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some of the deficiencies present in other stochastic PDE solution methods. This

method combines an adaptive sparse grid collocation method with KDE to opti-

mally allocate stochastic degrees of freedom.

Several components of this method can be computationally expensive, such

as automatic bandwidth selection for the kernel density estimate, evaluation of the

kernel density estimate, and computation of the coefficients of the approximate so-

lution. Fortunately all of these operations are easily parallelizable. We present

an implementation of adaptive KDE collocation that makes use of NVIDIA’s com-

plete unified device architecture (CUDA) to perform the computations in parallel

on graphics processing units (GPUs).
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Chapter 1

Introduction

Mathematical models of physical systems arising in science and engineering

are often specified in terms of coefficient functions and a set of parameters. These

coefficients and parameters represent physical quantities (e.g. viscosity in fluid flow

problems) which determine the behavior of the system. The coefficient functions

may also be expanded in terms of a finite set of parameters, such as when the coef-

ficient functions are decomposed using principal components analysis or some other

spectral representation method. In many cases the solution to the model is very

sensitive with respect to perturbations of these parameters. Traditional approaches

of evaluating model behavior assign fixed values to the parameters and coefficients

even though their true values are often unknown. This uncertainty in the specifi-

cation of the model is due to the fact that the model inputs are either inherently

unknowable (e.g. the velocity of a single gas molecule in molecular gas dynamics),

or because insufficient measurement data is available (e.g. diffusion coefficients in a

groundwater flow problem).

Rather than examining the model behavior for a single parameter value or

range of parameter values, one may choose to express the uncertainty in the model

inputs by treating the unknown parameters as random variables and the unknown

coefficient functions as random fields, functions that depend on both the spatial
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location and on the value of a random event. The uncertainty in the model inputs

then produces uncertainty in the model output, which can then also be described

as a random field. One of the central goals of uncertainty quantification is to de-

rive algorithms that compute statistical descriptions of the model output when the

model inputs are posed with uncertainty. From these statistical descriptions of the

output it is possible to approximate the mean, variance, and higher order moments

of the solution, as well as probability distributions associated with the solution.

The most well-known method for approximating the mean of an unknown

random quantity is the Monte Carlo method [33]. The Monte Carlo method ap-

proximates the expected value of the solution by evaluating the model at a finite

number of samples, independently drawn from the distribution of the input opera-

tor, and then computing the sample mean of the output. The Monte Carlo method

is known to be very robust in that convergence in mean square error is guaranteed

if the random quantity has finite variance. Furthermore, the convergence rate is

independent of the dimension of the parameter space. However, the mean square

error is proportional to the inverse square root of the number of samples. Thus,

halving the error requires quadruple the number of samples. Since the model must

be evaluated at each new sample, this approach can be prohibitively expensive if

high accuracy is required or if model evaluations are computationally expensive. It

should also be noted that the convergence is probabilistic and that any finite sample

may result in a poor approximation to the true expected value particularly when

the variance is large.

Recently, many new methods have been developed to efficiently find the so-
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lution of stochastic partial differential equations (SPDEs), partial differential equa-

tions (PDEs) where either the coefficients, source terms, or boundary conditions are

posed with uncertainty. The coefficients, source terms, and boundary conditions

specifying a SPDE can all be expressed as random fields. For a single realization

of these random fields the SPDE is a deterministic PDE. A solution to a SPDE

is defined to be a random field that satisfies the associated deterministic PDE for

almost every event. Once the solution to the SPDE is known, solution statistics can

be obtained without evaluating the model at a large number of sample points as is

required by the Monte Carlo method.

Computing the solution to a SPDE involves the following steps. First, in order

to work numerically with the SPDE, the coefficients, source terms, and boundary

conditions must be expressed in terms of a finite number of random variables, rather

than as members of an abstract probability space. Second, both the spatial and

stochastic portion of this reduced model must be discretized. Third, the approx-

imate solution to the model must be computed as a function of both the spatial

location and the random parameters. Lastly, any desired quantities, such as mo-

ments or probability distributions associated with the solution, need to be computed

from the approximate solution.

Procedures for modeling random fields in terms of a finite number of random

variables is an active area of research. Often it is assumed that the mean and covari-

ance function of the random field is known. In this case the random fields are often

expressed as a truncated Karhunen-Loève (KL) expansion [29]. This transforms the

random field into a function of finitely many parameters. While the KL expansion
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provides a functional form for a random field in terms of a finite number of param-

eters, the distributions of these parameters depend on higher order statistics and

need to be specified in some way. In certain cases probability distributions of each

of the random variables may be chosen based on a priori knowledge of the problem.

However, this only specifies the marginal densities of the random variables. While

the random variables appearing in a KL expansion are known to be uncorrelated

they are not necessarily independent. Thus, it is not possible to infer the joint den-

sity function from assumptions about the marginal densities. Another possibility is

that information about the distribution of the random parameters is available only

from a finite number of independent experimental observations and that we do not

have access to an explicit form of either the joint density or the marginal densities.

The way in which the model inputs are represented, the manner in which the

densities of the random variables are expressed, and the post-processing of the so-

lution all depend on the assumptions that are made to parameterize the model. For

example, assuming that the joint density of the random parameters has a specific

form is a much stronger assumption than assuming that one only has access to a

finite amount of experimental data. In order for the algorithms discussed below to

be used efficiently it is important to take full advantage of whatever is known about

the model. In addition, solution techniques need to be flexible enough to handle a

wide range of assumptions regarding the description of the random inputs.

The spatial discretization of the SPDE is typically accomplished using con-

ventional methods for the numerical solution of deterministic PDEs, such as finite

differences, finite elements, or finite volume methods. (The mathematical theory is
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the most well developed in the case of finite elements.) Time-stepping may also be

required if the problem is time dependent; in this thesis we focus on steady-state

problems.

Many methods have been developed for the discretization of the stochastic

portion of the problem. These methods are divided roughly into sampling and non-

sampling methods. Sampling methods work by evaluating the model at a finite

number of values of the random parameters. The solutions of the model at each of

these points are then used to construct an approximation to the solution at differ-

ent values of the random parameter. Methods of this type include the stochastic

collocation method [2], the stochastic sparse grid collocation method [35, 50], the

anisotropic stochastic collocation method [34], and the adaptive sparse grid colloca-

tion method [30]. These methods all compute an approximation to the solution to

the SPED at every value of the parameter, rather than only computing the solution

of the SPDE at a finite number of sample points as in the Monte Carlo method.

This functional form for the solution to the SPDE can be postprocessed to compute

approximations to the statistics of the solution as will be discussed later.

Sampling methods are useful because they require little modification to exist-

ing PDE codes. Each sample point gives rise to a separate deterministic problem

that can be handled by existing software. Sampling methods are also trivially paral-

lelizable. Since each sample point can be treated as a separate deterministic problem,

the SPDE solution at each sample point can be computed by a separate instance

of a deterministic PDE code. The main disadvantage of these sampling methods is

that often the associated deterministic partial differential equation must be solved
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at a very large number of sample points to obtain an acceptable level of accuracy.

This is particularly true as the dimension of the parameter space grows. Reducing

the number of PDE evaluations required has been a central motivating factor in the

development of alternative methods. Model reduction techniques have also been

used to reduce the size of the parameter space in order to reduce the number of

PDE evaluations required by these sampling methods [31].

The primary non-sampling method is the stochastic finite element method,

which is also often referred to as the stochastic Galerkin method [3, 9, 19]. This

method is an extension of the standard finite element method in the sense that

the method looks for an approximation to the solution of the SPDE that lies in

a finite-dimensional subspace of some appropriate Hilbert space. Typically, the

Hilbert space in which the problem is posed is the direct product of a Hilbert space

of functions defined on the spatial domain with the space of functions of the ran-

dom variables that are square integrable with respect to the probability measure.

A standard finite element discretization is performed on the spatial domain. The

finite-dimensional subspace of the stochastic function space is often taken to be a

space of fixed degree multivariate polynomials in the random variables. The approx-

imate solution is defined by a Galerkin orthogonality condition to lie in the direct

product of the finite-dimensional space spanned by the spatial finite element basis

with this space of multivariate polynomials.

Computing the coefficients of this approximation involves solving a single very

large linear or non-linear system (in this thesis we will examine only the linear case).

The size of this system is the product of the dimension of the spatial finite element
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space and the dimension of the stochastic finite element space. Fortunately, in many

cases there exist bases that are orthogonal with respect to the inner product induced

by the probability measure. Therefore, while large, the stochastic Galerkin stiffness

matrix derived from imposing the Galerkin orthogonality condition on this basis is

very sparse and contains a great deal of structure. The global stiffness matrix can

be assembled as a block matrix where each non-zero block has the same sparsity

pattern as a stiffness matrix associated with the finite element discretization of a

deterministic PDE. Additionally, most of the blocks are the zero matrix since the

basis functions that span the stochastic finite element space are orthogonal. By

taking advantage of the structure of this matrix it is possible to develop efficient

solvers using iterative methods built from Krylov subspace methods and multigrid

methods.

While it may seem advantageous to work with many smaller linear systems

by using a sampling method, rather than one large system, the total number of

stochastic degrees of freedom associated with the solution to a stochastic finite el-

ement problem can be much smaller than the number of samples required by a

sampling method with a similar order of approximation. While sampling methods

are without a doubt easier to implement than non-sampling methods, it is an open

question which of the two requires more computational effort to obtain a solution

of a prescribed accuracy.

Once the approximate solution to the SPDE is computed, one may wish to

compute the moments of the solution. Often this is accomplished by integrating

the approximate solution with respect to the joint density of the random variables
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using numerical quadrature. To facilitate this, it is often assumed that the random

variables are independent, which allows for the construction of an efficient multi-

dimensional quadrature rule to evaluate these integrals. However, the assumption

of independence is very strong and may not be valid in practice. Also it may be

unreasonable to assume that we have access to either the joint density of the ran-

dom variables or even the marginal densities of each random variable. As alluded to

above, it may be the case that we only have access to the distribution of the random

variables through a finite amount of experimental data.

If the joint density of the random variables is not available, then the Monte

Carlo method can be combined with an approximate solution to the SPDE obtained

by either a sampling or a non-sampling method. As in the Monte Carlo method,

a large number of samples from the random parameter space is generated. Then,

rather than solving a deterministic PDE at each of the sample points, the approx-

imate solution is evaluated at each of the sample points and the sample mean of

the approximate solution is computed. If the approximate solution is a good ap-

proximation to the true solution at each sample point, then the sample mean of

the approximate solution will be a good approximation to the sample mean of the

SPDE. We call this method of performing the Monte Carlo method on an approxi-

mate solution the surrogate-based Monte Carlo method.

As discussed previously, a chief limitation of the Monte Carlo method is the

fact that a deterministic PDE must be solved at each sample from the parameter

space. This can be very expensive if a fine discretization is used. The approximate

solution to a SPDE computed by any of the methods discussed above is a piecewise
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polynomial with respect to the random variables. Therefore, once the approximate

solution is constructed, performing the surrogate Monte Carlo method is very effi-

cient because evaluating a piecewise polynomial at a collection of sample points is

typically much less expensive than solving a PDE at each sample point.

Replacing the standard Monte-Carlo estimate with the surrogate Monte Carlo

estimate introduces bias into the estimation of the mean. This bias is due to the fact

that the surrogate-based method is computing the sample mean of an approximation

to the SPDE solution and not the sample mean of the SPDE solution itself. The

bias is directly proportional to the approximation error resulting from the stochas-

tic discretization of the problem. However, if the bias is small and computing the

approximation is less expensive than evaluating the model at each sample point,

then the surrogate-based method can be substantially more efficient than standard

Monte Carlo.

The efficiency of surrogate-based Monte Carlo depends on minimizing the bias

associated with the approximation error. The bias only depends on the approxima-

tion error at the sample data points, and not on the error on the entire stochastic

domain. Thus, when computing an approximate solution to a SPDE we should

attempt to minimize the error at the sample points. However, most of the research

into the numerical solution of SPDEs has focused on discretization methods that are

global with respect to the set of stochastic parameters [2, 3, 19]. This is due to the

fact that in many cases the solution to the SPDE can be shown to be analytic with

respect to each of the random parameters. This makes the use of approximation

spaces consisting of globally defined polynomials appropriate. However, these meth-
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ods can converge slowly or fail to converge if the solution contains steep gradients

or discontinuities.

Interest in approximating the solution to SPDEs containing steep gradients or

discontinuities led to the development of the adaptive sparse grid collocation method

[30]. This method uses a hierarchical basis of locally supported linear basis functions

to approximate the solution to a SPDE. The basis can be refined locally to achieve

higher resolution in areas of the domain where the solution exhibits discontinuities

or steep gradients. In addition, the coefficients of the approximation serve as a local

error indicator that is used to guide the refinement procedure. A modified local

refinement procedure is used in this thesis to ensure that the approximation error

is small at the sample points.

The deficiency with the adaptive sparse grid collocation method that led to

this modification is that the error indicator used to drive the refinement of the adap-

tive collocation grid only estimates the local interpolation error and does not take

into consideration the statistics of the random parameters. This is an issue because

the approximation error at a point in the stochastic domain is of little consequence

if the probability density function is small in the neighborhood of that point. For

example, if the solution to a SPDE is discontinuous in some region of the stochastic

domain but the probability density function inside of that region is small, then it is

a waste of computational effort to attempt to resolve the discontinuity since it has

no effect on the statistics of the SPDE solution. A natural solution to this problem,

proposed in this thesis, is to weight the refinement criterion proposed in [30] by the

probability density of the random inputs.
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Since we only have access to a finite set of samples of the random parameters,

it is also necessary to construct an approximation to the joint density function. Den-

sity estimation techniques are divided into two classes: parametric estimators and

non-parametric estimators. Parametric estimators make certain assumptions about

the shape of the underlying distribution (i.e. assuming the distribution is Gaussian

with known covariance). For this reason they are not well suited to this study since

we are only assuming that we have access to a finite number of observations and

make no assumptions about the underlying distribution. Non-parametric estimators

make no assumptions on the shape of the underlying distribution and depend only

on the sample data set.

In this thesis we will estimate the unknown probability density using kernel

density estimation [44]. Kernel density estimation is a non-parametric technique

that can be considered as a generalization of the histogram estimator. The estimate

itself is the scaled sum of unit-normed “bump” functions of a prescribed width cen-

tered at each of the data points. The width of the bump functions is referred to in

the literature as the bandwidth of the estimator. Finding the bandwidth that gives

the optimal estimate is an open problem, particularly in high-dimensional parame-

ter spaces. Here we will use a technique called maximum-likelihood cross-validation

(MLCV) to estimate the optimal bandwidth. The combination of the adaptive col-

location method with kernel density estimation will be referred to as adaptive KDE

collocation.

Cost effective computation is a consideration in all of these algorithms. In

addition to exploring the behavior of many of these algorithms we will present
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implementations written for high performance computing environments. Implemen-

tations of the stochastic finite element method and the stochastic sparse grid col-

location method were built using the Trilinos software package [24] developed at

Sandia National Laboratories. This software is designed to work on many-core su-

percomputing clusters using the widely available Message Passing Interface (MPI)

[45]. We also present an implementation of the adaptive sparse grid collocation

method with kernel density estimation that takes advantage of NVIDIA’s Complete

Unified Device Architecture (CUDA) [37]. CUDA presents a set of extensions to

the C/C++ programming languages that allow for general purpose computation on

graphics processing units (GPU). GPUs are very well suited for handling tasks that

are ‘data parallel’, meaning that the same instructions can be executed in parallel on

many data elements. Collocation methods and kernel density estimation are both

well suited to this type of programming model.

The remainder of this thesis proceeds as follows. Chapter 2 gives a description

of the class of problems we consider in the thesis and presents an overview of the

current state of solution methods. Chapter 3 presents the results of an experimental

study comparing the stochastic finite element method and the stochastic sparse grid

collocation method, applied to the linear stochastic diffusion equation. Chapter 4

presents the adaptive KDE collocation method as well as the results of numerical

experiments with this method and the surrogate-based Monte Carlo method. Chap-

ter 5 presents an implementation of the adaptive KDE collocation method using the

CUDA architecture. Chapter 6 presents a summary of the results and draws some

conclusions.
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Chapter 2

Description of the Problem and Survey of Existing Approaches

Let (Ω,Σ, P ) be a complete probability space with event space Ω, σ-algebra

Σ ⊂ 2Ω, and probability measure P : Σ → [0, 1]. Let D ⊂ R
d be a d-dimensional

bounded domain with smooth boundary ∂D; for most applications d = 1, 2, or 3.

A stochastic partial differential equation is an equation of the form

L(x, ω; u) = f(x, ω), ∀x ∈ D, ω ∈ Ω, (2.1)

B(x, ω; u) = g(x, ω), ∀x ∈ ∂D, ω ∈ Ω,

where L is a differential operator, f is the source function, B is a boundary operator

and g is the boundary value function. In the most general case, all of the coefficients,

source terms, and boundary terms may be random fields that depend both on the

spatial location x and on the value of ω from the event space. As a consequence of

the Doob-Dynkin lemma it follows that the solution u is also a random field [40].

Throughout this thesis we will focus on the stochastic linear diffusion equation

with Dirichlet boundary condition given by

−∇ · [a(x, ω)∇u(x, ω)] = f(x, ω), ∀x ∈ D, ω ∈ Ω, (2.2)

u(x, ω) = 0, ∀x ∈ ∂D, ω ∈ Ω.
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In order to treat the equation (2.2) numerically the problem must first be

reformulated in terms of a finite number of real valued random variables. Two

approaches for accomplishing this are the Karhunen-Loève expansion [29] and the

polynomial chaos expansion [49]. The Karhunen-Loève expansion has several desir-

able qualities which justify its use in this application. The following section presents

a derivation of the Karhunen-Loève expansion and outlines these properties. The

discussion in the following section mostly follows a similar discussion in [19].

2.1 Derivation of the Karhunen-Loève expansion

Let the mean of the diffusion coefficient a be denoted by a0(x) = E[a(x, ·)] =
∫

Ω
a(x, ω) dP . Then the covariance of a is given by

Ca(x1,x2) =

∫

Ω

(a(x1, ω)− a0(x1))(a(x2, ω)− a0(x2)) dP. (2.3)

The covariance Ca : D × D → R is a symmetric positive semi-definite function,

meaning that for any finite set {x(i)}Ni=1, the matrix Cij ≡ Ca(x
(i),x(j)) is positive

semi-definite. If the covariance function is also continuous, then by Mercer’s theorem

there exists an orthonormal basis {ai(x)}∞i=1 of L
2(D) and a corresponding sequence

of scalars {λi}∞i=1 such that

Ca(x1,x2) =
∞∑

i=1

λiai(x1)ai(x2). (2.4)
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It can be shown that the series (2.4) converges uniformly and absolutely. We can

therefore assume that the scalars {λi}∞i=1 are indexed in non-increasing order λ1 ≥

λ2 ≥ · · · . Multiplying both sides of (2.4) by aj(x2), integrating with respect to x2,

and using the fact that the functions {ai}∞i=1 are orthonormal we have that,

∫

D

Ca(x1,x2)aj(x2)dx2 = λjaj(x1). (2.5)

This shows that the basis functions {ai}∞i=1 and scalars {λi}∞i=1 are the solution to

the integral eigenvalue problem (2.5).

If for a specific event ω a(x, ω)− a0(x) ∈ L2(D), then a(x, ω)− a0(x) can be

expressed as a linear combination of the basis functions {ai}∞i=1. That is

a(x, ω) = a0(x) +
∞∑

i=1

ai(x)ξi. (2.6)

The scalars, ξi, can be found by taking the L2(D) projection of a − a0 with each

basis function ai, that is

ξi =

∫

D

(a(x, ω)− a0(x))ai(x) dx. (2.7)

Under the assumption that a(x, ω) ∈ L2(D) for any value of ω, then (2.7) holds

for any value of ω. Therefore the coefficients of the expansion are random variables

ξi = ξi(ω).
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Since we have that

a0(x) = E[a(x, ω)] = E[a0(x)] + E[
∞∑

i=1

ai(x)ξi], (2.8)

the series
∑∞

i=1 ai(x)ξi has mean zero. Multiplying both sides of (2.8) by ak(x),

integrating with respect to x, and using orthonormality we have that

0 =

∫

D

ak(x)
∞∑

i=1

ai(x)

∫

Ω

ξi dP dx =

∫

Ω

ξk dP = E[ξk]. (2.9)

Thus each of the random variables appearing in (2.6) have mean zero. Substituting

(2.6) into (2.3) we have that

C(x1,x1) =

∫

Ω

(
∞∑

i=1

ai(x)ξi

)(
∞∑

j=1

aj(x2)ξj

)

dP (2.10)

=
∞∑

i=1

∞∑

j=1

ai(x1)aj(x2)

∫

Ω

ξiξj dP.

Multiplying both sides by ak(x2) and integrating with respect to x2, by orthogonality

and (2.5) we have that

∫

D

ak(x2)C(x1,x2) dx2 =
∞∑

i=1

ai(x1)

∫

Ω

ξiξk dP = λkak(x1). (2.11)
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Therefore, in addition to being mean zero, each of the random variables ξi is uncor-

related and has second moment
√
λi, that is

∫

Ω

ξiξj dP = λiδij . (2.12)

It is important to note that while the random variables are uncorrelated they are

not necessarily independent. Typically each term in the expansion of a(x, ω)−a0(x)

is multiplied by
√
λi. In this case the Karhunen-Loève expansion of a(x, ω) is given

by

a(x, ω) = a0(x) +
∞∑

i=1

√

λiai(x)ξi(ω). (2.13)

Normalizing the expansion in this manner makes the random variables appearing in

the expansion orthonormal and their values are given by

ξi(ω) =
1√
λi

∫

D

(a(x, ω)− a0(x)) dx. (2.14)

The KL expansion for f can be found in the same manner provided that f(x, ω)−

f0(x) ∈ L2(D) for almost every ω. Let the KL expansion for f be given by,

f(x, ω) = f0(x) +
∞∑

i=1

√
γifi(x)ηi(ω), (2.15)

where f0 is the mean of f , {(fi, γi)}∞i=1 are the eigenparis associated with the co-

variance of f , and {ηi(ω)}∞i=1 is a set of orthonormal mean-zero random variables.
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2.1.1 Optimality of the Karhunen-Loève Expansion

Since the Karhunen-Loève expansion involves an infinite number of terms it is

necessary to truncate the expansion for use in numerical computations. If a(x, ω)

is a random field, then we denote the M -term truncated KL expansion by

âM(x, ω) = a0(x) +
M∑

i=1

√

λiai(x)ξi(ω). (2.16)

In the case where a truncated KL expansion is used to represent the coefficients of

a SPDE, the truncation of the expansion introduces a consistency error since the

coefficients are not represented exactly. It is possible to construct an expansion

similar to (2.16) using any orthonormal basis for L2(D). In order to minimize

the consistency error associated with truncating the KL expansion, the expansion

should be accurate using as few terms as possible. An important property of the

KL expansion is that the orthonormal basis used in the KL expansion minimizes

the truncation error over all choices of orthonormal bases for L2(D).

To see this, assume that {bi(x)}∞i=1 is an arbitrary orthonormal basis for L2(D)

and that we have expanded the coefficient field a(x, ω) in this basis

a(x, ω) = a0(x) +
∞∑

i=1

√

βibi(x)ξi(ω), (2.17)
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where the scalars {βi}∞i=1 are chosen so that E[ξ2i ] = 1. If this series is truncated

after M terms, then the mean square truncation error is given by

E[ǫ2] =

∫

Ω

(a(x, ω)− âM(x, ω))2dP (2.18)

=

∫

Ω

(
∞∑

i=M+1

√

βibi(x)ξi(ω)

)(
∞∑

j=M+1

√

βjbj(x)ξj(ω)

)

dP.

Substituting (2.14) into (2.18) we obtain

E[ǫ2] =
∞∑

i=M+1

∞∑

j=M+1

bi(x)bj(x)

∫

D

∫

D

Ca(x1,x2)bi(x1)bj(x2)dx1 dx2. (2.19)

Integrating both sides over D and using the orthonormality of {bi(x)}∞i=1 we obtain

∫

D

E[ǫ2]dx =
∞∑

i=M+1

∫

D

∫

D

C(x1,x2)bi(x1)bi(x2)dx1dx2. (2.20)

The problem is to find a orthogonal set of functions {bi} that minimizes (2.20)

subject to the constraint

∫

D

bi(x)
2dx = 1, (2.21)

that the basis functions be orthonormal. We introduce the Lagrange multipliers

{νi}∞i=M+1 to enforce these constraints. Minimizing (2.20) is thus equivalent to
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finding the critical points of the Lagrangian

F [{bi(x)}∞i=M+1] =
∞∑

i=M+1

∫

D

∫

D

C(x1,x2)bi(x1)bi(x2)dx1dx2 (2.22)

− νi

(∫

D

bi(x)
2dx− 1

)

.

Setting the derivative of (2.22) with respect to bi(x1) equal to zero we obtain

0 =

∫

D

(∫

D

C(x1,x2)bi(x2)dx2 − 2νib1(x1)

)

dx1. (2.23)

Thus the critical points of the Lagrangian (2.22) satisfy the integral eigenvalue

equation (2.5) and therefore the basis spanned by the KL eigenfunctions is the basis

that minimizes the mean square truncation error.

Replacing a and f in (2.2) with truncated KL expansions âMa
and f̂Mf

gives

−∇ ·
[

(a0(x) +
Ma∑

i=1

√

λiai(x)ξi(ω))∇u(x, ξ,η)
]

= fo(x) +

Mf∑

i=1

√
γifi(x)ηi(ω),

(2.24)

where ξ = [ξ1, · · · , ξMa
]t and η = [ηi, · · · , ηMf

]t. Note that ξ and η are Ma-

dimensional and Mf -dimensional continuous real random vectors respectively. To

simplify notation defineM =Ma+Mf and define a third random vectorY = [ξt,ηt]t
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with

Yi =







ξi, if 1 ≤ i ≤Ma,

ηi−Ma
if Ma + 1 ≤ i ≤Ma +Mf .

(2.25)

Let

Γi =







Image(ξi) if 1 ≤ i ≤Ma,

Image(ηi−Ma
) if Ma + 1 ≤ i ≤Ma +Mf ,

(2.26)

Γ = Image(Y) ⊂
M∏

i=1

Γi.

Let ρ(Y) be the joint probability distribution of the random vector Y, and let ρi(Yi)

be the marginal density of the ith component of Y.

Using a truncated KL-expansion ensures that the consistency error is mini-

mized over all finite term expansions of a and f . This is a valuable property since

the computational work required by the solution algorithms described in subsequent

chapters increases as the size of the problem’s parameter space grows. Expanding

the random fields in a truncated KL expansion ensures that the minimum number

of parameters are used to attain a prescribed accuracy. It should be noted that

computing the KL expansion numerically involves computing the largest eigenval-

ues of a (possibly large) dense matrix. In the case where the covariance function is

stationary, that is where Ca(x1,x2) = ga(x1 −x2), with ga(z) admitting an analytic

extension outsize of z = 0, it is possible to compute the terms in the KL-expansion

efficiently using the generalized fast multipole method and an iterative eigenvalue
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solver based on the Lanczos or Arnoldi methods [43]. However, in other cases this

may be prohibitively expensive if a large number of terms are required to obtain

desired accuracy. It is often assumed that the covariance function is known and

has a form that admits analytic expressions of the eigenfunctions and eigenvalues.

In practical applications it is also possible that the SPDE is parameterized using

some other method (i.e. modeling possibly correlated physical parameters as ran-

dom variables). The methods discussed in chapter 4 and chapter 5 are capable of

recovering solution statistics under any of these parameterization methods. The

choice of a particular parameterization method is a modeling problem and is largely

outside the scope of this thesis.

2.2 Regularity of the Solution of the Truncated Diffusion Equation

Before discussing numerical algorithms for the solution of (2.24) it is useful to

derive some regularity properties of the solution u. First we will state some relevant

properties of the associated deterministic elliptic PDE

−∇ · (a(x)u(x)) = f(x) ∀x ∈ D, (2.27)

u(x) = 0 ∀x ∈ ∂D.

A more detailed discussion of these points can be found in [6, 15, 28]. First define the

Hilbert space H1(D) to be the space of L2(D) functions with weak first derivatives
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in L2(D). This space is endowed with the norm

||u||2H1(D) = ||u||2L2(D) + ||(∇u)t · ∇u||2L2(D). (2.28)

Also define H1
0 (D) ⊂ H1(D) to be the space of H1(D) functions that have zero

trace. It is assumed that there exists a constants amin, amax such that 0 < amin ≤

a(x) ≤ amax <∞ and that f ∈ L2(D). Under these assumptions the bilinear form

α(u, v) =

∫

D

∇u · ∇vdx (2.29)

is bounded and coercive in H1
0 (D),

α(u, v) ≤ amax||u||H1(D)||v||H1(D) ∀u, v ∈ H1(D), (2.30)

α(u, u) ≥ amin

C
||u||2H1(D) ∀u ∈ H1

0 (D),

where C is a positive constant depending on D. Additionally the linear functional

l(v) =

∫

D

fv dx ≤ ||f ||L2(D)||v||H1(D) (2.31)

is bounded on H1(D). An application of the Lax-Milgram lemma shows that there

exists a unique u(x) ∈ H1
0 (D) such that u satisfies a weak form of (2.27)

∫

D

a(x)∇u · ∇v dx =

∫

D

fv dx ∀v ∈ H1(D). (2.32)
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Since u ∈ H1(D) by (2.30) and (2.31) we have the stability estimate with respect

to f ,

||u||2H1(D) ≤
C

amin

α(u, u) =
C

amin

l(u) ≤ C

amin

||f ||L2(D)||u||H1(D). (2.33)

Also u is continuous with respect to the coefficients a, that is, if a1, a2 are smooth

functions such that a1, a2 ≥ amin > 0 and u1, u2 ∈ H1
0 (D) satisfy the variational

problems

∫

D

a1∇u1 · ∇vdx =

∫

D

fvdx, (2.34)

∫

D

a2∇u2 · ∇vdx =

∫

D

fvdx,

for all v ∈ H1(D), then

||u1 − u2||H1(D) ≤
C

a2min

||a1 − a2||C(d)||f ||L2(D). (2.35)

We are now ready to discuss the case when the diffusion coefficient and source

term are written in terms of truncated KL expansions. Since in this case the solution

u varies with the random vector Y it is convenient for the analysis to define the

random inputs âMa
(x, ξ) and f̂Mf

(x,η) as functions on Γ. This is accomplished in
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the obvious way by extending both functions by a constant, that is for Y = [ξt,ηt]t,

âMa
(x,Y) = âMa

(x, ξ), (2.36)

f̂Mf
(x,Y) = f̂Mf

(x,η).

