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Abstract

Large-eddy simulation (LES) of wind and wave forced oceanic turbulent boundary layers is

performed using the residual-based variational multiscale method (RBVMS) and near-wall mod-

eling. Wind and surface gravity wave forcing generates Langmuir turbulence characterized by

Langmuir circulation (LC) with largest scales consisting of streamwise vortices aligned in the di-

rection of the wind, acting as a secondary flow structure to the primary wind-driven component of

the flow. The LES here is representative of a shallow water continental shelf flow (10 to 30 meters

in depth) far from lateral boundaries in which LC engulfs the full depth of the water column and

disrupts the bottom log layer. Field measurements indicate that occurrence of full-depth LC is

typical during the passage of storms. The RBVMS method with quadratic NURBS (Non-Uniform

Rational B-splines) with near-wall resolution is shown to possess good convergence characteris-

tics for this flow. The use of near-wall modeling facilitates simulations with expanded domains

over horizontal directions. Thus, these simulations are able to resolve multiple Langmuir cells

permitting analysis of the interaction between the cells. Results in terms of velocity statistics are

presented from simulations performed with various domain sizes and distinct near-wall treatments:

(1) the classical treatment based on prescription of the wall shear stress assuming a law of the wall

and (2) a recent treatment based on weak imposition of the no-slip bottom boundary condition.

vii



Chapter 1:

Introduction

1.1 Introduction to Turbulence and Turbulence-Resolving Computation

Turbulence is a commonly occurring phenomenon influencing many aspects of our lives. Tur-

bulence is experienced by us all the time and everywhere one can imagine. Fluid flows around

cars, ships and air crafts, blood flow in our veins and flows in the atmosphere and oceans can all

be characterized as turbulent flows spanning different spatial and temporal ranges of scales.

During his laboratory experiments on water flow through long tubes in 1883, Osborne Reynolds

introduced the dimensionless Reynolds number, Re, to characterize pipe flows into laminar or

turbulence regimes. Reynolds’ published article based on those experiments was the first step

towards scientific study of turbulence. Reynolds showed that the smooth flow in a pipe breaks

down into a random, chaotic and eddying turbulent motion when Re≥ 2000. The Reynolds number

is directly proportional to pipe diameter and mean velocity of the fluid and inversely proportional

to the fluid’s kinematic viscosity. In a more physical sense, Re is the ratio of inertial forces to

viscous forces.

Of interest in this research are oceanic boundary layer flows. Looking at averaged Reynolds

number values for typical ocean flows (of order of 4×108 based on a characteristic velocity scale

and length scale) reported in the literature [59], we realize that these values by far exceed the

critical value (≈ 2000) prescribed by Reynolds for pipe flows. Although generalizing pipe flows
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to averaged ocean flows seems unreasonable and even though Reynolds number values higher

than the critical value do not necessarily indicate a turbulent regime, the truth is that the ocean is

turbulent with relatively large eddy structures (larger than those in pipe flows).

The motion of fluids is considered as one the most difficult problems of mathematics and

modern physics. The existence and uniqueness of solutions to the Navier-Stokes equations which

govern fluid flow behavior including turbulence is yet not proved and this problem is considered

as one of the seven Millennium Prize Problems. Despite the challenges posed by this problem, a

wealth of knowledge has been gained about turbulence through numerical solutions of the Navier-

Stokes equations. Capability of numerical simulations of turbulence, however, is limited by serious

drawbacks due to the complex nature of turbulent flows and the high price of scientific computing.

Turbulent flows are characterized by fluctuating velocity and pressure fields. There is a wide

range of fluctuation scales in a fully turbulent flow. Among these scales or eddies are those of

very small size and high frequency which can be less than on the order of millimeters and sec-

onds. Ideally, numerical simulation should be capable of resolving all of the small and large scales

characteristic of the turbulence in what is often referred to as direct numerical simulation or DNS.

According to [10], the number of grid points required to fully resolve the flow grows as Re9/4.

As it was discussed earlier, the average Reynolds number for the ocean is of order of 4× 108.

For atmospheric boundary layer flows, the averaged Reynolds number and consequently the afore-

mentioned order are even higher. To this date, DNS for such high Reynolds number flows are well

beyond the capability of any existing computer.

Given that DNS is far too expensive to be used in applied fields of engineering and geophysical

sciences, introducing proper physical and mathematical models is vital. One of the most pop-

ular methods for reducing the cost of turbulence computations is large eddy simulation (LES).
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The history of LES dates back to the early 1960s when Smagorinsky [49] introduced his famous

subgrid-scale stress model. LES could roughly be described as cutting off those scales smaller

than a certain size and explicitly computing (or resolving) the larger scales, giving rise to a com-

putationally less expensive simulation. In traditional LES, the cutting or filtering of small scales is

accomplished via application of an explicit low-pass spatial filter to the Navier-Stokes equations.

According to the Kolmogorov energy cascade theory, in a turbulent flow, energy is passed from

larger scales to smaller scales [43]. At the smallest scales, molecular viscosity acts as a converter of

energy into heat. Thus, small scales play an important role in determining the energy distribution

across scales in a turbulent flow and may not be overlooked. In LES, a so called residual stress

arises from the filtering of the Navier-Stokes equations, serving to drain energy from the resolved

scales thereby modelling the effect of unresolved scales on the resolved ones. This stress is often

referred to as the subgrid-scale (SGS) stress as it accounts for the effect of unresolved scales which

typically correspond to scales of size on the order of the grid size and smaller.

In order to introduce an energy dissipating model (i.e. an SGS model) there are two very

naturally distinctive paths to follow, namely, physical or purely mathematical. The traditional

approach in LES to model energy dissipation is based on the physics of turbulent flows. The most

common model is the well-known Smagorinsky SGS stress model [49]. This model consists of

an eddy (or turbulent) viscosity-based representation of the residual stress in the filtered Navier-

Stokes equations. Eddy viscosity-based SGS stress models are analogous to the molecular viscous

stress also present in the Navier-Stokes equations. In the latter, molecular viscosity accounts for

the effect of molecular dynamics on scales at the continuum level governed by the Navier-Stokes

equations. In the former, the eddy viscosity accounts for the effect of unresolved scales on resolved

scales, as described earlier.
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u

ū

u′

Figure 1.1: Splitting of velocity field (u) into resolved (ū) and subgrid-scale (u′) components in

the RBVMS method. This is analogous to the explicit filtering operation in traditional LES which

splits the velocity field into a filtered (resolved) component and a residual component.

Most numerical discretizations implicitly add artificial dissipation in order to provide stability

to solutions. As such, a more recent approach in LES is to not introduce the filtering operation

bypassing the need for an SGS stress model, but to rather let the numerical dissipation implicit in

most discretizations account for the dissipation caused by the unresolved scales. This approach is

often referred to as monotone integrated LES or MILES (or alternatively implicit LES) [6, 16].

An example of the implicit LES approach is the residual-based variational multiscale (RB-

VMS) method introduced in [21] and further developed for the Navier-Stokes equation in [3].

The RBVMS is the method of choice in this research. This method consists of a discretization

technique for advection-dominated phenomena such as turbulent flows. This method is purely

numerical and is derived from the mathematics of splitting the space of solutions into scales re-

solvable by the grid and smaller subgrid scales unresolved by the grid (see Figure 1.1), analogous

to spatial filtering in traditional LES. This splitting applies to all possible flow regimes and is

not unique to turbulence. The splitting generates a discrete equation governing the dynamics of

the resolved scales and a continuum equation governing the behavior of the unresolved, subgrid
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scales. Solution of the discrete equation yields the resolved velocity and pressure associated with

the larger eddies or scales of a turbulent flow. The two equations are coupled, and in particular, the

discrete equation governing the larger scales contains a term defined in terms of the SGS velocity

and pressure components. This approach calls for solution of the large scale components only via

the discrete equation, thus SGS velocity and pressure components are not directly accessible. In-

stead, mathematical approximations (simplifications) of the continuum equations governing these

SGS components are made leading to approximate analytical solutions for the SGS velocities and

pressure which are then used to approximate the coupling term appearing in the discrete equation

for the large scales. Approximation of the coupling term in the large scale discrete equation is

often referred to as an SGS model, and thus is similar in nature to the SGS stress model in tradi-

tional, spatial filtering-based LES. However, note that typically the SGS stress model in the latter

approach is represented via the Smagorinsky stress model derived directly under the physical as-

sumption of a Kolmogorov energy cascade across the turbulent scales, as described earlier. In the

case of the RBVMS method, no such physical considerations are made and the SGS velocity and

thus the coupling term in the discrete equation for the large scales are approximated solely based

on mathematical considerations.

Studies in [3, 5] have shown the ability of the RBVMS method (with solution variables ex-

pressed in terms of non-Uniform rational B-splines (NURBS) basis functions) to accurately capture

the largest resolved scales in LES of various turbulent flows. Thus, the RBVMS method behaves

as an SGS LES model when used to solve turbulent flows and the methodology will be referred

to as RBVMS LES. But beyond this, the method serves as a numerical stabilization technique en-

abling stable and accurate solutions of advection-dominated processes that could be either laminar

or turbulent. It can be shown that the RBVMS method consists of a Galerkin weighted residual
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statement plus stabilization terms arising from the multiscale decomposition described previously.

It has been well-established that without such stabilization, the Galerkin method yields unstable

solutions of advection-dominated processes [8]. These solutions are characterized by parasitic

(unphysical) node-to-node oscillations.

To summarize, in LES of turbulent flows, the role of the RBVMS method (i.e. the Galerkin

method plus stabilization) is two-fold (1) serving as an SGS LES model in the traditional sense

of subgrid-scales draining energy from resolved scales and (2) serving to numerically stabilize the

discretization due to the advective nature of all turbulent flows.

Next we discuss yet another key feature in studying analytical and numerical fluid dynamics

that is the concept of boundary layer. Prandtl boundary layer theory divides wall-bounded flows

into two different regions: the core region (or outer layer) in which viscous effects are insignificant

and the area near the wall (or inner layer) in which viscosity plays an important role and should

not be neglected. Within the inner layer, velocity vanishes rapidly due to the no-slip condition,

thereby inducing a fairly large velocity gradient.

The existence of sharp gradients in very thin layers poses enormous computational difficulty

and cost when numerical simulations are performed. According to [41], the number of grid points

required to resolve the outer layer is proportional to Re0.5 while the number of grid points required

to resolve the inner layer is Re2.4. To reduce this computational cost, yet another level of modeling

is introduced to LES which is referred to as wall modeling [41]. The idea behind wall modeling is

to only resolve the core flow and model the inner layer with suitable boundary conditions in what

is often referred to as LES with near-wall modeling or LES-NWM. With the lower computation

cost brought about with wall models, more realistic problems in terms of computational domain
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size and Reynolds number can be solved when compared to those of DNS and LES with resolution

of the inner layer (i.e. LES with near-wall resolution or LES-NWR).

1.2 Turbulence in The Coastal Ocean

For this dissertation, RBVMS LES-NWM will be applied to turbulence in the coastal ocean,

and in particular to Langmuir turbulence generated by wave-current interaction.

Wind speeds greater than 3 m s−1 can lead to the generation of Langmuir turbulence in the

upper ocean [58]. Interaction between surface gravity waves and the wind-driven shear current

in the upper ocean is well-known to produce Langmuir turbulence characterized by Langmuir

circulation or cells consisting of parallel counter-rotating vortices roughly aligned in the direction

of the wind (see Figure 1.2). The longest Langmuir cells extend in the downwind direction for

tens of meters to kilometers. In the upper ocean mixed layer, the cells can extend to the base of

the mixed layer which is tens of meters deep, depending on various factors such as winds, surface

waves and surface buoyancy conditions. In shallow coastal shelf regions, Langmuir cells have been

observed occupying the full-depth of the water column while serving as an important mechanism

for sediment re-suspension [17, 18]. These cells have been observed in water columns ranging

from 10 to 30 meters deep. Furthermore, these cells can interact with the tidally-driven and/or

wind-driven bottom boundary layer leading to disruption of the classical log-layer dynamics often

observed in this region [45, 53].

Wind-wave interaction giving rise to Langmuir circulation is not the only source of turbu-

lence in the ocean. Other sources include destabilizing surface heat fluxes leading to convection-

dominated turbulence and surface wave-breaking serving to inject turbulence at the surface. In
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Figure 1.2: (a) Sketch of Langmuir cells and (b) photograph of windrows consisting of foam lined

up along the surface convergence zone of the Langmuir cells. Source: [45].

coastal regions, these turbulence regimes often occur embedded within a field of submesoscale

and mesoscale eddies characterized by horizontal scales on the order of tens and hundreds of kilo-

meters respectively. In coastal regions, submesoscale eddies resulting from instabilities at river

plume density fronts have been identified as an important mechanism for transport from on-shore

to off-shore and vice-versa [19]. Furthermore, in idealized simulations characterized by artificially

imposed density fronts generating submesoscale eddies [38], Langmuir submesoscales interac-

tions have been shown to be important as Langmuir circulation can counteract the re-stratifying

tendency of the submesoscale eddies. In cases when front conditions are not favorable to the

generation of submesoscale eddies at a density front, the idealized simulations of [48] (similar to

those of [38]) have shown that Langmuir circulation rapidly mixes the front through vertical and

horizontal transport induced by the cells.

In [45], it is hypothesized that Langmuir turbulence and associated Langmuir cells may also

potentially play an important role in coastal upwelling dynamics in concert with other mechanisms

involving stratification, bottom topography and Coriolis forcing effects. The Coriolis effect gives
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rise to Ekman transport consisting of surface currents directed at right angles to the direction of

the winds in the Northern Hemisphere (and vice-versa in the Southern Hemisphere). In the coastal

shelf, along-shore winds can cause Ekman surface transport offshore. As a result, warm surface

water flowing away from the coast is replaced by colder bottom water brought by upwelling cross-

shore currents. As shown by the two-dimensional simulations in [15], strong mixing of the water

column in regions closest to the coast (i.e. the inner shelf region) can limit the cross-shore extent of

upwelling currents, forcing these currents to rise and reverse direction farther off-shore (i.e. at dis-

tances farther away from the coast). This results in a shut-down of cross-shelf transport of nutrients

within the inner shelf, as well-mixed water becomes trapped at the coast. In [45] it is hypothesized

that the shut-down mechanism may be enhanced by the intense vertical mixing caused by the ac-

tion of full-depth Langmuir cells. Furthermore, Langmuir submesoscale interactions developing

at the density front established by the upwelling current may also be important.

1.3 Motivation and Objectives

Current regional and coastal circulation models are not able to resolve down to Langmuir tur-

bulence scales due to the need of resolving much larger submesoscale and mesoscale eddies that

require computational domains of horizontal size on the order of hundreds of kilometers or greater.

Furthermore typical regional and coastal circulation models solve the governing equations under

the hydrostatic approximation which is only valid for scales of greater size than the submesoscales

[35] and thus not valid for accurately resolving turbulent scales. The importance of Langmuir

turbulence in shallow coastal regions as well as the recently uncovered Langmuir submesoscale

interactions previously described give rise to the need of developing numerical codes (or solvers)
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capable of performing LES that resolves down to the Langmuir turbulence scales and up to the sub-

mesoscales while simultaneously being able to handle complex geometry features due to bottom

bathymetry and lateral boundaries in coastal regions. Such a code could potentially serve to pre-

dict transport in coastal regions including estuaries over relatively short time scales on the order of

days and relatively short distances on the order of tens of kilometers, which is often heavily influ-

enced by turbulence and submesoscales. This numerical capability could potentially be a valuable

resource for tracking/predicting the path of accidentally spilled materials such as oil products and

other pollutants.

Ideally, computational methods for turbulent flow must be able to resolve, or accurately model

all the relevant flow scales and their interactions in the presence of complex geometrical config-

urations. Most current computational approaches for turbulent flows involve efficient techniques

that are based on high-order functions (e.g. global polynomial and Fourier (spectral) bases) able

to accurately represent the resolved small scale physics in turbulent processes. Such techniques

are limited to simple geometry and mesh configurations and periodic boundary conditions. On the

other end of the spectrum, much progress has been made over the last several decades on the com-

putation of flows over complex geometrical configurations. These methods, based on low-order

functional representations, are able to represent relatively well the gross features of a given turbu-

lent flow, yet they do not possess the high-order accuracy of the aforementioned spectral techniques

to predict the more detailed features of the flow. More specifically, these methods are often not able

to predict accurately the smallest resolved scales in a computation. Thus, it appears that there is

a gap between techniques capable of accurately capturing all resolved scales in turbulent flows on

simple geometries and techniques capable of accurately resolving only large scale (gross) features

on complex geometries. In order to bridge this gap, a methodology is necessary that simultane-
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ously possesses superior approximation and uniform convergence behavior over a wide range of

spatial and temporal scales, necessary for capturing flow physics, and the geometrical flexibility,

necessary for geophysical applications such as LES of coastal and estuarine flows. The RBVMS

method of [21] together with NURBS basis representation of flow variables, recently proposed and

tested for turbulence computations in [3], is an excellent candidate for the task and is the method

of choice for this research. NURBS are spline basis functions that can be used to approximate

the space of solutions to the governing equations and may be used for representation of complex

geometry. These basis functions are locally supported, and possess spectral-like approximation

properties compared to standard complex-geometry approaches (e.g. low-order finite elements)

[22].

In order to develop a code capable of performing RBVMS LES of flows in coastal regions and

estuaries, advances in numerous research areas must be made. Next, several of these areas are

described.

• Computing at extreme scales: Simulations resolving submesoscale eddies as well as the

small scale turbulence regimes require horizontal domain lengths on the order of tens of

kilometers with grid cell sizes on the order of meters. These resolution needs may be satis-

fied with meshes consisting of grid points on the order of billions thereby demanding com-

putations at extreme scales. The code used in this research has been written using message

passing interface (MPI) protocols enabling parallel computing [60]. Furthermore, meshing

strategies suitable for the solver are being developed (e.g. [61]) admitting computations at

extreme scales.
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• Open boundary conditions: Simulations of flows in coastal regions and estuaries require

imposition of turbulent flow variables (e.g. velocity, temperature, salinity, etc.) at open

boundaries based on data obtained from coastal circulation models. Difficulty with these

variables arises from the fact that the circulation models do not resolve the turbulence. Thus,

the turbulent component of the prescribed boundary condition has to be calculated syntheti-

cally. Research addressing this issue has been presented in [39].

