
Abstract

Title of dissertation: A Neurocomputational Model of
Grounded Language Comprehension
and Production at the Sentence Level

Derek Monner, Doctor of Philosophy, 2011

Dissertation directed by: Professor James A. Reggia
Department of Computer Science

While symbolic and statistical approaches to natural language process-

ing have become undeniably impressive in recent years, such systems still

display a tendency to make errors that are inscrutable to human onlookers.

This disconnect with human processing may stem from the vast differences in

the substrates that underly natural language processing in artificial systems

versus biological systems.

To create a more relatable system, this dissertation turns to the more

biologically inspired substrate of neural networks, describing the design and

implementation of a model that learns to comprehend and produce language

at the sentence level. The model’s task is to ground simulated speech streams,

representing a simple subset of English, in terms of a virtual environment.

The model learns to understand and answer full-sentence questions about

the environment by mimicking the speech stream of another speaker, much

as a human language learner would. It is the only known neural model

to date that can learn to map natural language questions to full-sentence

natural language answers, where both question and answer are represented

sublexically as phoneme sequences.

The model addresses important points for which most other models,

neural and otherwise, fail to account. First, the model learns to ground its

linguistic knowledge using human-like sensory representations, gaining lan-

guage understanding at a deeper level than that of syntactic structure. Sec-

ond, analysis provides evidence that the model learns combinatorial internal

representations, thus gaining the compositionality of symbolic approaches to

cognition, which is vital for computationally efficient encoding and decod-

ing of meaning. The model does this while retaining the fully distributed

representations characteristic of neural networks, providing the resistance to

damage and graceful degradation that are generally lacking in symbolic and

statistical approaches. Finally, the model learns via direct imitation of an-

other speaker, allowing it to emulate human processing with greater fidelity,

thus increasing the relatability of its behavior.

Along the way, this dissertation develops a novel training algorithm

that, for the first time, requires only local computations to train arbitrary

second-order recurrent neural networks. This algorithm is evaluated on its

overall efficacy, biological feasibility, and ability to reproduce peculiarities of

human learning such as age-correlated effects in second language acquisition.

A Neurocomputational Model of

Grounded Language Comprehension

and Production at the Sentence Level

by
Derek Monner

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:

Professor James A. Reggia Committee Chair
Professor William J. Idsardi Dean’s Representative
Professor Dana S. Nau Committee Member
Professor Amy Weinberg Committee Member
Asst Professor William Rand Committee Member

c©
Derek Monner

2011

To my parents,
for the constant love and support,

car advice, and careful editing.

ii

Table of Contents

List of Tables v

List of Figures vi

1 Introduction and Rationale 1

2 Generalizing a Training Algorithm 18
2.1 Introduction . 18
2.2 LSTM . 23

2.2.1 Activation dynamics 29
2.2.2 Learning rules . 31

2.3 Generalized LSTM . 33
2.3.1 Activation dynamics 35
2.3.2 Learning rules . 37

2.4 Learning rule derivation . 41
2.5 LSTM as a special case of LSTM-g 46

2.5.1 State and activation equivalence 47
2.5.1.1 Gate units . 48
2.5.1.2 Output units 48
2.5.1.3 Memory cells 50

2.5.2 Weight change equivalence 51
2.5.2.1 Output units 51
2.5.2.2 Output gates 52
2.5.2.3 Memory cells 54
2.5.2.4 Forget gates 56
2.5.2.5 Input gates 58

2.6 Comparison of LSTM and LSTM-g 60
2.7 Experiments . 62

2.7.1 Distracted sequence recall, standard architecture 63
2.7.2 Distracted sequence recall, customized architecture . . 67
2.7.3 Language recognition, two-stage architecture 71

2.8 Discussion . 78

3 Modeling Critical Period Effects 80
3.1 Introduction . 80
3.2 Background . 84

3.2.1 Critical period effects 84
3.2.2 Grammatical gender 86
3.2.3 Memory development 88
3.2.4 Past computational modeling approaches 89

3.3 Methods . 92
3.3.1 Neural network methods 92
3.3.2 Development and network architecture 93

iii

3.4 Experiments and results . 97
3.4.1 Gender assignment task 97
3.4.2 Gender agreement task 111

3.5 Discussion . 120

4 Grounding Language in Vision 124
4.1 Introduction . 124
4.2 Methods . 130

4.2.1 Task description . 130
4.2.1.1 Visual input stream 131
4.2.1.2 Auditory input stream 135
4.2.1.3 Intention output stream 137
4.2.1.4 Example trial 140

4.2.2 Model description . 141
4.2.2.1 Network architecture 142

4.2.3 Levels of systematicity 145
4.2.4 Experimental evaluation 146

4.3 Results . 149
4.3.1 Systematicity . 149
4.3.2 Analysis . 151

4.4 Discussion . 161

5 Question Answering and Language Production 166
5.1 Introduction . 166
5.2 Background . 170
5.3 Methods . 174

5.3.1 Tasks . 176
5.3.2 Environment input . 178
5.3.3 Question input . 182
5.3.4 Answer output . 185
5.3.5 Neural architectures 188

5.4 Results . 190
5.4.1 The meaning-answer model 190
5.4.2 The spoken-answer model 199

5.5 Discussion . 208

6 Conclusion 211
6.1 Contributions . 211
6.2 Limitations and future work 215

iv

List of Tables

3.1 Binary Auditory Feature Representations of Phonemes 101

4.1 Binary Acoustic Features of Heard Phonemes 138

5.1 Binary Articulatory Features of Spoken Phonemes 187

v

List of Figures

2.1 Comparison of memory cell architectures 26
2.2 The standard LSTM architecture in layer form 28
2.3 LSTM-g vs. LSTM on the standard architecture 66
2.4 The gated and ungated recurrence architectures 69
2.5 Training duration required on distracted sequence recall 70
2.6 The two-stage architecture . 74
2.7 Fraction of correct predicates on language recognition 76
2.8 Training duration required on language recognition 77

3.1 Examples of gender agreement 87
3.2 The unit growth condition . 95
3.3 The unit replacement condition 96
3.4 The connection growth condition 98
3.5 Network architecture for the article-prediction model 102
3.6 Monolingual network assignment performance 104
3.7 Training schedule . 105
3.8 Values of t for assignment task 107
3.9 Bilingual network L1 assignment performance 108
3.10 Bilingual network L2 assignment performance 109
3.11 Determiners used in the gender agreement task. 112
3.12 Network architecture for the phoneme-prediction model 113
3.13 Monolingual network agreement performance 115
3.14 Values of t for agreement task 116
3.15 Bilingual network L1 agreement performance 117
3.16 Bilingual network L2 agreement performance 119

4.1 Overview of the grounded-meaning model 132
4.2 Examples of neural representations of visual objects 133
4.3 Grammar for generating sentences about the environment . . . 136
4.4 Examples of neural representations of output predicates 140
4.5 Example trial of the language grounding task 141
4.6 Network architecture of the grounded-meaning model 144
4.7 Final accuracy comparison between systematicity tests 150
4.8 Time-course of accuracy on language versus grounding 152
4.9 Clustering of words in auditory accumulation layer 154
4.10 Clustering of words in integration layer 155
4.11 Clustering of predicates partitioned by referent 156
4.12 Referent groups partitioned by predicate type 158
4.13 Predicate groups partitioned by referent 159

5.1 High-level overview of the question/answer models 175
5.2 Example of a micro-world environment 179
5.3 Neural representations of visual and meaning predicates 180

vi

5.4 Grammar used with the meaning-answer model 184
5.5 Network architecture of the meaning-answer model 189
5.6 Network architecture of the spoken-answer model 191
5.7 Three types of accuracy as training progresses 193
5.8 What color? question representations by expected answer . . . 196
5.9 What size? question representations by expected answer . . . 198
5.10 What color/size? question representations by object number . 200
5.11 Grammar used with the spoken-answer model 201
5.12 Where? question representations by answer location 205
5.13 Where? question representations by answer color 206
5.14 Where? question representations by answer shape 207

vii

Chapter 1

Introduction and Rationale

Symbolic and statistical approaches currently dominate the field of nat-

ural language processing. Systems based on these approaches have made

exciting progress recently, utilizing ever-larger corpora and ever-more com-

putational resources to attempt to automatically make sense of the wealth

of speech and text data that exists in the world, digitally and otherwise.

One recent and well-known example is Watson, IBM’s question-answering

system designed to play the popular quiz show Jeopardy! (Ferrucci et al.,

2010). Watson famously bested some of the most skilled human competitors

in a series of televised games in February 2011. While question-answering

systems like Watson are undoubtedly impressive, they still frequently make

mistakes, and these errors are often baffling and inscrutable to onlookers.

For example, during one of Watson’s television appearances, the contestants

received the following clue: “The New Yorker ’s 1959 review of this said in

its brevity and clarity, it is ‘unlike most such manuals, a book as well as

a tool.’” Whereas a correct answer might have been “What is Elements of

Style?” Watson buzzed in first, responding “Who is Dorothy Parker?” A

human competitor would never give an answer like this, and indeed, the looks

of bewilderment on the faces of the competitors and the host were proof that

1

they could not follow whatever chain of logic had led Watson to generate its

reply. This anecdote, taken together with many other instances of incompre-

hensible answers, suggests that the strategies that systems like Watson use

are far different from those that humans employ.

Watson and its brethren generally base their skills on expansive cor-

pora that are preprocessed and compressed into an easily searchable knowl-

edge base. Human memory seems, on the surface, to be built on a sim-

ilar idea, with learners building their own content-addressable knowledge

bases populated by their life experiences. So why, then, do artificial sys-

tems make mistakes no human ever would—ones that humans cannot even

fathom? This dissociation may stem from the fact that artificial and natural

systems are built upon vastly different substrates. Most symbolic and statis-

tical approaches to language processing build upon the conceptual substrate

of modern computing machinery, in which the elementary operations include

storing information and retrieving perfect copies of said information. The

human mind, on the other hand, is built on the brain, which admits much

fuzzier conceptions of storage and retrieval. The brain’s stored memories

are routinely split, merged, altered, lost altogether, or even spuriously cre-

ated. While these may seem to be dire weaknesses of the brain’s approach to

memory, the inherently distributed, associative nature of this substrate may

confer benefits that cannot be achieved through other means. If the goal of

natural language processing is to create systems that function like humans,

and to which humans can readily relate, this warrants the investigation of

2

systems that more closely identify with what is known about the human

mind and brain.

The scientific community studies the human brain and mind at many

different levels of abstraction—from individual ion channels of neurons to

high-level cognitive processes, to the actions we take in the world. All of

these types of studies have their place, and cognitive scientists must strive

to eventually unite them vertically, with the lower-level explanations giving

rise to the next higher level, from voltage gradients and chemical messengers

all the way up to consciousness, intelligence, and behavior. This dissertation

focuses mainly on intermediate to high levels within this hierarchy. Specifi-

cally, the research presented here is concerned with the dynamics necessary

to turn a large collection of autonomous processors—neurons—into a cogni-

tive machine, capable of understanding and acting in the wider world. That

is the overarching theme, at least. At a more practical level, this dissertation

develops a model, based on a brain-like substrate, that attempts to imple-

ment those parts of a mind that learn to understand language, relate it to

the world, and produce it. The hypothesis is that this level of fidelity to

the human substrate of language processing will enable more relatable and

human-like models of language processing.

Understanding language, and how humans come to acquire and use it,

has been a unifying theme in the cognitive sciences, and is actively studied

at many levels in many different disciplines. Turing (1950) chose language

3

as the basis for his famous test for recognizing an artificial intelligence, due

in part to the fact that we humans use the same conversational criteria as a

part of our everyday judgments about the natural intelligence of our peers.

Though not everyone agrees that language ability is either a necessary or

sufficient condition for intelligence (e.g., Searle, 1980), language is widely

viewed as one of the faculties that sets human intelligence beyond others we

have so far encountered.

Theories of human language processing have been the subject of con-

siderable scientific work, as has the task of engineering an artificial system

capable of such processing. Though such work spans the scale of possible

abstraction levels, a great deal of it occurs as high-level psycholinguistic

theories describing how a cognitive-level language system could cause ob-

served behavioral phenomena. This research is often supplemented by work

that begins at the lower neural level and focuses on directly implementing

a specific cognitive-level theory. Much less work spans the two levels, map-

ping the neural level directly to behavior. This dissertation focuses on this

last category to discover what kinds of cognitive-level systems emerge when

a dynamical neural system learns to perform language tasks. Reasons for

studying language learning, and cognition in general, in this level-spanning

way include:

1. Observability of the building blocks. Neurons and neural networks

in human brains are becoming ever more observable as the pace of

4

innovation in neuroimaging accelerates and its spatial and temporal

resolutions increase. The goal is to understand how interconnected

networks of simple processing elements can create and maintain the

rich cognitive world that humans possess in a way that will, in the near

future, be directly verifiable.

2. Learnability of cognitive systems. Humans are not born with a fully

developed cognitive system, yet cognitive theories tend to focus on the

function of normal, or occasionally, impaired adult minds. Much psy-

chological and psycholinguistic research is concerned with how children

develop, but the explanations these studies provide are usually couched

in cognitive terms as well. While these are useful ways to approach the

problem, they do not often address the question of what these cogni-

tive systems are made of and how they come into being. Studying the

level below cognition provides the opportunity to observe how cogni-

tive systems emerge from learning, what forms they take under varying

conditions, and what constraints the neural substrate places upon their

formation.

3. Functionality and robustness to damage. Neural network modeling

provides a natural way to implement a theoretical system and compare

its functionality to that of a human. Though many theoretical systems

can be simulated directly at the cognitive level, such systems are often

brittle in ways that humans are not. Put another way, it is often

5

difficult to determine how one could damage a cognitive-level system

to produce observed human deficits. In a neural system, on the other

hand, the question is reduced to where to place the lesion, after which

behavior can be directly observed and compared to empirical human

data.

4. Referentiality of cognitive states to the world. Neural systems can

readily receive input from the world in the same ways that humans

do: through a grid of retinal cell activities for vision, a distribution

of frequency-based cochlear cell activations for audition, and so on.

Such a system can also be designed to act on the world via motor

controls that are similar to a human’s, such as a simulated vocal tract

that can be manipulated to produce speech. The experiences of such a

system would parallel human experiences to a substantial degree. This

similarity has the potential to greatly aid human understanding of the

system’s cognitive functions.

A model that exemplifies the preceding four qualities was termed the

Wernicke-Lichtheim-Geschwind (WLG) model of word and picture learning

(Weems and Reggia, 2006), as its neural structure was inspired by the work

begun by these three scientists. The WLG model implemented a neural

network approximating the structure of the classical model of language’s

neurobiological basis, centered upon the eponymous brain regions studied by

Broca (1861) and Wernicke (1874) and including the parietal association ar-

6

eas identified by Geschwind (1965). The model received auditory and visual

inputs similar to those of human sensation—in the form of auditory phonetic

features and grid-based black-and-white images—and produced verbal out-

put by generating a series of motor commands for a simulated vocal tract.

Weems and Reggia trained the network to repeat words—that is, produce a

sequence of motor actions corresponding to a heard sequence of sounds—and

to recognize and name pictures, which it successfully learned to do for ap-

proximately 50 word/picture pairs. Following training, Weems and Reggia

lesioned the model in various ways corresponding to the classic aphasia syn-

dromes (Lichtheim, 1885) and measured the model’s behavior on recognition,

repetition, and naming tasks. Remarkably, the lesioned models displayed the

same types of deficits as humans with similar lesions.

The WLG model satisfied all four of the preceding criteria: It was built

of neural-level building blocks in a configuration suggested by a long history of

aphasia literature; it learned to produce interesting behavior despite having

no such functionality built in; it responded to damage in ways similar to

humans; and it utilized human-like input and output representations. While

it is a convincing first step towards a functional model of the brain’s language

architecture, it needs to be improved and extended before it can be fully

assessed. The model’s foremost limitation is that it only deals with single

words and objects. Even as a model of aphasia, it is incomplete because its

inability to understand or produce sentence-level speech puts many relevant

diagnostic metrics, such as grammaticality and fluency, out of reach.

7

The research described in this dissertation began as an attempt to build

an updated version of the WLG model that would possess sentence-level lan-

guage abilities. Such a model would have to address many issues that were

not present in the design of the first model. For example, a sentence-level

language ability requires a strong generalization capability, since language

users frequently encounter novel sentences, yet have little trouble interpret-

ing them. The word-level WLG model, on the other hand, had no need of

generalization, being content to memorize its input/output patterns. An-

other issue is more practical: Sentence-level language requires the ability to

retain long sequences of inputs and produce long sequences of outputs—a

task at which neural networks have not traditionally excelled. Thus, the first

challenge to meet in building such a model was to evaluate the capabilities of

various types of neural networks in the domain of processing and producing

temporal sequences.

Initial investigations involved self-organizing maps (SOMs; Kohonen,

1990), which are desirable due to their ability to organize incoming input

without supervision. Of particular interest were varieties of SOMs capa-

ble of sustaining multiple simultaneous local winners (Schulz and Reggia,

2004); these types of networks have been shown to readily produce units

with feature-detection properties mimicking those found in the visual system

(Schulz and Reggia, 2005; von der Malsburg, 1973). This type of SOM had

been used in the original WLG model to aggregate temporal sequences of

auditory and visual input.

8

Application of multi-winner SOMs to temporal sequences of sentence-

level speech data showed the creation of phoneme- and word-detector units

as one might expect to find in the human auditory system (Monner and

Reggia, 2009). However, SOMs are designed to map their inputs to the most

similar group exemplar previously seen. This property is perfect for mapping

fuzzy speech input to phonemes and words, or for cleaning up a noisy visual

image of a known object. However, this tendency becomes counterproductive

as part of a system that needs to systematically generalize to combinatorial

input.