In order to ensure the well posedness of (2.24) we will assume that âMa
is

uniformly bounded and elliptic, that is, there exist constants amin, amax such that

0 < amin ≤ âMa
(x, Y ) ≤ amax <∞ ∀x ∈ D and Y ∈ Γ. (2.37)

The primary result that motivated the development of solution methods for (2.24)

is that under a wide variety of circumstances, the solution u is analytic with respect

to each random parameter [2, 35].

Define a weight function1 σ(Y) =
∏M

i=1 σi(Yi) ≤ 1 where

σi =







1 if Γi is bounded,

exp(−αi|Yi|) for some αi > 0 if Γi is unbounded.

(2.38)

Define the function space

C0
σ(Γ;V ) =

{

v : Γ → V, v continuous in Y, max
Y∈Γ

||σ(Y)v(Y)||V <∞
}

, (2.39)

1Note that if a is expanded in a truncated KL expansion then each Γi must be bounded in
order to satisfy (2.37). Other finite representations of random fields may make use of unbounded
random variables so we include the case where Γi is unbounded in (2.38) for completeness.

25



where V is a Banach space of functions defined on D. Define

C0
loc(Γ;L

∞(D)) = {v : Γ → L∞(D), v continuous on Γloc ∀ Γloc ⊂⊂ Γ, (2.40)

max
Y∈Γloc

||v(Y)||L∞(D) <∞}.

We will assume that f̂Mf
∈ C0

σ(Γ;L
2(D)) and that the joint probability density ρ(Y)

satisfies

ρ(Y ) ≤ Cρexp

(

−
M∑

i=1

(δiYi)
2

)

∀Y ∈ Γ, (2.41)

where Cρ > 0 and δi > 0.

Lemma 1. (Babus̆ka, Nobile, Tempone [3]) If f ∈ C0
σ(Γ;L

2(D)) and a ∈ C0
loc(Γ;L

∞(D))

then u ∈ C0
σ(Γ;H

1
0 (D)).

Proof. This statement follows immediately from (2.33), (2.35) and the uniform co-

ercivity of a.

The analyticity of u with respect to Y is proved by examining a single com-

ponent Yi at a time. For a fixed value of Yi define

Γ∗
i = Image([Y1, ..., Yi−1, Yi+1, ..., YM ]t) ⊂

M∏

j=1
j 6=i

Γj (2.42)

σ∗
i =

M∏

j=1
j 6=i

σj,

and let an element of Γ∗
i be denoted by Y∗.
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Theorem 1. (Babus̆ka, Nobile, Tempone [35]) Assume that, for everyY = [Yi,Y
∗] ∈

Γ that there exists γi <∞ such that

∣
∣
∣
∣

∣
∣
∣
∣

∂kYi
a(x,Y)

a(x,Y)

∣
∣
∣
∣

∣
∣
∣
∣
L∞(D)

≤ γki k! and
||∂kYi

f(x,Y)||L2(D)

1 + ||f(x,Y)||L2(D)

≤ γki k!. (2.43)

Then the solution u(x, Yi,Y
∗) as a function of Yi, u : Γn → Cσ∗

i
(Γ∗;H1

0 (D)) admits

an analytic extension u(x, z,Y∗), z ∈ C, in the region of the complex plane

Σ(Γi; τi) = {z ∈ C, dist(z,Γi) ≤ τi}, (2.44)

with 0 < τi < 1/(2γi).

If the diffusion coefficients and forcing terms in (2.2) are replaced with trun-

cated KL expansions, then we have the reduced problem

−∇ · [âMa
(x,Y)∇u(x,y)] = f̂Mf

(x,Y) ∀(x,Y) ∈ D × Ω, (2.45)

u(x,Y) = 0 ∀(x,Y) ∈ ∂D × Ω.

It is shown in [2] that the coefficients and forcing terms in (2.45) satisfy the assump-

tions of Theorem 1, and therefore the solution u to (2.45) is analytic with respect

to each random variable Yi.
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2.3 Derivation of the Stochastic Galerkin Method

The stochastic Galerkin method was first presented in [3, 9, 19] and is an

extension of the standard finite element method to SPDEs. The derivation of the

stochastic Galerkin method depends on having access to the joint probability density

ρ(Y). In particular, it is necessary to construct a basis consisting of multi-variate

polynomials that are orthogonal with respect to the measure ρ(Y)dY. The construc-

tion of multi-variate orthogonal polynomials is an active area of research [17]. For a

general positive measure defined on R
M it is impossible to uniquely define a set of

orthogonal polynomials. Because of this fact it is generally assumed when discussing

stochastic Galerkin methods that the measure ρ(Y)dY is a product measure, that

is

ρ(Y)dY =
M∏

i=1

ρi(Yi)dYi. (2.46)

This condition is equivalent to assuming that the random variables Yi are indepen-

dent. With this condition, a basis of orthogonal polynomials can be constructed as

the tensor product of univariate polynomials orthogonal with respect to the weight

ρi(Yi).

Define the space

H1(D)⊗ L2
ρ(Γ) =

{

v : D × Γ → R|
∫

Γ

||v(x,Y)||2H1(D)ρ(Y) dY <∞
}

. (2.47)
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This is a Hilbert space with inner product

〈u, v〉H1(D)⊗L2
ρ(Γ)

=

∫

Γ

∫

D

(uv +∇ut · ∇v)dx ρ(Y) dY, (2.48)

and induced norm

||u||2H1(D)⊗L2
ρ(Γ)

=

∫

Γ

∫

D

||u||2H1(D)dx ρ(Y) dY. (2.49)

Also define the space H1
0 (D)⊗L2

ρ(Γ) ⊂ H1
0 (D)⊗L2

ρ(Γ) to be the subspace consisting

of random fields with zero trace on the boundary of D for each realization of Y.

If we multiply both sides of (2.45) by v ∈ H1(D)⊗ L2
ρ(Γ), integrate by parts

in the spatial domain and take the expectation, we can define a variational form of

(2.45) by: find u(x,Y) ∈ H1
0 (D)⊗ L2

ρ(Γ) such that

∫

Γ

∫

D

âMa
(x,Y)∇u · ∇vdx ρ dY =

∫

Γ

∫

D

f̂Mf
(x,Y)vdx ρ dY, (2.50)

for all v ∈ H1(D)⊗L2
ρ(Γ). If âMa

satisfies (2.37) and f̂Mf
∈ C0

σ(Γ;L
2(D)), then the

Lax-Milgram lemma guarantees the existence of a unique solution to (2.50).

Equation (2.50) is often discretized by projecting the variational problem into

a finite-dimensional subspace of L2
ρ(Γ) ⊗ H1

0 (D), Sp ⊗ Vh, where Sp ⊂ L2
ρ(Γ) and

Vh ⊂ H1
0 (D). If {Ψi(Y)}NY

i=1 is a basis for Sp and {Φi(x)}Nx

i=1 is a basis for Vh then

the fully discrete problem can be stated as find uh,p =
∑NY

i=1

∑Nx

j=1 Ψi(Y)Φj(x) such
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that

∫

Γ

∫

D

âMa
∇uh,p∇vdxρdY =

∫

Γ

∫

D

f̂Ma
vdxρdY (2.51)

for all v ∈ Sp ⊗ Vh. The space Vh is often taken to be a standard finite element

space with mesh discretization parameter h (e.g. the Q1 or Q2 finite element spaces

for continuous piecewise linear or quadratic functions defined on a square mesh

[15]). The space of functions Sp is often defined to be a space of globally defined

multivariate polynomials in Y. In [3, 9, 11] Sp is defined to be the space of tensor

product polynomials in Y of degree at most p = [p1, ..., pM ]t,

Sp =

{

Ψ(Y) =
M∏

i=1

ψi(Yi) : ψi(Yi) is a polynomial with deg(ψi(Yi)) ≤ pi

}

. (2.52)

The case where p1 = p2 = · · · = pM ≡ p is called isotropic. Tensor product

polynomial spaces with anisotropic degree (i.e. p1 6= p2 6= · · · 6= pM) are also

discussed in [3]. In [12, 14, 19, 32] the space Sp is defined to be the space of tensor-

product polynomials of total degree p,

Sp =

{

Ψ(Y) =
M∏

i=1

ψi(Yi) : ψi(Yi) is a polynomial and
M∑

i=1

deg(ψi(Yi)) ≤ p

}

.

(2.53)

This space has dimension NY = (M+p)!
M !p!

.
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2.3.1 Error Analysis of the Stochastic Galerkin Method

The error analysis of the stochastic finite element method proceeds along the

same lines as the analysis of the standard finite element method. We will present an

outline of the error estimates here. A more complete discussion can be found in [3].

First, the finite element approximation uhp is quasi-optimal in the L2
ρ(Γ) ⊗ H1(D)

norm.

Lemma 2 (Cea’s Lemma). The error u− uhp is bounded by

||u− uhp||L2
ρ(Γ)⊗H1(D) ≤ C inf

Vh⊗Sp

||u− uhp||L2
ρ(Γ)⊗H1(D) (2.54)

where C > 0 depends on the domain, the probability density function ρ and the

diffusion coefficient âMa
.

Proof. The proof uses standard techniques from the analysis of finite elements (see

[6]) and follows from the fact that the bilinear form

α(u, v) =

∫

Γ

∫

D

âMa
∇u∇vdxρdY (2.55)

is coercive and bounded on L2
ρ(Γ)⊗H1

0 (D), and that the discrete solution uhp satisfies

(2.51).

Furthermore, the term on the right hand side of (2.54) separates into two
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terms. We have that

||u− uhp||L2
ρ(Γ)⊗H1(D) ≤ C( inf

v∈Sp⊗H1
0 (D)

||u− v||L2
ρ(Γ)⊗H1(D)

︸ ︷︷ ︸

(I)

+ (2.56)

inf
v∈L2

ρ(Γ)⊗Vh

||u− v||L2
ρ(Γ)⊗H1(D)

︸ ︷︷ ︸

(II)

).

The term (I) describes the error resulting from the discretization of L2
ρ(Γ). The term

(II) describes the error resulting from the discretization of H1(D). The second term

can be bounded by using standard finite element error estimates [6, 28]. This error

typically decays as O(hr) where r depends on the finite element space chosen to

discretize H1(D) and the regularity of the solution.

If the space Sp is defined to be the space of tensor product polynomials of

degree at most p = [p1, ..., pMa+Mf
]t, then it is possible to show that

inf
v∈Sp⊗H1(D)

||u− v||L2
ρ(Γ)⊗H1(D) ≤

M∑

i=1

ζpi+1
i

||∂pn+1
Yi

u||L2(Γ)⊗H1(D)

(pn + 1)!
(2.57)

where ζi < 1 [3]. In the isotropic case we have that

inf
v∈Sp⊗H1(D)

||u− v||L2(Γ)⊗H1(D) ≤ C(p,M) max
1≤i≤M

(ζi)
p+1. (2.58)

Therefore the first term in (2.56) decays exponentially with respect to the stochastic

discretization parameter p.

32



2.4 Sparse Grid Collocation

An alternative to the stochastic Galerkin method is the class of stochastic

collocation methods, which sample the input operator at a predetermined set of

points Θ = {Y(i), ...,Y(NY )} and construct a high-order polynomial approximation

to the solution function using discrete solutions to the deterministic PDEs

−∇ · (âMa
(x,Y(i))∇u(x,Y(i))) = f̂Mf

(x,Y(i)), (2.59)

where the diffusion coefficients and forcing term are evaluated at the sample points.

If u : Γ → V is a function of the random parameter space then the sparse grid

approximation to this function is denoted A(p,M)(u) : Γ → V , where p is a dis-

cretization parameter referred to as the grid level andM is the number of parameters

specifying the SPDE. In general, increasing p leads to higher order approximations

and to larger collocation point sets. Once the polynomial approximation to u is con-

structed, statistical information can be obtained at low cost [50], as for the stochastic

Galerkin method. Collocation techniques for solving SPDEs were first developed by

[2, 35, 50].

There are a large variety of collocation methods. The primary difference be-

tween each of them is how the collocation points are chosen and how the approximate

solution is constructed from the PDE solution evaluated at these points. The first

collocation methods use grids consisting of tensor products of one-dimensional point

sets that are based on either the Clenshaw-Curtis or Gaussian abscissas, to construct
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a global polynomial approximation [2]. In this method the set of points was the same

in each dimension, this is referred to isotropic tensor collocation. In [2] anisotropic

tensor grids, where the number of points in each dimension was varied, were also

explored. These methods produce a global polynomial approximation where the

polynomial degree in each direction is equal to the number collocation points used

in that direction. These methods suffer from the “curse of dimensionality” in that

the number of collocation points grows rapidly with increasing dimension. Later

work used isotropic and anisotropic Smolyak sparse grids to construct collocation

point sets [35, 34, 50]. Sparse grid methods are notable in that they attain similar

approximation properties to tensor collocation methods while requiring the evalua-

tion of the SPDE at many fewer collocation points.

It was shown in [4] that there is an equivalence between stochastic Galerkin

techniques and stochastic collocation techniques. Approximations based on isotropic

and anisotropic tensor and sparse grids were each shown to lie in a space of globally

defined multivariate polynomials. The approximation error for each of these collo-

cation methods was shown to be equivalent, up to a constant, to the approximation

derived by a Galerkin projection onto this polynomial space. In particular it was

shown that the approximation error of a solution constructed from collocation on

an isotropic level-p Smolyak sparse grid would produce errors on the same order as

a Galerkin approximation in the space of multivariate polynomials of total degree p

defined in (2.53). In many of these cases the total number of collocation points is

greater than the dimension of the associated polynomials space.
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2.4.1 Error Analysis of the Sparse Grid Collocation Method

A complete description of the sparse grid collocation method will follow in

chapter 3. Here we will present the error analysis of the sparse grid collocation

method applied to the stochastic diffusion equation. These results were first estab-

lished in [35] and show that the error associated with the sparse grid collocation

method decays exponentially provided that the solution u is sufficiently smooth.

We will assume that each deterministic PDE (2.59) is discretized by finite elements

with Vh being a discrete subspace of H1(D). Define uh(x,Y ) : Γ → R
Nx to be the

discrete solution to (2.59) at the point Y, where Nx is the number of spatial degrees

of freedom. Let A(p,M)(uh) be the sparse grid approximation to uh. Similar to

the analysis of the stochastic Galerkin method, the error associated with collocation

methods separates into two parts, the error associated with the discretization in

space and sparse grid interpolation error,

||u−A(p,M)(uh)||L2
ρ(Γ)⊗H1(D) ≤ ||uh −A(p,M)(uh)||L2

ρ(Γ)⊗H1(D)
︸ ︷︷ ︸

(I)

+ (2.60)

||u− uh||L2
ρ(Γ)⊗H1(D)

︸ ︷︷ ︸

(II)

.

As in (2.56), (II) is the spatial discretization error and can be bounded using tech-

niques from finite element theory. The first term is the error resulting from the

discretization of the stochastic portion of the problem by the sparse grid collocation

method. It is shown in [35] that the stochastic error (I) decays exponentially in the

sparse grid level.
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Lemma 3 (Nobile, Tempone, Webster [35]). Given a function u ∈ C0(Γ)⊗H1(D)

that satisfies the assumptions of theorem 1, the Smolyak formula (3.18) based on

Gaussian abscissas satisfies:

||u−A(p,M)(u)||L2(Γ)⊗H1(D) ≤ CFMe−σp, (2.61)

Where σ, C, and F are positive constants that depend on Γ and the radius of con-

vergence τ from Lemma 1.

The sparse grid will have on the order of 2p more points than there are stochastic

degrees of freedom in the Galerkin scheme, |Θ| ≈ 2pNY for M ≫ 1 [50].
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Chapter 3

Comparison of the Stochastic Finite Element Method and the

Stochastic Collocation Method

In this chapter we present a comparison of the stochastic Galerkin and stochas-

tic sparse grid collocation methods applied to the stochastic linear elliptic diffusion

equation with zero Dirichlet boundary conditions. Here we will assume that only

the diffusion coefficient is uncertain. This can be written as

−∇ · (a(x, ω)∇u(x, ω)) = f(x) (x, ω) ∈ D × Ω, (3.1)

u(x, ω) = 0 (x, ω) ∈ ∂D × Ω.

The random input field will be represented as a truncated KL expansion given by

a(x, ω) = âM(x, ξ(ω)) = a0(x) +
M∑

k=1

√

λkξk(ω)ak(x), (3.2)

where (λi, ai) are solutions to the integral eigenvalue equation (2.5) with the co-

variance of a denoted as C(x1,x2) : D ×D → R. By (2.9), (2.12), and (2.14), the

random variables appearing in (3.2) are uncorrelated, mean zero, and are given by

ξk(ω) =
1√
λk

∫

D

(a(x, ω)− a0(x))ak(x) dx. (3.3)
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We make the further modeling assumption that the random variables {ξk} are

independent and admit a joint probability density of the form ρ(ξ) =
∏M

k=1 ρk(ξk).

The covariance function is positive definite and its eigenvalues can be ordered so

that λ1 ≥ λ2 ≥ ... ≥ 0. To ensure the existence of a unique solution to (3.1) it is

necessary to assume that the diffusion coefficient is uniformly bounded away from

zero; we assume that there exist constants amin and amax such that

0 < amin ≤ âM(x, ξ) ≤ amax <∞, (3.4)

almost everywhere P -almost surely, âM(·, ξ) ∈ L2(D) P -almost surely, and f̂M ∈

C0
σ(Γ;L

2(D)).

In this chapter we present a model of the computational costs and compare the

performance of the stochastic Galerkin method [3, 9, 19, 42, 51, 52] and the sparse

grid collocation method [2, 35, 50] for computing the solution of (3.1). See [4] for

related work. Section 3.1 outlines a modification of the stochastic Galerkin method

that uses finite differences to discretize in space rather than finite elements. Section

3.2 outlines the sparse grid collocation method. Section 3.3 presents our model of

the computational costs of the two methods. Section 3.4 explores the performance

of the methods applied to several numerical examples using the Trilinos software

package [24]. Finally in Section 3.5 we draw some conclusions.
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3.1 Stochastic Galerkin Method With Finite Differences

The conventional stochastic Galerkin method, as described in chapter 2, uses

finite elements in both space and the stochastic domain to discretize (3.1). It is

also possible to use finite differences to discretize in space and finite elements to

discretize the stochastic domain. If a uniform mesh is used with a finite difference

discretization in space then the linear system obtained will be spectrally equivalent

to the system obtained by the traditional stochastic Galerkin method on a uniform

spatial mesh. Details of this method are as follows.

Define Γ = ×M
k=1Γk = ×M

k=1Image(ξk) and let

〈u, v〉L2
ρ(Γ)

=

∫

Γ

u(ξ)v(ξ)ρ(ξ) dξ =

∫

Ω

u(ξ(ω))v(ξ(ω)) dP. (3.5)

be the inner product over the space L2
ρ(Γ) = {v(ξ) : ||v||2L2(Γ)

= 〈v2〉 <∞}. We can

define a variational form of (3.1) in the stochastic domain by: for all x ∈ D, find

u(x, ξ) ∈ L2(Γ) such that

−〈∇ · (a∇u), v〉 = 〈f, v〉 (3.6)

for all v ∈ L2(Γ). This leads to a set of coupled second-order linear partial differ-

ential equations in the spatial dimension. Define Sp to be the space of multivariate

polynomials in ξ of total degree at most p. This space has dimension Nξ =
(M+p)!
M !p!

.

Let {Ψk}Nξ−1

k=0 be a basis for Sp orthonormal with respect to the inner product (3.5).
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Substituting the KL-expansion for a(x, ω) and restricting (3.6) to v ∈ Sp gives

−
∫

Γ

∇ ·



âM(x, ξ)





Nξ−1
∑

i=0

∇ui(x)Ψi







Ψj dξ =

∫

Γ

fΨj dξ ∀ j = 0 : Nξ − 1.

(3.7)

This is a set of coupled second-order differential equations for the unknown functions

ui(x) defined on D, which can then be discretized using finite differences. This gives

rise to a global linear system of the form

A~u = ~f. (3.8)

With orderings of ~u and ~f (equivalently, the columns and rows of A, respec-

tively) corresponding to a blocking by spatial degrees of freedom, ~uT = [uT1 , · · · , uTNξ
],

the coefficient matrix has the tensor product structure

A =
M∑

k=0

Gk ⊗ Ak. (3.9)

The matrices {Gk} depend only on the stochastic basis,

G0(i, j) = 〈ΨiΨj〉, (3.10)

Gk(i, j) = 〈ξkΨiΨj〉,

The matrices {Ak} correspond to a standard five-point operator for −∇·(ak∇u) and

{fk} are the associated right hand side vectors. In the two-dimensional examples we
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explore below, we use a uniform mesh of width h. The discrete difference operators

are formed by using the following five-point stencil











ak(x, y +
h
2
)

ak(x− h
2
, y) ak(x, y) ak(x+

h
2
, y)

ak(x, y − h
2
)











. (3.11)

The matrix Ak is symmetric for all k and A positive definite by (3.4). Since the

random variables appearing in (3.3) are mean-zero, it also follows from (3.4) that

A0 is positive-definite.

The matrix A is of order NxNξ where Nx is the number of degrees of free-

dom used in the spatial discretization. It is also sparse in the block sense due to

the orthogonality of the stochastic basis functions. Specifically, since the random

variables {ξk} are assumed to be independent, we can construct the stochastic basis

functions {Ψi} by taking tensor products of univariate polynomials satisfying the

orthogonality condition

〈ψi(ξk), ψj(ξk)〉k ≡
∫

Γk

ψi(ξk)ψj(ξk)ρk(ξk) dξk = δij. (3.12)

This basis is referred to as the generalized polynomial chaos of order p. The use

of this basis for representing random fields is discussed extensively in [19] and [51].

The univariate polynomials appearing in the tensor product can be expressed via
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the familiar three-term recurrence

ψi+1(ξk) = (ξk − αi)ψi(ξk)− βiψi−1(ξk), (3.13)

where ψ0 = 1, ψ−1 = 0. It follows that

G0(i, j) = 〈Ψi,Ψj〉 =
M∏

k=1

〈ψik(ξk), ψjk(ξk)〉k =
M∏

k=1

δikjk = δij , (3.14)

and for k > 0 the entries in Gk are

Gk(i, j) = 〈ξkΨi,Ψj〉

= 〈ξkψik , ψjk〉k
M∏

l=1,l 6=k

〈ψil , ψjl〉l (3.15)

= (〈ψik+1, ψjk〉k + αik〈ψik , ψjk〉k + βik〈ψik−1, ψj〉k)
M∏

l=1,l 6=k

〈ψil , ψjl〉l.

Thus G0 is diagonal and Gk has at most three entries per row for k > 0. Fur-

thermore, if the density functions ρk are symmetric with respect to the origin, i.e.

ρk(ξk) = ρk(−ξk), then the coefficients αi in the three-term recurrence are all zero

and Gk then has at most two non-zeros per row. The sparsity of the matrices {Gk}

causes the full system A to be sparse in the block sense. Furthermore, each non-

zero block of A inherits the sparsity structure associated with the five-point finite

difference matrix (i.e. it is tri-diagonal in the one dimensional case, penta-diagonal

in the two dimensional case, etc.). Examples of the block sparsity structure of the

matrix A is shown in Figure 3.1.
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Figure 3.1: Block structure of stochastic Galerkin stiffness matrix for M = 4 and
p = 1, 2, 3, 4.

The stochastic Galerkin method requires the solution to the large linear system

(3.8). Once the solution to (3.8) is obtained, statistical quantities such as moments

or a probability distribution associated with the solution process can be obtained

cheaply [19]. Although the Galerkin linear system is large, there are techniques

available by which the solution can be computed efficiently.

We elect to directly solve the large symmetric and positive-definite Galerkin

system using the conjugate gradient (CG) method. CG only requires the evalua-
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tion of matrix-vector products, so that it is not necessary to store the assembled

matrix A. The matrix-vector products can be performed implicitly following a pro-

cedure described in [39]. Each matrix Ak is constructed and the terms 〈ξkΨiΨj〉 are

precomputed. When the global stiffness matrix A is to be multiplied by a vector

u, the matrix-vector product is expressed as (Au)j =
∑Nξ−1

i=0

∑M
k=0〈ξkΨiΨj〉(Akui).

The terms Akui are precomputed and then scaled by the terms 〈ξkΨiΨj〉 as needed.

This approach is efficient since most of the terms 〈ξkΨiΨj〉 are zero. The cost of

performing the matrix-vector product in this manner is essentially determined by

the computation of Akui for 0 ≤ k ≤M and 0 ≤ i ≤ Nξ−1, which entails (M+1)Nξ

sparse matrix-vector products by matrices {Ak} of order Nx. The implicit matrix-

vector product also only requires the assembly of M +1 order-Nx stiffness matrices

and the assembly of the components 〈ξkΨiΨj〉 of {Gk}. Alternatively one could

assemble the entire Galerkin matrix and perform the block matrix-vector product

in the obvious way. This is obviously less efficient in terms of memory usage since it

requires the assembly and storage of many matrices of the form 〈ξkΨiΨj〉(Akui). It

is also shown in [39] that performing the matrix-vector products in this way is less

efficient in terms of memory bandwidth.

To obtain fast convergence, we will also use a preconditioner. In particular, it

has been shown in [14] that an effective choice is an approximation to A−1
0 ⊗ G−1

0 ,

where A0 is the mean stiffness matrix. Since the stochastic basis functions are

orthonormal, G0 is the identity matrix. The preconditioner then entails the approx-

imate action of Nξ uncoupled copies of A−1
0 . For this, we will use a single iteration

of an algebraic multigrid solver provided by [18].
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3.2 Sparse Grid Collocation

As discussed in chapter 2, an alternative to the Galerkin scheme is the collo-

cation method, which samples the input operator at a predetermined set of points

Θ = {ξ(1), ..., ξ(n)} and constructs a high-order polynomial approximation to the so-

lution function using discrete solutions to the deterministic PDE. In this section we

will present a complete description of the stochastic isotropic sparse grid collocation

method.

For simplicity of presentation we first discuss a collocation method using the

full tensor product of one-dimensional point sets. Let {ψi} be the set of polynomials

orthogonal with respect to the measure ρk. Let θi = {ξ : ψi(ξ) = 0} := {ξ(j)i,k }ij=1 for

i = 1, 2, ..., and j = 1, 2, ..., i. These are the abscissas for an (i)-point Gauss quadra-

ture rule with respect to the measure ρk. A one-dimensional (i)-point interpolation

operator is given by

U i(u)(ξ) =
i∑

j=1

u(ξ
(j)
i )l

(j)
i (ξ), l

(j)
i (ξ) =

i∏

n=1,n 6=j

ξ − ξ
(n)
i

ξ
(j)
i − ξ

(n)
i

. (3.16)

These can be used to construct an approximation to the M -dimensional random

function u(x, ξ) by defining a tensor interpolation operator

U i1 ⊗ · · · ⊗ U iM (u)(ξ) =

i1∑

j1=1

· · ·
iM∑

jM=1

u(ξ
(j1)
i1

, · · · , ξ(jM )
iM

)(l
(j1)
i1

⊗ · · · l(jM )
iM

). (3.17)

The evaluation of this operator requires the solution of a collection of deterministic

PDEs (2.59), one for each sample point in Θtensor = ×M
j=1θij .
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This method suffers from the so-called curse of dimensionality since the num-

ber of sample points |Θtensor| =
∏M

j=1 |θij | =
∏M

j=1(ij). In the case where i1 = i2 =

· · · = iM ≡ i we have that |Θtensor| = iM , which grows exponentially with the di-

mension of the problem. This makes tensor-product collocation inappropriate for

problems where the stochastic dimension is moderate or large. This cost can be

significantly reduced using sparse grid methods [50].

Sparse grid collocation methods are based on the Smolyak approximation for-

mula. The Smolyak operator A(p,M) is a linear combination of the product formu-

las in (3.17). Let Y (p,M) = {i ∈ N
M : p + 1 ≤ |i|1 ≤ p +M}. Then the Smolyak

formula is given by

A(p,M)(u) =
∑

i∈Y (p,M)

(−1)p+M−|i|1

(
M − 1

p+M − |i|1

)

(U i1 ⊗ · · · ⊗ U iM ). (3.18)

The evaluation of the Smolyak formula requires the solution of deterministic PDEs

(2.59) for ξ(l) in the set of points

Θp,M =
⋃

i∈Y (p,M)

(θi1 × · · · × θiM ). (3.19)

For moderate or large values of M , |Θp,M | ≪ |Θtensor|.

If Gaussian abscissas with respect to the marginal density ρi are used in the

definition of θi and if u is an M -variate polynomial of total degree p in ξ, then

u = A(p,M)u [4]; that is, the Smolyak interpolant exactly reproduces such polyno-
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mials.1 The parameter p in A(p,M) is referred to as the sparse grid level. It is shown

in [35] that sampling the differential operator on the sparse grid Θp,M will produce

A(p,M)(u) = up where up is an approximate solution to (3.1) of similar accuracy

to the solution obtained using an order p stochastic Galerkin scheme. The sparse

grid will have on the order of a factor of 2p more points than there are stochastic

degrees of freedom in the Galerkin scheme, |Θ| ≈ 2pNξ for M ≫ 1 [50].

For a fully non-intrusive collocation method, the diffusion coefficients of (2.59)

would be sampled at the points in the sparse grid and for each sample the deter-

ministic stiffness matrix would be constructed for the PDE

−∇ · (âM(x, ξ(l))∇u(x, ξ(l))) = f̂M(x, ξ(l)). (3.20)

This repeated assembly can be very expensive. We elect in our implementations to

take advantage of the fact that the stiffness matrix at a given value of the random

variable is a scaled sum of the stiffness matrices Ak appearing in (3.9). For a given

value of ξ the deterministic stiffness matrix can be expressed as

A(ξ) = A0 +
M∑

k=1

ξiAk. (3.21)

In our implementation we assemble the matrices {Ak} first by applying the finite

difference stencil (3.11) to the functions ak and then compute the scaled sum (3.21)

1An alternative choice of sparse grid points is to use the Clenshaw-Curtis abscissas with |θ1| = 1
and |θi| = 2i−1+1 for i > 1, which produces nested sparse grids [21, 35, 50]. The choice used here,
non-nested Gaussian abscissas with a linear growth rate, |θi| = i, produces grid sets of cardinalities
comparable to those for the nested Clenshaw-Curtis grids, i.e. |ΘGaussian

p,M | ≈ |ΘClenshaw−Curtis
p,M |.
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of these matrices at each collocation point. This requires the assembly ofM+1 order

Nx stiffness matrices and then at each collocation point, to assemble A(ξ), M + 1

order Nx matrix additions are required. An often cited advantage of collocation

methods is that they do not require modification to the underlying deterministic

PDE code. The method proposed here is intrusive in that it requires modification

of the deterministic PDE solver for the diffusion equation; however it greatly reduces

the amount of time required to perform assembly in the collocation method.

