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ABSTRACT 

Construction is one of the industries with a major contribution to the nation’s 

economy. It is estimated that the world construction market has reached US $5.5 

trillion at the end of 2007 (Harmon 2003). In the U.S., the construction industry 

employs 7.5 million full and part time employees and contributes to nearly $1.2 

trillion to its economy making it the largest single production sector (El-adaway 

2008). With that magnitude, it is not only considered as the backbone of the nations’ 

economy, but also a significant indicator of its advancement, efficiency, and 

success. However, due to the dynamic nature of the construction industry and the 

increasing sophistication and complexity of construction projects, its contribution is 

negatively affected by the increasing number of disputes. Unfortunately, the rate and 

frequency of conflicts has risen with the growing complexity of projects. Modern 

construction projects require increasingly sophisticated construction methods and 

extensive interaction of diversified parties, thus enhancing the likelihood of conflicts 

and disputes.  

Construction disputes are ultimately resolved in courts unless a private 

construction contract calls for other resolution mechanisms. In fact, some in the 

construction industry prefer litigation; however, their preference comes at great cost. 

Despite the numerous advantages of litigation, which includes being the most formal 

and binding process, it has two main shortcomings, which make the process 

undesirable and unsupportive of the growth and development of the construction 

industry. First, depending on the jurisdiction, complex construction disputes may 

take anywhere from two to six years before they reach trials. Second, the prolonged, 
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detailed, factual discovery process makes litigation very expensive due to the need 

for specialized personnel with extensive legal knowledge and construction 

experience, a combined skill set that is not widely available in the industry. In order 

to overcome these major drawbacks that impact the construction industry’s 

advancement and contribution to the nations’ economy, legal decision support 

systems are needed to effectively and efficiently mitigate these shortcomings and in 

turn allow for better control and management of construction projects. 

In construction disputes the initiation of the conflict can be attributed to a 

number of reasons including: change orders, escalation, and differing site 

conditions, etc. Each of these reasons leads to a separate method for addressing 

and handling the disputes and accordingly, each reason can be considered as a 

different dispute type. Among these types, one of the most important and frequently 

occurring disputes is Differing Site Conditions (DSC) which results from contractors 

encountering conditions materially different from those expected or described by the 

owner. This warrants special attention to this kind of dispute due to their potential for 

deviating construction projects from their planned time and cost.   

A number of researchers in Artificial Intelligence (AI) fields have developed 

tools and methodologies for modeling judicial reasoning and predicting the outcomes 

of construction litigation cases in an attempt to provide the above mentioned 

decision support capabilities. Despite the significant contributions of these systems 

to the advancement of legal decision support capabilities in construction, their 

success was limited because they were not based on a detailed analysis of legal 

concepts that govern litigation outcomes. 
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Consequently, the objective of this dissertation is to provide a coherent and 

integrated methodology for construction legal decision support for Differing Site 

Conditions (DSC) disputes through statistical modeling and machine learning. To 

attain this goal, the current study designed and implemented a 4 step methodology 

targeting the following goals: (1) to extract a comprehensive set of legal factors that 

govern DSC litigation outcomes in the construction industry; (2) to devise a litigation 

prediction model for DSC disputes in the construction industry based on the 

extracted set of legal factors; (3) to create a methodology for automated extraction of 

significant legal factors that governs DSC litigation outcomes from case documents; 

and (4) to develop an automated retrieval model for identifying DSC precedent 

cases from a large corpus based on similarity to newly introduced ones. The 4 steps 

of this methodology were implemented incrementally, and each step relied on the 

outcome of its predecessor. 

First, a comprehensive set of significant legal factors that govern DSC 

litigation cases verdicts were extracted through statistical modeling. Binary Probit 

and Logit Choice Models were developed (a) to identify the effect of each extracted 

factor on the prediction of the winning party; (b) to identify the best combination of 

factors with the highest significance on the prediction model; and (c) to perform a 

sensitivity analysis to prioritize the most significant legal factors. Among the main 

findings of this step are (1) in general, cases in which the Federal Government is a 

party of the dispute, judgments are in favor of the government (owner) over 

contractor; (2) “the presence of evident facts that the encountered conditions caused 

a change in the nature and cost of the contract” had the highest impact among 
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variables causing a decrease in the prediction of judgment in favor of the owner, and 

causing an increase of 17.77% in prediction on favor of the contractor; (3) “the 

presence of evident facts that the specifications included a warning against the 

presence of DSC from those conveyed in the contract documents” caused the 

highest increase in the prediction of judgment in favor of the owner amounting to an 

increase of 56.56%; and (4) the development of Binary Probit and Logit Choice 

Models extracted a joint set of 13 statistically significant legal factors related to DSC 

disputes in the construction industry. This set provided the grounds for the other 

three steps of the current research methodology. 

Second, an automated litigation prediction model for DSC disputes in the 

construction industry through machine learning was developed based on the 

identified factors in the first step. The framework under this step incorporates 

analysis of different machine learning methodologies including support vector 

machines (SVM), Naïve Bayes (NB), and rule induction classifiers like Decision 

Trees (DT), Boosted Decision Trees (AD Tree), and PART. Ten machine learning 

models were developed using these machine learning methodologies to evaluate the 

best methodology for predicting litigation outcomes. The analysis of all developed 

models showed that the SVM Kernel Polynomial 3rd degree model has the best 

performance. This model attained an overall prediction accuracy of 98%. 

Third, an automated significant legal factors extraction model for DSC 

disputes in the construction industry through machine learning was developed. The 

framework under this step (1) developed 24 machine learning models in which 4 

weighting schemes namely Term Frequency (tf), Logarithmic Term Frequency (ltf), 
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Augmented Term Frequency (atf), and Term Frequency Inverse Document 

Frequency (tf.idf) were implemented for each type of classifier; and (2) developed 

two C++ algorithms for the preparation of the corpus and implementation of the 

required weighting mechanisms. The highest prediction rate of 84% was attained by 

NB classifier while implementing tf.idf weighting. The model was further validated by 

testing newly un-encountered cases, and a prediction precision of 81.8% was 

attained. 

Finally, the fourth step of the methodology developed an automated machine 

learning model for the retrieval of supporting DSC precedent cases from large corpi. 

This step, therefore, (1) implemented Latent Semantic Analysis algorithm; and (2) 

developed 9 reduced feature spaces with feature sizes of 5, 10, 15, 20, 100, 200, 

300, 400, and 500 for analysis and validation of the implemented algorithm. Among 

the findings of this step are (1) low dimension reduced feature spaces are more 

representative of documents closely related to the domain problem; (2) high 

dimension reduced feature spaces, are more representative to domain problems 

modeling dispersed and unrelated document collections; and (3) LSA reduced 

feature space of 10 features is the best reduced feature space to adopt for 

automating the extraction of similar DSC cases from a large corpus. 

The main research developments of this research contribute to the 

advancement of the current state of the art in construction legal decision support and 

Knowledge Management (KM) in the construction legal domain by developing much 

needed systems for (1) litigation outcomes prediction; (2) automated legal factor 

extraction; and (3) automated precedent case retrieval. Those developments hold 
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promises to decrease the costs of legal experts in the construction industry by 

decreasing time spent on non-value adding tasks such as documents analysis, and 

offering initial estimates of the legal situation of a disputing party; (2) decrease the 

time consumed in the litigation processes; (3) facilitate access to legal knowledge 

needed by practitioners in the construction industry; (4) provide a better 

understanding of the legal consequences of decision making in the construction 

industry; and (5) provide solid support documents and probabilistic measures about 

the strength of a legal situation of a disputing party for better decision making about 

resolution mechanisms. All these expected outcomes have promising potential to 

decrease the negative impact of disputes on the construction industry, and thereby 

creating significant opportunities for the growth of this important sector of the US 

economy.       



1 

CHAPTER 1 

INTRODUCTION 

1.1 Overview: 

The famous English lawyer, statesman and philosopher Francis Bacon (1561-

1626) said that “Man seeketh in society comfort, use and protection,” and law has 

always been a very crucial tool for achieving these important human societal 

objectives. From the time of Hammurabi’s code (the first known legal code in 

history); the way in which humans live has been structured by laws and legal 

systems that regulate how humans operate within the bounds of civil society (Johns 

2007). Laws are rules and customs that the members of a society regard as binding 

and are upheld and enforced by a judiciary (Britannica 2007). As society evolved, 

special branches of law developed to govern different aspects of commerce and 

industry. Of those specialty laws, construction law has evolved as an important field 

due to the importance of the construction industry to modern society. Construction is 

one of the major sectors of industry that has a major impact on the nation’s 

economy. It is estimated that the world construction market has reached US $5.5 

trillion at the end of 2007 (Harmon 2003). Construction works represent 

approximately 4.6% of the nation’s Gross Domestic Product (El-adaway 2008). In 

the U.S., the construction industry employs 7.5 million full and part time employees 

and contributes to nearly US $1.2 trillion to its economy making it the largest single 

production sector (El-adaway 2008). The magnitude of this contribution illustrates 

the importance of the branch of law that regulates this industry. The importance of 
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construction law also stems from the unique nature of each construction project 

which requires further binding regulations that are construed in construction 

contracts and contract conditions (Fisk 2000). Laws and contract clauses represent 

the assuring protocols that protect the rights of each participating party in a 

construction project. However, it is a fact that the execution of each construction 

project often takes place under significantly different conditions from those under 

which it was conceived (Caldas et al. 2002). This implies that frequently projects are 

constructed under conditions that differ from those under which contracts have been 

construed. This dynamic nature of the modern construction projects makes it 

virtually impossible to complete a large construction project without having disputes 

between project parties (Merrill 2006).  

The efficiency of the construction industry has always been negatively 

impacted by conflicts and disputes that unfold and oftentimes escalate as projects 

progress (Merrill 2006). Unfortunately, the rate and frequency of conflicts has risen 

with the growing complexity of projects. Modern construction projects require 

increasingly sophisticated construction methods and extensive interaction of 

diversified parties, thus enhancing the likelihood of conflicts and disputes (Caldas et 

al. 2002, Arditi et al. 1999). In large, complex projects, the impact of these conflicts 

can be very significant, both in terms of the high costs directly associated with the 

process of dispute settlement as well as the cost of the delays and possible 

shutdown of the project while disputes are being settled (Levin 1998).  

As stated by Jervis and Levin (1988) disputes will ultimately have to be 

resolved in courts unless a private construction contract calls for a binding arbitration 
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clause. In fact, some in the construction industry prefer litigation; however, their 

preference comes out at great cost. Despite the numerous advantages of litigation, 

among which it is being a formal and binding process, it has two main shortcomings, 

which make the process undesirable and inefficient for the development of the 

construction industry. First, depending on the jurisdiction, a complex construction 

dispute may take anywhere from two to six years before it reaches trial. Treacy 

(1995) demonstrated that within a period of 8 years from 1984 to 1992, the number 

of construction litigation cases that have been in courts with no final decision for 

three or more years have doubled. In addition, court decisions may be appealed if 

any of the involved parties wish to contest the first judgment. Escalation 

mechanisms of litigation cases for appeals differ from one jurisdiction to the other. 

Generally, court decisions are considered to be final if not appealed to or reversed 

by decisions of a higher court. Second, the prolonged, detailed, factual discovery 

process makes litigation exceedingly expensive due to the need of specialized 

personnel with extensive legal knowledge and construction experience, a combined 

skill set that is not widely available in the industry (Jervis and Levin 1988). 

Practitioners are few in number and thus command high salaries (Cobb and 

Diekmann 1986). A study indicated that fees paid to lawyers and experts in litigation 

had increased 425% within the period of 1979–1990 while settlement and verdicts 

had increased only 309% (Marcotte 1990). It costs more to get less in litigation than 

ever before (Callahan et al. 1990). In addition; Ren et al. (2001) pointed out that 

52% of all construction projects in UK end up with a claim that could reach up to 

£1.2 billion. In US and Canada, 50% of the construction projects claims represent an 
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extra value of 30% of the original contract price, 33% reached up to 60% of the 

original contract price, and others exceeded 100% of the original contract price as 

reported by Cheeks 2003. Peña-Mora et al (2003) estimated the total annual cost of 

construction conflicts and disputes in the U.S. to be $5 billion. 

1.2 Problem Statement 

The increasing numbers of claims and disputes have hampered the 

advancement as well as the growth of the contribution of the construction industry to 

the economy. The negative effects of claims and disputes on the construction 

industry include: (1) the increase in contingencies included in project bids leading to 

the increase of contract values; (2) the decrease in the effectiveness of project 

management causing projects to cost more and take longer; (3) the loss of direct 

communication between involved parties in construction projects which potentially 

leads to additional project inefficiencies; and (4) the deterioration of ongoing and 

future relations between construction parties leading to loss of confidence in current 

and future works (Peña-Mora et al 2003). In addition to these direct impacts of 

claims and disputes, the previously highlighted disadvantages of litigation as a 

method of dispute resolution are causing parties in construction disputes to (1) face 

project delays not only due to long periods required for reaching a final verdict, but 

also due to potential project shutdowns; and (2) carry high financial burdens due to 

high costs and limited number of practitioners needed in the construction industry. 

This necessitates a close look at the dominant judicial system of the United States 

which is Anglo-Saxon legal system, a crucial aspect of which is reliance on legal 
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precedence (Elhadi 2001). Precedence could be defined as the reliance of a court 

on decisions in previous relevant cases. Court rulings in the United States are 

archived in highly sophisticated electronic information storage and retrieval systems 

which (1) are extremely complex; (2) are  time-consuming; and (3) require legal 

knowledge and expertise for effective utilization (Kowalski and Maybury 2000). This 

makes it very difficult for information seekers, especially construction practitioners, to 

make legal decisions or evaluate their legal position in case of conflicts. 

Consequently, as claims and disputes increase, the construction industry 

struggles to find ways to provide legal decision support capabilities to aid in dispute 

mitigation and resolution. Recently, Artificial Intelligence (AI) is being used to 

address increasingly sophisticated and diverse problems in the construction 

industry. It has been extensively utilized to enhance information models, document 

integration, inter-organizational systems, and expert systems (Labidi 1997). A 

number of researchers in AI fields have developed tools and methodologies for 

modeling judicial reasoning and predicting the outcomes of construction litigation 

cases in an attempt to provide the above mentioned decision support capabilities. 

Attempts ranged from initial rule based systems (RBR) (Diekmann and 

Kruppenbacher 1984, Cobb and Diekmann 1986, and Kim 1987), to artificial neural 

networks systems (ANN) (Arditi 1998, Chau 2005, and Chau 2006a), case based 

reasoning systems (CBR) (Arditi and Tokdemir 1999, and Chau 2006b), and hybrid 

systems (Arditi and Pulket 2005, and Chen and Hsu 2007). Despite the significant 

contributions of these systems to the advancement of legal decision support 

capabilities in construction, their success was limited because they were not based 
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on a detailed analysis of legal concepts that govern litigation outcomes. The 

significance of this drawback stems from the fact that the success of decision 

support systems is highly dependent on its input parameters. In an attempt to 

provide advanced construction legal decision support capabilities for the construction 

industry, a detailed analysis of the legally governing factors that are utilized by 

judges in resolving such disputes must be performed. In addition, the legal 

precedence of these factors to one another and to others utilized in the development 

of earlier systems must be explored.  

The input parameter analysis is an important initial step in creating advanced 

construction legal decision support capabilities that needs to be followed with a 

thorough investigation of AI algorithms and methodologies. The importance of this 

investigation stems from the fact that the success of previous construction legal 

decision support system was limited due to the capabilities of the utilized AI 

algorithms. For example, the success of some of the RBR models or expert systems 

in legal decision support was limited due to (Bubbers and Christian 1992): (1) the 

failure to deduce all necessary rules upon which the system operates; and (2) the 

assumption of the existence of a full domain model that captures all required rules 

about a specific claim type. ANN systems achieved improvements over RBR, but as 

Watson (1997) highlighted, their excessive training limits their effectiveness.  

The investigation of advanced AI methodologies and algorithms needs to a 

have a target data set identified for utilization in testing, analysis, and verification. 

While a lot research studies targeted construction claims and disputes in general, 

focusing on a single type of dispute offers the ability to analyze the particular details 
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of the dispute, and thereby enhancing the overall construction legal decision support 

capabilities provided. One of the most significant types of claims and disputes in 

construction projects is the Differing Site Conditions (DSC) disputes that deal with 

contractors facing site conditions that differ materially from those expected or 

described in contract documents. The focus on this type of dispute in the 

development of advanced construction legal support capabilities will provide much 

needed support in this common and very important type of dispute, without loss of 

generality in the approach used for creating those capabilities. Therefore, in order to 

address the increasing need to provide legal decision support in construction claims 

and disputes in general and in DSC disputes in particular, the main focus of this 

study is to thoroughly investigate four important domain problems namely: (1) 

analyzing and identifying significant legal concepts that govern litigation cases 

related to DSC; (2) developing litigation prediction models related to DSC cases; and 

(3) enabling automated extraction of legal concepts affecting litigation outcomes of 

DSC disputes; and (4) exploring and evaluating the suitability of developing an 

automated assisting tools for extracting related president cases from large corpi. 

1.3 Research Objectives 

New advancements in the AI field present real opportunities for advancing the 

management of legal knowledge in the construction industry and developing an 

innovative construction legal support methodology. In order to seize these 

opportunities, the main goal of this dissertation is to develop an integrated and 

coherent methodology for Construction Legal Decision Support through Statistical 
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Modeling and Machine Learning (ML). Since construction disputes cover a wide 

range of causes, the focus of this dissertation, to achieve the above general goal, 

will be directed towards Differing Site Conditions (DSC) disputes in the construction 

industry. To accomplish this, the objectives of this study, along with its relevant 

research questions and hypothesis are summarized as follows: 

Objective 1: To create a solid point of departure for the current study through 

investigating recent research development in the areas of legal decision support, 

statistical modeling, and machine learning in the construction and legal domain. 

Research Questions: (a) What are the new requirements imposed by new and 

emerging contracting methods on construction decision makers? (b) What are 

the characteristics of DSC clauses imposed by formal contract documents like 

American Institute of Architect (AIA), Federal Acquisition Regulations (FAR), and 

Fédération Internationale Des Ingénieurs-Conseils, French for the International 

Federation of Consulting Engineers (FIDIC)? (c) What are the requirements 

imposed on construction decision makers due to DSC? (d) What are the 

capabilities current construction legal support systems? and (e) What are the 

different types of reasoning implemented by machine learning techniques and 

their implementation?  

Hypothesis: The investigation of (1) the latest research developments in the area 

of legal decision support litigation outcome prediction, and text mining 

applications in the construction and legal domains; and (2) the history, types, and 
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legal context of DSC clauses in the construction industry can provide a better 

definition of the domain problems investigated under this study.  

Objective 2: To identify, quantify, and measure the impact of significant legal 

factors on the prediction of outcomes of DSC disputes in the construction 

industry. 

Research Questions: (a) What are the legal factors upon which judges base their 

verdicts in DSC cases within the construction industry? (b) How does each legal 

factor affect the judgment? (c) What are the legal factors that favor the side of an 

owner over a contractor and vice versa? (d) What is legal precedence of these 

factors to one another? (e) What are the statistically significant legal factors 

related to DSC disputes in the construction industry? and (f) Which statistical 

modeling techniques should be investigated further for implementation in the 

current study?  

Hypothesis: Statistical models can be utilized to identify, quantify, and measure 

the impact of legal factors on outcomes prediction of DSC. Those statistical 

models would be able to produce a set of factors that could be utilized for 

developing efficient and effective construction litigation outcome prediction 

models.   

Objective 3: To develop litigation outcome prediction models for DSC disputes in 

the construction industry using Artificial Intelligence (AI) and Machine Learning 

(ML). 
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Research Questions: (a) What are the capabilities and constrains of the available 

AI and ML algorithms? (b) What are the decision variables that need to be 

considered in the model? and (c) Which ML modeling techniques can yield the 

highest accuracy in predicting litigation?  

Hypothesis: Recent AI and ML algorithms can be used to create effective 

litigation outcome prediction models for DSC disputes in the construction 

industry. These litigation outcome prediction models could (1) provide a better 

understanding to decision makers about the legal consequences of their 

decisions; (2) save time and cost related to the need of specialized legal 

expertise (3) help to relieve the negative consequences associated with lengthy 

claims and disputes resolution in the construction industry. 

Objective 4: To create an automated methodology for the extraction of legal 

factors from textual DSC cases in the construction industry using AI and ML. 

Research Questions: (a) Which weighting and search methodologies are best 

suited to create this methodology? (b) What are the capabilities and constraints 

of the available AI and ML algorithms and methodologies? and (c) Which ML 

modeling techniques should be utilized for creating this automated methodology?  

Hypothesis: The automation of significant legal factors extraction from DSC using 

AI and ML algorithms is both feasible and effective. This automated legal factor 

extraction methodology can facilitate the process of reviewing and analyzing 

construction dispute documents and increase the effectiveness of the use of 

legal experts on these cases.  
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Objective 5: To create AI and ML models for automating the extraction of 

relevant precedent cases from large corpi. 

Research Questions: (a) Which weighting and search methodologies are best 

suited to create this model? (b) What types of AI and ML algorithms and 

mechanisms are best suited for searching in large corpi? (c) What are the 

capabilities and constraints of these algorithms in DSC case document corpi? (d) 

How can a large corpus of DSC case documents be represented in a feature 

space? (e) What is the optimal feature space size for the DSC case document 

corpus? (f) What are the DSC case features that need to be considered in the 

model? and (g) Which ML algorithm should be used for creating the DSC 

precedent case automated extraction model?  

Hypothesis: The automation of the relevant DSC case retrieval from large corpi 

using AI and ML algorithms is both feasible and practical. This automated 

precedent case extraction model will provide a much needed tool for 

professionals in construction industry for seeking and retrieving legal knowledge.  

1.4 Research Significance 

The proposed research developments are designed to create construction 

legal decision support capabilities for DSC disputes in the construction industry. The 

primary goals of this research are (1) to identify significant legal factors in DSC 

disputes; (2) to develop a litigation outcome prediction model for DSC disputes in the 

construction industry; (3) to automate the extraction of significant legal concepts that 

affects litigation outcomes of DSC disputes in the construction industry from textual 
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representations of newly encountered cases; and (4) to develop an automated 

extraction tool for relevant precedent DSC cases from large corpi.  The application of 

these research developments holds strong promise to support decision makers in 

the construction industry in understanding the consequences of their legal decision 

regarding DSC disputes through knowledge of their odds of winning or losing a case 

at the litigation level. This will consequently lead to more informed decisions about 

escalating disputes to litigation or settling through other means of dispute resolution 

mechanisms like amicable settlements, mitigation, or arbitration. These 

advancements can also lead to minimizing costs of legal expert support in dispute 

presentation and defense. Finally, the proposed developments can provide assisting 

tools to retrieving supporting precedent cases to encountered DSC disputes in the 

construction industry. This tool is not only anticipated to provide support to 

construction practitioners but also to legal experts in this field.  

1.5 Research Methodology 

In order to achieve the aforementioned objectives, the research work in this 

study is organized into five main research tasks that are designed to: (1) conduct a 

comprehensive literature review of the latest research developments in the 

construction and legal domain related to litigation outcomes prediction and machine 

learning applications; (2) identify and quantify significant legal factors that affect 

DSC litigation outcomes in the construction industry through statistical modeling; (3) 

develop a litigation outcome prediction model for DSC disputes in the construction 

industry using AI and ML; (4) automate significant legal factor extraction model from 
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textual representations of DSC cases using AI and ML; and (5) automate relevant 

precedent cases extraction from large corpi of DSC cases. these main tasks and 

their research products are shown in Figure 1.1. In addition, the following is a brief 

account of these main tasks. 

1.5.1 Task 1: Conduct a Comprehensive Literature Review 

The objective of this task is to investigate the latest research developments to 

form a solid point of departure for the present study. The work under this research 

task is organized in the following four sub-tasks that investigate: 

1. New and emerging litigation outcome prediction models in the 

construction and the legal domains. 

2. New and emerging Case Based Reasoning (CBR) models in the 

construction industry. 

3. The field of Natural Language Processing (NLP) and its applications 

in the construction research. 

4. Machine Learning techniques and their application in construction 

and other fields. 

5. The history, types, nature, characteristics, application, risk allocation, 

and legal concepts behind DSC contract clauses.  

1.5.2 Task 2: Identify and Quantify Significant Legal Factors that Affect DSC 

Litigation Outcomes in the Construction Industry 

The purpose of this task is to identify and quantify the impact of significant 

legal factors that affect litigation prediction outcomes of DSC disputes in the 



14 

construction industry though statistical modeling. The research work under this task 

is organized in the following five sub-tasks that: 

1. Develop a corpus of construction DSC precedent cases. 

2. Identify the set of legal factors that constitute the bases of judgments 

in construction DSC cases. 

3. Create statistical models that relate the likelihood of a DSC cases 

being judged in favor of one party over the other to the identified set of 

legal factors.  

4. Explore possible combinations of factors to find the best combination 

that yields the highest significance to outcome prediction. 

5. Perform a sensitivity analysis to prioritize the identified significant legal 

factors. 

1.5.3 Task 3: Develop a litigation Outcome Prediction Model for DSC Disputes 

in the Construction Industry. 

The purpose of this task is to develop a litigation outcome prediction model 

for DSC disputes in the construction industry through machine learning. The 

research work under this task is organized in the following five sub-tasks that aim to:   

1. Evaluate the different types of reasoning (Induction, Deduction, and 

Abduction) implemented by machine learning techniques and decide on the 

appropriate one for the current task. 
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2. Investigate and evaluate the effectiveness of machine learning techniques, 

namely support Vector Machines (SVM), Naïve Bayes classifiers, rule 

Based Induction Classifiers like Decision trees and ADTrees, and decide on 

the appropriateness of their use for the current task. 

3. Determine the appropriate data representation and transformation method 

for creating the DSC litigation outcome prediction model. 

4. Determine the variables that need to be considered for the model 

development. 

5. Develop and evaluate the effectiveness of different prediction models to 

decide on the best one to be adopted by this task.   

1.5.4 Task 4: Automated Extraction of Significant Legal Factors 

The purpose of this task is to automate the extraction of the significant legal 

factors identified in task 1.5.2 and utilized to create the prediction models in task 

1.5.3 from textual representation of DSC cases in the construction industry using AI 

and ML algorithms. The research work under this task is organized in the following 

five sub-tasks that: 

1. Determine the appropriate weighting and representation mechanisms for 

textual corpi of cases. 

2. Develop an algorithm for the implementation of the chosen weighing and 

representation mechanisms. 
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3. Develop machine learning models (SVM, Naïve Bayes, and Rule Inductive) 

to automate the extraction of significant legal factors based on the chosen 

weighting and representation mechanisms. 

4. Cross-validate the developed models through to decide on the best one to 

adopted for the current task. 

5. Test and validate the best developed model with a set on newly un-

encountered cases. 

1.5.5 Task 5: Automated Extraction of Precedent DSC Cases.  

The purpose of this task is to automate the retrieval of relevant DSC 

precedent cases from large corpi based on similarity measures to other cases using 

ML algorithms and NLP. The research work under this task is organized in the 

following three sub-tasks that aim to: 

1. Investigate and evaluate Latent Semantic Analysis (LSA) methods for 

the retrieval of DSC precedent cases. 

2. Select the best feature space size to be adopted for the developed 

automated extraction method through the development and testing of 

variety of feature space sizes. 

3. Test and validate the developed models to select the one yielding the 

best results.  
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Figure 1.1 Research Tasks and Products 
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1.6 Thesis Organization 

The organization of this thesis and its relation to the main research tasks of 

the current study is illustrated in Figure 1.1. Chapter 2 presents a detailed literature 

review that investigates (1) the latest research in litigation outcomes prediction in the 

construction and legal domains; (2) concerned CBR research in the different areas 

of the construction industry; (3) the field of NLP and its suitability for this research; 

(4) the different reasoning types implementing by ML algorithms; (5) the procedures 

of different ML algorithms like SVM, Naïve Bayes Classifiers, Rule Induction 

Classifiers (Decision Trees and ADTres), and Latent Semantic Analysis (LSA); and 

(6) the history, nature, characteristics, risk allocation, and application of DSC 

clauses in the construction industry. 

Chapter 3 presents the identification and quantification of statistically 

significant legal factors that affect litigation outcomes of DSC disputes in the 

construction industry through (1) the development of a corpus of DSC cases; (2) 

manual extraction of legal factors upon which judges base their verdicts in DSC 

disputes in the construction industry; and (3) the development of statistical discrete 

binary choice models (namely Probit and Logistic models) to quantify the effect of 

the identified legal factors on the likelihood of entitlement. The chapter will compare 

the output of the developed models to (1) identify the effect of each legal factor on 

the prediction of the winning party; (2) identify the best combination of factors with 

the highest prediction precision; and (3) perform a sensitivity analysis to prioritize the 

most significant legal factors. 
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Chapter 4 presents the development of a litigation outcome prediction model 

for DSC disputes in the construction industry using ML. The chapter will aim to (1) 

identify the machine learning models’ parameters; (2) prepare the data for model 

implementation; (3) develop SVM, Naïve Bayes Classifiers, and Rule Induction 

Classifiers litigation outcomes prediction models; and (4) validate and compare the 

developed models. 

Chapter 5 presents the development of an automated significant legal factors 

extraction model using ML. The chapter will (1) identify the extraction model 

parameters such as number of folds, degree, and weighing mechanisms; (2) prepare 

the data for model implementation; (3) develop C++ algorithms for performing the 

data preparation processes and implement weighting schemes; (4) develop SVM, 

Naïve Bayes Classifiers, and Rule Induction Classifiers automated extraction 

models; and (5) validating and comparing the developed models. 

Chapter 6 illustrates the development of an automated relevant precedent 

DSC cases retrieval model using ML and NLP techniques. The chapter will (1) 

investigate the main procedures of LSA algorithms; (2) identify the relevant model 

parameters such as the size of the reduced feature space and internal and external 

weighing mechanisms; (2) prepare the data for model implementation; (3) develop a 

set of different reduced feature spaces; (4) implement LSA automated extraction 

models; and (5) validate and compare the developed models. 

Chapter 7 presents the conclusions, expected contributions, and 

recommended future research of the present research.  
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CHAPTER 2 

LITERATURE REVIEW  

2.1 Introduction 

The present research was motivated by the escalating damages and 

associated costs of claims and disputes on the construction industry. This escalation 

creates a need to devise ways, methodologies, and tools to equitably, economically, 

and rapidly resolve these disputes to minimize their damages on the construction 

industry. Consequently, the focus of this chapter is to create a solid point of 

departure for the current research through providing extensive background 

information about previous researches in the construction and legal domains 

focusing on the use of AI techniques for the developments of litigation outcome 

prediction models. This chapter will also illustrate the use of AI algorithms by 

researches in the construction domain to solve a variety of other problems. 

Furthermore, this chapter will provide background information about the history, 

nature, characteristics, risk allocation, and application of DSC clauses in the 

construction industry.  

2.2 Litigation Outcomes Prediction Models: 

As mentioned earlier in chapter one, instigated from the litigation drawbacks, 

a number of studies in the AI field attempted developing judicial reasoning 

methodologies and prediction tools to support the construction industry. 

As a first attempt to provide a rule based computer system for legal analysis 

and claim assessment, Diekmann and Kruppenbacher 1984 developed an artificial 
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intelligence expert system for the analysis of differing site conditions claims called 

(DSCAS). The system prototype provides legal guidance to whether a claim, on the 

grounds of differing site conditions, has a likelihood of entitlement or not. The system 

was designed based on knowledge pertinent to the Federal Government Standard 

form General Conditions (2B-A, GP-4). Its logic was based on question/answer 

methodology that utilizes “if-then” logic. Each question is pertinent to a specific legal 

rule and each answer defines a different path to be followed within the logic. Legal 

rules of the system were carefully crafted after thorough investigation of the domain 

and lengthy consultation with claim specialists and construction attorneys yielding 22 

modules. Each module included internal rules that would decide on the nature of the 

next module to be addressed within the logical process of deciding a certain claim. 

The DSCAS development was very promising to the use of AI techniques in this 

field. In further development for the DSCAS, Cobb and Diekmann 1986 developed 

knowledge based expert system titled Claim Expert Knowledge System (CEKS) in 

the same domain of DSC analysis to aid inexperienced legal advice seekers. The 

developed system was based on four concepts (1) the Federal Government 

Standard Form 23-A (Rev. 4-75) was chosen as the binding contract between the 

different involved parties; (2) the system was based on the owner’s prospective 

when deciding on the entitlement of a claim; (3) the system is intended for 

technically competent personnel supervising the contractor’s performance with a 

minimal legal knowledge; and (4) the right of entitlement of a claim is only based on 

expressed contract language and not any other implied rules or laws. Similar to the 

DSCAS, the logic of the CEKS was based on an expanded set of questions and 
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answers. The system was tested against 13 DSC cases which appeared before a 

Board of Contract Appeals (BCA) and predicted a similar decision to that of the BCA.  

Inspired by the work of Diekmann and Kruppenbacher, in 1987, the US Army 

Construction Engineering Laboratory (USA-CERL) developed an expert system for 

the analysis of DSC titled Claim Guidance System (CGS-DSC) (Kim 1989). The 

methodology of the system was based on the DSC clause (FAR-52.236-2) used by 

the U.S. Government in its contracts. CGS-DSC utilized 13 modules to decide on the 

entitlement of a DSC claim. These modules were crafted after (1) careful 

consideration of the (FAR-52.236-2); (2) a detailed study of Diekmann and 

Kruppenbacher research; and (3) thorough analysis of the construction domain 

performed by six experts (2 experienced legal counsels and 4 experienced 

engineers in construction contract management). Since the system was intended for 

internal use of the USACE engineers, the decision about a claim was not very 

elaborate. The decision falls into one of the followings: (1) Very poor chance; (2) 

Poor chance; (3) Difficult to decide; (4) Fair chance; (5) Good chance; and (6) 

Excellent chance. To make-up the shallow decisions produced by the system, a set 

of 23 cases, gathered from LexisNexis and Westlaw, related to various DSCs were 

integrated into the system. The CGS-DSC retrieves a relevant case to the current 

situation from the case base after deciding about its entitlement as a supporting 

document for the reviewer.  Later the scope of the expert system was expanded to 

cover different types of claims. 

Hegab and Nassar (2005) implemented decision support systems in 

predicting the best solution for a contractor in commencement delay related claims. 
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The system utilized decision trees and probabilistic calculation methods in predicting 

the most cost effective alternative among litigation, relinquish of right, and amicable 

settlement. The system was implemented on one of the largest infrastructure 

projects in Cairo, Egypt (the New Sewer System). The new sewer system required 

new lines of 600 and 1000 mm diameter to connect it to the old existing system. The 

project was assigned to a joint venture of one Egyptian and four British companies 

under Design-Build contract. The decision tree analysis implemented for this project 

considered three alternatives (1) completing the project on time by increasing the 

resources without claiming extra time and money; (2) going to court claiming the 

delay costs and costs associated with accelerating the project; and (3) offering an a 

amicable settlement against a percentage value of the claim. Probability values were 

assigned by the contractor to each alternative and decision tree analyses were 

implemented. The analysis yielded alternative three to be the cheapest.       

The success of expert systems in contract administration and legal prediction 

was very limited due to their failure in deducing all the necessary rules upon which 

the system operates (Bubbers and Christian 1992). They assume the existence of a 

full domain model that captures all required rules about a certain topic. As a result, 

they are much localized to a specific aspect of a certain domain. In addition, their 

accuracy and performance is crucially affected by the computational limitations. 

Consequently, other methodologies have been tackled to model judicial reasoning. 

Neural networks, with their remarkable ability to derive meaning from complicated or 

imprecise data, can be used to extract patterns and detect trends that are too 

complex to be noticed by either humans or other computer techniques (Aleksander 
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and Morton 1995). Inspired from this notion, Artificial Neural Networks (ANN) was 

utilized to model judicial reasoning by Arditi 1998 and Chau 2005 and 2006. Arditi 

(1998) attempted predicting the outcomes of construction litigation cases from Illinois 

Circuit Court using ANN system. The system utilized a software named Brainmaker 

and 102 cases that were defined by 43 input features (ranging between parties 

involved, contract type and conditions, project changes … etc) and 1 output feature 

defining the outcome of the court’s decision (winner of the case either the Contractor 

or Owner). The ANN system attained a prediction precision of 67%. Chau (2005 and 

2006) implemented a particle swarm optimization (PSO) model to train the 

perceptrons of an ANN system in an attempt to predict the outcome of construction 

litigation cases in Hong Kong. Similarly, the system utilized a set of 1105 of 

construction cases that were predefined by 13 input features and 1 output feature. 

Chau’s model achieved a prediction precision of 80%. In 2006 Chau was able to 

attain higher prediction rate of 83%. The new system augmented the PSO earlier 

model with Levenberg-Marquardt (LM) algorithm to benefit from its global search 

capability.   

Although ANN was able to achieve significant advancements to decision 

support capabilities in this domain, their excessive training stage and their ability to 

deal only with numerical data opened the horizon for the use of other AI techniques 

like Case Based Reasoning (CBR). CBR is a problem-solving paradigm that is 

fundamentally different from other major AI approaches like expert systems and 

Neural Networks. Aamodt and Plaza (1994) illustrate that instead of relying solely on 

the general knowledge of a problem domain, or making associations along 
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generalized relationships between problem descriptors and conclusions, CBR is able 

to utilize the specific knowledge of previously experienced concrete cases.  

The literature in this domain illustrates the superiority of case-based 

reasoning systems over rule-based ones. For further illustration a comparison 

between the two systems will be presented concerning: (1) domain knowledge; (2) 

knowledge of reasoning; (3) development time; and (4) system maintenance and 

servicing. Firstly, rule-based reasoning systems are based on the presence of a full 

knowledge domain model that depicts all necessary rules to develop the system, 

which is nearly impossible to exist as stated by Bubbers and Christian (1992). 

Consequently, all developed systems are localized to a certain type of claims. On 

the other hand, case-based reasoning systems can accommodate for missing data 

since they are based on similarity measures, although that might affect their 

prediction precision. Secondly, rule-based reasoning systems are highly dependent 

on human judgment that must be coded in the form of logical rules that mimic the 

human judgment process. Whereas case-based reasoning systems depend on 

implicit human judgments that are available in the case base of the system. Thirdly, 

the development time of rule-based reasoning systems in comparison to case-based 

reasoning systems is enormous due the extensive investigation to derive and test 

the required rules by domain experts. Lastly, rule-based reasoning systems require 

continuous maintenance due to laws and codes modification that take place with 

time. However, the case base of a case-based reasoning system is automatically 

enriched with tested cases.  
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The superiority of CBR systems discussed above instigated its investigation 

in the construction domain. In 1999, a CBR model for the prediction of construction 

litigation outcomes was developed by Arditi and Tokdemir. The system implemented 

a CBR development tool named ESTEEM and the 102 cases from Illinois Circuit 

Court were augmented with an additional 12 recent cases for testing purposes. The 

prediction precision was enhanced to 83%. A higher prediction precision of 84% was 

attained by Chau 2006 by adopting a CBR reasoning approach to predict the 

outcomes of construction litigation cases in Hong Kong. 

Furthermore, hybrid systems were investigated by few researchers in an 

attempt to improve the prediction precision. Arditi and Pulket (2005) utilized a 

boosted decision tree (BDT) system to predict the outcome of construction litigation. 

The study was conducted by using the same 114 Illinois court cases that were used 

in earlier prediction studies conducted with artificial neural networks in 1998 and 

case-based reasoning in 1999, augmented with an additional 18 cases that were 

filed in the period between 1990 and 2000. In this research, a boosting algorithm 

(ADABOOST) was utilized with decision tree algorithm through a software titled SEE 

5. As stated by Arditi and Pulket (2005) “The conclusions indicated that ADABOOST 

can be used in many settings to improve the performance of a learning algorithm. 

When starting with relatively simple classifiers, the improvement can be especially 

dramatic, and can often lead to a composite classifier that outperforms more 

complex “one-shot” learning algorithms”. The main advantage of this system over 

ANN CBR is that the boosting algorithm works as a plug-in program and helps the 

primary learning machine to reduce the error rate by repeating decision tree learning 
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for a number of trials and by focusing on the attributes that have effects on error 

rates. The best prediction result obtained with boosted decision trees was 90%, 

which as illustrated by Arditi and Pulket (2005) is helping create a dispute-free 

construction industry. In addition, Chen and Hsu (2007) developed an ANN-CBR 

model for the prediction of the outcomes of construction litigation cases initiated due 

to change orders disputes. The model (HACM) integrated the learning feature of the 

ANN approach with similarity measures of the CBR model to achieve a prediction 

rate of 84.61%. The hybrid model constituted cases gathered from Supreme and 

Appellate courts over 48 states and districts in USA. They were characterized based 

on 23 input features, 6 of which are related to project data and 17 were change 

order related. 

Research in the area of construction litigation outcomes prediction was 

initially motivated by the accomplishments in other domains. The legal domain, 

being very knowledge constrained, provided a very rich soil for developing tools for 

prediction of litigation outcomes. One of the first and most pioneering case based 

reasoning (CBR) tools HYPO was provided by Ashley and Rissland (1988a). HYPO 

was created to assist attorneys in building arguments about actual cases in the area 

of trade secret law. HYPO utilizes a set cases stored in its Case Knowledge Base 

(CKB) to derive an argument. It builds a claim-lattice of all the cases in the CKB that 

are relevant to a current case, by making “factual comparisons of cases relative to 

the problem situation and determine the legal significance in comparisons in terms of 

arguments about the problem situation” (Ashley and Rissland 1988b). The 

pioneering aspect of HYPO is that it provides: (1) factual arguments in favor of the 
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case in hand supported by similar cases in its CKB; (2) counter factual arguments to 

the case in hand supported by similar cases in its CKB; (3) suggestion of 

combination of facts for new hypothetical arguments that might provide new 

prospective for attorneys supported by similar cases in its CKB. 

Believing that factual extraction alone in building a reliable CBR system is not 

sufficient; attempts have been made to develop methods of utilizing unformatted 

textual representation of cases to enhance the CBR systems potentials. SPIRE 

combines CBR and Information Retrieval (IR) techniques to locate text passages 

related to a certain legal situation within long textual representation of cases 

(Daniels and Rissland 1997). Weber (1998) developed Pruentia to support 

jurisprudential research by providing a case based retrieval engine over a database 

of automatically indexed textual legal cases. More recently, Bruninghause and 

Ashley (2001) experimented with Natural Language Processing (NLP) techniques to 

enhance the reasoning capability of a CBR system by understanding meaningful 

features and relations expressed by words. The developed Textual Case Based 

Reasoning (TCBR) system implemented AutoSlog with Smart Indexing Learner 

(SMILE). AutoSlog is a NLP/Information Extraction (IE) system that was developed 

by Ellen Riloff at the University of Utah (Riloff 1996). It utilizes a powerful heuristic 

sentence segmenter, Sundance, and module for generating extraction rules from 

unformatted textual representation. SMILE “integrates IE and Machine Learning 

(ML) methods for automatically assigning abstracted indexing concepts to text 

cases” (Bruninghause and Ashley 2001). Weber et al. (2001) employed domain 

ontology for TCBR system development. 
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For further development, researchers within the legal domain have attempted 

hybrid or mixed approach to predict outcomes of litigation cases. HELIC-II models 

legal reasoning using two engines, a case-based engine identifies similar cases and 

extracts legal concepts from them, and a rule-based engine uses the legal concepts 

and the current case’s facts to infer all possible legal consequences (Ohtake et al. 

1993). CABARET (Rissland et al. 1989), GREBE (Branting 1999), and Anapron 

(Golding and Rosenbloom 1996) are hybrid systems that combined rule based 

reasoning with case based reasoning techniques for prediction purposes. CARMA 

(Branting et al. 2001) and IBP (Brunghause and Ashley 2003) are algorithms that 

combine case based reasoning and model based reasoning for the prediction of 

litigation outcomes. In 1995, Egri and Underwood utilized ANN to provide the Hybrid 

Integrated Legal Decision Assistant (HILDA) tool to extract legal knowledge and 

predict litigation outcomes concerned with the question of “unjust” contracts based 

on the Contract Review Act 1980 (New South Wales). HILDA integrated similarity 

measures of RBR and CBR methods as well as the patchy domain theory presented 

in the legal domain. Legal rules are implemented through ANN to categorize cases 

in question either for plaintiff, against plaintiff, or undecided. Cases that fall within the 

undecided region are then tested with the CBR component to fit it to one of the other 

two categories. Brunghause and Ashley (2005) combined the SMILE system with 

IBP system developed in 2001 and 2003 respectively in a hybrid system to achieve 

higher prediction rates. The attained results were promising but indicated that further 

research is needed in the field of NLP. In a recent research, El Hadi (2007) 

developed a statute base Information Retrieval Case Based Reasoning (IR-CBR) 
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hybrid system that implements natural language description of actual situations as 

its input to retrieve related cases to enhance prediction of litigation outcomes in 

Bankruptcy Case Law.  

Research on the prediction of litigation outcomes was not only performed by 

researchers in universities. Its significance has captured the interest of Government 

institutes like Donald Berman Laboratory for Information Technology and Law in 

Australia over the years. In 1991, Donald Berman Laboratory for Information 

Technology and Law provided a hybrid object oriented rule based system named 

Intelligence Knowledge BAsed Legal System (IKBALS) to decide upon worker 

compensation in work care cases in Australia. The second version of the system 

IKBALSII augmented a case based reasoner and intelligent information retrieval 

components to the rule based reasoner (Zeleznikow 2003). In 1995, Donald Berman 

Laboratory for Information Technology and Law built the Split-Up expert legal 

system that provided advice on the distribution of property under the Australian 

Family Law. The Split-Up system is a rule based/ Artificial Neural Network (ANN) 

system derived from factors attained from thorough investigation of the governing 

legal factors with domain experts (Zeleznikow 2003). 

From the literature in this domain, it was noticed that there is still work to 

follow in this area. It is apparent that AI research in the legal and construction 

domain has been progressing along similar lines. An important aspect in both of 

these domains is that they rely heavily on textual material expressed in human 

language: legal references and judicial opinions in the legal domain, contract 

conditions, specifications, correspondences, etc. in the construction domain. This 
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creates a strong need for well defined methodologies that are capable of effectively 

analyzing textual material and efficiently retrieving pertinent information from them. 

Besides, in all the above mentioned research studies in the construction domain, 

information extraction and case attributing were manually performed and fed to 

these systems. It is a fact that, the accuracy of the output of a machine learning 

system is largely dependent on the availability of reliable information about the 

attributes used to define the training cases. As Arditi and Pulket (2005) state 

“Finding a complete and reliable set of training examples is difficult in construction 

litigation cases”. The use of natural language processing techniques NLP can 

enhance and facilitate the use of construction litigation prediction models. Automatic 

cases classification and knowledge extraction can be improved through NLP 

techniques (Bruninghause and Ashley 2001). It can further provide the ease of 

access to legal knowledge for legally inexperienced personnel in the field. The highly 

sophisticated electronic information storage and retrieval systems available for 

researching the law are extremely complex and time consuming. Sometimes this 

complexity creates problems for information seekers and can limit their access to 

relevant information. Consequently, accurate legal decisions within the construction 

realm are exceedingly time consuming and may require knowledgeable 

professionals to obtain the required decision support. As a result, an automated 

legal support system that utilizes natural language processing techniques to identify, 

retrieve, reorganize legal information, and predict construction litigation outcomes 

will reduce the time required and costs spent by construction firms and improve 

overall project control. 
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2.3 Case-Based Reasoning Models: 

The success of legal prediction models, which depended crucially on the 

adequacy of learning from experience, has contributed to the birth of similar line of 

research in different fields. One of the problems being tackled through the use of AI 

in different domains is how to represent and reuse knowledge and previous 

experience. Earlier attempts constituted developing knowledge-based systems 

(KBS), which are considered one of the success stories of AI research. “In a recent 

survey the UK Department of Trade & Industry found over 2000 KBS in commercial 

operation (the survey excluded KBS in University research laboratories)” (DTI 92). 

KBS utilize domain model based systems like rule based and object models 

(Clancey 85). Despite its success, several problems were reported by developers 

and users of KBS (Watson and Marir 2007). Some of these problems are 

• Knowledge elicitation is a difficult process, often being referred to as the 

knowledge elicitation bottleneck;  

• Implementing KBS is a difficult process requiring special skills and often 

taking many man years;  

• Once implemented model-based KBS are often slow and are unable to 

access or manage large volumes of information; and  

• Once implemented they are difficult to maintain (Bachant & McDermot 1984, 

Coenen and Bench-Capon 1992, Watson et al. 1992). 

Consequently, more efficient tools and techniques have been thought of as a 

solution to these problems. Case-Based Reasoning (CBR) is a paradigm solving 

mechanism that mimics previous knowledge about a solution of a similar problem to 
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solve newly introduced ones (Kolodner 1993). In CBR systems, expertises are 

embodied in a library of past cases, rather than being encoded in classical rules. 

Each case typically contains a description of the problem, plus a solution and/or the 

outcome. The knowledge and reasoning process used by an expert to solve the 

problem is not recorded, but is implicit in the solution. In fact, the work of Schank 

and Abelson (1977) in the field of philosophy is considered to be the main focal point 

and origin of CBR systems. They claimed that human general knowledge is build up 

in the form of scripts based on our experiences and used to derive judgments and 

expectations of newly encountered situations (Schank 1982). Based on these 

philosophical roots of CBR, the first CBR applications were introduced by Roger 

Schank’s group at Yale University in the early eighties (Watson and Marir 2007). As 

discussed in section (2.2), the legal system in the United States of America, being 

an Anglo Saxony system and intensively concerned with previous experience 

derived from precedent cases, is a very rich domain for applications of CBR 

systems. 

2.4 CBR in Civil, Architectural, and Construction Engineering: 

The success of CBR systems in different domains contributed to the birth of 

its use in the engineering field. Construction Engineering is a very dynamic field. 