An initial investigation subjected SOM-based networks, in either single

or multi-layered configurations, to sentences drawn from a limited grammar,

presented temporally as sequences of phonemes. The SOM would learn to

produce a single spatial representation of a heard sentence, which was then

interpreted by a separate readout network—a simple feed-forward network

trained with back-propagation. The SOMs readily learned to recognize famil-

iar sentences but were utterly unable to generalize to new ones. In essence,

a trained SOM would incorrectly attempt to interpret a novel sentence as

a different but similar sentence with which it was already familiar. The

method of SOM training was directly responsible for this preference for the

familiar, as revealed by an experiment in which the readout network tried

to interpret sentences passed through an untrained SOM, only to find that

its ability to generalize to novel sentences had improved dramatically. This

9

made it clear that the SOM approaches in question are not appropriate for

tasks that require extensive generalization to new inputs.

The search for a more useful set of neural network methods warranted

brief experiments with echo state networks (Jaeger, 2001, 2002; Prokhorov,

2005), which, with their untrained self-recurrent reservoirs of neurons and

simple readout networks, superficially resembled the untrained SOMs that

had recently yielded the best results to date. Unfortunately, the experiments

with echo state networks did not produce significantly better results. This

fact, combined with concerns about the biological feasibility of large collec-

tions of nonadaptive neurons, indicated that echo state networks were not

the method of choice for the task.

At this point, the search expanded to neural network methods that

have been traditionally classified as supervised learning, meaning that

the network relies on an external teacher to provide a gold-standard signal

that should be imitated. The most prevalent of these fall under the um-

brella of gradient descent methods, where the training procedure attempts

to minimize an error function—defined as the difference between the network

output and the teaching signal—using an inverse hill-climbing approach in-

volving the gradient, or derivative, of the error function.

Most critics of gradient descent methods begin from a cognitive plau-

sibility standpoint, citing the rarity or absence during human learning of a

teacher who can give reliable, direct feedback. Such critics insist on unsu-

pervised learning methods, of which the SOMs from earlier are an example,

10

or reinforcement learning, where detailed error feedback is replaced with

a coarse-grained reward signal, leaving the learner with a difficult credit-

assignment problem. However, there are situations where gradient descent

training can make use of teaching signals that are inherent in the input, thus

getting around the lack of an explicit teacher. Elman (1993), for example,

used direct error feedback to train simple recurrent networks (SRNs) to pro-

cess an input sequence and, at each point, predict which input would come

next. Such an approach can hardly be called supervised in the traditional

sense, since the teaching signal can be internally generated from observable

input. One can think of this approach as self-supervised learning, and

the language learning problem is indeed one where self-supervised learning is

feasible. A learner need only observe the linguistic interactions of others and

attempt to emulate them to generate teaching signals for gradient descent

training. This idea is discussed in the context of the models in Chapters 3

and 5.

Supervised gradient descent methods are also often criticized in terms

of biological plausibility. In particular, the popular method of error back-

propagation (Rumelhart et al., 1986) was recognized by its own authors as

particularly implausible for biological neurons because no signal is known by

which neurons can transmit error information backward through the network.

However, a recent discovery by Xie and Seung (2003) demonstrates the near

equivalence of weight changes due to back-propagation and those produced by

contrastive Hebbian learning (CHL; Movellan, 1990). By this logic, back-

11

propagation can be seen as a computationally expedient form of Hebbian

learning, which is widely believed to occur in biological neurons and is used in

such biologically motivated systems as Leabra (O’Reilly, 2001; O’Reilly and

Frank, 2006). So while the precise method of weight-change calculation may

have no known biological basis, gradient descent training methods powered

by back-propagating error retain their biological plausibility, at least in terms

of the results they generate.

With gradient descent methods on the table, the investigation shifted

course to include training an SRN-based model on the language tasks. The

results, however, were largely disappointing. The network required multiple

hidden layers to efficiently encode multiple levels of linguistic representa-

tion, from phonemes and morphemes up to words, phrases, and finally entire

sentences. Since the error signal in traditional back-propagation training

degrades as it passes backward through the network, training these deep

networks proved to be difficult. Additionally, with input sequences routinely

reaching lengths of 40 or more for individual trials, the network had trou-

ble maintaining enough of the sequence in working memory to generate a

response at the end of the trial.

Fortunately, others had already discovered solutions to these problems.

Hochreiter and Schmidhuber (1997) developed a variant of the SRN, called

the long short-term memory (LSTM), to address both issues outlined above.

This type of network has a special architecture designed to allow information

12

to persist unperturbed in the network across long time lags. The network is

still trained with gradient descent, but individual units function in such a way

as to prevent the degradation of the error signal when propagated backward

through space or time. Initial tests showed that this type of network, when

faced with a task involving long temporal sequences, learns and generalizes

drastically better than all previous methods encountered.

The original LSTM training algorithm and its subsequent variations

(Gers and Cummins, 2000; Gers and Schmidhuber, 2001), however, were not

designed to train networks with more than a single hidden layer. To train

these types of networks, researchers had fallen back to less biologically plausi-

ble methods, such as back-propagation through time (BPTT; Werbos, 1990)

and real-time recurrent learning (RTRL; Williams and Zipser, 1989). All

of these methods perform computations that are nonlocal in space, time, or

both, rendering them unlike both the original LSTM training algorithm and

the current neuroscientific understanding of biological neural computation.

Most neural networks used in artificial intelligence research already eschew

close neurobiological ties, substituting highly idealized units and connections

for real neurons and synapses. However, the locality constraints in real neural

networks rank high in the list of properties that make them interesting sub-

jects of study. Training methods that discard them are likely to be impossible

to implement in brain-like networks, at least given current neurobiological

understanding. Furthermore, it is easy to imagine such training methods, by

virtue of their nonlocality, giving rise to different types of learned represen-

13

tations that are less distributed and less competitive than those produced by

their localized counterparts.

In light of these objections, the existing methods of training deep LSTM

networks do not capture essential aspects of the human neural substrate

and are thus unsatisfactory for the task at hand. Replacing these is a new

version of the LSTM training algorithm, appropriately generalized to handle

networks with multiple hidden layers in series. This novel algorithm, called

generalized long short-term memory (LSTM-g), provides a straightforward

training method that remains brain-like in terms of spatial and temporal

locality and is the subject of Chapter 2.

After initial tests confirmed LSTM-g’s efficacy at training networks

to learn speech-like data, the investigation turned to the extent to which

LSTM-g learning resembled certain aspects of human learning. The impor-

tance of human-like learning should be readily apparent when considering

that the ultimate goal is to use LSTM-g to create language processing mod-

els to which humans can more easily relate. A particularly interesting metric

that can be used to measure the algorithm’s fidelity to human learning is its

ability to reproduce high-level human-like learning artifacts. One such arti-

fact is an age-correlated decline in the ability of human learners to acquire a

second language: Those who start later in life have poorer ultimate attain-

ment of many aspects of the language than do native speakers. Chapter 3, af-

ter covering the relevant linguistic and computational background, describes

14

two neural network models, trained by LSTM-g, that examine the influ-

ence of first-language entrenchment and memory development on language

learning. The article-prediction model does this by learning a gender

assignment task in two languages, while the phoneme-prediction model

learns a much more involved gender agreement task. Though these models

are limited in many ways when compared to a human language learner, they

both independently reproduce patterns of language aptitude that strongly

suggest that they successfully capture aspects of the human language learn-

ing process that would be difficult to observe in higher-level models.

The remaining chapters of this dissertation deal with the development

of a detailed neural model that learns to understand and produce sentence-

level language, represented and processed as individual speech sounds. Chap-

ter 4 describes how an early version of the model, the grounded-meaning

model, learned to interpret sentences in terms of a visual micro-world, form-

ing grounded internal representations of sentence meanings. Grounding of

linguistic representations in other forms of experience is key to forming a true

understanding of language at levels beyond that of syntax; however, symbolic

and statistical natural language processing systems do not generally address

this problem.

Distinguishing it from many past neural network models, the grounded-

meaning model performs systematically, making the correct generalizations

after observing only a tiny fraction of the input space. The discussion in

15

this chapter presents evidence that the learned representations appear to be

largely compositional in nature, demonstrating that a neural network can

learn distributed representations that it can manipulate and combine much

like the symbols used in high-level cognitive models. This finding is impor-

tant because compositional representations provide the means of efficiently

encoding and computing over very high-dimensional spaces—a quality that

connectionist models are often accused of lacking.

Chapter 5, after discussing relevant previous work, presents two more

advanced versions of the model from Chapter 4. The first of these, termed

the meaning-answer model, not only understands the sentences it hears,

but recognizes questions and shows its ability to answer them by producing

a grounded representation of the meaning of a complete-sentence answer.

The final version of the model, termed the spoken-answer model, speaks

its answers, directly producing sequences of speech sounds without recourse

to the experimenter-imposed internal meaning representations utilized by

the previous versions of the model. This last and most complex model is

also the most plausible in terms of its learning method, as both its input

and its training signal would be readily observable in any human linguistic

interaction.

The spoken-answer model fulfills the criteria set out earlier for a useful

neural-level model of language learning at the sentence level. Currently, it is

the only known neural network model capable of simultaneously learning to

16

understand and produce sentence-level language that is represented sublex-

ically as temporal sequences of phonemes. When compared to symbolic or

statistical models of natural language processing, the model’s computational

substrate and its training regimen more closely resemble those of humans,

lending credence to the idea that scaling such a system up would produce a

more human-like natural language processing system. Unfortunately, large-

scale natural language applications are not yet feasible, pending either greater

computational resources or special-purpose neural network hardware. As the

concluding remarks in Chapter 6 discuss, however, the models presented here

have immediate potential applicability in a number of areas, including brain-

level investigations as a successor to the WLG aphasia model, as well as

higher-level models of psycholinguistic phenomena.

17

Chapter 2

Generalizing a Training Algorithm

2.1 Introduction

The second-order recurrent neural network models in this dissertation

have two major requirements that existing neural training methods cannot

satisfy simultaneously. The first requirement is the ability to train architec-

tures with deep serial structure involving multiple internal layers of units,

which is important for tasks that decompose hierarchically or involve multi-

ple levels of representation. The second requirement is informational locality,

both in space and in time, which is a physical requirement of biological brains

that induces important distributive and competitive properties within the

network. Both of these are essential properties that differentiate the neural

substrate from the traditional substrate of computing machinery. The goal

of creating a natural language processing model that is truly grounded in a

human-like neural substrate, then, necessitates the creation of a new train-

ing algorithm that can fulfill both requirements. This chapter describes such

an algorithm, which generalizes the spatially and temporally local training

method originally used with networks of the long short-term memory

(LSTM; Hochreiter and Schmidhuber, 1997) architecture.

18

The LSTM is a recurrent neural network architecture that combines

fast training with efficient learning on tasks that require sequential short-

term memory storage for many time-steps during a trial. Since its inception,

LSTM has been augmented and improved with forget gates (Gers and Cum-

mins, 2000) and peephole connections (Gers and Schmidhuber, 2000); despite

this, the usefulness of the LSTM training algorithm is limited in that it can

only train a small set of second-order recurrent network architectures. The

term second-order neural network in this context means one that not

only allows normal weighted connections that propagate activation from one

sending unit to one receiving unit, but also allows second-order connections:

weighted connections from two sending units to one receiving unit, where the

signal received is dependent upon the product of the activities of the sending

units with each other and the connection weight (Miller and Giles, 1993).

When LSTM is described in terms of connection gating, as discussed later,

it becomes clear that the gate units serve as the additional sending units for

the second-order connections.

The original LSTM architecture has an input layer, a hidden layer con-

sisting of cell assemblies called memory blocks, and an output layer. Each

memory block is composed of memory cell units that retain state across time-

steps, as well as three types of specialized gate units that learn to protect,

utilize, or destroy this state as appropriate. The LSTM training algorithm

back-propagates errors from the output units through the memory blocks,

adjusting incoming connections of all units in the blocks, but then truncates

19

the back-propagated errors. As a consequence, LSTM’s training algorithm

cannot be used to effectively train second-order networks with units placed

between the memory blocks and the input layer. More generally, LSTM’s

training algorithm cannot be used to train arbitrary second-order recurrent

neural architectures, as the error propagation and weight updates it pre-

scribes are dependent upon the specific network architecture described in

the original paper (Hochreiter and Schmidhuber, 1997).

While there exist other methods capable of training arbitrary second-

order networks, none share a principal advantage of LSTM’s training algo-

rithm: locality in time and space. Spatial locality here means that the

changes to connection weights that happen at some location in the network

should be directly computable from information available within the spatial

neighborhood of the connection in question. Similarly, temporal locality

means that weight changes cannot rely upon precise records of information

from arbitrarily far in the past. A training algorithm that possesses these

properties can, if it is general enough, be applied without modification to any

network architecture, and in fact even to architectures that change during

training. The human brain is an obvious example of an architecture that

changes during learning, and concerns about spatial and temporal locality

might be summarized as a desire to maintain the locality constraints that

brains appear to have.

Error back-propagation for feed-forward networks (Rumelhart et al.,

1986) and simple recurrent networks (SRNs; Elman, 1990) are examples of

20

training algorithms that exhibit locality in time and space while generalizing

to a wide variety of architectures. To date, it appears as if no such algo-

rithm for arbitrary second-order networks has been described. Algorithms

like back-propagation through time (BPTT; Werbos, 1990) that have been

used to train second-order architectures (e.g., Graves and Schmidhuber, 2008)

violate temporal locality by basing weight updates on perfect records of net-

work activations extending back in time to the beginning of arbitrarily long

input sequences; the same goes for the evolutionary training method known

as Evolino (Schmidhuber et al., 2007). Real-time recurrent learning (RTRL;

Williams and Zipser, 1989) is not local spatially since the gradient term for

a given weight depends directly on every other weight in the network. De-

coupled extended Kalman filters (DEKF; Gers et al., 2003; Puskorius and

Feldkamp, 1994) utilize a host of external matrix operations to control train-

ing and thus are not spatially local. While this list is not exhaustive, every

such training algorithm examined, other than LSTM, was either spatially or

temporally nonlocal.

The desire for an architecture-independent training algorithm with

these properties led to the development of the training algorithm described in

this chapter, the generalized long short-term memory (LSTM-g; Mon-

ner and Reggia, in press a). This approach retains the spatial and temporal

locality of the original LSTM training algorithm and can be applied, with-

out modification, to a much wider range of second-order recurrent neural

networks. Each unit in a network trained by LSTM-g has the same set of

21

operating instructions, relying only on its local network environment to de-

termine whether it will fulfill the role of memory cell, gate unit, both, or

neither. In addition, every unit is trained by LSTM-g in the same way—a

sharp contrast from the original LSTM training algorithm, where each of

several different types of units has a unique training regimen. LSTM-g rein-

terprets the gating of unit activations seen in LSTM; instead of gate units

modulating other unit activations directly, they are viewed as modulating

the weights on connections between units. This change in perspective, while

mathematically equivalent to the original design, offers increased flexibility

to network designers who wish to explore arbitrary architectures where gates

can temporarily isolate one part of the network from another. While pre-

vious work (Bayer et al., 2009) has examined alternative architectures for

LSTM-style second-order networks—as derived by network evolution to suit

a particular task—that work relies on the nonlocal BPTT algorithm to train

the evolved networks. While this chapter focuses on alternative second-order

architectures as well, the primary aim is to provide a local algorithm to train

them.

In addition to its expanded architectural applicability, LSTM-g pro-

vides all of the benefits of the LSTM training algorithm when applied to

the right type of architecture. LSTM-g was designed to perform exactly

the same weight updates as the original algorithm when applied to identi-

cal network architectures. However, on LSTM architectures with peephole

connections, LSTM-g often performs better than the original algorithm by

22

utilizing a source of back-propagated error that appears to have heretofore

gone unnoticed.

Section 2.2 presents LSTM and its training algorithm as previously

described, followed by the generalized version in Section 2.3. Section 2.4

provides the mathematical derivation of the LSTM-g learning rules, and Sec-

tion 2.5 then proves that LSTM-g is a generalization of LSTM training.

Section 2.6 presents an analysis of the additional error signals that LSTM-g

uses to its advantage, followed by experimental evidence in Section 2.7 that

LSTM-g often performs better than the LSTM algorithm when using the

original architecture. Further experiments show that LSTM-g performs well

on two architectures specifically adapted to two computational problems.

2.2 LSTM

LSTM was developed as a neural network architecture for processing

long temporal sequences of data and is trained using a hybrid descendant of

truncated BPTT and RTRL. Other recurrent neural networks trained with

various gradient methods proved to be ineffective when the input sequences

were too long (Hochreiter and Schmidhuber, 1997). Analysis showed that

for neural networks trained with back-propagation or other gradient-based

methods, the error signal is likely to vanish or diverge as error travels back-

ward through network space or through time. This is because, with every

pass backward through a unit, the error signal is scaled by the derivative of

23

the unit’s activation function times the weight that the forward signal trav-

eled along. The further the error travels back in space or time, the more

times this scaling factor is multiplied into the error term. If the factor is con-

sistently less than 1, the error will vanish, leading to small, ineffective weight

updates; if it is greater than 1, the error term will diverge, potentially leading

to weight oscillations or other types of instability. One way to preserve the

value of the error is by requiring the scaling factor to be equal to 1, which

can only be consistently enforced with a linear activation function (whose

derivative is 1) and a fixed weight of wjj = 1. LSTM adopts this require-

ment for its memory cell units, which have linear activation functions and

self-connections with a fixed weight of 1 (Figure 2.1(a)). This allows them to

maintain unscaled activations and error derivatives across arbitrary time lags

if they are not otherwise disturbed. Since back-propagation networks require

nonlinear hidden unit activation functions to be effective, each memory cell’s

state is passed through a squashing function—such as the standard logistic

function—before being passed on to the rest of the network.

The processing of long temporal sequences is complicated by the issue

of interference. If a memory cell is currently storing information that is not

useful now but will be invaluable later, this currently irrelevant information

may interfere with other processing in the interim. This in turn may cause

the information to be discarded, improving performance in the near term

but harming it in the long term. Similarly, a memory cell may be perturbed

by an irrelevant input, and the information that would have been useful

24

later in the sequence can be lost or obscured. To help mitigate these issues,

each memory cell has its net input modulated by the activity of another

unit, termed an input gate, and has its output modulated by a unit called

an output gate (Figure 2.1(a)). Each input gate and output gate unit

modulates one or a small number of memory cells; the collection of memory

cells together with the gates that modulate them is termed a memory block.