One could construct a separate multigrid preconditioner for each of the deter-

ministic systems. This can become very expensive as the cost of constructing an

algebraic multigrid preconditioner can often be of the same order as the iterative

solution. This repeated cost can be eliminated if one simply builds an algebraic pre-

conditioner for the mean problem A−1
0 and applies this preconditioner to all of the

deterministic systems. If the variance of the operator is small then the mean-based

AMG preconditioner is nearly as effective as doing AMG on each sub-problem and

saves time in setup costs. Other techniques for developing preconditioners balancing

performance with the cost of repeated construction are considered in [21].

3.3 Modeling Computational Costs

From an implementation perspective, collocation is quite advantageous in that

it requires only a modest modification to existing deterministic PDE applications.

Collocation samples the stochastic domain at a discrete set of points and requires

the solution of uncoupled deterministic problems. This can be accomplished by
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repeatedly invoking a deterministic application with different input parameters de-

termined by the collocation point-sampling method. A Galerkin method, on the

other hand, is much more intrusive as it requires the solution of a system of equa-

tions with a large coefficient matrix that has been discretized in both spatial and

stochastic dimensions. To better understand the relationship between these two

methods, we develop a model for the computational costs.

We begin by stating in more detail some of the computational differences be-

tween the two methods. The Galerkin method requires the computation of the

matrices G0 = 〈ΨiΨj〉 and Gk = 〈ξkΨiΨj〉 associated with the stochastic basis func-

tions, the assembly of the right-hand side vector and the spatial stiffness matrices

{Ak}, and finally the solution to the large coupled system of equations. Colloca-

tion requires the construction of a sparse grid and the derivation of an associated

sparse grid quadrature rule, and the assembly/solution of a series of deterministic

subproblems. Further, as observed above, the number of sample points needed for

collocation tends to be much larger than the dimension of the Galerkin system re-

quired to achieve comparable accuracy.

In this thesis we only examine methods that are isotropic in the stochastic

dimension, allocating an equal number of degrees of freedom to each stochastic di-

rection. Anisotropic versions of both the sparse grid collocation method and the

stochastic Galerkin could be implemented by weighting the maximum degree of the

approximation space in each direction. This has been explored in the case of sparse

grid collocation [34]. We expect a cost comparison for an anisotropic stochastic

Galerkin method and the anisotropic sparse grid collocation method to be compara-
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ble to that of their isotropic counterparts. Additional modifications to the stochastic

collocation for adaptively dealing with very high-dimensional problems are consid-

ered in [30] and [31]. The method considered in [30] is presented and extended in

chapter 4.

For a fixed M, p, let ZG be the number of preconditioned conjugate gradi-

Level p Galerkin Non-Zero Blocks Tensor Grid
Sparse Grid (Gaussian) per row in

M = 2 |Θ| Nξ Galerkin Matrix

p = 1 5 3 2.33 4
p = 2 13 6 3.00 9
p = 3 29 10 3.40 16
p = 4 53 15 3.67 25

M = 10

p = 1 21 11 2.82 1024
p = 2 221 66 4.33 59049
p = 3 1581 286 5.62 1048576
p = 4 8761 1001 6.71 9765625

M = 20

p = 1 41 21 2.90 1.04× 106

p = 2 841 231 4.64 3.49× 109

p = 3 11561 1771 6.22 1.10× 1012

Table 3.1: Degrees of freedom for various methods

ent (PCG) iterations required to solve the Galerkin system, let Nξα be the cost of

applying the mean-based preconditioner during a single iteration of the stochastic

Galerkin method, and let Nξγ be the cost of a single matrix-vector product for

(3.8), where α and γ are constants. Note in particular that α is constant because

of the optimality of the multigrid computation. Then the total cost of the Galerkin
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method can be modeled by

Galerkin cost = NξZG(α + γ) (3.22)

The parameter γ can be thought of as the number of order-Nx matrix-vector prod-

ucts required per block row in the stochastic Galerkin matrix. When implementing

the implicit matrix-vector product, γ is equal to M + 1.

We can model the costs of the collocation method with the mean-based multi-

grid preconditioner by

collocation cost = ZC2
pNξ(α + 1) (3.23)

where p is the Smolyak grid level, Nξ is the number of degrees of freedom needed

by an order p Galerkin system, ZC is the average number of PCG iterations needed

to solve a single deterministic system, and α + 1 is the cost of the preconditioning

operation and a single order-Nx matrix-vector product. The factor of 2p derives from

the relation between the number of degrees of freedom for the stochastic Galerkin

and sparse grid collocation methods for large M .

The relative costs of the two methods depend on the parameter values. In

particular,

Collocation cost

Galerkin cost
=

(
ZC

ZG

)

2p
(α + γ)

(α + 1)
(3.24)
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If, for example, the ratio of iteration counts (ZG/ZC) is close to 1 and the pre-

conditioning costs dominate the matrix vector costs (i.e. α ≫ γ), then, we can

expect the stochastic Galerkin method to outperform the sparse grid collocation

method because of the factor 2p. Alternatively, if γ is comparable compared to α,

the preconditioning cost, then collocation is more attractive. The cost of the two

methods is identical when (3.23) and (3.22) are equal. After canceling terms this

gives 2pα ≈ (ZSG/ZC)(α+γ). Table 3.1 gives values of Nξ, and |Θ| for various values

of M and p. One can observe that the estimate 2pNξ ≈ |Θ| is a slight overestimate

but improves as M grows larger. For reference, the number of points used by a full

tensor product grid is also shown.

In our application, we fix the multigrid parameters as follows: One V-cycle

is performed at each iteration and within each V-cycle one symmetric Gauss-Seidel

iteration is used for both presmoothing and postsmoothing. The coarsest grid is

assumed coarse enough so that a direct solver can be used without affecting the

cost per iteration; in our implementations we use a 1 × 1 grid. These parameters

were chosen to optimize the run time of a single deterministic solve. The cost to

apply a single multigrid iteration is equivalent to approximately 5-6 matrix prod-

ucts (2 matrix-vector products for fine level presmoothing, another 2 for fine level

postsmoothing, and 1 matrix-vector product for a fine level residual calculation).

Thus α can be assumed to be 5 or 6 after accounting for computational overhead.

In the remainder of this chapter, we explore the model and assess the validity of

assumptions. In particular, we compare the accuracy of a level-p Smolyak grid with

a degree-p polynomial approximation in the Galerkin approach. We also investigate
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the cost of matrix-vector products, and the convergence behavior of mean-based

preconditioning.

3.4 Experimental Results and Model Validation

In this section we present the results of numerical experiments with the stochas-

tic Galerkin and collocation methods, with the aims of comparing their accuracy

and solution costs and validating the model developed in the previous section. First,

we investigate a problem with a known solution to verify that both methods are con-

verging to the correct solution and to examine the convergence of the PCG iteration.

Second, we examine two problems where the diffusion coefficient is defined using a

known covariance function, and we measure the computational effort required by

each method.

3.4.1 Behavior of the Preconditioned Conjugate Gradient Algorithm

For well-posed Poisson problems, PCG with a multigrid preconditioner con-

verges rapidly. Since collocation entails the solution of multiple deterministic sys-

tems, we expect multigrid to behave well. For Galerkin systems, the performance of

mean-based preconditioning is more complicated. To understand this we investigate

the problem

−∇ · (a(x, ξ)u(x, ξ)) = f(x, ξ) (3.25)
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in the domain [−.5, .5]2 with zero Dirichlet boundary conditions, where the diffusion

coefficient given as a one-term KL expansion,

a(x, ξ) = 1 + σ
1

π2
ξ cos

(π

2
(x2 + y2)

)

. (3.26)

We choose the function

u = exp(−|ξ|2)16(x2 − .25)(y2 − .25) (3.27)

as the exact solution, and the forcing term f is defined by applying (3.25) to u.

The diffusion coefficient must remain positive for the problem to remain well-

posed. This is the case provided

∣
∣
∣
∣
σ
1

π2
ξ cos(

π

2
r2)

∣
∣
∣
∣
< 1, (3.28)

which holds when |ξ| < π2

σ
. As a consequence of this, well-posedness cannot be

guaranteed when ξ is unbounded. There are various ways this can be addressed.

We assume here that the random variable in (3.26) has a truncated Gaussian density

ρ(ξ) =
1

∫ c

−c
exp(− ξ2

2
) dξ

exp

(

−ξ
2

2

)

1[−c,c], (3.29)

which corresponds to taking the diffusion coefficient from a screened sample where

the screening value c is chosen to enforce the conditions (3.28) for ellipticity and

boundedness. The cutoff parameter c is chosen to be equal to 2.575. For this cutoff

54



the area under a standard normal distribution between ±c is equal to .99. For this

value of c, |ξ| < 2.575 and the problem is guaranteed to remain well posed provided

that σ < π2

max(|ξ|)
= 3.8329.

Polynomials orthogonal to a truncated Gaussian measure are referred to as

Rys polynomials [17]. As the parameter c is increased, the measure approaches the

standard Gaussian measure and the Rys polynomials are observed to approach the

behavior of the Hermite polynomials. For our implementation of collocation, the

sparse grids are based on the zeros of the Rys polynomials. This leads to an effi-

cient multidimensional quadrature rule for performing integration with respect to

the measure (3.29), using the Gaussian weights and abscissas.

The recurrence coefficients for orthogonal polynomials can be expressed ex-

plicitly as

αi =

∫

Γ
ξψi(ξ)

2ρ(ξ) dξ
∫

Γ
ψi(ξ)2ρ(ξ) dξ

, βi =

∫

Γ
ψi(ξ)

2ρ(ξ) dξ
∫

Γ
ψi−1(ξ)2ρ(ξ) dξ

. (3.30)

In the case of Hermite polynomials there exist closed forms for the recurrence coeffi-

cients {αi, βi}. No such closed form is known in general for the Rys polynomials so

a numerical method must be employed. The generation of orthogonal polynomials

by numerical methods is discussed extensively in [17] and the use of generalized

polynomial chaos bases in the stochastic Galerkin method is discussed in [51]. We

compute the coefficients {αi} and {βi} via the discretized Steltjies procedure [41]

where integrals in (3.30) are approximated by quadrature.

Testing for both the sparse grid collocation method and the stochastic Galerkin
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method was performed using the truncated Gaussian PDF and Rys polynomials for

several values of σ. The linear solver in all cases was stopped when ||rk||2
||b||2

< 10−12,

where rk = b − Axk is the linear residual and A and b are the coefficient matrix

and right-hand side, respectively. We constructed the sparse grids using the Dakota

software package [10].

Table 3.2 reports ||〈ep〉||l∞ , the discrete l∞-norm of the mean error 〈ep〉 eval-

uated on the spatial grid points. For problems in one random variable, such as this

one, the stochastic collocation and stochastic Galerkin methods produce identical

results. Table 3.3 shows the average number of iterations required by each deter-

ministic sub-problem as a function of grid level and σ. Problems to the right of the

double line do not satisfy (3.28) and some of the associated systems will be indefi-

nite for a high enough grid level as some of the collocation points will be placed in

the region of ill-posedness. If the solver failed to converge for any of the individual

sub-problems, the method is reported as having failed using “DNC”.

Level/p
σ

1 2 3 4 5

1 0.1856 0.1971 0.2175 0.2466 0.2807

2 0.0737 0.0811 .0932 0.1095 0.1207

3 0.0245 .0279 .0331 0.0389 0.1195

4 0.0070 .0082 .0099 0.0121 DNC

5 0.0017 0.0021 .0026 0.0029 DNC

6 3.7199e-4 4.6301e-4 5.7900e-4 6.7702e-4 DNC

7 7.2002e-5 9.1970e-5 1.1605e-4 4.1598e-4 DNC

Table 3.2: Mean error in the discrete l∞-norm for the stochastic collocation and
stochastic Galerkin methods.
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Level
σ

1 2 3 4 5

1 10 10 10.5 11 11

2 10 10.33 10.67 11.33 12.67

3 10 10.5 11 12.25 22

4 10 10.6 11.2 13 DNC

5 10.17 10.5 11.33 13.83 DNC

6 10.14 10.43 11.43 15 DNC

7 10.13 10.63 11.38 16.75 DNC

p
σ

1 2 3 4 5

1 13 15 16 18 21

2 13 17 22 28 38

3 14 19 26 39 140

4 14 20 29 53 DNC

5 14 21 31 69 DNC

6 15 21 33 94 DNC

7 15 21 34 136 DNC

Table 3.3: Iterations for the stochastic collocation (left) and stochastic Galerkin
methods (right)

Table 3.3 shows the PCG iteration counts for both methods. Again, problems

to the right of the double line are ill-posed and the Galerkin linear system as well as

a subset of the individual collocation systems are guaranteed to become indefinite

as the degree of polynomial approximation p (for stochastic Galerkin) or sparse grid

level (for collocation) increases [14]. Table 3.3 shows that the iteration counts are

fairly well behaved when mean-based preconditioning is used. In general, iterations

grow as the degree of polynomial approximation increases.

It is well known that bounds on convergence of the conjugate gradient method

are determined by the condition number of the matrix. It is shown in [14] that if the

diffusion coefficient is given by a stationary field, as in (3.26), then the eigenvalues

of the preconditioned stochastic Galerkin system lie in the interval [1 − τ, 1 + τ ]
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where

τ = Cmax
p+1

σ

µ

(
M∑

k=1

√

λk||ak(x)||L∞

)

(3.31)

and Cmax
p+1 is the magnitude of the largest zero of the degree p+1 orthogonal polyno-

mial. Therefore the condition number is bounded by κ(A) ≤ 1+τ
1−τ

. It is possible to

bound the eigenvalues of a single system arising in collocation in a similar manner

using the relation (3.21). The eigenvalues of the system arising from sampling (3.21)

at ξ lie in the bounded interval [1− τ̃(ξ), 1 + τ̃(ξ)] where

τ̃(ξ) =
σ

µ

(
M∑

k=1

√

λk||al(x)||L∞
|ξk|
)

. (3.32)

Likewise the condition number for a given preconditioned collocation system can

be bounded by κ(A(ξ)) ≤ 1+τ̃
1−τ̃

. For both methods, as σ increases relative to µ the

associated systems may become ill-conditioned and will eventually become indefi-

nite. Likewise as p or the sparse grid level increases, Cmax
p+1 and maxΘp,M

|ξ| increase

and the problems may again become indefinite. However if Γ is bounded then both

Cmax
p+1 and maxΘp,M

|ξ| are bounded for all choices of p and the sparse grid level and

the systems are guaranteed to remain positive definite provided σ is not too large.

The effect of these bounds can be seen in the above examples since as σ in-

creases the iteration counts for both methods increase until finally for large choices

of σ and large p or grid level the PCG iteration fails to converge. It should also

be noted that by (3.31) and (3.32), the condition number of the entire stochastic
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Galerkin system depends on the largest zero of the degree p+ 1 orthogonal polyno-

mial, whereas the condition number of each collocation system depends only on the

particular collocation point. This accounts for the larger iteration counts for the

stochastic Galerkin method since for most collocation systems the condition number

bounded closer to one. However, for smaller values of σ the PCG iteration converges

in a reasonable number of iterations for all tested values of p and grid level.

3.4.2 Computational Cost Comparison

In this section we compare the performance of the two methods using both

the model developed above and the implementations in Trilinos. For our numerical

examples, we consider a problem where only the covariance of the diffusion field is

given. We consider two problems of the form

−∇ · [(µ+ σ
M∑

k=1

√

λkξkfk(x))∇u] = 1 (3.33)

where values of M between 3 and 15 are explored and {λk, fk} are the eigenpairs

associated with the covariance kernel

C(x1,x2) = exp(−|x1 − x2| − |y1 − y2|). (3.34)

The KL-expansion of this kernel is investigated extensively in [19]. For the first

problem, the random variables {ξk} are chosen to be identically independently dis-

tributed uniform random variables on [−1, 1]. For the second problem, the random
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variables {ξk} are chosen to be identically independently distributed truncated Gaus-

sian random variables as in the previous section. For the first, problem µ = .2 and

σ = .1. For the second problem, µ = 1 and σ = .25. These parameters were chosen

to ensure that the problem remains well posed. Table 3.4 shows approximate values

for τ for both of the above problems. In the second case, where truncated Gaussian

random variables are used, 1− τ becomes close to zero as the stochastic dimension

of the problem increases. Thus this problem could be said to be nearly ill-posed. In

terms of computational effort this should favor the sparse grid collocation method

since, as was seen in the previous section, iteration counts for the stochastic Galerkin

method increased faster than those for the collocation method as the problem ap-

proaches ill-posedness. The spatial domain is discretized by a uniform mesh with

discretization parameter h = 1
32
. Note that the mean-based preconditioning elim-

inates the dependence on h of the conditioning of the problem [14] so we consider

just a single value of the spatial mesh parameter.

Uniform Random Variables Truncated Gaussian Random Variables
M Γi = [−1, 1],σ = .1, µ = .2 Γi = [−2.576, 2.576], σ = .25, µ = 1

3 0.533 0.686

4 0.549 0.708

5 0.566 0.729

Table 3.4: Approximate values of τ for model problems

Approximate solutions are used to measure the error since there is no analytic

expression for the exact solution to either of the above problems. To measure the

error for the Galerkin method the exact solution is approximated by a high order
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(p = 10) Galerkin scheme. For the collocation method we take the solution from a

level-10 sparse grid approximation as an approximation to the exact solution. These

two “nearly exact” solutions differed by an amount on the order of the machine pre-

cision. The error in the stochastic space is then estimated by computing the mean

and variance of the approximate solutions and comparing it to the mean and vari-

ance of the order-10 (level-10) approximations. The linear solves for both methods

stop when ||rk||2
||b||2

< 10−12. In measuring the time, setup costs are ignored. The times

reported are non-dimensionalized by the time required to perform a single deter-

ministic matrix vector product and compared with the model developed above.

Figure 3.2 explores the accuracy obtained for the two discretizations forM = 4;

the behavior was the same for M = 3 and M = 5. In particular, it can be seen that

for both sample problems, the same value of p (corresponding to the polynomial

space for the Galerkin method and the sparse grid level for the collocation method)

the two methods produce solutions of comparable accuracy. Thus the Galerkin

method gives higher accuracy per stochastic degree of freedom. Since the unknowns

in the Galerkin scheme are coupled, the cost per degree of freedom will be higher.

In terms of computational effort then the question is whether or not the additional

accuracy per degree of freedom will be worth the additional cost.

Figures 3.3 and 3.4 compare the costs incurred by the two methods, measured

in CPU time, for obtaining solutions of comparable accuracy. The timings reflect

time spent to execute the methods on an Intel Core 2 Duo machine running at

3.66GHz with 6Gb of RAM. In the figures these timings are non-dimensionalized by

dividing by the cost of a single sparse matrix-vector product with the (five-diagonal)
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nonzero structure of {Ak}. This cost is measured by dividing the total time used by

the collocation method for matrix-vector products by the total number of CG iter-

ations performed in the collocation method. This allows the times to be compared

to the cost model (3.22) and (3.23), which in turn helps ensure that the implemen-

tations are of comparable efficiency. The model is somewhat less accurate for the

collocation method, because for these relatively low-dimensional models the approx-

imation |Θp,M | = 2pNξ is an overestimate. For the values ofM used for these results

(M = 3, 4, and 5), it can be seen that the Galerkin method requires less CPU time

than the collocation method to compute solutions of comparable accuracy, and that

the gap widens as the dimension of the space of random variables increases. Also, it

is seen in Figure 3.3 and Figure 3.4 that the performance of each method is largely

independent of the density functions used in defining the random variables ξk.

Table 3.5 expands on these results for larger values of M , based on our ex-

pectation that the same value of p (again, corresponding to the polynomial space

for the Galerkin method or the level for the collocation method) yields solutions of

comparable accuracy. The trends are comparable for all M and show that as the

size of the approximation space increases, the overhead for collocation associated

with the increased number of degrees of freedom becomes more significant.

3.5 Conclusion

In this chapter we have examined the costs of solving the linear systems of

equations arising when either the stochastic Galerkin method or the stochastic col-
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Figure 3.2: Errors vs stochastic DOF for M = 4. Uniform random variables (top),
truncated Gaussian random variables (bottom)
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Figure 3.3: Solution time vs. error for M = 3, 4, 5. Uniform random variables.
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Figure 3.4: Solution time vs. error for M = 3, 4, 5. Truncated Gaussian random
variables.
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Stochastic Galerkin

M = 5 M = 10 M = 15

p = 1 0.058139 0.147306 0.320443
(0.026912) (0.051521) (0.085775)

2 0.269301 1.20465 3.80461
(0.119066) (0.0385744) (1.04111)

3 1.20353 13.1382 51.448
(0.372013) (2.57246) (7.40171)

4 3.50061 53.786 168.112
(1.1846) (10.1633) (41.325)

5 6.510255 117.729
(2.89493) (36.2012)

Sparse Grid Collocation

Level = 1 0.068934 0.163258 0.285779
(0.036288) (0.078107) (0.123893)

2 0.532407 2.13126 5.07825
(0.275829) (0.98289) (2.1247)

3 2.41468 16.9871 57.9837
(1.20969) (7.54744) (23.1414)

4 8.31068 102.595 493.042
(4.14521) (44.0484) (193.199)

5 24.5645 515.751
(12.0362) (221.546)

Table 3.5: Solution (preconditioning) time in seconds for second model problem

location method is used to discretize the diffusion equation in which the diffusion

coefficient is a random field modeled by (3.2). The results indicate that when mean-

based preconditioners are coupled with the conjugate gradient method to solve the

systems that arise, the stochastic Galerkin method is quite competitive with col-

location. Indeed, the costs of the Galerkin method are typically lower than for

collocation, and this differential becomes more pronounced as the number of terms

66



in the truncated KL expansion increases. We have also developed a cost model for

both methods that closely mirrors the complexity of the algorithms.
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Chapter 4

The Adaptive KDE Collocation Method

The methods discussed in chapter 3 all exhibit asymptotic exponential con-

vergence with respect to the stochastic discretization parameter. This is possible

because Lemma 1 guarantees that the solution to the stochastic diffusion equation is

analytic with respect to the parameters when the diffusion coefficient is expanded in

a truncated KL expansion. It is possible in the general case however for the solution

u to be discontinuous with respect to the parameters, or to have steep gradients. In

fact even when the solution is analytic it may have local features that make global

approximation impossible without using very high order polynomial spaces or very

high level sparse grids.

An additional weakness of the methods discussed in chapter 2 derives from the

assumption that the joint density of the random parameters is known and that the

parameters are independent. Both of these assumptions are very strong and may

not be true in practice. In particular it may be the case that one only has access

to a finite sample set from the parameter space and that the individual parameters

are not independent of one another. In this chapter we will present an extension of

an adaptive collocation method developed in [30] which is capable of approximating

the solution to parameter-dependent functions that are discontinuous or have steep

gradients. The extension of this method uses KDE to approximate the unknown dis-
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tribution of the parameters and can efficiently recover the statistics of the solution

when only a sample from the parameter space is available.

4.1 Problem Statement

In this chapter we will concern ourselves with the general case of approximating

the moments of a function u : D × Ω → R where D is the spatial domain and Ω

is an abstract event space and u is the solution to an SPDE of the form (2.1). As

discussed previously, it is necessary to first represent u in terms of a finite number of

random variables ξ = [ξ1, ξ2, ..., ξM ]T . In this chapter we only make the assumption

that the model has been parametrized by some reasonable process, not necessarily

using a KL-expansion. If we denote Γ = Image(ξ), then we can write (2.1) as

L(x, ξ; u) = f(x, ξ), ∀x ∈ D, ξ ∈ Γ (4.1)

B(x, ξ; u) = g(x, ξ), ∀x ∈ ∂D, ξ ∈ Γ.

We will assume that for a given realization of the random vector ξ ∈ Γ, the system

(4.1) is a well-posed deterministic partial differential equation that can be solved

using a deterministic solver.

One is typically interested in methods that allow statistical properties of u to

be computed. If ρ(ξ) denotes the joint probability density function of the random
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vector ξ, then the kth moment of the solution u is defined as

E(uk) =

∫

Γ

ukρ(ξ)dξ. (4.2)

One may also be interested in computing probability distributions associated with

u, for example P (u(x, ξ) ≥ c).

Several methods have been developed for computing approximations to the

random field u and the associated statistical quantities. The most widely known is

the Monte Carlo method, where the desired statistics are obtained by repeatedly

sampling the distribution of ξ, solving each of the resulting deterministic PDEs, and

then estimating the desired quantities by averaging. In chapter 3 we discussed the

stochastic Galerkin and stochastic sparse grid collocation methods. These methods

typically approximate the solution u as a high-degree multivariate polynomial in ξ.

If this approximation is denoted up(x, ξ), then the error u− up can be measured in

terms of an augmented Sobolev norm

|| · ||L2
P
⊗V =

(∫

Ω

|| · ||2V dP
) 1

2

. (4.3)

Here V is an appropriate Sobolev space that depends on the spatial component of

the problem and || · ||V is the norm over this space. Once up has been constructed,

if the joint density function is known, then the kth moment of the solution can be
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computed as

E(uk) ≈
∫

Γ

ukpρ dξ, (4.4)

by using quadrature.

From (2.57) and Lemma 3 we know that as the total degree of the polynomial

approximation is increased, the error in the above norm, ||u− up||L2
P
;V , decays very

rapidly provided that the solution u is sufficiently smooth in ξ. If u is not suffi-

ciently smooth then the convergence of these methods can stall or they may not

converge at all [30]. Several methods have been proposed for treating problems that

are discontinuous in the stochastic space. One approach partitions the stochastic

space into elements and approximates the solution locally within elements by poly-

nomials, continuous on the domain [3, 47]. This is analogous to hp-methods from

the theory of finite elements. Another approach is to use a hierarchical basis method

developed in [27], which approximates u using a hierarchical basis of piecewise linear

functions defined on a sparse grid. This idea was used with stochastic collocation in

[30] where the sparse grid is refined adaptively using an a posteriori error estimator.

If the truncated Karhunen-Loève expansion is used to express L and B, then

the random variables ξ1, ξ2, ..., ξM have zero mean and are uncorrelated. It is fre-

quently assumed that the random variables are independent and that their marginal

density functions ρi(ξi) are known explicitly. In this case the joint density function

is simply the product of the marginal densities ρ(ξ) = ΠM
k=1ρi(ξi). This assumption

simplifies the evaluation of the moments of the solution since the multidimensional
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integral in (4.2) can be written as the product of one-dimensional integrals. It is not

the case, however, that uncorrelated random variables are necessarily independent,

and in the worst case the support of the product of the marginal densities may con-

tain points that are not in the support of the true joint density. Thus, it may not

be appropriate to define the joint density function as the product of the marginal

density functions. See [22] for further discussion of this point.

In this chapter we explore a method for approximating the statistics of the

solution u when an explicit form of the joint distribution is not available and we

only have access to a finite number of samples of the random vector ξ. In particular,

we are able to treat the case where information on the parameters of the problem is

only available in the form of experimental data. The method works by constructing

an approximation ρ̂(ξ) to the joint probability distribution ρ(ξ) using kernel density

estimations [44]. This construction is then combined with an adaptive collocation

strategy similar to the one derived in [30] to compute an approximation to the ran-

dom field u. This technique ensures that the approximation error is small near the

sample points. Moments can then be efficiently evaluated by performing surrogate

Monte Carlo on this approximation to the solution. That is, if the approximate so-

lution is denoted A(u), and {ξ(i)}Ni=1 is a set of samples independently drawn from

the distribution of ξ, then the expected value is approximated by

E[u] ≈ 1

N

N∑

i=1

A(u)(ξ(i)). (4.5)
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The remainder of this chapter proceeds as follows. Section 4.2 discusses the

adaptive collocation method in [30]. Section 4.3 presents an overview of the kernel

density estimation technique used for approximating the unknown distribution of ξ.

Section 4.4 presents the method developed in this paper for approximating solutions

to problems of the form (4.1). An error bound for the method is given in Section

4.4.1, and Section 4.4.2 presents techniques for extracting solution statistics. Section

4.5 presents the results of numerical experiments showing the performance of the

new method and comparing this performance with that of the Monte Carlo method.

Finally in Section 4.6 we draw some conclusions.

4.2 The Adaptive Collocation Method

Collocation methods work by solving the equation (4.1) for a finite number

of pre-determined parameters {ξ(1), ..., ξ(Nc)} using a suitable deterministic solver.

The solutions at each sample point are then used to construct an interpolant to the

solution for arbitrary choices of the random vector ξ. We denote such an approxi-

mation generally as A(u)(ξ). In the collocation methods discussed in chapters 2 and

3, the solution random field is approximated globally by a multivariate polynomial

in the random vector ξ. These methods are therefore only useful when the random

field u is sufficiently regular in ξ.

An adaptive collocation method was developed in [30]. This method is de-

signed to compute approximations of random fields that possess discontinuities or
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strong gradients, and for which the image set Γ is bounded.1 In the following, we

present an overview of this method and our proposed modifications. To simplify

the presentation we describe the case of a function u defined by a single random

parameter whose image is a subset of [0, 1]. This can be generalized in a straightfor-

ward manner to a function defined by M parameters with image contained in any

M-dimensional hypercube. Define

mi =







1 if i = 1,

2i−1 + 1 if i > 1,

(4.6)

ξij =







j−1
mi−1

for j = 1, ...,mi, if mi > 1,

0.5 for j = 1, if mi = 1.

(4.7)

For i = 1, 2, ..., we have that θi = {ξij}mi

j=1 consists of mi distinct equally spaced

points on [0, 1]. We also have that θi ⊂ θi+1. Since these points are equidistant,

the use of global polynomial interpolation as in [50] is not appropriate due to the

Runge phenomenon. We make the assumption that the solution u is almost surely

Lipschitz continuous with respect to the random parameters. This is a substantially

weaker assumption than assuming that the solution is analytic. For example, the

solution may contain singularities that global polynomial approximations will not

resolve. To address these issues, a hierarchical basis of piecewise linear functions

is used to construct the interpolant. Define θ0 = ∅ and ∆θi = θi \ θi−1. Note

that |∆θi| = mi − mi−1. Let the members of ∆θi be denoted {ξ∆i
j }|∆θi|−1

j=0 . The

1For unbounded Γ, interpolation is carried out on a bounded subset of Γ, see e.g. [48].
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hierarchical basis is defined on the interval [0, 1] as

a10(ξ) = 1 (4.8)

aij(ξ) =







1− (mi − 1)|ξ − ξ∆i
j | if |ξ − ξ∆i

j | < 1/(mi − 1),

0 otherwise,

(4.9)

for i > 1 and j = 0, ..., |∆θi| − 1. These functions are piecewise linear and have

Figure 4.1: The hierarchical basis functions for i = 1, 2, 3.

the property that aij(ξ
∆i
k ) = δjk, and a

i
j(ξ

s
k) = 0 for all s < i. Note that there is a

binary tree structure on the nodes in θi. That is, we can define the set of children
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of a point ξ∆i
j as

child(ξ∆i
j ) =







{ξ∆i+1
j } if i = 2

{ξ∆i+1
2j , ξ∆i+1

2j+1 } otherwise.

