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ABSTRACT 

 

Swine wastewater was successfully treated by the SGBR. Two types of swine 

wastewater samples were used, and the performance of the SGBR was excellent. COD 

removal efficiency of sample 1 was 84.7~94.5%, while that of sample 2 was 58.4~76.6%. 

The SGBR acted not only as a bioreactor but also as a filter system. The performance of 

suspended solids removal was excellent irrespective of the OLR. Additionally, the COD 

removal efficiency in the effluent after backwashing was not a function of the recovery time 

but that of the OLR. 

The SGBR model was developed with concepts of advection, diffusion/dispersion, 

and decay of microorganisms. The simulated COD correlated well with the experimental 

COD except at low concentrations. 

The SGBR behaved as a pseudo-plug flow reactor within the top 20% of reactor 

height so that most of the COD and VFA were completely removed. In addition, a large 

amount of granules in the lower part of the SGBR was used to polish organic matter and 

solids. 
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CHAPTER 1. INTRODUCTION 

 

Anaerobic treatment has a very long history in wastewater treatment. The septic tank 

is the simplest, oldest, and most widely used process (Jewell, 1987). Anaerobic treatment has 

been used to treat concentrated industrial wastewater as well as domestic wastewater 

(McCarty and Smith, 1986). Anaerobic treatment has a lot of advantages such as low energy 

consumption, low production of waste biological solids, dormancy for many months with 

rapid recovery, low nutrient and chemical requirements, high removal even at high loading 

rates, pathogen removal, improving dewaterbility, and production of energy in the form of 

biogas. Traditionally, however, it has been regarded by some to have disadvantages such as 

being a sensitive and vulnerable process, odors, long period needed for start-up, and the 

necessity of a post treatment process to meet discharge standards. However, knowledge about 

xenobiotic and toxic compounds has been increasing due to anaerobic treatment research. As 

a matter of fact, anaerobic digestion is a very stable process if the system is understood well. 

When starting up a full-scale anaerobic treatment process, sufficient inoculation is often 

provided in order to overcome its drawbacks. Odors can be prevented by physicochemical or 

biological process improvements (Lettinga, 1996). Lettinga (1996) reported that an anaerobic 

treatment process produces mineral compounds such as ammonium, phosphate, or sulfide 

and needs an additional post treatment for a sustainable environmental protection. 

Anaerobic treatment has been rapidly developing since the late 1960s. Since Young 

and McCarty (1969) developed the anaerobic filter (AF), many high-rate anaerobic reactors 

have been researched. In Europe, however, a reactor which could obtain high performance 

was developed. The upflow anaerobic sludge blanket (UASB) reactor was developed in the 
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Netherlands in the late 1970s. The UASB reactor has become one of the most widely applied 

technologies for high-rate anaerobic treatment in industry. According to Lettinga (1996), 

anaerobic sludge bed reactors have three concepts as: (a) the immobilized balanced micro-

ecosystem is formed; (b) the immobilized anaerobic aggregates have high settleability; and (c) 

mass transport is prevalent between granule and bulk solution.  

In 2000, Mach and Ellis developed a new granule reactor, the static granular bed 

reactor (SGBR) (Mach, 2000). The SGBR is a simple and optimum process for medium to 

low strength wastewater. Unlike other granular processes, the SGRB does not need mixers, 

Gas/Solid/Liquid separators, or other mechanical materials. In other words, the SGBR is 

operable with simplicity because the reactor is filled with granules and also because influent 

is distributed by gravity. The performance of the SGBR was comparable with that of other 

processes. It is often superior to that of the UASB (Evans, 2005a).   

As the livestock industry has intensively developed, an increasing amount of high-

strength swine wastewater has been produced. In the US alone, it is estimated that 5.8×107 

tons of manure are produced each year (Dentel et al., 2004). Piggery waste has a high content 

of organic matter and pathogenic organisms. Without adequate treatment, it can cause a 

drastic effect on human health and the environment. Swine wastewater has to be treated in 

order to prevent the release of contaminants, odors, and pathogens to the environment 

(Schiffman et al., 2001; Sobsey et al., 2001; Luo et al., 2002). Anaerobic digestion processes 

have often been used to treat swine wastewater. Several processes are involved in treating 

swine manure. It is exemplified by the continuous stirred tank reactor (CSTR), two-stage 

digestion, the AF, the UASB, the anaerobic sequencing batch reactor (ASBR), and the 
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anaerobic baffled reactor (ABR) (Yang and Chou, 1985; Ng and Chin, 1986; Wilkie and 

Colleran, 1986; Lo et al., 1994).    

 The aim of this research is to estimate the performance characteristics of treating 

swine wastewater using the SGBR. In addition, it is to evaluate the SGBR through kinetic 

and modeling studies.  
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CHAPTER 2. LITERATURE REVIEW 

 

For several decades, the land treatment of swine waste has been used for fertilizer 

and soil conditioning. However, it is necessary that the high-strength organic waste in swine 

wastewater should be properly treated before being discharged to a river or on land. 

Untreated organic matter is detrimental to the environment and lowers the quality of fertilizer 

or soil conditioner.    

Anaerobic digestion is one of the most reliable methods for swine wastewater 

treatment. Anaerobic treatment has a lot of advantages such as low energy requirement, low 

biomass production, storage ability unfed for many months, low nutrient and chemical 

requirements, high loading rate capacity, pathogen removal, improvement of dewaterbility, 

odor removal, and the production of biogas (Lettinga, 1996). Among anaerobic systems, the 

granular process is usually used for high-rate anaerobic digestion. Since the UASB was 

developed in the Netherlands in the late 1970s, 1215 full-scale high rate anaerobic reactors 

have been operated throughout the world (Franklin, 2001; Lettinga et al., 1980).  

Bacteria tend to make granules for themselves (Jian and Lun, 1993). Schmidt and 

Ahring (1996) reported that a granule consisted of syntrophic bacteria. The granule size can 

be enhanced by multivalent cations such as iron and aluminum in high-strength wastewater 

(Yu et al., 2000, 2001). Many natural and synthetic polymers can also be used to enhance 

glanulation in high-strength wastewater (Hughes et al., 1990; Guiot et al., 1991; El-Mamouni 

et al., 1998). Tiwari et al. (2005) reported that natural ionic polymer additives are able to 

enhance granules in low-strength wastewater. In granule studies, cavities and holes have been 

usually seen on the granule surfaces (Macleod et al., 1990; Morgan et al., 1991). The cavities 



5 
 

may be channels for transport of gases, substrate, or metabolites. A distinct localization of 

acidogenic bacteria and hydrolytic bacteria in the outer layer of granules grown on lactate or 

propionate was observed; meanwhile methanogenic bacteria dominated the inner part of the 

granule (Macleod et al., 1990; Fukuzaki, 1991a, 1991b). However, Grotenhuis et al. (1991) 

showed that there was no spatial orientation of microorganisms. Banik et al. (1997) reported 

that there was no apparent layered structure in granules at 25oC in the ASBR. Mach (2000) 

also observed no distinct layers in granules at 22oC in the SGBR. 

 

Swine waste trend 

 The amount of swine in the world has been increasing. As of 1996, the number of 

pigs in the world was approximately one billion. The amount of swine in developed countries 

slightly decreased in 1996 compared to 1989~1991. However, the increasing trend of pigs in 

developing countries is noticeable as shown in Figure 1. 

 

           Figure 1. Swine population (FAO, 1996). 
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US EPA (1992) reported global swine wastes produced in each region (Figure 2), 

according to which most swine wastes are produced by Asian countries. A primary reason is 

that China raises about the half number of pigs in the world. In addition, other Asian 

countries have also increased the number of swine (FAO, 1996).    

The number of swine and the amount of swine wastewater will gradually increase in 

the future as the demand of red meat in developing countries is consistently increasing. 