The input gates provide a context-sensitive way to update the contents of a

memory cell and protect those contents from interference, while the output

gates protect downstream units from perturbation by stored information that

has not become relevant yet. A later innovation was a third gate, termed

the forget gate, which modulates the amount of activation a memory cell

keeps from the previous time-step, providing a method to quickly discard the

contents of a memory cell after this information has served its purpose (Gers

and Cummins, 2000).

In the original formulation of LSTM, the gate units responsible for

isolating the contents of a given memory cell face a problem. These gates

may receive input connections from the memory cell itself, but the memory

cell’s value is gated by its output gate. The result is that, when the output

gate is closed (i.e., has activity near zero), the memory cell’s visible activ-

ity is near zero, hiding its contents even from those cells—the associated

gates—that are supposed to be controlling its information flow. Recogni-

tion of this fact resulted in the inclusion of peephole connections—direct

weighted connections originating from an intermediate stage of processing in

25

M
em

or
y

Ce
ll

Pe
ep

ho
le

Co
nn

ec
tio

ns

Output Gate

Forget Gate

Input Gate

(a) LSTM memory block

M
em

or
y

Ce
ll

Pe
ep

ho
le

Co
nn

ec
tio

ns

Forget Gate

Output Gate

Input Gate

(b) Equivalent for LSTM-g

Figure 2.1: Architectural comparison of LSTM’s memory block to the equiv-
alent in an LSTM-g network. Weighted connections are shown as black lines,
and gating relationships are shown as thicker gray lines. The elongated en-
closure represents the extent of the memory cell. In (a), connections into the
LSTM memory cell are first summed (the input-squashing function is taken
to be the identity); the result is gated by the input gate. The gated net
input progresses to the self-recurrent linear unit, whose activity is gated by
the forget gate. The state of the recurrent unit is passed through the output-
squashing function, which is then modulated by the output gate. This mod-
ulated value is passed to all receiving units via weighted connections. The
peephole connections project from an internal stage in the memory cell to the
controlling gate units; this is an exception to the rule that only the final value
of the memory cell is visible to other units. In (b), the weights on the input
connections to the LSTM-g memory cell are modulated directly by the input
gate before being summed by the linear unit. Unmodulated output leaves
the memory cell via weighted connections. Connections to downstream units
can have their weights modulated directly by the output gate, but this is not
required, as can be seen with the equivalent of LSTM’s peephole connections
proceeding normally from the output of the memory cell. This scheme is ca-
pable of producing the same results as the LSTM memory block, but allows
greater architectural flexibility.

26

the memory cell and projecting to each of the memory cell’s gates (Gers and

Schmidhuber, 2000). Unlike all other connections originating at the memory

cell, the peephole connections see the memory cell’s state before modulation

by the output gate, and thus are able to convey the true contents of the

memory cell to the associated gates at all times. By all accounts, peephole

connections improve LSTM performance significantly (Gers and Schmidhu-

ber, 2001), leading to their adoption as a standard technique employed in

applications (Graves et al., 2004; Gers et al., 2003).

The LSTM network ostensibly has only three layers: an input layer, a

layer of memory block cell assemblies, and an output layer. For expository

purposes, however, it will be useful to think of the memory block assemblies

as composed of multiple separate layers (see Figure 2.2): the input gate layer

(ι), the forget gate layer (ϕ), the memory cell layer (c), and the output gate

layer (ω). For notational simplicity, assume each of these layers has the same

number of elements, implying that a single memory cell cj is associated with

the set of gates ιj, ϕj, and ωj; it is trivial, though notationally messy, to gen-

eralize to the case where a set of gates can control more than one memory cell.

The input layer projects a full set of connections to each of these layers; the

memory cell layer projects a full set of connections to the output layer (θ). In

addition, each memory cell cj projects a single ungated peephole connection

to each of its associated gates (see Figure 2.1(a)). The architecture can be

augmented with direct input-to-output connections and/or delayed recurrent

connections among the memory cell and gate layers. As will become evident

27

Input Layer

Output Layer !

Memory Cell Layer c Forget Gate Layer "

Output Gate Layer #

Input Gate Layer $

Figure 2.2: The standard LSTM architecture in terms of layers. The memory
block assemblies are broken up into separate layers of memory cells, input
gates, forget gates, and output gates, in addition to the input and output lay-
ers. Solid arrows indicate full all-to-all connectivity between units in a layer,
and dashed arrows indicate connectivity only between the units in the two
layers that have the same index (i.e., the first unit of the sending layer only
projects to the first unit of the receiving layer, the second unit only projects
to the second, and so forth). The gray bars denote gating relationships and
are displayed as they are conceived in LSTM-g, with the modulation occur-
ring at the connection level. Units in each gate layer modulate only those
connections into or out of their corresponding memory cell. The circular
dashed connection on the memory cell layer indicates the self-connectivity of
the units therein. This diagram shows the optional peephole connections—
the dashed arrows originating at the memory cells and ending at the gate
layers—as well as the optional direct input-to-output layer connections on
the left.

in the following sections, the operation of the LSTM training algorithm is

very much dependent upon the specifics of the LSTM architecture.

The following equations detail the operation of the LSTM network and

its original training algorithm through a single time-step. A time-step is

defined to consist of the presentation of a single input, followed by the ac-

tivation of all subsequent layers of the network in order. This notion of a

time-step, most often seen when discussing feed-forward networks, enables a

28

more intuitive description of the activation and learning phases that occur

due to each input. Following Graves et al. (2004), all variables in the following

refer to the most recently calculated value of that variable (whether during

this time-step or the last), with the exception that variables with a hat (̂)

always refer to the value calculated one time-step earlier; this only happens

in cases where the new value of a variable is being defined in terms of its

immediately preceding value. Following Gers and Schmidhuber (2000), the

following definitions deviate from the original description of LSTM by reduc-

ing the number of squashing functions for the memory cells; here, however,

the definition omits the input-squashing function g (equivalent to defining

g(x) = x) and retains the output-squashing function, naming it fcj for mem-

ory cell j. In general, the formalism that follows will use the subscript index

j to refer to individual units within the layer in question, with i running over

all units that project connections to unit j, and k running over all units that

receive connections from j.

2.2.1 Activation dynamics

When an input is presented, the network proceeds through an entire

time-step, activating each layer in order: ι, ϕ, c, ω, and finally the output

layer θ. In general, when some layer λ is activated, each unit λj in that

layer calculates its net input xλj as the weighted sum over all its input

connections from units i (Equation 2.1). The units i vary for each layer and

29

potentially include recurrent connections; the most recent activation value

of the sending unit is always used, even if it is from the previous time-

step as for recurrent connections. For units that are not in the memory

cell layer, the activation yλj of the unit is the result of applying the unit’s

squashing function fλj (generally taken to be the logistic function) to its

net input (Equation 2.2). Each memory cell unit, on the other hand, retains

its previous state ŝcj in proportion to the activation of the associated forget

gate; the current state scj is updated by the net input modulated by the

activation of the associated input gate (Equation 2.3). A memory cell’s state

is passed through its squashing function and modulated by the activation of

its output gate to produce the cell’s activation (Equation 2.4).

xλj =
∑
i

wλji yi for λ ∈ {ι, ϕ, c, ω, θ} (2.1)

yλj = fλj(xλj) for λ ∈ {ι, ϕ, ω, θ} (2.2)

scj = yϕj
ŝcj + yιjxcj (2.3)

ycj = yωj
fcj(scj) (2.4)

When considering peephole connections in the context of the equations

in this section, one should replace the sending unit activation yi with the

memory cell state sci since peephole connections come directly from the in-

ternal state of the memory cells rather than their activations.

30

2.2.2 Learning rules

To learn effectively, each unit needs to keep track of the activity flow

over time through each of its connections. To this end, each unit main-

tains an eligibility trace for each of its input connections and updates this

trace immediately after calculating its activation. The eligibility trace for

a given connection is an aggregate record of the amount of activation that

has crossed the connection and that still has influence over the state of the

network. It is similar in spirit to those used in temporal-difference learning

(Sutton and Barto, 1998), except that here the decay of these traces is vari-

able and learnable. When a target vector is presented, the eligibility traces

are used to help assign error responsibilities to individual connections. For

the output gates and output units, the eligibility traces are instantaneous—

they are simply the most recent activation value that crossed the connection

(Equation 2.5). For the memory cells (Equation 2.6), forget gates (Equa-

tion 2.7), and input gates (Equation 2.8), the eligibility traces are partial

derivatives of the state of the memory cell with respect to the connection in

question; simplifying these partial derivatives results in Equations 2.6–2.8.

Previous eligibility traces are retained in proportion to the amount of state

that the memory cell retains (i.e., the forget gate activation yϕj
), and each

is incremented according to the effect it has on the memory cell state.

ελji = yi for λ ∈ {ω, θ} (2.5)

31

εcji = yϕj
ε̂cji + yιj yi (2.6)

εϕji
= yϕj

ε̂ϕji
+ ŝcj f

′
ϕj

(xϕj
) yi (2.7)

ειji = yϕj
ε̂ιji + xcj f

′
ιj

(xιj) yi (2.8)

Between time-steps of the activation dynamics (i.e., after the network

has generated an output for a given input), the network may be given a target

vector t to compare against, where all values in t are in the range [0, 1]. The

difference between the network output and the target is calculated using the

cross-entropy function in Equation 2.9 (Hinton, 1989). Since E ≤ 0 when

the t and y values fall in the range [0, 1] as required, one trains the network

by driving this function towards zero from below, or alternatively driving

its negation towards zero from above. Deriving Equation 2.9 with respect

to the output unit activations reveals the error responsibility δθj for the

output units (Equation 2.10). One obtains the deltas for the output gates

(Equation 2.11) and the remaining units (Equation 2.12) by propagating the

error backward through the network.

E =
∑
j∈θ

(
tj log(yθj) + (1− tj) log(1− yθj)

)
(2.9)

δθj = tj − yθj (2.10)

δωj
= f ′ωj

(xωj
) fcj(scj)

∑
k∈θ

δθk wθkcj (2.11)

δλj = f ′cj(scj) yωj

∑
k∈θ

δθk wθkcj for λ ∈ {ι, ϕ, c} (2.12)

32

Finally, the connection weights into all units in each layer λ are updated

according to the product of the learning rate α, the unit’s error responsibility

δλj , and the connection’s eligibility trace ελji (Equation 2.13).

∆wλji = α δλj ελji for λ ∈ {ι, ϕ, c, ω, θ} (2.13)

2.3 Generalized LSTM

The long short-term memory algorithm, as presented in Section 2.2,

is an efficient and powerful recurrent neural network training method, but

is limited in applicability to the architecture shown in Figure 2.2 and sub-

architectures thereof.1 In particular, any architectures with multiple hidden

layers (where another hidden layer projects to the memory block layer) can-

not be efficiently trained because error responsibilities are truncated at the

memory blocks instead of being passed to upstream layers. This section de-

tails the new generalized version of LSTM training, which confers all the

benefits of the original algorithm, yet can be applied without modification

to arbitrary second-order neural network architectures.

The generalized long short-term memory (LSTM-g) approach reinter-

prets the gating mechanism employed by LSTM. In LSTM, gate units directly

act on the states of individual units—a memory cell’s net input in the case

1LSTM can also train architectures with additional layers that operate in parallel with
the memory block layer, but the important point here is that LSTM cannot effectively
train architectures containing layers that operate in series with the memory block layer.

33

of the input gate, the memory cell state for the forget gate, and the memory

cell output for the output gate (Equations 2.3–2.4). By contrast, units in

LSTM-g can gate at the level of individual connections. The effect is that,

when passing activity to unit j from unit i across a connection gated by k,

the result is not simply wji yi, but instead wji yi yk. In this sense, LSTM-g is

similar in form to traditional second-order networks (e.g., Giles and Maxwell,

1987; Psaltis et al., 1988; Shin and Ghosh, 1991; Miller and Giles, 1993), but

with an asymmetry: The notation used here considers the connection in this

example to be primarily defined by j and i (the weight is denoted wji and not

wjki), where k provides a temporary gain on the connection by modulating

its weight multiplicatively. This notation is convenient when considering con-

nections that require an output and an input but may or may not be gated;

in other words, the notation can refer to a connection without specifying

whether it is a first- or second-order connection.

In LSTM-g, every unit has the potential to be like LSTM’s memory

cells, gate units, both, or neither. That is to say, all units contain the same

set of operating instructions for both activation and learning. Self-connected

units can retain state like a memory cell, and any unit can directly gate any

connection. The role each unit takes is completely determined by its place-

ment in the overall network architecture, leaving the choice of responsibilities

for each unit entirely up to the architecture designer.

Equations 2.14–2.24 describe the operation of a network trained by

LSTM-g through a single time-step. Just as in the description of the original

34

LSTM training algorithm, a time-step consists of the presentation of a single

input pattern, followed by the ordered activation of all noninput layers of

the network. The order in which layers are activated is predetermined and

remains fixed throughout training. If a layer to be activated receives recurrent

connections from a layer that has not yet been activated during this time-step,

the sending layer’s activations from the previous time-step are used. The full

derivation of the LSTM-g training algorithm can be found in Section 2.4.

2.3.1 Activation dynamics

LSTM-g performs LSTM-like gating by having units modulate the ef-

fectiveness of individual connections. As such, the formalism begins by spec-

ifying the gain gji on the connection from unit i to unit j (Equation 2.14).

gji =

1 if connection from i to j is not gated

yk if unit k gates the connection from i to j

(2.14)

Much as with memory cells in LSTM, any unit in an LSTM-g network

is capable of retaining state from one time-step to the next, based only on

whether or not it is self-connected. The state sj of a unit j (Equation 2.15)

is the sum of the weighted, gated activations of all the units that project

connections to it. If the unit is self-connected, it retains its state in proportion

to the gain on the self-connection. As in LSTM, self-connections in LSTM-g,

where they exist, have a fixed weight of 1; otherwise wjj = 0. Given the

35

state sj, the activation yj is calculated via the application of the unit’s

squashing function fj (Equation 2.16).

sj = gjj wjj ŝj +
∑
i 6=j

gji wji yi (2.15)

yj = fj(sj) (2.16)

When considering these equations as applied to the LSTM architec-

ture, for a unit j /∈ c, it is clear that Equation 2.15 is a generalization of

Equation 2.1. This is because the first term of Equation 2.15 evaluates to

zero on this architecture (since there is no self-connection wjj), and all the

gji = 1 since no connections into the unit are gated. The equivalence of

Equation 2.16 and Equation 2.2 for these units follows immediately. For a

memory cell j ∈ c, on the other hand, Equation 2.15 reduces to Equation 2.3

after three simplifications: the self-connection gain gjj is just yϕj
; the self-

connection weight wjj is 1; and the gji are all equal to yιj and can thus be

pulled outside the sum. However, for the memory cell units, Equation 2.16

is not equivalent to Equation 2.4, since the latter already multiplies in the

activation yωj
of the output gate, whereas this modulation is performed at

the connection level in LSTM-g.

36

2.3.2 Learning rules

As in LSTM, each unit keeps an eligibility trace εji for each of its

incoming connections (Equation 2.17). This quantity keeps track of how

activity that has crossed this connection has influenced the current state of

the unit and is equal to the partial derivative of the state with respect to the

connection weight in question. For units that do not have a self-connection,

the eligibility trace εji reduces to the most recent input activation modulated

by the gating signal.

εji = gjj wjj ε̂ji + gji yi (2.17)

In the context of the LSTM architecture, Equation 2.17 reduces to

Equation 2.5 for the output gates and output units; in both cases, the lack

of self-connections forces the first term to zero, and the remaining gji yi term

is equivalent to LSTM’s yi.

If unit j gates connections into other units k, it must maintain a set of

extended eligibility traces εkji for each such k (Equation 2.18). A trace

of this type captures the effect that the connection from i potentially has on

the state of k through its influence on j. Equation 2.18 is simpler than it

appears, as the remaining partial derivative term is 1 if and only if j gates

k’s self-connection, and is 0 otherwise. Further, the index a, by definition,

runs over only those units whose connections to k are gated by j; this set of

units may be empty.

37

εkji = gkk wkk ε̂kji + f ′j(sj) εji

(
∂gkk
∂yj

wkk ŝk +
∑
a6=k

wka ya

)
(2.18)

It is worth noting that LSTM uses traces of exactly this type for the

forget gates and input gates (Equations 2.7–2.8); it just so happens that each

such unit gates connections into exactly one other unit, thus requiring each

unit to keep only a single, unified eligibility trace for each input connection.

This will also be the case for the alternative architectures explored in later

sections, but is not required. A complete explanation of the correspondence

between LSTM’s eligibility traces and the extended eligibility traces utilized

by LSTM-g can be found in Section 2.5.

When a network is given a target vector, each unit must calculate its

error responsibility δj and adjust the weights of its incoming connections

accordingly. Output units, of course, receive their δ values directly from the

environment based on the global error function (Equation 2.9), just as in

LSTM (Equation 2.10). The error responsibility δj for any other unit j in

the network can be calculated by back-propagating errors. Since each unit

keeps separate eligibility traces corresponding to projected activity (εji) and

gating activity (εkji), the error responsibility is divided accordingly. First, let

Pj be the set of units k which are downstream from j—that is, activated

after j during a time-step—and to which j projects weighted connections

(Equation 2.19). Similarly, let Gj be the set of units k which are downstream

38

from j that receive connections gated by j (Equation 2.20). Both of these sets

are restricted to downstream units because an upstream unit k has its error

responsibility updated after j during backward error propagation, meaning

that the error responsibility information provided by k is not available when

j would need to use it.