Decisions in this field are influenced by factors that vary from one project to the other 

like project size and complexity. These factors may influence decisions concerning 

the involvement of diversified parties with different specializations, site conditions, 

contract type and conditions, and project location …etc. (Caldas et al. 2002). 
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Decisions of this nature are highly unstructured and no clear rules are available to 

provide a clear basis for making tem. Consequently, decision makers employ 

previously acquired knowledge through experience and similar cases. This property 

made construction a very prominent field for the use of CBR (Chua 2001). The rest 

of this section is dedicated to provide a literature review for the use of CBR in the 

fields of Structural, Architectural, and Construction Management engineering.  

2.4.1 Architectural/Structural CBR Models: 

CBR had been used within the design field to facilitate re-use of architecture 

and structure designs. As defined by Schmitt (1988), architecture design is the art of 

producing a complete building specification from an incomplete problem description. 

Consequently, architects employ acquired positive and negative experiences when 

solving design problem rather than generating the building design from scratch every 

time. This is supported by the notion that there are no definite formulas, 

methodologies, or algorithms that can map a design problem to a formalized 

architecture design solution since there is no formalized definition of architecture 

quality. “Consequently, traditional architectural design education makes extensive 

use of architectural cases” (Schmitt 1993). This aspect of design problems initiated 

research that aim to utilize CBR as an aid to the design problem. CBR has been 

utilized to solve new design problems by adopting, modifying, or combining existing 

cases. Pearce et al. (1992) developed ARCHIE a CBR architectural design system. 

CADSYN and DDIS are structural design system proposed by Maher and Zhang 

(1991) and Wang (1991) respectively. Schmitt (1993) provides one of the most 
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successful Architectural Case-Based Design (CBD) system named Architecture 

Case Based Design System (ACABAS) that was applied to contemporary designs of 

the Ticino architect Campi and Pessina in Switzerland. CBDs are a specific type of 

CBRs that have a wide spectrum of capabilities ranging from generating a 

description of existing buildings or designs in the case base to the creation of a 

complete building specification for a new design problem (Schmitt 1988). The 

ACABAS system utilizes an object oriented database that supports binary large 

objects (BLOBs) which stores structured and unstructured information about the 

different cases. This database includes CAD models that are precisely generated for 

the CBD system. A developed pre-processor (Mod-4) was designed for this function. 

It accepts geometric description of the building and requires further information like 

room labeling, materials description, and building design specifications to generate 

object database and graphical representation of each case. The later constitutes a 

set of unstructured information like scanned images, text description of the building 

and its location, interview with the occupants, energy bills, acoustical and thermal 

problem areas, textual description of repairs history … etc. Normative and 

Functional constraints are further identified as parameters of each case. When a 

new design situation is introduced to ACABAS, it retrieves the most similar case and 

implements adaptation mechanisms to fully satisfy the parameters of the new 

problem. Topological and dimensional discrepancies are identified as the first step of 

adaptation. In case of discrepancies, adjustments are applied based on 

transformation rules that are built into the system while maintaining the normative 
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and functionality constrains un-violated. ACABAS undergoes an iterative process 

until all transformations are applied without violation of the defined constrains. 

In addition, Watson and Abdullah (1991) employed CBR in building defect 

diagnoses through the development of PAKAR. Flemming and Woodbury (1995) 

built up the SEED project, which utilizes case-based reasoning to provide 

computational support for the early design phase. Roddis and Bocox (1997) 

developed a hybrid system for resolving fabrication errors in steel highway bridges 

that is in operation in Kansas Department of Transportation (KDOT). The Bridge 

Fabrication error solution eXpert system (BFX) integrates a case and rule based 

modules. The former, case-based BFX (CB-BFX) was created using the 

programming language CommonLISP and the CBR tool MEM-1. The system which 

was developed to provide a formalized methodology for repair of fabrication error 

had a case base of 112 cases of previously experienced errors and corrective 

actions gathered entirely from KDOT projects. Cases were classified into 13 sub 

modules based on the type of fabrication error as follows: mis-located holes (33 

cases), mis-cut members (20 cases), nicks and gouges (13 cases), mis-located 

members (10 cases), mis-shaped holes (8 cases), edge distance (6 cases), 

laminations (6 cases), mis-aligned members (6 cases), mis-attached members (4 

cases), size error (2 cases), stress fracture (2 cases), end distance (1 case), and 

partially drilled holes (1 case). Evaluating the use of CB-BFX module alone yielded a 

precision of 82%, which was an impressive advancement over the use of the rule-

based module that attained 63%. The combined hybrid system, using both modules, 

achieved an overall success rate of 91%. 
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Caldas et al. (2002) stated that the complexity of modern construction 

projects leads to the use of increasingly sophisticated construction methods and 

requires extensive interactions between diversified parties. This increasing 

complexity could be the reason that system analysis and design has been gaining 

increasing importance in the development of complex technical systems (Praehofor 

and Kerschbaummayr 1999). As an example of that, facilitated Computer Aided 

Systems Architecting CASA, a technique combining systems and requirement 

engineering approaches with AI, is growing rapidly to cope with the market 

competition (Caldas et al. 2002). Praehofor and Kerschbaummayr (1999) developed 

a case-based approach to be augmented with CASA to support reusability of 

designs of existing systems in determining the architectural requirement fulfillment of 

new components under design. Retrieved solutions by CASA are accompanied by a 

degree of fulfillment factor (DOF) between [-1, 1] signifying the extent of similarity 

and required adaptation to new paradigms. To further explain the DOF concept, a 

DOF value of: 

• 1 means full fulfillment of the new system requirements and can be adopted 

as a solution with no modifications. 

• 0 to <1 means partial fulfillment of the new system requirements and can be 

adopted as a solution with some architecture tailoring. 

• -1 to <0 means does not fulfill the new system requirements and cannot be 

adopted as a solution.  

CASA employs predefined language and lexical structures, which are domain 

dependent, with object oriented structure to define new components’ properties and 
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requirements and had showed significant success in transportation and material 

handling design. 

Likewise, Sirca and Adeli (2005) developed an intelligent hybrid decision 

support system (IDSS) that utilizes CBR and ANN to assist bridge engineers to 

semi-automatically convert the rating of bridges from Working Stress Design (WSD) 

method to Load Resistance Factor Design (LRFD) method.  According to Sirca and 

Adeli (2005), in 1995, the Federal Highway Administration (FHWA) required that all 

bridges, regardless of the design method used for the original design, be based on 

the load factor design (LRFD) method. However, steel bridges originally rated using 

WSD had crucial data missing to make the proper conversion to the LRFD method. 

As illustrated by Sirca and Adeli (2005), a steel girder bridge rated by either method 

requires input into the BARS-PC program, software used by Ohio Department of 

Transportation (ODOT) for bridges design, which describes the girder’s section 

properties. For the WSD-based bridge rating, a general description of the section 

properties including only the cross sectional area, moment of inertia, and section 

modulus of each girder cross-section would suffice. For the LRFD-based rating, 

however, a detailed description of the section properties is required including 

information about individual elements making up the steel girder cross section such 

as the total height of the section, and the areas of the web and flange elements and 

their individual moments of inertia and the distances from their centroids to a 

reference axis. In addition, another major piece of information that is required for the 

conversion, and not included in the WSD design method, is information regarding 

the spacing of lateral bracing of the girders. Such an aspect made the rating 
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conversion very hard and labor intensive, for an engineer has to use his knowledge 

to make decisions about the lateral bracing spacing from the design data available 

from the WSD design method and the design guidelines utilized at the period of 

designing the bridge (Waheed and Adeli 2005). As a consequence, the expert 

system was developed to assist in deriving the missing data about lateral bracing 

requirements from similar cases for bridges under the jurisdiction of ODOT. The 

system employed structure analysis files attained from AASHTO Bridge Analysis 

and Rating System (BARS-PC) as its case based knowledge database. CBR is 

utilized to define a similar case and attain input data that are employed in the ANN, a 

system that was developed in an earlier research by Sirca and Adeli (2004), to 

define the required missing parameters of section properties description. After 

attaining all required parameters, the BARS-PC data file is updated and saved. The 

CBR shell, Induce-It, is used to create and manage the CBR module for the 

Intelligent Decision Support System (IDSS). The IDSS case base included 39 cases 

that were characterized by textual or numerical nature, field names that represent 

the case data such as the year in which the bridge was designed, the span length(s) 

of the bridge, and the number of cross-frame spaces. As stated by Sirca and Adeli 

(2005), the year at which the bridge was built is the most crucial information in 

determining the appropriate lateral bracing due to the number of changes that were 

made to the design process through the years. Based on that, weights are assigned 

to each field based on its relevance. These data characteristics as well as assigned 

weights to each field are utilized to define the similarity between a new case and 

those available in the case base. Similarity measures of cases are based on linear 
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weighted similarity functions which are then ranked using Nearest-neighbor 

matching to define the most similar case. When a matching case is defined, its 

lateral bracing data are retrieved from separate database and inputted to the ANN to 

decide on the conversion required. 

2.4.2 Construction Engineering CBR Models: 

In addition to Architectural and Structural design, CBR approaches were 

implemented in variety of construction engineering management problems including 

construction duration estimation, productivity estimation, cost of building estimation, 

bid decision making, procurement criteria selection, construction negotiation 

methodologies, and contract strategy formulation. 

Project scheduling is one of the key factors in determining the success of 

construction projects. Interest in developing and formalizing good scheduling 

practices has always been of significance in the construction research community 

(Miyashita and Sycara 1992). The process of scheduling assigns a set of tasks to a 

set of resources with finite capacity over time (Hinze 1998). Successful scheduling 

requires judgment about variety of interrelated factors and criteria concerning 

diversified and characteristically conflicting set of constrains (French 1982). Over the 

last decade, there has been an increasing interest in techniques that exploits 

previous experience in developing and modifying project schedules (Hinze 1998). 

Sycara and Miyashita (1994) provided a CBR approach in CABINS for iterative 

schedule revision in job shop schedules. CABINS is composed of three modules (1) 

an initial schedule builder based on constraint-based scheduler; (2) an interactive 
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schedule repair module, and (3) an automated schedule repair module. Schedules 

developed in the first module are not optimized due to the absence of the complete 

knowledge of the scheduling domain model and user preferences (Miyashita and 

Sycara 1994). To attain an optimized schedule, CABINS implements the second and 

third modules through a CBR approach that adopts previous optimizations in the 

case base. CABINS gathers the following information in the form of cases through 

interaction with a domain expert in its training phase. 

• A suggestion of which repair heuristic to apply: a user’s decision on what 

repair heuristic to be applied to a given schedule for quality improvement. 

• An evaluation of a repair result: a user’s overall evaluation of a modification 

result. The evaluation categories currently employed are ‘acceptable’ and 

‘unacceptable’. 

• An explanation of an evaluation: when a user evaluates the modification 

result as unacceptable, she/he indicates the set of undesirable effects that 

have been produced. The explanation given to CABINS consists of the 

numerical rating of each identified effect. (Sycara and Miyashita 1994). 

In the optimization process, CABINS identifies vulnerable activities based on 

the user’s preference criteria. The system then works in an iterative manner and 

optimizes schedule activity by activity and not the whole list at once. The most 

similar modification requirement retrieved from the case base using K-Nearest 

Neighbor is adopted for the first activity. The outcomes and effects on the schedule 

corresponding to the user’s preference criteria are identified and presented to the 

user. If the optimization is accepted, the case base is enriched with this particular 
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optimization. On the other hand, if the optimization is not accepted, the user is asked 

to provide a justification that is tagged with the optimization process in the case base 

and other iterations are performed. 

Amicable settlement through negotiation is another construction problem that 

entails extensive expertise and knowledge of similar cases. Li (1996) provided a 

CBR intelligent support system to construction negotiation. “This model has been 

implemented in the MEDIATOR, a computer program that utilizes previous cases as 

a basis for addressing new problems. In contrast to conventional expert systems 

(ESs) that use compiled knowledge in problem solving, the system selects similar 

cases to help in solving a given negotiation problem” (Li 1996). Cases in the case-

base are represented in terms of 6 factors: (1) case number and indexing keywords, 

(2) situational description addressing the background of the negotiation, (3) 

negotiating parties, (4) disputant issues and goals, (5) final settlements, if it is 

successful, or unsuccessful, and (6) negotiation history. MEDIATOR allows each of 

the parties to illustrate their “issues and goals” which are used as factors for retrieval 

of similar cases. The solution of the most similar case is adopted as a solution to the 

new situation, which could be accepted, rejected, or employed to derive new users’ 

goals. 

Yau and Yang (1998) developed CBR-CURE a case-based reasoning system 

for estimating the construction duration and cost of building construction project at 

the preliminary stage to decide which design is feasible and most beneficial to the 

owner. CBR-CURE was developed using ESTEEM, a Window based tool for 

developing CBR systems, which is commercially available through Esteem Software 
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Incorporated since 1991. The case database constituted of 60 hypothetical projects 

generated using a construction planning expert system. The Time/Cost Integrated 

System (TCIS) integrates rules from experienced construction experts and mean 

cost data. The cases are identified by 13 input features, among which are project’s 

name, start and finish dates of the project, and 4 output features defining the 

duration, equipment cost, material cost, and labor cost of the project. The system 

input interface allows the user to assign weights for each of the 13 input features. 

These weights are utilized to determine case similarity. The interface also allows the 

user to define a minimum similarity value above which cases are deemed similar 

and are retrieved. The duration and cost of a new case is determined by using 

adjustment factors that are built into the system to modify the values attained from a 

retrieved case. 

Furthermore, the dynamic nature of the construction bidding decision making 

process also led to the development of an automated CBR system CASEBID that 

proposes a markup level, based on the criterion of maximized expected profit, for a 

newly introduced bidding situation from previous bidding cases and domain 

knowledge (Chua et al. 2001). The system focuses on risk and competition factors 

that affect the bidding decision by integrating domain knowledge, derived from a 

thorough investigation with domain experts of internal and external factors affecting 

the nature of a decision, with case based knowledge. In a comparative study 

CASEBID outperformed the conventional statistical approach. It posed 55% bid 

wins, yielding an average 7.4% expected profit compared to 41% bid wins, yielding 

an average 6.15% expected profit in the case of the latter approach. 
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As a matter of fact, construction projects include many repetitive and cyclic 

activities (Kaneta et al. 1999). Likewise, judgment about the best methods and 

techniques to be adopted for cyclic processes is based on previously attained 

expertise concerning productivities and technologies. Graham and Smith (2004) 

proposed a CBR based estimator (CBE) to predict the productivities of concreting 

cyclic operations from previous cases. The model consisted of 5 input features and 

one output feature. “CBE was validated, not only against the performance of past 

operations (which were not used in the model development), but also against 

estimates provided by a professional construction planner. The model was found to 

provide more precise and consistent estimates than the planner, with 90% of the 

estimates being within a 10% relative error of the observed value” (Graham and 

Smith 2004).  

In such a dynamic environment as that of the construction industry, 

procurement decisions are crucial to the success of project. In such decisions 

previous knowledge is the corner stone of decision making (Love et al. 1998). Timely 

deliveries are major aspects of the successful completion of any construction project 

(Luu et al 2006). Consequently, Companies tend to work with suppliers with whom 

they had good experience. Researchers have pointed out that the identification and 

use of a suitable procurement system could contribute immensely to the success of 

a construction project (Naoum 1994; Rwelamila and Meyer 1999), and this has been 

a driving force for the development of various procurement selection approaches. 

Such dependency on previous experience gives a high potential for CBR 

approaches for modeling the procurement selection decision within a complex 
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dynamic environment. Luu et al. (2005) examines the suitability of CBR approaches 

for procurement selection by creating a prototype model of procurement selection 

criteria (CaPSC) to assist decision makers in selecting appropriate procurement 

systems. The model applies CBR approach to procurement criteria selection 

irrespective of the variability in the characteristics of the client, project, and external 

environment. These factors are very hard to model based on their wide diversity 

(Luu et al 2005). As a consequence, the prototype model relates these parameters 

to their associated factors that can affect such a decision like speed, time certainty, 

quality, flexibility, risk allocation …etc. For more illustration, if “on-time completion” is 

a key objective of the client, not only the speed but also the time certainty, flexibility, 

and quality are considered during the evaluation process. The evaluation factors 

were derived from a methodical investigation of the different procurement selection 

criteria techniques and semi structured interviews were conducted with managers of 

five major client organizations in Australia (four governmental and one private) 

experienced in construction procurement selection. 

One of the main construction problems that is normally resolved using 

previously gained knowledge and managerial expertise is contract strategy 

formulation. In fact, it is inherently, too complex, too personal, and too dynamic to be 

modeled in a fully automated manner (Reuber 1997). Despite this difficulty, CBR 

approaches can be utilized to facilitate automation of the use and reuse of these 

expertises. Chau and Loh (2006) developed a prototype of a decision support 

system, CB_Contract, which exploits CBR approach for contract strategy 

formulation. The system incorporates the four main components of contract strategy 
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formulation, namely work packaging, functional grouping, Contract type, and award 

method. It further integrates these components with other crucial factors, such as 

“form of contract, currency and timing of payment, nomination of subcontractors by 

the client, type of specifications (performance or construction method), penalty scale 

for liquidated damages, and occasionally the provision of contractual motivation and 

incentives” (Chau and Loh 2006). ReCall, an interactive human machine system, 

was used for the development of CB-Contract. “The case retrieval process takes 

place within the ReCall environment using inputs from the user. Thereafter, the user 

will carry out the necessary adaptation to the cases to formulate the contract 

strategy for the current project based on three important considerations: (1) 

robustness of the retrieved set of sub strategies; (2) compatibility of the sub 

strategies; and (3) effectiveness of the alternative solutions.” (Chau and Loh 2006). 

To assist the user in making such decisions, each case is associated with a brief 

description of the project. The adopted method and the case parameters are then 

augmented into the knowledge base of the system for reuse in future models.  

All of the above studies illustrate the growing application of CBR approaches 

in the engineering disciplines. Motivated by this growth, Dogan et al. (2006) 

performed a detailed study to compare the performance of three optimization 

techniques, namely feature counting, gradient descent, and genetic algorithms (GA) 

in generating attribute weights that were used in a spreadsheet-based case based 

reasoning (CBR) prediction model. The model was utilized for early cost prediction 

of structural systems and was tested by using data pertaining to the early design 

parameters and unit cost of the structural system of 29 residential building projects. 
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The results indicated that GA-augmented CBR performed better than CBR used in 

association with the other two optimization techniques.  

It is evidently clear from the reported research studies that CBR approaches 

are very helpful in utilizing previously learned experiences to solve newly 

encountered ones. In contrast, the success of model based and rule based 

approaches is hampered by the fact that they are dependent solely on the 

computational efficiency, and the assumption that there exists a strong domain 

model. These characteristics have limited its use in real world tasks since the 

existence of a strong domain model can almost never be assumed. However, as 

mentioned earlier in section (2.1), the success of CBR approaches comes at a 

higher cost of manually extracting information pertaining to the different cases. A 

possible solution to this problem can be obtained through Artificial Intelligence (AI) 

and Natural Language Processing (NLP) techniques as will be shown in the 

following section. 

2.5 Natural language processing (NLP): 

Natural Language Processing (NLP) is wide and very active area of research. 

NLP covers a wide spectrum of techniques ranging from rule based techniques to 

statistical probabilistic tools. Consequently, there is not a single agreed-upon 

definition of what NLP exactly is. However, there are some agreed upon aspects of 

what NLP is. NLP is a theoretically motivated range of computational techniques for 

the analysis and representation of naturally occurring texts at one or more levels of 

linguistic analysis for the purpose of achieving human-like language processing for a 
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range of tasks or applications (Manning and Sch^eutze 1999). Naturally occurring 

texts can be of any language, mode, genre, etc. The language can be expressed 

orally or in writing. The only requirement is that they be in a language used by 

humans to communicate with each other. Also, the language being analyzed should 

not be specifically constructed for the purpose of the analysis, but rather that the text 

is gathered from actual usage (Allen 1995). 

In fact, the field of NLP was originally referred to as Natural Language 

Understanding (NLU) in the early days of AI. However, it is agreed today the true 

NLU is not yet accomplished (Jurafsky and Martin 2000). A full NLU System should 

be able to accomplish tasks like paraphrase an input text, translate the text into 

another language, answer questions about the contents of the text, and draw 

inferences from the text. While NLP has made outstanding achievements in some of 

these venues, NLU still remains the goal of NLP due to the fact that NLP systems 

cannot by themselves draw inferences from text (Liddy 2003). As stated by Manning 

and Schêutze in their book Foundations of Statistical Natural Language Processing, 

NLP practices are governed by nature of the domain of its application. Among the 

key contributors to the discipline of NLP are: “Linguistics - focuses on formal, 

structural models of language and the discovery of language universals - in fact the 

field of NLP was originally referred to as Computational Linguistics; Computer 

Science - is concerned with developing internal representations of data and efficient 

processing of these structures, and; Cognitive Psychology - looks at language usage 

as a window into human cognitive processes,  and has the goal of modeling the use 

of language in a psychologically plausible way” (Liddy 2003).  
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Research in natural language processing has been going on for several 

decades dating back to the late 1940’s (Jurafsky and Martin 2000). Machine 

translation (MT) was the first computer-based application related to natural 

language. Weaver and Booth started one of the earliest MT projects in 1946 on 

computer translation based on expertise in breaking enemy codes during World War 

II (Hutchins 1997). Throughout late 1960’s and early 1970’s NLP related researches 

focused on improving of theories concerning how to represent meaning and 

developing computational solutions that the existing theories of grammar, at that 

time, were not able to produce (Jurafsky and Martin 2000). Alongside theoretical 

development, many prototype systems were developed to demonstrate the 

effectiveness of particular principles. Weizenbaum’s ELIZA was built to replicate the 

conversation between a psychologist and a patient by simply changing the order of 

the user input (Jurafsky and Martin 2000). ELIZA plays the role of a therapist, asking 

questions based on the answers of the user, who plays the role of the patient. The 

program contains a database of keywords and a specification of output for each 

keyword. The program searches for a keyword in the user’s answer and asks the 

following question based on the output specified for the keyword. ELIZA therefore 

does not actually understand the dialogue with the user, nor does it make any 

arguments, conclusions, or claims. This is acceptable in this particular dialogue 

between a therapist and a patient in which the therapist can pretend to not know 

anything about the real world (Jurafsky and Martin 2000). 

Perhaps the most recognized uses for NLP techniques today are those 

related to commercial applications such as the spelling and grammar correcting 
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capabilities of modern word processors (Church and Rau 1995). However, text-

based NLP techniques have been utilized in numerous applications such as 

information extraction and retrieval, automatic text summarization and machine 

translation (Allen 1995). Such NLP-enabled applications have been used in various 

areas including the financial field, computer software development and law. 

Motivated by the success of NLP techniques and the advancements in 

computational resources, the awareness within each community of the potential 

solutions to textual dependent problems has grown. In pursuit to enhance 

information models, document integration, and inter-organizational systems in 

construction engineering and management, AI and Natural NLP techniques have 

been employed extensively through a variety of automated and semi-automated 

tools (Labidi 1997). Text mining methodologies, document clustering techniques, 

controlled vocabularies schemes, and web based models were some of the 

techniques utilized to perform the above mentioned tasks (Caldas and Soibelman 

2003). Most of the present construction information integration tools are designed to 

work with structured data like CAD models and construction scheduling databases. 

However, most of the available data are stored in semi-structured or unstructured 

format like contract documents, change orders, RFIs, and meeting minutes that are 

normally stored as text files (Caldas et al. 2002). Consequently, facilitating the use of 

these documents through integrated methods has become a necessity to enhance 

project control, performance, and data reuse. A number of previous research studies 

attempted to achieve this objective. A computerized database for the classification, 

documentation, storage, and retrieval of documents about rising construction 
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technologies was presented by Ioannou and Liu (1993). Controlled vocabularies 

were proposed by Yang et al. (1998). The researchers used manual and text mining 

techniques to scrutinize a number of methodologies thesauri to promote design 

information reuse. Kosovac et al. (2000) investigated the use of controlled 

vocabularies for the representation of unstructured data.  

In further attempts, Hajjar and Abou Rizk (2000) provided a document 

collaboration methodology. Their approach employed common data model 

customized to a unique segment of the construction domain to define projects and 

document data. Wood (2000) provided a method for hierarchical structure of 

concepts extraction from textual design documents. Scherer and Reul (2002), on the 

other hand, utilized text mining techniques to classify structured project documents. 

Over the last few years, there has been a significant growth in the use of 

databases in different sectors like business, government, and scientific at a rate that 

developments in traditional data analysis methods cannot cope with. The nature of 

the data, being expressed in natural language and stored in unstructured format, 

represents the main hurdle hampering the efficient use of traditional data analysis 

methodologies. “The traditional methods can create informative reports from data, 

but cannot analyze the contents of those reports” (Soibelman and Kim 2002). A 

significant need exists for a new generation of techniques and tools with the ability to 

automatically assist humans in analyzing the very large amount of data for extracting 

useful knowledge. Inspired by this pressing need, in 2002, Soibelman and Kim 

utilized knowledge discovery in databases (KDD) and data mining (DM) techniques 

to develop a new tool to automatically analyze and derive knowledge from 
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construction databases. The tool was implemented within a frame work of the 

Resident Management System (RMS), a system developed by the US Army Corps 

of Engineers for project management and control, to extract knowledge about 

causes of delay in Flood Control Projects at Fort Wayne. The system integrated data 

mining techniques through decision trees, and ANN in two modules. In data mining, 

feature subset selection was first used to calculate the relevance of features that 

were implemented in decision tree algorithm to extract rules from the data sets. 

Rules from decision tree made the input selection for the neural network a simple 

task and the understanding of outputs of neural network easier. Finally, neural 

networks were used to make predictions of the future trends in a construction 

project. The C 4.5 decision tree algorithm was used to predict the effective causes of 

delays that were used as input data for the ANN. The 224 projects at Fort Wayne 

were classified into a downward expanding decision tree, in which each node 

represents a cause of delay. In addition, each node is also associated with a 

percentage value defining the relevancy of the cause. For example, among the 224 

projects, 120 projects (54%) were delayed. The 120 projects were first tested for 

Inaccurate Site Survey as a cause of delay yielding 36 cases (16%) with related 

delays and 84 cases with other causes of delay. The first node is further branched 

by testing the cases against Shortage of Equipment cause of delay. The C4.5 

algorithm defined nine effective cases of delay (inaccurate site survey, number of 

workers, incomplete drawing, change order, shortage of equipment, duration, 

season, weekends, rain/snow) that were implemented in the ANN. As mentioned by 

Soibelman and Kim (2002), a great number of NN were run to find that the best 
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results were achieved with 1% learning rate and 3 layers back propagation NN 

architecture. The results of the implementation were promising and identified that the 

main cause for delays of Flood control project at Fort Wayne was inaccurate site 

survey rather than the weather related problems initially assumed by site managers.   

Furthermore, Caldas et al. (2002) and Caldas and Soibelman (2003) 

presented the use of information retrieval techniques to enhance information 

organization and the use of inter-organizational systems through automated 

classification of construction projects. The research proposed a methodology for the 

use of information retrieval via text mining techniques to facilitate information 

management and permit knowledge discovery through automated categorization of 

various construction documents according to their associated project component 

using standard classification configuration of the Construction Information 

classification Systems (CICSs).  

Due to the persisting need to facilitate access, use, and reuse of unstructured 

construction project documents, Xie at al. (2003) also provided an integrated model 

for the retrieval of construction project documents to facilitate decision making, 

logical judgment, and control by project managers. The proposed system utilized a 

user provided model of construction project management and a user configurable 

visitor to retrieve information based on users’ needs. Moreover, a study for 

scrutinizing a methodology for incorporating construction project documents in 

architectural engineering, construction, and facility management (AEC/FM) model 

based information systems was investigated by Caldas et al. (2005). The study 

focused on methods of augmenting and facilitating entry of large documents in 
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project management information systems to improve overall project control through 

semi-automated support integration.  

Demian and Fruchter (2005) investigated the use of different text analysis 

methodologies to highlight and quantify potential significance and similarity among 

objects from an archive of building models to facilitate and improve design reuse. 

They made use of a corporate model (CoMem) prototype which provides an 

overview of a corporate memory in the form of a map to aid the process of finding 

reusable design items. Their proposed methodology examined the use of vector 

model text analysis augmented with latent semantic indexing, context sensitive 

comparison, and tree matching retrieval techniques.      

Ng et al. (2006) implemented Knowledge Discovery in Databases (KDD) and 

Data Mining (DM) to define common characteristics of maintenance records as they 

relate to different types of university facilities (Housing and academic), location of 

different university facilities, and the nature of the required maintenance reported in 

the Facility Condition Assessment database. The FCA database contains deficiency 

information in the form of textual reports on facilities located at three campuses 

within a statewide university system. The developed KDD system implemented a 

combination of statistical analysis techniques and cluster analysis for text mining to 

discover common patterns in the deficiency description reports available at the 

university’s FCA. Statistical analysis was utilized to derive a consistent 

representation of each deficiency report in the FCA in terms of the frequency of 

words repetition within the data base.  To attain similarity measures between the 

different reports, Support vector Machine (SVM) methodology was implemented. 
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SVM stores a list of terms and their frequencies for each document. Every document 

(deficiency report) becomes a vector in S dimensional space, where S is the number 

of terms in the group of documents. VSM is based on the assumption that similar 

vectors in the S dimensional space will represent similar documents. After attaining 

a consistent representation of all reports, automated clustering of the deficiency 

reports is performed based on the deficiency type. K-nearest neighbor clustering 

algorithm was utilized for that purpose. Such methodology was very efficient in 

deriving knowledge about the relation between the housing type and location with 

respect to maintenance nature. For example it was found that housing facilities have 

similar deficiencies on all three campuses whereas the deficiencies in academic 

facilities are unique to the three different campuses. Furthermore, Housing and 

academic facilities have similar deficiencies in the area of old components and 

systems, such as compliance with the American Disability Act for fire protection 

(sprinkler systems and emergency lighting), and adequate space in bathrooms. As 

stated by Ng et al. (2006), the developed KDD system assisted in acquiring 

knowledge form the FCA that is far beyond traditional data analysis techniques.  

In one of the latest researches, Lin and Soibelman (2007) developed a NLP 

based approach to assist Architectural/Engineering/Construction (A/E/C) information 

acquisition from the World Wide Web (WWW) concerning materials manufacturers. 

Due to the inconsistence of terms used for materials description, the developed 

approach made use of the extended Boolean model and domain knowledge 

thesaurus generated through automated web aggregator. The developed thesaurus 

is utilized to perform query expansion which takes place in two steps. In the first 
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step, set of terms related to each main subject (title) under query were generated 

with an AND/ OR association relation in an attempt to provide standardized search 

terms for different materials. For example, a “Translucent Roof Panels” would have 

Skylight, Fiberglass, and Natural Light as related terms with an AND association. 

However, Day lighting panels, Translucent roof assemblies, and Translucent roof 

systems would be related with an OR association. Consequently, new set of queries 

would be generated in the following manner: (“translucent roof panels”) AND 

(skylight), (“translucent roof panels”) AND (fiberglass), (“translucent roof panels”) 

AND (natural light), (“translucent roof panels”) OR (daylighting panels), (“translucent 

roof panels”) OR (translucent roof assemblies), and (“translucent roof panels”) OR 

(translucent roof systems). In the second step, a set of stemmed terms generated 

from the initial quarry terms were generated to account for the lexical variation in 

terms representation. Before augmenting the generated terms, they were checked 

using “WordNet”, an extensively used dictionary in NLP, to remove under-, over-, 

and mis-stemmed words. As reported by Lin and Soibelman (2007), the 

implementation of this approach enhances the retrieval and utilization of the WWW 

for A/E/C information acquisition. 

The use of NLP techniques for the prediction of construction litigation 

outcomes is a research topic that has not been tackled so far. Since the fields of 

construction claim management and law are closely related, as discussed in section 

(2.2.1 And 2.2.2), it can be presumed that the advancements achieved in the use of 

NLP techniques in the legal domain can be adopted and further developed in the 

field of construction litigation outcomes prediction. 
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2.6 Machine Learning (ML) 

The focus of this section is to provide background information about the 

nature of ML tools that could be used for creating a DSC legal decision support 

system for the construction industry and the different types of reasoning upon which 

they are based. The section will first provide some background on the different types 

of reasoning employed in ML, and then emphasis will be given to four types of ML 

tools, namely: 

1. Support Vector Machines (SVM); 

2. Naïve Bayes Classifiers (NB);  

3. Rule Induction Classifiers; and 

4. Latent Semantic Analysis (LSA). 

2.6.1 Type of Reasoning  

Before discussing the different ML tools reviewed in this section, one should 

develop an understanding of the different reasoning types upon which they are 

based. The following is a brief description of these reasoning types. In fact, 

classification is a process performed by humans on daily bases even without 

consciously noticing. In all cases, classifications performed by humans or computer 

systems (ML) fit into one of three categories namely deduction, abduction, and 

induction reasoning. The first type, deduction, is based on deriving rules from facts 

that are 100% assured (Bramer 2007). An example of this would be if for a fact it is 

known that all humans are mortal and that X is a human, then it could be deduced 

that X is mortal. This methodology for rule generation would be completely reliable if 
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all aspects related to a problem are 100% assured facts. However, this is a luxury 

that is rarely available in real life problems (Bramer 2007).  

The second type of reasoning is based on truth of premises. Such type may 

not be necessarily correct. For example, if it is known that all dogs chase cats and 

that Y chases cats, then it is abducted that Y is a dog. Such rule may or may not be 

correct. There is no assurance that Y is a dog, for it might be any other animal that 

chases cats or even a human. 

The third type of reasoning is based on learning from examples. If there exist 

enough examples in which the occurrence of X leads to Y, then is could be inducted 

as a rule that if X then Y (Shawe-Taylor and Cristianini 2000). Such methodology of 

reasoning is very reliable since all required knowledge about the relation between X 

and Y is present implicitly in the learning examples. Consequently, the majority of 

ML techniques adopted for the analysis in this chapter are based on Induction 

Reasoning. 

2.6.2 Support Vector Machine (SVM) Classifiers 

“SVM are learning systems that use hypothesis space of linear functions in 

high dimensional space, trained with a learning algorithm from optimization theory 

that implements a learning biased derived from statistical learning theory” (Shawe-

Taylor and Cristianini 2000). Support vector machine classification aims to find a 

classification surface that best separates a set of training data points into classes in 

a high dimensional space (Nguyen et al. 2006). In its simplest linear form, a support 
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vector machine finds a hyperplane that separates a set of positive examples from 

the set of negative examples with maximum margin as shown in figure 2.1.  

 

Figure 2.1 Maximum Margin Representation in SVM (Shawe-Taylor and 
Cristianini 2000) 

Binary classification is frequently performed by using a real-valued hypothesis 

function, equation 2.1, where input x is assigned to the positive class if ƒ(x)≥0; 

otherwise, it is assigned to the negative class.  

y=<w.x>+b                       2.1 

For a binary linear separation problem a hyperplane is assigned to be ƒ(x) = 0 

where the separation (γ) is maximized. With respect to equation 2.1, the vector w 

(weight vector) and b (functional bias) are the parameters that control the function of 

the separation hyperplan (figure 2.1). In addition, x is the feature vector which may 

have different representations based on the nature of problem. For example, in text 

mining tasks, for a corpus including n number of documents, each document d is 

represented in the dimensional space in the form of a term vector (equation 2.2).  

di=[t1,t2,…,tm]      2.2 
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Where i ε n, m = the number of words in the corpus after removing stop 

words, and t = frequency of the ith term in the document. Previous researches in the 

field of construction and linguistics adopted representing each element in the vector 

by its normalized inverse term frequency (Salton 1989, Caldas et al. 2002, and Ng et 

al. 2006). This representation is selected so that terms appearing frequently in many 

documents have limited discrimination power (Salton 1989). This is done by 

multiplying the frequency of each term i by log(N/dfi), where N=total number of 

documents in the collection, and dfi=number of documents that contain the ith term. 

In a vector space, each document vector represents a point (Ng et al. 2006). 

SVM are applicable not only to problems of binary nature but also to 

multiclass classification nature. For a sample space X and output space Y, a binary 

classification problem will have Y= {-1, 1} while a multiclass one will have Y= {1, 2 

…, m}. 

From the above, the problem of classification is summarized to finding a 

hyperplane that separates the input data with maximum (γ). To further elaborate on 

this notion, one should first understand few basic concepts of the SVM. Figure 2.2 

illustrates the geometric margin of two points from the hyperplane. In this case γi and 

γj defines the Euclidean distance of two points from the decision boundary in the 

input space. Consequently, the distribution of all margins over all points defines the 

functional margin distribution of the hyperplane with respect to a training set. In other 

words, the margin γ of a training set (figure 2.3) is the maximum geometric margin 

over all possible hyperplanes.  
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Figure 2.2 Geometric Margin Representation in SVM (Shawe-Taylor and 
Cristianini 2000) 

 

Figure 2.3 Hyperplane Representation in SVM (Shawe-Taylor and Cristianini 
2000) 

The first version of the algorithm that was the foundation for learning linear 

classification was introduced in 1956 by Frank Rosenblatt (Shawe-Taylor and 

Cristianini 1999). Rosenblatt’s algorithm has proven guaranteed performance 

provided that there exists a hyperplane that separates the data set (Shawe-Taylor 

and Cristianini 2000). In this case the data are said to be linearly separable. 

However, a problem manifests itself if the data are not linearly separable. In the 

1960s, Misky and Papert highlighted the limited computational ability of a linear 
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learning machine (Misky and Papert 1990). As stated by Shawe-Taylor and 

Cristianini (2000), complex real life problems are rarely linearly separable. In other 

words, they cannot be represented by a simple linear combination of given 

attributes. Consequently, a more sophisticated higher dimension space is needed for 

the representation of such problems in order for these complex problems to be 

linearly separable. As the literature in this field instigate, Kernel representation 

provides a solution to this problem by transforming the data into a higher 

dimensional feature space to enhance the computational power of linear machine 

learning (Shawe-Taylor and Cristianini 2000, Shawe-Taylor and Cristianini 1999, 

Platt 1999, and Mangasarian and Musicant 1999). Kernel machines have been 

initially devised for the binary setting. However, extensions to the multiclass case 

have been promptly proposed (e.g. Vapnik, 1998, Weston and Watkins 1999, and 

Crammer and Singer 2003). As shown earlier in equation 2.1, the representation of 

any data set in a feature space for linear machine learning is achieved as a dot 

product of the feature vector (x) and the weight vector (w). By introducing the 

appropriate Kernel function, one can map the data set to higher feature space 

(equation 2.3 and figure 2.4) transforming it from linearly inseparable to linearly 

separable. In this manner, the input space X is mapped into a new higher feature 

space F = {Ø(x)|x� ��.       
x=����x1,…,xn����→�����x����=�����1����x1����,…,�n����xn��������or k����x,y����=[�����x����.�����y����]       2.3 
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Figure 2.4 Kernel Transformation (Shawe-Taylor and Cristianini 2000) 

2.6.3 Naïve Bayes Classifiers 

The name Naïve Bayes is derived from two parts. The former relates to an 

assumption that is inherited in the performance of the classifier. Naïve Bayes 

Classifiers assumes that the values of attributes are irrespective of each other. That 

is effect of an attribute on the prediction is independent from the effect of others as 

will be discussed later. The latter relates to the name of the pioneering 

mathematician that is credited for its initial use. Reverend Thomas Bayes (1702 – 

1761) was an English Presbyterian and Mathematician that is considered to be the 

first to apply Probability Theory, the basis of Naïve Bayes Classifiers, in an inductive 

manner. 

Naïve Bayes Classifiers is a type of classifiers that do not implement rules to 

derive the classification, unlike rule induction classifiers that will be discussed later. 

The classification methodology adopted by Naïve Bayes Classifiers is based on the 

probability theory. In other words, it finds the most likely classification for an instance 
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among all available classes taking into consideration the presence of prior 

knowledge of other pieces of information. For example, a classifier calculates the 

odds of a case being classified to an Owner or a Contractor class while having prior 

knowledge of the significant legal factors occurrence. A decision is made based on 

the highest calculated probability for both classes. Figure 2.5 illustrates the 

mathematical bases of Naïve Bayes Classifiers. For more elaboration an illustrative 

example is adopted from Max Bramer’s book Principles of Data Mining (2007). Table 

2.1 includes 20 instances for the 6:30 pm train from London to a certain local station. 

Each instance records four attributes (namely day of the week, season of the year, 

wind status, and rain status) and a classification (either the train was on time, late for 

less than 10 minutes, very late beyond 10 minutes, or cancelled). As mentioned 

earlier, a prediction of a newly unseen instance would be decided as the highest 

probability for that instance to fall into one of the above mentioned four classes. 

Consequently, Naïve Bayes assumes that each instance is mutually exclusive and 

exhaustive. In other words, it only falls into one class and cannot be classified to 

more than one. Table 2.2 defines the conditional and prior probabilities of all 

attributes and classes. A conditional probability as given in equation 2.4, is read as 

the probability of attribute (a) happening with the prior knowledge of a classification 

falling in class (x). However, a prior probability means the probability of a certain 

class (x) happening based on the 20 instances recorded. 

P(attribute=a|class=x)       2.4 
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Figure 2.5 Naive Bayes Classifiers Algorithm (Bramer 2007) 

 

Table 2.1 Train Data for Naive Bayes Classifier 

Day Season Wind Rain Class 

Weekday Spring None None On time 
Weekday Winter None Slight On time 
Weekday Winter None Slight On time 
Weekday Winter High Heavy Late 
Saturday Summer Normal None On time 
Weekday Autumn Normal None Very late 
Holiday Summer High Slight On time 
Sunday Summer Normal None On time 

Weekday Winter High Heavy Very late 
Weekday Summer None Slight On time 
Saturday Spring High Heavy Cancelled 
Weekday Summer High Slight On time 
Saturday Winter Normal None Late 
Weekday Summer High None On time 
Weekday Winter Normal Heavy Very late 
Saturday Autumn High Slight On time 
Weekday Autumn None Heavy On time 
Holiday Spring Normal Slight On time 

Weekday Spring Normal None On time 
Weekday Spring Normal Slight On time 
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Following the classifier algorithm given in figure 2.5 and data provided in table 

2.1, a newly unseen instance with attributes day of the week = weekday, season of 

the year = winter, wind status = high, and rain status = heavy would be classified as 

very late based on the following calculations. 

P(Class = on time) = 0.70 x 0.64 x 0.14 x 0.29 x 0.07 = 0.0013 

P(Class = late) = 0.10 x 0.50 x 1.00 x 0.50 x 0.50 = 0.0125 

P(Class = very late) = 0.15 x 1.00 x 0.67 x 0.33 x 0.67 = 0.0222 

P(Class = cancelled) = 0.05 x 0.00 x 0.00 x 1.00 x 1.00 = 0.0000 

Table 2.2 Naive Bayes Probability Calculations for Train Data Example 

 Class = On time Class = Late 
Class = 
Very late 

Class = 
Cancelled 

Day = 
Weekday 

9/14 = 0.64 1/2 = 0.5 3/3 = 1 0/1 = 0 

Day = 
Saturday 

2/14 = 0.14 1/2 = 0.5 0/3 = 0 1/1 = 1 

Day = Sunday 1/14 = 0.07 0/2 = 0 0/3 = 0 0/1 = 0 
Day = Holiday 2/14 = 0.14 0/2 = 0 0/3 = 0 0/1 = 0 

Season = 
Spring 

4/14 = 0.29 0/2 = 0 0/3 = 0 1/1 = 1 

Season = 
Summer 

6/14 = 0.43 0/2 = 0 0/3 = 0 0/1 = 0 

Season = 
Autumn 

2/14 = 0.14 0/2 = 0 1/3 = 0.33 0/1 = 0 

Season = 
Winter 

2/14 = 0.14 2/2 = 1 2/3 = 0.67 0/1 = 0 

Wind = None 5/14 = 0.36 0/2 = 0 0/3 = 0 0/1 = 0 
Wind = High 4/14 = 0.29 1/2 = 0.5 1/3 = 0.33 1/1 = 1 

Wind = Normal 5/14 = 0.36 1/2 = 0.5 2/3 = 0.67 0/1 = 0 
Rain = None 5/14 = 0.36 1/2 = 0.5 1/3 = 0.33 0/1 = 0 
Rain = Slight 8/14 = 0.57 0/2 = 0 0/3 = 0 0/1 = 0 
Rain = Heavy 1/14 = 0.0.07 1/2 = 0.5 2/3 = 0.67 1/1 = 1 

Prior 
Probability 

14/20 = 0.7 2/20 = 0.1 3/20 = 0.15 1/20 = 0.05 
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2.6.4 Rule Based Induction Classifiers 

Decision trees, ADTrees, and Rules Classifiers are types of ML classifiers 

that adopt decision rules automatically generated from training examples or data 

sets to classify a newly unseen instance (Bramer 2007). Decision tree classifier is a 

special case in which the generated decision rules are fitted into a form of a tree, 

where each leaf represents a decision state (figure 2.6). 

 

Figure 2.6 Decision Tree Representation (Bramer 2007) 

For a given training data set, decision rules are derived based on a process 

known as splitting on the value of attributes or for short splitting on attributes. In such 

a process each attribute within a training set is tested for all of its possible values. 

For a discrete attribute, a rule (branch) is generated for each possibility. However, 

continuous attributes are branched normally at values like “less than or equal to a 

value”, “greater than or equal to a value”, “less than a value”, “greater than a value” 

… etc. A defined value for branching is defined as the split value. The splitting 

mechanism is continued until all attributes are tested and each rule is titled with just 

one classification. For more illustration, a widely used example by many authors to 
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illustrate the application of decision rules is adopted from Quinlan (1993), Witten and 

Frank (2000), and Bramer (2007). The data set illustrated in table 2.3 represents the 

decision (classification) of a golfer to play golf each day based on 4 attributes 

namely outlook, temperature, humidity, and wind status. The table provides 

information about 14 instances. Figure 2.7 illustrates the decision tree derived from 

the given data set based on the previously discussed research design and 

implementation. 

Table 2.3 Golfer Data 

Outlook Temperature (oF) Humidity (%) Wind Status Class 
Sunny 75 70 True Play 
Sunny 80 90 True Don’t play 
Sunny 85 85 False Don’t play 
Sunny 72 95 False Don’t play 
Sunny 69 70 False Play 

Overcast 72 90 True Play 
Overcast 83 78 False Play 
Overcast 64 65 True Play 
Overcast 81 75 False Play 

Rain 71 80 True Don’t play 
Rain 65 70 True Don’t play 
Rain 75 80 False Play 
Rain 68 80 False Play 
Rain 70 96 False Play 

 

Rule decision algorithms, especially decision trees, were developed in the 

mid 1960s (Manning & Scheutze 1999). TDIDT short for Top-Down Induction of 

Decision Trees is a very powerful algorithm that initiated the application of decision 

trees for many classification systems (Bramer 2007). As stated by Bramer 2007 

“Decision trees are widely used as a mean of generating classification rules because 

of the existence of a simple and powerful algorithm called TDIDT”. TDIDT is an 
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algorithm that is applied in a recursive manner, keeps iterating till terminated, as 

shown in figure 2.8. 

 

Figure 2.7 Decision Tree Representation for Golfer Example (Bramer 2007) 

 

 

Figure 2.8 The TDIDT Algorithm (Bramer 2007) 

The simplicity of the implementation of decision trees led to its use in a variety 

of applications in the construction domain. In one of the most recent researches, Li 

and Lui (2008) implemented decision trees for the analysis of procurement 

strategies and task allocation between public and private sectors for infrastructure 

projects. Dogan et al. (2008) utilized decision trees for the determination of attribute 

weights in CBR models related to early cost prediction. Hegab and Nassar (2005) 
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implemented a decision tree methodology for the development of an expert system 

for commencement delay analysis. In addition, Arditi and Pulket (2005) implemented 

boosted decision trees for the development of litigation prediction model for the 

construction industry. Lee et al. (2004) implemented decision trees for the 

classification of change orders impact on productivity in construction projects. All of 

the above studies provide a strong support for the potentials of using rule based 

induction classifiers for the current research. 

2.6.5 Latent semantic Analysis (LSA) 

“Latent Semantic Analysis (LSA) is a theory and method for extracting and 

representing the meaning of words” (Landauer et al 2007). In a variety of AI 

techniques, the meaning of a word is determined through statistical computations 

applied on a large corpus of text. However, from human experience, a language can 

be learned by immersion without being explicitly taught. Consequently, the ability to 

understand the meaning of an expression composed of words can be acquired by 

humans through being surrounded by a certain language users. That directs to the 

belief that there exists a mechanism by which such a phenomenon takes place. The 

LSA theory attempts to model the mechanism of exactly how words and passage 

meanings can be constructed from experience with language. A corpus of related 

text imposes constraints on the meaning and semantic similarities of a word. For 

example, a word like “bank” can mean “a river side” or “an institution for financial 

transactions” based on the constraints imposed by the rest of words within a body of 

text. The theory of LSA hypothesizes that the meaning of a text is conveyed by the 
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words from which it is composed. Therefore, LSA is based on determining the 

meaning of a word by solving these constraints in a mathematical form by utilizing 

linear algebra, particularly, singular value decomposition (SVD). In other words, the 

meaning of a word is acquired by solving an enormous set of simultaneous 

equations that capture the contextual usage of words. It is not concerned with word 

position or segments.    

Landauer et al. (2007) highlights the superiority of LSA over other machine 

learning techniques with respect human knowledge simulation. LSA has shown to 

reflect human knowledge in a variety ways (1) its measures highly correlates to 

humans’ scores on standard vocabulary and subject matter tests; (2) it resembles 

humans’ word sorting and category judgment; and (3) it accurately estimates 

passage coherence. Furthermore, it has proven outstanding results in inter-sentence 

similarity measurements (Choi et al. 2001). LSA has been extensively used in 

linguistic researches. Landauer et al. (2003a and 2003b) tested LSA in multiple-

choice vocabulary tests and the task of determining the adequacy of expository 

essays contents. LSA scored in the high school student level. Foltz et al. (1998) 

researched the use of LSA to measure paragraph to paragraph coherence where it 

scored better than human coding. In other studies, LSA successfully modeled 

several laboratory findings in cognitive psychology (Howard et al 2007; Landauer 

2002; Landauer and Dumais 1997; and Lund et al. 1995). It detected improvement in 

student knowledge level from before to after reading as well as human judges 

(Rehder et al. 1998; and Wolfe et al. 1998). In the medical field, LSA was used to 
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diagnose schizophrenia from patients’ descriptions. It scored as well as experienced 

psychiatrists (Elvevag et al. 2005). 