Especially, Asian countries such as China, Korea, and India have shown the most significant 

increase in their swine population (Chynoweth et al., 1999).   

 

 

      Figure 2. Swine waste production by each region. 
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conditioner. However, swine wastes from centralized facilities in which the number of 

animals often exceeds 1,000 and sometimes is more than 10,000, land application can have a 

negative effect on the environment. Larger confinement operations have become more 

commonplace as the demand for red meat has been increasing (Chynoweth et al., 1999). 

The characteristics of swine wastewater depends on various factors such as the age 

and diet of hogs, temperature, humidity of a building, housing or confinement methods, 

waste removal procedures, and pre-processing (Andreadakis, 1992; USDA, 1992; Zhang 

and Felmann, 1997; Day and Funk, 1998). However, the characteristics of swine wastewater 

are affected more by dilution, storage, and separation rather than by the diet of pigs and 

other factors (Chynoweth et al., 1999).  

Swine wastewater is considered by some to be a solid waste which contains some 

liquids, while municipal or industrial wastewater is usually liquid waste which contains some 

solids (Andreadakis, 1992). Total solids (TS) of swine fecal matter is about 10%, and it is 

diluted with urine and other flush water, or concentrated when bedding is used in dry storage 

systems (Zhang and Felmann, 1997; Day and Funk, 1998). Chynoweth et al. (1999) reported 

that a typical swine wastewater TS concentration for a confinement using a tank under slats 

is 3~4%. 

Even though significant experience has been gained with respect to municipal sludge 

digestion, this knowledge and its accompanying empirical models should not be directly 

applied to swine wastewater treatment. This is because the characteristics of swine 

wastewater are significantly different from municipal sludge (Andreadakis, 1992).  

The characteristics of swine wastewater from several studies are shown in Table 1 

through 4. 
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   Table 1. Swine wastewater characteristics per day per 1,000 kg of swine 

          (Day and Funk, 1998) 

Component Average 

Manure (kg) 84 

Urine (kg) 39 

Density (kg/m3) 990 

Total Solids (kg) 11 

Volatile Solids (kg) 8.5 

BOD (kg) 3.1 

COD (kg) 8.4 

pH 7.5 

TKN (kg) 0.52 

NH3-N (kg) 0.29 

T-P (kg) 0.18 

Ortho-P (kg) 0.12 

 

 

   Table 2. Swine wastewater characteristics per day per 1,000 kg of swine  

          (Andreadakis,1992) 

Component Average 

Total Solids (kg) 6.00 

Volatile Solids (kg) 4.80 
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BOD (kg) 6.20 

COD (kg) 2.10 

T-N (kg) 0.48 

T-P (kg) 0.14 

K (kg) 0.21 

Ca (kg) 0.0185 

Mg (kg) 0.0045 

Fe (kg) 0.0008 

Zn (kg) 0.0003 

Na (kg) 0.0040 

Cu (kg) 0.0000 

   

 

   Table 3. Swine waste characteristics from storage tank under slats (USDA, 1992) 

Component Farrow Nursery Finish Breeding 

Moisture (%) 96.5 96.0 91.0 97.0 

Total Solids (%) 3.50 4.00 9.00 3.00 

Volatile Solids (%) 2.28 2.79 6.74 1.80 

T-N (g/L) 3.6 4.8 6.3 3.0 

NH3-N (g/L) 2.8 4.0   

P (g/L) 1.8 1.6 2.7 1.2 

K (g/L) 2.8 1.6 2.2 2.1 
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   Table 4. Swine waste characteristics from storage and treatment facility (USDA, 1992) 

 Anaerobic lagoon Feed lot* 

Component Sludge Supernatant Settled 
sludge Runoff water 

Moisture (%) 92.4 99.8 88.8 98.5 

Total Solids (%) 7.60 0.25 11.2† 1.5 

Volatile Solids (%) 4.68 0.12 90.7†  

BOD (g/L)  0.40   

COD (g/L) 64.6 1.2   

T-N (g/L) 3.0 0.35 5.6† 2.0† 

NH3-N (g/L) 0.76 0.22 4.5† 1.2† 

P (g/L) 2.7 0.13 2.2† 0.38† 

K (g/L) 7.6 0.38 10.0† 1.10† 
   *Semi humid climate 

   † kg/day·1000kg swine 

 

    As shown in Table 5, proteins and lipids have been observed to be a significant 

portion of the organic matter in swine wastewater. Swine wastewater, however, also contains 

a significant concentration of lignin which is typically non-biodegradable. Shin et al. (2005) 

observed that swine waste has a large fraction of non-biodegradable organic matter. 

Andreadakis (1992) showed that approximately 40% of the total organic matter is non-

biodegradable. Due to the great amount of cellulose and lignin in swine wastewater, swine 

waste is considered to be refractory or recalcitrant to biodegradation. Chynoweth et al. (1999) 

stated that lignin and cellulose are the typical refractory compounds in anaerobic digestion.  
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Table 5. Swine waste characteristics and biodegradability by anaerobic digestion  

       (Chynoweth et al., 1999) 

Component Influent Removal (%)* 

Total Solids (%) 6.9 52 

Volatile Solids (% TS) 82.6 60 

COD (g/L) 73.8 58 

T-N (g/L) 3.9  

Proteins (% TS) 19.3 47 

Hemicellulose (% TS) 20.1 65 

Cellulose (% TS) 12.4 64 

Lipids (% TS) 14.8 69 

Starch (% TS) 1.6 94 

Lignin (% TS) 4.4 3 

   * mesophilic digester with HRT 15 days 

 

Table 6 shows theoretical methane production from various substrates. It can be seen 

that as the value of CH4/VS decreases, the chemical oxygen demand (COD) removal 

increases, suggesting that proteins and lipids are more easily degraded than carbohydrates 

(Andreadakis, 1992). The reported biodegradability of swine wastewater ranges from 0.32 to 

0.48 m3 CH4/kg VSdestroyed (Hashimoto, 1984; Andreadakis, 1992; Safley and Westerman, 

1990). This range is comparable to a 40~60% reduction of volatile solids (VS).  
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    Table 6. Theoretical methane production (Andreadakis, 1992) 

 COD/VS CH4/VS (m3/kg) 

Carbohydrates 1.067 0.374 

Proteins 1.500 0.525 

Lipids 2.870 1.006 

 

 

Liao et al. (1995) reported that approximately 90% of the total soluble nitrogen is in 

untreated swine wastewater is in the form of ammonia. Odors in swine wastewater are caused 

by ammonia, amines, volatile fatty acids (VFA), mercaptins, carbonyls, phenols, and indoles. 

Sulfides in swine wastewater are produced by the decomposition of proteins and other sulfur 

containing compounds (Chynoweth et al., 1999).  

Swine wastewater has a high concentration of pathogens, coliform bacteria, and 

indicators of fecal pollution (Zhang and Felmann, 1997). Mateu et al. (1992) reported that 

inactivation of fecal coliform in swine wastewater was associated with a high concentration 

of VFA. Inhabiting methanogenic bacteria in swine wastewater were identified as 

Methanosarcina sp. never using formate. These bacteria are gram positive and form methane 

and carbon dioxide by decomposing propionate (Boopathy, 1996).  

 

Swine wastewater treatment 

Figure 3 shows the distribution of waste management systems worldwide. As can be 

seen in this Figure, the liquid flush system outcompetes the others in developed countries, 

while dry storage and drylot systems are usual treatment methods in developing countries.  
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          * liquid/solid and pit storage 

          † deep pit stacks, litter, and other 

          Figure 3. Swine wastewater management (US EPA, 1992). 
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treated for nitrogen and phosphorus before being discharged to a river or a lake (Chynoweth 

et al, 1999).  