Pj = {k | j projects a connection to k and k is downstream of j} (2.19)

Gj = {k | j gates a connection into k and k is downstream of j} (2.20)

The error responsibility of unit j with respect to the projected connec-

tions in Pj (Equation 2.21) is calculated as the sum of the error responsibil-

ities of the receiving units weighted by the gated connection strengths that

activity from j passed over to reach k.

δPj
= f ′j(sj)

∑
k∈Pj

δk gkj wkj (2.21)

Since the memory cells in LSTM only project connections and perform

no gating themselves, δPj
of Equation 2.21 translates directly into Equa-

tion 2.12 for these units, which can be seen by noting that the gain terms gkj

are all equal to the output gate activation yωj
and can be pulled out of the

sum.

The error responsibility of j with respect to gating activity is the sum

of the error responsibilities of each unit k receiving gated connections times

39

a quantity representing the gated, weighted input that the connections pro-

vided to k (Equation 2.22). This quantity, as with the same quantity in

Equation 2.18, is simpler than it appears. The partial derivative evaluates to

1 only when j is gating k’s self-connection and to 0 otherwise, so this term

either simplifies or drops completely. The index a runs over only those units

projecting a connection to k on which j is the gate.

δGj
= f ′j(sj)

∑
k∈Gj

δk

(
∂gkk
∂yj

wkk ŝk +
∑
a6=k

wka ya

)
(2.22)

To find j’s total error responsibility (Equation 2.23), the error respon-

sibilities due to projections and gating are added.

δj = δPj
+ δGj

(2.23)

To obtain weight changes similar to LSTM training, δj is not used

directly in weight adjustments; its purpose is to provide a unified δ value

that can be used by upstream units to calculate their error responsibilities

due to unit j. Instead, the weights are adjusted by combining the error

responsibilities and eligibility traces for projected activity and adding the

products of extended eligibility traces and error responsibilities of each unit

receiving gated connections. The result is multiplied by the learning rate α

(Equation 2.24).

40

∆wji = α δPj
εji + α

∑
k∈Gj

δk ε
k
ji (2.24)

Section 2.4 provides a detailed derivation of these learning rules, includ-

ing a complete treatment of all deviations from the true gradient. Section 2.5

shows that the weight changes made by both the LSTM (Equation 2.13) and

LSTM-g (Equation 2.24) algorithms are identical when used on an LSTM

architecture without peephole connections. This establishes that LSTM-g is

indeed a generalization of LSTM’s training algorithm.

2.4 Learning rule derivation

This section derives the LSTM-g learning algorithm by calculating the

gradient of the cross-entropy function (Equation 2.9) for a general unit in

an LSTM-g network. Such a unit may both project normal weighted con-

nections to other units and multiplicatively modulate the weights of other

connections. The error responsibility for a general unit j can be obtained by

approximating the gradient of the error function with respect to the unit’s

state sj (Equation 2.25). This approximation posits that the error responsi-

bility of unit j depends only upon units k that are immediately downstream

from j (Equation 2.26). The remaining error gradients for k are δk by defi-

nition. Equation 2.27 breaks up the second partial derivative into a product

41

that includes j’s activation directly so as to account for the effects of j’s

squashing function separately. The dependence of j’s activation on its state

is simply the derivative of the squashing function, which is constant across

the sum and thus can be moved outside (Equation 2.28). Equation 2.29 sep-

arates the set of units k into two (possibly overlapping) sets—those units to

which j projects weighted connections (Equation 2.19) and those units that

receive connections gated by j (Equation 2.20). The derivation will thus han-

dle error responsibilities for projection and gating separately, even in cases

where j both projects and gates connections into the same unit k, thereby

defining δPj
and δGj

(Equation 2.30, cf. Equation 2.23).

δj =
∂E

∂sj
(2.25)

≈
∑
k

∂E

∂sk

∂sk
∂sj

(2.26)

=
∑
k

δk
∂sk
∂yj

∂yj
∂sj

(2.27)

= f ′j(sj)
∑
k

δk
∂sk
∂yj

(2.28)

= f ′j(sj)
∑
k∈Pj

δk
∂sk
∂yj

+ f ′j(sj)
∑
k∈Gj

δk
∂sk
∂yj

(2.29)

= δPj
+ δGj

(2.30)

In calculating δPj
, Equation 2.32 expands sk from Equation 2.31 us-

ing the definition from Equation 2.15. This part of the derivation is only

concerned with cases where j projects connections; as such, gkk and gkj′

42

do not depend on j and are treated as constants. Since the previous state

of k does not depend on the current activation of j, the first term in the

parentheses vanishes completely. Individual terms in the sum vanish as well,

except for the one case when j′ = j, leaving gkj wkj as the entire derivative

(Equation 2.33, cf. Equation 2.21).

δPj
= f ′j(sj)

∑
k∈Pj

δk
∂sk
∂yj

(2.31)

= f ′j(sj)
∑
k∈Pj

δk
∂

∂yj

(
gkk wkk ŝk +

∑
j′ 6=k

gkj′ wkj′ yj′

)
(2.32)

= f ′j(sj)
∑
k∈Pj

δk gkj wkj (2.33)

To find δGj
, Equation 2.35 similarly begins by expanding sk from Equa-

tion 2.34. In this case, the derivation concerns only connections that j gates.

Now the gkk term is in play, since it is equal to yj if j gates k’s self-connection

(see Equation 2.14); this leads to the first term inside the parentheses in

Equation 2.36, where the derivative can take the values 1 or 0. For indi-

vidual terms in the sum, yj′ 6= yj since this derivation does not deal with

connections j projects to k. However, gkj′ may be equal to yj in some cases;

where it is not, j does not gate the connection and the term goes to zero.

Thus, the sum is reindexed to include only those units a whose connections

to k are gated by j (Equation 2.36, cf. Equation 2.22).

43

δGj
= f ′j(sj)

∑
k∈Gj

δk
∂sk
∂yj

(2.34)

= f ′j(sj)
∑
k∈Gj

δk
∂

∂yj

(
gkk wkk ŝk +

∑
j′ 6=k

gkj′ wkj′ yj′

)
(2.35)

= f ′j(sj)
∑
k∈Gj

δk

(
∂gkk
∂yj

wkk ŝk +
∑
a6=k

wka ya

)
(2.36)

This allows the calculation of the error responsibility δj of any unit j

by back-propagation. Starting at the level of units k that are immediately

downstream from j (Equation 2.37), Equation 2.38 separates the k units by

function, and Equation 2.39 breaks up the remaining partial derivative in

the first sum. Rearranging terms in the first sum (Equation 2.40) reveals a

grouping equal to δPj
(see Equation 2.31). The derivative in the first term is

equal to the eligibility trace εji; the second term is the extended eligibility

trace εkji. These substitutions give Equation 2.41 (cf. Equation 2.24).

∆wji ≈ α
∑
k

∂E

∂sk

∂sk
∂wji

(2.37)

= α
∑
k∈Pj

δk
∂sk
∂wji

+ α
∑
k∈Gj

δk
∂sk
∂wji

(2.38)

= α
∑
k∈Pj

δk
∂sk
∂yj

∂yj
∂sj

∂sj
∂wji

+ α
∑
k∈Gj

δk
∂sk
∂wji

(2.39)

= α

f ′j(sj)∑
k∈Pj

δk
∂sk
∂yj

 ∂sj
∂wji

+ α
∑
k∈Gj

δk
∂sk
∂wji

(2.40)

= α δPj
εji + α

∑
k∈Gj

δk ε
k
ji (2.41)

44

To calculate the eligibility trace εji, Equation 2.43 substitutes sj from

Equation 2.15 into Equation 2.42. Assuming unit j does not gate its own self-

connection, gjj is a constant. The previous state ŝj depends on wji producing

a partial derivative that simplifies to the previous value of the eligibility trace,

ε̂ji. The only term in the sum with a nonzero derivative is the case where

i′ = i, so a simplification produces Equation 2.44 (cf. Equation 2.17).

εji =
∂sj
∂wji

(2.42)

=
∂

∂wji

(
gjj wjj ŝj +

∑
i′ 6=j

gji′wji′yi′

)
(2.43)

= gjj wjj ε̂ji + gji yi (2.44)

Working on the extended eligibility trace εkji, Equation 2.46 again ex-

pands sk from Equation 2.45. When performing the partial derivative on the

first term, gkk may be equal to yj, which depends on wji; also, ŝk depends

on wji via its effect on sj, requiring the product rule to derive the first term.

For terms in the sum, unit j can gate the connection from j′ to k, but k 6= j

so wkj′ can be treated as constant, as can yj′ since this part of the derivation

is not concerned with connections that j projects forward. In Equation 2.47,

what remains is the result of the product rule and the remaining terms of

the sum, where the a index runs over only those connections into k that j

does in fact gate. Equation 2.48 shows that the first partial derivative is

simply the previous value of the extended eligibility trace. Equation 2.49

45

(cf. Equation 2.18) pulls out partial derivatives common to the latter two

terms and replaces them with the names of their stored variable forms. The

partial derivatives in the sum are all 1 by the definition of the a index. The

remaining partial derivative inside the parentheses reduces to 1 when j gates

k’s self-connection and 0 otherwise.

εkji =
∂sk
∂wji

(2.45)

=
∂

∂wji

(
gkk wkk ŝk +

∑
j′ 6=k

gkj′wkj′yj′

)
(2.46)

= gkkwkk
∂ŝk
∂wji

+
∂gkk
∂wji

wkk ŝk +
∑
a6=k

∂gka
∂wji

wkaya (2.47)

= gkk wkk ε̂kji +
∂yj
∂sj

∂sj
∂wji

(
∂gkk
∂yj

wkk ŝk +
∑
a6=k

∂gka
∂yj

wkaya

)
(2.48)

= gkk wkk ε̂kji + f ′j(sj) εji

(
∂gkk
∂yj

wkk ŝk +
∑
a6=k

wka ya

)
(2.49)

2.5 LSTM as a special case of LSTM-g

The following shows that LSTM is a special case of LSTM-g in the

sense that when LSTM-g is applied to a particular class of network architec-

tures, the two algorithms produce identical weight changes. For notational

simplicity, this derivation addresses the case where the target LSTM archi-

tecture has only one memory cell per block; this explanation can be trivially

extended to the case where the architecture has multiple memory cells per

block, though this unnecessarily complicates the notation. The input layer

projects weighted connections forward to four distinct layers of units (see

46

Figure 2.2), which are activated in the following order during a time-step,

just as in LSTM: the input gate layer ι, the forget gate layer ϕ, the memory

cell layer c, and the output gate layer ω. Each of these layers has the same

number of units; a group of parallel units are associated via the pattern of

network connectivity and collectively function like an LSTM memory block.

Inputs to each cell in the memory cell layer are gated by the associated input

gate unit. The memory cell layer is the only layer in which each unit has a di-

rect self-connection; these each have a fixed weight of 1 and are gated by the

appropriate forget gate. A final output layer receives weighted connections

from the memory cell layer, which are gated by the output gates.

With this simple LSTM network, LSTM-g produces the same weight

changes as LSTM. On a similar architecture augmented with peephole con-

nections, the error responsibilities would differ, as LSTM-g is able to use er-

ror back-propagated from the output gates across these connections, whereas

LSTM does not. This is discussed further in Section 2.6.

2.5.1 State and activation equivalence

The following demonstrates the equivalence of the activation dynamics

of LSTM and LSTM-g when the latter is applied to the standard LSTM

architecture.

47

2.5.1.1 Gate units

The first goal is to show that the activation for each gate unit (i.e.,

for a general unit λj where λ ∈ {ι, ϕ, ω}) is the same here as it is in LSTM.

Starting from the LSTM-g state definition (Equation 2.50, cf. Equation 2.15),

Equation 2.51 gets rid of the first term because the activations of the gate

units are stateless due to their lack of self connections, meaning wλjλj = 0. On

this architecture, the only connections into any of the gate units come from

the input layer and are ungated, so all the gλji terms are 1 (Equation 2.52).

What remains is the definition of the net input to a normal LSTM unit

(Equation 2.53, cf. Equation 2.1).

sλj = gλjλj wλjλj ŝλj +
∑
i 6=j

gλji wλji yi (2.50)

=
∑
i 6=j

gλji wλji yi (2.51)

=
∑
i 6=j

wλji yi (2.52)

= xλj for λ ∈ {ι, ϕ, ω} (2.53)

2.5.1.2 Output units

The situation is similar for the output units θj. Starting from the

same LSTM-g state equation (Equation 2.54, cf. Equation 2.15), the first

term drops out due to lack of output unit self-connections (Equation 2.55).

Since the connections into the output units come from the memory cells,

48

each connection is gated by its corresponding output gate (Equation 2.56).

Equation 2.57 regroups the terms, and Equation 2.58 substitutes the LSTM

memory cell activation for the output gate activation times the LSTM-g

memory cell activation (by Equation 2.4). The result is equal to the net

input of an LSTM output unit (Equation 2.59, cf. Equation 2.1).

sθj = gθjθj wθjθj ŝθj +
∑
i∈c

gθji wθji yi (2.54)

=
∑
i∈c

gθji wθji yi (2.55)

=
∑
i∈c

yωi
wθji yi (2.56)

=
∑
i∈c

wθji (yωi
yi) (2.57)

=
∑
i∈c

wθji yci (2.58)

= xθj (2.59)

The preceding proves the equivalence of LSTM’s xλj and sλj in LSTM-g

for all units except memory cells. It follows directly for these units that the

activation yλj in LSTM is equivalent to the quantity of the same name in

LSTM-g (Equation 2.60, cf. Equation 2.16), assuming equivalent squashing

functions fλj (Equation 2.61, cf. Equation 2.2).

yλj = fλj(sλj) (2.60)

= fλj(xλj) for λ ∈ {ι, ϕ, ω, θ} (2.61)

49

2.5.1.3 Memory cells

The next goal is to demonstrate the equivalence of memory cell states

in LSTM and LSTM-g. Starting again from the unit state equation for

LSTM-g (Equation 2.62, cf. Equation 2.15), Equation 2.63 substitutes the

self-connection weight with its value of 1 and replaces the self-connection gate

with the associated forget gate. Moving to Equation 2.64 requires recognizing

that all of the connections coming into the memory cell in question are gated

by the memory cell’s associated input gate, so gcji = yιj∀i and the term can

move outside the sum. The remaining sum is equal to the net (ungated)

input to the memory cell, resulting in the equation for LSTM memory cell

states (Equation 2.65, cf. Equation 2.3).

scj = gcjcj wcjcj ŝcj +
∑
i 6=cj

gcji wcji yi (2.62)

= yϕj
ŝcj +

∑
i 6=cj

gcji wcji yi (2.63)

= yϕj
ŝcj + yιj

∑
i 6=cj

wcji yi (2.64)

= yϕj
ŝcj + yιj xcj (2.65)

The activation variable ycj does not line up directly in LSTM-g and

LSTM, since LSTM requires the output gate to modulate the activation of

the memory cell directly, while LSTM-g defers the modulation until the acti-

vation is passed on through a gated connection. The distinction has already

50

been noted and appropriately dealt with in the discussion of Equation 2.57

and is not problematic for the proof at hand.

2.5.2 Weight change equivalence

The previous section showed the equivalence of activation dynamics

when LSTM-g is used on the LSTM architecture. The following section

shows the equivalence of the weight changes performed by each algorithm.

2.5.2.1 Output units

Since the output units in LSTM-g get the same error responsibility

from the environment as in LSTM, the proof need only consider whether

each connection in question has the same eligibility trace in the two schemes;

proving this will trivially show weight change equivalence. Only the general

LSTM-g eligibility trace equation is relevant, as the output units perform no

gating (Equation 2.66, cf. Equation 2.17). The first term drops out because

the output units have no self-connections (Equation 2.67). Since the connec-

tion in question is from the memory cell layer, the gating term becomes the

output gate activation (Equation 2.68). The two remaining factors are equal

to LSTM’s definition of the memory cell activation (Equation 2.69), which is

consistent with LSTM using only the sending unit’s activation as an output

51

unit eligibility trace (Equation 2.70, cf. Equation 2.5).

εji = gjj wjj ε̂ji + gji yi (2.66)

= gji yi (2.67)

= yωi
yi (2.68)

= yci (2.69)

= εθji (2.70)

2.5.2.2 Output gates

To prove equivalent changes to weights into the output gate units,

Equation 2.71 begins with the generalized eligibility trace equation from

LSTM-g (cf. Equation 2.17). Output gate units have no self-connections,

so the first term drops out (Equation 2.72). The incoming connections to

the output gate are not gated, so the gating term is 1 (Equation 2.73). The

result is the most recent activity of the sending unit on this connection, which

is the same eligibility trace as in LSTM (Equation 2.74, cf. Equation 2.5).

εji = gjj wjj ε̂ji + gji yi (2.71)

= gji yi (2.72)

= yi (2.73)

= εωji
(2.74)

52

Next, Equation 2.75 begins with the extended eligibility traces for out-

put gates, starting from LSTM-g (cf. Equation 2.18). Output gates only

modulate connections to the output layer, implying k ∈ θ, and none of these

units have self-connections; thus, the first term outside the parentheses drops,

as does the first term inside the parentheses (Equation 2.76). Each output

gate will modulate only a single connection into each output unit—the con-

nection from its associated memory cell to the output unit in question—so

the sum reduces to a single term (Equation 2.77).

εkji = gkk wkk ε̂kji + f ′j(sj) εji

(
∂gkk
∂yj

wkk ŝk +
∑
a6=k

wka ya

)
(2.75)

= f ′j(sj) εji
∑
a6=k

wka ya (2.76)

= f ′j(sj) εji wθkcj ycj (2.77)

Finally, starting from the LSTM-g weight change (Equation 2.78, cf.

Equation 2.24), simplification reveals the equation for LSTM weight change.

Equation 2.79 shows that for output gates, which project no weighted con-

nections, the set Pj is empty, making δPj
zero and eliminating the first term.

