Naive Bayes Modeling 138

Figure 4.11 Accuracy, Precision, Recall, F-Measure, and AUC Results of
Rule Induction Modeling 142

Figure 4.12 +Ve and -Ve Class Results of Rule Induction Modeling 142

Figure 4.13 Class F-Measure Results of Rule Induction Modeling 142

Figure 4.14 Area Under Curve (AUC) Results of Rule Induction Modeling 143

xii

Figure 4.15 Decision Tree Model Output 144

Figure 4.16 ADTree Model Output 145

Figure 4.17 Pictorial Representation of the 15 Boost ADTree Model Output 147

Figure 4.18Accuracy, Precision, Recall, F-Measure, and AUC Results of the
Best Developed Models 150

Figure 4.19 +Ve and -Ve Class Results of the Best Developed Models 151

Figure 4.20 Class F-Measure Results of the Best Developed Models 151

Figure 4.21 Area Under Curve (AUC) Results of the Best Developed Models 152

CHAPTER 5

Figure 5.1 Research Tasks for Automated Significant Legal Factors Extraction 159

Figure 5. 2 Algorithm Implementation 165

Figure 5.3 Kappa Measure of Developed Models 168

Figure 5.4 Accuracy Measure of Developed Models 169

Figure 5.5 Accuracy Increase of Naive Bayes over Developed Models 171

Figure 5.6 Kappa Increase of Naive Bayes Over Developed Models 172

Figure 5.7 True and False Prediction Analysis of Best Model 174

CHAPTER 6

Figure 6.1 Research Tasks for Automated Precedent DSC Cases Extraction
from Large Corpus 177

Figure 6.2 Advancement of 10 Feature Space Over Other Reduced Feature
Spaces 186

xiii

ACKNOWLEDGMENT

I would like to express my gratitude to my mentor and academic advisor Dr.

Amr Kandil for all his valuable advice, guidance, and support during my doctoral

program. His continued support academically and morally during and beyond my

studies is an asset that I will continue to depend on. I would like also to extend my

appreciation to Dr. Edward J. Jaselskis, Dr. Kelly C. Strong, Dr. Kejin Wang, and Dr.

Nick Pendar for their services on my thesis supervisory committee and all their

guidance and constructive feedback. I would also like to gratefully acknowledge and

thank Dr. Safwan Abbas Khedr Professor of Construction Engineering at the

American University in Cairo for his moral and perennial support and professional

advice through and beyond my study period at Iowa State University.

I would like to thank my parents and wife for their support, understanding,

encouragement, and patience that made my Ph.D. studies possible. I would like also

to extend my gratitude to my dear friend and colleague Mohammed Al Qady for his

valuable support during my Ph.D. studies. Finally, I want to sincerely thank Dr.

Konstantina Gkritza and Dr. Yasser El Manzalawy from Iowa State University for

their valuable assistance.

xiv

ABSTRACT

Construction is one of the industries with a major contribution to the nation’s

economy. It is estimated that the world construction market has reached US $5.5

trillion at the end of 2007 (Harmon 2003). In the U.S., the construction industry

employs 7.5 million full and part time employees and contributes to nearly $1.2

trillion to its economy making it the largest single production sector (El-adaway

2008). With that magnitude, it is not only considered as the backbone of the nations’

economy, but also a significant indicator of its advancement, efficiency, and

success. However, due to the dynamic nature of the construction industry and the

increasing sophistication and complexity of construction projects, its contribution is

negatively affected by the increasing number of disputes. Unfortunately, the rate and

frequency of conflicts has risen with the growing complexity of projects. Modern

construction projects require increasingly sophisticated construction methods and

extensive interaction of diversified parties, thus enhancing the likelihood of conflicts

and disputes.

Construction disputes are ultimately resolved in courts unless a private

construction contract calls for other resolution mechanisms. In fact, some in the

construction industry prefer litigation; however, their preference comes at great cost.

Despite the numerous advantages of litigation, which includes being the most formal

and binding process, it has two main shortcomings, which make the process

undesirable and unsupportive of the growth and development of the construction

industry. First, depending on the jurisdiction, complex construction disputes may

take anywhere from two to six years before they reach trials. Second, the prolonged,

xv

detailed, factual discovery process makes litigation very expensive due to the need

for specialized personnel with extensive legal knowledge and construction

experience, a combined skill set that is not widely available in the industry. In order

to overcome these major drawbacks that impact the construction industry’s

advancement and contribution to the nations’ economy, legal decision support

systems are needed to effectively and efficiently mitigate these shortcomings and in

turn allow for better control and management of construction projects.

In construction disputes the initiation of the conflict can be attributed to a

number of reasons including: change orders, escalation, and differing site

conditions, etc. Each of these reasons leads to a separate method for addressing

and handling the disputes and accordingly, each reason can be considered as a

different dispute type. Among these types, one of the most important and frequently

occurring disputes is Differing Site Conditions (DSC) which results from contractors

encountering conditions materially different from those expected or described by the

owner. This warrants special attention to this kind of dispute due to their potential for

deviating construction projects from their planned time and cost.

A number of researchers in Artificial Intelligence (AI) fields have developed

tools and methodologies for modeling judicial reasoning and predicting the outcomes

of construction litigation cases in an attempt to provide the above mentioned

decision support capabilities. Despite the significant contributions of these systems

to the advancement of legal decision support capabilities in construction, their

success was limited because they were not based on a detailed analysis of legal

concepts that govern litigation outcomes.

xvi

Consequently, the objective of this dissertation is to provide a coherent and

integrated methodology for construction legal decision support for Differing Site

Conditions (DSC) disputes through statistical modeling and machine learning. To

attain this goal, the current study designed and implemented a 4 step methodology

targeting the following goals: (1) to extract a comprehensive set of legal factors that

govern DSC litigation outcomes in the construction industry; (2) to devise a litigation

prediction model for DSC disputes in the construction industry based on the

extracted set of legal factors; (3) to create a methodology for automated extraction of

significant legal factors that governs DSC litigation outcomes from case documents;

and (4) to develop an automated retrieval model for identifying DSC precedent

cases from a large corpus based on similarity to newly introduced ones. The 4 steps

of this methodology were implemented incrementally, and each step relied on the

outcome of its predecessor.

First, a comprehensive set of significant legal factors that govern DSC

litigation cases verdicts were extracted through statistical modeling. Binary Probit

and Logit Choice Models were developed (a) to identify the effect of each extracted

factor on the prediction of the winning party; (b) to identify the best combination of

factors with the highest significance on the prediction model; and (c) to perform a

sensitivity analysis to prioritize the most significant legal factors. Among the main

findings of this step are (1) in general, cases in which the Federal Government is a

party of the dispute, judgments are in favor of the government (owner) over

contractor; (2) “the presence of evident facts that the encountered conditions caused

a change in the nature and cost of the contract” had the highest impact among

xvii

variables causing a decrease in the prediction of judgment in favor of the owner, and

causing an increase of 17.77% in prediction on favor of the contractor; (3) “the

presence of evident facts that the specifications included a warning against the

presence of DSC from those conveyed in the contract documents” caused the

highest increase in the prediction of judgment in favor of the owner amounting to an

increase of 56.56%; and (4) the development of Binary Probit and Logit Choice

Models extracted a joint set of 13 statistically significant legal factors related to DSC

disputes in the construction industry. This set provided the grounds for the other

three steps of the current research methodology.

Second, an automated litigation prediction model for DSC disputes in the

construction industry through machine learning was developed based on the

identified factors in the first step. The framework under this step incorporates

analysis of different machine learning methodologies including support vector

machines (SVM), Naïve Bayes (NB), and rule induction classifiers like Decision

Trees (DT), Boosted Decision Trees (AD Tree), and PART. Ten machine learning

models were developed using these machine learning methodologies to evaluate the

best methodology for predicting litigation outcomes. The analysis of all developed

models showed that the SVM Kernel Polynomial 3rd degree model has the best

performance. This model attained an overall prediction accuracy of 98%.

Third, an automated significant legal factors extraction model for DSC

disputes in the construction industry through machine learning was developed. The

framework under this step (1) developed 24 machine learning models in which 4

weighting schemes namely Term Frequency (tf), Logarithmic Term Frequency (ltf),

xviii

Augmented Term Frequency (atf), and Term Frequency Inverse Document

Frequency (tf.idf) were implemented for each type of classifier; and (2) developed

two C++ algorithms for the preparation of the corpus and implementation of the

required weighting mechanisms. The highest prediction rate of 84% was attained by

NB classifier while implementing tf.idf weighting. The model was further validated by

testing newly un-encountered cases, and a prediction precision of 81.8% was

attained.

Finally, the fourth step of the methodology developed an automated machine

learning model for the retrieval of supporting DSC precedent cases from large corpi.

This step, therefore, (1) implemented Latent Semantic Analysis algorithm; and (2)

developed 9 reduced feature spaces with feature sizes of 5, 10, 15, 20, 100, 200,

300, 400, and 500 for analysis and validation of the implemented algorithm. Among

the findings of this step are (1) low dimension reduced feature spaces are more

representative of documents closely related to the domain problem; (2) high

dimension reduced feature spaces, are more representative to domain problems

modeling dispersed and unrelated document collections; and (3) LSA reduced

feature space of 10 features is the best reduced feature space to adopt for

automating the extraction of similar DSC cases from a large corpus.

The main research developments of this research contribute to the

advancement of the current state of the art in construction legal decision support and

Knowledge Management (KM) in the construction legal domain by developing much

needed systems for (1) litigation outcomes prediction; (2) automated legal factor

extraction; and (3) automated precedent case retrieval. Those developments hold

xix

promises to decrease the costs of legal experts in the construction industry by

decreasing time spent on non-value adding tasks such as documents analysis, and

offering initial estimates of the legal situation of a disputing party; (2) decrease the

time consumed in the litigation processes; (3) facilitate access to legal knowledge

needed by practitioners in the construction industry; (4) provide a better

understanding of the legal consequences of decision making in the construction

industry; and (5) provide solid support documents and probabilistic measures about

the strength of a legal situation of a disputing party for better decision making about

resolution mechanisms. All these expected outcomes have promising potential to

decrease the negative impact of disputes on the construction industry, and thereby

creating significant opportunities for the growth of this important sector of the US

economy.

1

CHAPTER 1

INTRODUCTION

1.1 Overview:

The famous English lawyer, statesman and philosopher Francis Bacon (1561-

1626) said that “Man seeketh in society comfort, use and protection,” and law has

always been a very crucial tool for achieving these important human societal

objectives. From the time of Hammurabi’s code (the first known legal code in

history); the way in which humans live has been structured by laws and legal

systems that regulate how humans operate within the bounds of civil society (Johns

2007). Laws are rules and customs that the members of a society regard as binding

and are upheld and enforced by a judiciary (Britannica 2007). As society evolved,

special branches of law developed to govern different aspects of commerce and

industry. Of those specialty laws, construction law has evolved as an important field

due to the importance of the construction industry to modern society. Construction is

one of the major sectors of industry that has a major impact on the nation’s

economy. It is estimated that the world construction market has reached US $5.5

trillion at the end of 2007 (Harmon 2003). Construction works represent

approximately 4.6% of the nation’s Gross Domestic Product (El-adaway 2008). In

the U.S., the construction industry employs 7.5 million full and part time employees

and contributes to nearly US $1.2 trillion to its economy making it the largest single

production sector (El-adaway 2008). The magnitude of this contribution illustrates

the importance of the branch of law that regulates this industry. The importance of

2

construction law also stems from the unique nature of each construction project

which requires further binding regulations that are construed in construction

contracts and contract conditions (Fisk 2000). Laws and contract clauses represent

the assuring protocols that protect the rights of each participating party in a

construction project. However, it is a fact that the execution of each construction

project often takes place under significantly different conditions from those under

which it was conceived (Caldas et al. 2002). This implies that frequently projects are

constructed under conditions that differ from those under which contracts have been

construed. This dynamic nature of the modern construction projects makes it

virtually impossible to complete a large construction project without having disputes

between project parties (Merrill 2006).

The efficiency of the construction industry has always been negatively

impacted by conflicts and disputes that unfold and oftentimes escalate as projects

progress (Merrill 2006). Unfortunately, the rate and frequency of conflicts has risen

with the growing complexity of projects. Modern construction projects require

increasingly sophisticated construction methods and extensive interaction of

diversified parties, thus enhancing the likelihood of conflicts and disputes (Caldas et

al. 2002, Arditi et al. 1999). In large, complex projects, the impact of these conflicts

can be very significant, both in terms of the high costs directly associated with the

process of dispute settlement as well as the cost of the delays and possible

shutdown of the project while disputes are being settled (Levin 1998).

As stated by Jervis and Levin (1988) disputes will ultimately have to be

resolved in courts unless a private construction contract calls for a binding arbitration

3

clause. In fact, some in the construction industry prefer litigation; however, their

preference comes out at great cost. Despite the numerous advantages of litigation,

among which it is being a formal and binding process, it has two main shortcomings,

which make the process undesirable and inefficient for the development of the

construction industry. First, depending on the jurisdiction, a complex construction

dispute may take anywhere from two to six years before it reaches trial. Treacy

(1995) demonstrated that within a period of 8 years from 1984 to 1992, the number

of construction litigation cases that have been in courts with no final decision for

three or more years have doubled. In addition, court decisions may be appealed if

any of the involved parties wish to contest the first judgment. Escalation

mechanisms of litigation cases for appeals differ from one jurisdiction to the other.

Generally, court decisions are considered to be final if not appealed to or reversed

by decisions of a higher court. Second, the prolonged, detailed, factual discovery

process makes litigation exceedingly expensive due to the need of specialized

personnel with extensive legal knowledge and construction experience, a combined

skill set that is not widely available in the industry (Jervis and Levin 1988).

Practitioners are few in number and thus command high salaries (Cobb and

Diekmann 1986). A study indicated that fees paid to lawyers and experts in litigation

had increased 425% within the period of 1979–1990 while settlement and verdicts

had increased only 309% (Marcotte 1990). It costs more to get less in litigation than

ever before (Callahan et al. 1990). In addition; Ren et al. (2001) pointed out that

52% of all construction projects in UK end up with a claim that could reach up to

£1.2 billion. In US and Canada, 50% of the construction projects claims represent an

4

extra value of 30% of the original contract price, 33% reached up to 60% of the

original contract price, and others exceeded 100% of the original contract price as

reported by Cheeks 2003. Peña-Mora et al (2003) estimated the total annual cost of

construction conflicts and disputes in the U.S. to be $5 billion.

1.2 Problem Statement

The increasing numbers of claims and disputes have hampered the

advancement as well as the growth of the contribution of the construction industry to

the economy. The negative effects of claims and disputes on the construction

industry include: (1) the increase in contingencies included in project bids leading to

the increase of contract values; (2) the decrease in the effectiveness of project

management causing projects to cost more and take longer; (3) the loss of direct

communication between involved parties in construction projects which potentially

leads to additional project inefficiencies; and (4) the deterioration of ongoing and

future relations between construction parties leading to loss of confidence in current

and future works (Peña-Mora et al 2003). In addition to these direct impacts of

claims and disputes, the previously highlighted disadvantages of litigation as a

method of dispute resolution are causing parties in construction disputes to (1) face

project delays not only due to long periods required for reaching a final verdict, but

also due to potential project shutdowns; and (2) carry high financial burdens due to

high costs and limited number of practitioners needed in the construction industry.

This necessitates a close look at the dominant judicial system of the United States

which is Anglo-Saxon legal system, a crucial aspect of which is reliance on legal

5

precedence (Elhadi 2001). Precedence could be defined as the reliance of a court

on decisions in previous relevant cases. Court rulings in the United States are

archived in highly sophisticated electronic information storage and retrieval systems

which (1) are extremely complex; (2) are time-consuming; and (3) require legal

knowledge and expertise for effective utilization (Kowalski and Maybury 2000). This

makes it very difficult for information seekers, especially construction practitioners, to

make legal decisions or evaluate their legal position in case of conflicts.

Consequently, as claims and disputes increase, the construction industry

struggles to find ways to provide legal decision support capabilities to aid in dispute

mitigation and resolution. Recently, Artificial Intelligence (AI) is being used to

address increasingly sophisticated and diverse problems in the construction

industry. It has been extensively utilized to enhance information models, document

integration, inter-organizational systems, and expert systems (Labidi 1997). A

number of researchers in AI fields have developed tools and methodologies for

modeling judicial reasoning and predicting the outcomes of construction litigation

cases in an attempt to provide the above mentioned decision support capabilities.

Attempts ranged from initial rule based systems (RBR) (Diekmann and

Kruppenbacher 1984, Cobb and Diekmann 1986, and Kim 1987), to artificial neural

networks systems (ANN) (Arditi 1998, Chau 2005, and Chau 2006a), case based

reasoning systems (CBR) (Arditi and Tokdemir 1999, and Chau 2006b), and hybrid

systems (Arditi and Pulket 2005, and Chen and Hsu 2007). Despite the significant

contributions of these systems to the advancement of legal decision support

capabilities in construction, their success was limited because they were not based

6

on a detailed analysis of legal concepts that govern litigation outcomes. The

significance of this drawback stems from the fact that the success of decision

support systems is highly dependent on its input parameters. In an attempt to

provide advanced construction legal decision support capabilities for the construction

industry, a detailed analysis of the legally governing factors that are utilized by

judges in resolving such disputes must be performed. In addition, the legal

precedence of these factors to one another and to others utilized in the development

of earlier systems must be explored.

The input parameter analysis is an important initial step in creating advanced

construction legal decision support capabilities that needs to be followed with a

thorough investigation of AI algorithms and methodologies. The importance of this

investigation stems from the fact that the success of previous construction legal

decision support system was limited due to the capabilities of the utilized AI

algorithms. For example, the success of some of the RBR models or expert systems

in legal decision support was limited due to (Bubbers and Christian 1992): (1) the

failure to deduce all necessary rules upon which the system operates; and (2) the

assumption of the existence of a full domain model that captures all required rules

about a specific claim type. ANN systems achieved improvements over RBR, but as

Watson (1997) highlighted, their excessive training limits their effectiveness.

The investigation of advanced AI methodologies and algorithms needs to a

have a target data set identified for utilization in testing, analysis, and verification.

While a lot research studies targeted construction claims and disputes in general,

focusing on a single type of dispute offers the ability to analyze the particular details

7

of the dispute, and thereby enhancing the overall construction legal decision support

capabilities provided. One of the most significant types of claims and disputes in

construction projects is the Differing Site Conditions (DSC) disputes that deal with

contractors facing site conditions that differ materially from those expected or

described in contract documents. The focus on this type of dispute in the

development of advanced construction legal support capabilities will provide much

needed support in this common and very important type of dispute, without loss of

generality in the approach used for creating those capabilities. Therefore, in order to

address the increasing need to provide legal decision support in construction claims

and disputes in general and in DSC disputes in particular, the main focus of this

study is to thoroughly investigate four important domain problems namely: (1)

analyzing and identifying significant legal concepts that govern litigation cases

related to DSC; (2) developing litigation prediction models related to DSC cases; and

(3) enabling automated extraction of legal concepts affecting litigation outcomes of

DSC disputes; and (4) exploring and evaluating the suitability of developing an

automated assisting tools for extracting related president cases from large corpi.

1.3 Research Objectives

New advancements in the AI field present real opportunities for advancing the

management of legal knowledge in the construction industry and developing an

innovative construction legal support methodology. In order to seize these

opportunities, the main goal of this dissertation is to develop an integrated and

coherent methodology for Construction Legal Decision Support through Statistical

8

Modeling and Machine Learning (ML). Since construction disputes cover a wide

range of causes, the focus of this dissertation, to achieve the above general goal,

will be directed towards Differing Site Conditions (DSC) disputes in the construction

industry. To accomplish this, the objectives of this study, along with its relevant

research questions and hypothesis are summarized as follows:

Objective 1: To create a solid point of departure for the current study through

investigating recent research development in the areas of legal decision support,

statistical modeling, and machine learning in the construction and legal domain.

Research Questions: (a) What are the new requirements imposed by new and

emerging contracting methods on construction decision makers? (b) What are

the characteristics of DSC clauses imposed by formal contract documents like

American Institute of Architect (AIA), Federal Acquisition Regulations (FAR), and

Fédération Internationale Des Ingénieurs-Conseils, French for the International

Federation of Consulting Engineers (FIDIC)? (c) What are the requirements

imposed on construction decision makers due to DSC? (d) What are the

capabilities current construction legal support systems? and (e) What are the

different types of reasoning implemented by machine learning techniques and

their implementation?

Hypothesis: The investigation of (1) the latest research developments in the area

of legal decision support litigation outcome prediction, and text mining

applications in the construction and legal domains; and (2) the history, types, and

9

legal context of DSC clauses in the construction industry can provide a better

definition of the domain problems investigated under this study.

Objective 2: To identify, quantify, and measure the impact of significant legal

factors on the prediction of outcomes of DSC disputes in the construction

industry.

Research Questions: (a) What are the legal factors upon which judges base their

verdicts in DSC cases within the construction industry? (b) How does each legal

factor affect the judgment? (c) What are the legal factors that favor the side of an

owner over a contractor and vice versa? (d) What is legal precedence of these

factors to one another? (e) What are the statistically significant legal factors

related to DSC disputes in the construction industry? and (f) Which statistical

modeling techniques should be investigated further for implementation in the

current study?

Hypothesis: Statistical models can be utilized to identify, quantify, and measure

the impact of legal factors on outcomes prediction of DSC. Those statistical

models would be able to produce a set of factors that could be utilized for

developing efficient and effective construction litigation outcome prediction

models.

Objective 3: To develop litigation outcome prediction models for DSC disputes in

the construction industry using Artificial Intelligence (AI) and Machine Learning

(ML).

10

Research Questions: (a) What are the capabilities and constrains of the available

AI and ML algorithms? (b) What are the decision variables that need to be

considered in the model? and (c) Which ML modeling techniques can yield the

highest accuracy in predicting litigation?

Hypothesis: Recent AI and ML algorithms can be used to create effective

litigation outcome prediction models for DSC disputes in the construction

industry. These litigation outcome prediction models could (1) provide a better

understanding to decision makers about the legal consequences of their

decisions; (2) save time and cost related to the need of specialized legal

expertise (3) help to relieve the negative consequences associated with lengthy

claims and disputes resolution in the construction industry.

Objective 4: To create an automated methodology for the extraction of legal

factors from textual DSC cases in the construction industry using AI and ML.

Research Questions: (a) Which weighting and search methodologies are best

suited to create this methodology? (b) What are the capabilities and constraints

of the available AI and ML algorithms and methodologies? and (c) Which ML

modeling techniques should be utilized for creating this automated methodology?

Hypothesis: The automation of significant legal factors extraction from DSC using

AI and ML algorithms is both feasible and effective. This automated legal factor

extraction methodology can facilitate the process of reviewing and analyzing

construction dispute documents and increase the effectiveness of the use of

legal experts on these cases.

11

Objective 5: To create AI and ML models for automating the extraction of

relevant precedent cases from large corpi.

Research Questions: (a) Which weighting and search methodologies are best

suited to create this model? (b) What types of AI and ML algorithms and

mechanisms are best suited for searching in large corpi? (c) What are the

capabilities and constraints of these algorithms in DSC case document corpi? (d)

How can a large corpus of DSC case documents be represented in a feature

space? (e) What is the optimal feature space size for the DSC case document

corpus? (f) What are the DSC case features that need to be considered in the

model? and (g) Which ML algorithm should be used for creating the DSC

precedent case automated extraction model?

Hypothesis: The automation of the relevant DSC case retrieval from large corpi

using AI and ML algorithms is both feasible and practical. This automated

precedent case extraction model will provide a much needed tool for

professionals in construction industry for seeking and retrieving legal knowledge.

1.4 Research Significance

The proposed research developments are designed to create construction

legal decision support capabilities for DSC disputes in the construction industry. The

primary goals of this research are (1) to identify significant legal factors in DSC

disputes; (2) to develop a litigation outcome prediction model for DSC disputes in the

construction industry; (3) to automate the extraction of significant legal concepts that

affects litigation outcomes of DSC disputes in the construction industry from textual

12

representations of newly encountered cases; and (4) to develop an automated

extraction tool for relevant precedent DSC cases from large corpi. The application of

these research developments holds strong promise to support decision makers in

the construction industry in understanding the consequences of their legal decision

regarding DSC disputes through knowledge of their odds of winning or losing a case

at the litigation level. This will consequently lead to more informed decisions about

escalating disputes to litigation or settling through other means of dispute resolution

mechanisms like amicable settlements, mitigation, or arbitration. These

advancements can also lead to minimizing costs of legal expert support in dispute

presentation and defense. Finally, the proposed developments can provide assisting

tools to retrieving supporting precedent cases to encountered DSC disputes in the

construction industry. This tool is not only anticipated to provide support to

construction practitioners but also to legal experts in this field.

1.5 Research Methodology

In order to achieve the aforementioned objectives, the research work in this

study is organized into five main research tasks that are designed to: (1) conduct a

comprehensive literature review of the latest research developments in the

construction and legal domain related to litigation outcomes prediction and machine

learning applications; (2) identify and quantify significant legal factors that affect

DSC litigation outcomes in the construction industry through statistical modeling; (3)

develop a litigation outcome prediction model for DSC disputes in the construction

industry using AI and ML; (4) automate significant legal factor extraction model from

13

textual representations of DSC cases using AI and ML; and (5) automate relevant

precedent cases extraction from large corpi of DSC cases. these main tasks and

their research products are shown in Figure 1.1. In addition, the following is a brief

account of these main tasks.

1.5.1 Task 1: Conduct a Comprehensive Literature Review

The objective of this task is to investigate the latest research developments to

form a solid point of departure for the present study. The work under this research

task is organized in the following four sub-tasks that investigate:

1. New and emerging litigation outcome prediction models in the

construction and the legal domains.

2. New and emerging Case Based Reasoning (CBR) models in the

construction industry.

3. The field of Natural Language Processing (NLP) and its applications

in the construction research.

4. Machine Learning techniques and their application in construction

and other fields.

5. The history, types, nature, characteristics, application, risk allocation,

and legal concepts behind DSC contract clauses.

1.5.2 Task 2: Identify and Quantify Significant Legal Factors that Affect DSC

Litigation Outcomes in the Construction Industry

The purpose of this task is to identify and quantify the impact of significant

legal factors that affect litigation prediction outcomes of DSC disputes in the

14

construction industry though statistical modeling. The research work under this task

is organized in the following five sub-tasks that:

1. Develop a corpus of construction DSC precedent cases.

2. Identify the set of legal factors that constitute the bases of judgments

in construction DSC cases.

3. Create statistical models that relate the likelihood of a DSC cases

being judged in favor of one party over the other to the identified set of

legal factors.

4. Explore possible combinations of factors to find the best combination

that yields the highest significance to outcome prediction.

5. Perform a sensitivity analysis to prioritize the identified significant legal

factors.

1.5.3 Task 3: Develop a litigation Outcome Prediction Model for DSC Disputes

in the Construction Industry.

The purpose of this task is to develop a litigation outcome prediction model

for DSC disputes in the construction industry through machine learning. The

research work under this task is organized in the following five sub-tasks that aim to:

1. Evaluate the different types of reasoning (Induction, Deduction, and

Abduction) implemented by machine learning techniques and decide on the

appropriate one for the current task.

15

2. Investigate and evaluate the effectiveness of machine learning techniques,

namely support Vector Machines (SVM), Naïve Bayes classifiers, rule

Based Induction Classifiers like Decision trees and ADTrees, and decide on

the appropriateness of their use for the current task.

3. Determine the appropriate data representation and transformation method

for creating the DSC litigation outcome prediction model.

4. Determine the variables that need to be considered for the model

development.

5. Develop and evaluate the effectiveness of different prediction models to

decide on the best one to be adopted by this task.

1.5.4 Task 4: Automated Extraction of Significant Legal Factors

The purpose of this task is to automate the extraction of the significant legal

factors identified in task 1.5.2 and utilized to create the prediction models in task

1.5.3 from textual representation of DSC cases in the construction industry using AI

and ML algorithms. The research work under this task is organized in the following

five sub-tasks that:

1. Determine the appropriate weighting and representation mechanisms for

textual corpi of cases.

2. Develop an algorithm for the implementation of the chosen weighing and

representation mechanisms.

16

3. Develop machine learning models (SVM, Naïve Bayes, and Rule Inductive)

to automate the extraction of significant legal factors based on the chosen

weighting and representation mechanisms.

4. Cross-validate the developed models through to decide on the best one to

adopted for the current task.

5. Test and validate the best developed model with a set on newly un-

encountered cases.

1.5.5 Task 5: Automated Extraction of Precedent DSC Cases.

The purpose of this task is to automate the retrieval of relevant DSC

precedent cases from large corpi based on similarity measures to other cases using

ML algorithms and NLP. The research work under this task is organized in the

following three sub-tasks that aim to:

1. Investigate and evaluate Latent Semantic Analysis (LSA) methods for

the retrieval of DSC precedent cases.

2. Select the best feature space size to be adopted for the developed

automated extraction method through the development and testing of

variety of feature space sizes.

3. Test and validate the developed models to select the one yielding the

best results.

17

Figure 1.1 Research Tasks and Products

18

1.6 Thesis Organization

The organization of this thesis and its relation to the main research tasks of

the current study is illustrated in Figure 1.1. Chapter 2 presents a detailed literature

review that investigates (1) the latest research in litigation outcomes prediction in the

construction and legal domains; (2) concerned CBR research in the different areas

of the construction industry; (3) the field of NLP and its suitability for this research;

(4) the different reasoning types implementing by ML algorithms; (5) the procedures

of different ML algorithms like SVM, Naïve Bayes Classifiers, Rule Induction

Classifiers (Decision Trees and ADTres), and Latent Semantic Analysis (LSA); and

(6) the history, nature, characteristics, risk allocation, and application of DSC

clauses in the construction industry.

Chapter 3 presents the identification and quantification of statistically

significant legal factors that affect litigation outcomes of DSC disputes in the

construction industry through (1) the development of a corpus of DSC cases; (2)

manual extraction of legal factors upon which judges base their verdicts in DSC

disputes in the construction industry; and (3) the development of statistical discrete

binary choice models (namely Probit and Logistic models) to quantify the effect of

the identified legal factors on the likelihood of entitlement. The chapter will compare

the output of the developed models to (1) identify the effect of each legal factor on

the prediction of the winning party; (2) identify the best combination of factors with

the highest prediction precision; and (3) perform a sensitivity analysis to prioritize the

most significant legal factors.

19

Chapter 4 presents the development of a litigation outcome prediction model

for DSC disputes in the construction industry using ML. The chapter will aim to (1)

identify the machine learning models’ parameters; (2) prepare the data for model

implementation; (3) develop SVM, Naïve Bayes Classifiers, and Rule Induction

Classifiers litigation outcomes prediction models; and (4) validate and compare the

developed models.

Chapter 5 presents the development of an automated significant legal factors

extraction model using ML. The chapter will (1) identify the extraction model

parameters such as number of folds, degree, and weighing mechanisms; (2) prepare

the data for model implementation; (3) develop C++ algorithms for performing the

data preparation processes and implement weighting schemes; (4) develop SVM,

Naïve Bayes Classifiers, and Rule Induction Classifiers automated extraction

models; and (5) validating and comparing the developed models.

Chapter 6 illustrates the development of an automated relevant precedent

DSC cases retrieval model using ML and NLP techniques. The chapter will (1)

investigate the main procedures of LSA algorithms; (2) identify the relevant model

parameters such as the size of the reduced feature space and internal and external

weighing mechanisms; (2) prepare the data for model implementation; (3) develop a

set of different reduced feature spaces; (4) implement LSA automated extraction

models; and (5) validate and compare the developed models.

Chapter 7 presents the conclusions, expected contributions, and

recommended future research of the present research.

20

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The present research was motivated by the escalating damages and

associated costs of claims and disputes on the construction industry. This escalation

creates a need to devise ways, methodologies, and tools to equitably, economically,

and rapidly resolve these disputes to minimize their damages on the construction

industry. Consequently, the focus of this chapter is to create a solid point of

departure for the current research through providing extensive background

information about previous researches in the construction and legal domains

focusing on the use of AI techniques for the developments of litigation outcome

prediction models. This chapter will also illustrate the use of AI algorithms by

researches in the construction domain to solve a variety of other problems.

Furthermore, this chapter will provide background information about the history,

nature, characteristics, risk allocation, and application of DSC clauses in the

construction industry.

2.2 Litigation Outcomes Prediction Models:

As mentioned earlier in chapter one, instigated from the litigation drawbacks,

a number of studies in the AI field attempted developing judicial reasoning

methodologies and prediction tools to support the construction industry.

As a first attempt to provide a rule based computer system for legal analysis

and claim assessment, Diekmann and Kruppenbacher 1984 developed an artificial

21

intelligence expert system for the analysis of differing site conditions claims called

(DSCAS). The system prototype provides legal guidance to whether a claim, on the

grounds of differing site conditions, has a likelihood of entitlement or not. The system

was designed based on knowledge pertinent to the Federal Government Standard

form General Conditions (2B-A, GP-4). Its logic was based on question/answer

methodology that utilizes “if-then” logic. Each question is pertinent to a specific legal

rule and each answer defines a different path to be followed within the logic. Legal

rules of the system were carefully crafted after thorough investigation of the domain

and lengthy consultation with claim specialists and construction attorneys yielding 22

modules. Each module included internal rules that would decide on the nature of the

next module to be addressed within the logical process of deciding a certain claim.

The DSCAS development was very promising to the use of AI techniques in this

field. In further development for the DSCAS, Cobb and Diekmann 1986 developed

knowledge based expert system titled Claim Expert Knowledge System (CEKS) in

the same domain of DSC analysis to aid inexperienced legal advice seekers. The

developed system was based on four concepts (1) the Federal Government

Standard Form 23-A (Rev. 4-75) was chosen as the binding contract between the

different involved parties; (2) the system was based on the owner’s prospective

when deciding on the entitlement of a claim; (3) the system is intended for

technically competent personnel supervising the contractor’s performance with a

minimal legal knowledge; and (4) the right of entitlement of a claim is only based on

expressed contract language and not any other implied rules or laws. Similar to the

DSCAS, the logic of the CEKS was based on an expanded set of questions and

22

answers. The system was tested against 13 DSC cases which appeared before a

Board of Contract Appeals (BCA) and predicted a similar decision to that of the BCA.

Inspired by the work of Diekmann and Kruppenbacher, in 1987, the US Army

Construction Engineering Laboratory (USA-CERL) developed an expert system for

the analysis of DSC titled Claim Guidance System (CGS-DSC) (Kim 1989). The

methodology of the system was based on the DSC clause (FAR-52.236-2) used by

the U.S. Government in its contracts. CGS-DSC utilized 13 modules to decide on the

entitlement of a DSC claim. These modules were crafted after (1) careful

consideration of the (FAR-52.236-2); (2) a detailed study of Diekmann and

Kruppenbacher research; and (3) thorough analysis of the construction domain

performed by six experts (2 experienced legal counsels and 4 experienced

engineers in construction contract management). Since the system was intended for

internal use of the USACE engineers, the decision about a claim was not very

elaborate. The decision falls into one of the followings: (1) Very poor chance; (2)

Poor chance; (3) Difficult to decide; (4) Fair chance; (5) Good chance; and (6)

Excellent chance. To make-up the shallow decisions produced by the system, a set

of 23 cases, gathered from LexisNexis and Westlaw, related to various DSCs were

integrated into the system. The CGS-DSC retrieves a relevant case to the current

situation from the case base after deciding about its entitlement as a supporting

document for the reviewer. Later the scope of the expert system was expanded to

cover different types of claims.

Hegab and Nassar (2005) implemented decision support systems in

predicting the best solution for a contractor in commencement delay related claims.

23

The system utilized decision trees and probabilistic calculation methods in predicting

the most cost effective alternative among litigation, relinquish of right, and amicable

settlement. The system was implemented on one of the largest infrastructure

projects in Cairo, Egypt (the New Sewer System). The new sewer system required

new lines of 600 and 1000 mm diameter to connect it to the old existing system. The

project was assigned to a joint venture of one Egyptian and four British companies

under Design-Build contract. The decision tree analysis implemented for this project

considered three alternatives (1) completing the project on time by increasing the

resources without claiming extra time and money; (2) going to court claiming the

delay costs and costs associated with accelerating the project; and (3) offering an a

amicable settlement against a percentage value of the claim. Probability values were

assigned by the contractor to each alternative and decision tree analyses were

implemented. The analysis yielded alternative three to be the cheapest.

The success of expert systems in contract administration and legal prediction

was very limited due to their failure in deducing all the necessary rules upon which

the system operates (Bubbers and Christian 1992). They assume the existence of a

full domain model that captures all required rules about a certain topic. As a result,

they are much localized to a specific aspect of a certain domain. In addition, their

accuracy and performance is crucially affected by the computational limitations.

Consequently, other methodologies have been tackled to model judicial reasoning.

Neural networks, with their remarkable ability to derive meaning from complicated or

imprecise data, can be used to extract patterns and detect trends that are too

complex to be noticed by either humans or other computer techniques (Aleksander

24

and Morton 1995). Inspired from this notion, Artificial Neural Networks (ANN) was

utilized to model judicial reasoning by Arditi 1998 and Chau 2005 and 2006. Arditi

(1998) attempted predicting the outcomes of construction litigation cases from Illinois

Circuit Court using ANN system. The system utilized a software named Brainmaker

and 102 cases that were defined by 43 input features (ranging between parties

involved, contract type and conditions, project changes … etc) and 1 output feature

defining the outcome of the court’s decision (winner of the case either the Contractor

or Owner). The ANN system attained a prediction precision of 67%. Chau (2005 and

2006) implemented a particle swarm optimization (PSO) model to train the

perceptrons of an ANN system in an attempt to predict the outcome of construction

litigation cases in Hong Kong. Similarly, the system utilized a set of 1105 of

construction cases that were predefined by 13 input features and 1 output feature.

Chau’s model achieved a prediction precision of 80%. In 2006 Chau was able to

attain higher prediction rate of 83%. The new system augmented the PSO earlier

model with Levenberg-Marquardt (LM) algorithm to benefit from its global search

capability.

Although ANN was able to achieve significant advancements to decision

support capabilities in this domain, their excessive training stage and their ability to

deal only with numerical data opened the horizon for the use of other AI techniques

like Case Based Reasoning (CBR). CBR is a problem-solving paradigm that is

fundamentally different from other major AI approaches like expert systems and

Neural Networks. Aamodt and Plaza (1994) illustrate that instead of relying solely on

the general knowledge of a problem domain, or making associations along

25

generalized relationships between problem descriptors and conclusions, CBR is able

to utilize the specific knowledge of previously experienced concrete cases.

The literature in this domain illustrates the superiority of case-based

reasoning systems over rule-based ones. For further illustration a comparison

between the two systems will be presented concerning: (1) domain knowledge; (2)

knowledge of reasoning; (3) development time; and (4) system maintenance and

servicing. Firstly, rule-based reasoning systems are based on the presence of a full

knowledge domain model that depicts all necessary rules to develop the system,

which is nearly impossible to exist as stated by Bubbers and Christian (1992).

Consequently, all developed systems are localized to a certain type of claims. On

the other hand, case-based reasoning systems can accommodate for missing data

since they are based on similarity measures, although that might affect their

prediction precision. Secondly, rule-based reasoning systems are highly dependent

on human judgment that must be coded in the form of logical rules that mimic the

human judgment process. Whereas case-based reasoning systems depend on

implicit human judgments that are available in the case base of the system. Thirdly,

the development time of rule-based reasoning systems in comparison to case-based

reasoning systems is enormous due the extensive investigation to derive and test

the required rules by domain experts. Lastly, rule-based reasoning systems require

continuous maintenance due to laws and codes modification that take place with

time. However, the case base of a case-based reasoning system is automatically

enriched with tested cases.

26

The superiority of CBR systems discussed above instigated its investigation

in the construction domain. In 1999, a CBR model for the prediction of construction

litigation outcomes was developed by Arditi and Tokdemir. The system implemented

a CBR development tool named ESTEEM and the 102 cases from Illinois Circuit

Court were augmented with an additional 12 recent cases for testing purposes. The

prediction precision was enhanced to 83%. A higher prediction precision of 84% was

attained by Chau 2006 by adopting a CBR reasoning approach to predict the

outcomes of construction litigation cases in Hong Kong.

Furthermore, hybrid systems were investigated by few researchers in an

attempt to improve the prediction precision. Arditi and Pulket (2005) utilized a

boosted decision tree (BDT) system to predict the outcome of construction litigation.

The study was conducted by using the same 114 Illinois court cases that were used

in earlier prediction studies conducted with artificial neural networks in 1998 and

case-based reasoning in 1999, augmented with an additional 18 cases that were

filed in the period between 1990 and 2000. In this research, a boosting algorithm

(ADABOOST) was utilized with decision tree algorithm through a software titled SEE

5. As stated by Arditi and Pulket (2005) “The conclusions indicated that ADABOOST

can be used in many settings to improve the performance of a learning algorithm.

When starting with relatively simple classifiers, the improvement can be especially

dramatic, and can often lead to a composite classifier that outperforms more

complex “one-shot” learning algorithms”. The main advantage of this system over

ANN CBR is that the boosting algorithm works as a plug-in program and helps the

primary learning machine to reduce the error rate by repeating decision tree learning

27

for a number of trials and by focusing on the attributes that have effects on error

rates. The best prediction result obtained with boosted decision trees was 90%,

which as illustrated by Arditi and Pulket (2005) is helping create a dispute-free

construction industry. In addition, Chen and Hsu (2007) developed an ANN-CBR

model for the prediction of the outcomes of construction litigation cases initiated due

to change orders disputes. The model (HACM) integrated the learning feature of the

ANN approach with similarity measures of the CBR model to achieve a prediction

rate of 84.61%. The hybrid model constituted cases gathered from Supreme and

Appellate courts over 48 states and districts in USA. They were characterized based

on 23 input features, 6 of which are related to project data and 17 were change

order related.

Research in the area of construction litigation outcomes prediction was

initially motivated by the accomplishments in other domains. The legal domain,

being very knowledge constrained, provided a very rich soil for developing tools for

prediction of litigation outcomes. One of the first and most pioneering case based

reasoning (CBR) tools HYPO was provided by Ashley and Rissland (1988a). HYPO

was created to assist attorneys in building arguments about actual cases in the area

of trade secret law. HYPO utilizes a set cases stored in its Case Knowledge Base

(CKB) to derive an argument. It builds a claim-lattice of all the cases in the CKB that

are relevant to a current case, by making “factual comparisons of cases relative to

the problem situation and determine the legal significance in comparisons in terms of

arguments about the problem situation” (Ashley and Rissland 1988b). The

pioneering aspect of HYPO is that it provides: (1) factual arguments in favor of the

28

case in hand supported by similar cases in its CKB; (2) counter factual arguments to

the case in hand supported by similar cases in its CKB; (3) suggestion of

combination of facts for new hypothetical arguments that might provide new

prospective for attorneys supported by similar cases in its CKB.

Believing that factual extraction alone in building a reliable CBR system is not

sufficient; attempts have been made to develop methods of utilizing unformatted

textual representation of cases to enhance the CBR systems potentials. SPIRE

combines CBR and Information Retrieval (IR) techniques to locate text passages

related to a certain legal situation within long textual representation of cases

(Daniels and Rissland 1997). Weber (1998) developed Pruentia to support

jurisprudential research by providing a case based retrieval engine over a database

of automatically indexed textual legal cases. More recently, Bruninghause and

Ashley (2001) experimented with Natural Language Processing (NLP) techniques to

enhance the reasoning capability of a CBR system by understanding meaningful

features and relations expressed by words. The developed Textual Case Based

Reasoning (TCBR) system implemented AutoSlog with Smart Indexing Learner

(SMILE). AutoSlog is a NLP/Information Extraction (IE) system that was developed

by Ellen Riloff at the University of Utah (Riloff 1996). It utilizes a powerful heuristic

sentence segmenter, Sundance, and module for generating extraction rules from

unformatted textual representation. SMILE “integrates IE and Machine Learning

(ML) methods for automatically assigning abstracted indexing concepts to text

cases” (Bruninghause and Ashley 2001). Weber et al. (2001) employed domain

ontology for TCBR system development.

29

For further development, researchers within the legal domain have attempted

hybrid or mixed approach to predict outcomes of litigation cases. HELIC-II models

legal reasoning using two engines, a case-based engine identifies similar cases and

extracts legal concepts from them, and a rule-based engine uses the legal concepts

and the current case’s facts to infer all possible legal consequences (Ohtake et al.

1993). CABARET (Rissland et al. 1989), GREBE (Branting 1999), and Anapron

(Golding and Rosenbloom 1996) are hybrid systems that combined rule based

reasoning with case based reasoning techniques for prediction purposes. CARMA

(Branting et al. 2001) and IBP (Brunghause and Ashley 2003) are algorithms that

combine case based reasoning and model based reasoning for the prediction of

litigation outcomes. In 1995, Egri and Underwood utilized ANN to provide the Hybrid

Integrated Legal Decision Assistant (HILDA) tool to extract legal knowledge and

predict litigation outcomes concerned with the question of “unjust” contracts based

on the Contract Review Act 1980 (New South Wales). HILDA integrated similarity

measures of RBR and CBR methods as well as the patchy domain theory presented

in the legal domain. Legal rules are implemented through ANN to categorize cases

in question either for plaintiff, against plaintiff, or undecided. Cases that fall within the

undecided region are then tested with the CBR component to fit it to one of the other

two categories. Brunghause and Ashley (2005) combined the SMILE system with

IBP system developed in 2001 and 2003 respectively in a hybrid system to achieve

higher prediction rates. The attained results were promising but indicated that further

research is needed in the field of NLP. In a recent research, El Hadi (2007)

developed a statute base Information Retrieval Case Based Reasoning (IR-CBR)

30

hybrid system that implements natural language description of actual situations as

its input to retrieve related cases to enhance prediction of litigation outcomes in

Bankruptcy Case Law.

Research on the prediction of litigation outcomes was not only performed by

researchers in universities. Its significance has captured the interest of Government

institutes like Donald Berman Laboratory for Information Technology and Law in

Australia over the years. In 1991, Donald Berman Laboratory for Information

Technology and Law provided a hybrid object oriented rule based system named

Intelligence Knowledge BAsed Legal System (IKBALS) to decide upon worker

compensation in work care cases in Australia. The second version of the system

IKBALSII augmented a case based reasoner and intelligent information retrieval

components to the rule based reasoner (Zeleznikow 2003). In 1995, Donald Berman

Laboratory for Information Technology and Law built the Split-Up expert legal

system that provided advice on the distribution of property under the Australian

Family Law. The Split-Up system is a rule based/ Artificial Neural Network (ANN)

system derived from factors attained from thorough investigation of the governing

legal factors with domain experts (Zeleznikow 2003).

From the literature in this domain, it was noticed that there is still work to

follow in this area. It is apparent that AI research in the legal and construction

domain has been progressing along similar lines. An important aspect in both of

these domains is that they rely heavily on textual material expressed in human

language: legal references and judicial opinions in the legal domain, contract

conditions, specifications, correspondences, etc. in the construction domain. This

31

creates a strong need for well defined methodologies that are capable of effectively

analyzing textual material and efficiently retrieving pertinent information from them.

Besides, in all the above mentioned research studies in the construction domain,

information extraction and case attributing were manually performed and fed to

these systems. It is a fact that, the accuracy of the output of a machine learning

system is largely dependent on the availability of reliable information about the

attributes used to define the training cases. As Arditi and Pulket (2005) state

“Finding a complete and reliable set of training examples is difficult in construction

litigation cases”. The use of natural language processing techniques NLP can

enhance and facilitate the use of construction litigation prediction models. Automatic

cases classification and knowledge extraction can be improved through NLP

techniques (Bruninghause and Ashley 2001). It can further provide the ease of

access to legal knowledge for legally inexperienced personnel in the field. The highly

sophisticated electronic information storage and retrieval systems available for

researching the law are extremely complex and time consuming. Sometimes this

complexity creates problems for information seekers and can limit their access to

relevant information. Consequently, accurate legal decisions within the construction

realm are exceedingly time consuming and may require knowledgeable

professionals to obtain the required decision support. As a result, an automated

legal support system that utilizes natural language processing techniques to identify,

retrieve, reorganize legal information, and predict construction litigation outcomes

will reduce the time required and costs spent by construction firms and improve

overall project control.

32

2.3 Case-Based Reasoning Models:

The success of legal prediction models, which depended crucially on the

adequacy of learning from experience, has contributed to the birth of similar line of

research in different fields. One of the problems being tackled through the use of AI

in different domains is how to represent and reuse knowledge and previous

experience. Earlier attempts constituted developing knowledge-based systems

(KBS), which are considered one of the success stories of AI research. “In a recent

survey the UK Department of Trade & Industry found over 2000 KBS in commercial

operation (the survey excluded KBS in University research laboratories)” (DTI 92).

KBS utilize domain model based systems like rule based and object models

(Clancey 85). Despite its success, several problems were reported by developers

and users of KBS (Watson and Marir 2007). Some of these problems are

• Knowledge elicitation is a difficult process, often being referred to as the

knowledge elicitation bottleneck;

• Implementing KBS is a difficult process requiring special skills and often

taking many man years;

• Once implemented model-based KBS are often slow and are unable to

access or manage large volumes of information; and

• Once implemented they are difficult to maintain (Bachant & McDermot 1984,

Coenen and Bench-Capon 1992, Watson et al. 1992).

Consequently, more efficient tools and techniques have been thought of as a

solution to these problems. Case-Based Reasoning (CBR) is a paradigm solving

mechanism that mimics previous knowledge about a solution of a similar problem to

33

solve newly introduced ones (Kolodner 1993). In CBR systems, expertises are

embodied in a library of past cases, rather than being encoded in classical rules.

Each case typically contains a description of the problem, plus a solution and/or the

outcome. The knowledge and reasoning process used by an expert to solve the

problem is not recorded, but is implicit in the solution. In fact, the work of Schank

and Abelson (1977) in the field of philosophy is considered to be the main focal point

and origin of CBR systems. They claimed that human general knowledge is build up

in the form of scripts based on our experiences and used to derive judgments and

expectations of newly encountered situations (Schank 1982). Based on these

philosophical roots of CBR, the first CBR applications were introduced by Roger

Schank’s group at Yale University in the early eighties (Watson and Marir 2007). As

discussed in section (2.2), the legal system in the United States of America, being

an Anglo Saxony system and intensively concerned with previous experience

derived from precedent cases, is a very rich domain for applications of CBR

systems.

2.4 CBR in Civil, Architectural, and Construction Engineering:

The success of CBR systems in different domains contributed to the birth of

its use in the engineering field. Construction Engineering is a very dynamic field.

Decisions in this field are influenced by factors that vary from one project to the other

like project size and complexity. These factors may influence decisions concerning

the involvement of diversified parties with different specializations, site conditions,

contract type and conditions, and project location …etc. (Caldas et al. 2002).

34

Decisions of this nature are highly unstructured and no clear rules are available to

provide a clear basis for making tem. Consequently, decision makers employ

previously acquired knowledge through experience and similar cases. This property

made construction a very prominent field for the use of CBR (Chua 2001). The rest

of this section is dedicated to provide a literature review for the use of CBR in the

fields of Structural, Architectural, and Construction Management engineering.

2.4.1 Architectural/Structural CBR Models:

CBR had been used within the design field to facilitate re-use of architecture

and structure designs. As defined by Schmitt (1988), architecture design is the art of

producing a complete building specification from an incomplete problem description.

Consequently, architects employ acquired positive and negative experiences when

solving design problem rather than generating the building design from scratch every

time. This is supported by the notion that there are no definite formulas,

methodologies, or algorithms that can map a design problem to a formalized

architecture design solution since there is no formalized definition of architecture

quality. “Consequently, traditional architectural design education makes extensive

use of architectural cases” (Schmitt 1993). This aspect of design problems initiated

research that aim to utilize CBR as an aid to the design problem. CBR has been

utilized to solve new design problems by adopting, modifying, or combining existing

cases. Pearce et al. (1992) developed ARCHIE a CBR architectural design system.