• Bottom boundary conditions: Given that the near-wall region in wall-bounded turbulent

flows is expensive to resolve, LES simulations are often performed without resolution of this

region (as described earlier). LES without resolution of the wall region requires a wall model

often consisting of a wall shear stress boundary condition relying on the assumption that the

near-wall region is characterized by a well-develop log layer [41]. However, as noted earlier,

full-depth Langmuir cells in the coastal ocean have been shown to disrupt bottom log layer

dynamics in LES simulations with near-wall resolution [53]. Thus, further research should

investigate the suitability of near-wall models for LES simulations of full-depth Langmuir

cells. This topic is of focus in this dissertation and will be presented in detail in Chapters 4

and 6. In particular, wall models within the RBVMS LES methodology will be assessed in

the presence of full-depth Langmuir cells. Additional developments in wall-modeling with

RBVMS LES in general will be presented in Chapter 5.

• Craik-Leibovich vortex force: As noted earlier, Langmuir turbulence and associated Lang-

muir cells are generated by the interaction of the wind-driven shear current with surface grav-

ity waves. In order to avoid resolution of surface gravity waves, the Langmuir turbulence

generating mechanism in LES is often represented via the well-known Craik-Leibovich (C-
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L) vortex force [11] added to the momentum equation. The C-L vortex force consists of the

cross product between Stokes drift velocity induced by surface gravity waves and flow vor-

ticity. In [54], this C-L vortex force has been shown to be of an advective nature, requiring a

modification of the RBVMS method (i.e. a modification to the stabilization of the Galerkin

method). This topic will be the focus of Chapter 3.

• Stratification: Surface buoyancy (surface cooling or surface heating) and or submescoscale

eddies among other factors may lead to stratification of the local water column. In par-

ticular, stable stratification leads to suppression of turbulence fluctuations [2], and thus a

numerical method that can accurately capture this effect is of importance. Stably stratified

turbulence has been numerically studied primarily using high order discretization techniques

(e.g. see [2]) and the ability of lower order discretizations to accurately represent this turbu-

lence regime remains largely unexplored.

The developments presented in this dissertation constitute an initial attempt towards RBVMS

of the coastal ocean. As such, this dissertation focuses on the third and fourth research areas

summarized above. Chapter 2 gives a description of the RBVMS method while highlighting the

spatial stabilization required for the advection-dominated flows encountered, the time integration

scheme and the handling of nonlinearities. Chapter 3 introduces the Craik-Leibovich vortex force

augmenting the Navier-Stokes equations and describes the stabilization of this term within the

RBVMS framework as originally proposed in [54]. Chapter 3 also presents LES simulations of

full-depth Langmuir cells with the RBVMS method using a quadratic NURBS mesh able to resolve

the near-wall region (i.e. LES-NWR). Chapter 4 investigates the performance of two near-wall

models in LES simulations of full-depth Langmuir cells without resolution of the near-wall region
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(i.e. LES-NWM). Chapter 5 extends the use of these near-wall models to RBVMS simulations

based on the Reynolds-averaged Navier-Stokes equations in which the Langmuir turbulence is not

resolved, but rather parametrized via an eddy viscosity. Chapter 6 revisits RBVMS LES-NWM and

proposes a new wall model shown to significantly improve results in simulations of open channel

flow. Finally, Chapter 7 presents a summary of important accomplishments and results derived

from the research and provides future research directions.

14



Chapter 2:

Discretization of The Navier-Stokes Equation

In this chapter the spatial and time discretizations of the Navier-Stokes equation used in this

research are presented. Spatial discretization consists of the residual-based variational multiscale

(RBVMS) method. The RBVMS method together with representation of velocity and pressure

variables in terms of, for example, standard finite element-based tri-linear Lagrange shape func-

tions or non-Uniform rational B-splines (NURBS) give rise to a semi-discrete system. Gauss

quadrature of weak form spatial integrals associated with the RBVMS method results in a system

of first-order, nonlinear ordinary differential equations (ODEs) in time. The coupled ODEs are in-

tegrated using the generalized-α method described in [30], which reduces the ODEs to a system of

nonlinear algebraic equations, solved via a predictor-multicorrector algorithm. The generalized-α

method is a second-order scheme with user control over damping at high frequencies.

The work for this dissertation has been performed using an existing code (solver) implement-

ing the previously summarized solution schemes. Various versions of this code are at the core of

research on-going at several institutions. The code dates back to the 1980s when it was initially

developed by T.J.R. Hughes and his group at Stanford University for the solution of fluid dynamics

problems with stabilized finite elements [9]. Work on this code was continued at Rensselaer Poly-

technic Institute (RPI) and more recently at University of Colorado, Boulder by K.E. Jansen and

his group, with emphasis on the extension of stabilized finite element methods to computations of

turbulent flows [28, 56] and on the development of new unstructured mesh partition schemes to
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enable computations at extreme scale [61]. The latter is also the focus of O. Sahni and his group at

RPI. The RBVMS method along with NURBS basis for the Navier-Stokes equation were proposed

and implemented within this code by Y. Bazilevs, V. Calo, A. Cotrell and T.J.R Hughes at Uni-

versity of Texas, Austin. Work in these areas and extensions to fluid-structure interactions among

others has been continued by Y. Bazilevs and his group at University of California, San Diego.

This chapter provides an introduction to the previously described solution techniques in prepa-

ration for application of these techniques to wind and wave-driven boundary layer flows in the

coastal ocean.

2.1 Spatial Discretization: The RBVMS Method

It is well-known the Galerkin method is unstable for advective-diffusive systems such as the

Navier-Stokes equation, yielding solutions characterized by unphysical oscillations when advec-

tion is dominant over diffusion. A simple demonstrations in two-dimensions can be found in [8].

In addition to being unstable under dominant advection (over diffusion), the Galerkin method is

susceptible to a second instability arising for certain approximation spaces of velocity and pres-

sure that do not satisfy the well-known Babuska-Brezzi condition. Residual-based methods such

as a the streamline upwind Petrov/Galerkin (SUPG) method were designed to remedy these spatial

instabilities of the Galerkin method via the addition of stabilization terms to the Galerkin residual

statement (i.e. the Galerkin weak form). These methods have been shown to damp unphysical os-

cillations under advection-dominated flow regimes and to allow equal order approximation spaces

for velocity and pressure thereby circumventing the Babuska-Brezzi condition. For more details

please see [60] and references within. The stabilization terms themselves are residual-based, en-
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suring consistency of the formulation. In other words, an exact solution of the Navier-Stokes

equations also satisfy the stabilized formulation exactly. Furthermore, these methods have been

shown to posses good convergence properties across the full range of advective and diffusive phe-

nomena (e.g. linear finite elements lead to second order accuracy in terms of the L2 error norm;

see [60]).

Although stabilized methods had been in use dating back to the early 80s [8], a general frame-

work for their derivation was not presented until 1995 in [21]. In the variational multiscale frame-

work of [21], solution variables are split into a resolvable component (corresponding to the larger

scales) and an unresolved component (corresponding to finer scales). The resolvable scales are

those admitted by the discretization (e.g. the approximation solution spaces and the grid) while

unresolved scales are those unsupported by the discretization typically of size smaller than the

grid cell size, hence these latter scales are often referred to as subgrid scales. The splitting of

the solution variables generates a discrete equation governing the dynamics of the resolved com-

ponent and a continuum equation governing the behavior of the unresolved, subgrid-scale (SGS)

component. The two equations are coupled, and in particular, the discrete equation governing the

resolved component contains a term defined in terms of the SGS variables. Simplifications of the

continuum equation are made leading to approximate analytical solutions for the SGS variables

which are then used to approximate the coupling term appearing in the discrete equation for the

resolved scales, giving rise to the stabilized method.

At about the same time that the variational multiscale framework was introduced, stabilized

methods such as SUPG began to be applied for large-eddy simulation (LES) of turbulent flows

(e.g. see [27]). Turbulent flows are characterized by a wide range of spatial and temporal scales.

The range of scales increases with increasing Reynolds number, making the resolution of all of the
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scales intractable for most flows of interest. In traditional LES, a low-pass, spatial filter is applied

to the Navier-Stokes equation in order to filter out scales smaller than the filter width [43]. The

resulting filtered equations govern the behavior of the larger more energetic scales (i.e. the large

eddies) which (because of their size range) may be resolved with a coarser (less expensive) grid

than the full range of scales extending out to the smallest eddies. Filtering generates an extra stress

tensor in the filtered Navier-Stokes equation often referred to as the residual stress or the SGS

stress. This stress represents the effect of the unresolved scales on the resolved scales which is

primarily to drain energy from the resolved scales. The SGS stress is typically modeled or approx-

imated via an eddy viscosity model such as the Smagorinsky model [49]. In [56], it was shown

that stabilization techniques such as SUPG serve to drain energy from resolved scales analogous

to the SGS stress (modeled, say, with the Smagorinsky model). The fact that the modeled SGS

stress and stabilization terms behave similarly suggests a redundancy, and perhaps one of these

two sinks may be discarded from the formulation. However, this should not be the case, as will

become apparent in the upcoming sub-section.

The spatial filtering operation in traditional LES splits the velocity field (u) into a resolved

(filtered) component (ū) and a residual (SGS) component (u′):

u = ū+u′ (2.1)

A sketch showing these components for a simple function is shown in Figure (2.1). In [25], the

splitting of solution variables in the variational multiscale framework of [21] was re-introduced as

an alternative to the spatial filtering operation in classical LES in (2.1). Using this approach, in [3]

stabilized methods were re-casted as LES SGS models in what is referred to as residual-based vari-
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Figure 2.1: Sketch showing the effect of spatial filtering in traditional LES. The filtered function

is denoted as f̄ . Filtering damps scales on the order of the filter width ∆ or less. In the variational

multiscale framework of [21], decomposition of approximation spaces gives rise to a resolvable

component analogous to f̄ .

ational multiscale (RBVMS) LES. In [3], the RBVMS LES approach was shown to yield accurate

solutions of canonical turbulence problems such as turbulent channel flow and forced isotropic tur-

bulence. Furthermore, representation of solution variables (approximation spaces) in terms of non-

Uniform rational B-splines (NURBS) within this framework yielded superior approximation of

turbulent scales compared to linear finite elements. For example, in simulations of forced isotropic

turbulence, the RBVMS method with quadratic and cubic NURBS elements yielded an energy

spectrum in closer agreement with the expected (theoretical) spectrum compared to the RBVMS

method with linear finite elements. All three simulations had the same number of elements.

2.1.1 Weak Form of The Navier-Stokes Equation

Next, the weak form of the Navier-Stokes equations is presented, in preparation for an intro-

duction to the RBVMS method.
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Let Ω ∈ R
3 be the problem domain and let Γ denote its boundary. The boundary is expressed

as Γ = ΓE ∪ΓN where ΓN is the portion where essential boundary conditions are applied and ΓN

is where natural (Neumann) boundary conditions are applied. The dimensionless Navier-Stokes

equation (conservation of momentum) and continuity equation (conservation of mass) for an in-

compressible fluid may be written as

∂u

∂ t
+∇ · (u⊗u)+∇p−∇ · (2ν∇su) = f in Ω (2.2)

∇ ·u = 0 in Ω (2.3)

where t is time, u = (u1,u2,u3)
T and p are the fluid velocity and pressure (divided by density), ν

is kinematic viscosity, ∇s = 1
2

(
∇+(∇)T

)
is the symmetric spatial gradient of the velocity (with

∇ = (∂/∂x1,∂/∂x2,∂/∂x3)
T ), and f is a body force per unit mass. The expression u⊗u is a tensor

with entries given by uiu j.

The first step in deriving the weak form of the flow equations in (6.1) consists of dotting the

momentum equation with weighting vector w and multiplying the continuity equation by weight

function q. The two equations are integrated over the problem domain Ω and may be added to-

gether for simplicity since the entries of w (w1,w2,w3) and q are independent of each other. Ad-

vection, pressure, viscous stress and continuity equation terms are integrated by parts giving rise

to the weak form. Formally, the weak form of the strong form problem in (6.1) can be stated as

follows: Let V denote the solution space for the velocity-pressure pair {u, p} and let W denote the

weighting space for the momentum and continuity weighting functions {w,q}. Find {u, p} ∈ V
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such that ∀{w,q} ∈ W ,

B({w,q},{u, p})+(w,unu+ pn−2ν∇su ·n)Γ +(q,un)Γ = (w, f)Ω (2.4)

where

B({w,q},{u, p}) =

(

w,
∂u

∂ t

)

Ω

− (∇w,u⊗u)Ω − (∇ ·w, p)Ω+(∇sw,2ν∇su)Ω − (∇q,u)Ω.

(2.5)

In the above, (·, ·)A denotes the L2-inner product over A defined as

(a,b) =
∫

A
a ·b dA. (2.6)

Furthermore un = u ·n where n denotes the outward unit normal vector to the boundary, Γ.

The boundary integrals in (2.4) yield

(w,unu+ pn−2ν∇su ·n)Γ +(q,un)Γ = (w, pn−2ν∇su ·n)ΓN
(2.7)

making use of the fact that (1) in flow problems considered here un = 0 over the entire boundary

Γ and (2) the integral over the essential portion of the boundary ΓE is zero since w = 0 on ΓE as is

traditionally chosen [20]. Finally, the term {pn−2ν∇su ·n}ΓN
appearing in the right hand side of

(2.7) corresponds to the known traction on ΓN .
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Making use of (2.7), the weak form in (2.4) can be re-written as

B({w,q},{u, p}) = (w, f)Ω+(w,2ν∇su ·n− pn)ΓN
. (2.8)

where terms involving known quantities such as the body force f and the traction on ΓN appear on

the right hand side.

2.1.2 The RBVMS Method for The Weak Form of The Navier-Stokes Equations

In the variational multiscale method of [21], solution and weight spaces are split into resolvable

or discrete components (denoted by superscript h) and unresolved or subgrid-scale components

(denoted by a prime) via direct summation:

V = V
h ⊕V

′ and W = W
h ⊕W

′ (2.9)

The resolvable (discrete) components may be spanned, for example, by standard finite element-

based tri-linear Lagrangian basis functions or non-Uniform rational B-splines (NURBS); the latter

is the method of choice in this research based on the positive results described earlier (e.g. in

[3]) and will be presented in some detail in the next chapter. On the other hand, the unresolved,

subgrid-scale components are not discrete but rather infinite-dimensional. Given the direct sums in

(2.9), the trial solution ({u, p} belonging to space V ) and weighting functions ({w,q} belonging

to space W ) can be expressed as

u = uh +u′ (2.10)

w = wh +w′ (2.11)
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p = ph + p′ (2.12)

q = qh +q′ (2.13)

Inserting (2.10-2.13) into the left hand side of (2.8) and inserting (2.11) into the right side of

(2.8), expanding (while recalling (2.5)) and grouping terms weighted by wh and its gradient leads

to the following postulation: Let V
h denote the discrete solution space for the velocity-pressure

pair {uh, ph} and let W h denote the discrete weighting space for the momentum and continuity

weighting functions {wh,qh}. The problem statement now becomes as follows: Find {uh, ph} ∈

V h such that ∀{wh,qh} ∈ W h,

B({wh,qh},{uh, ph})+Bvms({wh,qh},{uh, ph}) = (wh, fh)Ω +
(

wh,2ν∇suh ·n− phn
)

ΓN

.

(2.14)

where the Galerkin terms are

B({wh,qh},{uh, ph}) =

(

wh,
∂uh

∂ t

)

Ω

−
(

∇wh,uh ⊗uh
)

Ω
− (∇ ·wh, ph)Ω (2.15)

+
(

∇swh,2ν∇suh
)

Ω
− (∇qh,uh)Ω.

and the terms associated with the variational multiscale (VMS) method are

Bvms({wh,qh},{uh, ph}) =

(

wh,
∂u′

∂ t

)

Ω

−
(

∇wh,u′⊗uh +uh ⊗u′+u′⊗u′
)

Ω

−(∇ ·wh, p′)Ω +
(

∇swh,2ν∇su′
)

Ω
− (∇qh,u′)Ω. (2.16)
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The pair {u′, p′} appearing in (2.16) denotes the velocity and pressure subgrid scales that are too

small to be reasonably approximated on a given mesh and will be the topic of discussion next. The

term
(
∇wh,u′⊗uh +uh ⊗u′

)

Ω
is referred to as the cross stress and the term

(
∇wh,u′⊗u′

)

Ω
is

referred to as the Reynolds stress [25].

In order to find an (approximate) expression for the subgrid-scale components u′ and p′, a

second equation may be obtained by re-inserting (2.10-2.13) into the left hand side of (2.8) and

re-inserting (2.11) into the right side of (2.8) and expanding as was done before, but now grouping

terms weighted by w′ and its gradient. Note that the resulting equation is not discrete but rather

of infinite dimension, thus this equation can be referred to as a continuum equation as was done

earlier. The interested reader is directed to [3] for this equation. In [21] analysis of a simpler, but

analogous equation for the subgrid-scale velocity arising in a VMS framework application to the

steady, linear, advection-diffusion equation lead to an analytical expression for the scalar analog

of u′. In [3], this analysis was extended to the more general setting of the Navier-Stokes equation

resulting in the following residual-based expressions:

u′ =− τM

(
∂uh

∂ t
+uh∇uh +∇ph −ν∆uh − fh

)

p′ =− τC∇ ·uh (2.17)

where the residual of the Navier-Stokes equation (with the viscous stress (the term proportional to

ν) simplified by making use of the continuity equation) appears in the expression for u′ and the

residual of the continuity equation appears in the expression for p′. Furthermore ∆ is the Laplacian

and τM and τC are subgrid-scale parameters also known as stabilization parameters to be described

further below.
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Discarding the Reynolds stress and the time derivative and spatial gradients of u′ in (2.16) and

using the expressions in (2.17) to evaluate the cross stress term in (2.16) leads to the SUPG method

as used in [56]. Furthermore, the latter simplifications but while approximating the Reynolds stress

term via the well-known Smagorinsky eddy viscosity model [49] leads to a method equivalent to

the overall method of [56] in which SUPG stabilization is combined with the Smagorinsky model

in traditional LES sense (i.e. LES based on spatial filtering as described earlier). Further models of

the Reynolds stress based on variations of the Smagorinsky model have been proposed and studied

in [25, 29]. In the implementation followed in this research, the cross stress and Reynolds stress

terms have all been evaluated using the expression for u′ given in (2.17). This gives rise to what

is termed as residual-based variational multiscale (RBVMS) LES, first proposed in [3]. The name

“residual-based” follows from the fact that all of the subgrid-scale terms in (2.16) are approximated

with the residual-based expressions in (2.17), thereby making the entire formulation residual-based

and thus consistent. Consistency refers to the fact that an exact solution pair {u, p} of the Navier-

Stokes and continuity equations would also satisfy exactly the RBVMS LES formulation.