For output gates, the set Gj is precisely the set of output units θ; thus,

Equation 2.80 replaces the eligibility trace term with the simplified version

from Equation 2.77, moving common terms in the sum to the outside. Re-

arranging the equation reveals a term (in parentheses, Equation 2.81) that

is equal to LSTM’s formulation of the error responsibility for an output gate

53

(Equation 2.11). Making that replacement and the replacement of the eligi-

bility trace (Equation 2.82) produces the exact weight change prescribed by

LSTM (Equation 2.83, cf. Equation 2.13).

∆wji = α δPj
εji + α

∑
k∈Gj

δk ε
k
ji (2.78)

= α
∑
k∈Gj

δk ε
k
ji (2.79)

= α f ′ωj
(sωj

) εji ycj
∑
θk

δθk wθkcj (2.80)

= α

(
f ′ωj

(sωj
) ycj

∑
θk

δθk wθkcj

)
εji (2.81)

= α δωj
εωji

(2.82)

= ∆wωji
(2.83)

2.5.2.3 Memory cells

As with the output units, the proof for the memory cells need only

consider the basic eligibility trace (Equation 2.84, cf. Equation 2.17), since

the memory cells perform no gating functions. Equation 2.85 notes that

the self-connection weight is 1, and the self-connection gate is the associated

forget gate. Equation 2.86 shows that the input connection must be gated

by the appropriate input gate, revealing precisely the form of the eligibility

trace from LSTM (Equation 2.87, cf. Equation 2.6).

54

εji = gjj wjj ε̂ji + gji yi (2.84)

= yϕj
ε̂ji + gji yi (2.85)

= yϕj
ε̂ji + yιj yi (2.86)

= εcji (2.87)

Again due to the lack of gating, the proof need only consider δj =

δPj
(Equation 2.88, cf. Equation 2.21). Recognizing that all connections

forward are gated by the associated output gate, Equation 2.89 replaces all

the gkj terms in the sum with yωj
, making this a factor outside the sum.

Equation 2.90 simply renames the derivative and weight terms based on the

architecture, recovering δcj from LSTM (Equation 2.91, cf. Equation 2.12).

δPj
= f ′j(sj)

∑
k∈Pj

δk gkj wkj (2.88)

= f ′j(sj) yωj

∑
k∈Pj

δk wkj (2.89)

= f ′cj(scj) yωj

∑
k∈θ

δθk wθkcj (2.90)

= δcj (2.91)

Starting with the weight change equation from LSTM-g (Equation 2.92,

cf. Equation 2.24), Equation 2.93 removes the second term since Gj is empty,

55

and Equation 2.94 substitutes the equal quantities derived earlier to re-

produce LSTM’s weight change for memory cells (Equation 2.95, cf. Equa-

tion 2.13).

∆wji = α δPj
εji + α

∑
k∈Gj

δk ε
k
ji (2.92)

= α δPj
εji (2.93)

= α δcj εcji (2.94)

= ∆wcji (2.95)

2.5.2.4 Forget gates

Similarly for forget gates, the general LSTM-g eligibility trace (Equa-

tion 2.96, cf. Equation 2.17) can be simplified by noting that the forget gates

themselves do not self-connect (Equation 2.97), and that the inputs are not

gated (Equation 2.98).

εji = gjj wjj ε̂ji + gji yi (2.96)

= gji yi (2.97)

= yi (2.98)

The extended eligibility trace (Equation 2.99, cf. Equation 2.18) can

be simplified by noting first that the only relevant k is the single memory

cell whose self-connection this unit gates, which suggests rewriting the first

56

gate term as the forget gate activation. In the parentheses, the derivative

term and wkk both go to 1, and since there are no non-self-connections that

this unit gates, the sum is empty (Equation 2.100). Reorganizing and re-

naming some terms—as well as replacing the eligibility trace as calculated in

Equation 2.98—reveals the form in Equation 2.101. The inductive assump-

tion that the eligibility trace from the previous time-step, ε̂
cj
ji , is equal to

the previous LSTM eligibility trace, ε̂ϕji
(Equation 2.102), reveals that the

eligibility traces are the same for the current step as well (Equation 2.103,

cf. Equation 2.7).

εkji = gkk wkk ε̂kji + f ′j(sj) εji

(
∂gkk
∂yj

wkk ŝk +
∑
a6=k

wka ya

)
(2.99)

ε
cj
ji = yϕj

ε̂
cj
ji + f ′j(sj) εji ŝcj (2.100)

= yϕj
ε̂
cj
ji + ŝcj f

′
ϕj

(xϕj
) yi (2.101)

= yϕj
ε̂ϕji

+ ŝcj f
′
ϕj

(xϕj
) yi (2.102)

= εϕji
(2.103)

As it was for the output gates, δPj
is zero (Equation 2.104, cf. Equa-

tion 2.24), since Pj is empty for the forget gates, resulting in Equation 2.105.

Here, Gj contains only the memory cell whose self-connection this unit gates

(Equation 2.106). As shown earlier, the eligibility traces are equal (Equa-

tion 2.107), and δcj = δϕj
as shown in Equation 2.12, revealing LSTM’s

weight change for forget gates (Equation 2.108, cf. Equation 2.13).

57

∆wji = α δPj
εji + α

∑
k∈Gj

δk ε
k
ji (2.104)

= α
∑
k∈Gj

δk ε
k
ji (2.105)

= α δcj ε
cj
ji (2.106)

= α δϕj
εϕji

(2.107)

= ∆wϕji
(2.108)

2.5.2.5 Input gates

For input gates, as for forget gates, the LSTM-g eligibility trace (Equa-

tion 2.109, cf. Equation 2.17) is simplified by dropping the first term, since

input gates do not self-connect (Equation 2.110), and letting gji go to 1, since

the inputs are not gated (Equation 2.111).

εji = gjj wjj ε̂ji + gji yi (2.109)

= gji yi (2.110)

= yi (2.111)

Equation 2.112 again begins with the extended eligibility trace (cf.

Equation 2.18), where the only k in play is the single memory cell whose input

connections are modulated by this input gate. Thus, the first gain term can

58

be replaced by the forget gate activation, and the derivative term inside the

parentheses goes to zero (Equation 2.113). Next, Equation 2.114 renames the

f ′j term appropriately, replaces the eligibility trace with its simplification from

Equation 2.111, and recognizes that the remaining sum is in fact the ungated

net input to the memory cell in question. Under the inductive assumption

that the previous step’s eligibility traces are equal (Equation 2.115), those of

the current step are equal as well (Equation 2.116, cf. Equation 2.8).

εkji = gkk wkk ε̂kji + f ′j(sj) εji

(
∂gkk
∂yj

wkk ŝk +
∑
a6=k

wka ya

)
(2.112)

ε
cj
ji = yϕj

ε̂
cj
ji + f ′j(sj) εji

∑
a6=cj

wcja ya (2.113)

= yϕj
ε̂
cj
ji + f ′ιj(xιj) yi xcj (2.114)

= yϕj
ε̂ιji + xcj f

′
ιj

(xιj) yi (2.115)

= ειji (2.116)

Starting again with the unified LSTM-g weight update equation (Equa-

tion 2.117, cf. Equation 2.24), Equation 2.118 drops the first term since δPj

is zero. Equation 2.119 reflects the fact that the only cell in the set Gj is the

associated memory cell cj of this input gate, simplifying the sum to a single

term. Using Equation 2.12, Equation 2.120 can be obtained by replacing δcj

with διj (which is equivalent for this network), as well as replacing ε
cj
ji accord-

ing to Equation 2.116. The result is precisely the weight change specified by

LSTM for input gate connections (Equation 2.121, cf. Equation 2.13).

59

∆wji = α δPj
εji + α

∑
k∈Gj

δk ε
k
ji (2.117)

= α
∑
k∈Gj

δk ε
k
ji (2.118)

= α δcj ε
cj
ji (2.119)

= α διj ειji (2.120)

= ∆wιji (2.121)

This section has shown that every unit in a canonical LSTM network

architecture calculates identical activations and weight updates under LSTM

and LSTM-g, thus concluding the proof that LSTM is a special case of

LSTM-g.

2.6 Comparison of LSTM and LSTM-g

As stated in Section 2.3 and proved in Section 2.5, an LSTM-g net-

work with the same architecture as an LSTM network will produce the same

weight changes as LSTM training would, provided that peephole connec-

tions are not present. When peephole connections are added to the LSTM

architecture, however, LSTM-g utilizes a source of error that LSTM training

neglects: error responsibilities back-propagated from the output gates across

the peephole connections to the associated memory cells and beyond. To

60

demonstrate this, the next paragraphs calculate the error responsibility for

a memory cell j in an LSTM-g network and compare the answer to the error

responsibility for that same unit as prescribed by LSTM training.

Beginning with the generic error responsibility equation from LSTM-g

(Equation 2.23), the cell in question is the architectural equivalent of a mem-

ory cell, and as such, it performs no gating functions. Thus, the set of gated

cells Gj is empty and δGj
is zero, leaving δPj

alone as the error responsibility.

Equation 2.122 substitutes Equation 2.21 for δPj
. The constituents of Pj can

be determined by recalling that the memory cell in question projects connec-

tions to all the output units and sends peephole connections to its controlling

input gate, forget gate, and output gate. From this set of receiving units,

only the output units and the output gate are downstream from the memory

cell, so they comprise Pj. Taking each type of unit in Pj individually, Equa-

tion 2.123 expands the sum. Finally, Equation 2.14 shows that, because the

peephole connection to the output gate is not gated, the gωjcj term goes to

1; in addition, all the output connections are gated by the output gate, so

every gθkcj term becomes yωj
, and the term can move outside the sum. The

resulting Equation 2.124 should be equal to δcj as shown in Equation 2.125

(derived from Equation 2.12) to make LSTM-g equivalent to LSTM training

in this case.

61

δj = δPj
= f ′cj(scj)

∑
k∈Pj

δk gkj wkj (2.122)

= f ′cj(scj)

(∑
k∈θ

δθk gθkcj wθkcj + δωj
gωjcj wωjcj

)
(2.123)

= f ′cj(scj)

(
yωj

∑
k∈θ

δθk wθkcj + δωj
wωjcj

)
(2.124)

δcj = f ′cj(scj) yωj

∑
k∈θ

δθk wθkcj (2.125)

Upon inspection, it becomes clear that LSTM-g includes a bit of ex-

tra back-propagated error—as indicated by the term δωj
wωjcj—originating

from the output gate. Besides giving a more accurate weight update for con-

nections into memory cell j, this change in error will be captured in δj and

passed upstream to the forget gates and input gates. As demonstrated in Sec-

tion 2.7, this extra information helps LSTM-g perform slightly better than

the original algorithm on an LSTM architecture with peephole connections.

2.7 Experiments

Examining the effectiveness of LSTM-g involves performing a number of

experimental comparisons using various neural network architectures trained

with either the original LSTM algorithm or the LSTM-g algorithm from

Section 2.3, as detailed in the following sections.

62

2.7.1 Distracted sequence recall on the standard architecture

The first set of experiments trains different neural networks on a task

called the distracted sequence recall task. This task is a variation of the

temporal order task, which is arguably the most challenging task demon-

strated by Hochreiter and Schmidhuber (1997). The distracted sequence re-

call task involves 10 symbols, each represented locally by a single active unit

in an input layer of 10 units: 4 target symbols, which must be recognized

and remembered by the network, 4 distractor symbols, which never need to

be remembered, and 2 prompt symbols, which direct the network to give an

answer. A single trial consists of a presentation of a temporal sequence of 24

input symbols. The first 22 consist of 2 randomly chosen target symbols and

20 randomly chosen distractor symbols, all in random order; the remaining

2 symbols are the prompts, which direct the network to produce the first

and second targets in the sequence, in order, regardless of when they oc-

curred. The targets may appear at any point in the sequence, so the network

cannot rely on their temporal position as a cue; rather, the network must

recognize the symbols as targets and preferentially save them, along with

temporal order information, to produce the correct output sequence. The

network is trained to produce no output for all symbols except the prompts,

and for each prompt symbol, the network must produce the output symbol

that corresponds to the appropriate target from the sequence.

63

The major difference between the temporal order task and the dis-

tracted sequence recall task is as follows. In the former, the network is re-

quired to activate one of 16 output units, each of which represents a possible

ordered sequence of both target symbols. In contrast, the latter task requires

the network to activate one of only 4 output units, each representing a single

target symbol; the network must activate the correct output unit for each of

the targets, in the same order they were observed. Requiring the network to

produce outputs in sequence adds a layer of difficulty; however, extra gener-

alization power may be imparted by the fact that the network is now using

the same output weights to indicate the presence of a target, regardless of its

position in the sequence. Because the temporal order task was found to be

unsolvable by known architectures other than the LSTM architecture when

trained by gradient descent-based methods (Hochreiter and Schmidhuber,

1997), the comparisons here do not include methods other than LSTM and

LSTM-g. Further, the comparisons do not include second-order networks

trained with BPTT, RTRL, or other such methods, restricting the focus to

spatially and temporally local training methods.

The first experiment examines the impact of the extra error informa-

tion utilized by LSTM-g and involves training two types of networks on the

distracted sequence recall task. The first network serves as a control and is

a typical LSTM network with forget gates, peephole connections, and direct

input-to-output connections (see Figure 2.2), and is trained by the LSTM

algorithm. The second network has the same architecture as the first, but

64

is trained by the LSTM-g algorithm, allowing it to take advantage of back-

propagated peephole connection error terms.

All runs of each network use the same basic approach and parameters:

a single unit in the input layer for each of the 10 input symbols, 8 units in

the memory cell layer and associated gate layers, 4 units in the output layer

for the target symbols, and a learning rate α = 0.1. Both networks are aug-

mented with peephole connections and direct input-to-output connections.

Thus, both algorithms are training networks with 416 weights. Networks are

allowed to train on random instances of the distracted sequence recall task

until they achieve the performance criterion of 95% accuracy on a test set of

1000 randomly selected sequences that the network had never encountered

during training. To get credit for processing a sequence correctly, the network

is required to keep all output units below an activation level of 0.5 during all

symbols in the sequence except prompts, activating only the correct target

symbol in these cases—meaning that all units must have activations on the

same side of 0.5 as the target associated with the prompt. This correctness

criterion is used both for networks trained by the LSTM algorithm and for

those trained by the LSTM-g algorithm to ensure that the two types are

compared on an equal footing. Each network type is run 50 times, using

randomized initial weights in the range [−0.1, 0.1).

Figure 2.3 compares the number of trials required to train the two

networks. All runs of both networks reach the performance criterion as ex-

65

T
im

e
u
n
ti

l
C

ri
te

ri
on

 (
in

 t
h
ou

sa
n
d
s

of
 t

ri
al

s)

50

100

150

200

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

LSTM Peephole LSTMg Peephole

Figure 2.3: Plot of the results of an experiment that pitted LSTM-g against
LSTM, each training an identical standard peephole LSTM architecture to
perform the distracted sequence recall task. Small points are individual net-
work runs, jittered to highlight their density. The large black point for each
network type is the mean over all 50 runs, with standard error (small bars)
and standard deviation (large bars). The results show that LSTM-g’s uti-
lization of extra error information is clearly beneficial.

pected, but there are differences in how quickly they achieve this. In partic-

ular, LSTM-g is able to train the LSTM network architecture significantly

faster than the original algorithm (as evaluated by a Welch two-sample t-test

after removing outliers greater than 2 standard deviations from the sample

mean, with t ≈ 5.1, df ≈ 80.9, p < 10−5). This demonstrates that LSTM-g

can provide a clear advantage over LSTM in terms of the amount of training

required, even on an LSTM-compatible architecture.

66

2.7.2 Distracted sequence recall on a customized architecture

The second experiment investigates the relative performance of the

standard LSTM architecture compared to other network architectures that

would require modifications to the LSTM training paradigm. This experi-

ment involves training three additional types of networks on the same dis-

tracted sequence recall task. The first network serves as the control and

utilizes the LSTM algorithm to train a standard LSTM architecture that is

the same as in the previous experiment except for the addition of recurrent

connections from all (output-gated) memory cells to all the gate units. This

architecture is termed gated recurrence architecture and is depicted in

Figure 2.4(a). The second network also uses the gated recurrence architecture

but is trained by LSTM-g. The third network is a new ungated recurrence

architecture, shown in Figure 2.4(b), which starts with the standard LSTM

architecture and adds direct, ungated connections from each memory cell to

all gate units. These connections come from the ungated memory cell output

like peephole connections would, but unlike peephole connections, these are

projected to gate units both inside and outside of the local memory block.

The intuition behind this architecture comes from the idea that a memory

cell should be able to communicate its contents not only to its controlling

gates but also to the other memory blocks in the hidden layer, while still

hiding these contents from downstream units. Such communication would

intuitively be a major boon for sequential storage and retrieval tasks be-

67

cause it allows a memory block to choose what to store based on what is

already stored in other blocks, even if the contents of those blocks are not

yet ripe for consideration in calculating the network output. These ungated

cell-to-gate connections are a direct generalization of peephole connections,

but the new architecture that results could only be trained by the LSTM

algorithm if it were modified to suit the architecture. As such, the following

presents only the results of training the ungated recurrence architecture with

LSTM-g, which requires no special treatment of these ungated cell-to-gate

connections.

Each of the three networks uses the same approach and parameters as in

the previous experiment. This means both types of networks using the gated

recurrence architecture have 608 trainable connections, and the ungated re-

currence architecture has only 584 because the 24 peephole connections used

in the gated recurrence architecture would be redundant.2

Though these networks are more complex than those in the first exper-

iment, they are able to learn the task more quickly. Figure 2.5 shows that

for each run, the number of trials necessary before each of three networks

reaches the performance criterion. Again, LSTM-g appears to have a slight

speed advantage over LSTM when applied to the LSTM-compatible gated

2The experiments reported here were also run with a variant of the gated recurrence
architecture without the 24 peephole connections, leaving it with the same 584 weights
as the ungated recurrence architecture; however, the lack of peephole connections caused
a severe learning slowdown. In the interest of comparing LSTM-g against the strongest
possible control, the following paragraphs report only the results from the gated recurrence
architecture with peephole connections as described above.