CADSYN and DDIS are structural design system proposed by Maher and Zhang

(1991) and Wang (1991) respectively. Schmitt (1993) provides one of the most

35

successful Architectural Case-Based Design (CBD) system named Architecture

Case Based Design System (ACABAS) that was applied to contemporary designs of

the Ticino architect Campi and Pessina in Switzerland. CBDs are a specific type of

CBRs that have a wide spectrum of capabilities ranging from generating a

description of existing buildings or designs in the case base to the creation of a

complete building specification for a new design problem (Schmitt 1988). The

ACABAS system utilizes an object oriented database that supports binary large

objects (BLOBs) which stores structured and unstructured information about the

different cases. This database includes CAD models that are precisely generated for

the CBD system. A developed pre-processor (Mod-4) was designed for this function.

It accepts geometric description of the building and requires further information like

room labeling, materials description, and building design specifications to generate

object database and graphical representation of each case. The later constitutes a

set of unstructured information like scanned images, text description of the building

and its location, interview with the occupants, energy bills, acoustical and thermal

problem areas, textual description of repairs history … etc. Normative and

Functional constraints are further identified as parameters of each case. When a

new design situation is introduced to ACABAS, it retrieves the most similar case and

implements adaptation mechanisms to fully satisfy the parameters of the new

problem. Topological and dimensional discrepancies are identified as the first step of

adaptation. In case of discrepancies, adjustments are applied based on

transformation rules that are built into the system while maintaining the normative

36

and functionality constrains un-violated. ACABAS undergoes an iterative process

until all transformations are applied without violation of the defined constrains.

In addition, Watson and Abdullah (1991) employed CBR in building defect

diagnoses through the development of PAKAR. Flemming and Woodbury (1995)

built up the SEED project, which utilizes case-based reasoning to provide

computational support for the early design phase. Roddis and Bocox (1997)

developed a hybrid system for resolving fabrication errors in steel highway bridges

that is in operation in Kansas Department of Transportation (KDOT). The Bridge

Fabrication error solution eXpert system (BFX) integrates a case and rule based

modules. The former, case-based BFX (CB-BFX) was created using the

programming language CommonLISP and the CBR tool MEM-1. The system which

was developed to provide a formalized methodology for repair of fabrication error

had a case base of 112 cases of previously experienced errors and corrective

actions gathered entirely from KDOT projects. Cases were classified into 13 sub

modules based on the type of fabrication error as follows: mis-located holes (33

cases), mis-cut members (20 cases), nicks and gouges (13 cases), mis-located

members (10 cases), mis-shaped holes (8 cases), edge distance (6 cases),

laminations (6 cases), mis-aligned members (6 cases), mis-attached members (4

cases), size error (2 cases), stress fracture (2 cases), end distance (1 case), and

partially drilled holes (1 case). Evaluating the use of CB-BFX module alone yielded a

precision of 82%, which was an impressive advancement over the use of the rule-

based module that attained 63%. The combined hybrid system, using both modules,

achieved an overall success rate of 91%.

37

Caldas et al. (2002) stated that the complexity of modern construction

projects leads to the use of increasingly sophisticated construction methods and

requires extensive interactions between diversified parties. This increasing

complexity could be the reason that system analysis and design has been gaining

increasing importance in the development of complex technical systems (Praehofor

and Kerschbaummayr 1999). As an example of that, facilitated Computer Aided

Systems Architecting CASA, a technique combining systems and requirement

engineering approaches with AI, is growing rapidly to cope with the market

competition (Caldas et al. 2002). Praehofor and Kerschbaummayr (1999) developed

a case-based approach to be augmented with CASA to support reusability of

designs of existing systems in determining the architectural requirement fulfillment of

new components under design. Retrieved solutions by CASA are accompanied by a

degree of fulfillment factor (DOF) between [-1, 1] signifying the extent of similarity

and required adaptation to new paradigms. To further explain the DOF concept, a

DOF value of:

• 1 means full fulfillment of the new system requirements and can be adopted

as a solution with no modifications.

• 0 to <1 means partial fulfillment of the new system requirements and can be

adopted as a solution with some architecture tailoring.

• -1 to <0 means does not fulfill the new system requirements and cannot be

adopted as a solution.

CASA employs predefined language and lexical structures, which are domain

dependent, with object oriented structure to define new components’ properties and

38

requirements and had showed significant success in transportation and material

handling design.

Likewise, Sirca and Adeli (2005) developed an intelligent hybrid decision

support system (IDSS) that utilizes CBR and ANN to assist bridge engineers to

semi-automatically convert the rating of bridges from Working Stress Design (WSD)

method to Load Resistance Factor Design (LRFD) method. According to Sirca and

Adeli (2005), in 1995, the Federal Highway Administration (FHWA) required that all

bridges, regardless of the design method used for the original design, be based on

the load factor design (LRFD) method. However, steel bridges originally rated using

WSD had crucial data missing to make the proper conversion to the LRFD method.

As illustrated by Sirca and Adeli (2005), a steel girder bridge rated by either method

requires input into the BARS-PC program, software used by Ohio Department of

Transportation (ODOT) for bridges design, which describes the girder’s section

properties. For the WSD-based bridge rating, a general description of the section

properties including only the cross sectional area, moment of inertia, and section

modulus of each girder cross-section would suffice. For the LRFD-based rating,

however, a detailed description of the section properties is required including

information about individual elements making up the steel girder cross section such

as the total height of the section, and the areas of the web and flange elements and

their individual moments of inertia and the distances from their centroids to a

reference axis. In addition, another major piece of information that is required for the

conversion, and not included in the WSD design method, is information regarding

the spacing of lateral bracing of the girders. Such an aspect made the rating

39

conversion very hard and labor intensive, for an engineer has to use his knowledge

to make decisions about the lateral bracing spacing from the design data available

from the WSD design method and the design guidelines utilized at the period of

designing the bridge (Waheed and Adeli 2005). As a consequence, the expert

system was developed to assist in deriving the missing data about lateral bracing

requirements from similar cases for bridges under the jurisdiction of ODOT. The

system employed structure analysis files attained from AASHTO Bridge Analysis

and Rating System (BARS-PC) as its case based knowledge database. CBR is

utilized to define a similar case and attain input data that are employed in the ANN, a

system that was developed in an earlier research by Sirca and Adeli (2004), to

define the required missing parameters of section properties description. After

attaining all required parameters, the BARS-PC data file is updated and saved. The

CBR shell, Induce-It, is used to create and manage the CBR module for the

Intelligent Decision Support System (IDSS). The IDSS case base included 39 cases

that were characterized by textual or numerical nature, field names that represent

the case data such as the year in which the bridge was designed, the span length(s)

of the bridge, and the number of cross-frame spaces. As stated by Sirca and Adeli

(2005), the year at which the bridge was built is the most crucial information in

determining the appropriate lateral bracing due to the number of changes that were

made to the design process through the years. Based on that, weights are assigned

to each field based on its relevance. These data characteristics as well as assigned

weights to each field are utilized to define the similarity between a new case and

those available in the case base. Similarity measures of cases are based on linear

40

weighted similarity functions which are then ranked using Nearest-neighbor

matching to define the most similar case. When a matching case is defined, its

lateral bracing data are retrieved from separate database and inputted to the ANN to

decide on the conversion required.

2.4.2 Construction Engineering CBR Models:

In addition to Architectural and Structural design, CBR approaches were

implemented in variety of construction engineering management problems including

construction duration estimation, productivity estimation, cost of building estimation,

bid decision making, procurement criteria selection, construction negotiation

methodologies, and contract strategy formulation.

Project scheduling is one of the key factors in determining the success of

construction projects. Interest in developing and formalizing good scheduling

practices has always been of significance in the construction research community

(Miyashita and Sycara 1992). The process of scheduling assigns a set of tasks to a

set of resources with finite capacity over time (Hinze 1998). Successful scheduling

requires judgment about variety of interrelated factors and criteria concerning

diversified and characteristically conflicting set of constrains (French 1982). Over the

last decade, there has been an increasing interest in techniques that exploits

previous experience in developing and modifying project schedules (Hinze 1998).

Sycara and Miyashita (1994) provided a CBR approach in CABINS for iterative

schedule revision in job shop schedules. CABINS is composed of three modules (1)

an initial schedule builder based on constraint-based scheduler; (2) an interactive

41

schedule repair module, and (3) an automated schedule repair module. Schedules

developed in the first module are not optimized due to the absence of the complete

knowledge of the scheduling domain model and user preferences (Miyashita and

Sycara 1994). To attain an optimized schedule, CABINS implements the second and

third modules through a CBR approach that adopts previous optimizations in the

case base. CABINS gathers the following information in the form of cases through

interaction with a domain expert in its training phase.

• A suggestion of which repair heuristic to apply: a user’s decision on what

repair heuristic to be applied to a given schedule for quality improvement.

• An evaluation of a repair result: a user’s overall evaluation of a modification

result. The evaluation categories currently employed are ‘acceptable’ and

‘unacceptable’.

• An explanation of an evaluation: when a user evaluates the modification

result as unacceptable, she/he indicates the set of undesirable effects that

have been produced. The explanation given to CABINS consists of the

numerical rating of each identified effect. (Sycara and Miyashita 1994).

In the optimization process, CABINS identifies vulnerable activities based on

the user’s preference criteria. The system then works in an iterative manner and

optimizes schedule activity by activity and not the whole list at once. The most

similar modification requirement retrieved from the case base using K-Nearest

Neighbor is adopted for the first activity. The outcomes and effects on the schedule

corresponding to the user’s preference criteria are identified and presented to the

user. If the optimization is accepted, the case base is enriched with this particular

42

optimization. On the other hand, if the optimization is not accepted, the user is asked

to provide a justification that is tagged with the optimization process in the case base

and other iterations are performed.

Amicable settlement through negotiation is another construction problem that

entails extensive expertise and knowledge of similar cases. Li (1996) provided a

CBR intelligent support system to construction negotiation. “This model has been

implemented in the MEDIATOR, a computer program that utilizes previous cases as

a basis for addressing new problems. In contrast to conventional expert systems

(ESs) that use compiled knowledge in problem solving, the system selects similar

cases to help in solving a given negotiation problem” (Li 1996). Cases in the case-

base are represented in terms of 6 factors: (1) case number and indexing keywords,

(2) situational description addressing the background of the negotiation, (3)

negotiating parties, (4) disputant issues and goals, (5) final settlements, if it is

successful, or unsuccessful, and (6) negotiation history. MEDIATOR allows each of

the parties to illustrate their “issues and goals” which are used as factors for retrieval

of similar cases. The solution of the most similar case is adopted as a solution to the

new situation, which could be accepted, rejected, or employed to derive new users’

goals.

Yau and Yang (1998) developed CBR-CURE a case-based reasoning system

for estimating the construction duration and cost of building construction project at

the preliminary stage to decide which design is feasible and most beneficial to the

owner. CBR-CURE was developed using ESTEEM, a Window based tool for

developing CBR systems, which is commercially available through Esteem Software

43

Incorporated since 1991. The case database constituted of 60 hypothetical projects

generated using a construction planning expert system. The Time/Cost Integrated

System (TCIS) integrates rules from experienced construction experts and mean

cost data. The cases are identified by 13 input features, among which are project’s

name, start and finish dates of the project, and 4 output features defining the

duration, equipment cost, material cost, and labor cost of the project. The system

input interface allows the user to assign weights for each of the 13 input features.

These weights are utilized to determine case similarity. The interface also allows the

user to define a minimum similarity value above which cases are deemed similar

and are retrieved. The duration and cost of a new case is determined by using

adjustment factors that are built into the system to modify the values attained from a

retrieved case.

Furthermore, the dynamic nature of the construction bidding decision making

process also led to the development of an automated CBR system CASEBID that

proposes a markup level, based on the criterion of maximized expected profit, for a

newly introduced bidding situation from previous bidding cases and domain

knowledge (Chua et al. 2001). The system focuses on risk and competition factors

that affect the bidding decision by integrating domain knowledge, derived from a

thorough investigation with domain experts of internal and external factors affecting

the nature of a decision, with case based knowledge. In a comparative study

CASEBID outperformed the conventional statistical approach. It posed 55% bid

wins, yielding an average 7.4% expected profit compared to 41% bid wins, yielding

an average 6.15% expected profit in the case of the latter approach.

44

As a matter of fact, construction projects include many repetitive and cyclic

activities (Kaneta et al. 1999). Likewise, judgment about the best methods and

techniques to be adopted for cyclic processes is based on previously attained

expertise concerning productivities and technologies. Graham and Smith (2004)

proposed a CBR based estimator (CBE) to predict the productivities of concreting

cyclic operations from previous cases. The model consisted of 5 input features and

one output feature. “CBE was validated, not only against the performance of past

operations (which were not used in the model development), but also against

estimates provided by a professional construction planner. The model was found to

provide more precise and consistent estimates than the planner, with 90% of the

estimates being within a 10% relative error of the observed value” (Graham and

Smith 2004).

In such a dynamic environment as that of the construction industry,

procurement decisions are crucial to the success of project. In such decisions

previous knowledge is the corner stone of decision making (Love et al. 1998). Timely

deliveries are major aspects of the successful completion of any construction project

(Luu et al 2006). Consequently, Companies tend to work with suppliers with whom

they had good experience. Researchers have pointed out that the identification and

use of a suitable procurement system could contribute immensely to the success of

a construction project (Naoum 1994; Rwelamila and Meyer 1999), and this has been

a driving force for the development of various procurement selection approaches.

Such dependency on previous experience gives a high potential for CBR

approaches for modeling the procurement selection decision within a complex

45

dynamic environment. Luu et al. (2005) examines the suitability of CBR approaches

for procurement selection by creating a prototype model of procurement selection

criteria (CaPSC) to assist decision makers in selecting appropriate procurement

systems. The model applies CBR approach to procurement criteria selection

irrespective of the variability in the characteristics of the client, project, and external

environment. These factors are very hard to model based on their wide diversity

(Luu et al 2005). As a consequence, the prototype model relates these parameters

to their associated factors that can affect such a decision like speed, time certainty,

quality, flexibility, risk allocation …etc. For more illustration, if “on-time completion” is

a key objective of the client, not only the speed but also the time certainty, flexibility,

and quality are considered during the evaluation process. The evaluation factors

were derived from a methodical investigation of the different procurement selection

criteria techniques and semi structured interviews were conducted with managers of

five major client organizations in Australia (four governmental and one private)

experienced in construction procurement selection.

One of the main construction problems that is normally resolved using

previously gained knowledge and managerial expertise is contract strategy

formulation. In fact, it is inherently, too complex, too personal, and too dynamic to be

modeled in a fully automated manner (Reuber 1997). Despite this difficulty, CBR

approaches can be utilized to facilitate automation of the use and reuse of these

expertises. Chau and Loh (2006) developed a prototype of a decision support

system, CB_Contract, which exploits CBR approach for contract strategy

formulation. The system incorporates the four main components of contract strategy

46

formulation, namely work packaging, functional grouping, Contract type, and award

method. It further integrates these components with other crucial factors, such as

“form of contract, currency and timing of payment, nomination of subcontractors by

the client, type of specifications (performance or construction method), penalty scale

for liquidated damages, and occasionally the provision of contractual motivation and

incentives” (Chau and Loh 2006). ReCall, an interactive human machine system,

was used for the development of CB-Contract. “The case retrieval process takes

place within the ReCall environment using inputs from the user. Thereafter, the user

will carry out the necessary adaptation to the cases to formulate the contract

strategy for the current project based on three important considerations: (1)

robustness of the retrieved set of sub strategies; (2) compatibility of the sub

strategies; and (3) effectiveness of the alternative solutions.” (Chau and Loh 2006).

To assist the user in making such decisions, each case is associated with a brief

description of the project. The adopted method and the case parameters are then

augmented into the knowledge base of the system for reuse in future models.

All of the above studies illustrate the growing application of CBR approaches

in the engineering disciplines. Motivated by this growth, Dogan et al. (2006)

performed a detailed study to compare the performance of three optimization

techniques, namely feature counting, gradient descent, and genetic algorithms (GA)

in generating attribute weights that were used in a spreadsheet-based case based

reasoning (CBR) prediction model. The model was utilized for early cost prediction

of structural systems and was tested by using data pertaining to the early design

parameters and unit cost of the structural system of 29 residential building projects.

47

The results indicated that GA-augmented CBR performed better than CBR used in

association with the other two optimization techniques.

It is evidently clear from the reported research studies that CBR approaches

are very helpful in utilizing previously learned experiences to solve newly

encountered ones. In contrast, the success of model based and rule based

approaches is hampered by the fact that they are dependent solely on the

computational efficiency, and the assumption that there exists a strong domain

model. These characteristics have limited its use in real world tasks since the

existence of a strong domain model can almost never be assumed. However, as

mentioned earlier in section (2.1), the success of CBR approaches comes at a

higher cost of manually extracting information pertaining to the different cases. A

possible solution to this problem can be obtained through Artificial Intelligence (AI)

and Natural Language Processing (NLP) techniques as will be shown in the

following section.

2.5 Natural language processing (NLP):

Natural Language Processing (NLP) is wide and very active area of research.

NLP covers a wide spectrum of techniques ranging from rule based techniques to

statistical probabilistic tools. Consequently, there is not a single agreed-upon

definition of what NLP exactly is. However, there are some agreed upon aspects of

what NLP is. NLP is a theoretically motivated range of computational techniques for

the analysis and representation of naturally occurring texts at one or more levels of

linguistic analysis for the purpose of achieving human-like language processing for a

48

range of tasks or applications (Manning and Sch^eutze 1999). Naturally occurring

texts can be of any language, mode, genre, etc. The language can be expressed

orally or in writing. The only requirement is that they be in a language used by

humans to communicate with each other. Also, the language being analyzed should

not be specifically constructed for the purpose of the analysis, but rather that the text

is gathered from actual usage (Allen 1995).

In fact, the field of NLP was originally referred to as Natural Language

Understanding (NLU) in the early days of AI. However, it is agreed today the true

NLU is not yet accomplished (Jurafsky and Martin 2000). A full NLU System should

be able to accomplish tasks like paraphrase an input text, translate the text into

another language, answer questions about the contents of the text, and draw

inferences from the text. While NLP has made outstanding achievements in some of

these venues, NLU still remains the goal of NLP due to the fact that NLP systems

cannot by themselves draw inferences from text (Liddy 2003). As stated by Manning

and Schêutze in their book Foundations of Statistical Natural Language Processing,

NLP practices are governed by nature of the domain of its application. Among the

key contributors to the discipline of NLP are: “Linguistics - focuses on formal,

structural models of language and the discovery of language universals - in fact the

field of NLP was originally referred to as Computational Linguistics; Computer

Science - is concerned with developing internal representations of data and efficient

processing of these structures, and; Cognitive Psychology - looks at language usage

as a window into human cognitive processes, and has the goal of modeling the use

of language in a psychologically plausible way” (Liddy 2003).

49

Research in natural language processing has been going on for several

decades dating back to the late 1940’s (Jurafsky and Martin 2000). Machine

translation (MT) was the first computer-based application related to natural

language. Weaver and Booth started one of the earliest MT projects in 1946 on

computer translation based on expertise in breaking enemy codes during World War

II (Hutchins 1997). Throughout late 1960’s and early 1970’s NLP related researches

focused on improving of theories concerning how to represent meaning and

developing computational solutions that the existing theories of grammar, at that

time, were not able to produce (Jurafsky and Martin 2000). Alongside theoretical

development, many prototype systems were developed to demonstrate the

effectiveness of particular principles. Weizenbaum’s ELIZA was built to replicate the

conversation between a psychologist and a patient by simply changing the order of

the user input (Jurafsky and Martin 2000). ELIZA plays the role of a therapist, asking

questions based on the answers of the user, who plays the role of the patient. The

program contains a database of keywords and a specification of output for each

keyword. The program searches for a keyword in the user’s answer and asks the

following question based on the output specified for the keyword. ELIZA therefore

does not actually understand the dialogue with the user, nor does it make any

arguments, conclusions, or claims. This is acceptable in this particular dialogue

between a therapist and a patient in which the therapist can pretend to not know

anything about the real world (Jurafsky and Martin 2000).

Perhaps the most recognized uses for NLP techniques today are those

related to commercial applications such as the spelling and grammar correcting

50

capabilities of modern word processors (Church and Rau 1995). However, text-

based NLP techniques have been utilized in numerous applications such as

information extraction and retrieval, automatic text summarization and machine

translation (Allen 1995). Such NLP-enabled applications have been used in various

areas including the financial field, computer software development and law.

Motivated by the success of NLP techniques and the advancements in

computational resources, the awareness within each community of the potential

solutions to textual dependent problems has grown. In pursuit to enhance

information models, document integration, and inter-organizational systems in

construction engineering and management, AI and Natural NLP techniques have

been employed extensively through a variety of automated and semi-automated

tools (Labidi 1997). Text mining methodologies, document clustering techniques,

controlled vocabularies schemes, and web based models were some of the

techniques utilized to perform the above mentioned tasks (Caldas and Soibelman

2003). Most of the present construction information integration tools are designed to

work with structured data like CAD models and construction scheduling databases.

However, most of the available data are stored in semi-structured or unstructured

format like contract documents, change orders, RFIs, and meeting minutes that are

normally stored as text files (Caldas et al. 2002). Consequently, facilitating the use of

these documents through integrated methods has become a necessity to enhance

project control, performance, and data reuse. A number of previous research studies

attempted to achieve this objective. A computerized database for the classification,

documentation, storage, and retrieval of documents about rising construction

51

technologies was presented by Ioannou and Liu (1993). Controlled vocabularies

were proposed by Yang et al. (1998). The researchers used manual and text mining

techniques to scrutinize a number of methodologies thesauri to promote design

information reuse. Kosovac et al. (2000) investigated the use of controlled

vocabularies for the representation of unstructured data.

In further attempts, Hajjar and Abou Rizk (2000) provided a document

collaboration methodology. Their approach employed common data model

customized to a unique segment of the construction domain to define projects and

document data. Wood (2000) provided a method for hierarchical structure of

concepts extraction from textual design documents. Scherer and Reul (2002), on the

other hand, utilized text mining techniques to classify structured project documents.

Over the last few years, there has been a significant growth in the use of

databases in different sectors like business, government, and scientific at a rate that

developments in traditional data analysis methods cannot cope with. The nature of

the data, being expressed in natural language and stored in unstructured format,

represents the main hurdle hampering the efficient use of traditional data analysis

methodologies. “The traditional methods can create informative reports from data,

but cannot analyze the contents of those reports” (Soibelman and Kim 2002). A

significant need exists for a new generation of techniques and tools with the ability to

automatically assist humans in analyzing the very large amount of data for extracting

useful knowledge. Inspired by this pressing need, in 2002, Soibelman and Kim

utilized knowledge discovery in databases (KDD) and data mining (DM) techniques

to develop a new tool to automatically analyze and derive knowledge from

52

construction databases. The tool was implemented within a frame work of the

Resident Management System (RMS), a system developed by the US Army Corps

of Engineers for project management and control, to extract knowledge about

causes of delay in Flood Control Projects at Fort Wayne. The system integrated data

mining techniques through decision trees, and ANN in two modules. In data mining,

feature subset selection was first used to calculate the relevance of features that

were implemented in decision tree algorithm to extract rules from the data sets.

Rules from decision tree made the input selection for the neural network a simple

task and the understanding of outputs of neural network easier. Finally, neural

networks were used to make predictions of the future trends in a construction

project. The C 4.5 decision tree algorithm was used to predict the effective causes of

delays that were used as input data for the ANN. The 224 projects at Fort Wayne

were classified into a downward expanding decision tree, in which each node

represents a cause of delay. In addition, each node is also associated with a

percentage value defining the relevancy of the cause. For example, among the 224

projects, 120 projects (54%) were delayed. The 120 projects were first tested for

Inaccurate Site Survey as a cause of delay yielding 36 cases (16%) with related

delays and 84 cases with other causes of delay. The first node is further branched

by testing the cases against Shortage of Equipment cause of delay. The C4.5

algorithm defined nine effective cases of delay (inaccurate site survey, number of

workers, incomplete drawing, change order, shortage of equipment, duration,

season, weekends, rain/snow) that were implemented in the ANN. As mentioned by

Soibelman and Kim (2002), a great number of NN were run to find that the best

53

results were achieved with 1% learning rate and 3 layers back propagation NN

architecture. The results of the implementation were promising and identified that the

main cause for delays of Flood control project at Fort Wayne was inaccurate site

survey rather than the weather related problems initially assumed by site managers.

Furthermore, Caldas et al. (2002) and Caldas and Soibelman (2003)

presented the use of information retrieval techniques to enhance information

organization and the use of inter-organizational systems through automated

classification of construction projects. The research proposed a methodology for the

use of information retrieval via text mining techniques to facilitate information

management and permit knowledge discovery through automated categorization of

various construction documents according to their associated project component

using standard classification configuration of the Construction Information

classification Systems (CICSs).

Due to the persisting need to facilitate access, use, and reuse of unstructured

construction project documents, Xie at al. (2003) also provided an integrated model

for the retrieval of construction project documents to facilitate decision making,

logical judgment, and control by project managers. The proposed system utilized a

user provided model of construction project management and a user configurable

visitor to retrieve information based on users’ needs. Moreover, a study for

scrutinizing a methodology for incorporating construction project documents in

architectural engineering, construction, and facility management (AEC/FM) model

based information systems was investigated by Caldas et al. (2005). The study

focused on methods of augmenting and facilitating entry of large documents in

54

project management information systems to improve overall project control through

semi-automated support integration.

Demian and Fruchter (2005) investigated the use of different text analysis

methodologies to highlight and quantify potential significance and similarity among

objects from an archive of building models to facilitate and improve design reuse.

They made use of a corporate model (CoMem) prototype which provides an

overview of a corporate memory in the form of a map to aid the process of finding

reusable design items. Their proposed methodology examined the use of vector

model text analysis augmented with latent semantic indexing, context sensitive

comparison, and tree matching retrieval techniques.

Ng et al. (2006) implemented Knowledge Discovery in Databases (KDD) and

Data Mining (DM) to define common characteristics of maintenance records as they

relate to different types of university facilities (Housing and academic), location of

different university facilities, and the nature of the required maintenance reported in

the Facility Condition Assessment database. The FCA database contains deficiency

information in the form of textual reports on facilities located at three campuses

within a statewide university system. The developed KDD system implemented a

combination of statistical analysis techniques and cluster analysis for text mining to

discover common patterns in the deficiency description reports available at the

university’s FCA. Statistical analysis was utilized to derive a consistent

representation of each deficiency report in the FCA in terms of the frequency of

words repetition within the data base. To attain similarity measures between the

different reports, Support vector Machine (SVM) methodology was implemented.

55

SVM stores a list of terms and their frequencies for each document. Every document

(deficiency report) becomes a vector in S dimensional space, where S is the number

of terms in the group of documents. VSM is based on the assumption that similar

vectors in the S dimensional space will represent similar documents. After attaining

a consistent representation of all reports, automated clustering of the deficiency

reports is performed based on the deficiency type. K-nearest neighbor clustering

algorithm was utilized for that purpose. Such methodology was very efficient in

deriving knowledge about the relation between the housing type and location with

respect to maintenance nature. For example it was found that housing facilities have

similar deficiencies on all three campuses whereas the deficiencies in academic

facilities are unique to the three different campuses. Furthermore, Housing and

academic facilities have similar deficiencies in the area of old components and

systems, such as compliance with the American Disability Act for fire protection

(sprinkler systems and emergency lighting), and adequate space in bathrooms. As

stated by Ng et al. (2006), the developed KDD system assisted in acquiring

knowledge form the FCA that is far beyond traditional data analysis techniques.

In one of the latest researches, Lin and Soibelman (2007) developed a NLP

based approach to assist Architectural/Engineering/Construction (A/E/C) information

acquisition from the World Wide Web (WWW) concerning materials manufacturers.

Due to the inconsistence of terms used for materials description, the developed

approach made use of the extended Boolean model and domain knowledge

thesaurus generated through automated web aggregator. The developed thesaurus

is utilized to perform query expansion which takes place in two steps. In the first

56

step, set of terms related to each main subject (title) under query were generated

with an AND/ OR association relation in an attempt to provide standardized search

terms for different materials. For example, a “Translucent Roof Panels” would have

Skylight, Fiberglass, and Natural Light as related terms with an AND association.

However, Day lighting panels, Translucent roof assemblies, and Translucent roof

systems would be related with an OR association. Consequently, new set of queries

would be generated in the following manner: (“translucent roof panels”) AND

(skylight), (“translucent roof panels”) AND (fiberglass), (“translucent roof panels”)

AND (natural light), (“translucent roof panels”) OR (daylighting panels), (“translucent

roof panels”) OR (translucent roof assemblies), and (“translucent roof panels”) OR

(translucent roof systems). In the second step, a set of stemmed terms generated

from the initial quarry terms were generated to account for the lexical variation in

terms representation. Before augmenting the generated terms, they were checked

using “WordNet”, an extensively used dictionary in NLP, to remove under-, over-,

and mis-stemmed words. As reported by Lin and Soibelman (2007), the

implementation of this approach enhances the retrieval and utilization of the WWW

for A/E/C information acquisition.

The use of NLP techniques for the prediction of construction litigation

outcomes is a research topic that has not been tackled so far. Since the fields of

construction claim management and law are closely related, as discussed in section

(2.2.1 And 2.2.2), it can be presumed that the advancements achieved in the use of

NLP techniques in the legal domain can be adopted and further developed in the

field of construction litigation outcomes prediction.

57

2.6 Machine Learning (ML)

The focus of this section is to provide background information about the

nature of ML tools that could be used for creating a DSC legal decision support

system for the construction industry and the different types of reasoning upon which

they are based. The section will first provide some background on the different types

of reasoning employed in ML, and then emphasis will be given to four types of ML

tools, namely:

1. Support Vector Machines (SVM);

2. Naïve Bayes Classifiers (NB);

3. Rule Induction Classifiers; and

4. Latent Semantic Analysis (LSA).

2.6.1 Type of Reasoning

Before discussing the different ML tools reviewed in this section, one should

develop an understanding of the different reasoning types upon which they are

based. The following is a brief description of these reasoning types. In fact,

classification is a process performed by humans on daily bases even without

consciously noticing. In all cases, classifications performed by humans or computer

systems (ML) fit into one of three categories namely deduction, abduction, and

induction reasoning. The first type, deduction, is based on deriving rules from facts

that are 100% assured (Bramer 2007). An example of this would be if for a fact it is

known that all humans are mortal and that X is a human, then it could be deduced

that X is mortal. This methodology for rule generation would be completely reliable if

58

all aspects related to a problem are 100% assured facts. However, this is a luxury

that is rarely available in real life problems (Bramer 2007).

The second type of reasoning is based on truth of premises. Such type may

not be necessarily correct. For example, if it is known that all dogs chase cats and

that Y chases cats, then it is abducted that Y is a dog. Such rule may or may not be

correct. There is no assurance that Y is a dog, for it might be any other animal that

chases cats or even a human.

The third type of reasoning is based on learning from examples. If there exist

enough examples in which the occurrence of X leads to Y, then is could be inducted

as a rule that if X then Y (Shawe-Taylor and Cristianini 2000). Such methodology of

reasoning is very reliable since all required knowledge about the relation between X

and Y is present implicitly in the learning examples. Consequently, the majority of

ML techniques adopted for the analysis in this chapter are based on Induction

Reasoning.

2.6.2 Support Vector Machine (SVM) Classifiers

“SVM are learning systems that use hypothesis space of linear functions in

high dimensional space, trained with a learning algorithm from optimization theory

that implements a learning biased derived from statistical learning theory” (Shawe-

Taylor and Cristianini 2000). Support vector machine classification aims to find a

classification surface that best separates a set of training data points into classes in

a high dimensional space (Nguyen et al. 2006). In its simplest linear form, a support

59

vector machine finds a hyperplane that separates a set of positive examples from

the set of negative examples with maximum margin as shown in figure 2.1.

Figure 2.1 Maximum Margin Representation in SVM (Shawe-Taylor and
Cristianini 2000)

Binary classification is frequently performed by using a real-valued hypothesis

function, equation 2.1, where input x is assigned to the positive class if ƒ(x)≥0;

otherwise, it is assigned to the negative class.

y=<w.x>+b 2.1

For a binary linear separation problem a hyperplane is assigned to be ƒ(x) = 0

where the separation (γ) is maximized. With respect to equation 2.1, the vector w

(weight vector) and b (functional bias) are the parameters that control the function of

the separation hyperplan (figure 2.1). In addition, x is the feature vector which may

have different representations based on the nature of problem. For example, in text

mining tasks, for a corpus including n number of documents, each document d is

represented in the dimensional space in the form of a term vector (equation 2.2).

di=[t1,t2,…,tm] 2.2

60

Where i ε n, m = the number of words in the corpus after removing stop

words, and t = frequency of the ith term in the document. Previous researches in the

field of construction and linguistics adopted representing each element in the vector

by its normalized inverse term frequency (Salton 1989, Caldas et al. 2002, and Ng et

al. 2006). This representation is selected so that terms appearing frequently in many

documents have limited discrimination power (Salton 1989). This is done by

multiplying the frequency of each term i by log(N/dfi), where N=total number of

documents in the collection, and dfi=number of documents that contain the ith term.

In a vector space, each document vector represents a point (Ng et al. 2006).

SVM are applicable not only to problems of binary nature but also to

multiclass classification nature. For a sample space X and output space Y, a binary

classification problem will have Y= {-1, 1} while a multiclass one will have Y= {1, 2

…, m}.

From the above, the problem of classification is summarized to finding a

hyperplane that separates the input data with maximum (γ). To further elaborate on

this notion, one should first understand few basic concepts of the SVM. Figure 2.2

illustrates the geometric margin of two points from the hyperplane. In this case γi and

γj defines the Euclidean distance of two points from the decision boundary in the

input space. Consequently, the distribution of all margins over all points defines the

functional margin distribution of the hyperplane with respect to a training set. In other

words, the margin γ of a training set (figure 2.3) is the maximum geometric margin

over all possible hyperplanes.

61

Figure 2.2 Geometric Margin Representation in SVM (Shawe-Taylor and
Cristianini 2000)

Figure 2.3 Hyperplane Representation in SVM (Shawe-Taylor and Cristianini
2000)

The first version of the algorithm that was the foundation for learning linear

classification was introduced in 1956 by Frank Rosenblatt (Shawe-Taylor and

Cristianini 1999). Rosenblatt’s algorithm has proven guaranteed performance

provided that there exists a hyperplane that separates the data set (Shawe-Taylor

and Cristianini 2000). In this case the data are said to be linearly separable.

However, a problem manifests itself if the data are not linearly separable. In the

1960s, Misky and Papert highlighted the limited computational ability of a linear

62

learning machine (Misky and Papert 1990). As stated by Shawe-Taylor and

Cristianini (2000), complex real life problems are rarely linearly separable. In other

words, they cannot be represented by a simple linear combination of given

attributes. Consequently, a more sophisticated higher dimension space is needed for

the representation of such problems in order for these complex problems to be

linearly separable. As the literature in this field instigate, Kernel representation

provides a solution to this problem by transforming the data into a higher

dimensional feature space to enhance the computational power of linear machine

learning (Shawe-Taylor and Cristianini 2000, Shawe-Taylor and Cristianini 1999,

Platt 1999, and Mangasarian and Musicant 1999). Kernel machines have been

initially devised for the binary setting. However, extensions to the multiclass case

have been promptly proposed (e.g. Vapnik, 1998, Weston and Watkins 1999, and

Crammer and Singer 2003). As shown earlier in equation 2.1, the representation of

any data set in a feature space for linear machine learning is achieved as a dot

product of the feature vector (x) and the weight vector (w). By introducing the

appropriate Kernel function, one can map the data set to higher feature space

(equation 2.3 and figure 2.4) transforming it from linearly inseparable to linearly

separable. In this manner, the input space X is mapped into a new higher feature

space F = {Ø(x)|x� ��.
x=����x1,…,xn����→�����x����=�����1����x1����,…,�n����xn��������or k����x,y����=[�����x����.�����y����] 2.3

63

Figure 2.4 Kernel Transformation (Shawe-Taylor and Cristianini 2000)

2.6.3 Naïve Bayes Classifiers

The name Naïve Bayes is derived from two parts. The former relates to an

assumption that is inherited in the performance of the classifier. Naïve Bayes

Classifiers assumes that the values of attributes are irrespective of each other. That

is effect of an attribute on the prediction is independent from the effect of others as

will be discussed later. The latter relates to the name of the pioneering

mathematician that is credited for its initial use. Reverend Thomas Bayes (1702 –

1761) was an English Presbyterian and Mathematician that is considered to be the

first to apply Probability Theory, the basis of Naïve Bayes Classifiers, in an inductive

manner.

Naïve Bayes Classifiers is a type of classifiers that do not implement rules to

derive the classification, unlike rule induction classifiers that will be discussed later.

The classification methodology adopted by Naïve Bayes Classifiers is based on the

probability theory. In other words, it finds the most likely classification for an instance

64

among all available classes taking into consideration the presence of prior

knowledge of other pieces of information. For example, a classifier calculates the

odds of a case being classified to an Owner or a Contractor class while having prior

knowledge of the significant legal factors occurrence. A decision is made based on

the highest calculated probability for both classes. Figure 2.5 illustrates the

mathematical bases of Naïve Bayes Classifiers. For more elaboration an illustrative

example is adopted from Max Bramer’s book Principles of Data Mining (2007). Table

2.1 includes 20 instances for the 6:30 pm train from London to a certain local station.

Each instance records four attributes (namely day of the week, season of the year,

wind status, and rain status) and a classification (either the train was on time, late for

less than 10 minutes, very late beyond 10 minutes, or cancelled). As mentioned

earlier, a prediction of a newly unseen instance would be decided as the highest

probability for that instance to fall into one of the above mentioned four classes.

Consequently, Naïve Bayes assumes that each instance is mutually exclusive and

exhaustive. In other words, it only falls into one class and cannot be classified to

more than one. Table 2.2 defines the conditional and prior probabilities of all

attributes and classes. A conditional probability as given in equation 2.4, is read as

the probability of attribute (a) happening with the prior knowledge of a classification

falling in class (x). However, a prior probability means the probability of a certain

class (x) happening based on the 20 instances recorded.

P(attribute=a|class=x) 2.4

65

Figure 2.5 Naive Bayes Classifiers Algorithm (Bramer 2007)

Table 2.1 Train Data for Naive Bayes Classifier

Day Season Wind Rain Class

Weekday Spring None None On time
Weekday Winter None Slight On time
Weekday Winter None Slight On time
Weekday Winter High Heavy Late
Saturday Summer Normal None On time
Weekday Autumn Normal None Very late
Holiday Summer High Slight On time
Sunday Summer Normal None On time

Weekday Winter High Heavy Very late
Weekday Summer None Slight On time
Saturday Spring High Heavy Cancelled
Weekday Summer High Slight On time
Saturday Winter Normal None Late
Weekday Summer High None On time
Weekday Winter Normal Heavy Very late
Saturday Autumn High Slight On time
Weekday Autumn None Heavy On time
Holiday Spring Normal Slight On time

Weekday Spring Normal None On time
Weekday Spring Normal Slight On time

66

Following the classifier algorithm given in figure 2.5 and data provided in table

2.1, a newly unseen instance with attributes day of the week = weekday, season of

the year = winter, wind status = high, and rain status = heavy would be classified as

very late based on the following calculations.

P(Class = on time) = 0.70 x 0.64 x 0.14 x 0.29 x 0.07 = 0.0013

P(Class = late) = 0.10 x 0.50 x 1.00 x 0.50 x 0.50 = 0.0125

P(Class = very late) = 0.15 x 1.00 x 0.67 x 0.33 x 0.67 = 0.0222

P(Class = cancelled) = 0.05 x 0.00 x 0.00 x 1.00 x 1.00 = 0.0000

Table 2.2 Naive Bayes Probability Calculations for Train Data Example

 Class = On time Class = Late
Class =
Very late

Class =
Cancelled

Day =
Weekday

9/14 = 0.64 1/2 = 0.5 3/3 = 1 0/1 = 0

Day =
Saturday

2/14 = 0.14 1/2 = 0.5 0/3 = 0 1/1 = 1

Day = Sunday 1/14 = 0.07 0/2 = 0 0/3 = 0 0/1 = 0
Day = Holiday 2/14 = 0.14 0/2 = 0 0/3 = 0 0/1 = 0

Season =
Spring

4/14 = 0.29 0/2 = 0 0/3 = 0 1/1 = 1

Season =
Summer

6/14 = 0.43 0/2 = 0 0/3 = 0 0/1 = 0

Season =
Autumn

2/14 = 0.14 0/2 = 0 1/3 = 0.33 0/1 = 0

Season =
Winter

2/14 = 0.14 2/2 = 1 2/3 = 0.67 0/1 = 0

Wind = None 5/14 = 0.36 0/2 = 0 0/3 = 0 0/1 = 0
Wind = High 4/14 = 0.29 1/2 = 0.5 1/3 = 0.33 1/1 = 1

Wind = Normal 5/14 = 0.36 1/2 = 0.5 2/3 = 0.67 0/1 = 0
Rain = None 5/14 = 0.36 1/2 = 0.5 1/3 = 0.33 0/1 = 0
Rain = Slight 8/14 = 0.57 0/2 = 0 0/3 = 0 0/1 = 0
Rain = Heavy 1/14 = 0.0.07 1/2 = 0.5 2/3 = 0.67 1/1 = 1

Prior
Probability

14/20 = 0.7 2/20 = 0.1 3/20 = 0.15 1/20 = 0.05

67

2.6.4 Rule Based Induction Classifiers

Decision trees, ADTrees, and Rules Classifiers are types of ML classifiers

that adopt decision rules automatically generated from training examples or data

sets to classify a newly unseen instance (Bramer 2007). Decision tree classifier is a

special case in which the generated decision rules are fitted into a form of a tree,

where each leaf represents a decision state (figure 2.6).

Figure 2.6 Decision Tree Representation (Bramer 2007)

For a given training data set, decision rules are derived based on a process

known as splitting on the value of attributes or for short splitting on attributes. In such

a process each attribute within a training set is tested for all of its possible values.

For a discrete attribute, a rule (branch) is generated for each possibility. However,

continuous attributes are branched normally at values like “less than or equal to a

value”, “greater than or equal to a value”, “less than a value”, “greater than a value”

… etc. A defined value for branching is defined as the split value. The splitting

mechanism is continued until all attributes are tested and each rule is titled with just

one classification. For more illustration, a widely used example by many authors to

68

illustrate the application of decision rules is adopted from Quinlan (1993), Witten and

Frank (2000), and Bramer (2007). The data set illustrated in table 2.3 represents the

decision (classification) of a golfer to play golf each day based on 4 attributes

namely outlook, temperature, humidity, and wind status. The table provides

information about 14 instances. Figure 2.7 illustrates the decision tree derived from

the given data set based on the previously discussed research design and

implementation.

Table 2.3 Golfer Data

Outlook Temperature (oF) Humidity (%) Wind Status Class
Sunny 75 70 True Play
Sunny 80 90 True Don’t play
Sunny 85 85 False Don’t play
Sunny 72 95 False Don’t play
Sunny 69 70 False Play

Overcast 72 90 True Play
Overcast 83 78 False Play
Overcast 64 65 True Play
Overcast 81 75 False Play

Rain 71 80 True Don’t play
Rain 65 70 True Don’t play
Rain 75 80 False Play
Rain 68 80 False Play
Rain 70 96 False Play

Rule decision algorithms, especially decision trees, were developed in the

mid 1960s (Manning & Scheutze 1999). TDIDT short for Top-Down Induction of

Decision Trees is a very powerful algorithm that initiated the application of decision

trees for many classification systems (Bramer 2007). As stated by Bramer 2007

“Decision trees are widely used as a mean of generating classification rules because

of the existence of a simple and powerful algorithm called TDIDT”. TDIDT is an

69

algorithm that is applied in a recursive manner, keeps iterating till terminated, as

shown in figure 2.8.

Figure 2.7 Decision Tree Representation for Golfer Example (Bramer 2007)

Figure 2.8 The TDIDT Algorithm (Bramer 2007)

The simplicity of the implementation of decision trees led to its use in a variety

of applications in the construction domain. In one of the most recent researches, Li

and Lui (2008) implemented decision trees for the analysis of procurement

strategies and task allocation between public and private sectors for infrastructure

projects. Dogan et al. (2008) utilized decision trees for the determination of attribute

weights in CBR models related to early cost prediction. Hegab and Nassar (2005)

70

implemented a decision tree methodology for the development of an expert system

for commencement delay analysis. In addition, Arditi and Pulket (2005) implemented

boosted decision trees for the development of litigation prediction model for the

construction industry. Lee et al. (2004) implemented decision trees for the

classification of change orders impact on productivity in construction projects. All of

the above studies provide a strong support for the potentials of using rule based

induction classifiers for the current research.

2.6.5 Latent semantic Analysis (LSA)

“Latent Semantic Analysis (LSA) is a theory and method for extracting and

representing the meaning of words” (Landauer et al 2007). In a variety of AI

techniques, the meaning of a word is determined through statistical computations

applied on a large corpus of text. However, from human experience, a language can

be learned by immersion without being explicitly taught. Consequently, the ability to

understand the meaning of an expression composed of words can be acquired by

humans through being surrounded by a certain language users. That directs to the

belief that there exists a mechanism by which such a phenomenon takes place. The

LSA theory attempts to model the mechanism of exactly how words and passage

meanings can be constructed from experience with language. A corpus of related

text imposes constraints on the meaning and semantic similarities of a word. For

example, a word like “bank” can mean “a river side” or “an institution for financial

transactions” based on the constraints imposed by the rest of words within a body of

text. The theory of LSA hypothesizes that the meaning of a text is conveyed by the

71

words from which it is composed. Therefore, LSA is based on determining the

meaning of a word by solving these constraints in a mathematical form by utilizing

linear algebra, particularly, singular value decomposition (SVD). In other words, the

meaning of a word is acquired by solving an enormous set of simultaneous

equations that capture the contextual usage of words. It is not concerned with word

position or segments.

Landauer et al. (2007) highlights the superiority of LSA over other machine

learning techniques with respect human knowledge simulation. LSA has shown to

reflect human knowledge in a variety ways (1) its measures highly correlates to

humans’ scores on standard vocabulary and subject matter tests; (2) it resembles

humans’ word sorting and category judgment; and (3) it accurately estimates

passage coherence. Furthermore, it has proven outstanding results in inter-sentence

similarity measurements (Choi et al. 2001). LSA has been extensively used in

linguistic researches. Landauer et al. (2003a and 2003b) tested LSA in multiple-

choice vocabulary tests and the task of determining the adequacy of expository

essays contents. LSA scored in the high school student level. Foltz et al. (1998)

researched the use of LSA to measure paragraph to paragraph coherence where it

scored better than human coding. In other studies, LSA successfully modeled

several laboratory findings in cognitive psychology (Howard et al 2007; Landauer

2002; Landauer and Dumais 1997; and Lund et al. 1995). It detected improvement in

student knowledge level from before to after reading as well as human judges

(Rehder et al. 1998; and Wolfe et al. 1998). In the medical field, LSA was used to

72

diagnose schizophrenia from patients’ descriptions. It scored as well as experienced

psychiatrists (Elvevag et al. 2005).

LSA is based on the concept of Vector Space Model implemented by SVM.

However, the main advantage in LSA is that it utilizes a truncated space in which the

number of features is reduced. LSA represents word and passage meanings in a

form of mathematical averages. Word meanings are formulated as average of the

meaning of all the passages in which it appears, and the meaning of a passage as

average of the meaning of all the words it contains. LSA methodology applies SVD

for the reduction of dimensionality in which all of the local word context relations are

simultaneously represented. LSA, unlike many other methods, employs a

preprocessing step in which the overall distribution of a word over its usage

contexts, is first taken into account independent of its correlations with other words.

This step improves LSA’s results considerably. LSA then implements three well

defined steps. Firstly, text document within a training corpus are represented in a

form of matrix (figure 2.9). Each row of the developed matrix demonstrates a specific

word in the training corpus. Each column of the matrix stands for a text document.

Each cell contains the frequency with which the word of its row appears in the

passage denoted by its column (Landauer et al. 2007). Consequently, a document

collection including n documents and m features, which could be words, phrases,

sentences, paragraphs … etc., are represented by an m by n matrix. Often, the

number of features m is much higher than the number of documents n within the

collection. Removal of stop words before performing matrix representation is not a

necessity, due to the mathematical nature of the SVD, but it enhances its

73

performance by removing excess noise. The developed m by n matrix will contain

zero and nonzero elements. Generally, a weighing function is applied to nonzero

element to give lower weights to high frequency features that occur in many

documents and higher weights to features that occur in some documents but not all

(Salton and Buckley, 1991). Weighing functions are of two types namely local and

global. The former relates to increasing or decreasing a nonzero element with

respect to each document. The latter relates to increasing or decreasing a nonzero

element across the whole collection of documents.

Figure 2.9 Matrix representation in LSA (Landauer et al. 2007)

Secondly, SVD is applied to the developed matrix to achieve an equivalent

representation in a smaller dimension space (Choi et al. 2001). With SVD, a

rectangular matrix is decomposed into the product of three other matrices (figure

2.10). One component matrix describes the original row entities as vectors of

derived orthogonal factor values, another describes the original column entities in

the same way, and the third is a diagonal matrix containing scaling values such that

Where:
The dot product between two term vectors ti

Ttp gives the correlation between the terms over
the documents Input.
The dot product between two sentence vectors dj

Tdq gives the correlation over the terms
Input.

74

when the three components are matrix-multiplied, the original matrix is reconstructed

(Hofmann 1999).

Thirdly, the number of features adopted for analysis is determined

(Truncation). Since the singular value matrix is organized in an ascending order

based on the weight of each term, it is easy to decide on a threshold singular value

below which terms significance is negligible, refer to (figures 2.10 and 2.11),

(Dumais 1990). For an original matrix A with rank k, a newly truncated matrix Ak can

be formulated by the dot product illustrated in equation 2.5. As stated by Landauer et

al. (2007), truncating the SVD and creating Ak is what captures the important

underlying semantic structure of words and documents. Words that are similar in

meaning are near to each other in k dimensional space.

Ai=∑ uiσivi
Tk

i=1 →Ak=UkΣkVk
T 2.5

Figure 2.10 SVD Matrix Representation in LSA (Dumais 1990)

Where:
• The term-document matrix X represents how important a term is in a given document.
• Σ is a diagonal matrix representing the weights of the concepts. Usually SVD algorithm

produces a Σ with σ1>σ2>...>σk > 0.
• The columns of U are the terms in concept space, the rows of V are the documents in the

concept space. Since SVD is used, U and V are unitary matrices, that is, the rows of U and
the columns of V are of unit length and are pairwise orthogonal.

• Not all concepts are necessarily used. Only those with sufficiently large singluar values (i.e.
σ-s) may be selected. The result matrix is the best low-rank approximation to X in Frobenius
norm.

75

Figure 2.11 K Dimensional Space Representation in LSA (Dumais 1990)

By representing any document in the generated concept space, it is then

possible to calculate "distance" (metric) on the set of such document representations

thus computing whether two such representations are close which usually implies

that the documents themselves are related. This notion makes LSA a very strong

tool for document classification.

For more elaboration, an example is adopted from Landauer et al (2007).

Figure 2.12 provides titles for topics on music and baking. Figures 2.13 and 2.14

illustrate the developed word by document matrix for the topics collection. Figure

2.15 shows the SVD of the example word by document matrix reduced to 2 features

(k=2). Figure 2.16 shows a plot of words represented by squares and documents

represented by rectangles after truncation. The (x,y) pairs of each point is defined as

x = first dimension or column of matrix U or V multiplied by first singular value.

y = second dimension or column of matrix U or V multiplied by second

singular value.

Similarities between words and documents can be determined based on

angles between vectors. Consequently, from figure 2.12, it can be deduced that

document M4 “A Perspective of Rock Music in the 90’s” and M1 “Rock Music in the

76

1960’s” are the closest documents to M3 “Drum and Base Composition”. In addition,

the word “Music” is most similar to “Rock” and “Composition” in the document

collection.

Figure 2.12 Titles for Topics on Music and Baking (Landauer et al. 2007)

LSA implementation includes another fold. Once a truncated space of a

dataset is produced, queries can be performed. Query in LSA can be defined as

finding features or documents within the generated space similar to newly introduced

ones. Deerwester et al. (1990) refers to representing a query in a truncated vector

space as a pseudo-document. “A query is the weighted sum of its feature vector

scaled by the inverse of the singular values, this individually weights each dimension

in the k-dimensional feature-document vector space” (Landauer et al. 2007). A newly

introduced query to the truncated feature space can be represented as per equation

2.6, where qT is a vector containing zero and nonzero weighted frequency values of

features in the newly introduced document. Similarity measures can then be

implemented based on angles between vectors as mentioned earlier (Letsche and

Berry 1997).