LSA is based on the concept of Vector Space Model implemented by SVM. 

However, the main advantage in LSA is that it utilizes a truncated space in which the 

number of features is reduced. LSA represents word and passage meanings in a 

form of mathematical averages. Word meanings are formulated as average of the 

meaning of all the passages in which it appears, and the meaning of a passage as 

average of the meaning of all the words it contains. LSA methodology applies SVD 

for the reduction of dimensionality in which all of the local word context relations are 

simultaneously represented. LSA, unlike many other methods, employs a 

preprocessing step in which the overall distribution of a word over its usage 

contexts, is first taken into account independent of its correlations with other words. 

This step improves LSA’s results considerably. LSA then implements three well 

defined steps. Firstly, text document within a training corpus are represented in a 

form of matrix (figure 2.9). Each row of the developed matrix demonstrates a specific 

word in the training corpus. Each column of the matrix stands for a text document. 

Each cell contains the frequency with which the word of its row appears in the 

passage denoted by its column (Landauer et al. 2007). Consequently, a document 

collection including n documents and m features, which could be words, phrases, 

sentences, paragraphs … etc., are represented by an m by n matrix. Often, the 

number of features m is much higher than the number of documents n within the 

collection. Removal of stop words before performing matrix representation is not a 

necessity, due to the mathematical nature of the SVD, but it enhances its 
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performance by removing excess noise. The developed m by n matrix will contain 

zero and nonzero elements. Generally, a weighing function is applied to nonzero 

element to give lower weights to high frequency features that occur in many 

documents and higher weights to features that occur in some documents but not all 

(Salton and Buckley, 1991). Weighing functions are of two types namely local and 

global. The former relates to increasing or decreasing a nonzero element with 

respect to each document. The latter relates to increasing or decreasing a nonzero 

element across the whole collection of documents.  

 

Figure 2.9 Matrix representation in LSA (Landauer et al. 2007) 

Secondly, SVD is applied to the developed matrix to achieve an equivalent 

representation in a smaller dimension space (Choi et al. 2001). With SVD, a 

rectangular matrix is decomposed into the product of three other matrices (figure 

2.10). One component matrix describes the original row entities as vectors of 

derived orthogonal factor values, another describes the original column entities in 

the same way, and the third is a diagonal matrix containing scaling values such that 

Where: 
The dot product between two term vectors ti

Ttp gives the correlation between the terms over 
the documents Input. 
The dot product between two sentence vectors dj

Tdq gives the correlation over the terms 
Input. 
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when the three components are matrix-multiplied, the original matrix is reconstructed 

(Hofmann 1999).   

Thirdly, the number of features adopted for analysis is determined 

(Truncation). Since the singular value matrix is organized in an ascending order 

based on the weight of each term, it is easy to decide on a threshold singular value 

below which terms significance is negligible, refer to (figures 2.10 and 2.11), 

(Dumais 1990). For an original matrix A with rank k, a newly truncated matrix Ak can 

be formulated by the dot product illustrated in equation 2.5. As stated by Landauer et 

al. (2007), truncating the SVD and creating Ak is what captures the important 

underlying semantic structure of words and documents. Words that are similar in 

meaning are near to each other in k dimensional space. 

Ai=∑ uiσivi
Tk

i=1 →Ak=UkΣkVk
T     2.5 

 

 

Figure 2.10 SVD Matrix Representation in LSA (Dumais 1990) 

 

Where: 
• The term-document matrix X represents how important a term is in a given document.  
• Σ is a diagonal matrix representing the weights of the concepts. Usually SVD algorithm 

produces a Σ with σ1>σ2>...>σk > 0. 
• The columns of U are the terms in concept space, the rows of V are the documents in the 

concept space. Since SVD is used, U and V are unitary matrices, that is, the rows of U and 
the columns of V are of unit length and are pairwise orthogonal. 

• Not all concepts are necessarily used. Only those with sufficiently large singluar values (i.e. 
σ-s) may be selected. The result matrix is the best low-rank approximation to X in Frobenius 
norm. 
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Figure 2.11 K Dimensional Space Representation in LSA (Dumais 1990) 

By representing any document in the generated concept space, it is then 

possible to calculate "distance" (metric) on the set of such document representations 

thus computing whether two such representations are close which usually implies 

that the documents themselves are related. This notion makes LSA a very strong 

tool for document classification. 

For more elaboration, an example is adopted from Landauer et al (2007). 

Figure 2.12 provides titles for topics on music and baking. Figures 2.13 and 2.14 

illustrate the developed word by document matrix for the topics collection. Figure 

2.15 shows the SVD of the example word by document matrix reduced to 2 features 

(k=2). Figure 2.16 shows a plot of words represented by squares and documents 

represented by rectangles after truncation. The (x,y) pairs of each point is defined as 

x = first dimension or column of matrix U or V multiplied by first singular value. 

y = second dimension or column of matrix U or V multiplied by second 

singular value.     

Similarities between words and documents can be determined based on 

angles between vectors. Consequently, from figure 2.12, it can be deduced that 

document M4 “A Perspective of Rock Music in the 90’s” and M1 “Rock Music in the 
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1960’s” are the closest documents to M3 “Drum and Base Composition”. In addition, 

the word “Music” is most similar to “Rock” and “Composition” in the document 

collection.  

 

Figure 2.12 Titles for Topics on Music and Baking (Landauer et al. 2007) 

LSA implementation includes another fold. Once a truncated space of a 

dataset is produced, queries can be performed. Query in LSA can be defined as 

finding features or documents within the generated space similar to newly introduced 

ones. Deerwester et al. (1990) refers to representing a query in a truncated vector 

space as a pseudo-document. “A query is the weighted sum of its feature vector 

scaled by the inverse of the singular values, this individually weights each dimension 

in the k-dimensional feature-document vector space” (Landauer et al. 2007). A newly 

introduced query to the truncated feature space can be represented as per equation 

2.6, where qT is a vector containing zero and nonzero weighted frequency values of 

features in the newly introduced document. Similarity measures can then be 

implemented based on angles between vectors as mentioned earlier (Letsche and 

Berry 1997). 
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Figure 2.13 The 10X9 Word by Document Matrix with Word Frequencies 
Corresponding to the Titles in Figure 2.12 (Landauer et al. 2007) 

 

 
 

  Figure 2.14 The 10X9 Weighted Word by Document Matrix Corresponding 
to the Titles in Figure 2.12 (Landauer et al. 2007) 
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Figure 2.15 The SVD of the Weighted Word by Document Matrix 
Corresponding to the Titles in Figure 2.12 (Landauer et al. 2007) 
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Figure 2.16 The Rank-2 LSA Vector Space for the Music/Baking Titles 
Collection (Landauer et al. 2007) 
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2.7 Differing Site Conditions (DSC) 

The focus of this section of the chapter is to provide an overview of the 

definition of DSC in the construction industry, background information about the 

implementation of DSC clauses in construction contracts, the contractual context of 

DSC clauses, and the types of DSC. 

One of the major and most commonly encountered disputes that had raised a 

lot of questions and enforced alterations on the way Owners and Contractors 

perceive risk allocation in construction projects is DSC (El-Saadi 1998). Originally, 

owners’ approach to handling risk entailed allocating most risk on contractors (Levin 

1988). As a rule of thumb, a directly proportional relation exists between the risk 

assumed by the contractor and the contingency imposed on his bid (Krol 1993). In 

other words, not including a DSC clause in the contract leads each party to take 

extreme measures. Faced with the burden of most DSC risk, contractors tend to 

include larger contingencies in their bid prices as a method for protecting themselves 

against the many uncertainties of construction projects. This consequently leads 

owners who allocate these risks contractors, to incur higher values for the performed 

works in the case that no DSCs encountered. Nevertheless, by agreeing to share 

DSC risk and allowing for the reimbursement of costs incurred by contractors due to 

DSC, contractors would reasonably price their bids by including a smaller 

contingency, and would not claim damages under breach of contract. In the latter 

case, “The owner, whether public or private, minimizes the risk of being held in 

breach of contract for failing to adequately describe the physical conditions at the job 

site” (Levin 1988). 
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2.7.1 Differing Site Conditions Clauses 

Differing Site Conditions (DSC) clauses have many forms since contracts 

allow for different degrees of variability in site conditions. Some clauses are 

restricted to handling conditions which vary from those described in the contract 

documents irrespective of any unexpected conditions encountered that were not 

referred to. Others cover under their scope only materially different conditions from 

those expected in similar projects. Each of these categories allocates different level 

of risk on both contracting parties. However, there are agreed upon concepts that 

are represented in standard forms of contracts like FAR (Federal Acquisition 

Regulations), AIA (American Institute of Architects), FIDIC (Fédération Internationale 

Des Ingénieurs-Conseils, French for the International Federation of Consulting 

Engineers), and the Engineers Joint Contract Committee. The concepts can be 

utilized to formulate a definition for DSC as “physical site conditions at the job site 

which differ materially from the conditions represented in a construction contract or 

the condition that normally could be expected in a job of similar nature” (Levin 1988).  

The definition of DSC must be integrated with an understanding of the 

characteristics of DSC clauses to comprehend its application. DSC clauses have 

unique characteristics, and do not lead to any implied rights. A DSC clause must be 

present in a contract for the contractor to have the right to any additional payment 

under the contract. Once construction begins on a project under a contract that is 

silent about the risk of unforeseen conditions, a contractor bears the risk of running 

into conditions that were not expected at the time they submitted their bid even 

though they significantly increase the cost of performance (Iacobelli 1994). This 
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draconian rule had always been the governing factor when court decisions are 

required. However, judges were confronted with cases that triggered their sense of 

fair judgment with regards to whether the misrepresentation of the physical 

conditions was either intentional or caused by neglect on part of the owner. 

However, judges also made judgments that question the foreseeability of the 

conditions and the level of prudency of the contractor in interpreting the contract 

documents that did not mention DSC.  

2.7.2 History of Differing Site Conditions Clause (DSC) 

The literature shows that the federal government was a pioneer in using DSC 

clauses. November 22nd, 1921 is recoded as the first date a DSC clause titled 

“changed conditions”, which was later titled ”Differing Site Conditions”, was 

implemented (Tarkoy, unpublished book, 2008).  On August 20th, 1926 the first 

standard general conditions for construction that includes a “changed conditions” 

clause was approved by the president of the United States for use by the federal 

government in their contracts (Tarkoy, unpublished book, 2008). From that date on, 

Federal Regulations made the use of DSC clause compulsory in all U.S. 

Government Contracts. It was incorporated as part of the Federal Acquisition 

Regulations (FAR) to prevent contractors from bidding on a worst-case-scenario 

basis (North Slope 1988). This clause allocates to the government the risks for 

conditions that the contract documents fail to disclose, but leaves upon the 

contractor the costs of encountering those conditions described in the contract 

(Erickson-Shaver 1985). Because the DSC clause alleviates the need for contractors 
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to insert speculative contingency costs in their bids, it reduces inflated bidding, and 

the government presumably saves money by getting lower bids (Weeks Dredging 

1987, and North Slope 1988). Therefore, for over a half a century the DSC clause 

has been used in government contracts and has been interpreted by the courts. The 

purpose of the clause has been to shift the risk of adverse subsurface or latent 

physical conditions from the contractor, who normally bears such risk under a fixed-

price contract, to the government. While it is recognized that the DSC clause is a risk 

shifting mechanism, it does not shift all unanticipated risk in a project's site 

conditions to the government. The Federal Circuit Court articulated the purpose of 

the DSC clause as follows: The government bears only those risks that encourage 

"more accurate bidding." Those risks are shifted to the government so that 

contractors will not add to their bids the cost of assessing whether adverse 

subsurface conditions exist or the cost of confronting such conditions if and when 

they are encountered. 

The standard DSC clause defines a differing site condition and provides the 

procedures and requirements a contractor must follow before it is able to recover an 

equitable adjustment to the contract. It provides that when a contractor encounters a 

DSC, it must promptly notify the contracting officer (CO) in writing before the 

conditions are disturbed. The clause also defines the two types of DSC as follows: 

(Type 1) subsurface or latent physical conditions at the site which differ materially 

from those indicated in this contract, or (Type 2) unknown physical conditions at the 

site, of an unusual nature, which differ materially from those ordinarily encountered 

and generally recognized as inhering in work of the character provided for in the 
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contract. It also grants authority to the CO to make an equitable adjustment to the 

contract if the CO determines the alleged DSC satisfies the definition provided in the 

clause. 

After the incorporation of the DSC clauses by the FAR, similar clauses have 

been included in other standard contract forms like AIA (American Institute of 

Architects), FIDIC (Fédération Internationale Des Ingénieurs-Conseils, French for 

the International Federation of Consulting Engineers), and the Engineers Joint 

Contract Committee. 

2.7.3 Type of Differing Site Conditions (DSC) 

As mentioned earlier, analysis of the language of the DSC clause of the 

federal government contracts (FAR) addresses two types of differing site conditions 

(Type 1 and Type 2). The former relates to physical conditions which differ materially 

from those indicated in the contract documents. The latter authorizes compensation 

“equitable adjustment” for unknown conditions which differ materially from those that 

would normally be encountered in projects of similar nature. As stated by Levin 

(2008), Type 2 Differing Site Conditions are rarely considered by both private and 

public owners in their contracts. Construction law literature explains that in order, to 

prevail on a Type 1 DSC claim, a plaintiff must show: (1) the contract documents 

affirmatively indicate subsurface conditions; (2) she acted as a reasonably prudent 

contractor in interpreting the contract documents; (3) she reasonably relied on the 

indications of subsurface conditions in the contract; (4) the subsurface conditions 

actually encountered differed materially from those indicated in the contract; (5) the 
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actual subsurface conditions were not reasonably foreseeable; and (6) her damage 

was attributable to the materially different subsurface conditions (Weeks Dredging 

1987). Consequently, the threshold issue of whether a contractor is eligible for an 

equitable adjustment for a Type 1 DSC at a project site depends on the soil 

conditions indicated in the contract. The United States Court of Appeals for the 

Federal Circuit has made it clear that a contractor cannot be eligible for an equitable 

adjustment for DSC unless the contract indicated what those conditions would 

supposedly be (Weeks Dredging 1987). Courts that have addressed Type 1 DSC 

have found indications of the site conditions in the contract in order to consider that 

the contractor encountered this type of DSC. In the context of Type 1 DSC, while it is 

true that a contract indication need not be explicit or specific, the contract documents 

must still provide sufficient grounds to justify a bidder's expectation of latent 

conditions materially different from those actually encountered. In other words, the 

difficulty in Type 1 DSC inquiry is showing whether the condition differed materially 

from the affirmative representations in the contract. Contract indications may be 

implicit, but there must be sufficient indications of the condition to induce a 

reasonable reliance in the bidder that subsurface conditions would be more 

favorable than those encountered (Weeks Dredging 1987). As a consequence, 

determining whether a contract contained indications of a particular site condition is 

a matter of contract interpretation and thus presents a question of law. As illustrated 

in Travelers Casualty, v. the United States of America (2007), unlike traditional 

contract interpretation, in a differing site condition claim, a contractor is permitted to 

make inferences from a contract's implications. Interpretation of contract indications 
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requires the United States Court of Federal Claims to place itself into the shoes of a 

reasonable and prudent contractor. The implications in the contract need only be 

sufficient to impress a reasonable bidder. When a contract's language is 

unambiguous, it must be given its plain and ordinary meaning. When determining 

the plain meaning of a contract, a court must first determine what documents are 

actually parts of that contract. Documents will be considered part of a contract only 

when the intention to include it is clearly manifested. The key distinction between 

patent and latent ambiguity is in the way the law treats them and the corresponding 

effect on the contracting parties' rights and obligations. In common law, ambiguities 

are generally interpreted against the drafter. In the context of federal contracts, 

contractors are required to inquire about patent ambiguities before making bids. The 

purpose of requiring pre-bid inquiry is to prevent contractors from taking advantage 

of ambiguities in government contracts by adopting narrow interpretations in 

preparing its bids and then, after the award, seeking equitable adjustments to 

perform additional work the government actually wanted. The Federal Circuit, of the 

Court Appeals however, has not given the patent ambiguity doctrine broad 

application (Travelers 2007). Because the doctrine has the effect of relieving the 

government from consequences of its own poorly drafted contracts, the doctrine has 

been applied only to contract ambiguities that are judged so patent and glaring that it 

is unreasonable for a contractor not to discover and inquire about them. A court's 

finding of a latent ambiguity, however, does not automatically mean a favorable 

result for the plaintiff. The court will only adopt the contractor's interpretation of a 

latent ambiguity if its interpretation is reasonable. 
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On the other hand, to prevail on a Type 2 DSC claim, a plaintiff must show: 

(1) the encountered subsurface conditions were not reasonably foreseeable; (2) she 

did not have prior knowledge of the existence of the subsurface conditions; (3) the 

encountered conditions vary from the norms in similar construction projects (Levin 

1988). In order for a contractor to recover for a Type 2 DSC, the condition must have 

existed at the time the contract was executed (North Slope 1988). Analogous to the 

rule that a DSC must exist before the execution of the contract, a contractor typically 

cannot recover for a post-award phenomenon considered an act of God. Generally, 

the government, under the standard DSC clause, does not assume an obligation to 

compensate a contractor for additional costs or losses it incurs resulting solely from 

weather conditions, which neither party expected or could anticipate and not from 

any act or fault of the government. Weather conditions generally are considered to 

be acts of God (North Slope 1988).  The general rule is that the risk of severe 

weather in a particular region is not shifted to the government via the DSC clause. 

For example excessive rainfall is not in and of itself a DSC for which price and time 

adjustments are to be made under the DSC clause. Likewise excessive rainfall is not 

in and of itself a suspension of work nor is the CO under a duty to suspend merely 

because of such rainfall. But when excessive rainfall in interaction with a drainage 

area makes specified performance impossible a DSC does exist and the CO, if he 

wants work done, must change the specifications so as to make it possible. Within 

the context of a Type 2 DSC, where the Government has elected not to pre-survey 

and represent the subsurface conditions with the result that a contractor must 

demonstrate that he has encountered something materially different from the known 
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and the usual. This is necessarily a stiffer test because of the wide variety of 

materials ordinarily encountered when excavating in the earth's crust (North Slope 

1988). Consequently, in determining whether a particular condition is unusual, the 

encountered condition is judged against the normal conditions for the area. Legally, 

unusual conditions with respect to a DSC claim are judged by the normal conditions 

for the area. The condition must significantly deviate from the norm for the area and 

the type of work (Servidone 1990). For example, difficulties caused by the 

combination of expansive clay soils and precipitation are the usual and reasonable 

problems encountered when expansive clay soils interact with moisture and do not 

constitute a Type 2 DSC. 

2.8 Chapter summary: 

Case-Based Reasoning has showed to be a very powerful tool in the 

implementation and utilization of previous knowledge learned from experience. It has 

been implemented as a potential solution to variety of problems in the construction 

domain including litigation outcomes prediction. However, a crucial aspect of the use 

of CBR models is the extraction of previous knowledge to form the cases of the case 

base. Since this knowledge includes significant amount of textual material expressed 

in human language, the need for tools that are capable of effectively analyzing 

textual material and efficiently retrieving pertinent information from them has become 

a necessity. As mentioned earlier, the accuracy of the output of a CBR system is 

largely dependent on the availability of reliable information about the attributes used 

to define the training cases. As Arditi and Pulket 2005 state “Finding a complete and 
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reliable set of training examples is difficult in construction litigation cases”. The use 

of natural language processing techniques NLP can enhance and facilitate the use 

of construction litigation prediction models. Automatic case classification and 

knowledge extraction can be improved through NLP techniques (Bruninghause and 

Ashley 2001). This notion is greatly supported by the use of NLP approaches as a 

solution to different problems related to enhancing information models, document 

integration, and inter-organizational systems in construction. Artificial Intelligence 

(AI) and Natural Language Processing (NLP) techniques have been employed 

extensively through a variety of automated and semi-automated tools (Labidi 1997). 

Text mining methodologies, document clustering techniques, controlled vocabulary 

schemes, and web based models were some of the techniques utilized to perform 

the above mentioned tasks (Caldas and Soibelman 2003). However, its use to 

enhance construction litigation outcomes prediction has not yet been attempted. The 

highly sophisticated electronic information storage and retrieval systems available 

for researching the law and legal precedent are extremely complex and time 

consuming. Sometimes this complexity creates problems for information seekers 

and can limit their access to relevant information. Consequently, accurate legal 

decisions within the construction domain are exceedingly time consuming and may 

require knowledgeable professionals that are on very high demand to provide the 

needed decision support. 

Investigation of ML techniques showed the superiority of the induction 

reasoning over other reasoning methodologies. This investigation further highlighted 
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the high potential for using SVM, Naïve Bayes, and Rule Induction Classifiers for 

extracting novel information hidden within textual representations.  

DSC clauses were introduced by the Federal Government to lower 

contingency measures adopted by contractors and in return lower bid prices. These 

clauses provide a measure of assurance for contractors to recover from extra costs 

due to unanticipated site conditions. These clauses created some problems due to 

their abuse by some contractors. For one, claims for DSC have become a custom 

tactic to be followed by contractors to recover from cost overruns, misinterpretation 

of anticipated conditions, and poor project coordination. This has led owners and 

engineers to hold a hard position when reviewing contractors’ legitimate claims 

related to unforeseen conditions and associated costs. Furthermore, the literature in 

this area illustrates that the process of proving a DSC requires tremendous time and 

effort for factual examining. Consequently, the presence of an automated legal 

support for DSC in the construction industry that utilizes standardized methodology 

for (1) automated identification of significant legal factors that affects litigation 

outcomes of DSC disputes; (2) automated prediction of litigation outcomes of DSC 

Disputes; and (3) automated extraction of precedent DSC cases similar to newly un-

encountered ones will reduce the time required and costs incurred by construction 

firms and improve overall project control. 
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CHAPTER 3 
A STATISTICAL ANALYSIS OF FACTORS AFFECTING LITIGATION OUTCOMES 

IN DIFFERING SITE CONDITIONS DISPUTES 

3.1 Introduction  

The overall objective of this chapter is to analyze the main legal factors that 

govern litigation outcomes in DSC disputes. This objective is undertaken as a first 

step in the development of a construction legal decision support methodology based 

on statistical modeling and machine learning. The focus of this chapter, therefore, is 

to illustrate the design implementation of discrete choice prediction models for 

identifying the legal factors governing DSC disputes. The developed statistical 

models will aim to (1) detect the effect of each identified legal factor on the prediction 

of the winning party; (2) identify the best combination of legal factors with the highest 

significance on the prediction model; and (3) prioritize the identified legal factors 

according to their importance to DSC disputes.  

As claims and disputes increase, the construction industry struggles to find 

ways to equitably and economically resolve them. As illustrated earlier in chapter 2 

“Literature review”, a number of researchers in AI fields have developed tools and 

methodologies for modeling judicial reasoning and predicting the outcomes of 

construction litigation cases. However, their success was always bound by the input 

parameters they consider. In an attempt to provide an outcome prediction system for 

Differing Site Condition (DSC) claims in the construction industry, this chapter 

provides as a first step, a statistical analysis of a number of differing site condition 

cases from the Federal Court of New York in an endeavor to derive a set of 
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significant legal factors that governs litigation outcomes prediction concerned with 

this type of claims. The following sections of this chapter will therefore explain the 

implementation of the developed Statistical Models, as well as the results of these 

models and discussion of the main findings of the implementation of the models. 

3.2 Design and Implementation of Statistical Models 

The objective of this chapter is to identify, quantify, and measure the impact 

of significant legal factors on the prediction of outcomes of DSC claims in the 

construction industry. Consequently, this chapter provides a statistical analysis of set 

of 60 precedent cases from the Federal Court of New York in an effort to derive a 

comprehensive set of significant legal concepts that govern litigation outcomes of 

DSC claims. To this end, the main steps of the design and implementation of the 

proposed statistical model include (Figure 1.1): (1) developing a corpus of 

construction DSC cases; (2) identifying a set of legal factors that constitute the 

bases of judgments in construction DSC cases; and (3) developing statistical models 

that relate the likelihood of a DSC cases being judged in favor of one party over the 

other to the identified set of legal factors. It is important to note here that the 

developed prediction models are used mainly as a vehicle for determining the 

significant factors in DSC claims rather than as a decision support tool. The 

proposed statistical modeling approach will create and compare the outputs of 

Discrete Binary Probit Choice Model and Discrete Binary Logistic Regression Model 

(a) to identify the effect of each extracted factor on the prediction of the winning 

party; (b) to identify the best combination of factors with the highest significance on 
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the prediction model; and (c) to perform a sensitivity analysis to priorities the most 

significant legal factors. The statistical modeling approach will therefore be 

composed of three main stages: 

1. Data acquisition and preparation; 

2. Binary Probit model implementation; and 

3. Binary Logistic model implementation. 

3.2.1 Data Acquisition and Preparation  

Corpus based approaches have become increasingly important in providing 

the basic data for prediction model (Robinson 2004). The scope of work under this 

research utilizes data from a web legal case retrieval engine (LexisNexis) for the 

statistical analysis of legal factors in DSC conflicts and disputes. LexisNexis 

provides access to over 32,000 legal, news, and business sources. Furthermore, it 

clusters legal cases in subdivisions based on states (LexisNexis 2008). An initial 

corpus composed of 60 DSC precedent cases was collected. The gathered corpus, 

which covers a time interval from 1912 to 2005, was collected from the Federal 

Court of New York due to the large number of construction precedent cases in this 

jurisdiction. Out of the gathered 60 cases there are: (1) 32 cases judged in favor of 

Owner versus 28 cases judged in favor of Contractor; (2) 28 cases (46.67%) of the 

cases are first, second, or third appeals; and (3) 32 cases (53.33%) of the cases are 

non-appeals. Out of the 28 appeal cases:  
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Figure 3.1 Statistical Modeling Approach 
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(1) 14 cases were judged in favor of Owner in comparison to 14 cases judged 

in favor of Contractor; (2) 9 cases were originally judged in favor of Owner and 

judgments were affirmed; (3) 10 cases were originally judged in favor of Owner and 

judgments were reversed; (4) 4 cases were originally judged in favor of Contractor 

and judgments were affirmed; and (5) 5 cases were originally judged in favor of 

Contractor and judgments were reversed. Out of the 32 non-appeal cases, 18 cases 

were judged for Owner and 14 cases were judged for Contractor.  

For each of the collected precedent cases, a detailed analysis is performed to 

extract legal factors that are hypothesized to have led to the decisions on those 

cases. Within the legal domain, cases are judged after detailed and through analysis 

of surrounding circumstances. Consequently, judgments are based on concrete 

facts that are always stated within the body of each case. The factors related to this 

analysis are extracted from the stated opinions of judges. For example, in the case 

of All County Paving Corp., Doing Business as Collins Construction Co., Appellant, v 

Suffolk County Water Authority, Respondent, judges Anita R. Florio, J.P., Robert W. 

Schmidt, Thomas A. Adams, and William F. Mastro stated in their opinion “Indeed, 

the specifications stated that there was "no guarantee that unknown, adverse, 

conditions [did] not exist underground in the vicinity of the drill site." Thus, under the 

terms of the parties' contract, the plaintiff bore the risk of encountering unexpected 

subsurface soil conditions, and “since the defendant made no misrepresentations 

and withheld no information, the plaintiff was not entitled to extra compensation”. 

These facts are considered as the bases of including two factors namely SpecWarn 

(Whether the specifications warn against the possibility of DSC existence or not) and 
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MMistake (Whether the mistake was a mutual one and no ill intent was meant from 

any party). In that regard, a total of 53 factors were extracted. An analysis of the 

existence of each of these factors in all cases was then performed in the form of 

binary indicator variables [not existing (0) or existing (1)]. As a measure of choice, an 

indicator variable for the final judgment was recorded [owner (1) or contractor (0)]. A 

list of all extracted factors is provided in appendix A. 

3.2.2 Binary Probit Model Implementation 

This study is concerned with finding factors, out of the generated list, that are 

statistically significant for the prediction of construction litigation outcomes related to 

DSC claims. Since the analysis is pertinent to only two outcomes, Discrete Binary 

Models were implemented using the statistical modeling software LIMDEP (Greene 

1998). The present stage of the statistical modeling approach implements a binary 

probit model. In statistics, a probit model is a popular specification of generalized 

linear models that was introduced by Chester Ittner in 1935. This stage implements 

probit regression, which is the application of probit models to the data set created in 

the previous stage of this statistical modeling approach. In this regression the 

likelihood of an outcome of a case (either in favor of the owner or contractor) follows 

a binary distribution. For illustration, Let Y be a binary outcome variable representing 

whether the owner prevail or not and having the value of 1 or 0 respectively. Also let 

X be a vector of regressors defining the legal factors in each case. The probit model 

developed will therefore be given by equation 3.1.  

P�Y=1|X=x�=��x'β�      3.1 
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where Φ is the cumulative distribution function of the standard normal 

distribution, x is a legal factors, x’ is the standardized form of the legal factors, and β 

is a vectors of estimable parameters obtained from the regression. The Probit model 

is derived under the assumption that disturbance terms ε within the generated model 

are normally distributed. In this case the probability of owner prevailing (Y=1) 

occurring for case n is computed using equation 2 (Washington et al. 2003). 

Pn(1)=P(β1X1n-β2X2n≥ε2n-ε1n)                                  3.2 

Where: β 1 and β2 are vectors of estimable parameters for the owner or 

contractor prevailing respectively. X1 and X2 are vectors of legal factors that 

determine the outcome for case n. ε1n and ε2n are normally distributed disturbance 

terms with mean=0, variance σ2
1 and σ2

2 respectively, and covariance σ12. Due to 

the normality assumption, (ε1n - ε2n) is normally distributed with mean=0 and 

variance = σ2
1 + σ2

2 - σ12. It could be implied from above that the cumulative normal 

function for the probability of owner prevailing is given by equation 3 where σ = (σ2
1 

+ σ2
2 - σ12)

0.5 and the term 1/σ is a scaling of the function determining the case 

outcome (Washington et al. 2003).. 

Pn(1)=
1

√2π 
 � EXP �- 1

2
 ω�� dω

(β1X1n-β2X2n)/σ

-∞
                            3.3 

In probit model the vector of estimable parameters β is readily estimated 

using standard Maximum Likelihood Estimation method (MLE). The principle of MLE 

is that different statistical populations generate different samples; any one sample is 

more likely to come from some populations rather than others. For example, if we 

have a sample of cases Y1, Y2, ... , Yn, the target is to find the value of β most likely 
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to generate this sample based on their legal factors X. Assuming that Yi is normally 

distributed with mean β0 + βixi and variance σ2, where β0 and βi are scalars 

representing the estimable parameter of Y intercept and each legal factor 

respectively. Therefore, the probability distribution can be written as (Washington et 

al. 2003): 

P�Y1�= 1

�2πσ2
EXP �- 1

2σ2 �Yi-β0-∑βixi�2�     3.4 

Consequently, the likelihood function can be written as (Washington et al. 

2003): 

L�Y1,Y2,…,YN,β0,βi,σ
2�=P�Y1�P�Y2�…P�YN�   3.5 

=�� 1

�2πσ2
"EXP #- 1

2σ2 $Yi-β0-&βixi'2(
N

i=1

 

Where Π is the product of N factors. For simplicity, work is done with the 

algorithm form of L. this is statistically acceptable since L is always non-negative. 

Maximizing LN(L), LL with respect to β0, β1, and σ2 results in: 

∂�LL�
∂β0

=
1

σ2
∑�Yi-β0

-∑ β
i
xi�=0           3.6 

∂�LL�
∂β1

=
1

σ2
∑ [xi�Yi-β0

-∑β
i
xi�] =0         3.7 

∂�LL�
∂σ2 =-

1

2σ2 +
1

2σ4
∑�Yi-β0-∑βixi�=0            3.8 

β
i
=
∑�xi-X,��Yi-Y,�
∑�xi-X,�2             3.9 

β
0
=Y,-∑β

i
X,           3.10 

The basic functional form adopted for this analysis is the linear form. Due to 

the nature of the model specification and to legal factors being modeled using 
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indicator variable that have values 0 and 1, pseudo elasticity were observed. In this 

case, the sign of the estimated parameters relates the presence of a statistically 

significant factor and its increasing or decreasing effect (+ or – sign) on the 

probability of owner prevailing. 

Table 3.1 illustrates the dependent and independent variables for a sample of 

five cases. Implementing the statistical modeling approach yielded βDSCC=0.50, 

βDCS=-0.667, βN&C=-0.50, βConraise=-0.50, βComImpossible=-1.00, βOchange=-1.00, 

βMmistake=-6.667, βOcause=0.00, βSpecWarn=1.00, βSpecRep=0.00, βCNoExtra=-0.50, 

βOfalsely=0.50, βOAdjust=0.50, β0=2.50. A positive estimable parameter means that that 

the related factor increases the probability of the outcome, while a negative 

estimable parameter means that the related factor decreases the probability of that 

outcome; a large estimable parameter means that that the related factor strongly 

influences the probability of that outcome; while a near-zero estimable parameter 

means that that the related factor has little influence on the probability of that 

outcome. From the above example, a factor like SpecRep will have no effect on the 

outcome; whereas, Specwarn will have the highest effect on increasing the 

probability of the outcome. From the above equations, if all other estimable 

parameters are equal to zero, β0 (also called y intercept) will represent the general 

trend of the outcome. As all other estimable parameters, the sign and value 

inferences are applicable to the interpretation of β0. In the above example, there is a 

general trend for the outcome to occur. Since the target of this research is to find 

and determine the significance of the defined legal factor on the prediction of the 

winning party; the validation process is twofold. The first is the determination of the 
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best probit model through the measure of fit ρ2 and over all model fit R2. Second, 

significance of each factor is determined through its t-statistics (equation 11), which 

is a representation of any parameter to be significantly different than 0. At a 

confidence interval of 0.1, a t-statistics above 1.3 is considered significant (please 

refer to tables 3.2 and 3.3). The above described modeling steps are repeated 

iteratively till a model is found that best satisfies the aforementioned validation 

criteria (please refer to figure 3.1). 

ti=
βi-0

standard error�βi�         3.11 

3.2.3 Binary Logistic Model Implementation 

Non-linear modeling, Logistic Regression (LR), is another alternative for 

analyzing data of binary nature that is implemented in this stage to verify the 

significance of the legal factors affecting DSC disputes that were identified in the first 

stage of this statistical modeling approach (Tabachnick and Fidell, 1996). The LR 

model was derived similar to the probit model but under the assumption that 

disturbance terms ε within the generated model follow Gumbel distribution. The 

adopted form of the model is represented in equation 3.12. 

Table 3.1 Sample Example of 5 Cases 
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Table 3.2 Relevant statistics of Probit Model at Confidence Interval = 0.1 

Relevant statistics Value 
Dependent variable OUT 
Weighting variable None 
Number of observations 60 
Log likelihood function -7.733669 
Number of parameters 12 
Info. Criterion: AIC 0.743720 
Finite Sample: AIC 0.858000 
Info. Criterion: BIC 1.105050 
Info. Criterion:HQIC 0.878420 
Restricted log likelihood -31.091550 
McFadden Pseudo R-
squared  

0.751261 

Chi squared 46.715760 
Degrees of freedom 11 
Prob[ChiSqd > value]  0.000000 
Hosmer-Lemeshow chi-
squared 

1.623930 

P-value (with deg.fr. = 1) 0.202540 
 

f(Y)=
1

1+e-X
→y=log $ Pi

1-Pi
'=β0+βi·xi     3.12 

Where β0 and βi are estimable parameters for the Y intercept and legal factor 

i respectively and 
i
x  is the value of the legal factor that determine the outcome for 

any individual case i. The variable y represents the exposure to some set of legal 

factors xi, while f(Y) represents the probability of a particular outcome of a case, 

given that set of legal factors. The intercept is the value of β0 when the value of all 

legal factors is zero. The individual value of each estimable parameter determines 

the significant effect of its corresponding legal factor on the probability of a particular 

outcome of a case. Similar to Probit, the estimable parameter values are estimated 

using MLE. The significance of each factor is determined through its t-statistics 
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(equation 3.11), which is an indicator of any parameter to be significantly different 

than 0. At a confidence interval of 0.1, a t- statistics above 1.3 is considered 

significant. 

Table 3.3 Relevant statistics of Logistic Model at Confidence Interval = 0.1 

Relevant statistics Value 
Dependent variable OUT 
Weighting variable None 
Number of observations 60 
Log likelihood function -12.04719 
Number of parameters 10 
Info. Criterion: AIC 0.93543 
Finite Sample: AIC 1.04972 
Info. Criterion: BIC 1.29676 
Info. Criterion:HQIC 1.07013 
Restricted log likelihood -31.09155 
McFadden Pseudo R-
squared  

0.6125253 

Chi squared 38.08872 
Degrees of freedom 9 
Prob[ChiSqd > value]  0.7248771E-05 
Hosmer-Lemeshow chi-
squared 

11.97723 

P-value (with deg.fr. = 4) 0.01752 
  

In this form of logistic regression equation 1.13, the owner prevailing outcome 

is the logarithm of the ratio of the probability of the owner prevailing (Pi) to the 

probability that this outcome does not occur (1-Pi). Taking the exponential of both 

sides of the above equation yields (Washington et al. 2003): 

$ Pi

1-Pi
'=eβ0+βi·xi=eβ0·eβi·xi                                                3.13 

It is clear from equation 3.13 that when a legal factor xi increases by 1(i.e. 

exist in the case), with all other factors remaining unchanged, then the odds of an 
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outcome will increase by a factor eβi, known as the odds ratio (OR). The OR 

quantifies the relative change by which the odds of the outcome increase or 

decrease when the value of the predictor is increased by 1. 

The application of this three stage statistical modeling approach yielded a 

number of very useful insights about the main legal factors that impact DSC disputes 

in the construction industry. The results and the insights obtained are detailed in the 

following section of the chapter.  

3.3 Results and Discussion 

The results of the application of the aforementioned statistical modeling 

approach are presented in tables 3.5, 3.6, and 3.7, respectively. The following is 

closer examination and discussion of these results that highlights: (1) the 

independent variable estimation; (2) the prediction models; and (3) the sensitivity 

analysis.  

3.3.1 Independent Variables Estimation 

The independent variables (legal factors) under investigation represent 

factual conditions upon which the entitlements of 60 DSC litigation cases in the 

construction industry were decided in the Federal Court of New York. These 

variables include “the presence of DSC clause”, “the presence of factual aspects 

illustrating the presence of Type 1 and\ or Type 2 DSC”, among others. While 

performing a study of the influence of each variable on the prediction of owner 

prevailing, it was noticed that 18 of the extracted variables were constant over all 

observations (cases). Although these factors were constant the outcomes of their 
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related cases were not. Consequently, it was obvious that they had no direct impact 

on case outcome. Statistical models built utilizing these variables lead to estimable 

parameters βi=0. As a result, they were not included in the scope of this analysis. 

Eliminating these variables from the analysis yielded 35 variables to be tested. 

Furthermore, some of the variables were grouped and were represented by new 

indicator variables yielding a total of 23 variables for testing. Grouping of variables 

was based on their similarity. For example, three variables related to work stoppage 

(Stoppage of work due to the encountered matter, Stoppage of work due to the 

Owner, and Stoppage of work due to the Contractor) were grouped under one 

variable namely Wstop. If any of the newly developed indicator variables was proven 

to be statistically significant by the best developed models, a detailed analysis of 

their components was to be performed. The two developed models yielded 

consistent results with respect to the effect of the tested legal factors. The remaining 

factors after this process are shown in Table 3.4. In addition the Table illustrates 

whether the existence of each of these factors increase, or decrease the prediction 

of the model. 

 

3.3.2 Prediction Models 

One of the very promising findings of the developed statistical modeling 

approach is the prediction rates of the developed Probit and Logistic models that 

reached 88.9% and 93.3%, respectively. Results reported in Tables 3.5 and 3.6 

illustrate a number of interesting insights about the legal factors and their outcomes. 

The following is a discussion of these findings: 
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1. It can be deduced from the coefficients of the constants in table 3.5 and 3.6 

that generally, cases in which the Federal Government is a concerned party 

of the dispute, judgments are in favor of the government (owner) over 

contractor. This is expected due to the fact that N.Y. Const. art. 3, § 28 it is 

stated that the legislature shall not, nor shall the common council of any city, 

nor any board of supervisors, grant any extra compensation to any public 

officer, servant, agent or contractor (Ralph S. Keep 1930).  

2. Further examination of the developed models demonstrate consistency with 

regards to “the presence of evident facts that the encountered conditions 

caused a change in the nature and cost of the contract” to decrease the 

prediction of an owner winning a case, reference is made to the coefficients 

of the N&C parameter in table 3.5 and 3.6. During bidding, contractors 

specify their prices based on decisions concerning methods and resources 

needed for performing the works. A change in works causing a variation in 

the nature of these methods may have a great impact on increasing the 

contractors’ costs. Consequently, it is not fair to burden contractors with that 

increase in cost, leading to a decrease in planed profit or even loss, without 

equitably adjusting them. Supporting this notion, Judge Goldman, J. W. 

states that where an operation is not within the original plans and the 

contractor is forced to use a more expensive operation to perform the work 

than was originally anticipated and contemplated by the contract, the 

claimant shall be compensated for this extra work. However, there are two 

scenarios that should be discussed in this case. The first, if an owner 
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compensates a contractor for his\ her direct or direct and indirect costs, 

reference is made to the coefficient of the OADJUST parameter in table 3.6. 

In this case, owner has rectified a mistake on his side. As a result, the 

developed models predicted that the presence of evidence of this nature in a 

case as a factor that increases the prediction in favor of owner. The second 

is when the contract included a clause giving the owner the right to make 

changes to the project until final completion and acceptance without 

invalidating the contract provided that it was made due to a necessity; 

reference is made to the coefficients of the SPECWARN parameter in tables 

3.5 and 3.6 (Tony 1919). The presence of similar clause in a contract was 

interpreted by both models to increase the prediction in favor of the owner. 

3. It was also found from the coefficients of the COMIMPOS parameter in tables 

3.5 and 3.6 that the prediction of owner winning a construction litigation case 

concerning DSC is decreased due to the presence of evident facts that the 

encountered matter rendered the project impossible to be completed. For 

example, if the DSC experienced in a project required a redesign that caused  

the elimination of a major part of the contractor’s scope of work, which intern 

affects his method of pricing and profit allocation to the extent that he/she 

cannot perform the works as specified, he\ she is entitled to be compensated 

for that loss (Kinser 1912). In addition, the contractor raising the faced 

incident as per the contract documents and in due time was found to 

decrease the prediction of owner winning a DSC related litigation case, 

reference is made to the coefficients of the CRAISE parameter in tables 3.5 
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and 3.6. Construction Contracts place a responsibility on the contractor to 

inform the owner with any unexpected matters encountered in the project 

lifetime. This responsibility allows the owner and contractor enough time to 

analyze the situation and decide on counter measures. Consequently, if a 

contractor fulfilled his/her contract requirement, he\she will have a better 

chance proving his case.   

Table 3.4 Significance of Individually Tested Variables 

Factor 
Symbol 

Factor Meaning 
Influence on 
Prediction 

TYPEP 
Type of project: the higher is the sophistication 
of the construction project the higher is the 
variable 

Increase 

DSC 
The presence of factual facts demonstrating 
Type 1 or Type 2 DSC 

Decrease 

WSTOP 
Stoppage of work due to the encountered 
matter, Owner, or Contractor 

Not significant 

DSCC The presence of DSC Clause in the Contract Decrease 

REDESIGN 
Whether the encountered matter required 
redesign 

Not significant 

N&C 
Whether the encountered matter imposed 
changes on the nature and costs of the Contract 
or not 

Decrease 

CRAISE 
Whether the contractor raised his claim as per 
the contract clauses or not 

Decrease 

COMIMPOS 
Whether the encountered matter made the 
project completion impossible or not 

Decrease 

OCHANGE 

Whether the contract clauses allow the owner to 
perform changes at any time of the project 
duration without the consent of the contractor or 
not 

Increase 

CNPROFIT 
Whether the contractor under the conditions of 
the contract waived his right for profit due to 
changes or extras or not 

Increase 

MMISTAKE 
Whether the mistake was a mutual one and no 
bad intentions was meant from any party or not 

Increase 

VCHANGES 
Whether various changes were implemented 
through the life time of the project or not 

Not significant 
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Table 3.4 (Continued) 
Factor 
Symbol 

Factor Symbol Factor Symbol 

OCAUSE 
Whether the incurred damages were caused 
due to the owners negligence or any of his 
representatives or not 

Decrease 

SPECWARN 
Whether the specifications warn against the 
possibility of DSC existence or not 

Increase 

SPECREPR 
Whether the specifications had a representation 
of the actual site conditions or not 

Decrease 

CNEXTRA 
Whether the contractor under the conditions of 
the contract waived his right for compensation 
due to extras or not 

Increase 

OFALSELY 
Whether The Owner\ Owner Rep. falsely state 
that the matter encountered in hand, so far as 
known, was shown in the Contract documents? 

Decrease 

LUMPUNIT Whether the contract is a unit price or not Not significant 

OADJUST 
Whether the owner equitable adjusted the 
contractor against extra works performed or not 

Decrease 

BENEFIT 
Whether the contractor benefits from the work 
done or not 

Not significant 

NOTIME 
The presence of enough evidence 
demonstrating that there was no time for the 
Contractor to perform his own investigations 

Decrease 

WTEMP 
Whether the extra works were performed as 
temporary works or not 

Increase 

WAPPEAL 
In case of appeals, in favor of  whom did the 
court originally rule  

Not significant 

4. Furthermore, both developed models pointed out that the presence of evident 

facts that there was a mutual mistake from both sides in examining the site 

and contract documents increases the prediction of judgment in favor of 

owner, reference is made to the coefficients of the MMISTAKE parameter in 

tables 3.5 and 3.6. In this case, there is no bad faith, concealment or 

misrepresentation on the side of the owner; therefore, no responsibility for 

the loss resulting from a difference between estimated quantities of material 

affecting work conditions and those actually found at a job site (Drake 1965). 

On the other hand, it can be inferred from the coefficients of the SPECREPE 
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parameter in tables 3.5 and 3.6 that the presence of evident facts that the 

contract documents included accurate representation of the site conditions 

decreases the prediction in favor of the owner. In this case, the existence of 

DSC depends upon a comparison of the site conditions actually encountered 

with the affirmative representations of conditions contained in the bid and 

contract documents. To the extent that the conditions described in the 

contract materialize, the contractor bears the risk, while the owner assumes 

the risk for conditions that the contract documents fail to disclose.  

Table 3.5 Probit Model Results at a Confidence Interval = 0.1 

Independent variable Coeff. t-stat. Elasticity % Change in Prediction 

Constant  4.83 1.80   

DSCC -0.33 -1.31 -0.37 0.00 

N&C -2.69 -2.02 -0.68 -17.77 

CRAISE -2.10 -1.52 -0.66 -11.11 

COMIMPOS -1.17 -1.17 -0.47 -11.11 

OCHANGE 4.04 1.75 0.22 17.78 

MMISTAKE 2.06 1.53 0.67 17.78 

OCAUSE -1.14 -1.47 -0.22 -11.11 

SPECWARN 2.46 1.80 0.49 55.56 

SPECREPR -3.07 -1.50 -0.80 0.00 

CNEXTRA 1.38 1.41 0.40 0.00 

OFALSELY -1.04 -1.55 -0.12 0.00 

5. Additionally, the presence of evident facts that the specifications included a 

warning against the presence of DSC from those conveyed in the contract 

documents increases the prediction of judgment in favor of owner, reference 

is made to the coefficients of the SPECWARN parameter in tables 3.5 and 
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3.6. If the specifications stated that there was no guarantee that adverse 

conditions did not exist underground at the construction site, the contractor is 

required to familiarize himself\ herself with the site conditions. In this case, 

the contractor is held responsible for damages that he\ she might incur due to 

encountering DSC (All County Paving 2005). 

Table 3.6 Logistic Model Results at a Confidence Interval = 0.1 

Independent 
variable 

Coeff. t-stat. OR 

Constant  2.36 0.25  

TYPEP 4.23 1.66 32.314 

N&C -5.69 -2.00 0.035 

CRAISE -7.54 -1.86 0.053 

COMIMPOS -3.04 -1.46 0.047 

OCHANGE 9.65 2.13 15.604 

MMISTAKE 2.57 1.05 13.732 

SPECWARN 3.80 2.19 44.740 

SPECREPR -5.11 -1.58 0.061 

OADJUST 5.67 1.84 2.353 

6. As can be deduced from the coefficient of the DSCC parameter in table 3.5, 

the Probit model pointed out the presence of a DSC clause in the contract as 

a crucial factor that decreases prediction in favor of owner. As mentioned 

earlier, once construction begins on a project under a contract that is silent 

about the risk of unforeseen conditions, a contractor bears the risk of running 

into conditions that were unforeseen at the time he\ she submitted his\ her 

bid even though they significantly increase the cost of performance (Iacobelli 

1994). As a result, the presence of a DSC clause in a contract allows the 
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contractor to reimburse additional incurred costs due to DSC. A contractor 

with legal right to extra compensation would always have a better chance 

winning a case in the presence of such a clause. Furthermore, the model 

highlighted that the prediction of owner winning a construction litigation case 

concerning DSC is decreased due to the presence of evident facts that the 

damage incurred by the contractor was due to negligence on the side of the 

owner, reference is made to the coefficient of the OCAUSE parameter in 

table 3.5. For more illustration, if an owner, by its own act, causes the work to 

be done by a contractor to be more expensive than it otherwise would have 

been according to the terms of the original contract, it is liable to him\her for 

the increased cost or extra work (William 1899). Similarly, the model 

indicated that the prediction is also decreased by the presence of evident 

facts that the Owner or their representative falsely state that the matter 

encountered in hand, so far as known, was shown in the contract documents, 

reference is made to the coefficient of the OFALSELY parameter in table 3.5. 