In summary, the VMS method, described here for the Navier-Stokes equation, admits two

important stress terms: the cross stress and the Reynolds stress. Approximation of the cross stress

gives rise to the ingredients required for a stabilized method. Meanwhile, the Reynolds stress

consists of a term that may be modeled, for example, proportional to the residual of the Navier-

Stokes equation (see (2.17) or in terms of the Smagorinsky SGS stress as it is often done for

the spatially filtered Navier-Stokes equation employed in traditional LES. Thus, the VMS method

may be considered not only as the progenitor of stabilized methods (noted in [3]), but also as

the progenitor of methods resulting from combination of stabilized methods with traditional LES

approaches (e.g. see [29]).
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The stability parameters τM and τC (appearing in (2.17)) are chosen based on extensive research

of the the stabilized methods community, e.g. see [3, 9, 26, 57]. Parameter τM is taken as

τM =

(
C1

∆t2
+uh ·Guh +C2Gi jGi jν

2

)−
1
2
. (2.18)

where ∆t is time step, and constants C1 and C2 may be obtained from convergence analysis of the

SUPG method applied to a one-dimensional, advection-diffusion equation with constant advection

velocity [60]. The term G = [Gi j] is the metric-tensor of the mapping from the physical domain to

the parametric domain of the finite element or NURBS element. The tensor entries are defined as

Gi j =
∂ξk

∂xi

∂ξk

∂x j
(2.19)

where x=(x1,x2,x3)
T denotes the coordinates of an element in physical space and ξ =(ξ1,ξ2,ξ3)

T

denotes the coordinates of the element in parametric space. Parameter τM above may be shown

to come from a discrete approximation of L
−1

ad where Lad = ∂/∂ t +u ·∇− ν∆. Alternatively,

τM may be seen as a generalization of the analogous parameter arising from the analysis of the

one-dimensional, steady state, linear advection-diffusion equation with linear finite elements. In

the case of the latter equation, an exact stability parameter may be found. This exact stability pa-

rameter leads to a nodally exact linear finite element solution [21]. It may be shown (see [13]) that

an approximation of the exact stabilization parameter for the one-dimensional, steady state, linear

advection-diffusion equation is

τ =

(

C1
U2

h2
+C2

κ2

h2

)−1/2

(2.20)
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where U and κ are the constant advecting velocity and diffusivity. Coefficient In the generalized

expression in (2.18) metric-tensor G may be associated with an element length scale; for example,

in the case of a cube-shape element with edges of length h, Gi j = (4/h2)δi j where δi j is the Kro-

necker delta. Furthermore, the terms uh ·Guh and Gi jGi jν
2 in (2.18) are analogous, and actually

reduce to 4U2/h2 and C2κ2/h2, respectively, in (2.20) for 1D flow.

Stability parameter τC is taken as

τC =
1

τMg ·g
(2.21)

where the entries of vector g are

gi =
3

∑
j=1

∂ζ j

∂xi
(2.22)

As noted in [3], this definition of τC arises from a discrete approximation of ∇ ·L −1
ad ∇, where Lad

was defined earlier above.

To recapitulate, the RBVMS LES approach followed here is: Find {uh, ph} ∈ V h such that

∀{wh,qh} ∈ W
h,

B({wh,qh},{uh, ph})+Bvms({wh,qh},{uh, ph}) = (w, f)Ω+
(

wh,2ν∇suh ·n− phn
)

ΓN

. (2.23)

where the Galerkin terms are

B({wh,qh},{uh, ph}) =

(

wh,
∂uh

∂ t

)

Ω

−
(

∇wh,uh ⊗uh
)

Ω
− (∇ ·wh, ph)Ω (2.24)

+
(

∇swh,2ν∇suh
)

Ω
− (∇qh,uh)Ω.
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and the simplified VMS terms are

Bvms({wh,qh},{uh, ph}) =−
(

∇wh,u′⊗uh +uh ⊗u′+u′⊗u′
)

Ω

−(∇ ·wh, p′)Ω − (∇qh,u′)Ω. (2.25)

with all subgrid-scale terms defined through (2.17), (2.18) and (2.21). For simplicity when working

with the time discretization in the upcoming section, let (2.23) be re-expressed as

B̃({wh,qh},{uh, ph}) = L̃({wh,qh},{uh, ph}) (2.26)

2.2 Time Discretization: The Generalized-α Method

Time discretization is accomplished via the generalized-α method introduced for the first time

for the Navier-Stokes equation in [30]. As noted earlier, this method is second-order accurate while

providing user control over damping at high frequencies.

Expanding the weighting functions and solution variables in (2.24-2.25) in terms of basis NA

(where this could be a Lagrangian basis or NURBS basis, for example) with A = 1, ...nb and nb

being the number of basis functions,

φ =
nb

∑
A=1

φA(t)NA(x), (2.27)

the RBVMS method leads to a set of non-linear ordinary differential equations (ODEs) which may

be expressed in residual form as

R(V, V̇,P) = 0 (2.28)
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In the previous expression, V, V̇ and P denote vectors of nodal (in the case of Lagrangian basis) or

control point (in the case of NURBS) degrees of freedom of velocity, acceleration, and pressure,

respectively (e.g. the φA’s in (2.27)). Note that in the generalized-α method, acceleration is viewed

as independent. The system in (2.28) may be re-expressed as







RM

RC







=







0

0







(2.29)

where the momentum residual RM corresponds to the portions of R in (2.28) multiplying wh and its

gradient and the continuity residual RC corresponds to the portions of R multiplying the gradient

of qh. The entries of RM may be obtained from

RM = [RM
A,i] with

RM
A,i = B̃({NAei,0},{uh, ph})− L̃({NAei,0},{uh, ph})

(2.30)

for A = 1 · · ·nb and i = 1,2,3, where e1 = (1,0,0)T e2 = (0,1,0)T and e3 = (0,0,1)T . The B̃ and

L̃ operators were defined in (2.26). Similarly, the entries of RC may be obtained from

RC = [RC
A] with

RC
A = B̃({0,NA},{uh, ph})− L̃({0,NA},{uh, ph})

(2.31)

Applying the generalized-α method to solve the non-linear ODE system in (2.29) leads to the

following set of equations

RM(V̇n+αm
,Vn+α f

,Pn+1) = 0 (2.32)

RC(V̇n+αm
,Vn+α f

,Pn+1) = 0 (2.33)
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V̇n+αm
= V̇n +αm(V̇n+1 − V̇n) (2.34)

Vn+α f
= Vn +α f (Vn+1 −Vn) (2.35)

Vn+1 = Vn +∆tV̇n + γ∆t(V̇n+1− V̇n) (2.36)

to solve for V̇n+1, Vn+1, V̇n+αm
, Vn+α f

and Pn+1, given vectors V̇n and Vn In these equations

∆t = tn+1− tn is the time step size and tn+α f
and tn+αm

are intermediate times between tn and tn+1.

Parameters αm, α f and γ control the accuracy and stability of the method. Second-order accuracy

is obtained setting

γ = 1/2+αm −α f (2.37)

and unconditional stability is obtained if

αm ≥ α f ≥ 1/2. (2.38)

A one-parameter family of schemes possessing second-order accuracy and unconditional stability

(i.e. satisfying the two previous relations) is obtained by setting

αm =
1

2

(
3−ρ∞

1+ρ∞

)

and α f =
1

1+ρ∞
(2.39)

where parameter ρ∞ controls damping at high frequencies [30, 60]. As noted in [30], setting ρ∞

to 1 preserves all frequencies of the usual linear test problem ẏ = λy. On the other end of the

spectrum, setting ρ∞ = 0 leads to annihilation of the highest frequency in one time step.
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Application of the generalized-α method to the spatially discrete RBVMS formulation for

momentum and continuity equations led to the system of algebraic equations in (2.32-2.36). Equa-

tions (2.32) and (2.33) are non-linear, thus solution of the system requires an iterative solution

technique, taken here as Newton’s method. Incorporation of Newton’s method gives rise to a

predictor-multicorrector scheme.

The predictor stage of the predictor-multicorrector scheme sets

Vn+1,(0) = Vn (2.40)

V̇n+1,(0) =
(γ −1)

γ
V̇n (2.41)

Pn+1,(0) = Pn (2.42)

where the subscript 0 refers to the fact that this is an initial estimate of the solution required to

begin the iterative (multi-corrector) stage.

The multi-corrector stage consists of iterations (denoted by subscript i) through the following

steps:

1. Evaluate acceleration and velocity at intermediate time steps (tn+αm
, tn+α f

) and pressure at

tn+1 as

V̇n+αm,(i) = V̇n +αm(V̇n+1,(i−1)− V̇n) (2.43)

Vn+α f ,(i) = Vn +α f (Vn+1,(i−1)−Vn) (2.44)

Pn+1,(i) = Pn+1,(i−1) (2.45)
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2. Insert the previous expressions in the residuals in (2.32) and (2.33) and solve the following

corresponding linear systems admitted by Newton’s method:

K(i)∆V̇n+1,(i)+G(i)∆Pn+1,(i) =−RM
(i) (2.46)

D(i)∆V̇n+1,(i)+L(i)∆Pn+1,(i) =−RC
(i) (2.47)

3. Solving the previous linear system leads to the following updates:

V̇n+1,(i) = V̇n+1,(i−1)+∆V̇n+1,(i) (2.48)

Vn+1,(i) = Vn+1,(i−1)+ γ∆t∆V̇n+1,(i) (2.49)

Pn+1,(i) = Pn+1,(i−1)+∆Pn+1,(i) (2.50)

The tangent matrices in (2.46)-(2.47) arising from Newton’s method are as follows:

K(i) =
∂RM

(i)(V̇n+αm,(i),Vn+α f ,(i),Pn+1,(i−1))

∂ V̇n+1,(i)

(2.51)

G(i) =
∂RM

(i)(V̇n+αm,(i),Vn+α f ,(i),Pn+1,(i−1))

∂Pn+1,(i)
(2.52)

D(i) =
∂RC

(i)(V̇n+αm,(i),Vn+α f ,(i),Pn+1,(i−1))

∂ V̇n+1,(i)

(2.53)

L(i) =
∂RC

(i)(V̇n+αm,(i),Vn+α f ,(i),Pn+1,(i−1))

∂Pn+1,(i)
(2.54)

Expressions for the entries of these matrices in terms of the basis function NA can be found in [3].
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2.3 Summary

This chapter summarized the discretization approaches for the governing fluid flow equations

(Navier-Stokes and continuity equations) used in this research. Spatial discretization consists in the

RBVMS method which serves to stabilize the formulation under advection-dominated phenomena

such as turbulent flow regimes. Furthermore, the RBVMS method serves to provide energy dissi-

pation of the resolved scales in the sense of traditional LES-based subgrid-scale modeling. Time

discretization consists of the generalized-α method providing a family of second-order accurate,

unconditionally stable schemes with user-controlled damping of high-frequency content. Spatial

and time discretizations of weak form of the governing equations results in a set of nonlinear al-

gebraic equations which are handled via Newton’s method. The combination of the generalized-α

method and the Newton’s method results in a predictor-multicorrector algorithm.

In the upcoming chapter, a term will be added to the momentum equation in order to represent

surface wave-current interaction giving rise to Langmuir turbulence, a typical turbulence regime

occurring in the upper ocean. The added term can be shown to be of advective nature, thereby

requiring modification of the RBVMS method and associated stability parameters described above.
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Chapter 3:

RBVMS LES of Shallow Water Langmuir Turbulence

All the figures here were regenerated are different from those in that paper. Surface wave

effects play an important role in determining surface boundary fluxes of momentum, energy and

scalars and ultimately vertical mixing [14]. Wave-current interaction is among several flow phe-

nomena generating turbulence in the upper ocean; others include wind- and tidal-driven shear,

buoyancy-driven convection and wave breaking. Wind speeds greater than 3 m s−1 often lead to

wave-current interaction sufficiently strong to generate Langmuir circulation (LC), consisting of

pairs of parallel counter-rotating vortices (or cells) oriented approximately in the downwind di-

rection, as shown in the sketch in Figure 1.2a in Chapter 1. The cells are characteristic of the

turbulence (i.e. the Langmuir turbulence) advected by the mean flow. As with all turbulence,

Langmuir turbulence encompasses a range of spatial and temporal scales. Amongst the larger

spatial scales are those of the cells which extend in the downwind direction for tens of meters to

kilometers and are separated by distances on the order of meters [58].

The surface convergence of each cell generates a downwelling region characterized by negative

vertical velocity fluctuations while the bottom divergence generates an upwelling region charac-

terized by positive vertical velocity fluctuations, leading to increased levels of vertical mixing.

Bubbles, particulate matter and flotsam accumulate along the surface convergence of the cells

forming what are often referred to as "windrows" as seen in Figure 1.2b. Surface convergences of

34



the cells are characterized by intensification of positive downwind velocity fluctuations leading to

an enhanced mean current as seen in Figure 1.2a.

Historically, Langmuir cells have been measured within the upper ocean surface mixed layer in

deep water far above the bottom of the water column. However, these cells have also been known

to occur in shallower water masses such as in inner shelf coastal regions, estuaries and lakes.

For example, [18] reported detailed acoustic Doppler current profiler (ADCP) measurements of

Langmuir cells engulfing the entire water column lasting as long as 18 hours in a shallow water

region off the coast of New Jersey. Measurements were made at Rutgers University’s LEO15

cabled observatory in 15 m depth water. The observed full-depth cells were denoted as Langmuir

supercells or LSC because of their important contribution towards transport of sediment and bio-

active material on shallow shelves. The strong coherence of LSC makes them more effective than

classical bottom boundary layer turbulence at moving material out of the low-speed layer near

bottom and into the strong and strongly directional downwind mean flow associated with these

events. In [18], it was suggested that transport in such supercell events dominates net annual

transport of sediment at LEO15.

Originally described by Langmuir [31], LC is now generally accepted to be the result of wave-

current interaction or, more specifically, the interaction between the wind-driven shear current and

the Stokes drift velocity induced by surface gravity waves [11]. A model for the generation of LC

was first proposed by Craik and Leibovich [11]. It consists of a vortex force (the Craik-Leibovich

force or C-L force) in the momentum equation representing the interaction between the Stokes drift

velocity and the vertical shear of the wind-driven current; specifically, the C-L vortex force is the

vector cross product between the Stokes drift velocity and the vorticity of the flow. Main parameter
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ingredients in this force are the dominant wavelength and amplitude of the surface waves used to

define the Stokes drift velocity profile.

The C-L force arises from low-pass time filtering or wave-phase averaging of the Navier-Stokes

equation in order to filter out the high frequency surface waves. Hereafter, the time filtered Navier-

Stokes equation with the C-L force will be referred to as the C-L equation. Inclusion of the C-L

force in the momentum equation greatly reduces the computational complexity as it eliminates the

need to resolve the surface waves giving rise to LC. Instead, the top of the flow domain is simply

taken to be bounded by a flat (non-deforming) surface denoting the mean water height. Note that

the C-L framework does not account for the impact of wave-breaking on the turbulence resolved.

Sullivan and McWilliams [51] have incorporated a stochastic model of wave breaking into the C-L

equation in their LES of Langmuir circulations within the upper ocean mixed layer. Such a model

is beyond the scope of the present work.

The C-L equation has enabled a number of successful LES describing the vertical and hori-

zontal structure of upper ocean Langmuir turbulence in statistical equilibrium, e.g. [34, 36, 46].

However, note that most of these simulations have been made using spectral numerical methods.

The interested reader is directed to the review [50] for further references. As described in the Intro-

duction chapter, the main goal of this dissertation is to initiate the development of a more flexible

code or solver that is able to accurately capture the turbulence scales, while affording future ca-

pability to represent complex geometry features associated with coastal/estuarine boundaries and

bathymetries that can not be resolved by the spectral codes traditionally used for LES of Langmuir

turbulence. The solver and LES methodology described in Chapter 2 present an ideal setting to

accomplish this goal.
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Solution of the Navier-Stokes equation augmented with the C-L vortex force is non-trivial as

the latter term is an advective term giving rise to instabilities requiring stabilization of the type

presented in the previous chapter. Note that the C-L vortex force has been previously identified

in [46] and [55] as giving rise to instabilities by triggering scales of size smaller than the grid

(i.e. subgrid-scales). The aim of this chapter is to present the extension of advection stabilization

within the RBVMS formulation of the previous chapter to consistently account for the advective

nature of the C-L vortex force. This extension was originally developed in [54]. Results from

simulations of full-depth Langmuir cells with the RBVMS methodology will be presented showing

good convergence properties and good agreement with field measurements of [17, 18].

3.1 The Navier-Stokes Equation with C-L Vortex Forcing: The Craik-Leibovich Equation

Let Ω ∈ R
3 be the problem domain and let Γ denote its boundary as in Chapter 2. Recall

that the boundary is expressed as Γ = ΓE ∪ΓN where ΓN is the portion where essential boundary

conditions are applied and ΓN is where natural boundary conditions are applied.

The Craik-Leibovich momentum equation and the continuity equation are given as follows:

∂u

∂ t
+∇ · (u⊗u)+∇p−∇ · (2ν∇su)−φ ×∇×u = f in Ω (3.1)

∇ ·u = 0 in Ω (3.2)

where all variables are as before (recall Chapter 2) and φ = (φ1,φ2,φ2)
T is the known Stokes drift

velocity vector induced by surface gravity waves (to be defined in more detail further below). The

last term on the left-hand-side of Eq. (6.1) represents C-L forcing. Because the term depends on

the first-order derivatives of the velocity field, it has the mathematical structure of advection. With
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this in mind, the C-L momentum equation is written as

∂u

∂ t
+∇ · (u⊗u)+∇p−∇ · (2ν∇su)+ Ãi

∂u

∂xi
= f in Ω (3.3)

where Ãi’s are

Ã1 =











0 −φ2 −φ3

0 φ1 0

0 0 φ1











(3.4)

Ã2 =











φ2 0 0

−φ1 0 −φ3

0 0 φ2











(3.5)

Ã3 =











φ3 0 0

0 φ3 0

−φ1 −φ2 0











, (3.6)

and summation on the repeated index i is employed. In the following section the RBVMS method

is applied to the above partial differential equations.