(4.10)

We also denote the parent of a point in this tree as par(ξ∆i
j ).

Algorithm 1 defines an interpolation scheme using the hierarchical basis func-

tions. The quantities {wk
j } are referred to as the hierarchical surplus. They represent

Algorithm 1 Interpolation With Hierarchical Basis Functions

Define A0(u)(ξ) = 0.
Define k = 1
repeat
Construct ∆θk

Evaluate u(ξ∆k
j ) ∀ξ∆k

j ∈ ∆θk

wk
j = u(ξ∆k

j )−Ak−1(u)(ξ
∆k
j ) ∀ξ∆k

j ∈ ∆θk

Define Ak(u)(ξ) =
∑k

i=1

∑|∆θi|−1
j=0 wi

ja
i
j(ξ).

k = k + 1
until max(|wk−1

j |) < τ

the correction to the interpolant Ak−1(u) at the points in ∆θk. For functions with

values that vary dramatically at neighboring points, the hierarchical surpluses {wi
j}

remain large for several iterations. This provides us with a natural error indica-

tor as well as a convergence criterion for the method, whereby we require that the

largest hierarchical surplus be smaller than a given tolerance. The hierarchical sur-

pluses also provide a mechanism to implement adaptive grid refinement. The grid

is adaptively refined at points with large hierarchical surpluses. For such a point,

its children are added to the next level of the grid. Algorithm 2 defines such an

adaptive interpolation algorithm that is similar to the one appearing in [30]. The
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Algorithm 2 Adaptive Interpolation With Hierarchical Basis Functions

Define A0(u)(ξ) = 0.
Define k = 1
Initialize ∆θ1adaptive = θ1.
repeat
∆θk+1

adaptive = ∅
for ξ∆k

j ∈ ∆θkadaptive do

Evaluate u(ξ∆k
j )

wk
j = u(ξ∆k

j )−Ak−1(u)(ξ
∆k
j )

if ||wk
j || > τ then

∆θk+1
adaptive = ∆θk+1

adaptive ∪ child(ξ∆k
j )

end if
end for
Define Ak(u)(ξ) =

∑k
i=1

∑

j w
i
ja

i
j(ξ).

k = k + 1
until max(||wk−1

j ||) < τ

interpolation error associated with this method is shown by numerical experiments

in [30] to be significantly smaller than the bound O(|θk|−2log(|θk|3(M+1)) presented

in [26] for both smooth functions and examples that contain steep gradients or dis-

continuities.

This method can be generalized in a straightforward way to functions defined

on [0, 1]M . All that is needed is to define a multidimensional hierarchical basis

set and a method for generating the children of a given grid point. The multi-

dimensional hierarchical basis consists of tensor products of the one-dimensional

hierarchical basis functions. Given i = [i1, ..., iM ] ∈ N
M and j = [j1, ..., jM ] ∈ N

M ,

let

aij(ξ) = ai1j1(ξ1)⊗ · · · ⊗ aiMjM (ξM). (4.11)
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We can define the multidimensional interpolation grids by

θ1 = [0.5, 0.5, ..., 0.5]

child(ξ∆i
j ) = {ξ|∃!j ∈ 1, ...,M s.t. [ξ1, ..., ξj−1, par(ξj), ξj+1, ...ξM ] = ξ∆i

j }.

(4.12)

From this we can see that each grid point has at most 2M children.

This method can be used to approximate the solutions to (4.1) by applying a

suitable deterministic solver to the equations at collocation points ξ∆i
j . We can then

construct an interpolant of u, Ak(u) using the formula in Algorithm 2. In principle,

the expected value of u can be approximated by

E(u) ≈
∫

Γ

Ak(u)ρ(ξ)dξ =
∑

i

∑

j

wi
j

∫

Γ

aij(ξ)ρ(ξ)dξ, (4.13)

although in the cases under discussion ρ will not be known explicitly. Even in the

case where ρ is known explicitly and can be expressed as the product of univariate

functions, the integral in (4.13) can still be difficult to calculate when it is of high

dimension.
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4.3 Kernel Density Estimation

Let K(ξ) be a function satisfying the following conditions:

∫

RM

K(ξ)dξ = 1, (4.14)

∫

RM

K(ξ)ξdξ = 0,

∫

RM

K(ξ)||ξ||2dξ = k2 <∞,

K(ξ) ≥ 0,

where ||ξ|| is the Euclidean norm of theM -dimensional vector ξ. Let ξ(1), ξ(2), ..., ξ(N)

be N independent realizations of the random vector ξ. The kernel density approxi-

mation to the joint distribution of ξ is given by

ρ̂(ξ) =
1

NhM

N∑

k=1

K

(

ξ − ξ(i)

h

)

, (4.15)

where h is a user-defined parameter called the bandwidth. It is straightforward to

verify that the function ρ̂ defined above satisfies the conditions for being a probabil-

ity density function. The main challenge here lies in the selection of an appropriate

value for h. If h is chosen to be too large then the resulting estimate is said to be

oversmoothed and important features of the data may be obscured. If h is chosen

to be too small then the resulting estimate is said to be undersmoothed and the

approximation may contain many spurious features not present in the true distribu-

tion. Figure 4.2 shows kernel density estimates of a bimodal distribution for a small
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and large value of h. The oversmoothed estimate does not detect the bimodality of

the data whereas the undersmoothed estimate introduces spurious oscillations into

the estimate.

Figure 4.2: Under-smoothed kernel density estimate (left) and over-smoothed
(right).

One method for specifying h is to choose the value that minimizes the approx-

imate mean integrated square error (AMISE). For a given value of h, the AMISE

is given by

AMISE(h,N) =
1

4
h4α2

∫

RM

(∆ρ(ξ))2dξ +N−1h−Mβ, (4.16)
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where

α =

∫

RM

||ξ||21K(ξ)dξ, β =

∫

RM

K(ξ)2dξ, (4.17)

and ∆ here denotes the Laplace operator [44]. From this expression the optimal

value of h can be derived as

hM+4
opt =Mβα−2

{∫

(∆ρ(ξ))2dξ

}−1

N−1. (4.18)

It can be shown that the optimal bandwidth is of magnitude O(N−1/(M+4)) as the

number of samples N increases. If the optimal value of h is used it can also be

shown that the AMISE decays like O(N− 4
4+M ).

For numerical computations, choosing h to minimize the AMISE is imprac-

tical since it requires a priori knowledge of the exact distribution. Many tech-

niques have been proposed for choosing the smoothing parameter h without a priori

knowledge of the underlying distribution, including least-squares cross-validation

and maximum likelihood cross-validation [44]. In the numerical experiments below

we employ maximum likelihood cross-validation (MLCV). This method proceeds as

follows. Given a finite set of samples, ξ(1), ξ(2), ..., ξ(N), of the random vector ξ,

define

ρ̂−i(ξ) =
1

NhM

N∑

k=1,k 6=i

K

(

ξ − ξ(k)

h

)

(4.19)
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to be the kernel density estimate constructed by omitting the ith sample. The

maximum likelihood cross-validation method is to choose h that maximizes

CV (h) ≡ 1

N

N∑

i=1

log(ρ̂−i(ξ
(i))). (4.20)

Note that this value of h only depends on the data. The intuition behind this method

is that if we are given an approximation to the true density based on N − 1 samples

and we draw another sample, then the approximate density should be large at this

new sample point. In the numerical experiments described below, we solved this

optimization problem using the constrained optimization by linear approximation

(COBYLA) method found in the nlopt software library [25]. The asymptotic cost of

evaluating (4.20) is O(N2). Thus as the number of samples grows large this method

can become costly. In this case one typically only uses a randomly selected subset

of the samples to evaluate (4.20) [23]. In the numerical experiments described

below, we observed that for the sample sizes used, the cost of this optimization

was significantly lower than the cost of repeatedly solving the algebraic systems of

equations that arise from the spatial discretization of the PDE (4.1).

In [44] it is shown that the choice of kernel does not have a strong effect on

the error associated with kernel density estimation. In our experiments we use the

multivariate Epanechnikov kernel

K(ξ) =

(
3

4

)M M∏

i=1

(1− ξ2i )1{−1≤ξi≤1}. (4.21)
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This kernel is frequently used in the case of univariate data as it minimizes the

asymptotic mean integrated square error over all choices of kernels satisfying (4.14).

It also has the advantage that it is compactly supported. This causes the approxi-

mate density function ρ̂ to be compactly supported, which is important in assuring

the well-posedness of some stochastic partial differential equations.

4.4 Adaptive Collocation With KDE Driven Grid Refinement

The interpolation method in [30] distributes interpolation nodes so that dis-

continuities and steep gradients in the solution function are resolved; however the

method does not take into account how significant a given interpolation node is to

the statistics of the solution function since the refinement process does not depend

on ρ. The kernel density estimate described above can also be used to drive refine-

ment of the adaptive sparse grid in Algorithm 2. The algorithm we propose is as

follows. First construct an estimate ρ̂ to the true density ρ using a finite number of

samples {ξ(i)}Ni=1. Second, replace the refinement criterion in Algorithm 2 with

|wk
j |ρ̂(ξ∆k

j ) > τ. (4.22)

A similar approach is used in [31] to drive the refinement. However in that study

it is again assumed that one has access to an explicit form of the joint density

function. With the refinement criterion (4.22), the grid is only adaptively refined

at points near the data {ξ(i)}Ni=1 since the kernel density estimate is only supported

near the samples. In the sequel we refer to this proposed method, i.e., Algorithm
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2 with refinement criterion (4.22), as adaptive KDE collocation. The remainder of

this section is divided into two parts. In Section 4.4.1 we present interpolation error

estimates associated with adaptive KDE collocation and in Section 4.4.2 we present

methods for approximating the solution statistics of the random field u. Note that

throughout this discussion we can ignore the spatial component of the problem.

4.4.1 Error analysis of adaptive KDE collocation

For simplicity we present the results for the case where the problem only de-

pends on a single parameter and that interpolation is carried out on [0, 1]. Extension

of the argument to multi-parameter problems defined on an arbitrary hypercube is

straightforward. Also we ignore the spatial component of the problem as it has

no effect on the discussion of the errors resulting from the discretization of the

stochastic portion of the problem. Assume that Ak(u) is an interpolant generated

using adaptive KDE collocation with tolerance τ . Let ρ̂ be the kernel density es-

timate used in computing Ak and let Γ̂ be the support of ρ̂. Let Acomplete
k (u) be

the interpolant constructed by Algorithm 1 with grid points ∆θk = {ξ∆i
j } and set

of hierarchical surpluses {wi
j} at those grid points. By definition, ∆θkadaptive ⊂ ∆θk.

Define ∆θkremaining = ∆θkn∆θkadaptive. Then if ξ∆i
j ∈ ∆θkremaining, it follows from

(4.22) that |wi
j ρ̂(ξ

∆i
j )| ≤ τ . We can bound the difference between u and Ak(u) on Γ̂

84



as

||(u−Ak(u))ρ||L∞(Γ̂) ≤
∣
∣
∣

∣
∣
∣
ρ
ρ̂

∣
∣
∣

∣
∣
∣
L∞(Γ̂)

(||(u−Acomplete
k (u))ρ̂||L∞(Γ̂)

︸ ︷︷ ︸

ǫ1

+

||(Acomplete
k (u)−Ak(u))ρ̂||L∞(Γ̂)

︸ ︷︷ ︸

ǫ2

).

(4.23)

The term ǫ1 is the interpolation error associated with piecewise multilinear

approximation on a full grid. This case is studied in [26]. The interpolation error is

bounded by

||u−Acomplete
k (u)||L∞(Γ) = O(|∆θk|−2|log2(|∆θk|)|3(M−1)) (4.24)

Since ρ̂ is bounded it follows that the bound on ǫ1 decays at the same rate.

Bounding ǫ2 depends on counting the points in ∆θkremaining and using the fact

that at those points |wi
j ρ̂| ≤ τ . We have that

||(Acomplete
k (u)−Ak(u))ρ̂||L∞(Γ) ≤

∑

∆θkremaining

|wi
j| ||aij(ξ)ρ̂(ξ)||L∞(Γ). (4.25)
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Expanding ρ̂ in a Taylor series around ξ∆i
j and noting that aij(ξ)ρ̂(ξ) is only sup-

ported on an interval of size 1
2i

gives

||(Acomplete
k (u)−Ak(u))ρ̂||L∞(Γ) ≤∑∆θkremaining

|wi
j ρ̂(ξ

∆i
j )|+ |wi

j|
||ρ̂′||L∞(Γ)

2i

≤ τ |∆θkremaining|+
∑

∆θkremaining
|wi

j|
||ρ̂′||L∞(Γ)

2i
.

(4.26)

The sums here are over all i, j such that ξ∆i
j ∈ ∆Θk

remaining. For decreasing τ , the

number of points in ∆θkremaining decreases, since more points are locally refined and

those points that remain in ∆θkremaining for large k correspond to basis functions with

very small support. If τ is chosen to be small and k is allowed to grow so that the

refinement criterion (4.22) is satisfied at every leaf node, the term ǫ2 will converge

to zero.

4.4.2 Estimation of Solution Statistics

Computation of the moments of the solution via the methods presented in

[2, 3, 19, 30, 35, 50] all require that the joint density function ρ be explicitly available

in order to evaluate the integral
∫

Γ
û(x, ξ)ρ(ξ)dξ where û is an approximation to

u computed by either the stochastic Galerkin method [3, 19] or by the stochastic

collocation method [2, 30, 35, 50]. In practice this may be an unrealistic assumption

since we often only have access to a finite sample from the distribution of ξ. This

section describes two ways of approximating the solution statistics when only a
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random sample from the distribution of ξ is available. The first is the well-known

Monte Carlo method [33]; the second is a variant of the Monte Carlo predictor

method presented in [48], which we have named surrogate based Monte Carlo.

Given a random field u(x, ξ) and a finite number of samples {ξ(i)}Ni=1, the

Monte Carlo method approximates the mean of u by the sample mean

E(u)(x) ≈ 1

N

N∑

i=1

u(x, ξ(i)) ≡ ū(x). (4.27)

This method has the advantage that the convergence is independent of the dimension

of the random parameter. The error in the expected value can be approximated by

first noting that the estimate is unbiased,

BiasMC = E(u)(x)− E

(

1

N

N∑

i=1

u(x, ξ(i))

)

= 0, (4.28)

and that

V ar(ū(x)) =
V ar(u(x, ξ))

N
, (4.29)

where V ar(ū(x)) is the variance of the sample mean. An application of Chebyshev’s

inequality then gives a standard probabilistic estimate, that for a > 0,

P

(∣
∣
∣
∣
∣
E(u)(x)− 1

N

N∑

i=1

u(x, ξ(i))

∣
∣
∣
∣
∣
≥ a

)

≤ V ar(u)

Na2
. (4.30)
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Note that a factor of 2 error reduction requires an increase of the sample size by

a factor of 4. This slow rate of convergence is often cited as the chief difficulty in

using the Monte Carlo method [2, 19]. It is also important to note that this bound is

probabilistic in nature and that it is possible for the Monte Carlo method to perform

much worse (or much better) than expected. For a fixed choice of the quantity on

the left hand side of (4.30), which we call P here, say P = .05, we have that

a ≤
√

V ar(u)

.05N
, (4.31)

and from this we can conclude with 95% percent confidence that the Monte Carlo

estimate is bounded by
√

V ar(u)
.05N

. Smaller values of P lead to looser bounds but

greater confidence in those bounds.

The method presented in [48] is to construct an approximation û of the solution

function in the stochastic space using conventional sparse grid collocation and then,

given a finite number of samples {ξ(i)}Ni=1, to approximate the expected value by

E(u)(x) ≈ 1

N

N∑

i=1

û(x, ξ(i)). (4.32)

Instead of using conventional sparse grid collocation, we construct an approximation

û using the adaptive KDE collocation method. Assuming that one has already

constructed the interpolant, computation of the expected value can be carried out

very quickly this way since the interpolant is simple to evaluate. Note also that

while the standard Monte Carlo method was used to evaluate (4.32), adaptive KDE
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collocation is also compatible with other sampling methods such as quasi-Monte

Carlo [7] and multilevel Monte Carlo [5, 8]. In the case of quasi-Monte Carlo, the

sample points used in (4.32) are simply chosen to be the quasi-Monte Carlo sample

points, and in the case of multilevel Monte Carlo an expression similar to (4.32)

is computed at each level of the computation. We expect that combining adaptive

KDE collocation with either of these alternative sampling strategies would yield

combined benefits; we do not explore this issue here.

The error associated with this method separates into two terms as follows,

|ǫsparse| = |E(u)(x)− 1
N

∑N
i=1 A(u)(x, ξ(i))|

≤ |E(u)(x)− 1
N

∑N
i=1 u(x, ξ

(i))|+ | 1
N

∑N
i=1(u(x, ξ

(i))−A(u)(x, ξ(i)))|

= ǫMC + ǫinterp.

(4.33)

The first term is statistical error and depends only on the number of samples taken

and the variance of u, and decays according to (4.30). The second term is the

interpolation error and is bounded since the infinity norm of the interpolation error

is bounded in the neighborhood of the sample points using (4.23).

Given N samples of ξ, evaluation of (4.27) requires N evaluations of the

random field u. In the case where u is defined by a system such as (4.1), this

requires N solutions of a discrete PDE. In contrast, evaluation of (4.32) requires

Ninterp evaluations of u to construct A(u) and then it requires N evaluations of
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A(u). The relative computational efficiency of (4.32) then depends on two factors:

first, whether an accurate interpolant A(u) can be constructed using Ninterp ≪ N

function evaluations, and second, whether the cost of evaluating A(u) is significantly

less than the cost of evaluating u. The first condition, as shown by (4.24), depends

on the dimension of the problem as well as the number of samples we have access to.

For most problems of interest the second condition is satisfied in that it is much less

expensive to evaluate a piecewise polynomial than it is to solve a discrete algebraic

system associated with a complex physical model. Note that in order for ǫinterp

to be small the interpolation error only needs to be small near the sample points.

For adaptive KDE collocation the kernel density estimate is designed to make the

interpolant more accurate in the neighborhoods of these points by indicating where

large clusters of points are located.

4.5 Numerical Experiments

In this section we assess the performance of adaptive KDE collocation applied

to several test problems. We aim to measure quantitatively the two terms in the

estimate (4.23) and to compare the computational efficiency of our method with the

Monte Carlo method.

4.5.1 Interpolation of a Highly Oscillatory Function

Before exploring our main concern, the solution of PDEs with stochastic coef-

ficients, we first examine the utility of adaptive collocation for performing a simpler
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task, to interpolate a scalar-valued function whose argument is a random vector.

We use adaptive KDE collocation to construct an approximation to the function

u(ξ) =







∏M
k=1 |ξk|sin(1/ξk) if ξk 6= 0

0 otherwise,

(4.34)

where ξ is a random variable uniformly distributed over the set [−1,−0.5]M ∪

[0.5, 1]M . Figure 4.3 shows a plot of the function u(ξ) for the single parameter

case. The density of ξ is given explicitly by

ρ(ξ) = 2M−11[−1,−0.5]M∪[0.5,1]M . (4.35)

The function u is everywhere continuous but infinitely oscillatory along each axis of

ξ. The axes however are not contained in the support of ρ so the oscillations do not

have any effect on the statistics of u with respect to the measure on ξ. Algorithm

2 with the refinement criterion used in [30] would place many collocation points

near the origin in an attempt to resolve the oscillatory behavior. Provided that the

approximate density ρ̂ is a good approximation to the true density, adaptive KDE

collocation will only place collocation points near the support of ρ.

In our experiments, the density estimate for each choice of M will be con-

structed from 5, 000 samples of ξ with the bandwidth h chosen by maximum like-

lihood cross validation. For a given value of ξ let |(u(ξ) − Ak(u)(ξ))ρ(ξ)| be the

interpolation error scaled by ρ. First we measure the scaled interpolation error

at 500 equally spaced points on [−1.5, 1.5] and use the maximum observed error
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Figure 4.3: u(ξ) = |ξ|sin(1/ξ).
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as an estimate for the infinity norm of the error ||(u(ξ) − Ak(u)(ξ))ρ(ξ)||L∞(Γ) for

the one-parameter (i.e. M = 1 in (4.34)) problem. We denote this estimate by

||(u(ξ) − Ak(u)(ξ))ρ(ξ)||l∞ Figure 4.4 shows the interpolation error in the mesh-

Figure 4.4: ||(u(ξ)−Ak(u)(ξ))ρ(ξ)||∞ versus the number of collocation points

norm || · ρ(ξ)||∞. This norm only indicates the error on the support of ρ. Figure

4.4 shows that the interpolation error decays rapidly where the random variable ξ is

supported. Figure 4.4 shows that adaptive KDE collocation converges significantly

faster than Algorithm 2. The reason is that Algorithm 2 places many points near the

origin, attempting to resolve the oscillations. After a few initial global refinements

of the grid the new method concentrates all of the new collocation points inside the
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support of ξ.2 Figure 4.5 shows the collocation nodes used by the adaptive method

with KDE driven refinement.

Figure 4.5: u(ξ) and the collocation points used in constructing approximate solution

Now we examine the performance for the same task when u depends on mul-

tiple parameters in (4.34). Figure 4.6 shows the number of collocation points re-

quired as a function of the convergence criterion τ and the number of parameters.

The figure shows that as the number of parameters is increased, the efficiency of

the proposed method slows. This is due to the factor log2(|∆θk|)3(M−1) appearing

2Algorithm 2 with the refinement criterion (4.22) indicates that a node is not refined if ρ̂||wk
j ||

is small. In practice however it is necessary to perform some initial global grid refinements to
achieve a minimum level of resolution.
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in the estimate (4.24). Note however that for any fixed value of M , the asymptotic

interpolation error bound (4.24) decays faster than the Monte Carlo error bound

(4.30). The results in Section 4.5.4 indicate that the asymptotic bound (4.24) may

be pessimistic for problems of interest.

Figure 4.6: The tolerance τ vs the number of collocation points
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4.5.2 Two-parameter stochastic diffusion equation

Next, we use the method derived in section 4.4 to compute statistics associated

with the solution to the stochastic diffusion equation

−∇ · (a(x, ξ1, ξ2)∇u(x, ξ1, ξ2)) = 1, ∀x ∈ D (4.36)

u(x, ξ1, ξ2) = 0, ∀x ∈ ∂D (4.37)

where D = [0, 1]2. The diffusion coefficient a is defined for this example as follows.

Define the set LL = {x : 0 < x1, x2 ≤ 0.5} and the set UR = {x : 0.5 < x1, x2 <

1.0}. Let 1LL(x) and 1UR(x) be the indicator functions on LL and UR respectively.

The diffusion coefficient is piecewise constant and is given by

a(x, ξ1, ξ2) = 1 + 1LL(x)ξ1 + 1UR(x)ξ2. (4.38)

Here ξ1 and ξ2 are assumed to be independently distributed log-normal random

variables. The PDF of ξi for i = 1, 2 is given by

ρi(ξi) =
1

ξi
√
2πσ2

e−
(log(ξi)−µ)2

2σ2 , (4.39)

with σ = 1 and µ = 2. Since ξ1 and ξ2 are assumed to be independent, their joint

distribution is given by

ρ(ξ1, ξ2) =
1

2πξ1ξ2
e

−(log(ξ1)−2)2−(log(ξ2)−2)2

2 . (4.40)
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Note that ξ1 and ξ2 take on values in the range (0,∞). This, combined with the

definition of the diffusion coefficient in (4.38) ensures that the diffusion coefficient

will be positive at all points in D for all possible values of the random variables ξ1

and ξ2. This is sufficient to ensure the well-posedness of (4.36) [2]. In the numerical

experiments, interpolation was carried out on the domain [1×10−6, 6]2. This compu-

tational domain contained all of the samples of (ξ1, ξ2) generated by the log-normal

random number generator.

The method described above generates a set of collocation points in the stochas-

tic space. At each of these points (4.36) must be solved by using a suitable determin-

istic solver. In this example the spatial discretization is accomplished using finite

differences on a uniform 32× 32 mesh. The discrete difference operators are formed

using the five point stencil











a(x, y + hD

2
, ξ1, ξ2)

a(x− hD

2
, y, ξ1, ξ2) a(x, y, ξ1, ξ2) a(x+ hD

2
, y, ξ1, ξ2)

a(x, y − hD

2
, ξ1, ξ2)











, (4.41)

for x = [x, y]T ∈ D, and where hD is the spatial discretization parameter. For this

example the resulting linear systems are solved using a direct solver, although an

iterative solver may also be used as in [16]. Although the spatial discretization of the

problem introduces an additional source of error, it is known that the error resulting

from the spatial discretization of the problem separates from the error associated

with discretization of the stochastic component [2, 3]. Thus we can focus solely on
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the error introduced by interpolating in the stochastic space and by approximating

the true joint density by a kernel density estimate.

First we proceed as in Section 4.5.1 and evaluate the interpolation error. Since

the exact solution is not known we compute A(u) with a very tight error tolerance

τ = 10−9. We treat this as an accurate solution and observe the decay in error

for interpolants obtained using a looser error tolerance. For each interpolant, the

kernel density estimate is derived from 5, 000 samples of ξ = [ξ1, ξ2] where ξ1 and ξ2

are independently distributed log-normal random variables as described above. The

bandwidth for the kernel density estimates is chosen using the maximum likelihood

cross-validation method described in section 4.3.

Figure 4.7 shows the collocation points used for several values of the error

tolerance τ . Comparing these with the contour plot of the true joint density function

in Figure 4.8, it can be seen that the method is concentrating collocation points in

regions where the estimated joint PDF is large. Thus the method is only devoting

resources towards computing an accurate interpolant in regions that are significant

to the statistics of u. Figure 4.9 shows the interpolation error as a function of the

number of collocation points. Since an exact solution to (4.36) is not available we

treat the solution obtained by using the method with τ = 10−10 as an exact solution.

As opposed to the first example, the solution u here depends on both the spatial

location and the value of the random parameter. We report the error in the discrete

norm || · ρ||l2(D)×l∞(Γ), where the space l2(D) consists of square summable mesh-

functions defined on the spatial grid and l∞(Γ) consists of bounded mesh-functions

defined on a 500 × 500 uniform grid on Γ. Figure 4.9 shows that the interpolation
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error decays quickly for the two parameter problem. The apparent slowdown in

convergence rate is attributable to the fact that the exact solution is not available

and the error is being measured with respect to an approximate solution.

Figure 4.7: Collocation points for various values of the error tolerance τ
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Figure 4.8: Kernel density estimates for varying numbers of samples.
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Figure 4.9: ||(u(x, ξ)−A(u)(x, ξ))ρ(ξ)||l2(D)×l∞(Γ) versus the number of collocation
points
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4.5.3 Function with steep gradients and non-independently distributed

random parameters

We now use the adaptive KDE collocation method to compute the statistics

associated with the function

u(ξ1, ξ2) = ξ1ξ2 + 10e−
(1−r)2

.1 + 10e−
(1−r̂)2

.1 (4.42)

r(ξ1, ξ2) =
√

ξ21 + ξ22

r̂(ξ1, ξ2) =
√

(ξ1 − 5)2 + (ξ2 − 5)2,

where ξ1 is a log-normal random variable with marginal density function given by

ρ1(ξ1) =
1

ξ1
√

2π(.42)
e
−

log(ξ1)
2

2(.42) , (4.43)

and ξ2 is given by

ξ2 = ξ1 + η, (4.44)

where η is a uniformly distributed random variable on [0, 1]. This function has two

line singularities, one along the circle of radius one centered at the origin, and an-

other along the circle of radius one centered at [5, 5]t. A surface plot of this function

is shown in Figure 4.10

The random variables ξ1 and ξ2 are obviously dependent. A sample set

{ξ(i)}Ni=1 consisting of N = 10000 samples from the distribution of ξ = [ξ1, ξ2]
t
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Figure 4.10: Function with two line singularities in parameter space

was generated. From this data a kernel density estimate was constructed using the

optimal bandwidth obtained via MLCV. The data points and a contour plot of the

associated KDE are shown in Figure 4.11. Since the distribution of data points is

more dense on the left side of the parameter domain it follows that the line singu-

larity centered at the origin will have a greater effect on the solution statistics than

the line singularity centered at [5, 5]t. Because of this, in order to recover accurate

statistics, more effort should be spent resolving the singularity centered at the origin

than the singularity centered at [5, 5]t.
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Figure 4.11: Samples (top) and kernel density estimate (bottom) for the distribution
of two dependent random variables

Using the set of 10000 samples we performed a Monte Carlo simulation, ap-

proximating the expected value as E(u) ≈ 1
N

∑N
i=1 u(ξ

(i)). From the function values

at each of these 10000 samples we also computed the sample variance of the solution,

var[u(ξ)] ≈ 1

N − 1

N∑

i=1

(

u(ξ(i))− 1

N

N∑

i=1

u(ξ(i))

)2

. (4.45)

Using this as an estimate of the true variance, equation (4.31) was used to compute

a 95% confidence bound of the Monte Carlo error. We also performed the adaptive

KDE collocation method for several values of refinement criterion τ . The adaptive

KDE collocation method was required to perform global refinements until at least

104



0 1 2 3 4 5
ξ1

0

1

2

3

4

5

ξ 2

τ=1×10−3

0 1 2 3 4 5
ξ1

0

1

2

3

4

5

ξ 2

τ=1×10−4

Figure 4.12: Collocation points for refinement criterion τ = 1×10−3 and τ = 1×10−4

the fifth level. This provided the minimum resolution to detect the presence of the

line singularities. After the full fifth level grid was constructed, the refinement proce-

dure was continued by using the grid refinement criterion (4.22). Once the hierarchi-

cal interpolant was constructed we performed the Monte Carlo method on the inter-

polant to approximate the mean, that is we approximated E(u) ≈ 1
N

∑N
i=1 A(u)(ξ(i)).

This result was compared to the true sample mean E(u) ≈ 1
N

∑N
i=1 u(ξ

(i)). Figure

4.12 shows the distribution of collocation points for two values of τ . From this figure

we see that the adaptive KDE collocation method is detecting the line singularities

but is allocating more collocation points to resolve the singularity centered at the

origin since the density of the data points is higher there.
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Table 4.1 shows the confidence bound on the Monte Carlo error as well as the

difference between the true sample mean and the sample mean of the hierarchical

interpolant. The number of collocation points required to construct the interpolant

is displayed in parentheses. Table 4.1 shows that the adaptive KDE collocation

method can construct an approximation to the solution such that the interpola-

tion error at the sample data points is substantially smaller than the bound on the

Monte Carlo error. Thus, using the hierarchical interpolant in place of the true

solution introduces a negligible extra error into the computation of the expected

value. Furthermore many fewer function evaluations were required to compute the

hierarchical interpolant than would be required to perform the Monte Carlo method.