77

��� � ����Σ��� 2.6

Figure 2.13 The 10X9 Word by Document Matrix with Word Frequencies
Corresponding to the Titles in Figure 2.12 (Landauer et al. 2007)

 Figure 2.14 The 10X9 Weighted Word by Document Matrix Corresponding
to the Titles in Figure 2.12 (Landauer et al. 2007)

78

Figure 2.15 The SVD of the Weighted Word by Document Matrix
Corresponding to the Titles in Figure 2.12 (Landauer et al. 2007)

79

Figure 2.16 The Rank-2 LSA Vector Space for the Music/Baking Titles
Collection (Landauer et al. 2007)

80

2.7 Differing Site Conditions (DSC)

The focus of this section of the chapter is to provide an overview of the

definition of DSC in the construction industry, background information about the

implementation of DSC clauses in construction contracts, the contractual context of

DSC clauses, and the types of DSC.

One of the major and most commonly encountered disputes that had raised a

lot of questions and enforced alterations on the way Owners and Contractors

perceive risk allocation in construction projects is DSC (El-Saadi 1998). Originally,

owners’ approach to handling risk entailed allocating most risk on contractors (Levin

1988). As a rule of thumb, a directly proportional relation exists between the risk

assumed by the contractor and the contingency imposed on his bid (Krol 1993). In

other words, not including a DSC clause in the contract leads each party to take

extreme measures. Faced with the burden of most DSC risk, contractors tend to

include larger contingencies in their bid prices as a method for protecting themselves

against the many uncertainties of construction projects. This consequently leads

owners who allocate these risks contractors, to incur higher values for the performed

works in the case that no DSCs encountered. Nevertheless, by agreeing to share

DSC risk and allowing for the reimbursement of costs incurred by contractors due to

DSC, contractors would reasonably price their bids by including a smaller

contingency, and would not claim damages under breach of contract. In the latter

case, “The owner, whether public or private, minimizes the risk of being held in

breach of contract for failing to adequately describe the physical conditions at the job

site” (Levin 1988).

81

2.7.1 Differing Site Conditions Clauses

Differing Site Conditions (DSC) clauses have many forms since contracts

allow for different degrees of variability in site conditions. Some clauses are

restricted to handling conditions which vary from those described in the contract

documents irrespective of any unexpected conditions encountered that were not

referred to. Others cover under their scope only materially different conditions from

those expected in similar projects. Each of these categories allocates different level

of risk on both contracting parties. However, there are agreed upon concepts that

are represented in standard forms of contracts like FAR (Federal Acquisition

Regulations), AIA (American Institute of Architects), FIDIC (Fédération Internationale

Des Ingénieurs-Conseils, French for the International Federation of Consulting

Engineers), and the Engineers Joint Contract Committee. The concepts can be

utilized to formulate a definition for DSC as “physical site conditions at the job site

which differ materially from the conditions represented in a construction contract or

the condition that normally could be expected in a job of similar nature” (Levin 1988).

The definition of DSC must be integrated with an understanding of the

characteristics of DSC clauses to comprehend its application. DSC clauses have

unique characteristics, and do not lead to any implied rights. A DSC clause must be

present in a contract for the contractor to have the right to any additional payment

under the contract. Once construction begins on a project under a contract that is

silent about the risk of unforeseen conditions, a contractor bears the risk of running

into conditions that were not expected at the time they submitted their bid even

though they significantly increase the cost of performance (Iacobelli 1994). This

82

draconian rule had always been the governing factor when court decisions are

required. However, judges were confronted with cases that triggered their sense of

fair judgment with regards to whether the misrepresentation of the physical

conditions was either intentional or caused by neglect on part of the owner.

However, judges also made judgments that question the foreseeability of the

conditions and the level of prudency of the contractor in interpreting the contract

documents that did not mention DSC.

2.7.2 History of Differing Site Conditions Clause (DSC)

The literature shows that the federal government was a pioneer in using DSC

clauses. November 22nd, 1921 is recoded as the first date a DSC clause titled

“changed conditions”, which was later titled ”Differing Site Conditions”, was

implemented (Tarkoy, unpublished book, 2008). On August 20th, 1926 the first

standard general conditions for construction that includes a “changed conditions”

clause was approved by the president of the United States for use by the federal

government in their contracts (Tarkoy, unpublished book, 2008). From that date on,

Federal Regulations made the use of DSC clause compulsory in all U.S.

Government Contracts. It was incorporated as part of the Federal Acquisition

Regulations (FAR) to prevent contractors from bidding on a worst-case-scenario

basis (North Slope 1988). This clause allocates to the government the risks for

conditions that the contract documents fail to disclose, but leaves upon the

contractor the costs of encountering those conditions described in the contract

(Erickson-Shaver 1985). Because the DSC clause alleviates the need for contractors

83

to insert speculative contingency costs in their bids, it reduces inflated bidding, and

the government presumably saves money by getting lower bids (Weeks Dredging

1987, and North Slope 1988). Therefore, for over a half a century the DSC clause

has been used in government contracts and has been interpreted by the courts. The

purpose of the clause has been to shift the risk of adverse subsurface or latent

physical conditions from the contractor, who normally bears such risk under a fixed-

price contract, to the government. While it is recognized that the DSC clause is a risk

shifting mechanism, it does not shift all unanticipated risk in a project's site

conditions to the government. The Federal Circuit Court articulated the purpose of

the DSC clause as follows: The government bears only those risks that encourage

"more accurate bidding." Those risks are shifted to the government so that

contractors will not add to their bids the cost of assessing whether adverse

subsurface conditions exist or the cost of confronting such conditions if and when

they are encountered.

The standard DSC clause defines a differing site condition and provides the

procedures and requirements a contractor must follow before it is able to recover an

equitable adjustment to the contract. It provides that when a contractor encounters a

DSC, it must promptly notify the contracting officer (CO) in writing before the

conditions are disturbed. The clause also defines the two types of DSC as follows:

(Type 1) subsurface or latent physical conditions at the site which differ materially

from those indicated in this contract, or (Type 2) unknown physical conditions at the

site, of an unusual nature, which differ materially from those ordinarily encountered

and generally recognized as inhering in work of the character provided for in the

84

contract. It also grants authority to the CO to make an equitable adjustment to the

contract if the CO determines the alleged DSC satisfies the definition provided in the

clause.

After the incorporation of the DSC clauses by the FAR, similar clauses have

been included in other standard contract forms like AIA (American Institute of

Architects), FIDIC (Fédération Internationale Des Ingénieurs-Conseils, French for

the International Federation of Consulting Engineers), and the Engineers Joint

Contract Committee.

2.7.3 Type of Differing Site Conditions (DSC)

As mentioned earlier, analysis of the language of the DSC clause of the

federal government contracts (FAR) addresses two types of differing site conditions

(Type 1 and Type 2). The former relates to physical conditions which differ materially

from those indicated in the contract documents. The latter authorizes compensation

“equitable adjustment” for unknown conditions which differ materially from those that

would normally be encountered in projects of similar nature. As stated by Levin

(2008), Type 2 Differing Site Conditions are rarely considered by both private and

public owners in their contracts. Construction law literature explains that in order, to

prevail on a Type 1 DSC claim, a plaintiff must show: (1) the contract documents

affirmatively indicate subsurface conditions; (2) she acted as a reasonably prudent

contractor in interpreting the contract documents; (3) she reasonably relied on the

indications of subsurface conditions in the contract; (4) the subsurface conditions

actually encountered differed materially from those indicated in the contract; (5) the

85

actual subsurface conditions were not reasonably foreseeable; and (6) her damage

was attributable to the materially different subsurface conditions (Weeks Dredging

1987). Consequently, the threshold issue of whether a contractor is eligible for an

equitable adjustment for a Type 1 DSC at a project site depends on the soil

conditions indicated in the contract. The United States Court of Appeals for the

Federal Circuit has made it clear that a contractor cannot be eligible for an equitable

adjustment for DSC unless the contract indicated what those conditions would

supposedly be (Weeks Dredging 1987). Courts that have addressed Type 1 DSC

have found indications of the site conditions in the contract in order to consider that

the contractor encountered this type of DSC. In the context of Type 1 DSC, while it is

true that a contract indication need not be explicit or specific, the contract documents

must still provide sufficient grounds to justify a bidder's expectation of latent

conditions materially different from those actually encountered. In other words, the

difficulty in Type 1 DSC inquiry is showing whether the condition differed materially

from the affirmative representations in the contract. Contract indications may be

implicit, but there must be sufficient indications of the condition to induce a

reasonable reliance in the bidder that subsurface conditions would be more

favorable than those encountered (Weeks Dredging 1987). As a consequence,

determining whether a contract contained indications of a particular site condition is

a matter of contract interpretation and thus presents a question of law. As illustrated

in Travelers Casualty, v. the United States of America (2007), unlike traditional

contract interpretation, in a differing site condition claim, a contractor is permitted to

make inferences from a contract's implications. Interpretation of contract indications

86

requires the United States Court of Federal Claims to place itself into the shoes of a

reasonable and prudent contractor. The implications in the contract need only be

sufficient to impress a reasonable bidder. When a contract's language is

unambiguous, it must be given its plain and ordinary meaning. When determining

the plain meaning of a contract, a court must first determine what documents are

actually parts of that contract. Documents will be considered part of a contract only

when the intention to include it is clearly manifested. The key distinction between

patent and latent ambiguity is in the way the law treats them and the corresponding

effect on the contracting parties' rights and obligations. In common law, ambiguities

are generally interpreted against the drafter. In the context of federal contracts,

contractors are required to inquire about patent ambiguities before making bids. The

purpose of requiring pre-bid inquiry is to prevent contractors from taking advantage

of ambiguities in government contracts by adopting narrow interpretations in

preparing its bids and then, after the award, seeking equitable adjustments to

perform additional work the government actually wanted. The Federal Circuit, of the

Court Appeals however, has not given the patent ambiguity doctrine broad

application (Travelers 2007). Because the doctrine has the effect of relieving the

government from consequences of its own poorly drafted contracts, the doctrine has

been applied only to contract ambiguities that are judged so patent and glaring that it

is unreasonable for a contractor not to discover and inquire about them. A court's

finding of a latent ambiguity, however, does not automatically mean a favorable

result for the plaintiff. The court will only adopt the contractor's interpretation of a

latent ambiguity if its interpretation is reasonable.

87

On the other hand, to prevail on a Type 2 DSC claim, a plaintiff must show:

(1) the encountered subsurface conditions were not reasonably foreseeable; (2) she

did not have prior knowledge of the existence of the subsurface conditions; (3) the

encountered conditions vary from the norms in similar construction projects (Levin

1988). In order for a contractor to recover for a Type 2 DSC, the condition must have

existed at the time the contract was executed (North Slope 1988). Analogous to the

rule that a DSC must exist before the execution of the contract, a contractor typically

cannot recover for a post-award phenomenon considered an act of God. Generally,

the government, under the standard DSC clause, does not assume an obligation to

compensate a contractor for additional costs or losses it incurs resulting solely from

weather conditions, which neither party expected or could anticipate and not from

any act or fault of the government. Weather conditions generally are considered to

be acts of God (North Slope 1988). The general rule is that the risk of severe

weather in a particular region is not shifted to the government via the DSC clause.

For example excessive rainfall is not in and of itself a DSC for which price and time

adjustments are to be made under the DSC clause. Likewise excessive rainfall is not

in and of itself a suspension of work nor is the CO under a duty to suspend merely

because of such rainfall. But when excessive rainfall in interaction with a drainage

area makes specified performance impossible a DSC does exist and the CO, if he

wants work done, must change the specifications so as to make it possible. Within

the context of a Type 2 DSC, where the Government has elected not to pre-survey

and represent the subsurface conditions with the result that a contractor must

demonstrate that he has encountered something materially different from the known

88

and the usual. This is necessarily a stiffer test because of the wide variety of

materials ordinarily encountered when excavating in the earth's crust (North Slope

1988). Consequently, in determining whether a particular condition is unusual, the

encountered condition is judged against the normal conditions for the area. Legally,

unusual conditions with respect to a DSC claim are judged by the normal conditions

for the area. The condition must significantly deviate from the norm for the area and

the type of work (Servidone 1990). For example, difficulties caused by the

combination of expansive clay soils and precipitation are the usual and reasonable

problems encountered when expansive clay soils interact with moisture and do not

constitute a Type 2 DSC.

2.8 Chapter summary:

Case-Based Reasoning has showed to be a very powerful tool in the

implementation and utilization of previous knowledge learned from experience. It has

been implemented as a potential solution to variety of problems in the construction

domain including litigation outcomes prediction. However, a crucial aspect of the use

of CBR models is the extraction of previous knowledge to form the cases of the case

base. Since this knowledge includes significant amount of textual material expressed

in human language, the need for tools that are capable of effectively analyzing

textual material and efficiently retrieving pertinent information from them has become

a necessity. As mentioned earlier, the accuracy of the output of a CBR system is

largely dependent on the availability of reliable information about the attributes used

to define the training cases. As Arditi and Pulket 2005 state “Finding a complete and

89

reliable set of training examples is difficult in construction litigation cases”. The use

of natural language processing techniques NLP can enhance and facilitate the use

of construction litigation prediction models. Automatic case classification and

knowledge extraction can be improved through NLP techniques (Bruninghause and

Ashley 2001). This notion is greatly supported by the use of NLP approaches as a

solution to different problems related to enhancing information models, document

integration, and inter-organizational systems in construction. Artificial Intelligence

(AI) and Natural Language Processing (NLP) techniques have been employed

extensively through a variety of automated and semi-automated tools (Labidi 1997).

Text mining methodologies, document clustering techniques, controlled vocabulary

schemes, and web based models were some of the techniques utilized to perform

the above mentioned tasks (Caldas and Soibelman 2003). However, its use to

enhance construction litigation outcomes prediction has not yet been attempted. The

highly sophisticated electronic information storage and retrieval systems available

for researching the law and legal precedent are extremely complex and time

consuming. Sometimes this complexity creates problems for information seekers

and can limit their access to relevant information. Consequently, accurate legal

decisions within the construction domain are exceedingly time consuming and may

require knowledgeable professionals that are on very high demand to provide the

needed decision support.

Investigation of ML techniques showed the superiority of the induction

reasoning over other reasoning methodologies. This investigation further highlighted

90

the high potential for using SVM, Naïve Bayes, and Rule Induction Classifiers for

extracting novel information hidden within textual representations.

DSC clauses were introduced by the Federal Government to lower

contingency measures adopted by contractors and in return lower bid prices. These

clauses provide a measure of assurance for contractors to recover from extra costs

due to unanticipated site conditions. These clauses created some problems due to

their abuse by some contractors. For one, claims for DSC have become a custom

tactic to be followed by contractors to recover from cost overruns, misinterpretation

of anticipated conditions, and poor project coordination. This has led owners and

engineers to hold a hard position when reviewing contractors’ legitimate claims

related to unforeseen conditions and associated costs. Furthermore, the literature in

this area illustrates that the process of proving a DSC requires tremendous time and

effort for factual examining. Consequently, the presence of an automated legal

support for DSC in the construction industry that utilizes standardized methodology

for (1) automated identification of significant legal factors that affects litigation

outcomes of DSC disputes; (2) automated prediction of litigation outcomes of DSC

Disputes; and (3) automated extraction of precedent DSC cases similar to newly un-

encountered ones will reduce the time required and costs incurred by construction

firms and improve overall project control.

91

CHAPTER 3
A STATISTICAL ANALYSIS OF FACTORS AFFECTING LITIGATION OUTCOMES

IN DIFFERING SITE CONDITIONS DISPUTES

3.1 Introduction

The overall objective of this chapter is to analyze the main legal factors that

govern litigation outcomes in DSC disputes. This objective is undertaken as a first

step in the development of a construction legal decision support methodology based

on statistical modeling and machine learning. The focus of this chapter, therefore, is

to illustrate the design implementation of discrete choice prediction models for

identifying the legal factors governing DSC disputes. The developed statistical

models will aim to (1) detect the effect of each identified legal factor on the prediction

of the winning party; (2) identify the best combination of legal factors with the highest

significance on the prediction model; and (3) prioritize the identified legal factors

according to their importance to DSC disputes.

As claims and disputes increase, the construction industry struggles to find

ways to equitably and economically resolve them. As illustrated earlier in chapter 2

“Literature review”, a number of researchers in AI fields have developed tools and

methodologies for modeling judicial reasoning and predicting the outcomes of

construction litigation cases. However, their success was always bound by the input

parameters they consider. In an attempt to provide an outcome prediction system for

Differing Site Condition (DSC) claims in the construction industry, this chapter

provides as a first step, a statistical analysis of a number of differing site condition

cases from the Federal Court of New York in an endeavor to derive a set of

92

significant legal factors that governs litigation outcomes prediction concerned with

this type of claims. The following sections of this chapter will therefore explain the

implementation of the developed Statistical Models, as well as the results of these

models and discussion of the main findings of the implementation of the models.

3.2 Design and Implementation of Statistical Models

The objective of this chapter is to identify, quantify, and measure the impact

of significant legal factors on the prediction of outcomes of DSC claims in the

construction industry. Consequently, this chapter provides a statistical analysis of set

of 60 precedent cases from the Federal Court of New York in an effort to derive a

comprehensive set of significant legal concepts that govern litigation outcomes of

DSC claims. To this end, the main steps of the design and implementation of the

proposed statistical model include (Figure 1.1): (1) developing a corpus of

construction DSC cases; (2) identifying a set of legal factors that constitute the

bases of judgments in construction DSC cases; and (3) developing statistical models

that relate the likelihood of a DSC cases being judged in favor of one party over the

other to the identified set of legal factors. It is important to note here that the

developed prediction models are used mainly as a vehicle for determining the

significant factors in DSC claims rather than as a decision support tool. The

proposed statistical modeling approach will create and compare the outputs of

Discrete Binary Probit Choice Model and Discrete Binary Logistic Regression Model

(a) to identify the effect of each extracted factor on the prediction of the winning

party; (b) to identify the best combination of factors with the highest significance on

93

the prediction model; and (c) to perform a sensitivity analysis to priorities the most

significant legal factors. The statistical modeling approach will therefore be

composed of three main stages:

1. Data acquisition and preparation;

2. Binary Probit model implementation; and

3. Binary Logistic model implementation.

3.2.1 Data Acquisition and Preparation

Corpus based approaches have become increasingly important in providing

the basic data for prediction model (Robinson 2004). The scope of work under this

research utilizes data from a web legal case retrieval engine (LexisNexis) for the

statistical analysis of legal factors in DSC conflicts and disputes. LexisNexis

provides access to over 32,000 legal, news, and business sources. Furthermore, it

clusters legal cases in subdivisions based on states (LexisNexis 2008). An initial

corpus composed of 60 DSC precedent cases was collected. The gathered corpus,

which covers a time interval from 1912 to 2005, was collected from the Federal

Court of New York due to the large number of construction precedent cases in this

jurisdiction. Out of the gathered 60 cases there are: (1) 32 cases judged in favor of

Owner versus 28 cases judged in favor of Contractor; (2) 28 cases (46.67%) of the

cases are first, second, or third appeals; and (3) 32 cases (53.33%) of the cases are

non-appeals. Out of the 28 appeal cases:

94

Figure 3.1 Statistical Modeling Approach

95

(1) 14 cases were judged in favor of Owner in comparison to 14 cases judged

in favor of Contractor; (2) 9 cases were originally judged in favor of Owner and

judgments were affirmed; (3) 10 cases were originally judged in favor of Owner and

judgments were reversed; (4) 4 cases were originally judged in favor of Contractor

and judgments were affirmed; and (5) 5 cases were originally judged in favor of

Contractor and judgments were reversed. Out of the 32 non-appeal cases, 18 cases

were judged for Owner and 14 cases were judged for Contractor.

For each of the collected precedent cases, a detailed analysis is performed to

extract legal factors that are hypothesized to have led to the decisions on those

cases. Within the legal domain, cases are judged after detailed and through analysis

of surrounding circumstances. Consequently, judgments are based on concrete

facts that are always stated within the body of each case. The factors related to this

analysis are extracted from the stated opinions of judges. For example, in the case

of All County Paving Corp., Doing Business as Collins Construction Co., Appellant, v

Suffolk County Water Authority, Respondent, judges Anita R. Florio, J.P., Robert W.

Schmidt, Thomas A. Adams, and William F. Mastro stated in their opinion “Indeed,

the specifications stated that there was "no guarantee that unknown, adverse,

conditions [did] not exist underground in the vicinity of the drill site." Thus, under the

terms of the parties' contract, the plaintiff bore the risk of encountering unexpected

subsurface soil conditions, and “since the defendant made no misrepresentations

and withheld no information, the plaintiff was not entitled to extra compensation”.

These facts are considered as the bases of including two factors namely SpecWarn

(Whether the specifications warn against the possibility of DSC existence or not) and

96

MMistake (Whether the mistake was a mutual one and no ill intent was meant from

any party). In that regard, a total of 53 factors were extracted. An analysis of the

existence of each of these factors in all cases was then performed in the form of

binary indicator variables [not existing (0) or existing (1)]. As a measure of choice, an

indicator variable for the final judgment was recorded [owner (1) or contractor (0)]. A

list of all extracted factors is provided in appendix A.

3.2.2 Binary Probit Model Implementation

This study is concerned with finding factors, out of the generated list, that are

statistically significant for the prediction of construction litigation outcomes related to

DSC claims. Since the analysis is pertinent to only two outcomes, Discrete Binary

Models were implemented using the statistical modeling software LIMDEP (Greene

1998). The present stage of the statistical modeling approach implements a binary

probit model. In statistics, a probit model is a popular specification of generalized

linear models that was introduced by Chester Ittner in 1935. This stage implements

probit regression, which is the application of probit models to the data set created in

the previous stage of this statistical modeling approach. In this regression the

likelihood of an outcome of a case (either in favor of the owner or contractor) follows

a binary distribution. For illustration, Let Y be a binary outcome variable representing

whether the owner prevail or not and having the value of 1 or 0 respectively. Also let

X be a vector of regressors defining the legal factors in each case. The probit model

developed will therefore be given by equation 3.1.

P�Y=1|X=x�=��x'β� 3.1

97

where Φ is the cumulative distribution function of the standard normal

distribution, x is a legal factors, x’ is the standardized form of the legal factors, and β

is a vectors of estimable parameters obtained from the regression. The Probit model

is derived under the assumption that disturbance terms ε within the generated model

are normally distributed. In this case the probability of owner prevailing (Y=1)

occurring for case n is computed using equation 2 (Washington et al. 2003).

Pn(1)=P(β1X1n-β2X2n≥ε2n-ε1n) 3.2

Where: β 1 and β2 are vectors of estimable parameters for the owner or

contractor prevailing respectively. X1 and X2 are vectors of legal factors that

determine the outcome for case n. ε1n and ε2n are normally distributed disturbance

terms with mean=0, variance σ2
1 and σ2

2 respectively, and covariance σ12. Due to

the normality assumption, (ε1n - ε2n) is normally distributed with mean=0 and

variance = σ2
1 + σ2

2 - σ12. It could be implied from above that the cumulative normal

function for the probability of owner prevailing is given by equation 3 where σ = (σ2
1

+ σ2
2 - σ12)

0.5 and the term 1/σ is a scaling of the function determining the case

outcome (Washington et al. 2003)..

Pn(1)=
1

√2π
 � EXP �- 1

2
 ω�� dω

(β1X1n-β2X2n)/σ

-∞
 3.3

In probit model the vector of estimable parameters β is readily estimated

using standard Maximum Likelihood Estimation method (MLE). The principle of MLE

is that different statistical populations generate different samples; any one sample is

more likely to come from some populations rather than others. For example, if we

have a sample of cases Y1, Y2, ... , Yn, the target is to find the value of β most likely

98

to generate this sample based on their legal factors X. Assuming that Yi is normally

distributed with mean β0 + βixi and variance σ2, where β0 and βi are scalars

representing the estimable parameter of Y intercept and each legal factor

respectively. Therefore, the probability distribution can be written as (Washington et

al. 2003):

P�Y1�= 1

�2πσ2
EXP �- 1

2σ2 �Yi-β0-∑βixi�2� 3.4

Consequently, the likelihood function can be written as (Washington et al.

2003):

L�Y1,Y2,…,YN,β0,βi,σ
2�=P�Y1�P�Y2�…P�YN� 3.5

=�� 1

�2πσ2
"EXP #- 1

2σ2 $Yi-β0-&βixi'2(
N

i=1

Where Π is the product of N factors. For simplicity, work is done with the

algorithm form of L. this is statistically acceptable since L is always non-negative.

Maximizing LN(L), LL with respect to β0, β1, and σ2 results in:

∂�LL�
∂β0

=
1

σ2
∑�Yi-β0

-∑ β
i
xi�=0 3.6

∂�LL�
∂β1

=
1

σ2
∑ [xi�Yi-β0

-∑β
i
xi�] =0 3.7

∂�LL�
∂σ2 =-

1

2σ2 +
1

2σ4
∑�Yi-β0-∑βixi�=0 3.8

β
i
=
∑�xi-X,��Yi-Y,�
∑�xi-X,�2 3.9

β
0
=Y,-∑β

i
X, 3.10

The basic functional form adopted for this analysis is the linear form. Due to

the nature of the model specification and to legal factors being modeled using

99

indicator variable that have values 0 and 1, pseudo elasticity were observed. In this

case, the sign of the estimated parameters relates the presence of a statistically

significant factor and its increasing or decreasing effect (+ or – sign) on the

probability of owner prevailing.

Table 3.1 illustrates the dependent and independent variables for a sample of

five cases. Implementing the statistical modeling approach yielded βDSCC=0.50,

βDCS=-0.667, βN&C=-0.50, βConraise=-0.50, βComImpossible=-1.00, βOchange=-1.00,

βMmistake=-6.667, βOcause=0.00, βSpecWarn=1.00, βSpecRep=0.00, βCNoExtra=-0.50,

βOfalsely=0.50, βOAdjust=0.50, β0=2.50. A positive estimable parameter means that that

the related factor increases the probability of the outcome, while a negative

estimable parameter means that the related factor decreases the probability of that

outcome; a large estimable parameter means that that the related factor strongly

influences the probability of that outcome; while a near-zero estimable parameter

means that that the related factor has little influence on the probability of that

outcome. From the above example, a factor like SpecRep will have no effect on the

outcome; whereas, Specwarn will have the highest effect on increasing the

probability of the outcome. From the above equations, if all other estimable

parameters are equal to zero, β0 (also called y intercept) will represent the general

trend of the outcome. As all other estimable parameters, the sign and value

inferences are applicable to the interpretation of β0. In the above example, there is a

general trend for the outcome to occur. Since the target of this research is to find

and determine the significance of the defined legal factor on the prediction of the

winning party; the validation process is twofold. The first is the determination of the

100

best probit model through the measure of fit ρ2 and over all model fit R2. Second,

significance of each factor is determined through its t-statistics (equation 11), which

is a representation of any parameter to be significantly different than 0. At a

confidence interval of 0.1, a t-statistics above 1.3 is considered significant (please

refer to tables 3.2 and 3.3). The above described modeling steps are repeated

iteratively till a model is found that best satisfies the aforementioned validation

criteria (please refer to figure 3.1).

ti=
βi-0

standard error�βi� 3.11

3.2.3 Binary Logistic Model Implementation

Non-linear modeling, Logistic Regression (LR), is another alternative for

analyzing data of binary nature that is implemented in this stage to verify the

significance of the legal factors affecting DSC disputes that were identified in the first

stage of this statistical modeling approach (Tabachnick and Fidell, 1996). The LR

model was derived similar to the probit model but under the assumption that

disturbance terms ε within the generated model follow Gumbel distribution. The

adopted form of the model is represented in equation 3.12.

Table 3.1 Sample Example of 5 Cases

101

Table 3.2 Relevant statistics of Probit Model at Confidence Interval = 0.1

Relevant statistics Value
Dependent variable OUT
Weighting variable None
Number of observations 60
Log likelihood function -7.733669
Number of parameters 12
Info. Criterion: AIC 0.743720
Finite Sample: AIC 0.858000
Info. Criterion: BIC 1.105050
Info. Criterion:HQIC 0.878420
Restricted log likelihood -31.091550
McFadden Pseudo R-
squared

0.751261

Chi squared 46.715760
Degrees of freedom 11
Prob[ChiSqd > value] 0.000000
Hosmer-Lemeshow chi-
squared

1.623930

P-value (with deg.fr. = 1) 0.202540

f(Y)=
1

1+e-X
→y=log $ Pi

1-Pi
'=β0+βi·xi 3.12

Where β0 and βi are estimable parameters for the Y intercept and legal factor

i respectively and
i
x is the value of the legal factor that determine the outcome for

any individual case i. The variable y represents the exposure to some set of legal

factors xi, while f(Y) represents the probability of a particular outcome of a case,

given that set of legal factors. The intercept is the value of β0 when the value of all

legal factors is zero. The individual value of each estimable parameter determines

the significant effect of its corresponding legal factor on the probability of a particular

outcome of a case. Similar to Probit, the estimable parameter values are estimated

using MLE. The significance of each factor is determined through its t-statistics

102

(equation 3.11), which is an indicator of any parameter to be significantly different

than 0. At a confidence interval of 0.1, a t- statistics above 1.3 is considered

significant.

Table 3.3 Relevant statistics of Logistic Model at Confidence Interval = 0.1

Relevant statistics Value
Dependent variable OUT
Weighting variable None
Number of observations 60
Log likelihood function -12.04719
Number of parameters 10
Info. Criterion: AIC 0.93543
Finite Sample: AIC 1.04972
Info. Criterion: BIC 1.29676
Info. Criterion:HQIC 1.07013
Restricted log likelihood -31.09155
McFadden Pseudo R-
squared

0.6125253

Chi squared 38.08872
Degrees of freedom 9
Prob[ChiSqd > value] 0.7248771E-05
Hosmer-Lemeshow chi-
squared

11.97723

P-value (with deg.fr. = 4) 0.01752

In this form of logistic regression equation 1.13, the owner prevailing outcome

is the logarithm of the ratio of the probability of the owner prevailing (Pi) to the

probability that this outcome does not occur (1-Pi). Taking the exponential of both

sides of the above equation yields (Washington et al. 2003):

$ Pi

1-Pi
'=eβ0+βi·xi=eβ0·eβi·xi 3.13

It is clear from equation 3.13 that when a legal factor xi increases by 1(i.e.

exist in the case), with all other factors remaining unchanged, then the odds of an

103

outcome will increase by a factor eβi, known as the odds ratio (OR). The OR

quantifies the relative change by which the odds of the outcome increase or

decrease when the value of the predictor is increased by 1.

The application of this three stage statistical modeling approach yielded a

number of very useful insights about the main legal factors that impact DSC disputes

in the construction industry. The results and the insights obtained are detailed in the

following section of the chapter.

3.3 Results and Discussion

The results of the application of the aforementioned statistical modeling

approach are presented in tables 3.5, 3.6, and 3.7, respectively. The following is

closer examination and discussion of these results that highlights: (1) the

independent variable estimation; (2) the prediction models; and (3) the sensitivity

analysis.

3.3.1 Independent Variables Estimation

The independent variables (legal factors) under investigation represent

factual conditions upon which the entitlements of 60 DSC litigation cases in the

construction industry were decided in the Federal Court of New York. These

variables include “the presence of DSC clause”, “the presence of factual aspects

illustrating the presence of Type 1 and\ or Type 2 DSC”, among others. While

performing a study of the influence of each variable on the prediction of owner

prevailing, it was noticed that 18 of the extracted variables were constant over all

observations (cases). Although these factors were constant the outcomes of their

104

related cases were not. Consequently, it was obvious that they had no direct impact

on case outcome. Statistical models built utilizing these variables lead to estimable

parameters βi=0. As a result, they were not included in the scope of this analysis.

Eliminating these variables from the analysis yielded 35 variables to be tested.

Furthermore, some of the variables were grouped and were represented by new

indicator variables yielding a total of 23 variables for testing. Grouping of variables

was based on their similarity. For example, three variables related to work stoppage

(Stoppage of work due to the encountered matter, Stoppage of work due to the

Owner, and Stoppage of work due to the Contractor) were grouped under one

variable namely Wstop. If any of the newly developed indicator variables was proven

to be statistically significant by the best developed models, a detailed analysis of

their components was to be performed. The two developed models yielded

consistent results with respect to the effect of the tested legal factors. The remaining

factors after this process are shown in Table 3.4. In addition the Table illustrates

whether the existence of each of these factors increase, or decrease the prediction

of the model.

3.3.2 Prediction Models

One of the very promising findings of the developed statistical modeling

approach is the prediction rates of the developed Probit and Logistic models that

reached 88.9% and 93.3%, respectively. Results reported in Tables 3.5 and 3.6

illustrate a number of interesting insights about the legal factors and their outcomes.

The following is a discussion of these findings:

105

1. It can be deduced from the coefficients of the constants in table 3.5 and 3.6

that generally, cases in which the Federal Government is a concerned party

of the dispute, judgments are in favor of the government (owner) over

contractor. This is expected due to the fact that N.Y. Const. art. 3, § 28 it is

stated that the legislature shall not, nor shall the common council of any city,

nor any board of supervisors, grant any extra compensation to any public

officer, servant, agent or contractor (Ralph S. Keep 1930).

2. Further examination of the developed models demonstrate consistency with

regards to “the presence of evident facts that the encountered conditions

caused a change in the nature and cost of the contract” to decrease the

prediction of an owner winning a case, reference is made to the coefficients

of the N&C parameter in table 3.5 and 3.6. During bidding, contractors

specify their prices based on decisions concerning methods and resources

needed for performing the works. A change in works causing a variation in

the nature of these methods may have a great impact on increasing the

contractors’ costs. Consequently, it is not fair to burden contractors with that

increase in cost, leading to a decrease in planed profit or even loss, without

equitably adjusting them. Supporting this notion, Judge Goldman, J. W.

states that where an operation is not within the original plans and the

contractor is forced to use a more expensive operation to perform the work

than was originally anticipated and contemplated by the contract, the

claimant shall be compensated for this extra work. However, there are two

scenarios that should be discussed in this case. The first, if an owner

106

compensates a contractor for his\ her direct or direct and indirect costs,

reference is made to the coefficient of the OADJUST parameter in table 3.6.

In this case, owner has rectified a mistake on his side. As a result, the

developed models predicted that the presence of evidence of this nature in a

case as a factor that increases the prediction in favor of owner. The second

is when the contract included a clause giving the owner the right to make

changes to the project until final completion and acceptance without

invalidating the contract provided that it was made due to a necessity;

reference is made to the coefficients of the SPECWARN parameter in tables

3.5 and 3.6 (Tony 1919). The presence of similar clause in a contract was

interpreted by both models to increase the prediction in favor of the owner.

3. It was also found from the coefficients of the COMIMPOS parameter in tables

3.5 and 3.6 that the prediction of owner winning a construction litigation case

concerning DSC is decreased due to the presence of evident facts that the

encountered matter rendered the project impossible to be completed. For

example, if the DSC experienced in a project required a redesign that caused

the elimination of a major part of the contractor’s scope of work, which intern

affects his method of pricing and profit allocation to the extent that he/she

cannot perform the works as specified, he\ she is entitled to be compensated

for that loss (Kinser 1912). In addition, the contractor raising the faced

incident as per the contract documents and in due time was found to

decrease the prediction of owner winning a DSC related litigation case,

reference is made to the coefficients of the CRAISE parameter in tables 3.5

107

and 3.6. Construction Contracts place a responsibility on the contractor to

inform the owner with any unexpected matters encountered in the project

lifetime. This responsibility allows the owner and contractor enough time to

analyze the situation and decide on counter measures. Consequently, if a

contractor fulfilled his/her contract requirement, he\she will have a better

chance proving his case.

Table 3.4 Significance of Individually Tested Variables

Factor
Symbol

Factor Meaning
Influence on
Prediction

TYPEP
Type of project: the higher is the sophistication
of the construction project the higher is the
variable

Increase

DSC
The presence of factual facts demonstrating
Type 1 or Type 2 DSC

Decrease

WSTOP
Stoppage of work due to the encountered
matter, Owner, or Contractor

Not significant

DSCC The presence of DSC Clause in the Contract Decrease

REDESIGN
Whether the encountered matter required
redesign

Not significant

N&C
Whether the encountered matter imposed
changes on the nature and costs of the Contract
or not

Decrease

CRAISE
Whether the contractor raised his claim as per
the contract clauses or not

Decrease

COMIMPOS
Whether the encountered matter made the
project completion impossible or not

Decrease

OCHANGE

Whether the contract clauses allow the owner to
perform changes at any time of the project
duration without the consent of the contractor or
not

Increase

CNPROFIT
Whether the contractor under the conditions of
the contract waived his right for profit due to
changes or extras or not

Increase

MMISTAKE
Whether the mistake was a mutual one and no
bad intentions was meant from any party or not

Increase

VCHANGES
Whether various changes were implemented
through the life time of the project or not

Not significant

108

Table 3.4 (Continued)
Factor
Symbol

Factor Symbol Factor Symbol

OCAUSE
Whether the incurred damages were caused
due to the owners negligence or any of his
representatives or not

Decrease

SPECWARN
Whether the specifications warn against the
possibility of DSC existence or not

Increase

SPECREPR
Whether the specifications had a representation
of the actual site conditions or not

Decrease

CNEXTRA
Whether the contractor under the conditions of
the contract waived his right for compensation
due to extras or not

Increase

OFALSELY
Whether The Owner\ Owner Rep. falsely state
that the matter encountered in hand, so far as
known, was shown in the Contract documents?

Decrease

LUMPUNIT Whether the contract is a unit price or not Not significant

OADJUST
Whether the owner equitable adjusted the
contractor against extra works performed or not

Decrease

BENEFIT
Whether the contractor benefits from the work
done or not

Not significant

NOTIME
The presence of enough evidence
demonstrating that there was no time for the
Contractor to perform his own investigations

Decrease

WTEMP
Whether the extra works were performed as
temporary works or not

Increase

WAPPEAL
In case of appeals, in favor of whom did the
court originally rule

Not significant

4. Furthermore, both developed models pointed out that the presence of evident

facts that there was a mutual mistake from both sides in examining the site

and contract documents increases the prediction of judgment in favor of

owner, reference is made to the coefficients of the MMISTAKE parameter in

tables 3.5 and 3.6. In this case, there is no bad faith, concealment or

misrepresentation on the side of the owner; therefore, no responsibility for

the loss resulting from a difference between estimated quantities of material

affecting work conditions and those actually found at a job site (Drake 1965).

On the other hand, it can be inferred from the coefficients of the SPECREPE

109

parameter in tables 3.5 and 3.6 that the presence of evident facts that the

contract documents included accurate representation of the site conditions

decreases the prediction in favor of the owner. In this case, the existence of

DSC depends upon a comparison of the site conditions actually encountered

with the affirmative representations of conditions contained in the bid and

contract documents. To the extent that the conditions described in the

contract materialize, the contractor bears the risk, while the owner assumes

the risk for conditions that the contract documents fail to disclose.

Table 3.5 Probit Model Results at a Confidence Interval = 0.1

Independent variable Coeff. t-stat. Elasticity % Change in Prediction

Constant 4.83 1.80

DSCC -0.33 -1.31 -0.37 0.00

N&C -2.69 -2.02 -0.68 -17.77

CRAISE -2.10 -1.52 -0.66 -11.11

COMIMPOS -1.17 -1.17 -0.47 -11.11

OCHANGE 4.04 1.75 0.22 17.78

MMISTAKE 2.06 1.53 0.67 17.78

OCAUSE -1.14 -1.47 -0.22 -11.11

SPECWARN 2.46 1.80 0.49 55.56

SPECREPR -3.07 -1.50 -0.80 0.00

CNEXTRA 1.38 1.41 0.40 0.00

OFALSELY -1.04 -1.55 -0.12 0.00

5. Additionally, the presence of evident facts that the specifications included a

warning against the presence of DSC from those conveyed in the contract

documents increases the prediction of judgment in favor of owner, reference

is made to the coefficients of the SPECWARN parameter in tables 3.5 and

110

3.6. If the specifications stated that there was no guarantee that adverse

conditions did not exist underground at the construction site, the contractor is

required to familiarize himself\ herself with the site conditions. In this case,

the contractor is held responsible for damages that he\ she might incur due to

encountering DSC (All County Paving 2005).

Table 3.6 Logistic Model Results at a Confidence Interval = 0.1

Independent
variable

Coeff. t-stat. OR

Constant 2.36 0.25

TYPEP 4.23 1.66 32.314

N&C -5.69 -2.00 0.035

CRAISE -7.54 -1.86 0.053

COMIMPOS -3.04 -1.46 0.047

OCHANGE 9.65 2.13 15.604

MMISTAKE 2.57 1.05 13.732

SPECWARN 3.80 2.19 44.740

SPECREPR -5.11 -1.58 0.061

OADJUST 5.67 1.84 2.353

6. As can be deduced from the coefficient of the DSCC parameter in table 3.5,

the Probit model pointed out the presence of a DSC clause in the contract as

a crucial factor that decreases prediction in favor of owner. As mentioned

earlier, once construction begins on a project under a contract that is silent

about the risk of unforeseen conditions, a contractor bears the risk of running

into conditions that were unforeseen at the time he\ she submitted his\ her

bid even though they significantly increase the cost of performance (Iacobelli

1994). As a result, the presence of a DSC clause in a contract allows the

111

contractor to reimburse additional incurred costs due to DSC. A contractor

with legal right to extra compensation would always have a better chance

winning a case in the presence of such a clause. Furthermore, the model

highlighted that the prediction of owner winning a construction litigation case

concerning DSC is decreased due to the presence of evident facts that the

damage incurred by the contractor was due to negligence on the side of the

owner, reference is made to the coefficient of the OCAUSE parameter in

table 3.5. For more illustration, if an owner, by its own act, causes the work to

be done by a contractor to be more expensive than it otherwise would have

been according to the terms of the original contract, it is liable to him\her for

the increased cost or extra work (William 1899). Similarly, the model

indicated that the prediction is also decreased by the presence of evident

facts that the Owner or their representative falsely state that the matter

encountered in hand, so far as known, was shown in the contract documents,

reference is made to the coefficient of the OFALSELY parameter in table 3.5.

In Faber (1918), the contractor recovered damages that he has incurred due

to DSC on the grounds that there was an express warranty from the project

engineer that the contract documents constitute an accurate representation

of the site sub-surface conditions. However, the model predicted that

prediction in favor of the owner increases if the contractor agreed: (1) to

waive his right for any extra compensation; and (2) that all work shall be

solely at the his risk until it has been finally inspected and accepted by the

owner (Kinser 1912).

112

7. In comparison, the Logistic model demonstrated that as the complexity of

public projects increases, the prediction in favor of owner is increased,

reference is made to the coefficient of the TYPEP parameter in table 3.6.

Projects under analysis vary between Excavation projects, Sanitary projects,

and Water related projects like Dams. The nature in which this variable was

integrated in the model is prioritized with Excavation projects being the

lowest in complexity to Water related projects being the most complex. Costs

associated with performing a construction project is directly related to its level

of complexity and size.

Table 3.7 Analysis of Binary Choice Models Prediction (Threshold = 0.5)

Prediction Success Probit Logit

Sensitivity = actual 1s correctly predicted 85.714% 90.476%

Specificity = actual 0s correctly predicted 91.667% 95.833%

Positive predictive value = predicted 1s that were actual
1s Negative predictive value = predicted 0s that were
actual 0s

90.000% 95.000%

Negative predictive value = predicted 0s that were actual
0s

88.000% 92.000%

Correct prediction = actual 1s and 0s correctly predicted 88.889% 93.333%

Prediction Failure

False pos. for true neg. = actual 0s predicted as 1s 8.333% 4.167%

False neg. for true pos. = actual 1s predicted as 0s 14.286% 9.524%

False pos. for predicted pos. = predicted 1s actual 0s 10.000% 5.000%

False neg. for predicted neg. = predicted 0s actual 1s 12.000% 8.000%

False predictions = actual 1s and 0s incorrectly predicted 11.111% 6.667%

113

3.3.3 Sensitivity Analysis

The obtained results shown in Figure 3.2 illustrate the outcomes of the

sensitivity analysis performed on the developed models. The sensitivity analysis is

used to determine how different values of an independent variable (significant legal

concepts) will impact a particular dependent variable (owner winning a case) under a

given set of assumptions. This analysis is very useful when attempting to determine

the impact the actual outcome of a particular variable will have if it differs from what

was previously assumed. To that end, the sensitivity of each variable is tested by

increasing the variable by 1 while maintaining the rest fixed at their mean value. The

outcomes of the analysis were consistent between both developed models and

demonstrated the following.

-20

0

20

40

60

SP
EC

W
A
R
N

O
C
H
A
N
G
E

M
M
IS
TA

K
E

N
&
C

C
R
A
IS
E

C
O
M
IM
PO

S

O
C
A
U
SE

O
FA

LS
EL
Y

%
 C

h
an

g
e

Legal Factors

56.56

17.78

17.77
11.11

Figure 3.2 Outcomes of Sensitivity Analysis

114

1. The presence of evident facts that the encountered conditions caused a

change in the nature and cost of the contract had the highest impact among

variables causing a decrease in the prediction of judgment in favor of owner.

The Probit model indicated that it caused an increase in prediction in favor of

contractor from 55.56% under the base case to 73.33% under imposed

scenario (refer to figure 3.3). Consistent with that finding, the Logistic model

indicated that an increase of 1 results in reducing the odds of an owner

winning approximately by a factor of 29 (OR=0.035). Reference is made to

the percentage change in prediction and OR values of the N&C parameter in

table 3.5 and 3.6.

2. The presence of evident facts that the specifications included a warning

against the presence of DSC from those conveyed in the contract documents

had the highest increases in the prediction of judgment in favor of owner

(refer to figure 3.4). It caused an increase in prediction on favor of owner

from 44.44% under base case to 100.00% under imposed scenario.

Consistent with that finding, the Logistic model indicated that an increase of 1

results in increasing the odds of an owner wining approximately by a factor of

45. Reference is made to the percentage change in prediction and OR values

of the SPECWARN parameter in table 3.5 and 3.6.

3. The presence of a clause in a contract giving the owner the right to make

changes to the project until final completion and acceptance without

invalidating the contract provided that it was made due to a necessity

(reference is made to the percentage change in prediction and OR values of

115

the OCHANGE parameter in table 3.5 and 3.6), and the presence of evident

facts that the mistake was a mutual one and no bad faith was intended by

any party (reference is made to the percentage change in prediction and OR

values of the MMISTAKE parameter in table 3.5 and 3.6) caused the lowest

increase on the prediction of judgment in favor of owner. It caused an

increase in prediction on favor of owner from 44.44% under base case to

62.22% under imposed scenario. Consistent with that finding, the Logistic

model indicated that an increase of 1 results in increasing the odds of an

owner wining approximately by factors of 16 and 14 respectively.

4. The presence of evident facts that the contractor raised his claim as per the

contract clauses, and that the encountered matter rendered the project

completion impossible caused the lowest decrease on the prediction of

judgment in favor of owner. Reference is made to the percentage change in

prediction and OR values of the CRAISE and COMIMPOS parameter

respectively in table 3.5 and 3.6. It caused an increase in prediction in favor

of the contractor from 55.56% under base case to 66.67% under imposed

scenario. Consistent with that finding, the Logistic model indicated that an

increase of 1 results in reducing the odds of an owner wining approximately

by factors of 19 (OR=0.053) and 21 (OR=0.047) respectively

5. The developed Probit model predicted that the presence of evident facts that

the damage incurred by the contractor was due to negligence on the side of

the owner had an impact of decreasing the prediction of judgment in favor of

owner by 11.11. Reference is made to the percentage change in prediction

116

values of the OCAUSE parameter in table 3.5. They caused an increase in

prediction on favor of contractor from 55.56% under base case to 66.67%

under imposed scenario. However, increasing the following factors by 1 unit

had no effect on the odds of prediction: (1) the presence of a DSC clause in a

contract; (2) the presence of evident facts that the specifications had a

representation of the actual site conditions; (3) the presence of evident facts

that the Owner\Owner Rep. falsely state that the matter encountered in hand,

so far as known; and (4) whether the contractor under the conditions of the

contract waived his right for compensation due to extras or not. Reference is

made to the percentage change in prediction values of the DSCC,

SPECREPR, OADJUST, OFALSELY, and CNEXTRA parameter respectively

in table 3.5.

6. From the OR value of the TYPEP parameter in table 3.6 it can be deduced

that the developed Logistic model predicted that increasing the complexity of

the project by 1 unit results in increasing the odds of an owner winning

approximately by a factor of 32.

3.4 Summary and Conclusion

This chapter provides an initial step in this research methodology that attempts

to create a construction legal decision support system through statistical analysis

and machine learning techniques. Consequently, the aim of this chapter was to

statistically analyze the significant legal factors that govern litigation outcomes in

DSC dispute. The chapter, therefore, implemented three main stage that: (1)

117

collected significant number of DSC cases and extracted the legal factors on

which they were judged; and (2) the main findings from the implementation of

this three stage statistical modeling approach include:

Figure 3.3 N&C Variation V. Prediction of Outcome 1 Occurring

Figure 3.4 SPECWARN Variation V. Prediction of Outcome 1 Occurring

Probit Probability, N&C = [.0000 to 1.0000]

N&C

.20

.40

.60

.80

1.00

.00

.20 .40 .60 .80 1.00.00

Probability with other variables fixed at their means

P
R
[Y
=
1
]

Probit Probability, SPECWARN = [.0000 to 1.0000]

SPECWARN

.20

.40

.60

.80

1.00

.00
.20 .40 .60 .80 1.00.00

Probability with other variables fixed at their means

P
R
[Y
=
1
]

118

1. Generally, cases in which the Federal Government is a concerned party of

the dispute, judgments are in favor of the government (owner) over

contractor.

2. “The presence of DSC Clause in the Contract”, “Whether the encountered

matter imposed changes on the nature and costs of the Contract or not”,

“Whether the encountered matter made the project completion impossible or

not”, “Whether The Owner\ Owner Rep. falsely state that the matter

encountered in hand, so far as known, was shown in the Contract

documents”, and “Whether the incurred damages were caused due to the

owners negligence or any of his representatives or not” are factors that

increase the probability of judgment in favor of contractors.

3. “Whether the contract clauses allow the owner to perform changes at any

time of the project duration without the consent of the contractor or not”,

“Whether the owner equitable adjusted the contractor against extra works

performed or not”, and “Whether the specifications warn against the

possibility of DSC existence or not” are factors that increase the probability of

judgment in favor of owner.

4. “The presence of evident facts that the encountered conditions caused a

change in the nature and cost of the contract” had the highest impact among

variables causing a decrease in the prediction of judgment in favor of owner.

It caused an increase of 17.77% in prediction on favor of contractor.

5. “The presence of evident facts that the specifications included a warning

against the presence of DSC from those conveyed in the contract

119

documents” caused the highest increases in the prediction of judgment in

favor of owner. It caused an increase of 56.56% in prediction on favor of

owner.

These findings provide very useful insight on this important type of

construction disputes. In case of a DSC dispute, an owner and/or a contractor can

assess the strength of their situation based on the identified factors if resolving

through litigation is decided. This assessment would allow disputing parties to take a

more assured decision about other resolution mechanism like amicable settlement,

mitigation, and/or arbitration. Furthermore, some of the identified factors are related

the wording of contracts and technical specifications in the construction industry.

Therefore, the current research provides knowledge to contractors about factors to

which emphasis should be given while bidding for new projects and upon which

control should be maintained while performing a project. The developed models,

however, do not take into consideration precedent cases cited within the body of

each case. Because rules alone are insufficient, judges employ analogical reasoning

with precedent cases in their decision-making process (Ashley and Rissland 1988).

Precedence, or the reliance of a court on the decisions of previous relevant cases, is

an important aspect of the Anglo-Saxon legal system (Elhadi 2001), the dominant

legal system in the judicial system of the United States. These enhancements and

others are, therefore, incorporated under the research tasks illustrated in the

following chapters of this dissertation.