3.2 The RBVMS Formulation of The Craik-Leibovich Equation

The RBVMS formulation of the C-L momentum equation is a straight-forward extension of

the RBVMS formulation for the incompressible Navier-Stokes equation (given in Chapter 2) that

also accounts for the presence of the C-L forcing terms.
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Following the splitting of the approximation spaces into resolvable (discrete) and subgrid com-

ponents introduced in Chapter 2, let V h denote the discrete solution space for the velocity-pressure

pair {uh, ph} and let W h denote the discrete weighting space for the linear momentum and conti-

nuity weighting functions {wh,qh}. The space-discrete problem is stated as: Find {uh, ph} ∈ V h

such that ∀{wh,qh} ∈ W h,

B({wh,qh},{uh, ph})+Bvms({wh,qh},{uh, ph}) = (wh, fh)Ω +
(

wh,2ν∇suh ·n− phn
)

ΓN

.

(3.7)

where the boundary term (i.e. the integral over ΓN) has been developed in Chapter 2. The Galerkin

and VMS terms follow similar those in (2.24) and (2.25), respectively, each with an extra term due

to the C-L vortex force:

B({wh,qh},{uh, ph}) =

(

wh,
∂uh

∂ t

)

Ω

−
(

∇wh,uh ⊗uh
)

Ω
− (∇ ·wh, ph)Ω

+
(

∇swh,2ν∇suh
)

Ω
+

(

wh, Ãi
∂uh

∂xi

)

Ω

− (∇qh,uh)Ω.

(3.8)

Bvms({wh,qh},{uh, ph}) = −
(
∇wh,u′⊗uh +uh ⊗u′+u′⊗u′

)

Ω

−(∇ ·wh, p′)Ω −

(

ÃT
i

∂wh

∂xi
,u′

)

− (∇qh,u′)Ω.

(3.9)

Analogously to (6.6), the subgrid scales are modeled as

u′ =− τM

(
∂uh

∂ t
+uh∇uh +∇p−ν∆uh + Ãi

∂uh

∂xi

− f

)

p′ =− τC∇ ·uh (3.10)
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To define the subgrid-scale parameters for the C-L equations, the momentum equations are

written in the form of a generalized advective-diffusive system as

∂u

∂ t
+Ai

∂u

∂xi

−ν∆u = f −∇p in Ω, (3.11)

where Ai = (uiI+ Ãi) (with I being the identity matrix) are the advective flux jacobians given by

A1 =











u1 −φ2 −φ3

0 u1 +φ1 0

0 0 u1 +φ1











(3.12)

A2 =











u2 +φ2 0 0

−φ1 u2 −φ3

0 0 u2 +φ2











(3.13)

A3 =











u3 +φ3 0 0

0 u3 +φ3 0

−φ1 −φ2 u3











. (3.14)

with u = (u1,u2,u3)
T . The C-L forcing contributions render these jacobians non-diagonal and

non-symmetric, which requires an appropriate definition of the subgrid-scale parameters. Based

on the developments in [23, 24, 44] for generalized advective-diffusive systems, parameter τM may

be computed in matrix form as follows:

τM =

(
4

∆t2
I+Gi jAiA j +CIGi jGi jν

2I

)−
1
2
. (3.15)
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where Gi j is the metric-tensor of the mapping from the physical domain to the parametric domain

of the finite element or NURBS element, defined in Eq. (2.19) of Chapter 2.

The new definition of τM in (3.15) requires the computation of the matrix square root inverse.

This is done using the Denman-Beavers algorithm [12], which computes the matrix square root

inverse in an iterative fashion. The algorithm is started by setting X0 = τ−2
M and Y0 = I, and the

iteration consists of the following updates:

Xk+1 =
1
2

(
Xk +Y−1

k

)

Yk+1 =
1
2

(
Yk +X−1

k

)
, (3.16)

where k is the iteration index. In a small number of iterations (3 to 5) Y converges to τM defined

by Eq. (3.15).

Finally, given τM, τC is computed as

τC =
(
Gi jτMi j

)−1
, (3.17)

which is a generalization of the relationship given in Chapter 2, Eq. (2.21). Note that τMi j are the

entries of matrix τM .

3.3 Computational Setup

The computational domain, depicted in Figure 6.1, is a rectangular box with dimensions 4πδ ×

8
3
π × 2δ in the stream-wise or downwind (x1), span-wise or crosswind (x2) and wall-normal or

vertical (x3), directions, respectively. The velocity vector corresponding to this domain is uh =
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(uh
1,u

h
2,u

h
3)

T where uh
1, uh

2 and uh
3 are velocity components in the stream-wise (downwind), span-

wise (crosswind) and wall-normal (vertical) directions, respectively. The half-depth of the domain

(in the x3-direction) is δ . The flow is driven by a wind stress in the x1 direction applied at the

top surface (x3 = δ ), generating a shear flow as depicted via the velocity vectors in Figure 6.1. At

the top surface, a no-penetration boundary condition is also assumed to hold. No-slip conditions

are applied at the bottom wall boundary (xd
3 = −δ ). In the stream-wise and span-wise directions

periodic boundary conditions are employed in order to represent an unbounded domain in these

directions, representative of an inner continental shelf shear flow unaffected by coastal boundaries

nor meso and subemsoscale eddies. In this case, the flow and associated turbulence is in direct

response to local wind and surface wave forcing conditions.

Figure 3.1: The sketch of a wind driven channel flow used as the computational domain in the

numerical simulations.
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The Stokes drift velocity is taken to be aligned with the wind and defined as

φ = us











cosh(2κx3)
2sinh(2κδ )

0

0











x3 ∈ [−δ ,δ ] (3.18)

with us =ωκa2, where ω is the dominant frequency, κ = 2π/γ is the dominant wavenumber and γ

is the dominant wavelength of surface gravity waves generating Langmuir circulation (see [33, 40]

for details).

Characteristic flow velocity, length and pressure scales are taken as wind stress friction velocity

uτ , water column half-depth δ , and P = ρu2
τ (with ρ being density), respectively. Characteristic

time scale is taken as δ/uτ . Using these scales to non-dimensionalize the C-L equation gives

rise to the Reynolds number defined as Re = uτδ/ν (where ν is kinematic viscosity) and the

turbulent Langmuir number defined as Lat =
√

uτ/us. The turbulent Langmuir number is inversely

proportional to wave forcing relative to wind forcing.

The flow is driven purely by a wind stress, thus the body force, f in Eq. (6.1) is 0. Furthermore,

imposition of the wind stress in the x1 while setting ud
3 = 0 at the surface (i.e. the no-penetration

condition) results in the following natural or Neumann condition which in dimensional terms is

given as

ν

(
∂u1

∂x3
+

∂u3

∂x1

)

x3=δ

= u2
τ and ν

(
∂u2

∂x3
+

∂u3

∂x2

)

x3=δ

= 0 (3.19)
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Noting that ∂u3/∂x1 = ∂u3/∂x1 = 0 at the surface (x3 = δ ) since u3 = 0 there (no-penetration),

and non-dimensionalizing with characteristic velocity and length scales (uτ and δ ) leads to

ν

(
∂u1

∂x3

)

x3=δ

= u2
τ and

(
∂u2

∂x3

)

x3=δ

= 0 (3.20)

The previous conditions allow for the boundary integral in (3.7) to be re-expressed as

(

wh,2ν∇suh ·n− phn
)

ΓN

≡
∫

ΓN

wh
1ν

∂uh
1

∂x3
dΓN +

∫

ΓN

wh
2ν

∂uh
2

∂x3
dΓN

+

∫

ΓN

wh
3

(

ν
∂uh

3

∂x3
− ph

)

dΓN

=

∫

ΓN

wh
1u2

τ dΓN

(3.21)

where ΓN corresponds to the top surface of the domain in Figure 6.1 (i.e. x3 = δ ), n = (0,0,1)T

is the unit outward normal to Γ, uh = (uh
1,u

h
2,u

h
3)

T and wh = (wh
1,w

h
2,w

h
3)

T . In the simplification of

(3.21) the following have been used: ν∂uh
1/∂x3 = u2

τ on ΓN and wh
3 = 0 on ΓN since uh

3 = 0 there.

For the computations presented here, Re = 395, Lat = 0.7, and λ = 12δ . The latter two

wind/wave forcing parameter values are characteristic of the wind and wave forcing conditions

during the field measurements of shallow water, full-depth Langmuir circulation of Gargett and

Wells [17]. Their measurements were made in a 15 meters-deep water column on the coastal

shelf off southern New Jersey with surface waves characterized by an 8 second period, a 1 meter

amplitude and wind stress at 0.1 N/m2.

Quadratic NURBS (non-Uniform rational B-splines) basis functions that are C1-continuous

across mesh knots are employed in the computations (see [22] for definition of knots and review

of NURBS). That is the velocity, pressure and corresponding and weight functions are expanded
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in terms of quadratic NURBS basis. For example, in one dimension this expansion takes the form

f h =
nb

∑
A=1

fANA(x) (3.22)

where NA is the basis function and nb is the number of basis functions. In multiple dimensions

the basis are constructed using tensor products [22]. An example of an 8-element uniform mesh

showing the quadratic basis functions in one-dimension is shown in Figure 3.2. Note that in general

this basis is not interpolatory, unlike standard linear finite elements basis. However, the first an

last basis functions at then ends of a domain can be constructed such that they are interpolatory at

these boundaries, thereby facilitating imposition of essential or Dirichlet boundary conditions. The

interested reader is directed to [22] for details on this and Figure 3.3 further below for an example

of a graded, 8-element mesh containing interpolatory basis functions at the ends of the domain.

Simulations using a sequence of h-refined quadratic NURBS meshes were performed to ensure

convergence of the computational results. The coarsest mesh is comprised of 24×24×24 NURBS

elements, while the finest mesh has 64×64×64 NURBS elements. In general, for NURBS of order

p and maximal continuity p− 1, the number of basis functions in each tensor-product direction

equals to n + p, where n is the number of elements in this direction. (For periodic boundary

conditions, the number of basis functions is n, which is independent of the polynomial order.) This

is in contrast to the C0-continuous finite elements of order p, where the number of basis functions

is pn+1 (or pn in the periodic case).

The mesh is uniform in the periodic directions. The elements in the wall-normal (vertical)

direction are stretched or graded toward the top and bottom boundaries in order to resolve surface

and bottom boundary layers (see an example of this in Figure 3.3). The mesh knots are placed
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according to

zi =−1+b−1 tanh

((
2i

N3 +1
−1

)

tanh−1(b)

)

i ∈ [1,N3+1], (3.23)

where z is equivalent to x3, b = 0.973 is used and N3 corresponds to the number of elements in x3.

Figure 3.2: One-dimensional (a) linear basis functions (used in standard finite element analysis)

and (b) quadratic basis functions for an 8-element periodic mesh. Source: [3].

The flow is advanced in time using the generalized-α method via the predictor multi-corrector

algorithm described in Chapter 2. Details of the mesh and time step sizes may be found in Table

4.1. Time steps satisfy the well-known CFL condition. Meshes are stretched near the surface and

near the bottom so as to resolve sharp boundary layers in these regions. The last column of Table

4.1 shows z+1 for each mesh, which is the size of the first element in the wall-normal direction in
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Figure 3.3: One-dimensional (a) standard linear finite elements basis functions and (b) quadratic

NURBS basis functions for an 8-element mesh refined near the ends to better resolve boundary

layers. This refinement is similar to the wall-normal discretization used in the RBVMS LES com-

putations of wind-driven flow presented in this Chapter. Note that here the first and last quadratic

NURBS basis are interpolatory facilitating imposition of the essential (no-slip) bottom boundary

condition. Source: [3].

non-dimensional wall units (z+1 = uτ∆xd
3/ν). For all meshes z+1 is less than 7, indicating that the

first element adjacent to the wall is within the viscous sublayer [43], thereby ensuring resolution

of the sharp gradients expected within this region.

3.4 Numerical Results

In the following sub-sections results from LES of wind-driven flow with and without Lang-

muir circulation (LC) are presented. Statistics of the flow are presented under statistical equilib-

rium characterized by steady state mean flow variables. The simulation with LC was initialized
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Table 3.1: Summary of mesh and time step sizes used in the simulations. In the table, N1, N2,

and N3 are the number of basis functions used in the simulation in each tensor product direction

and Ntot is their total number. z+1 is the size of the first element in the wall-normal direction in

non-dimensional wall units (z+1 = uτ∆z/ν). Time step size ∆t has been made dimensionless with

characteristic time scale given as δ/uτ .

N1 N2 N3 Ntot z+1 ∆t

24 24 26 14976 4.62 0.025

32 32 34 34816 3.31 0.0188

48 48 50 115200 2.11 0.0125

64 64 66 270336 1.55 0.00935

by “turning on" the C-L vortex force in the simulation without LC after the latter had achieved

statistical equilibrium.

3.4.1 Flow Structures

Flow structures are presented in terms of velocity fluctuations calculated from the classical

Reynolds decomposition:

uh
i =

〈

uh
i

〉

+uh ′
i , (3.24)

where brackets denote averaging over downwind (x1) and crosswind (x2) directions and over time,

and the superscript prime denotes the resolved turbulence fluctuation. Time averages have been

collected over sufficiently long times periods such that mean flow variables (e.g.
〈
uh

i

〉
) are time-

independent, indicative of statistical equilibrium. Note that the prime notation used here to define

the resolved turbulence velocity fluctuation is different from the prime notation in Eqs. (2.16) and

(6.6) used to define unresolved (subgrid) scales. Henceforth the superscript h is dropped from the

resolved quantities for simplicity.

Figure 3.4 shows an instantaneous three-dimensional snapshot of iso-contours of vertical veloc-

ity fluctuations, u′3, in the wind-driven flow with LC. Vertical velocity fluctuations are characterized
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by full-depth negative and positive downwind elongated regions, corresponding to the full-depth

downwelling and upwelling limbs of the Langmuir cells sketched in Figure 1.2 in Chapter 1. Fig-

ure 3.5 shows an instantaneous snapshot of downwind velocity fluctuations on the horizontal plane

at mid-depth of the domain (x3 = 0 in Fig. 6.1) in wind-driven flows with and without LC. In both

flows, downwind velocity fluctuation is characterized by downwind elongated streaks alternating

in sign in the crosswind direction. Animations (not shown) reveal that the vortex force causes the

positive streaks in the flow without LC to merge together leading to a single pair of streaks (posi-

tive and negative). The crosswind extent of the resulting positive streak is greater than the negative

streak.

Figure 3.4: Instantaneous snapshot of iso-contours of wall-normal (vertical) velocity fluctuations

in flow with LC on the 64×64×66 quadratic NURBS mesh described earlier.

In order to reveal the crosswind-vertical structure of the previously described downwind elon-

gated streaks, we perform the following triple decomposition of the computed velocity:

ui = 〈ui〉+
〈
u′i
〉

tx
+u′′i

︸ ︷︷ ︸

=u′i

(3.25)
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where 〈·〉tx denotes averaging in time and over the downwind (x1) direction and the instantaneous

velocity fluctuation is obtained via the classical Reynolds decomposition in (3.24). The middle

term on the right hand side of Eq. (3.25) is defined as a partially averaged fluctuation:

v′i(x2,x3)≡
〈
u′i
〉

tx
. (3.26)

This partially averaged velocity fluctuation emphasizes coherent, secondary flow structures in the

downwind direction such as the downwind elongated streaks observed in Figure 3.5. Figures

3.6 and 3.7 show the crosswind-vertical structure of the partially averaged velocity fluctuation

in the flows with and without LC, respectively. Overall, both cases exhibit positive and negative

crosswind cell structures in each of the partially averaged fluctuating velocity components; the flow

with LC has a spanwise one-cell structure while the flow without LC has a less coherent spanwise

two-cell structure.

The one-cell structure in the flow with C-L forcing (Figure 3.6) is nearly identical to that ob-

tained with a spectral LES in [52] with the same wind and wave forcing parameters described

earlier. Recall that these parameters in the C-L vortex force have been chosen as Lat = 0.7 and

γ = 12δ following the field measurements of [17]. Additionally, the one-cell structure in the flow

with C-L forcing possesses all of the basic characteristics of full-depth Langmuir circulation ex-

pected based on the field measurements in [17]. Experimental data in [17] shows that the spanwise

(crosswind) length of one Langmuir cell is in the range of 6δ and 12δ . Accordingly, our com-

putation has predicted the generation of only one Langmuir cell as expected, given the crosswind

extent chosen for the domain (see length L2 in Figure 6.1).

50



x
3
/
δ

Flow without CL

 

 

0 2 4 6 8 10 12
0

2

4

6

8

−4

−2

0

2

4

x
3
/
δ

x1/δ

Flow wit CL

 

 

0 2 4 6 8 10 12
0

2

4

6

8

−4

−2

0

2

4

Figure 3.5: Color maps of instantaneous downwind velocity fluctuation u′1 on the downwind-

crosswind plane at mid-depth in flows with and without C-L vortex forcing (i.e. with and without

LC). Results are from the simulations on the 48×48×50 quadratic NURBS mesh described earlier.

As seen in Figure 3.6, a change in sign of surface intensified v′2 (panel b) generates the surface

convergence of the cell, which in turns leads to the downwelling limb of the cell. The downwelling

limb is the full-depth region characterized by negative v′3 in panel c. This region is depicted in

the sketch shown in Figure 1.2. Furthermore, the upwelling limb (region with positive v′3) of

the cell is larger in crosswind extent than the downwelling region (region with negative v′3) in

agreement with the field measurement of full-depth LC in [17]. At mid depth the upwelling limb

is approximately 1.6 larger than the downwelling limb, which is close to the 1.4 factor measured

in the field. The downwelling limb coincides with a region of bottom- and surface-intensified

positive v′1 (panel a). Note that this region of full-depth positive v′1 leads to an enhanced downwind

current as depicted in Figure 1.2. The enhancement of the downwind current within the Langmuir
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Figure 3.6: Crosswind-vertical variation of velocity fluctuations v′i (defined in Eq. (3.26) in flow

with LC. Results are from the simulation on the 48×48×50 quadratic NURBS mesh.Streamwise

(downwind) direction (x1) is out of page.

cell downwelling region is by a factor of approximately 10uτ near the surface and near the bottom

of the water column. Finally, the one-cell structure in the flow with C-L vortex forcing (Figure

3.6) is significantly different in structure and magnitude of fluctuations from the two-cell structure

obtained in the flow without C-L vortex forcing (Figure 3.7).