Among these treatment processes, anaerobic digestion of swine wastewater has 

advantages such as organic matter stabilization, odor removal, pathogen destruction, and 

biogas recovery. Anaerobic treatment of swine wastewater also enables effluent to conserve 

nutrients such as nitrogen and phosphorus (Ahn et al., 2006).    

Most full scale swine wastewater treatment processes are traditional anaerobic 

systems such as the anaerobic lagoon or the CSTR (Angenent et al., 2002). However, 

researchers have developed new swine wastewater treatment processes, and thus various 

treatment methods have been employed. Especially, biotechnology applications using 

granules such as the UASB or the expanded granular sludge bed (EGSB) have been attractive 

since the 1980s. As anaerobic granules have a high concentration and density of 

microorganisms, it is highly applicable in treating high-strength wastewater such as swine 

wastewater. In addition, the ASBR, the AF, and the sequencing batch reactor (SBR) have 

also been used to treat swine wastewater.  

Lo et al. (1994) studied swine wastewater treatment by the hybrid UASB at ambient 

temperature. According to their research, greater than 95% of COD was removed at an 

organic loading rate (OLR) of 1.65 kg/m3•day. In the mean time, COD removal efficiency 

sharply dropped to 57% at an OLR of 3.5 kg/m3•day. Foresti and de Oliveira (1995) also 

reported the results of swine wastewater treatment using a UASB at 25 oC. They reported that 

87% COD removal could be obtained at an OLR of 4.50 kg/m3•day. Wilkie and Colleran 

(1986) treated swine wastewater by the upflow anaerobic filter at 25 oC. The wastewater was 

settled supernatant, and 52% COD removal was obtained at an OLR of 8.4 kg/m3•day.  
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Shin et al. (2005) treated swine wastewater by combining a submerged membrane 

bioreactor and anaerobic filter reactor. The average COD removal efficiency was 91% at an 

OLR ranging from 0.5 to 3.0 kg/m3•day. Intermittent aeration was applied to treat swine 

wastewater (COD: 3,473~4,233 mg/L, TSS: 2,065~3,354 mg/L). The operating time was set 

with four ratios of aeration time to non-aeration time (hrs): 60:36, 5:1, 4:2, and 3:3. The 

overall treatment efficiencies of COD, biochemical oxygen demand (BOD), T-N (Total 

Nitrogen), and total suspended solids (TSS) were 87.4%, 98.7%, 92.7%, and 97.5%, 

respectively (Yang and Wang, 1999).  

Yang et al. (2003) reported that removal efficiencies of COD and TSS were 83.5%, 

and 81.2%, respectively, using an intermittent method at the OLR 0.67~1.07 kg/m3•day. 

Meanwhile, Min et al. (2005) showed that swine wastewater could be successfully treated by 

a microbial fuel cell process. Wellinger and Kaufmann (1982) argued that it is possible to 

achieve a lower energy requirement system by means of ambient temperature anaerobic 

digestion. They showed that psychrophilic anaerobic digestion could be an alternative 

method to treat swine wastewater.  

Aside from reactor scale, the TS content is a very important factor in digester design 

and performance (Chynoweth et al., 1999). The limiting step in swine wastewater treatment 

is hydrolysis (Andara et al., 1999). According to Angenent et al. (2002), during operation 

with high ammonia concentration, the major route of methane production was through a 

syntrophic relationship between acetate utilizing bacteria and hydrogen utilizing bacteria. 
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SGBR characteristics 

 The SGBR was developed at Iowa State University in 2000 (Mach, 2000; U.S. 

Patent No. 6,709,591). This reactor was designed to treat wastewater with low to medium 

strength (Mach, 2000; Roth, 2003; Evans, 2004a; Evans, 2004b; Park, 2004; Roth et al., 2004; 

Debik et al., 2005; Evans and Ellis, 2005a; Evans and Ellis, 2005b).  

 It is possible that effluent can be directly discharged without additional treatment at 

ambient temperature. This is because the SGBR is packed with active granules and because 

the solids retention time (SRT) of the SGBR is commonly greater than 300 days (Evans, 

2004b). In addition, the SRT in the SGBR has a trend which is proportional to the 

temperature. Evans (2004a) reported that the SRT in the SGBR increased with the hydraulic 

retention time (HRT) more at 15oC than at 8oC. It is essential that a system have a high SRT 

in order to maintain low effluent concentration. In biological treatment processes, the SRT 

plays a more significant role than the HRT because the SRT is a function of microorganism 

concentration and growth rate, whereas because the HRT is not. Therefore, an SGBR in 

which the SRT is greater than 300 days is able to maintain a high concentration of active 

granules in the reactor and treat wastewater more efficiently. Dague et al. (1998) reported 

that MLSS and MLVSS decreased when low-strength wastewater was treated by the ASBR 

at a low HRT. According to their research, the SRT ranged between 30 and 180 days at 20oC.  

Evans (2004a) reported the SGBR had a completely mixed flow pattern with some 

short circuiting. However, it is possible to eliminate this short circuiting by backwashing, to 

some extent. Evans (2004b) presumed that flow in the SGBR was affected by gas production 

and granule movement. 
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The greatest advantage of the SGBR is that its operation is simple unlike the UASB 

or the EGSB. The SGBR does not need gas solid separator (GSS) devices, mixers, complex 

underdrains, or mechanical systems as this reactor is not only a downflow system but also a 

biofilter system which is partially filled with granules. This system consists of active 

granules, gravel, and a stainless steel mesh in some cases. Therefore, the cost of construction 

is lower, and the operation of the SGBR is superior to other systems. In addition, the start-up 

of the SGBR is fast and efficient due to large concentration of active granules in the reactor 

(Evans, 2004b). The high performance is also a result of biomass retention as evidenced by 

the long SRTs.  

The UASB is a proven technology to treat high-strength wastewater. However, the 

design of the UASB reactor is empirical (Tiwari et al., 2005). The limit of the UASB design 

at a high loading rate from full scale experience is the washout of granules (Driessen and 

Yspeert, 1999). In high rate UASB systems, it is a common practice to restock granules in 

order to replenish those lost (Ahn and Speece, 2003).    

 

SGBR performance 

 As with other granular treatment systems, it is possible to obtain and maintain high 

performance with the SGBR. Especially, concentrations of COD, TSS, and VFA in the 

effluent are low, and the effluent sometimes does not require additional treatment to be 

discharged to a receiving stream. Mach (2000) preformed a comparative study in which she 

compared two SGBRs with a strength of 1,000 COD mg/L at 22±2oC. According to her 

research, although both SGBRs achieved greater than 95% COD removal efficiency, the 

SGBR with a larger height to width ratio demonstrated superior performance.  
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 Jung et al. (2002) reported that the SGBR outcompeted the ASBR in treating pork 

slaughterhouse wastewater (Ave. COD: 1,912 mg/L). It was largely because the ASBR lost a 

lot of sludge while decanting at low HRT. COD removal efficiency was 82% to 96%, and 

TSS removal achieved in excess of 93.9%. 

 Roth (2003) studied pork slaughterhouse wastewater treatment by the pilot-scale 

SGBR on the basis of Jung et al.’s (2002) results. According to his results, COD removal 

efficiency was between 83.7% and 95.7%, and TSS concentration in effluent averaged 43 

mg/L. Park (2004) demonstrated the effective leachate and waste management strategy by 

the SGBR. According to his research, the SGBR was able to treat leachate effectively. 

 In order to compare the performance between the SGBR and the UASB, Evans 

(2004a) measured COD and TSS removal performances, effluent VFA, and methane 

production with non-fat dry milk as well as sucrose/non-fat dry milk mixture. The 

performances of COD removal were not too different between two reactors. VFA 

concentrations in the effluent of both reactors were also low. However, TSS concentration in 

the SGBR was superior to that in the UASB at low HRTs. At an HRT of 16 hrs and 24 hrs, 

the performance of COD and TSS removal in the SGBR were much higher than those in the 

UASB.  