68

Input Layer

Output Layer !

Memory Cell Layer c Forget Gate Layer "

Output Gate Layer #

Input Gate Layer $

(a) Gated recurrence architecture

Input Layer

Output Layer !

Memory Cell Layer c Forget Gate Layer "

Output Gate Layer #

Input Gate Layer $

(b) Ungated recurrence architecture

Figure 2.4: The network architectures used in the second experiment (c.f.
Figure 2.2). In (a), the previous LSTM architecture is augmented with a full
complement of recurrent connections from each memory cell to each gate, re-
gardless of memory block associations; all these connections are gated by the
appropriate output gate. In (b), the architecture’s peephole connections are
replaced with a full complement of ungated connections from each memory
cell to every gate. This second architectural variant is incompatible with the
LSTM training algorithm, as it requires all connections out of the memory
cell layer to be gated by the output gate. The network can still be trained
by LSTM-g, however.

69

T
im

e
u
n
ti

l
C

ri
te

ri
on

 (
in

 t
h
ou

sa
n
d
s

of
 t

ri
al

s)

40

60

80

100

120

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

LSTM Gated Arch LSTMg Gated Arch LSTMg Ungated Arch

Figure 2.5: Plot of the results on the distracted sequence recall task for
three networks: an LSTM network augmented with peephole connections
and gated recurrent connections from all memory cells to all gates, trained
by either LSTM or LSTM-g; and an LSTM-g network with ungated recurrent
connections from all memory cells to all gates. The ungated recurrence net-
work, trainable only with LSTM-g, clearly reaches the performance criterion
after less training than the comparable gated recurrence network as trained
by either LSTM or LSTM-g.

recurrence architecture, though this difference narrowly misses statistical sig-

nificance (t ≈ 1.8, df ≈ 87.9, p < 0.08). More interesting is the improvement

that LSTM-g achieves on the novel ungated recurrence architecture, which

reaches significance easily compared to both the gated recurrence architec-

ture trained with LSTM (t ≈ 15.3, df ≈ 79.6, p < 10−15) and with LSTM-g

(t ≈ 10.2, df ≈ 69.6, p < 10−14). LSTM-g is able to train the ungated

recurrence architecture faster than either it or LSTM can train the gated

70

recurrence architecture. This difference illustrates the potential benefits of

the wide range of customized architectures that LSTM-g can train.

2.7.3 Language recognition on a two-stage architecture

The final experiment adopts a more involved and substantially different

language recognition task, similar to those studied recently using other

neural network models (Monner and Reggia, 2009). In this task, a network is

given an English sentence as input and is expected to produce a set of pred-

icates describing that sentence as output. The input sentence is represented

as a temporal sequence of phonemes, each of which is a vector of binary

acoustic features, borrowed directly from Weems and Reggia (2006). The

network should produce as output a temporal sequence of predicates that

bind key concepts in the sentence into coherent entities. For example, for

the input sentence the red pyramid is on the blue block, the network should

produce the predicates (red X), (pyramid X), (blue Y), (block Y), and

(on X Y). The variables are simply identifiers used to associate the various

predicates with each other; in this example, the three predicates containing

variable X come together to signify that a single object in the world is a red

pyramid that is on top of something else. However, these predicate repre-

sentations are not grounded, since they do not correspond to objects in a

world that the network can observe; the issue of grounding is addressed in

Chapter 4.

71

In the actual output representation used by the network, each predicate

type is represented as a single one in a vector of zeros, and the variables

required by each predicate are also represented in this way. In other words, a

network performing this task requires a set of output neurons to represent the

types of predicates, with each unit standing for a single predicate type, and

two additional independent sets of neurons that each represent a variable,

since there can be at most two variables involved in any predicate. The task

demands that the network produce the required predicates in a temporal

fashion to avoid imposing architectural limits on the number of predicates

that a given input sentence could entail.

Part of the appeal of this task is that it is hierarchically decompos-

able. To discover a readily generalizable solution, common wisdom suggests

that the best strategy for the network to use is to aggregate the incoming

phonemes incrementally into morphemes, words, phrases, and finally, entire

sentences. The intuition is that architectures capable of directly supporting

this type of hierarchical decomposition would be superior to those that do

not. Testing this notion involves a two-stage architecture, shown in Fig-

ure 2.6. At first it may appear complex, but it is essentially the standard

LSTM architecture with peephole connections, except with a second hid-

den layer of memory block assemblies in series with the first. LSTM cannot

efficiently train such an architecture because the back-propagated error sig-

nals would be truncated and never reach the earlier layer of memory blocks.

LSTM-g, on the other hand, trains the two-stage architecture without diffi-

72

culty. A standard LSTM network with peephole connections (see Figure 2.2)

serves as a control to the two-stage architecture trained by LSTM-g, with

its parameters appropriately adjusted to match the resources of the latter

network as closely as possible.

Both networks in this experiment use essentially the same parameters

as in the previous two experiments—the only difference is in the size of the

networks. The two-stage architecture has 34 input units (corresponding to

the size of the phoneme feature vectors used as input), 40 memory blocks

in the first stage, 40 additional memory blocks in the second stage, and 14

output units, giving a total of 13,676 trainable connections. The standard

LSTM control has the same 34 input units and 14 output units, with a

single hidden layer of 87 memory blocks, giving it a slight edge with 7 more

total memory blocks and 13,787 trainable connections. These numbers were

selected to give the two networks parity in terms of computational resources,

to the extent that the architecture designs and problem constraints allow.

During a single trial in the language recognition task, the network being

tested is given each individual phoneme from a sentence as input in consec-

utive time-steps, and after the entire input sequence has been processed, the

network must output one complete predicate on each subsequent time-step,

until the network produces a special “done” predicate to signify that it is

finished producing relevant predicates. The networks are trained to produce

the predicates for a given sentence in a specified order but are scored in such

73

Input Layer

Output Layer !

Memory Cell Layer c1

Memory Cell Layer c2 Forget Gate Layer "2

Output Gate Layer #2

Input Gate Layer !2

Forget Gate Layer "1

Output Gate Layer #1

Input Gate Layer $1

Figure 2.6: The two-stage network architecture, used in the third experi-
ment. This architecture is a variant of the standard LSTM architecture with
peephole connections (Figure 2.2) that has a second layer of memory block
assemblies in series with the first. The traditional LSTM training algorithm
cannot effectively train this architecture due to the truncation of error sig-
nals, which would never reach the earlier layer of memory blocks. Intuition
suggests that the two self-recurrent layers allow this network to excel at hi-
erarchically decomposable tasks such as the language recognition task.

74

a way that correct predicates produced in any order count as correct answers.

A predicate is deemed to be correct if all units have activations on the cor-

rect side of 0.5. The testing program also records the number of unrelated

predicates that the networks generate; however, this number closely tracks

the inverse of the fraction of correct predicates produced, and as such, the

reports that follow only include the number correct.

A small, mildly context-sensitive grammar generates the sentences and

corresponding predicates for this simple version of the language recognition

task. The sentences contain combinations of 10 different words, suggesting

meanings involving 8 different types of predicates with up to 3 distinct ob-

jects referenced per sentence. The simplest sentences require only 3 output

predicates to express their meanings, while the most complex require the

networks to produce as many as 9 predicates in sequence as output. Thirty-

two copies of each network train independently on this task. On each run,

the network in question begins with random weights and is allowed to train

through 1 million trials. The performance of the network is gauged periodi-

cally on a battery of 100 test sentences that the network has never previously

encountered during training. The duration of training is more than sufficient

to ensure that all networks reach their peak performance levels.

Figure 2.7 shows a comparison of the peak performance rates of the two

types of networks, based on the fraction of correct predicates produced on the

novel test sentences. The two-stage network trained with LSTM-g was able

75

F
in

al
 P

re
d
ic

at
e

P
ro

d
u
ct

io
n
 (

fr
ac

ti
on

 c
or

re
ct

)

0.85

0.90

0.95

1.00

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

LSTM Standard LSTMg TwoStage

Figure 2.7: Plot of the performance results on the language recognition
task produced by a standard LSTM network and the two-stage architecture
trained by LSTM-g. The standard LSTM networks were able to produce
approximately 87% of predicates correctly at peak performance, while the
two-stage LSTM-g networks garnered 94% on average.

to achieve significantly better generalization performance than the standard

LSTM network on average (t ≈ 9.4, df ≈ 57.9, p < 10−12). In addition, the

two-stage network was able to achieve this performance much more quickly

than the control. Figure 2.8 plots the number of trials required for each

network to produce 80% of predicates correctly; this threshold was chosen

because every run of every network was able to achieve this performance level.

The two-stage network required approximately 4 times fewer trials to reach

the 80% performance criterion, which is a significant difference (t ≈ 10.9,

df ≈ 31.4, p < 10−11). These results underscore the value of using LSTM-g

to train customized architectures that traditional LSTM cannot.

76

T
im

e
u
n
ti

l
C

ri
te

ri
on

 (
in

 t
h
ou

sa
n
d
s

of
 t

ri
al

s)

0

100

200

300

400

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

LSTM Standard LSTMg TwoStage

Figure 2.8: Plot of the training duration required for each type of network
to reach the criterion of producing 80% of the required predicates for input
sentences. The standard LSTM network required an average of about 220,000
trials to reach this performance criterion, while the two-stage network trained
by LSTM-g required fewer than 60,000.

77

2.8 Discussion

The original LSTM architecture and the associated training algorithm

was an important advance in gradient training methods for recurrent neural

networks that must learn to handle temporal input and output series, even

across long time lags. While the LSTM architecture and extensions thereof

have proven useful in a variety of contexts, the LSTM training algorithm

has often been replaced in these studies by the nonlocal BPTT, which was

necessary to train more complex network architectures. Thus, the original

LSTM training algorithm was limited in scope to a small family of second-

order recurrent neural architectures. This chapter has introduced LSTM-g, a

generalized algorithm that provides the power, speed, and spatial and tempo-

ral locality of the LSTM algorithm, while also being applicable to arbitrary

second-order recurrent neural networks.

In addition to the increased architectural applicability it provides com-

pared to the original training algorithm, LSTM-g makes use of extra back-

propagated error when applied to the canonical LSTM network architecture

with peephole connections. This error can be put to good use, with LSTM-g

converging after less training than the LSTM training algorithm required in

experiments that utilize the standard LSTM network architecture. Further,

customized network architectures trained with LSTM-g can produce better

performance than either LSTM or LSTM-g can produce when restricted to

the standard architecture. In light of previous research that shows LSTM to

78

outperform other recurrent network architectures when using training meth-

ods of comparable computational complexity (Hochreiter and Schmidhuber,

1997), the results contained herein suggest that LSTM-g may find produc-

tive application in many areas where customizable or dynamically changing

network architectures are desirable.

LSTM-g is designed to provide a robust training algorithm for second-

order neural networks where maintaining brain-like spatial and temporal lo-

cality is essential. In the future, however, it will likely be worth investigating

whether LSTM-g may also be of use in situations where spatial and tempo-

ral locality are not hard requirements—situations in which BPTT, RTRL,

DEKF, or other methods are generally used to train second-order network

architectures. While it is unlikely that LSTM-g would outperform these

algorithms in terms of final error rates, it is plausible that the locality prop-

erties of LSTM-g would lead to a better performance-to-computation ratio,

resulting in faster convergence in terms of required computation time, and

possibly to the formation of qualitatively different types of internal represen-

tations. Regardless of the outcome of such comparisons, LSTM-g broadens

the applicability of local training algorithms to a wide variety of second-order

recurrent neural networks.

79

Chapter 3

Modeling Critical Period Effects1

3.1 Introduction

Given the creation and initial testing of the generalized long short-term

memory (LSTM-g) in Chapter 2, the extent to which the type of learning

produced by the algorithm resembles human learning remains to be inves-

tigated. This question’s importance is immediately clear for applications

modeling human behaviors, like the neurocomputational language models

that are the main focus of this dissertation. However, the question also

has relevance for machine learning in general. Many machine learning algo-

rithms, especially when they fail, often produce results that are inscrutable

to humans, who have trouble following the chain of reasoning the machine

uses to derive its answer. The extent to which a particular algorithm learns

in a human-like way impacts humans’ ability to relate to the results that the

algorithm produces. This is one reason to prefer neural network algorithms—

which depend on a distributed structure that resembles the human brain—to

strict rule-based algorithms: The results produced tend to be softer, more

graded, or more human-like than those produced by rules. But even among

1The research described in this chapter is joint work with Karen Vatz, Giovanna
Morini, So-One Hwang, and Robert DeKeyser (Monner et al., under review).

80

neural network algorithms, one must consider the extent of this analogy. Do

the networks suffer from the same learning biases, deficits, and artifacts that

humans experience? This chapter explores this question with two neural

network models that learn gender assignment and gender agreement in mul-

tiple languages with the overarching goal of reproducing a well-known human

learning artifact called the critical period.

The term critical period is often used by language researchers to

describe the observation that people who learn a second language (L2) later

in life tend to have poorer ultimate attainment than those who learn the same

language earlier in life. Cross-linguistically, there is a clear downward trend in

many, although not all, measures of language proficiency as age of acquisition

increases (DeKeyser, in press). These declines are not necessarily limited to

an early period in the lifespan which is critical for language acquisition, as was

originally thought. This phenomenon has been referred to by many names,

usually based on the author’s thoughts on the phenomenon’s likely cause.

Those who suspect some human maturational process to be responsible often

refer to a critical period in language learning or age effects on language

acquisition. Others, who view the issue as a problem inherent in the process

of learning, speak of cross-linguistic interference or entrenchment effects. Still

others couch the problem in terms of individual differences of the language

learners and quality and form of the L2 input. While there is support for all

of these accounts of this phenomenon, it is generally difficult to study any

of the potential causes in isolation. Without committing to any particular

81

view of the relative contributions of the causes or temporal durations of the

effects, this chapter will refer collectively to age-correlated phenomena that

impede second language acqusition as “critical period effects.”

The research described in this chapter uses neural network models to

investigate the individual and compound effects that two of these potential

causes of critical period effects have on ultimate attainment of a learner’s first

and second languages. The first factor of study, entrenchment, can best

be understood as previous knowledge of the first language that is difficult to

change and can perhaps only be altered slowly, thus interfering with the rapid

acquisition of newly available information about the second language. In this

scenario, the longer that learners are exposed to their first language (L1)

before a second language is introduced, the more L1 becomes entrenched,

making L2 more difficult to learn.

The second factor examined is memory development—specifically,

the aspects of working memory capacity and long-term memory capacity,

as implemented by the periodic addition of new units and connections, re-

spectively, to the neural network models. Working memory development is

particularly interesting in light of evidence that the period of rapid growth of

working memory capacity in children (Gathercole, 1999) coincides with the

period of rapid deterioration of L2 learning ability, a theory that is usually

known as the “less is more” hypothesis (Newport, 1988, 1990; Goldowsky

and Newport, 1993).

82

Using only experimentation on human subjects, it is difficult to get a

complete picture of the relative contributions of entrenchment and memory

development. While there are exceptions, specifically in the sign language

domain, language learning almost invariably starts very early in life, causing

L1 acquisition and early L2 acquisition to coincide with many aspects of

development. Thus, the contributions of these two factors to the observed

differences in ultimate attainment between early and late L2 learners cannot

be readily separated from each other. A computational model, on the other

hand, enables study of the interaction of the two chosen factors from all sides,

describing the effects of each in isolation as well as their combined impact.

Of course, at present, a computer model cannot learn an entire natural

language as human learners can. As such, the models presented here learn the

linguistic subtasks of gender assignment (learning to attribute gender to

words) and gender agreement (learning to recognize phrases where related

words all have the same gender). These gender-related tasks were chosen for

two reasons: Native and non-native speakers of a language tend to differ

significantly on these tasks, and ultimate attainment tends to vary with age

of acquisition. The models described here learn to perform gender assign-

ment and gender agreement tasks from naturalistic training data based on

word co-occurrence, without having any built-in knowledge of the existence

or form of grammatical gender and without being given explicit instruction

in the genders of particular words or phrases. The goal is that these models

will provide a better understanding of how the two potential factors stud-

83

ied here—entrenchment and memory development—contribute individually

and in tandem to differences in ultimate language attainment. Comparing

the patterns of attainment of the models with those of human learners can

also begin to answer the important question of the extent to which results

produced by LSTM-g will be relatable and intelligible to humans.

The remainder of this chapter is structured as follows. Section 3.2

reviews previous research on critical period effects and its relation to the

acquisition of grammatical gender, as well as hypotheses relating this phe-

nomenon to working memory and to L1 entrenchment. Section 3.3 describes

the base neural network used in the models, as well as the variations used

in the experimental conditions. Section 3.4 illustrates separate experiments

and results for the gender assignment and gender agreement tasks. Finally,

Section 3.5 discusses the implications of the simulation results.

3.2 Background

3.2.1 Critical period effects

As mentioned in Section 3.1, during the past few decades, researchers

have accumulated a preponderance of evidence suggesting that learning a

second language becomes increasingly difficult with age, resulting in poorer

ultimate attainment—compared to native speakers—for individuals who be-

gin learning a language later in life (see Hyltenstam and Abrahamsson, 2003,

84

for an overview). This effect was first termed the critical period, indicating

the period of time up until about age five during which children learning

a second language do so with minimal impairment and no noticeable ac-

cent. Subsequent research has shown that a learner’s ability to attain new

languages continue to decline throughout the lifespan.

The potential causes of this phenomenon are many, and the data are

difficult to disentangle due to unavoidable confounds associated with the

development and maturation of the learners being studied (DeKeyser and

Larson-Hall, 2005). Oft-cited maturational explanations of critical period

effects include those at the level of neurobiology: hemispheric specialization

(Lenneberg, 1967), myelination (Long, 1990), and neuro- and synaptogene-

sis (Uylings, 2006); and those at the level of psychology: working memory

development (Newport, 1990), susceptibility to interference (Iverson et al.,

2003), and progression from procedural to declarative learning (DeKeyser,

2000; Paradis, 2009; Ullman, 2004). Explanations that do not rely on the

development of the learner include entrenchment of the L1 (MacWhinney,

2006), learner motivation to sound native (Bley-Vroman, 1988), amount of

practice in the L2 (Jia et al., 2002; Jia and Aaronson, 2003), amount of for-

mal education in the L2 (Hakuta et al., 2003), and the inherent variability

of individuals (Abrahamsson and Hyltenstam, 2008; DeKeyser et al., 2010).