In Figure 3.8, the instantaneous velocity fluctuations in the flow with LC have been made di-

mensional with the wind stress friction velocity reported by Gargett and Wells in [17] during their

field observations of full-depth Langmuir cells. Magnitudes of these fluctuations in the LES are

in close agreement with those measured in the field (shown in Figure 3.9) as well as with those

computed using the spectral method of Tejada-Martínez et al. [52, 55]. In both, computations

and field experiments, instantaneous streamwise and spanwise velocity fluctuations are in the ±8

cm/s range and the vertical velocity fluctuation is in the ±4 cm/s range. Note that the field mea-

surements in [17] were made using a bottom-mounted, upward-facing acoustic Doppler current
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Figure 3.7: Crosswind-vertical variation of partially averaged velocity fluctuations v′i (defined in

Eq. 3.26) in flow without LC. Results are from the simulation on the 48 × 48 × 50 quadratic

NURBS mesh.

profiler (ADCP) in a 15-meter deep water column off the southern New Jersey coast undergoing

strong wind and wave forcing. Mean wind stress was 0.1 N/m2 and mean wave height was 1 m.

The ADCP was not able to make a reliable measurement of the uppermost 15 percent of the water

column. Furthermore, the computations do not take into account the effect of wave breaking at

the surface. Thus comparison between field measurements and the LES should not include the

near-surface region. Comparison of panels b in Figures 3.8 and 3.9 shows that the LES is able

to resolve the near-bottom intensification of the full-depth region of positive downwind velocity

fluctuations measured in the field. Furthermore, in Figure 3.9 note that the region of downwelling

(panel c) coincides with a region of positive downwind velocity fluctuations (panel a), which as

described earlier is also the case in the LES (see Figures 3.6 and 3.8).
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Figure 3.8: Crosswind-vertical variation of velocity instantaneous velocity fluctuations u′i (in cm/s).

Results are from the simulation on the 48 × 48 × 50 quadratic NURBS mesh. Computational

velocities have been made dimensional with wind stress friction velocity recorded in the field

during episodes of full-depth LC [17]. Field measurements were made in a 15-meters deep water

column under a wind stress of 0.1 N/m2.

In conclusion, predictions from the LES with C-L vortex forcing compare favorably with field

measurements in [17] in spite of the low Reynolds number of the computation (Re = 395) com-

pared to the Reynolds number of the observations (Re ≈ 50,000).

3.4.2 Mesh Convergence

Convergence studies on quadratic NURBS meshes in terms of mean downwind velocity and

turbulent kinetic energy (TKE) for flow with full-depth LC are presented. Mean velocity, TKE,

budgets of TKE and budgets of TKE components for this flow and the corresponding flow without

LC have been analyzed in detail in [52]. Here the focus is strictly on mesh convergence. Details
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Figure 3.9: Crosswind-vertical variation of velocity instantaneous velocity fluctuations u′i (in cm/s)

during episode of full-depth Langmuir cells measured during field experiments of Gargett and

Wells [17] using a bottom-mounted, upward-facing acoustic Doppler current profiler (ADCP).

Field measurements were made in a 15 meters-deep water column under a wind stress of 0.1

N/m2. This figure is courtesy of Ann Gargett.

of the meshes considered are given in Table 4.1. Recall that for the coarsest mesh of 24×24×26

basis functions, the first wall-normal mesh knot is at a distance z+1 = uτ∆y/ν = 4.62. For the the

finest mesh of 64× 64× 66 basis functions, z+1 = 1.55. Thus all meshes considered are able to

resolve the near-wall viscous sublayer.

Mean downwind velocity is expressed as 〈u1〉, recalling that brackets denote averaging over

time and downwind and crosswind directions. TKE is defined in terms of velocity fluctuations as

TKE = 〈u′1u′1 + u′2u′2 + u′3u′3〉/2, where velocity fluctuations are again obtained via the classical

Reynolds decomposition: u = 〈u〉+u′.

Results are not compared with those obtained with other codes because no direct numerical

simulation (DNS) of this test case exists that may be used as a benchmark solution. Figure 3.10
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Figure 3.10: Convergence of mean downwind velocity in flow with LC. Quadratic NURBS meshes

were used for all cases.

shows convergence of the mean velocity profile. The 24×24×26 mesh gives a significant over-

prediction of the mean flow. The results improve for the 32×32×34 mesh. Further improvement

is seen for the 48×48×50 mesh. The 64×64×66 mesh yields a nearly indistinguishable mean

velocity profile from the 48×48×50 case. A similar convergence pattern is observed for the TKE

in Figure 3.11, however, very small differences between the 48× 48× 50 and the 64× 64× 66

cases are visible in the figure.

3.4.3 Disruption of The Log Layer

Figures 3.12 and 3.13 provide a comparison between the flow with LC and the same flow

without LC in terms of mean velocity in order to highlight the effects induced by LC. The action
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Figure 3.11: Convergence of turbulent kinetic energy (TKE) in flow with LC. Quadratic NURBS

meshes were used for all cases.

of LC serves to homogenize momentum throughout the water column leading to a near constant

velocity profile in the core region and thinner viscous sublayers at the surface and bottom. Figure

3.13 shows mean velocity versus wall-normal direction in wall units in the lower half of the water

column. In this figure, the mean velocity, u+1 = 〈uh
1〉/u∗, is plotted versus the log of x+3 = x3u∗/ν ,

where x3 is the wall-normal distance to the bottom wall and u∗ is wall friction velocity. The latter

is defined as u∗ = (τwall/ρ)1/2 where τwall is wall shear stress and ρ is density. In flows with

and without LC, global conservation of momentum yields a mean wall shear stress in balance

with the imposed wind shear stress at the top surface of the domain, thus in the mean u∗ = uτ ,
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where, recall that uτ is wind stress friction velocity. In Figure 3.13, the flow without LC exhibits

a well-developed, near-bottom log-layer in which the velocity satisfies the classical log-law of

wall-bounded turbulent flows defined as

u+1 =
1

κ
ln(x+3 )+B (3.27)

where κ = 0.4 is Von Karman’s constant. In the flow without LC, B = 7. Meanwhile in the

flow with LC, enhanced mixing associated with the Langmuir cells disrupts the classical log-layer

region inducing an extended wake region at depths normally characterized by the log-law. A

similar log-layer disruption has been reported in [55] in their spectral LES of full-depth LC. This

deviation has been attributed to the high speed fluid brought down to the near-wall region by the

downwelling limbs of the Langmuir cells [53]. A rough approximation of this disruption could

be given by a shift of the usual log-law profile ( i.e. by changing the B coefficient from 7 to 8.5

in (3.27), as shown in Figure 3.13. Finally, both flows exhibit a velocity profile close to the well-

known theoretical profile u+1 = x+1 within the viscous sublayer, indicating that the near-wall region

is well-resolved.

Disruption of the log-layer by the action of LC has important implications for coastal general

circulation models (GCMs). Traditional RANS (Reynolds Navier-Stokes) parameterizations of

the turbulent bottom boundary layer in coastal GCMs assume the presence of a well-developed

log-layer. Thus, these parameterizations are not able to properly account for log-layer disruption

caused by full-depth LC and ultimately wave-current interaction. This will be discussed further in

Chapter 5.
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Figure 3.12: Mean downwind velocity in flows with and without LC. The 48×48×50 quadratic

NURBS mesh was used for both flows.

3.5 Summary

This chapter has described extension of variational multiscale turbulence modeling procedures

to the C-L equation. Approximation spaces were expressed in terms of quadratic NURBS basis

functions. The C-L equation was written in semilinear form revealing an advection-diffusion sys-

tem characterized by non-symmetric advective matrices. The weak form of this system was treated

with the RBVMS formulation described in Chapter 2 together with stabilization parameters defined

in terms of the aforementioned advective matrices based on the theory presented in [44].

The methodology showed good convergence properties for a wind-driven shear flow character-

ized by full-depth Langmuir circulation in agreement with the field measurements in [17, 18]. A

major impact of the full-depth Langmuir cells was shown to be enhanced mixing of momentum

leading to a disruption of the classical near-bottom log-layer.
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Figure 3.13: Mean downwind velocity versus wall-normal (vertical) direction in wall (plus) units

in flows with and without LC. The 48×48×50 quadratic NURBS mesh was used for both flows.

Note that z+ = uτ(x
d
3 +δ )/ν .

The next chapter explores the use of wall-models as an alternative to the bottom no-slip condi-

tion imposed in the simulations presented above, bypassing resolution of the expensive near-wall

viscous sublayer.
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Chapter 4:

RBVMS Large Eddy Simulation of Shallow Water Langmuir Turbulence with Near-Wall

Modeling

The existence of sharp gradients especially in the near-wall region poses undesired compu-

tational cost when numerical simulations are performed. To reduce this computational cost, yet

another level of modeling is introduced in LES, referred to as wall modeling [41]. The idea be-

hind wall modeling is to only resolve the core flow and model the near-wall region with suitable

boundary conditions. This form of LES is often referred to as LES with near-wall modeling (or

LES-NWM). The wall model obviates the need to refine the mesh in the near-wall region in order

to capture near-wall sharp gradients. This is in contrast to the simulations presented in the previ-

ous chapter in which the mesh was made finer near the wall in order to resolve sharp gradients,

often referred to as LES with near-wall resolution (or LES-NWR). With the lower computation

cost brought about with wall modeling, more realistic problems in terms of computational domain

size and Reynolds number can be solved when compared to those of DNS and LES-NWR.

In this chapter, two wall models will be explored. The first one is a model well-studied by

the LES community. Instead of imposing the no-slip condition at a wall, the wall shear stress

is prescribed by assumming the presence of a log layer where the mean velocity is expected to

satisfy a log-law. The mean of the computed flow is assumed to satisfy such a log-law from which

a wall friction velocity is extracted and in turn used to compute the prescribed wall shear stress.

This model has worked well for wall-bounded flows such as in turbulent channels. However, wall
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modeling has never been attempted for LES of full-depth Langmuir cells, thus its behavior in

the presence of these large-scale turbulent structures needs to be evaluated. In particular, as was

observed in LES-NWR in the previous chapter, the full-depth Langmuir cells induce a disruption

of the log-law. An approximation of this disruption could be given by a shift of the usual log-law

profile, as described in Chapter 3. However, this shift depends on the strength of the Langmuir

cells, i.e. on wind and wave forcing parameters consisting of the turbulent Langmuir number

and the dominant wavelength of surface waves generating LC, Lat and γ , respectively [53]. This

implies that the wall model would have to depend on these parameters in order to properly adjust

the assumed log-law profile used to compute the imposed wall shear stress. The current chapter

investigates this dependence.

In additional to the traditional wall model used in LES, a more recent wall model is also tested.

This model, introduced in [5], does not impose a wall shear stress, but rather weakly imposes

the Dirichlet no-slip condition at the wall. Weak imposition of the no-slip condition is based on

numerical considerations and not on physical or empirical conditions as is the case of traditional

wall modeling.

In this chapter the performance of both wall models described above is investigated in RBVMS

LES-NWM of full-depth Langmuir cells. Given that the near-wall region is not resolved thereby

reducing the cost of the computation, the computationl domain is expanded in downwind (x1) and

crosswind (x2) directions in order to resolve multiple cells. Recall from the previous chapter, in

LES-NWR the domain was able to capture only a single Langmuir cell, thus excluding potentially

important interactions between multiple cells. Here LES-NWM simulations with the horizontally

expanded domain allows for resolution of multiple cells and their interaction. The impact of this
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interaction on flow statistics such as mean velocity and root mean square of velocity fluctuations

is investigated.

4.1 The RVBMS Formulation of The Craik-Leibovich Equations with Near-Wall Modeling

In this section two approaches at wall modeling are presented within the RVBMS formulation

of the Craik-Leibovich equation developed in Chapter 3. Recall the space-discrete problem: Find

{uh, ph} ∈ V h such that ∀{wh,qh} ∈ W h,

B({wh,qh},{uh, ph})+Bvms({wh,qh},{uh, ph}) = (wh, fh)Ω +
(

wh,2ν∇suh ·n− phn
)

ΓN

.

(4.1)

Furthermore, recall that the domain boundary Γ is decomposed as Γ = ΓE ∪ΓN where ΓN is the

portion where essential boundary conditions are applied and ΓN is where natural boundary condi-

tions are applied. In the simulations of wind-driven flows performed in this chapter with domain

depicted in Figure 6.1, ΓE corresponds to the no-slip bottom at x3 = −δ and ΓN corresponds to

the top surface at x3 = δ . In application of wall modeling techniques the no-slip bottom wall will

instead be taken as a natural boundary. Thus, the bottom and top surfaces will both be taken as

natural boundaries and to distinguish between these two, ΓN is decomposed as ΓN = Γtop ∪Γbottom.

Following this decomposition, the boundary term in (4.1) is re-expressed as

(

wh,2ν∇suh ·n− phn
)

ΓN

=
(

wh,2ν∇suh ·n− phn
)

Γtop

+
(

wh,2ν∇suh ·n− phn
)

Γbottom

(4.2)
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The imposed wind stress in the x1 direction at the top surface boundary remains the same as that

developed in Eq. (3.21), where now the top surface is denoted as Γtop:

(

wh,2ν∇suh ·n− phn
)

Γtop

=
∫

Γtop

wh
1u2

τ dΓtop (4.3)

where recall that uτ is the wind stress friction velocity. Treatment of the bottom boundary is

described next.

4.1.1 Traditional Wall Model

In the traditional wall model employed, the boundary condition at the bottom wall is first

developed similarly to the top surface. Following the developments of Eq. (3.21), but now applied

to the bottom wall yields

(

wh,2ν∇suh ·n− phn
)

Γbottom

≡ −

∫

Γbottom

wh
1ν

∂uh
1

∂x3
dΓbottom −

∫

Γbottom

wh
2ν

∂uh
2

∂x3
dΓbottom

−
∫

Γbottom

wh
3

(

ν
∂uh

3

∂x3

− ph

)

dΓbottom

(4.4)

where n = (0,0,−1)T has been used corresponding to the unit outward normal to Γbottom. The last

two terms on the right side of (4.4) can be discarded for the following reasons. First wh
3 = 0 on

Γbottom since uh
3 = 0 is imposed there, and second, ∂uh

2/∂x3 = 0 on Γbottom corresponding to zero shear

stress in the crosswind direction (x2) at the bottom wall. Thus (4.4) may be re-expressed as

(

wh,2ν∇suh ·n− phn
)

Γbottom

=−
∫

Γbottom

wh
1ν

∂uh
1

∂x3

dΓbottom (4.5)
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In the previous expression, the term ν∂uh
1/∂x3 on Γbottom corresponds to the shear stress exerted by

the wall (τwall) onto the fluid in the negative x1 direction. The wall shear stress can be defined in

terms of friction velocity u∗ as follows:

τwall ≡ u2
∗ (4.6)

where the friction velocity may be obtained from its defintion

u∗ ≡

(

ν
∂u1

∂x3

)1/2

x3=−δ

(4.7)

or alternatively may be obtained from the empirical log-law:

U ol+ =
U ol

u∗
=

1

κ
log

∆zolu∗

ν
+B (4.8)

where κ = 0.41 is the von Karman constant and coefficient B will be discussed further below.

Furthermore, ∆zol denotes the wall-normal distance from the wall to a location within the outer

layer (ol) or log-layer where the mean flow velocity U ol satisfies the log-law above.

As described in the introduction to this chapter, in LES-NWM, the mesh is not refined in the

near-wall region, and consequently does not capture the sharp velocity gradient at the wall expected

for a turbulent flow. Thus calculation of the wall friction velocity u∗ via (4.7) is not possible. The

friction velocity is solved iteratively at each time step from the log law in (4.8) with U ol being the

dimensionalized horizontally-averaged, downwind LES velocity within the log-layer layer. In the

computational performed for this chapter, the NURBS elements at the wall are sufficiently coarse

such that the first horizontal plane of grid points above the bottom wall lies within the log-layer.
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Thus U ol is calculated by averaging the dimensionalized downwind LES velocity over all of the

grid points of this first horizontal plane above the wall.

In the log-law in (4.8), B = 5.5 for turbulent channel flows. However, as was seen in the

previous chapter, the presence of full-depth Langmuir cells may cause a disruption of the log-law

that may be approximated by a shifted log-law resulting from a value of B greater than 5.5. The

value of B required to approximate the mean velocity induced by full-depth Langmuir cells depends

on wind and wave forcing conditions (i.e. values of Lat and γ (the turbulent Langmuir number and

the dominant wavelength of surface waves generating the Langmuir cells, respectively)). This

dependence of B can be observed in the LES-NWR results of chapter 3 (see Figure (3.13)). In

the absence of a parameterization of B in terms of Lat and γ , simulations for this chapter were

conducted with different values of B in order to assess the dependence of LES statistics on this

coefficient. Results from these simulations are presented further below.

In LES-NWR and in physical experiments it has been observed that τwall fluctuates in space

(i.e. over x1 and x2) and in time. Although calculation of τwall via (4.6) and (4.8) allows for

fluctuations of τwall in time, it does not allow for fluctuations in space. In order to include the

latter, typically the wall shear stress is calculated as

τwall = u2
∗

u1(x1,x2,x
ol
3 , t)

U ol
(4.9)

where u1(x1,x2,x
ol
3 , t) is taken to be the LES downwind velocity on the first horizontal plane of

grid points above the bottom wall denoted by x3 = xol
3 . Velocity U ol is calculated as explained

earlier, i.e. U ol = 〈u1(x1,x2,x
ol
3 , t)〉x1,x2

where brackets and subpscript x1 and x2 denote averaging

over these two directions.
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In summary, the boundary term over Γbottom in (4.2) is expressed as

(

wh,2ν∇suh ·n− phn
)

Γbottom

=−

∫

Γbottom

wh
1 τwall dΓbottom (4.10)

where the wall shear stress τd
wall is computed from (4.9) with friction velocity obtained at each time

step via iterative solution of the log-law in (4.8).