120

CHAPTER 4

 DSC LITIGATION PREDICTION MODEL DEVELOPMENT FOR THE

CONSTRUCTION INDUSTRY

4.1 Introduction

One of the fields of AI that is becomingly a topical issue in computing

research is Machine Learning (ML). ML is that field of AI that deals with developing

tools and algorithms allowing a computer to build up knowledge about problems and

applying it to solve newly encountered ones of similar nature (Shawe-Taylor and

Cristianini 2000). As illustrated earlier in chapter 2, ML algorithms address complex

problems that do not lend themselves to solution using traditional computing

techniques. In the present chapter a number of ML algorithms are used for building

models that provide decision support capabilities in DSC disputes. As illustrated in

chapter 2, capturing all legal rules as well as human thinking and perception of facts

has proven to be a very complex undertaking. Researchers in the field of litigation

decision support and natural language processing (NLP) demonstrated that

developing a model to mimic the cognitive ability of the human mind, resembling its

ability to acquire knowledge by the use of reasoning, intuition, and perception, is

impossible with the current state of science (Cobb and Diekmann 1986). However,

the required human knowledge about solving a problem exists implicitly in precedent

cases of similar nature (Arditi and Pulket 2005). As a result, the problem is simplified

to a matter of extracting the knowledge rather than building it cognitively.

Consequently, ML tools and algorithms devised new strategies that attempt to solve

121

problems by utilizing the computers’ ability to extract knowledge from tagged

input\output data sets (Nilsson 2008). These tools have been extensively utilized in

building CBR systems for the construction industry as discussed in chapter 2. In

general, two types of learning are widely applied: inductive, and deductive. Inductive

machine learning methods extract rules, patterns, and information automatically out

of massive data sets by computational and statistical methods in an attempt to attain

the required computer knowledge (Jurafsky and Martin 2000).

The main objective of this chapter is to develop ML model for construction

legal decision support in DSC disputes. In order to achieve this goal, the

performance of different ML tools will be evaluated, including: (1) Support Vector

Machine (SVM) algorithms; (2) Naïve Bayes (NB) algorithms; and (3) Rule Induction

Learning. The aforementioned algorithms will be evaluated using the significant legal

factors identified in chapter 3. The evaluation process utilizes 120 DSC cases from

The Federal Court of New York that were filled in the period between 1912 and

2007. The research approach adopted for the current stage includes (Figure 4.1): (1)

data preparation; (2) ML model development and analysis; and (3) ML model

implementation.

122

Figure 4.1 Research Approach

123

4.2 Data Preparation

As mentioned earlier, the work under this chapter represents a continuation

for chapter 3. Consequently, the identified significant legal factors namely Ptype,

DSCC, DSC, N&C, Conraise, ComImpossible, Ochange, Mmistake, Year, Ocause,

SpecWarn, SpecRep, CNoExtra, Ofalsely, and OAdjust are adopted as the learning

parameters for the models to be developed. The input data for the models are

developed in the form of vectors in which each case (instance) has a designated

input vector xi and each element within the vector (xij) represent the presence or

absence of a specific significant legal factor (1 for the presence and 0 for the

absence). However, two variables do not follow this representation namely the type

of the project (Ptype) and the year of filing the case with the Federal Court of New

York (Year). The analysis of the former is based on the complexity of the project and

falls into one of four categories listed as follows based on the complexity

assumption. Water related works are given a value of 4 and assumed to be the most

complex type of projects due to the high uncertainty and difficulty in predicting site

conditions. This category includes projects like dams and river stream maintenance

and protection projects. The following category includes land related works like

roads or traditional excavation works and is given a value of 3. Sanitary works are

assumed to be less complex and are given a value of 2. All other types of works like

housing projects are given a value of 1. As for the representation of the year, cases

are categorized based on 5 years intervals as shown in the table 4.1 below. In

addition, as a measure of choice, an indicator variable for the final judgment was

124

recorded [owner (1) or contractor (0)] and was inputted as an element in the case

vectors.

Table 4.1 Representation of the Year Factor

Year of Deciding a case Factor
Year>2002 0

1997<Year>2002 1
1992<Year>1997 2
1987<Year>1992 3
1982<Year>1987 4
1977<Year>1982 5
1972<Year>1977 6
1967<Year>1972 7
1962<Year>1967 8
1957<Year>1962 9
1952<Year>1957 10
1947<Year>1952 11
1942<Year>1947 12
1937<Year>1942 13
1932<Year>1937 14
1927<Year>1932 15
1922<Year>1927 16
1917<Year>1922 17
1912<Year>1917 18

Year ≤1912 19

4.3 ML Model Development and Analysis

The objective of this chapter is to develop a construction legal decision

support model for DSC disputes based on statistically significant legal factors

predefined in chapter 3. To this end, the present stage will aim at developing: (1)

Kernel SVM Models; (2) Naïve Bayes (NB) models; and (3) Induction Learning

Models including Decision Tree (DT), Boosted decision Trees (BDT), and PART

models for DSC litigation outcome prediction in the construction industry.

125

4.3.1 Support Vector Machines (SVM)

In the current task, the SVM Classification algorithm aims at separating the

120 training cases into two classes (Owner and Contractor) based on the 15

statistically significant legal factors identified in chapter 3. In its simplest linear form,

a support vector machine finds a hyperplane that separates a set of positive

examples (cases judges in favor of Owner) from the set of negative examples (cases

judges in favor of Contractor) with maximum margin as shown in figure 4.2. Binary

classification is performed by using a real-valued hypothesis function, equation 4.1,

where input x (case) is assigned to the positive class (Owner) if ƒ(x)≥0; otherwise, it

is assigned to the negative class (Contractor).

y=<w.x>+b 4.1

Figure 4.2 SVM Classification

As illustrated in chapter 2, kernel mapping is a widely used transformation

method for solving nonlinear classification problems. Many kernel mapping functions

can be used – probably an infinite number (DTREG 2008). But a few kernel

functions have been found to work well for a wide variety of applications. The default

Contractor

Owner

126

and recommended kernel function is the Radial Basis Function (RBF) and

Polynomial Kernel (POLY) (Aiolli and Sperduti 2005, and DTREG 2008).

Consequently, the work performed under this task investigates the use of Kernel

SVMs (RBF and Polynomial) for developing a DSC litigation outcome prediction

model.

4.3.2 Naïve Bayes Classifiers (NB)

In addition to the above described SVM models, this research task is

concerned with finding the best outcome prediction model for construction cases

related to DSC disputes utilizing Naïve Bayes Classifiers. Since the analysis is

pertinent to only two outcomes, and due to the presence of high support in the ML

domain in favor of the performance of Naïve Bayes (Bramer 2007, Manning and

Schutze 2003) it was adopted for the current analysis.

Naïve Bayes is a type of classifier that does not implement rules to derive the

classification, unlike rule induction classifiers that will be discussed later. The

classification methodology adopted by NB Classifiers is based on the probability

theory. It finds the most likely possible classification for an instance among all

available classes taking into consideration the presence of prior knowledge of other

pieces of information. Pertinent to the current research, NB classifier is build to

estimate the probability of each class (Owner and Contractor) given the training set

of 120 cases and prior knowledge of the existence of the significant legal factors.

The classifier is trained based on conditional and prior probabilities of the existing

set. A conditional probability as given in equation 4.2 is read as the probability of

127

case with legal factor values of (a) happening with the prior knowledge of a

classification falling in class (x), Owner or Contractor. However, a prior probability

means the probability of a certain class (x), Owner or Contractor happening based

on the 120 cases recorded.

P(case legal factors=a|class=x) 4.2

Since the 120 cases C1, C2, …, C120 are conditionally independent, the

probability of an outcome of a newly un-encountered case is calculated based on

equation 4.3.

P�class=x|C=ck�=∏ P�xi|C=ck�120
i 4.3

4.3.3 Rule Induction Classifiers

This sub-section is concerned with finding the best outcome prediction model

for construction DSC cases utilizing Rule Induction Classifiers. DT, BDT, and PART

are types of ML classifiers that adopt decision rules automatically generated from

training examples or data sets to classify a newly unseen instance (Bramer 2007).

DT classifier is a special case in which the generated decision rules are fitted into a

form of a tree, where each leaf represents a decision state. For the 120 cases,

decision rules were derived based on binary decision at each node and not class

probability (Witten and Frank 2000). The models were developed with a splitting

mechanism of a minimum of 2 instances per leaf and a confidence threshold of 0.25.

Weka algorithm J48, ADTree, and PART were utilized for developing the DT, BDT,

and PART models respectively.

128

4.4 Model Testing and Validation

Testing and validation of the developed models was performed using

RapidMiner (formerly known as Yale) version 4.1 (Rapid-I 2008). Validation of the

best developed model was based on prediction accuracy, precision, recall, F-

measures, and the relation between true positive and false positive predictions

illustrated by a value known as Area Under Curve (AUC). Outputs of the developed

models were compared to a base line prediction of 50%. Model accuracy is defined

as the proportion of the total number of correctly predicted cases to the total number

of tested cases. Model precision is defined as a measure of the proportion of

selected cases that the developed model predicted correctly out of the total set of

cases the model referred to that class of prediction, whether true of false (equation

4.4). Model Recall is defined as the proportion of the cases pertinent to a specific

class of prediction that the proposed model selected right (equation 4.5). It should be

noted that there is always a tradeoff between precision and recall. For more

illustration, a full set of cases could be selected attaining a 100% recall but with a

very low precision. Consequently, an overall performance combining precision and

recall can be reported by F-measure (equation 4.6).

Precision=
tp

tp+fp
 4.4

Recall=
tp

tp+fn
 4.5

F- Measure=
2PR

(R+P)
 4.6

129

Where tp is the true positive prediction of the model, fp is the false positive

prediction of the model, fn is the false negative prediction of the model, P is the

precision of the model, and R is the recall of the model.

The testing and validation of the model is performed on a 10 fold scheme.

The theory behind this training method also known as cross-validation was

pioneered by Seymour Geisser (Shawe-Taylor and Cristianini 2000; Rapid-I 2008).

This training methodology is a statistical practice of partitioning a sample of data into

subsets such that the analysis is initially performed on a single subset, while the

other subsets are retained for subsequent use in confirming and validating the initial

analysis. Consequently, within the tested data set, the developed model is trained in

a rotational manner. In each rotation, the model is trained over 90% of the cases and

tested over the remaining 10%. This process is repeated till the model is trained and

tested over all cases. Performance measures are reported for each developed

model after the cross-validation stage is finished.

4.5 ML Model Implementation

The following is a description of the performance of the algorithm

implemented for ML model development. The algorithm starts with identification of

the model parameters (i. e. the degree of the SVM model or the number of splits of

DT model). The algorithm iterates through the training data separating it into folds

based on the cross validation mechanism (i.e. 10, 20, or 100 cross fold validation).

The algorithm is trained over 90% of the data and tested over the other 10%. The

algorithm performance vector parameter, accuracy, precision, and recall for each

130

fold are reported. The algorithm iterates in the above manner until it is trained and

tested over the entire training set. The performance vector parameters, accuracy,

precision, recall, and AUC averages over all folds are reported before the algorithm

terminates.

RapidMiner (formerly known as Yale) version 4.1, developed by Rapid-I, was

utilized for the implementation of ML models described in this chapter. RapidMiner is

an environment for machine learning and data mining processes that has already

been applied for ML and knowledge discovery tasks in a various domains like

feature generation and selection (Klinkenberg 2002, Ritthoff et al. 2003, and Ritthoff

et al. 2002), concept drift handling (Klinkenberg, 2004, Klinkenberg 2003,

Klinkenberg and Rőping 2003, and Klinkenberg and Joachims 2000), transduction

(Daniel et al. 2002, Klinkenberg 2001), pre-processing of and learning from time

series (Mierswa and Morik 2005(a), Mierswa and Morik 2005(b), and Mierswa 2004),

meta learning (Mierswa and Wurst 2005(a), and Mierswa and Wurst 2005(b)),

clustering, and text processing and classification.

The research approach for the present task developed 10 ML models that

related the likelihood of a DSC case being judged in favor of one party over the other

to the identified set of legal factors and provided predictions for newly introduced

cases. First, due to the presence of high support in favor of the performance of

Polynomial and Radial Base Function (RBF) Kernel SVM (Aiolli and Sperduti 2005),

4 ML models namely Polynomial 1st degree, Polynomial 2nd degree, polynomial 3rd

degree, and RBF Kernel models were developed. Second, the proposed research

approach developed and compared the outputs of 2 NB models while implementing

131

and not implementing kernel estimators as a parameter of the model. Third, 4 rule

induction models namely DT, PART, BDT with 10 Boosts, and BDT with 15 Boosts

models were develop. It worth noting at this point that the boost number was

increased to 20 and 25; however, no enhancement in the performance of the model

was achieved.

4.6 Results

This section presents the testing and validation results for the 10 ML models

developed in the previous section of this chapter. The section will present, for each

type of ML algorithm the best model obtained.

4.6.1 Support Vector Machines (SVM)

The results of the testing and validation of the developed SVM algorithms are

presented in tables 4.2, figures 4.3, 4.4, 4.5, 5.6, and appendix B respectively. The

following is closer examination and discussion of these results. As can be noted

from table 4.2, the 2nd and 3rd degree Polynomial Kernel SVM models achieved the

highest performance measures while 1st degree Polynomial Kernel SVM achieved

the lowest. The overall accuracy of the Polynomial degree 1, 2, and 3, and RBF

models were 94%, 98%, 98%, and 96% respectively.

The observed superiority of the 2nd and 3rd polynomial models extended to

cover all validation criteria. A closer look into the achieved measures illustrates a

slighter higher performance of the 3rd degree polynomial kernel model over the 2nd

degree one. It can be seen from table 4.2; the statistical properties (namely the

Mean absolute Error, Root mean squared error, Relative absolute error, and Root

132

relative squared error) of the 3rd degree model are slightly less than those of the

2nd degree one giving it the upper hand when deciding on the best model. Further

examination of figure 4.8 (AUC), which defines the relation between true and false

positive predictions, further highlights the superiority of the 3rd degree Polynomial

model. A true positive prediction of 99.6% can be made with 0% false positive

predictions. In other words, the model achieves right classification (assigning a case

to its right class) at a rate of 99.6% without making mistakes.

Table 4.2 Results of Kernel SVM Implementation

Property Polynomial Degree
RBF

1 2 3

Accuracy 94.00% 98.00% 98.00% 96.00%

Precision 93.83% 98.00% 98.00% 86.48%

Recall 93.50% 98.00% 98.00% 93.00%

F-Measure 93.66% 98.00% 98.00% 89.62%

AUC 95.40% 99.60% 99.60% 94.30%
Contractor's class
precision

97.73% 97.83% 97.83% 86.00%

Contractor's class recall 93.48% 97.83% 97.83% 93.48%

Owner's class precision 94.64% 98.15% 98.15% 94.00%

Owner's class recall 98.15% 98.15% 98.15% 87.04%
Contractor's class F-
Measure

95.56% 97.83% 97.83% 89.58%

Owner's class F-
Measure

96.36% 98.15% 98.15% 90.39%

Kappa statistics 0.9195 0.9597 0.9597 0.9397

Mean absolute Error 0.0709 0.02 0.1315 0.0707
Root mean squared
error

0.2165 0.1414 0.1214 0.1857

Relative absolute error 0.1425 0.4023 0.0373 0.1422
Root relative squared
error

0.4339 0.2834 0.2636 0.3721

133

Figure 4.3 Accuracy, Precision, Recall, F-Measure, and AUC Results of SVM
Modeling

Figure 4.4 +Ve and -Ve Class Results of SVM Modeling

Figure 4.5 Class F-Measure Results of SVM Modeling

84.00%

88.00%

92.00%

96.00%

100.00%

Poly. 1st

degree

Poly. 2nd

degree

Poly. 3rd

degree

RBF

%
 S

ca
le

Model Type

Accuracy

Precision

Recall

F-Measure

AUC

84.00%

89.00%

94.00%

99.00%

Poly. 1st

degree

Poly. 2nd

degree

Poly. 3rd

degree

RBF

%
 S

ca
le

Model Type

Contractor's class precision

Contractor's class recall

Owner's class precision

Owner's class recall

84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

100.00%

Poly. 1st

degree

Poly. 2nd

degree

Poly. 3rd

degree

RBF

%
 A

x
is

Model Type

Contractor's class F-Measure

Owner's class F-Measure

134

Figure 4.6 Area Under Curve (AUC) Results of SVM Modeling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
si

ti
v

e

False Positive

Polynomial Degree 1

Polynomial Degree 2

Polynomial Degree 3

Base Line

RBF

135

4.6.2 Naïve Bayes Classifiers

The results of the testing and validation of the developed NB models are

presented in tables 4.3, figures 4.7, 4.8, 4.9, 4.10, and appendix C respectively. The

following is a closer examination and discussion of these results. As can be noted

from table 4.3, both models have achieved similar results. Comparing the two

models yields the followings:

• The Naïve Bayes classifier without the kernel estimators (Model 1) has its

accuracy decreased by 1.00% over Naïve Bayes classifier with kernel

estimators (Model 2).

• The precision of model 1 was higher than that attained by model 2 by a

value of 1.94%.

• The recall of model 1 was less than that attained by model 2 by a value of

0.80%.

• The AUC of model 1 was higher than that attained by model 2 by a value

of 5.00%.

• The Contractor’s class precision of model 1 was less than that attained by

model 2 by a value of 5.66%; while the class recall was increased by a

value of 4.35%.

• The Owner’s class precision of model 1 was higher than that attained by

model 2 by a value of 3.22%; while the class recall was decreased by a

value of 5.56%.

136

Table 4.3 Results of Naive Bayes Implementation

Property Model #

NB with Kernel NB without Kernel

Accuracy 93.00% 94.00%

Precision 92.94% 91.00%

Recall 93.20% 94.00%

F-Measure 93.07% 92.48%

AUC 94.30% 89.30%

Contractor's class precision 89.80% 95.45%

Contractor's class recall 95.65% 91.30%

Owner's class precision 96.08% 92.86%

Owner's class recall 90.74% 96.30%

Contractor's class F-Measure 92.63% 93.33%

Owner's class F-Measure 93.33% 94.55%

Kappa statistics 0.8598 0.8788

Mean absolute Error 0.095 0.1093

Root mean squared error 0.2251 0.2366

Relative absolute error 0.4512 0.4741

From the above information, it is clear that the performance of both models is

nearly similar. Consequently, the basis of adopting one as being better than another

will be based on the AUC measure. As mentioned earlier, AUC relates the true

positive prediction rate of a model to its false positive prediction. As shown in table

4.3 and figure 4.10, model 1 and model 2 have achieved an AUC of 94.30% and

89.30% respectively. As a result, model 1 is estimated to classify a case to its

appropriate class 94.30% of the times without making a mistake. On the other hand,

model 2 is estimated to classify a case to its appropriate class 89.30% of the times

without making a mistake. From the above, it is concluded that model 1, Naïve

Bayes Classifier without implementing kernel estimators, is the best NB model.

137

Figure 4.7 Accuracy, Precision, Recall, F-Measure, and AUC Results of
Naive Bayes Modeling

Figure 4.8 +Ve and -Ve Class Results of Naive Bayes Modeling

Figure 4.9 Class F-Measure Results of Naive Bayes Modeling

86.00%

87.00%

88.00%

89.00%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

NB with Kernel NB without Kernel

%
 S

ca
le

Accuracy

Precision

Recall

AUC

F-Measure

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

NB with Kernel NB without Kernel

%
 S

ca
le

Contractor's class precision

Contractor's class recall

Owner's class precision

Owners's class recall

91.50%

92.00%

92.50%

93.00%

93.50%

94.00%

94.50%

95.00%

NB with Kernel NB without Kernel

%
 A

x
is

Contractor's class F-Measure

Owner's class F-Measure

138

Figure 4.10 Area Under Curve (AUC) Results of Naive Bayes Modeling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
si

ti
v

e

False Positive

NB with Kernel

NB without Kernel

Base Line

139

4.6.3 Rule Induction Classifiers

The results of the testing and validation of the developed rule Induction

models are presented in table 4.4, figures 4.11, 4.12, 4.13, 4.14, and appendix D

respectively. The following is closer examination and discussion of these results. As

can be noted from table 4.4, 15 boosts ADTree model performed the best. As shown

in table 4.7, that the 15 boosts AD tree achieved higher performance with respect to

all performance measures except the model recall. The 15 boost ADTree model

achieved:

• An overall accuracy increase of 3.8%, 2.8%, and 2.8% over decision tree,

10 boosts ADTree, and PART respectively (please refer to figure 4.11).

• An increase in the precision of 4.03%, 2.66%, and 3.66% over decision

tree, 10 boosts ADTree, and PART, respectively (refer to figure 4.11).

• A decrease in the recall of 0.00%, 0.88%, and 2.00% over decision tree,

10 boosts ADTree, and PART, respectively. As mentioned earlier in

section 4.2.2.4, there is always a tradeoff between precision and recall.

Consequently, F-measure is adopted to perform realistic comparison. The

15 boosts ADTree model achieved an increase in F-measure of 1.97%,

0.85%, and 0.79% over decision tree, 10 boosts ADTree, and PART,

respectively (refer to figure 4.11).

• An increase in the AUC of 6.8%, 4.8%, and 2.4% over decision tree, 10

boosts ADTree, and PART, respectively (refer to figures 4.11 and 4.14).

140

• An increase in the Contractor’s class precision of 4.35%, 0.15%, and

4.21% over decision tree, 10 boosts ADTree, and PART, respectively

(refer to figure 4.11).

• An increase in the Contractor’s class recall of 4.35%, 6.52%, and 2.17%

over decision tree, 10 boosts ADTree, and PART, respectively (refer to

figure 4.12).

• An increase in the Owner’s class precision of 3.70%, 5.17%, and 1.92%

over decision tree, 10 boosts ADTree, and PART, respectively (refer to

figure 4.12).

• An increase in the Owner’s class recall of 3.70%, 0.00%, and 3.70% over

decision tree, 10 boosts ADTree, and PART, respectively (refer to figure

4.12).

• An increase in the Contractor’s class F-measure of 4.35%, 3.44%, and

3.20% over decision tree, 10 boosts ADTree, and PART, respectively

(refer to figure 4.13).

• An increase in the Owner’s class F-measure of 3.70%, 2.65%, and 2.82%

over decision tree, 10 boosts ADTree, and PART, respectively (refer to

figure 4.13).

• An increase in the Kappa Statistics of 10.06%, 4.03%, and 10.06% over

decision tree, 10 boosts ADTree, and PART respectively.

141

Table 4.4 Results of Rule Induction Classifiers Implementation

Property
Decision
Tree

AD Tree
(10

Boosts)

AD Tree
(15

Boosts)
PART

Accuracy 94.00% 95.00% 97.80% 95.00%

Precision 93.96% 95.33% 97.99% 94.33%

Recall 94.00% 94.88% 94.00% 96.00%

F-measure 93.98% 95.10% 95.95% 95.16%

AUC 91.20% 93.20% 98.00% 95.60%
Contractor's class

precision
93.48% 97.67% 97.83% 93.62%

Contractor's class recall 93.48% 91.30% 97.83% 95.65%

Owner's class precision 94.44% 92.98% 98.15% 96.23%

Owner's class recall 94.44% 98.15% 98.15% 94.44%
Contractor's class F-

Measure
93.48% 94.38% 97.83% 94.62%

Owner's class F-
Measure

94.44% 95.50% 98.15% 95.33%

Kappa statistics 0.8792 0.9397 0.9798 0.8792

Mean absolute Error 0.0662 0.0915 0.0727 0.0662
Root mean squared

error
0.2352 0.1563 0.1356 0.2204

Relative absolute error 0.1331 0.1839 0.1462 0.1251
Root relative squared

error
0.4715 0.3132 0.2719 0.4417

142

Figure 4.11 Accuracy, Precision, Recall, F-Measure, and AUC Results of
Rule Induction Modeling

Figure 4.12 +Ve and -Ve Class Results of Rule Induction Modeling

Figure 4.13 Class F-Measure Results of Rule Induction Modeling

84.00%

88.00%

92.00%

96.00%

100.00%

Decision Tree

Model

AD Tree (10

Boosts)

AD Tree (15

Boosts)

PART

%
 A

x
is

Model Type

Accuracy

Precision

Recall

AUC

F-measure

84.00%

88.00%

92.00%

96.00%

100.00%

Decision

Tree

Model

AD Tree

(10

Boosts)

AD Tree

(10

Boosts)

PART

%
 A

x
is

Model Type

Contractor's class precision

Contractor's class recall

Owner's class precision

Owners's class recall

88.00%

92.00%

96.00%

100.00%

Decision

Tree

Model

AD Tree

(10

Boosts)

AD Tree

(10

Boosts)

PART

%
 A

x
is

Model Type

Contractor's class F-Measure

Owner's class F-Measure

143

Figure 4.14 Area Under Curve (AUC) Results of Rule Induction Modeling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
si

ti
v

e

False Positive

Decision Tree Model

Base Line

ADTree 10 Boosts

ADTree 20 Boosts

PART Model

144

A comparison of the four models with respect to the derived decision rules

was performed. The Decision Tree model generated a model with tree size of 13

and number of decision leaves 7 (Figure 4.15). The model derived the following

rules:

DSC <= 0
| Ocause <= 0: OWNER (43.0)
| Ocause > 0: CONTRACTOR (3.0/1.0)
DSC > 0
| SpecWarn <= 0
| | CNoExtra <= 0: CONTRACTOR (36.0)
| | CNoExtra > 0
| | | DSCC <= 0
| | | | Conraise <= 0: OWNER (4.0/1.0)
| | | | Conraise > 0: CONTRACTOR (7.0)
| | | DSCC > 0: OWNER (2.0)
| SpecWarn > 0: OWNER (5.0)

Figure 4.15 Decision Tree Model Output

The 10 boosts ADTree generated a tree size of 25 with 17 decision nodes

(Figure 4.16). The model derived the following rules:

145

| (1)DSC < 0.5: -1.289
| | (3)ComImpossible < 0.5: -1.793
| | (3)ComImpossible >= 0.5: 1.469
| (1)DSC >= 0.5: 0.778
| | (2)CNoExtra < 0.5: 2.141
| | (2)CNoExtra >= 0.5: -0.902
| | | (7)DSCC < 0.5: 0.177
| | | | (8)Conraise < 0.5: -0.492
| | | | (8)Conraise >= 0.5: 0.55
| | | (7)DSCC >= 0.5: -0.754
| | (5)N&C < 0.5: -0.355
| | (5)N&C >= 0.5: 0.725
| (4)SpecWarn < 0.5: 0.373
| (4)SpecWarn >= 0.5: -1.002
| (6)Ocause < 0.5: -0.44
| (6)Ocause >= 0.5: 0.474
Legend: -ve = OWNER, +ve = CONTRACTOR

Figure 4.16 ADTree Model Output

146

Finally, the 15 boosts ADTree generated a tree size of 37 with 25 decision

nodes (Figure 4.17). The model derived the following rules:

| (1)DSC < 0.5: -1.289
| | (3)ComImpossible < 0.5: -2.173
| | (3)ComImpossible >= 0.5: 1.756
| (1)DSC >= 0.5: 0.778
| | (2)CNoExtra < 0.5: 2.141
| | (2)CNoExtra >= 0.5: -0.902
| | | (7)DSCC < 0.5: 0.177
| | | | (8)Conraise < 0.5: -0.492
| | | | (8)Conraise >= 0.5: 0.55
| | | | | (9)SpecWarn < 0.5: 0.579
| | | | | (9)SpecWarn >= 0.5: -0.223
| | | | (12)Ocause < 0.5: -0.217
| | | | (12)Ocause >= 0.5: 0.403
| | | (7)DSCC >= 0.5: -0.754
| | | (10)N&C < 0.5: -0.397
| | | (10)N&C >= 0.5: 0.285
| | (5)N&C < 0.5: -0.355
| | (5)N&C >= 0.5: 0.725
| | | (11)SpecWarn < 0.5: 0.476
| | | (11)SpecWarn >= 0.5: -0.164
| (4)SpecWarn < 0.5: 0.373
| (4)SpecWarn >= 0.5: -1.002
| (6)Ocause < 0.5: -0.44
| (6)Ocause >= 0.5: 0.474
Legend: -ve = OWNER, +ve = CONTRACTOR

In addition, the PART model generated 3 decision rules as follows.

DSC <= 0 AND Ocause <= 0: OWNER (43.0)
SpecWarn <= 0 AND CNoExtra <= 0: CONTRACTOR (38.0)
SpecWarn <= 0 AND DSCC <= 0 AND Conraise > 0: CONTRACTOR (7.0)

147

Figure 4.17 Pictorial Representation of the 15 Boost ADTree Model Output

From the above information, it is clear that the performance of the four

developed models under this sub-task had achieved a higher performance than the

base line since they have achieved an accuracy higher than 50%. In addition,

comparing the four developed models namely Decision Tree, ADTree with 10

boosts, ADTree with 15 boosts, and PART yielded the ADTree model with 15 boosts

with the best performance under the adopted research approach.

4.7 Analysis and Discussion

As can be noted from the above results, the Kernel Polynomial 3rd degree,

Naïve Bayes without Kernel estimators, and ADTree with 15 boosts models attained

the best performance measures within the studied SVM, Naïve Bayes, and Inductive

148

Rule classifiers respectively. Table 4.5, and figures 4.18, 4.19, 4.20, and 4.21

illustrate comparisons between these models. Comparing the outcomes of the three

models one deduces that the SVM Kernel Polynomial 3rd degree achieved higher

performance measure over the other two. It had attained the followings.

• An increase in the overall accuracy of 5.00% and 0.2% from the Naïve

Bayes without Kernel estimators and ADTree with 15 boosts models,

respectively (refer to figure 4.18).

• An increase in the precision of 5.06% and 0.01% from the Naïve Bayes

without Kernel estimators and ADTree with 15 boosts models,

respectively (refer to figure 4.18).

• An increase in the recall of 4.80% and 4.00% from the Naïve Bayes

without Kernel estimators and ADTree with 15 boosts models,

respectively (refer to figure 4.18).

• An increase in the F-measure of 4.93% and 2.05% from the Naïve Bayes

without Kernel estimators and ADTree with 15 boosts models,

respectively (refer to figure 4.18).

• An increase in the AUC of 5.30% and 3.65% from the Naïve Bayes

without Kernel estimators and ADTree with 15 boosts models,

respectively (refer to figures 4.18 and 4.21).

• An increase in the Contractor’s class precision of 8.03% from the Naïve

Bayes without Kernel estimator model. However, a minor decrease of

0.17% from ADTree with 15 boosts model was noticed (refer to figure

4.19).

149

Table 4.5 Output Analysis of the Best Models

Property
Model Type

SVM
(Poly. 3rd
Degree)

Naive Bayes
ADTree

(15
Boosts)

Accuracy 98.00% 93.00% 97.80%

Precision 98.00% 92.94% 97.99%

Recall 98.00% 93.20% 94.00%

F-Measure 98.00% 93.07% 95.95%

AUC 99.60% 94.30% 95.95%

Contractor's class precision 97.83% 89.80% 98.00%

Contractor's class recall 97.83% 95.65% 97.83%

Owner's class precision 98.15% 96.08% 97.83%

Owner's class recall 98.15% 90.74% 98.15%

Contractor's class F-Measure 97.83% 92.63% 98.15%

Owner's class F-Measure 98.15% 93.33% 97.83%

Kappa statistics 95.97% 85.98% 98.15%

Mean absolute Error 13.15% 9.50% 97.98%

Root mean squared error 12.14% 22.51% 7.27%

Relative absolute error 3.73% 19.11% 13.56%

Root relative squared error 26.36% 45.12% 14.62%

• An increase in the Contractor’s class recall of 2.17% from the Naïve

Bayes without Kernel estimator model was noticed. However, no

improvement over ADTree with 15 boosts model was detected (refer to

figure 4.19).

• An increase in the Owner’s class precision of 2.07% and 0.32% from the

Naïve Bayes without Kernel estimators and ADTree with 15 boosts

models respectively (refer to figure 4.19).

150

• An increase in the Owner’s class recall of 7.41% from the Naïve Bayes

without Kernel estimator model was noticed. However, no improvement

over ADTree with 15 boosts model was detected (refer to figure 4.19).

• An increase in the Contractor’s class F-Measure of 5.19% from the Naïve

Bayes without Kernel estimator model. However, a minor decrease of

0.32% from ADTree with 15 boosts model was noticed (refer to figure

4.20).

• An increase in the Owner’s class F-Measure of 4.81% and 0.32% from

the Naïve Bayes without Kernel estimators and ADTree with 15 boosts

models, respectively (refer to figure 4.20).

• An increase in the Kappa of 9.99% from the Naïve Bayes without Kernel

estimator model. However, a decrease of 2.18% from ADTree with 15

boosts model was detected.

Figure 4.18Accuracy, Precision, Recall, F-Measure, and AUC Results of the
Best Developed Models

88.00%

92.00%

96.00%

100.00%

104.00%

SVM (Poly.

3rd Degree)

Naive Bayes ADTree (15

Boosts)

%
 A

x
is

Model Type

Accuracy

Precision

Recall

AUC

F-Measure

151

Figure 4.19 +Ve and -Ve Class Results of the Best Developed Models

Figure 4.20 Class F-Measure Results of the Best Developed Models

84.00%

88.00%

92.00%

96.00%

100.00%

SVM (Poly.

3rd Degree)

Naive Bayes ADTree (15

Boosts)

%
 A

x
is

Model Type

Contractor's class precision

Contractor's class recall

Owner's class precision

Owners's class recall

88.00%

92.00%

96.00%

100.00%

SVM (Poly.

3rd Degree)

Naive Bayes ADTree (15

Boosts)

%
 A

x
is

Model Type

Contractor's class F-Measure

Owner's class F-Measure

152

Figure 4.21 Area Under Curve (AUC) Results of the Best Developed Models

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
si

ti
v

e

False Positive

SVM (Poly. 3rd Degree)

Naive Bayes

AD Tree (15 Boosts)

Base Line

153

Comparing the best three developed models namely SVM Kernel Polynomial

3rd degree, Naïve Bayes without Kernel estimators, and ADTree with 15 boosts

yielded the SVM Kernel Polynomial 3rd degree model with the best performance

under the adopted research design and implementation.

The achieved superiority of the SVM Kernel Polynomial 3rd degree is

supported by outcomes of previous research studies in the literature review.

However, it provides very significant insight on the nature of the problem being

investigated as follows:

(1) The problem analyzed is a real life complex one in which simple prediction

tools like NB and Rule Induction classifiers cannot analyze its extent fully. The

classification of a legal case in terms of whether it is to be judged in favor of one

party over the other integrates a lot of factors that are not linearly separable in

nature. Consequently, simple classifiers are not suitable for the task. However,

Support Vector Machine (SVM) is a state-of-the-art classification and regression

algorithm, which implements strong regularization techniques, that is, the

optimization procedure maximizes predictive accuracy while automatically avoiding

over-fitting of the training data (Cannon et al. 2007). Furthermore, the transformation

of the data into a higher dimension space through Kernel estimation provides the

strength of the SVM model in solving this complex problem. On the other hand, NB

makes predictions using Bayes' Theorem, which derives the probability of a

prediction from the underlying evidence. This theory and the inherent assumption

that cases are mutually exclusive limit the performance of the model.

154

(2) The analysis utilizes 120 cases and is considering 15 features. The fact

that the number of cases is more than twice the number of features makes SVM a

stronger tool for the analysis of the current problem due to its active learning feature

(Oracle 2009). “SVM models grow as the size of the training data set increases….

Active learning forces the SVM algorithm to restrict learning to the most informative

training examples and not to attempt to use the entire body of data” (Oracle 2009).

Furthermore, SVM is not dependent on general rules. In rule dependent classifiers

and NB, the number of collected rules is dependent on the size of the dataset.

Consequently, the lower performance in NB and Rule Induction Classifiers could be

attributed to the number of features analyzed. The number of features selected may

not be enough to accurately differentiate the cases for those algorithms.

4.8 Chapter summary

The objective of this chapter was to investigate the feasibility of ML use for

the development of a DSC litigation prediction model for the construction industry.

To that end, SVM, Naïve Bayes, and Induction Rule classifiers were adopted for the

study. 10 models were developed in the following manner 4 SVM, 2 Naïve Bayes,

and 4 Induction rule models. The highest prediction rate of 98% within the first

category was attained by Kernel Polynomial 3rd degree model. Models developed

under the second category yielded a highest rate of prediction of 93% attained by

the Naïve Bayes model without implementing kernel estimators. A prediction rate of

97.8% was the highest attained within the third category by ADTree model with 15

boosts. Comparing the outputs of all developed models yields a great advancement

155

in this area when compared to a base line of 50% and previously performed

researches (Arditi and Tokdemir 1999, and Chau 2006) as discussed in chapter 2. In

addition, after performing the aforementioned analysis, it could be concluded that

SVM Kernel Polynomial 3rd degree model has achieved the best performance

among all developed models.

156

CHAPTER 5

AUTOMATED EXTRACTION OF SIGNIFICANT LEGAL FACTORS

5.1 Introduction

Researchers have highlighted knowledge integration and knowledge

management as two of the major problems that affect the efficiency of the

construction industry (Caldas et al. 2002, Wood 2000, Brőggemann et al. 2000, and

Kosovac et al. 2000). The problem is attributed to the fact that (Caldas et al. 2002):

(1) a large amount of construction data is stored in semi-structured and unstructured

files and formats; (2) the knowledge needed for construction decision making is very

difficult to extract; (3) this knowledge is not integrated with other construction

management systems; and (4) the association between construction data and their

related project components is not clear. These facts make the management of

construction knowledge a significant and challenging task.

In fact, the aforementioned challenges in managing construction knowledge

extend to the legal domain, since cases are also stored in textual unstructured

formats (Ashley and Rissland 1988). The highly sophisticated electronic information

storage and retrieval systems available for researching the laws and case histories

are extremely complex and time consuming. Sometimes this complexity creates

problems for information seekers and can limit their access to relevant information.

This adds to the complexity of the legal decision making process in construction,

since the process is time consuming and may require knowledgeable professionals

to extract the required knowledge from relevant case histories. As a result, an

157

automated legal decision support system that utilizes natural language processing

techniques to identify, retrieve, reorganize legal information, and predict construction

litigation outcomes is needed. This system is expected to reduce the time required

and costs incurred by construction firms in the legal decision making process and

improve overall project control.

The previous chapter of this dissertation illustrated the development of

machine learning models that efficiently and effectively determine the outcomes of

DSC disputes construction based on corpus of precedent cases. Those models are

expected to help in relieving the negative consequences associated with lengthy

DSC claim and dispute resolution in the construction industry. However, the manual

extraction of significant legal factors that govern these cases that form the corpus is

a significant time constraint that could reduce the efficiency of these models. The

main goal of this chapter is to develop an automated methodology for the extraction

of legal knowledge, in the form of significant legal factors, from precedent cases.

Consequently, the focus of this chapter is to develop and evaluate the performance

of different ML tools, namely Support Vector Machines (SVM), Naïve Bayes, and

Inductive Rules, in an attempt to automate legal factors identification.

The research tasks described in this chapter will, therefore, include: (1)

preparing the data for model implementation; (2) identifying the ML model

parameters; (3) developing SVM, Naïve Bayes, and Rule Induction automated

extraction models; and (4) validating and comparing the developed models.

158

5.2 Data Preparation

The first research task in this chapter aims at preparing the cases in the DSC

precedent corpus for processing using the different ML methods that are being

developed. The data preparation task is, therefore, composed of the following three

steps: (1) defining the nature of the problem; (2) processing the collected data; and

(3) preparing the processed data for model development (weighting scheme).

5.2.1 Defining the Nature of the Problem

The goal of this task is to automate the process of legal significant factors

extraction in textual precedent cases. This implies that the knowledge that needs to

be extracted is implicitly available within the textual cases. Consequently, this

problem can be defined as one of extracting this tacit knowledge from a large text.

The first step in solving such a problem is to analyze the text to evaluate how this

tacit knowledge can be extracted. Each case includes a representation of the

different legal factors in terms of words that are put together in a coherent manner to

derive meaning. However, looking at the bigger picture, legal terms always refer to

constant meanings. For example, the word contract legally refers to “A binding

agreement between two or more parties for performing, or refraining from

performing, some specified act(s) in exchange for lawful consideration” (Legal

Dictionary 2008). This decreases the ambiguity of these terms, but also decreases

their ability to distinguish between documents. In the same manner, each case will

include terms that are pertinent to a specific legal factor defined in chapter 3.

159

Figure 5.1 Research Tasks for Automated Significant Legal Factors
Extraction

160

For example, in the case of All County Paving Corp., Doing Business as

Collins Construction Co., Appellant, v Suffolk County Water Authority, Respondent,

Judges Anita R. Florio, J.P., Robert W. Schmidt, Thomas A. Adams, and William F.

Mastro stated in their opinion “since the defendant made no misrepresentations and

withheld no information, the plaintiff was not entitled to extra compensation”. This

sentence includes terms like misrepresentations, withheld, and information in a

manner that relates to the legal factor “MMistake”. Consequently, these terms are

the ones that the ML algorithms could use to determine the presence of this factor.

5.2.2 Processing the Case Corpus

As stated above, the 120 cases, earlier utilized for the analysis in chapter 4,

were utilized for the analysis under this sub-task. The decision for using this set of

cases was based on the fact that they were previously manually analyzed to define

the significant legal factors pertinent to each case. As mentioned earlier, these

cases are related to DSC disputes from The Federal Court of New York. They were

filled in the period between 1912 and 2007. Although each case implicitly includes

the required knowledge for such analysis, it also includes textual representations

that are not related to this sub-task. This step involves preparing the collected

dataset in an appropriate manner to enhance the analysis. Consequently, the

processing step will include data cleaning, data integration, and data reduction (Ng.

et al. 2006). A similar methodology has been utilized in the application of text mining

techniques in construction as mentioned earlier in chapter 2 (Caldas et al. 2002).

Data cleaning is performed by removing undesirable text (words). For more

161

illustrations, textual representation of cases might include frequent words that carry

no meaning, misspelled words, outliers, noise, and inconsistent data. While data

processing is performed on each textual case representation separately, data

integration is performed over the entire dataset. In this step, the entire processed

dataset is stored in a coherent manner that facilitates their use for further analysis.

While the integrated data might be very large, data reduction can decrease the data

size by aggregating and eliminating redundant features.

To perform the aforementioned sub-steps, an algorithm was developed and

implemented in C++. A copy of the developed program is provided in Appendix E of

this dissertation. The basic principle of the developed program is to represent each

document as a vector of certain weighted word frequencies. The following steps

outline the parsing and extraction procedure that are performed on each textual

representation of a case (please refer to figure 5.2).

1. Extract all words in a document. The algorithm prompts the user to

provide a directory that includes the document. The algorithm iterates

through the documents one by one, associates each document with a

unique numerical code and extracts all words in each document. Words

are extracted based on white spaces and are stored in a document vector

that is coded with the unique document code.

2. Eliminate non-content-bearing words, also known as stopwords

(Rijsbergen 1979). The algorithm utilizes predeveloped files including a

comprehensive list of non-content-bearing words. For example, words

like and, if, or, then, that, the, he, me, they, nevertheless … etc. are

162

included in the file. Each word in the document vector is compared

against these lists. If a word was found to be non-content-bearing words,

it was excluded from the document vector.

3. Reduce each word to its “root” or “stem” eliminating plurals, tenses,

prefixes, and suffixes. This technique is called stemming, suffix stripping,

or term truncation. Stemming reduces different word forms to common

roots. The purpose of stemming is to group words that are morphological

variants on the same word stem (Porter 1980, Ng et al. 2006). The

algorithm iterates through the document word vector stemming each word

by inputting it into a loop that performs the following:

a. All letters in the word are changed to lower case. For example, the

word “Contracts;” is stemmed to “contracts;”.

b. All punctuations and non alphabetical symbols or marks that are

used to organize writing are removed. Consequently, the word

“contracts;” is stemmed to “contracts”.

c. All words are converted to its singular form. The algorithm utilizes

standard grammatical rules of pluralization to perform this step.

Each word in the document word vector is transformed to its

singular form by eliminating “s” or “es” or “ies” at its end. As a

result, the word “contracts” is stemmed to “contract”. Words in the

document vector are replaced with their stemmed versions.

4. For each document, count the number of occurrences of each word. The

algorithm iterates through each document vector and counts the number

163

of occurrences of each stemmed word. These frequencies are stored in a

document term frequency vector that is coded with the unique document

code generated by the algorithm.

5. Eliminate low frequency words (Salton 1989, Ng et al. 2006). Low

frequency words are those that were repeated less than three times in a

document. The algorithm iterates through the document frequency vector

excluding each word with a frequency less than three from the document

frequency and word vectors.

After the previous procedure, w unique words remain in d unique documents;

a unique identifier is assigned between 1 and w to each remaining word, and a

unique identifier between 1 and d to each document resulting in a term-frequency (tf)

matrix.

5.2.3 Weighting scheme development

 A mere representation of significant words in the form of term frequency is

not sufficient to accurately extract the required knowledge from our case corpus. For

example, a word like contract might exist in all processed documents in high

frequency (tf). However, a decision must be made about whether this word would

help define a significant legal concept or not. Consequently, an appropriate

weighting mechanism must be implemented to create a representative matrix of

these documents within the entire dataset. Literature in the field of ML and text

mining illustrated the effectiveness of alternate term weighting schemes like

logarithmic term frequency (ltf) (equation 5.1), augmented weighted term frequency

164

(atf) (equation 5.2), and term frequency inverse document frequency (tf.idf)

(equation 5.3) (Manning and Scheutze 1999).

ltfi,d=1+ log�tfi,d� ; tfi,d>0 5. 1

atfi,d=0.5+
0.5×tfi,d

maxt(tfi,d)
 5. 2

tf.idfi,d=(1+ log�tfi,d)�× log $N

dfi
' if tfi,d>0 5. 3

The four above mentioned weighting schemes namely tf, ltf, atf, and tf.idf

were utilized for the analysis under this task. The developed algorithm mentioned in

5.2.2 implements the required calculations to develop 4 matrixes (please refer to

figure 5.2).

5.2.4 ML Model Development

The adopted research approach developed kernel SVM, Naïve Bayes, and

Rule Induction models that detect the presence of a significant legal factor in a case

to its text. The proposed research approach developed and compared the outputs of

24 models illustrated in table 5.1. Validation of the best developed model was based

on prediction accuracy and Kappa measures. Outputs of the developed models are

compared to a base line prediction of 50%. Since the analysis is pertinent to

automating the extraction of significant legal factors related to each case, each

model is developed as a multiple classifier. In other words, each case is tagged with

the set of existing significant legal factors defined manually in chapter 3.

165

Figure 5. 2 Algorithm Implementation

166

The classifier is trained to predict the factors in the form of a set based on the

significant words available in a text. The training and validation of the model is

performed on a 10 fold scheme as detailed in chapter 4.

Table 5.1 ML Developed Models

Model

ML Model Type Weighting Scheme

1 1st Degree Polynomial SVM Term Frequency (tf)
2 2nd Degree Polynomial SVM Term Frequency (tf)
3 3rd Degree Polynomial SVM Term Frequency (tf)
4 Naïve Bayes Term Frequency (tf)
5 Decision Tree Term Frequency (tf)
6 PART Term Frequency (tf)
7 1st Degree Polynomial SVM Logarithmic term frequency (ltf)
8 2nd Degree Polynomial SVM Logarithmic term frequency (ltf)
9 3rd Degree Polynomial SVM Logarithmic term frequency (ltf)
10 Naïve Bayes Logarithmic term frequency (ltf)
11 Decision Tree Logarithmic term frequency (ltf)
12 PART Logarithmic term frequency (ltf)
13 1st Degree Polynomial SVM Augmented term Frequency (atf)
14 2nd Degree Polynomial SVM Augmented term Frequency (atf)
15 3rd Degree Polynomial SVM Augmented term Frequency (atf)
16 Naïve Bayes Augmented term Frequency (atf)
17 Decision Tree Augmented term Frequency (atf)
18 PART Augmented term Frequency (atf)

19 1st Degree Polynomial SVM
Term frequency inverse document
frequency (tf.idf)

20 2nd Degree Polynomial SVM
Term frequency inverse document
frequency (tf.idf)

21 3rd Degree Polynomial SVM
Term frequency inverse document
frequency (tf.idf)

22 Naïve Bayes
Term frequency inverse document
frequency (tf.idf)

23 Decision Tree
Term frequency inverse document
frequency (tf.idf)

24 PART
Term frequency inverse document
frequency (tf.idf)

167

5.2.5 Results and Discussion

The results of the application of the aforementioned research tasks are

presented in tables 5.2, figures 5.3 and 5.4. The following is closer examination of

these results. As can be noted from table 5.2, all models have an improved

performance over base line (50%). Comparing all developed models yields the

followings:

• Among the developed 1st degree polynomial SVM models, the highest

prediction accuracy of 76% was achieved by using atf and tf.idf weighting

schemes. An increase of 12% and 5% over tf and ltf schemes was

attained, respectively.

• Among the developed 2nd degree polynomial SVM models, the highest

prediction accuracy of 72% was achieved by using atf and tf.idf weighting

schemes. An increase of 8% and 3% over tf and ltf schemes was

obtained, respectively.

• Among the developed 3rd degree polynomial SVM models, the highest

prediction accuracy of 74% was achieved by using tf.idf weighting

schemes. An increase of 14%, 3%, and 2% over tf, ltf, and atf schemes

was obtained, respectively.

• Among the developed Naïve Bayes models, the highest prediction

accuracy of 84% was achieved by using tf.idf weighting schemes. An

increase of 11%, 2%, and 61% over tf, ltf, and atf schemes was obtained,

respectively.

168

Table 5.2 Accuracy and Kappa Measures of Developed Models

ACCURACY

Weighting
Scheme

Classifier
1st Poly.

Deg.
SVM

2nd Poly.
Deg.
SVM

3rd Poly.
Deg.
SVM

Naïve
Bayes

Decision
Tree

PART

tf 64% 64% 60% 73% 54% 52%
ltf 71% 69% 71% 82% 54% 52%
atf 76% 72% 72% 23% 54% 52%
tf.idf 76% 72% 74% 84% 54% 52%

KAPPA

Weighting
Scheme

Classifier
1st Poly.

Deg.
SVM

2nd Poly.
Deg.
SVM

3rd Poly.
Deg.
SVM

Naïve
Bayes

Decision
Tree

PART

tf 0.608 0.608 0.583 0.799 0.519 0.5
ltf 0.753 0.774 0.784 0.806 0.519 0.5
atf 0.806 0.795 0.795 0.186 0.519 0.5
tf.idf 0.806 0.795 0.8 0.827 0.519 0.5

Figure 5.3 Kappa Measure of Developed Models

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

tf ltf atf tf.idf

K
a
p
p
a

1st Polynomial Degree
SVM Model

2nd Polynomial Degree
SVM Model

3rd Polynomial Degree
SVM Model

Naïve Bayes

Decision Tree

169

73%
82%

23%

84%

0%

20%

40%

60%

80%

100%

tf ltf atf tf.idf

%
 A
x
is

Term Analysis Scheme

Naïve Bayes

Accuracy

52%52%52%52%

0%

10%

20%

30%

40%

50%

60%

tf ltf atf tf.idf

%
 A
x
is

Term Analysis Scheme

Decision Rules PART

Accuracy

64%

69%

72%72%

60%

65%

70%

75%

tf ltf atf tf.idf

%
 A
x
is

Term Analysis Scheme

2nd Polynomial Degree SVM
Model

Accuracy

60%
71%72%74%

0%

20%

40%

60%

80%

tf ltf atf tf.idf

%
 A
x
is

Term Analysis Scheme

3rd Polynomial Degree SVM
Model

Accuracy

64%

71%

76%76%

55%

60%

65%

70%

75%

80%

tf ltf atf tf.idf

%
 A
x
is

Term Analysis Scheme

1st Polynomial Degree SVM
Model

Accuracy

54%54%54%54%

0%

10%

20%

30%

40%

50%

60%

tf ltf atf tf.idf

%
 A
x
is

Term Analysis Scheme

Decision Tree

Accuracy

Figure 5.4 Accuracy Measure of Developed Models

170

• All developed models using Decision Tree and PART classifiers attained

a prediction precision of 54% and 52%, respectively. This outcome is

predictable since classification is based on induction rules. Consequently,

varying the weighting scheme does not affect the derived rules.