In many studies, high-rate anaerobic reactors were used to treat municipal 

wastewater at ambient temperature (Lettinga et al., 1983; Kato et al., 1997; Collins et al., 

1998; Elmitwalli et al., 2001; Bodik et al., 2002). Evans (2004a) treated municipal 

wastewater by the SGBR. At 25oC, COD removal efficiency was 74~84%. At lower HRT, 

TSS concentration in the effluent was low. Evans (2004a) stated that solids decreased the bed 

porosity so that this phenomenon enabled particles to be effectively filtered.   
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High sulfate loading wastewater was treated by the SGBR (Evans, 2004b). The 

synthetic wastewater (3 COD g/L : 1.33 g S/L) was used, and an average 20,000 H2S ppm 

was produced at 18 hrs HRT. The COD removal efficiency was 97.3%. 
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CHAPTER 3. MATERIALS AND METHODS 

 

The SGBR was used for treating swine wastewater. The schematic diagram of the 

SGBR is illustrated in Figure 4.  

 

H2S
Scrubber

Gas
Meter

Influent
tank

SGBR

Effluent

Peristaltic
pump

 

              Figure 4. Schematic diagram of the SGBR. 

 

The active volume of the SGBR was 10 L and the produced gas was designed to be 

exhausted upward. The exhausted gas was connected with a hydrogen sulfide scrubber and a 

gas meter. The SGBR was filled with granules, and a stainless steel mesh (2 mm) was 
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installed in order to uphold the gravel and granules. Gravel was placed between granules and 

the stainless steel mesh in order not to lose granules from the reactor. The size of this gravel 

was between 6.7 and 9.5 mm. The amount of gravel used for supporting the granules was 0.8 

L. Granules were filled up to the active volume after installing the stainless steel mesh and 

gravel.  

Seed granules were from a UASB at the Water Pollution Control Facilities in Cedar 

Rapids, IA. TS and VS were 62,335 mg/L and 51,900 mg/L, respectively. The seeded mass 

was 623.35 g. The VS to TS ratio was 83.3 %.   

The reactor seeded with granules achieved high performance within a few days, while 

that seeded with non granule sludge needed start-up periods in excess of 60 days (Zeeman et 

al., 1988; Goodwin et al., 1992). Velsen (1979) stated that manure such as swine or poultry 

should be seeded in order to be treated effectively because there were not sufficient specific 

methanogenic microorganisms in such wastes. Most seed granules are obtained from swine 

wastewater treatment processes. However, sewage sludge from municipal wastewater is 

attractive because this sludge has a lot of methanogenic microorganisms and because it is 

suitable for the digestion of complex materials like raw sewage sludge (Velsen, 1979).  

Two types of swine wastewater samples were used for this study. The characteristics 

of each swine wastewater sample are presented in Table 7. 
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   Table 7. The characteristics of swine wastewaters used in this study 

Component Sample 1 Sample 2 

pH 5.25 7.90 

ORP (mV)  -333 

AlK (mg/L) 5,000 6,015 

COD (mg/L) 99,500 32,000 

SCOD (mg/L) 49,200 16,000 

TS (mg/L) 60,618 30,300 

VS (mg/L) 40,707 20,050 

FS (mg/L) 19,911 10,250 

TSS (mg/L) 54,110 18,900 

VSS (mg/L) 39,640 14,500 

FSS (mg/L) 14,470 4,400 

VFA (mg/L) 39,640 74,667 

 

COD, TSS, volatile suspended solids (VSS), and fixed suspended solids (FSS) of 

sample 2 were about one third of those of sample 1. TS, VS, and fixed solids (FS) of sample 

2 were about half of those of sample 1. In the mean time, VFA of sample 2 was 

approximately twice as much as that of sample 1. The samples were diluted to be properly 

treated in the SGBR. The dilution ratio of sample 1 was 40 and that of sample 2 was 10~20. 

This study was performed at ambient temperature (around 24oC) for about ten months. The 

start-up condition in this study is shown in Table 8. 
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     Table 8. Start-up condition for treating swine wastewater by the SGBR (Sample 1)  

Component Value 

OLR (kg/m3·day) 1.0 

HRT (days) 1.25 

Flow rate (L/day) 8.01 

Reactor Volume (L) 10 

  

pH 6.15 

Alkalinity (mg/L as CaCO3) 240 

VFA (mg/L) 231.4 

COD (mg/L) 1243.8 

SCOD (mg/L) 615.0 

TS (mg/L) 757.7 

VS (mg/L) 508.8 

TSS (mg/L) 676.4 

VSS (mg/L) 495.5 

 

Performance of the SGBR was periodically monitored by analyzing test parameters. 

The test methods used in this study are shown in Table 9. Most tests were performed 

according to the Standard Methods for the Examination Water and Wastewater (APHA, 

1998). Proteins were measured by the method of Lowry et al. (1951), carbohydrates by the 

method of Bubois et al. (1956), and lipids by the method of Bligh and Dyer (1959). The 

produced gas was measured daily and recorded using a tipping meter supplied by Dr. Richard 
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Speece (Wet Tip Gas Meter Company, Nashville, Tennessee). 

 

     Table 9. Section of test parameter used in this study 

Parameter Section* 

pH 4500 B. 

ORP 2580 B. 

Alkalinity 2320 B. 

Chemical Oxygen Demand 5220 C. 

Soluble Chemical Oxygen Demand 5220 C. 

Total Solids 2540 B. 

Volatile Solids 2540 E. 

Fixed Solids 2540 E. 

Total Suspended Solids 2540 D. 

Volatile Suspended Solids 2540 E. 

Fixed Suspended Solids 2540 E. 

Volatile Fatty Acids 5560 C. 

     * APHA (1998) 

  

Methane and carbon dioxide in the digested gas was analyzed by Gas 

Chromatography (Gow Mac, model 350 series, Bethlehem, PA; thermal conductivity detector) 

with a Hayesep column C3111220002 (Gig Harbor, WA). Injector temperature and detector 

temperature were 45oC and 70oC, respectively. 
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VFA was also analyzed by High Performance Liquid Chromatography (Dionex, GP 

40, CA) with an absorbance detector (AD20, Dionex) and a 300 mm X 7.8 mm Metacarb 

67H column (Varian, CA) using 0.05 M H2SO4 as mobile phase (flow rate 0.7 mL/min). 
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CHAPTER 4. RESULTS AND DISCUSSION 

 

Performance of organic matter removal 

COD removal efficiency of sample 1 is depicted in Figure 5. The SGBR maintained 

the high performance of COD removal (84.7~94.5%). COD removal efficiency increased as 

the OLR increased. COD concentration in effluent was low, irrespective of the OLR in 

influent (137.6~288.0 mg/L). In other systems as the OLR increases, the removal efficiency 

commonly decreases. The COD removal efficiency, however, increased in the SGBR even 

though the OLR increased as shown in Figure 5. This is because granules have gradually 

been acclimated to the wastewater and because dS/dt is proportional to concentration of 

biomass in the Monod equation (Monod, 1949). Considering that the SRT of the SGBR is 

greater than 300 days, it is possible to achieve a high performance of COD removal in the 

SGBR. COD removal efficiency of sample 2 is shown in Figures 6 and 7. 

 

               Figure 5. COD removal performance in the SGBR (sample 1). 
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            Figure 6. COD removal performance in the SGBR (sample 2). 