4.1.2 Weak Dirichlet Bottom Boundary Condition

In the LES-NWR of Chapter 3, the no-slip bottom boundary condition was enforced strongly.

Thus, the second term on the right hand side of (4.2) (i.e. the integral over Γbottom) becomes zero

because wh = 0 is taken at essential (or Dirichlet) boundaries, as is typically done [20]. In the case

of weak imposition of the no-slip bottom boundary condition (proposed in [4]), the second term

on the right hand side of (4.2) is replaced by

Bwbc({wh},{uh}) = (wh,2ν∇suh ·n)Γbottom

+(2ν∇swh ·n,(uh −g))Γbottom

−(wh,τB(u
h −g))Γbottom

, (4.11)

weakly imposing the no-slip Dirichlet bottom boundary condition uh = g on Γbottom with g = 0. The

previous integrals may be reduced further if inserting n = (0,0,−1), the unit outward normal to

Γbottom. Also note that in this approach, u3 = 0 on Γbottom is enforced strongly, thus wh
3 = 0 there.

The first term on the right hand of (4.11) corresponds to the resolved viscous shear stress at the

bottom wall. In LES-NWR the computed velocity is poorly resolved in the near-wall region, thus
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this stress is not expected to match the correct wall shear stress. Thus, a penalty stress is added

coreesponding to the third term in the right side of (4.11). The penalty stress plus the resolved

viscous shear stress are expected to give the correct wall shear stress.

To ensure numerical stability and optimal convergence, the penalty parameter τB in equation

(4.11) is chosen as

τB =
Cbν

hb

(4.12)

with

hb =
2

√
niGi jn j

, (4.13)

where ni’s are the Cartesian component of the unit outward normal vector to Γbottom, Gi j was defined

in Chapter 3 and Cb = 4 is an element-wise constant emanating from error analysis [5]. For rectan-

gular meshes, (4.13) results in the element length in the wall-normal direction. Further numerical

stability can be gained via the middle term on the right hand side of (4.11) which is a so-called

adjoint-consistency term. This is related to the fact that if the exact solution of the adjoint problem

is inserted as the weight function into the RVBMS weak formulation (including the handling of

the bottom boundary via (4.11)), then the RBVMS formulation is satisfied exactly. Additional dis-

cussion and computational results employing weakly-enforced Dirichlet conditions may be found

in [4, 5].
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4.2 Computational Setup

The computational domain is similar to that depicted in 6.1 and consists of a rectangular box

with dimensions L1 in the streamwise or downwind (x1) direction, L2 in the spanwise or crosswind

(x2) direction and L3 in the vertical or wall-normal (x3) direction. Various domain lengths over x1

and x2 directions were utilized in order to investigate their influence on turbulence structure and

statistics. Domain sizes are listed in Table (4.1). This table also shows mesh resolutions in terms

of the numbers of quadratic NURBS basis functions (N1, N2 and N3) used in each tensor product

direction. Mesh resolution is uniform in all three directions. The coarse mesh resolution in the

wall-normal (vertical) direction (relative to the LES-NWR of Chapter 3) is such that viscous wall

and buffer sublayers are not well-resolved, thereby requiring near-wall modeling.

Table 4.1: Summary of domain sizes and mesh resolutions used in LES-NWM.

L1 L2 L3 N1 N2 N3

4πδ 8
3
πδ 2δ 32 64 34

28πδ 16
3

πδ 2δ 256 128 34

40πδ 16
3

πδ 2δ 320 128 34

4.3 Results

Figure 4.1 shows velocity fluctuations averaged over the streamwise (x1) direction and over

time on the streamwise-wall-normal plane. These averaged fluctuations reveal the cellular structure

captured by the LES. In this case, one Langmuir cell was resolved with spanwise length of the

domain L2 = 8πδ/3. This spanwise length of the cell is consistent with the field measurements in

[17, 18] and the LES-NWR of Chapter 3 which used the same spanwise domain length.
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Figure 4.1: Spanwise-vertical variation of streamwise- and time-averaged spanwise (top), wall-

normal (middle) and streamwise (bottom) velocity fluctuations defined in Eq. (3.26) from LES-

NWM in the domain L1/δ ×L2/δ ×L3/δ = 4π × 8
3
π × 2. Results were obtained with the tradi-

tional wall model described in sub-section 4.1.1 with B = 6.5 in (4.8). Streamwise (downwind)

direction (x1) is out of page.

In Figure 4.2, the structure of the Langmuir cells is seen in the horizontal (streamwise-spanwise)

(x1−x2) plane at mid-depth of the domain. Here instantaneous streamwise and wall-normal veloc-

ity fluctuations are characterized by downwind-elongated streaks alternating in sign in the spanwise

direction, consistent with the LES-NWR results of Chapter 3.

Figure 4.3 shows instantaneous streamwise and wall-normal velocity fluctuation streaks at mid-

depth in LES-NWM with the domain expanded to L1 = 40πδ and L2 = 16πδ/3 compared to

L1 = 4πδ and L2 = 8πδ/3 in Figure 4.2. The expanded domain is able to resolve three Langmuir

cells, as can be seen by the three pairs of positive and negative downwind-elongated streaks char-

acterizing the instantaneous streamwise and wall-normal velocity fluctuations. Furthermore, the
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Figure 4.2: Mid-depth streamwise-spanwise plane of instantaneous streamwise (top) and wall-

normal (bottom) velocity fluctuations from LES-NWM in the domain L1/δ ×L2/δ ×L3/δ = 4π×
8
3
π ×2. Results were obtained with the traditional wall model with B = 6.5 in (4.8).

expanded streamwise length of the domain allows for the cells to interact with each other. Such

interaction gives rise to cell meanderings and mergings as is seen in Figure 4.3. The merging of

cells is often observed during field occurrences of Langmuir cells and is typically referred to as a

“y-junction” [58]. The expanded domain also gives rise to finer (grainier) scale features associated

with the streaks.

Figure 4.4 shows mean velocity in LES-NWM with the traditional wall model. This figure

shows results from the different domains listed earlier in Table 4.1. The mean velocity in wall units

is characterized by a deviation from the log-law. As described in Chapter 3, this deviation has been

attributed to the high speed fluid brought down to the near-wall region by the downwelling limbs of
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Figure 4.3: Mid-depth streamwise-spanwise plane of instantaneous streamwise (top) and wall-

normal (bottom) velocity fluctuations scaled by uτ from LES-NWM in the domain L1δ ×L2/δ ×
L3/δ = 40π × 16

3
π ×2. Results were obtained with the traditional wall model in sub-section with

B = 6.5 in (4.8).

the Langmuir cells [53]. Thus, the log-law deviation depends on the strength of these limbs, which

can be measured, for example, in terms of root mean square of wall-normal velocity [45]. As can

be seen in Figure 4.4, the deviation from the log law is robust across LES-NWM simulations with

different horizontal domain lengths. Furthermore, all LES-NWM cases predict a mean velocity

in good agreement with the velocity calculated via LES-NWR (in Chapter 3), the latter using the

smallest domain listed in Table 4.1 and a stretched mesh in the x3 direction so as to resolve the

viscous boundary layer at the bottom wall. In contrast, the LES-NWM simulations use a uniform

mesh in x3 with fewer elements so as to not resolve all of the energetic scales within this region.

These results imply that LES-NWM is able to perform well in capturing the strength of the full-
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depth upwelling and downwelling limbs of the Langmuir cells and the associated disruption of the

velocity log law despite its poor resolution of the near-wall region. Furthermore, the strength of the

downwelling limbs and resulting deviation of mean velocity from the log law is nearly independent

of horizontal domain length and cell meanderings.
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Figure 4.4: Mean velocity in regular units (left) and plus units (right) for LES-NWM in domains of

various lengths. Domain lengths are specified in the figure legend in dimensionless units. Results

were obtained with the traditional wall model described in sub-section 4.4.1 with B = 6.5 in (4.8).

The LES-NWR appearing in the figure was performed with a quadratic NURBS mesh with N1 =
N2 = 64 and N3 = 66 with non-uniform mesh in x3. Details of the LES-NWM are shown in Table

4.1.

Figure 4.5 shows root mean square (rms) of velocity. These rms quantities are obtained follow-

ing the Reynolds decomposition described in (3.24) as

ui-rms ≡ 〈uh ′
(i)u

h ′
(i)〉= 〈uh

(i)u
h
(i)〉−〈uh

(i)〉〈u
h
(i)〉 (4.14)
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where the parenthesis is meant to supress the Einstein summation convention. Note that for flows

in statistical equilibrium as being considered in this work, time averages are sufficiently long such

that 〈uh ′
(i)〉 = 0 and thus the latter expression is used to obtain (4.14). Results from LES-NWM

with the traditional wall model and different domain lengths in x1 and x2 do not show significant

differences in streamwise, spanwise and wall-normal velocity rms (u1-rms, u2-rms, u3-rms, respec-

tively). In Figure 4.5 (left panel) the near-bottom peak in u1-rms predicted by LES-NWM with the

traditional wall model on the smallest domain listed in Table 1 is significantly higher than the peak

predicted by LES-NWR on the same domain. This could potentially be due to the under-resolution

of the LES-NWM (N1 = 32) compared with the LES-NWR (N1 = 64) in the streamwise direction.

Finally, the significant non-zero value of u2-rms at the bottom wall (see Figure 4.5; middle panel)

is an artifact of the wall slip velocity associated with the traditional wall model. This non-zero

value of u2-rms at the wall may simply be over-written with a zero.

As mentioned earlier, the LES-NWM results of Figures 4.4 and 4.5 were obtained with the

tradional wall model. Cases (not shown here) were run with different values of B in (4.8), given

the deviation from the log-law induced by the Langmuir cells. For example, a case with B = 5.5

did not yield significant differences from the mean velocity and rms of velocity profiles in Figures

4.4 and 4.5 obtained with B = 6.5.

Finally, Figure 4.6 shows a comparison between LES-NWM with the traditional wall model

described in sub-section 4.1.1 and the weak imposition of the no-slip bottom described in sub-

section 4.1.2. The weakly enforced no-slip bottom boundary condition leads to under-prediction

of the near-bottom u1-rms and u2-rms peaks relative to the traditional wall model, perhaps due

to damping of near-wall fluctuations by the penalty term (i.e. the third term on the right hand

side) in equation (4.11). Differences between the mean velocity predicted by these two near-wall
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Figure 4.5: Root mean square of velocity for LES-NWM in domains of various lengths. Domain

lengths are specified in the figure legend in dimensionless units. Results were obtained with clas-

sical wall model in sub-section 3.1 with B = 6.5 in (4.8). The LES-NWR appearing in the figure

was performed with a quadratic NURBS mesh with N1 = N2 = 64 and N3 = 66 with non-uniform

mesh in x3. Details of the LES-NWM are shown in Table 4.1.

treatments were not significant (not shown) and thus both wall models are able to accurately predict

the strength of upwelling and downwelling limbs of full-depth Langmuir cells, and the asociated

disruption of the velocity log law.

4.4 Summary

This chapter presented results from LES-NWM of Langmuir turbulence in shallow water char-

acterized by full-depth Langmuir circulation. LES-NWM with domain lengths sufficiently wide

and long allowed for the resolution of multiple Langmuir cells and the interaction between the cells

resulting in cell meanderings and thus the so-called “y-junctions”. It was seen that the strength of

full-depth downwelling limbs generating deviation from the log law (characteristic of the mean
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Figure 4.6: Root mean square of velocity from LES with the classical wall model in sub-section

3.1 with B = 6.5 in (4.8) (denoted as LES-NWM in the figure legend) and LES with the alternate

wall treatment based on weak imposition of the no-slip bottom boundary condition in (3) (denoted

as LES-NWM2 in the legend). Domain lengths are specified in the figure legend in dimensionless

units.

velocity profile of typical boundary layers) is independent of cell meanderings and thus horizontal

domain lengths. This is an important result as it shows that future LES simulations aiming to ob-

tain parameterizations of the strength of full-depth downwelling and upwelling limbs of Langmuir

cells in terms of wind and wave forcing conditions may be performed on smaller domains captur-

ing only one single cell and thus requiring less expensive meshes. As was shown in [53] and [45],

the deviation from the log-law caused by full-depth Langmuir cells is directly proportional to the

strength of the downwelling limbs. Furthermore, parameterizations of the vertical mixing in the

Reynolds-averaged Navier-Stokes (RANS) equations resulting from the action of these limbs is

principally dependent on their strength and thus require accurate parameterization of this strength

[45]. Such a vertical mixing parameterization would be useful for inclusion in coarse-scale coastal
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general circulation models that do not resolve the Langmuir cells yet still (up to date) use vertical

mixing parameterizations that do not account for Langmuir circulation.

Langmuir cell meanderings are an important feature of lateral dispersion by Langmuir turbu-

lence, thus LES-NWM simulations on horizontally expanded domains are still recommended in

order to provide a parameterization of lateral dispersion by Langmuir cells.

Finally, LES-NWM with weak imposition of the no-slip bottom condition tends to under-

predict streamwise and spanwise velocity rms relative to LES-NWM with the traditional wall

model. However, LES-NWM with weak imposition of the no-slip bottom is still able to accu-

rately represent the strength of the downwelling limbs of the Langmuir cells and thus the mean

velocity log-law deviation.

The next chapter focuses on extending the weak imposition of the no-slip bottom to coarse-

scale simulations of wind and wave driven flows based on the RANS equations that do not resolve

the Langmuir cells. As will be seen, results show that weak imposition of the no-slip bottom is a

viable option for these types of simulations given the observed significant dependence of traditional

RANS turbulence models on the B coefficient in (4.8).
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Chapter 5:

RANS Simulation of Shallow Water Langmuir Turbulence with Near-Wall Modeling

As described in the Introduction, the total number of grid points required for a direct numerical

simulation (DNS) should be N ≈ Re9/4. Most of the flows in applied sciences and engineering

applications have a Reynolds number in range of 104 < Re < 108. Therefore, the requirement of

massive computational resources for DNS limits its applicability. Although LES offers a less com-

putationally intensive alternative, it is still prohibitive in many applications such as in geophysical

flows as LES requires resolution of a disparate range of scales extending from the largest scales

of the turbulence down to the significantly smaller scales within the inertial subrange. In oceanic

flows, one of the largest domains LES has been applied to consists of a 5.76 km by 10.5 km hori-

zontal upper ocean region, 120 meters in depth with grid resolution of 3 meters [47]. The focus of

that study was to understand the breakdown of frontal sub-mesoscale eddies of 1 km in horizontal

scale into smaller scale turbulence. The necessity to study the general ocean circulation requires

resolution of much larger scales. For example, the classical problem of wind-driven coastal up-

welling and downwelling requires resolution of horizontal scales of O(100 km), for which LES

(say with grid cell size of O(1 m) similar to that of [47]) is out of reach given current computa-

tional resources. In order to investigate such flow phenomena, researchers turn to simulation based

on the Reynolds-averaged Navier-Stokes (RANS) equations in which only the mean component of

the flow is resolved while the effect of the entire spectrum of unresolved turbulent scales is param-
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eterized often via a an eddy viscosity stress. In RANS simulation, none of the turbulent scales are

resolved. This in contrast to LES in which a significant portion of the turbulence is resolved.

In this chapter, stabilization in the form of SUPG is extended to the RANS simulation method-

ology along with near-wall modeling based on weak imposition of the no-slip boundary condition.

This combination will be used to peform RANS of the wind and wave forced flows with full-depth

Langmuir cells studied in previous chapters. In these RANS simulations, the Langmuir cells are

not resolved and the turbulence will be be accounted for through the aforementioned eddy viscos-

ity stress, and so the role of SUPG will be purely to stabilize the computation given the expected

sharp gradients of the eddy viscosity stress. Note that stabilization is not able to account for all

of the unresolved scales, in this case corresponding to the full spectrum of turbulent scales. As

will be seen, results show that weak imposition of the no-slip bottom is a viable option for RANS

simulations with full-depth Langmuir cells given the observed significant dependence of results on

the B coefficient in in the log law (4.8) assumed when using a traditional wall model.

5.1 Reynolds-Averaged Craik-Leibovich Equation

Recall the Reynolds decomposition of a turbulent field such as velocity:

u = 〈u〉+u′ (5.1)

where the brackets denote an ensemble average (e.g. averaging over time) the superscript prime de-

notes the turbulent fluctuation. Ensemble-averaging (i.e. Reynolds-averaging) the Craik-Leibovich
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equation and the momentum equation results in

∂ 〈u〉

∂ t
+∇ · (〈u〉⊗〈u〉)+∇〈p〉+∇ · 〈u′⊗u′〉−∇ · (2ν∇s〈u〉)−φ ×∇×〈u〉 = 〈f〉 in Ω (5.2)

∇ · 〈u〉= 0 in Ω (5.3)

where the classical Reynolds stress is−〈u′⊗u′〉, not to be confused with the subgrid-scale Reynolds

stress resulting from scale decomposition in the RBVMS LES equations (2.23)-(2.16). Ensemble-

avaraging generates a closure problem in terms of the Reynolds stress given that the fluctuations u′

are unknown. Thus, the Reynolds stress needs to be modeled or approximated. Here, the Reynolds

stress is modeled using an eddy viscosity stress as

−〈u′⊗u′〉= 2νt∇
s〈u〉 (5.4)

where νt is the eddy viscosity.

Considering only local wind and surface wave forcing (e.g. setting f = 0 and neglecting meso

and submesoscale eddies and effects due to lateral boundaries and bottom bathymetry) as was done

in previous chapters, the ensemble averaging may be taken as an average over time and horizontal

directions x1 and x2. In this case the flow equations reduce to the following one-dimensional or

single water column model for the ensemble or Reynolds-averaged downwind (x1) velocity u(x3)

d

dx3

(

(ν +νt)
du

dx3

)

= 0 (5.5)
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Note that the Craik-Leibovich vortex force does not appear in this x1-momentum equation, given

that the Stokes drift velocity vector φ is taken to have a non-zero component only along x1 as was

the case in previous chapters.

The effect of Craik-Leibovich vortex forcing or better yet Langmuir turbulence on mean veloc-

ity downwind u is incorporated through a depth-dependent (x3-dependent) eddy viscosity νt . Such

an eddy viscosity has been derived in [45] based on the well-known k-profile parameterization

(KPP) [32] and following LES results of [53].