In Faber (1918), the contractor recovered damages that he has incurred due 

to DSC on the grounds that there was an express warranty from the project 

engineer that the contract documents constitute an accurate representation 

of the site sub-surface conditions. However, the model predicted that 

prediction in favor of the owner increases if the contractor agreed: (1) to 

waive his right for any extra compensation; and (2) that all work shall be 

solely at the his risk until it has been finally inspected and accepted by the 

owner (Kinser 1912).  
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7. In comparison, the Logistic model demonstrated that as the complexity of 

public projects increases, the prediction in favor of owner is increased, 

reference is made to the coefficient of the TYPEP parameter in table 3.6. 

Projects under analysis vary between Excavation projects, Sanitary projects, 

and Water related projects like Dams. The nature in which this variable was 

integrated in the model is prioritized with Excavation projects being the 

lowest in complexity to Water related projects being the most complex. Costs 

associated with performing a construction project is directly related to its level 

of complexity and size.  

Table 3.7 Analysis of Binary Choice Models Prediction (Threshold = 0.5) 

Prediction Success Probit Logit 

Sensitivity = actual 1s correctly predicted 85.714% 90.476% 

Specificity = actual 0s correctly predicted 91.667% 95.833% 

Positive predictive value = predicted 1s that were actual 
1s Negative predictive value = predicted 0s that were 
actual 0s 

90.000% 95.000% 

Negative predictive value = predicted 0s that were actual 
0s 

88.000% 92.000% 

Correct prediction = actual 1s and 0s correctly predicted 88.889% 93.333% 

Prediction Failure  

False pos. for true neg. = actual 0s predicted as 1s   8.333%   4.167% 

False neg. for true pos. = actual 1s predicted as 0s 14.286%   9.524% 

False pos. for predicted pos. = predicted 1s actual 0s 10.000%   5.000% 

False neg. for predicted neg. = predicted 0s actual 1s 12.000%   8.000% 

False predictions = actual 1s and 0s incorrectly predicted 11.111%   6.667% 
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3.3.3 Sensitivity Analysis 

The obtained results shown in Figure 3.2 illustrate the outcomes of the 

sensitivity analysis performed on the developed models. The sensitivity analysis is 

used to determine how different values of an independent variable (significant legal 

concepts) will impact a particular dependent variable (owner winning a case) under a 

given set of assumptions. This analysis is very useful when attempting to determine 

the impact the actual outcome of a particular variable will have if it differs from what 

was previously assumed. To that end, the sensitivity of each variable is tested by 

increasing the variable by 1 while maintaining the rest fixed at their mean value. The 

outcomes of the analysis were consistent between both developed models and 

demonstrated the following. 
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Figure 3.2 Outcomes of Sensitivity Analysis 
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1. The presence of evident facts that the encountered conditions caused a 

change in the nature and cost of the contract had the highest impact among 

variables causing a decrease in the prediction of judgment in favor of owner. 

The Probit model indicated that it caused an increase in prediction in favor of 

contractor from 55.56% under the base case to 73.33% under imposed 

scenario (refer to figure 3.3). Consistent with that finding, the Logistic model 

indicated that an increase of 1 results in reducing the odds of an owner 

winning approximately by a factor of 29 (OR=0.035). Reference is made to 

the percentage change in prediction and OR values of the N&C parameter in 

table 3.5 and 3.6. 

2. The presence of evident facts that the specifications included a warning 

against the presence of DSC from those conveyed in the contract documents 

had the highest increases in the prediction of judgment in favor of owner 

(refer to figure 3.4). It caused an increase in prediction on favor of owner 

from 44.44% under base case to 100.00% under imposed scenario. 

Consistent with that finding, the Logistic model indicated that an increase of 1 

results in increasing the odds of an owner wining approximately by a factor of 

45. Reference is made to the percentage change in prediction and OR values 

of the SPECWARN parameter in table 3.5 and 3.6. 

3. The presence of a clause in a contract giving the owner the right to make 

changes to the project until final completion and acceptance without 

invalidating the contract provided that it was made due to a necessity 

(reference is made to the percentage change in prediction and OR values of 
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the OCHANGE parameter in table 3.5 and 3.6), and the presence of evident 

facts that the mistake was a mutual one and no bad faith was intended by 

any party (reference is made to the percentage change in prediction and OR 

values of the MMISTAKE parameter in table 3.5 and 3.6) caused the lowest 

increase on the prediction of judgment in favor of owner. It caused an 

increase in prediction on favor of owner from 44.44% under base case to 

62.22% under imposed scenario. Consistent with that finding, the Logistic 

model indicated that an increase of 1 results in increasing the odds of an 

owner wining approximately by factors of 16 and 14 respectively. 

4. The presence of evident facts that the contractor raised his claim as per the 

contract clauses, and that the encountered matter rendered the project 

completion impossible caused the lowest decrease on the prediction of 

judgment in favor of owner. Reference is made to the percentage change in 

prediction and OR values of the CRAISE and COMIMPOS parameter 

respectively in table 3.5 and 3.6. It caused an increase in prediction in favor 

of the contractor from 55.56% under base case to 66.67% under imposed 

scenario. Consistent with that finding, the Logistic model indicated that an 

increase of 1 results in reducing the odds of an owner wining approximately 

by factors of 19 (OR=0.053) and 21 (OR=0.047) respectively 

5. The developed Probit model predicted that the presence of evident facts that 

the damage incurred by the contractor was due to negligence on the side of 

the owner had an impact of decreasing the prediction of judgment in favor of 

owner by 11.11. Reference is made to the percentage change in prediction 
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values of the OCAUSE parameter in table 3.5. They caused an increase in 

prediction on favor of contractor from 55.56% under base case to 66.67% 

under imposed scenario. However, increasing the following factors by 1 unit 

had no effect on the odds of prediction: (1) the presence of a DSC clause in a 

contract; (2) the presence of evident facts that the specifications had a 

representation of the actual site conditions; (3) the presence of evident facts 

that the Owner\Owner Rep. falsely state that the matter encountered in hand, 

so far as known; and (4) whether the contractor under the conditions of the 

contract waived his right for compensation due to extras or not. Reference is 

made to the percentage change in prediction values of the DSCC, 

SPECREPR, OADJUST, OFALSELY, and CNEXTRA parameter respectively 

in table 3.5. 

6. From the OR value of the TYPEP parameter in table 3.6 it can be deduced 

that the developed Logistic model predicted that increasing the complexity of 

the project by 1 unit results in increasing the odds of an owner winning 

approximately by a factor of 32. 

3.4 Summary and Conclusion  

This chapter provides an initial step in this research methodology that attempts 

to create a construction legal decision support system through statistical analysis 

and machine learning techniques. Consequently, the aim of this chapter was to 

statistically analyze the significant legal factors that govern litigation outcomes in 

DSC dispute. The chapter, therefore, implemented three main stage that: (1) 
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collected significant number of DSC cases and extracted the legal factors on 

which they were judged; and (2) the main findings from the implementation of 

this three stage statistical modeling approach include: 

 

Figure 3.3 N&C Variation V. Prediction of Outcome 1 Occurring 

 

 

 

Figure 3.4 SPECWARN Variation V. Prediction of Outcome 1 Occurring 
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1. Generally, cases in which the Federal Government is a concerned party of 

the dispute, judgments are in favor of the government (owner) over 

contractor. 

2. “The presence of DSC Clause in the Contract”, “Whether the encountered 

matter imposed changes on the nature and costs of the Contract or not”, 

“Whether the encountered matter made the project completion impossible or 

not”, “Whether The Owner\ Owner Rep. falsely state that the matter 

encountered in hand, so far as known, was shown in the Contract 

documents”, and “Whether the incurred damages were caused due to the 

owners negligence or any of his representatives or not” are factors that 

increase the probability of judgment in favor of contractors. 

3. “Whether the contract clauses allow the owner to perform changes at any 

time of the project duration without the consent of the contractor or not”, 

“Whether the owner equitable adjusted the contractor against extra works 

performed or not”, and “Whether the specifications warn against the 

possibility of DSC existence or not” are factors that increase the probability of 

judgment in favor of owner. 

4. “The presence of evident facts that the encountered conditions caused a 

change in the nature and cost of the contract” had the highest impact among 

variables causing a decrease in the prediction of judgment in favor of owner. 

It caused an increase of 17.77% in prediction on favor of contractor. 

5. “The presence of evident facts that the specifications included a warning 

against the presence of DSC from those conveyed in the contract 
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documents” caused the highest increases in the prediction of judgment in 

favor of owner. It caused an increase of 56.56% in prediction on favor of 

owner. 

These findings provide very useful insight on this important type of 

construction disputes. In case of a DSC dispute, an owner and/or a contractor can 

assess the strength of their situation based on the identified factors if resolving 

through litigation is decided. This assessment would allow disputing parties to take a 

more assured decision about other resolution mechanism like amicable settlement, 

mitigation, and/or arbitration. Furthermore, some of the identified factors are related 

the wording of contracts and technical specifications in the construction industry. 

Therefore, the current research provides knowledge to contractors about factors to 

which emphasis should be given while bidding for new projects and upon which 

control should be maintained while performing a project. The developed models, 

however, do not take into consideration precedent cases cited within the body of 

each case. Because rules alone are insufficient, judges employ analogical reasoning 

with precedent cases in their decision-making process (Ashley and Rissland 1988). 

Precedence, or the reliance of a court on the decisions of previous relevant cases, is 

an important aspect of the Anglo-Saxon legal system (Elhadi 2001), the dominant 

legal system in the judicial system of the United States. These enhancements and 

others are, therefore, incorporated under the research tasks illustrated in the 

following chapters of this dissertation. 
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CHAPTER 4 

 DSC LITIGATION PREDICTION MODEL DEVELOPMENT FOR THE 

CONSTRUCTION INDUSTRY 

4.1 Introduction 

One of the fields of AI that is becomingly a topical issue in computing 

research is Machine Learning (ML). ML is that field of AI that deals with developing 

tools and algorithms allowing a computer to build up knowledge about problems and 

applying it to solve newly encountered ones of similar nature (Shawe-Taylor and 

Cristianini 2000). As illustrated earlier in chapter 2, ML algorithms address complex 

problems that do not lend themselves to solution using traditional computing 

techniques. In the present chapter a number of ML algorithms are used for building 

models that provide decision support capabilities in DSC disputes. As illustrated in 

chapter 2, capturing all legal rules as well as human thinking and perception of facts 

has proven to be a very complex undertaking. Researchers in the field of litigation 

decision support and natural language processing (NLP) demonstrated that 

developing a model to mimic the cognitive ability of the human mind, resembling its 

ability to acquire knowledge by the use of reasoning, intuition, and perception, is 

impossible with the current state of science (Cobb and Diekmann 1986). However, 

the required human knowledge about solving a problem exists implicitly in precedent 

cases of similar nature (Arditi and Pulket 2005). As a result, the problem is simplified 

to a matter of extracting the knowledge rather than building it cognitively. 

Consequently, ML tools and algorithms devised new strategies that attempt to solve 
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problems by utilizing the computers’ ability to extract knowledge from tagged 

input\output data sets (Nilsson 2008). These tools have been extensively utilized in 

building CBR systems for the construction industry as discussed in chapter 2. In 

general, two types of learning are widely applied: inductive, and deductive. Inductive 

machine learning methods extract rules, patterns, and information automatically out 

of massive data sets by computational and statistical methods in an attempt to attain 

the required computer knowledge (Jurafsky and Martin 2000).    

The main objective of this chapter is to develop ML model for construction 

legal decision support in DSC disputes. In order to achieve this goal, the 

performance of different ML tools will be evaluated, including: (1) Support Vector 

Machine (SVM) algorithms; (2) Naïve Bayes (NB) algorithms; and (3) Rule Induction 

Learning. The aforementioned algorithms will be evaluated using the significant legal 

factors identified in chapter 3. The evaluation process utilizes 120 DSC cases from 

The Federal Court of New York that were filled in the period between 1912 and 

2007. The research approach adopted for the current stage includes (Figure 4.1): (1) 

data preparation; (2) ML model development and analysis; and (3) ML model 

implementation. 
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Figure 4.1 Research Approach 



123 

4.2 Data Preparation 

As mentioned earlier, the work under this chapter represents a continuation 

for chapter 3. Consequently, the identified significant legal factors namely Ptype, 

DSCC, DSC, N&C, Conraise, ComImpossible, Ochange, Mmistake, Year, Ocause, 

SpecWarn, SpecRep, CNoExtra, Ofalsely, and OAdjust are adopted as the learning 

parameters for the models to be developed. The input data for the models are 

developed in the form of vectors in which each case (instance) has a designated 

input vector xi and each element within the vector (xij) represent the presence or 

absence of a specific significant legal factor (1 for the presence and 0 for the 

absence). However, two variables do not follow this representation namely the type 

of the project (Ptype) and the year of filing the case with the Federal Court of New 

York (Year). The analysis of the former is based on the complexity of the project and 

falls into one of four categories listed as follows based on the complexity 

assumption. Water related works are given a value of 4 and assumed to be the most 

complex type of projects due to the high uncertainty and difficulty in predicting site 

conditions. This category includes projects like dams and river stream maintenance 

and protection projects. The following category includes land related works like 

roads or traditional excavation works and is given a value of 3. Sanitary works are 

assumed to be less complex and are given a value of 2. All other types of works like 

housing projects are given a value of 1. As for the representation of the year, cases 

are categorized based on 5 years intervals as shown in the table 4.1 below. In 

addition, as a measure of choice, an indicator variable for the final judgment was 
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recorded [owner (1) or contractor (0)] and was inputted as an element in the case 

vectors. 

Table 4.1 Representation of the Year Factor 

Year of Deciding a case Factor 
Year>2002 0 

1997<Year>2002 1 
1992<Year>1997 2 
1987<Year>1992 3 
1982<Year>1987 4 
1977<Year>1982 5 
1972<Year>1977 6 
1967<Year>1972 7 
1962<Year>1967 8 
1957<Year>1962 9 
1952<Year>1957 10 
1947<Year>1952 11 
1942<Year>1947 12 
1937<Year>1942 13 
1932<Year>1937 14 
1927<Year>1932 15 
1922<Year>1927 16 
1917<Year>1922 17 
1912<Year>1917 18 

Year ≤1912 19 

4.3 ML Model Development and Analysis 

The objective of this chapter is to develop a construction legal decision 

support model for DSC disputes based on statistically significant legal factors 

predefined in chapter 3. To this end, the present stage will aim at developing: (1) 

Kernel SVM Models; (2) Naïve Bayes (NB) models; and (3) Induction Learning 

Models including Decision Tree (DT), Boosted decision Trees (BDT), and PART 

models for DSC litigation outcome prediction in the construction industry. 
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4.3.1 Support Vector Machines (SVM) 

In the current task, the SVM Classification algorithm aims at separating the 

120 training cases into two classes (Owner and Contractor) based on the 15 

statistically significant legal factors identified in chapter 3. In its simplest linear form, 

a support vector machine finds a hyperplane that separates a set of positive 

examples (cases judges in favor of Owner) from the set of negative examples (cases 

judges in favor of Contractor) with maximum margin as shown in figure 4.2. Binary 

classification is performed by using a real-valued hypothesis function, equation 4.1, 

where input x (case) is assigned to the positive class (Owner) if ƒ(x)≥0; otherwise, it 

is assigned to the negative class (Contractor). 

y=<w.x>+b             4.1 

 

Figure 4.2 SVM Classification 

As illustrated in chapter 2, kernel mapping is a widely used transformation 

method for solving nonlinear classification problems. Many kernel mapping functions 

can be used – probably an infinite number (DTREG 2008). But a few kernel 

functions have been found to work well for a wide variety of applications. The default 

Contractor 

Owner 
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and recommended kernel function is the Radial Basis Function (RBF) and 

Polynomial Kernel (POLY) (Aiolli and Sperduti 2005, and DTREG 2008). 

Consequently, the work performed under this task investigates the use of Kernel 

SVMs (RBF and Polynomial) for developing a DSC litigation outcome prediction 

model. 

4.3.2 Naïve Bayes Classifiers (NB) 

In addition to the above described SVM models, this research task is 

concerned with finding the best outcome prediction model for construction cases 

related to DSC disputes utilizing Naïve Bayes Classifiers. Since the analysis is 

pertinent to only two outcomes, and due to the presence of high support in the ML 

domain in favor of the performance of Naïve Bayes (Bramer 2007, Manning and 

Schutze 2003) it was adopted for the current analysis. 

Naïve Bayes is a type of classifier that does not implement rules to derive the 

classification, unlike rule induction classifiers that will be discussed later. The 

classification methodology adopted by NB Classifiers is based on the probability 

theory. It finds the most likely possible classification for an instance among all 

available classes taking into consideration the presence of prior knowledge of other 

pieces of information. Pertinent to the current research, NB classifier is build to 

estimate the probability of each class (Owner and Contractor) given the training set 

of 120 cases and prior knowledge of the existence of the significant legal factors. 

The classifier is trained based on conditional and prior probabilities of the existing 

set. A conditional probability as given in equation 4.2 is read as the probability of 
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case with legal factor values of (a) happening with the prior knowledge of a 

classification falling in class (x), Owner or Contractor. However, a prior probability 

means the probability of a certain class (x), Owner or Contractor happening based 

on the 120 cases recorded. 

P(case legal factors=a|class=x)      4.2 

Since the 120 cases C1, C2, …, C120 are conditionally independent, the 

probability of an outcome of a newly un-encountered case is calculated based on 

equation 4.3. 

P�class=x|C=ck�=∏ P�xi|C=ck�120
i     4.3 

4.3.3 Rule Induction Classifiers 

This sub-section is concerned with finding the best outcome prediction model 

for construction DSC cases utilizing Rule Induction Classifiers. DT, BDT, and PART 

are types of ML classifiers that adopt decision rules automatically generated from 

training examples or data sets to classify a newly unseen instance (Bramer 2007). 

DT classifier is a special case in which the generated decision rules are fitted into a 

form of a tree, where each leaf represents a decision state. For the 120 cases, 

decision rules were derived based on binary decision at each node and not class 

probability (Witten and Frank 2000). The models were developed with a splitting 

mechanism of a minimum of 2 instances per leaf and a confidence threshold of 0.25. 

Weka algorithm J48, ADTree, and PART were utilized for developing the DT, BDT, 

and PART models respectively. 
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4.4 Model Testing and Validation 

Testing and validation of the developed models was performed using 

RapidMiner (formerly known as Yale) version 4.1 (Rapid-I 2008). Validation of the 

best developed model was based on prediction accuracy, precision, recall, F-

measures, and the relation between true positive and false positive predictions 

illustrated by a value known as Area Under Curve (AUC). Outputs of the developed 

models were compared to a base line prediction of 50%. Model accuracy is defined 

as the proportion of the total number of correctly predicted cases to the total number 

of tested cases. Model precision is defined as a measure of the proportion of 

selected cases that the developed model predicted correctly out of the total set of 

cases the model referred to that class of prediction, whether true of false (equation 

4.4). Model Recall is defined as the proportion of the cases pertinent to a specific 

class of prediction that the proposed model selected right (equation 4.5). It should be 

noted that there is always a tradeoff between precision and recall. For more 

illustration, a full set of cases could be selected attaining a 100% recall but with a 

very low precision. Consequently, an overall performance combining precision and 

recall can be reported by F-measure (equation 4.6).  

Precision=
tp

tp+fp
       4.4  

Recall=
tp

tp+fn
       4.5             

F- Measure=
2PR

(R+P)
      4.6 
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Where tp is the true positive prediction of the model, fp is the false positive 

prediction of the model, fn is the false negative prediction of the model, P is the 

precision of the model, and R is the recall of the model.  

The testing and validation of the model is performed on a 10 fold scheme. 

The theory behind this training method also known as cross-validation was 

pioneered by Seymour Geisser (Shawe-Taylor and Cristianini 2000; Rapid-I 2008). 

This training methodology is a statistical practice of partitioning a sample of data into 

subsets such that the analysis is initially performed on a single subset, while the 

other subsets are retained for subsequent use in confirming and validating the initial 

analysis. Consequently, within the tested data set, the developed model is trained in 

a rotational manner. In each rotation, the model is trained over 90% of the cases and 

tested over the remaining 10%. This process is repeated till the model is trained and 

tested over all cases. Performance measures are reported for each developed 

model after the cross-validation stage is finished. 

4.5 ML Model Implementation 

The following is a description of the performance of the algorithm 

implemented for ML model development. The algorithm starts with identification of 

the model parameters (i. e. the degree of the SVM model or the number of splits of 

DT model). The algorithm iterates through the training data separating it into folds 

based on the cross validation mechanism (i.e. 10, 20, or 100 cross fold validation). 

The algorithm is trained over 90% of the data and tested over the other 10%. The 

algorithm performance vector parameter, accuracy, precision, and recall for each 
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fold are reported. The algorithm iterates in the above manner until it is trained and 

tested over the entire training set. The performance vector parameters, accuracy, 

precision, recall, and AUC averages over all folds are reported before the algorithm 

terminates.   

RapidMiner (formerly known as Yale) version 4.1, developed by Rapid-I, was 

utilized for the implementation of ML models described in this chapter. RapidMiner is 

an environment for machine learning and data mining processes that has already 

been applied for ML and knowledge discovery tasks in a various domains like 

feature generation and selection (Klinkenberg 2002, Ritthoff et al. 2003, and Ritthoff 

et al. 2002), concept drift handling (Klinkenberg, 2004, Klinkenberg 2003, 

Klinkenberg and Rőping 2003, and Klinkenberg and Joachims 2000), transduction 

(Daniel et al. 2002, Klinkenberg 2001), pre-processing of and learning from time 

series (Mierswa and Morik 2005(a), Mierswa and Morik 2005(b), and Mierswa 2004), 

meta learning (Mierswa and Wurst 2005(a), and Mierswa and Wurst 2005(b)), 

clustering, and text processing and classification.  

The research approach for the present task developed 10 ML models that 

related the likelihood of a DSC case being judged in favor of one party over the other 

to the identified set of legal factors and provided predictions for newly introduced 

cases. First, due to the presence of high support in favor of the performance of 

Polynomial and Radial Base Function (RBF) Kernel SVM (Aiolli and Sperduti 2005), 

4 ML models namely Polynomial 1st degree, Polynomial 2nd degree, polynomial 3rd 

degree, and RBF Kernel models were developed. Second, the proposed research 

approach developed and compared the outputs of 2 NB models while implementing 
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and not implementing kernel estimators as a parameter of the model. Third, 4 rule 

induction models namely DT, PART, BDT with 10 Boosts, and BDT with 15 Boosts 

models were develop. It worth noting at this point that the boost number was 

increased to 20 and 25; however, no enhancement in the performance of the model 

was achieved. 

4.6 Results  

This section presents the testing and validation results for the 10 ML models 

developed in the previous section of this chapter. The section will present, for each 

type of ML algorithm the best model obtained. 

4.6.1 Support Vector Machines (SVM) 

The results of the testing and validation of the developed SVM algorithms are 

presented in tables 4.2, figures 4.3, 4.4, 4.5, 5.6, and appendix B respectively. The 

following is closer examination and discussion of these results. As can be noted 

from table 4.2, the 2nd and 3rd degree Polynomial Kernel SVM models achieved the 

highest performance measures while 1st degree Polynomial Kernel SVM achieved 

the lowest. The overall accuracy of the Polynomial degree 1, 2, and 3, and RBF 

models were 94%, 98%, 98%, and 96% respectively.  

The observed superiority of the 2nd and 3rd polynomial models extended to 

cover all validation criteria. A closer look into the achieved measures illustrates a 

slighter higher performance of the 3rd degree polynomial kernel model over the 2nd 

degree one. It can be seen from table 4.2; the statistical properties (namely the 

Mean absolute Error, Root mean squared error, Relative absolute error, and Root 
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relative squared error) of the 3rd degree model are slightly less than those of the 

2nd degree one giving it the upper hand when deciding on the best model. Further 

examination of figure 4.8 (AUC), which defines the relation between true and false 

positive predictions, further highlights the superiority of the 3rd degree Polynomial 

model. A true positive prediction of 99.6% can be made with 0% false positive 

predictions. In other words, the model achieves right classification (assigning a case 

to its right class) at a rate of 99.6% without making mistakes. 

Table 4.2 Results of Kernel SVM Implementation 

Property Polynomial Degree 
RBF 

1 2 3 

Accuracy 94.00% 98.00% 98.00% 96.00% 

Precision 93.83% 98.00% 98.00% 86.48% 

Recall 93.50% 98.00% 98.00% 93.00% 

F-Measure 93.66% 98.00% 98.00% 89.62% 

AUC 95.40% 99.60% 99.60% 94.30% 
Contractor's class 
precision 

97.73% 97.83% 97.83% 86.00% 

Contractor's class recall 93.48% 97.83% 97.83% 93.48% 

Owner's class precision 94.64% 98.15% 98.15% 94.00% 

Owner's class recall 98.15% 98.15% 98.15% 87.04% 
Contractor's class F-
Measure 

95.56% 97.83% 97.83% 89.58% 

Owner's class F-
Measure 

96.36% 98.15% 98.15% 90.39% 

Kappa statistics 0.9195 0.9597 0.9597 0.9397 

Mean absolute Error 0.0709 0.02 0.1315 0.0707 
Root mean squared 
error  

0.2165 0.1414 0.1214 0.1857 

Relative absolute error  0.1425 0.4023 0.0373 0.1422 
Root relative squared 
error  

0.4339 0.2834 0.2636 0.3721 
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Figure 4.3 Accuracy, Precision, Recall, F-Measure, and AUC Results of SVM 
Modeling 

 

Figure 4.4 +Ve and -Ve Class Results of SVM Modeling 

 

Figure 4.5 Class F-Measure Results of SVM Modeling 
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Figure 4.6 Area Under Curve (AUC) Results of SVM Modeling 
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4.6.2 Naïve Bayes Classifiers 

The results of the testing and validation of the developed NB models are 

presented in tables 4.3, figures 4.7, 4.8, 4.9, 4.10, and appendix C respectively. The 

following is a closer examination and discussion of these results. As can be noted 

from table 4.3, both models have achieved similar results. Comparing the two 

models yields the followings: 

• The Naïve Bayes classifier without the kernel estimators (Model 1) has its 

accuracy decreased by 1.00% over Naïve Bayes classifier with kernel 

estimators (Model 2). 

• The precision of model 1 was higher than that attained by model 2 by a 

value of 1.94%. 

• The recall of model 1 was less than that attained by model 2 by a value of 

0.80%. 

• The AUC of model 1 was higher than that attained by model 2 by a value 

of 5.00%. 

• The Contractor’s class precision of model 1 was less than that attained by 

model 2 by a value of 5.66%; while the class recall was increased by a 

value of 4.35%. 

• The Owner’s class precision of model 1 was higher than that attained by 

model 2 by a value of 3.22%; while the class recall was decreased by a 

value of 5.56%. 
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Table 4.3 Results of Naive Bayes Implementation 

Property Model # 

NB with Kernel NB without Kernel 

Accuracy 93.00% 94.00% 

Precision 92.94% 91.00% 

Recall 93.20% 94.00% 

F-Measure 93.07% 92.48% 

AUC 94.30% 89.30% 

Contractor's class precision 89.80% 95.45% 

Contractor's class recall 95.65% 91.30% 

Owner's class precision 96.08% 92.86% 

Owner's class recall 90.74% 96.30% 

Contractor's class F-Measure 92.63% 93.33% 

Owner's class F-Measure 93.33% 94.55% 

Kappa statistics 0.8598 0.8788 

Mean absolute Error 0.095 0.1093 

Root mean squared error 0.2251 0.2366 

Relative absolute error 0.4512 0.4741 
 

From the above information, it is clear that the performance of both models is 

nearly similar. Consequently, the basis of adopting one as being better than another 

will be based on the AUC measure. As mentioned earlier, AUC relates the true 

positive prediction rate of a model to its false positive prediction. As shown in table 

4.3 and figure 4.10, model 1 and model 2 have achieved an AUC of 94.30% and 

89.30% respectively. As a result, model 1 is estimated to classify a case to its 

appropriate class 94.30% of the times without making a mistake. On the other hand, 

model 2 is estimated to classify a case to its appropriate class 89.30% of the times 

without making a mistake. From the above, it is concluded that model 1, Naïve 

Bayes Classifier without implementing kernel estimators, is the best NB model.    
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Figure 4.7 Accuracy, Precision, Recall, F-Measure, and AUC Results of 
Naive Bayes Modeling 

 

Figure 4.8 +Ve and -Ve Class Results of Naive Bayes Modeling 

 

Figure 4.9 Class F-Measure Results of Naive Bayes Modeling 

86.00%

87.00%

88.00%

89.00%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

NB with Kernel NB without Kernel

%
 S

ca
le

Accuracy

Precision

Recall

AUC

F-Measure

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

NB with Kernel NB without Kernel

%
 S

ca
le

Contractor's class precision

Contractor's class recall

Owner's class precision

Owners's class recall

91.50%

92.00%

92.50%

93.00%

93.50%

94.00%

94.50%

95.00%

NB with Kernel NB without Kernel

%
 A

x
is

Contractor's class F-Measure

Owner's class F-Measure



138 

 

Figure 4.10 Area Under Curve (AUC) Results of Naive Bayes Modeling 
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4.6.3 Rule Induction Classifiers 

The results of the testing and validation of the developed rule Induction 

models are presented in table 4.4, figures 4.11, 4.12, 4.13, 4.14, and appendix D 

respectively. The following is closer examination and discussion of these results. As 

can be noted from table 4.4, 15 boosts ADTree model performed the best. As shown 

in table 4.7, that the 15 boosts AD tree achieved higher performance with respect to 

all performance measures except the model recall. The 15 boost ADTree model 

achieved:  

• An overall accuracy increase of 3.8%, 2.8%, and 2.8% over decision tree, 

10 boosts ADTree, and PART respectively (please refer to figure 4.11). 

• An increase in the precision of 4.03%, 2.66%, and 3.66% over decision 

tree, 10 boosts ADTree, and PART, respectively (refer to figure 4.11).  

• A decrease in the recall of 0.00%, 0.88%, and 2.00% over decision tree, 

10 boosts ADTree, and PART, respectively. As mentioned earlier in 

section 4.2.2.4, there is always a tradeoff between precision and recall. 

Consequently, F-measure is adopted to perform realistic comparison. The 

15 boosts ADTree model achieved an increase in F-measure of 1.97%, 

0.85%, and 0.79% over decision tree, 10 boosts ADTree, and PART, 

respectively (refer to figure 4.11). 

• An increase in the AUC of 6.8%, 4.8%, and 2.4% over decision tree, 10 

boosts ADTree, and PART, respectively (refer to figures 4.11 and 4.14). 
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• An increase in the Contractor’s class precision of 4.35%, 0.15%, and 

4.21% over decision tree, 10 boosts ADTree, and PART, respectively 

(refer to figure 4.11).   

• An increase in the Contractor’s class recall of 4.35%, 6.52%, and 2.17% 

over decision tree, 10 boosts ADTree, and PART, respectively (refer to 

figure 4.12). 

• An increase in the Owner’s class precision of 3.70%, 5.17%, and 1.92% 

over decision tree, 10 boosts ADTree, and PART, respectively (refer to 

figure 4.12). 

• An increase in the Owner’s class recall of 3.70%, 0.00%, and 3.70% over 

decision tree, 10 boosts ADTree, and PART, respectively (refer to figure 

4.12). 

• An increase in the Contractor’s class F-measure of 4.35%, 3.44%, and 

3.20% over decision tree, 10 boosts ADTree, and PART, respectively 

(refer to figure 4.13). 

• An increase in the Owner’s class F-measure of 3.70%, 2.65%, and 2.82% 

over decision tree, 10 boosts ADTree, and PART, respectively (refer to 

figure 4.13). 

• An increase in the Kappa Statistics of 10.06%, 4.03%, and 10.06% over 

decision tree, 10 boosts ADTree, and PART respectively. 
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Table 4.4 Results of Rule Induction Classifiers Implementation 

Property 
Decision 
Tree 

AD Tree 
(10 

Boosts) 

AD Tree 
(15 

Boosts) 
PART 

Accuracy 94.00% 95.00% 97.80% 95.00% 

Precision 93.96% 95.33% 97.99% 94.33% 

Recall 94.00% 94.88% 94.00% 96.00% 

F-measure 93.98% 95.10% 95.95% 95.16% 

AUC 91.20% 93.20% 98.00% 95.60% 
Contractor's class 

precision 
93.48% 97.67% 97.83% 93.62% 

Contractor's class recall 93.48% 91.30% 97.83% 95.65% 

Owner's class precision 94.44% 92.98% 98.15% 96.23% 

Owner's class recall 94.44% 98.15% 98.15% 94.44% 
Contractor's class F-

Measure 
93.48% 94.38% 97.83% 94.62% 

Owner's class F-
Measure 

94.44% 95.50% 98.15% 95.33% 

Kappa statistics 0.8792 0.9397 0.9798 0.8792 

Mean absolute Error 0.0662 0.0915 0.0727 0.0662 
Root mean squared 

error 
0.2352 0.1563 0.1356 0.2204 

Relative absolute error 0.1331 0.1839 0.1462 0.1251 
Root relative squared 

error 
0.4715 0.3132 0.2719 0.4417 
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Figure 4.11 Accuracy, Precision, Recall, F-Measure, and AUC Results of 
Rule Induction Modeling 

 

 

 

Figure 4.12 +Ve and -Ve Class Results of Rule Induction Modeling 

 

Figure 4.13 Class F-Measure Results of Rule Induction Modeling 
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Figure 4.14 Area Under Curve (AUC) Results of Rule Induction Modeling 
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A comparison of the four models with respect to the derived decision rules 

was performed. The Decision Tree model generated a model with tree size of 13 

and number of decision leaves 7 (Figure 4.15). The model derived the following 

rules: 

DSC <= 0 
|   Ocause <= 0: OWNER (43.0) 
|   Ocause > 0: CONTRACTOR (3.0/1.0) 
DSC > 0 
|   SpecWarn <= 0 
|   |   CNoExtra <= 0: CONTRACTOR (36.0) 
|   |   CNoExtra > 0 
|   |   |   DSCC <= 0 
|   |   |   |   Conraise <= 0: OWNER (4.0/1.0) 
|   |   |   |   Conraise > 0: CONTRACTOR (7.0) 
|   |   |   DSCC > 0: OWNER (2.0) 
|   SpecWarn > 0: OWNER (5.0) 

 

Figure 4.15 Decision Tree Model Output 

The 10 boosts ADTree generated a tree size of 25 with 17 decision nodes 

(Figure 4.16). The model derived the following rules: 
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|  (1)DSC < 0.5: -1.289 
|  |  (3)ComImpossible < 0.5: -1.793 
|  |  (3)ComImpossible >= 0.5: 1.469 
|  (1)DSC >= 0.5: 0.778 
|  |  (2)CNoExtra < 0.5: 2.141 
|  |  (2)CNoExtra >= 0.5: -0.902 
|  |  |  (7)DSCC < 0.5: 0.177 
|  |  |  |  (8)Conraise < 0.5: -0.492 
|  |  |  |  (8)Conraise >= 0.5: 0.55 
|  |  |  (7)DSCC >= 0.5: -0.754 
|  |  (5)N&C < 0.5: -0.355 
|  |  (5)N&C >= 0.5: 0.725 
|  (4)SpecWarn < 0.5: 0.373 
|  (4)SpecWarn >= 0.5: -1.002 
|  (6)Ocause < 0.5: -0.44 
|  (6)Ocause >= 0.5: 0.474 
Legend: -ve = OWNER, +ve = CONTRACTOR 

 

Figure 4.16 ADTree Model Output 
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Finally, the 15 boosts ADTree generated a tree size of 37 with 25 decision 

nodes (Figure 4.17). The model derived the following rules: 

|  (1)DSC < 0.5: -1.289 
|  |  (3)ComImpossible < 0.5: -2.173 
|  |  (3)ComImpossible >= 0.5: 1.756 
|  (1)DSC >= 0.5: 0.778 
|  |  (2)CNoExtra < 0.5: 2.141 
|  |  (2)CNoExtra >= 0.5: -0.902 
|  |  |  (7)DSCC < 0.5: 0.177 
|  |  |  |  (8)Conraise < 0.5: -0.492 
|  |  |  |  (8)Conraise >= 0.5: 0.55 
|  |  |  |  |  (9)SpecWarn < 0.5: 0.579 
|  |  |  |  |  (9)SpecWarn >= 0.5: -0.223 
|  |  |  |  (12)Ocause < 0.5: -0.217 
|  |  |  |  (12)Ocause >= 0.5: 0.403 
|  |  |  (7)DSCC >= 0.5: -0.754 
|  |  |  (10)N&C < 0.5: -0.397 
|  |  |  (10)N&C >= 0.5: 0.285 
|  |  (5)N&C < 0.5: -0.355 
|  |  (5)N&C >= 0.5: 0.725 
|  |  |  (11)SpecWarn < 0.5: 0.476 
|  |  |  (11)SpecWarn >= 0.5: -0.164 
|  (4)SpecWarn < 0.5: 0.373 
|  (4)SpecWarn >= 0.5: -1.002 
|  (6)Ocause < 0.5: -0.44 
|  (6)Ocause >= 0.5: 0.474 
Legend: -ve = OWNER, +ve = CONTRACTOR 

In addition, the PART model generated 3 decision rules as follows. 

DSC <= 0 AND Ocause <= 0: OWNER (43.0) 
SpecWarn <= 0 AND CNoExtra <= 0: CONTRACTOR (38.0) 
SpecWarn <= 0 AND DSCC <= 0 AND Conraise > 0: CONTRACTOR (7.0) 
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Figure 4.17 Pictorial Representation of the 15 Boost ADTree Model Output 

From the above information, it is clear that the performance of the four 

developed models under this sub-task had achieved a higher performance than the 

base line since they have achieved an accuracy higher than 50%. In addition, 

comparing the four developed models namely Decision Tree, ADTree with 10 

boosts, ADTree with 15 boosts, and PART yielded the ADTree model with 15 boosts 

with the best performance under the adopted research approach.   

4.7 Analysis and Discussion 

As can be noted from the above results, the Kernel Polynomial 3rd degree, 

Naïve Bayes without Kernel estimators, and ADTree with 15 boosts models attained 

the best performance measures within the studied SVM, Naïve Bayes, and Inductive 
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Rule classifiers respectively. Table 4.5, and figures 4.18, 4.19, 4.20, and 4.21 

illustrate comparisons between these models. Comparing the outcomes of the three 

models one deduces that the SVM Kernel Polynomial 3rd degree achieved higher 

performance measure over the other two. It had attained the followings. 

• An increase in the overall accuracy of 5.00% and 0.2% from the Naïve 

Bayes without Kernel estimators and ADTree with 15 boosts models, 

respectively (refer to figure 4.18). 

• An increase in the precision of 5.06% and 0.01% from the Naïve Bayes 

without Kernel estimators and ADTree with 15 boosts models, 

respectively (refer to figure 4.18). 

• An increase in the recall of 4.80% and 4.00% from the Naïve Bayes 

without Kernel estimators and ADTree with 15 boosts models, 

respectively (refer to figure 4.18). 

• An increase in the F-measure of 4.93% and 2.05% from the Naïve Bayes 

without Kernel estimators and ADTree with 15 boosts models, 

respectively (refer to figure 4.18). 

• An increase in the AUC of 5.30% and 3.65% from the Naïve Bayes 

without Kernel estimators and ADTree with 15 boosts models, 

respectively (refer to figures 4.18 and 4.21). 

• An increase in the Contractor’s class precision of 8.03% from the Naïve 

Bayes without Kernel estimator model. However, a minor decrease of 

0.17% from ADTree with 15 boosts model was noticed (refer to figure 

4.19). 
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Table 4.5 Output Analysis of the Best Models 

Property 
Model Type 

SVM  
(Poly. 3rd 
Degree) 

Naive Bayes 
ADTree 

(15 
Boosts) 

Accuracy 98.00% 93.00% 97.80% 

Precision 98.00% 92.94% 97.99% 

Recall 98.00% 93.20% 94.00% 

F-Measure 98.00% 93.07% 95.95% 

AUC 99.60% 94.30% 95.95% 

Contractor's class precision 97.83% 89.80% 98.00% 

Contractor's class recall 97.83% 95.65% 97.83% 

Owner's class precision 98.15% 96.08% 97.83% 

Owner's class recall 98.15% 90.74% 98.15% 

Contractor's class F-Measure 97.83% 92.63% 98.15% 

Owner's class F-Measure 98.15% 93.33% 97.83% 

Kappa statistics 95.97% 85.98% 98.15% 

Mean absolute Error 13.15% 9.50% 97.98% 

Root mean squared error  12.14% 22.51% 7.27% 

Relative absolute error  3.73% 19.11% 13.56% 

Root relative squared error  26.36% 45.12% 14.62% 
 

• An increase in the Contractor’s class recall of 2.17% from the Naïve 

Bayes without Kernel estimator model was noticed. However, no 

improvement over ADTree with 15 boosts model was detected (refer to 

figure 4.19). 

• An increase in the Owner’s class precision of 2.07% and 0.32% from the 

Naïve Bayes without Kernel estimators and ADTree with 15 boosts 

models respectively (refer to figure 4.19). 
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• An increase in the Owner’s class recall of 7.41% from the Naïve Bayes 

without Kernel estimator model was noticed. However, no improvement 

over ADTree with 15 boosts model was detected (refer to figure 4.19). 

• An increase in the Contractor’s class F-Measure of 5.19% from the Naïve 

Bayes without Kernel estimator model. However, a minor decrease of 

0.32% from ADTree with 15 boosts model was noticed (refer to figure 

4.20). 

•  An increase in the Owner’s class F-Measure of 4.81% and 0.32% from 

the Naïve Bayes without Kernel estimators and ADTree with 15 boosts 

models, respectively (refer to figure 4.20). 

• An increase in the Kappa of 9.99% from the Naïve Bayes without Kernel 

estimator model. However, a decrease of 2.18% from ADTree with 15 

boosts model was detected. 

 

 

Figure 4.18Accuracy, Precision, Recall, F-Measure, and AUC Results of the 
Best Developed Models 
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Figure 4.19 +Ve and -Ve Class Results of the Best Developed Models 

 

 

Figure 4.20 Class F-Measure Results of the Best Developed Models 
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Figure 4.21 Area Under Curve (AUC) Results of the Best Developed Models 
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Comparing the best three developed models namely SVM Kernel Polynomial 

3rd degree, Naïve Bayes without Kernel estimators, and ADTree with 15 boosts 

yielded the SVM Kernel Polynomial 3rd degree model with the best performance 

under the adopted research design and implementation. 

The achieved superiority of the SVM Kernel Polynomial 3rd degree is 

supported by outcomes of previous research studies in the literature review. 

However, it provides very significant insight on the nature of the problem being 

investigated as follows:  

(1) The problem analyzed is a real life complex one in which simple prediction 

tools like NB and Rule Induction classifiers cannot analyze its extent fully. The 

classification of a legal case in terms of whether it is to be judged in favor of one 

party over the other integrates a lot of factors that are not linearly separable in 

nature. Consequently, simple classifiers are not suitable for the task. However, 

Support Vector Machine (SVM) is a state-of-the-art classification and regression 

algorithm, which implements strong regularization techniques, that is, the 

optimization procedure maximizes predictive accuracy while automatically avoiding 

over-fitting of the training data (Cannon et al. 2007). Furthermore, the transformation 

of the data into a higher dimension space through Kernel estimation provides the 

strength of the SVM model in solving this complex problem. On the other hand, NB 

makes predictions using Bayes' Theorem, which derives the probability of a 

prediction from the underlying evidence. This theory and the inherent assumption 

that cases are mutually exclusive limit the performance of the model.  
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(2) The analysis utilizes 120 cases and is considering 15 features. The fact 

that the number of cases is more than twice the number of features makes SVM a 

stronger tool for the analysis of the current problem due to its active learning feature 

(Oracle 2009). “SVM models grow as the size of the training data set increases…. 

Active learning forces the SVM algorithm to restrict learning to the most informative 

training examples and not to attempt to use the entire body of data” (Oracle 2009). 

Furthermore, SVM is not dependent on general rules. In rule dependent classifiers 

and NB, the number of collected rules is dependent on the size of the dataset. 

Consequently, the lower performance in NB and Rule Induction Classifiers could be 

attributed to the number of features analyzed. The number of features selected may 

not be enough to accurately differentiate the cases for those algorithms.     

4.8 Chapter summary 

The objective of this chapter was to investigate the feasibility of ML use for 

the development of a DSC litigation prediction model for the construction industry. 

To that end, SVM, Naïve Bayes, and Induction Rule classifiers were adopted for the 

study. 10 models were developed in the following manner 4 SVM, 2 Naïve Bayes, 

and 4 Induction rule models. The highest prediction rate of 98% within the first 

category was attained by Kernel Polynomial 3rd degree model. Models developed 

under the second category yielded a highest rate of prediction of 93% attained by 

the Naïve Bayes model without implementing kernel estimators. A prediction rate of 

97.8% was the highest attained within the third category by ADTree model with 15 

boosts. Comparing the outputs of all developed models yields a great advancement 
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in this area when compared to a base line of 50% and previously performed 

researches (Arditi and Tokdemir 1999, and Chau 2006) as discussed in chapter 2. In 

addition, after performing the aforementioned analysis, it could be concluded that 

SVM Kernel Polynomial 3rd degree model has achieved the best performance 

among all developed models.    
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CHAPTER 5 

AUTOMATED EXTRACTION OF SIGNIFICANT LEGAL FACTORS 

5.1 Introduction 

Researchers have highlighted knowledge integration and knowledge 

management as two of the major problems that affect the efficiency of the 

construction industry (Caldas et al. 2002, Wood 2000, Brőggemann et al. 2000, and 

Kosovac et al. 2000). The problem is attributed to the fact that (Caldas et al. 2002): 

(1) a large amount of construction data is stored in semi-structured and unstructured 

files and formats; (2) the knowledge needed for construction decision making is very 

difficult to extract; (3) this knowledge is not integrated with other construction 

management systems; and (4) the association between construction data and their 

related project components is not clear. These facts make the management of 

construction knowledge a significant and challenging task.  

In fact, the aforementioned challenges in managing construction knowledge 

extend to the legal domain, since cases are also stored in textual unstructured 

formats (Ashley and Rissland 1988). The highly sophisticated electronic information 

storage and retrieval systems available for researching the laws and case histories 

are extremely complex and time consuming. Sometimes this complexity creates 

problems for information seekers and can limit their access to relevant information. 

This adds to the complexity of the legal decision making process in construction, 

since the process is time consuming and may require knowledgeable professionals 

to extract the required knowledge from relevant case histories. As a result, an 
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automated legal decision support system that utilizes natural language processing 

techniques to identify, retrieve, reorganize legal information, and predict construction 

litigation outcomes is needed. This system is expected to reduce the time required 

and costs incurred by construction firms in the legal decision making process and 

improve overall project control. 

The previous chapter of this dissertation illustrated the development of 

machine learning models that efficiently and effectively determine the outcomes of 

DSC disputes construction based on corpus of precedent cases. Those models are 

expected to help in relieving the negative consequences associated with lengthy 

DSC claim and dispute resolution in the construction industry. However, the manual 

extraction of significant legal factors that govern these cases that form the corpus is 

a significant time constraint that could reduce the efficiency of these models. The 

main goal of this chapter is to develop an automated methodology for the extraction 

of legal knowledge, in the form of significant legal factors, from precedent cases. 

Consequently, the focus of this chapter is to develop and evaluate the performance 

of different ML tools, namely Support Vector Machines (SVM), Naïve Bayes, and 

Inductive Rules, in an attempt to automate legal factors identification.  

The research tasks described in this chapter will, therefore, include: (1) 

preparing the data for model implementation; (2) identifying the ML model 

parameters; (3) developing SVM, Naïve Bayes, and Rule Induction automated 

extraction models; and (4) validating and comparing the developed models. 
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5.2 Data Preparation 

The first research task in this chapter aims at preparing the cases in the DSC 

precedent corpus for processing using the different ML methods that are being 

developed. The data preparation task is, therefore, composed of the following three 

steps: (1) defining the nature of the problem; (2) processing the collected data; and 

(3) preparing the processed data for model development (weighting scheme). 

5.2.1 Defining the Nature of the Problem 

The goal of this task is to automate the process of legal significant factors 

extraction in textual precedent cases. This implies that the knowledge that needs to 

be extracted is implicitly available within the textual cases. Consequently, this 

problem can be defined as one of extracting this tacit knowledge from a large text. 

The first step in solving such a problem is to analyze the text to evaluate how this 

tacit knowledge can be extracted. Each case includes a representation of the 

different legal factors in terms of words that are put together in a coherent manner to 

derive meaning. However, looking at the bigger picture, legal terms always refer to 

constant meanings. For example, the word contract legally refers to “A binding 

agreement between two or more parties for performing, or refraining from 

performing, some specified act(s) in exchange for lawful consideration” (Legal 

Dictionary 2008). This decreases the ambiguity of these terms, but also decreases 

their ability to distinguish between documents. In the same manner, each case will 

include terms that are pertinent to a specific legal factor defined in chapter 3.  
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Figure 5.1 Research Tasks for Automated Significant Legal Factors 
Extraction 
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For example, in the case of All County Paving Corp., Doing Business as 

Collins Construction Co., Appellant, v Suffolk County Water Authority, Respondent, 

Judges Anita R. Florio, J.P., Robert W. Schmidt, Thomas A. Adams, and William F. 

Mastro stated in their opinion “since the defendant made no misrepresentations and 

withheld no information, the plaintiff was not entitled to extra compensation”. This 

sentence includes terms like misrepresentations, withheld, and information in a 

manner that relates to the legal factor “MMistake”. Consequently, these terms are 

the ones that the ML algorithms could use to determine the presence of this factor. 