It is clear from the above discussion, tf.idf weighting mechanism achieved

better performance than tf, ltf, and atf. This could be attributed to that fact that raw

term frequency (tf) representation suffers from a critical problem. That is all parsed

terms in the corpus are considered equally important when it comes to assessing

their relevance to a query. However, some terms, like highly occurring ones over all

cases in the corpus, have no discriminating power in legal knowledge extraction. For

example, a legal term like “contract” exists in almost all cases in our corpus.

Consequently, this term holds no power to differentiate the existence of significant

legal factors. This problem is slightly resolved by modifying the raw term frequency

with the logarithmic and augmented weighting mechanisms. However, the term

frequency inverse document frequency (tf.idf) mitigates this problem by scaling down

the term weight of terms with a high frequency of occurrence. This is done by

weighting a term frequency with respect to its occurrence in all cases within the

corpus. In this case, discrimination between cases is done through the case-level

statistic (such as the number of documents containing a term), which is considered

to be of higher power than to use a cases-wide statistic. Consequently, the

importance of terms increase proportionally to the number of times a term appears in

the case but is offset by the frequency of that term in the corpus which leads to a

suitable weighting mechanism for the purpose of the current research study.

171

5.2.6 Model Validation

As can be noted from the above discussion, table 5.3, and figures 5.5 and

5.5, the highest prediction accuracy rate of 84% was attained using Naïve Bayes

model while implementing the tf.idf weighting scheme. Contrary to the findings of

chapter 4, the performance of the SVM models was not found to be the highest. This

can be attributed to the fact that SVM models implement active learning features as

detailed in chapter 4. The performance of this feature deteriorates as the ratio of the

number of cases to the number of features utilized to train the models decreases. In

our case, the models are trained using 120 cases with respect to 2354 features. This

increased number of features, however led to the enhanced performance of the NB

model compared to the other models. As mentioned in chapter 4, the limited number

of features restricted the performance of the NB automated litigation outcome

prediction models.

Figure 5.5 Accuracy Increase of Naive Bayes over Developed Models

0%
10%
20%
30%
40%
50%
60%
70%

1st Pol.
Deg SVM

2nd Pol.
Deg. SVM

3rd Poly.
Deg. SVM

Naïve
Bayes

Decision
Tree

PART

A
c
c
u
ra
c
y
 %

tf

ltf

atf

tf.idf

172

Table 5.3 Accuracy and Kappa Increase of Naive Bayes over Developed
Models

ACCURACY

Weighting
Scheme

Classifier
1st Poly.

Deg.
SVM

2nd Poly.
Deg.
SVM

3rd Poly.
Deg.
SVM

Naïve
Bayes

Decision
Tree

PART

tf 20% 20% 24% 11% 30% 32%
ltf 13% 15% 13% 2% 30% 32%
atf 8% 12% 12% 61% 30% 32%
tf.idf 8% 12% 10% - 30% 32%

KAPPA

Weighting
Scheme

Classifier
1st Poly.

Deg.
SVM

2nd Poly.
Deg.
SVM

3rd Poly.
Deg.
SVM

Naïve
Bayes

Decision
Tree

PART

tf 0.219 0.219 0.244 0.028 0.308 0.33
ltf 0.074 0.053 0.043 0.021 0.308 0.33
atf 0.021 0.032 0.032 0.641 0.308 0.33
tf.idf 0.021 0.032 0.027 - 0.308 0.33

Figure 5.6 Kappa Increase of Naive Bayes Over Developed Models

Further validation of the best developed model (Naïve Bayes) was performed

by testing a newly un-encountered dataset. Twenty two (22) arbitrary cases from the

corpus created in chapter 3 were chosen for validation purposes. The following

steps define the methodology adopted for validating the Naïve Bayes model.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1st Pol.

Deg SVM

2nd Pol.

Deg. SVM

3rd Poly.

Deg. SVM

Naïve

Bayes

Decision

Tree

PART

K
a
p
p
a tf

ltf

atf

tf.idf

173

1. Twenty two (22) cases were randomly chosen from the developed

corpus in chapter 3.

2. Manual extraction of significant legal factors was performed.

3. A program in C++ was developed to perform data cleaning, data

integration, and data reduction on the textual representation of the 22

cases. A copy of the developed program is provided in Appendix F.

4. Prediction of significant legal factors for each case was done by running

the tf.idf term frequencies for the 22 cases through the Naïve Bayes

model.

5. Validation of the model was based on prediction accuracy. Only cases

that were predicted correctly through all related significant legal factors

were considered as a true prediction. Accuracy was measured as the

ratio of true predicted cases to total tested cases.

Table 5.4 and figure 5.6 illustrate the outcomes of the aforementioned

methodology. As can be noted from table 5.4, 18 cases out of the 22 were predicted

accurately leading to a prediction precision of 81.8%. In addition, among the 4

falsely predicted cases (1) 2 cases had an error in predicting 1 significant legal factor

(case numbers 11 and 15); (2) 1 case had an additional predicted significant legal

factor (case number 19); (3) 1 case had a missing significant legal factor (case

number 20). These results further assure the suitability of the model to extract legal

factors from the case corpus.

Figure 5.7 True and False Prediction Analysis of Best Model

Table 5.4 Prediction Analysis of 22 Newly Introduced Cases

Document

Predicted Legal
Factors

1 2,3,7,9,10,11
2 2,3,4,5,6,7,10,11
3 2,3,4,5,6,7,10,11
4 1,2,4,7,8,10,12
5 3,4,9,10,13
6 3,4,9,10,13
7 1,4,9,10,11,12
8 1,4,9,10,11,12
9 2,4,5,8,10,11,12
10 2,4,5,8,10,11,12
11 2,4,7,8,10,12
12 2,4,7,9,10,11
13 1,3,4,1
14 1,3,4,10
15 1,2,7,9
16 1,3,4,7,10
17 1,3,4,7,9,13
18 1,3,4
19 1,3,4,10
20 1,2,3,4,5
21 1,4,10
22 1,10

174

True and False Prediction Analysis of Best Model

Prediction Analysis of 22 Newly Introduced Cases

Predicted Legal
Factors

Manually Extracted Legal
Factors

2,3,7,9,10,11 2,3,7,9,10,11
2,3,4,5,6,7,10,11 2,3,4,5,6,7,10,11
2,3,4,5,6,7,10,11 2,3,4,5,6,7,10,11
1,2,4,7,8,10,12 1,2,4,7,8,10,12

3,4,9,10,13 3,4,9,10,13
3,4,9,10,13 3,4,9,10,13

1,4,9,10,11,12 1,4,9,10,11,12
1,4,9,10,11,12 1,2,4,9,10,11,12

2,4,5,8,10,11,12 2,4,5,8,10,11,12
2,4,5,8,10,11,12 1,2,4,5,7,8,10,11,12

2,4,7,8,10,12 2,4,7,8,10,11
2,4,7,9,10,11 2,4,7,9,10,11

1,3,4,10 1,3,4,10
1,3,4,10 1,3,4,10
1,2,7,9 1,2,7,10

1,3,4,7,10 1,3,4,7,10
1,3,4,7,9,13 1,3,4,7,9,13

1,3,4 1,3,4
1,3,4,10 1,3,4
1,2,3,4,5 1,2,3,4,5,10

1,4,10 1,4,10
1,10 1,10

81.82%

18.18%

True Prediction False Prediction

True and False Prediction Analysis of Best Model

Prediction Analysis of 22 Newly Introduced Cases

True/ False
Prediction

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
TRUE

175

5.3 Chapter Summary

The objective of this chapter was to automate significant legal factors

identification within textual representations of DSC cases. To that end, SVM, Naïve

Bayes, and Induction Rule classifiers were adopted for the study, and 24 models

were developed. Four weighting schemes namely tf, ltf, atf, and tf.idf were

implemented for each type of ML algorithm. The highest prediction rate of 84% was

attained by Naïve Bayes classifier while implementing tf.idf weighting. The model

was further validated by testing 22 newly un-encountered cases. A prediction

precision of 81.8% was attained. From the above, it could be concluded that NB

model with a tf.idf weighting mechanism is the most suitable ML algorithm to

automate the extraction of legal factors from a large corpus of DSC cases.

176

 CHAPTER 6

AUTOMATED EXTRACTION OF PRECEDENT DSC CASES

6.1 Introduction

Among the goals of the current research is to minimize time and cost

associated with the need of legal experts in the construction industry for analysis

and determination of the appropriate resolution mechanisms to be adopted in case

of dispute. As illustrated earlier in chapter 2, the legal system in the United States of

America is Anglo Saxon, and a corner stone of which is precedence. Precedence

can be defined as utilizing verdicts from previous similar cases to decide on newly

encountered ones. Although the work covered in chapters 3, 4, and 5 under the

current research helps to alleviate the drawbacks of litigation and the need for

experts in the construction industry. A final step is still needed to complete the

contribution of the current research towards solving these problems. Through the

earlier work performed under the current research, a party to a dispute can

accurately determine the odds of winning or losing a case in court using ML.

Consequently, they can decide on the appropriate dispute resolution strategy they

should follow. If they decide to resolve the current dispute through litigation, having

supporting documents and precedent cases of similar nature is a necessity.

Consequently, the primary objective of this chapter is to develop an automated

precedent case extraction model for DSC disputes in the construction industry. This

model will extract precedents from large corpi based on similarity to newly un-

encountered DSC cases using machine learning and NLP techniques. The research

177

tasks explained in this chapter include: (1) investigating Latent Semantic Analysis

(LSA) algorithms; (2) developing reduced feature spaces; (3) developing LSA

automated extraction models; and (5) testing and validating the developed models.

Therefore, this chapter will start with an account of the features space selection

process for the implementation of LSA algorithm.

Figure 6.1 Research Tasks for Automated Precedent DSC Cases Extraction from
Large Corpus

178

6.2 LSA Feature Space Development

In this research task, an important parameter for the LSA model

implementation is determined. Feature space in LSA is defined by the number of

feature (in this research features are words) that are used to represent a case as a

vector. Research concerned with LSA feature space development covers a wide

range of reduced feature space sizes that enhance the effectiveness of the

algorithm. It was highlighted that for dispersed dataset a large feature space sizes

ranging between 100 and 500 are appropriate (Choi et al. 2001). However, for

closely related dataset, a feature space as small as 7 is appropriate (Koll 1979).

Consequently, the present research task developed 9 different reduced feature

spaces utilizing 5, 10, 15, 20, 100, 200, 300, 400, 500 features. These different

feature spaces will be used in the testing and validation of the developed models in

two ways. The first form of testing will evaluate the LSA algorithm’s ability to extract

all original, appeals, and re-appeals of a case using the developed feature spaces.

This extraction will take place in a new corpus of 450 cases from the Federal Court

of New York that were filled between 1919 and 2007. The feature space

performance will be judges against an extraction similarity measure of 1. The second

form of evaluation is based on correctly extracting land marking cases that were

mentioned by a judge to be relevant within the body of cases from the expanded

corpus of 450 cases while correctly rejecting others that were mentioned to be

irrelevant.

179

6.3 Model Design and Implementation

The following is a description of the steps of the LSA algorithm implemented

for precedent case extraction. The algorithm starts with an argument, filename,

which is the name of the file or directory to be parsed. If filename is actually a

directory, the algorithm traverses this directory and all subdirectories in a recursive

fashion and parses each regular file it encounters (i.e. no symbolic links are parsed)

(GTP 2008). If filename is a single file, the algorithm simply parses it only. The

algorithm moves sequentially through each file, extracting keys comprised of

relevant characters, and ignoring keys contained in the common word list specified

in the input common word file. By default, only keys that begin with characters A-z

will be parsed. Keys beginning with a digit (0-9), with the exception of numbers that

could be interpreted as dates in the 1700's 1800's and 1900's, will be ignored to the

next whitespace character. The algorithm converts all characters to lower case, and

requires that a key contain at least 2 characters and no more than 20 characters.

Single character keys are ignored and keys with more than 20 characters are

truncated and all characters to the next unrecognized character or whitespace are

ignored.

After tokenizing the keys and associating each one with the document it was

extracted from, the algorithm begins calculating term weights. The (global) weights

of the terms are computed over the collection of documents. By default, only a local

weight is assigned and this is simply the frequency with which the term appears in a

document. Two thresholds exist for term frequencies: Global and local (GTP 2008).

By default, the global and local thresholds are both 1. A term must appear more than

180

1 time in the entire collection and in more than one document in the collection before

it will be weighted. These thresholds can however be changed. Each term is

assigned a term ID number (starting with 1, in alphanumeric order). Next, the local

weights of the keys are computed. Each term weight is the product of a local weight

times a global weight (if specified). Entries are grouped by document number. Next,

the algorithm creates a term-by-document matrix using the Harwell-Boeing sparse

matrix format. The algorithm finally performs SVD decomposition before cleaning all

temporary files and writing a summary of the run.

General Text Parser (GTP) windows version, developed by Stefen Howard,

Haibin Tang, Dian Martin, Justin Giles, Kevin Heinrich, Barry Britt, and Michael W.

Berry, was utilized for the implementation of LSA feature spaces development and

validation described above. GTP is a general purpose text parser with matrix

decomposition option which can be used for generating vector space IR models. As

stated by Landauer et al. (2007) “GTP could be considered the reference program

for LSA analysis because it is a rewrite of the older Telcordia suite in more modern

way. It is a very large program. Contrary to what its name indicates, GTP is not only

a parser: It actually can run an SVD at the end of the process. GTP is a 100% C++

code”.

As mentioned earlier in section (6.2) 9 reduced feature spaces were

generated. Each reduced feature space was generated with a local threshold of Log

function and a global threshold of entropy function. The Log function (equation 6.1)

decreases the effect of large differences in term frequencies (Landauer et al 2007).

The entropy function (equation 6.2), on the other hand, assigns lower weights to

181

words repeated frequently over the entire document collection, as well as taking into

consideration the distribution of each word frequency over the documents (Landauer

et al. 2007). These thresholds were adopted for the current analysis due to their

success over other types of threshold combinations. Dumais (1991) illustrated that

the log-entropy threshold combination attained 40% higher retrieval precision over

other threshold combinations.

ltfi,d=1+ log�tfi,d� ; tfi,d>0 6.1

∑ Pijlog2�Pij�
log2ni where Pij=

tfij

gfi
 6.2

Where tfij is the word frequency of word i in document j, and gfi is the total

number of times that the word i appears in the entire collection of n documents.

6.4 Results and Discussion

As mentioned earlier in section 6.3, the testing and validation of the

developed models is twofold. The first fold is through the successful extraction of a

query case, its appeals, and re-appeals from the corpus with the highest similarity

measure. To that end, each of the generated reduced feature spaces was tested

with three query cases. Table 6.1 illustrates the similarities by which each space

retrieved the related documents. As can be seen from table 6.1, reduced feature

spaces with sizes between 5 and 20 retrieved the required documents with a

similarity measure of 1. As the feature space increases in size, data becomes

dispersed and the similarity decreases. Despite that fact, all feature spaces were

able to retrieve all related documents of the three query cases. The highest

182

similarities of 1 were attained using the lower range of feature; whereas, the lowest

of 0.999936 was attained using the 500 reduced feature space size.

Table 6.1 Similarity Measure of Similar Case Retrieval

Reduced Feature
Space Size

Similarity Value Average
Similarity Case 1 Case 2 Case 3

5 1 1 1 1
10 1 1 1 1
15 1 1 1 1
20 1 1 1 1

100 0.999996 0.999997 0.999996 0.999996333
200 0.999978 0.999983 0.999979 0.99998
300 0.999949 0.999948 0.999948 0.999948333
400 0.999936 0.999936 0.999936 0.999936
500 0.999936 0.999936 0.999936 0.999936

The second fold was based on the ability of a reduced feature space to

extract related supporting cases from the corpus and rejecting unrelated ones.

Confidence on whether a case is related or unrelated to a query one is based on the

opinion of judges illustrated within the textual body of a case. For example, judges

Greenblott, J. Koreman, P. J., Sweeney, Main and Larkin, JJ., included in their

opinion in the case of Public Constructors, Inc., Respondent, v. State of New York,

Appellant (1977) the following: “In a construction contract between the State and an

individual, which contains representations as to existing conditions affecting work

there under as well as an exculpatory clause relieving the State of liability and

requiring personal inspection of the contract site, liability, nevertheless, may attach

to the State if said conditions are not as represented and (1) inspection would have

been unavailing to reveal the incorrectness of the representations (Foundation Co. v

State of New York, 233 N. Y. 177, 184-185; Faber v. City of New York, 222 N. Y.

183

255, 260), or (2) the representations were made in bad faith (Young Fehlhaber Pile

Co. v. State of New York, 265 App. Div. 61; Jackson v. State of New York, 210 App.

Div. 115, affd. 241 N. Y. 563). In our view, the Court of Claims was clearly correct in

finding that the contract documents furnished to the bidders contained

misrepresentations, and in rejecting the State's contention that claimant must bear

the responsibility as the result of an inadequate prebid investigation”. It could be

concluded from this opinion that cases like Foundation Co. v State of New York, 233

N. Y. 177, 184-185; Faber v. City of New York, 222 N. Y. 255, 260); Young

Fehlhaber Pile Co. v. State of New York, 265 App. Div. 61; and Jackson v. State of

New York, 210 App. Div. 115, affd. 241 N. Y. 563 are related to the case of Public

Constructors, Inc., Respondent, v. State of New York, Appellant and can be used as

supporting precedent cases.

To that end, each of the developed reduced feature space sizes was tested

against two query cases. The first included three relevant cases and three irrelevant

ones. The second included three relevant cases and two irrelevant ones. A value of

0.75 was maintained as a threshold for retrieval. Consequently, if a case was

retrieved as a lower similarity, it was disregarded. Table 6.2 illustrates the similarity

measures by which each reduced feature space retrieved the relevant and irrelevant

documents. Average similarities are reported for each case and overall similarities

are reported as the average of retrieval over the two query cases for each reduced

feature space size. It can be noted from table 6.2 that feature spaces with sizes

beyond 100 were not able to retrieve any of the related documents. This is due to

the increased disparity that is generated in the feature space due to the increased

184

dimensions. Such outcomes support the findings of the literature review under

section 2.6.4.

Table 6.2 Similarity Measures by Which Each Reduced Feature Space
Retrieved the Relevant and Irrelevant Documents

Reduced
Space Size

Case
Similarity Values

Average Similarity
per Case

Overall
Average
Similarity

Relevant
Cases

Irrelevant
Cases

5

1
0.999995 0.778905

0.904972667

0.9203155

0.885543 <0.75
0.82938 <0.75

2
0.999995 <0.75

0.935658333 0.999923
<0.75

0.807057

10

1
0.996806 <0.75

0.930872

0.955640833

0.993939 <0.75
0.801871 <0.75

2
0.999997 <0.75

0.980409667 0.981382
<0.75

0.95985

15

1
0.991001 0.761948

0.857044333

0.855562833

0.802091 0.757547
0.778041 <0.75

2
0.95951 0.795354

0.854081333 0.836486
<0.75

0.766248

20

1
0.976275 0.794503

0.881031333

0.868614167

0.87631 0.791911
0.790509 0.776489

2
0.885414 0.80643

0.856197 0.85861
<0.75

0.824567

100

1
0.809697 0

0.269899

0.1349495

0 0
0 0

2
0 0

0 0
0

0

185

Table 6.2 (Continued)

Reduced
Space Size

Case
Similarity Values

Average Similarity
per Case

Overall
Average
Similarity

Relevant
Cases

Irrelevant
Cases

200

1
0 0

0

0

0 0
0 0

2
0 0

0 0
0

0

200

1
0 0

0

0

0 0
0 0

2
0 0

0 0
0

0

400

1
0 0

0

0

0 0
0 0

2
0 0

0 0
0

0

500

1
0 0

0

0

0 0
0 0

2
0 0

0 0
0

0

Furthermore, the highest overall average similarity of 0.955640833 was

attained using a reduced feature space size of 10 features; whereas, the lowest of

0.1349495 was attained using a reduced feature space of 100 features. The

superiority of the 10 feature reduced space was further demonstrated by not

retrieving any of the irrelevant cases with a similarity above the threshold of 0.75.

Figure 6.2 shows the advancement of the 10 feature reduced space size over other

186

developed spaces. It attained an increase of 3.84%, 11.7%, 10.02%, and 608.15%

over the 5, 15, 20, and 100 reduced feature spaces respectively.

Figure 6.2 Advancement of 10 Feature Space Over Other Reduced Feature
Spaces

6.5 Chapter Summary and Conclusion

 The objective of this chapter was to automate the extraction of related DSC

cases from large corpus to newly introduced ones. The chapter, therefore,

implemented two main stages that: (1) implemented Latent semantic Analysis for the

development of 9 reduced feature spaces representation of the gathered corpus;

and (2) testing and validated the developed reduced feature spaces through twofold

validation methodology. The main findings from the implementation of this two stage

research methodology include:

1. Low dimensioned reduced feature spaces are more representative to

domain problems analysis closely related document collection. A finding

that supports outcomes achieved by earlier researchers as illustrated in the

literature of the LSA domain.

0.04 0.10 0.09

0.82
0.96 0.96 0.96 0.96

0

0.2

0.4

0.6

0.8

1

1.2

5 15 20 100 200 300 400 500

S
im
il
a
ri
ty
 V
a
lu
e

Reduced Feature space Size

187

2. Higher dimensioned reduced feature spaces are more representative to

domain problems analysis in dispersed and unrelated document collections.

3. The highest similarity measure (equal to 1) with respect to retrieving initial

case, appeals, and re-appeals was achieved using the 5, 10, 15, and 20

reduced feature spaces.

4. The highest overall similarity measure of 0.955640833 with respect to

retrieving relevant cases as supporting documents was achieved using the

10 reduced feature space.

5. The lowest similarity measure of 0.999936 with respect to retrieving initial

case, appeals, and re-appeals was achieved using the 400 and 500

reduced feature spaces.

6. The lowest overall similarity measure of 0 with respect to retrieving relevant

cases as supporting documents was achieved using the 200, 300, 400, and

500 reduced feature spaces.

From the above it could be concluded that LSA reduced feature space of 10

features is the best to be adopted automating the extraction of similar DSC cases

from large corpus to newly introduced one. The finding in this chapter are anticipated

to decrease time consumed and overwhelming experts’ fees related to analysis and

extracting of relevant DSC cases. It is also anticipated that the benefits of these

findings will not only help the construction industry, but will also extend to the legal

domain.

188

CHAPTER 7

OVERALL SYSTEM PERFORMANCE EVALUATION

7.1 Introduction

In spite of the enhanced performance of the ML models developed at each

task of the current research, an overall evaluation of the system performance as one

package is much needed to understand its impact on construction legal decision

support. Consequently, the objective of this chapter is to evaluate the aggregated

errors of the developed models as a full system in an endeavor to assess its

robustness and effectiveness in legal decision support. To this end, 5 arbitrary cases

from the gathered corpus in task 2, not used earlier for training and testing of the

developed ML models, were utilized to evaluate the overall performance of the

system. Therefore, this chapter will provide: (1) a breif description of the utilized

cases and an identification of the significant legal factors present in each case; (2)

an evaluating the overall performance of the system through aggregated errors; and

(3) a description of the areas of weaknesses and proposing enhancement

methodologies. Therefore, this chapter will start with a brief account of the cases

selection process for the implementation of the developed ML models.

7.2 Test Case Selection

This section of the chapter provides a brief description of case history and the

Legal Factors pertinent to each case among the chosen ones for evaluation. Table

7.1 illustrates the legal factors existing in each case.

189

7.2.1 Case 1: Horgan, v. The City of New York

On the 14th day of January, 1893, William G. Horgan entered into a contract

in writing with the state of New York to furnish and provide all the necessary

materials and labor, and excavate, remove and dispose of all silt, sediment and

other materials deposited in the bottom of "The Pond" near Fifty-ninth street and

Fifth and Sixth avenues in the city of New York, and construct a concrete bottom

over the pond. This contract was to be completed by June 1st, 1893. The contract

document included an estimate prepared by the city engineers for the value of the

works to be performed. It also included a statement clearly stating that by signing

this contract, the contractor had familiarized and satisfied himself by personal

examination of the accuracy of the engineers’ estimates, and indemnified them from

later complaining related to it. The contract provided that the contractor was to bear

any damage from unforeseen obstructions in the work. Though there was an outlet

pipe at the bottom of the lake, it stopped draining when the water level was 14

inches due to an obstruction in the sewer that it drained into. Thus, the contractor

had to pump out the remaining water and sought extra money for this. Agreeing with

the contractor that his pumping was beyond the terms of the contract, the court ruled

that because the city's negligence in failing to properly maintain the outlet pipe

increased his cost in doing the work, it was liable to reimburse him for the extra

costs. Consequently, the Court reversed both the appellate and trial court judgment

and ordered that the contractor receive reimbursement for the extra costs.

190

7.2.2 Case 2: Iacobelli Construction, Inc., v. County of Monroe, Rochester

Pure Waters District, and Calocerinos & Spina Consulting Engineers,

P.C.

Defendants, a consulting engineer and a county, that published bid

documents for construction of a tunnel for storing and transporting sewage. The bid

documents provided technical information about the site conditions. Plaintiff

contractor was awarded the project. The construction contract contained a differing

site conditions clause. However, during construction, the contractor encountered site

conditions that differed materially from those anticipated from the bid documents,

and submitted a claim for reimbursement. The claim was denied by the Defendants.

The district court granted summary judgment in favor of defendants because

plaintiff's expert's affidavits provided only opinions regarding the bid specifications.

Plaintiff claimed on appeal that the affidavits established a factual question as to

whether the bid specifications provided accurate information of the site conditions.

The court agreed with plaintiff's claims, and reversed the district court's judgment.

7.2.3 Case 3: Piper, Inc., v. New York State Thruway Authority

On February 9, 1953 Piper Inc. entered into a contract with the New York

State Thruway Authority for the construction of a portion of the Thruway, from

Ontario Section, District 5, Subdivision 15, Ransom Road to Genesee County line in

the County of Erie. Piper Inc appointed A. L. Dougherty Company as a

subcontractor to perform certain items of its scope of work under this contract. The

contract documents included the following section: “Sub-surface explorations have

191

been made within the limits of the proposed work. Interested parties may review the

records of these explorations at the office of the District Engineer in Buffalo, New

York… The information contained in the foregoing paragraph is offered in good faith

by the Department and reflects the opinions of the Department engineers relative to

the sub-surface conditions. The Contractor's attention, however, is called to the fact

that the information obtained there from is not to be substituted for personal

investigation and research by the Contractor as required by Article three of the

Contract Agreement.” The claim under this case was raised due to a sand stratum

that was encountered while excavation works and the contractor claimed it did not

discover the sand until after bidding, and that caused an increase in his costs to

attain and procure sufficient gravel from another location. The contractor also

claimed it was misled as to the amount of material available to meet gravel

requirements. However, documents examined by the court illustrated that the

subcontractor's agents visited the site before bidding, examined all sub-surface

exploration reports, and familiarized themselves with the site conditions. In addition,

witnesses testified that a sand stratum was readily observable at the site and the

sand was not suitable for the contract's gravel requirements. The court denied the

contractors’ case because the he should have been aware of the situation before

bidding, and no representation was made that the material found at the site would

meet all gravel requirements.

192

7.2.4 Case 4: Fruin-colnon Corporation, Traylor Bros., Inc. and Onyx

Construction & Equipment, Inc., A Joint Venture, v. Niagara Frontier

Transportation Authority

The contract called for plaintiff to excavate and construct twin subway

tunnels, each approximately two miles long, as part of the Buffalo light rail rapid

transit system. During construction, the plaintiff raised a claim seeking

reimbursement of $ 3,255,150 under DSC associated with extra work and delays

incurred as a result of the unforeseen need to use steel ribbing for temporary

support of the tunnel during excavation, must have been solely attributable to such

materially different subsurface conditions. After factual extraction, the court found

that the contract documents included the followings:

(1) “The Engineering Design Rationale (EDR) indicated that rock quality

generally would be "average to good" for tunneling, but warned of the existence of

localized areas of poor rock quality, opened, weathered, and in some cases

"solutioned" fractures, and intersecting vertical and horizontal joints.” (Fruin 1992).

(2) “The Tunnel Interpretive Report (TIR) indicated the existence of

intersecting joints forming blocks. The TIR explicitly cautioned that such blocks

might not be self-supporting as excavation progressed and, depending on local

conditions, might require varying levels of primary support. Like the EDR, the TIR

specifically warned of areas of relatively permeable and solutionized rock and open,

intersecting, and water bearing joints.” (Fruin 1992).

The court found that actual site conditions did not differ materially from conditions

indicated in the contract, which put plaintiff on notice of the possibility of those

193

conditions. Consequently; the court affirmed the rulings denying plaintiff tunnel

builder's claim for additional compensation for work related to DSC from defendant

transit authority.

7.2.5 Case 5: The Foundation Company, v. The State of New York

The contractor entered into a unit price contract with the state to build a dam

and lock across the Mohawk River at Scotia with a canal lock at its south end. The

dam was designed by the State Engineers. The State stated that the bed of the

stream constitutes of a gravel layer upon which the dam cannot be constructed. It

also illustrated that cofferdams can be used. Consequently, it was determined to

sink caissons under compressed air to bedrock for the whole distance. The final

result would be a solid concrete cut-off wall, on top of which would be placed the

other structures necessary to complete the dam. The contract documents included

illustration that the bedrock "rock or boulders" upon which the caissons would rest is

to be found not lower than level 148. During construction, the contractor raised a

claim seeking reimbursement under DSC associated with extra work incurred as a

result of the unforeseen need to excavate for deeper than level 148 to reach bedrock

with appropriate properties for the current project. The court denied the contractors

claim, finding that there was no bad faith and an honest mistake on the part of the

state officers. The court held that where the representations of a contract for

specifications were made in good faith, the contractor assumed the risk of their

accuracy.

194

7.2.6 Case 6: Charles Sundstrom et al., v. The State of New York

The contractors had an agreement with the state to build a section of the

barge canal. During construction, the contractor filed a claim under DSC to be

reimbursed for extra cost incurred due to the negligence of the State. The court

found that these costs could have been eliminated if the State maintained the canal

in appropriate manner, which is part of the State’s liability. In the contractors' action

for damages, the board of claims held that the state was liable for the loss to the

contracts from the damages from the canal on the basis that the contractors could

not have determined that the canal was defective. The board found that the damage

was due to the lack of repair of the canal. However, the appellate division reversed,

finding that the defects could have been discovered by the experienced contractor.

Consequently, the contractor appealed the case and the court reversed the verdict.

It found that the state was liable for damages from their failure to adequately

maintain the canal.

7.2.7 Case 7: James F. Leary and Thomas J. Morrison, v. The State of New

York, City of Watervliet

On June 20 1913, James F. Leary and Thomas J. Morrison entered into a

contract with the State of New York to perform a storm sewer system in the city of

Watervliet. While construction, the contractor filed a claim under DSC to be

reimbursed against extra costs the he incurred due to encountering underground

rock formation that was not mentioned in the contract documents. The contractors

illustrated that the extra work completed because of an underground rock formation

195

merited the payment of additional compensation for the reasonable value of their

excavation work, and that they were also entitled to additional payments because of

the city's failure to remove obstructions after having been property notified by the

contractors of the existing conditions. “The court found in favor of the contractors in

all regards based on its determination that (1) the contract provisions did not

constitute a condition precedent to the contractors' recovery and the city failed to

plead or prove the contractors' alleged non-compliance with the disputed contract

provisions; and (2) the city benefitted from the value of the work completed by the

contractors, who continued to do the work necessary that exceeded the anticipated

costs in the absence of bad faith after notifying the city of existing conditions.” (Leary

1916).

7.2.8 Case 8: Tony Carfagno and Others, Copartners Doing Business under

the Firm Name and Style of Carfagno & Dragonetti, v. The City of New

York

The contractor entered into a contract with the city of New York to procure

and install fire service system. While performing the work, the contractor discovered

that the city made a mistake in calculating the length of pipes to be installed. The

contractor raised a claim under DSC seeking compensation for the cost of the extra

pipes procured and anticipating installation costs as well as the profit margin

allocated to them. The city compensated the contractor for the cost of the extra

pipes procured only. The court judged in favor of the city on the bases that there was

nothing else the city could do to correct its innocent error. The court also relied on

196

the contract which had warned anyone bidding not to rely on the city's

measurements and asked them to familiarize themselves with the site conditions

and anticipated quantities. The court also found the contractor discovered the error

and knew about it when they submitted their bid.

7.2.9 Case 9: S. Pearson & Son, Inc., v. The State of New York

The contractor entered into a contract with the State of New York to perform

the barge canal contract 20-B. “The contract was for dredging a channel in the

Mohawk river between Mindenville and Canajoharie, a length of ten and one-tenth

miles, and the width of the channel or excavated prism was to be 200 feet, and the

channel was to be excavated to a grade line fixed by the plans which would afford a

flotation depth of water of at least 12 feet when water was maintained at designated

pool elevations.” (Pearson 1920). While performing the work under the contract, the

contractor raised a claim under DSC to be reimbursed for extra costs incurred due to

the need for extra slope excavation, extra excavation below the grade line of a large

number of boulders and a considerable quantity of rock, and the use of cobblestone

protection works that were not disclosed in the contract documents. The court

judged in favor of the state on the grounds that: (1) there was no misrepresentation

in the contract documents or bad faith on the side of the state to conceal information;

(2) the excavation works were performed outside of the excavation lines as shown

on the plans, and it does not appear that the work was the subject of any alteration

in the contract; and (3) the protection work was a necessity and should have been

anticipated by the contractor.

197

7.2.10 Case 10: Christie v. United States

The contractor entered into a contract with the United States to perform a set

of locks and dams on a river. After performing the works, the contractor filed a claim

under DSC to be reimbursed for the extra expense incurred due to the increased

difficulty in pile driving and excavation on account of state’s misrepresentation of the

materials to be penetrated and excavated. The court judged in favor of the

contractor on the grounds that the specifications provided to the contractor were

actually misleading, forcing the contractor to spend a substantial extra sum of money

over and above their proposal and contract to perform the works.

Table 7.1 Legal Factors Pertinent to the Evaluation Set of Cases

7.3 System Performance Evaluation

This section of the chapter is describing the overall system performance

evaluation. The evaluation is performed by analyzing the aggregated errors of the

system as one package. Consequently, results will be reported at each step of the

198

system performance (i.e. automated legal factors extraction, automated prediction,

and automated precedent cases extraction).

7.3.1 Significant Legal Factors Automated Extraction

The results of the application of the legal factor automated extraction model

are presented in tables 7.2. The prediction accuracy was based on accurately

predicting all factors pertinent to each case. Consequently, if one of the factors was

not predicted accurately, the case is considered to be a false prediction. Examining

the output of the model shows that the model attained an overall accuracy of 80%.

 Table 7.2 Results of Automated Legal Factor Extraction Model

Case # Prediction Accuracy
1 True
2 True
3 True
4 False
5 True
6 False
7 True
8 True
9 True

10 True

7.3.2 Litigation Outcome Automated Prediction

The results of the application of the automated litigation output prediction

model are presented in tables 7.3. The prediction accuracy was based on accurately

predicting the outcome of each case in comparison to actual verdict pertinent to

each one. Examining the output of the model shows that the model attained an

overall accuracy of 90%. The increase in the accuracy from the step of automated

legal factor extraction was due to the fact that one of the cases that were falsely

199

predicted had only an error in one of the factors. It predicted that the contractor did

not waive his right of extra compensation due to DSC. However, it accurately

predicted that there was a warning in the specifications against the presence of DSC

in the project. As illustrated in chapter 3, this factor had the highest increase on the

prediction in favor of the owner.

Table 7.3 Results of Automated Litigation Prediction Model

Case # Prediction Accuracy
1 True
2 True
3 True
4 True
5 True
6 False
7 True
8 True
9 True

10 True

7.3.3 Automated Precedent Case Extraction

The results of the application of the automated precedent case extraction

model are presented in tables 7.4. The prediction accuracy was based on the

average similarity measure by which relevant cases are extracted from the full

corpus utilizing a feature space size of 10 features. To that end, case # 7 was

excluded from the analysis, for the cases illustrated by the judge to be relevant were

not part of the original corpus. Examining the output of the model shows that the

model attained average retrieval similarities ranging between a lower end of 0.882 to

a higher end of 0.976 with an overall average of 0.9217.

200

Table 7.4 Results of Automated Precedent Case Extraction Model

Case # Prediction Accuracy
1 0.913
2 0.893
3 0.904
4 0.882
5 0.962
6 0.943
8 0.889
9 0.976

10 0.933

7.4 Chapter Summary and Conclusion

From the above, it could be deduced that the system attained an aggregated

error of 10% since it achieved an overall accuracy of 90% after implementing the

automated legal factor extraction and automated litigation prediction models.

Furthermore, it attained an overall average similarity measure of 92.17%. Looking at

the literature in the construction domain (chapter 2), it could be noticed that the

performance of the developed system exceeded previously developed models by

Arditi and Chau.

However, it is noticed that there has been a drop in the accuracy of the

automated legal factor extraction model. This could be attributed to the features of

the tested cases. Each new case might (1) include new features that are not

included in the training of the model; and (2) exclude features that are included in

the training of the model. This fact might affect the performance of the model. To

enhance the performance of the model the followings are proposed: (1) tagging each

legal factor with set of commonly used phrases by judges; (2) analyzing appropriate

weights to be applied to different phrases; and (3) incorporating these phrases and

201

weights in the model development. These enhancements and others will, therefore,

be the subject of future researches.

202

CHAPTER 8

CONCLUSION, CONTRIBUTIONS, AND FUTURE RESEARCH

8.1 Conclusion

The present research focused on developing a coherent and integrated

methodology for construction legal decision support for Differing site Conditions

(DSC) disputes through statistical modeling and machine learning (ML). The study

developed a number of research products, including: (1) a set of statistically

significant legal factors that governs verdicts related to DSC disputes in the

construction industry; (2) an automated litigation prediction model for DSC disputes

in the construction industry; (3) an automated extraction model for statistically

significant legal factors from textual representations of DSC disputes; and (4) an

automated retrieval model for supporting DSC cases from large corpus based on

similarity measures to newly introduced ones.

First, a set of litigation cases related to DSC disputes in the construction

industry was gathered and analyzed to define a comprehensive list of legal factors

upon which judges base their verdicts. The analysis was pertinent to cases from the

Federal Court of New York to standardize the jurisdiction and due to availability of a

large number of cases related to the current study objectives. The initial analysis of

cases which was based on detailed opinions of judges within the body of each case

identified a set of 23 legal factors. Statistical models were developed to relate the

likelihood of a DSC cases being judged in favor of one party over the other to the

identified set of legal factors. Binary Probit and Logit Choice models were developed

203

in an endeavor to: (1) identify the effect of each extracted factor on the prediction of

the winning party; (2) identify the best combination of factors with the highest

significance on the prediction model; and (3) perform a sensitivity analysis to

prioritize the most significant legal factors. Among the main findings of the

aforementioned analysis are: (1) the developed Binary Probit Choice Model

identified a set of 11 statistically significant legal factors with a prediction accuracy of

88.9%; whereas, the Binary Logit Choice Model identified a set of 9 statistically

significant factors with a prediction accuracy of 93.3%; (2) generally, cases in which

the Federal Government is a concerned party of dispute, judgments are in favor of

the government (owner) over contractor; (3) the presence of “evident facts that the

encountered conditions caused a change in the nature and cost of the contract” had

the highest impact among variables causing a decrease in the prediction of

judgment in favor of owner and caused an increase of 17.77% in prediction on favor

of contractor; (4) the presence of “evident facts that the specifications included a

warning against the presence of DSC from those conveyed in the contract

documents” had the highest increases in the prediction of judgment in favor of owner

and caused an increase of 56.56% in prediction in favor of owners. In addition, the

development of Binary Probit and Logit choice models identified a joint set of 13

statistically significant legal factors related to DSC disputes in the construction

industry. This set provided the grounds for the other three products of the current

research.

Second, an automated machine learning DSC litigation outcome prediction

model was developed. To that end, 120 DSC cases from The Federal Court of New

204

York that were filled in the period between 1912 and 2007 were utilized for the

analysis. 10 machine learning models were developed namely 4 Support Vector

Machines, 2 Naïve Bayes, and 4 Induction rule models. The highest prediction rate

of 98% within the first category was attained by Kernel Polynomial 3rd degree model.

Models developed under the second category yielded a highest rate of prediction of

93% attained by the Naïve Bayes model without implementing kernel estimators. A

prediction rate of 97.8% was the highest attained within the third category by

ADTree model with 15 boosts. Comparing the outputs of all developed models

shows that they have achieved great advancements over the base line of 50% and

previously performed researches. It could be concluded that SVM Kernel Polynomial

3rd degree model has achieved the best performance among all developed models.

Third, an automated machine learning significant legal factors extraction

model was developed. The 120 cases, earlier utilized for the analysis of the previous

task were utilized for the analysis under this task. Support Vector Machines, Naïve

Bayes, and Rule Induction classifiers were also adopted for the study. 24 models

were developed in which 4 weighting schemes namely tf, ltf, atf, and tf.idf were

implemented for each type of classifier. The highest prediction rate of 84% was

attained by Naïve Bayes classifier while implementing tf.idf weighting. The model

was further validated by testing 22 newly un-encountered cases. A prediction

precision of 81.8% was attained.

Fourth, an automated machine learning precedent case extraction model from

large corpi was developed. An expanded corpus of 450 cases from the Federal

Court of New York related to DSC disputes in the construction industry was utilized

205

for the development of the LSA feature space. Nine reduced feature spaces were

developed with: 5, 10, 15, 20, 100, 200, 300, 400, and 500 features, respectively.

From the analysis of this model, it could be concluded that: (1) low dimensioned

reduced feature spaces are more representative to domain problems analysis

closely related document collection; (2) higher dimensioned reduced feature spaces

are more representative to domain problems analysis in dispersed and unrelated

document collections; and (3) LSA reduced feature space of 10 features is the best

to be adopted automating the extraction of similar DSC cases from large corpi.

The aforementioned research products contribute to the advancement of

current practices of legal decision support and Knowledge Management in the

construction legal domain. These advancements hold promise to: (1) decrease the

costs associated with the utilization of legal experts in the construction industry for

document analysis and initial advice on legal situation of a disputing party; (2)

decrease the time related to litigation processes by allowing parties to investigate

disputes and select alternate dispute resolution methods; (3) facilitate access to

legal knowledge needed by practitioners in the construction industry; (4) provide a

better understanding of the legal consequences of decision making in the

construction industry; and (5) provide solid support documents and probabilistic

indicators about the strength of a legal situation of a disputing party for better

decision making about resolution mechanisms.

8.2 Research Contributions

The main contributions of the current research can be summarized as follows:

206

1. Development of a coherent and fully integrated methodology for legal

decision support in the construction industry based on legal factors

governing litigation outcomes. This contribution is considered to be the first

of its nature in the construction legal domain. As illustrated in chapter 2 of

this dissertation, all previous researches target generic factors for their

analysis and did not incorporate legal factors.

2. Identification of a set of significant legal factors that governs verdicts of

DSC cases in the construction industry. These factors provide very useful

insight on this important type of construction disputes. As illustrated earlier,

in case of a DSC dispute, an owner and/or a contractor can assess the

strength of their situation based on the identified factors if resolving through

litigation is decided. This assessment would allow disputing parties to take

a more assured decision about other resolution mechanism like amicable

settlement, mitigation, and/or arbitration. Furthermore, some of the

identified factors are related to the wording of contracts and technical

specifications in the construction industry. Therefore, the current research

provides knowledge to contractors about factors to which emphasis should

be given while bidding for new projects and upon which control should be

maintained while performing a project.

3. Development of two automated models through machine learning. The first

automates the prediction of outcomes of DSC litigation, and the second

automates the extraction of significant legal factors governing this

207

prediction. Both models (1) provide a better understanding to decision

makers about the legal consequences of their decisions; (2) save time and

cost incurred due to the need of specialized legal expertise (3) help to

relieve the negative consequences associated with lengthy claims and

disputes resolution in the construction industry. In addition, the second

model is considered to be a major contribution to the construction industry

since it is the first of its nature.

4. Development of an automated model through machine learning for the

extraction of supporting documents in the form of precedent DSC cases

based on their similarity to newly introduced ones. The contribution of this

model is not only anticipated to help practitioners in the construction

industry better understand the consequences of their legal decision making,

but is also expected to be beneficial to legal experts by saving time and

money associated with these labor intensive tasks.

8.3 Future Research

Although the current research was able to fully accomplish its research

objectives, a number of additional research directions have been identified including:

(1) extending the research methodology of the current research to cover other types

of major disputes in the construction industry like Damages for Breach of Contracts,

Schedule Delays, Payment Delays, and Change Orders; (2) extending the research

methodology of the current research to cover other jurisdictions; (3) extending the

research methodology of the current research to cover financial claims and provide

208

automated models to monetary values related to different disputing parties; and (4)

investigating other ML and NLP algorithms for the enhancement of the

aforementioned methodology.

209

REFERENCES

All County Paving Corp. v Suffolk County Water Authority, 20 A.D.3d 438; 798
N.Y.S.2d 523; (2005).

Aleksander, I., and Morton, H. (1995). “An introduction to neural computing, 2nd Ed.”
International Thomson Computer Press, London.

Allen, J. (1995). “Natural language understanding.” 2nd edition, The
Benjamin/Cummings Publishing Company, Inc., Redwood, California, USA.

Aiolli, F., and Sperduti, A. (2005). “Multiclass classification with multi-prototype
support vector machines.” Journal of Machine Learning Research, (6); 817–
850.

Aamodt, A. & Plaza, E. (1994). “Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches.” AI Communications, 7(i):
39-59.

Arditi, D., and Pulket, T. (2005). “Predicting the Outcome of construction litigation
using boosted decision trees.” J. Comput. Civ. Eng., 19(4), 387-393.

Arditi, D., Oksay, F., and Tokdemir, O. (1998). “Predicting the outcomes of
construction litigation using neural networks.” Comput Aid Civ Infrastruct Eng,
13, 75-81.

Arditi, D., and Tokdemir, O. (1999). “Using case-based reasoning to predict the
outcome of construction litigation.” Comput Aid Civ Infrastruct Eng, 14(6), 385-
393.

Ashley, K. D., and Rissland, E. L. (1988a). “Case-based approach to modeling legal
expertise.” IEEE Expert, 3(3), 70-77.

Ashley, K. D., and Rissland, E. L. (1988b). “Dynamic assessment of relevancy in a
case-based reasoner.” IEEE, 3, 208-214.

Bachant, J., & McDermott, J. (1984). “R1 Revisited: Four years in the Trenches.”
The AI Magazine, 5(iii).

Berman, D. H., and Hafner, C. D. (1989). “Potential of artificial intelligence to help
solve the crisis in our legal system.” Commun ACM, 32(8), 928-938.

210

Berman, D. H., and Hafner, C. D. (1991). “Incorporating procedural context into a
model of case-based legal reasoning.” Third International Conference on
Artificial Intelligence and Law, ACM, New York, NY, 12-20.

Berman, D. H., and Hafner, C. D. (1995). “Understanding precedents in a temporal
context of evolving legal doctrine.” Proc., International Conference on Artificial
Intelligence and Law, ACM, New York, NY, 42-51.

Bramer, M. (2007). “Principles of data mining.” Springer Verlag London Limited.

Branting, K. (1993). “A Reduction-graph model of ratio decidendi.” In Proceedings of
Fourth International Conference on Artificial Intelligence and Law, 40- 49.
Amsterdam: Association of Computing Machinery.

Branting, K.; Hastings, J.; and Lockwood, J. (2001). “CARMA: A case-based range
management advisor.” In Proc. IAAI-2001, 3–10.

Britannica. <http://www.britannica.com> (Accessed 2007).

Brüninghaus, S. and Ashley, K. D. (2001). “The role of information extraction for
textual CBR.” Proc. 4th International Conference on Case-Based Reasoning,
Springer-Verlag, Berlin, Germany, 74-89.

Brüninghaus, S. and Ashley, K. D. (2003). “Combining Case-Based and Model-
Based Reasoning for Predicting the Outcome of Legal Cases.” In Proc. 5th
International Conference on Case-Based Reasoning.

Brüninghaus, S. and Ashley, K. (2005). “Reasoning with textual cases.” Case-Based
Reasoning Research and Development, Springer-Verlag, Berlin, Germany,
137-15.

Bubbers, G., and Christian, J. (1992). “Hypertext and claim analysis.” J. Constr.
Engrg. and Mgmt., 118(4), 716-730.

Caldas, C. H., Soibelman, L., and Han, J. (2002). “Automated classification of
construction project documents.” J. Comput. Civ. Eng., 16(4), 234-243.

Caldas, C. H., and Soibelman, L. (2003). “Automating hierarchical document
classification for construction management information systems.” Autom.
Constr., 12(4), 395-406.

Caldas, C. H., Soibelman, L., and Gasser, L. (2005). “Methodology for the
integration of project documents in model-based information systems.” J.
Comput. Civ. Eng., 19(1), 25-33.

211

Callahan, M. T., Bramble B. B., and Lurie, P. M. (1990). “Arbitration of construction
disputes.” Wiley, New York.

Cannon, E. O., Amini, A., Bender, A., Sternberg, M. J. E., Muggleton, S. H., Glen, R.
C., and Mitchel, J. B. O. (2007). “Support vector inductive logic programming
outperforms the Naïve Bayes classifier and inductive logic programming for the
classification of bioactive chemical compounds.” J. of Comput Aided Mol., 21,
269-280.

Charles Sundstrom et al., v. The State of New York, 106 N.E. 924; (1914).

Cheeks, R. J. (2003). “Multistep dispute resolution in design and construction
industry.” J. of Prof. Issues in Eng. Education and Practices., 129, 84-90.

Christie v. United States, 35 S. Ct. 565; 59 L. Ed. 933; (1915).

Chua, D. K. H., Li, D. Z., and Chan, W. T. (2001). “Case-based reasoning approach
in bid decision making.” J. Constr. Eng. Manage., 127(1), 35–45.

Chua, D. K. H., and Loh, P. K., (2006). “CB-Contract: case-based reasoning
approach to construction contract strategy formulation.” J. Comp. in Civ.
Engrg., 20(5), 339-350.

Chau, K.W. (2005). “Predicting construction litigation outcome using particle swarm
optimization.” Lecture Notes in Artificial Intelligence, 3533, 571-578

Chau, K.W. (2006). “Application of a PSO-based neural network in analysis of
outcomes of construction claims.” Automation in Construction, 16, 642–646.

Chau, K.W. (2006). “Prediction of construction litigation outcome – a case-based
reasoning approach.” M. Ali and R. Dapoigny (Eds.): IEA/AIE 2006, LNAI 4031,
© Springer-Verlag Berlin Heidelberg 2006, 548 – 553.

Cheeks, R. J. (2003). “Multistep dispute resolution in design and construction
industry” Journal of Professional issues in Engineering Education and Practice,
129, 84-90.

Chen, J. and Hsu, S.C. (2007). “Hybrid ANN-CBR model for disputed change orders
in construction projects.” Automation in Construction, 17, 56–64.

Choi, F. Y. Y., Wiemer-Hastings, P., and Moore, J. (2001). “Latent semantic analysis
for text segmentation.” In Proceedings of the 6th Conference on Empirical
Methods in Natural Language Processing, Seattle, WA, 109–117.

212

Church, K. W., and Rau, L. F. (1995). “Commercial applications of natural language
processing.” Commun ACM, 38(11), 71-79.

Clancey, W.J., (1985). “Heurestic Classification.” Artificial Intelligence, 27: pp289-
350.

Coenen, F. & Bench-Capon, T.J.M. (1992). “Maintenance and maintainability in
regulation based systems.” ICL Technical Journal, May 1992, pp.76-84.

Cobb, J. E., and Diekmann, J. E. (1986). “Claims analysis expert system.” Proj
Manage J, 17(2), 39-48.

Costantino, M., Morgan, R. G., Collingham, R. J., and Garigliano, R. (1997). “Natural
language processing and information extraction: Qualitative analysis of financial
news articles.” Proc., IEEE/IAFE Conference on Computational Intelligence for
Financial Engineering, IEEE, Piscataway, NJ, 116-122.