Since the various developmental explanations tend to correlate with

each other and also with many of the nondevelopmental variables, experi-

mental studies on human subjects that facilitate clean separation of all these

85

theories are generally only possible in rare and specialized circumstances such

as late acquisition of a native sign language (Mayberry et al., 2002). This

confluence of confounds makes the issue ripe for computational simulations

in which each factor can be controlled independently.

3.2.2 Grammatical gender

The size of the observed critical period effect varies across different

types of linguistic competence. For example, the syntactic proficiency of a

late learner seems to suffer less than morphological proficiency (Johnson and

Newport, 1989). Low-level details of phonology, such as specific voice onset

time (Abrahamsson and Hyltenstam, 2009), seem to be particularly difficult

for late learners to master. Successfully modeling critical period effects, then,

requires choosing a linguistic competency that is not only simple enough to

model but also degrades as L2 age-of-onset increases.

The linguistic phenomenon that the models will learn about is gram-

matical gender, which refers to an arbitrary partitioning of words into classes

referred to as genders. Several studies suggest that grammatical gender is

subject to critical period effects. Late learners of French (Guillelmon and

Grosjean, 2001), Spanish (Lew-Williams and Fernald, 2010), and German

(Scherag et al., 2004) have all been shown to be slower than native speakers

when processing gender agreement relations. Even children who start learn-

ing L2 French at an early age show accuracy deficits in gender assignment

86

English: The little book is white.
The little table is white.

French: Le petit livre (masc.) est blanc.
La petite table (fem.) est blanche.

Spanish: El libro (masc.) pequeño es blanco.
La mesa (fem.) pequeña es blanca.

Figure 3.1: Examples of gender agreement.

and agreement tasks when compared with native speakers (Holmes and de la

Bâtie, 1999; Lapkin and Swain, 1977; Harley, 1979). These results and many

others show that grammatical gender is subject to robust critical period ef-

fects and is thus an excellent candidate for computational modeling.

In particular, the models presented here will be learning to perform

gender assignment and gender agreement tasks in two languages, French and

Spanish. These languages have similar gender systems in that both have two

gender classes for nouns, labeled “masculine” and “feminine,” and determin-

ers, adjectives, and pronouns related to these nouns take different forms to

agree with the gender of the noun; see Figure 3.1 for an example. In both

languages, the gender of a noun is highly predictable from its phonological

form, though this predictability is more reliable in Spanish, due in part to

the simplicity of the rules (Surridge, 1993, 1995; Teschner and Russell, 1984).

Morphological and semantic cues are also predictive above and beyond the

phonological form (Surridge, 1989).

Grammatical gender in other languages is sometimes nonexistent, as in

English, and sometimes more complex, involving more gender classes, more

marked works, or fewer reliable cues to a word’s gender (Corbett, 1991).

87

French and Spanish, however, are an ideal combination for a first attempt at

modeling critical period effects, due both to their simplicity and the imme-

diate availability of human expertise in both languages.

3.2.3 Memory development

Working memory is the name given to humans’ ability to store in-

formation for a short time to use in near-term processing. Working memory

capacity is a fuzzy psychological measure of the number of separate items

that can be held in memory at once and successfully recalled. A higher

working memory capacity is generally associated with improved performance

on a wide variety of tasks (Baddeley, 2003) and is often described as a key

component of general intelligence (Duncan et al., 2000).

Psychological measures of working memory capacity show that it grows

rapidly throughout childhood until plateauing in late adolescence (Gather-

cole, 1999). As mentioned in Section 3.1, this rapid growth accompanies a

similarly rapid decrease in the final proficiency of languages introduced at

these ages. It is initially puzzling that these two measures would have in-

verse trajectories. The “less is more” hypothesis (Newport, 1990) provides

a solution to this puzzle by insisting that smaller working memory capacity

is essential to fully internalizing the morphological, generative structure of

language. The idea is that a smaller working memory capacity provides a

bottleneck to force the learner to analyze linguistic input in smaller chunks,

88

making low-level morphological features more salient and thus more easily

internalized. Learners who are first exposed to a language when their work-

ing memory capacities are larger, in contrast, process larger bits of language

as “unanalyzed wholes,” thus missing some of the compositional structure.

The neural network models presented in this chapter undergo memory

development, in the form of changes in both working memory capacity and

long-term memory capacity, to examine the effects of maturation on criti-

cal period effects. In a recurrent neural network, the equivalent of working

memory is the retention of activation across time-steps due to recurrent con-

nectivity. The amount of activity that can be maintained is proportional to

the total number of units that can hold activation. Thus, changes in work-

ing memory capacity can be modeled in a neural network as changes in the

number of units in the hidden layers. Of course, when varying the number

of units, one is generally forced to also vary the number of connections be-

tween units. Since these connections are modified slowly, they correspond to

the network’s long-term memory. The combination of experimental condi-

tions detailed in Section 3.3.2 is designed to tease apart the contributions of

changes in working memory capacity and long-term memory capacity.

3.2.4 Past computational modeling approaches

As discussed in Section 3.1, it is often difficult to experimentally sep-

arate the various possible causes of age effects when performing empirical

89

research on human subjects. Computational modeling has a key advantage

in its ability to independently manipulate a number of variables and to ob-

serve their main effects and interactions. Early attempts at computational

modeling of critical period effects (Goldowsky and Newport, 1993) show sup-

port for the “less is more” hypothesis in that a model with a smaller working

memory was better able to learn certain grammatical patterns; this conclu-

sion was supported by later studies, computational and otherwise (Cochran

et al., 1999; Kareev et al., 1997; Kersten and Earles, 2001).

Previous neural network models that have dealt with aspects of mem-

ory development have used varying approaches to limiting working memory.

Elman (1993) trained simple recurrent networks (SRNs) on a complex sub-

set of English. This type of network uses recurrent connections to allow

the network to access its own previous states, creating an analog of working

memory. Elman found that these networks had better eventual performance

when this working memory was initially limited to a discrete window of a few

steps and gradually increased, consistent with the “less is more” hypothesis.

While others have failed to find a difference between developing and mature

networks on similar tasks (e.g., Rohde and Plaut, 1999), Elman’s study shows

one way in which working memory capacity can be modeled in a neural net-

work. The models presented here use a different approach, directly limiting

the number of units whose maintained activations provide access to previous

states, as opposed to limiting the network’s temporal window of access to

these states. This approach is, in a sense, similar to that of the DevLex

90

models of word and meaning acquisition (Li et al., 2004, 2007), which utilize

growing self-organizing maps to represent semantics and phonology. These

maps grow by adding new units to accommodate storage of new lexical and

semantic representations; as such, the growth involved more closely resembles

long-term memory growth. The models in this chapter, in contrast, grow by

adding new units that form the substrate for working memory.

There have also been a few notable neural network models that involve

grammatical gender. MacWhinney et al. (1989) presented two neural network

models of the acquisition of gender, case, and number in German. Both of

these models learned to predict the article associated with a given noun, one

using hand-coded semantic, phonological, morphological, and case cues, and

the other using only observable data in the form of a complete phonological

representation of the input noun along with some semantic and case cues.

Both models succeeded at learning the nouns they were trained on and also

generalized very well to new nouns. The second model, without the hand-

coded cues, outperformed the first. Unfortunately, the static phonological

representations in this model only allow it to be applied to words of two

syllables or fewer. The models developed here, on the other hand, employ

temporal phonological representations that allow any word of virtually any

spoken language to be encoded.

Another neural network model of grammatical gender was advanced

by Sokolik and Smith (1992), who trained a feed-forward neural network to

91

identify a corpus of French nouns as either masculine or feminine. Their

study, however, has been widely criticized (Carroll, 1995; Matthews, 1999)

for, among other things, using orthographic input, giving explicit gender

feedback, and building in language-specific knowledge about gender classes.

The approach demonstrated in this chapter addresses these and other con-

cerns, resulting in models that utilize only the information actually available

to language learners.

3.3 Methods

3.3.1 Neural network methods

The models described in this chapter approximate a language learner

using a long short-term memory neural network (LSTM; Hochreiter and

Schmidhuber, 1997; Gers and Cummins, 2000; Gers and Schmidhuber, 2001)

trained with the LSTM-g algorithm described in Chapter 2. The specifics of

the models, including the number of hidden layers and the number and type

of outputs, vary between the models designed for the gender assignment and

gender agreement tasks, and as such are described in detail for each case in

Section 3.4. However, the basic input and processing of the models is the

same. Since the aim of these models is to learn gender properties from speech

stimuli, they are each given an input layer able to represent one phoneme of

speech at a time. The network hears a sequence of such phonemes, one after

92

another, with the sequence as a whole representing a word or noun phrase.

This process is analogous to listening to spoken sentence fragments.

The experiments that follow use these neural network models to under-

stand any critical period effects that arise due to the effects of entrenchment

and aspects of memory development. The first of these two factors is straight-

forward to implement: Simply teach a network to perform the same task in

two languages. Varying the amount of time before the L2 is introduced also

varies the expected amount of entrenchment of the L1. The second fac-

tor is developmental, and involves changes to a neural network’s structure

and connectivity over the course of the experiment, above and beyond the

connection-weight changes that occur during normal training. The different

development conditions and their effects on the neural architecture of the

models are discussed in the next section.

3.3.2 Development and network architecture

Most neural network models have a fixed number of units and connec-

tions for the duration of training. Training such a network, starting from

randomly assigned connection weights, is tantamount to waiting until a hu-

man learner is an adult, or at least fully neurologically developed in the

relevant areas, before exposing him or her to any language stimuli. Address-

ing cases where language learning happens along with development requires

93

the examination of situations where the network structure develops during

training. The following paragraphs explain a few ways of doing this.

The default case just described, where all of the network’s units and

connections are present at the start of training, is termed the no growth

condition. In a second unit growth condition, the network begins with a

much smaller number of units and connections (see Figure 3.2). During the

training regimen, new units and their associated connections are gradually

added to the network until it reaches maturity with its maximum number of

units and connections, equivalent to the numbers present in the no growth

condition. Here, a new unit being added to the network is not necessar-

ily analogous to neurogenesis in humans; an alternative is that some of the

new connections, created through a process analogous to dendritic outgrowth

(Uylings, 2006), happen to project to existing units outside the current con-

nected component of the network, thus recruiting them for use in the current

task.

In this type of recurrent neural network, the persistent activations of

units are the basis of working memory. The network recruits new units during

the maturation process, increasing the amount of information it can process

at any given instant. One would reasonably expect this to correlate with

an increase in cognitive measures of working memory capacity during train-

ing. Since these networks start with a small working memory and increase

this capacity during training, this condition will help test Newport’s “less is

94

......

......

......

......

......

......

......

......

Initial State Final State... Unit Growth ...

Figure 3.2: A depiction of a network from the unit growth condition at
various states of maturity. On the left is the network’s initial state, with few
units in the hidden layer (delineated by the gray box). As time passes, the
network begins to recruit new units and their associated connections for this
layer (dashed lines), finally ending up in its mature state on the right, where
the number of units and connections is equivalent to a network from the no
growth condition.

more” hypothesis. This hypothesis admits two distinct and independently

controllable factors that could lead to better final language performance:

(1) starting with a small working memory, and (2) allocation of new working

memory resources during learning. The unit growth condition possesses both

factors, so separate investigation of these factors requires a third network de-

velopment condition, termed unit replacement, that has only the second

factor. In this condition, depicted in Figure 3.3, the network starts in the

same state as the no growth condition, with its full complement of units and

connections, and thus its full working memory capacity. Periodically, units

and their associated connections are removed from the network and replaced

with new units and fresh, untrained connections. This happens at a rate

95

......

......

......

......

Initial State Final State... Unit Replacement ...

......

......

......

......

Figure 3.3: A network from the unit replacement condition starts with a full
complement of units that are periodically removed and replaced with fresh
units and untrained connections.

commensurate with the rate at which units are added in the unit growth

condition. Thus, in both conditions fresh resources are introduced over time

at the same rate, but where the unit growth condition uses these resources to

grow the network from its initially small size, the unit replacement condition

accepts these fresh resources and discards an equal amount of its existing,

trained resources, thereby maintaining a constant size. Since the effective

size of the working memory does not change in the unit replacement condi-

tion, it will help determine if periodic introduction of fresh working memory

resources alone, without starting small, can produce any significant benefits.

The unit growth condition described earlier confounds two variables of

interest on the cognitive level. The new units that each network recruits

must be wired up using new connections. These connections, of course, are

the basis of long-term memory capacity in a neural network. Thus, a network

96

from the unit growth condition adds both working memory and long-term

memory capacity during training. Teasing apart these variables necessitates

a fourth condition, termed the connection growth condition, in which all

units are present from the beginning but few of the possible connections ex-

ist (see Figure 3.4). Since all units are incorporated via active connections

from the beginning, the network’s working memory capacity is fully devel-

oped from the start. During training, the network grows new connections

at the same rate as in the unit growth condition, giving the network access

to new long-term memory storage and allowing direct measurement of the

effects of long-term memory maturation. In addition, this facilitates indirect

assessment of the contributions of working memory maturation (and com-

pound effects) by subtractive analysis with the unit growth and no growth

conditions.

3.4 Experiments and results

3.4.1 Gender assignment task

The first set of experiments investigates how well a neural network

model can learn to perform a gender assignment task using realistic sources

of information. This model, termed the article-prediction model, takes

single nouns as input and uses that information to predict which determiners

can appear with the noun. Since nouns rarely occur without determiners in

the target languages of French and Spanish, both the input and the output

97

......

......

......

......

......

......

......

......

Initial State Final State... Connection Growth ...

Figure 3.4: Diagram of a network from the connection growth condition.
This network begins with a full complement of units in the hidden layer
(gray box), but they are sparsely connected to the other units. As time
passes, these units develop new connections with other units, finally ending
up in a mature state where the number of connections equals that found in
networks from the no growth and unit growth conditions.

data are readily available to any learner by simply listening to everyday

speech. After training, the article-prediction model is tested by presenting it

with nouns and asking it to predict the associated determiners. The gender

of the most strongly predicted determiner is taken to be the model’s gender

assignment for the input noun.

This approach resembles that taken by the third model from MacWhin-

ney et al. (1989) in that both models use the complete phonological form of a

noun to predict the article to be used with that noun. The article-prediction

model diverges from this earlier model in a few important ways. First, it es-

chews semantic features to investigate what can be learned from phonology

alone. Second, the article-prediction model represents each input noun as a

98

temporal sequence of phonemes instead of a single phonological pattern, the

latter of which will always have trouble representing long words or those that

do not conform to the prespecified representational form. In addition, this

approach corrects the most severe issues with the model of gender assignment

by Sokolik and Smith (1992). Where their approach was criticized (Carroll,

1995; Matthews, 1999) for using orthographic input, the article-prediction

model uses phonemic input instead. Where their network came a priori

equipped with knowledge of the genders of the training language—and indeed

the knowledge that grammatical gender exists at all—the article-prediction

model has no such built-in knowledge. Finally, where their model required

explicit feedback about the genders of individual words, the article-prediction

model relies instead upon the co-occurrence of gendered articles with nouns

to deduce gender assignments. As a result of these differences, the article-

prediction model is more closely aligned with the real-world circumstances

of human language learning in most contexts.

An input noun is presented to the network as a temporal sequence of

phonemes. Each such phoneme is represented as a set of binary auditory

features, with the activations of the network’s input layer adjusted to reflect

the feature set of each phoneme in turn. The model uses this representation

because such features are universal in the sense that various configurations

of these features can represent virtually any phoneme. As such, units repre-

senting these features could potentially be a built-in component of the brain

of a language learner or could be learned. That said, the model only includes

99

enough features here to distinguish all phonemes in the target languages;

this set of phonemes and features is detailed in Table 3.1. After processing

an entire sequence of phonemes that represents the input noun, the network

activates output-layer units corresponding to its predictions of determiners

compatible with that input noun. The network learns to perform this be-

havior by observing determiner-noun pairings and adjusting its connection

weights accordingly.

Figure 3.5 shows the general architecture of the networks trained to

perform this gender assignment task. The networks have an input layer of

units corresponding to the features that make up the input phonemes. Units

in the input layer project to units in a single hidden layer of memory cells.