5.2.2  Processing the Case Corpus   

As stated above, the 120 cases, earlier utilized for the analysis in chapter 4, 

were utilized for the analysis under this sub-task. The decision for using this set of 

cases was based on the fact that they were previously manually analyzed to define 

the significant legal factors pertinent to each case. As mentioned earlier, these 

cases are related to DSC disputes from The Federal Court of New York. They were 

filled in the period between 1912 and 2007. Although each case implicitly includes 

the required knowledge for such analysis, it also includes textual representations 

that are not related to this sub-task. This step involves preparing the collected 

dataset in an appropriate manner to enhance the analysis. Consequently, the 

processing step will include data cleaning, data integration, and data reduction (Ng. 

et al. 2006). A similar methodology has been utilized in the application of text mining 

techniques in construction as mentioned earlier in chapter 2 (Caldas et al. 2002). 

Data cleaning is performed by removing undesirable text (words). For more 
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illustrations, textual representation of cases might include frequent words that carry 

no meaning, misspelled words, outliers, noise, and inconsistent data. While data 

processing is performed on each textual case representation separately, data 

integration is performed over the entire dataset. In this step, the entire processed 

dataset is stored in a coherent manner that facilitates their use for further analysis. 

While the integrated data might be very large, data reduction can decrease the data 

size by aggregating and eliminating redundant features.  

To perform the aforementioned sub-steps, an algorithm was developed and 

implemented in C++. A copy of the developed program is provided in Appendix E of 

this dissertation. The basic principle of the developed program is to represent each 

document as a vector of certain weighted word frequencies. The following steps 

outline the parsing and extraction procedure that are performed on each textual 

representation of a case (please refer to figure 5.2). 

1. Extract all words in a document. The algorithm prompts the user to 

provide a directory that includes the document. The algorithm iterates 

through the documents one by one, associates each document with a 

unique numerical code and extracts all words in each document. Words 

are extracted based on white spaces and are stored in a document vector 

that is coded with the unique document code. 

2. Eliminate non-content-bearing words, also known as stopwords 

(Rijsbergen 1979). The algorithm utilizes predeveloped files including a 

comprehensive list of non-content-bearing words. For example, words 

like and, if, or, then, that, the, he, me, they, nevertheless … etc. are 
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included in the file. Each word in the document vector is compared 

against these lists. If a word was found to be non-content-bearing words, 

it was excluded from the document vector. 

3. Reduce each word to its “root” or “stem” eliminating plurals, tenses, 

prefixes, and suffixes. This technique is called stemming, suffix stripping, 

or term truncation. Stemming reduces different word forms to common 

roots. The purpose of stemming is to group words that are morphological 

variants on the same word stem (Porter 1980, Ng et al. 2006). The 

algorithm iterates through the document word vector stemming each word 

by inputting it into a loop that performs the following:  

a. All letters in the word are changed to lower case. For example, the 

word “Contracts;” is stemmed to “contracts;”.  

b. All punctuations and non alphabetical symbols or marks that are 

used to organize writing are removed. Consequently, the word 

“contracts;” is stemmed to “contracts”.  

c. All words are converted to its singular form. The algorithm utilizes 

standard grammatical rules of pluralization to perform this step. 

Each word in the document word vector is transformed to its 

singular form by eliminating “s” or “es” or “ies” at its end. As a 

result, the word “contracts” is stemmed to “contract”. Words in the 

document vector are replaced with their stemmed versions.  

4. For each document, count the number of occurrences of each word. The 

algorithm iterates through each document vector and counts the number 
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of occurrences of each stemmed word. These frequencies are stored in a 

document term frequency vector that is coded with the unique document 

code generated by the algorithm. 

5. Eliminate low frequency words (Salton 1989, Ng et al. 2006). Low 

frequency words are those that were repeated less than three times in a 

document. The algorithm iterates through the document frequency vector 

excluding each word with a frequency less than three from the document 

frequency and word vectors. 

After the previous procedure, w unique words remain in d unique documents; 

a unique identifier is assigned between 1 and w to each remaining word, and a 

unique identifier between 1 and d to each document resulting in a term-frequency (tf) 

matrix.  

5.2.3 Weighting scheme development 

  A mere representation of significant words in the form of term frequency is 

not sufficient to accurately extract the required knowledge from our case corpus. For 

example, a word like contract might exist in all processed documents in high 

frequency (tf). However, a decision must be made about whether this word would 

help define a significant legal concept or not. Consequently, an appropriate 

weighting mechanism must be implemented to create a representative matrix of 

these documents within the entire dataset. Literature in the field of ML and text 

mining illustrated the effectiveness of alternate term weighting schemes like 

logarithmic term frequency (ltf) (equation 5.1), augmented weighted term frequency 
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(atf) (equation 5.2), and term frequency inverse document frequency (tf.idf) 

(equation 5.3) (Manning and Scheutze 1999).  

ltfi,d=1+ log�tfi,d� ; tfi,d>0     5. 1 

atfi,d=0.5+
0.5×tfi,d

maxt(tfi,d)
      5. 2 

tf.idfi,d=(1+ log�tfi,d)�× log $N

dfi
'  if tfi,d>0     5. 3 

The four above mentioned weighting schemes namely tf, ltf, atf, and tf.idf 

were utilized for the analysis under this task. The developed algorithm mentioned in 

5.2.2 implements the required calculations to develop 4 matrixes (please refer to 

figure 5.2). 

5.2.4 ML Model Development   

The adopted research approach developed kernel SVM, Naïve Bayes, and 

Rule Induction models that detect the presence of a significant legal factor in a case 

to its text. The proposed research approach developed and compared the outputs of 

24 models illustrated in table 5.1. Validation of the best developed model was based 

on prediction accuracy and Kappa measures. Outputs of the developed models are 

compared to a base line prediction of 50%. Since the analysis is pertinent to 

automating the extraction of significant legal factors related to each case, each 

model is developed as a multiple classifier. In other words, each case is tagged with 

the set of existing significant legal factors defined manually in chapter 3.  
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Figure 5. 2 Algorithm Implementation 
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The classifier is trained to predict the factors in the form of a set based on the 

significant words available in a text. The training and validation of the model is 

performed on a 10 fold scheme as detailed in chapter 4. 

Table 5.1 ML Developed Models 

Model 
# 

ML Model Type Weighting Scheme 

1 1st Degree Polynomial SVM Term Frequency (tf) 
2 2nd Degree Polynomial SVM Term Frequency (tf) 
3 3rd Degree Polynomial SVM Term Frequency (tf) 
4 Naïve Bayes Term Frequency (tf) 
5 Decision Tree Term Frequency (tf) 
6 PART Term Frequency (tf) 
7 1st Degree Polynomial SVM Logarithmic term frequency (ltf) 
8 2nd Degree Polynomial SVM Logarithmic term frequency (ltf) 
9 3rd Degree Polynomial SVM Logarithmic term frequency (ltf) 
10 Naïve Bayes Logarithmic term frequency (ltf) 
11 Decision Tree Logarithmic term frequency (ltf) 
12 PART Logarithmic term frequency (ltf) 
13 1st Degree Polynomial SVM Augmented term Frequency (atf) 
14 2nd Degree Polynomial SVM Augmented term Frequency (atf) 
15 3rd Degree Polynomial SVM Augmented term Frequency (atf) 
16 Naïve Bayes Augmented term Frequency (atf) 
17 Decision Tree Augmented term Frequency (atf) 
18 PART Augmented term Frequency (atf) 

19 1st Degree Polynomial SVM 
Term frequency inverse document 
frequency (tf.idf) 

20 2nd Degree Polynomial SVM 
Term frequency inverse document 
frequency (tf.idf) 

21 3rd Degree Polynomial SVM 
Term frequency inverse document 
frequency (tf.idf) 

22 Naïve Bayes 
Term frequency inverse document 
frequency (tf.idf) 

23 Decision Tree 
Term frequency inverse document 
frequency (tf.idf) 

24 PART 
Term frequency inverse document 
frequency (tf.idf) 
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5.2.5 Results and Discussion 

The results of the application of the aforementioned research tasks are 

presented in tables 5.2, figures 5.3 and 5.4. The following is closer examination of 

these results. As can be noted from table 5.2, all models have an improved 

performance over base line (50%). Comparing all developed models yields the 

followings: 

• Among the developed 1st degree polynomial SVM models, the highest 

prediction accuracy of 76% was achieved by using atf and tf.idf weighting 

schemes. An increase of 12% and 5% over tf and ltf schemes was 

attained, respectively. 

• Among the developed 2nd degree polynomial SVM models, the highest 

prediction accuracy of 72% was achieved by using atf and tf.idf weighting 

schemes. An increase of 8% and 3% over tf and ltf schemes was 

obtained, respectively. 

• Among the developed 3rd degree polynomial SVM models, the highest 

prediction accuracy of 74% was achieved by using tf.idf weighting 

schemes. An increase of 14%, 3%, and 2% over tf, ltf, and atf schemes 

was obtained, respectively. 

• Among the developed Naïve Bayes models, the highest prediction 

accuracy of 84% was achieved by using tf.idf weighting schemes. An 

increase of 11%, 2%, and 61% over tf, ltf, and atf schemes was obtained, 

respectively. 
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Table 5.2 Accuracy and Kappa Measures of Developed Models 

ACCURACY 

Weighting 
Scheme 

Classifier 
1st Poly. 

Deg. 
SVM 

2nd Poly. 
Deg. 
SVM 

3rd Poly. 
Deg. 
SVM 

Naïve 
Bayes 

Decision 
Tree 

PART 

tf 64% 64% 60% 73% 54% 52% 
ltf 71% 69% 71% 82% 54% 52% 
atf 76% 72% 72% 23% 54% 52% 
tf.idf  76% 72% 74% 84% 54% 52% 

KAPPA 

Weighting 
Scheme 

Classifier 
1st Poly. 

Deg. 
SVM 

2nd Poly. 
Deg. 
SVM 

3rd Poly. 
Deg. 
SVM 

Naïve 
Bayes 

Decision 
Tree 

PART 

tf 0.608 0.608 0.583 0.799 0.519 0.5 
ltf 0.753 0.774 0.784 0.806 0.519 0.5 
atf 0.806 0.795 0.795 0.186 0.519 0.5 
tf.idf  0.806 0.795 0.8 0.827 0.519 0.5 

 

 

Figure 5.3 Kappa Measure of Developed Models 
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• All developed models using Decision Tree and PART classifiers attained 

a prediction precision of 54% and 52%, respectively. This outcome is 

predictable since classification is based on induction rules. Consequently, 

varying the weighting scheme does not affect the derived rules. 

It is clear from the above discussion, tf.idf weighting mechanism achieved 

better performance than tf, ltf, and atf. This could be attributed to that fact that raw 

term frequency (tf) representation suffers from a critical problem. That is all parsed 

terms in the corpus are considered equally important when it comes to assessing 

their relevance to a query. However, some terms, like highly occurring ones over all 

cases in the corpus, have no discriminating power in legal knowledge extraction. For 

example, a legal term like “contract” exists in almost all cases in our corpus. 

Consequently, this term holds no power to differentiate the existence of significant 

legal factors. This problem is slightly resolved by modifying the raw term frequency 

with the logarithmic and augmented weighting mechanisms. However, the term 

frequency inverse document frequency (tf.idf) mitigates this problem by scaling down 

the term weight of terms with a high frequency of occurrence. This is done by 

weighting a term frequency with respect to its occurrence in all cases within the 

corpus. In this case, discrimination between cases is done through the case-level 

statistic (such as the number of documents containing a term), which is considered 

to be of higher power than to use a cases-wide statistic. Consequently, the 

importance of terms increase proportionally to the number of times a term appears in 

the case but is offset by the frequency of that term in the corpus which leads to a 

suitable weighting mechanism for the purpose of the current research study.   
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5.2.6 Model Validation 

As can be noted from the above discussion, table 5.3, and figures 5.5 and 

5.5, the highest prediction accuracy rate of 84% was attained using Naïve Bayes 

model while implementing the tf.idf weighting scheme. Contrary to the findings of 

chapter 4, the performance of the SVM models was not found to be the highest. This 

can be attributed to the fact that SVM models implement active learning features as 

detailed in chapter 4. The performance of this feature deteriorates as the ratio of the 

number of cases to the number of features utilized to train the models decreases. In 

our case, the models are trained using 120 cases with respect to 2354 features. This 

increased number of features, however led to the enhanced performance of the NB 

model compared to the other models. As mentioned in chapter 4, the limited number 

of features restricted the performance of the NB automated litigation outcome 

prediction models.   

 

Figure 5.5 Accuracy Increase of Naive Bayes over Developed Models 

 

 

0%
10%
20%
30%
40%
50%
60%
70%

1st Pol. 
Deg SVM

2nd Pol. 
Deg. SVM

3rd Poly. 
Deg. SVM

Naïve 
Bayes

Decision 
Tree

PART

A
c
c
u
ra
c
y
 %

tf

ltf

atf

tf.idf



172 

Table 5.3 Accuracy and Kappa Increase of Naive Bayes over Developed 
Models 

ACCURACY 

Weighting 
Scheme 

Classifier 
1st Poly. 

Deg. 
SVM 

2nd Poly. 
Deg. 
SVM 

3rd Poly. 
Deg. 
SVM 

Naïve 
Bayes 

Decision 
Tree 

PART 

tf 20% 20% 24% 11% 30% 32% 
ltf 13% 15% 13% 2% 30% 32% 
atf 8% 12% 12% 61% 30% 32% 
tf.idf 8% 12% 10% - 30% 32% 

KAPPA 

Weighting 
Scheme 

Classifier 
1st Poly. 

Deg. 
SVM 

2nd Poly. 
Deg. 
SVM 

3rd Poly. 
Deg. 
SVM 

Naïve 
Bayes 

Decision 
Tree 

PART 

tf 0.219 0.219 0.244 0.028 0.308 0.33 
ltf 0.074 0.053 0.043 0.021 0.308 0.33 
atf 0.021 0.032 0.032 0.641 0.308 0.33 
tf.idf 0.021 0.032 0.027 - 0.308 0.33 
 

 

Figure 5.6 Kappa Increase of Naive Bayes Over Developed Models 
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1. Twenty two (22) cases were randomly chosen from the developed 

corpus in chapter 3. 

2. Manual extraction of significant legal factors was performed. 

3. A program in C++ was developed to perform data cleaning, data 

integration, and data reduction on the textual representation of the 22 

cases. A copy of the developed program is provided in Appendix F. 

4. Prediction of significant legal factors for each case was done by running 

the tf.idf term frequencies for the 22 cases through the Naïve Bayes 

model.  

5. Validation of the model was based on prediction accuracy. Only cases 

that were predicted correctly through all related significant legal factors 

were considered as a true prediction. Accuracy was measured as the 

ratio of true predicted cases to total tested cases. 

Table 5.4 and figure 5.6 illustrate the outcomes of the aforementioned 

methodology. As can be noted from table 5.4, 18 cases out of the 22 were predicted 

accurately leading to a prediction precision of 81.8%. In addition, among the 4 

falsely predicted cases (1) 2 cases had an error in predicting 1 significant legal factor 

(case numbers 11 and 15); (2) 1 case had an additional predicted significant legal 

factor (case number 19); (3) 1 case had a missing significant legal factor (case 

number 20). These results further assure the suitability of the model to extract legal 

factors from the case corpus. 



Figure 5.7 True and False Prediction Analysis of Best Model
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# 

Predicted Legal 
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True and False Prediction Analysis of Best Model

Prediction Analysis of 22 Newly Introduced Cases

Predicted Legal 
Factors 

Manually Extracted Legal 
Factors 

2,3,7,9,10,11 2,3,7,9,10,11 
2,3,4,5,6,7,10,11 2,3,4,5,6,7,10,11 
2,3,4,5,6,7,10,11 2,3,4,5,6,7,10,11 
1,2,4,7,8,10,12 1,2,4,7,8,10,12 

3,4,9,10,13 3,4,9,10,13 
3,4,9,10,13 3,4,9,10,13 

1,4,9,10,11,12 1,4,9,10,11,12 
1,4,9,10,11,12 1,2,4,9,10,11,12 

2,4,5,8,10,11,12 2,4,5,8,10,11,12 
2,4,5,8,10,11,12 1,2,4,5,7,8,10,11,12 

2,4,7,8,10,12 2,4,7,8,10,11 
2,4,7,9,10,11 2,4,7,9,10,11 

1,3,4,10 1,3,4,10 
1,3,4,10 1,3,4,10 
1,2,7,9 1,2,7,10 

1,3,4,7,10 1,3,4,7,10 
1,3,4,7,9,13 1,3,4,7,9,13 

1,3,4 1,3,4 
1,3,4,10 1,3,4 
1,2,3,4,5 1,2,3,4,5,10 

1,4,10 1,4,10 
1,10 1,10 

81.82%

18.18%

True Prediction False Prediction
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5.3 Chapter Summary 

The objective of this chapter was to automate significant legal factors 

identification within textual representations of DSC cases. To that end, SVM, Naïve 

Bayes, and Induction Rule classifiers were adopted for the study, and 24 models 

were developed. Four weighting schemes namely tf, ltf, atf, and tf.idf were 

implemented for each type of ML algorithm. The highest prediction rate of 84% was 

attained by Naïve Bayes classifier while implementing tf.idf weighting. The model 

was further validated by testing 22 newly un-encountered cases. A prediction 

precision of 81.8% was attained. From the above, it could be concluded that NB 

model with a tf.idf weighting mechanism is the most suitable ML algorithm to 

automate the extraction of legal factors from a large corpus of DSC cases.  
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 CHAPTER 6 

AUTOMATED EXTRACTION OF PRECEDENT DSC CASES 

6.1 Introduction 

Among the goals of the current research is to minimize time and cost 

associated with the need of legal experts in the construction industry for analysis 

and determination of the appropriate resolution mechanisms to be adopted in case 

of dispute.  As illustrated earlier in chapter 2, the legal system in the United States of 

America is Anglo Saxon, and a corner stone of which is precedence. Precedence 

can be defined as utilizing verdicts from previous similar cases to decide on newly 

encountered ones. Although the work covered in chapters 3, 4, and 5 under the 

current research helps to alleviate the drawbacks of litigation and the need for 

experts in the construction industry. A final step is still needed to complete the 

contribution of the current research towards solving these problems. Through the 

earlier work performed under the current research, a party to a dispute can 

accurately determine the odds of winning or losing a case in court using ML. 

Consequently, they can decide on the appropriate dispute resolution strategy they 

should follow. If they decide to resolve the current dispute through litigation, having 

supporting documents and precedent cases of similar nature is a necessity. 

Consequently, the primary objective of this chapter is to develop an automated 

precedent case extraction model for DSC disputes in the construction industry. This 

model will extract precedents from large corpi based on similarity to newly un-

encountered DSC cases using machine learning and NLP techniques. The research 
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tasks explained in this chapter include: (1) investigating Latent Semantic Analysis 

(LSA) algorithms; (2) developing reduced feature spaces; (3) developing LSA 

automated extraction models; and (5) testing and validating the developed models. 

Therefore, this chapter will start with an account of the features space selection 

process for the implementation of LSA algorithm.   

 

Figure 6.1 Research Tasks for Automated Precedent DSC Cases Extraction from 
Large Corpus 
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6.2 LSA Feature Space Development 

In this research task, an important parameter for the LSA model 

implementation is determined. Feature space in LSA is defined by the number of 

feature (in this research features are words) that are used to represent a case as a 

vector. Research concerned with LSA feature space development covers a wide 

range of reduced feature space sizes that enhance the effectiveness of the 

algorithm. It was highlighted that for dispersed dataset a large feature space sizes 

ranging between 100 and 500 are appropriate (Choi et al. 2001). However, for 

closely related dataset, a feature space as small as 7 is appropriate (Koll 1979). 

Consequently, the present research task developed 9 different reduced feature 

spaces utilizing 5, 10, 15, 20, 100, 200, 300, 400, 500 features. These different 

feature spaces will be used in the testing and validation of the developed models in 

two ways. The first form of testing will evaluate the LSA algorithm’s ability to extract 

all original, appeals, and re-appeals of a case using the developed feature spaces. 

This extraction will take place in a new corpus of 450 cases from the Federal Court 

of New York that were filled between 1919 and 2007. The feature space 

performance will be judges against an extraction similarity measure of 1. The second 

form of evaluation is based on correctly extracting land marking cases that were 

mentioned by a judge to be relevant within the body of cases from the expanded 

corpus of 450 cases while correctly rejecting others that were mentioned to be 

irrelevant. 



179 

6.3 Model Design and Implementation 

The following is a description of the steps of the LSA algorithm implemented 

for precedent case extraction. The algorithm starts with an argument, filename, 

which is the name of the file or directory to be parsed.  If filename is actually a 

directory, the algorithm traverses this directory and all subdirectories in a recursive 

fashion and parses each regular file it encounters (i.e. no symbolic links are parsed) 

(GTP 2008).  If filename is a single file, the algorithm simply parses it only. The 

algorithm moves sequentially through each file, extracting keys comprised of 

relevant characters, and ignoring keys contained in the common word list specified 

in the input common word file. By default, only keys that begin with characters A-z 

will be parsed. Keys beginning with a digit (0-9), with the exception of numbers that 

could be interpreted as dates in the 1700's 1800's and 1900's, will be ignored to the 

next whitespace character. The algorithm converts all characters to lower case, and 

requires that a key contain at least 2 characters and no more than 20 characters. 

Single character keys are ignored and keys with more than 20 characters are 

truncated and all characters to the next unrecognized character or whitespace are 

ignored.  

After tokenizing the keys and associating each one with the document it was 

extracted from, the algorithm begins calculating term weights. The (global) weights 

of the terms are computed over the collection of documents. By default, only a local 

weight is assigned and this is simply the frequency with which the term appears in a 

document. Two thresholds exist for term frequencies: Global and local (GTP 2008). 

By default, the global and local thresholds are both 1. A term must appear more than 
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1 time in the entire collection and in more than one document in the collection before 

it will be weighted. These thresholds can however be changed. Each term is 

assigned a term ID number (starting with 1, in alphanumeric order). Next, the local 

weights of the keys are computed. Each term weight is the product of a local weight 

times a global weight (if specified). Entries are grouped by document number. Next, 

the algorithm creates a term-by-document matrix using the Harwell-Boeing sparse 

matrix format. The algorithm finally performs SVD decomposition before cleaning all 

temporary files and writing a summary of the run. 

General Text Parser (GTP) windows version, developed by Stefen Howard, 

Haibin Tang, Dian Martin, Justin Giles, Kevin Heinrich, Barry Britt, and Michael W. 

Berry, was utilized for the implementation of LSA feature spaces development and 

validation described above.  GTP is a general purpose text parser with matrix 

decomposition option which can be used for generating vector space IR models. As 

stated by Landauer et al. (2007) “GTP could be considered the reference program 

for LSA analysis because it is a rewrite of the older Telcordia suite in more modern 

way. It is a very large program. Contrary to what its name indicates, GTP is not only 

a parser: It actually can run an SVD at the end of the process. GTP is a 100% C++ 

code”.   

As mentioned earlier in section (6.2) 9 reduced feature spaces were 

generated. Each reduced feature space was generated with a local threshold of Log 

function and a global threshold of entropy function. The Log function (equation 6.1) 

decreases the effect of large differences in term frequencies (Landauer et al 2007). 

The entropy function (equation 6.2), on the other hand, assigns lower weights to 
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words repeated frequently over the entire document collection, as well as taking into 

consideration the distribution of each word frequency over the documents (Landauer 

et al. 2007). These thresholds were adopted for the current analysis due to their 

success over other types of threshold combinations. Dumais (1991) illustrated that 

the log-entropy threshold combination attained 40% higher retrieval precision over 

other threshold combinations. 

ltfi,d=1+ log�tfi,d� ; tfi,d>0      6.1 

∑ Pijlog2�Pij�
log2ni  where Pij=

tfij

gfi
      6.2 

Where tfij is the word frequency of word i in document j, and gfi is the total 

number of times that the word i appears in the entire collection of n documents. 

6.4 Results and Discussion 

As mentioned earlier in section 6.3, the testing and validation of the 

developed models is twofold. The first fold is through the successful extraction of a 

query case, its appeals, and re-appeals from the corpus with the highest similarity 

measure. To that end, each of the generated reduced feature spaces was tested 

with three query cases. Table 6.1 illustrates the similarities by which each space 

retrieved the related documents. As can be seen from table 6.1, reduced feature 

spaces with sizes between 5 and 20 retrieved the required documents with a 

similarity measure of 1. As the feature space increases in size, data becomes 

dispersed and the similarity decreases. Despite that fact, all feature spaces were 

able to retrieve all related documents of the three query cases. The highest 
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similarities of 1 were attained using the lower range of feature; whereas, the lowest 

of 0.999936 was attained using the 500 reduced feature space size. 

Table 6.1 Similarity Measure of Similar Case Retrieval 

Reduced Feature 
Space Size 

Similarity Value Average 
Similarity Case 1 Case 2 Case 3 

5 1 1 1 1 
10 1 1 1 1 
15 1 1 1 1 
20 1 1 1 1 

100 0.999996 0.999997 0.999996 0.999996333 
200 0.999978 0.999983 0.999979 0.99998 
300 0.999949 0.999948 0.999948 0.999948333 
400 0.999936 0.999936 0.999936 0.999936 
500 0.999936 0.999936 0.999936 0.999936 

 

The second fold was based on the ability of a reduced feature space to 

extract related supporting cases from the corpus and rejecting unrelated ones. 

Confidence on whether a case is related or unrelated to a query one is based on the 

opinion of judges illustrated within the textual body of a case. For example, judges 

Greenblott, J.  Koreman, P. J., Sweeney, Main and Larkin, JJ., included in their 

opinion in the case of Public Constructors, Inc., Respondent, v. State of New York, 

Appellant (1977) the following: “In a construction contract between the State and an 

individual, which contains representations as to existing conditions affecting work 

there under as well as an exculpatory clause relieving the State of liability and 

requiring personal inspection of the contract site, liability, nevertheless, may attach 

to the State if said conditions are not as represented and (1) inspection would have 

been unavailing to reveal the incorrectness of the representations (Foundation Co. v 

State of New York, 233 N. Y. 177, 184-185; Faber v. City of New York, 222 N. Y. 
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255, 260), or (2) the representations were made in bad faith ( Young Fehlhaber Pile 

Co. v. State of New York, 265 App. Div. 61; Jackson v. State of New York, 210 App. 

Div. 115, affd.  241 N. Y. 563). In our view, the Court of Claims was clearly correct in 

finding that the contract documents furnished to the bidders contained 

misrepresentations, and in rejecting the State's contention that claimant must bear 

the responsibility as the result of an inadequate prebid investigation”. It could be 

concluded from this opinion that cases like Foundation Co. v State of New York, 233 

N. Y. 177, 184-185; Faber v. City of New York, 222 N. Y. 255, 260); Young 

Fehlhaber Pile Co. v. State of New York, 265 App. Div. 61; and Jackson v. State of 

New York, 210 App. Div. 115, affd.  241 N. Y. 563 are related to the case of Public 

Constructors, Inc., Respondent, v. State of New York, Appellant and can be used as 

supporting precedent cases.  

To that end, each of the developed reduced feature space sizes was tested 

against two query cases. The first included three relevant cases and three irrelevant 

ones. The second included three relevant cases and two irrelevant ones. A value of 

0.75 was maintained as a threshold for retrieval. Consequently, if a case was 

retrieved as a lower similarity, it was disregarded. Table 6.2 illustrates the similarity 

measures by which each reduced feature space retrieved the relevant and irrelevant 

documents. Average similarities are reported for each case and overall similarities 

are reported as the average of retrieval over the two query cases for each reduced 

feature space size. It can be noted from table 6.2 that feature spaces with sizes 

beyond 100 were not able to retrieve any of the related documents. This is due to 

the increased disparity that is generated in the feature space due to the increased 
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dimensions. Such outcomes support the findings of the literature review under 

section 2.6.4.  

Table 6.2 Similarity Measures by Which Each Reduced Feature Space 
Retrieved the Relevant and Irrelevant Documents 

Reduced 
Space Size 

Case 
Similarity Values 

Average Similarity 
per Case 

Overall 
Average 
Similarity 

Relevant 
Cases 

Irrelevant 
Cases 

5 

1 
0.999995 0.778905 

0.904972667 

0.9203155 

0.885543 <0.75 
0.82938 <0.75 

2 
0.999995 <0.75 

0.935658333 0.999923 
<0.75 

0.807057 

10 

1 
0.996806 <0.75 

0.930872 

0.955640833 

0.993939 <0.75 
0.801871 <0.75 

2 
0.999997 <0.75 

0.980409667 0.981382 
<0.75 

0.95985 

15 

1 
0.991001 0.761948 

0.857044333 

0.855562833 

0.802091 0.757547 
0.778041 <0.75 

2 
0.95951 0.795354 

0.854081333 0.836486 
<0.75 

0.766248 

20 

1 
0.976275 0.794503 

0.881031333 

0.868614167 

0.87631 0.791911 
0.790509 0.776489 

2 
0.885414 0.80643 

0.856197 0.85861 
<0.75 

0.824567 

100 

1 
0.809697 0 

0.269899 

0.1349495 

0 0 
0 0 

2 
0 0 

0 0 
0 

0 
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Table 6.2 (Continued) 

Reduced 
Space Size 

Case 
Similarity Values 

Average Similarity 
per Case 

Overall 
Average 
Similarity 

Relevant 
Cases 

Irrelevant 
Cases 

200 

1 
0 0 

0 

0 

0 0 
0 0 

2 
0 0 

0 0 
0 

0 

200 

1 
0 0 

0 

0 

0 0 
0 0 

2 
0 0 

0 0 
0 

0 

400 

1 
0 0 

0 

0 

0 0 
0 0 

2 
0 0 

0 0 
0 

0 

500 

1 
0 0 

0 

0 

0 0 
0 0 

2 
0 0 

0 0 
0 

0 
 

Furthermore, the highest overall average similarity of 0.955640833 was 

attained using a reduced feature space size of 10 features; whereas, the lowest of 

0.1349495 was attained using a reduced feature space of 100 features. The 

superiority of the 10 feature reduced space was further demonstrated by not 

retrieving any of the irrelevant cases with a similarity above the threshold of 0.75. 

Figure 6.2 shows the advancement of the 10 feature reduced space size over other 
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developed spaces. It attained an increase of 3.84%, 11.7%, 10.02%, and 608.15% 

over the 5, 15, 20, and 100 reduced feature spaces respectively.       

 

Figure 6.2 Advancement of 10 Feature Space Over Other Reduced Feature 
Spaces 

6.5 Chapter Summary and Conclusion 

  The objective of this chapter was to automate the extraction of related DSC 

cases from large corpus to newly introduced ones. The chapter, therefore, 

implemented two main stages that: (1) implemented Latent semantic Analysis for the 

development of 9 reduced feature spaces representation of the gathered corpus; 

and (2) testing and validated the developed reduced feature spaces through twofold 

validation methodology. The main findings from the implementation of this two stage 

research methodology include: 

1. Low dimensioned reduced feature spaces are more representative to 

domain problems analysis closely related document collection. A finding 

that supports outcomes achieved by earlier researchers as illustrated in the 

literature of the LSA domain. 
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2. Higher dimensioned reduced feature spaces are more representative to 

domain problems analysis in dispersed and unrelated document collections. 

3. The highest similarity measure (equal to 1) with respect to retrieving initial 

case, appeals, and re-appeals was achieved using the 5, 10, 15, and 20 

reduced feature spaces. 

4. The highest overall similarity measure of 0.955640833 with respect to 

retrieving relevant cases as supporting documents was achieved using the 

10 reduced feature space.  

5. The lowest similarity measure of 0.999936 with respect to retrieving initial 

case, appeals, and re-appeals was achieved using the 400 and 500 

reduced feature spaces. 

6. The lowest overall similarity measure of 0 with respect to retrieving relevant 

cases as supporting documents was achieved using the 200, 300, 400, and 

500 reduced feature spaces. 

From the above it could be concluded that LSA reduced feature space of 10 

features is the best to be adopted automating the extraction of similar DSC cases 

from large corpus to newly introduced one. The finding in this chapter are anticipated 

to decrease time consumed and overwhelming experts’ fees related to analysis and 

extracting of relevant DSC cases. It is also anticipated that the benefits of these 

findings will not only help the construction industry, but will also extend to the legal 

domain.  
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CHAPTER 7 

OVERALL SYSTEM PERFORMANCE EVALUATION 

7.1 Introduction 

In spite of the enhanced performance of the ML models developed at each 

task of the current research, an overall evaluation of the system performance as one 

package is much needed to understand its impact on construction legal decision 

support. Consequently, the objective of this chapter is to evaluate the aggregated 

errors of the developed models as a full system in an endeavor to assess its 

robustness and effectiveness in legal decision support. To this end, 5 arbitrary cases 

from the gathered corpus in task 2, not used earlier for training and testing of the 

developed ML models, were utilized to evaluate the overall performance of the 

system. Therefore, this chapter will provide: (1) a breif description of the utilized 

cases and an identification of the significant legal factors present in each case; (2) 

an evaluating the overall performance of the system through aggregated errors; and 

(3) a description of the areas of weaknesses and proposing enhancement 

methodologies. Therefore, this chapter will start with a brief account of the cases 

selection process for the implementation of the developed ML models. 

7.2 Test Case Selection 

This section of the chapter provides a brief description of case history and the 

Legal Factors pertinent to each case among the chosen ones for evaluation. Table 

7.1 illustrates the legal factors existing in each case.  
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7.2.1 Case 1:  Horgan, v. The City of New York 

On the 14th day of January, 1893, William G. Horgan entered into a contract 

in writing with the state of New York to furnish and provide all the necessary 

materials and labor, and excavate, remove and dispose of all silt, sediment and 

other materials deposited in the bottom of "The Pond" near Fifty-ninth street and 

Fifth and Sixth avenues in the city of New York, and construct a concrete bottom 

over the pond.  This contract was to be completed by June 1st, 1893. The contract 

document included an estimate prepared by the city engineers for the value of the 

works to be performed. It also included a statement clearly stating that by signing 

this contract, the contractor had familiarized and satisfied himself by personal 

examination of the accuracy of the engineers’ estimates, and indemnified them from 

later complaining related to it. The contract provided that the contractor was to bear 

any damage from unforeseen obstructions in the work. Though there was an outlet 

pipe at the bottom of the lake, it stopped draining when the water level was 14 

inches due to an obstruction in the sewer that it drained into. Thus, the contractor 

had to pump out the remaining water and sought extra money for this. Agreeing with 

the contractor that his pumping was beyond the terms of the contract, the court ruled 

that because the city's negligence in failing to properly maintain the outlet pipe 

increased his cost in doing the work, it was liable to reimburse him for the extra 

costs. Consequently, the Court reversed both the appellate and trial court judgment 

and ordered that the contractor receive reimbursement for the extra costs. 
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7.2.2 Case 2: Iacobelli Construction, Inc., v. County of Monroe, Rochester 

Pure Waters District, and Calocerinos & Spina Consulting Engineers, 

P.C. 

Defendants, a consulting engineer and a county, that published bid 

documents for construction of a tunnel for storing and transporting sewage. The bid 

documents provided technical information about the site conditions. Plaintiff 

contractor was awarded the project. The construction contract contained a differing 

site conditions clause. However, during construction, the contractor encountered site 

conditions that differed materially from those anticipated from the bid documents, 

and submitted a claim for reimbursement. The claim was denied by the Defendants. 

The district court granted summary judgment in favor of defendants because 

plaintiff's expert's affidavits provided only opinions regarding the bid specifications. 

Plaintiff claimed on appeal that the affidavits established a factual question as to 

whether the bid specifications provided accurate information of the site conditions. 

The court agreed with plaintiff's claims, and reversed the district court's judgment. 

7.2.3 Case 3: Piper, Inc., v. New York State Thruway Authority 

On February 9, 1953 Piper Inc. entered into a contract with the New York 

State Thruway Authority for the construction of a portion of the Thruway, from 

Ontario Section, District 5, Subdivision 15, Ransom Road to Genesee County line in 

the County of Erie.  Piper Inc appointed A. L. Dougherty Company as a 

subcontractor to perform certain items of its scope of work under this contract. The 

contract documents included the following section: “Sub-surface explorations have 
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been made within the limits of the proposed work.  Interested parties may review the 

records of these explorations at the office of the District Engineer in Buffalo, New 

York… The information contained in the foregoing paragraph is offered in good faith 

by the Department and reflects the opinions of the Department engineers relative to 

the sub-surface conditions.  The Contractor's attention, however, is called to the fact 

that the information obtained there from is not to be substituted for personal 

investigation and research by the Contractor as required by Article three of the 

Contract Agreement.” The claim under this case was raised due to a sand stratum 

that was encountered while excavation works and the contractor claimed it did not 

discover the sand until after bidding, and that caused an increase in his costs to 

attain and procure sufficient gravel from another location. The contractor also 

claimed it was misled as to the amount of material available to meet gravel 

requirements. However, documents examined by the court illustrated that the 

subcontractor's agents visited the site before bidding, examined all sub-surface 

exploration reports, and familiarized themselves with the site conditions. In addition, 

witnesses testified that a sand stratum was readily observable at the site and the 

sand was not suitable for the contract's gravel requirements. The court denied the 

contractors’ case because the he should have been aware of the situation before 

bidding, and no representation was made that the material found at the site would 

meet all gravel requirements.  
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7.2.4 Case 4: Fruin-colnon Corporation, Traylor Bros., Inc. and Onyx 

Construction & Equipment, Inc., A Joint Venture, v. Niagara Frontier 

Transportation Authority 

The contract called for plaintiff to excavate and construct twin subway 

tunnels, each approximately two miles long, as part of the Buffalo light rail rapid 

transit system. During construction, the plaintiff raised a claim seeking 

reimbursement of $ 3,255,150 under DSC associated with extra work and delays 

incurred as a result of the unforeseen need to use steel ribbing for temporary 

support of the tunnel during excavation, must have been solely attributable to such 

materially different subsurface conditions. After factual extraction, the court found 

that the contract documents included the followings:  

(1) “The Engineering Design Rationale (EDR) indicated that rock quality 

generally would be "average to good" for tunneling, but warned of the existence of 

localized areas of poor rock quality, opened, weathered, and in some cases 

"solutioned" fractures, and intersecting vertical and horizontal joints.” (Fruin 1992).  

(2) “The Tunnel Interpretive Report (TIR) indicated the existence of 

intersecting joints forming blocks.  The TIR explicitly cautioned that such blocks 

might not be self-supporting as excavation progressed and, depending on local 

conditions, might require varying levels of primary support.  Like the EDR, the TIR 

specifically warned of areas of relatively permeable and solutionized rock and open, 

intersecting, and water bearing joints.” (Fruin 1992). 

The court found that actual site conditions did not differ materially from conditions 

indicated in the contract, which put plaintiff on notice of the possibility of those 
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conditions. Consequently; the court affirmed the rulings denying plaintiff tunnel 

builder's claim for additional compensation for work related to DSC from defendant 

transit authority. 

7.2.5 Case 5: The Foundation Company, v. The State of New York  

The contractor entered into a unit price contract with the state to build a dam 

and lock across the Mohawk River at Scotia with a canal lock at its south end. The 

dam was designed by the State Engineers. The State stated that the bed of the 

stream constitutes of a gravel layer upon which the dam cannot be constructed. It 

also illustrated that cofferdams can be used. Consequently, it was determined to 

sink caissons under compressed air to bedrock for the whole distance.  The final 

result would be a solid concrete cut-off wall, on top of which would be placed the 

other structures necessary to complete the dam. The contract documents included 

illustration that the bedrock "rock or boulders" upon which the caissons would rest is 

to be found not lower than level 148. During construction, the contractor raised a 

claim seeking reimbursement under DSC associated with extra work incurred as a 

result of the unforeseen need to excavate for deeper than level 148 to reach bedrock 

with appropriate properties for the current project. The court denied the contractors 

claim, finding that there was no bad faith and an honest mistake on the part of the 

state officers. The court held that where the representations of a contract for 

specifications were made in good faith, the contractor assumed the risk of their 

accuracy. 
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7.2.6 Case 6: Charles Sundstrom et al., v. The State of New York 

The contractors had an agreement with the state to build a section of the 

barge canal. During construction, the contractor filed a claim under DSC to be 

reimbursed for extra cost incurred due to the negligence of the State. The court 

found that these costs could have been eliminated if the State maintained the canal 

in appropriate manner, which is part of the State’s liability. In the contractors' action 

for damages, the board of claims held that the state was liable for the loss to the 

contracts from the damages from the canal on the basis that the contractors could 

not have determined that the canal was defective. The board found that the damage 

was due to the lack of repair of the canal. However, the appellate division reversed, 

finding that the defects could have been discovered by the experienced contractor. 

Consequently, the contractor appealed the case and the court reversed the verdict. 

It found that the state was liable for damages from their failure to adequately 

maintain the canal. 

7.2.7 Case 7: James F. Leary and Thomas J. Morrison, v. The State of New 

York, City of Watervliet  

On June 20 1913, James F. Leary and Thomas J. Morrison entered into a 

contract with the State of New York to perform a storm sewer system in the city of 

Watervliet. While construction, the contractor filed a claim under DSC to be 

reimbursed against extra costs the he incurred due to encountering underground 

rock formation that was not mentioned in the contract documents. The contractors 

illustrated that the extra work completed because of an underground rock formation 
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merited the payment of additional compensation for the reasonable value of their 

excavation work, and that they were also entitled to additional payments because of 

the city's failure to remove obstructions after having been property notified by the 

contractors of the existing conditions. “The court found in favor of the contractors in 

all regards based on its determination that (1) the contract provisions did not 

constitute a condition precedent to the contractors' recovery and the city failed to 

plead or prove the contractors' alleged non-compliance with the disputed contract 

provisions; and (2) the city benefitted from the value of the work completed by the 

contractors, who continued to do the work necessary that exceeded the anticipated 

costs in the absence of bad faith after notifying the city of existing conditions.” (Leary 

1916). 

7.2.8 Case 8: Tony Carfagno and Others, Copartners Doing Business under 

the Firm Name and Style of Carfagno & Dragonetti, v. The City of New 

York 

The contractor entered into a contract with the city of New York to procure 

and install fire service system. While performing the work, the contractor discovered 

that the city made a mistake in calculating the length of pipes to be installed. The 

contractor raised a claim under DSC seeking compensation for the cost of the extra 

pipes procured and anticipating installation costs as well as the profit margin 

allocated to them. The city compensated the contractor for the cost of the extra 

pipes procured only. The court judged in favor of the city on the bases that there was 

nothing else the city could do to correct its innocent error. The court also relied on 
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the contract which had warned anyone bidding not to rely on the city's 

measurements and asked them to familiarize themselves with the site conditions 

and anticipated quantities. The court also found the contractor discovered the error 

and knew about it when they submitted their bid. 

7.2.9 Case 9: S. Pearson & Son, Inc., v. The State of New York 

The contractor entered into a contract with the State of New York to perform 

the barge canal contract 20-B. “The contract was for dredging a channel in the 

Mohawk river between Mindenville and Canajoharie, a length of ten and one-tenth 

miles, and the width of the channel or excavated prism was to be 200 feet, and the 

channel was to be excavated to a grade line fixed by the plans which would afford a 

flotation depth of water of at least 12 feet when water was maintained at designated 

pool elevations.” (Pearson 1920). While performing the work under the contract, the 

contractor raised a claim under DSC to be reimbursed for extra costs incurred due to 

the need for extra slope excavation, extra excavation below the grade line of a large 

number of boulders and a considerable quantity of rock, and the use of cobblestone 

protection works that were not disclosed in the contract documents. The court 

judged in favor of the state on the grounds that: (1) there was no misrepresentation 

in the contract documents or bad faith on the side of the state to conceal information; 

(2) the excavation works were performed outside of the excavation lines as shown 

on the plans, and it does not appear that the work was the subject of any alteration 

in the contract; and (3) the protection work was a necessity and should have been 

anticipated by the contractor. 
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7.2.10 Case 10: Christie v. United States 

The contractor entered into a contract with the United States to perform a set 

of locks and dams on a river. After performing the works, the contractor filed a claim 

under DSC to be reimbursed for the extra expense incurred due to the increased 

difficulty in pile driving and excavation on account of state’s misrepresentation of the 

materials to be penetrated and excavated. The court judged in favor of the 

contractor on the grounds that the specifications provided to the contractor were 

actually misleading, forcing the contractor to spend a substantial extra sum of money 

over and above their proposal and contract to perform the works. 

Table 7.1 Legal Factors Pertinent to the Evaluation Set of Cases 

 

7.3 System Performance Evaluation 

This section of the chapter is describing the overall system performance 

evaluation. The evaluation is performed by analyzing the aggregated errors of the 

system as one package. Consequently, results will be reported at each step of the 
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system performance (i.e. automated legal factors extraction, automated prediction, 

and automated precedent cases extraction).  

7.3.1 Significant Legal Factors Automated Extraction 

The results of the application of the legal factor automated extraction model 

are presented in tables 7.2. The prediction accuracy was based on accurately 

predicting all factors pertinent to each case. Consequently, if one of the factors was 

not predicted accurately, the case is considered to be a false prediction. Examining 

the output of the model shows that the model attained an overall accuracy of 80%. 

 Table 7.2 Results of Automated Legal Factor Extraction Model 

Case # Prediction Accuracy 
1 True 
2 True 
3 True 
4 False 
5 True 
6 False 
7 True 
8 True 
9 True 

10 True 

7.3.2  Litigation Outcome Automated Prediction 

The results of the application of the automated litigation output prediction 

model are presented in tables 7.3. The prediction accuracy was based on accurately 

predicting the outcome of each case in comparison to actual verdict pertinent to 

each one. Examining the output of the model shows that the model attained an 

overall accuracy of 90%. The increase in the accuracy from the step of automated 

legal factor extraction was due to the fact that one of the cases that were falsely 



199 

predicted had only an error in one of the factors. It predicted that the contractor did 

not waive his right of extra compensation due to DSC. However, it accurately 

predicted that there was a warning in the specifications against the presence of DSC 

in the project. As illustrated in chapter 3, this factor had the highest increase on the 

prediction in favor of the owner. 

Table 7.3 Results of Automated Litigation Prediction Model 

Case # Prediction Accuracy 
1 True 
2 True 
3 True 
4 True 
5 True 
6 False 
7 True 
8 True 
9 True 

10 True    

7.3.3 Automated Precedent Case Extraction 

The results of the application of the automated precedent case extraction 

model are presented in tables 7.4. The prediction accuracy was based on the 

average similarity measure by which relevant cases are extracted from the full 

corpus utilizing a feature space size of 10 features. To that end, case # 7 was 

excluded from the analysis, for the cases illustrated by the judge to be relevant were 

not part of the original corpus. Examining the output of the model shows that the 

model attained average retrieval similarities ranging between a lower end of 0.882 to 

a higher end of 0.976 with an overall average of 0.9217. 
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Table 7.4 Results of Automated Precedent Case Extraction Model 

Case # Prediction Accuracy 
1 0.913 
2 0.893 
3 0.904 
4 0.882 
5 0.962 
6 0.943 
8 0.889 
9 0.976 

10 0.933 

7.4 Chapter Summary and Conclusion 

From the above, it could be deduced that the system attained an aggregated 

error of 10% since it achieved an overall accuracy of 90% after implementing the 

automated legal factor extraction and automated litigation prediction models. 

Furthermore, it attained an overall average similarity measure of 92.17%. Looking at 

the literature in the construction domain (chapter 2), it could be noticed that the 

performance of the developed system exceeded previously developed models by 

Arditi and Chau. 

However, it is noticed that there has been a drop in the accuracy of the 

automated legal factor extraction model. This could be attributed to the features of 

the tested cases. Each new case might (1) include new features that are not 

included in the training of the model; and (2) exclude features that are included in 

the training of the model. This fact might affect the performance of the model. To 

enhance the performance of the model the followings are proposed: (1) tagging each 

legal factor with set of commonly used phrases by judges; (2) analyzing appropriate 

weights to be applied to different phrases; and (3) incorporating these phrases and 
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weights in the model development. These enhancements and others will, therefore, 

be the subject of future researches. 
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CHAPTER 8 

CONCLUSION, CONTRIBUTIONS, AND FUTURE RESEARCH  

8.1 Conclusion 

The present research focused on developing a coherent and integrated 

methodology for construction legal decision support for Differing site Conditions 

(DSC) disputes through statistical modeling and machine learning (ML). The study 

developed a number of research products, including: (1) a set of statistically 

significant legal factors that governs verdicts related to DSC disputes in the 

construction industry; (2) an automated litigation prediction model for DSC disputes 

in the construction industry; (3) an automated extraction model for statistically 

significant legal factors from textual representations of DSC disputes; and (4) an 

automated retrieval model for supporting DSC cases from large corpus based on 

similarity measures to newly introduced ones. 

First, a set of litigation cases related to DSC disputes in the construction 

industry was gathered and analyzed to define a comprehensive list of legal factors 

upon which judges base their verdicts. The analysis was pertinent to cases from the 

Federal Court of New York to standardize the jurisdiction and due to availability of a 

large number of cases related to the current study objectives. The initial analysis of 

cases which was based on detailed opinions of judges within the body of each case 

identified a set of 23 legal factors. Statistical models were developed to relate the 

likelihood of a DSC cases being judged in favor of one party over the other to the 

identified set of legal factors. Binary Probit and Logit Choice models were developed 
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in an endeavor to: (1) identify the effect of each extracted factor on the prediction of 

the winning party; (2) identify the best combination of factors with the highest 

significance on the prediction model; and (3) perform a sensitivity analysis to 

prioritize the most significant legal factors. Among the main findings of the 

aforementioned analysis are: (1) the developed Binary Probit Choice Model 

identified a set of 11 statistically significant legal factors with a prediction accuracy of 

88.9%; whereas, the Binary Logit Choice Model identified a set of 9 statistically 

significant factors with a prediction accuracy of 93.3%; (2) generally, cases in which 

the Federal Government is a concerned party of dispute, judgments are in favor of 

the government (owner) over contractor; (3) the presence of “evident facts that the 

encountered conditions caused a change in the nature and cost of the contract” had 

the highest impact among variables causing a decrease in the prediction of 

judgment in favor of owner and caused an increase of 17.77% in prediction on favor 

of contractor; (4) the presence of “evident facts that the specifications included a 

warning against the presence of DSC from those conveyed in the contract 

documents” had the highest increases in the prediction of judgment in favor of owner 

and caused an increase of 56.56% in prediction in favor of owners. In addition, the 

development of Binary Probit and Logit choice models identified a joint set of 13 

statistically significant legal factors related to DSC disputes in the construction 

industry. This set provided the grounds for the other three products of the current 

research. 