Crammer, K., and Singer, Y. (2003). “Ultraconservative online algorithms for
multiclass problems.” Journal of Machine Learning Research, 3, 951-991.

Daniel, G., Dienstuhl, J., Engell, S., Felske, S., Goser, K., Klinkenberg, R., Morik, K.,
Ritthoff, O., and Schmidt-Traub, H. (2002). “Advances in computational
intelligence – theory and practice, chapter novel learning tasks, optimization,
and their application,” Springer, 245-318.

Daniels, J., and Rissland, E. (1997). “Finding legally relevant passages in case
opinions.” In Proceedings of the Sixth International Conference on AI and Law.
(ICAIL-97), SIGART, IAAIL, UMIACS, University of Melbourne, 39 – 46.

Demian, P., and Fruchter, R. (2005). “Measuring relevance in support of design
reuse from archives of building product models.” J. Comput. Civ. Eng., 19(2),
119-136.

Deerwester, S., dumais, S., Furnas, G., Landauer, T., and Harshman, R. (1990).
“Indexing by latent semantic analysis.” Journal of the American Society for
Information Sciences, 41, 391-407.

Diekmann, J. E., and Kruppenbacher, T. A. (1984). “Claims analysis and computer
reasoning.” J. Constr. Eng. Manage., 110(4), 391-408.

Doğan, S. Z., Arditi, D., and Günaydın, H. M., (2006). “Determining attribute weights
in a cbr model for early cost prediction of structural systems.” J. Constr. Engrg.
and Mgmt., 132(10), 1092-1098.

213

Doğan, S. Z., Arditi, D., and Gunaydin, H. M. (2008). “Using decision trees for
determining attribute weights in case-based models of early cost prediction.”
Journal of Construction Engineering and Management, 134(2); 146-152.

Drake & Piper v. New York State Thruway Authority, 22 A.D.2d 321; 255 N.Y.S.2d
368; 1965 N.Y. App. Div (1965).

DTI (1992). “Knowledge-based systems survey of uk applications.” Department of
Trade & Industry, UK.

DTREG (2008). < http://www.dtreg.com/svm.htm> (Accessed 2008).

Dumais, S. (1990). “Improving the information retrieval from external sources.”
 Behavior Research Methods and Computers, 23, 229-236.

Dumais, S. (1991). “Improving the retrieval of information from external sources.”
 Behavior Research Methods, Instruments, and Computers, 23(2), 229-236.

Egri, P.A. and Underwood, P.F. (1995). “HILDA: knowledge extraction from neural
 networks in legal rule based and case based reasoning.” Neural Networks,
 1995. Proceedings., IEEE International Conference, 4, 1800-1805.

Elhadi, M. T. (2001). “Using statutes-based IR to derive legal CBR.” Applied Artificial
Intelligence, 15, 587- 600.

El-adaway, I. H. (2008). “Construction dispute mitigation through multi-agent based
simulation and risk management modeling.” Ph. D. thesis, Department of Civil,
Construction, and Environmental Engineering, Iowa State Univ., Ames, IA.

El-Saadi, M. M. H. (1998). “Administrative Procedures for the Management of
Construction Claims.” Master Thesis, Department of Engineering and
Architecture, American University of Beirut, Beirut, Lebanon.

Elvevag, B., Foltz, P. W., Weinberger, D. R., and Goldberg, T. E. (2007).
“Quantifying incoherence in speech: An automated methodology and novel
application to schizophrenia.” Schizophrenia Research, 93(1), 304-316.

Erickson-Shaver Contracting Corp. v. United States, 9 Cl. Ct. 302, 304 (1985).

Faber v. The City of New York, 222 N.Y. 255; (1918).

Fisk, E. R. (2000). “Construction project administration.” 6th Ed., Prentice Hall, New
Jersey.

214

Foltz, P. W., Kintsch, W., and Landauer, T. K. (1998). “Analysis of text coherence
using latent semantic analysis.” Discourse Processes, 25, 285-307.

Flemming, U. and Woodbury, R., (1995). “Software environment to support phases
in building (SEED): overview,” Journal of Architectural Engineering, ASCE, 1(4)
(1995), 147-52.

Foundation Company, v. The State of New York, 184 N.Y.S. 720; (1920).

French, S. (1982). “Sequencing and scheduling: an introduction to the mathematics
of the job-shop”. New York, NY.: Ellis Horwood.

Fruin-colnon Corporation, traylor bros., inc. and Onyx Construction & Equipment,
Inc., A Joint Venture, v. Niagara frontier transportation authority, 585 N.Y.S.2d
248; (1992).

Golding, A., and Rosenbloom, P. (1996). “Improving accuracy by combining rule-
based and case-based reasoning.” Artificial Intelligence, 87(1-2):215–254.

Graham, D., and Smith, S. D., (2004). “Estimating the productivity of cyclic
construction operations using case-based reasoning.” Advanced Engineering
Informatics, 18 (1), 17-28.

Greene, H. W. (1998). “LIMDEP-User’s Manual, Version 7.0.” Econometric Software
Inc., New York, NY.

GTP. < http://www.cs.utk.edu/~lsi/soft.html> (Accessed 2008).

Hajjar, D., and AbouRizk, S. M. (2000). “Integrating document management with
project and company data.” J. Comput. Civ. Eng., 14(1), 70–77.

Harmon, K. J. (2003). “Dispute review board and construction conflicts: attitude and
opinion of construction industry members.” J. of Manag. in Eng., 19, 121-125.

Hegab, M., Nassar, K. (2005). “Decision support system for commencement delay
claims.” Practice Periodical On Structural Design And Construction © Asce,
10(3), 1084-0680.

Hinze, J. (1998). “Construction planning and scheduling” 2nd Ed., Upper Saddle
River, N.J.: Prentice Hall.

Hofmann, T. (1999). “Probabilistic latent semantic indexing.” Proceedings of the
National Academy of Science, 101, 5228-5235.

Horgan, v. The City of New York, 160 N.Y. 516; (1899).

215

Howard, K. A., Jing, B., and Kahana, M.K. (2007). “Handbook of latent semantic
analysis.” Lawrence Erlbaum Associates, Mahawah, New Jersey, Chapter 7:
Semantic Structure and Episodic Memory, 121-142.

Hutchins, J., (1997), “Milestones in machine translation: episodes from the history of
computers and translation.” Language Today, 3, 22-23.

Iacobelli Construction, Inc. v. County of Monroe, 32 F.3d 19; 1994 U.S. App.; (1994).

Ioannou, P. G., and Liu, L. Y. (1993). “Advanced construction technology system—
ACTS.” J. Constr. Eng. Manage., 119(2), 288-306.

James F. Leary and Thomas J. Morrison, v. The State of New York, City of
Watervliet, 160 N.Y.S. 1042; (1916).

Jervis, B. M., & Levin, P. (1988). “Construction law principles and practice.” New
York: McGraw-Hill, 9-36.

Johns, C. H. W. “Babylonian law - the code of Hammurabi.”
<http://www.fordham.edu/halsall/ancient/hamcode.html> (Accessed 2007).

Jurafsky, D., and Martin, J. H. (2000). “Speech and Language Processing.” Prentice
Hall, New Jersey.

Kaneta, T., Furusaka, S., Nagaoka, H., Kimoto, K., Okamoto, H., (1999). “Process
model of design and construction activities of a building.” Computer-Aided Civil
and Infrastructure Engineering, 14 (1), 45–54.

Kim, M. P. (1989). “U.S. Army Corps Engineers construction contract claims
guidance system.” Proc., Constr Congr I Excellence Constr Proj, 203-209.

Kinser Construction Company v. The State of New York, 204 N.Y. 381; 97 N.E. 871;
(1912).

Klinkenberg, R. (2001). “Using labeled and unlabeled data to learn drifting
concepts.” In Workshop notes of the IJCAI-01 Workshop on Learning from
Temporal and Spatial Data, 16–24.

Klinkenberg, R. (2003). “Predicting phases in business cycles under concept drift.”
Proc. of LLWA-03, 3–10.

Klinkenberg, R. (2004). “Learning drifting concepts: Example selection vs. Example
weighting.” Intelligent Data Analysis (IDA), Special Issue on Incremental
Learning Systems Capable of Dealing with Concept Drift, 8(3).

216

Klinkenberg, R. and Joachims, T. (2000). “Detecting concept drift with support vector
machines.” In Pat Langley, editor, Proceedings of the Seventeenth International
Conference on Machine Learning (ICML), 487–494, San Francisco, CA, USA,
2000. Morgan Kaufmann.

Klinkenberg, R. and R¨uping, S. (2003). “Concept drift and the importance of
examples.” In J¨urgen Franke, Gholamreza Nakhaeizadeh, and Ingrid Renz,
editors, Text Mining – Theoretical Aspects and Applications, 55–77. Physica-
Verlag, Heidelberg, Germany, 2003.

Klinkenberg, R., Ritthoff, O., and Morik, K. (2002). “Novel learning tasks from
practical applications.” In Proceedings of the workshop of the special interest
groups Machine Learning (FGML), 46–59.

Koll, M. (1979). “An approach to concept-based information retrieval.” ACM SIGIR
Forum, XIII, 32-50.

Kolodner, J. L. (1993). “Case-Based Reasoning.” MorganKaufmann.

Kosovac, B., Froese, T., and Vanier, D. (2000). “Integrating heterogeneous data
representations in model-based AEC/FM systems.” Proc., CIT 2000, Reykjavik,
Iceland, 1, 556-566.

Kowalski, G. J., and Maybury, M. T. (2000). “Information Storage and Retrieval
Systems: Theory and Implementation.” 2nd edition, in the Information Retrieval
Series, Vol 8, Springer, Croft, W. B., editor.

Krol, J., (1993). “Construction Contract Law.” John Wiley and Sons.

Kumaraswamy, M.M., Ugwu, O.O., Palaneeswaran, E., and Rahman, M.M. (2004).
“Empowering collaborative decisions in complex construction project
scenarios.” Eng. Constr. Archit. Manage., 11(2), 133-142.

Labidi, S. (1997). “Managing multi-expertise design of effective cooperative
knowledge-based system.” Proc., 1997 IEEE Knowledge & Data Engineering
Exchange Workshop, IEEE, Piscataway, NJ, 10-18.

Landauer, T. K. (2002). “On the computational basis of cognitive: Arguments from
LSA.” The psychology of learning and motivation, New York: Academic Press,
Ross, B. H., editor, 43-84.

Landauer, T. K. & Dumais, S. T. (1997). “A solution to Plato's problem: The latent
semantic analysis theory of the acquisition, induction, and representation of
knowledge.” Psychological Review, 104, 211-140.

217

Landauer, T. K., Laham, d., and Foltz, P. W. (2003a). “Automated essay
assessment.” Assessment in Education: Principles, Policy and Practice, 10(30,
295-308.

Landauer T. K., Laham, d., and Foltz, P. W. (2003b). “Automated scoring and
annotation of essays with the intelligent essay assessor.” Automated Essay
Scoring: A Cross-disciplinary Prospective, Shermis, M. D., and Burstein, J.,
editors, Mahwah, NJ: Lawrence Erlbaum Associates.

Landauer, T. K., McNamara, D. S., Dennis, S., and Kintsch, W. (2007). “Handbook
of latent semantic analysis.” Lawrence Erlbaum Associates, London.

Lee, M.J., Hanna, A. S., and Loh, W. Y. (2004). “Decision tree approach to classify
and quantify cumulative impact of change orders on productivity.” Journal of
Computing in Civil Engineering, 18(2); 132-144.

Legal Dictionary. <http://legal-dictionary.com> (Accessed 2008).

Levin, P. (1998). “Construction contracts, claims, and disputes.” American Society of
Civil Engineer (ASCE) Press, Reston, VA.

Letsche, T., and Berry, M. W. (1997). “Large-scale information retrieval with latent
semantic indexing.” Information sciences, 100, 105-137.

LexisNexis. (2008).
<http://www.lexisnexis.com/us/lnacademic/search/casessubmitForm.do>
(Accessed 2008).

Li, H., (1996). “Case-based reasoning for intelligent support of construction
negotiation,” Information and Management, 5(30), 231 – 238.

Liddy, E. D., (2003). “Natural Language Processing, 2nd Ed.” Encyclopedia of
Library and Information Science, Bates, J., Maack, M. N., and Drake, M.,
editors, Marcel Decker, Inc.

Lin, K. Y. and Soibelman, L. (2005). “Knowledge assisted retrieval of online product
information in A/E/C (Architecture/Engineering/Construction).” J. Comput. Civ.
Eng., 179, 48-59.

Lin, K. Y. and Soibelman, L. (2007). “Knowledge assisted retrieval of online product
information in A/E/C (Architecture/Engineering/Construction).” J. Constr. Eng. &
Manage., 133, 871-879.

218

Love, P. E. D., Skitmore, R. M., and Earl, G. (1998). “Selecting a suitable
procurement system for a building project.” Constr. Manage. Econom., 16,
221–233.

Lund, K., Burgess, C., and Atchley. R. A. (1995). “Semantic and associative priming
in high-dimensional semantic space.” In Proceedings of the 17th Annual
Conference of the Cognitive Science Society, CogSci’95, Erlbaum, 660–665.

Luu DT, Ng ST, Chen, SE., (2005). “Formulating procurement selection criteria
through case-based reasoning approach.” Jour. Comput. Civil Eng. 19 (3), 269-
76.

Luu, D. T., Ng, S. T., Chen, S. E., and Jefferies, M., (2006). “A strategy for
evaluating a fuzzy case-based construction procurement selection system.”
Advances in Engineering Software, 37 (3), 159 – 171.

Mangasarian, O. L., and Musicant, D. R., (1999). “Massive Support Vector
Regression.” Technical Report Data Mining Institute TR-99-02, University of
Wisconsin.

Maher, M. L. and Zhang, D. M., (1991). “CADSYN: Using case and decomposition
knowledge for design synthesis.” In Proceeding of the First International
Conference on Artificial Intelligence in Design, Edinburgh, UK, Butterworth-
Heineman, Oxford, 1991, pp. 137-50.

Manning, C. and Scheutze, H. (1999). “Foundations of statistical natural language
processing.” Cambridge: MIT Press.

Marcotte, P. (1990). “Hastening justice—Biden committee studies task force plan to
cut trial delay.” Am. Bar Assoc. J., 76(1), 40.

Merrill, P. G. (2006). “Construction dispute review board + settlement panels: Save
time, money, + headaches.” Contract Management Magazine, 38-43.

Mierswa, I., and Morik, K. (2005a). “Automatic feature extraction for classifying audio
data.” Machine Learning Journal, 58:127–149.

Mierswa, I., and Morik, K. (2005b). “Method trees: building blocks for self-
organizable representations of value series.” In Proc. of the Genetic and
Evolutionary Computation Conference GECCO 2005, Workshop on Self-
Organization In Representations For Evolutionary Algorithms: Building
complexity from simplicity, 2005. Washington,DC,USA, 1989-1992.

219

Mierswa, I., and Wurst, M. (2005a) “Efficient case based feature construction for
heterogeneous learning tasks.” Technical Report CI-194/05, Collaborative
Research Center 531, University of Dortmund, 2005.

Mierswa, I., and Wurst, M. (2005b). “Efficient feature construction by meta learning –
guiding the search in meta hypothesis space.” In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining,
ACM, SIGKDD, and SIGMOD, Philadelphia, PA, USA, 935 – 940.

Mierswa. I. (2004). “Automatic feature extraction from large time series.” In Proc. of
LWA 2004 - Lernen - Wissensentdeckung – Adaptivitat, Yale.

Misky, M. L., and Papert, S. A. (1990). “Perceptron.” MIT Press.

Miyashita, K. and Sycara, K. (1992). “Cabins: Casebased interactive scheduler.” In
Working Notes of AAAI Spring Symposium on Practical Approaches to
Scheduling and Planning, (Stanford, CA), AAAI, 1992.

Naoum, S. G. (1994). “Critical analysis of time and cost of management and
traditional contracts.” J. Constr. Eng. Manage., 120(4), 687–705.

Ng, H. S., Toukourou, A., and Soibelman, L. (2006). “Knowledge discovery in a
facility condition assessment database using text clustering.” J. Comput. Civ.
Eng., 12(1), 50-59.

Nguyen, H., Ohn, S., and Chae, S. (2006). “Optimizing weighted kernel function for
support vector macinesby genetic algorithm.” Mexican International Conference
on Artificial Intelligence (MICAI), Apizaco, Mexico, 583-592.

Nilsson, N. J. (2008). “Introduction to Machine Learning”
<http://robotics.stanford.edu/~nilsson/mlbook.html> (Accessed 2008).

North Slope Technical Ltd. v. United States, 14 Cl. Ct. 242, 257 (1988).

Ohtake, Y., Nitta, K., Maeda, S., Ono, M., Ohsaki, H., and Yoneda, L. (1993).
“HELIC-II: As a legal argumentation support system.” Proc., Conference on
Artificial Intelligence Applications, IEEE, Piscataway, NJ, 464.

Oracle. < http://www.oracle.com/index.html> (Accessed 2009).

Pearce, M., Goel, A., Kolodner, j. L., Zimring, C., Sentosa, L., and Billington, R.,
(1992). “Case-based design support: A case study in architectural design,”
IEEE Expert, 7(5) (1992), 14-20.

220

Peña-Mora, Feniosky, Sosa, Carlos E., and D. McCone, Sean. (2003). “Introduction
to construction dispute resolution,” 1st Ed., Prentice Hall, New Jersey.

Piper, Inc., v. New York State Thruway Authority, ; 221 N.Y.S.2d 648, (1961).

Platt, J. (1999). “Fast training of support vector machines using sequential minimal
optimization.” MIT Press.

Praehofer, H., and Kerschbaummayr, J., (1999). “Case-based reasoning techniques
to support reusability in a requirement engineering and system design tool.”
Engineering Applications of Artificial Intelligence, 12(6), 717-731.

Public Constructors, Inc. v. State of New York, 55 A.D.2d 368; 390 N.Y.S.2d 481;
1977 N.Y. App. Div.

Quinlan, J. R. (1993). “C4.5: Programs for machine learning.” Morgan Kaufmann,
Los Altos.

Ralph S. Keep and Others v. The City of New York, 138 Misc. 194; 245 N.Y.S. 321;
(1930).

Rapit-I (2008). <http://rapid-i.com/> (Accessed 2008).

Rehder, B., Schreiner, M. E., Wolfe, M. B., Laham, D., Landauer, T. K., and Kintsch,
W. (1998). “Using latent semantic analysis to assess knowledge: Some
teaching considerations.” Discourse Processes, 25, 337-354.

Ren, Z., Anumba, C. J., and Ugwa, O. O. (2001). “Construction claim management:
Towards an agent based approach.” J. Eng. Constr. Archit. Manage., 8, 185-
197.

Reuber, R. (1997). “Management experience and management expertise.” Decision
Support Sys., 21(4), 51–60.

Riloff, E. (1996). “Automatically generating extraction patterns from untagged text.”
In Proceedingsof the Thirteenth National Conference on Artificial Intelligence.
AAAI Press. Menlo Park, CA, 1044-1049.

Rissland, E., Skalak, D. & Friedman, M.T. 1993. “Bank XX: A program to generate
argument through case-base search.” In Proceedings of the Fourth
International Conference on Ardjicial Intelligence and Luw, New York:
Association for Computing Machinery, 117-124.

221

Ritthoff, O. and Klinkenberg, R. (2003). “Evolutionary feature space transformation
using type-restricted generators.” In Proc. of the Genetic and Evolutionary
Computation Conference (GECCO 2003), Chicago, IL, USA, 1606–1607.

Ritthoff, O., Klinkenberg, R., Fischer, S., and Mierswa, I. (2002). “A hybrid approach
to feature selection and generation using an evolutionary algorithm.” In Proc. of
the 2002 U.K. Workshop on Computational Intelligence (UKCI-02), Univ. of
Birmingham, UK, 147–154.

Robinson, S., Martinovski, B., Garg, S., Stephan, J., and Traum, D. (2004). “Issues
in corpus development for multi-party multi-modal task-oriented dialogue.”
Proceedings of Fourth International Conference on Language Resources and
Evaluation (LREC 2004), Centro Cultural de Belem, Lisbon, Portugal, 1707-
1710.

Roddis, W. M. K., and Bocox, J. (1997). “Case-based approach for steel bridge
fabrication errors.” J. Comput. Civ. Eng., 11(2), 84–91.

Rwelamila, P. D., and Meyer, C. (1999). “Appropriate or default project procurement
systems.” Cost Eng., 41(9), 40–44.

S. Pearson & Son, Inc., v. The State of New York, 182 N.Y.S. 481; (1920).

Salton, G. (1989). “Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer.” Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA.

Salton, G., and Buckley, C. (1991). “Automatic text structuring and retrieval –
experiment in automatic encyclopedia searching.” Proceeding of the 14th
Annual International ACM SIGIR Conference on Research and Development in
information Retrieval, 21-30.

Salton, G., and Lesk, M. E. (1968). “The SMART automatic document retrieval
systems – an illustration.” Journal of the ACM, 15(1), 8-36.

Schank, R. (1982). “Dynamic memory: a theory of reminding and learning in
computers and people.” Cambridge University Press, Cambridge, UK.

Schmitt, G. (1993). ‘‘Case-based design and creativity.’’ Automation in Constr., 2,
11–19.

Schmitt, G. (1988). “ARCHPLAN- an Architectural front end to engineering expert
systems.” Expert Systems for Engineering Design, Academic Press, New York,
Rychener, M., editor.

222

Scherer, R. J., and Reul, S. (2000). “Retrieval of project knowledge from
heterogeneous AEC documents.” Proc., Eight International Conference on
Computer in Civil and Building Engineering, Palo Alto, Calif., 812-819.

Schumacher, L. (1997). ‘‘Defusing delay claims.’’ Civ. Eng., 67(3), 60-62.

Servidone Construction Corporation v. The United States, 931F.3d 860; 1991 U.S.
app.

Shawe-Taylor, J. and Cristianini, N. (1999). “Margin distribution bounds on
generalization”. In Proceedings of the European Conference on Computational
Learning Theory, EuroCOLT99; 263-273.

Shawe-Taylor, J. and Cristianini, N. (2000). “Support vector machines and other
kernel-based learning methods.” Cambridge University Press.

Sirca, G., and Adeli, H. (2004). “Counterpropagation neural network model for steel
girder bridge structures.” Journal of Bridge Engineering, 9(1), 55–65.

Sirca, G. F., and Adili, H. (2005). “Case-based reasoning for converting working
stress design-based bridge ratings to loaf factor design-based ratings.” Journal
of Bridge Engineering, 10(4), 450-459.

Soibelman, L., and Kim, H. (2002). “Data preparation process for construction
knowledge generation through knowledge discovery in databases” J. Comput.
Civ. Eng., 16(1), 39-48.

Sycara, K., and Miyashita, K. (1994). “Learning from failure in casebased schedule
repair.” Proc., 27th Hawaii Int. Conf. on System Sciences, Institute of Electrical
and Electronics Engineers, New York, 3, 122–131.

Tabachnick, B. G. and Fidell, L. S. (1996). “Using Multivariate Statistics.” 3rd Edition,
Harper Collins, New York, NY, USA.

Tony Carfagno and Others v. The City of New York, 187 A.D. 489; 175 N.Y.S. 682;
1919 N.Y. App. Div.

Travelers Casuality and Surety Company of America V. The United States of
America, 75 Fed. Cl. 696; 2007 U.S. Claims.

Treacy, T. B. (1995). “Use of alternative dispute resolution in the construction
industry.” Journal of Management in Engineering, 11, 58-63.

Vapnik, V. (1998). “Statistical learning theory.” Wiley.

223

Waheed, A., and Adeli, H. (2005). “Case-based reasoning in steel bridge
engineering.” Journal of Knowledge based Systems, 18, 37-46.

Wang, J., (1991). “Integrated Case –based Reasoning for Structural Design,” Ph.D.
thesis, Department of Civil Engineering, Stanford University, CA,.

Watson, I. and Abdullah, S., (1991). “Developing case-based reasoning system: A
case study in diagnosing defects,” IEEE Digest No: 1994/057, Case Based
Reasoning: Prospects for Applications (199), 1/1-1/3

Watson, I.D., Basden, A., and Brandon, P.S. (1992). “The client centred approach:
expert system maintenance.” Expert Systems, 9(iv): pp189-96.

Watson, I., and Marir, F., (2000). “Case-Based Reasoning: A Review.”
<http://www.ai-cbr.org/classroom/cbr-review.html>, (Accessed 2007).

Watson, I. (1997). “Applying case-based reasoning.” Morgan Kaufmann, San Mateo,
California.

Washington, S. P., Karlaftis, M. G., and Mannering, F.L. (2003). “Statistical and
Econometric Methods for Transportation Data Analysis.” CHAPMAN &
HALL/CRC, New York.

Weber, R., Aha, D., Sandhu, N., and Munoz-Avila, H. (2001). “A textual case-based
reasoning framework for knowledge management applications.” In Proceedings
of the Ninth German Workshop on Case-Based Reasoning. Shaker Verlag,
244-253.

Weber, R. (1998). “Intelligent Jurisprudence Research.” Ph.D. Dissertation, Federal
University of Santa Catarina, Brazil.

Weeks Dredging & Contracting, Inc. v. United States, 13 Cl. Ct. 193, 219 (1987).

Weston, J., and Watkins, C. (1999). “Support vector machines for multiclass pattern
recognition.” In Proceedings of the 6th European Symposium on Artificial Neiral
Networks (ESANN). Bruges, Belgium, 219-224.

William G. Horgan v. The City of New York; 160 N.Y. 516; 55 N.E. 204; 1899 N.Y.
(1899).

Witten, I.H., and Frank, E. (2000). “Data mining: practical machine learning tools and
techniques” MorganKaufmann.

224

Wolfe, M. B. W., Schreiner, M. E., Rehder, B., Laham, D., Foltz, P. W., and Kintsch,
W. (1998). “Learning from text: Matching readers and text by latent semantic
analysis.” Discourse Processes, 25, 309-336

Wood, W. H. (2000). “The development of modes in textual design data.” Proc.,
Eight International Conference on Computer in Civil and Building Engineering,
Palo Alto, Calif., 882-889.

Xie, H., Isaa, R. A., and O’Brien W. (2003). “User model and configurable visitor for
construction project information retrieval.” 4th Joint International Symposium on
Information Technology in Civil Engineering, ASCE, Nashville, Tennessee, 47.

Yang, M. C., Wood, W. H., and Cutkosky, M. R. (1998). “Data mining for thesaurus
generation in informal design information retrieval.” Proc., Int. Computing
Congress, ASCE, Reston, Va., 189-200.

Yang, M. C, and Lee, C.H. (2003). “A text mining approach on automatic generation
of web directories and hierarchies.” Proc., 2003 IEEE/WIC International
Conference on Web Intelligence, IEEE, Washington, DC, 625.

Yau, N., and Yang, J., (1998). “Case-Based reasoning in construction management.”
Computer-Aided Civil and Infrastructure Engineering, 13 (2), 143–150.

Ye, S., and Liu, Y. (2008). “Study on development patterns of infrastructure
projects.” Journal of Construction Engineering and Management, 134(2); 94-
102.

Zeleznikow, J. (2003). “An Australian perspective on research and development
required for the construction of applied legal decision support systems.”
Artificial Intelligence and Law, 10: 237–260.

Zhu, Y., Mao, W., and Ahmad, I. (2007). “Capturing implicit structures in
unstructured content of construction documents.” J. Comput. Civ. Eng., 21(3),
220-227.

225

APPENDIX A (LIST OF LEGAL FACTORS)

List of extracted factors:

Contract type

Mutual consent

Involved parties

Type of owner

Type of Contractor

Type of Project

Design responsibility (Contractor)

Full bidding documents (discrepancies reported)

Contractor deemed to have fully reviewed and familiarized himself with the site,

conditions, and drawings

Is there an unforeseen physical condition clause?

(Type II differing site conditions) Are the conditions if any, unforeseen for an experienced

Contractor?

(Type II differing site conditions) Did the Contractor know about the condition?

(Type II differing site conditions) Did the condition vary from the norm in similar

construction operations?

(Type I differing site conditions) did the contract documents affirmatively indicate

subsurface conditions?

(Type I differing site conditions) did the Contractor act as a reasonably prudent

contractor in interpreting the contract documents?

(Type I differing site conditions) did the Contractor reasonably rely on the indications of

subsurface conditions in the contract?

226

(Type I differing site conditions) did the subsurface conditions actually encountered differ

materially from those indicated in the contract?

(Type I differing site conditions) were the actual subsurface conditions not reasonably

foreseeable?

(Type I differing site conditions) was the Contractor's damage attributable to the

materially different subsurface conditions?

Was the work stopped due to the encountered matter?

Did the Owner\ Owner Rep stop the works to perform adjustments due to factors related

to the encountered matter?

Did the Contractor stop the works for any reason?

Did the Matter encountered require redesign?

Did the Matter encountered require changes in the nature and costs of the Contract?

Where the imposed changes made because it was cheaper\ better or because it was

necessary?

Did the Matter encountered have safety related issues?

Did the Contractor raise the matter in the right procedural form stated by the Contract?

Was a decision taken with regard the settlement of the matter?

Did any of the parties raise his disagreement and stated his intentions for a claim under

the contract?

Did the matter made completion of the project impossible?

Was there a clause giving the Owner the right to make changes to the project after final

completion and acceptance without invalidating the contract

Was there a clause stopping the Contractor from claiming his lost profit against

deducted\ changed\ modified works?

Did the parties make a mutual mistake as to the condition related to this matter?

227

Is there a sovereign immunity waiver clause?

Year (date) range on 5 years intervals

Type of judgment

Was there various changes made along the progress of the works?

Nature of damage

Does the contractor bare the risk for any unforeseen conditions?

Was the matter caused as a reason of the Owners own act, even if he did that

unintentionally?

Did any of the concerned parties considered a breach of contract action?

Was experts' opinions provided by the Contractor's side?

Was experts' opinions provided by the Owner's side?

Did the specifications warn and illustrate the possibility of differing site conditions to

those mentioned by the Contract Documents?

Was the Specifications governing the work if applicable "Performance specifications"?

Did the other party sough for a counter claim related to the same matter?

Did a triable issue of fact exist?

Did the specification have representation, even if found after that to be different from the

actual conditions, of the matter in question?

Did the Contractor Under the terms of the contract agreed not to ask for or recover extra

compensation beyond the contract price?

Was there a no allowance for extras clause?

Was the additional work approved by the Engineer\ State Engineer?

Did The Owner\ Owner Rep. falsely state that the matter encountered in hand, so far as

known, was shown in the Contract documents?

Was the Contract Lumpsum or unit price or other?

228

Is the Contractor a foreign Company that does not has the right to sue in USA?

If the Matter was caused due to the fault of the Owner, did he adjust the mistake?

Was the extra work done for the benefit of the Owner or Contractor?

Are there evident facts showing that the Owner had bad intentions representing the

matter in the Contract Documents?

Are there enough evidence to show that there were no time for the Contractor to perform

his own investigations?

Was the extra work performed as temporary work to protect part of the permanent works

required under the contract?

If this is an appeal, who was the winning party in the initial trial?

229

APPENDIX B (SVM MODEL OUTPUT)

SVM Modeling Output

Trial 1
Model Properties
C 1
M (Fit Logistic Model to
Output)

TRUE

Polynomia Degree 1

Model Output
Accuracy 94.00% ± 9.17%
Precision 93.83% ± 9.60%
Recall 93.50% ± 13.43%
Area Under Curve (AUC) 95.40% ± 5.90%

Positive Class CONTRACTOR

 True OWNER
True

CONTRACTOR
Class

Precision
Prediction OWNER 53 3 94.64%
Prediction Contractor 1 43 97.73%
Class Recall 98.15% 93.48%

W-SMO
SMO
Kernel used:
 Linear Kernel: K(x,y) =
<x,y>
Classifier for classes: OWNER,
CONTRACTOR
BinarySMO
Machine linear: showing attribute weights, not support vectors.
 0.3743 * (normalized)
Ptype
 + -0.0273 *
(normalized) DSCC
 + 2.2885 *
(normalized) DSC
 + 0.2049 * (normalized) N&C + 0.2618 * (normalized)
Conraise

230

 + 0.8931 * (normalized) ComImpossible
 + -0.0971 * (normalized) Ochange
 + 0.0345 * (normalized) Mmistake
 + -0.18 * (normalized)
Year
 + 0.8762 * (normalized) Ocause
 + -1.1228 * (normalized) SpecWarn
 + 0.0719 * (normalized) SpecRep
 + -1.183 * (normalized) CNoExtra
 + -0.6137 * (normalized) Ofalsely
 + 0.9626 * (normalized) OAdjust

-1.5445
Number of kernel evaluations: 2059 (86.149% cached)
Logistic Regression with ridge parameter of
1.0E-8
Coefficients...
Variable Coeff.
 1 -3.2962
Intercept 1.3227
Odds Ratios...
Variable O.R.

 1 0.037

Trial 2
Model Properties
C 1
M (Fit Logistic Model to
Output)

TRUE

Polynomia Degree 2

Model Output
Accuracy 98.00% ± 6.00%
Precision 98.00% ± 6.00%
Recall 98.00% ± 6.00%
Area Under Curve (AUC) 99.60% ± 1.20%

Positive Class CONTRACTOR

 True OWNER
True

CONTRACTOR
Class

Precision
Prediction OWNER 53 1 98.15%
Prediction Contractor 1 45 97.83%

231

Class Recall 98.15% 97.83%

W-SMO
SMO
Kernel used:
 Poly Kernel: K(x,y) =
<x,y>^2.0
Classifier for classes: OWNER,
CONTRACTOR
BinarySMO
 - 0.1391 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X]
 - 0.0593 * <0.333333 1 0 1 1 0 0 1 0.7 0 0 1 0 0 0 > * X]
 + 0.1121 * <0.333333 0 1 1 0 0 0 1 1 0 0 1 1 0 1 > * X]
 - 0.0405 * <0.666667 0 0 1 1 0 0 0 1 0 1 1 0 0 1 > * X]
 + 0.0856 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X]
 - 0.2478 * <1 1 1 0 1 1 0 1 1 1 0 1 1 0.5 0 > * X]
 + 0.0553 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X]
 + 0.0877 * <1 0 1 0 1 1 0 0 1 1 0 1 1 0.5 0 > * X]
 + 0.0033 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X]
 + 0.1551 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X]
 + 0.0794 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X]
 - 0.0348 * <0.666667 1 0 0 1 0 0 0 0.3 0 0 1 0 0 0 > * X]
 - 0.0215 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X]
 - 0.0135 * <0.666667 1 0 1 1 0 0 0 0.8 0 0 0 0 0 0 > * X]
 - 0.0332 * <1 0 0 0 1 0 0 1 1 0 0 0 0 0 0
> * X]
 + 0.1439 * <1 1 0 1 1 1 0 1 0.8 1 0 1 0 0 0 > * X]
 - 0.06 * <0.333333 1 0 1 1 0 0 1 0.7 0 0 1 0 0 0 > * X]
 + 0.0068 * <0.333333 1 1 1 1 1 0 1 0.8 0 0 0 0 0.5 0 > * X]
 + 0.0201 * <1 0 1 0 1 1 0 0 1 1 0 1 1 0.5 0 > * X]
 - 0.0738 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X]
 + 0.0478 * <0.666667 0 1 1 1 1 1 1 1 0 0 1 1 0 0 > * X]
 - 0.0804 * <0.666667 1 0 0 0 0 0 0 0.5 0 0 1 0 0 0 > * X]
 + 0.0088 * <0.666667 0 1 1 1 1 1 1 1 0 0 1 1 0 0 > * X]
 - 0.0312 * <1 0 0 0 0 0 0 1 0.8 0 0 1 0 0 0 > * X]
 - 0.0293 * <1 1 1 0 1 1 0 1 1 1 0 1 1 0.5 0 > * X]
 + 0.0486 * <1 0 1 0 1 0 0 1 1 0 0 1 0 0.5 0 > * X]
 - 0.0255 * <0.666667 1 0 0 0 0 0 0 0.5 0 0 1 0 0 0 > * X]
 - 0.0208 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X]

232

 - 0.0266 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X]
 - 0.038 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X]
 + 0.0008 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X]
 - 0.0017 * <0.666667 1 0 1 1 0 0 1 0.1 0 1 0 0 0 1 > * X]
 - 0.0068 * <0.666667 1 0 0 1 0 0 0 0.3 0 0 1 0 0 0 > * X]
 + 0.0572 * <1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 > * X]
 + 0.0373 * <0.333333 1 1 1 1 1 0 1 0.8 0 0 0 0 0.5 0 > * X]
 - 0.0709 * <0.666667 0 1 1 0 0 0 1 0 0 1 1 1 0 0 > * X]
 + 0.1049 * <1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 > * X]

-0.7655
Number of support vectors:
37
Number of kernel evaluations: 7637 (78.233% cached)
Logistic Regression with ridge parameter of
1.0E-8
Coefficients...
Variable Coeff.
 1 -28.0718
Intercept -5.2416
Odds Ratios...
Variable O.R.
 1 0

Trial 3
Model Properties
C 1
M (Fit Logistic Model to
Output)

TRUE

Polynomia Degree 3

Model Output
Accuracy 100.00% ± 0
Precision 100.00% ± 0
Recall 100.00% ± 0
Area Under Curve (AUC) 100.00% ± 0

Positive Class CONTRACTOR

 True OWNER
True

CONTRACTOR
Class

Precision
Prediction OWNER 53 1 98.15%
Prediction Contractor 1 45 97.83%

233

Class Recall 98.15% 97.83%

W-SMO
SMO
Kernel used:
Poly Kernel: K(x,y) =
<x,y>^3.0
Classifier for classes: OWNER,
CONTRACTOR

BinarySMO
 - 0.019 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X]
 + 0.0031 * <0.333333 0 1 1 0 0 0 1 1 0 0 1 0 0 0 > * X]
 - 0.006 * <0.333333 1 0 1 1 0 0 1 0.7 0 0 1 0 0 0 > * X]
 + 0.0079 * <0.333333 0 1 1 0 0 0 1 1 0 0 1 1 0 1 > * X]
 - 0.0016 * <0.666667 0 0 1 1 0 0 0 1 0 1 1 0 0 1 > * X]
 + 0.003 * <0.666667 0 1 1 1 0 0 1 1 0 0 0 0 0 0 > * X]
 - 0.0032 * <0.666667 1 0 1 1 0 0 0 0.8 0 0 0 0 0 0 > * X]
 + 0.0141 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X]
 - 0.0102 * <1 1 1 0 1 1 0 1 1 1 0 1 1 0.5 0 > * X]
 + 0.0044 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X]
 + 0.0075 * <1 0 1 0 1 1 0 0 1 1 0 1 1 0.5 0 > * X]
 + 0.0022 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X]
 + 0.0099 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X]
 + 0.0248 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X]
 + 0.0024 * <0.333333 1 1 1 0 1 0 1 0 1 0 0 0 0 0 > * X]
 - 0.0139 * <0.666667 1 0 0 1 0 0 0 0.3 0 0 1 0 0 0 > * X]
 - 0.0014 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X]
 - 0.0024 * <0.333333 1 0 1 1 0 0 1 0.7 0 0 1 0 0 0 > * X]
 - 0.005 * <1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 >
* X]
 + 0.0103 * <1 1 0 1 1 1 0 1 0.8 1 0 1 0 0 0 > * X]
 - 0.0051 * <0.333333 1 0 1 1 0 0 1 0.7 0 0 1 0 0 0 > * X]
 + 0.0008 * <0.333333 1 1 1 1 1 0 1 0.8 0 0 0 0 0.5 0 > * X]
 - 0.0004 * <1 0 1 0 1 0 0 1 1 0 1 1 1 0 0
> * X]
 + 0 * <0.666667 0 1 1 1 0 0 1 1 0 0 0 0 0 0 > * X]
 + 0.0019 * <0.333333 0 1 1 0 0 0 1 1 0 0 1 0 0 0 > * X]
 + 0.0013 * <1 0 1 0 1 1 0 0 1 1 0 1 1 0.5 0 > * X]
 - 0.0012 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X]

234

 + 0.0009 * <0.666667 0 1 1 1 1 1 1 1 0 0 1 1 0 0 > * X]
 - 0.0138 * <0.666667 1 0 0 0 0 0 0 0.5 0 0 1 0 0 0 > * X]
 + 0.0009 * <0.666667 0 1 1 1 1 1 1 1 0 0 1 1 0 0 > * X]
 - 0.006 * <1 0 0 0 0 0 0 1 0.8 0 0 1 0 0 0 > * X]
 - 0.0056 * <1 1 1 0 1 1 0 1 1 1 0 1 1 0.5 0 > * X]
 + 0.0033 * <1 0 1 0 1 0 0 1 1 0 0 1 0 0.5 0 > * X]
 - 0.0055 * <0.666667 1 0 0 0 0 0 0 0.5 0 0 1 0 0 0 > * X]
 - 0.0003 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X]
 - 0.0034 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X]
 - 0.0003 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X]
 - 0.0028 * <0.666667 1 1 0 1 0 0 0 0.3 0 1 1 1 0.5 0 > * X]
 + 0.0017 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X]
 + 0.0028 * <0.333333 0 1 1 0 0 0 1 1 0 0 1 0 0 0 > * X]
 - 0.0009 * <0.666667 1 0 1 1 0 0 1 0.1 0 1 0 0 0 1 > * X]
 - 0.0001 * <0.666667 0 0 1 1 0 0 0 1 0 1 1 0 0 1 > * X]
 - 0.005 * <0.666667 1 0 0 1 0 0 0 0.3 0 0 1 0 0 0 > * X]
 + 0.0055 * <0.333333 1 1 1 1 0 0 1 0.3 0 0 0 0 0 0 > * X]
 + 0.0055 * <1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 > * X]
 - 0.0058 * <0.666667 0 1 1 0 0 0 1 0 0 1 1 1 0 0 > * X]
 + 0.0047 * <1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 > * X]

-0.8445
Number of support vectors:
47
Number of kernel evaluations: 8944 (79.291% cached)
Logistic Regression with ridge parameter of
1.0E-8
Coefficients...
Variable Coeff.
 1 -32.0189
Intercept -3.1093
Odds Ratios...
Variable O.R.
 1 0

235

APPENDIX C (NAÏVE BAYES MODEL OUTPUT)

Naïve Bayes Modeling Output

Trial 1
Model
Properties

N No
S 1
UseKernel
Estimator

FALSE

Model Output
Accuracy 93.00% ± Kappa statistic 0.8598

Precision
92.94% ±

Mean absolute
error

0.095

Recall
93.20% ±

Root mean
squared error

0.2251

Area Under
Curve (AUC)

94.30% ±
Relative
absolute error

19.11%

Root relative
squared error

45.12%

Positive Class Contractor

 True Owner True Contractor Class Precision
Class F-
Measure

Prediction
OWNER

49 2 96.08% 93.33%

Prediction
Contractor

5 44 89.80% 92.63%

Class Recall 90.74% 95.65%

 W-
NaiveBayes

 The word weights for each
class are:
 OWNER
CONTRACTOR
Ptype -1.6981386828507514 -
1.6928195213731514
DSCC -3.19140516352281 -
3.4069280563711404
DSC -2.818729878237636 -
4.376328613559243

236

N&C -3.1596564652082297 -
3.5161273483361324
Conraise -3.258096538021482 -
3.036554268074246
ComImpossible -3.4473385376600105 -
5.675611597689505
Ochange -5.526780079339846 -
4.8283137373023015
Mmistake -3.041873429551846 -
3.3402366818724682
Year -0.8142513750312556 -
0.7011793522572096
Ocause -3.7350206101117913 -
5.387929525237724
SpecWarn -6.625392368007956 -
3.4783870203532854
SpecRep -3.0144744553637315 -
2.9240762846475556
CNoExtra -4.428167790671737 -
3.5553480614894135
Ofalsely -3.917342166905746 -
4.135166556742356
OAdjust -5.932245187448011 -
4.135166556742356
Outcome 0.0 0.0

 === Run information

===

 Scheme:
weka.classifiers.bayes.NaiveBayes
Relation: test 1 svm 100 added con

Instances: 100

Attributes: 16

 Ptype

 DSCC

 DSC

 N&C

 Conraise

ComImpossible
 Ochange

 Mmistake

 Year

 Ocause

 SpecWarn

237

 SpecRep

 CNoExtra

 Ofalsely

 OAdjust

 Outcome

Test mode: 10-fold cross-validation

 === Classifier model (full training set)

===

 Naive Bayes Classifier

 Class OWNER: Prior probability = 0.54

 Ptype: Normal Distribution. Mean = 2.963 StandardDev = 0.8157

WeightSum = 54 Precision = 1.0
DSCC: Normal Distribution. Mean = 0.5185 StandardDev = 0.4997
WeightSum = 54 Precision = 1.0
DSC: Normal Distribution. Mean = 0.1852 StandardDev = 0.3884
WeightSum = 54 Precision = 1.0
N&C: Normal Distribution. Mean = 0.463 StandardDev = 0.4986
WeightSum = 54 Precision = 1.0
Conraise: Normal Distribution. Mean = 0.7593 StandardDev = 0.4275
WeightSum = 54 Precision = 1.0
ComImpossible: Normal Distribution. Mean = 0.037 StandardDev = 0.1889
WeightSum = 54 Precision = 1.0
Ochange: Normal Distribution. Mean = 0.1111 StandardDev = 0.3143
WeightSum = 54 Precision = 1.0
Mmistake: Normal Distribution. Mean = 0.5556 StandardDev = 0.4969
WeightSum = 54 Precision = 1.0
Year: Normal Distribution. Mean = 8.1019 StandardDev = 3.3828
WeightSum = 54 Precision = 1.25
Ocause: Normal Distribution. Mean = 0.0556 StandardDev = 0.2291 WeightSum
= 54 Precision = 1.0
SpecWarn: Normal Distribution. Mean = 0.4815 StandardDev = 0.4997
WeightSum = 54 Precision = 1.0
SpecRep: Normal Distribution. Mean = 0.8519 StandardDev = 0.3552
WeightSum = 54 Precision = 1.0
CNoExtra: Normal Distribution. Mean = 0.4444 StandardDev = 0.4969
WeightSum = 54 Precision = 1.0
Ofalsely: Discrete Estimator. Counts = 45 8 4
(Total = 57)
OAdjust: Normal Distribution. Mean = 0.2407 StandardDev = 0.4275 WeightSum
= 54 Precision = 1.0

 Class CONTRACTOR: Prior probability

= 0.46

238

Ptype: Normal Distribution. Mean = 2.9783 StandardDev = 0.8467
WeightSum = 46 Precision = 1.0
DSCC: Normal Distribution. Mean = 0.6522 StandardDev = 0.4763
WeightSum = 46 Precision = 1.0
DSC: Normal Distribution. Mean = 0.9565 StandardDev = 0.2039
WeightSum = 46 Precision = 1.0
N&C: Normal Distribution. Mean = 0.6739 StandardDev = 0.4688
WeightSum = 46 Precision = 1.0
Conraise: Normal Distribution. Mean = 0.6087 StandardDev = 0.488 WeightSum
= 46 Precision = 1.0
ComImpossible: Normal Distribution. Mean = 0.5 StandardDev = 0.5 WeightSum
= 46 Precision = 1.0
Ochange: Normal Distribution. Mean = 0.0435 StandardDev = 0.2039
WeightSum = 46 Precision = 1.0
Mmistake: Normal Distribution. Mean = 0.7609 StandardDev = 0.4266
WeightSum = 46 Precision = 1.0
Year: Normal Distribution. Mean = 7.2283 StandardDev = 3.7673
WeightSum = 46 Precision = 1.25
Ocause: Normal Distribution. Mean = 0.3696 StandardDev = 0.4827 WeightSum
= 46 Precision = 1.0
SpecWarn: Normal Distribution. Mean = 0 StandardDev = 0.1667
WeightSum = 46 Precision = 1.0
SpecRep: Normal Distribution. Mean = 0.7826 StandardDev = 0.4125
WeightSum = 46 Precision = 1.0
CNoExtra: Normal Distribution. Mean = 0.1739 StandardDev = 0.379
WeightSum = 46 Precision = 1.0
Ofalsely: Discrete Estimator. Counts = 33 15 1
(Total = 49)
OAdjust: Normal Distribution. Mean = 0.0217 StandardDev = 0.1667 WeightSum
= 46 Precision = 1.0

 Time taken to build model: 0.11

seconds

 === Stratified cross-validation ===

=== Summary ===

 Correctly Classified Instances 93 93

%
Incorrectly Classified Instances 7 7
%
Kappa statistic 0.8598

Mean absolute error
0.095
Root mean squared error
0.2251

239

Relative absolute error
19.1053 %
Root relative squared error
45.1206 %
Total Number of Instances 100

 === Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure

Class
 0.907 0.043 0.961 0.907
0.933 OWNER
 0.957 0.093 0.898 0.957 0.926
CONTRACTOR

 === Confusion Matrix
===

 a b <-- classified as

 49 5 | a = OWNER

 2 44 | b =
CONTRACTOR

Trial 2
Model Properties
N No
S 1
UseKernel Estimator TRUE

 Model Output

Accuracy
94.00% ±

Kappa
statistic 0.8788

Precision
91.00% ±

Mean
absolute error 0.1093

Recall
94.00% ±

Root mean
squared error 0.2366

Area Under Curve
(AUC)

89.30% ±
Relative
absolute error 21.98%

Root relative
squared error 47.42%

Positive Class Contractor

 True Owner
True

Contractor
Class

Precision
Class F-
Measure

Prediction OWNER 52 4 92.86% 94.55%
Prediction Contractor 2 42 95.45% 93.33%
Class Recall 96.30% 91.30%

240

W-NaiveBayes
 The word weights for each class are:

 OWNER CONTRACTOR

Ptype -0.031096365007504383 -
0.031238496243336272
DSCC -0.05844110428315457 -
0.06286984994356457
DSC -0.05161666360729127 -
0.08075871244879167
N&C -0.057859721195145555 -
0.06488496238098278
Conraise -0.05966235867492273 -
0.05603514603788319
ComImpossible -0.06312776368273439 -
0.1047350702981274
Ochange -0.10120655774405961 -
0.08909943360176982
Mmistake -0.05570287481654815 -
0.061639158646922515
Year -0.01491059488929836 -
0.012939234386678313
Ocause -0.06839580617032322 -
0.09942632047211497
SpecWarn -0.12132437796402092 -
0.06418852009695351
SpecRep -0.05520114400340014 -
0.0539595301684002
CNoExtra -0.0810887375240983 -
0.06560872299753445
Ofalsely -0.07173448382725259 -
0.07630842113847014
OAdjust -0.10863144661024585 -
0.07630842113847014
Outcome 0.0 0.0

 === Run information

===

 Scheme: weka.classifiers.bayes.NaiveBayes -K

Relation: test 1 svm 100 added con

Instances: 100

Attributes: 16

 Ptype

241

 DSCC

 DSC

 N&C

 Conraise

ComImpossible
 Ochange

 Mmistake

 Year

 Ocause

 SpecWarn

 SpecRep

 CNoExtra

 Ofalsely

 OAdjust

 Outcome

Test mode: 10-fold cross-validation

 === Classifier model (full training set)

===

 Naive Bayes Classifier

 Class OWNER: Prior probability = 0.54

 Ptype: 4 Normal

Kernels.
StandardDev = 0.4082 Precision = 1.0

Means = 1.0 2.0 3.0 4.0

Weights = 5.0 4.0 33.0
12.0
DSCC: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 26.0 28.0

DSC: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 44.0 10.0

N&C: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 29.0 25.0

Conraise: 2 Normal

242

Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 13.0 41.0

ComImpossible: 2 Normal Kernels.

StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 52.0 2.0

Ochange: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 48.0 6.0

Mmistake: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 24.0 30.0

Year: 8 Normal
Kernels.
StandardDev = 1.3608 Precision =
1.25
Means = 1.25 2.5 3.75 5.0 6.25 7.5
8.75 11.25
Weights = 1.0 4.0 8.0 3.0 4.0 3.0 6.0
25.0
Ocause: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 51.0 3.0

SpecWarn: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 28.0 26.0

SpecRep: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 8.0 46.0

CNoExtra: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

243

Weights = 30.0 24.0

Ofalsely: Discrete Estimator. Counts = 45 8 4
(Total = 57)
OAdjust: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 41.0 13.0

 Class CONTRACTOR: Prior probability

= 0.46

 Ptype: 3 Normal
Kernels.
StandardDev = 0.2949 Precision = 1.0

Means = 2.0 3.0 4.0

Weights = 17.0 13.0
16.0
DSCC: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 16.0 30.0

DSC: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 2.0 44.0

N&C: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 15.0 31.0

Conraise: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 18.0 28.0

ComImpossible: 2 Normal Kernels.

StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 23.0 23.0

Ochange: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

244

Weights = 44.0 2.0

Mmistake: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 11.0 35.0

Year: 8 Normal
Kernels.
StandardDev = 1.4744 Precision =
1.25
Means = 1.25 2.5 3.75 5.0 6.25 7.5
8.75 11.25
Weights = 5.0 7.0 1.0 5.0 1.0 2.0 9.0
16.0
Ocause: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 29.0 17.0

SpecWarn: 1 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0

Weights = 46.0

SpecRep: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 10.0 36.0

CNoExtra: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 38.0 8.0

Ofalsely: Discrete Estimator. Counts = 33 15 1
(Total = 49)
OAdjust: 2 Normal
Kernels.
StandardDev = 0.1667 Precision = 1.0

Means = 0.0 1.0

Weights = 45.0 1.0

 Time taken to build model: 0.03

seconds

 === Stratified cross-validation ===

245

=== Summary ===

 Correctly Classified Instances 94 94

%
Incorrectly Classified Instances 6 6
%
Kappa statistic 0.8788

Mean absolute error
0.1093
Root mean squared error
0.2366
Relative absolute error
21.9837 %
Root relative squared error
47.4177 %
Total Number of Instances 100

 === Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure

Class
 0.963 0.087 0.929 0.963
0.945 OWNER
 0.913 0.037 0.955 0.913 0.933
CONTRACTOR

 === Confusion Matrix
===

 a b <-- classified as

 52 2 | a = OWNER

 4 42 | b =
CONTRACTOR

246

APPENDIX D (RULE INDUCTION MODELS OUTPUT)

Rule Induction Modeling Output

Decision Tree

Trial 1
Model Properties
Minimum # of Objects
(M)

2

Confidence Factor (C) 0.25
Binary Split FALSE
of Folds 3

Model Output
Accuracy 94.00% ± Kappa statistic 0.8792

Precision
93.96% ±

Mean absolute
error 0.0662

Recall
94.00% ±

Root mean
squared error 0.2352

Area Under Curve (AUC)
91.20% ±

Relative
absolute error 13.31%

Root relative
squared error 47.15%

Positive Class Contractor

True

Owner
True

Contractor
Class Precision

Class F-
Measure

Prediction OWNER 51 3 94.44% 94.44%
Prediction Contractor 3 43 93.48% 93.48%
Class Recall 94.44% 93.48%

W-J48
J48 pruned tree

DSC <= 0
| Ocause <= 0: OWNER
(43.0)
| Ocause > 0:
CONTRACTOR (3.0/1.0)
DSC > 0

247

| SpecWarn <= 0
| | CNoExtra <= 0:
CONTRACTOR (36.0)
| | CNoExtra > 0
| | | DSCC <= 0
| | | | Conraise <= 0:
OWNER (4.0/1.0)
| | | | Conraise > 0:
CONTRACTOR (7.0)
| | | DSCC > 0:
OWNER (2.0)
| SpecWarn > 0:
OWNER (5.0)

Number of Leaves : 7

Size of the tree : 13
=== Run information ===
Scheme:
weka.classifiers.trees.J48
-C 0.25 -M 2
Relation: test 1 svm
100 added con
Instances: 100
Attributes: 16
 Ptype
 DSCC
 DSC
 N&C
 Conraise
 ComImpossible
 Ochange
 Mmistake
 Year
 Ocause
 SpecWarn
 SpecRep
 CNoExtra
 Ofalsely
 OAdjust
 Outcome
Test mode: 10-fold
cross-validation

248

=== Classifier model (full
training set) ===

J48 pruned tree

DSC <= 0
| Ocause <= 0: OWNER
(43.0)
| Ocause > 0:
CONTRACTOR (3.0/1.0)
DSC > 0
| SpecWarn <= 0
| | CNoExtra <= 0:
CONTRACTOR (36.0)
| | CNoExtra > 0
| | | DSCC <= 0
| | | | Conraise <= 0:
OWNER (4.0/1.0)
| | | | Conraise > 0:
CONTRACTOR (7.0)
| | | DSCC > 0:
OWNER (2.0)
| SpecWarn > 0:
OWNER (5.0)
Number of Leaves : 7
Size of the tree : 13
Time taken to build
model: 0.11 seconds
=== Stratified cross-
validation ===
=== Summary ===
Correctly Classified
Instances 94
94 %
Incorrectly Classified
Instances 6
6 %
Kappa statistic
0.8792
Mean absolute error
0.0662
Root mean squared error
0.2352

249

Relative absolute error
13.3147 %
Root relative squared
error 47.149 %
Total Number of
Instances 100
=== Detailed Accuracy
By Class ===
TP Rate FP Rate
Precision Recall F-
Measure Class
 0.944 0.065 0.944
0.944 0.944 OWNER
 0.935 0.056 0.935
0.935 0.935
CONTRACTOR
=== Confusion Matrix
===
 a b <-- classified as
 51 3 | a = OWNER
 3 43 | b =
CONTRACTOR

250

AD Tree

Trial 1
Model Properties
Number of
Boosting Iterations

10

Model Output

Accuracy
95.00% ±

Kappa
statistic 0.9397

Precision
95.33% ±

Mean
absolute
error 0.0915

Recall

94.88% ±

Root
mean
squared
error 0.1563

Area Under Curve
(AUC)

93.20% ±
Relative
absolute
error 18.39%

Root
relative
squared
error 31.32%

Positive Class Contractor

 True Owner
True

Contractor
Class

Precision
Class F-
Measure

Prediction OWNER 53 4 92.98% 95.50%
Prediction Contractor 1 42 97.67% 94.38%
Class Recall 98.15% 91.30%

== Run information
===
Scheme: weka.classifiers.trees.ADTree -B 10 -E -3
Relation: test 1 svm 100 added con
Instances: 100
Attributes: 16
 Ptype
 DSCC
 DSC
 N&C
 Conraise
 ComImpossible

251

 Ochange
 Mmistake
 Year
 Ocause
 SpecWarn
 SpecRep
 CNoExtra
 Ofalsely
 OAdjust
 Outcome
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
Alternating decision tree:
: -0.079
| (1)DSC < 0.5: -1.289
| | (3)ComImpossible < 0.5: -
1.793
| | (3)ComImpossible >= 0.5:
1.469
| (1)DSC >= 0.5: 0.778
| | (2)CNoExtra < 0.5: 2.141
| | (2)CNoExtra >= 0.5: -
0.902
| | | (7)DSCC < 0.5: 0.177
| | | | (8)Conraise < 0.5: -
0.492
| | | | (8)Conraise >= 0.5:
0.55
| | | (7)DSCC >= 0.5: -0.754
| | (5)N&C < 0.5: -0.355
| | (5)N&C >= 0.5: 0.725
| (4)SpecWarn < 0.5: 0.373
| (4)SpecWarn >= 0.5: -1.002
| (6)Ocause < 0.5: -0.44
| (6)Ocause >= 0.5: 0.474
Legend: -ve = OWNER, +ve
= CONTRACTOR
Tree size (total number of
nodes): 25
Leaves (number of predictor
nodes): 17

252

Time taken to build model: 0.06 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
97 97 %
Incorrectly Classified
Instances 3 3
%
Kappa statistic
0.9397
Mean absolute error
0.0915
Root mean squared error
0.1563
Relative absolute error
18.3872 %
Root relative squared error
31.3185 %
Total Number of Instances
100
=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision
Recall F-Measure Class 7
 0.963 0.022 0.981
0.963 0.972 OWNER
 0.978 0.037 0.957
0.978 0.968
CONTRACTOR 13

=== Confusion Matrix ===

 a b <-- classified as
 52 2 | a = OWNER
 1 45 | b = CONTRACTOR

253

Trial 2
Model Properties
Number of
Boosting Iterations

15 and 20

Model Output
Accuracy 97.80% ± Kappa statistic 0.9798

Precision
97.99% ±

Mean absolute
error 0.0727

Recall
94.00% ±

Root mean
squared error 0.1356

Area Under Curve
(AUC)

98.00% ±
Relative
absolute error 14.62%

Root relative
squared error 27.19%

Positive Class Contractor

 True Owner
True

Contractor
Class Precision

Class F-
Measure

Prediction
OWNER

53 1 98.15% 98.15%

Prediction
Contractor

1 45 97.83% 97.83%

Class Recall 98.15% 97.83%

=== Run information ===

Scheme: weka.classifiers.trees.ADTree -B 15 -E -3
Relation: test 1 svm 100 added con
Instances: 100
Attributes: 16
 Ptype
 DSCC
 DSC
 N&C
 Conraise
 ComImpossible
 Ochange
 Mmistake
 Year
 Ocause
 SpecWarn
 SpecRep

254

 CNoExtra
 Ofalsely
 OAdjust
 Outcome
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
Alternating decision tree:

: -0.079
| (1)DSC < 0.5: -1.289
| | (3)ComImpossible < 0.5: -
2.173
| | (3)ComImpossible >= 0.5:
1.756
| (1)DSC >= 0.5: 0.778
| | (2)CNoExtra < 0.5: 2.141
| | (2)CNoExtra >= 0.5: -
0.902
| | | (7)DSCC < 0.5: 0.177
| | | | (8)Conraise < 0.5: -
0.492
| | | | (8)Conraise >= 0.5:
0.55
| | | | | (9)SpecWarn < 0.5:
0.579
| | | | | (9)SpecWarn >=
0.5: -0.223
| | | | (12)Ocause < 0.5: -
0.217
| | | | (12)Ocause >= 0.5:
0.403
| | | (7)DSCC >= 0.5: -0.754
| | | (10)N&C < 0.5: -0.397
| | | (10)N&C >= 0.5: 0.285
| | (5)N&C < 0.5: -0.355
| | (5)N&C >= 0.5: 0.725
| | | (11)SpecWarn < 0.5:
0.476
| | | (11)SpecWarn >= 0.5: -
0.164
| (4)SpecWarn < 0.5: 0.373
| (4)SpecWarn >= 0.5: -1.002
| (6)Ocause < 0.5: -0.44

255

| (6)Ocause >= 0.5: 0.474
Legend: -ve = OWNER, +ve
= CONTRACTOR
Tree size (total number of
nodes): 37
Leaves (number of predictor
nodes): 25

Time taken to build model:
0.05 seconds

=== Stratified cross-validation
===
=== Summary ===

Correctly Classified Instances
99 99 %
Incorrectly Classified
Instances 1 1
%
Kappa statistic
0.9798
Mean absolute error
0.0727 7
Root mean squared error
0.1356
Relative absolute error
14.6204 % 13
Root relative squared error
27.1865 %
Total Number of Instances
100
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision
Recall F-Measure Class
 1 0.022 0.982 1
0.991 OWNER
 0.978 0 1
0.978 0.989
CONTRACTOR
=== Confusion Matrix ===
 a b <-- classified as
 54 0 | a = OWNER
 1 45 | b = CONTRACTOR

256

PART

Trial 1
Model Properties
Minimum # of
Objects (M)

2

Confidence Factor
(C)

0.25

Binary Split FALSE
of Folds 3
Model Output

Accuracy
95.00% ±

Kappa
statistic 0.8792

Precision
94.33% ±

Mean
absolute
error 0.0662

Recall
96.00% ±

Root mean
squared
error 0.2204

Area Under Curve
(AUC)

95.60% ±
Relative
absolute
error 12.51%

Root relative
squared
error 44.17%

Positive Class Contractor

 True Owner
True

Contractor
Class

Precision
Class F-
Measure

Prediction OWNER 51 2 96.23% 95.33%
Prediction
Contractor

3 44 93.62% 94.62%

Class Recall 94.44% 95.65%

W-PART
PART decision list

DSC <= 0 AND
Ocause <= 0: OWNER (43.0)
SpecWarn <= 0
AND
CNoExtra <= 0: CONTRACTOR
(38.0)
SpecWarn <= 0

257

AND

DSCC <= 0 AND
Conraise > 0: CONTRACTOR (7.0)
: OWNER (12.0/1.0)
Number of Rules : 4
=== Run information ===
Scheme: weka.classifiers.rules.PART -M 2 -C 0.25
-Q 1
Relation: test 1 svm 100 added
con
Instances: 100
Attributes: 16
 Ptype
 DSCC
 DSC
 N&C
 Conraise

ComImpossible
 Ochange
 Mmistake
 Year
 Ocause
 SpecWarn
 SpecRep
 CNoExtra
 Ofalsely
 OAdjust
 Outcome
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
PART decision list

DSC <= 0 AND
Ocause <= 0: OWNER (43.0)
SpecWarn <= 0 AND
CNoExtra <= 0: CONTRACTOR (38.0)
SpecWarn <= 0 AND
DSCC <= 0 AND
Conraise > 0: CONTRACTOR (7.0)
: OWNER (12.0/1.0)

258

Number of Rules : 4

Time taken to build model: 0.02
seconds

=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 94 94
%
Incorrectly Classified Instances 6 6
%
Kappa statistic
0.8792
Mean absolute error
0.0622
Root mean squared error
0.2204
Relative absolute error
12.5138 %
Root relative squared error
44.1736 %
Total Number of Instances
100

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure
Class
 0.944 0.065 0.944 0.944
0.944 OWNER
 0.935 0.056 0.935 0.935 0.935
CONTRACTOR
=== Confusion
Matrix ===
 a b <--
classified as
 51 3 | a =
OWNER
 3 43 | b =
CONTRACTOR

259

APPENDIX E (PARSING ALGORITHM)

// CollectionAnalyzer class definition - DocumentAnalyzer class public interface
#include <iostream>
#include <vector>
#include <string>
using namespace std;

// preventing multiple inclusion of the header file
#ifndef COLLECTIONANALYZER_H
#define COLLECTIONANALYZER_H

// defining the DocumentAnalyzer class and prototypes
class CollectionAnalyzer
{
public:

 void setInitialCollection(vector<string>);
 void getInitialCollection()const;
 vector<string> & getInitialCollectionSize();
 void setInitialFrequency(vector<int>);
 void getInitialFrequency() const;
 vector<vector<int>> & getInitialFrequencySize();
 vector<vector<double>> & getpFrequencySize();
 vector<vector<double>> & getpiFrequencySize();
 vector<vector<double>> & getaFrequencySize();
 void print() const;
 void searchLoop(vector<string>, vector<int>, int);
 void approvedMatrix();
 void TermFrequencyWeight();
 void AugmentedTermFrequencyWeight();
 void dfidfCalculation();

private:

 vector <string> iCollection; // a vector of a vector of strings representing the
collection words for each document
 vector <vector<int>> iFrequency; // a vector of a vector of integers storing the
frequency of occurrence of each collection word of each document
 vector <vector<double>> piFrequency; // a vector holding the weighted term
frequencies.
 vector <vector<double>> aFrequency; // a vector holding the augmented
frequencies of terms.

260

 vector <string> pCollection; // a vector of a vector of strings representing the
processed matrix of collection words for each document
 vector <vector<double>> pFrequency; // a vector of a vector of integers
storing the processed dfidf frequency of occurrence of each collection word of each
document
 vector <int> dfVector; // a vector including document frequency of terms.
 vector <int> NVector; // a vector including collection numbers.
 void addDummyVector();
 void matricAdjustment();
};

#endif

// DocumentAnalyzer class definition - CollectionAnalyzer class public interface
#include <iostream>
#include <vector>
#include <string>
using namespace std;
#include "CollectionAnalyzer.h"
// preventing multiple inclusion of the header file
#ifndef PROJECT_H
#define PROJECT_H
// defining the DocumentAnalyzer class and prototypes
class DocumentAnalyzer
{
public:
 DocumentAnalyzer(string="00");
 ~DocumentAnalyzer();

 void setOriginalString(string);
 void setWordsVector();
 void getWordsVector()const;
 vector<string> & getWordsVectorSize();
 void setDocumentWordCount();
 int getDocumentWordCount ()const;
 void setDocumentSentencesCount();
 int getDocumentSentencesCount() const;
 void setWordSignificance();
 void getWordSignificance()const;
 void setStartEndCharacters();
 void setUnecessaryWords();
 void setEndOfSentence();
 void setPrefix();

261

 void setCapitalLetters();
 void documentProcessing();
 vector<string> & getInitialWordList();
 void setApprovedValidTermsandWordCount ();
 vector<string> & getApprovedValidTerms();
 vector<int> & getApprovedWordCount();
 void getSentences() const;
 void getValidTerms() const;
 void getWordCount() const;
 vector<string> & getValidTermsSize();
 vector<int> & getWordCountSize();
private:
 int DocumentWordCount; // integer that holds the number of words in a
provided text
 int documentSentencesCount; // integer that holds the number of sentences
in a provided text
 string originalString; // string that intakes the passed string to be processed
 vector <string> words; // a vector that holds all words in the passed text
 vector <vector<string>> sentences; // a vector that holds all sentences of the
passed text
 vector <string> validTerms; // a vector that holds word objects. It includes
words to be further processed
 vector <int> wordCount; // a vector that hold the number of occurancec of
each word int he valid terms
 vector<string> approvedValidTerms; // accepts valid terms that were repeated
more than a certain number of times
 vector<int> approvedWordCount; // accepts valid terms counts that were
repeated more than a certain number of times
 vector<string> startEndCharacters;// a vector that holds characters to be
removed from the start and end of word
 vector<string> unecessaryWords;// a vector that includes words to be
removed from the text before processing
 vector<string> endOfSentence;// a vector that includes strings considered to
be end of sentence characters
 vector<string> prefix;// a vector including most known prefixes
 vector<string> capitalLetters;// a vector inlcuding a set of all 26 in the upper
case form.
 vector<double> wordSignificance; // a vector of doubles representing the
signifcance of each repeated term
 int startingcharacter (string &); // a utility function that removes starting
characters
 int endingCharacter (string &); // a utility function that removes ending
characters
 int possisveCheck (string &); // a utility function that removes possisive
characters

262

 int pluralCheck (string &, int); // a utility function that changes a plural forms of
a word
 int checkPlural (string &);
 int endOfSentenceCheck (string &, int); // a utility function that defines he end
of sentence within a text
 int unecessaryWordsCheck (string &); // a utility function that removes
unwanted wards from the text
 void upperToLower (string &); // a utility function that converts all upper case
letters to lower ones
 void sorting (vector<string> &, vector<int> &); // a utility function that performs
a sorting algorithm
};

#endif

// the code utilizes the input/output standard stream, vector, and standard string
classes
#include <fstream> // file stream
using std::ifstream; // input file stream
using std::ofstream; // output file stream
#include <iomanip>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <string>
#include <cmath>
using namespace std;
#include <iostream>
#include <vector>
#include <string>
using namespace std;
//Including header files of DocumentAnalyzer and Word classes
#include "DocumentAnalyzer.h"
#include "CollectionAnalyzer.h"
// declairing member functions
void CollectionAnalyzer::setInitialCollection(vector<string> iC)
{
 for(int i=0; i<iC.size(); i++)
 {
 iCollection.push_back(iC[i]);
 }
}
void CollectionAnalyzer::getInitialCollection()const
{

263

 for(int i=0; i<iCollection.size(); i++)
 {
 cout<<iCollection[i]<<endl;
 }
}
vector<string> & CollectionAnalyzer::getInitialCollectionSize()
{
 return iCollection;
}
void CollectionAnalyzer::setInitialFrequency(vector<int> iF)
{
 iFrequency.push_back(iF);
}
void CollectionAnalyzer::getInitialFrequency()const
{
 for(int i=0; i<iFrequency.size(); i++)
 {
 for(int j=0; j<iFrequency[i].size(); j++)
 {
 cout<<iFrequency[i][j]<" ";
 }
 cout<<endl;
 }
}
vector<vector<int>> & CollectionAnalyzer::getInitialFrequencySize()
{
 return iFrequency;
}
vector<vector<double>> & CollectionAnalyzer::getpFrequencySize()
{
 return pFrequency;
}
vector<vector<double>> & CollectionAnalyzer::getpiFrequencySize()
{
 return piFrequency;
}
vector<vector<double>> & CollectionAnalyzer::getaFrequencySize()
{
 return aFrequency;
}
void CollectionAnalyzer::print() const
{
 for(int n=0; n<iCollection.size(); n++)
 {
 cout<<left<<setw(25)<<iCollection[n]<<" ";

264

 for(int m=0; m<iFrequency.size(); m++)
 {
 cout<<left<<setw(10)<<iFrequency[m][n]<<" ";
 }
 cout<<endl;
 }
}
void CollectionAnalyzer::addDummyVector()
{
 vector<int> tempVector;
 for(int i=0; i<iCollection.size(); i++)
 {
 tempVector.push_back(0);
 }
 iFrequency.push_back(tempVector);
 tempVector.clear();
}
void CollectionAnalyzer::matricAdjustment()
{
 for(int i=0; i<iFrequency.size(); i++)
 {
 int missingData=iCollection.size()- iFrequency[i].size();
 for(int j=0; j<missingData; j++)
 {
 iFrequency[i].push_back(0);
 }
 missingData=0;
 }
}
void CollectionAnalyzer::searchLoop(vector<string> iC, vector<int> iF, int counter)
{
 int tempIndex=0;
 bool tempBool=false;
 addDummyVector();
 for(int i=0; i<iC.size(); i++)
 {
 tempIndex=0;
 for(int j=0; j<iCollection.size(); j++)
 {
 if(iC[i]==iCollection[j])
 {
 tempIndex=j;
 tempBool=true;
 }
 }

265

 if(tempBool==true)
 {
 iFrequency[counter-1][tempIndex]=iF[i];
 }
 if(tempBool==false)
 {
 iCollection.push_back(iC[i]);
 iFrequency[counter-1].push_back(iF[i]);
 }
 tempBool=false;
 }
 matricAdjustment();
}
void CollectionAnalyzer::approvedMatrix()
{
 vector<int> sumOverDocuments;
 vector<string> tempICollection;
 int sum=0;

 for(int i=0; i<iCollection.size(); i++)
 {
 for(int j=0; j<iFrequency.size(); j++)
 {
 sum=sum+iFrequency[j][i];
 }

 sumOverDocuments.push_back(sum);
 sum=0;
 }

 for(int v=0; v<iCollection.size(); v++)
 {
 tempICollection.push_back(iCollection[v]);
 }

 int turn=0;
 bool first=false;
 for(int k=0; k<sumOverDocuments.size(); k++)
 {
 if(sumOverDocuments[k]<3)
 {
 if(k==0)
 {
 first=true;
 iCollection.erase(iCollection.begin());

266

 for(int t=0; t<iFrequency.size(); t++)
 {
 iFrequency[t].erase(iFrequency[t].begin());
 }
 }
 if(first==true)
 {
 if(iCollection[0]==tempICollection[k])
 {
 iCollection.erase(iCollection.begin());
 for(int l=0; l<iFrequency.size(); l++)
 {
 iFrequency[l].erase(iFrequency[l].begin());
 }
 }
 else
 {
 iCollection.erase(iCollection.begin()+k-1);
 for(int l=0; l<iFrequency.size(); l++)
 {
 iFrequency[l].erase(iFrequency[l].begin()+k-
1);
 }
 }
 }
 if(first==false)
 {
 iCollection.erase(iCollection.begin()+(k-turn));
 for(int l=0; l<iFrequency.size(); l++)
 {

 iFrequency[l].erase(iFrequency[l].begin()+(k-turn));
 }
 turn++;
 }
 }
 }
}
// dfidf calculations function
void CollectionAnalyzer::dfidfCalculation()
{
 vector <double> tempdVector;
 vector <double> tempNVector;
 int dfCounter=0;

267

 for(int i=0; i<iCollection.size(); i++)
 {
 for(int j=0; j<iFrequency.size(); j++)
 {
 if(iFrequency[j][i]>0)
 {
 dfCounter++;
 }
 }
 dfVector.push_back(dfCounter);
 NVector.push_back(iFrequency.size());
 dfCounter=0;
 }

 for(int t=0; t<iCollection.size(); t++)
 {
 double dN=0.0;
 double dF=0.0;
 double tempf=0.0;
 dN=static_cast< double >(NVector[t]);
 dF=static_cast< double >(dfVector[t]);
 tempf=log10(dN)-log10(dF);
 tempdVector.push_back(tempf);
 }

 vector <double> tempPFrequency;
 for(int r=0; r<iCollection.size(); r++)
 {
 tempPFrequency.push_back(0.0);
 }
 for(int u=0; u<piFrequency.size(); u++)
 {
 pFrequency.push_back(tempPFrequency);
 }
 tempPFrequency.clear();

 double pf=0.0;
 for(int x=0; x<iCollection.size(); x++)
 {
 for(int z=0; z<piFrequency.size(); z++)
 {
 if(iFrequency[z][x]>0)
 {
 pf=piFrequency[z][x]*tempdVector[x];
 pFrequency[z][x]=pf;

268

 }
 }
 }
}
static double Log10(double d);
void CollectionAnalyzer::TermFrequencyWeight()
{
 double tempf=0.0;
 double l=0.0;
 vector <double> tempPiFrequency;
 for(int r=0; r<iCollection.size(); r++)
 {
 tempPiFrequency.push_back(0.0);
 }
 for(int u=0; u<iFrequency.size(); u++)
 {
 piFrequency.push_back(tempPiFrequency);
 }
 tempPiFrequency.clear();

 for (int i=0; i<iCollection.size(); i++)
 {
 for(int j=0; j<iFrequency.size(); j++)
 {
 if(iFrequency[j][i]>0)
 {
 tempf = static_cast< double >(iFrequency[j][i]);
 l=log10(tempf);
 piFrequency[j][i]=1+l;
 }
 }
 }
}
void CollectionAnalyzer::AugmentedTermFrequencyWeight()
{
 double tempaf=0.0;
 double l=0.0;
 vector <double> tempaiFrequency;
 for(int r=0; r<iCollection.size(); r++)
 {
 tempaiFrequency.push_back(0.0);
 }
 for(int u=0; u<iFrequency.size(); u++)
 {
 aFrequency.push_back(tempaiFrequency);

269

 }
 tempaiFrequency.clear();

 int maxFrequency=0;
 vector <int> tempMaxFrequency;
 for (int i=0; i<iCollection.size(); i++)
 {
 for(int j=0; j<iFrequency.size(); j++)
 {
 if(iFrequency[j][i]>maxFrequency)
 {
 maxFrequency=iFrequency[j][i];
 }
 tempMaxFrequency.push_back(maxFrequency);
 }
 }

 double tempA=0.0;
 double tempAugmentedFrequency=0.0;
 for (int c=0; c<iCollection.size(); c++)
 {
 for (int h=0; h<iFrequency.size(); h++)
 {
 tempA=0.5+((0.5*iFrequency[h][c])/tempMaxFrequency[c]);
 aFrequency[h][c]=tempA;
 }
 }

}

// DocumentAnalyzer member-function definitions - DocumentAnalyzer class
member-function implementation
// the code utilizes the input/output standard stream, vector, and standard string
classes
#include <fstream> // file stream
using std::ifstream; // input file stream
using std::ofstream; // output file stream
#include <iomanip>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <string>
#include <cmath>
using namespace std;

270

#include <iostream>
#include <vector>
#include <string>
using namespace std;
//Including header files of DocumentAnalyzer and Word classes
#include "DocumentAnalyzer.h"
//Constructor that takes in as an argument the initial string to set its initial private
data members
DocumentAnalyzer::DocumentAnalyzer(string s)
{
 setOriginalString(s);
 setWordsVector();
 setDocumentWordCount();
 setDocumentSentencesCount();
 setStartEndCharacters();
 setUnecessaryWords();
 setEndOfSentence();
 setPrefix();
 setCapitalLetters();
}
DocumentAnalyzer::~DocumentAnalyzer()
{
}
// a set function for the initial string
void DocumentAnalyzer::setOriginalString(string s)
{
 originalString = s;
}
void DocumentAnalyzer::setWordsVector()
{
 int indexOfSpace;
 string word;

 for(int i=0; i<originalString.length(); i++)
 {
 indexOfSpace=originalString.find(" ");
 word=originalString.substr(0,indexOfSpace);
 if(indexOfSpace>0)
 {
 words.push_back(word);

 originalString=originalString.substr(indexOfSpace+1,originalString.length()-1);
 i=0;
 }
 else

271

 {

 originalString=originalString.substr(indexOfSpace+1,originalString.length()-1);
 i=0;
 }
 }
}
//a get function that prints out the words of a document
void DocumentAnalyzer::getWordsVector() const
{
 for(int k=0; k<words.size(); k++)
 cout<<words[k]<<endl;
}
vector<string> & DocumentAnalyzer::getWordsVectorSize()
{
 return words;
}
// a set function to set the private data member DocumentWordCount
void DocumentAnalyzer::setDocumentWordCount()
{
 DocumentWordCount = words.size();
}
// a get function that returns the number of words in a text
int DocumentAnalyzer::getDocumentWordCount() const
{
 return DocumentWordCount;
}
// a get function to return an aliace of the valid terms vector
vector<string> & DocumentAnalyzer::getValidTermsSize()
{
 return validTerms;
}
// a get function to return an aliace of the wordCount vector
vector<int> & DocumentAnalyzer::getWordCountSize()
{
 return wordCount;
}
// a set function to set the private data memebr startEndCharacters vector
void DocumentAnalyzer::setStartEndCharacters()
{
 ifstream inCharFile("startendchar.txt", ios::in); // declairing the output file
 // exit program if ifstream could not open file
 if (!inCharFile)
 {
 cerr << "File could not be opened" << endl;

272

 exit(1);
 } // end if

 string end;
 while(inCharFile>>end)
 {
 startEndCharacters.push_back(end);
 }
}
// a set function to set the private data memebr unecessaryWords vector
void DocumentAnalyzer::setUnecessaryWords()
{
 ifstream inUnWordFile("unecessaryWords.txt", ios::in); // declairing the
output file
 // exit program if ifstream could not open file
 if (!inUnWordFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if

 string unword;

 while(inUnWordFile>>unword)
 {
 unecessaryWords.push_back(unword);
 }
}
// a set function to set the private data memebr endOfSentence vector
void DocumentAnalyzer::setEndOfSentence()
{
 ifstream inEndSentFile("endsentence.txt", ios::in); // declairing the output file
 // exit program if ifstream could not open file
 if (!inEndSentFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 string endsent;
 while(inEndSentFile>>endsent)
 {
 endOfSentence.push_back(endsent);
 }
}
// a set function to set the private data memebr prefix vector

273

void DocumentAnalyzer::setPrefix()
{
 ifstream inPrefixFile("prefix.txt", ios::in); // declairing the output file
 // exit program if ifstream could not open file
 if (!inPrefixFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 string pref;
 while(inPrefixFile>>pref)
 {
 prefix.push_back(pref);
 }
}
// a set function to set the private data memebr capitalLetters vector
void DocumentAnalyzer::setCapitalLetters()
{
 ifstream inCapFile("capittalletters.txt", ios::in); // declairing the output file
 // exit program if ifstream could not open file
 if (!inCapFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 string cap;
 while(inCapFile>>cap)
 {
 capitalLetters.push_back(cap);
 }
}
// a set function to set the private data memebr documentSentencesCount, which
represents the number of sentences within a text
void DocumentAnalyzer::setDocumentSentencesCount()
{
 documentSentencesCount=0;
}
// a get functionthat returns the private data memebr documentSentencesCount,
which represents the number of sentences within a text
int DocumentAnalyzer::getDocumentSentencesCount() const
{
 return documentSentencesCount;
}
// setting the Word Significance vector
void DocumentAnalyzer::setWordSignificance()

274

{
 double sum=0.0;
 for(int i=0; i<validTerms.size(); i++)
 {
 sum=sum+wordCount[i];
 }
 for(int s=0; s<validTerms.size(); s++)
 {
 double temp=0.0;
 temp=(((static_cast<double>(wordCount[s])/sum))*100);
 wordSignificance.push_back(temp);
 }
}
void DocumentAnalyzer::getWordSignificance() const
{
 for(int i=0; i<wordSignificance.size(); i++)
 {
 cout<<wordSignificance[i];
 }
}
// a utility function that removes starting characters. It takes string by reference and
returns an integer
int DocumentAnalyzer::startingcharacter(string & str)
{
 int counter=0;
 string sub="00";
 sub=str.substr(0,1);

 for(int i=0; i< startEndCharacters.size(); i++) // a loop to check if the first lette
in the word is an unwatnted starting character
 {
 if (sub==startEndCharacters[i])
 {
 counter=1; // if the first letter in the word is an unwatnted starting
character a counter is set to 1
 str=str.substr(1,str.length()-1);
 }
 }
 if (counter == 1)
 return 1; // the function returns 1 if the first lette in the word is an
unwatnted starting character
 else
 return 0; // the function returns 0 if the first lette in the word is not an
unwatnted starting character
}

275

// a utility function that removes ending characters. It takes string by reference and
returns an integer
int DocumentAnalyzer::endingCharacter (string & str)
{
 int counter=0;
 string sub="00";
 sub=str.substr(str.length()-1,1);

 for(int i=0; i< startEndCharacters.size(); i++) // a loop to check if the last lette
in the word is an unwatnted ending character
 {
 if (sub==startEndCharacters[i])
 {
 counter=1; // if the last lette in the word is an unwatnted ending
character a counter is set to 1
 str=str.substr(0,str.length()-1);
 }
 }
 if (counter == 1)
 return 1; // the function returns 1 if the last lette in the word is an
unwatnted ending character
 else
 return 0; // the function returns 0 if the last lette in the word is not an
unwatnted ending character
}
// a utility function that removes possisive characters. It takes string by reference and
returns an integer
int DocumentAnalyzer::possisveCheck(string & str)
{
 int counter=0;
 if (str.length()>1)
 {
 string last="00";
 string beforelast="00";
 last=str.substr(str.length()-1,1);
 beforelast=str.substr(str.length()-2,1);
 if (last=="s") // nested if conditions to test if the last two letters of a
word are 's
 {
 if (beforelast=="'"||beforelast=="’"||beforelast=="‘")
 {
 counter=1;
 str=str.substr(0,str.length()-2);
 }
 }

276

 }
 if (counter == 1)
 return 1; // if the last two letters of a word are 's, the function returns 1
 else
 return 0; // if the last two letters of a word are not 's, the function
returns 0
}
// a utility function that changes a plural forms of a word. It takes a sting by reference
and returns an integer
int DocumentAnalyzer::pluralCheck(string & str, int pos)
{
 static vector<string> temp;
 string tempString="00", tempStringIes="00";
 int counter=0;
 if(str.length()>1)
 {
 string last="00", last2="00";
 last=str.substr(str.length()-1,1);
 last2=str.substr(str.length()-2,2);

 if (last=="s"&&last2!="ss")
 {
 bool partOfUnecessaryWors=true;

 for(int i=0; i<unecessaryWords.size(); i++)
 {
 if(str==unecessaryWords[i])
 {
 partOfUnecessaryWors=false;
 break;
 }
 }
 if(partOfUnecessaryWors==true) // if the last letter of a word is
s, the user is prompter to define if the word is in the plural form or not. If yes, he is
prompted to enter the singular form.
 {
 bool pluralCheckBool=true;
 if(temp.size()>=1)
 {
 for(int v=0; v<temp.size(); v++)
 {
 if(str==temp[v])
 {
 pluralCheckBool=false;
 str=temp[v+1];

277

 break;
 }
 }
 }
 if(pluralCheckBool==true)
 {
 char choice='0', confirm='0';

 cout<< "Is the following word in the plural form?
<"<< str <<">"<<endl;

 if(words.size()>=3)
 {
 if(pos==0)
 cout<< "The Word was mentioned in
the following context <"<<words[pos]<<" "<<words[pos+1]<<"
"<<words[pos+2]<<">."<<endl;
 if(pos>0&&pos<words.size()-1)
 cout<< "The Word was mentioned in
the following context <"<<words[pos-1]<<" "<<words[pos]<<"
"<<words[pos+1]<<">."<<endl;
 if(pos==words.size()-1)
 cout<< "The Word was mentioned in
the following context <"<<words[pos-2]<<" "<<words[pos-1]<<"
"<<words[pos]<<">."<<endl;
 }

 cout<< "Please enter the appropriate number
corresponding to your choice\n"
 << "<y> for Yes\n" << "<n> for No\n" <<
endl;
 cin>>choice;

 while(choice!='y'&&choice!='n'&&choice!='Y'&&choice!='N')
 {
 cout<<"You have entered an invalid
choice.\n"<<endl;
 cout<<"Please limit your choice between
<y> or <n>"<<endl;
 cin>>choice;
 }
 if(choice=='y'||choice=='Y')
 {
 temp.push_back(str);
 tempString=str.substr(0,str.length()-1);

278

 tempStringIes=str.substr(str.length()-3,3);
 if(tempStringIes=="ies")
 {
 tempString=str.substr(0,str.length()-
3);
 tempString.append("y");
 }
 cout<<"Is this the singular form of the
word? <"<<tempString<<">\n"
 <<"Please enter the appropriate
number corresponding to your choice\n"
 << "<y> for Yes\n" << "<n> for No\n"
<< endl;
 cin>>confirm;

 while(confirm!='y'&&confirm!='n'&&confirm!='Y'&&confirm!='N')
 {
 cout<<"You have entered an invalid
choice.\n"<<endl;
 cout<<"Please limit your choice
between <y> and <n>"<<endl;
 cin>>confirm;
 }
 if(confirm=='y'||confirm=='Y')
 {
 temp.push_back(tempString);
 str=tempString;
 }
 else
 {
 string newWord="00";
 char check='0';
 cout<< "Please enter the singular
form from the previouse word with no spaces in between\n" << endl;
 cin>>newWord;
 cout<<"Is the word you have entered
is <"<<newWord<<">"<<endl;
 cout<<"Please enter your choice
below:\n" <<"<y> for Yes\n" << "<n> for No\n" <<endl;
 cin>>check;

 while(check!='y'&&check!='n'&&check!='Y'&&check!='N')
 {
 cout<<"You have entered an
invalid choice.\n"<<endl;

279

 cout<<"Please limit your
choice between <y> and <n>"<<endl;
 cin>>check;
 }
 while(check=='n'||check=='N')
 {
 cout<< "Please enter the
singular form from the previouse word with no spaces in between\n" << endl;
 cin>>newWord;
 cout<<"Is the word you have
entered is <"<<newWord<<">"<<endl;
 cout<<"Please enter your
choice below:\n" <<"<y> for Yes\n" << "<n> for No\n"<<endl;
 cin>>check;

 while(check!='y'&&check!='n'&&check!='Y'&&check!='N')
 {
 cout<<"You have
entered an invalid choice.\n"<<endl;
 cout<<"Please limit
your choice between <y> and <n>"<<endl;
 cin>>check;
 }
 }
 temp.push_back(newWord);
 str=newWord;
 counter=1;
 }
 }
 if(choice=='n'||choice=='N')
 {
 tempString=str;
 temp.push_back(str);
 temp.push_back(tempString);
 }
 }
 }
 }
 }
 if (counter == 1)
 {
 return 1; // if the form of the word was changed, the memeber function
returns a 1
 }
 else

280

 return 0; // if the form of the word was not changed, the memeber
function returns a 0
}
// a utility function that changes a word from its plural form into its singular form
without user's feedback. Returns 1
// the tested word has changed, returns 0 if it is unchanged.
int DocumentAnalyzer::checkPlural(string & word)
{
 bool isUnecessary=false;
 bool hasChanged=false;
 for(int i=0; i<unecessaryWords.size();i++)
 {
 if(unecessaryWords[i]==word)
 {
 isUnecessary=true;
 break;
 }
 }
 if(!isUnecessary)
 {
 if(word.substr(word.length()-1,1)=="s")
 {
 if(word.substr(word.length()-
2,2)!="as"&&word.substr(word.length()-2,2)!="is"&&word.substr(word.length()-
2,2)!="os"
 &&word.substr(word.length()-
2,2)!="us"&&word.substr(word.length()-2,2)!="ss")
 {
 if(word.substr(word.length()-3,3)=="ies")
 word=word.substr(0,word.length()-3)+"y";
 else if(word.substr(word.length()-2,2)=="es")
 {
 if(word.substr(word.length()-
4,4)=="sses"||word.substr(word.length()-3,3)=="xes")
 word=word.substr(0,word.length()-2);
 else
 word=word.substr(0,word.length()-1);
 }
 else
 word=word.substr(0,word.length()-1);

 hasChanged=true;
 }
 }
 }

281

 if(hasChanged)
 return 1;
 else
 return 0;
}
// a utility function the tests is a word is at the ned of the sentence or not. It takes a
tring by reference as argument and returns an integer
int DocumentAnalyzer::endOfSentenceCheck(string & str, int pos)
{
 int counter=0;

 if(str.length()>1)
 {
 string last="00";
 bool endOfSentenceBool=true;
 last=str.substr(str.length()-1, 1);

 for (int i=0; i<endOfSentence.size(); i++) // aloop to test if the last letter
of the word is considered as an end of sentence character
 {
 if(last==endOfSentence[i])
 {
 endOfSentenceBool=false;
 }
 }
 if(endOfSentenceBool==false)
 {
 string newWord="00";
 counter=1;
 newWord=str.substr(0, str.length()-1);
 str=newWord; // modifing the passed argument by removing the
end of sentence chracter

 if(last==".") // testing if the end of sentence was a period or not
 {
 for(int k=0; k<prefix.size(); k++) // making sure thatthe
period was not used for a prefix
 {
 if(str==prefix[k])
 counter=0;
 }
 if(counter==1 && words.size()>(pos+1))
 {
 for(int h=0; h<words[pos+1].length(); h++)
 {

282

 string q="00";
 q=words[pos+1].substr(0,1);
 for(int g=0; g<startEndCharacters.size();
g++)
 {
 if(q==startEndCharacters[g])
 {

 words[pos+1]=words[pos+1].substr(1, words[pos+1].length()-1);
 break;
 }
 }
 }
 }
 if(counter==1 && words.size()>(pos+1)) // making sure
thatthe period was not used for abbreviation
 {
 string first="00";
 first=words[pos+1].substr(0, 1);
 for(int z=0; z<capitalLetters.size(); z++)
 {
 if(first==capitalLetters[z])
 {
 counter=1;
 break;
 }
 else
 counter=0;
 }
 }
 }
 }
 }
 if(counter==1)
 return 1; //if the last letter was an end of sentence, the function returns
1
 else
 return 0; //if the last letter was not an end of sentence, the function
returns 0
}
// a utility function to check if the word is an unwanted word or not. The function
takes a string as an argument and returns an integer
int DocumentAnalyzer::unecessaryWordsCheck(string & str)
{
 int counter=0;

283

 for(int i=0; i<unecessaryWords.size(); i++) // a loop to check if the word is
considere as an unecessary word or not
 {
 if(str==unecessaryWords[i])
 counter=1;
 }

 if(counter==1)
 return 1; // if the word was found to be unecessary, the function returns
1
 else
 return 0; // if the word was not found to be unecessary, the function
returns 0
}
// a member function that utilizes the diffeent utility functions of the DocuentAnalyzer
class to process all words and fill the following private data member
// vector <vector<string>> sentences that holds all sentences of the passed text
// vector <Word> validTerms that holds word objects. It includes words to be further
processed
void DocumentAnalyzer::documentProcessing()
{
 vector<string> temp;
 vector <string> tempValidTerms;
 int termCounter=0;

 for(int i=0; i<words.size(); i++) // a loop that iterates through the vector of all
words
 {

 bool fullProcess=true;
 bool endOfSentenceBool=true;
 int wordValidation=0, size=0;

 upperToLower(words[i]); // converting all upper case letters to lower
ones. This is to make sure that if a word is included more than once with lower and
upper case letters, they will be treated the same.
 // code that defines string senseNum and boolean isTagged=false, and
checks if word[i] contains '\'
 // if word[i] contains '\', split word[i] at '\' into word[i] and senseNum and
make isTagged=true
 // a loop used to make sure that the edited word has undergone all
required processing aspects and is ready to be included in the rest of the private
data members.

284

 // the choosen order of pocessing is set in the follwoing manner to save
processing time.
 while(fullProcess==true)
 {
 bool startCharacter=true, endCharacter=true, possisive=true,
plural=true, sentenceTest=true;
 int sC=0, eC=0, pS=0, pL=0, eS=0;
 sC=startingcharacter(words[i]); // processing the word for
starting characters
 if(sC==1)
 startCharacter=false;
 eC=endingCharacter(words[i]); // processing the word for ending
characters
 if(eC==1)
 endCharacter=false;
 pS=possisveCheck(words[i]); // processing the word for possive
check
 if(pS==1)
 possisive=false;
 pL=checkPlural(words[i]); // processing the word for plural check
 if(pL==1)
 plural=false;
 eS=endOfSentenceCheck(words[i], i); // testing if the word is at
the end of a sentence
 if(eS==1)
 {
 sentenceTest=false;
 endOfSentenceBool=false;
 }

 if(startCharacter==true&&endCharacter==true&&possisive==true&&plural==tr
ue&&sentenceTest==true)
 {
 fullProcess=false;
 }
 }
 // code that appends to word[i] its senseNum before inserting word[i]
into the sentences vector of vector and
 // the validTerms vector
 temp.push_back(words[i]); // pushing back the word into a local vector
 if(endOfSentenceBool==false) // testing if the word was at the end of
sentence or not.
 {
 vector <int> sentnecCheckVector;
 int sum=0;

285

 documentSentencesCount++;
 for(int q=0; q<sentences.size(); q++)
 {
 int sentenceEquality=0;
 if(temp.size()==sentences[q].size())
 {
 for(int w=0; w<sentences[q].size(); w++)
 {
 if(temp[w]!=sentences[q][w])
 {
 sentenceEquality=1;
 break;
 }
 }

 sentnecCheckVector.push_back(sentenceEquality);
 }
 }
 if(sentnecCheckVector.size()>=1)
 {
 for(int e=0; e<sentnecCheckVector.size(); e++)
 sum=sum+sentnecCheckVector[e];
 if(sum==sentnecCheckVector.size())
 {
 sentences.push_back(temp); // if the word was at
the end of a sentence, the local vector is pushed back into the private data member
 temp.clear();
 }
 else
 temp.clear();
 }
 else
 {
 sentences.push_back(temp); // if the word was at the end
of a sentence, the local vector is pushed back into the private data member
 temp.clear();
 }
 }
 wordValidation=unecessaryWordsCheck(words[i]); // performing the
unecessary word check
 if(wordValidation==0) // checking if the word is a valid one or not
 {
 bool validTermCheck=true;
 for(int y=0; y<tempValidTerms.size(); y++)
 {

286

 if(words[i]==tempValidTerms[y])
 validTermCheck=false;
 }
 if(validTermCheck==true)
 tempValidTerms.push_back(words[i]); // if the word is a
valid term; it is inlcuded into a local vector.
 }
 }
 for(int a=0; a<tempValidTerms.size(); a++) // a loop to find the number of
repetitions of the valid word
 {
 for(int b=0; b<words.size(); b++)
 {
 if(tempValidTerms[a]==words[b])
 termCounter++;
 }
 validTerms.push_back(tempValidTerms[a]); // including the created
object into the private data member
 wordCount.push_back(termCounter);
 termCounter=0;
 }
 temp.clear();
 tempValidTerms.clear();
 sorting(validTerms, wordCount); // performing a sort algorithm for the private
data memeber that includes instances of objects of the Word class
 setApprovedValidTermsandWordCount();
}
// a utility member function that converts all upper caseletters to lower ones. This is
to make sure that if a word is included more than once with lower and upper case
letters, they will be treated the same.
void DocumentAnalyzer::upperToLower(string & str)
{
 string tempString;
 tempString.clear();
 int stringSize=0;
 stringSize=str.length();
 for(int t=0; t<stringSize; t++) //a loop to iterate through a stringconvering all
upper case letters to lower ones
 {
 string sub="00";
 sub=str.substr(t,1);
 if(sub=="A")
 sub="a";
 if(sub=="B")
 sub="b";

287

 if(sub=="C")
 sub="c";
 if(sub=="D")
 sub="d";
 if(sub=="E")
 sub="e";
 if(sub=="F")
 sub="f";
 if(sub=="G")
 sub="g";
 if(sub=="H")
 sub="h";
 if(sub=="I")
 sub="i";
 if(sub=="J")
 sub="j";
 if(sub=="K")
 sub="k";
 if(sub=="L")
 sub="l";
 if(sub=="M")
 sub="m";
 if(sub=="N")
 sub="n";
 if(sub=="O")
 sub="o";
 if(sub=="P")
 sub="p";
 if(sub=="Q")
 sub="q";
 if(sub=="R")
 sub="r";
 if(sub=="S")
 sub="s";
 if(sub=="T")
 sub="t";
 if(sub=="U")
 sub="u";
 if(sub=="V")
 sub="v";
 if(sub=="W")
 sub="w";
 if(sub=="X")
 sub="x";
 if(sub=="Y")

288

 sub="y";
 if(sub=="Z")
 sub="z";
 tempString.append(sub);
 }
 str=tempString; // modifyingthe initial passed string
}
// a utility function to perform a sorting algorithm
void DocumentAnalyzer::sorting(vector<string> & vecS, vector<int> & vecInt)
{
 for(int i=0; i<vecS.size(); i++)
 {
 int maxVal=0, maxPos=0;
 string maxString="00";
 maxVal=vecInt[i];
 maxPos=i;
 maxString=vecS[i];
 for(int l=(i+1); l<vecInt.size(); l++)
 {
 if(vecInt[l]>maxVal)
 {
 maxVal=vecInt[l];
 maxPos=l;
 maxString=vecS[l];
 }
 }
 vecInt[maxPos]=vecInt[i];
 vecInt[i]=maxVal;
 vecS[maxPos]=vecS[i];
 vecS[i]=maxString;
 }
}
// a member function to return the sentences stored in the private data member
sentences
void DocumentAnalyzer::getSentences() const
{
 cout<<"The sentences within the edited text after editting are: \n"<<endl;
 for(int i=0; i<sentences.size(); i++) // a loop to iterate within the main vector
 {
 for(int k=0; k<sentences[i].size(); k++) // a loop to iterate within each
vector of strings stored at each position in the main vector
 {
 cout<<sentences[i][k]<< " ";
 }
 cout<<"\n"<<endl;

289

 }
}
vector<string> & DocumentAnalyzer::getInitialWordList()
{
 return words;
}
void DocumentAnalyzer::setApprovedValidTermsandWordCount()
{
 for(int i=0; i<validTerms.size(); i++)
 {
 if(wordCount[i]>2)
 {
 approvedValidTerms.push_back(validTerms[i]);
 approvedWordCount.push_back(wordCount[i]);
 }
 }
}
vector<string> & DocumentAnalyzer::getApprovedValidTerms()
{
 return approvedValidTerms;
}
vector<int> & DocumentAnalyzer::getApprovedWordCount()
{
 return approvedWordCount;

}

// Project Main for Finding Potential Collocations within the Inputted Text
#include <fstream> // file stream
using std::ifstream; // input file stream
using std::ofstream; // output file stream
#include <iomanip>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <string>
#include <cmath>
//#include <math>
using namespace std;
// including the altime header file
#include "atltime.h"
#include "DocumentAnalyzer.h"
#include "CollectionAnalyzer.h"

290

// Global Function to calculate the mean
double mean(vector<int> v)
{
 double sum=0;
 for(int i=0; i<v.size(); i++)
 sum+=v[i];
 double mean=sum/v.size();
 return mean;
}
// Global Function to calculate standard deviation
double stdDev(vector<int> v, double mean)
{
 double sum=0;
 for(int i=0; i<v.size(); i++)
 sum+=pow((mean-v[i]),2)/v.size();
 double stdDev=sqrt(sum);
 return stdDev;
}

//Main Function
int main()
{
 //Declairing local variables
 string iS, name="00";
 int wordscount=0, validWindow=0, threshold=0, boarder=0;
 double average=0.0;
 const char *namePtr = 0;
 vector<int> wordCt;
 double avg=0.0;
 double sDev=0.0;
 CTime startTime, endTime;
 //the user is prompted to input the file name
 cout<<"Please enter the file name that contains your data to be analysed."
<<endl;
 cout<<"Make sure that the file is placed within the folder of this project\n in
the Visual Studio Directory."<<endl;
 cout<<"Make sure that the file name is spelled correctly, case-sensitive \n and
includes the extension <*.dat> or <*.txt>." <<endl;
 cin>>name;
 namePtr= name.data (); // casting the string into a constant character pointer
to be used
 ifstream inClientFile(namePtr, ios::in); // declairing the input file
 // exit program if ifstream could not open file
 if (!inClientFile)
 {