Here we are testing the method on a function given by an analytic formula however,

in many practical situations function evaluations may be very expensive. Table 4.1

shows that by using the adaptive KDE collocation method we can obtain compara-

ble results to the Monte Carlo method while using many fewer function evaluations,

which are often the primary cost associated with sampling methods. Furthermore

this method performs well even when the solution function has steep gradients and

when there are dependencies between the parameters.

Monte Carlo τ

Error Bound 5× 10−1 3× 10−1 1× 10−1 1× 10−4

1.133× 10−1 7.083× 10−1 8.482× 10−2 2.508× 10−2 6.121× 10−3

(73) (101) (188) (3984)

Table 4.1: Monte Carlo error bound, | 1
N

∑N
i=1 u(ξ

(i)) − A(u)(ξ(i))|, and number of
collocation points (in parentheses)
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4.5.4 High-dimensional stochastic diffusion

We now examine the performance of adaptive KDE collocation for evaluating

the statistics of a random field that depends on a large number of parameters. The

problem is given by

− d

dx
(aM(x, ξ)

d

dx
u(x, ξ)) = 1, ∀x ∈ (0, 1) (4.46)

u(0, ξ) = u(1, ξ) = 0. (4.47)

The diffusion coefficient aM is defined for even M by

aM = µ+

M/2−1
∑

k=0

λk(ξ2kcos(2πkx) + ξ2k+1sin(2πkx)), (4.48)

where λk = exp(−k), µ = 3 and ξk is uniformly distributed on [0, 1]. The problem

(4.46) is well posed on the image of ξ. Experimental results for these problems are

shown in Tables 4.2 (forM = 4 random variables), 4.3 (M = 10), and 4.4 (M = 20).

We assess the performance of the method in a similar manner to the test problem

from section 4.5.3. The contents of the tables are as follows.

First, for eachM , we performed a Monte Carlo simulation with several choices

of number of samples N . This sample size is shown in the first column of the tables.

In addition, for each value of M , var[u(x, ξ)] was estimated at the spatial grid

points using 20, 000 samples. Equation (4.31) can then be used to compute a 95%

confidence bound of the Monte Carlo error. This estimate is shown in the first

column of Tables 4.2, 4.3, and 4.4 beneath the number of samples used to construct
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the Monte Carlo estimate.

The other columns of the tables contain results for adaptive KDE collocation

where the kernel density estimates are generated using the same set of sample points

used for the Monte Carlo simulation. The total error for this method is bounded by

(4.33). The term ||ǫMC ||l2D is estimated by the 95% confidence bound in the first

column of the tables, as discussed in the previous paragraph. The other quantities in

the table are the l2(D)-norm of the sample mean interpolation error, ||ǫinterp||l2(D), in

the top of each box, together with (in parentheses) the number of collocation points

Ninterp used to constructA(u). For example, the second from left entry in the bottom

row of Table 4.4 shows that for the 20-parameter problem and the 20, 000 sample set,

A(u) was constructed using 3, 108 collocation points and ||ǫinterp||l2(D) = 6.52×10−4.

The costs of the two methods are essentially determined by the number of PDE

solves required, N for the Monte Carlo simulation and Ninterp for adaptive KDE

collocation. In the tables, the number of collocation points Ninterp in parentheses

are shown in bold typeface when they are smaller than the number of samples. For

such cases, if ||ǫinterp||l2(D) is significantly smaller than ||ǫMC ||l2(D), then adaptive

KDE collocation is less expensive than Monte Carlo simulation. It can be seen from

the results that the savings can be significant when the number of samples increases.

For example, the second from left entry in the bottom row of Table 4.4 shows that

(by (4.33)) the error in mean for the adaptive collocation method is bounded by

||ǫinterp||l2(D) + ||ǫMC ||l2(D) = 7.11 × 10−3 while only requiring 3, 108 PDE solves,

an error comparable in magnitude to that obtained with the Monte Carlo method

(6.46× 10−3) with 20, 000 solves.
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We also note that these results suggest that the factor log2(|∆θk|)3(M−1) in

the estimate (4.24) may be pessimistic for many problems of interest. Care must be

taken when using the predictor method not to over-resolve the interpolant when one

only has access to only a small amount of data. Doing so results in an interpolant

that is too accurate given the number of samples available and results in wasted

computation. This is the case in the right-hand columns of the tables where the

interpolant is being resolved to a much higher level of accuracy than the associated

Monte Carlo error bound.

4.6 Conclusions

We have presented a new adaptive sparse grid collocation method based on

the method proposed in [30] that can be used when the joint PDF of the stochastic

parameters is not available and all one has access to is a finite set of samples from

that distribution. It is shown that in this case a kernel density estimate can provide a

mechanism for driving the refinement of an adaptive sparse grid collocation strategy.

Numerical experiments show that in cases involving a large number of samples it can

be economical to construct a surrogate to the unknown function using fewer function

evaluations and then to perform the Monte Carlo method on that surrogate. This

method has the additional advantage that it performs well even in the case when

there are dependencies between the parameters that define the problem.
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N
τ

5× 10−2 1× 10−3 5× 10−4 1× 10−4 5× 10−5

100 5.25× 10−3 2.23× 10−4 1.18× 10−4 9.42× 10−6 9.42× 10−7

8.43× 10−2 (28) (212) (301) (813) (1169)

500 5.47× 10−3 2.71× 10−4 9.84× 10−5 1.12× 10−5 1.76× 10−6

3.78× 10−2 (28) (211) (315) (777) (1210)

1000 4.29× 10−3 2.36× 10−4 1.24× 10−4 9.78× 10−6 2.61× 10−6

2.67× 10−2 (33) (200) (297) (762) (1207)

5000 4.36× 10−3 3.88× 10−4 1.36× 10−4 1.67× 10−5 4.73× 10−6

1.19× 10−2 (33) (172) (286) (745) (1104)

20000 4.32× 10−3 2.73× 10−4 1.30× 10−4 1.09× 10−5 3.58× 10−6

5.96× 10−3 (33) (180) (294) (780) (1107)

Table 4.2: Monte Carlo error (left) and || 1
N

∑N
i=1 u(x, ξ

(i)) − A(u)(x, ξ(i))||l2(D), 4
parameter problem

N
τ

5× 10−2 1× 10−3 5× 10−4 1× 10−4 5× 10−5

100 7.66× 10−3 8.86× 10−4 4.41× 10−4 4.48× 10−5 8.28× 10−6

9.08× 10−2 (76) (1026) (1655) (5026) (8111)

500 7.13× 10−3 6.08× 10−4 3.36× 10−4 2.34× 10−5 1.01× 10−5

4.06× 10−2 (92) (1170) (1189) (5773) (9404)

1000 9.19× 10−3 6.03× 10−4 2.65× 10−4 1.95× 10−5 1.77× 10−5

2.87× 10−2 (59) (1216) (1989) (5996) (9664)

5000 7.16× 10−3 6.62× 10−4 3.03× 10−4 2.04× 10−5 1.02× 10−5

1.28× 10−2 (93) (1120) (2041) (6095) (9787)

20000 7.25× 10−3 6.27× 10−4 2.66× 10−4 1.96× 10−5 5.67× 10−6

6.42× 10−3 (93) (1187) (2127) (6050) (9942)

Table 4.3: Monte Carlo error (left) and || 1
N

∑N
i=1 u(x, ξ

(i)) − A(u)(x, ξ(i))||l2(D), 10
parameter problem

N
τ

5× 10−2 1× 10−3 5× 10−4 1× 10−4 5× 10−5

100 1.64× 10−2 1.65× 10−3 2.15× 10−3 5.81× 10−4 2.39× 10−4

9.14× 10−2 (41) (878) (1299) (4126) (6958)

500 1.45× 10−2 2.77× 10−3 1.38× 10−3 3.75× 10−4 1.67× 10−4

4.09× 10−2 (41) (1045) (1738) (5545) (9106)

1000 8.45× 10−3 1.46× 10−3 9.02× 10−4 1.66× 10−4 7.13× 10−5

2.89× 10−2 (119) (1618) (2622) (8580) (14012)

5000 8.70× 10−3 9.58× 10−4 4.99× 10−4 7.88× 10−5 2.59× 10−5

1.29× 10−2 (156) (2459) (4169) (13389) (22276)

20000 7.25× 10−3 6.52× 10−4 3.38× 10−4 3.48× 10−5 2.35× 10−5

6.46× 10−3 (193) (3108) (4991) (15963) (26081)

Table 4.4: Monte Carlo error (left) and || 1
N

∑N
i=1 u(x, ξ

(i)) − A(u)(x, ξ(i))||l2(D), 20
parameter problem
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Chapter 5

Performance Analysis of the Adaptive KDE Collocation Method

Using CUDA

Recently much attention has been paid to implementing numerical algorithms

on graphics processing units (GPUs). GPUs are well suited for performing many

numerical algorithms due to the large number of cores available on a single device

and because GPUs allocate a higher proportion of computing resources to floating

point operations than most commodity CPUs [37]. Figure 5.1 shows that increases

in the theoretical performance of GPUs have vastly outpaced CPUs in single pre-

cision floating point computations and that the same trend is beginning to emerge

in double precision computations. NVIDIA’s CUDA (short for Complete Unified

Device Architecture) is a parallel computing architecture that enables programmers

to perform general purpose computations on the GPU using the CUDA-C appli-

cation programming interface (API), which provides a set of extensions to the C

programming language.

In this chapter we will present an implementation of the adaptive KDE colloca-

tion method developed in chapter 4 for solving systems of the form (4.1), which uses

an adaptive strategy for choosing collocation points and kernel density estimation

to approximate the joint density function ρ(ξ). To handle some of the most compu-

tationally intensive portions of this method, we use CUDA C/C++ with wrappers
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Figure 5.1: Floating-point operations per second and memory bandwidth for various
CPU and GPU architectures [37]

that enable a Python interpreter to call the CUDA functions.

The remainder of the chapter proceeds as follows. Section 5.1 presents an

overview of kernel density estimation. Section 5.2 presents an overview of the adap-

tive KDE collocation method. Section 5.3 presents an overview of the CUDA archi-

tecture. Section 5.4 presents CUDA C implementations of kernel density estimation.

Section 5.5 presents CUDA C implementations of the adaptive KDE collocation
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method. Section 5.6 presents benchmarks of the implementations. In section 5.7 we

draw some conclusions.

5.1 Summary of Kernel Density Estimation

Recall that given N samples {ξ(i)}Ni=1 of anM -dimensional random vector, the

kernel density estimate is given by (4.15). In the adaptive KDE collocation method

presented in chapter 4 we require the value of ρ̂ computed at T targets denoted

{x(j)}Tj=1. In the programs presented below we use the multiplicative Epanechnikov

kernel given by

K(u) =
M∏

i=1

3

4
(1− u2i )1{|ui|≤1}. (5.1)

It is trivial to verify that the Epanechnikov kernel satisfies the assumptions of (4.14).

An additional important property of the Epanechnikov kernel, in the context of

stochastic partial differential equations, is that it is compactly supported.

Computing ρ̂ is accomplished in two separate steps. First the kernel K is

computed at each pair of samples and targets, that is, compute K
(

x(i)−ξ(j)

h

)

for

1 ≤ i ≤ T and 1 ≤ j ≤ N . If K is the matrix with entries defined by

Kij = K

(

x(i) − ξ(j)

h

)

, (5.2)

and X = [x(1), ...,x(T )], then ρ̂(X) = [ρ̂(x(1)), ...ρ̂(x(T ))]t is 1
NhM times the vector

formed by summing the rows of K. Once each entry of K is computed then the
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rows are summed and the resulting vector is scaled by the normalizing factor to ob-

tain ρ̂. Note that the asymptotic cost associated with this algorithm is O(MNT ).

If the Gaussian kernel K(u) = 1
2π
exp(−u2) is used then there is an alterna-

tive method for evaluating (4.15) is the fast Gauss transform. This method can

evaluate ρ̂ in O(T +N) time rather than in O(MN) time as described above [53].

However in that method, the asymptotic constant grows rapidly with increasing M ,

so it may not be tractable for problems posed in very high-dimensional parameter

spaces. Also, the Gaussian kernel is unbounded, which can lead to problems since

the PDE one is attempting to solve may become ill-posed for large parameter values.

In order to use kernel density estimation effectively it is necessary to choose

an appropriate value of the bandwidth parameter h. Ideally a procedure for select-

ing the bandwidth h should depend only on the data and not require any a priori

assumptions about the shape of the true density.

Recall that the maximum likelihood cross validation method defines the opti-

mal value of h as

argmaxh[CV (h)] = argmaxh

(

1

N

N∑

i=1

log(ρ̂−i(ξ
(i)))

)

, (5.3)

where

ρ̂−i(x) =
1

(N − 1)hM

N∑

k=1
k 6=i

K

(

x− ξ(k)

h

)

. (5.4)
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Note that the objective function in (5.3) is equivalent to

CV (h) =
1

N

N∑

i=1

log

(
N

N − 1
ρ̂(ξ(i))− 1

(N − 1)hM
K(0)

)

, (5.5)

where 0 is theM -dimensional zero vector. Each evaluation of the objective function

therefore requires O(MN2) flops. Note that evaluating both ρ̂ and CV (h) is ideally

suited for implementation on GPUs since the task of evaluating the kernel K at

each sample and target is inherently data parallel.

5.2 Summary of Adaptive KDE Collocation

Let ξ be an M -dimensional, continuous, real valued, random vector with joint

probability density function ρ(ξ). Let Γ = Image(ξ) and let u : Γ → R
s. The solu-

tion u(ξ) is often taken to be the vector of coefficients from a discrete approximation

to the solution of a stochastic PDE such as the stochastic diffusion equation

−∇ · (a(x, ξ)∇u(x, ξ)) = f(x, ξ). (5.6)

Thus evaluating u for a specific value of ξ is equivalent to solving a deterministic

partial differential equation using a discretization with s spatial degrees of freedom.

Recall from chapter 4 that the level-k adaptive KDE interpolant is evaluated as

Ak(u)(ξ) =
k∑

i=1

∑

ξij∈∆θi
adapt

w∆i
j a∆i

j (ξ), (5.7)
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where ∆θiadapt is the set of points in the ith adaptive grid level. Note that each

hierarchical surplus w∆i
j is a vector in R

s. Note also that for the case of a single

random variable, each grid point is uniquely defined via (4.6) by its approximation

level i and the index j of the point within the ith approximation level. For functions

of multiple random variables, each grid point can be uniquely identified by a multi-

index i that specifies the interpolation level of that point in each dimension, and by

a multi-index j that specifies the index of the point within each level. Thus from

a data structure perspective, once the endpoints of the interpolation domain are

specified, the hierarchical grid can be defined as a collection of multi-indices that

specify the level and index of each point in the grid.

For the purposes of discussing the algorithm, it is more convenient to index

the collocation points and basis elements with a single index, that is,

Ak(u)(ξ) =

Nξ∑

i=1

wiai(ξ), (5.8)

where Nξ is the total number of collocation points. If we want to evaluate the

interpolant at T targets [ξ1, ..., ξT ] ∈ R
M×T , then the result can be written as

Y = WA (5.9)

where Y ∈ R
s×T is the matrix whose ith column contains the value of A(u)(ξi),

W ∈ R
s×Nξ is the matrix whose ith column is the ith hierarchical surplus, and
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A ∈ R
Nξ×T is defined as

A =















a1(ξ1) a1(ξ2) · · · a1(ξT )

a2(ξ1)
. . .

...

aNξ
(ξ1) · · · aM(ξT )















. (5.10)

The hierarchical surpluses can be computed in a similar way. If there are T

new collocation points in the (i+ 1)st grid level, denoted [ξNξ+1, ..., ξNξ+T ], then we

use the partitioned matrix

W = [W ∗|U ] = [w1, ..., wNξ
|u(ξNξ+1), ..., u(ξNξ+T )], (5.11)

and the matrix

A =















a1(ξNξ+1) a1(ξNξ+2) · · · a1(ξNξ+T )

a2(ξNξ+1)
. . .

...

aNξ
(ξNξ+1) · · · aNξ

(ξNξ+T )















. (5.12)

The new hierarchical surpluses can then be computed by the update

U = U −W ∗A. (5.13)
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Thus, both computing the value of the interpolant and computing a new set of

hierarchical surpluses involves the computation of many basis elements at many

target points, and the computation of a matrix-matrix product. Performing the

computation in this manner ensures that the computation is rich in matrix-matrix

multiplication, which is generally desirable from the standpoint of computational

efficiency [13, 20]. Also, phrasing the algorithm in terms of matrix algebra allows

us to use the CUBLAS library [38], which contains high performance linear algebra

routines optimized to run in parallel on CUDA GPUs.

From the discussion in this and the previous section it is evident that the

construction of the adaptive KDE collocation interpolant contains several sub-tasks

that may be computationally expensive. In most cases of interest it is safe to as-

sume that the dominant cost of the method will be that of evaluating u at every

collocation point. The method’s other costs, that of performing MLCV, evaluating

the KDE, computing the coefficients of the expansion, and evaluating the approx-

imation, may also be high. MLCV involves repeated evaluations of an objective

function (5.5) that scales quadratically in complexity as the number of sample data

points increases. Evaluating the KDE scales similarly to MLCV when the number

of samples and targets are of the same order. Evaluating the expansion coefficients

for the hierarchical interpolant scales as the product of the number of collocation

points from the previous grid level with the number of points from the new level. If

the ability to construct an adaptive KDE collocation interpolant with large sample

sets at a large number of collocation points is needed, then it is necessary to have

efficient implementations of all of these tasks.
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5.3 Brief Description of the CUDA Architecture

GPUs are ideal for certain numerical algorithms because they devote a much

larger proportion of computing resources to performing floating point arithmetic

than CPUs and they are capable of executing thousands of threads in parallel. In

particular, algorithms that are data parallel, where the same instructions are car-

ried out on multiple data elements, and where the ratio of arithmetic operations

to memory accesses is high, are ideal candidates for GPU execution [37]. A GPU

typically consists of a number of multiprocessors (processors capable of executing

many threads simultaneously) each of which contains many cores and is capable of

executing a very large number of threads1 in parallel. Code executed on a CUDA

device is referred to as a computational kernel.2 The GPU is viewed as a separate

computational engine from the host CPU that is designed to work in tandem with

the CPU on floating point intensive tasks, not to replace it entirely. The general

control flow for a program that uses CUDA is: data is copied from the host’s main

memory to the GPU; the host specifies an execution configuration for the CUDA

kernel, and the kernel executes on the data elements in parallel; finally the result is

copied from the GPU back to the host. In order to understand algorithms written

for CUDA it is necessary to understand some of CUDA’s key abstractions.

The first of these abstractions is the thread hierarchy. A CUDA kernel being

executed on a GPU consists of some number of thread blocks. Each thread block itself

1A thread is the smallest unit of processing that can be scheduled by an operating system.
2In order to avoid confusion with our other use of the word “kernel,” in kernel density estimation,

we will refer to computational kernels as CUDA kernels throughout the text. The word kernel by
itself refers to the mathematical kernel used in kernel density estimation.
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contains some number of individual threads. Each thread block is assigned by the

GPU’s scheduler to one of the device’s multiprocessors. Individual threads within

the thread block are assigned to individual cores within the multiprocessor. Each

multiprocessor schedules the execution of individual threads in groups of 32 threads

called a warp. Maximum performance can be attained by ensuring that each thread

in a warp executes the same instructions and accesses consecutive memory addresses

[36]. Once all of the threads in a block have finished execution, the scheduler allows

a new block to begin executing. The order in which thread blocks are executed is

undefined and communication between thread blocks is limited. Thread blocks are

thus expected to be able to execute independently and in any order. The threads

within a block can be synchronized by calling the syncthreads() API function.

A thread that reaches this instruction will wait until all of the other threads within

its block reach the syncthreads() call before continuing execution.

When a CUDA kernel is called by the host, the host must specify the execu-

tion configuration for the CUDA kernel. The execution configuration specifies the

number of thread blocks that will be run as well as the number of threads in each

thread block. The thread blocks can be arranged in a one-dimensional array, where

the index of a particular block is given by blockIdx.x, or in a two-dimensional

array where the index of a block is given by the pair [blockIdx.x,blockIdx.y].

The array of thread blocks is referred to as a grid. For a two-dimensional array of

thread blocks the array dimensions are given by gridDim.x and gridDim.y. Within

each block, the individual threads can also be arranged in a one, two, or three-

dimensional array. In the two-dimensional case the index of a particular thread
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Figure 5.2: Organization of CUDA thread blocks and CUDA threads [37]
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within a thread block is given by the pair [threadIdx.x,threadIdx.y]. Figure 5.2

shows the organization of the thread blocks on the grid and the threads within each

thread block.

A problem to be solved using a CUDA device should first be partitioned into

coarse sub-problems. Each of these sub-problems corresponds to a thread block

within the grid. The task of solving each of the sub-problems is again subdivided

among the individual threads within the block. The CUDA architecture follows

the ‘single instruction multiple data’ (SIMD) paradigm and does not perform any

predictive branching. A consequence of this is that threads within a warp that di-

verge at a conditional branch will serialize, that is, the threads that take the branch

will execute first followed by those that do not take the branch (or vice versa, the

order is undefined). This serialization of divergent threads at a conditional branch

is referred to as a divergent warp. As a result, tasks that require many control

statements will not exhibit significant gains in performance on GPUs, since after

taking many branches the threads in a warp will be effectively serialized.

The second key abstraction is the memory hierarchy. There are several mem-

ory spaces on the CUDA device, each of which serves a different purpose. For the

purposes of this discussion it is sufficient to focus on the global, shared, and local

memory spaces. Every thread executing on the device has access to the device’s

global memory. Global memory can be allocated on the CUDA device by a call to

the cudaMalloc() function for one-dimensional arrays or by to cudaMallocPitch()

for two-dimensional arrays. Global memory serves as a staging area for data be-

tween the host and the device. Data is copied from the host’s main memory to
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the device’s global memory and back by calls to cudaMemcpy() or cudaMemcpy2d()

for one or two-dimensional arrays respectively. Applications gain the most benefit

from running on the GPU if a very large number of threads can be executed in

parallel. However, if a CUDA kernel executes with a large number of threads, then

the per-thread bandwidth of the global memory space is very low. Thus, for good

performance, frequent global memory accesses need to be avoided.

In addition to the global memory space, each thread block contains a modest

amount of shared memory that can only be accessed by threads residing inside that

block. Shared memory is very fast, as it is physically adjacent to each multipro-

cessor and functions as an explicitly managed cache. However, shared memory is

not accessible to any threads in other thread blocks. When specifying the execu-

tion configuration, the host must also specify the amount of dynamically allocated

shared memory that will be used by each thread block. Each individual thread also

uses a small amount of local memory which is not accessible by any other thread.

This local thread memory can be used for storing primitives, loop counters, and

data pointers needed by the individual threads. Figure 5.3 shows a diagram of the

CUDA memory hierarchy.

The transfer of data between the host and the GPU takes place along the

PCIe bus. Since the PCIe bus has relatively small bandwidth, in order to obtain a

performance benefit by using the GPU, this data transfer must be masked by a large

number of floating point operations. Ideally, the ratio of floating point operations to

data transferred should grow as the problem size increases [37]. Effective memory

management in CUDA thus consists primarily of two considerations. First, since the

123



PCIe bus is slow, data transfers between the host computer and the CUDA device

need to be minimized. Second, thread blocks need to make effective use of shared

memory and minimize access to the device’s global memory address space.

An additional factor which can affect performance is the coalescing of mem-

ory accesses. Data can be obtained from the GPU’s global memory in blocks of B

bytes, where the value of B depends on the device. Thus when data is being read

from the global memory space, significant performance gains can be realized if the

memory accesses can be aligned to B bytes. For example if B = 32 and an m by

n two dimensional array A stored in row major order occupies a contiguous block

of memory then the (i, j) entry is located in A[n*(i-1) + j-1], using the conven-

tion that indexing starts with zero. Assuming that each entry of A uses 4 bytes in

memory and n = 5, the second row of A begins 20 bytes after the start of A. If a

thread requires the second row of A (which contains bytes 20 through 40) then the

hardware must perform two reads to obtain this data, one for bytes 0 to 31 of A and

another for bytes 32 to 63. If instead the end of each row is padded with 12 bytes,

then each row can be accessed in a single read. This process of padding can be done

using the CUDA API function CudaMallocPitch(), which automatically allocates

memory for two-dimensional arrays so that the start of each row is properly aligned.

CudaMallocPitch() returns the length in bytes of each padded row as well as a

pointer to the allocated memory. Arrays allocated in this way are referred to as

pitched arrays.
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Figure 5.3: CUDA memory hierarchy [37]
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5.4 Implementation of Kernel Density Estimation in CUDA C

The implementation of kernel density estimation on the GPU consists of two

parts: the host code, which manages the movement of data between the host and

the device, sets up the execution configuration, and provides a front end for the

CUDA kernel; and the CUDA kernel, which computes the kernel density estimate

in parallel on the GPU. In this section, we will describe the implementation of the

CUDA kernel that evaluates the KDE, and then we will give a description of the

host code.

5.4.1 The CUDA KDE kernel

The declaration of the CUDA KDE kernel for KDE is given by

g l o b a l void KDE cuda kernel ( f l o a t const ∗ t a rge t s ,

const unsigned i n t dimension ,

const unsigned i n t num targets ,

const s i z e t t a r g e t s p i t c h ,

const f l o a t ∗ samples ,

const unsigned i n t num samples ,

const s i z e t samples p i tch ,

const f l o a t bandwidth ,

f l o a t ∗ r e s u l t ) .

The pointer targets points to a pitched array on the GPU that contains num targets

targets, each of which is a vector of size specified by the parameter dimension. The
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pointer samples points to a pitched array on the GPU that contains num samples

samples of a random vector also of size dimension. The KDE defined by these

samples and the bandwidth parameter is evaluated by this kernel and stored in the

device array result. This CUDA kernel is used within the code both to evaluate the

KDE and to evaluate the objective function for MLCV by using (5.5). Pseudo-code

for this CUDA kernel is given by algorithm 3. The approach used here is similar to

the approach used in [46].

Let the matrix of targets be denoted by X = [x(1), ...,x(T )] and the matrix

of samples be denoted ξ̄ = [ξ(1), ..., ξ(N)]. The threads are organized into two-

dimensional thread blocks of size BLOCK SIZE, where BLOCK SIZE is a parameter

defined in a header file. Since threads are executed in groups of 32 it is ben-

eficial if the number of threads in each block is divisible by 32. In the tests

shown below, BLOCK SIZE was defined to be 16 so each thread block contained

256 threads. Each thread executing the kernel computes K
(

x(i)−ξ(j)

h

)

for a sin-

gle value of i and j. The thread blocks are arranged as a two-dimensional grid

of size ceil(num targets/BLOCK SIZE) by ceil(num samples/BLOCK SIZE). Each

thread determines its sample and target by accessing the blockIdx.x, blockIdx.y,

threadIdx.x, and threadIdx.y parameters.

Each block requires access to BLOCK SIZE targets and BLOCK SIZE samples. In

order to minimize accesses to global memory, rather than letting each thread fetch

its sample and target from global memory, the threads on the diagonal of each block

(e.g. those with threadIdx.x equal to threadIdx.y) first copy a sample and target

into the block’s shared memory. The data in shared memory can then be accessed
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quickly by all of the threads in the block. In this way the array of samples is read

from global memory num targets/BLOCK SIZE times and the array of targets is read

num samples/BLOCK SIZE times. Each thread in the block is forced to wait until all

of the samples and targets have been copied to shared memory before resuming the

computation by calling syncthreds().

Once the required samples and targets have been copied into shared memory,

each thread computes K
(

x(i)−ξ(j)

h

)

for its target and sample. The results from each

thread then need to be accumulated. The most recent version of the CUDA ar-

chitecture supports atomic addition operations3 for floating point values [37]. The

results from each thread are first summed into a shared memory location. Once all

of the results from the block are accumulated, a single thread for each target in the

block atomically adds the corresponding local accumulation to the global result

array which can then be copied to the host.

5.4.2 The KernelDensityEstimator class

The host code encapsulates all of the data required for computing the kernel

density estimate in the C++ class KernelDensityEstimator. The KernelDensity-

Estimator constructor prototype is given by

KernelDens i tyEst imator : :

3Atomic addition is a process where the operation a = a+ b is carried out in a single machine
instruction. Without atomic addition the update a = a+ b can take a few operations to complete.
This is problematic in multithreaded code since two threads may simultaneously attempt to per-
form the update, which can result in undefined behavior. Without atomic addition it is necessary
for each thread to set a lock that prevents other threads from attempting to perform the update
until the thread that set the lock is complete.

128



Algorithm 3 Pseudo-code for the CUDA KDE kernel
mySampleBlock ≡ blockIdx.x

myTargetBlock ≡ blockIdx.y

mySample ≡ threadIdx.x

myTarget ≡ threadIdx.y

sampleIndex ≡ BLOCK SIZE*mySampleBlock + mySample

targetIndex ≡ BLOCK SIZE*myTargetBlock + myTarget

Allocate sharedSamples a BLOCK SIZE by dimension array in shared memory.
Allocate sharedResult a BLOCK SIZE array in shared memory.
Allocate sharedTargets a BLOCK SIZE by dimension array in shared memory.
if threadIdx.x==threadIdx.y then
sharedSamples[mySample,:] = samples[sampleIndex,:]

sharedTargets[myTarget,:] = targets[targetIndex,:]

end if
syncthreads()

u = (sharedTargets[myTarget,:]-sharedSamples[mySample,:])/bandwidth

Atomically perform sharedResult[myTarget] += K(u)
syncthreads()

if threadIdx.x ==0 then
Atomically perform result[targetIndex] += sharedResult[myTarget]

end if

KernelDens i tyEst imator ( f l o a t const ∗ samples ,

const unsigned i n t num samples ,

const unsigned i n t dimension ,

const f l o a t bandwidth ,

const unsigned i n t num expected targets )

The array samples is an array of num samples samples drawn from the distribution

of a dimension -dimensional random vector. The parameter num expected targets

tells the constructor how much memory to allocate on the CUDA device for the ar-

ray of targets. If the KDE needs to be evaluated at additional targets, a reallocation

of CUDA device memory will occur. Pseudo-code for the KernelDensityEstimator

class constructor is given in algorithm 4.
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Algorithm 4 Pseudo-code for the KernelDensityEstimator class constructor
bandwidth = bandwidth

Allocate a pitched array d samples to store the samples on the GPU.
Copy samples to d samples

Allocate a pitched array d targets to store the targets on the GPU.
Allocate an array d result to store the result of the computation.

When the constructor is called, it first allocates some pitched memory on the

CUDA device to store the samples, targets, and results of the KDE evaluation.

The KernelDensityEstimator object maintains pointers to these device arrays.

The samples are also transferred to the device where they reside until the object is

deleted.