Second, an automated machine learning DSC litigation outcome prediction 

model was developed. To that end, 120 DSC cases from The Federal Court of New 
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York that were filled in the period between 1912 and 2007 were utilized for the 

analysis. 10 machine learning models were developed namely 4 Support Vector 

Machines, 2 Naïve Bayes, and 4 Induction rule models. The highest prediction rate 

of 98% within the first category was attained by Kernel Polynomial 3rd degree model. 

Models developed under the second category yielded a highest rate of prediction of 

93% attained by the Naïve Bayes model without implementing kernel estimators. A 

prediction rate of 97.8% was the highest attained within the third category by 

ADTree model with 15 boosts. Comparing the outputs of all developed models 

shows that they have achieved great advancements over the base line of 50% and 

previously performed researches. It could be concluded that SVM Kernel Polynomial 

3rd degree model has achieved the best performance among all developed models. 

Third, an automated machine learning significant legal factors extraction 

model was developed. The 120 cases, earlier utilized for the analysis of the previous 

task were utilized for the analysis under this task. Support Vector Machines, Naïve 

Bayes, and Rule Induction classifiers were also adopted for the study. 24 models 

were developed in which 4 weighting schemes namely tf, ltf, atf, and tf.idf were 

implemented for each type of classifier. The highest prediction rate of 84% was 

attained by Naïve Bayes classifier while implementing tf.idf weighting. The model 

was further validated by testing 22 newly un-encountered cases. A prediction 

precision of 81.8% was attained. 

Fourth, an automated machine learning precedent case extraction model from 

large corpi was developed. An expanded corpus of 450 cases from the Federal 

Court of New York related to DSC disputes in the construction industry was utilized 
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for the development of the LSA feature space. Nine reduced feature spaces were 

developed with: 5, 10, 15, 20, 100, 200, 300, 400, and 500 features, respectively. 

From the analysis of this model, it could be concluded that: (1) low dimensioned 

reduced feature spaces are more representative to domain problems analysis 

closely related document collection; (2) higher dimensioned reduced feature spaces 

are more representative to domain problems analysis in dispersed and unrelated 

document collections; and (3) LSA reduced feature space of 10 features is the best 

to be adopted automating the extraction of similar DSC cases from large corpi. 

The aforementioned research products contribute to the advancement of 

current practices of legal decision support and Knowledge Management in the 

construction legal domain. These advancements hold promise to: (1) decrease the 

costs associated with the utilization of legal experts in the construction industry for 

document analysis and initial advice on legal situation of a disputing party; (2) 

decrease the time related to litigation processes by allowing parties to investigate 

disputes and select alternate dispute resolution methods; (3) facilitate access to 

legal knowledge needed by practitioners in the construction industry; (4) provide a 

better understanding of the legal consequences of decision making in the 

construction industry; and (5) provide solid support documents and probabilistic 

indicators about the strength of a legal situation of a disputing party for better 

decision making about resolution mechanisms. 

8.2 Research Contributions     

The main contributions of the current research can be summarized as follows: 
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1. Development of a coherent and fully integrated methodology for legal 

decision support in the construction industry based on legal factors 

governing litigation outcomes. This contribution is considered to be the first 

of its nature in the construction legal domain. As illustrated in chapter 2 of 

this dissertation, all previous researches target generic factors for their 

analysis and did not incorporate legal factors.  

2. Identification of a set of significant legal factors that governs verdicts of 

DSC cases in the construction industry. These factors provide very useful 

insight on this important type of construction disputes. As illustrated earlier, 

in case of a DSC dispute, an owner and/or a contractor can assess the 

strength of their situation based on the identified factors if resolving through 

litigation is decided. This assessment would allow disputing parties to take 

a more assured decision about other resolution mechanism like amicable 

settlement, mitigation, and/or arbitration. Furthermore, some of the 

identified factors are related to the wording of contracts and technical 

specifications in the construction industry. Therefore, the current research 

provides knowledge to contractors about factors to which emphasis should 

be given while bidding for new projects and upon which control should be 

maintained while performing a project. 

3. Development of two automated models through machine learning. The first 

automates the prediction of outcomes of DSC litigation, and the second 

automates the extraction of significant legal factors governing this 
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prediction. Both models (1) provide a better understanding to decision 

makers about the legal consequences of their decisions; (2) save time and 

cost incurred due to the need of specialized legal expertise (3) help to 

relieve the negative consequences associated with lengthy claims and 

disputes resolution in the construction industry. In addition, the second 

model is considered to be a major contribution to the construction industry 

since it is the first of its nature.  

4. Development of an automated model through machine learning for the 

extraction of supporting documents in the form of precedent DSC cases 

based on their similarity to newly introduced ones. The contribution of this 

model is not only anticipated to help practitioners in the construction 

industry better understand the consequences of their legal decision making, 

but is also expected to be beneficial to legal experts by saving time and 

money associated with these labor intensive tasks. 

8.3 Future Research 

Although the current research was able to fully accomplish its research 

objectives, a number of additional research directions have been identified including: 

(1) extending the research methodology of the current research to cover other types 

of major disputes in the construction industry like Damages for Breach of Contracts, 

Schedule Delays, Payment Delays, and Change Orders; (2) extending the research 

methodology of the current research to cover other jurisdictions; (3) extending the 

research methodology of the current research to cover financial claims and provide 
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automated models to monetary values related to different disputing parties; and (4) 

investigating other ML and NLP algorithms for the enhancement of the 

aforementioned methodology. 
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APPENDIX A (LIST OF LEGAL FACTORS) 

List of extracted factors: 

Contract type 

Mutual consent 

Involved parties 

Type of owner 

Type of Contractor 

Type of Project 

Design responsibility (Contractor) 

Full bidding documents (discrepancies reported) 

Contractor deemed to have fully reviewed and familiarized himself with the site, 

conditions, and drawings 

Is there an unforeseen physical condition clause? 

(Type II differing site conditions) Are the conditions if any, unforeseen for an experienced 

Contractor? 

(Type II differing site conditions) Did the Contractor know about the condition? 

(Type II differing site conditions) Did the condition vary from the norm in similar 

construction operations? 

(Type I differing site conditions) did the contract documents affirmatively indicate 

subsurface conditions? 

(Type I differing site conditions) did the Contractor act as a reasonably prudent 

contractor in interpreting the contract documents? 

(Type I differing site conditions) did the Contractor reasonably rely on the indications of 

subsurface conditions in the contract? 
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(Type I differing site conditions) did the subsurface conditions actually encountered differ 

materially from those indicated in the contract? 

(Type I differing site conditions) were the actual subsurface conditions not reasonably 

foreseeable? 

(Type I differing site conditions) was the Contractor's damage attributable to the 

materially different subsurface conditions? 

Was the work stopped due to the encountered matter? 

Did the Owner\ Owner Rep stop the works to perform adjustments due to factors related 

to the encountered matter? 

Did the Contractor stop the works for any reason? 

Did the Matter encountered require redesign? 

Did the Matter encountered require changes in the nature and costs of the Contract? 

Where the imposed changes made because it was cheaper\ better or because it was 

necessary? 

Did the Matter encountered have safety related issues? 

Did the Contractor raise the matter in the right procedural form stated by the Contract? 

Was a decision taken with regard the settlement of the matter? 

Did any of the parties raise his disagreement and stated his intentions for a claim under 

the contract? 

Did the matter made completion of the project impossible? 

Was there a clause giving the Owner the right to make changes to the project after final 

completion and acceptance without invalidating the contract 

Was there a clause stopping the Contractor from claiming his lost profit against 

deducted\ changed\ modified works? 

Did the parties make a mutual mistake as to the condition related to this matter? 
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Is there a sovereign immunity waiver clause? 

Year (date) range on 5 years intervals 

Type of judgment 

Was there various changes made along the progress of the works? 

Nature of damage 

Does the contractor bare the risk for any unforeseen conditions? 

Was the matter caused as a reason of the Owners own act, even if he did that 

unintentionally? 

Did any of the concerned parties considered a breach of contract action? 

Was experts' opinions provided by the Contractor's side? 

Was experts' opinions provided by the Owner's side? 

Did the specifications warn and illustrate the possibility of differing site conditions to 

those mentioned by the Contract Documents? 

Was the Specifications governing the work if applicable "Performance specifications"? 

Did the other party sough for a counter claim related to the same matter? 

Did a triable issue of fact exist? 

Did the specification have representation, even if found after that to be different from the 

actual conditions, of the matter in question? 

Did the Contractor Under the terms of the contract agreed not to ask for or recover extra 

compensation beyond the contract price? 

Was there a no allowance for extras clause? 

Was the additional work approved by the Engineer\ State Engineer? 

Did The Owner\ Owner Rep. falsely state that the matter encountered in hand, so far as 

known, was shown in the Contract documents? 

Was the Contract Lumpsum or unit price or other? 
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Is the Contractor a foreign Company that does not has the right to sue in USA? 

If the Matter was caused due to the fault of the Owner, did he adjust the mistake? 

Was the extra work done for the benefit of the Owner or Contractor? 

Are there evident facts showing that the Owner had bad intentions representing the 

matter in the Contract Documents? 

Are there enough evidence to show that there were no time for the Contractor to perform 

his own investigations? 

Was the extra work performed as temporary work to protect part of the permanent works 

required under the contract? 

If this is an appeal, who was the winning party in the initial trial? 
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APPENDIX B (SVM MODEL OUTPUT) 

SVM Modeling Output 

Trial 1 
Model Properties       
C 1   
M (Fit Logistic Model to 
Output) 

TRUE 
  

Polynomia Degree 1   
    
Model Output   
Accuracy 94.00% ± 9.17% 
Precision 93.83% ± 9.60% 
Recall 93.50% ± 13.43% 
Area Under Curve (AUC) 95.40% ± 5.90% 
    

  
Positive Class CONTRACTOR 

 
  

    

  True OWNER 
True 

CONTRACTOR 
Class 

Precision 
Prediction OWNER 53 3 94.64% 
Prediction Contractor 1 43 97.73% 
Class Recall 98.15% 93.48%   

W-SMO 
SMO 
Kernel used: 
 Linear Kernel: K(x,y) = 
<x,y> 
Classifier for classes: OWNER, 
CONTRACTOR 
BinarySMO 
Machine linear: showing attribute weights, not support vectors. 
         0.3743 * (normalized) 
Ptype 
 +      -0.0273 * 
(normalized) DSCC 
 +       2.2885 * 
(normalized) DSC 
 +       0.2049 * (normalized) N&C +       0.2618 * (normalized) 
Conraise 
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 +       0.8931 * (normalized) ComImpossible 
 +      -0.0971 * (normalized) Ochange 
 +       0.0345 * (normalized) Mmistake 
 +      -0.18   * (normalized) 
Year 
 +       0.8762 * (normalized) Ocause 
 +      -1.1228 * (normalized) SpecWarn 
 +       0.0719 * (normalized) SpecRep 
 +      -1.183  * (normalized) CNoExtra 
 +      -0.6137 * (normalized) Ofalsely 
 +       0.9626 * (normalized) OAdjust 

-1.5445 
Number of kernel evaluations: 2059 (86.149% cached) 
Logistic Regression with ridge parameter of 
1.0E-8 
Coefficients... 
Variable      Coeff. 
       1      -3.2962 
Intercept      1.3227 
Odds Ratios... 
Variable         O.R. 

       1       0.037  

Trial 2 
Model Properties       
C 1   
M (Fit Logistic Model to 
Output) 

TRUE 
  

Polynomia Degree 2   
    
Model Output   
Accuracy 98.00% ± 6.00% 
Precision 98.00% ± 6.00% 
Recall 98.00% ± 6.00% 
Area Under Curve (AUC) 99.60% ± 1.20% 
    

  
Positive Class CONTRACTOR 

 
  

    

  True OWNER 
True 

CONTRACTOR 
Class 

Precision 
Prediction OWNER 53 1 98.15% 
Prediction Contractor 1 45 97.83% 
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Class Recall 98.15% 97.83%   

W-SMO 
SMO 
Kernel used: 
 Poly Kernel: K(x,y) = 
<x,y>^2.0 
Classifier for classes: OWNER, 
CONTRACTOR 
BinarySMO 
 -       0.1391 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X] 
 -       0.0593 * <0.333333 1 0 1 1 0 0 1 0.7 0 0 1 0 0 0 > * X] 
 +       0.1121 * <0.333333 0 1 1 0 0 0 1 1 0 0 1 1 0 1 > * X] 
 -       0.0405 * <0.666667 0 0 1 1 0 0 0 1 0 1 1 0 0 1 > * X] 
 +       0.0856 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X] 
 -       0.2478 * <1 1 1 0 1 1 0 1 1 1 0 1 1 0.5 0 > * X] 
 +       0.0553 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X] 
 +       0.0877 * <1 0 1 0 1 1 0 0 1 1 0 1 1 0.5 0 > * X] 
 +       0.0033 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X] 
 +       0.1551 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X] 
 +       0.0794 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X] 
 -       0.0348 * <0.666667 1 0 0 1 0 0 0 0.3 0 0 1 0 0 0 > * X] 
 -       0.0215 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X] 
 -       0.0135 * <0.666667 1 0 1 1 0 0 0 0.8 0 0 0 0 0 0 > * X] 
 -       0.0332 * <1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 
> * X] 
 +       0.1439 * <1 1 0 1 1 1 0 1 0.8 1 0 1 0 0 0 > * X] 
 -       0.06   * <0.333333 1 0 1 1 0 0 1 0.7 0 0 1 0 0 0 > * X] 
 +       0.0068 * <0.333333 1 1 1 1 1 0 1 0.8 0 0 0 0 0.5 0 > * X] 
 +       0.0201 * <1 0 1 0 1 1 0 0 1 1 0 1 1 0.5 0 > * X] 
 -       0.0738 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X] 
 +       0.0478 * <0.666667 0 1 1 1 1 1 1 1 0 0 1 1 0 0 > * X] 
 -       0.0804 * <0.666667 1 0 0 0 0 0 0 0.5 0 0 1 0 0 0 > * X] 
 +       0.0088 * <0.666667 0 1 1 1 1 1 1 1 0 0 1 1 0 0 > * X] 
 -       0.0312 * <1 0 0 0 0 0 0 1 0.8 0 0 1 0 0 0 > * X] 
 -       0.0293 * <1 1 1 0 1 1 0 1 1 1 0 1 1 0.5 0 > * X] 
 +       0.0486 * <1 0 1 0 1 0 0 1 1 0 0 1 0 0.5 0 > * X] 
 -       0.0255 * <0.666667 1 0 0 0 0 0 0 0.5 0 0 1 0 0 0 > * X] 
 -       0.0208 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X] 
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 -       0.0266 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X] 
 -       0.038  * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X] 
 +       0.0008 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X] 
 -       0.0017 * <0.666667 1 0 1 1 0 0 1 0.1 0 1 0 0 0 1 > * X] 
 -       0.0068 * <0.666667 1 0 0 1 0 0 0 0.3 0 0 1 0 0 0 > * X] 
 +       0.0572 * <1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 > * X] 
 +       0.0373 * <0.333333 1 1 1 1 1 0 1 0.8 0 0 0 0 0.5 0 > * X] 
 -       0.0709 * <0.666667 0 1 1 0 0 0 1 0 0 1 1 1 0 0 > * X] 
 +       0.1049 * <1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 > * X] 

-0.7655 
Number of support vectors: 
37 
Number of kernel evaluations: 7637 (78.233% cached) 
Logistic Regression with ridge parameter of 
1.0E-8 
Coefficients... 
Variable      Coeff. 
       1     -28.0718 
Intercept     -5.2416 
Odds Ratios... 
Variable         O.R. 
       1       0      

Trial 3 
Model Properties       
C 1   
M (Fit Logistic Model to 
Output) 

TRUE 
  

Polynomia Degree 3   
    
Model Output   
Accuracy 100.00% ± 0 
Precision 100.00% ± 0 
Recall 100.00% ± 0 
Area Under Curve (AUC) 100.00% ± 0 
    

  
Positive Class CONTRACTOR 

 
  

    

  True OWNER 
True 

CONTRACTOR 
Class 

Precision 
Prediction OWNER 53 1 98.15% 
Prediction Contractor 1 45 97.83% 
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Class Recall 98.15% 97.83%   

W-SMO 
SMO 
Kernel used: 
Poly Kernel: K(x,y) = 
<x,y>^3.0 
Classifier for classes: OWNER, 
CONTRACTOR 

BinarySMO 
 -       0.019  * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X] 
 +       0.0031 * <0.333333 0 1 1 0 0 0 1 1 0 0 1 0 0 0 > * X] 
 -       0.006  * <0.333333 1 0 1 1 0 0 1 0.7 0 0 1 0 0 0 > * X] 
 +       0.0079 * <0.333333 0 1 1 0 0 0 1 1 0 0 1 1 0 1 > * X] 
 -       0.0016 * <0.666667 0 0 1 1 0 0 0 1 0 1 1 0 0 1 > * X] 
 +       0.003  * <0.666667 0 1 1 1 0 0 1 1 0 0 0 0 0 0 > * X] 
 -       0.0032 * <0.666667 1 0 1 1 0 0 0 0.8 0 0 0 0 0 0 > * X] 
 +       0.0141 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X] 
 -       0.0102 * <1 1 1 0 1 1 0 1 1 1 0 1 1 0.5 0 > * X] 
 +       0.0044 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X] 
 +       0.0075 * <1 0 1 0 1 1 0 0 1 1 0 1 1 0.5 0 > * X] 
 +       0.0022 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X] 
 +       0.0099 * <0.666667 1 1 0 0 0 0 1 0.4 0 0 1 0 0 0 > * X] 
 +       0.0248 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X] 
 +       0.0024 * <0.333333 1 1 1 0 1 0 1 0 1 0 0 0 0 0 > * X] 
 -       0.0139 * <0.666667 1 0 0 1 0 0 0 0.3 0 0 1 0 0 0 > * X] 
 -       0.0014 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X] 
 -       0.0024 * <0.333333 1 0 1 1 0 0 1 0.7 0 0 1 0 0 0 > * X] 
 -       0.005  * <1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 > 
* X] 
 +       0.0103 * <1 1 0 1 1 1 0 1 0.8 1 0 1 0 0 0 > * X] 
 -       0.0051 * <0.333333 1 0 1 1 0 0 1 0.7 0 0 1 0 0 0 > * X] 
 +       0.0008 * <0.333333 1 1 1 1 1 0 1 0.8 0 0 0 0 0.5 0 > * X] 
 -       0.0004 * <1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 
> * X] 
 +       0      * <0.666667 0 1 1 1 0 0 1 1 0 0 0 0 0 0 > * X] 
 +       0.0019 * <0.333333 0 1 1 0 0 0 1 1 0 0 1 0 0 0 > * X] 
 +       0.0013 * <1 0 1 0 1 1 0 0 1 1 0 1 1 0.5 0 > * X] 
 -       0.0012 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X] 
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 +       0.0009 * <0.666667 0 1 1 1 1 1 1 1 0 0 1 1 0 0 > * X] 
 -       0.0138 * <0.666667 1 0 0 0 0 0 0 0.5 0 0 1 0 0 0 > * X] 
 +       0.0009 * <0.666667 0 1 1 1 1 1 1 1 0 0 1 1 0 0 > * X] 
 -       0.006  * <1 0 0 0 0 0 0 1 0.8 0 0 1 0 0 0 > * X] 
 -       0.0056 * <1 1 1 0 1 1 0 1 1 1 0 1 1 0.5 0 > * X] 
 +       0.0033 * <1 0 1 0 1 0 0 1 1 0 0 1 0 0.5 0 > * X] 
 -       0.0055 * <0.666667 1 0 0 0 0 0 0 0.5 0 0 1 0 0 0 > * X] 
 -       0.0003 * <0.666667 0 1 0 0 0 0 1 1 0 0 1 1 0 0 > * X] 
 -       0.0034 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X] 
 -       0.0003 * <0.666667 0 0 1 1 0 1 1 1 0 0 1 0 0 0 > * X] 
 -       0.0028 * <0.666667 1 1 0 1 0 0 0 0.3 0 1 1 1 0.5 0 > * X] 
 +       0.0017 * <0.666667 1 1 0 1 0 0 0 0.2 0 0 1 0 0 0 > * X] 
 +       0.0028 * <0.333333 0 1 1 0 0 0 1 1 0 0 1 0 0 0 > * X] 
 -       0.0009 * <0.666667 1 0 1 1 0 0 1 0.1 0 1 0 0 0 1 > * X] 
 -       0.0001 * <0.666667 0 0 1 1 0 0 0 1 0 1 1 0 0 1 > * X] 
 -       0.005  * <0.666667 1 0 0 1 0 0 0 0.3 0 0 1 0 0 0 > * X] 
 +       0.0055 * <0.333333 1 1 1 1 0 0 1 0.3 0 0 0 0 0 0 > * X] 
 +       0.0055 * <1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 > * X] 
 -       0.0058 * <0.666667 0 1 1 0 0 0 1 0 0 1 1 1 0 0 > * X] 
 +       0.0047 * <1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 > * X] 

-0.8445 
Number of support vectors: 
47 
Number of kernel evaluations: 8944 (79.291% cached) 
Logistic Regression with ridge parameter of 
1.0E-8 
Coefficients... 
Variable      Coeff. 
       1     -32.0189 
Intercept     -3.1093 
Odds Ratios... 
Variable         O.R. 
       1       0      
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APPENDIX C (NAÏVE BAYES MODEL OUTPUT) 

Naïve Bayes Modeling Output 

Trial 1 
Model 
Properties 

  

N No   
S 1   
UseKernel 
Estimator 

FALSE   

    
Model Output   
Accuracy 93.00% ± Kappa statistic 0.8598 

Precision 
92.94% ± 

Mean absolute 
error 

0.095 

Recall 
93.20% ± 

Root mean 
squared error 

0.2251 

Area Under 
Curve (AUC) 

94.30% ± 
Relative 
absolute error 

19.11% 

    
Root relative 
squared error 

45.12% 

Positive Class Contractor 
  

  
    

  True Owner True Contractor Class Precision 
Class F-
Measure 

Prediction 
OWNER 

49 2 96.08% 93.33% 

Prediction 
Contractor 

5 44 89.80% 92.63% 

Class Recall 90.74% 95.65%     

 W-
NaiveBayes  

 The word weights for each 
class are:   
        OWNER   
CONTRACTOR        
Ptype   -1.6981386828507514     -
1.6928195213731514       
DSCC    -3.19140516352281       -
3.4069280563711404       
DSC     -2.818729878237636      -
4.376328613559243        
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N&C     -3.1596564652082297     -
3.5161273483361324       
Conraise        -3.258096538021482      -
3.036554268074246        
ComImpossible   -3.4473385376600105     -
5.675611597689505        
Ochange -5.526780079339846      -
4.8283137373023015       
Mmistake        -3.041873429551846      -
3.3402366818724682       
Year    -0.8142513750312556     -
0.7011793522572096       
Ocause  -3.7350206101117913     -
5.387929525237724        
SpecWarn        -6.625392368007956      -
3.4783870203532854       
SpecRep -3.0144744553637315     -
2.9240762846475556       
CNoExtra        -4.428167790671737      -
3.5553480614894135       
Ofalsely        -3.917342166905746      -
4.135166556742356        
OAdjust -5.932245187448011      -
4.135166556742356        
Outcome 0.0     0.0      

 
 === Run information 

===  

 Scheme:       
weka.classifiers.bayes.NaiveBayes   
Relation:     test 1 svm 100 added con 

 
Instances:    100 

 
Attributes:   16 

 
              Ptype 

 
              DSCC 

 
              DSC 

 
              N&C 

 
              Conraise 

 
              
ComImpossible  
              Ochange 

 
              Mmistake 

 
              Year 

 
              Ocause 

 
              SpecWarn 
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              SpecRep 
 

              CNoExtra 
 

              Ofalsely 
 

              OAdjust 
 

              Outcome 
 

Test mode:    10-fold cross-validation 
 
 === Classifier model (full training set) 

===  

 Naive Bayes Classifier 
 
 Class OWNER: Prior probability = 0.54 
 
 Ptype:  Normal Distribution. Mean = 2.963 StandardDev = 0.8157 

WeightSum = 54 Precision = 1.0  
DSCC:  Normal Distribution. Mean = 0.5185 StandardDev = 0.4997 
WeightSum = 54 Precision = 1.0  
DSC:  Normal Distribution. Mean = 0.1852 StandardDev = 0.3884 
WeightSum = 54 Precision = 1.0  
N&C:  Normal Distribution. Mean = 0.463 StandardDev = 0.4986 
WeightSum = 54 Precision = 1.0  
Conraise:  Normal Distribution. Mean = 0.7593 StandardDev = 0.4275 
WeightSum = 54 Precision = 1.0 
ComImpossible:  Normal Distribution. Mean = 0.037 StandardDev = 0.1889 
WeightSum = 54 Precision = 1.0 
Ochange:  Normal Distribution. Mean = 0.1111 StandardDev = 0.3143 
WeightSum = 54 Precision = 1.0 
Mmistake:  Normal Distribution. Mean = 0.5556 StandardDev = 0.4969 
WeightSum = 54 Precision = 1.0 
Year:  Normal Distribution. Mean = 8.1019 StandardDev = 3.3828 
WeightSum = 54 Precision = 1.25  
Ocause:  Normal Distribution. Mean = 0.0556 StandardDev = 0.2291 WeightSum 
= 54 Precision = 1.0 
SpecWarn:  Normal Distribution. Mean = 0.4815 StandardDev = 0.4997 
WeightSum = 54 Precision = 1.0 
SpecRep:  Normal Distribution. Mean = 0.8519 StandardDev = 0.3552 
WeightSum = 54 Precision = 1.0 
CNoExtra:  Normal Distribution. Mean = 0.4444 StandardDev = 0.4969 
WeightSum = 54 Precision = 1.0 
Ofalsely:  Discrete Estimator. Counts =  45 8 4  
(Total = 57)  
OAdjust:  Normal Distribution. Mean = 0.2407 StandardDev = 0.4275 WeightSum 
= 54 Precision = 1.0 

 
 Class CONTRACTOR: Prior probability 

= 0.46  
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Ptype:  Normal Distribution. Mean = 2.9783 StandardDev = 0.8467 
WeightSum = 46 Precision = 1.0  
DSCC:  Normal Distribution. Mean = 0.6522 StandardDev = 0.4763 
WeightSum = 46 Precision = 1.0  
DSC:  Normal Distribution. Mean = 0.9565 StandardDev = 0.2039 
WeightSum = 46 Precision = 1.0  
N&C:  Normal Distribution. Mean = 0.6739 StandardDev = 0.4688 
WeightSum = 46 Precision = 1.0  
Conraise:  Normal Distribution. Mean = 0.6087 StandardDev = 0.488 WeightSum 
= 46 Precision = 1.0 
ComImpossible:  Normal Distribution. Mean = 0.5 StandardDev = 0.5 WeightSum 
= 46 Precision = 1.0 
Ochange:  Normal Distribution. Mean = 0.0435 StandardDev = 0.2039 
WeightSum = 46 Precision = 1.0 
Mmistake:  Normal Distribution. Mean = 0.7609 StandardDev = 0.4266 
WeightSum = 46 Precision = 1.0 
Year:  Normal Distribution. Mean = 7.2283 StandardDev = 3.7673 
WeightSum = 46 Precision = 1.25  
Ocause:  Normal Distribution. Mean = 0.3696 StandardDev = 0.4827 WeightSum 
= 46 Precision = 1.0 
SpecWarn:  Normal Distribution. Mean = 0 StandardDev = 0.1667 
WeightSum = 46 Precision = 1.0  
SpecRep:  Normal Distribution. Mean = 0.7826 StandardDev = 0.4125 
WeightSum = 46 Precision = 1.0 
CNoExtra:  Normal Distribution. Mean = 0.1739 StandardDev = 0.379 
WeightSum = 46 Precision = 1.0 
Ofalsely:  Discrete Estimator. Counts =  33 15 1  
(Total = 49)  
OAdjust:  Normal Distribution. Mean = 0.0217 StandardDev = 0.1667 WeightSum 
= 46 Precision = 1.0 

 
 Time taken to build model: 0.11 

seconds  

 === Stratified cross-validation === 
 

=== Summary === 
 
 Correctly Classified Instances          93               93      

%  
Incorrectly Classified Instances         7                7      
%  
Kappa statistic                          0.8598 

 
Mean absolute error                      
0.095   
Root mean squared error                  
0.2251  



239 

Relative absolute error                 
19.1053 %  
Root relative squared error             
45.1206 %  
Total Number of Instances              100     

 
 === Detailed Accuracy By Class === 
 
 TP Rate   FP Rate   Precision   Recall  F-Measure   

Class  
  0.907     0.043      0.961     0.907     
0.933    OWNER  
  0.957     0.093      0.898     0.957     0.926    
CONTRACTOR  

 === Confusion Matrix 
===  

   a  b   <-- classified as 
 

 49  5 |  a = OWNER 
 

  2 44 |  b = 
CONTRACTOR  

Trial 2 
Model Properties   
N No   
S 1   
UseKernel Estimator TRUE   

  Model Output   

Accuracy 
94.00% ± 

Kappa 
statistic 0.8788 

Precision 
91.00% ± 

Mean 
absolute error 0.1093 

Recall 
94.00% ± 

Root mean 
squared error 0.2366 

Area Under Curve 
(AUC) 

89.30% ± 
Relative 
absolute error 21.98% 

    
Root relative 
squared error 47.42% 

Positive Class Contractor 
  

  
    

  True Owner 
True 

Contractor 
Class 

Precision 
Class F-
Measure 

Prediction OWNER 52 4 92.86% 94.55% 
Prediction Contractor 2 42 95.45% 93.33% 
Class Recall 96.30% 91.30%     
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W-NaiveBayes  
 The word weights for each class are:  
 

--------------------------------
----  
        OWNER   CONTRACTOR       

 
Ptype   -0.031096365007504383   -
0.031238496243336272     
DSCC    -0.05844110428315457    -
0.06286984994356457      
DSC     -0.05161666360729127    -
0.08075871244879167      
N&C     -0.057859721195145555   -
0.06488496238098278      
Conraise        -0.05966235867492273    -
0.05603514603788319      
ComImpossible   -0.06312776368273439    -
0.1047350702981274       
Ochange -0.10120655774405961    -
0.08909943360176982      
Mmistake        -0.05570287481654815    -
0.061639158646922515     
Year    -0.01491059488929836    -
0.012939234386678313     
Ocause  -0.06839580617032322    -
0.09942632047211497      
SpecWarn        -0.12132437796402092    -
0.06418852009695351      
SpecRep -0.05520114400340014    -
0.0539595301684002       
CNoExtra        -0.0810887375240983     -
0.06560872299753445      
Ofalsely        -0.07173448382725259    -
0.07630842113847014      
OAdjust -0.10863144661024585    -
0.07630842113847014      
Outcome 0.0     0.0      

 
 === Run information 

===  

 Scheme:       weka.classifiers.bayes.NaiveBayes -K 
 

Relation:     test 1 svm 100 added con 
 

Instances:    100 
 

Attributes:   16 
 

              Ptype 
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              DSCC 
 

              DSC 
 

              N&C 
 

              Conraise 
 

              
ComImpossible  
              Ochange 

 
              Mmistake 

 
              Year 

 
              Ocause 

 
              SpecWarn 

 
              SpecRep 

 
              CNoExtra 

 
              Ofalsely 

 
              OAdjust 

 
              Outcome 

 
Test mode:    10-fold cross-validation 

 
 === Classifier model (full training set) 

===  

 Naive Bayes Classifier 
 
 Class OWNER: Prior probability = 0.54 
 
 Ptype:  4 Normal 

Kernels.   
StandardDev = 0.4082 Precision = 1.0   

 
Means = 1.0 2.0 3.0 4.0 

 
Weights =  5.0 4.0 33.0 
12.0  
DSCC:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  26.0 28.0 

 
DSC:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  44.0 10.0 

 
N&C:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  29.0 25.0 

 
Conraise:  2 Normal 
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Kernels.  
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  13.0 41.0 

 
ComImpossible:  2 Normal Kernels.  

 
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  52.0 2.0 

 
Ochange:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  48.0 6.0 

 
Mmistake:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  24.0 30.0 

 
Year:  8 Normal 
Kernels.   
StandardDev = 1.3608 Precision = 
1.25    
Means = 1.25 2.5 3.75 5.0 6.25 7.5 
8.75 11.25  
Weights =  1.0 4.0 8.0 3.0 4.0 3.0 6.0 
25.0  
Ocause:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  51.0 3.0 

 
SpecWarn:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  28.0 26.0 

 
SpecRep:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  8.0 46.0 

 
CNoExtra:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 
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Weights =  30.0 24.0 
 

Ofalsely:  Discrete Estimator. Counts =  45 8 4  
(Total = 57)  
OAdjust:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  41.0 13.0 

 
 
 Class CONTRACTOR: Prior probability 

= 0.46  

 Ptype:  3 Normal 
Kernels.   
StandardDev = 0.2949 Precision = 1.0   

 
Means = 2.0 3.0 4.0 

 
Weights =  17.0 13.0 
16.0  
DSCC:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  16.0 30.0 

 
DSC:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  2.0 44.0 

 
N&C:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  15.0 31.0 

 
Conraise:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  18.0 28.0 

 
ComImpossible:  2 Normal Kernels.  

 
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  23.0 23.0 

 
Ochange:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 
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Weights =  44.0 2.0 
 

Mmistake:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  11.0 35.0 

 
Year:  8 Normal 
Kernels.   
StandardDev = 1.4744 Precision = 
1.25    
Means = 1.25 2.5 3.75 5.0 6.25 7.5 
8.75 11.25  
Weights =  5.0 7.0 1.0 5.0 1.0 2.0 9.0 
16.0  
Ocause:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  29.0 17.0 

 
SpecWarn:  1 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 

 
Weights =  46.0 

 
SpecRep:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  10.0 36.0 

 
CNoExtra:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  38.0 8.0 

 
Ofalsely:  Discrete Estimator. Counts =  33 15 1  
(Total = 49)  
OAdjust:  2 Normal 
Kernels.   
StandardDev = 0.1667 Precision = 1.0   

 
Means = 0.0 1.0 

 
Weights =  45.0 1.0 

 
 
 Time taken to build model: 0.03 

seconds  

 === Stratified cross-validation === 
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=== Summary === 
 
 Correctly Classified Instances          94               94      

%  
Incorrectly Classified Instances         6                6      
%  
Kappa statistic                          0.8788 

 
Mean absolute error                      
0.1093  
Root mean squared error                  
0.2366  
Relative absolute error                 
21.9837 %  
Root relative squared error             
47.4177 %  
Total Number of Instances              100     

 
 === Detailed Accuracy By Class === 
 
 TP Rate   FP Rate   Precision   Recall  F-Measure   

Class  
  0.963     0.087      0.929     0.963     
0.945    OWNER  
  0.913     0.037      0.955     0.913     0.933    
CONTRACTOR  

 === Confusion Matrix 
===  

   a  b   <-- classified as 
 

 52  2 |  a = OWNER 
 

  4 42 |  b = 
CONTRACTOR  
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APPENDIX D (RULE INDUCTION MODELS OUTPUT) 

Rule Induction Modeling Output 

Decision Tree 

Trial 1 
Model Properties   
Minimum # of Objects 
(M) 

2   

Confidence Factor ( C ) 0.25   
Binary Split FALSE   
# of Folds 3   
    
Model Output   
Accuracy 94.00% ± Kappa statistic 0.8792 

Precision 
93.96% ± 

Mean absolute 
error 0.0662 

Recall 
94.00% ± 

Root mean 
squared error 0.2352 

Area Under Curve (AUC) 
91.20% ± 

Relative 
absolute error 13.31% 

    
Root relative 
squared error 47.15% 

Positive Class Contractor 
  

  
    

  
True 

Owner 
True 

Contractor 
Class Precision 

Class F-
Measure 

Prediction OWNER 51 3 94.44% 94.44% 
Prediction Contractor 3 43 93.48% 93.48% 
Class Recall 94.44% 93.48%     

W-J48 
J48 pruned tree 
------------------ 
DSC <= 0 
|   Ocause <= 0: OWNER 
(43.0) 
|   Ocause > 0: 
CONTRACTOR (3.0/1.0) 
DSC > 0 
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|   SpecWarn <= 0 
|   |   CNoExtra <= 0: 
CONTRACTOR (36.0) 
|   |   CNoExtra > 0 
|   |   |   DSCC <= 0 
|   |   |   |   Conraise <= 0: 
OWNER (4.0/1.0) 
|   |   |   |   Conraise > 0: 
CONTRACTOR (7.0) 
|   |   |   DSCC > 0: 
OWNER (2.0) 
|   SpecWarn > 0: 
OWNER (5.0) 

Number of Leaves  :     7 

Size of the tree :      13 
=== Run information === 
Scheme:       
weka.classifiers.trees.J48 
-C 0.25 -M 2 
Relation:     test 1 svm 
100 added con 
Instances:    100 
Attributes:   16 
              Ptype 
              DSCC 
              DSC 
              N&C 
              Conraise 
              ComImpossible 
              Ochange 
              Mmistake 
              Year 
              Ocause 
              SpecWarn 
              SpecRep 
              CNoExtra 
              Ofalsely 
              OAdjust 
              Outcome 
Test mode:    10-fold 
cross-validation 
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=== Classifier model (full 
training set) === 

J48 pruned tree 
------------------ 
DSC <= 0 
|   Ocause <= 0: OWNER 
(43.0) 
|   Ocause > 0: 
CONTRACTOR (3.0/1.0) 
DSC > 0 
|   SpecWarn <= 0 
|   |   CNoExtra <= 0: 
CONTRACTOR (36.0) 
|   |   CNoExtra > 0 
|   |   |   DSCC <= 0 
|   |   |   |   Conraise <= 0: 
OWNER (4.0/1.0) 
|   |   |   |   Conraise > 0: 
CONTRACTOR (7.0) 
|   |   |   DSCC > 0: 
OWNER (2.0) 
|   SpecWarn > 0: 
OWNER (5.0) 
Number of Leaves  :  7 
Size of the tree :  13 
Time taken to build 
model: 0.11 seconds 
=== Stratified cross-
validation === 
=== Summary === 
Correctly Classified 
Instances          94               
94      % 
Incorrectly Classified 
Instances         6                
6      % 
Kappa statistic                          
0.8792 
Mean absolute error                    
0.0662 
Root mean squared error                  
0.2352 
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Relative absolute error                 
13.3147 % 
Root relative squared 
error             47.149  % 
Total Number of 
Instances              100      
=== Detailed Accuracy 
By Class === 
TP Rate   FP Rate   
Precision   Recall  F-
Measure   Class 
  0.944     0.065      0.944     
0.944     0.944    OWNER 
  0.935     0.056      0.935     
0.935     0.935    
CONTRACTOR 
=== Confusion Matrix 
=== 
  a  b   <-- classified as 
 51  3 |  a = OWNER 
  3 43 |  b = 
CONTRACTOR 
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AD Tree 

Trial 1 
Model Properties   
Number of  
Boosting Iterations 

10   

Model Output   

Accuracy 
95.00% ± 

Kappa 
statistic 0.9397 

Precision 
95.33% ± 

Mean 
absolute 
error 0.0915 

Recall 

94.88% ± 

Root 
mean 
squared 
error 0.1563 

Area Under Curve 
(AUC) 

93.20% ± 
Relative 
absolute 
error 18.39% 

  
  

Root 
relative 
squared 
error 31.32% 

Positive Class Contractor 
  

  
    

  True Owner 
True  

Contractor 
Class 

Precision 
Class F-
Measure 

Prediction OWNER 53 4 92.98% 95.50% 
Prediction Contractor 1 42 97.67% 94.38% 
Class Recall 98.15% 91.30%     

== Run information 
=== 
Scheme:       weka.classifiers.trees.ADTree -B 10 -E -3 
Relation:     test 1 svm 100 added con 
Instances:    100 
Attributes:   16 
              Ptype 
              DSCC 
              DSC 
              N&C 
              Conraise 
              ComImpossible 
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              Ochange 
              Mmistake 
              Year 
              Ocause 
              SpecWarn 
              SpecRep 
              CNoExtra 
              Ofalsely 
              OAdjust 
              Outcome 
Test mode:    10-fold cross-validation 
=== Classifier model (full training set) === 
Alternating decision tree: 
: -0.079 
|  (1)DSC < 0.5: -1.289 
|  |  (3)ComImpossible < 0.5: -
1.793 
|  |  (3)ComImpossible >= 0.5: 
1.469 
|  (1)DSC >= 0.5: 0.778 
|  |  (2)CNoExtra < 0.5: 2.141 
|  |  (2)CNoExtra >= 0.5: -
0.902 
|  |  |  (7)DSCC < 0.5: 0.177 
|  |  |  |  (8)Conraise < 0.5: -
0.492 
|  |  |  |  (8)Conraise >= 0.5: 
0.55 
|  |  |  (7)DSCC >= 0.5: -0.754 
|  |  (5)N&C < 0.5: -0.355 
|  |  (5)N&C >= 0.5: 0.725 
|  (4)SpecWarn < 0.5: 0.373 
|  (4)SpecWarn >= 0.5: -1.002 
|  (6)Ocause < 0.5: -0.44 
|  (6)Ocause >= 0.5: 0.474 
Legend: -ve = OWNER, +ve 
= CONTRACTOR 
Tree size (total number of 
nodes): 25 
Leaves (number of predictor 
nodes): 17 
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Time taken to build model: 0.06 seconds 
=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances          
97               97      % 
Incorrectly Classified 
Instances         3                3      
% 
Kappa statistic                          
0.9397 
Mean absolute error                      
0.0915 
Root mean squared error                  
0.1563 
Relative absolute error                 
18.3872 % 
Root relative squared error             
31.3185 % 
Total Number of Instances        
100      
=== Detailed Accuracy By Class === 

TP Rate   FP Rate   Precision   
Recall  F-Measure   Class 7 
  0.963     0.022      0.981     
0.963     0.972    OWNER 
  0.978     0.037      0.957     
0.978     0.968    
CONTRACTOR 13 

=== Confusion Matrix === 

  a  b   <-- classified as 
 52  2 |  a = OWNER 
  1 45 |  b = CONTRACTOR 
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Trial 2 
Model Properties   
Number of  
Boosting Iterations 

15 and 20   

Model Output   
Accuracy 97.80% ± Kappa statistic 0.9798 

Precision 
97.99% ± 

Mean absolute 
error 0.0727 

Recall 
94.00% ± 

Root mean 
squared error 0.1356 

Area Under Curve 
(AUC) 

98.00% ± 
Relative 
absolute error 14.62% 

    
Root relative 
squared error 27.19% 

Positive Class Contractor 
  

  
    

  True Owner 
True 

Contractor 
Class Precision 

Class F-
Measure 

Prediction 
OWNER 

53 1 98.15% 98.15% 

Prediction 
Contractor 

1 45 97.83% 97.83% 

Class Recall 98.15% 97.83%     

=== Run information === 

Scheme:       weka.classifiers.trees.ADTree -B 15 -E -3 
Relation:     test 1 svm 100 added con 
Instances:    100 
Attributes:   16 
              Ptype 
              DSCC 
              DSC 
              N&C 
              Conraise 
              ComImpossible 
              Ochange 
              Mmistake 
              Year 
              Ocause 
              SpecWarn 
              SpecRep 
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              CNoExtra 
              Ofalsely 
              OAdjust 
              Outcome 
Test mode:    10-fold cross-validation 
=== Classifier model (full training set) === 
Alternating decision tree: 

: -0.079 
|  (1)DSC < 0.5: -1.289 
|  |  (3)ComImpossible < 0.5: -
2.173 
|  |  (3)ComImpossible >= 0.5: 
1.756 
|  (1)DSC >= 0.5: 0.778 
|  |  (2)CNoExtra < 0.5: 2.141 
|  |  (2)CNoExtra >= 0.5: -
0.902 
|  |  |  (7)DSCC < 0.5: 0.177 
|  |  |  |  (8)Conraise < 0.5: -
0.492 
|  |  |  |  (8)Conraise >= 0.5: 
0.55 
|  |  |  |  |  (9)SpecWarn < 0.5: 
0.579 
|  |  |  |  |  (9)SpecWarn >= 
0.5: -0.223 
|  |  |  |  (12)Ocause < 0.5: -
0.217 
|  |  |  |  (12)Ocause >= 0.5: 
0.403 
|  |  |  (7)DSCC >= 0.5: -0.754 
|  |  |  (10)N&C < 0.5: -0.397 
|  |  |  (10)N&C >= 0.5: 0.285 
|  |  (5)N&C < 0.5: -0.355 
|  |  (5)N&C >= 0.5: 0.725 
|  |  |  (11)SpecWarn < 0.5: 
0.476 
|  |  |  (11)SpecWarn >= 0.5: -
0.164 
|  (4)SpecWarn < 0.5: 0.373 
|  (4)SpecWarn >= 0.5: -1.002 
|  (6)Ocause < 0.5: -0.44 
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|  (6)Ocause >= 0.5: 0.474 
Legend: -ve = OWNER, +ve 
= CONTRACTOR 
Tree size (total number of 
nodes): 37 
Leaves (number of predictor 
nodes): 25 

Time taken to build model: 
0.05 seconds 

=== Stratified cross-validation 
=== 
=== Summary === 

Correctly Classified Instances          
99               99      % 
Incorrectly Classified 
Instances         1                1      
% 
Kappa statistic                          
0.9798 
Mean absolute error                      
0.0727 7 
Root mean squared error                  
0.1356 
Relative absolute error                 
14.6204 % 13 
Root relative squared error             
27.1865 % 
Total Number of Instances              
100      
=== Detailed Accuracy By Class === 
TP Rate   FP Rate   Precision   
Recall  F-Measure   Class 
  1         0.022      0.982     1         
0.991    OWNER 
  0.978     0          1         
0.978     0.989    
CONTRACTOR 
=== Confusion Matrix === 
  a  b   <-- classified as 
 54  0 |  a = OWNER 
  1 45 |  b = CONTRACTOR 
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PART 

Trial 1 
Model Properties   
Minimum # of 
Objects (M) 

2   

Confidence Factor 
( C ) 

0.25   

Binary Split FALSE   
# of Folds 3   
Model Output   

Accuracy 
95.00% ± 

Kappa 
statistic 0.8792 

Precision 
94.33% ± 

Mean 
absolute 
error 0.0662 

Recall 
96.00% ± 

Root mean 
squared 
error 0.2204 

Area Under Curve 
(AUC) 

95.60% ± 
Relative 
absolute 
error 12.51% 

  
  

Root relative 
squared 
error 44.17% 

Positive Class Contractor 
  

  

  True Owner 
True 

Contractor 
Class 

Precision 
Class F-
Measure 

Prediction OWNER 51 2 96.23% 95.33% 
Prediction 
Contractor 

3 44 93.62% 94.62% 

Class Recall 94.44% 95.65%     

W-PART 
PART decision list 
------------------ 
DSC <= 0 AND 
Ocause <= 0: OWNER (43.0) 
SpecWarn <= 0 
AND 
CNoExtra <= 0: CONTRACTOR 
(38.0) 
SpecWarn <= 0 
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AND 

DSCC <= 0 AND 
Conraise > 0: CONTRACTOR (7.0) 
: OWNER (12.0/1.0) 
Number of Rules  :      4 
=== Run information === 
Scheme:       weka.classifiers.rules.PART -M 2 -C 0.25 
-Q 1 
Relation:     test 1 svm 100 added 
con 
Instances:    100 
Attributes:   16 
              Ptype 
              DSCC 
              DSC 
              N&C 
              Conraise 
              
ComImpossible 
              Ochange 
              Mmistake 
              Year 
              Ocause 
              SpecWarn 
              SpecRep 
              CNoExtra 
              Ofalsely 
              OAdjust 
              Outcome 
Test mode:    10-fold cross-validation 
=== Classifier model (full training set) === 
PART decision list 
------------------ 
DSC <= 0 AND 
Ocause <= 0: OWNER (43.0) 
SpecWarn <= 0 AND 
CNoExtra <= 0: CONTRACTOR (38.0) 
SpecWarn <= 0 AND 
DSCC <= 0 AND 
Conraise > 0: CONTRACTOR (7.0) 
: OWNER (12.0/1.0) 
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Number of Rules  :  4 

Time taken to build model: 0.02 
seconds 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances          94               94      
% 
Incorrectly Classified Instances         6                6      
% 
Kappa statistic                          
0.8792 
Mean absolute error                      
0.0622 
Root mean squared error                  
0.2204 
Relative absolute error                 
12.5138 % 
Root relative squared error             
44.1736 % 
Total Number of Instances              
100      

=== Detailed Accuracy By Class === 

TP Rate   FP Rate   Precision   Recall  F-Measure   
Class 
  0.944     0.065      0.944     0.944     
0.944    OWNER 
  0.935     0.056      0.935     0.935     0.935    
CONTRACTOR 
=== Confusion 
Matrix === 
  a  b   <-- 
classified as 
 51  3 |  a = 
OWNER 
  3 43 |  b = 
CONTRACTOR 
 

  



259 

APPENDIX E (PARSING ALGORITHM) 

 

// CollectionAnalyzer class definition - DocumentAnalyzer class public interface 
#include <iostream> 
#include <vector> 
#include <string> 
using namespace std; 
 
// preventing multiple inclusion of the header file 
#ifndef COLLECTIONANALYZER_H 
#define COLLECTIONANALYZER_H 
 