The eddy viscosity νt introduced in [45] accounts for near-top surface local vertical mixing

induced by Stokes drift shear (i.e. vertical gradient of Stokes drift velocity). In order to account for

non-local vertical mixing induced by the full-depth upwelling and downwelling limbs of Langmuir

cells, an additional depth-dependent stress was introduced in [45], τnl . With this new stress, the

single water column model becomes

d

dx3

(

(ν +νt)
du

dx3
+ τnl

)

= 0 ∈ (0,2δ ) (5.6)

with a stress boundary condition at the top of the water column (x3 = 2δ ) and no-slip at the bottom

(x3 = 0), respectively,

ν
(

du
dx3

)

x3=2δ
= u2

τ

u|x3=0 = 0

(5.7)

These boundary conditions are the same as the full three dimensional problem solved via LES-

NWR in Chapter 3.

The interested reader is directed to [45] for the derivations of and explicit expressions for eddy

viscosity νt and non-local stress τnl in terms of wind and wave forcing parameters: Lat , λ (see
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Chapter 3 for defintions) and Stokes drift vertical shear. In the absence of Craik-Leibovich vortex

forcing τnl vanishes and νt reverts back to the eddy viscosity given by the standard KPP model in

[32]. Furthermore, τnl and νt vanish at x3 = 0 and x3 = 2δ .

Single water column models such as (5.6) are often employed to test vertical mixing parame-

terizations for further implementation in three-dimensional general circulation simulations as well

as for water column response to local forcing conditions and impact on biological and chemical

processes (e.g. see GOTM.net and references within).

5.2 Stablized Discrete Formulation

The strong form in (5.6) may be re-expressed as

a
du

dx3
+νt

d2u

dz2
+

d

dx3

(

ν
du

dx3
+ τnl

)

= 0 (5.8)

with a = dνt/dx3. The term a du/dx3 possesses the form of an advective term, thus, application

of the Galerkin method to (5.8) can result in instability and the formulation needs to be stabilized.

However, stabilization via application of the variational multiscale method (described in Chapter

2) is not possible because the so-called advective term in (5.8) can not be expressed in conservation

form (i.e. in the form of d(au)/dx3) as in the case of the Navier-Stokes equation. Consequently,

here the Galerkin method is stabilized using traditional application of streamline upwind Petrov

/ Galerkin (SUPG) stabilization with advective velocity a. Furthermore, note that the SUPG sta-

bilization is not able to account for the turbulence, which is being parameterized via the eddy

viscosity νt and non-local stress τnl described earlier.
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Let V
h denote the space piecewise linear functions (i.e. linear finite elements) and let the

solution and test (weighting) functions both come from this same space. The weak form of the

problems is stated as follows: Find uh ∈ V h such that ∀wh ∈ V h,

∫ 2δ
0

dwh

dx3
(ν +νt)

duh

dx3
dx3 +

∫ 2δ
0

dwh

dz
τnldx3 −whu2

τ +BSUPG(w
h,uh) = 0 (5.9)

where the SUPG terms are

BSUPG(w
h,uh) =−

∫ 2δ

x3=0
τ a

dwh

dx3

(

(ν +νt)
d2uh

dx2
3

+a
duh

dx3
+

dτnl

dx3

)

dx3 (5.10)

and the stabilization parameter is

τ =
C h2

ν +νt
(5.11)

with C a coefficient defined in [13].

5.3 Wall Modeling

As noted in the introduction of Chapter 4, wall-bounded turbulent flows are characterized by

sharp gradients at the wall. The fact that sharp gradients exist within narrow regions near the

walls, posses extensive computational challenges and cost. As the result, any successful numerical

simulation will require fine grid resolution and particularly in near wall regions. In order to by-pass

resolution of these gradients, we resort to wall modeling. In this chapter will implement both, the

traditional Wall Model (TWM) and, weakly imposed No-slip velocity condition at the wall.
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5.3.1 Traditional Wall Model (TWM)

In the traditional approach tested here, the no-slip condition at the bottom of the water column

(see (5.7)) is enforced strongly. A uniform mesh in x3 will be chosen such that the first grid point

is within the expected log-layer. That is, this mesh will not resolve the viscous sub-layer where

molecular viscosity plays a dominant role in the dynamics and the velocity is characterized by

a strong gradient in x3. Thus given this relatively coarse mesh at the wall and if the velocity at

the first grid point off the wall is to satisfy the log-law, then the resolved viscous wall shear is

not expected to match the prescribed surface wind stress (in (5.7)) as required by conservation of

momentum. In fact, given the no-slip velocity at the wall and assuming the velocity at the first grid

point off the wall satisfies the log-law, the resolved viscous wall shear stress should under-predict

the expected wall shear stress. In order to overcome this difficulty, at the wall, the molecular

viscosity is replaced with an effective viscosity

νeff =
(z1/δ )

1
κ log(z1ν/uτ)+B

(5.12)

derived in [7] in accordance with classical boundary layer (log-layer) theory. In (5.12), z1 denotes

the distance between the wall at x3 = 0 and the first grid point off the wall. As described in

Chapter 3 (see discussion of Figure 3.13), full-depth Langmuir cells induce a deviation from the

typical velocity log-law profile with B = 5.5 which may be approximated by letting B > 5.5. The

appropriate value of B depends on wind and wave forcing parameters, however, a parameterization

of B does not exist. In the LES-NWR of wind and wave-driven flow with Lat = 0.7 and λ = 12δ

studied in Chapter 3, B was found to be 8.5. Here we will use the single water column model to

model this same flow study the dependance of results on B by setting B to 5.5 and 8.5.
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5.3.2 Weak Imposition of The Wall No-Slip Condition

Rather than modifying the viscosity at the wall, in the weak imposition of the no-slip condition,

the left hand side of the weak form in (5.9) is augmented with the following term:

Bwbc(w
h,uh) =

[

whν
duh

dx3

]

x3=0

−

[
dwh

dx3
νuh

]

x3=0

+
[

whτBuh
]

x3=0
= 0 (5.13)

where penalty parameter is τB =Cbν/h with Cb = 4 and h the uniform grid spacing. The terms in

(5.13) are the one-dimensional versions of the terms in (4.11) in Chapter 4.

5.4 Results

The single water column model previously developed is used to predict the mean velocity for

wind and wave driven flow with Re = 395, Lat = 0.7, and λ = 12δ (see Chapter 3; sub-section

3.3) studied in previous chapters via LES-NWR (LES with near-wall resolution) and LES-NWM

(LES with near-wall modeling). In particular we compare results of the single water column with

LES-NWR. Recall that LES-NWR made use of 64x64x64 quadratic NURBS elements with wall

normal grid stretching so as to resolve down into the viscous sub-layer. In the case of the single

water column model, the domain (i.e. the range [0,2δ ]) is discretized into 32 linear finite elements

with 33 uniformly spaced grid points.

A comparison of results obtained with the single water column model and LES-NWR is shown

in Figure (5.1). The single water column model with the weak no-slip bottom boundary condition

performs well predicting the deviation of the mean velocity away from the logl-law in excellent

agreement with LES-NWR. Meanwhile, the prediction of the single water column model with

the traditional wall model strongly depends on the B coefficient used to determine the effective
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viscosity in (5.12) in accordance with the log-law. The advantage of the weak imposition of the

no-slip wall is clearly evident as this wall treatment does not make use of the log-law and thus

there is no need for the B coefficient. These results suggest that weak imposition of the Dirichlet

boundary condition is a robust wall model capable of leading to good results even for cases when

the near-wall behavior deviates from classical boundary layer theory (i.e. the log-law).
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Figure 5.1: Mean velocity obtained in wind and wave-driven flow simulated via the single water

column model (SWCM) with different wall models and LES-NWR.

5.5 Summary

In this chapter, stabilization in the form of SUPG was extended to the Reynolds-averaging

methodology along with near-wall modeling based on weak imposition of the no-slip boundary

condition. This combination was used to develop a single water column model of the wind and

wave forced flows with full-depth Langmuir cells studied in previous chapters. In the single water
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column model, the Langmuir cells are not resolved and the associated turbulence was accounted

for through an eddy viscosity stress. It was seen that the single water column model with weak

imposition of the no-slip wall boundary condition led to a prediction of the mean downwind ve-

locity in excellent agreement with LES-NWR. Furthermore, it was seen that the mean velocity

prediction of the single water column model with a traditional wall model depends greatly on the

B coefficient in the log-law used to calculate the model’s effective eddy viscosity at the wall. The B

coefficient itself depends on the strength of the Langmuir cells being parameterized. In the absence

of a parameterization of the B coefficient, the weak imposition of the no-slip wall was deemed a

robust wall model leading to excellent results without the need to tune parameters.
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Chapter 6:

New Developments in RBVMS LES with Near-Wall Modeling

6.1 Introduction

In large-eddy simulations (LES) of wall-bounded turbulent flows, near-wall sharp gradients and

near-wall small eddies scaling with distance to the wall pose undesired computational cost. Wall

modeling is often employed to reduce this cost [42], as was done in chapter 4 in flows with full-

depth Langmuir cells. In LES with near-wall modeling (or LES-NWM) the core flow is resolved

and the unresolved near-wall region is modeled through a suitable boundary condition. The wall

model obviates the need to refine the mesh in the near-wall region in order to capture near-wall

features such as sharp gradients and small eddies. This is in contrast to simulations in which the

mesh is made finer near the wall (often referred to as LES with near-wall resolution or LES-NWR)

in order to resolve near-wall features. With the lower computation cost brought about with wall

modeling, more realistic problems in terms of computational domain size and Reynolds number

can be solved when compared to those of LES-NWR and direct numerical simulation (DNS).

In traditional wall modeling, instead of imposing the no-slip condition at a wall, the wall shear

stress is prescribed by assumming the presence of a log layer where the mean of the LES-resolved

velocity is taken to satisfy the log law, part of the well-known law of the wall. The mean of the

computed flow is assumed to satisfy the log law from which a wall friction velocity is extracted

and in turn used to prescribe the wall shear stress.
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An alternate approach to wall modeling was introduced in [4]. This approach is based on weak

imposition of the Dirichlet no-slip condition at the wall. More specifically, the variational (weak)

form of the Navier-Stokes equations is augmented by terms that enforce the no-slip conditions

weakly as Euler Lagrange conditions. A key component is a penalty term whose integrand is

comprised of the deviation of the discrete solution from the Dirichlet no-slip condition at the wall.

The integrand of the penalty term is also proportional to a penalty parameter, τB, chosen to ensure

numerical stability and optimal convergence of the discretization. This approach has already been

seen in Chapter 4 in LES-NWM of Langmuir turbulence in shallow water.

Weak imposition of the no-slip condition is based on numerical considerations and not on

physical conditions as is the case of traditional wall modeling. In this chapter, weak imposition

of the no-slip condition is re-visited and reformulated to be consistent with the law of the wall.

In particular, the penalty parameter τB is computed following the law of the wall by considering

the penalty term as being representative of the unresolved shear stress at the wall, given that the

relative coarseness of the mesh in the wall-normal direction causes the resolved molecular viscous

shear to under-predict the expected wall shear stress.

The merit of this new formulation is that it is designed to inherit the positive numerical at-

tributes of the original formulation while being consistent with the law of the wall. Furthermore,

its alignment with the law of the wall opens the door for future improvements of the new formula-

tion following developments already made for the traditional wall model [42].

In this chapter, results from LES-NWM of pressure gradient-driven open channel flow with

prior and new (current) formulations of the weak Dirchlet no-slip condition at the wall are com-

pared with those from LEWS-NWM with a traditional wall model. Additional comparisons are

made between results with weak imposition of the no-slip condition and DNS. It is observed that
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the new (current) formulation of the weak Dirchlet condition offers improvements over the prior

formulation, in particular, in terms of root mean square of stream-wise velocity.

The chapter is organized as follows. Sections 2 and 3 present the incompressible Navier-Stokes

equations and their weak form. Section 3 gives the discrete, residual-based variational multiscale

formulation for the weak form. Section 4 gives details of the traditional wall model and the models

based on weak imposition of the no-slip condition at the wall. Section 5 provides descriptions of

the flow configuration, the mesh and overall numerical algorithm. Section 6 provides a comparison

of results obtained from DNS, LES-NWM with the traditional wall model, and LES-NWM with

the various formulations of the weak imposition of the no-slip wall condition. Conclusions are

drawn in section 7.

6.2 The Navier-Stokes Equations at The Continuous Level

Let Ω ∈R
3 be the problem domain and let ∂Ω denote its boundary. A conservative form of the

dimensionless Navier-Stokes equations in the Eulerian frame are taken as a starting point of our

developments, and are given as

∂u

∂ t
+∇ · (u⊗u)+∇p−∇ · (2ν∇su) = f in Ω (6.1)

∇ ·u = 0 in Ω (6.2)

Eqns. (6.1) and (6.2) represent conservation of linear momentum and mass, respectively, assuming

density is constant. In the above u and p are the fluid velocity and pressure (divided by density), ν

is kinematic viscosity, ∇s = 1
2

(
∇+(∇)T

)
is the symmetric spatial gradient, and f is a body force

per unit mass.
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6.3 The Space-Discrete Formulation of The Navier-Stokes Equations

In this section we present the residual-based variational multiscale (RBVMS) formulation of

the incompressible Navier-Stokes equations originally developed and tested in [1, 3]. For better

approximation of thin boundary layers near no-slip walls, various wall-modeling approaches will

be employed and compared. In particular, we will explore wall-modeling via weak enforcement of

the Dirichlet boundary conditions, proposed in [4].

Let V h denote the discrete solution space for the velocity-pressure pair {uh, ph} and let W h

denote the discrete weighting space for the linear momentum and continuity weighting functions

{wh,qh}. The space-discrete Navier-Stokes problem is stated as: Find {uh, ph} ∈ V h such that

∀{wh,qh} ∈ W
h,

B({wh,qh},{uh, ph})+Bvms({wh,qh},{uh, ph}) (6.3)

+Bwm({wh,qh},{uh, ph}) = (wh, f)Ω.

In the above, (·, ·)A denotes an L2-inner product over A. The terms of the above formulation are

defined in what follows.

B({w,q},{u, p}) =

(

w,
∂u

∂ t

)

Ω

− (∇w,u⊗u)Ω +(q,∇ ·u)Ω

−(∇ ·w, p)Ω +(∇sw,2ν∇su)Ω , (6.4)

is the Galerkin part of the weak form. Furthermore,

Bvms({w,q},{u, p}) =−
(
∇w,u′⊗u+u⊗u′+u′⊗u′

)

Ω
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−(∇ ·w, p′)Ω − (∇q,u′)Ω. (6.5)

are the RBVMS terms, and the pair {u′, p′} denotes the velocity and pressure subgrid scales (i.e.,

the scales that are too small to be reasonably approximated on a given mesh).

Analogously to [3], the subgrid scales are modeled as

u′ =− τM

(
∂u

∂ t
+u∇u+∇p−ν∆u− f

)

p′ =− τC∇ ·u (6.6)

where τM and τC are the subgrid-scale parameters defined in Chapter 2.

In the formulation described, the wall-normal component of the flow velocity vector at a Dirich-

let boundary, say a wall, is imposed strongly. The other two components of the no-slip wall velocity

will not be imposed strongly, but rather a wall model will be prescribed.

6.4 Wall Modeling

6.4.1 Traditional Wall Modeling (TWM)

The term Bwm in (6.3) contains the wall model employed in the formulation. In traditional

wall model formulations the Dirichlet boundary condition, say at a no-slip wall, is replaced with

imposition of the wall shear stress such that

Bwm({w,q},{u, p}) =

(

w,u∗2 uslip

||uslip||

)

Γwall

(6.7)
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with Γwall denoting the wall portion of the domain boundary and || · || the Euclidean length. Fur-

thermore, u∗2 and uslip/||uslip|| are the magnitude and the direction of the applied wall traction

vector, respectively, with uslip the slip velocity at the wall. In traditional wall modeling, wall fric-

tion velocity u∗ is obtained by assuming that the LES-computed mean flow speed parallel to the

wall at a point A within the log layer (or outer layer) satisfies the classical log law:

UA+ =
UA

u∗
=

1

κ
log

(
xA

3 u∗

ν

)

+B (6.8)

where xA
3 denotes the wall-normal distance from the wall to point A, and UA denotes the mean

LES-computed flow speed parallel to the wall at point A:

UA = 〈||uA
t ||〉 (6.9)

In the previous expression uA
t is the LES-computed fluid velocity parallel to the wall at point A and

the brackets denote averaging. Typically the averaging is performed over homogenous directions

of the flow, as will both be the case for the results presented further below. Coefficients in (6.8) are

κ = 0.41 (the von Karman constant) and B = 5.5. Finally, Eq. (6.8) is non-linear in u∗ and is thus

solved iteratively for u∗ yielding imposed traction magnitude u∗2 in Eq. (6.7).

Note that in Chapter 4, point A was denoted as a point in the outer layer (ol) or log layer, and

notation with superscript ol was used instead of the notation used here with supercript A. Also

note that the traditional wall model presented here is slightly different than the traditional wall

model used in Chapter 4. In Chapter 4 a more advanced traditional wall model was used in that the

computed wall shear stress was pre-multiplied by the ratio u1(x1,x2,x
A
3 , t)/UA (see 4.9) in order
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to allow for fluctuations in space. Here we remove this level of complexity in order to facilitate

comparison with the other models studied below.

6.4.2 Weak Imposition of The Dirichlet Condition (WD1)

Rather than prescribing the wall shear stress as in the case of traditional wall modeling, a

different approach was introduced in [4] based on weak imposition of the no-slip condition at the

wall. In this case term Bwm in (6.3) is taken as

Bwm({w,q},{u, p}) = (w,−2ν∇su ·n)Γwall

+(−2ν∇sw ·n,(u−g))Γwall

+(w,τB(u−g))Γwall
, (6.10)

containing terms that weakly impose the Dirichlet boundary condition u = g, i.e. u = 0 at the wall.

To ensure numerical stability and optimal convergence, the penalty parameter τB in Eq. (6.10) is

chosen as

τB =
Cbν

hb

(6.11)

with Cb = 4 and

hb =
2

√
niGi jn j

, (6.12)
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where ni’s are the Cartesian components of the unit outward normal vector (n) to Γwall. For rect-

angular meshes, (6.12) results in the element length in the wall-normal direction.