Once a KernelDensityEstimator is constructed, the KDE can be evaluated

by calling the evaluateKDE member function

void Kerne lDens i tyEst imator : :

evaluateKDE ( f l o a t const ∗ t a rge t s ,

const unsigned i n t num targets ,

f l o a t ∗ r e s u l t ) .

This function copies the array of targets from the host to the device, sets up the

CUDA kernel execution configuration, calls the CUDA kernel and copies the result

back to the host. As discussed above, the computational grid is a two-dimensional

array of thread blocks of size ⌈num samples/BLOCK SIZE⌉ by

⌈num targets/BLOCK SIZE⌉. Also, each block requires dynamically allocated shared

memory to store its targets, samples, and the result of the local accumulations.

Pseudo-code for the evaluateKDE() function is given in algorithm 5.
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Algorithm 5 Pseudo-code for the evaluateKDE()

Copy targets to d targets

Set up the execution configuration:
dimBlock = [BLOCK SIZE,BLOCK SIZE]

dimGrid = [ceil(num samples/BLOCK SIZE),

ceil(num targets/BLOCK SIZE)]

sharedMemSize = BLOCK SIZE*samples pitch +

BLOCK SIZE*targets pitch + BLOCK SIZE

Invoke KDE cuda kernel with d samples, d targets

Return result to d result

Copy d result to result

5.5 Implementation of the adaptive KDE collocation method in CUDA

C

Similar to the implementation of the kernel density estimation discussed above,

the implementation of adaptive KDE collocation consists of two parts, the host code,

and the CUDA kernels. The host code is contained within the CudaApproximation-

Grid class, which manages the movement of data between the host and the CUDA

device and sets the execution configuration for the CUDA kernels. The CUDA

kernels evaluate the basis functions associated collocation points in parallel. This is

a necessary step in both the evaluation of the interpolant and the computation of

hierarchical surpluses.

A CUDA kernel accomplishes the first task and routines from the CUBLAS

library [38] accomplish the second.
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5.5.1 The CUDA adaptive collocation kernel

CUDA kernels were written to evaluate the basis functions associated with a

hierarchical grid at many target locations in parallel. One CUDA kernel computes

the basis function at an arbitrary set of points. The second computes the basis func-

tion at a new level of collocation points defined by their multi-indices. Combining

these with a matrix-matrix product routine from the CUBLAS library enables fast

computation of hierarchical interpolants and hierarchical surpluses associated with

new grid points, as described by (5.9) and (5.13). The two CUDA kernels are very

similar so we only present an overview here of the CUDA kernel that evaluates the

basis functions at arbitrary grid points.

A prototype of this CUDA kernel is given below.

g l o b a l void cuda compute bas i s va l s

( f l o a t const ∗ x , const s i z e t x p i tch ,

const unsigned i n t num evals ,

const unsigned i n t dimension ,

unsigned i n t const ∗ l e v e l s ,

const s i z e t l e v e l s p i t c h ,

unsigned i n t const ∗ indexes ,

const s i z e t i ndexe s p i t ch ,

const unsigned i n t tota l num pts ,

f l o a t const ∗ endpoints ,

const s i z e t va lue p i t ch ,

132



f l o a t ∗ value )

The CUDA kernel takes x, a pitched array of floats stored on the CUDA device.

This array specifies the locations where the basis functions are to be evaluated. The

parameters num evals and dimension specify the number of targets and the dimen-

sion of each of the targets. Thus x must have size at least num evals*dimension.

The grid information is passed from a CudaApproximationGrid object through the

pitched arrays levels and indexes that store the multi-indices that define the

points in the adaptive grid. The parameter total num pts is the number of collo-

cation points in the approximation. The CudaApproximationGrid also passes the

domain of interpolation through the endpoints parameter. The matrix A contain-

ing the value of the basis functions at the target points is returned through the

pitched array value. Pseudo-code for the cuda compute basis vals() CUDA ker-

nel is given in algorithm 6.

Similar to the CUDA kernels for evaluating the kernel density estimate, the

thread blocks in cuda compute basis vals() are arranged in a two-dimensional

grid of size ceil(total num pts/BLOCK SIZE) by ceil(num evals/BLOCK SIZE),

where each block is responsible for computing a subset of the basis elements at a

subset of target points. The threads in each thread block are arranged into a two-

dimensional array of size BLOCK SIZE by BLOCK SIZE where each thread computes

the value of a single basis element at a single target. In order to minimize access to

global memory, the threads in each block with threadIdx.x == threadIdx.y load

their target and collocation point into shared memory. Each thread then loops over
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Algorithm 6 Pseudo-code for the CUDA hierarchical collocation kernel
myCollocBlock ≡ blockIdx.x

myTargetBlock ≡ blockIdx.y

myCollocPt ≡ threadIdx.x

myTarget ≡ threadIdx.y

collocIndex ≡ BLOCK SIZE*myCollocBlock + myCollocPt

targetIndex ≡ BLOCK SIZE*myTargetBlock + myTarget

Allocate sharedCollocLvl a BLOCK SIZE by dimension array in shared memory.
Allocate sharedCollocIndex a BLOCK SIZE by dimension array in shared mem-
ory.
Allocate sharedTargets a BLOCK SIZE by dimension array in shared memory.
if threadIdx.x==threadIdx.y then
sharedCollocLvl[myCollocPt,:] = levels[collocIndex,:]

sharedCollocIndex[myCollocPt,:] = indexes[collocIndex,:]

sharedTargets[myTarget,:] = targets[targetIndex,:]

end if
syncthreads()

x = sharedTargets[myTarget,:]

i = sharedCollocLvl[myCollocPt,:]

j = sharedCollocIndex[myCollocPt,:]

value[collocIndex,targetIndex] = aij(x)

the number of input variables and computes the one-dimensional components of its

basis element at its target while keeping a running product. The value from this

computation is then passed back into the value array.

5.5.2 Implementation of the adaptive KDE collocation host code

The purpose of the CudaApproximationGrid class is to encapsulate the data

needed by the CUDA device to evaluate hierarchical interpolants and to compute

the coefficients of the hierarchical approximation given a set of new data. The

CudaApproximationGrid class handles all of the required data movement between

the host and the device. The logic that drives the grid refinement is implemented as

a high level CPU code in Python since this operation is not a primary bottleneck.
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The prototype of the CudaApproximationGrid constructor is shown below

CudaApproximationGrid : :

CudaApproximationGrid ( const unsigned i n t input dim ,

const unsigned i n t output dim ,

const unsigned i n t max num points ,

f l o a t const ∗ endpoints ) :

The constructor takes as arguments an unsigned integer input dim that specifies

the number of parameters used to define u; an unsigned integer output dim that

specifies the dimension of the output of u, e.g. u : Γ → R
output dimension with Γ ⊂

R
input dimension; the maximum number of collocation points to be used in constructing

the interpolant; and a float array of size input dimension by 2 that defines the

endpoints of the hypercube where the interpolant is defined. Pseudo-code for the

CudaApproximationGrid constructor is given in algorithm 7. When the constructor

is called it allocates memory on the CUDA device to store the hierarchical surpluses

and the level and index sets that define the sparse grid. The host object keeps copies

of these pointers.

Algorithm 7 Pseudo-code for the KernelDensityEstimator class constructor

Allocate array d endpoints of size input dim by 2 on the device
Allocate pitched array d surpluses of size max num points by output dim on
the device
Allocate pitched array d levels of size max num points by input dim on the
device
Allocate pitched array d indexes of size max num points by input dim on the
device
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In order to add new points to a CudaApproximationGrid the addLevel()

function is called. The prototype for this function is given below.

void CudaApproximationGrid : :

addLevel ( const unsigned i n t num new points ,

unsigned i n t const ∗ new leve l s ,

unsigned i n t const ∗ new indexes ,

f l o a t const ∗ new values )

The user must pass the number of new points to be added to the grid, arrays of size

input dimension by num new points that specify the levels and indexes of these

new points, and an array of size num new points by output dimension that spec-

ifies the function values at those points. If there is available space on the CUDA

device to store the new points the addLevel() function transfers the new levels,

indexes and values to the device and calls the function computeNewSurpluses() to

compute the new hierarchical surpluses from the function values.

New hierarchical surpluses for a level added to the grid are computed by the

computeNewSurpluses() function. The computation is accomplished as follows,

before the function is called the addLevel() function adds the new function val-

ues to the end of the array storing the current set of hierarchical surpluses. That

is, the matrix of surpluses is partitioned as W = [W ∗|U ] as in (5.13). This func-

tion calls the CUDA kernel to compute the values of the basis functions from the

old approximation level at the new points and the CUBLAS function to compute

the matrix-matrix update. Pseudo-code for the computeNewSurpluses() routine is
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given by algorithm 8.

The code for computing the value of the interpolant is similar to the code

Algorithm 8 Pseudo-code for the computeNewSurpluses() function

Define W to be the matrix that contains the hierarchical surpluses
Define U to be the matrix that contains the function values at the new collocation
points
Add U to the end of W
Allocate array A of size num old points by num new points on the device
Set up the execution configuration:
dimBlock = [BLOCK SIZE,BLOCK SIZE]
dimGrid = [ceil(num old points/BLOCK SIZE),

ceil(num new points/BLOCK SIZE)]
sharedMemSize = 2*input sim*BLOCK SIZE + input dim*BLOCK SIZE

Call the CUDA kernel cuda compute basis vals to compute the basis functions
at the new collocation points and store the result in A

Call cublasSgemm to perform the update U = U −WA

for computing hierarchical surpluses. The getInterpolantValue() function calls

the CUDA kernel cuda compute basis vals() to compute the values of the basis

functions at the evaluation points, and the CUBLAS routine cublasSgemm() for

computing the matrix-matrix product (5.9). The prototype for the getInterpolant-

Value function is given below.

void CudaApproximationGrid : :

g e t In t e rpo lantVa lue ( f l o a t const ∗ x ,

const unsigned i n t num evals ,

f l o a t ∗ y )

The function takes as arguments an array of floats x of size num evals by input-

dimension that contains the locations where the interpolant is to be evaluated,

and an array of floats y of size num evals by output dimension to store the result.
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Pseudo-code for getInterpolantValue() is given in algorithm 9.

Algorithm 9 Pseudo-code for the getInterpolantValue() function

Define W to be the matrix that stores the hierarchical surpluses on the device.
Allocate the array d x on the device
Copy the target locations x to d x

Allocate array A of size num old points by num targets on the device
Set up the execution configuration:
dimBlock = [BLOCK SIZE,BLOCK SIZE]
dimGrid = [ceil(num old points/BLOCK SIZE),

ceil(num targets/BLOCK SIZE)]
sharedMemSize = 2*input sim*BLOCK SIZE + input dim*BLOCK SIZE

Call the CUDA kernel cuda compute basis vals to compute the basis functions
at the targets points and store the result in A

Call cublasSgemm to calculate the result A(u)(x) = WA

5.6 Benchmarks

In this section we present benchmarks of the CUDA implementations of KDE,

MLCV, and adaptive KDE collocation against a serial implementation of these al-

gorithms written in C and python. The GPU implementations were performed on

an Intel Xeon x5550 server with a 2.66Ghz CPU and a NVIDIA Tesla C2050 GPU.

The Tesla GPU has 14 multiprocessors each clocked at 1.15Ghz. Each multipro-

cessor has 32 cores for a total of 448 cores on the device. The GPU has 2.5 GB

of global memory and 50 MB of shared memory available per multiprocessor. The

serial implementations were run on an desktop machine with an Intel Core 2 Duo

E6750 CPU clocked at 2.66Ghz and 8GB of memory.
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5.6.1 MLCV bandwidth selection benchmarks

First we report the timings for computing the optimal bandwidth using MLCV

with the two (CPU and GPU) implementations. Sample sets were chosen from the

distribution of a 20 dimensional random vector ξ = [ξ1, ..., ξ20]
t where each ξi is uni-

formly and independently distributed over [0, 1]. The sample sets generated were

of size N = 100, 1000, 20000, 50000, 100000. Recall that each evaluation of the ob-

jective function (5.5) requires O(MN2) flops. In addition, the implementation in

CUDA requires the sample set to be transferred from main memory to the GPU

over the PCIe bus, which introduces an additional cost for the GPU implementa-

tion. The timings reported for the GPU implementation include the cost of this

data transfer. Also, only the objective function is computed using CUDA. The opti-

mization routine for the both CUDA implementation and the serial implementation

is performed in serial using the constrained optimization by linear approximation

(COBYLA) method found in the nlopt software library [25]. This is a derivative-free

optimization routine that approximates both the objective and constraint functions

by linear functions.

Table 5.1 shows the time required by the serial algorithm and the GPU algo-

rithm. The speedup displayed in Table 5.1 is defined to be the time required by

the serial algorithm divided by the time required by the GPU algorithm. Figure 5.4

shows the same data as Table 5.1. From the figure it can be seen that both algo-

rithms experience quadratic growth in complexity as the number of samples grows

larger. This is in agreement with the asymptotic cost of evaluating the objective
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function (5.5). The flat region of on the plot of the GPU timings represents the area

where the processors on the GPU are not being fully utilized. Once the resources

on the GPU are fully saturated the region of quadratic growth begins. Note that

for the smallest sample set (N = 100), the serial algorithm runs faster than the

GPU algorithm. This is due to the fact that there is some overhead associated with

CUDA kernel invocation and the memory transfer between the host and device. In

both cases however, the computation is essentially instantaneous. The execution of

the 100000 sample case for the serial algorithm did not terminate in a reasonable

time and was terminated.

N Serial GPU Speedup

100 9.38× 10−2 1.85× 10−1 0.50

1000 1.02× 101 1.42× 10−1 72

20000 4.31× 103 6.25× 101 69

50000 2.47× 104 4.84× 102 56

100000 −− 1.63× 103 −−

Table 5.1: Time (in seconds) required to compute the optimal bandwidth using
MLCV

5.6.2 Kernel density estimation benchmarks

Next we compared the serial and GPU implementation of kernel density es-

timation. In this example the number of samples is fixed, N = 10000 while the

dimension M and the number of targets T is varied. The sample set consists of

10000 samples of the random vector ξ = [ξ1, ..., ξM ] where each ξi is independently

distributed over [0, 1]. The implementations were tested with M = 5, 10, 15, 20. For
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Figure 5.4: Time (in seconds) required to compute the optimal bandwidth using
MLCV

each sample set the optimal bandwidth computed by MLCV was used. The cost

associated with computing the optimal bandwidth is not included in the results

measuring KDE performance. The time required to transfer the samples from the

host to the GPU is also not included in this example since that cost would have

already been incurred when computing the optimal bandwidth. The time required

to transfer the target locations from the host to the GPU are included as well as

the time required to transfer the result from the GPU back to the host. The tar-
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get arrays are taken to be random samples on [0, 1]M of varying size. Figure 5.5,

Tables 5.2, 5.3, 5.4, and 5.5 show the time required by the serial algorithm and the

GPU algorithm to compute the kernel density estimate along with the associated

speedup factor. The algorithm complexity grows linearly in the number of targets

and the GPU implementation performs between one and two orders of magnitude

faster than the serial implementation.
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Figure 5.5: Time (in seconds) requited to compute the kernel density estimate for
varying dimension and number of targets
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Number of Targets Serial GPU Speedup

1.0× 102 9.93× 10−2 2.02× 10−3 49

1.0× 103 8.73× 10−1 1.72× 10−2 51

1.0× 104 9.87× 100 1.70× 10−1 58

1.6× 105 1.59× 102 2.72× 100 58

Table 5.2: Time (in seconds) required to compute the KDE for a 5-dimensional
parameter space

Number of Targets Serial GPU Speedup

1.0× 102 1.69× 10−1 2.81× 10−3 60

1.0× 103 2.16× 100 2.49× 10−2 87

1.0× 104 2.22× 101 2.46× 10−1 90

1.6× 105 3.53× 102 3.94× 100 90

Table 5.3: Time (in seconds) required to compute the KDE for a 10-dimensional
parameter space

Number of Targets Serial GPU Speedup

1.0× 102 3.04× 10−1 3.64× 10−3 84

1.0× 103 3.02× 100 3.26× 10−2 92

1.0× 104 3.01× 101 3.23× 10−1 93

1.6× 105 4.77× 102 5.16× 100 92

Table 5.4: Time (in seconds) required to compute the KDE for a 15-dimensional
parameter space

5.6.3 Adaptive KDE collocation benchmarks

In the following two examples we compare the performance of the GPU and

serial algorithms applied to adaptive collocation with kernel density estimation. The
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Number of Targets Serial GPU Speedup

1.0× 102 2.76× 10−1 4.50× 10−3 61

1.0× 103 3.63× 100 4.04× 10−2 90

1.0× 104 3.62× 101 4.01× 10−1 90

1.6× 105 5.79× 102 6.41× 100 90

Table 5.5: Time (in seconds) required to compute the KDE for a 20-dimensional
parameter space

test problem is given by

− d

dx
(aM(x, ξ)

d

dx
u(x, ξ)) = 1, ∀x ∈ (0, 1) (5.14)

u(0, ξ) = u(1, ξ) = 0. (5.15)

The diffusion coefficient aM is defined for even M by

aM = µ+

M/2−1
∑

k=0

λk(ξ2kcos(2πkx) + ξ2k+1sin(2πkx)), (5.16)

where λk = exp(−k), µ = 3 and ξk is uniformly distributed on [0, 1].

In the first example the adaptive collocation procedure is performed for M =

4, 10, 20. The sample sets for this test were constructed to be of sizeN = 1000, 20000.

The grid refinement criterion τ from (4.22) was defined to be τ = 1× 10−4. At each

collocation point, (5.14) was discretized using finite differences on a uniform grid of

size 200. Evaluating u at a collocation point therefore requires the solution of a 200

by 200 linear system. For both the GPU implementation and the serial implemen-

tation, the solution of this system was accomplished using the serial direct solver
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included in numpy [1]. The total cost of the method can be divided into two parts,

time spent evaluating the model u(ξ) and time associated with the adaptive KDE

collocation method. Since our focus is on attaining maximum performance in those

parts of the algorithm related to the collocation method, in the timings presented

below, the cost of solving the linear systems is not included. Therefore all that is

being measured is the time required to compute the hierarchical surpluses, compute

the kernel density estimates, and any overhead associated with the collocation grid

data structures.

For both the serial and GPU implementations, the data structure used to store

the collocation grid and the methods that refined the grid were handled in serial by

Python. For the GPU algorithm, when a new level was added to the grid, Python

passed the multi-indexes that described the location of the new collocation points,

along with the function values at those points to CUDA. CUDA was then responsi-

ble for computing the new hierarchical surpluses, the norms of the new hierarchical

surpluses, and the kernel density estimate at the new grid points. The norm of the

hierarchical surpluses and the values from the kernel density estimate were passed

back to python so that the grid could be adaptively refined. In both cases the kernel

density estimate used to drive the refinement procedure used the optimal bandwidth

obtained by MLCV. In the timings presented in Table 5.6, the cost of computing

the MLCV bandwidth is not included.

Table 5.6 shows the time required by the two algorithms and Table 5.7 shows

the number of collocation points required for each choice of M and N . These tables

show that the algorithm in CUDA is capable of computing the hierarchical surpluses

145



of the interpolant significantly faster than a corresponding serial algorithm.

N

1000 20000

M Serial CUDA Speedup Serial CUDA Speedup

4 0.745 0.036 21 1.228 0.03 41

10 52.826 1.089 49 67.46 1.325 51

20 61.383 1.285 48 361.385 4.607 78

Table 5.6: Time (in seconds) required to compute the interpolant using adaptive
KDE collocation

N

M 1000 20000

4 756 685

10 5921 5689

20 6199 13425

Table 5.7: Collocation points required to compute the interpolant using adaptive
KDE collocation

τ Number of Collocation Points Serial Time GPU Time Speedup

1× 10−3 2656 2.71× 101 1.06× 100 63

5× 10−4 4439 6.27× 101 1.06× 100 59

1× 10−4 14396 4.17× 102 4.94× 100 84

5× 10−5 23785 1.21× 103 9.18× 100 132

Table 5.8: Time (in seconds) required to compute the interpolant using adaptive
KDE collocation with varying refinement criterion τ

In the next example, the sample set is fixed to consist of 20000 samples from

a uniform distribution on [0, 1]20 and the refinement tolerance τ is varied. As τ is

decreased, the adaptive KDE collocation method requires more collocation points.
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Figure 5.6: Time required to construct the hierarchical interpolant vs the number
of collocation points

Thus as τ is decreased, the work required to construct the hierarchical interpolant

increases. Figure 5.6 shows the time required to construct the hierarchical inter-

polant as a function of the number of collocation points. Figure 5.7 and shows the

time required to construct the hierarchical interpolant as a function of the refine-

ment tolerance τ . The data for both of these figures is also given in Table 5.8 along

with the associated speedup factors. Again in this experiment the time required to

compute u at each collocation point was not included in the timings. This experi-

ment again shows that the algorithm run on the GPU scales favorably compared to

the same algorithm run in serial.
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5.7 Conclusions

In this chapter we presented an implementation of an adaptive KDE colloca-

tion method using NVIDIA’s CUDA platform. Several components of this method

were parallelized to attain high performance. In particular parallel implementa-

tions of kernel density estimation and automatic bandwidth selection using MLCV

showed significant gains over corresponding serial implementations. These two meth-

ods have wide applicability in addition to their use in the collocation method. In

addition the computation of the expansion coefficients for the adaptive interpolant

also experienced significant speedups when performed in parallel. The parallel im-

plementations of these methods allow for approximations with many collocation

148



points to be constructed without significant overhead associated with constructing

very fine hierarchical interpolants.
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Chapter 6

Summary and Conclusions

In this thesis we explored the performance of a variety of methods for comput-

ing the solution to stochastic partial differential equations. These equations arise

in science and engineering contexts when there is insufficient data to fully specify

the model of some physical system. In such scenarios it is desired to describe the

inputs as uncertain quantities and then to propagate this uncertainty through the

model, in order to quantify the uncertainty in the model output. We also proposed

and analyzed a new method, the adaptive KDE collocation method, and presented

fast implementations of this method using NVIDIA’s CUDA architecture for GPU

computing.

In chapter 3 we compared the performance of the stochastic Galerkin and

stochastic sparse grid collocation techniques for solving the stochastic diffusion equa-

tion. These techniques produce approximate solutions that lie in a similar approx-

imation space and thus attain similar accuracy. The stochastic Galerkin method

requires the solution to a single large linear system whereas the stochastic sparse

grid collocation method requires the solution to many uncoupled smaller linear sys-

tems. It was shown that when a preconditioner based on the mean of the diffusion

operator was used for the large system, stochastic Galerkin method was more com-

putationally efficient than the stochastic sparse grid collocation method, and that
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the advantage of the Galerkin method grew as the dimension of the input operator

grew.

The use of the methods presented in chapter 3 depend on two very strong

assumptions, first, that the solution is analytic with respect to the random input

parameters, and second, that the random parameters that specify the problem are

independent and that their probability distributions are known. In many cases the

solution may exhibit discontinuities, steep gradients, or other strongly local features,

that preclude the use of the global approximation techniques presented in chapter

3. It is also generally not the case that the random parameters that specify the

problem are independent and in cases where the parameter values are only available

from a finite set of independent data the joint probability density is unknown.

In chapter 4 we presented an adaptive KDE collocation method, which can

compute the solution statistics of a SPDE solution under very general assumptions.

In particular, the solution is only required to be almost everywhere Lipschitz con-

tinuous and the statistics of the random parameters were only available from the

values of a finite random sample. The adaptive KDE collocation method was shown

to allocate collocation points so as to resolve the solution behavior in areas of the

parameter space where the solution displayed irregularities that were also near the

sample points of the data. This makes the computed solution to be more accurate

near the sample points. When the Monte-Carlo method was performed on the com-

puted solution, estimates of the solution statistics were obtained whose bias was an

order of magnitude smaller than the confidence bound on the Monte-Carlo error.

This was achieved with many fewer PDE solves than there were samples of the pa-
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rameters, thus obtaining a significant savings in computational work in comparison

to the standard Monte-Carlo methods.

The method presented in chapter 4 contains several sub-tasks that are compu-

tationally expensive. In chapter 5 we presented implementations of MLCV, KDE,

and adaptive KDE collocation that executed using NVIDIA’s CUDA architecture.

The computational tasks involved in adaptive KDE collocation are all easily par-

allelism and well suited for running on GPU’s. It was shown that the algorithms

programmed in parallel for CUDA could significantly outperform the associated se-

rial algorithms even when the overhead associated with memory traffic between the

host CPU and the GPU was taken into account.
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Appendix A

Source code listings for implementaion of adaptive KDE collocation

in CUDA

In the appendix we provide the full source code for the CUDA C implemen-

tations of kernel density estimation with maximum likelihood cross validation and

hierarchical interpolation. Updated versions of this software will be available for

download from the author’s website at http://www.math.umd.edu/~cmiller. If

this webpage becomes unavailable please contact the author to obtain a copy of

the software. This software requires a computer with an NVIDIA GPU of compute

capability at least 2.0.

A.1 CUDA kernel density estimation code

The CUDA C code that performs the kernel density estimation and maximum

likelihood cross validation is contained in the files KDE.hpp and KDE.cu.

/∗∗
∗ @f i l e KDE. hpp
∗ @author Chr i s topher M i l l e r <cmiller@math .umd. edu>
∗ @version 1 .0
∗ @sect ion LICENSE
∗ CudaKDE: Cuda code f o r the eva lua t i on o f k e rne l dens i ty
∗ e s t imate s
∗ Copyright ( c ) 2011 , Chr i s topher M i l l e r .
∗ This so f tware i s d i s t r i b u t e d under the GNU Lesse r General
∗ Publ ic L i cense V3 . For more in format ion , s e e the README
∗ f i l e in the top CudaKDE d i r e c t o r y .
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∗
∗ @br ie f Class d e f i n i t i o n s f o r the Kerne lDens i tyEst imator
∗ c l a s s .
∗ @sect ion DESCRIPTION
∗
∗ The KernelDens i tyEst imator c l a s s computes ke rne l dens i ty
∗ e s t imate s f o r a g iven data s e t and a given t a r g e t s e t .
∗ The c l a s s can a l s o compute the sample mean and sample
∗ covar i ance matrix o f a sample s e t .
∗/

#i f n d e f KDE HPP
#de f i n e KDE HPP

#inc lude <a s s e r t . h>
#inc lude <math . h>
#inc lude <nlopt . h>
#inc lude <iostream>
#inc lude ” cub las . h”

/// Def ine the thread block s i z e .
#de f i n e BLOCK SIZE 16

/∗∗ @br ie f Class f o r eva lua t ing ke rne l dens i ty e s t imate s f o r
a g iven data s e t .

See B.W. Silverman , ’ Density Est imation f o r
S t a t i s t i c s and Data Analys i s ’ , Chapman and Hall , 1986 .

∗/

namespace cudaKDE{

c l a s s Kerne lDens i tyEst imator
{
pub l i c :

//
//− Heading : Constructor and de s t ru c t o r
//

/// Defau l t c on s t ru c to r .
/∗∗ @param samples A num samples by dimension array o f

f l o a t s s to r ed in row major format , i . e . samples [ i ] [ j ]
= samples [ j + dimension∗ i ] . The ( i , j ) entry o f
samples conta in s the j th coo rd ina t e o f the i t h sample
data po int .
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@param num samples The number o f samples in the data
s e t .

@param dimens ion The dimension o f each data po int .
@param bandwidth The bandwidth o f the ke rne l dens i ty

es t imate . Current ly only s c a l a r bandwidths are
supported .

@param num expected targets The maximum number o f
t a r g e t s expected during a s i n g l e eva lua t i on o f the
KDE. This t e l l s the CUDA dev i ce how much memory to
a l l o c a t e f o r the t a r g e t s and the r e s u l t .

∗/
Kerne lDens i tyEst imator ( f l o a t const ∗ samples ,

const unsigned i n t num samples ,
const unsigned i n t dimension ,
const f l o a t bandwidth ,

const unsigned i n t num expected targets = 1 ) ;

/// Defau l t decons t ruc to r
/∗∗ Frees a r rays r e s i d i n g on CUDA dev i ce .
∗/
˜Kerne lDens i tyEst imator ( ) ;

/∗∗ @br ie f Method eva lua t e s the KDE at the t a r g e t s and
r e tu rn s the r e s u l t .

@param ta r g e t s A num targets by dimension array o f the
t a r g e t po in t s s to r ed in row major order . t a r g e t s [ j +
dimension∗ i ] c on ta in s the j th coo rd ina t e o f the i t h
t a r g e t .

@param num targets The number o f t a r g e t s . I f
num targets i s g r e a t e r than max num tagets then memory
i s r e a l l o c a t e d on the dev i c e .

@param r e s u l t On s ta r t , r e s u l t i s a array o f s i z e
num targets . On f i n i s h , r e s u l t [ i ] c on ta in s the ke rne l
dens i ty es t imate eva luated at the i t h t a r g e t .

∗/
void evaluateKDE ( const f l o a t ∗ t a rge t s ,

const unsigned i n t num targets ,
f l o a t ∗ r e s u l t ) ;

/// Set the bandwidth o f the approximation .
/∗∗

@param bandwidth The new bandwidth o f the ke rne l
dens i ty es t imate .

∗/
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void setBandwidth ( const f l o a t bandwidth ) ;

/// Evaluates the KDE at the sample po in t s .
/∗∗

@param r e s u l t On s ta r t , r e s u l t i s a array o f s i z e
num samples . On f i n i s h , r e s u l t [ i ] c on ta in s the ke rne l
dens i ty es t imate eva luated at the i t h sample .

∗/
void evaluateKDE ( f l o a t ∗ r e s u l t ) ;

/∗∗ @br ie f Attempt to s e t the bandwidth by us ing maximum
l i k e l i h o o d cros s−va l i d a t i o n .

For a d e s c r i p t i o n o f maximum l i k e l i h o o d cros s−va l i d a t i o n
See B.W. Silverman , ’ Density Est imation f o r S t a t i s t i c s
and Data Analys i s ’ , Chapman and Hall , 1986 .
@return The new bandwidth .

∗/
f l o a t setBandwidthMLCV ( ) ;

/// Returns the dimension o f the data po in t s .
/∗∗

@return The dimension o f the sample data po in t s .
∗/
unsigned i n t getDimension ( ) ;

/// Returns the number o f samples .
/∗∗

@return The number o f sample data po in t s .
∗/
unsigned i n t getNumSamples ( ) ;

/// Ca l cu l a t e s the sample mean o f the sample s e t .
/∗∗

@param r e s u l t On s ta r t , i f r e tu rnResu l t i s t rue then
r e s u l t i s a f l o a t array o f s i z e at l e a s t dimension .
I f r e turn r e s u l t i s f a l s e then r e s u l t i s not
r e f e r en c ed and may be NULL. On ex i t , i f r e turn
r e s u l t i s t rue then r e s u l t [ i ] c on ta in s the sample
mean o f the i t h random va r i ab l e .