// defining the DocumentAnalyzer class and prototypes 
class CollectionAnalyzer 
{ 
public: 
 
 void setInitialCollection(vector<string>); 
 void getInitialCollection()const; 
 vector<string> & getInitialCollectionSize(); 
 void setInitialFrequency(vector<int>); 
 void getInitialFrequency() const; 
 vector<vector<int>> & getInitialFrequencySize(); 
 vector<vector<double>> & getpFrequencySize(); 
 vector<vector<double>> & getpiFrequencySize(); 
 vector<vector<double>> & getaFrequencySize(); 
 void print() const; 
 void searchLoop(vector<string>, vector<int>, int); 
 void approvedMatrix(); 
 void TermFrequencyWeight(); 
 void AugmentedTermFrequencyWeight(); 
 void dfidfCalculation(); 
 
private: 
 
 vector <string> iCollection; // a vector of a vector of strings representing the 
collection words for each document 
 vector <vector<int>> iFrequency; // a vector of a vector of integers storing the 
frequency of occurrence of each collection word of each document 
 vector <vector<double>> piFrequency; // a vector holding the weighted term 
frequencies. 
 vector <vector<double>> aFrequency; // a vector holding the augmented 
frequencies of terms. 
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 vector <string> pCollection; // a vector of a vector of strings representing the 
processed matrix of collection words for each document 
 vector <vector<double>> pFrequency; // a vector of a vector of integers 
storing the processed dfidf frequency of occurrence of each collection word of each 
document 
 vector <int> dfVector; // a vector including document frequency of terms. 
 vector <int> NVector; // a vector including collection numbers. 
 void addDummyVector(); 
 void matricAdjustment();  
}; 
 

#endif 

--------------------------------------------------------------------------------------------- 

// DocumentAnalyzer class definition - CollectionAnalyzer class public interface 
#include <iostream> 
#include <vector> 
#include <string> 
using namespace std; 
#include "CollectionAnalyzer.h" 
// preventing multiple inclusion of the header file 
#ifndef PROJECT_H 
#define PROJECT_H 
// defining the DocumentAnalyzer class and prototypes 
class DocumentAnalyzer 
{ 
public: 
 DocumentAnalyzer(string="00"); 
 ~DocumentAnalyzer(); 
  
 void setOriginalString(string); 
 void setWordsVector();  
 void getWordsVector()const; 
 vector<string> & getWordsVectorSize(); 
 void setDocumentWordCount(); 
 int getDocumentWordCount ()const; 
 void setDocumentSentencesCount(); 
 int getDocumentSentencesCount() const; 
 void setWordSignificance(); 
 void getWordSignificance()const;  
 void setStartEndCharacters(); 
 void setUnecessaryWords(); 
 void setEndOfSentence(); 
 void setPrefix(); 
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 void setCapitalLetters(); 
 void documentProcessing(); 
 vector<string> & getInitialWordList(); 
 void setApprovedValidTermsandWordCount (); 
 vector<string> & getApprovedValidTerms(); 
 vector<int> & getApprovedWordCount(); 
 void getSentences() const; 
 void getValidTerms() const; 
 void getWordCount() const; 
 vector<string> & getValidTermsSize(); 
 vector<int> & getWordCountSize(); 
private: 
 int DocumentWordCount; // integer that holds the number of words in a 
provided text 
 int documentSentencesCount; // integer that holds the number of sentences 
in a provided text 
 string originalString; // string that intakes the passed string to be processed 
 vector <string> words; // a vector that holds all words in the passed text 
 vector <vector<string>> sentences; // a vector that holds all sentences of the 
passed text  
 vector <string> validTerms; // a vector that holds word objects. It includes 
words to be further processed 
 vector <int> wordCount; // a vector that hold the number of occurancec of 
each word int he valid terms 
 vector<string> approvedValidTerms; // accepts valid terms that were repeated 
more than a certain number of times 
 vector<int> approvedWordCount; // accepts valid terms counts that were 
repeated more than a certain number of times 
 vector<string> startEndCharacters;// a vector that holds characters to be 
removed from the start and end of word 
 vector<string> unecessaryWords;// a vector that includes words to be 
removed from the text before processing 
 vector<string> endOfSentence;// a vector that includes strings considered to 
be end of sentence characters 
 vector<string> prefix;// a vector including most known prefixes 
 vector<string> capitalLetters;// a vector inlcuding a set of all 26 in the upper 
case form. 
 vector<double> wordSignificance; // a vector of doubles representing the 
signifcance of each repeated term 
 int startingcharacter (string &); // a utility function that removes starting 
characters 
 int endingCharacter (string &); // a utility function that removes ending 
characters 
 int possisveCheck (string &); // a utility function that removes possisive 
characters 
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 int pluralCheck (string &, int); // a utility function that changes a plural forms of 
a word 
 int checkPlural (string &); 
 int endOfSentenceCheck (string &, int); // a utility function that defines he end 
of sentence within a text 
 int unecessaryWordsCheck (string &); // a utility function that removes 
unwanted wards from the text 
 void upperToLower (string &); // a utility function that converts all upper case 
letters to lower ones 
 void sorting (vector<string> &, vector<int> &); // a utility function that performs 
a sorting algorithm 
}; 

#endif 

--------------------------------------------------------------------------------------------- 

// the code utilizes the input/output standard stream, vector, and standard string 
classes  
#include <fstream> // file stream         
using std::ifstream; // input file stream 
using std::ofstream; // output file stream 
#include <iomanip> 
#include <cstdlib>  
#include <iostream> 
#include <vector> 
#include <string> 
#include <cmath> 
using namespace std; 
#include <iostream> 
#include <vector> 
#include <string> 
using namespace std; 
//Including header files of DocumentAnalyzer and Word classes 
#include "DocumentAnalyzer.h" 
#include "CollectionAnalyzer.h" 
// declairing member functions 
void CollectionAnalyzer::setInitialCollection(vector<string> iC) 
{ 
 for(int i=0; i<iC.size(); i++) 
 { 
  iCollection.push_back(iC[i]); 
 } 
} 
void CollectionAnalyzer::getInitialCollection()const 
{ 
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 for(int i=0; i<iCollection.size(); i++) 
 { 
  cout<<iCollection[i]<<endl; 
 } 
} 
vector<string> & CollectionAnalyzer::getInitialCollectionSize() 
{ 
 return iCollection; 
} 
void CollectionAnalyzer::setInitialFrequency(vector<int> iF) 
{ 
 iFrequency.push_back(iF); 
} 
void CollectionAnalyzer::getInitialFrequency()const 
{ 
 for(int i=0; i<iFrequency.size(); i++) 
 { 
  for(int j=0; j<iFrequency[i].size(); j++) 
  { 
   cout<<iFrequency[i][j]<" "; 
  } 
  cout<<endl; 
 } 
} 
vector<vector<int>> & CollectionAnalyzer::getInitialFrequencySize() 
{ 
 return iFrequency; 
} 
vector<vector<double>> & CollectionAnalyzer::getpFrequencySize() 
{ 
 return pFrequency; 
} 
vector<vector<double>> & CollectionAnalyzer::getpiFrequencySize() 
{ 
 return piFrequency; 
} 
vector<vector<double>> & CollectionAnalyzer::getaFrequencySize() 
{ 
 return aFrequency; 
} 
void CollectionAnalyzer::print() const 
{ 
 for(int n=0; n<iCollection.size(); n++) 
 { 
  cout<<left<<setw(25)<<iCollection[n]<<" "; 
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  for(int m=0; m<iFrequency.size(); m++) 
  { 
   cout<<left<<setw(10)<<iFrequency[m][n]<<" "; 
  } 
  cout<<endl; 
 } 
} 
void CollectionAnalyzer::addDummyVector() 
{ 
 vector<int> tempVector; 
 for(int i=0; i<iCollection.size(); i++) 
 { 
  tempVector.push_back(0); 
 } 
 iFrequency.push_back(tempVector); 
 tempVector.clear(); 
} 
void CollectionAnalyzer::matricAdjustment() 
{ 
 for(int i=0; i<iFrequency.size(); i++) 
 { 
  int missingData=iCollection.size()- iFrequency[i].size(); 
  for(int j=0; j<missingData; j++) 
  { 
   iFrequency[i].push_back(0); 
  } 
  missingData=0; 
 } 
} 
void CollectionAnalyzer::searchLoop(vector<string> iC, vector<int> iF, int counter) 
{ 
 int tempIndex=0; 
 bool tempBool=false; 
 addDummyVector(); 
 for(int i=0; i<iC.size(); i++) 
 { 
  tempIndex=0; 
  for(int j=0; j<iCollection.size(); j++) 
  { 
   if(iC[i]==iCollection[j]) 
   { 
    tempIndex=j; 
    tempBool=true; 
   } 
  }  
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  if(tempBool==true) 
  { 
   iFrequency[counter-1][tempIndex]=iF[i]; 
  } 
  if(tempBool==false) 
  { 
   iCollection.push_back(iC[i]); 
   iFrequency[counter-1].push_back(iF[i]); 
  } 
  tempBool=false; 
 } 
 matricAdjustment(); 
} 
void CollectionAnalyzer::approvedMatrix() 
{ 
 vector<int> sumOverDocuments; 
 vector<string> tempICollection; 
 int sum=0; 
 
 for(int i=0; i<iCollection.size(); i++) 
 { 
  for(int j=0; j<iFrequency.size(); j++) 
  { 
   sum=sum+iFrequency[j][i]; 
  } 
 
  sumOverDocuments.push_back(sum); 
  sum=0; 
 } 
  
 for(int v=0; v<iCollection.size(); v++) 
 { 
  tempICollection.push_back(iCollection[v]); 
 } 
 
 int turn=0; 
 bool first=false; 
 for(int k=0; k<sumOverDocuments.size(); k++) 
 { 
  if(sumOverDocuments[k]<3) 
  {    
   if(k==0) 
   { 
    first=true; 
    iCollection.erase(iCollection.begin()); 
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    for(int t=0; t<iFrequency.size(); t++) 
     { 
      iFrequency[t].erase(iFrequency[t].begin()); 
     } 
   } 
   if(first==true) 
   {      
    if(iCollection[0]==tempICollection[k]) 
    {      
     iCollection.erase(iCollection.begin()); 
     for(int l=0; l<iFrequency.size(); l++) 
     { 
      iFrequency[l].erase(iFrequency[l].begin()); 
     } 
    } 
    else 
    { 
     iCollection.erase(iCollection.begin()+k-1); 
     for(int l=0; l<iFrequency.size(); l++) 
     { 
      iFrequency[l].erase(iFrequency[l].begin()+k-
1); 
     } 
    } 
   } 
   if(first==false) 
   { 
    iCollection.erase(iCollection.begin()+(k-turn)); 
    for(int l=0; l<iFrequency.size(); l++) 
     { 
     
 iFrequency[l].erase(iFrequency[l].begin()+(k-turn)); 
     }  
    turn++; 
   } 
  } 
 } 
} 
// dfidf calculations function 
void CollectionAnalyzer::dfidfCalculation() 
{ 
 vector <double> tempdVector; 
 vector <double> tempNVector; 
 int dfCounter=0; 
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 for(int i=0; i<iCollection.size(); i++) 
 { 
  for(int j=0; j<iFrequency.size(); j++) 
  { 
   if(iFrequency[j][i]>0) 
   { 
    dfCounter++; 
   } 
  } 
  dfVector.push_back(dfCounter); 
  NVector.push_back(iFrequency.size()); 
  dfCounter=0; 
 } 
 
 for(int t=0; t<iCollection.size(); t++) 
 { 
  double dN=0.0; 
  double dF=0.0; 
  double tempf=0.0; 
  dN=static_cast< double >(NVector[t]); 
  dF=static_cast< double >(dfVector[t]); 
  tempf=log10(dN)-log10(dF); 
  tempdVector.push_back(tempf); 
 } 
 
 vector <double> tempPFrequency; 
 for(int r=0; r<iCollection.size(); r++) 
 { 
  tempPFrequency.push_back(0.0); 
 } 
 for(int u=0; u<piFrequency.size(); u++) 
 { 
  pFrequency.push_back(tempPFrequency); 
 } 
 tempPFrequency.clear(); 
 
 double pf=0.0; 
 for(int x=0; x<iCollection.size(); x++) 
 { 
  for(int z=0; z<piFrequency.size(); z++) 
  { 
   if(iFrequency[z][x]>0) 
   { 
    pf=piFrequency[z][x]*tempdVector[x]; 
    pFrequency[z][x]=pf; 
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   } 
  } 
 } 
} 
static double Log10(double d); 
void CollectionAnalyzer::TermFrequencyWeight() 
{ 
 double tempf=0.0; 
 double l=0.0; 
 vector <double> tempPiFrequency; 
 for(int r=0; r<iCollection.size(); r++) 
 { 
  tempPiFrequency.push_back(0.0); 
 } 
 for(int u=0; u<iFrequency.size(); u++) 
 { 
  piFrequency.push_back(tempPiFrequency); 
 } 
 tempPiFrequency.clear(); 
 
 for (int i=0; i<iCollection.size(); i++) 
 { 
  for(int j=0; j<iFrequency.size(); j++) 
  { 
   if(iFrequency[j][i]>0) 
   { 
    tempf = static_cast< double >(iFrequency[j][i]); 
    l=log10(tempf); 
    piFrequency[j][i]=1+l; 
   } 
  } 
 } 
} 
void CollectionAnalyzer::AugmentedTermFrequencyWeight() 
{ 
 double tempaf=0.0; 
 double l=0.0; 
 vector <double> tempaiFrequency; 
 for(int r=0; r<iCollection.size(); r++) 
 { 
  tempaiFrequency.push_back(0.0); 
 } 
 for(int u=0; u<iFrequency.size(); u++) 
 { 
  aFrequency.push_back(tempaiFrequency); 
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 } 
 tempaiFrequency.clear(); 
 
 int maxFrequency=0; 
 vector <int> tempMaxFrequency; 
 for (int i=0; i<iCollection.size(); i++) 
 { 
  for(int j=0; j<iFrequency.size(); j++) 
  { 
   if(iFrequency[j][i]>maxFrequency) 
   { 
    maxFrequency=iFrequency[j][i]; 
   } 
   tempMaxFrequency.push_back(maxFrequency); 
  } 
 } 
 
 double tempA=0.0; 
 double tempAugmentedFrequency=0.0; 
 for (int c=0; c<iCollection.size(); c++) 
 { 
  for (int h=0; h<iFrequency.size(); h++) 
  { 
   tempA=0.5+((0.5*iFrequency[h][c])/tempMaxFrequency[c]); 
   aFrequency[h][c]=tempA; 
  } 
 } 

} 

--------------------------------------------------------------------------------------------- 

// DocumentAnalyzer member-function definitions - DocumentAnalyzer class 
member-function implementation 
// the code utilizes the input/output standard stream, vector, and standard string 
classes  
#include <fstream> // file stream         
using std::ifstream; // input file stream 
using std::ofstream; // output file stream 
#include <iomanip> 
#include <cstdlib>  
#include <iostream> 
#include <vector> 
#include <string> 
#include <cmath> 
using namespace std; 
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#include <iostream> 
#include <vector> 
#include <string> 
using namespace std; 
//Including header files of DocumentAnalyzer and Word classes 
#include "DocumentAnalyzer.h" 
//Constructor that takes in as an argument the initial string to set its initial private 
data members 
DocumentAnalyzer::DocumentAnalyzer(string s) 
{ 
 setOriginalString(s); 
 setWordsVector(); 
 setDocumentWordCount(); 
 setDocumentSentencesCount(); 
 setStartEndCharacters(); 
 setUnecessaryWords(); 
 setEndOfSentence(); 
 setPrefix(); 
 setCapitalLetters(); 
} 
DocumentAnalyzer::~DocumentAnalyzer() 
{ 
} 
// a set function for the initial string 
void DocumentAnalyzer::setOriginalString(string s) 
{ 
 originalString = s; 
} 
void DocumentAnalyzer::setWordsVector() 
{ 
 int indexOfSpace; 
 string word; 
  
 for(int i=0; i<originalString.length(); i++) 
 { 
  indexOfSpace=originalString.find(" "); 
  word=originalString.substr(0,indexOfSpace); 
  if(indexOfSpace>0) 
  { 
   words.push_back(word); 
  
 originalString=originalString.substr(indexOfSpace+1,originalString.length()-1); 
   i=0; 
  } 
  else 
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  { 
  
 originalString=originalString.substr(indexOfSpace+1,originalString.length()-1); 
   i=0; 
  } 
 } 
} 
//a get function that prints out the words of a document 
void DocumentAnalyzer::getWordsVector() const 
{ 
 for(int k=0; k<words.size(); k++) 
  cout<<words[k]<<endl; 
} 
vector<string> & DocumentAnalyzer::getWordsVectorSize() 
{ 
 return words; 
} 
// a set function to set the private data member DocumentWordCount 
void DocumentAnalyzer::setDocumentWordCount() 
{ 
 DocumentWordCount = words.size(); 
} 
// a get function that returns the number of words in a text 
int DocumentAnalyzer::getDocumentWordCount() const 
{ 
 return DocumentWordCount; 
} 
// a get function to return an aliace of the valid terms vector 
vector<string> & DocumentAnalyzer::getValidTermsSize() 
{ 
 return validTerms; 
} 
// a get function to return an aliace of the wordCount vector 
vector<int> & DocumentAnalyzer::getWordCountSize() 
{ 
 return wordCount; 
} 
// a set function to set the private data memebr startEndCharacters vector 
void DocumentAnalyzer::setStartEndCharacters() 
{ 
 ifstream inCharFile( "startendchar.txt", ios::in ); // declairing the output file 
 // exit program if ifstream could not open file 
 if ( !inCharFile ) 
 { 
  cerr << "File could not be opened" << endl; 
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  exit( 1 ); 
 } // end if 
  
 string end; 
 while(inCharFile>>end) 
 { 
  startEndCharacters.push_back(end); 
 } 
} 
// a set function to set the private data memebr unecessaryWords vector 
void DocumentAnalyzer::setUnecessaryWords() 
{ 
 ifstream inUnWordFile( "unecessaryWords.txt", ios::in ); // declairing the 
output file 
 // exit program if ifstream could not open file 
 if ( !inUnWordFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
  
 string unword; 
 
 while(inUnWordFile>>unword) 
 { 
  unecessaryWords.push_back(unword); 
 } 
} 
// a set function to set the private data memebr endOfSentence vector 
void DocumentAnalyzer::setEndOfSentence() 
{ 
 ifstream inEndSentFile( "endsentence.txt", ios::in ); // declairing the output file 
 // exit program if ifstream could not open file 
 if ( !inEndSentFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 string endsent; 
 while(inEndSentFile>>endsent) 
 { 
  endOfSentence.push_back(endsent); 
 } 
} 
// a set function to set the private data memebr prefix vector 
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void DocumentAnalyzer::setPrefix() 
{ 
 ifstream inPrefixFile( "prefix.txt", ios::in ); // declairing the output file 
 // exit program if ifstream could not open file 
 if ( !inPrefixFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 string pref; 
 while(inPrefixFile>>pref) 
 { 
  prefix.push_back(pref); 
 } 
} 
// a set function to set the private data memebr capitalLetters vector 
void DocumentAnalyzer::setCapitalLetters() 
{ 
 ifstream inCapFile( "capittalletters.txt", ios::in ); // declairing the output file 
 // exit program if ifstream could not open file 
 if ( !inCapFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 string cap; 
 while(inCapFile>>cap) 
 { 
  capitalLetters.push_back(cap); 
 } 
} 
// a set function to set the private data memebr documentSentencesCount, which 
represents the number of sentences within a text 
void DocumentAnalyzer::setDocumentSentencesCount() 
{ 
 documentSentencesCount=0; 
} 
// a get functionthat returns the private data memebr documentSentencesCount, 
which represents the number of sentences within a text 
int DocumentAnalyzer::getDocumentSentencesCount() const 
{ 
 return documentSentencesCount; 
} 
// setting the Word Significance vector 
void DocumentAnalyzer::setWordSignificance() 
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{ 
 double sum=0.0; 
 for(int i=0; i<validTerms.size(); i++) 
 { 
  sum=sum+wordCount[i]; 
 } 
 for(int s=0; s<validTerms.size(); s++) 
 { 
  double temp=0.0; 
  temp=(((static_cast<double>(wordCount[s])/sum))*100); 
  wordSignificance.push_back(temp); 
 } 
} 
void DocumentAnalyzer::getWordSignificance() const 
{ 
 for(int i=0; i<wordSignificance.size(); i++) 
 { 
  cout<<wordSignificance[i]; 
 } 
} 
// a utility function that removes starting characters. It takes string by reference and 
returns an integer 
int DocumentAnalyzer::startingcharacter(string & str) 
{ 
 int counter=0; 
 string sub="00";  
 sub=str.substr(0,1); 
 
 for(int i=0; i< startEndCharacters.size(); i++) // a loop to check if the first lette 
in the word is an unwatnted starting character 
 { 
  if (sub==startEndCharacters[i]) 
  { 
   counter=1; // if the first letter in the word is an unwatnted starting 
character a counter is set to 1 
   str=str.substr(1,str.length()-1); 
  } 
 } 
 if (counter == 1) 
  return 1; // the function returns 1 if the first lette in the word is an 
unwatnted starting character  
 else 
  return 0; // the function returns 0 if the first lette in the word is not an 
unwatnted starting character 
} 
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// a utility function that removes ending characters. It takes string by reference and 
returns an integer 
int DocumentAnalyzer::endingCharacter (string & str) 
{ 
 int counter=0; 
 string sub="00";  
 sub=str.substr(str.length()-1,1); 
 
 for(int i=0; i< startEndCharacters.size(); i++) // a loop to check if the last lette 
in the word is an unwatnted ending character 
 { 
  if (sub==startEndCharacters[i]) 
  { 
   counter=1; // if the last lette in the word is an unwatnted ending 
character a counter is set to 1 
   str=str.substr(0,str.length()-1); 
  } 
 } 
 if (counter == 1) 
  return 1; // the function returns 1 if the last lette in the word is an 
unwatnted ending character 
 else 
  return 0; // the function returns 0 if the last lette in the word is not an 
unwatnted ending character 
} 
// a utility function that removes possisive characters. It takes string by reference and 
returns an integer 
int DocumentAnalyzer::possisveCheck(string & str) 
{ 
 int counter=0; 
 if (str.length()>1) 
 { 
  string last="00"; 
  string beforelast="00"; 
  last=str.substr(str.length()-1,1); 
  beforelast=str.substr(str.length()-2,1); 
  if (last=="s") // nested if conditions to test if the last two letters of a 
word are 's 
  { 
   if (beforelast=="'"||beforelast=="’"||beforelast=="‘") 
   { 
    counter=1; 
    str=str.substr(0,str.length()-2); 
   } 
  } 
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 } 
 if (counter == 1) 
  return 1; // if the last two letters of a word are 's, the function returns 1 
 else 
  return 0; // if the last two letters of a word are not 's, the function 
returns 0 
} 
// a utility function that changes a plural forms of a word. It takes a sting by reference 
and returns an integer 
int DocumentAnalyzer::pluralCheck(string & str, int pos) 
{ 
 static vector<string> temp; 
 string tempString="00", tempStringIes="00"; 
 int counter=0; 
 if(str.length()>1) 
 { 
  string last="00", last2="00"; 
  last=str.substr(str.length()-1,1); 
  last2=str.substr(str.length()-2,2); 
 
  if (last=="s"&&last2!="ss") 
  { 
   bool partOfUnecessaryWors=true; 
 
   for(int i=0; i<unecessaryWords.size(); i++) 
   { 
    if(str==unecessaryWords[i]) 
    { 
     partOfUnecessaryWors=false; 
     break; 
    } 
   } 
   if(partOfUnecessaryWors==true) // if the last letter of a word is 
s, the user is prompter to define if the word is in the plural form or not. If yes, he is 
prompted to enter the singular form. 
   { 
    bool pluralCheckBool=true; 
    if(temp.size()>=1) 
    {      
     for(int v=0; v<temp.size(); v++) 
     { 
      if(str==temp[v]) 
      { 
       pluralCheckBool=false; 
       str=temp[v+1]; 
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       break; 
      } 
     } 
    } 
    if(pluralCheckBool==true) 
    { 
     char choice='0', confirm='0'; 
     
     cout<< "Is the following word in the plural form? 
<"<< str <<">"<<endl; 
      
     if(words.size()>=3) 
     { 
      if(pos==0) 
       cout<< "The Word was mentioned in 
the following context <"<<words[pos]<<" "<<words[pos+1]<<" 
"<<words[pos+2]<<">."<<endl; 
      if(pos>0&&pos<words.size()-1) 
       cout<< "The Word was mentioned in 
the following context <"<<words[pos-1]<<" "<<words[pos]<<" 
"<<words[pos+1]<<">."<<endl; 
      if(pos==words.size()-1) 
       cout<< "The Word was mentioned in 
the following context <"<<words[pos-2]<<" "<<words[pos-1]<<" 
"<<words[pos]<<">."<<endl; 
     } 
 
     cout<< "Please enter the appropriate number 
corresponding to your choice\n"  
      << "<y> for Yes\n" << "<n> for No\n" << 
endl; 
     cin>>choice; 
    
 while(choice!='y'&&choice!='n'&&choice!='Y'&&choice!='N') 
     { 
      cout<<"You have entered an invalid 
choice.\n"<<endl; 
      cout<<"Please limit your choice between 
<y> or <n>"<<endl; 
      cin>>choice; 
     } 
     if(choice=='y'||choice=='Y') 
     { 
      temp.push_back(str); 
      tempString=str.substr(0,str.length()-1); 
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      tempStringIes=str.substr(str.length()-3,3); 
      if(tempStringIes=="ies") 
      { 
       tempString=str.substr(0,str.length()-
3); 
       tempString.append("y"); 
      } 
      cout<<"Is this the singular form of the 
word? <"<<tempString<<">\n" 
       <<"Please enter the appropriate 
number corresponding to your choice\n"  
       << "<y> for Yes\n" << "<n> for No\n" 
<< endl; 
      cin>>confirm; 
     
 while(confirm!='y'&&confirm!='n'&&confirm!='Y'&&confirm!='N') 
      { 
       cout<<"You have entered an invalid 
choice.\n"<<endl; 
       cout<<"Please limit your choice 
between <y> and <n>"<<endl; 
       cin>>confirm; 
      } 
      if(confirm=='y'||confirm=='Y') 
      { 
       temp.push_back(tempString); 
       str=tempString; 
      } 
      else 
      { 
       string newWord="00"; 
       char check='0'; 
       cout<< "Please enter the singular 
form from the previouse word with no spaces in between\n" << endl; 
       cin>>newWord; 
       cout<<"Is the word you have entered 
is <"<<newWord<<">"<<endl; 
       cout<<"Please enter your choice 
below:\n" <<"<y> for Yes\n" << "<n> for No\n" <<endl; 
       cin>>check; 
      
 while(check!='y'&&check!='n'&&check!='Y'&&check!='N') 
       { 
        cout<<"You have entered an 
invalid choice.\n"<<endl; 
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        cout<<"Please limit your 
choice between <y> and <n>"<<endl; 
        cin>>check; 
       }  
       while(check=='n'||check=='N') 
       { 
        cout<< "Please enter the 
singular form from the previouse word with no spaces in between\n" << endl; 
        cin>>newWord; 
        cout<<"Is the word you have 
entered is <"<<newWord<<">"<<endl; 
        cout<<"Please enter your 
choice below:\n" <<"<y> for Yes\n" << "<n> for No\n"<<endl; 
        cin>>check; 
       
 while(check!='y'&&check!='n'&&check!='Y'&&check!='N') 
        { 
         cout<<"You have 
entered an invalid choice.\n"<<endl; 
         cout<<"Please limit 
your choice between <y> and <n>"<<endl; 
         cin>>check; 
        } 
       } 
       temp.push_back(newWord); 
       str=newWord; 
       counter=1; 
      } 
     } 
     if(choice=='n'||choice=='N') 
     { 
      tempString=str; 
      temp.push_back(str); 
      temp.push_back(tempString); 
     } 
    } 
   } 
  } 
 } 
 if (counter == 1) 
 { 
  return 1; // if the form of the word was changed, the memeber function 
returns a 1 
 } 
 else 
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  return 0; // if the form of the word was not changed, the memeber 
function returns a 0 
} 
// a utility function that changes a word from its plural form into its singular form 
without user's feedback. Returns 1 
// the tested word has changed, returns 0 if it is unchanged. 
int DocumentAnalyzer::checkPlural(string & word) 
{ 
 bool isUnecessary=false; 
 bool hasChanged=false; 
 for(int i=0; i<unecessaryWords.size();i++) 
 { 
  if(unecessaryWords[i]==word) 
  { 
   isUnecessary=true; 
   break; 
  } 
 } 
 if(!isUnecessary) 
 { 
  if(word.substr(word.length()-1,1)=="s") 
  { 
   if(word.substr(word.length()-
2,2)!="as"&&word.substr(word.length()-2,2)!="is"&&word.substr(word.length()-
2,2)!="os" 
    &&word.substr(word.length()-
2,2)!="us"&&word.substr(word.length()-2,2)!="ss") 
   { 
    if(word.substr(word.length()-3,3)=="ies") 
     word=word.substr(0,word.length()-3)+"y"; 
    else if(word.substr(word.length()-2,2)=="es") 
    { 
     if(word.substr(word.length()-
4,4)=="sses"||word.substr(word.length()-3,3)=="xes") 
      word=word.substr(0,word.length()-2); 
     else 
      word=word.substr(0,word.length()-1); 
    } 
    else 
     word=word.substr(0,word.length()-1); 
     
    hasChanged=true; 
   } 
  } 
 } 
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 if(hasChanged) 
  return 1; 
 else 
  return 0; 
} 
// a utility function the tests is a word is at the ned of the sentence or not. It takes a 
tring by reference as argument and returns an integer 
int DocumentAnalyzer::endOfSentenceCheck(string & str, int pos) 
{ 
 int counter=0; 
 
 if(str.length()>1) 
 { 
  string last="00"; 
  bool endOfSentenceBool=true; 
  last=str.substr(str.length()-1, 1); 
 
  for (int i=0; i<endOfSentence.size(); i++) // aloop to test if the last letter 
of the word is considered as an end of sentence character 
  { 
   if(last==endOfSentence[i]) 
   { 
    endOfSentenceBool=false; 
   } 
  } 
  if(endOfSentenceBool==false) 
  { 
   string newWord="00"; 
   counter=1; 
   newWord=str.substr(0, str.length()-1); 
   str=newWord; // modifing the passed argument by removing the 
end of sentence chracter 
     
   if(last==".") // testing if the end of sentence was a period or not 
   { 
    for(int k=0; k<prefix.size(); k++) // making sure thatthe 
period was not used for a prefix 
    { 
     if(str==prefix[k]) 
      counter=0; 
    } 
    if(counter==1 && words.size()>(pos+1)) 
    { 
     for(int h=0; h<words[pos+1].length(); h++) 
     { 
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      string q="00"; 
      q=words[pos+1].substr(0,1); 
      for(int g=0; g<startEndCharacters.size(); 
g++) 
      { 
       if(q==startEndCharacters[g]) 
       { 
       
 words[pos+1]=words[pos+1].substr(1, words[pos+1].length()-1); 
        break; 
       } 
      } 
     } 
    } 
    if(counter==1 && words.size()>(pos+1)) // making sure 
thatthe period was not used for abbreviation 
    { 
     string first="00"; 
     first=words[pos+1].substr(0, 1); 
     for(int z=0; z<capitalLetters.size(); z++) 
     { 
      if(first==capitalLetters[z]) 
      { 
       counter=1; 
       break; 
      } 
      else 
       counter=0; 
     } 
    } 
   } 
  } 
 } 
 if(counter==1) 
  return 1; //if the  last letter was an end of sentence, the function returns 
1 
 else 
  return 0; //if the  last letter was not an end of sentence, the function 
returns 0 
} 
// a utility function to check if the word is an unwanted word or not. The function 
takes a string as an argument and returns an integer 
int DocumentAnalyzer::unecessaryWordsCheck(string & str) 
{ 
 int counter=0; 
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 for(int i=0; i<unecessaryWords.size(); i++) // a loop to check if the word is 
considere as an unecessary word or not 
 { 
  if(str==unecessaryWords[i]) 
   counter=1; 
 } 
 
 if(counter==1) 
  return 1; // if the word was found to be unecessary, the function returns 
1 
 else 
  return 0; // if the word was not found to be unecessary, the function 
returns 0 
} 
// a member function that utilizes the diffeent utility functions of the DocuentAnalyzer 
class to process all words and fill the following private data member 
// vector <vector<string>> sentences that holds all sentences of the passed text  
// vector <Word> validTerms that holds word objects. It includes words to be further 
processed 
void DocumentAnalyzer::documentProcessing() 
{ 
 vector<string> temp; 
 vector <string> tempValidTerms; 
 int termCounter=0; 
 
 for(int i=0; i<words.size(); i++) // a loop that iterates through the vector of all 
words 
 { 
   
  bool fullProcess=true; 
  bool endOfSentenceBool=true; 
  int wordValidation=0, size=0; 
   
  upperToLower(words[i]); // converting all upper case letters to lower 
ones. This is to make sure that if a word is included more than once with lower and 
upper case letters, they will be treated the same. 
  // code that defines string senseNum and boolean isTagged=false, and 
checks if word[i] contains '\' 
  // if word[i] contains '\', split word[i] at '\' into word[i] and senseNum and 
make isTagged=true 
  // a loop used to make sure that the edited word has undergone all 
required processing aspects and is ready to be included in the rest of the private 
data members. 
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  // the choosen order of pocessing is set in the follwoing manner to save 
processing time. 
  while(fullProcess==true) 
  { 
   bool startCharacter=true, endCharacter=true, possisive=true, 
plural=true, sentenceTest=true; 
   int sC=0, eC=0, pS=0, pL=0, eS=0; 
   sC=startingcharacter(words[i]); // processing the word for 
starting characters 
   if(sC==1) 
    startCharacter=false; 
   eC=endingCharacter(words[i]); // processing the word for ending 
characters 
   if(eC==1) 
    endCharacter=false; 
   pS=possisveCheck(words[i]); // processing the word for possive 
check 
   if(pS==1) 
    possisive=false; 
   pL=checkPlural(words[i]); // processing the word for plural check 
   if(pL==1) 
    plural=false; 
   eS=endOfSentenceCheck(words[i], i); // testing if the word is at 
the end of a sentence 
   if(eS==1) 
   { 
    sentenceTest=false; 
    endOfSentenceBool=false; 
   } 
  
 if(startCharacter==true&&endCharacter==true&&possisive==true&&plural==tr
ue&&sentenceTest==true) 
   { 
    fullProcess=false;     
   } 
  } 
  // code that appends to word[i] its senseNum before inserting word[i] 
into the sentences vector of vector and 
  // the validTerms vector 
  temp.push_back(words[i]); // pushing back the word into a local vector 
  if(endOfSentenceBool==false) // testing if the word was at the end of 
sentence or not. 
  { 
   vector <int> sentnecCheckVector; 
   int sum=0; 
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   documentSentencesCount++; 
   for(int q=0; q<sentences.size(); q++) 
   { 
    int sentenceEquality=0; 
    if(temp.size()==sentences[q].size()) 
    { 
     for(int w=0; w<sentences[q].size(); w++) 
     { 
      if(temp[w]!=sentences[q][w]) 
      { 
       sentenceEquality=1; 
       break; 
      } 
     } 
    
 sentnecCheckVector.push_back(sentenceEquality); 
    } 
   } 
   if(sentnecCheckVector.size()>=1) 
   { 
    for(int e=0; e<sentnecCheckVector.size(); e++) 
     sum=sum+sentnecCheckVector[e]; 
    if(sum==sentnecCheckVector.size()) 
    { 
     sentences.push_back(temp); // if the word was at 
the end of a sentence, the local vector is pushed back into the private data member 
     temp.clear(); 
    } 
    else 
     temp.clear(); 
   } 
   else 
   { 
    sentences.push_back(temp); // if the word was at the end 
of a sentence, the local vector is pushed back into the private data member 
    temp.clear(); 
   } 
  } 
  wordValidation=unecessaryWordsCheck(words[i]); // performing the 
unecessary word check 
  if(wordValidation==0) // checking if the word is a valid one or not 
  { 
   bool validTermCheck=true; 
   for(int y=0; y<tempValidTerms.size(); y++) 
   { 
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    if(words[i]==tempValidTerms[y]) 
     validTermCheck=false; 
   } 
   if(validTermCheck==true)    
    tempValidTerms.push_back(words[i]); // if the word is a 
valid term; it is inlcuded into a local vector. 
  } 
 } 
 for(int a=0; a<tempValidTerms.size(); a++) // a loop to find the number of 
repetitions of the valid word 
 { 
  for(int b=0; b<words.size(); b++) 
  { 
   if(tempValidTerms[a]==words[b]) 
    termCounter++; 
  } 
  validTerms.push_back(tempValidTerms[a]); // including the created 
object into the private data member 
  wordCount.push_back(termCounter); 
  termCounter=0; 
 } 
 temp.clear(); 
 tempValidTerms.clear(); 
 sorting(validTerms, wordCount); // performing a sort algorithm for the private 
data memeber that includes instances of objects of the Word class 
 setApprovedValidTermsandWordCount(); 
} 
// a utility member function that converts all upper caseletters to lower ones. This is 
to make sure that if a word is included more than once with lower and upper case 
letters, they will be treated the same. 
void DocumentAnalyzer::upperToLower(string & str) 
{ 
 string tempString; 
 tempString.clear(); 
 int stringSize=0; 
 stringSize=str.length(); 
 for(int t=0; t<stringSize; t++) //a loop to iterate through a stringconvering all 
upper case letters to lower ones 
 { 
  string sub="00"; 
  sub=str.substr(t,1); 
  if(sub=="A") 
   sub="a"; 
  if(sub=="B") 
   sub="b"; 
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  if(sub=="C") 
   sub="c"; 
  if(sub=="D") 
   sub="d"; 
  if(sub=="E") 
   sub="e"; 
  if(sub=="F") 
   sub="f"; 
  if(sub=="G") 
   sub="g"; 
  if(sub=="H") 
   sub="h"; 
  if(sub=="I")   
   sub="i"; 
  if(sub=="J") 
   sub="j"; 
  if(sub=="K") 
   sub="k"; 
  if(sub=="L") 
   sub="l"; 
  if(sub=="M") 
   sub="m"; 
  if(sub=="N") 
   sub="n"; 
  if(sub=="O") 
   sub="o"; 
  if(sub=="P")  
   sub="p"; 
  if(sub=="Q") 
   sub="q"; 
  if(sub=="R") 
   sub="r"; 
  if(sub=="S") 
   sub="s"; 
  if(sub=="T") 
   sub="t"; 
  if(sub=="U") 
   sub="u"; 
  if(sub=="V") 
   sub="v"; 
  if(sub=="W") 
   sub="w"; 
  if(sub=="X") 
   sub="x"; 
  if(sub=="Y") 
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   sub="y"; 
  if(sub=="Z") 
   sub="z"; 
  tempString.append(sub); 
 } 
 str=tempString; // modifyingthe initial passed string 
} 
// a utility function to perform a sorting algorithm 
void DocumentAnalyzer::sorting(vector<string> & vecS, vector<int> & vecInt) 
{ 
 for(int i=0; i<vecS.size(); i++) 
 { 
  int maxVal=0, maxPos=0; 
  string maxString="00"; 
  maxVal=vecInt[i]; 
  maxPos=i; 
  maxString=vecS[i]; 
  for(int l=(i+1); l<vecInt.size(); l++) 
  { 
   if(vecInt[l]>maxVal) 
   { 
    maxVal=vecInt[l]; 
    maxPos=l; 
    maxString=vecS[l]; 
   } 
  } 
  vecInt[maxPos]=vecInt[i]; 
  vecInt[i]=maxVal; 
  vecS[maxPos]=vecS[i]; 
  vecS[i]=maxString; 
 } 
} 
// a member function to return the sentences stored in the private data member 
sentences 
void DocumentAnalyzer::getSentences() const 
{ 
 cout<<"The sentences within the edited text after editting are: \n"<<endl; 
 for(int i=0; i<sentences.size(); i++) // a loop to iterate within the main vector 
 { 
  for(int k=0; k<sentences[i].size(); k++) // a loop to iterate within each 
vector of strings stored at each position in the main vector 
  { 
   cout<<sentences[i][k]<< " "; 
  } 
  cout<<"\n"<<endl; 
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 } 
} 
vector<string> & DocumentAnalyzer::getInitialWordList() 
{ 
 return words; 
} 
void DocumentAnalyzer::setApprovedValidTermsandWordCount() 
{ 
 for(int i=0; i<validTerms.size(); i++) 
 { 
  if(wordCount[i]>2) 
  { 
   approvedValidTerms.push_back(validTerms[i]); 
   approvedWordCount.push_back(wordCount[i]); 
  } 
 } 
} 
vector<string> & DocumentAnalyzer::getApprovedValidTerms() 
{ 
 return approvedValidTerms; 
} 
vector<int> & DocumentAnalyzer::getApprovedWordCount() 
{ 
 return approvedWordCount; 

} 

 

// Project Main for Finding Potential Collocations within the Inputted Text 
#include <fstream> // file stream         
using std::ifstream; // input file stream 
using std::ofstream; // output file stream 
#include <iomanip> 
#include <cstdlib>  
#include <iostream> 
#include <vector> 
#include <string> 
#include <cmath> 
//#include <math> 
using namespace std; 
// including the altime header file 
#include "atltime.h" 
#include "DocumentAnalyzer.h" 
#include "CollectionAnalyzer.h" 
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// Global Function to calculate the mean 
double mean(vector<int> v) 
{ 
 double sum=0; 
 for(int i=0; i<v.size(); i++) 
  sum+=v[i]; 
 double mean=sum/v.size(); 
 return mean; 
} 
// Global Function to calculate standard deviation 
double stdDev(vector<int> v, double mean) 
{ 
 double sum=0; 
 for(int i=0; i<v.size(); i++) 
  sum+=pow((mean-v[i]),2)/v.size(); 
 double stdDev=sqrt(sum); 
 return stdDev; 
} 
 
//Main Function 
int main() 
{ 
 //Declairing local variables 
 string iS, name="00"; 
 int wordscount=0, validWindow=0, threshold=0, boarder=0; 
 double average=0.0; 
 const char *namePtr = 0; 
 vector<int> wordCt; 
 double avg=0.0; 
 double sDev=0.0; 
 CTime startTime, endTime; 
 //the user is prompted to input the file name 
 cout<<"Please enter the file name that contains your data to be analysed." 
<<endl; 
 cout<<"Make sure that the file is placed within the folder of this project\n in 
the Visual Studio Directory."<<endl; 
 cout<<"Make sure that the file name is spelled correctly, case-sensitive \n and 
includes the extension <*.dat> or <*.txt>." <<endl; 
 cin>>name; 
 namePtr= name.data ( ); // casting the string into a constant character pointer 
to be used 
 ifstream inClientFile( namePtr, ios::in ); // declairing the input file 
 // exit program if ifstream could not open file 
 if ( !inClientFile ) 
 { 
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  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 ofstream outClientFile( "Term Frequency.txt", ios::out ); // declairing the 
output file 
 // exit program if ifstream could not open file 
 if ( !outClientFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 ofstream outClientFile1( "Initial Strings.txt", ios::out ); // declairing the output 
file 
 // exit program if ifstream could not open file 
 if ( !outClientFile1 ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 ofstream outClientFile2( "tfid Frequency.txt", ios::out ); // declairing the output 
file 
 // exit program if ifstream could not open file 
 if ( !outClientFile2 ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 ofstream outClientFile3( "Weighted Term Frequency.txt", ios::out ); // 
declairing the output file 
 // exit program if ifstream could not open file 
 if ( !outClientFile3 ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 ofstream outClientFile4( "Augmented Weighted Term Frequency.txt", ios::out 
); // declairing the output file 
 // exit program if ifstream could not open file 
 if ( !outClientFile4 ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 const char *filePtr = 0; 
 string fileNameStr; 
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 int loopCounter=0; 
 CollectionAnalyzer C1;// creating an instance of the class collectionanalyzer 
 while(inClientFile>>fileNameStr) 
 { 
  loopCounter++; 
  filePtr=fileNameStr.data(); 
  ifstream inDataBaseFile( filePtr, ios::in ); // declairing the input file 
  // exit program if ifstream could not open file 
  if ( !inDataBaseFile ) 
  { 
   cerr << "File could not be opened" << endl; 
   exit( 1 ); 
  } // end if 
  string tempStr; 
  while(inDataBaseFile>>tempStr) 
  { 
   string ex, space=" "; 
   getline(inDataBaseFile, ex); 
   iS.append(tempStr); 
   iS.append(ex); 
   iS.append(space); 
  } 
  outClientFile1<<iS<<endl; 
 
 outClientFile1<<"=============================================
====================================="<<endl; 
   
  DocumentAnalyzer D1(iS); // creatig an instance of a 
DocumentAnalyzer class object 
  D1.documentProcessing(); // performing document processing 
operations on inputed text 
  if(loopCounter==1) 
  { 
   C1.setInitialCollection(D1.getApprovedValidTerms()); 
   C1.setInitialFrequency(D1.getApprovedWordCount()); 
  } 
  if(loopCounter>1) 
  { 
   C1.searchLoop(D1.getApprovedValidTerms(), 
D1.getApprovedWordCount(), loopCounter); 
  } 
 
  D1.~DocumentAnalyzer(); 
  iS.clear(); // clearing out the initial string to be ready to recieve a new 
one   
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 } 
 
 C1.approvedMatrix(); 
// printing out the matrix 
 for(int n=0; n<C1.getInitialCollectionSize().size(); n++) 
 { 
  outClientFile<<left<<setw(25)<<C1.getInitialCollectionSize()[n]<<" "; 
  for(int m=0; m<C1.getInitialFrequencySize().size(); m++) 
  { 
  
 outClientFile<<left<<setw(10)<<C1.getInitialFrequencySize()[m][n]<<" "; 
  } 
  outClientFile<<endl; 
 } 
 
 C1.TermFrequencyWeight(); 
 
 for(int o=0; o<C1.getInitialCollectionSize().size(); o++) 
 { 
  outClientFile3<<left<<setw(25)<<C1.getInitialCollectionSize()[o]<<" "; 
  for(int p=0; p<C1.getpiFrequencySize().size(); p++) 
  { 
  
 outClientFile3<<left<<setw(10)<<C1.getpiFrequencySize()[p][o]<<" "; 
  } 
  outClientFile3<<endl; 
 } 
 
 C1.dfidfCalculation(); 
 
 for(int o=0; o<C1.getInitialCollectionSize().size(); o++) 
 { 
  outClientFile2<<left<<setw(25)<<C1.getInitialCollectionSize()[o]<<" "; 
  for(int p=0; p<C1.getpFrequencySize().size(); p++) 
  { 
  
 outClientFile2<<left<<setw(10)<<C1.getpFrequencySize()[p][o]<<" "; 
  } 
  outClientFile2<<endl; 
 } 
 
 C1.AugmentedTermFrequencyWeight(); 
 for(int v=0; v<C1.getInitialCollectionSize().size(); v++) 
 { 
  outClientFile4<<left<<setw(25)<<C1.getInitialCollectionSize()[v]<<" "; 
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  for(int s=0; s<C1.getpFrequencySize().size(); s++) 
  { 
  
 outClientFile4<<left<<setw(10)<<C1.getaFrequencySize()[s][v]<<" "; 
  } 
  outClientFile4<<endl; 
 } 
 
 return 0; 

} 
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APPENDIX F (WEIGHTING ALGORITHM) 

 

// CollectionAnalyzer class definition - DocumentAnalyzer class public interface 
#include <iostream> 
#include <vector> 
#include <string> 
using namespace std; 
// preventing multiple inclusion of the header file 
#ifndef COLLECTIONANALYZER_H 
#define COLLECTIONANALYZER_H 
// defining the DocumentAnalyzer class and prototypes 
class CollectionAnalyzer 
{ 
public: 
 void setInitialCollection(vector<string>); 
 void getInitialCollection()const; 
 vector<string> & getInitialCollectionSize(); 
 void setInitialFrequency(vector<int>); 
 void getInitialFrequency() const; 
 vector<vector<int>> & getInitialFrequencySize(); 
 vector<vector<double>> & getpFrequencySize(); 
 vector<vector<double>> & getpiFrequencySize(); 
 vector<vector<double>> & getaFrequencySize(); 
 void print() const; 
 void searchLoop(vector<string>, vector<int>, int); 
 void approvedMatrix(); 
 void TermFrequencyWeight(); 
 void AugmentedTermFrequencyWeight(); 
 void dfidfCalculation(); 
 void processOriginalSpace(); 
 void implementNewSpace(); 
private: 
 vector <string> iCollection; // a vector of a vector of strings representing the 
collection words for each document 
 vector <vector<int>> iFrequency; // a vector of a vector of integers storing the 
frequency of occurrence of each collection word of each document 
 vector <vector<double>> piFrequency; // a vector holding the weighted term 
frequencies. 
 vector <vector<double>> aFrequency; // a vector holding the augmented 
frequencies of terms. 
 vector <string> pCollection; // a vector of a vector of strings representing the 
processed matrix of collection words for each document 
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 vector <vector<double>> pFrequency; // a vector of a vector of integers 
storing the processed dfidf frequency of occurrence of each collection word of each 
document 
 vector <int> dfVector; // a vector including document frequency of terms. 
 vector <int> NVector; // a vector including collection numbers. 
 void addDummyVector(); 
 void matricAdjustment(); 
 vector <string> originalSpace; // a vector of a vector of strings representing 
the original space genereated 
 vector <vector<int>> originalSpaceFrequency; // a vector of a vector of 
integers storing the frequency of occurrence of original space 
}; 
#endif 

--------------------------------------------------------------------------------------------- 