 

 

           Figure 7. Variation of COD removal performance in the SGBR during the  

                   operation period (sample 2).  
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COD removal efficiency of sample 2 was 58.4~76.6 (Ave. 69.0±6.2%). The OLR of 

influent COD was 1.29~2.95 (Ave. 2.12±0.57 kg/m3•day). Even though the OLR increased, 

COD removal efficiency was not significantly affected. This was indicative of the high 

concentration of active granules in the SGBR. In addition, the COD removal efficiency 

gradually increased as shown in Figure 7 starting on Day 25. This suggests that granules 

were quickly acclimated to the new wastewater. The SRT of the SGBR was greater than 300 

days so that it was possible for microorganisms to be quickly acclimated to new wastewater. 

However, both biological and physical acclimations are needed as the granules are packed in 

the reactor.     

Lo et al. (1994) treated swine wastewater by a hybrid UASB at ambient temperature. 

According to their research, greater than 95% of COD was removed at an OLR of 1.65 

kg/m3•day. However, COD removal efficiency sharply decreased to 57% at an OLR of 3.5 

kg/m3•day. Foresti and Oliveira (1995) also reported swine wastewater treatment by the 

UASB at 25oC. According to their research, 87% COD removal efficiency could be obtained 

at an OLR of 4.50 kg/m3•day. In addition, the COD removal efficiency at ambient 

temperature (25oC) is similar to that in a mesophilic condition (30oC). Sáchez et al. (2005) 

pointed out that the UASB is not suitable for treating swine manure. Although influent was 

screened and diluted swine wastewater, COD removal efficiency was between 70.6% and 

85.4% at 30~35oC. In addition, COD removal efficiency sharply decreased at an OLR of 2.70 

kg/m3•day. Comparing the performance between the AF and the UASB, Sáchez et al. (1995) 

concluded that the AF is superior to the UASB in treating swine wastewater. Cintoli et al. 

(1995) also reported that the UASB-AF reactor showed better behavior during changes in 

influent composition than the UASB.  
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Oleszkiewicz (1983) treated swine wastewater by the AF at 23oC. The COD removal 

was 73% at an OLR of 4.0 kg/m3•day. Wilkie and Colleran (1986) treated swine wastewater 

by the upflow anaerobic filter at 25oC. The type of waste was settled supernatant and 52% 

COD removal efficiency was obtained at an OLR of 8.4 kg/m3•day. At an OLR 5.0 of 

kg/m3•day, Ng and Chin (1987) reported 84% COD removal efficiency by the AF. At the 

HRT 3~5 days, Ng and Chin (1988) also achieved 70~90% COD removal efficiency by the 

expanded-bed AF.  

Deng et al. (2006) used the IC-SBR system to treat swine wastewater. The 

performance of the IC-SRB system was excellent. 95.5% COD removal efficiency was 

obtained by this system. Ng (1989) studied swine manure treatment by the ASBR. The 

performance of COD removal was 85% at the OLR 0.7 kg/m3•day. However, COD removal 

efficiency decreased to 64% at an OLR of 1.8 kg/m3•day. le Hy et al. (1989) reported 98% 

COD removal efficiency of piggery manure mixed with cheese-dairy wastewater using a 

mesophilic anaerobic digestion and oxidation ditch system. Shin et al. (2005) treated swine 

wastewater by combining a submerged membrane bioreactor and an anaerobic filter reactor. 

Average COD removal efficiency was 91% at an OLR ranging from 0.5 to 3.0 kg/m3•day.  

Soluble chemical oxygen demand (SCOD) removal efficiency is shown in Figure 8.  
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             Figure 8. SCOD removal performance in the SGBR (sample 1).  

 

SCOD was removed up to 82.2% (Ave. 72.0±11.3%). Sollfrank et al. (1992) showed 

that the temperature affected soluble COD concentration in the effluent. Soluble COD 

concentration in the effluent is proportional to the temperature.  

Most organic matter in effluent was soluble. The difference between COD and 

SCOD was less than 100 mg/L (see Figure 9). Considering that both effluent COD and 

effluent SCOD concentration were low, it was evident that effluent was mostly comprised of 

soluble organic matter.   
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           Figure 9. The relationship between COD and SCOD in effluent (sample 1).  

 

Carbohydrate removal efficiency of sample 1, as shown in Figure 10, was 70.2~94.5% 

(Ave. 84.3±6.9%). Carbohydrate removal efficiency increased as the OLR increased. The 

trend of carbohydrate removal was similar to that of COD removal. It implies that 

carbohydrates of sample 1 were one of the important substances which comprised COD in 

the swine wastewater and that these were part of the biodegradable organic matter. However, 

the amount of carbohydrates was not as much as proteins or lipids in the swine wastewater.    

The performance of carbohydrate removal of sample 2 was not as good as that of 

sample 1. The performance of carbohydrate removal of sample 2 by the SGBR is shown in 

Figure 11. Removal efficiency was 48.1~74.2% (Ave. 59.2±9.4%). The difference of 

removal efficiency between sample 1 and sample 2 was due to the characteristics of the 

wastewater. Especially, swine wastewater has a high concentration of cellulose and lignin, 

which are non-biodegradable carbohydrates.   
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Cellulose is one of the most difficult polysaccharides for microorganisms to 

metabolize because it is organized by crystalline structures (micelles) and because its 

solubility contributes to the difficulty of the attack (Gaudy and Gaudy, 1980). In addition, the 

possibility of cellulose hydrolysis is determined by the Degree of Polymerization (DP) of 

glucose. DPs 1 through 6 are water soluble. As the DP increases, hydrogen bonds and van 

der Waals forces become strong, and water molecules are excluded from hydrophobic 

molecules (Stronach et al, 1986).   

   

 

           Figure 10. Carbohydrates removal performance in the SGBR (sample 1). 
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            Figure 11. Carbohydrate removal performance in the SGBR (sample 2). 

 

 Protein removal efficiency of sample 1 also increased as the OLR increased in a 

similar fashion to the carbohydrates (Figure 12). The removal efficiency of sample 1 was 

63.4~74.9% (Ave.70.2±4.5%), while that of sample 2 was 38.1~74.5% (Ave. 57.9±13.9%). It 

was reported that 19.3% of TS in swine wastewater were proteins, and 47% of the proteins 

were removed in a mesophilic digester (Chynoweth et al., 1999). In this research, higher 

performance of protein removal could be achieved even though the SGBR was operated at 

ambient temperature. 
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           Figure 12. Protein removal performance in the SGBR (sample 1). 

 

Lipid removal efficiency as a function of the OLR is depicted in Figures 13 and, 14. 

Unlike carbohydrates and proteins, the lipid removal efficiency of sample 1 was 38.1~71.4% 

(Ave. 58.7±10.2%). As shown in Figure 13, lipids removal of sample 1 was not greatly 

affected by the OLR. Chynoweth et al. (1999) stated that 14.8% of TS in swine wastewater 

were lipids, and 69% of the lipids were removed in a mesophilic digester. In the mean time, 

the performance of lipid removal of sample 2 was similar to that of sample 1. The lipid 

removal efficiency of sample 2 sharply decreased to 21.8% at an OLR of 3 kg/m3•day.   

 Swine waste contains 30~40% lipids based on COD (Boopathy, 1998; Chynoweth et 

al., 1999; Ahn et al., 2006). Lipids in the anaerobic digestion system are readily hydrolyzed 

to glycerol and long-chain fatty acids. Long chain fatty acids can be acutely toxic by means 

of the adsorption of the surface-active acids onto the cell wall (Ahn et al., 2006). In high rate 

anaerobic digesters, shock loads of long chain fatty acids may cause severe problems (Koster 
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and Cramer, 1987). Ahring et al. (1992) also showed that long-chain fatty acids are toxic 

compounds. Therefore, lipids can be a limiting factor to treat swine wastewater when the 

OLR increases.  

 

           Figure 13. Lipid removal performance in the SGBR (sample 1). 