@param returnResu l t I f t rue the computed sample mean
i s cop ied from the dev i c e in to r e s u l t . I f f a l s e then
r e s u l t i s not r e f e r en c ed .

∗/
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void calculateSampleMean ( f l o a t ∗ r e s u l t , bool r e tu rnResu l t ) ;

/∗∗ @br ie f Ca l cu l a t e s the sample covar i ance matrix o f the
sample s e t .

@param r e s u l t On s ta r t , i f r e tu rnResu l t i s t rue then
r e s u l t i s a f l o a t array o f s i z e at l e a s t
0 . 5∗ ( dimension )∗ ( dimension +1). I f r e tu rnResu l t i s
f a l s e then r e s u l t i s not r e f e r en c ed and may be NULL.
On f i n i s h , i f r e tu rnResu l t i s true , r e s u l t conta in s
the upper t r i n g u l a r part o f the sample covar i ance
matrix s to r ed in row major format . That i s
@f$C( i , j ) = r e s u l t [ ( i −1)∗dimension − i ∗( i −1)/2 +j ] @f$
f o r @f$j\geq i@f$ .

@param returnResu l t I f t rue the sample covar i ance
matrix i s cop ied from the dev i c e in to r e s u l t .
I f f a l s e then r e s u l t i s not r e f e r en c ed .

∗/
void ca lcu lateSampleCovar iance ( f l o a t ∗ r e s u l t ,

const bool r e tu rnResu l t ) ;

/// Returns the MLCV sco r e f o r a g iven value o f bandwidth .
/∗∗ The value o f x that minimizes t h i s f unc t i on i s the

maximum l i k e l i h o o d cros s−va l i d a t i o n bandwidth . This
func t i on i s c a l l e d by the n lopt opt imize r .
@param n The dimension o f the input . Needed by

NLopt but cu r r en t l y always equal to 1 .
@param x x [ 0 ] i s the argument to the ob j e c t i v e

func t i on .
@param grad Gradient o f the ob j e c t i v e func t i on .

Current ly not used and always s e t to NULL.
@param my func data A po in t e r to the

Kerne lDens i tyEst imator ob j e c t f o r which we ’ re
attempting to f i nd the MLCV bandwidth .

∗/
s t a t i c double MLCVScore( unsigned i n t n ,

const double ∗x ,
double∗ grad ,
void ∗ my func data ) ;

p r i va t e :

///Sample data s e t on the dev i c e .
f l o a t ∗ d samples ;
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///The number o f samples .
unsigned i n t num samples ;

///The dimension o f each sample .
unsigned i n t dimension ;

///The p i t ch s i z e in b i t e s f o r the sample array .
s i z e t samp le s p i t ch ;

///The bandwidth o f the e s t imator .
f l o a t bandwidth ;

///Array a l l o c a t e d to conta in the t a r g e t s .
f l o a t ∗ d t a r g e t s ;

/∗∗ @br ie f The number o f t a r g e t s cu r r en t l y a l l o c a t e d f o r
the d t a r g e t s array .

∗/
unsigned i n t max num targets ;

///The pt i ch s i z e in b i t e s f o r the t a r g e t array .
s i z e t t a r g e t s p i t c h ;

/∗∗ @br ie f A l located array f o r pas s ing back the r e s u l t s
from the dev i c e .

∗/
f l o a t ∗ d r e s u l t ;

/// Al located array f o r s t o r i n g the sample mean .
f l o a t ∗ d mean ;

///Bool that checks i f the sample mean has been computed .
bool sampleMeanComputed ;

/∗∗@br ie f Array that s t o r e s the upper t r i a n g l e o f the
covar i ance matrix in row major order .

∗/
f l o a t ∗ d cov ;

/∗∗ @br ie f Bool that checks i f the sample covar i ance has
been computed .

∗/
bool sampleCovComputed ;

} ;
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} //namespace cudaKDE

/// CUDA kerne l f o r eva lua t ing the ke rne l dens i ty es t imate .
/∗∗ @param ta r g e t s A dev i ce po in t e r to a num targets by

dimension p i tched array
conta in ing the l o c a t i o n s where the KDE w i l l be
eva luated . t a r g e t s [ j + i ∗ t a r g e t s p i t c h / s i z e o f ( f l o a t ) ]
i s the @f$j ˆ{ th}@f$ coord ina t e o f the @f$i ˆ{ th}@f$
ta r g e t .

@param dimension The dimension o f the t a r g e t s and
samples .

@param num targets The number o f t a r g e t s .
@param t a r g e t s p i t c h The p i t ch s i z e o f the t a r g e t s array

in bytes . The l ead ing dimension o f t a r g e t s i s
t a r g e t s p i t c h / s i z e o f ( f l o a t ) .

@param samples A dev i ce po in t e r to a num samples by
dimension p i tched array conta in ing the sample s e t .
samples [ j + i ∗ samp le s p i t ch / s i z e o f ( f l o a t ) ] i s the
@f$j ˆ{ th}@f$ coord ina t e o f the @f$i ˆ{ th}@f$ sample .

@param sample s p i t ch The p i t ch s i z e o f the samples
array in bytes . The l ead ing dimension o f samples i s
samp le s p i t ch / s i z e o f ( f l o a t ) .

@param bandwidth The bandwidth o f the ke rne l dens i ty
es t imate .

@param r e s u l t On s ta r t , a dev i c e po in t e r to an array
o f s i z e num targets . On f i n i s h , r e s u l t [ i ] c on ta in s
the ke rne l dens i ty es t imate eva luated at the
@f$i ˆ{ th}@f$ ta r g e t

∗/
g l o b a l void KDE cuda kernel ( const f l o a t ∗ t a rge t s ,

const unsigned i n t dimension ,
const unsigned i n t num targets ,
const s i z e t t a r g e t s p i t c h ,
const f l o a t ∗ samples ,
const unsigned i n t num samples ,
const s i z e t samples p i tch ,
const f l o a t bandwidth ,
f l o a t ∗ r e s u l t ) ;

#end i f
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/∗∗
∗ @f i l e KDE. cu
∗ @author Chr i s topher M i l l e r <cmiller@math .umd. edu>
∗ @version 1 .0
∗ @sect ion LICENSE
∗ CudaKDE: Cuda code f o r the eva lua t i on o f k e rne l dens i ty
∗ e s t imate s
∗ Copyright ( c ) 2011 , Chr i s topher M i l l e r .
∗ This so f tware i s d i s t r i b u t e d under the GNU Lesse r General
∗ Publ ic L i cense V3 . For more in format ion , s e e the README
∗ f i l e in the top CudaKDE d i r e c t o r y .
∗
∗ @br ie f Implementation o f the Kerne lDens i tyEst imator c l a s s
∗ and the CUDA kerne l that per forms the dens i ty e s t imat i on .
∗ @sect ion DESCRIPTION
∗
∗ Implementation o f the Kerne lDens i tyEst imator c l a s s
∗/

#inc lude ”KDE. hpp”

us ing namespace cudaKDE ;

Kerne lDens i tyEst imator : :
Kerne lDens i tyEst imator ( const f l o a t ∗ samples ,

const unsigned i n t num samples ,
const unsigned i n t dimension ,
const f l o a t bandwidth ,

const unsigned i n t num expected targets )
{

num samples = num samples ;
dimension = dimens ion ;

// A l l o ca t e memory f o r the samples on the dev i c e .
cudaError t e r r o r c a t c h e r =

cudaMallocPitch ( ( void ∗∗) &d samples ,
&samples p i tch ,
dimension∗ s i z e o f ( f l o a t ) ,
num samples ) ;

i f ( e r r o r c a t c h e r != cudaSuccess ) {
std : : cout << ”Error : could not a l l o c a t e memory f o r ”
<< ” samples on dev i ce . ” << std : : endl ;

throw e r r o r c a t c h e r ;
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}

//Copy the samples from the host to the dev i c e .
e r r o r c a t c h e r = cudaMemcpy2D( d samples ,

samples p i tch ,
samples ,
dimension∗ s i z e o f ( f l o a t ) ,
dimension∗ s i z e o f ( f l o a t ) ,
num samples ,
cudaMemcpyHostToDevice ) ;

i f ( e r r o r c a t c h e r != cudaSuccess ) {
std : : cout << ”Error : could not copy samples from host ”
<<” to dev i c e ” << std : : endl ;
throw e r r o r c a t c h e r ;

}

// A l l o ca t e memory f o r the t a r g e t s on the dev i c e .
max num targets = num expected targets ;
e r r o r c a t c h e r = cudaMallocPitch ( ( void ∗∗)& d ta rge t s ,

&t a r g e t s p i t c h ,
dimension∗ s i z e o f ( f l o a t ) ,
max num targets ) ;

i f ( e r r o r c a t c h e r != cudaSuccess ) {
std : : cout << ”Error : could not a l l o c a t e memory f o r ”
<< ” t a r g e t s on dev i ce . ” << std : : endl ;

throw e r r o r c a t c h e r ;
}

// A l l o ca t e space f o r the r e s u l t on the dev i c e .
cudaMalloc ( ( void ∗∗) &d r e su l t ,

max num targets∗ s i z e o f ( f l o a t ) ) ;

bandwidth = bandwidth ;
sampleMeanComputed = f a l s e ;
sampleCovComputed = f a l s e ;

}

KernelDens i tyEst imator : : ˜ Kerne lDens i tyEst imator ( )
{

//Free a l l a r rays a l l o c a t e d on the cuda dev i ce .
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cudaFree ( d samples ) ;
cudaFree ( d t a r g e t s ) ;
cudaFree ( d r e s u l t ) ;
i f ( sampleMeanComputed ) cudaFree ( d mean ) ;
i f ( sampleCovComputed ) cudaFree ( d cov ) ;

}

void Kerne lDens i tyEst imator : :
setBandwidth ( const f l o a t bandwidth )
{

bandwidth = bandwidth ;
}

void Kerne lDens i tyEst imator : :
evaluateKDE ( const f l o a t ∗ t a rge t s ,

const unsigned i n t num targets ,
f l o a t ∗ r e s u l t )

{

cudaError t e r r o r c a t c h e r ;

/∗Check i f we need to r e a l l o c a t e the d t a r g e t s and
d r e s u l t s a r rays . ∗/

i f ( num targets > max num targets ) {
max num targets = num targets ;
cudaFree ( d t a r g e t s ) ;
e r r o r c a t c h e r = cudaMallocPitch ( ( void ∗∗) &d ta rge t s ,

&t a r g e t s p i t c h ,
dimension∗ s i z e o f ( f l o a t ) ,
num targets ) ;

i f ( e r r o r c a t c h e r != cudaSuccess ) {
std : : cout << ”Error : could not a l l o c a t e memory f o r ”
<< ” t a r g e t s on dev i ce . ” << std : : endl ;

throw e r r o r c a t c h e r ;
}

cudaFree ( d r e s u l t ) ;
e r r o r c a t c h e r =
cudaMalloc ( ( void ∗∗) &d r e su l t , num targets∗

s i z e o f ( f l o a t ) ) ;

i f ( e r r o r c a t c h e r != cudaSuccess ) {
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std : : cout << ”Error : could not a l l o c a t e memory f o r ”
<< ” r e s u l t s on dev i ce . ” << std : : endl ;

throw e r r o r c a t c h e r ;
}

}

// Trans fe r the t a r g e t s from the host to the dev i c e .
e r r o r c a t c h e r = cudaMemcpy2D( d ta rge t s ,

t a r g e t s p i t c h ,
t a rge t s ,
dimension∗ s i z e o f ( f l o a t ) ,
dimension∗ s i z e o f ( f l o a t ) ,
num targets ,
cudaMemcpyHostToDevice ) ;

i f ( e r r o r c a t c h e r != cudaSuccess ) {
std : : cout << ”Error : could not copy t a r g e t s from host ”
<< ” to dev i c e . ” << std : : endl ;

throw e r r o r c a t c h e r ;
}

/∗Set up the g r id . Each block handles BLOCK SIZE ta r g e t s
and BLOCK SIZE samples .

∗/
dim3 dimBlock (BLOCK SIZE,BLOCK SIZE ) ;
dim3 dimGrid ( c e i l ( num samples /( f l o a t ) BLOCK SIZE) ,

c e i l ( num targets /( f l o a t ) BLOCK SIZE ) ) ;
s i z e t shared mem size = (BLOCK SIZE∗ samp le s p i t ch +

BLOCK SIZE∗ t a r g e t s p i t c h +
BLOCK SIZE∗ s i z e o f ( f l o a t ) ) ;

//Zero the r e s u l t
f l o a t f = 0 .0 f ;

/∗Writes 0 to every byte in r e s u l t . Don ’ t cu r r en t l y have a
f l o a t i n g po int v e r s i on o f t h i s f unc t i on

∗/
cudaMemset ( d r e su l t ,

r e i n t e r p r e t c a s t<i n t&>( f ) ,
s i z e o f ( f l o a t )∗ num targets ) ;

// Invoke the CUDA kerne l to compute the ke rne l dens i ty
// es t imate .
KDE cuda kernel<<<dimGrid , dimBlock , shared mem size>>>

( d ta rge t s , dimension , num targets , t a r g e t s p i t c h ,
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d samples , num samples , samples p i tch , bandwidth ,
d r e s u l t ) ;

//Copy r e s u l t s from the dev i c e back to the host .
cudaMemcpy( r e su l t ,

d r e su l t ,
num targets∗ s i z e o f ( f l o a t ) ,
cudaMemcpyDeviceToHost ) ;

}

void Kerne lDens i tyEst imator : : evaluateKDE ( f l o a t ∗ r e s u l t )
{

cudaError t e r r o r c a t c h e r ;

//Make room f o r the r e s u l t on the dev i c e
i f ( num samples > max num targets ) {

cudaFree ( d r e s u l t ) ;
e r r o r c a t c h e r =

cudaMalloc ( ( void ∗∗) &d r e su l t , num samples ∗
s i z e o f ( f l o a t ) ) ;

i f ( e r r o r c a t c h e r != cudaSuccess ) {
std : : cout << ”Error : could not a l l o c a t e memory f o r ”
<< ” r e s u l t s on dev i ce . ” << std : : endl ;

throw e r r o r c a t c h e r ;
}

}

// Set up the g r id
dim3 dimBlock (BLOCK SIZE,BLOCK SIZE ) ;
dim3 dimGrid ( c e i l ( num samples /( f l o a t ) BLOCK SIZE) ,

c e i l ( num samples /( f l o a t ) BLOCK SIZE ) ) ;
s i z e t shared mem size = (BLOCK SIZE∗dimension +

BLOCK SIZE∗dimension +
BLOCK SIZE)∗ s i z e o f ( f l o a t ) ;

//Zero the r e s u l t .
f l o a t f = 0 .0 f ;
cudaMemset ( d r e su l t , r e i n t e r p r e t c a s t<i n t&>( f ) ,

s i z e o f ( f l o a t )∗ num samples ) ;

//RELEASE THE KRACKEN ! ! ! ! ! ! ! ! !
KDE cuda kernel<<<dimGrid , dimBlock , shared mem size>>>

( d samples , dimension , num samples , samples p i tch ,
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d samples , num samples , samples p i tch , bandwidth ,
d r e s u l t ) ;

//Copy the r e s u l t from the dev i c e to the host .
cudaMemcpy( r e su l t ,

d r e su l t ,
num samples∗ s i z e o f ( f l o a t ) ,
cudaMemcpyDeviceToHost ) ;

}

f l o a t Kerne lDens i tyEst imator : : setBandwidthMLCV ( )
{

/∗This func t i on s e t s up a d e r i v a t i v e f r e e opt imize r
to opt imize MLCVScore ( ) .

∗/
const f l o a t old bandwidth = bandwidth ;
double lb [ 1 ] = {0} ; //The lower bound f o r opt im iza t i on

// c r e a t e a new n lopt opt ob j e c t .
n l op t opt opt ;
opt = n l op t c r e a t e (NLOPT LN COBYLA, 1 ) ;

// Constra in that the opt imized bandwidth must be p o s i t i v e .
n l op t s e t l owe r bounds ( opt , lb ) ;

/∗Set n lopt to minimize MLCVScore .
The func t i on po in t e r cannot be a member func t i on
so MLCVScore i s de f i n ed to be s t a t i c and t h i s
i s passed as an argument to MLCVScore .

∗/
n l o p t s e t m i n ob j e c t i v e ( opt , MLCVScore , t h i s ) ;

// Set the convergence t o l e r an c e .
n l o p t s e t x t o l r e l ( opt , 1e−4);

// Set an i n i t i a l guess .
double x [ 1 ] = {1} ;

double minf ; //minf ca tches the minimum func t i on value .

// run the opt imize r . argmin (MLCVScore ( ) ) i s s t o r ed in x .
i n t code = n lop t op t im i z e ( opt , x,&minf ) ;
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i f ( code < 0) {
std : : cout << ” n lopt f a i l e d ! ” << std : : endl ;
bandwidth = old bandwidth ;

} e l s e {
std : : cout << ” n lopt su c c e s s ! New bandwidth = ” << x [ 0 ]
<< std : : endl ;
bandwidth = x [ 0 ] ;
s td : : cout << ” n lopt code = ” << code << std : : endl ;

}
r e turn bandwidth ;

}

unsigned i n t Kerne lDens i tyEst imator : : getDimension ( )
{

r e turn dimension ;
}

unsigned i n t Kerne lDens i tyEst imator : : getNumSamples ( )
{

r e turn num samples ;
}

double Kerne lDens i tyEst imator : : MLCVScore( unsigned i n t n ,
const double ∗x ,
double∗ grad ,
void ∗ my func data )

{
/∗Arguments to the ob j e c t i v e func t i on are passed through

my func data . We pass a Kerne lDenistyEst imator to the
ob j e c t i v e func t i on .

∗/
Kerne lDens i tyEst imator ∗ my estimator =

( Kerne lDens i tyEst imator ∗) my func data ;
my estimator−>setBandwidth ( ( f l o a t ) x [ 0 ] ) ;
const i n t num samples = my estimator−>getNumSamples ( ) ;
const i n t dimension = my estimator−>getDimension ( ) ;

//Evaluate the KDE at i t ’ s own samples
f l o a t ∗ r e s u l t = ( f l o a t ∗) mal loc ( s i z e o f ( f l o a t ) ∗

num samples ) ;
my estimator−>evaluateKDE ( r e s u l t ) ;

/∗The MLCV sco r e i s the average l og l i k e l i h o o d o f the
KDE’ s with the i t h sample removed , eva luated at the i t h
sample . We eva luate the KDE at a l l o f i t ’ s samples and
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subt rac t K(0) which i s equ iva l en t .
∗/
f l o a t s co r e = 0 ;
f o r ( unsigned i n t idx = 0 ; idx < num samples ; ++idx ) {

s co r e −= log ( ( num samples /( num samples−1))∗ r e s u l t [ idx ] −
pow ( . 7 5 , dimension ) / ( ( num samples−1)∗
pow(x [ 0 ] , dimension ) ) ) ;

}
s co r e /= num samples ;
f r e e ( r e s u l t ) ;
r e turn ( double ) s co r e ;

}

void Kerne lDens i tyEst imator : :
calculateSampleMean ( f l o a t ∗ r e s u l t , bool r e tu rnResu l t )
{

/∗We only compute the sample mean once and s t o r e the r e s u l t
on the dev i c e . The sample mean i s computed by tak ing the
samples arranged in column major order and tak ing the
matrix−vec to r product with a vec to r o f a l l ones and
normal i z ing the r e s u l t .

I f the samples are s to r ed column major in a matrix X then
the sample mean i s computed by \bar{x} = (1/N)X∗1 , where
1 i s the vec to r o f l ength dimension with a one in each
entry .

∗/

i f ( ! sampleMeanComputed ) {
//There must be a be t t e r way to do t h i s .
f l o a t ∗ ones = ( f l o a t ∗) mal loc ( num samples∗

s i z e o f ( f l o a t ) ) ;
f o r ( unsigned i n t idx = 0 ; idx < num samples ; ++idx ) {

ones [ idx ] = 1 ;
}
f l o a t ∗ d ones ;
cudaMalloc ( ( void ∗∗) &d ones , num samples∗

s i z e o f ( f l o a t ) ) ;
cudaMemcpy( d ones ,

ones ,
num samples∗ s i z e o f ( f l o a t ) ,
cudaMemcpyHostToDevice ) ;

cudaMalloc ( ( void ∗∗) &d mean , dimension∗ s i z e o f ( f l o a t ) ) ;
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//See the cuda b la s documentation . This does the MV
// product d i s cu s s ed above .
cublasSgemv ( ’N’ ,

dimension ,
num samples ,
1/( f l o a t ) num samples ,
d samples ,
samp le s p i t ch / s i z e o f ( f l o a t ) ,
d ones ,
1 ,
0 . 0 ,
d mean ,
1 ) ;

sampleMeanComputed = true ;
f r e e ( ones ) ;
cudaFree ( d ones ) ;

}

//Sometimes you j u s t need the mean on the dev i c e and don ’ t
//need i t passed back .
// Set r e tu rnResu l t to f a l s e i f you don ’ t need the r e s u l t
// to be passed back to the host .
i f ( r e tu rnResu l t ) {
cudaMemcpy( r e su l t ,

d mean ,
dimension∗ s i z e o f ( f l o a t ) ,
cudaMemcpyDeviceToHost ) ;

}

}

void Kerne lDens i tyEst imator : :
ca l cu lateSampleCovar iance ( f l o a t ∗ r e s u l t ,

const bool r e tu rnResu l t )
{

/∗We only compute the sample covar i ance once and s t o r e the
r e s u l t on the dev i c e .

I f the samples are s to r ed column major in a matrix X then
the sample covar i ance i s computed in three s t ep s .
F i r s t : The data i s mean normal ized . This i s accompl ished
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with the rank one update X = X − \bar{x}∗1ˆ t , where
\bar{x} i s the sample mean vec to r and 1ˆ t i s a vec to r o f
a l l ones . Second : The covar i ance i s computed as a rank−k
update C = (1/ num samples−1)X∗Xˆ t .
Third : The data i s un−normal ized .

X = X + \bar{x}∗1ˆ t
∗/

i f ( ! sampleCovComputed ) {
f l o a t ∗ ones = ( f l o a t ∗) mal loc ( num samples∗

s i z e o f ( f l o a t ) ) ;
f o r ( unsigned i n t idx = 0 ; idx < num samples ; ++idx ) {

ones [ idx ] = 1 ;
}

// F i r s t we need to mean normal ize the data . I f the data
// i s s to r ed column major , mean normal i z ing i s the rank
// one update samples = samples − sample mean∗ones .

f l o a t ∗ d ones ;
cudaMalloc ( ( void ∗∗) &d ones , num samples∗

s i z e o f ( f l o a t ) ) ;
cudaMemcpy( d ones ,

ones ,
num samples∗ s i z e o f ( f l o a t ) ,
cudaMemcpyHostToDevice ) ;

// I f we haven ’ t done the sample mean yet compute i t and
// l eave the r e s u l t on the dev i c e .
i f ( ! sampleMeanComputed ) {

calculateSampleMean (NULL, f a l s e ) ;
}

// Mean normal ize the data . Rank−1 update .
cub la sSger ( dimension ,

num samples ,
−1.0 ,
d mean ,
1 ,
d ones ,
1 ,
d samples ,
samp le s p i t ch / s i z e o f ( f l o a t ) ) ;

//The covar i ance matrix i s
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//1/(n−1)∗\sum ( samples − mean )∗ ( samples−mean)ˆT
//Which i s j u s t a rank k update .
f l o a t ∗ C;
s i z e t cov p i t ch ;
cudaMallocPitch ( ( void ∗∗) &C,

&cov p i tch ,
dimension∗ s i z e o f ( f l o a t ) ,
dimension ) ;

cub lasSsyrk ( ’ l ’ ,
’N’ ,
dimension ,
num samples ,
1 . 0 / ( num samples − 1) ,
d samples ,
samp le s p i t ch / s i z e o f ( f l o a t ) ,
0 . 0 ,
C,
cov p i t ch / s i z e o f ( f l o a t ) ) ;

//Unnormalize the data .
cub la sSger ( dimension ,

num samples ,
1 . 0 ,
d mean ,
1 ,
d ones ,
1 ,
d samples ,
samp le s p i t ch / s i z e o f ( f l o a t ) ) ;

//We s t o r e the symmetric C as a vec to r only s t o r i n g the
//Upper t r i a n g l e as a f l a t t e n e d array in row major order .

cudaMalloc ( ( void ∗∗) &d cov ,
s i z e o f ( f l o a t )∗ ( dimension )∗ ( dimension+1)/2 ) ;

unsigned i n t l o c a t i o n = 0 ;
f o r ( unsigned i n t i = 0 ; i < dimension ; ++i ) {

cudaMemcpy( &d cov [ l o c a t i o n ] ,
&C[ i ∗ cov p i t ch / s i z e o f ( f l o a t ) + i ] ,
s i z e o f ( f l o a t )∗ ( dimension−i ) ,
cudaMemcpyDeviceToDevice ) ;

l o c a t i o n += dimension−i ;
}
f r e e ( ones ) ;
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cudaFree ( d ones ) ;
cudaFree (C) ;

}
i f ( r e tu rnResu l t ) {
cudaMemcpy( r e su l t ,

d cov ,
s i z e o f ( f l o a t )∗ ( dimension )∗ ( dimension+1)/2 ,
cudaMemcpyDeviceToHost ) ;

}
}

g l o b a l void KDE cuda kernel ( const f l o a t ∗ t a rge t s ,
const unsigned i n t dimension ,
const unsigned i n t num targets ,
const s i z e t t a r g e t s p i t c h ,
const f l o a t ∗ samples ,
const unsigned i n t num samples ,
const s i z e t samples p i tch ,
const f l o a t bandwidth ,
f l o a t ∗ r e s u l t )

{
/∗∗Shared array f o r s t o r i n g the samples needed by a s i n g l e

thread block .
∗/
extern s h a r e d f l o a t sampleSub [ ] ;

//Get the block i n d i c e s and thread i n d i c e s
const i n t mySampleBlock = blockIdx . x ;
const i n t myTargetBlock = blockIdx . y ;
const i n t mySample = threadIdx . x ;
const i n t myTarget = threadIdx . y ;

//The g l oba l index o f the sample and ta r g e t f o r t h i s
// thread .
const i n t global sample num = BLOCK SIZE∗mySampleBlock +

mySample ;
const i n t g loba l ta rge t num = BLOCK SIZE∗myTargetBlock +

myTarget ;

i n t num samples th i s b lock ;
i n t num ta rg e t s th i s b l o ck ;
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//Check to see i f we ’ re dea l i ng with a f u l l b lock o f
// samples and a f u l l b lock o f t a r g e t s . The l a s t b lock in
// each dimension may not be f u l l i f num samples or
// num targets doesn ’ t d i v i d e BLOCK SIZE .
i f ( b lockIdx . x ==

c e i l f ( num samples /( f l o a t ) BLOCK SIZE) − 1 ) {
num samples th i s b lock =

( ( num samples % BLOCK SIZE) == 0 ) ?
BLOCK SIZE : num samples%BLOCK SIZE ;

} e l s e num samples th i s b lock = BLOCK SIZE ;

i f ( b lockIdx . y ==
c e i l f ( num targets /( f l o a t ) BLOCK SIZE) − 1 ) {

num ta rg e t s th i s b l o ck =
( ( num targets % BLOCK SIZE) == 0 ) ?
BLOCK SIZE : num targets%BLOCK SIZE ;

} e l s e num ta rg e t s th i s b l o ck = BLOCK SIZE ;

// F i r s t we want to download the samples and t a r g e t s needed
// by t h i s b lock from g l oba l memory to shared memory .
f l o a t ∗ targetSub =

( f l o a t ∗) &sampleSub [ num samples th i s b lock ∗dimension ] ;
f l o a t ∗ r e su l tSha r ed =

( f l o a t ∗) &targetSub [ num ta rg e t s th i s b l o ck ∗dimension ] ;

//The d iagona l threads in each block get t h e i r sample and
// t a r g e t from g l oba l memory and p lace them in shared
//memory .
i f ( mySample == myTarget ) { //Load samples and t a r g e t s

// in to shared memory .
r e su l tSha r ed [ myTarget ] = 0 ;
i f ( g lobal sample num < num samples ) {

const f l o a t ∗ sample = samples +
global sample num∗
samp le s p i t ch / s i z e o f ( f l o a t ) ;

f o r ( i n t idx = 0 ; idx < dimension ; ++idx ) {
sampleSub [ dimension∗mySample + idx ] = sample [ idx ] ;

}
}

i f ( g l oba l ta rge t num < num targets ) {
const f l o a t ∗ t a r g e t = t a r g e t s +

g loba l ta rge t num ∗
t a r g e t s p i t c h / s i z e o f ( f l o a t ) ;
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f o r ( i n t idx = 0 ; idx < dimension ; ++idx ) {
targetSub [ dimension∗myTarget + idx ] = ta r g e t [ idx ] ;

}
}

}

//Make sure everyth ing i s in shared memory be f o r e moving
// forward .

sync th r ead s ( ) ;

//Each thread computes K( target−sample/bandwidth
// I f we ’ re in the l a s t block , past the
//end o f the samples or ta rge t s , don ’ t
//do anything .
i f ( g lobal sample num < num samples &&

globa l ta rge t num < num targets ) {

f l o a t l o c a l r e s u l t = 1 ;

f l o a t ∗ sample = &(sampleSub [ mySample∗dimension ] ) ;
f l o a t ∗ t a r g e t = &(targetSub [ myTarget∗dimension ] ) ;
f o r ( i n t idx = 0 ; idx < dimension ; ++idx ) {

f l o a t u = ( t a r g e t [ idx ] − sample [ idx ] ) / bandwidth ;
l o c a l r e s u l t ∗= ( f a b s f (u) < 1) ? .75∗(1−u∗u) : 0 ;

}

l o c a l r e s u l t ∗=
1/( num samples∗powf ( bandwidth , ( f l o a t ) dimension ) ) ;

//Add t h i s r e s u l t to a l o c a l accumulat ion .
atomicAdd(&re su l tSha r ed [ myTarget ] , l o c a l r e s u l t ) ;

s ync th r ead s ( ) ;

//Once everyone i s f i n i s h e d add the r e s u l t s from th i s
// block to the r e s u l t .
i f ( threadIdx . x == 0) {

atomicAdd(& r e s u l t [ g l oba l ta rge t num ] ,
r e su l tSha r ed [ myTarget ] ) ;

}
//End Kernel

}
}
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A.2 Cuda adaptive collocation code

The CUDA C code that performs adaptive collocation is contained in the files

LocallyRefinableDriver.hpp and LocallyRefinableDriver.cu.