// DocumentAnalyzer class definition - CollectionAnalyzer class public interface 
#include <iostream> 
#include <vector> 
#include <string> 
using namespace std; 
#include "CollectionAnalyzer.h" 
// preventing multiple inclusion of the header file 
#ifndef PROJECT_H 
#define PROJECT_H 
// defining the DocumentAnalyzer class and prototypes 
class DocumentAnalyzer 
{ 
public: 
 DocumentAnalyzer(string="00"); 
 ~DocumentAnalyzer(); 
 void setOriginalString(string); 
 void setWordsVector();  
 void getWordsVector()const; 
 vector<string> & getWordsVectorSize(); 
 void setDocumentWordCount(); 
 int getDocumentWordCount ()const; 
 void setDocumentSentencesCount(); 
 int getDocumentSentencesCount() const; 
 void setWordSignificance(); 
 void getWordSignificance()const;  
 void setStartEndCharacters(); 
 void setUnecessaryWords(); 
 void setEndOfSentence(); 
 void setPrefix(); 
 void setCapitalLetters(); 
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 void documentProcessing(); 
 vector<string> & getInitialWordList(); 
 void setApprovedValidTermsandWordCount (); 
 vector<string> & getApprovedValidTerms(); 
 vector<int> & getApprovedWordCount(); 
 void getSentences() const; 
 void getValidTerms() const; 
 void getWordCount() const; 
 vector<string> & getValidTermsSize(); 
 vector<int> & getWordCountSize(); 
private: 
 // defining the private data memebrs of each object of DocumentAnalyzer 
class  
 int DocumentWordCount; // integer that holds the number of words in a 
provided text 
 int documentSentencesCount; // integer that holds the number of sentences 
in a provided text 
 string originalString; // string that intakes the passed string to be processed 
 vector <string> words; // a vector that holds all words in the passed text 
 vector <vector<string>> sentences; // a vector that holds all sentences of the 
passed text  
 vector <string> validTerms; // a vector that holds word objects. It includes 
words to be further processed 
 vector <int> wordCount; // a vector that hold the number of occurancec of 
each word int he valid terms 
 vector<string> approvedValidTerms; // accepts valid terms that were repeated 
more than a certain number of times 
 vector<int> approvedWordCount; // accepts valid terms counts that were 
repeated more than a certain number of times 
 vector<string> startEndCharacters;// a vector that holds characters to be 
removed from the start and end of word 
 vector<string> unecessaryWords;// a vector that includes words to be 
removed from the text before processing 
 vector<string> endOfSentence;// a vector that includes strings considered to 
be end of sentence characters 
 vector<string> prefix;// a vector including most known prefixes 
 vector<string> capitalLetters;// a vector inlcuding a set of all 26 in the upper 
case form. 
 vector<double> wordSignificance; // a vector of doubles representing the 
signifcance of each repeated term 
 int startingcharacter (string &); // a utility function that removes starting 
characters 
 int endingCharacter (string &); // a utility function that removes ending 
characters 
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 int possisveCheck (string &); // a utility function that removes possisive 
characters 
 int pluralCheck (string &, int); // a utility function that changes a plural forms of 
a word 
 int checkPlural (string &); 
 int endOfSentenceCheck (string &, int); // a utility function that defines he end 
of sentence within a text 
 int unecessaryWordsCheck (string &); // a utility function that removes 
unwanted wards from the text 
 void upperToLower (string &); // a utility function that converts all upper case 
letters to lower ones 
 void sorting (vector<string> &, vector<int> &); // a utility function that performs 
a sorting algorithm 
}; 

#endif 

--------------------------------------------------------------------------------------------- 

// the code utilizes the input/output standard stream, vector, and standard string 
classes  
#include <fstream> // file stream         
using std::ifstream; // input file stream 
using std::ofstream; // output file stream 
#include <iomanip> 
#include <cstdlib>  
#include <iostream> 
#include <vector> 
#include <string> 
#include <cmath> 
//#include <math> 
using namespace std; 
#include <iostream> 
#include <vector> 
#include <string> 
using namespace std; 
//Including header files of DocumentAnalyzer and Word classes 
#include "DocumentAnalyzer.h" 
#include "CollectionAnalyzer.h" 
// declairing member functions 
void CollectionAnalyzer::setInitialCollection(vector<string> iC) 
{ 
 for(int i=0; i<iC.size(); i++) 
 { 
  iCollection.push_back(iC[i]); 
 } 
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} 
void CollectionAnalyzer::getInitialCollection()const 
{ 
 for(int i=0; i<iCollection.size(); i++) 
 { 
  cout<<iCollection[i]<<endl; 
 } 
} 
vector<string> & CollectionAnalyzer::getInitialCollectionSize() 
{ 
 return iCollection; 
} 
void CollectionAnalyzer::setInitialFrequency(vector<int> iF) 
{ 
 iFrequency.push_back(iF); 
} 
void CollectionAnalyzer::getInitialFrequency()const 
{ 
 for(int i=0; i<iFrequency.size(); i++) 
 { 
  for(int j=0; j<iFrequency[i].size(); j++) 
  { 
   cout<<iFrequency[i][j]<" "; 
  } 
  cout<<endl; 
 } 
} 
vector<vector<int>> & CollectionAnalyzer::getInitialFrequencySize() 
{ 
 return iFrequency; 
} 
vector<vector<double>> & CollectionAnalyzer::getpFrequencySize() 
{ 
 return pFrequency; 
} 
vector<vector<double>> & CollectionAnalyzer::getpiFrequencySize() 
{ 
 return piFrequency; 
} 
vector<vector<double>> & CollectionAnalyzer::getaFrequencySize() 
{ 
 return aFrequency; 
} 
void CollectionAnalyzer::print() const 
{ 
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 // printing out the matrix 
 for(int n=0; n<iCollection.size(); n++) 
 { 
  cout<<left<<setw(25)<<iCollection[n]<<" "; 
  for(int m=0; m<iFrequency.size(); m++) 
  { 
   cout<<left<<setw(10)<<iFrequency[m][n]<<" "; 
  } 
  cout<<endl; 
 } 
} 
void CollectionAnalyzer::addDummyVector() 
{ 
 vector<int> tempVector; 
 for(int i=0; i<iCollection.size(); i++) 
 { 
  tempVector.push_back(0); 
 } 
 iFrequency.push_back(tempVector); 
 tempVector.clear(); 
} 
void CollectionAnalyzer::matricAdjustment() 
{ 
 for(int i=0; i<iFrequency.size(); i++) 
 { 
  int missingData=iCollection.size()- iFrequency[i].size(); 
  for(int j=0; j<missingData; j++) 
  { 
   iFrequency[i].push_back(0); 
  } 
  missingData=0; 
 } 
} 
void CollectionAnalyzer::searchLoop(vector<string> iC, vector<int> iF, int counter) 
{ 
 int tempIndex=0; 
 bool tempBool=false; 
 addDummyVector(); 
 for(int i=0; i<iC.size(); i++) 
 { 
  tempIndex=0; 
  for(int j=0; j<iCollection.size(); j++) 
  { 
   if(iC[i]==iCollection[j]) 
   { 
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    tempIndex=j; 
    tempBool=true; 
   } 
  }  
  if(tempBool==true) 
  { 
   iFrequency[counter-1][tempIndex]=iF[i]; 
  } 
  if(tempBool==false) 
  { 
   iCollection.push_back(iC[i]); 
   iFrequency[counter-1].push_back(iF[i]); 
  } 
  tempBool=false; 
 } 
 matricAdjustment(); 
} 
void CollectionAnalyzer::approvedMatrix() 
{ 
 vector<int> sumOverDocuments; 
 vector<string> tempICollection; 
 int sum=0; 
 for(int i=0; i<iCollection.size(); i++) 
 { 
  for(int j=0; j<iFrequency.size(); j++) 
  { 
   sum=sum+iFrequency[j][i]; 
  } 
 
  sumOverDocuments.push_back(sum); 
  sum=0; 
 } 
 for(int v=0; v<iCollection.size(); v++) 
 { 
  tempICollection.push_back(iCollection[v]); 
 } 
 int turn=0; 
 bool first=false; 
 for(int k=0; k<sumOverDocuments.size(); k++) 
 { 
  if(sumOverDocuments[k]<3) 
  {    
   if(k==0) 
   { 
    first=true; 
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    iCollection.erase(iCollection.begin()); 
    for(int t=0; t<iFrequency.size(); t++) 
     { 
      iFrequency[t].erase(iFrequency[t].begin()); 
     } 
   } 
   if(first==true) 
   {      
    if(iCollection[0]==tempICollection[k]) 
    {      
     iCollection.erase(iCollection.begin()); 
     for(int l=0; l<iFrequency.size(); l++) 
     { 
      iFrequency[l].erase(iFrequency[l].begin()); 
     } 
    } 
    else 
    { 
     iCollection.erase(iCollection.begin()+k-1); 
     for(int l=0; l<iFrequency.size(); l++) 
     { 
      iFrequency[l].erase(iFrequency[l].begin()+k-
1); 
     } 
    } 
   } 
   if(first==false) 
   { 
    iCollection.erase(iCollection.begin()+(k-turn)); 
    for(int l=0; l<iFrequency.size(); l++) 
     { 
     
 iFrequency[l].erase(iFrequency[l].begin()+(k-turn)); 
     }  
    turn++; 
   } 
  } 
 } 
} 
// dfidf calculations function 
void CollectionAnalyzer::dfidfCalculation() 
{ 
 vector <double> tempdVector; 
 vector <double> tempNVector; 
 int dfCounter=0; 
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 for(int i=0; i<iCollection.size(); i++) 
 { 
  for(int j=0; j<iFrequency.size(); j++) 
  { 
   if(iFrequency[j][i]>0) 
   { 
    dfCounter++; 
   } 
  } 
  dfVector.push_back(dfCounter); 
  NVector.push_back(iFrequency.size()); 
  dfCounter=0; 
 } 
 for(int t=0; t<iCollection.size(); t++) 
 { 
  double dN=0.0; 
  double dF=0.0; 
  double tempf=0.0; 
  dN=static_cast< double >(NVector[t]); 
  dF=static_cast< double >(dfVector[t]); 
  tempf=log10(dN)-log10(dF); 
  tempdVector.push_back(tempf); 
 } 
 vector <double> tempPFrequency; 
 for(int r=0; r<iCollection.size(); r++) 
 { 
  tempPFrequency.push_back(0.0); 
 } 
 for(int u=0; u<piFrequency.size(); u++) 
 { 
  pFrequency.push_back(tempPFrequency); 
 } 
 tempPFrequency.clear(); 
 double pf=0.0; 
 for(int x=0; x<iCollection.size(); x++) 
 { 
  for(int z=0; z<piFrequency.size(); z++) 
  { 
   if(iFrequency[z][x]>0) 
   { 
    pf=piFrequency[z][x]*tempdVector[x]; 
    pFrequency[z][x]=pf; 
   } 
  } 
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 } 
} 
void CollectionAnalyzer::implementNewSpace() 
{ 
 int fcounter=0; 
 vector<double> tempdf, tempN;  
 for(int i=0; i<iCollection.size(); i++) 
 { 
  tempN.push_back(iFrequency.size()+originalSpaceFrequency.size()); 
  tempdf.push_back(0.0); 
  for(int j=0; j<originalSpace.size(); j++) 
  { 
   if (iCollection[i]==originalSpace[j]) 
   { 
     for (int n=0; n<originalSpaceFrequency.size(); 
n++) 
     { 
      if(originalSpaceFrequency[n][j]>0) 
      { 
       fcounter++; 
      } 
     } 
     for(int k=0; k<iFrequency.size(); k++) 
     { 
      if(iFrequency[k][i]>0) 
      { 
       fcounter++; 
      } 
     } 
     tempdf[i]=fcounter; 
     fcounter=0; 
  } 
 } 
 vector<double> tempdVector; 
 for(int s=0; s<iCollection.size(); s++) 
 { 
  double tempf=0.0; 
  if(tempdf[s]==0) 
  { 
   tempdVector.push_back(0.0); 
  } 
  else 
  { 
   tempf=log10(tempN[s])-log10(tempdf[s]); 
   tempdVector.push_back(tempf); 
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  } 
 } 
 vector <double> tempPFrequency; 
 for(int r=0; r<iCollection.size(); r++) 
 { 
  tempPFrequency.push_back(0.0); 
 } 
 for(int u=0; u<piFrequency.size(); u++) 
 { 
  pFrequency.push_back(tempPFrequency); 
 } 
 tempPFrequency.clear(); 
 
 double pf=0.0; 
 for(int x=0; x<iCollection.size(); x++) 
 { 
  for(int z=0; z<piFrequency.size(); z++) 
  { 
   if(iFrequency[z][x]>0) 
   { 
    pf=piFrequency[z][x]*tempdVector[x]; 
    pFrequency[z][x]=pf; 
   } 
  } 
 } 
} 
static double Log10(double d); 
void CollectionAnalyzer::TermFrequencyWeight() 
{ 
 double tempf=0.0; 
 double l=0.0; 
 vector <double> tempPiFrequency; 
 for(int r=0; r<iCollection.size(); r++) 
 { 
  tempPiFrequency.push_back(0.0); 
 } 
 for(int u=0; u<iFrequency.size(); u++) 
 { 
  piFrequency.push_back(tempPiFrequency); 
 } 
 tempPiFrequency.clear(); 
 
 for (int i=0; i<iCollection.size(); i++) 
 { 
  for(int j=0; j<iFrequency.size(); j++) 
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  { 
   if(iFrequency[j][i]>0) 
   { 
    tempf = static_cast< double >(iFrequency[j][i]); 
    l=log10(tempf); 
    piFrequency[j][i]=1+l; 
   } 
  } 
 } 
} 
void CollectionAnalyzer::AugmentedTermFrequencyWeight() 
{ 
 double tempaf=0.0; 
 double l=0.0; 
 vector <double> tempaiFrequency; 
 for(int r=0; r<iCollection.size(); r++) 
 { 
  tempaiFrequency.push_back(0.0); 
 } 
 for(int u=0; u<iFrequency.size(); u++) 
 { 
  aFrequency.push_back(tempaiFrequency); 
 } 
 tempaiFrequency.clear(); 
 int maxFrequency=0; 
 vector <int> tempMaxFrequency; 
 for (int i=0; i<iCollection.size(); i++) 
 { 
  for(int j=0; j<iFrequency.size(); j++) 
  { 
   if(iFrequency[j][i]>maxFrequency) 
   { 
    maxFrequency=iFrequency[j][i]; 
   } 
   tempMaxFrequency.push_back(maxFrequency); 
  } 
 } 
 double tempA=0.0; 
 double tempAugmentedFrequency=0.0; 
 for (int c=0; c<iCollection.size(); c++) 
 { 
  for (int h=0; h<iFrequency.size(); h++) 
  { 
   tempA=0.5+((0.5*iFrequency[h][c])/tempMaxFrequency[c]); 
   aFrequency[h][c]=tempA; 
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  } 
 } 
} 
void CollectionAnalyzer::processOriginalSpace() 
{ 
 ifstream inUnWordFile( "Term Frequency.txt", ios::in ); // declairing the output 
file 
 // exit program if ifstream could not open file 
 if ( !inUnWordFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 string oWord; 
 int 
f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25,f
26,f27,f28,f29,f30,f31,f32,f33,f34,f35,f36,f37,f38,f39,f40; 
 vector <int> 
v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15,v16,v17,v18,v19,v20,v21,v22,v
23,v24,v25,v26,v27,v28,v29,v30,v31,v32,v33,v34,v35,v36,v37,v38,v39,v40; 
 vector <string> tempSpace; 
 while(inUnWordFile>>oWord>>f1>>f2>>f3>>f4>>f5>>f6>>f7>>f8>>f9>>f10>
>f11>>f12>>f13>>f14>>f15>>f16>>f17>>f18>>f19>>f20>>f21>>f22>>f23>>f24>>f2
5>>f26>>f27>>f28>>f29>>f30>>f31>>f32>>f33>>f34>>f35>>f36>>f37>>f38>>f39>
>f40) 
 { 
  tempSpace.push_back(oWord); 
  v1.push_back(f1); 
  v2.push_back(f2); 
  v3.push_back(f3); 
  v4.push_back(f4); 
  v5.push_back(f5); 
  v6.push_back(f6); 
  v7.push_back(f7); 
  v8.push_back(f8); 
  v9.push_back(f9); 
  v10.push_back(f10); 
  v11.push_back(f11); 
  v12.push_back(f12); 
  v13.push_back(f13); 
  v14.push_back(f14); 
  v15.push_back(f15); 
  v16.push_back(f16); 
  v17.push_back(f17); 
  v18.push_back(f18); 
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  v19.push_back(f19); 
  v20.push_back(f20); 
  v21.push_back(f21); 
  v22.push_back(f22); 
  v23.push_back(f23); 
  v24.push_back(f24); 
  v25.push_back(f25); 
  v26.push_back(f26); 
  v27.push_back(f27); 
  v28.push_back(f28); 
  v29.push_back(f29); 
  v30.push_back(f30); 
  v31.push_back(f31); 
  v32.push_back(f32); 
  v33.push_back(f33); 
  v34.push_back(f34); 
  v35.push_back(f35); 
  v36.push_back(f36); 
  v37.push_back(f37); 
  v38.push_back(f38); 
  v39.push_back(f39); 
  v40.push_back(f40); 
 } 
 for(int i=0; i<tempSpace.size(); i++) 
 { 
  originalSpace.push_back(tempSpace[i]); 
 } 
 originalSpaceFrequency.push_back(v1); 
 originalSpaceFrequency.push_back(v2); 
 originalSpaceFrequency.push_back(v3); 
 originalSpaceFrequency.push_back(v4); 
 originalSpaceFrequency.push_back(v5); 
 originalSpaceFrequency.push_back(v6); 
 originalSpaceFrequency.push_back(v7); 
 originalSpaceFrequency.push_back(v8); 
 originalSpaceFrequency.push_back(v9); 
 originalSpaceFrequency.push_back(v10); 
 originalSpaceFrequency.push_back(v11); 
 originalSpaceFrequency.push_back(v12); 
 originalSpaceFrequency.push_back(v13); 
 originalSpaceFrequency.push_back(v14); 
 originalSpaceFrequency.push_back(v15); 
 originalSpaceFrequency.push_back(v16); 
 originalSpaceFrequency.push_back(v17); 
 originalSpaceFrequency.push_back(v18); 
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 originalSpaceFrequency.push_back(v19); 
 originalSpaceFrequency.push_back(v20); 
 originalSpaceFrequency.push_back(v21); 
 originalSpaceFrequency.push_back(v22); 
 originalSpaceFrequency.push_back(v23); 
 originalSpaceFrequency.push_back(v24); 
 originalSpaceFrequency.push_back(v25); 
 originalSpaceFrequency.push_back(v26); 
 originalSpaceFrequency.push_back(v27); 
 originalSpaceFrequency.push_back(v28); 
 originalSpaceFrequency.push_back(v29); 
 originalSpaceFrequency.push_back(v30); 
 originalSpaceFrequency.push_back(v31); 
 originalSpaceFrequency.push_back(v32); 
 originalSpaceFrequency.push_back(v33); 
 originalSpaceFrequency.push_back(v34); 
 originalSpaceFrequency.push_back(v35); 
 originalSpaceFrequency.push_back(v36); 
 originalSpaceFrequency.push_back(v37); 
 originalSpaceFrequency.push_back(v38); 
 originalSpaceFrequency.push_back(v39); 
 originalSpaceFrequency.push_back(v40);  

} 

--------------------------------------------------------------------------------------------- 

// DocumentAnalyzer member-function definitions - DocumentAnalyzer class 
member-function implementation 
// the code utilizes the input/output standard stream, vector, and standard string 
classes  
#include <fstream> // file stream         
using std::ifstream; // input file stream 
using std::ofstream; // output file stream 
#include <iomanip> 
#include <cstdlib>  
#include <iostream> 
#include <vector> 
#include <string> 
#include <cmath> 
using namespace std; 
#include <iostream> 
#include <vector> 
#include <string> 
using namespace std; 
//Including header files of DocumentAnalyzer and Word classes 
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#include "DocumentAnalyzer.h" 
//Constructor that takes in as an argument the initial string to set its initial private 
data members 
DocumentAnalyzer::DocumentAnalyzer(string s) 
{ 
 setOriginalString(s); 
 setWordsVector(); 
 setDocumentWordCount(); 
 setDocumentSentencesCount(); 
 setStartEndCharacters(); 
 setUnecessaryWords(); 
 setEndOfSentence(); 
 setPrefix(); 
 setCapitalLetters(); 
} 
DocumentAnalyzer::~DocumentAnalyzer() 
{ 
} 
// a set function for the initial string 
void DocumentAnalyzer::setOriginalString(string s) 
{ 
 originalString = s; 
} 
void DocumentAnalyzer::setWordsVector() 
{ 
 int indexOfSpace; 
 string word; 
  
 for(int i=0; i<originalString.length(); i++) 
 { 
  indexOfSpace=originalString.find(" "); 
  word=originalString.substr(0,indexOfSpace); 
  if(indexOfSpace>0) 
  { 
    words.push_back(word); 
   
 originalString=originalString.substr(indexOfSpace+1,originalString.length()-1); 
    i=0; 
  } 
  else 
  { 
   
 originalString=originalString.substr(indexOfSpace+1,originalString.length()-1); 
    i=0; 
  } 
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 } 
} 
//a get function that prints out the words of a document 
void DocumentAnalyzer::getWordsVector() const 
{ 
 for(int k=0; k<words.size(); k++) 
  cout<<words[k]<<endl; 
} 
vector<string> & DocumentAnalyzer::getWordsVectorSize() 
{ 
 return words; 
} 
// a set function to set the private data member DocumentWordCount 
void DocumentAnalyzer::setDocumentWordCount() 
{ 
 DocumentWordCount = words.size(); 
} 
// a get function that returns the number of words in a text 
int DocumentAnalyzer::getDocumentWordCount() const 
{ 
 return DocumentWordCount; 
} 
// a get function to return an aliace of the valid terms vector 
vector<string> & DocumentAnalyzer::getValidTermsSize() 
{ 
 return validTerms; 
} 
// a get function to return an aliace of the wordCount vector 
vector<int> & DocumentAnalyzer::getWordCountSize() 
{ 
 return wordCount; 
} 
// a set function to set the private data memebr startEndCharacters vector 
void DocumentAnalyzer::setStartEndCharacters() 
{ 
 ifstream inCharFile( "startendchar.txt", ios::in ); // declairing the output file 
 // exit program if ifstream could not open file 
 if ( !inCharFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
  
 string end; 
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 while(inCharFile>>end) 
 { 
  startEndCharacters.push_back(end); 
 } 
} 
// a set function to set the private data memebr unecessaryWords vector 
void DocumentAnalyzer::setUnecessaryWords() 
{ 
 ifstream inUnWordFile( "unecessaryWords.txt", ios::in ); // declairing the 
output file 
 // exit program if ifstream could not open file 
 if ( !inUnWordFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
  
 string unword; 
 
 while(inUnWordFile>>unword) 
 { 
  unecessaryWords.push_back(unword); 
 } 
} 
// a set function to set the private data memebr endOfSentence vector 
void DocumentAnalyzer::setEndOfSentence() 
{ 
 ifstream inEndSentFile( "endsentence.txt", ios::in ); // declairing the output file 
 // exit program if ifstream could not open file 
 if ( !inEndSentFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
  
 string endsent; 
 
 while(inEndSentFile>>endsent) 
 { 
  endOfSentence.push_back(endsent); 
 } 
} 
// a set function to set the private data memebr prefix vector 
void DocumentAnalyzer::setPrefix() 
{ 
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 ifstream inPrefixFile( "prefix.txt", ios::in ); // declairing the output file 
 // exit program if ifstream could not open file 
 if ( !inPrefixFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
  
 string pref; 
 
 while(inPrefixFile>>pref) 
 { 
  prefix.push_back(pref); 
 } 
} 
// a set function to set the private data memebr capitalLetters vector 
void DocumentAnalyzer::setCapitalLetters() 
{ 
 ifstream inCapFile( "capittalletters.txt", ios::in ); // declairing the output file 
 // exit program if ifstream could not open file 
 if ( !inCapFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
  
 string cap; 
 
 while(inCapFile>>cap) 
 { 
  capitalLetters.push_back(cap); 
 } 
} 
// a set function to set the private data memebr documentSentencesCount, which 
represents the number of sentences within a text 
void DocumentAnalyzer::setDocumentSentencesCount() 
{ 
 documentSentencesCount=0; 
} 
// a get functionthat returns the private data memebr documentSentencesCount, 
which represents the number of sentences within a text 
int DocumentAnalyzer::getDocumentSentencesCount() const 
{ 
 return documentSentencesCount; 
} 
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// setting the Word Significance vector 
void DocumentAnalyzer::setWordSignificance() 
{ 
 double sum=0.0; 
 for(int i=0; i<validTerms.size(); i++) 
 { 
  sum=sum+wordCount[i]; 
 } 
 for(int s=0; s<validTerms.size(); s++) 
 { 
  double temp=0.0; 
  temp=(((static_cast<double>(wordCount[s])/sum))*100); 
  wordSignificance.push_back(temp); 
 } 
} 
void DocumentAnalyzer::getWordSignificance() const 
{ 
 for(int i=0; i<wordSignificance.size(); i++) 
 { 
  cout<<wordSignificance[i]; 
 } 
} 
// a utility function that removes starting characters. It takes string by reference and 
returns an integer 
int DocumentAnalyzer::startingcharacter(string & str) 
{ 
 int counter=0; 
 string sub="00";  
 sub=str.substr(0,1); 
 for(int i=0; i< startEndCharacters.size(); i++) // a loop to check if the first lette 
in the word is an unwatnted starting character 
 { 
  if (sub==startEndCharacters[i]) 
  { 
   counter=1; // if the first letter in the word is an unwatnted starting 
character a counter is set to 1 
   str=str.substr(1,str.length()-1); 
  } 
 } 
 if (counter == 1) 
  return 1; // the function returns 1 if the first lette in the word is an 
unwatnted starting character  
 else 
  return 0; // the function returns 0 if the first lette in the word is not an 
unwatnted starting character 
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} 
// a utility function that removes ending characters. It takes string by reference and 
returns an integer 
int DocumentAnalyzer::endingCharacter (string & str) 
{ 
 int counter=0; 
 string sub="00";  
 sub=str.substr(str.length()-1,1); 
 for(int i=0; i< startEndCharacters.size(); i++) // a loop to check if the last lette 
in the word is an unwatnted ending character 
 { 
  if (sub==startEndCharacters[i]) 
  { 
   counter=1; // if the last lette in the word is an unwatnted ending 
character a counter is set to 1 
   str=str.substr(0,str.length()-1); 
  } 
 } 
 if (counter == 1) 
  return 1; // the function returns 1 if the last lette in the word is an 
unwatnted ending character 
 else 
  return 0; // the function returns 0 if the last lette in the word is not an 
unwatnted ending character 
} 
// a utility function that removes possisive characters. It takes string by reference and 
returns an integer 
int DocumentAnalyzer::possisveCheck(string & str) 
{ 
 int counter=0; 
 if (str.length()>1) 
 { 
  string last="00"; 
  string beforelast="00"; 
  last=str.substr(str.length()-1,1); 
  beforelast=str.substr(str.length()-2,1); 
  if (last=="s") // nested if conditions to test if the last two letters of a 
word are 's 
  { 
   if (beforelast=="'"||beforelast=="’"||beforelast=="‘") 
   { 
    counter=1; 
    str=str.substr(0,str.length()-2); 
   } 
  } 
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 } 
 if (counter == 1) 
  return 1; // if the last two letters of a word are 's, the function returns 1 
 else 
  return 0; // if the last two letters of a word are not 's, the function 
returns 0 
} 
// a utility function that changes a plural forms of a word. It takes a sting by reference 
and returns an integer 
int DocumentAnalyzer::pluralCheck(string & str, int pos) 
{ 
 static vector<string> temp; 
 string tempString="00", tempStringIes="00"; 
 int counter=0; 
 if(str.length()>1) 
 { 
  string last="00", last2="00"; 
  last=str.substr(str.length()-1,1); 
  last2=str.substr(str.length()-2,2); 
 
  if (last=="s"&&last2!="ss") 
  { 
   bool partOfUnecessaryWors=true; 
 
   for(int i=0; i<unecessaryWords.size(); i++) 
   { 
    if(str==unecessaryWords[i]) 
    { 
     partOfUnecessaryWors=false; 
     break; 
    } 
   } 
   if(partOfUnecessaryWors==true) // if the last letter of a word is 
s, the user is prompter to define if the word is in the plural form or not. If yes, he is 
prompted to enter the singular form. 
   { 
    bool pluralCheckBool=true; 
    if(temp.size()>=1) 
    {      
     for(int v=0; v<temp.size(); v++) 
     { 
      if(str==temp[v]) 
      { 
       pluralCheckBool=false; 
       str=temp[v+1]; 
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       break; 
      } 
     } 
    } 
    if(pluralCheckBool==true) 
    { 
     char choice='0', confirm='0'; 
     
     cout<< "Is the following word in the plural form? 
<"<< str <<">"<<endl; 
      
     if(words.size()>=3) 
     { 
      if(pos==0) 
       cout<< "The Word was mentioned in 
the following context <"<<words[pos]<<" "<<words[pos+1]<<" 
"<<words[pos+2]<<">."<<endl; 
      if(pos>0&&pos<words.size()-1) 
       cout<< "The Word was mentioned in 
the following context <"<<words[pos-1]<<" "<<words[pos]<<" 
"<<words[pos+1]<<">."<<endl; 
      if(pos==words.size()-1) 
       cout<< "The Word was mentioned in 
the following context <"<<words[pos-2]<<" "<<words[pos-1]<<" 
"<<words[pos]<<">."<<endl; 
     } 
 
     cout<< "Please enter the appropriate number 
corresponding to your choice\n"  
      << "<y> for Yes\n" << "<n> for No\n" << 
endl; 
     cin>>choice; 
    
 while(choice!='y'&&choice!='n'&&choice!='Y'&&choice!='N') 
     { 
      cout<<"You have entered an invalid 
choice.\n"<<endl; 
      cout<<"Please limit your choice between 
<y> or <n>"<<endl; 
      cin>>choice; 
     } 
     if(choice=='y'||choice=='Y') 
     { 
      temp.push_back(str); 
      tempString=str.substr(0,str.length()-1); 
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      tempStringIes=str.substr(str.length()-3,3); 
      if(tempStringIes=="ies") 
      { 
       tempString=str.substr(0,str.length()-
3); 
       tempString.append("y"); 
      } 
      cout<<"Is this the singular form of the 
word? <"<<tempString<<">\n" 
       <<"Please enter the appropriate 
number corresponding to your choice\n"  
       << "<y> for Yes\n" << "<n> for No\n" 
<< endl; 
      cin>>confirm; 
     
 while(confirm!='y'&&confirm!='n'&&confirm!='Y'&&confirm!='N') 
      { 
       cout<<"You have entered an invalid 
choice.\n"<<endl; 
       cout<<"Please limit your choice 
between <y> and <n>"<<endl; 
       cin>>confirm; 
      } 
      if(confirm=='y'||confirm=='Y') 
      { 
       temp.push_back(tempString); 
       str=tempString; 
      } 
      else 
      { 
       string newWord="00"; 
       char check='0'; 
       cout<< "Please enter the singular 
form from the previouse word with no spaces in between\n" << endl; 
       cin>>newWord; 
       cout<<"Is the word you have entered 
is <"<<newWord<<">"<<endl; 
       cout<<"Please enter your choice 
below:\n" <<"<y> for Yes\n" << "<n> for No\n" <<endl; 
       cin>>check; 
      
 while(check!='y'&&check!='n'&&check!='Y'&&check!='N') 
       { 
        cout<<"You have entered an 
invalid choice.\n"<<endl; 



319 

        cout<<"Please limit your 
choice between <y> and <n>"<<endl; 
        cin>>check; 
       }  
       while(check=='n'||check=='N') 
       { 
        cout<< "Please enter the 
singular form from the previouse word with no spaces in between\n" << endl; 
        cin>>newWord; 
        cout<<"Is the word you have 
entered is <"<<newWord<<">"<<endl; 
        cout<<"Please enter your 
choice below:\n" <<"<y> for Yes\n" << "<n> for No\n"<<endl; 
        cin>>check; 
       
 while(check!='y'&&check!='n'&&check!='Y'&&check!='N') 
        { 
         cout<<"You have 
entered an invalid choice.\n"<<endl; 
         cout<<"Please limit 
your choice between <y> and <n>"<<endl; 
         cin>>check; 
        } 
       } 
       temp.push_back(newWord); 
       str=newWord; 
       counter=1; 
      } 
     } 
     if(choice=='n'||choice=='N') 
     { 
      tempString=str; 
      temp.push_back(str); 
      temp.push_back(tempString); 
     } 
    } 
   } 
  } 
 } 
 if (counter == 1) 
 { 
  return 1; // if the form of the word was changed, the memeber function 
returns a 1 
 } 
 else 
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  return 0; // if the form of the word was not changed, the memeber 
function returns a 0 
} 
// a utility function that changes a word from its plural form into its singular form 
without user's feedback. Returns 1 
// the tested word has changed, returns 0 if it is unchanged. 
int DocumentAnalyzer::checkPlural(string & word) 
{ 
 bool isUnecessary=false; 
 bool hasChanged=false; 
 for(int i=0; i<unecessaryWords.size();i++) 
 { 
  if(unecessaryWords[i]==word) 
  { 
   isUnecessary=true; 
   break; 
  } 
 } 
 if(!isUnecessary) 
 { 
  if(word.substr(word.length()-1,1)=="s") 
  { 
   if(word.substr(word.length()-
2,2)!="as"&&word.substr(word.length()-2,2)!="is"&&word.substr(word.length()-
2,2)!="os" 
    &&word.substr(word.length()-
2,2)!="us"&&word.substr(word.length()-2,2)!="ss") 
   { 
    if(word.substr(word.length()-3,3)=="ies") 
     word=word.substr(0,word.length()-3)+"y"; 
    else if(word.substr(word.length()-2,2)=="es") 
    { 
     if(word.substr(word.length()-
4,4)=="sses"||word.substr(word.length()-3,3)=="xes") 
      word=word.substr(0,word.length()-2); 
     else 
      word=word.substr(0,word.length()-1); 
    } 
    else 
     word=word.substr(0,word.length()-1); 
     
    hasChanged=true; 
   } 
  } 
 } 
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 if(hasChanged) 
  return 1; 
 else 
  return 0; 
} 
// a utility function the tests is a word is at the ned of the sentence or not. It takes a 
tring by reference as argument and returns an integer 
int DocumentAnalyzer::endOfSentenceCheck(string & str, int pos) 
{ 
 int counter=0; 
 if(str.length()>1) 
 { 
  string last="00"; 
  bool endOfSentenceBool=true; 
  last=str.substr(str.length()-1, 1); 
  for (int i=0; i<endOfSentence.size(); i++) // aloop to test if the last letter 
of the word is considered as an end of sentence character 
  { 
   if(last==endOfSentence[i]) 
   { 
    endOfSentenceBool=false; 
   } 
  } 
  if(endOfSentenceBool==false) 
  { 
   string newWord="00"; 
   counter=1; 
   newWord=str.substr(0, str.length()-1); 
   str=newWord; // modifing the passed argument by removing the 
end of sentence chracter 
     
   if(last==".") // testing if the end of sentence was a period or not 
   { 
    for(int k=0; k<prefix.size(); k++) // making sure thatthe 
period was not used for a prefix 
    { 
     if(str==prefix[k]) 
      counter=0; 
    } 
    if(counter==1 && words.size()>(pos+1)) 
    { 
     for(int h=0; h<words[pos+1].length(); h++) 
     { 
      string q="00"; 
      q=words[pos+1].substr(0,1); 
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      for(int g=0; g<startEndCharacters.size(); 
g++) 
      { 
       if(q==startEndCharacters[g]) 
       { 
       
 words[pos+1]=words[pos+1].substr(1, words[pos+1].length()-1); 
        break; 
       } 
      } 
     } 
    } 
    if(counter==1 && words.size()>(pos+1)) // making sure 
thatthe period was not used for abbreviation 
    { 
     string first="00"; 
     first=words[pos+1].substr(0, 1); 
     for(int z=0; z<capitalLetters.size(); z++) 
     { 
      if(first==capitalLetters[z]) 
      { 
       counter=1; 
       break; 
      } 
      else 
       counter=0; 
     } 
    } 
   } 
  } 
 } 
 if(counter==1) 
  return 1; //if the  last letter was an end of sentence, the function returns 
1 
 else 
  return 0; //if the  last letter was not an end of sentence, the function 
returns 0 
} 
// a utility function to check if the word is an unwanted word or not. The function 
takes a string as an argument and returns an integer 
int DocumentAnalyzer::unecessaryWordsCheck(string & str) 
{ 
 int counter=0; 
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 for(int i=0; i<unecessaryWords.size(); i++) // a loop to check if the word is 
considere as an unecessary word or not 
 { 
  if(str==unecessaryWords[i]) 
   counter=1; 
 } 
 
 if(counter==1) 
  return 1; // if the word was found to be unecessary, the function returns 
1 
 else 
  return 0; // if the word was not found to be unecessary, the function 
returns 0 
} 
// a member function that utilizes the diffeent utility functions of the DocuentAnalyzer 
class to process all words and fill the following private data member 
// vector <vector<string>> sentences that holds all sentences of the passed text  
// vector <Word> validTerms that holds word objects. It includes words to be further 
processed 
void DocumentAnalyzer::documentProcessing() 
{ 
 vector<string> temp; 
 vector <string> tempValidTerms; 
 int termCounter=0; 
 
 for(int i=0; i<words.size(); i++) // a loop that iterates through the vector of all 
words 
 { 
   
  bool fullProcess=true; 
  bool endOfSentenceBool=true; 
  int wordValidation=0, size=0; 
   
  upperToLower(words[i]); // converting all upper case letters to lower 
ones. This is to make sure that if a word is included more than once with lower and 
upper case letters, they will be treated the same. 
   
  // code that defines string senseNum and boolean isTagged=false, and 
checks if word[i] contains '\' 
  // if word[i] contains '\', split word[i] at '\' into word[i] and senseNum and 
make isTagged=true 
 
  // a loop used to make sure that the edited word has undergone all 
required processing aspects and is ready to be included in the rest of the private 
data members. 
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  // the choosen order of pocessing is set in the follwoing manner to save 
processing time. 
  while(fullProcess==true) 
  { 
   bool startCharacter=true, endCharacter=true, possisive=true, 
plural=true, sentenceTest=true; 
   int sC=0, eC=0, pS=0, pL=0, eS=0; 
 
    
   sC=startingcharacter(words[i]); // processing the word for 
starting characters 
   if(sC==1) 
    startCharacter=false; 
   eC=endingCharacter(words[i]); // processing the word for ending 
characters 
   if(eC==1) 
    endCharacter=false; 
   pS=possisveCheck(words[i]); // processing the word for possive 
check 
   if(pS==1) 
    possisive=false; 
   pL=checkPlural(words[i]); // processing the word for plural check 
   if(pL==1) 
    plural=false; 
   eS=endOfSentenceCheck(words[i], i); // testing if the word is at 
the end of a sentence 
   if(eS==1) 
   { 
    sentenceTest=false; 
    endOfSentenceBool=false; 
   } 
  
 if(startCharacter==true&&endCharacter==true&&possisive==true&&plural==tr
ue&&sentenceTest==true) 
   { 
    fullProcess=false;     
   } 
  } 
  // code that appends to word[i] its senseNum before inserting word[i] 
into the sentences vector of vector and 
  // the validTerms vector 
  temp.push_back(words[i]); // pushing back the word into a local vector 
  if(endOfSentenceBool==false) // testing if the word was at the end of 
sentence or not. 
  { 
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   vector <int> sentnecCheckVector; 
   int sum=0; 
 
   documentSentencesCount++; 
 
   for(int q=0; q<sentences.size(); q++) 
   { 
    int sentenceEquality=0; 
 
    if(temp.size()==sentences[q].size()) 
    { 
     for(int w=0; w<sentences[q].size(); w++) 
     { 
      if(temp[w]!=sentences[q][w]) 
      { 
       sentenceEquality=1; 
       break; 
      } 
     } 
    
 sentnecCheckVector.push_back(sentenceEquality); 
    } 
   } 
   if(sentnecCheckVector.size()>=1) 
   { 
    for(int e=0; e<sentnecCheckVector.size(); e++) 
     sum=sum+sentnecCheckVector[e]; 
 
    if(sum==sentnecCheckVector.size()) 
    { 
     sentences.push_back(temp); // if the word was at 
the end of a sentence, the local vector is pushed back into the private data member 
     temp.clear(); 
    } 
    else 
     temp.clear(); 
   } 
   else 
   { 
    sentences.push_back(temp); // if the word was at the end 
of a sentence, the local vector is pushed back into the private data member 
    temp.clear(); 
   } 
  } 
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  wordValidation=unecessaryWordsCheck(words[i]); // performing the 
unecessary word check 
  if(wordValidation==0) // checking if the word is a valid one or not 
  { 
   bool validTermCheck=true; 
   for(int y=0; y<tempValidTerms.size(); y++) 
   { 
    if(words[i]==tempValidTerms[y]) 
     validTermCheck=false; 
   } 
   if(validTermCheck==true)    
    tempValidTerms.push_back(words[i]); // if the word is a 
valid term; it is inlcuded into a local vector. 
  } 
 } 
 
 for(int a=0; a<tempValidTerms.size(); a++) // a loop to find the number of 
repetitions of the valid word 
 { 
  for(int b=0; b<words.size(); b++) 
  { 
   if(tempValidTerms[a]==words[b]) 
    termCounter++; 
  } 
  validTerms.push_back(tempValidTerms[a]); // including the created 
object into the private data member 
  wordCount.push_back(termCounter); 
  termCounter=0; 
 } 
 temp.clear(); 
 tempValidTerms.clear(); 
 sorting(validTerms, wordCount); // performing a sort algorithm for the private 
data memeber that includes instances of objects of the Word class 
 setApprovedValidTermsandWordCount(); 
} 
// a utility member function that converts all upper caseletters to lower ones. This is 
to make sure that if a word is included more than once with lower and upper case 
letters, they will be treated the same. 
void DocumentAnalyzer::upperToLower(string & str) 
{ 
 string tempString; 
 tempString.clear(); 
 int stringSize=0; 
 stringSize=str.length(); 
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 for(int t=0; t<stringSize; t++) //a loop to iterate through a stringconvering all 
upper case letters to lower ones 
 { 
  string sub="00"; 
  sub=str.substr(t,1); 
  if(sub=="A") 
   sub="a"; 
  if(sub=="B") 
   sub="b"; 
  if(sub=="C") 
   sub="c"; 
  if(sub=="D") 
   sub="d"; 
  if(sub=="E") 
   sub="e"; 
  if(sub=="F") 
   sub="f"; 
  if(sub=="G") 
   sub="g"; 
  if(sub=="H") 
   sub="h"; 
  if(sub=="I")   
   sub="i"; 
  if(sub=="J") 
   sub="j"; 
  if(sub=="K") 
   sub="k"; 
  if(sub=="L") 
   sub="l"; 
  if(sub=="M") 
   sub="m"; 
  if(sub=="N") 
   sub="n"; 
  if(sub=="O") 
   sub="o"; 
  if(sub=="P")  
   sub="p"; 
  if(sub=="Q") 
   sub="q"; 
  if(sub=="R") 
   sub="r"; 
  if(sub=="S") 
   sub="s"; 
  if(sub=="T") 
   sub="t"; 
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  if(sub=="U") 
   sub="u"; 
  if(sub=="V") 
   sub="v"; 
  if(sub=="W") 
   sub="w"; 
  if(sub=="X") 
   sub="x"; 
  if(sub=="Y") 
   sub="y"; 
  if(sub=="Z") 
   sub="z"; 
  tempString.append(sub); 
 } 
 str=tempString; // modifyingthe initial passed string 
} 
// a utility function to perform a sorting algorithm 
void DocumentAnalyzer::sorting(vector<string> & vecS, vector<int> & vecInt) 
{ 
 for(int i=0; i<vecS.size(); i++) 
 { 
  int maxVal=0, maxPos=0; 
  string maxString="00"; 
  maxVal=vecInt[i]; 
  maxPos=i; 
  maxString=vecS[i]; 
  for(int l=(i+1); l<vecInt.size(); l++) 
  { 
   if(vecInt[l]>maxVal) 
   { 
    maxVal=vecInt[l]; 
    maxPos=l; 
    maxString=vecS[l]; 
   } 
  } 
  vecInt[maxPos]=vecInt[i]; 
  vecInt[i]=maxVal; 
  vecS[maxPos]=vecS[i]; 
  vecS[i]=maxString; 
 } 
} 
// a member function to return the sentences stored in the private data member 
sentences 
void DocumentAnalyzer::getSentences() const 
{ 
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 cout<<"The sentences within the edited text after editting are: \n"<<endl; 
  
 for(int i=0; i<sentences.size(); i++) // a loop to iterate within the main vector 
 { 
  for(int k=0; k<sentences[i].size(); k++) // a loop to iterate within each 
vector of strings stored at each position in the main vector 
  { 
   cout<<sentences[i][k]<< " "; 
  } 
  cout<<"\n"<<endl; 
 } 
} 
vector<string> & DocumentAnalyzer::getInitialWordList() 
{ 
 return words; 
} 
void DocumentAnalyzer::setApprovedValidTermsandWordCount() 
{ 
 for(int i=0; i<validTerms.size(); i++) 
 { 
  if(wordCount[i]>2) 
  { 
   approvedValidTerms.push_back(validTerms[i]); 
   approvedWordCount.push_back(wordCount[i]); 
  } 
 } 
} 
vector<string> & DocumentAnalyzer::getApprovedValidTerms() 
{ 
 return approvedValidTerms; 
} 
 
vector<int> & DocumentAnalyzer::getApprovedWordCount() 
{ 
 return approvedWordCount; 

} 

 

// Project Main for Finding Potential Collocations within the Inputted Text 
#include <fstream> // file stream         
using std::ifstream; // input file stream 
using std::ofstream; // output file stream 
#include <iomanip> 
#include <cstdlib>  
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#include <iostream> 
#include <vector> 
#include <string> 
#include <cmath> 
//#include <math> 
using namespace std; 
// including the altime header file 
#include "atltime.h" 
#include "DocumentAnalyzer.h" 
#include "CollectionAnalyzer.h" 
// Global Function to calculate the mean 
double mean(vector<int> v) 
{ 
 double sum=0; 
 for(int i=0; i<v.size(); i++) 
  sum+=v[i]; 
 double mean=sum/v.size(); 
 return mean; 
} 
// Global Function to calculate standard deviation 
double stdDev(vector<int> v, double mean) 
{ 
 double sum=0; 
 for(int i=0; i<v.size(); i++) 
  sum+=pow((mean-v[i]),2)/v.size(); 
 double stdDev=sqrt(sum); 
 return stdDev; 
} 
//Main Function 
int main() 
{ 
 //Declairing local variables 
 string iS, name="00"; 
 int wordscount=0, validWindow=0, threshold=0, boarder=0; 
 double average=0.0; 
 const char *namePtr = 0; 
 vector<int> wordCt; 
 double avg=0.0; 
 double sDev=0.0; 
 CTime startTime, endTime; 
 //the user is prompted to input the file name 
 cout<<"Please enter the file name that contains your data to be analysed." 
<<endl; 
 cout<<"Make sure that the file is placed within the folder of this project\n in 
the Visual Studio Directory."<<endl; 
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 cout<<"Make sure that the file name is spelled correctly, case-sensitive \n and 
includes the extension <*.dat> or <*.txt>." <<endl; 
 cin>>name; 
 namePtr= name.data ( ); // casting the string into a constant character pointer 
to be used 
 ifstream inClientFile( namePtr, ios::in ); // declairing the input file 
 // exit program if ifstream could not open file 
 if ( !inClientFile ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 ofstream outClientFile2( "tfid Frequency.txt", ios::out ); // declairing the output 
file 
 // exit program if ifstream could not open file 
 if ( !outClientFile2 ) 
 { 
  cerr << "File could not be opened" << endl; 
  exit( 1 ); 
 } // end if 
 const char *filePtr = 0; 
 string fileNameStr; 
 int loopCounter=0; 
 CollectionAnalyzer C1;// creating an instance of the class collectionanalyzer 
 while(inClientFile>>fileNameStr) 
 { 
  loopCounter++; 
  filePtr=fileNameStr.data(); 
  ifstream inDataBaseFile( filePtr, ios::in ); // declairing the input file 
  // exit program if ifstream could not open file 
  if ( !inDataBaseFile ) 
  { 
   cerr << "File could not be opened" << endl; 
   exit( 1 ); 
  } // end if 
  string tempStr; 
  while(inDataBaseFile>>tempStr) 
  { 
   string ex, space=" "; 
   getline(inDataBaseFile, ex); 
   iS.append(tempStr); 
   iS.append(ex); 
   iS.append(space); 
  } 
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  DocumentAnalyzer D1(iS); // creatig an instance of a 
DocumentAnalyzer class object 
  D1.documentProcessing(); // performing document processing 
operations on inputed text 
 
  if(loopCounter==1) 
  { 
   C1.setInitialCollection(D1.getApprovedValidTerms()); 
   C1.setInitialFrequency(D1.getApprovedWordCount()); 
  } 
  if(loopCounter>1) 
  { 
   C1.searchLoop(D1.getApprovedValidTerms(), 
D1.getApprovedWordCount(), loopCounter); 
  } 
 
  D1.~DocumentAnalyzer(); 
  iS.clear(); // clearing out the initial string to be ready to recieve a new 
one   
 } 
 C1.approvedMatrix(); 
 C1.processOriginalSpace(); 
 C1.TermFrequencyWeight(); 
 C1.implementNewSpace(); 
 for(int o=0; o<C1.getInitialCollectionSize().size(); o++) 
 { 
  outClientFile2<<left<<setw(25)<<C1.getInitialCollectionSize()[o]<<" "; 
  for(int p=0; p<C1.getpFrequencySize().size(); p++) 
  { 
  
 outClientFile2<<left<<setw(10)<<C1.getpFrequencySize()[p][o]<<" "; 
  } 
  outClientFile2<<endl; 
 } 
 return 0; 

} 
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