 

          Figure 14. Lipid removal performance in the SGBR (sample 2). 
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           Figure 15. The relationship between influent and effluent VFA. 

 

As shown in Figure in 15, the VFA concentration in the effluent remaind very low, 
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VFA mixture (acetate, propionate, n-butyrate, n-valerate, iso-valerate, iso-butylate, and 2-

methylbutylate) was found to be slightly inhibitory (Stronach et al., 1986).  

The ionization of VFA is related to the pH. Unionized VFAs can move into the cell 

membrane easier than ionized VFAs (Andrews, 1969; Pohland and Martin, 1969). As shown 

Figure in 16, the effluent pH of sample 1 was 7.2~7.8. Therefore, most VFAs existed in an 

ionized form so that they were fermented stably.  

 

 

            Figure 16. pH, Alkalinity, ORP of sample 1 (influent and effluent). 

 

Gujer and Zehnder (1983) reported that thermodynamically stable anaerobic 

digestion is able to exist when propionate oxidation, acetate decarboxylation, and hydrogen 

oxidation are balanced. The optimal range of propionate and acetate are between 10-4 and  

10-3 M and the partial pressure of hydrogen should not be grater than 0.1 kN/m2. McCarty 

and Smith (1986) also pointed out that the partial pressure of hydrogen should be maintained 

5

6

7

8

9

10

‐400

‐200

0

200

400

600

800

1000

0 1 2 3 4 5 6

pH

A
lk
al
in
it
y 
(m

g/
L)
, O

RP
 (m

V
)

Organic loading rate (kg/m3•day)

ORP(inf)

ORP(eff)

Alk(inf)

Alk(eff)

pH(inf)

pH(eff)



38 
 

below 10-4 atm in the anaerobic system. However, the generation time of aceticlastic 

methanogens is about 4 days, while that of hydrogenotrophic methanogens is below 1 day. 

Besides, aceticlastic methanogens are thermodynamically inferior to hydrogenotrophic 

methanogens as follows: (Speece, 1996)  

 

CH3COO- + H2O → CH4 + HCO3
-                  ∆Go = -31 kJ/mol             (1) 

CO2 + 4H2 → CH4 + 2H2O                        ∆Go = -135 kJ/mol            (2)      

 

            Figure 17. The ratio of VFA to alkalinity in effluent. 

   

As shown in Figure 17, the ratio of VFA to alkalinity was not affected by the OLR. 
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Performance of solids removal 

 Removal efficiencies of TS, VS, and FS for sample 1 based on organic loading rates 

of are shown in Figures 18, 19, and, 20, respectively. 

 

         Figure 18. TS removal performance in the SGBR.  

 

          Figure 19. VS removal performance in the SGBR.  
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           Figure 20. FS removal performance in the SGBR.  
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            Figure 21. Relationship between COD and VS removal efficiency (Sample 1). 

 

TSS, VSS, and FSS removal efficiencies of sample 1 are shown in Figures 22, 23, 

and 24, respectively. 
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            Figure 23. VSS removal performance in the SGBR.  

 

 

 

          Figure 24. FSS removal performance in the SGBR.  
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The performance of suspended solids removal was different from that of total solids. 

Most suspended solids including FSS were removed in the SGBR because the SGBR is not 

only a bioreactor but also a biofilter. In other words, most suspended solids cannot pass 

through the granule bed. In addition, The SGBR is very different from any filter system 

because the organic matter filtered is gradually dissolved and decomposed.  

Ng and Chin (1988) reported that both TSS and VSS removal efficiencies in the 

expanded-bed AF were 93% at a HRT of 5 days. However, the performance of suspended 

solids sharply decreased to 74% at a HRT of 4 days. Ng (1989) showed that 89% VSS 

removal efficiency could be obtained by the ASBR at an OLR of 0.4 kg/m3•day. However, 

VSS removal efficiency deteriorated as the OLR increased. In case of the UASB, the 

performance is determined by effluent suspended solids concentration (granule washout). 

Foresti and Oliveira (1995) reported that 85% TSS removal could be obtained by the UASB. 

However, higher performance could be obtained in the SGBR because the flow direction is 

downflow (no granule washout) and because most suspended solids are retained in the 

reactor.  

  

SGBR backwashing 

 The SGBR is considered as a biofilter filled with granules so that periodic 

backwashing is required to prevent clogging. Especially, regular backwashing is needed 

when the influent contains a high concentration of solids. In the case of swine wastewater, 

the TSS concentration of sample 1 was 385.0~3740 mg/L (Ave. 1391.7±1009.6 mg/L). The 

TSS concentration was not only high but also fluctuated.  

In addition, fixed solids can affect the backwashing period. The FS concentration of 
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sample 1 was 1900~4980 mg/L (Ave. 2870.5±963.8 mg/L), while the FSS concentration was 

72.5~710 mg/L (Ave. 261.0±159.9 mg/L). This was because swine wastewater has a lot of 

inorganic materials such as phosphorus, potassium, and calcium (see Table 2, 3, and 4). In 

order words, these fixed dissolved solids (FDS) were not only able to be available for 

microorganisms as nutrients but also accumulated as salts in the reactor. Especially, calcium 

easily forms calcium carbonate because pkCaCO3 is around 7.5 in an anaerobic digester 

(Svardal, 1991).  

 As shown in Figures in 25 and 26, the backwashing results of sample 1 were not a 

function of the recovery time but that of the OLR. Both COD and SCOD removal 

efficiencies increased as the OLR increased. In addition, the performance of COD removal 

was quickly recovered as the SGBR was filled with active granules.  

 

 

Figure 25. COD removal performance after backwashing in the SGBR (sample 1). 
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Figure 26. SCOD removal performance after backwashing in the SGBR (sample 1). 
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Figure 27. TSS removal performance after backwashing in the SGBR (sample 1). 

 

  

Figure 28. VSS removal performance after backwashing in the SGBR (sample 1). 

0

20

40

60

80

100

0

300

600

900

1200

1500

0 1 2 3 4

R
em

oval (%
)TS

S 
(m

g/
L)

Organic loading rate (kg/m3•day)

TSS (inf: 14 hrs)

TSS (eff: 14 hrs)

TSS (inf: 41 hrs)

TSS (eff: 41 hrs)

TSS (inf: 65 hrs)

TSS (eff: 65 hrs)

removal (14hrs)

removal (41hrs)

removal (65hrs)

0

20

40

60

80

100

0

300

600

900

1200

1500

0 1 2 3 4

R
em

oval (%
)VS

S(
m

g/
L)

Organic loading rate (kg/m3•day)

VSS (inf: 14 hrs)

VSS (eff: 14 hrs)

VSS (inf: 41 hrs)

VSS (eff: 41 hrs)

VSS (inf: 65 hrs)

VSS (eff: 65 hrs)

removal (14hrs)

removal (41hrs)

removal (65hrs)



47 
 

 

  

Figure 29. FSS removal performance after backwashing in the SGBR (sample 1). 
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for cell maintenance and regeneration.  

Ng and Chin (1988) reported that the methane production rate in the expanded-bed 

AF was 0.06~0.18 m3 CH4/kg CODremoved •day. 

In addition, the methane production based on VSdestroyed (m3 CH4/kg VSdestroyed) was 

similar to or slightly higher than the one based on the CODremoved. This suggests that the VS 

in the influent was solublized and was converted to methane in the SGBR. Reported 

biodegradability of swine wastewater is 0.32 to 0.48 m3 CH4/kg VSdestroyed (Hashimoto, 1984; 

Safley and Westerman, 1990; Andreadakis, 1992). This range is equivalent to 40~60% 

reduction of VS. Yang and Kuroshima (1995) achieved 0.42 m3 CH4/kg VSdestroyed. Chea et al. 