Description of the terms in Eq. (6.10) as given originally in [4] follows. The first term on the

right side of Eq. (6.10) is referred to as the consistency term given than the Euler Lagrange equa-

tions for Eq. (6.3) contain a term (arising from integration by parts) that cancels the consistency

term. The second term on the right side of Eq. (6.10) is referred to as athe adjoint consistency

term. If the exact solution of the adjoint problem is used in Eq. (6.3) as the test function, then (6.3)

is satisfied exactly. The third term on the right side of Eq. (6.10) is a penalty term proportional to

the deviation of the discrete solution from the Dirichlet (no-slip) condition at the wall.

Recall that the previously described wall modeling approach was used in Chapter 4 in LES-

NWM of flow with full-depth Langmuir cells.

6.4.3 Weak Dirichlet Condition Aligned with The Law of The Wall on Fine Meshes (WD2)

The weak imposition of the no-slip condition was re-visited in [5] and a modification was

introduced with the goal of aligning the formulation with traditional wall modeling. Rather than

calculating τB as given by Eq. (6.11), a new expression for τB was postulated by comparing the

right side of Eq. (6.7) with the third term (i.e. the penatly term) in the right side of Eq. (6.10) with

g = 0, resulting in

τB =
u∗2

mod

||uslip||
(6.13)

95



Modified wall friction velocity u∗mod is computed iteratively through Spalding’s formula,

x+3 = f (u+) = u++ e−κB

(

eκu+ −1−χu+−
(κu+)2

2
−

(κu+)3

6

)

, (6.14)

with

u+ =
||uslip||

u∗mod

, x+3 =
xA

3 u∗mod

ν
and xA

3 =
hb

Cb

(6.15)

Wall-normal mesh size hb is defined in (6.12) and Cb = 4 as before. Note that here Spalding’s

formula is being evaluated at xA
3 = hb/Cb with wall slip speed ||uslip|| instead of the mean flow

speed parallel to the wall at xA
3 = hb/Cb, i.e. ||uA

t ||. Consequently, the solution has been denoted

here as a modified friction velocity, u∗mod , instead of the actual friction velocity, u∗.

As noted in [5], in the limit of wall-normal mesh refinement in the near-wall region (i.e. let-

ting hb go to zero), ||uslip|| → ||uA
t ||, Spalding’s formula in (6.14) becomes x+3 = u+, and penalty

parameter τB in Eq. (6.13) becomes independent of ||uslip|| taking on the expression

τB =
νCb

hb

(6.16)

Thus, the seemingly disparate evaluation of Spalding’s formula at yA = hb/Cb with wall slip speed

||uslip|| (noted above) is a mathematical construct designed to yield the original formulation of

the weak Dirichlet (no-slip) condition in Eqs. (6.10) and (6.11) in the limit hb → 0. In this limit,

the new formulation for τB in (6.13) inherits the positive attributes of the original formulation

described in [4].
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6.4.4 Weak Dirichlet Condition Aligned with Law of The Wall on Coarse and Fine Meshes

(WD3)

The modified weak Dirichlet (no-slip) condition in the previous sub-section approaches its

original version in the limit of wall-normal mesh refinement. Furthermore, in this limit, the formu-

lation is consistent with the law of the wall. However, when wall-normal mesh size hb is large, this

modified weak Dirichlet condition not only deviates from its original version, but it also deviates

from the law of the wall, the latter due to the disparate evaluation of the Spalding’s formula de-

scribed in the previous sub-section. Next, the evaluation of penalty parameter τB is re-formulated

such that it is aligned with the law of the wall when hb is large.

Inserting the weak Dirichlet formulation terms in Eq. (6.10) into Eq. (6.3), it is realized that

the consistency term in (6.10) (i.e. the first term on the right side of (6.10)) and the penalty term

in (6.10) (i.e. the third term on the right side of (6.10)) act as shear stresses at the wall. The

consistency term is the resolved molecular shear stress at the wall. Given the under-resolution of

the LES velocity in the near-wall region as is the case for near-wall modeling with coarse meshes,

the resolved molecular shear stress at the wall (provided by the consistency term) will under-

predict the expected wall shear stress based on the flow forcing conditions. Thus, the penalty term

is interpreted here as providing the necessesary shear stress (i.e. a “penalty stress”) such than when

added to the resolved molecular shear stress provided by the consistency term, the sum gives rise

to the expected wall shear stress. Symbolically,

{−2ν∇su ·n}Γwall
+{τB(u−g)}Γwall

= u∗2 uslip

||uslip||
(6.17)
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with g = 0. An expression for τB can be obtained by dotting the left and right sides of (6.17) with

unit vector uslip/||uslip|| and solving for the former:

τB =
1

||uslip||

[

u∗2 −ν

(
∂ ||ut ||

∂n

)

Γwall

]

(6.18)

where ∂ ||ut ||/∂n denotes the wall-normal derivative of the velocity parallel to the wall.

Estimation of τB via (6.17) has been inspired by a popular technique in RANS (Reynolds-

averaged Navier-Stokes) simulations (e.g. see [7]) in which the under-prediction of the wall shear

stress by the resolved molecular viscous shear stress is off-set by the introduction of an effective

wall viscosity νe calculated from

νe

(
∂ ||ut ||

∂n

)

Γwall

= u∗2 (6.19)

with the wall-normal derivative of ||ut || at the wall approximated as

(
∂ ||ut ||

∂n

)

Γwall

≈
uA

xA
3

(6.20)

where xA
3 is the wall-normal distance from the wall to a point A within the log layer. The computed

speed parallel to the wall at point A is denoted as uA = ||uA
t ||. This same approximation of the

wall-normal derivative of ||ut || at the wall is used here to evaluate (6.18).

The formulation proposed above does not recover the original formulation for τB (τB =Cbν/hb)

in the limit hb → 0, unlike the formulation in sub-section 4.3. Instead, in the limit hb → 0, it can

be shown that the proposed τB in Eq. (6.18) goes to zero. However, the proposed formulation

does retain the overall structure of the original formulation, comprised of the consistency, adjoint
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consistency and penalty terms. Furthemore, the proposed formulation is aligned with the law of

the wall for simulations on relatively coarse meshes.

In order to avoid instability of the formulation ocurring when τB → 0, as it does when hb → 0,

and in order to recover the positive attribute of the original formulation in this latter limit, an

alternate expression to Eq. (6.18) is adopted:

τB = max(τwall
B ,τW D

B ) (6.21)

In the previous expression, τwall
B is given by the right side of Eq. (6.18) based on the law of the

wall and τW D
B is given by the right side of Eq. (6.11) of the original model.

In summary, τB is computed from (6.21), with τwall
B set to the right side of Eq. (6.18) and

τW D
B set to the right side of Eq. (6.11). In (6.18), the wall-normal derivative of ||ut|| at the wall is

obtained via (6.20) with UA being the LES-computed speed parallel to the wall at point A. Point

A is taken within the log layer. Wall friction velocity u∗ in Eq. (6.18) is computed iteratively via

(6.8).

6.5 Computational Setup

The flow consists of a pressure gradient-driven open channel flow. The computational domain,

depicted in Figure 6.1, is a rectangular channel with dimensions 4πδ × 2δ × 8
3
πδ in the stream-

wise (x1 or x), wall-normal (x2 or y), and span-wise (x3 or z) directions, respectively. The half-

height of the domain (in the y-direction) is δ . The open top surface of the channel is at x3 = 2δ

and the bottom wall is at x3 = 0.
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No-penetration boundary condition (v = 0) is imposed strongly at the open top surface and

at the bottom wall. Furthermore, the open top surface is characterized by an imposed zero shear

stress and the bottom wall is treated with the wall models described in section 4.

Figure 6.1: Computational domain.

The flow is driven by an imposed pressure gradient (or body force) in the x direction and thus

f = ( f1,0,0) in Eq. (6.1). The first entry of this vector, f1, is chosen to drive flow at Re = 395

where the Reynolds number (Re = u∗δ/ν) is based on friction velocity u∗ and channel half-height

(δ ).

Periodic boundary conditions are set in the homogeneous directions of this flow, that is the

stream-wise (x) and spanwise (z) directions.

Just as in Chapter 4, quadratic NURBS (non-unform rational B-splines) that are C1-continuous

across mesh knots are employed in the computations. The mesh used consists of 64× 64× 32

quadratic NURB elements in the x, y and z directions. These elements are of uniform size in all

three directions.
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The traditional wall model in sub-section 4.1 and the wall model based on weak imposition

of the no-slip condition and the law of the wall in sub-section 4.4 both require evaluation of the

LES velocity parallel to the wall at a point A within the log layer. In the current implementation,

point A is taken to be at a distance z+ = 24.7 from the wall, within the log layer. This location

corresponds to the first level of mesh (element) points away from the wall.

6.6 Numerical Results

Next, results are presented from LES-NWM of the open channel flow with the quadratic

NURBS mesh described in the previous section and the various wall models described in Sec-

tion 4: WD2, WD3 and TWM. Note that the wall models in sub-section 4.2 and 4.3 are denoted

as WD1 and WD2, respectively, and the wall model given through the expression in Eq. (6.21)

in sub-section 4.4 is referred to as WD3. The traditional wall model described in sub-section 4.1

is denoted as TWM. LES results with these models are compared with DNS results of channel

flow of [37]. Results with WD1 are not included in this comparison because they are very close to

results with WD2 (for example, see [5]).

Figure 6.2 shows mean velocity in wall units from DNS and LES-NWW with the various wall

treatments. Mean velocity profiles obtained with the various wall treatments are in overall good

agreement with the DNS and the theoretical log law. For x+3 > 50, the TWM gives rise to an

under-prediction of velocity relative to the various near-wall treatments based on weak imposition

of the no-slip condition. The newly introduced WD3 (the wall model based on weak imposition

of no-slip aligned with the law of wall for relatively coarse meshes) leads to a slighlty improved

prediction of mean velocity compared to its predecessor WD2 and also TWM. Looking at mean
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Figure 6.2: Mean velocity in log wall units from DNS and LES-NWR with various wall treatments.

WD2 and WD3 are wall models of sub-sections 4.3 and 4.4, respectively; TWM is the wall model

of sub-section 4.1. The theoretical log law is plotted with κ = 0.41 and B = 5.5.

velocity in Figure 6.3 it can be seen that the WD3 leads to better prediction of the bulk velocity

compared to both WD2 and TWM with respect to the DNS.

Figure 6.4 shows root mean square (rms) of velocity in wall units from DNS and LES-NWM

with the various wall treatments. The WD3 formulation results in an improved prediction of the

streamwise velocity rms (u1-rms) compared with WD2 in the approximate range 100 < x+3 < 225.

LES with WD3 predicts u1-rms in excellent agreement with the DNS within this range. The WD3

formulation also provides an improved prediction of the peak u1-rms. Furthermore, the WD3

model leads to significant improvements over WD2 in terms of spanwise (u2-rms) and wall-normal

(u2-rms) velocity rms throughout most of the channel. Overall, the velocity rms prediction with

the WD3 model is in close agreement with the prediction obtained with the TWM.
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Figure 6.3: Mean velocity in wall units from DNS and LES-NWR with various wall treatments.

WD2 and WD3 are wall models of sub-sections 4.3 and 4.4, respectively; TWM is the wall model

of sub-section 4.1.

Finally, instantaneous snapshots of the speed of the flows with the different near-wall treat-

ments can be seen in Figure 6.5. The TWM and WD3 wall treatments lead to a more active

near-wall region characterized by more energetic eddies emmanating from this region in compar-

ison to WD2 which leads to greater dampening of the turbulence with decreasing distance to the

wall.

6.7 Summary

In LES-NWM with weak imposition of the no-slip condition at the wall, the wall model consists

of augmenting the variational (weak) form of the Navier-Stokes equations with terms that enforce
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Figure 6.4: Root mean square (rms) of velocity in wall units from DNS and LES-NWR with vari-

ous near-wall treatments. WD2 and WD3 are wall models of sub-sections 4.3 and 4.4, respectively;

TWM is the wall model of sub-section 4.1. Streamwise velocity rms (u1-rms) is in the left panel,

spanwise velocity rms (u2-rms) is in the middle panel and wall-normal velocity rms (u3-rms) is in

the right panel.

the no-slip conditions weakly as Euler Lagrange conditions [4]. Weak imposition of the no-slip

condition is primarily based on numerical considerations and not on physical conditions as is the

case of traditional wall modeling. In this chapter, weak imposition of the no-slip condition was

re-visited and reformulated to be fully consistent with the law of the wall, while simultaneously

possessing the positive attributes of the earlier weak Dirichlet formulations. For an open channel

flow simulation, the new formulation led to improved results in terms of mean velocity and rms of

velocity while allowing more energetic near-wall flow structures.
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Figure 6.5: Instantaneous snapshot of flow speed in simulations with (a) WD1, (b) WD2 and (c)

TWM in 3D (left panels) and on the bottom wall (right panels). Mean speed is scaled by friction

velocity.
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Chapter 7:

Summary and Future Research

The developments presented in this dissertation constitute an initial attempt towards residual-

based variational multiscale (RBVMS) large-eddy simulation (LES) of the coastal ocean. The

RBVMS with quadratic NURBS (non-Uniform rational B-splines) basis functions was chosen

due to its flexibility in potentially representing complex geometry features as well as its accurate

representation of turbulent flow fields [3].

In this dissertation, RBVMS LES simulations of Langmuir turbulence in shallow water were

performed. Langmuir turbulence is generated by interaction between waves and the wind-driven

shear current. In shallow coastal shelf regions Langmuir turbulence is characterized by full-depth

Langmuir cells consisting of parallel counter-rotating vortices aligned in the direction of the winds.

This turbulence regime has important physical, chemical and biological implications as it promotes

vertical mixing throughout the entire water column and can also impact lateral (horizontal) mixing

at the submesoscales. In RBVMS LES of Langmuir turbulence, the RBVMS method serves to

stabilize the discretization which is generally unstable under the advective nature of the governing

equations for the Langmuir turbulence regime. The RBVMS also served as a subgrid-scale model

in the sense of LES.

The governing equation for Langmuir turbulence consist of the Craik-Leibovich vortex force

augmenting the Navier-Stokes equation. In Chapter 3, the Craik-Leibovich vortex force was ex-

pressed in advective form and the RBVMS method was applied to develop a stable, LES formu-
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lation of the momentum equation. This RBVMS LES formulation with quadratic NURBS was

used to perform LES of Langmuir turbulence in shallow water and was shown to possess good

convergence characteristics in terms of predicted mean downwind velocity and turbulent kinetic

energy.

Wall modeling, an important component towards RBVMS LES of the coastal ocean, was dis-

cussed in Chapter 4. In wall-bounded turbulent flows such as those characterizing the coastal

ocean, resolution of the bottom viscous boundary layer is computationally expensive requiring

fine mesh resolution in order to resolve sharp velocity gradients and small-scale eddies of size on

the order of their distance to the bottom. A wall model can be introduced in the LES in order to

predict the correct wall shear stress without having to resolve the viscous layer. Thus the simu-

lation resolves the core flow region while relying on the wall model to prescribe the wall shear

stress rather than imposing the no-slip condition at the wall. In Chapter 4, RBVMS LES with

near wall-modeling (LES-NWM) of Langmuir turbulence in shallow water was performed. A key

issue investigated via these simulations is that traditional wall models assume the existence of a

near-wall log layer. However, LES-NWR (i.e. LES with near-wall resolution) in Chapter 3 showed

that full-depth Langmuir cells induce log-layer disruption, for example, in terms of a departure or

deviation from the mean velocity log-law. This deviation may be approximated by shifting the

log-law velocity profile

U+ =
1

κ
log(z+)+B (7.1)

via an adjustment of the B coefficient from its traditional value B = 5.5 to a value greater than

5.5. Remarkably, RBVMS LES-NWM of Langmuir turbulence in shallow water employing a

traditional wall model was found to be roughly independent of the value of the B coefficient,
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thereby eliminating the need for tuning the B coefficient. The main reason for this was that it is

the strength of the full-depth Langmuir cell that sets the deviation away from the log-law for the

mean velocity. If the core flow is well-resolved, as can be the case in LES-NWM, then the full-

depth Langmuir cells are also well-resolved, ultimately leading to accurate prediction of log-layer

disruption caused by the cells without the need to tune the wall model with the correct value of B.

In Chapter 4, RBVMS LES-NWM allowed simulations of Langmuir turbulence in shallow wa-

ter on horizontally (downwind and crosswind) expanded domains domains. These wider domains

allowed for resolution of multiplied Langmuir cells. Despite lateral (horizontal) interactions be-

tween the cells in these simulations with wider domains, vertical mixing characteristics were found

to be similar to those in simulations with smaller domains.

In Chapter 5, simulations of Langmuir turbulence in shallow water were performed based on

the Reynolds-averaged governing equations. These equations reduced to a single water column

model for the mean velocity of the wind and wave-driven flow with an eddy viscosity stress and a

non-local stress accounting for the effects of unresolved full-depth Langmuir cells and associated

turbulence. Unlike in LES-NWM, the single water column model with a traditional wall model did

show sensitivity to the B coefficient in the assumed log-law velocity profile. Remarkably, a recent

wall-model (introduced in [4]) based on weak imposition of the wall no-slip condition led to a

mean velocity in good agreement with that from LES-NWR without the need to tune parameters.

Note that this wall treatment does not make any assumptions about the existence of a log-law,

unlike traditional wall models.

In the coastal ocean, LES-NWR has shown that Langmuir cells can be periodically destroyed

by the action of the tides thereby restoring the log-layer [45]. Finally, in Chapter 6, given the

near-universality of wall-bounded flows characterized by a log-layer, a new wall-model based on
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weak imposition of the no-slip wall was developed in accordance with the law of the wall (e.g.

the log law). This model was also designed to retain the functional form of the original model

based on weak imposition of the no-slip wall. This form ensures stability and convergence of the

overall formulation (discretization) [4]. In RBVMS LES-NWM of open channel flow (without

Langmuir turbulence) the new wall model led to improved results in terms of mean velocity and

rms of velocity over its predecessor.

Before moving on to coastal LES featuring complex geometries (boundaries), future research

should focus on extending the RBVMS formulation to stratified turbulent flows. In particular, sta-

ble stratification leads to suppression of turbulence fluctuations [2], and thus a numerical method

that can accurately capture this effect is of importance. Stably stratified turbulence has been nu-

merically studied primarily using pseudo-spectral discretization techniques and the ability of lower

order discretizations to accurately represent this turbulence regime remains largely unexplored.
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