/∗∗
∗ @f i l e Loca lRe f inab l eDr ive r . hpp
∗ @author Chr i s topher M i l l e r <cmiller@math .umd. edu>
∗ @version 1 .0
∗ @sect ion LICENSE
∗ CudaKDE: Cuda code f o r the eva lua t i on o f k e rne l dens i ty
∗ e s t imate s
∗ Copyright ( c ) 2011 , Chr i s topher M i l l e r .
∗ This so f tware i s d i s t r i b u t e d under the GNU Lesse r General
∗ Publ ic L i cense V3 . For more in format ion , s e e the README
∗ f i l e in the top CudaKDE d i r e c t o r y .
∗
∗ @br ie f Class d e f i n i t i o n s f o r the Loca lRe f inab l eDr ive r
∗ c l a s s .
∗ @sect ion DESCRIPTION
∗
∗ The Loca lRe f inab l eDr ive r c l a s s computes the h i e r a r c h i c a l
∗ i n t e r p o l an t de s c r ib ed in X. Ma and N. Zabaras . ”An adapt ive
∗ h i e r a r c h i c a l spa r s e g r i d c o l l o c a t i o n a lgor i thm f o r the
∗ s o l u t i o n o f s t o c h a s t i c d i f f e r e n t i a l equat ions ” .
∗/

#i f n d e f LOCALREFINABLEDRIVER HPP
#de f i n e LOCALREFINABLEDRIVER HPP

#inc lude ” cub las . h”
#inc lude <iostream>
#de f i n e BLOCK SIZE 16

/// Class f o r eva lua t ing h i e r a r c h i c a l i n t e r p o l a n t s .
namespace cudaCol loc{

c l a s s CudaApproximationGrid{
pub l i c :

/// Defau l t c on s t ru c to r .
/∗∗
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@param input dim The dimension o f the parameter
space .

@param output dim The dimension o f the s o l u t i o n .
@param max num points The maximum number o f po in t s to

be used in con s t ru c t i ng the i n t e r p o l an t .
@param endpoints A array o f l ength 2∗ input dim .

I n t e r p o l a t i o n i s performed on
[ endpoints [ 0 ] , endpoints [ 1 ] ] X
[ endpoints [ 2 ] , endpoints [ 3 ] ] . . .

∗∗/
CudaApproximationGrid ( const unsigned i n t input dim ,

const unsigned i n t output dim ,
const unsigned i n t max num points ,
f l o a t const ∗ endpoints ) ;

/// Dest ructor
˜CudaApproximationGrid ( ) ;

/// Adds a new l e v e l to the h i e r a r c h i c a l i n t e r p o l an t .
/∗∗ Trans f e r s a s e t o f new func t i on va lue s and mult i

i n d i c e s to the CUDA dev i ce . Ca l l s
computeNewSurpluses ( ) to update the h i e r a r c h i c a l
su rp lu s array .
@param num new points The number o f new c o l l o c a t i o n

po in t s
@param new l ev e l s An array o f s i z e input dim∗

num new points that s p e c i f i e s the l e v e l
multi−i n d i c e s f o r the new po in t s .

@param new indexes An array o f s i z e input dim∗
num new points that s p e c i f i e s the index
multi−i n d i c e s f o r the new po in t s .

@param new values An array o f s i z e num new points∗
output dimension that conta in s the func t i on value
at the new c o l l o c a t i o n po in t s .

∗/
void addLevel ( const unsigned i n t num new points ,

unsigned i n t const ∗ new leve l s ,
unsigned i n t const ∗ new indexes ,
f l o a t const ∗ new values ) ;

///Computes the va lue o f the h i e r a r c h i c a l i n t e r p o l an t .
/∗∗ @param x An array o f s i z e num evals∗ input dim .

@param num evals The number o f po in t s where the
i n t e r p o l an t i s eva luated .

@param y An array o f s i z e num evals∗output dim to
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s t o r e the r e s u l t .
∗/
void ge t In t e rpo lantVa lue ( f l o a t const ∗ x ,

const unsigned i n t num evals ,
f l o a t ∗ y ) ;

///Returns the output dim .
unsigned i n t getOutputDim ( ) ;

///Computes the norm o f the h i e r a r c h i c a l s u rp l u s e s .
/∗∗ @param Norms an array o f s i z e stop−s t a r t+1 to s t o r e

the norms .
@param s t a r t the index o f the f i r s t c o l l o c a t i o n po int

to compute the norm o f .
@param stop the index o f the l a s t c o l l o c a t i o n po int

to compute the norm o f .
∗/
void normSurpluses ( f l o a t ∗ norms ,

const unsigned i n t s ta r t ,
const unsigned i n t stop ) ;

p r i va t e :

///Computes a new s e t o f h i e r a r c h i c a l s u rp l u s e s .
/∗∗ @param num new points The number o f po in t s added to

the g r id by addLevel ( ) .
∗/
void computeNewSurpluses ( const unsigned i n t

num new points ) ;

unsigned i n t input dim ;
unsigned i n t output dim ;
unsigned i n t max num points ;
i n t c u r r e n t l e v e l ;
unsigned i n t num current po ints ;

///Device array to s t o r e the endpoints o f i n t e r p o l a t i o n .
f l o a t ∗ d endpo ints ;

/// Pitched dev i ce array to s t o r e the h i e r a r c h i c a l
/// su rp l u s e s .
f l o a t ∗ d su rp l u s e s ;
s i z e t s u r p l u s p i t c h ;

/// Pitched dev i ce array to s t o r e the l e v e l multi−i ndexes .
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unsigned i n t ∗ d l e v e l s ;
s i z e t l e v e l s p i t c h ;

/// Pitched dev i ce array to s t o r e the index multi−i ndexes .
unsigned i n t ∗ d indexes ;
s i z e t i nd ex e s p i t ch ;

} ;
}

///Kernel f o r computing the h i e r a r c h i c a l b a s i s at an
/// a rb i t r a r y po int s e t .
/∗∗ @param x An array o f s i z e input dim∗num evals .

@param x p i t ch The p i t ch s i z e in bytes o f x
@param num evals The number o f eva lua t i on po in t s
@param dimension Equal to input dim
@param l e v e l s An array o f s i z e tota l num pts ∗dimension .
@param l e v e l s p i t c h The p i t ch s i z e in bytes o f l e v e l s .
@param indexes An array o f s i z e tota l num pts ∗dimension .
@param index e s p i t ch The p i t ch s i z e in bytes o f indexes .
@param tota l num pts The number o f c o l l o c a t i o n po in t s .
@param endpoints An array o f s i z e dimension ∗2
@param va lu e p i t ch The p i t ch s i z e in bytes o f va lue .
@param value An array o f s i z e tota l num pts ∗num evals .

∗/
g l o b a l void cuda compute bas i s va l s
( f l o a t const ∗ x , const s i z e t x p i tch ,
const unsigned i n t num evals , const unsigned i n t dimension ,
unsigned i n t const ∗ l e v e l s , const s i z e t l e v e l s p i t c h ,
unsigned i n t const ∗ indexes , const s i z e t i ndexe s p i t ch ,
const unsigned i n t tota l num pts , f l o a t const ∗ endpoints ,
const s i z e t va lue p i t ch , f l o a t ∗ value ) ;

///Kernel f o r computing the h i e r a r c h i c a l b a s i s at a new s e t
/// o f c o l l o c a t i o n po in t s .
/∗∗ Computes the h i e r a r c h i c a l b a s i s f un c t i on s a s s o c i a t ed with

the po in t s de f i n ed by
[ l e v e l s [ 0 : num old points −1 , : ] ,
i ndexes [ 0 : num old points −1 , : ]

at the new c o l l o c a t i o n po in t s de f i n ed by
[ l e v e l s [ num old points : num old points+num new points −1 , : ] ,

i ndexes [ num old points : num old points+num new points − 1 , : ] ] .
/∗∗ @param num new points The number o f new c o l l o c a t i o n

po in t s .
@param num old points The number o f o ld c o l l o c a t i o n
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po in t s .
@param dimension Equal to input dim
@param l e v e l s An array o f s i z e tota l num pts ∗dimension .
@param l e v e l s p i t c h The p i t ch s i z e in bytes o f l e v e l s .
@param indexes An array o f s i z e tota l num pts ∗dimension .
@param index e s p i t ch The p i t ch s i z e in bytes o f indexes .
@param tota l num pts The number o f c o l l o c a t i o n po in t s .
@param endpoints An array o f s i z e dimension ∗2
@param va lu e p i t ch The p i t ch s i z e in bytes o f va lue .
@param value An array o f s i z e tota l num pts ∗num evals .

∗/
g l o b a l void cuda compute bas i s va l s
( const unsigned i n t num new pts ,
const unsigned i n t num old pts ,
const unsigned i n t dimension ,
unsigned i n t const ∗ l e v e l s , const s i z e t l e v e l s p i t c h ,
unsigned i n t const ∗ indexes , const s i z e t i ndexe s p i t ch ,
f l o a t const ∗ endpoints , const s i z e t va lue p i t ch ,
f l o a t ∗ value ) ;

///Device func t i on that computes aˆ i j ( x ) .
d e v i c e f l o a t cuda 1D bas i s eva lua t i on
( const f l o a t x , const unsigned i n t l e v e l ,
const unsigned i n t index , const f l o a t l e f t ,
const f l o a t r i ght , const bool useDer ivs ) ;

#end i f

/∗∗
∗ @f i l e Loca lRe f inab l eDr ive r . cpp
∗ @author Chr i s topher M i l l e r <cmiller@math .umd. edu>
∗ @version 1 .0
∗ @sect ion LICENSE
∗ CudaKDE: Cuda code f o r the eva lua t i on o f k e rne l dens i ty
∗ e s t imate s
∗ Copyright ( c ) 2011 , Chr i s topher M i l l e r .
∗ This so f tware i s d i s t r i b u t e d under the GNU Lesse r General
∗ Publ ic L i cense V3 . For more in format ion , s e e the README
∗ f i l e in the top CudaKDE d i r e c t o r y .
∗
∗ @br ie f Implementation f o r the Loca lRe f inab l eDr ive r c l a s s .
∗ @sect ion DESCRIPTION
∗
∗/
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#inc lude ” Loca lRe f inab l eDr ive r . hpp”

us ing namespace cudaCol loc ;

CudaApproximationGrid : :
CudaApproximationGrid ( const unsigned i n t input dim ,

const unsigned i n t output dim ,
const unsigned i n t max num points ,
f l o a t const ∗ endpoints ) :

input dim ( input dim ) ,
output dim ( output dim ) ,
max num points ( max num points ) ,
c u r r e n t l e v e l ( 0 ) ,
num current po ints (0 )

{

cudaMalloc ( ( void ∗∗) &d endpoints ,
2∗ input dim∗ s i z e o f ( f l o a t ) ) ;

cudaMemcpy( d endpoints , endpoints ,
2∗ input dim∗ s i z e o f ( f l o a t ) ,
cudaMemcpyHostToDevice ) ;

cudaMallocPitch ( ( void ∗∗) &d surp lu s e s ,
&su rp lu s p i t ch ,
output dim∗ s i z e o f ( f l o a t ∗ ) ,
max num points ) ;

cudaMallocPitch ( ( void ∗∗) &d l e v e l s , &l e v e l s p i t c h ,
input dim∗ s i z e o f ( unsigned i n t ∗ ) ,
max num points ) ;

cudaMallocPitch ( ( void ∗∗) &d indexes , &indexe s p i t ch ,
input dim∗ s i z e o f ( unsigned i n t ∗ ) ,
max num points ) ;

}

CudaApproximationGrid : :
˜CudaApproximationGrid ( )
{

cudaFree ( d endpo ints ) ;
cudaFree ( d su rp l u s e s ) ;
cudaFree ( d l e v e l s ) ;
cudaFree ( d indexes ) ;
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}

void CudaApproximationGrid : :
addLevel ( const unsigned i n t num new points ,

unsigned i n t const ∗ new leve l s ,
unsigned i n t const ∗ new indexes ,
f l o a t const ∗ new values )

{
i f ( num current po ints + num new points > max num points ){

throw std : : except ion ( ) ;
} e l s e {

cudaError t my error =
cudaMemcpy2D(&( d su rp l u s e s [ num current po ints ∗

s u r p l u s p i t c h /
s i z e o f ( f l o a t ) ] ) ,

s u rp l u s p i t ch ,
new values ,
output dim∗ s i z e o f ( f l o a t ) ,
output dim∗ s i z e o f ( f l o a t ) ,
num new points ,
cudaMemcpyHostToDevice ) ;

cudaMemcpy2D(&( d l e v e l s [ num current po ints ∗
l e v e l s p i t c h /
s i z e o f ( unsigned i n t ) ] ) ,

l e v e l s p i t c h ,
new leve l s ,
input dim∗ s i z e o f ( f l o a t ) ,
input dim∗ s i z e o f ( f l o a t ) ,
num new points ,
cudaMemcpyHostToDevice ) ;

cudaMemcpy2D(&( d indexes [ num current po ints ∗
i nd ex e s p i t ch /
s i z e o f ( unsigned i n t ) ] ) ,

i ndexe s p i t ch ,
new indexes ,
input dim∗ s i z e o f ( f l o a t ) ,
input dim∗ s i z e o f ( f l o a t ) ,
num new points ,
cudaMemcpyHostToDevice ) ;

th i s−>computeNewSurpluses ( num new points ) ;
num current po ints += num new points ;
++cu r r e n t l e v e l ;

} // end i f
}
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unsigned i n t CudaApproximationGrid : : getOutputDim ( )
{

r e turn output dim ;
}

void CudaApproximationGrid : :
computeNewSurpluses ( const unsigned i n t num new points )
{

i f ( num current po ints != 0){
// A l l o ca t e memory f o r the matrix conta in ing ba s i s
// func t i on eva lua t i on s .
f l o a t ∗ phi ;
s i z e t ph i p i t ch ;
cudaMallocPitch ( ( void ∗∗) &phi ,

&ph i p i t ch ,
num current po ints ∗ s i z e o f ( f l o a t ) ,
num new points ) ;

dim3 dimBlock (BLOCK SIZE,BLOCK SIZE ) ;
dim3 dimGrid ( c e i l ( num current po ints /( f l o a t ) BLOCK SIZE) ,

c e i l ( num new points /( f l o a t ) BLOCK SIZE ) ) ;
s i z e t shared mem size =

( s i z e o f ( unsigned i n t )∗ (2∗ input dim∗BLOCK SIZE) +
s i z e o f ( f l o a t )∗ input dim∗BLOCK SIZE ) ;

// Ca l l the CUDA kerne l to eva luate the o ld ba s i s
// f unc t i on s at the new po in t s
cuda compute bas i s va l s
<<<dimGrid , dimBlock , shared mem size+10000>>>
( num new points , num current points , input dim ,
d l e v e l s , l e v e l s p i t c h , d indexes , i ndexe s p i t ch ,
d endpoints , ph i p i t ch , phi ) ;

// Ca l l the CUDAblas func t i on to update the matrix o f s u rp l u s e s .
cublasSgemm ( ’ n ’ ,

’n ’ ,
output dim ,
num new points ,
num current points ,
−1.0 ,
d su rp lu s e s ,
s u r p l u s p i t c h / s i z e o f ( f l o a t ) ,
phi ,
ph i p i t ch / s i z e o f ( f l o a t ) ,
1 . 0 ,
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&(d su rp l u s e s [ num current po ints ∗
s u r p l u s p i t c h / s i z e o f ( f l o a t ) ] ) ,

s u r p l u s p i t c h / s i z e o f ( f l o a t ) ) ;
cudaFree ( phi ) ;

} // end i f
} //end computeNewSurpluses

void CudaApproximationGrid : :
g e t In t e rpo lantVa lue ( f l o a t const ∗ x ,

const unsigned i n t num evals ,
f l o a t ∗ y )

{
// A l l o ca t e memory f o r the matrix conta in ing ba s i s f unc t i on
// eva lua t i on s .
f l o a t ∗ phi ;
s i z e t ph i p i t ch ;
cudaMallocPitch ( ( void ∗∗) &phi ,

&ph i p i t ch ,
num current po ints ∗ s i z e o f ( f l o a t ) ,
num evals ) ;

// Trans fe r the t a r g e t s from the host to the dev i c e
f l o a t ∗ d x ;
s i z e t x p i t ch ;
cudaMallocPitch ( ( void ∗∗) &d x ,

&x pi tch ,
input dim∗ s i z e o f ( f l o a t ) ,
num evals ) ;

cudaMemcpy2D( d x ,
x p i tch ,
x ,
input dim∗ s i z e o f ( f l o a t ) ,
input dim∗ s i z e o f ( f l o a t ) ,
num evals ,
cudaMemcpyHostToDevice ) ;

// Run the CUDA kerne l to compute the ba s i s va lue s at the
// reques ted l o c a t i o n s .
dim3 dimBlock (BLOCK SIZE,BLOCK SIZE ) ;
dim3 dimGrid ( c e i l ( num current po ints /( f l o a t ) BLOCK SIZE) ,

c e i l ( num evals /( f l o a t ) BLOCK SIZE ) ) ;
s i z e t shared mem size = ( s i z e o f ( unsigned i n t )∗

(2∗ input dim∗BLOCK SIZE) +
s i z e o f ( f l o a t )∗
( input dim∗BLOCK SIZE ) ) ;
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cuda compute bas i s va l s
<<<dimGrid , dimBlock , shared mem size+10000>>>(d x ,

x p i tch ,
num evals ,
input dim ,
d l e v e l s ,
l e v e l s p i t c h ,
d indexes ,
i ndexe s p i t ch ,
num current points ,
d endpoints ,
ph i p i t ch ,
phi ) ;

f l o a t ∗ d va lue ;
s i z e t va l u e p i t ch ;
cudaMallocPitch(&d value ,

&va lue p i t ch ,
output dim∗ s i z e o f ( f l o a t ) ,
num evals ) ;

//Compute the i n t e r p o l an t va lue s .
cublasSgemm ( ’ n ’ ,

’n ’ ,
output dim ,
num evals ,
num current points ,
1 . 0 ,
d su rp lu s e s ,
s u r p l u s p i t c h / s i z e o f ( f l o a t ) ,
phi ,
ph i p i t ch / s i z e o f ( f l o a t ) ,
0 . 0 ,
d value ,
v a l u e p i t ch / s i z e o f ( f l o a t ) ) ;

//Return the r e s u l t to the user .
cudaMemcpy2D(y ,

output dim∗ s i z e o f ( f l o a t ) ,
d value ,
va lue p i t ch ,
output dim∗ s i z e o f ( f l o a t ) ,
num evals ,
cudaMemcpyDeviceToHost ) ;
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cudaFree ( phi ) ;
} //end ge t In t e rpo lantVa lue

void CudaApproximationGrid : :
normSurpluses ( f l o a t ∗ norms , const unsigned i n t s ta r t ,

const unsigned i n t stop )
{

f o r ( unsigned i n t idx = s t a r t ; idx <= stop ; ++idx ) {
norms [ idx−s t a r t ] =

cublasSnrm2 ( output dim ,
&(d su rp l u s e s [ idx ∗ s u r p l u s p i t c h /

s i z e o f ( f l o a t ) ] ) , 1 ) ;
}

}

g l o b a l void cuda compute bas i s va l s
( const unsigned i n t num new pts ,
const unsigned i n t num old pts , const unsigned i n t dimension ,
unsigned i n t const ∗ l e v e l s , const s i z e t l e v e l s p i t c h ,
unsigned i n t const ∗ indexes , const s i z e t i ndexe s p i t ch ,
f l o a t const ∗ endpoints , const s i z e t va lue p i t ch ,
f l o a t ∗ value )

{
extern s h a r e d unsigned i n t co l l o cLv lShar ed [ ] ;
const i n t myCollocBlock = blockIdx . x ;
const i n t myTargetBlock = blockIdx . y ;
const i n t myCollocPt = threadIdx . x ;
const i n t myTarget = threadIdx . y ;

const unsigned i n t g l o b a l c o l l o c i d x =
myCollocPt + myCollocBlock∗BLOCK SIZE ;

const unsigned i n t g l o b a l t a r g e t i d x =
myTarget + myTargetBlock∗BLOCK SIZE ;

const i n t num co l l o cP t s th i s b l o ck =
( myCollocBlock ==

c e i l f ( num old pts /( f l o a t ) BLOCK SIZE) − 1 )?
( ( ( num old pts % BLOCK SIZE) == 0 ) ? BLOCK SIZE :

num old pts%BLOCK SIZE) :
BLOCK SIZE ;

const i n t num tg t s th i s b l o ck =
( myTargetBlock ==

c e i l f ( num new pts /( f l o a t ) BLOCK SIZE) − 1 )?
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( ( ( num new pts % BLOCK SIZE) == 0 ) ? BLOCK SIZE :
num new pts%BLOCK SIZE) :
BLOCK SIZE ;

//Get the r equ i r ed po in t s l e v e l , index , and t a r g e t s i n to
// shared .
unsigned i n t ∗ co l l o c IndexShared =

( unsigned i n t ∗) &co l l o cLv lShar ed [ dimension∗
num co l l o cP t s th i s b l o ck ] ;

f l o a t ∗ ta rge t sShared =
( f l o a t ∗) &co l l oc IndexShared [ dimension∗

num co l l o cP t s th i s b l o ck ] ;
i f ( myTarget == myCollocPt ) {

i f ( g l o b a l c o l l o c i d x < num old pts ) {
f o r ( i n t idx = 0 ; idx < dimension ; ++idx ){

co l l o cLv lShar ed [ dimension∗myCollocPt + idx ] =
l e v e l s [ g l o b a l c o l l o c i d x ∗ l e v e l s p i t c h /

s i z e o f ( unsigned i n t ) + idx ] ;
co l l o c IndexShared [ dimension∗myCollocPt + idx ] =

indexes [ g l o b a l c o l l o c i d x ∗ i nd ex e s p i t ch /
s i z e o f ( unsigned i n t ) + idx ] ;

}
}

i f ( g l o b a l t a r g e t i d x < num new pts ) {
const unsigned i n t t h i s t g t i n d e x =

num old pts + g l o b a l t a r g e t i d x ;
f o r ( i n t idx = 0 ; idx < dimension ; ++idx ) {

const unsigned i n t t h i s d im l e v e l =
l e v e l s [ t h i s t g t i n d e x ∗ l e v e l s p i t c h /

s i z e o f ( unsigned i n t ) + idx ] ;
const unsigned i n t th i s d im idx =

indexes [ t h i s t g t i n d e x ∗ i nd ex e s p i t ch /
s i z e o f ( unsigned i n t ) + idx ] ;

i f ( t h i s d im l e v e l == 1) {
ta rge t sShared [ myTarget∗dimension + idx ] =

. 5∗ ( endpoints [ 2∗ idx ] + endpoints [ 2∗ idx +1 ] ) ;
} e l s e i f ( t h i s d im l e v e l == 2) {

i f ( t h i s d im idx == 0)
targe t sShared [ myTarget∗dimension + idx ] =

endpoints [ 2∗ idx ] ;
e l s e ta rge t sShared [ myTarget∗dimension+idx ] =

endpoints [ 2∗ idx + 1 ] ;
} e l s e {

const f l o a t o f f s e t =
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( ( endpoints [ 2∗ idx ] + endpoints [ 2∗ idx + 1 ] ) / 2 . 0 −
endpoints [ 2∗ idx ] ) /
exp2f ( ( f l o a t ) t h i s d im l e v e l − 2 . 0 ) ;

ta rge t sShared [ myTarget∗dimension+idx ] =
endpoints [ 2∗ idx ] + o f f s e t + 2∗ o f f s e t ∗ t h i s d im idx ;

}
}

}
}

sync th r ead s ( ) ;

i f ( g l o b a l c o l l o c i d x < num old pts &&
g l o b a l t a r g e t i d x < num new pts ) {

f l o a t l o c a l r e s u l t = 1 ;
f l o a t const ∗ t a r g e t = &targe t sShared [ myTarget∗dimension ] ;
unsigned i n t const ∗ l e v e l =
&co l l o cLv lShar ed [ myCollocPt∗dimension ] ;

unsigned i n t const ∗ index =
&co l l oc IndexShared [ myCollocPt∗dimension ] ;

f o r ( i n t idx = 0 ; idx < dimension ; ++idx ) {
l o c a l r e s u l t ∗=

cuda 1D bas i s eva lua t i on ( t a r g e t [ idx ] ,
l e v e l [ idx ] ,
index [ idx ] ,
endpoints [ 2∗ idx ] ,
endpoints [ 2∗ idx + 1 ] ,
f a l s e ) ;

}
value [ g l o b a l t a r g e t i d x ∗ va l u e p i t ch / s i z e o f ( f l o a t ) +

g l o b a l c o l l o c i d x ] = l o c a l r e s u l t ;
}

}

g l o b a l void
cuda compute bas i s va l s
( f l o a t const ∗ x , const s i z e t x p i tch ,
const unsigned i n t num evals , const unsigned i n t dimension ,
unsigned i n t const ∗ l e v e l s , const s i z e t l e v e l s p i t c h ,
unsigned i n t const ∗ indexes , const s i z e t i ndexe s p i t ch ,
const unsigned i n t tota l num pts , f l o a t const ∗ endpoints ,
const s i z e t va lue p i t ch , f l o a t ∗ value )

{

const i n t myCollocBlock = blockIdx . x ;
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const i n t myTargetBlock = blockIdx . y ;
const i n t myCollocPt = threadIdx . x ;
const i n t myTarget = threadIdx . y ;

const unsigned i n t g l o b a l c o l l o c i d x =
myCollocPt + myCollocBlock∗BLOCK SIZE ;

const unsigned i n t g l o b a l t a r g e t i d x =
myTarget + myTargetBlock∗BLOCK SIZE ;

const i n t num co l l o cP t s th i s b l o ck =
( myCollocBlock ==

c e i l f ( to ta l num pts /( f l o a t ) BLOCK SIZE) − 1 )?
( ( ( tota l num pts % BLOCK SIZE) == 0 ) ? BLOCK SIZE :

tota l num pts%BLOCK SIZE) :
BLOCK SIZE ;

const i n t num tg t s th i s b l o ck =
( myTargetBlock ==

c e i l f ( num evals /( f l o a t ) BLOCK SIZE) − 1 )?
( ( ( num evals % BLOCK SIZE) == 0 ) ? BLOCK SIZE :

num evals%BLOCK SIZE) :
BLOCK SIZE ;

//Get the r equ i r ed po in t s l e v e l , index , and t a r g e t s i n to
// shared .
extern s h a r e d unsigned i n t co l l o cLv lShar ed [ ] ;
unsigned i n t ∗ co l l o c IndexShared =

( unsigned i n t ∗) &co l l o cLv lShar ed [ dimension∗
num co l l o cP t s th i s b l o ck ] ;

f l o a t ∗ ta rge t sShared =
( f l o a t ∗) &co l l oc IndexShared [ dimension∗

num co l l o cP t s th i s b l o ck ] ;
i f ( myTarget == myCollocPt ) {

i f ( g l o b a l c o l l o c i d x < to ta l num pts ) {
f o r ( i n t idx = 0 ; idx < dimension ; ++idx ){

co l l o cLv lShar ed [ dimension∗myCollocPt + idx ] =
l e v e l s [ g l o b a l c o l l o c i d x ∗ l e v e l s p i t c h /

s i z e o f ( unsigned i n t ) + idx ] ;
co l l o c IndexShared [ dimension∗myCollocPt + idx ] =

indexes [ g l o b a l c o l l o c i d x ∗ i nd ex e s p i t ch /
s i z e o f ( unsigned i n t ) + idx ] ;

}
}

i f ( g l o b a l t a r g e t i d x < num evals ) {
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f o r ( i n t idx = 0 ; idx < dimension ; ++idx ) {
ta rge t sShared [ myTarget∗dimension + idx ] =

x [ g l o b a l t a r g e t i d x ∗ x p i t ch / s i z e o f ( f l o a t ) + idx ] ;
}

}
}

sync th r ead s ( ) ;

i f ( g l o b a l c o l l o c i d x < to ta l num pts &&
g l o b a l t a r g e t i d x < num evals ) {

f l o a t l o c a l r e s u l t = 1 ;
f l o a t const ∗ t a r g e t = &targe t sShared [ myTarget∗dimension ] ;
unsigned i n t const ∗ l e v e l =
&co l l o cLv lShar ed [ myCollocPt∗dimension ] ;

unsigned i n t const ∗ index =
&co l l oc IndexShared [ myCollocPt∗dimension ] ;

f o r ( i n t idx = 0 ; idx < dimension ; ++idx ) {
l o c a l r e s u l t ∗=

cuda 1D bas i s eva lua t i on ( t a r g e t [ idx ] ,
l e v e l [ idx ] ,
index [ idx ] ,
endpoints [ 2∗ idx ] ,
endpoints [ 2∗ idx + 1 ] ,
f a l s e ) ;

}
value [ g l o b a l t a r g e t i d x ∗ va l u e p i t ch / s i z e o f ( f l o a t ) +

g l o b a l c o l l o c i d x ] = l o c a l r e s u l t ;
} // end i f

}

d e v i c e f l o a t cuda 1D bas i s eva lua t i on
( const f l o a t x , const unsigned i n t l e v e l ,
const unsigned i n t index , const f l o a t l e f t , const f l o a t r i ght ,
const bool useDer ivs )

{
f l o a t midpoint = ( l e f t + r i gh t ) / 2 . 0 ;
i f ( ! useDer ivs ) {

i f ( l e v e l == 0) {
f l o a t ihateyou = 1/ f a b s f ( 0 ) ;

}
e l s e i f ( l e v e l == 1 ) {

i f ( x >= l e f t && x<= r i gh t ) re turn 1 . 0 ;
e l s e r e turn 0 . 0 ;

}
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e l s e i f ( l e v e l == 2 ) {
i f ( index == 0 ) {

i f ( x >= l e f t && x < midpoint )
re turn ( midpoint− x )/ ( midpoint − l e f t ) ;

e l s e r e turn 0 . 0 ;
} e l s e {

i f ( x> midpoint && x<= r i gh t ) {
r e turn (x − midpoint )/ ( r i ght−midpoint ) ;

} e l s e re turn 0 ;
}

}

e l s e {
const f l o a t o f f s e t = ( ( l e f t + r i gh t )/ 2 .0 − l e f t ) /

exp2f ( ( f l o a t ) l e v e l − 2 . 0 ) ;
const f l o a t l o c a t i o n = l e f t + o f f s e t + 2∗ o f f s e t ∗ index ;
const f l o a t l e f t s u p p o r t = l o c a t i o n − o f f s e t ;
const f l o a t r i gh t suppo r t = l o c a t i o n + o f f s e t ;
i f ( x > l e f t s u p p o r t && x <= lo c a t i o n ) {

r e turn (x − l e f t s u p p o r t )/ ( l o c a t i o n − l e f t s u p p o r t ) ;
} e l s e i f ( x > l o c a t i o n && x < r i gh t suppo r t ) {

r e turn ( r i gh t suppo r t − x )/
( r i gh t suppo r t − l o c a t i o n ) ;

} e l s e re turn 0 . 0 ;
}

}
r e turn 0 . 0 ;

}
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