(2008) reported 0.72 m3 CH4/kg VSdestroyed. In this study, the methane production based on 

VSdestroyed of sample 1 was 0.09~0.73 (Ave. 0.39±0.21 m3 CH4/kg VSdestroyed) and VS removal 

efficiency was 53.4~79.7% (Ave. 66.5±8.69%).  

 

 

  Figure 30. Methane production rate in the SGBR (Sampe 1). 
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        Figure 31. Gas composition in the SGBR (Sample 1). 
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lipids was greater than that produced from carbohydrates.   

Methane is used as a heating resource with an energy value of 35,846 kJ/m3 at 0oC, 1 

atm (Metcalf and Eddy, 2003). Speece (1996) also reported that the temperature increase 

would be 3.3oC per 1000 mg CODconverted/L to methane. Therefore, the economic value of 

methane produced from swine wastewater was high. 

Ng and Chin (1987) reported that 75~84% methane could be obtained by the AF. Ng 

and Chin (1988) treated swine wastewater by the expanded-bed AF. They achieved 82~89% 

methane. Ng (1989) showed that methane in the ASBR was 76~80%, irrespective of the OLR.   

Góecki et al. (1993) reported that average methane content in the anaerobic inclined plug 

flow reactor was 65% regardless of the OLR (1~7 kg/m3•day).  

Methane composition is a function of the F/M ratio, temperature, biomass inventory, 

and the wastewater contact time. In addition, the HRT and the SRT are controlling design 

parameters for complex organic pollutants that are slowly degraded (Speece, 1996). In case 

of swine wastewater, there is so a lot of non-biodegradable organic matter. However, the 

performance of COD removal was great and methane composition was above 90% during the 

study (sample 1), which is due to the fact that the SRT in the SGRB is greater than 300 days 

(Evans, 2004b). 

  

Kinetics and Mass balance 

 From the steady state SCOD effluent, COD removal efficiency, and MLVSS 

concentration, the half-velocity constant Ks and the maximum rate of substrate utilization, 

kmax can be estimated as in (5) below (Dague et al., 1998). 
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X•HRT
S S

 K •
S

                                  (5)          

 

where, 

X: biomass concentration (MLVSS), mg/L 

HRT: hydraulic retention time, day 

So: influent COD concentration, mg/L 

Se: effluent SCOD concentration, mg/L 

Ks: half-saturation coefficient, mg/L 

kmax: maximum specific substrate removal rate, 1/day 

 

            Figure 32. Estimation of kmax and Ks of sample 1 and sample 2 using the  

                     Monod kinetic relationship. 
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As shown in Figure 32, kmax and Ks of sample 1 were 0.418 day-1 and 474.0 mg/L, 

respectively, whereas those of sample 2 were 0.215 day-1 and 643.7 mg/L, respectively. The 

ratio of kmax(sample 1)/kmax(sample 2) was 1.94 and that of Ks(sample 1)/Ks(sample 2) was 

0.74. This suggests that the organic matter in sample 1 could be degraded more easily than 

that of sample 2, and explain why the performance of sample 1 was greater than that of 

sample 2. Temperature affects temperature-dependent constants such as specific growth rate 

(k), decay, biomass yield, and Ks (Speece, 1996). Therefore, one of the reasons why the value 

of kmax is low is due to the ambient temperature. 

The biomass yield in the SGBR can be estimated from the COD mass balance. The 

COD mass balance in the SGBR is as follows: 

 

QC  QC  Q CCH  generation  C V                          (6) 

            

where, Q: flow rate (m3/day) 

      Cin: concentration of influent COD (kg/m3) 

      Cout: concentration of effluent COD (kg/m3) 

      Qgas: gas flow rate (m3/day) 

      CCH4: concentration of methane (kg/m3) 

      Generation: biomass growth rate (kg/day) 

      V
dt
dC : accumulation in the SGBR (kg/day) 
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If steady state,  
C V 0  

 

QC  QC  Q CCH  generation  0                             (7) 

         

 

            Figure 33. Mass balance in the SGBR (sample 1). 
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temperatures, while the amount of metazoa and algae decrease at high temperatures 

(Murakami et al, 1992). Therefore, the anaerobic reactor should maintain the optimum 

condition to control the prey-predator relationship.  

 

Modeling in the SGBR 

There are many anaerobic digestion models including high-rate anaerobic digesters 

such as the AF, the UASB, and the ASBR (Zeng et al., 2005; Saravanan and Sreekrishnan, 

2006; Toshio et al., 2007). However, a model has not been developed for the SGBR. To 

develop the SGBR model, factors such as advection, diffusion/dispersion, and decay of 

microorganisms should be taken into account, as the SGBR is filled with granules and 

wastewater flows downward into the reactor. Once wastewater goes through the media, the 

constituents in the influent are affected by physical and biochemical reactions such as 

advection, diffusion, dispersion, and decay. The flow diagram of the SGBR is shown in 

Figure 34.  
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         Figure 34. Flow diagram of the SGBR.  

  

Where, 

Qin: influent flow rate [L3/T] 

Cin: influent substrate, COD [M/L] 

Qout: effluent flow rate [L3/T] 

Cout: effluent substrate, COD [M/L] 
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V: reactor volume [L3] 

A: unit area [L2] 

∆X: unit length [L] 

 

[ SGBR model ] 

CA∆X CvA  CvA  ∆ CvA  q  A q ∆q A kCA∆X      (8) 

 

where, 

CA∆X : Rate of change of contaminant mass 

CvA  CvA  ∆ CvA : Net advection flux 

q  A q ∆q A: Net diffusion/dispersion flux 

kCA∆X: Decay of microorganism 

k: Decay constant (0.035 day-1; Speece, 1996) 

 

q  D C                                                      (9) 

 

where, 

D: Diffusion coefficient (1.50 m2/day) 

 

C   C   
D C

 – kC                                            (10) 
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 Conservaion of water mass  0 

C  Q
A

C  
D C

 kC                                               (11)  

 

Suppose, steady state and D is constant. 

D C
 – Q

A
C  kC 0                                                  (12) 

  

Use second-order homogeneous equations with constant coefficients (Kreyszig, 1999).  

C   e                                               (13) 

Dσ  Q
A

σ k 0                                                (14) 

σ  
Q
A

Q
A D

D
                                           (15) 

σ 0,   σ 0                                               (16) 

C Ae  Be                                                 (17) 

Boundary Condition:  C  C  at X 0, D
∂C
∂x

0 at X 0  

C A B 

Aσ  Bσ 0 
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           Figure 35. Simulated effluent COD using the SGBR model.   

 

 

           Figure 36. Comparison between experimental effluent COD and simulated  

                    COD during operation period.    
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 Figure 35 shows simulated result using the SGBR model, and the comparison with 

experimental result is presented in Figure 36. From Equation (17), A is 807.6; B is -1173.9; 

σ+ is 0.19~0.26 (Ave 0.22±0.02); and σ- is -0.49~-0.46 (Ave -0.47±0.01). The simulation 

COD matched well with the experimental effluent COD except at low concentrations. The 

discrepancy at low concentrations was likely due to the assumption that the decay 

constantwas fixed independent of temperature in the SGBR model. As shown in figure 36, 

the simulated effluent COD did not match the experimental effluent COD from Day 57. This 

difference was due to the backwashing and the recovery of biomass.    

 

Vertical analysis in the SGBR 

 The pH variation in the SGBR is shown in Figure 37. The pH increased at the height 

of 80% due to the release of ammonia. However, the pH was affected by chemical 

equilibrium at the height 50 and 20%. Especially, bicarbonate-VFA equilibrium plays 

important roles in anaerobic digestion.  
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          Figure 37. pH variation in the SGBR (sample 2).  