291

 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 ofstream outClientFile("Term Frequency.txt", ios::out); // declairing the
output file
 // exit program if ifstream could not open file
 if (!outClientFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 ofstream outClientFile1("Initial Strings.txt", ios::out); // declairing the output
file
 // exit program if ifstream could not open file
 if (!outClientFile1)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 ofstream outClientFile2("tfid Frequency.txt", ios::out); // declairing the output
file
 // exit program if ifstream could not open file
 if (!outClientFile2)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 ofstream outClientFile3("Weighted Term Frequency.txt", ios::out); //
declairing the output file
 // exit program if ifstream could not open file
 if (!outClientFile3)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 ofstream outClientFile4("Augmented Weighted Term Frequency.txt", ios::out
); // declairing the output file
 // exit program if ifstream could not open file
 if (!outClientFile4)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 const char *filePtr = 0;
 string fileNameStr;

292

 int loopCounter=0;
 CollectionAnalyzer C1;// creating an instance of the class collectionanalyzer
 while(inClientFile>>fileNameStr)
 {
 loopCounter++;
 filePtr=fileNameStr.data();
 ifstream inDataBaseFile(filePtr, ios::in); // declairing the input file
 // exit program if ifstream could not open file
 if (!inDataBaseFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 string tempStr;
 while(inDataBaseFile>>tempStr)
 {
 string ex, space=" ";
 getline(inDataBaseFile, ex);
 iS.append(tempStr);
 iS.append(ex);
 iS.append(space);
 }
 outClientFile1<<iS<<endl;

 outClientFile1<<"===
====================================="<<endl;

 DocumentAnalyzer D1(iS); // creatig an instance of a
DocumentAnalyzer class object
 D1.documentProcessing(); // performing document processing
operations on inputed text
 if(loopCounter==1)
 {
 C1.setInitialCollection(D1.getApprovedValidTerms());
 C1.setInitialFrequency(D1.getApprovedWordCount());
 }
 if(loopCounter>1)
 {
 C1.searchLoop(D1.getApprovedValidTerms(),
D1.getApprovedWordCount(), loopCounter);
 }

 D1.~DocumentAnalyzer();
 iS.clear(); // clearing out the initial string to be ready to recieve a new
one

293

 }

 C1.approvedMatrix();
// printing out the matrix
 for(int n=0; n<C1.getInitialCollectionSize().size(); n++)
 {
 outClientFile<<left<<setw(25)<<C1.getInitialCollectionSize()[n]<<" ";
 for(int m=0; m<C1.getInitialFrequencySize().size(); m++)
 {

 outClientFile<<left<<setw(10)<<C1.getInitialFrequencySize()[m][n]<<" ";
 }
 outClientFile<<endl;
 }

 C1.TermFrequencyWeight();

 for(int o=0; o<C1.getInitialCollectionSize().size(); o++)
 {
 outClientFile3<<left<<setw(25)<<C1.getInitialCollectionSize()[o]<<" ";
 for(int p=0; p<C1.getpiFrequencySize().size(); p++)
 {

 outClientFile3<<left<<setw(10)<<C1.getpiFrequencySize()[p][o]<<" ";
 }
 outClientFile3<<endl;
 }

 C1.dfidfCalculation();

 for(int o=0; o<C1.getInitialCollectionSize().size(); o++)
 {
 outClientFile2<<left<<setw(25)<<C1.getInitialCollectionSize()[o]<<" ";
 for(int p=0; p<C1.getpFrequencySize().size(); p++)
 {

 outClientFile2<<left<<setw(10)<<C1.getpFrequencySize()[p][o]<<" ";
 }
 outClientFile2<<endl;
 }

 C1.AugmentedTermFrequencyWeight();
 for(int v=0; v<C1.getInitialCollectionSize().size(); v++)
 {
 outClientFile4<<left<<setw(25)<<C1.getInitialCollectionSize()[v]<<" ";

294

 for(int s=0; s<C1.getpFrequencySize().size(); s++)
 {

 outClientFile4<<left<<setw(10)<<C1.getaFrequencySize()[s][v]<<" ";
 }
 outClientFile4<<endl;
 }

 return 0;

}

295

APPENDIX F (WEIGHTING ALGORITHM)

// CollectionAnalyzer class definition - DocumentAnalyzer class public interface
#include <iostream>
#include <vector>
#include <string>
using namespace std;
// preventing multiple inclusion of the header file
#ifndef COLLECTIONANALYZER_H
#define COLLECTIONANALYZER_H
// defining the DocumentAnalyzer class and prototypes
class CollectionAnalyzer
{
public:
 void setInitialCollection(vector<string>);
 void getInitialCollection()const;
 vector<string> & getInitialCollectionSize();
 void setInitialFrequency(vector<int>);
 void getInitialFrequency() const;
 vector<vector<int>> & getInitialFrequencySize();
 vector<vector<double>> & getpFrequencySize();
 vector<vector<double>> & getpiFrequencySize();
 vector<vector<double>> & getaFrequencySize();
 void print() const;
 void searchLoop(vector<string>, vector<int>, int);
 void approvedMatrix();
 void TermFrequencyWeight();
 void AugmentedTermFrequencyWeight();
 void dfidfCalculation();
 void processOriginalSpace();
 void implementNewSpace();
private:
 vector <string> iCollection; // a vector of a vector of strings representing the
collection words for each document
 vector <vector<int>> iFrequency; // a vector of a vector of integers storing the
frequency of occurrence of each collection word of each document
 vector <vector<double>> piFrequency; // a vector holding the weighted term
frequencies.
 vector <vector<double>> aFrequency; // a vector holding the augmented
frequencies of terms.
 vector <string> pCollection; // a vector of a vector of strings representing the
processed matrix of collection words for each document

296

 vector <vector<double>> pFrequency; // a vector of a vector of integers
storing the processed dfidf frequency of occurrence of each collection word of each
document
 vector <int> dfVector; // a vector including document frequency of terms.
 vector <int> NVector; // a vector including collection numbers.
 void addDummyVector();
 void matricAdjustment();
 vector <string> originalSpace; // a vector of a vector of strings representing
the original space genereated
 vector <vector<int>> originalSpaceFrequency; // a vector of a vector of
integers storing the frequency of occurrence of original space
};
#endif

// DocumentAnalyzer class definition - CollectionAnalyzer class public interface
#include <iostream>
#include <vector>
#include <string>
using namespace std;
#include "CollectionAnalyzer.h"
// preventing multiple inclusion of the header file
#ifndef PROJECT_H
#define PROJECT_H
// defining the DocumentAnalyzer class and prototypes
class DocumentAnalyzer
{
public:
 DocumentAnalyzer(string="00");
 ~DocumentAnalyzer();
 void setOriginalString(string);
 void setWordsVector();
 void getWordsVector()const;
 vector<string> & getWordsVectorSize();
 void setDocumentWordCount();
 int getDocumentWordCount ()const;
 void setDocumentSentencesCount();
 int getDocumentSentencesCount() const;
 void setWordSignificance();
 void getWordSignificance()const;
 void setStartEndCharacters();
 void setUnecessaryWords();
 void setEndOfSentence();
 void setPrefix();
 void setCapitalLetters();

297

 void documentProcessing();
 vector<string> & getInitialWordList();
 void setApprovedValidTermsandWordCount ();
 vector<string> & getApprovedValidTerms();
 vector<int> & getApprovedWordCount();
 void getSentences() const;
 void getValidTerms() const;
 void getWordCount() const;
 vector<string> & getValidTermsSize();
 vector<int> & getWordCountSize();
private:
 // defining the private data memebrs of each object of DocumentAnalyzer
class
 int DocumentWordCount; // integer that holds the number of words in a
provided text
 int documentSentencesCount; // integer that holds the number of sentences
in a provided text
 string originalString; // string that intakes the passed string to be processed
 vector <string> words; // a vector that holds all words in the passed text
 vector <vector<string>> sentences; // a vector that holds all sentences of the
passed text
 vector <string> validTerms; // a vector that holds word objects. It includes
words to be further processed
 vector <int> wordCount; // a vector that hold the number of occurancec of
each word int he valid terms
 vector<string> approvedValidTerms; // accepts valid terms that were repeated
more than a certain number of times
 vector<int> approvedWordCount; // accepts valid terms counts that were
repeated more than a certain number of times
 vector<string> startEndCharacters;// a vector that holds characters to be
removed from the start and end of word
 vector<string> unecessaryWords;// a vector that includes words to be
removed from the text before processing
 vector<string> endOfSentence;// a vector that includes strings considered to
be end of sentence characters
 vector<string> prefix;// a vector including most known prefixes
 vector<string> capitalLetters;// a vector inlcuding a set of all 26 in the upper
case form.
 vector<double> wordSignificance; // a vector of doubles representing the
signifcance of each repeated term
 int startingcharacter (string &); // a utility function that removes starting
characters
 int endingCharacter (string &); // a utility function that removes ending
characters

298

 int possisveCheck (string &); // a utility function that removes possisive
characters
 int pluralCheck (string &, int); // a utility function that changes a plural forms of
a word
 int checkPlural (string &);
 int endOfSentenceCheck (string &, int); // a utility function that defines he end
of sentence within a text
 int unecessaryWordsCheck (string &); // a utility function that removes
unwanted wards from the text
 void upperToLower (string &); // a utility function that converts all upper case
letters to lower ones
 void sorting (vector<string> &, vector<int> &); // a utility function that performs
a sorting algorithm
};

#endif

// the code utilizes the input/output standard stream, vector, and standard string
classes
#include <fstream> // file stream
using std::ifstream; // input file stream
using std::ofstream; // output file stream
#include <iomanip>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <string>
#include <cmath>
//#include <math>
using namespace std;
#include <iostream>
#include <vector>
#include <string>
using namespace std;
//Including header files of DocumentAnalyzer and Word classes
#include "DocumentAnalyzer.h"
#include "CollectionAnalyzer.h"
// declairing member functions
void CollectionAnalyzer::setInitialCollection(vector<string> iC)
{
 for(int i=0; i<iC.size(); i++)
 {
 iCollection.push_back(iC[i]);
 }

299

}
void CollectionAnalyzer::getInitialCollection()const
{
 for(int i=0; i<iCollection.size(); i++)
 {
 cout<<iCollection[i]<<endl;
 }
}
vector<string> & CollectionAnalyzer::getInitialCollectionSize()
{
 return iCollection;
}
void CollectionAnalyzer::setInitialFrequency(vector<int> iF)
{
 iFrequency.push_back(iF);
}
void CollectionAnalyzer::getInitialFrequency()const
{
 for(int i=0; i<iFrequency.size(); i++)
 {
 for(int j=0; j<iFrequency[i].size(); j++)
 {
 cout<<iFrequency[i][j]<" ";
 }
 cout<<endl;
 }
}
vector<vector<int>> & CollectionAnalyzer::getInitialFrequencySize()
{
 return iFrequency;
}
vector<vector<double>> & CollectionAnalyzer::getpFrequencySize()
{
 return pFrequency;
}
vector<vector<double>> & CollectionAnalyzer::getpiFrequencySize()
{
 return piFrequency;
}
vector<vector<double>> & CollectionAnalyzer::getaFrequencySize()
{
 return aFrequency;
}
void CollectionAnalyzer::print() const
{

300

 // printing out the matrix
 for(int n=0; n<iCollection.size(); n++)
 {
 cout<<left<<setw(25)<<iCollection[n]<<" ";
 for(int m=0; m<iFrequency.size(); m++)
 {
 cout<<left<<setw(10)<<iFrequency[m][n]<<" ";
 }
 cout<<endl;
 }
}
void CollectionAnalyzer::addDummyVector()
{
 vector<int> tempVector;
 for(int i=0; i<iCollection.size(); i++)
 {
 tempVector.push_back(0);
 }
 iFrequency.push_back(tempVector);
 tempVector.clear();
}
void CollectionAnalyzer::matricAdjustment()
{
 for(int i=0; i<iFrequency.size(); i++)
 {
 int missingData=iCollection.size()- iFrequency[i].size();
 for(int j=0; j<missingData; j++)
 {
 iFrequency[i].push_back(0);
 }
 missingData=0;
 }
}
void CollectionAnalyzer::searchLoop(vector<string> iC, vector<int> iF, int counter)
{
 int tempIndex=0;
 bool tempBool=false;
 addDummyVector();
 for(int i=0; i<iC.size(); i++)
 {
 tempIndex=0;
 for(int j=0; j<iCollection.size(); j++)
 {
 if(iC[i]==iCollection[j])
 {

301

 tempIndex=j;
 tempBool=true;
 }
 }
 if(tempBool==true)
 {
 iFrequency[counter-1][tempIndex]=iF[i];
 }
 if(tempBool==false)
 {
 iCollection.push_back(iC[i]);
 iFrequency[counter-1].push_back(iF[i]);
 }
 tempBool=false;
 }
 matricAdjustment();
}
void CollectionAnalyzer::approvedMatrix()
{
 vector<int> sumOverDocuments;
 vector<string> tempICollection;
 int sum=0;
 for(int i=0; i<iCollection.size(); i++)
 {
 for(int j=0; j<iFrequency.size(); j++)
 {
 sum=sum+iFrequency[j][i];
 }

 sumOverDocuments.push_back(sum);
 sum=0;
 }
 for(int v=0; v<iCollection.size(); v++)
 {
 tempICollection.push_back(iCollection[v]);
 }
 int turn=0;
 bool first=false;
 for(int k=0; k<sumOverDocuments.size(); k++)
 {
 if(sumOverDocuments[k]<3)
 {
 if(k==0)
 {
 first=true;

302

 iCollection.erase(iCollection.begin());
 for(int t=0; t<iFrequency.size(); t++)
 {
 iFrequency[t].erase(iFrequency[t].begin());
 }
 }
 if(first==true)
 {
 if(iCollection[0]==tempICollection[k])
 {
 iCollection.erase(iCollection.begin());
 for(int l=0; l<iFrequency.size(); l++)
 {
 iFrequency[l].erase(iFrequency[l].begin());
 }
 }
 else
 {
 iCollection.erase(iCollection.begin()+k-1);
 for(int l=0; l<iFrequency.size(); l++)
 {
 iFrequency[l].erase(iFrequency[l].begin()+k-
1);
 }
 }
 }
 if(first==false)
 {
 iCollection.erase(iCollection.begin()+(k-turn));
 for(int l=0; l<iFrequency.size(); l++)
 {

 iFrequency[l].erase(iFrequency[l].begin()+(k-turn));
 }
 turn++;
 }
 }
 }
}
// dfidf calculations function
void CollectionAnalyzer::dfidfCalculation()
{
 vector <double> tempdVector;
 vector <double> tempNVector;
 int dfCounter=0;

303

 for(int i=0; i<iCollection.size(); i++)
 {
 for(int j=0; j<iFrequency.size(); j++)
 {
 if(iFrequency[j][i]>0)
 {
 dfCounter++;
 }
 }
 dfVector.push_back(dfCounter);
 NVector.push_back(iFrequency.size());
 dfCounter=0;
 }
 for(int t=0; t<iCollection.size(); t++)
 {
 double dN=0.0;
 double dF=0.0;
 double tempf=0.0;
 dN=static_cast< double >(NVector[t]);
 dF=static_cast< double >(dfVector[t]);
 tempf=log10(dN)-log10(dF);
 tempdVector.push_back(tempf);
 }
 vector <double> tempPFrequency;
 for(int r=0; r<iCollection.size(); r++)
 {
 tempPFrequency.push_back(0.0);
 }
 for(int u=0; u<piFrequency.size(); u++)
 {
 pFrequency.push_back(tempPFrequency);
 }
 tempPFrequency.clear();
 double pf=0.0;
 for(int x=0; x<iCollection.size(); x++)
 {
 for(int z=0; z<piFrequency.size(); z++)
 {
 if(iFrequency[z][x]>0)
 {
 pf=piFrequency[z][x]*tempdVector[x];
 pFrequency[z][x]=pf;
 }
 }

304

 }
}
void CollectionAnalyzer::implementNewSpace()
{
 int fcounter=0;
 vector<double> tempdf, tempN;
 for(int i=0; i<iCollection.size(); i++)
 {
 tempN.push_back(iFrequency.size()+originalSpaceFrequency.size());
 tempdf.push_back(0.0);
 for(int j=0; j<originalSpace.size(); j++)
 {
 if (iCollection[i]==originalSpace[j])
 {
 for (int n=0; n<originalSpaceFrequency.size();
n++)
 {
 if(originalSpaceFrequency[n][j]>0)
 {
 fcounter++;
 }
 }
 for(int k=0; k<iFrequency.size(); k++)
 {
 if(iFrequency[k][i]>0)
 {
 fcounter++;
 }
 }
 tempdf[i]=fcounter;
 fcounter=0;
 }
 }
 vector<double> tempdVector;
 for(int s=0; s<iCollection.size(); s++)
 {
 double tempf=0.0;
 if(tempdf[s]==0)
 {
 tempdVector.push_back(0.0);
 }
 else
 {
 tempf=log10(tempN[s])-log10(tempdf[s]);
 tempdVector.push_back(tempf);

305

 }
 }
 vector <double> tempPFrequency;
 for(int r=0; r<iCollection.size(); r++)
 {
 tempPFrequency.push_back(0.0);
 }
 for(int u=0; u<piFrequency.size(); u++)
 {
 pFrequency.push_back(tempPFrequency);
 }
 tempPFrequency.clear();

 double pf=0.0;
 for(int x=0; x<iCollection.size(); x++)
 {
 for(int z=0; z<piFrequency.size(); z++)
 {
 if(iFrequency[z][x]>0)
 {
 pf=piFrequency[z][x]*tempdVector[x];
 pFrequency[z][x]=pf;
 }
 }
 }
}
static double Log10(double d);
void CollectionAnalyzer::TermFrequencyWeight()
{
 double tempf=0.0;
 double l=0.0;
 vector <double> tempPiFrequency;
 for(int r=0; r<iCollection.size(); r++)
 {
 tempPiFrequency.push_back(0.0);
 }
 for(int u=0; u<iFrequency.size(); u++)
 {
 piFrequency.push_back(tempPiFrequency);
 }
 tempPiFrequency.clear();

 for (int i=0; i<iCollection.size(); i++)
 {
 for(int j=0; j<iFrequency.size(); j++)

306

 {
 if(iFrequency[j][i]>0)
 {
 tempf = static_cast< double >(iFrequency[j][i]);
 l=log10(tempf);
 piFrequency[j][i]=1+l;
 }
 }
 }
}
void CollectionAnalyzer::AugmentedTermFrequencyWeight()
{
 double tempaf=0.0;
 double l=0.0;
 vector <double> tempaiFrequency;
 for(int r=0; r<iCollection.size(); r++)
 {
 tempaiFrequency.push_back(0.0);
 }
 for(int u=0; u<iFrequency.size(); u++)
 {
 aFrequency.push_back(tempaiFrequency);
 }
 tempaiFrequency.clear();
 int maxFrequency=0;
 vector <int> tempMaxFrequency;
 for (int i=0; i<iCollection.size(); i++)
 {
 for(int j=0; j<iFrequency.size(); j++)
 {
 if(iFrequency[j][i]>maxFrequency)
 {
 maxFrequency=iFrequency[j][i];
 }
 tempMaxFrequency.push_back(maxFrequency);
 }
 }
 double tempA=0.0;
 double tempAugmentedFrequency=0.0;
 for (int c=0; c<iCollection.size(); c++)
 {
 for (int h=0; h<iFrequency.size(); h++)
 {
 tempA=0.5+((0.5*iFrequency[h][c])/tempMaxFrequency[c]);
 aFrequency[h][c]=tempA;

307

 }
 }
}
void CollectionAnalyzer::processOriginalSpace()
{
 ifstream inUnWordFile("Term Frequency.txt", ios::in); // declairing the output
file
 // exit program if ifstream could not open file
 if (!inUnWordFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 string oWord;
 int
f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25,f
26,f27,f28,f29,f30,f31,f32,f33,f34,f35,f36,f37,f38,f39,f40;
 vector <int>
v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15,v16,v17,v18,v19,v20,v21,v22,v
23,v24,v25,v26,v27,v28,v29,v30,v31,v32,v33,v34,v35,v36,v37,v38,v39,v40;
 vector <string> tempSpace;
 while(inUnWordFile>>oWord>>f1>>f2>>f3>>f4>>f5>>f6>>f7>>f8>>f9>>f10>
>f11>>f12>>f13>>f14>>f15>>f16>>f17>>f18>>f19>>f20>>f21>>f22>>f23>>f24>>f2
5>>f26>>f27>>f28>>f29>>f30>>f31>>f32>>f33>>f34>>f35>>f36>>f37>>f38>>f39>
>f40)
 {
 tempSpace.push_back(oWord);
 v1.push_back(f1);
 v2.push_back(f2);
 v3.push_back(f3);
 v4.push_back(f4);
 v5.push_back(f5);
 v6.push_back(f6);
 v7.push_back(f7);
 v8.push_back(f8);
 v9.push_back(f9);
 v10.push_back(f10);
 v11.push_back(f11);
 v12.push_back(f12);
 v13.push_back(f13);
 v14.push_back(f14);
 v15.push_back(f15);
 v16.push_back(f16);
 v17.push_back(f17);
 v18.push_back(f18);

308

 v19.push_back(f19);
 v20.push_back(f20);
 v21.push_back(f21);
 v22.push_back(f22);
 v23.push_back(f23);
 v24.push_back(f24);
 v25.push_back(f25);
 v26.push_back(f26);
 v27.push_back(f27);
 v28.push_back(f28);
 v29.push_back(f29);
 v30.push_back(f30);
 v31.push_back(f31);
 v32.push_back(f32);
 v33.push_back(f33);
 v34.push_back(f34);
 v35.push_back(f35);
 v36.push_back(f36);
 v37.push_back(f37);
 v38.push_back(f38);
 v39.push_back(f39);
 v40.push_back(f40);
 }
 for(int i=0; i<tempSpace.size(); i++)
 {
 originalSpace.push_back(tempSpace[i]);
 }
 originalSpaceFrequency.push_back(v1);
 originalSpaceFrequency.push_back(v2);
 originalSpaceFrequency.push_back(v3);
 originalSpaceFrequency.push_back(v4);
 originalSpaceFrequency.push_back(v5);
 originalSpaceFrequency.push_back(v6);
 originalSpaceFrequency.push_back(v7);
 originalSpaceFrequency.push_back(v8);
 originalSpaceFrequency.push_back(v9);
 originalSpaceFrequency.push_back(v10);
 originalSpaceFrequency.push_back(v11);
 originalSpaceFrequency.push_back(v12);
 originalSpaceFrequency.push_back(v13);
 originalSpaceFrequency.push_back(v14);
 originalSpaceFrequency.push_back(v15);
 originalSpaceFrequency.push_back(v16);
 originalSpaceFrequency.push_back(v17);
 originalSpaceFrequency.push_back(v18);

309

 originalSpaceFrequency.push_back(v19);
 originalSpaceFrequency.push_back(v20);
 originalSpaceFrequency.push_back(v21);
 originalSpaceFrequency.push_back(v22);
 originalSpaceFrequency.push_back(v23);
 originalSpaceFrequency.push_back(v24);
 originalSpaceFrequency.push_back(v25);
 originalSpaceFrequency.push_back(v26);
 originalSpaceFrequency.push_back(v27);
 originalSpaceFrequency.push_back(v28);
 originalSpaceFrequency.push_back(v29);
 originalSpaceFrequency.push_back(v30);
 originalSpaceFrequency.push_back(v31);
 originalSpaceFrequency.push_back(v32);
 originalSpaceFrequency.push_back(v33);
 originalSpaceFrequency.push_back(v34);
 originalSpaceFrequency.push_back(v35);
 originalSpaceFrequency.push_back(v36);
 originalSpaceFrequency.push_back(v37);
 originalSpaceFrequency.push_back(v38);
 originalSpaceFrequency.push_back(v39);
 originalSpaceFrequency.push_back(v40);

}

// DocumentAnalyzer member-function definitions - DocumentAnalyzer class
member-function implementation
// the code utilizes the input/output standard stream, vector, and standard string
classes
#include <fstream> // file stream
using std::ifstream; // input file stream
using std::ofstream; // output file stream
#include <iomanip>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <string>
#include <cmath>
using namespace std;
#include <iostream>
#include <vector>
#include <string>
using namespace std;
//Including header files of DocumentAnalyzer and Word classes

310

#include "DocumentAnalyzer.h"
//Constructor that takes in as an argument the initial string to set its initial private
data members
DocumentAnalyzer::DocumentAnalyzer(string s)
{
 setOriginalString(s);
 setWordsVector();
 setDocumentWordCount();
 setDocumentSentencesCount();
 setStartEndCharacters();
 setUnecessaryWords();
 setEndOfSentence();
 setPrefix();
 setCapitalLetters();
}
DocumentAnalyzer::~DocumentAnalyzer()
{
}
// a set function for the initial string
void DocumentAnalyzer::setOriginalString(string s)
{
 originalString = s;
}
void DocumentAnalyzer::setWordsVector()
{
 int indexOfSpace;
 string word;

 for(int i=0; i<originalString.length(); i++)
 {
 indexOfSpace=originalString.find(" ");
 word=originalString.substr(0,indexOfSpace);
 if(indexOfSpace>0)
 {
 words.push_back(word);

 originalString=originalString.substr(indexOfSpace+1,originalString.length()-1);
 i=0;
 }
 else
 {

 originalString=originalString.substr(indexOfSpace+1,originalString.length()-1);
 i=0;
 }

311

 }
}
//a get function that prints out the words of a document
void DocumentAnalyzer::getWordsVector() const
{
 for(int k=0; k<words.size(); k++)
 cout<<words[k]<<endl;
}
vector<string> & DocumentAnalyzer::getWordsVectorSize()
{
 return words;
}
// a set function to set the private data member DocumentWordCount
void DocumentAnalyzer::setDocumentWordCount()
{
 DocumentWordCount = words.size();
}
// a get function that returns the number of words in a text
int DocumentAnalyzer::getDocumentWordCount() const
{
 return DocumentWordCount;
}
// a get function to return an aliace of the valid terms vector
vector<string> & DocumentAnalyzer::getValidTermsSize()
{
 return validTerms;
}
// a get function to return an aliace of the wordCount vector
vector<int> & DocumentAnalyzer::getWordCountSize()
{
 return wordCount;
}
// a set function to set the private data memebr startEndCharacters vector
void DocumentAnalyzer::setStartEndCharacters()
{
 ifstream inCharFile("startendchar.txt", ios::in); // declairing the output file
 // exit program if ifstream could not open file
 if (!inCharFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if

 string end;

312

 while(inCharFile>>end)
 {
 startEndCharacters.push_back(end);
 }
}
// a set function to set the private data memebr unecessaryWords vector
void DocumentAnalyzer::setUnecessaryWords()
{
 ifstream inUnWordFile("unecessaryWords.txt", ios::in); // declairing the
output file
 // exit program if ifstream could not open file
 if (!inUnWordFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if

 string unword;

 while(inUnWordFile>>unword)
 {
 unecessaryWords.push_back(unword);
 }
}
// a set function to set the private data memebr endOfSentence vector
void DocumentAnalyzer::setEndOfSentence()
{
 ifstream inEndSentFile("endsentence.txt", ios::in); // declairing the output file
 // exit program if ifstream could not open file
 if (!inEndSentFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if

 string endsent;

 while(inEndSentFile>>endsent)
 {
 endOfSentence.push_back(endsent);
 }
}
// a set function to set the private data memebr prefix vector
void DocumentAnalyzer::setPrefix()
{

313

 ifstream inPrefixFile("prefix.txt", ios::in); // declairing the output file
 // exit program if ifstream could not open file
 if (!inPrefixFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if

 string pref;

 while(inPrefixFile>>pref)
 {
 prefix.push_back(pref);
 }
}
// a set function to set the private data memebr capitalLetters vector
void DocumentAnalyzer::setCapitalLetters()
{
 ifstream inCapFile("capittalletters.txt", ios::in); // declairing the output file
 // exit program if ifstream could not open file
 if (!inCapFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if

 string cap;

 while(inCapFile>>cap)
 {
 capitalLetters.push_back(cap);
 }
}
// a set function to set the private data memebr documentSentencesCount, which
represents the number of sentences within a text
void DocumentAnalyzer::setDocumentSentencesCount()
{
 documentSentencesCount=0;
}
// a get functionthat returns the private data memebr documentSentencesCount,
which represents the number of sentences within a text
int DocumentAnalyzer::getDocumentSentencesCount() const
{
 return documentSentencesCount;
}

314

// setting the Word Significance vector
void DocumentAnalyzer::setWordSignificance()
{
 double sum=0.0;
 for(int i=0; i<validTerms.size(); i++)
 {
 sum=sum+wordCount[i];
 }
 for(int s=0; s<validTerms.size(); s++)
 {
 double temp=0.0;
 temp=(((static_cast<double>(wordCount[s])/sum))*100);
 wordSignificance.push_back(temp);
 }
}
void DocumentAnalyzer::getWordSignificance() const
{
 for(int i=0; i<wordSignificance.size(); i++)
 {
 cout<<wordSignificance[i];
 }
}
// a utility function that removes starting characters. It takes string by reference and
returns an integer
int DocumentAnalyzer::startingcharacter(string & str)
{
 int counter=0;
 string sub="00";
 sub=str.substr(0,1);
 for(int i=0; i< startEndCharacters.size(); i++) // a loop to check if the first lette
in the word is an unwatnted starting character
 {
 if (sub==startEndCharacters[i])
 {
 counter=1; // if the first letter in the word is an unwatnted starting
character a counter is set to 1
 str=str.substr(1,str.length()-1);
 }
 }
 if (counter == 1)
 return 1; // the function returns 1 if the first lette in the word is an
unwatnted starting character
 else
 return 0; // the function returns 0 if the first lette in the word is not an
unwatnted starting character

315

}
// a utility function that removes ending characters. It takes string by reference and
returns an integer
int DocumentAnalyzer::endingCharacter (string & str)
{
 int counter=0;
 string sub="00";
 sub=str.substr(str.length()-1,1);
 for(int i=0; i< startEndCharacters.size(); i++) // a loop to check if the last lette
in the word is an unwatnted ending character
 {
 if (sub==startEndCharacters[i])
 {
 counter=1; // if the last lette in the word is an unwatnted ending
character a counter is set to 1
 str=str.substr(0,str.length()-1);
 }
 }
 if (counter == 1)
 return 1; // the function returns 1 if the last lette in the word is an
unwatnted ending character
 else
 return 0; // the function returns 0 if the last lette in the word is not an
unwatnted ending character
}
// a utility function that removes possisive characters. It takes string by reference and
returns an integer
int DocumentAnalyzer::possisveCheck(string & str)
{
 int counter=0;
 if (str.length()>1)
 {
 string last="00";
 string beforelast="00";
 last=str.substr(str.length()-1,1);
 beforelast=str.substr(str.length()-2,1);
 if (last=="s") // nested if conditions to test if the last two letters of a
word are 's
 {
 if (beforelast=="'"||beforelast=="’"||beforelast=="‘")
 {
 counter=1;
 str=str.substr(0,str.length()-2);
 }
 }

316

 }
 if (counter == 1)
 return 1; // if the last two letters of a word are 's, the function returns 1
 else
 return 0; // if the last two letters of a word are not 's, the function
returns 0
}
// a utility function that changes a plural forms of a word. It takes a sting by reference
and returns an integer
int DocumentAnalyzer::pluralCheck(string & str, int pos)
{
 static vector<string> temp;
 string tempString="00", tempStringIes="00";
 int counter=0;
 if(str.length()>1)
 {
 string last="00", last2="00";
 last=str.substr(str.length()-1,1);
 last2=str.substr(str.length()-2,2);

 if (last=="s"&&last2!="ss")
 {
 bool partOfUnecessaryWors=true;

 for(int i=0; i<unecessaryWords.size(); i++)
 {
 if(str==unecessaryWords[i])
 {
 partOfUnecessaryWors=false;
 break;
 }
 }
 if(partOfUnecessaryWors==true) // if the last letter of a word is
s, the user is prompter to define if the word is in the plural form or not. If yes, he is
prompted to enter the singular form.
 {
 bool pluralCheckBool=true;
 if(temp.size()>=1)
 {
 for(int v=0; v<temp.size(); v++)
 {
 if(str==temp[v])
 {
 pluralCheckBool=false;
 str=temp[v+1];

317

 break;
 }
 }
 }
 if(pluralCheckBool==true)
 {
 char choice='0', confirm='0';

 cout<< "Is the following word in the plural form?
<"<< str <<">"<<endl;

 if(words.size()>=3)
 {
 if(pos==0)
 cout<< "The Word was mentioned in
the following context <"<<words[pos]<<" "<<words[pos+1]<<"
"<<words[pos+2]<<">."<<endl;
 if(pos>0&&pos<words.size()-1)
 cout<< "The Word was mentioned in
the following context <"<<words[pos-1]<<" "<<words[pos]<<"
"<<words[pos+1]<<">."<<endl;
 if(pos==words.size()-1)
 cout<< "The Word was mentioned in
the following context <"<<words[pos-2]<<" "<<words[pos-1]<<"
"<<words[pos]<<">."<<endl;
 }

 cout<< "Please enter the appropriate number
corresponding to your choice\n"
 << "<y> for Yes\n" << "<n> for No\n" <<
endl;
 cin>>choice;

 while(choice!='y'&&choice!='n'&&choice!='Y'&&choice!='N')
 {
 cout<<"You have entered an invalid
choice.\n"<<endl;
 cout<<"Please limit your choice between
<y> or <n>"<<endl;
 cin>>choice;
 }
 if(choice=='y'||choice=='Y')
 {
 temp.push_back(str);
 tempString=str.substr(0,str.length()-1);

318

 tempStringIes=str.substr(str.length()-3,3);
 if(tempStringIes=="ies")
 {
 tempString=str.substr(0,str.length()-
3);
 tempString.append("y");
 }
 cout<<"Is this the singular form of the
word? <"<<tempString<<">\n"
 <<"Please enter the appropriate
number corresponding to your choice\n"
 << "<y> for Yes\n" << "<n> for No\n"
<< endl;
 cin>>confirm;

 while(confirm!='y'&&confirm!='n'&&confirm!='Y'&&confirm!='N')
 {
 cout<<"You have entered an invalid
choice.\n"<<endl;
 cout<<"Please limit your choice
between <y> and <n>"<<endl;
 cin>>confirm;
 }
 if(confirm=='y'||confirm=='Y')
 {
 temp.push_back(tempString);
 str=tempString;
 }
 else
 {
 string newWord="00";
 char check='0';
 cout<< "Please enter the singular
form from the previouse word with no spaces in between\n" << endl;
 cin>>newWord;
 cout<<"Is the word you have entered
is <"<<newWord<<">"<<endl;
 cout<<"Please enter your choice
below:\n" <<"<y> for Yes\n" << "<n> for No\n" <<endl;
 cin>>check;

 while(check!='y'&&check!='n'&&check!='Y'&&check!='N')
 {
 cout<<"You have entered an
invalid choice.\n"<<endl;

319

 cout<<"Please limit your
choice between <y> and <n>"<<endl;
 cin>>check;
 }
 while(check=='n'||check=='N')
 {
 cout<< "Please enter the
singular form from the previouse word with no spaces in between\n" << endl;
 cin>>newWord;
 cout<<"Is the word you have
entered is <"<<newWord<<">"<<endl;
 cout<<"Please enter your
choice below:\n" <<"<y> for Yes\n" << "<n> for No\n"<<endl;
 cin>>check;

 while(check!='y'&&check!='n'&&check!='Y'&&check!='N')
 {
 cout<<"You have
entered an invalid choice.\n"<<endl;
 cout<<"Please limit
your choice between <y> and <n>"<<endl;
 cin>>check;
 }
 }
 temp.push_back(newWord);
 str=newWord;
 counter=1;
 }
 }
 if(choice=='n'||choice=='N')
 {
 tempString=str;
 temp.push_back(str);
 temp.push_back(tempString);
 }
 }
 }
 }
 }
 if (counter == 1)
 {
 return 1; // if the form of the word was changed, the memeber function
returns a 1
 }
 else

320

 return 0; // if the form of the word was not changed, the memeber
function returns a 0
}
// a utility function that changes a word from its plural form into its singular form
without user's feedback. Returns 1
// the tested word has changed, returns 0 if it is unchanged.
int DocumentAnalyzer::checkPlural(string & word)
{
 bool isUnecessary=false;
 bool hasChanged=false;
 for(int i=0; i<unecessaryWords.size();i++)
 {
 if(unecessaryWords[i]==word)
 {
 isUnecessary=true;
 break;
 }
 }
 if(!isUnecessary)
 {
 if(word.substr(word.length()-1,1)=="s")
 {
 if(word.substr(word.length()-
2,2)!="as"&&word.substr(word.length()-2,2)!="is"&&word.substr(word.length()-
2,2)!="os"
 &&word.substr(word.length()-
2,2)!="us"&&word.substr(word.length()-2,2)!="ss")
 {
 if(word.substr(word.length()-3,3)=="ies")
 word=word.substr(0,word.length()-3)+"y";
 else if(word.substr(word.length()-2,2)=="es")
 {
 if(word.substr(word.length()-
4,4)=="sses"||word.substr(word.length()-3,3)=="xes")
 word=word.substr(0,word.length()-2);
 else
 word=word.substr(0,word.length()-1);
 }
 else
 word=word.substr(0,word.length()-1);

 hasChanged=true;
 }
 }
 }

321

 if(hasChanged)
 return 1;
 else
 return 0;
}
// a utility function the tests is a word is at the ned of the sentence or not. It takes a
tring by reference as argument and returns an integer
int DocumentAnalyzer::endOfSentenceCheck(string & str, int pos)
{
 int counter=0;
 if(str.length()>1)
 {
 string last="00";
 bool endOfSentenceBool=true;
 last=str.substr(str.length()-1, 1);
 for (int i=0; i<endOfSentence.size(); i++) // aloop to test if the last letter
of the word is considered as an end of sentence character
 {
 if(last==endOfSentence[i])
 {
 endOfSentenceBool=false;
 }
 }
 if(endOfSentenceBool==false)
 {
 string newWord="00";
 counter=1;
 newWord=str.substr(0, str.length()-1);
 str=newWord; // modifing the passed argument by removing the
end of sentence chracter

 if(last==".") // testing if the end of sentence was a period or not
 {
 for(int k=0; k<prefix.size(); k++) // making sure thatthe
period was not used for a prefix
 {
 if(str==prefix[k])
 counter=0;
 }
 if(counter==1 && words.size()>(pos+1))
 {
 for(int h=0; h<words[pos+1].length(); h++)
 {
 string q="00";
 q=words[pos+1].substr(0,1);

322

 for(int g=0; g<startEndCharacters.size();
g++)
 {
 if(q==startEndCharacters[g])
 {

 words[pos+1]=words[pos+1].substr(1, words[pos+1].length()-1);
 break;
 }
 }
 }
 }
 if(counter==1 && words.size()>(pos+1)) // making sure
thatthe period was not used for abbreviation
 {
 string first="00";
 first=words[pos+1].substr(0, 1);
 for(int z=0; z<capitalLetters.size(); z++)
 {
 if(first==capitalLetters[z])
 {
 counter=1;
 break;
 }
 else
 counter=0;
 }
 }
 }
 }
 }
 if(counter==1)
 return 1; //if the last letter was an end of sentence, the function returns
1
 else
 return 0; //if the last letter was not an end of sentence, the function
returns 0
}
// a utility function to check if the word is an unwanted word or not. The function
takes a string as an argument and returns an integer
int DocumentAnalyzer::unecessaryWordsCheck(string & str)
{
 int counter=0;

323

 for(int i=0; i<unecessaryWords.size(); i++) // a loop to check if the word is
considere as an unecessary word or not
 {
 if(str==unecessaryWords[i])
 counter=1;
 }

 if(counter==1)
 return 1; // if the word was found to be unecessary, the function returns
1
 else
 return 0; // if the word was not found to be unecessary, the function
returns 0
}
// a member function that utilizes the diffeent utility functions of the DocuentAnalyzer
class to process all words and fill the following private data member
// vector <vector<string>> sentences that holds all sentences of the passed text
// vector <Word> validTerms that holds word objects. It includes words to be further
processed
void DocumentAnalyzer::documentProcessing()
{
 vector<string> temp;
 vector <string> tempValidTerms;
 int termCounter=0;

 for(int i=0; i<words.size(); i++) // a loop that iterates through the vector of all
words
 {

 bool fullProcess=true;
 bool endOfSentenceBool=true;
 int wordValidation=0, size=0;

 upperToLower(words[i]); // converting all upper case letters to lower
ones. This is to make sure that if a word is included more than once with lower and
upper case letters, they will be treated the same.

 // code that defines string senseNum and boolean isTagged=false, and
checks if word[i] contains '\'
 // if word[i] contains '\', split word[i] at '\' into word[i] and senseNum and
make isTagged=true

 // a loop used to make sure that the edited word has undergone all
required processing aspects and is ready to be included in the rest of the private
data members.

324

 // the choosen order of pocessing is set in the follwoing manner to save
processing time.
 while(fullProcess==true)
 {
 bool startCharacter=true, endCharacter=true, possisive=true,
plural=true, sentenceTest=true;
 int sC=0, eC=0, pS=0, pL=0, eS=0;

 sC=startingcharacter(words[i]); // processing the word for
starting characters
 if(sC==1)
 startCharacter=false;
 eC=endingCharacter(words[i]); // processing the word for ending
characters
 if(eC==1)
 endCharacter=false;
 pS=possisveCheck(words[i]); // processing the word for possive
check
 if(pS==1)
 possisive=false;
 pL=checkPlural(words[i]); // processing the word for plural check
 if(pL==1)
 plural=false;
 eS=endOfSentenceCheck(words[i], i); // testing if the word is at
the end of a sentence
 if(eS==1)
 {
 sentenceTest=false;
 endOfSentenceBool=false;
 }

 if(startCharacter==true&&endCharacter==true&&possisive==true&&plural==tr
ue&&sentenceTest==true)
 {
 fullProcess=false;
 }
 }
 // code that appends to word[i] its senseNum before inserting word[i]
into the sentences vector of vector and
 // the validTerms vector
 temp.push_back(words[i]); // pushing back the word into a local vector
 if(endOfSentenceBool==false) // testing if the word was at the end of
sentence or not.
 {

325

 vector <int> sentnecCheckVector;
 int sum=0;

 documentSentencesCount++;

 for(int q=0; q<sentences.size(); q++)
 {
 int sentenceEquality=0;

 if(temp.size()==sentences[q].size())
 {
 for(int w=0; w<sentences[q].size(); w++)
 {
 if(temp[w]!=sentences[q][w])
 {
 sentenceEquality=1;
 break;
 }
 }

 sentnecCheckVector.push_back(sentenceEquality);
 }
 }
 if(sentnecCheckVector.size()>=1)
 {
 for(int e=0; e<sentnecCheckVector.size(); e++)
 sum=sum+sentnecCheckVector[e];

 if(sum==sentnecCheckVector.size())
 {
 sentences.push_back(temp); // if the word was at
the end of a sentence, the local vector is pushed back into the private data member
 temp.clear();
 }
 else
 temp.clear();
 }
 else
 {
 sentences.push_back(temp); // if the word was at the end
of a sentence, the local vector is pushed back into the private data member
 temp.clear();
 }
 }

326

 wordValidation=unecessaryWordsCheck(words[i]); // performing the
unecessary word check
 if(wordValidation==0) // checking if the word is a valid one or not
 {
 bool validTermCheck=true;
 for(int y=0; y<tempValidTerms.size(); y++)
 {
 if(words[i]==tempValidTerms[y])
 validTermCheck=false;
 }
 if(validTermCheck==true)
 tempValidTerms.push_back(words[i]); // if the word is a
valid term; it is inlcuded into a local vector.
 }
 }

 for(int a=0; a<tempValidTerms.size(); a++) // a loop to find the number of
repetitions of the valid word
 {
 for(int b=0; b<words.size(); b++)
 {
 if(tempValidTerms[a]==words[b])
 termCounter++;
 }
 validTerms.push_back(tempValidTerms[a]); // including the created
object into the private data member
 wordCount.push_back(termCounter);
 termCounter=0;
 }
 temp.clear();
 tempValidTerms.clear();
 sorting(validTerms, wordCount); // performing a sort algorithm for the private
data memeber that includes instances of objects of the Word class
 setApprovedValidTermsandWordCount();
}
// a utility member function that converts all upper caseletters to lower ones. This is
to make sure that if a word is included more than once with lower and upper case
letters, they will be treated the same.
void DocumentAnalyzer::upperToLower(string & str)
{
 string tempString;
 tempString.clear();
 int stringSize=0;
 stringSize=str.length();

327

 for(int t=0; t<stringSize; t++) //a loop to iterate through a stringconvering all
upper case letters to lower ones
 {
 string sub="00";
 sub=str.substr(t,1);
 if(sub=="A")
 sub="a";
 if(sub=="B")
 sub="b";
 if(sub=="C")
 sub="c";
 if(sub=="D")
 sub="d";
 if(sub=="E")
 sub="e";
 if(sub=="F")
 sub="f";
 if(sub=="G")
 sub="g";
 if(sub=="H")
 sub="h";
 if(sub=="I")
 sub="i";
 if(sub=="J")
 sub="j";
 if(sub=="K")
 sub="k";
 if(sub=="L")
 sub="l";
 if(sub=="M")
 sub="m";
 if(sub=="N")
 sub="n";
 if(sub=="O")
 sub="o";
 if(sub=="P")
 sub="p";
 if(sub=="Q")
 sub="q";
 if(sub=="R")
 sub="r";
 if(sub=="S")
 sub="s";
 if(sub=="T")
 sub="t";

328

 if(sub=="U")
 sub="u";
 if(sub=="V")
 sub="v";
 if(sub=="W")
 sub="w";
 if(sub=="X")
 sub="x";
 if(sub=="Y")
 sub="y";
 if(sub=="Z")
 sub="z";
 tempString.append(sub);
 }
 str=tempString; // modifyingthe initial passed string
}
// a utility function to perform a sorting algorithm
void DocumentAnalyzer::sorting(vector<string> & vecS, vector<int> & vecInt)
{
 for(int i=0; i<vecS.size(); i++)
 {
 int maxVal=0, maxPos=0;
 string maxString="00";
 maxVal=vecInt[i];
 maxPos=i;
 maxString=vecS[i];
 for(int l=(i+1); l<vecInt.size(); l++)
 {
 if(vecInt[l]>maxVal)
 {
 maxVal=vecInt[l];
 maxPos=l;
 maxString=vecS[l];
 }
 }
 vecInt[maxPos]=vecInt[i];
 vecInt[i]=maxVal;
 vecS[maxPos]=vecS[i];
 vecS[i]=maxString;
 }
}
// a member function to return the sentences stored in the private data member
sentences
void DocumentAnalyzer::getSentences() const
{

329

 cout<<"The sentences within the edited text after editting are: \n"<<endl;

 for(int i=0; i<sentences.size(); i++) // a loop to iterate within the main vector
 {
 for(int k=0; k<sentences[i].size(); k++) // a loop to iterate within each
vector of strings stored at each position in the main vector
 {
 cout<<sentences[i][k]<< " ";
 }
 cout<<"\n"<<endl;
 }
}
vector<string> & DocumentAnalyzer::getInitialWordList()
{
 return words;
}
void DocumentAnalyzer::setApprovedValidTermsandWordCount()
{
 for(int i=0; i<validTerms.size(); i++)
 {
 if(wordCount[i]>2)
 {
 approvedValidTerms.push_back(validTerms[i]);
 approvedWordCount.push_back(wordCount[i]);
 }
 }
}
vector<string> & DocumentAnalyzer::getApprovedValidTerms()
{
 return approvedValidTerms;
}

vector<int> & DocumentAnalyzer::getApprovedWordCount()
{
 return approvedWordCount;

}

// Project Main for Finding Potential Collocations within the Inputted Text
#include <fstream> // file stream
using std::ifstream; // input file stream
using std::ofstream; // output file stream
#include <iomanip>
#include <cstdlib>

330

#include <iostream>
#include <vector>
#include <string>
#include <cmath>
//#include <math>
using namespace std;
// including the altime header file
#include "atltime.h"
#include "DocumentAnalyzer.h"
#include "CollectionAnalyzer.h"
// Global Function to calculate the mean
double mean(vector<int> v)
{
 double sum=0;
 for(int i=0; i<v.size(); i++)
 sum+=v[i];
 double mean=sum/v.size();
 return mean;
}
// Global Function to calculate standard deviation
double stdDev(vector<int> v, double mean)
{
 double sum=0;
 for(int i=0; i<v.size(); i++)
 sum+=pow((mean-v[i]),2)/v.size();
 double stdDev=sqrt(sum);
 return stdDev;
}
//Main Function
int main()
{
 //Declairing local variables
 string iS, name="00";
 int wordscount=0, validWindow=0, threshold=0, boarder=0;
 double average=0.0;
 const char *namePtr = 0;
 vector<int> wordCt;
 double avg=0.0;
 double sDev=0.0;
 CTime startTime, endTime;
 //the user is prompted to input the file name
 cout<<"Please enter the file name that contains your data to be analysed."
<<endl;
 cout<<"Make sure that the file is placed within the folder of this project\n in
the Visual Studio Directory."<<endl;

331

 cout<<"Make sure that the file name is spelled correctly, case-sensitive \n and
includes the extension <*.dat> or <*.txt>." <<endl;
 cin>>name;
 namePtr= name.data (); // casting the string into a constant character pointer
to be used
 ifstream inClientFile(namePtr, ios::in); // declairing the input file
 // exit program if ifstream could not open file
 if (!inClientFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 ofstream outClientFile2("tfid Frequency.txt", ios::out); // declairing the output
file
 // exit program if ifstream could not open file
 if (!outClientFile2)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 const char *filePtr = 0;
 string fileNameStr;
 int loopCounter=0;
 CollectionAnalyzer C1;// creating an instance of the class collectionanalyzer
 while(inClientFile>>fileNameStr)
 {
 loopCounter++;
 filePtr=fileNameStr.data();
 ifstream inDataBaseFile(filePtr, ios::in); // declairing the input file
 // exit program if ifstream could not open file
 if (!inDataBaseFile)
 {
 cerr << "File could not be opened" << endl;
 exit(1);
 } // end if
 string tempStr;
 while(inDataBaseFile>>tempStr)
 {
 string ex, space=" ";
 getline(inDataBaseFile, ex);
 iS.append(tempStr);
 iS.append(ex);
 iS.append(space);
 }

332

 DocumentAnalyzer D1(iS); // creatig an instance of a
DocumentAnalyzer class object
 D1.documentProcessing(); // performing document processing
operations on inputed text

 if(loopCounter==1)
 {
 C1.setInitialCollection(D1.getApprovedValidTerms());
 C1.setInitialFrequency(D1.getApprovedWordCount());
 }
 if(loopCounter>1)
 {
 C1.searchLoop(D1.getApprovedValidTerms(),
D1.getApprovedWordCount(), loopCounter);
 }

 D1.~DocumentAnalyzer();
 iS.clear(); // clearing out the initial string to be ready to recieve a new
one
 }
 C1.approvedMatrix();
 C1.processOriginalSpace();
 C1.TermFrequencyWeight();
 C1.implementNewSpace();
 for(int o=0; o<C1.getInitialCollectionSize().size(); o++)
 {
 outClientFile2<<left<<setw(25)<<C1.getInitialCollectionSize()[o]<<" ";
 for(int p=0; p<C1.getpFrequencySize().size(); p++)
 {

 outClientFile2<<left<<setw(10)<<C1.getpFrequencySize()[p][o]<<" ";
 }
 outClientFile2<<endl;
 }
 return 0;

}

	2009
	Construction legal support for differing site conditions (DSC) through statistical modeling and machine learning (ML)
	Tarek Said Mahfouz
	Recommended Citation

	Microsoft Word - Dissertation-Tarek Mahfouz 07-01-09 V08