 

Two concepts should be considered to understand alkalinity variation in anaerobic 

digestion. One is the bicarbonate alkalinity system; the other is the volatile acid alkalinity 

system. The latter involves CO2, H2O, NH3, or H2S.  

 

H2CO3 + NH3 ↔ NH4
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-                                              (18) 
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         Figure 38. Alkalinity variation in the SGBR (sample 2).  

 

 

         Figure 39. NH3-N variation in the SGBR (sample 2).  
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Ammonia release was related to the pH. As shown in Figure 39, the ammonia 

concentration at the height of 80% slightly decreased as the pH increased. It was considered 

that ammonium was used to generate new cell structures. Typically, 14% of a cell is 

comprised of nitrogen (Gaudy and Gaudy, 1980). The ammonia concentration gradually 

increased except at the height of 20%. Free ammonia is a function of the pH.  

 

NH4
+ ↔ NH3 + H+ (pKa = 9.27 at 35oC)                                       (20) 

 

At a pH of 7.0, free ammonia represents 0.5% of the total ammonia, while 5.1% of 

free ammonia exists at a pH 8.0. De Baere, et al. (1984) showed that more than 50~80 mg/L 

free ammonia could inhibit unacclimated methanogens. The threshold concentrations of 

some toxicants can be increased ten fold as much as with acclimated biomass (Speece, 1996). 

Ammonia also affects biomass generation. Hulshoff et al. (1983) showed that granulation 

was inhibited at an ammonia concentration of 1000 mg/L. 

COD and VFA variation in the SGBR are shown in figures 40 and 41, respectively.  
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           Figure 40. COD variation in the SGBR (sample 2).  

  

 

           Figure 41. VFA variation in the SGBR (sample 2).  
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At the height of 80%, COD removal was practically complete and VFA was also 

completely consumed. This suggests that the SGBR is a pseudo-plug flow reactor. Most 

solids were filtered and most soluble organic matter was degraded at the top of the reactor. In 

other words, the activity of microorganism at the top was higher than those in the middle and 

bottom. Therefore, granules from bottom to the height of 80% acted as polishers. Conversely, 

Evans (2004a) reported that the SGBR has CSTR characteristics.  

 Solids variation in the SGBR is shown in Figure 42.  

 

          Figure 42. Solids variation in the SGBR (sample 2).  
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20%. TS, VS, TSS, and VSS concentrations at the height of 20% were almost two times as 

much as those at the height of 50%. In addition, the size of granules at the height of 20% 

were also greater than that of either at the height of 80% or of 50%. It is because granules 

were rearranged by backwashing and also because the physical arrangement was caused by 

flow and digester gas in the reactor.    
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CHAPTER 5. ENGINEERING SIGNIFICANCE 

 

 Swine manure is one of the most refractory wastewaters because it contains a 

significant portion of non-biodegradable organic matter. In addition, its wastewater 

characteristics dramatically vary from place to place. Therefore, performances of many 

anaerobic bioreactors treating swine manure were not satisfactory or consistent. In order to 

treat any wastewater stably, a system has to maintain a consistent performance. In case of the 

SGBR, unlike other processes such as the AF and the UASB, a high performance could be 

obtained and maintained, irrespective of the OLR. In addition, the economic value of 

methane produced from the SGBR was high. Given that this study was performed at ambient 

condition, both high performance and high methane content in the SGBR were very attractive. 

 The SGBR is not only a bioreactor but also a filter system. This suggests that the 

periodic backwashing is needed to maintain a stable operation. It is therefore essential to 

understand backwashing characteristics of the SGBR. COD removal efficiency after 

backwashing was not a function of the recovery time but that of the OLR. Unlike the AF and 

the UASB, the SGBR is filled with granules so that the recovery time is very fast. The SGBR 

is thus able to stably operate at high OLRs after backwashing. It is more important in a full-

scale plant because it determines a continuous operation.           

 In a vertical test, the SGBR was considered as a pseudo-plug flow reactor. One of 

the advantages of a plug flow reactor is that it requires less volume to treat wastewater than a 

continuous stirred tank reactor. With active granules at the top, most of the organic matter 

and solids were removed in the SGBR. This suggests that the volume of SGBR can be 

adjusted according to wastewater characteristics. In addition, the SGBR is filled with a high 
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concentration of granules, especially in a lower part of reactor, so that it is possible to polish 

the effluent and reduce organic matter and solids.   

 A model was developed for the SGBR. The SGBR model has terms for advection, 

diffusion/dispersion, and decay of microorganisms. A model is indispensable for 

understanding a system and estimating results correctly. The results obtained by simulations 

were similar to the experimental results. In order to scale up the reactor correctly, it is 

recommended that a pilot study and a simulation should be done. Therefore, the model 

development and the verification are very important to rector design.  
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CHAPTER 6. CONCLUSIONS 

 

The SGBR successfully treated two types of swine wastewater (sample 1 and sample 

2) and showed great performance.  

COD removal efficiency increased as the OLR increased. This indicates that the 

SGBR contained an abundance of active granules in the reactor. Also, high performance 

could be obtained at high OLRs because the SRT of the SGBR is greater than 300 days.    

Most suspended solids were removed as the SGBR was not only a bioreactor but also 

a filter system. The performance of suspended solids removal was high, regardless of the 

OLR. Organic matter in the solids was also hydrolyzed and degraded in the SGBR. Therefore, 

the SGBR served as a biofilter system.    

The SGBR needs periodic backwashing. COD and SCOD removal efficiencies in 

effluent after backwashing were not a function of the recovery time but that of the OLR. The 

performance of COD removal was proportional to the OLR. In the mean time, suspended 

solids removal efficiency was greater than 90%. It is very important to understand the 

backwashing characteristics of the SGBR in order to operate the process stably and maintain 

a consistent performance. 

The methane production ranged from 0.20 to 0.35 m3 CH4/kg CODremoved. The 

methane production based on VSdestroyed (m3 CH4/kg VSdestroyed) was similar to or slightly 

higher than the one based on CODremoved. It was demonstrated that there was a close 

relationship between VS influent and COD influent. In addition, methane composition 

maintained greater than 90%, irrespective of the OLR. The economic value of methane 

produced from swine wastewater was high. 
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From steady state SCOD effluent, COD removal efficiency, and MLVSS 

concentration, kmax and Ks of sample 1 were 0.418 day-1 and 474.0 mg/L, respectively, 

whereas those of sample 2 were 0.215 day-1 and 643.7 mg/L, respectively. These results were 

evidence that the sample characteristics were different. In addition, the biomass growth rate 

sharply increased as the OLR increased from the mass balance analysis. 

The SGBR model was developed with concepts of advection, diffusion/dispersion, 

and decay of microorganism. The simulated COD matched with the experimental COD 

except at low concentrations. The SGBR model is as follows: 

 

 CA∆X CvA  CvA  ∆ CvA  q  A q ∆q A kCA∆X      

 

where, 

CA∆X : Rate of change of contaminant mass 

CvA  CvA  ∆ CvA : Net advection flux 

q  A q ∆q A: Net diffusion/dispersion flux 

kCA∆X: Decay of microorganism 

k: Decay constant (0.035 day-1; Speece, 1996) 

 

 In a vertical test, the SGBR was a pseudo-plug flow reactor. Most COD was 

removed and VFA was also completely consumed at the height of 80%. Additionally, the 

solids concentration at the height of 20% was approximately twice as much as that at the 

height of 50%. A large amount of granules in a lower part of the SGBR was used to polish 
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organic matter and solids. 

 Swine wastewater treatment has been studied for a long time. Various treatment 

processes have been developed and exploited in the field. Each process, however, has its own 

limit preventing direct discharge to a river. The SGBR also has to optimize its performance 

and understand its own limitations at various OLRs. In addition, the thermodynamic study 

for the SGBR has to be done through psychrophilic and thermophilic research.     
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