The intrinsic self-recurrence of the memory cells forms the substrate for work-

ing memory in the network. Finally, the hidden layer projects forward to the

output layer, which consists of 9 units representing the definite and indefinite

singular determiners of the target languages: le, la, l’, un, and une in French

and el, la, un, and una in Spanish. This should not be interpreted as an

assertion that units representing these words could be built into the brains

of language learners, nor that the words are represented in single units. How-

ever, since these determiners form a small closed class of words, it is not too

large a leap to presume that the learner represents these frequent determiners

as distinct entities before much gender learning takes place. The single-unit

representation for each determiner is the simplest possible in this context,

though other representations would likely work as well. This model specifi-

100

Table 3.1: Binary Auditory Feature Representations of Phonemes

co
n

so
n

a
n
ta

l
so

n
or

a
n
t

co
n
ti

n
u

an
t

st
ri

d
en

t
n

as
al

la
te

ra
l

tr
il

l
vo

ic
e

la
b

ia
l

ro
u

n
d

co
ro

n
a
l

a
n
te

ri
or

d
is

tr
ib

u
te

d
d

or
sa

l
h

ig
h

lo
w

b
ac

k
ra

d
ia

l
A

T
R

h − + + − − − − − − − − − − + + − + − −
J − + + − − − − + − − − − − + + − − − −
E − + + − − − − + − − − − − + − − − + −
e − + + − − − − + − − − − − + − − − + +

@ − + + − − − − + − − − − − + − − + − −
a − + + − − − − + − − − − − + − + + + −
i − + + − − − − + − − − − − + + − − + +

O − + + − − − − + + + − − − + − − + + −
o − + + − − − − + + + − − − + − − + + +

y − + + − − − − + + + − − − + + − − + +

u − + + − − − − + + + − − − + + − + + +

æ − + + − − − − + + + − − − + − − − + −
φ − + + − − − − + + + − − − + − − − + +

Ẽ − + + − + − − + − − − − − + − − − + −
ã − + + − + − − + − − − − − + − + + + −
Õ − + + − + − − + + + − − − + − − + + −
æ̃ − + + − + − − + + + − − − + − − − + −
k + − − − − − − − − − − − − + + − + − −
t + − − − − − − − − − + + − − − − − − −
p + − − − − − − − + − − − − − − − − − −
g + − − − − − − + − − − − − + + − + − −
d + − − − − − − + − − + + − − − − − − −
b + − − − − − − + + − − − − − − − − − −
G + − + − − − − + − − − − − + + − + − −
D + − + − − − − + − − + + − − − − − − −
T + − + − − − − − − − + + − − − − − − −
B + − + − − − − + + − − − − − − − − − −
S + − + + − − − − − − + − + − − − − − −
s + − + + − − − − − − + + − − − − − − −
f + − + + − − − − + − − − − − − − − − −
ö + − + + − − − + − − − − − + − − + − −
Z + − + + − − − + − − + − + − − − − − −
z + − + + − − − + − − + + − − − − − − −
v + − + + − − − + + − − − − − − − − − −
L + + − − − + − + − − − − − + + − − − −
l + + − − − + − + − − + + − − − − − − −
ñ + + − − + − − + − − − − − + + − − − −
ï + + − − + − − + − − − − − + + − + − −
n + + − − + − − + − − + + − − − − − − −
m + + − − + − − + + − − − − − − − − − −
j + + + − − − − + − − − − − + + − − − −
ô + + + − − − − + − − + + − − − − − − −
w + + + − − − − + + − − − − + + − + − −
r + + + − − − + + − − + + − − − − − − −

101

Input Layer / Auditory Phoneme Features (19)

Output Layer / Determiners (9)

Hidden Layer (30)

Figure 3.5: The network architecture of the article-prediction model used
in the gender assignment task. The network takes features of auditory
phonemes as input, passes them through a hidden layer of self-recurrent
memory cells, and maps a sequence of such inputs onto an output layer of
units representing singular definite and indefinite determiners in two lan-
guages. Since this is an LSTM network, the hidden layer is a group of
memory blocks, each of which consists of a memory cell and several multi-
plicative gates; for simpler presentation than in Chapter 2, the memory cells
and gate units are not depicted as separate layers. The self-connection shown
on the hidden layer signifies that individual memory cells in this layer are
self-recurrent, remembering their activations from the previous step. The
network has approximately 5,000 trainable connection weights.

cally avoids using a feature-based determiner representation because features

like gender and definiteness are not explicitly present in speech signals.

For this set of experiments, the input data for the model consists of

the 600 French words from the Sokolik and Smith (1992) paper as well as

600 equivalent words from Spanish. Each trial during training starts by se-

lecting a language and then selecting a noun at random from that language’s

corpus. The noun is paired with either a gender-matched definite or indefi-

nite determiner from the appropriate language to form a simple noun phrase.

The noun is given as input to the network, which then predicts applicable

determiners and adjusts its weights in such a way that, in the future, it will

102

be more likely to predict the determiner that actually co-occurred with the

input noun. A network is considered to have assigned the correct gender

for an input noun if an article of the appropriate gender is most active af-

ter presentation. While stronger criteria are possible, this choice reflects the

common practice of testing human learners on forced-choice gender assign-

ment tasks; furthermore, this choice ensures that any deficits observed in the

models cannot be attributed to overly strong assignment criteria.

To determine a baseline level of performance on the gender assignment

task, the first round of networks learned the task in either French or Spanish

only. The networks’ performance results are shown in Figure 3.6. As one

would expect, networks trained on French alone scored well in excess of 90%

after training, while scoring at chance on Spanish; similarly, Spanish-trained

networks performed well on their native language and at chance on French. It

is worth noting that Spanish performance was consistently a few percentage

points better than French performance, likely due to the phonemic cues to

gender assignment in Spanish being simpler and more reliable than those in

French. Performance was consistent across the four development conditions,

suggesting that network development alone has little impact on outcomes for

the gender assignment task, at least in the first language.

With a baseline level of performance established for networks that are

native to either French or Spanish, the investigation turned to the perfor-

mance of bilingual networks under a number of different learning conditions

103

Condition

F
in

al
 A

ss
ig

n
m

en
t

P
er

fo
rm

an
ce

 (
fr

ac
ti

on
 c

or
re

ct
)

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

0.8

0.9

French Performance

●

●

1 2 3 4

Spanish Performance

●

●

● ●
●● ●●

1 2 3 4

F
ren

ch
 M

on
olin

gu
al

S
p
an

ish
 M

on
olin

gu
al

Condition

1: No Growth

2: Connection Growth

3: Unit Growth

4: Unit Replacement

Figure 3.6: Results for monolingual networks, of all four developmental va-
rieties, on the gender assignment task. Thirty separate networks learned
the task in each developmental condition for each language. Each network
was trained for 2 million trials in one language, and then evaluated on both
languages.

104

100% L1 Training 50% L1 Training / 50% L2 Training

t Trials, for Various t 2 Million Trials

Period 1 Period 2

Figure 3.7: Diagram of the training schedule, consisting of two periods, for
a generalized condition parametrized by a single variable t. In period 1, the
network is trained on t trials in L1 exclusively. Training then proceeds to
period 2 with a mixed training schedule of both L1 and L2 trials where the
language of each trial is chosen with uniform probability. A true bilingual
network, for which neither language is ever prioritized, can be simulated with
t = 0; larger values of t correspond to later learners of their L2.

designed to assess the role of L1 entrenchment. Each condition varies the

length of time t that the network spends learning the task on L1 alone be-

fore L2 is introduced. Each condition has two periods, with the first period

varying in duration (see Figure 3.7). Period 1 consists of training only in L1

for t trials, where t varies widely across conditions. Immediately following

this is period 2, in which L1 and L2 trials are mixed with equal probability.

The duration of period 2 is always 2 million trials in an effort to ensure that

the networks have time to reach peak performance on both languages.

A network whose training regimen has t = 0 is a native bilingual in the

sense that L1 and L2 are presented at precisely the same time, and in the

same proportions. Thus, such a network should exhibit no L1 entrenchment.

Networks trained with higher values of t, having had a longer time with

exposure only to L1, should exhibit more entrenchment. The prevailing ideas

about L1 entrenchment offer a number of predictions about the final, peak

L1 and L2 performance of the networks:

105

1. Networks should maintain relatively consistent final L1 performance

regardless of the value of t;

2. Networks trained with t = 0, as native bilinguals, should not exhibit

impairment in either language with respect to the other; and,

3. Networks should show increasing degradation of final L2 performance

as t increases, at least until the networks have mastered L1 to a point

at which the effect of entrenchment saturates.

These predictions can be investigated by plotting the final L1 and L2

performance of fully trained networks on the gender assignment task versus

the value of t with which they were trained. Thirty separate networks train

with each of 15 values of t (see Figure 3.8), as well as each of the four matu-

ration conditions and each of two languages; thus, a total of 3,600 networks

are trained to produce the following figures. For conditions in which the

network matures during training, each of these networks begins training in

its most immature state and develops over the course of the first 400,000 tri-

als, at which point it reaches maturity—that is, architectural parity with the

networks in the no growth condition. Thus, some networks in the connection

growth and unit growth conditions (i.e., those with t = 0) are first exposed

to L2 in their most immature state, while others (i.e., t ≥ 400,000) are not

exposed to L2 until after reaching maturity.

After both training periods are complete, one can record the fraction

of inputs that each network assigns the correct gender, for both L1 and L2.

106

0 25 50 75 100125150 200 250 300 400 500 600 700 800

Figure 3.8: Values of t used in the assignment experiments, in thousands of
trials. The values are spaced closer together at the beginning of the spectrum
because that is where the large performance changes tend to happen.

The graphs shown in this section and the next depict the final performance

of the networks on the y-axis versus the value of t—that is, the duration

of the L1-only training period and thus the delay before L2 onset relative

to L1—on the x-axis. Thus, the expected L1 entrenchment increases from

negligible to maximal as one moves from left to right in each figure; another

way of saying this is that the networks towards the left of the x-axis are

closer to true bilinguals, whereas the networks closer to the right edge are

late L2 learners. The y-axis values always depict final performance after

the conclusion of training. These graphs show fitted curves for each of the

different network maturation conditions, and for each such curve, the shaded

area behind it represents the 95% confidence interval.

Investigating the first prediction requires examining the performance

of the various networks in their native language (Figure 3.9). The prediction

of relatively consistent performance across all values of t (i.e., levels of L1

entrenchment) appears to be largely borne out, as none of the individual

curves differ by more that a couple percentage points as they move from

left to right. As with the monolingual networks, French appears to be a bit

harder to learn than Spanish, again likely due to the more regular nature of

Spanish’s phonetic gender cues. Differences in Spanish performance between

107

L1Only Training Time (t , in thousands of trials)

F
in

al
 L

1
A

ss
ig

n
m

en
t

P
er

fo
rm

an
ce

 (
fr

ac
ti

on
 c

or
re

ct
)

0.80

0.85

0.90

0.95

1.00

French Native

0 200 400 600 800

Spanish Native

0 200 400 600 800

Condition

No Growth

Connection Growth

Unit Growth

Unit Replacement

Figure 3.9: Final performance (fraction of test trials correctly answered) for
bilingual networks tested on the gender assignment task in their native lan-
guage after training was complete. The x-axis varies the time each network
spent with its native language in isolation before the second language was
introduced.

the different maturational variants of Spanish-native networks were minimal,

while the French-native networks that grew their working memory capacity

during training showed a slight disadvantage but the same general pattern

of nearly flat performance across all values of t.

Figure 3.10 depicts each network’s performance on its second language.

A comparison of the performance of networks with t = 0 on the x-axis to

the performance levels from the native languages in Figure 3.9 shows that,

for most of the maturational conditions, the true bilingual networks (those

with t = 0) perform as well as any tested network in both languages, lending

support to the second prediction.

108

L1Only Training Time (t , in thousands of trials)

F
in

al
 L

2
A

ss
ig

n
m

en
t

P
er

fo
rm

an
ce

 (
fr

ac
ti

on
 c

or
re

ct
)

0.80

0.85

0.90

0.95

1.00

French as L2

0 200 400 600 800

Spanish as L2

0 200 400 600 800

Condition

No Growth

Connection Growth

Unit Growth

Unit Replacement

Figure 3.10: Final performance (fraction of test trials correctly answered) for
bilingual networks tested on the gender assignment task in their second lan-
guage after training was complete. The x-axis varies the time each network
spent with its native language in isolation before the second language was
introduced.

109

Moving on to the third prediction, Figure 3.10 reveals a t-related per-

formance deficit in the no growth condition for L2 French; increasing Spanish

exposure before French is introduced causes the final French performance of

the network to decrease at a rate that is at first rapid but eventually slows

for larger delays. The maturational properties in play for the connection

growth and unit growth conditions, however, appear to have helped these

networks compensate for the expected declines in French performance due to

Spanish entrenchment. Networks in the unit replacement condition tended

to perform at levels comparable to the no growth networks, suggesting that

introduction of new working-memory resources without starting small may

not be sufficient to gain a significant reprieve from the deleterious effects of

increasing L1 entrenchment. On the right-hand graph, where French was the

L1 and Spanish the L2, no appreciable t-related performance decreases were

observed. This appears to be due again to the relative ease of the task for

Spanish as compared to French.

At least in the case of French as an L2, the data shown in Figure 3.10

support both the predictions of performance declining due to increased en-

trenchment and of maturation during learning helping to overcome these

difficulties.

110

3.4.2 Gender agreement task

The second set of experiments explores how a neural network model per-

forms on a gender agreement task. During a trial, the phoneme-prediction

model receives a noun phrase (e.g., el mecanismo interno in Spanish) pre-

sented as an unsegmented sequence of phonemes (e.g., [elmekanismointerno])

as input. The model’s job at every point in this phoneme sequence is to pre-

dict the next few phonemes that it will hear. As such, the model could use

everyday speech as both the input and the training signal. After training,

the network’s gender agreement performance is evaluated using noun phrases

of the form determiner-noun-adjective—common constructions in the target

languages of Spanish and French. To determine gender agreement, one gives

the network the determiner and noun as input, followed by the portion of the

adjective that is gender-neutral, and asks the network to predict the correct

ending for the adjective. If the network predicts the gender-appropriate end-

ing more strongly than the gender-inappropriate ending, its answer counts

as correct.

The noun phrases serving as training data for the gender agreement task

were extracted from the complete text of the French and Spanish versions

of Wikipedia (2011). TreeTagger (Schmid, 1994) applied a part-of-speech

tag to each word in either corpus. Noun phrases—of the forms determiner-

noun, determiner-noun-adjective, and the less frequent determiner-adjective-

noun, where the determiner is one from Figure 3.11—were extracted from the

111

French: Spanish:
la, le, l’, un, une, ce, cette, cet,
aucun, aucune, chaque, tel, telle,
sa, son, ma, mon, ta, ton, notre,
votre, leur

el, la, un, una, este, esta, ese, esa,
aquel, aquella, ningún, ninguno,
ninguna, cualquier, cualquiera,
cada, su, tu, mi, nuestra, nuestro,
vuestra, vuestro

Figure 3.11: Determiners used in the gender agreement task.

resulting output. This list of noun phrases was filtered, removing any phrases

containing words that were not in the appropriate language dictionaries—

Lexique 3 for French (New, 2006) and CUMBRE for Spanish (2010). Finally,

the lists were truncated to the most frequent 100,000 noun phrases for each

language. These phrases comprise the training data. Each training trial

chooses a phrase probabilistically, based on the phrases’ corpus frequencies,

to use as the input—and training signal—for the network on that trial.

Figure 3.12 depicts the architecture of the networks trained on the

gender agreement task. The input layer is the same as it was for the gender

assignment experiments, with each input unit corresponding to a binary au-

ditory feature of a phoneme. This model, however, has two hidden layers of

memory cells instead of one. This is because the gender agreement task in-

volves two separate levels of segmentation of the input. To perform the task

effectively, a learner would generally need to divide the phoneme sequence

first into morphemes and words and, at a higher level, into noun phrases

in which gender agreement must be maintained. Previous experiments with

these types of networks on language tasks (Monner and Reggia, in press a)

112

Input / Auditory Phoneme Features (19)

Output II / Auditory Phoneme Features (19)

Hidden Layer I (30)

Hidden Layer II (30)

Output I / Auditory Phoneme Features (19)

Figure 3.12: The network architecture of the phoneme-prediction model used
in the gender agreement task. The network takes auditory phoneme features
as input and passes them through a series of two hidden layers of memory
cells. After processing each input phoneme, the network uses its two output
layers to predict the next two phonemes that it will be given as input. The
network has approximately 10,000 trainable connection weights.

have shown a network with two hidden layers to be more effective in this case

than networks with a single hidden layer.

The network’s output layers are each identical to the input layer be-

cause the network is predicting upcoming phonemes. There are two such

output layers because the network must predict not only the next phoneme

that will occur in the input, but the phoneme after that as well. The network

makes predictions of two future phonemes because some of the gendered ad-

jective endings consist of two phonemes. For example, the French adjective

for the English word particular is particulier [paötikylje] in the masculine and

particuliére [paötikyljEö] in the feminine; the phonetic spellings make plain

that the gendered endings of these adjectives differ across two phonemes, with

[-e] ending the masculine form and [-Eö] ending the feminine form. Since the

113

network can only be allowed to see the gender-neutral portion of the phoneme

sequence—[paötikylj-]—without giving away the gendered form intended by

the speaker, the network must predict two subsequent phonemes (either of

which may be null if subsequent phonemes do not exist) to capture gendered

endings with two phonemes such as [-Eö].

The performance evaluation on the gender agreement task after train-

ing uses only phrases of the determiner-noun-adjective form because it is the

only form that is adjective-final. The testing paradigm requires an adjective-

final form because the network must predict the gender-appropriate ending of

the last word, and only adjectives generally have two distinct gendered end-

ings. Gender-neutral adjectives and adjectives where the two gendered forms

are orthographically distinct but phonetically identical (e.g., in French, the

masculine architectural and the feminine architecturale are both pronounced

[aöSitEktyöal]) are present during gender agreement training but ignored dur-

ing the performance evaluation.

To determine a baseline level of performance on the gender agreement

task, sets of networks trained on either French or Spanish only. Their per-

formance results are shown in Figure 3.13. As was the case with the gender

assignment task from the previous section, networks trained on French do

well on French and perform at chance on Spanish. Networks trained on

Spanish perform as expected on that language and do significantly worse on

French.

114

Condition

F
in

al
 A

gr
ee

m
en

t
P

er
fo

rm
an

ce
 (

fr
ac

ti
on

 c
or

re
ct

)

0.5

0.6

0.7

0.8

0.5

0.6

0.7

0.8

French Performance

●●
●

●

●

1 2 3 4

Spanish Performance

●

●

●

●

●
●

●

●

●

1 2 3 4

F
ren

ch
 M

on
olin

gu
al

S
p
an

ish
 M

on
olin

gu
al

Condition

1: No Growth

2: Connection Growth

3: Unit Growth

4: Unit Replacement

Figure 3.13: Results for monolingual networks, of all three developmental
varieties, on the gender agreement task. Thirty separate networks learned
the task in each developmental condition for each language. Each network
was trained for 2 million trials in one language, and then evaluated on both
languages.

115

0 25 50 75 100125150 200 250 300 400 500 700 900

Figure 3.14: Values of t used in the agreement experiments (in thousands of
trials). Since little change was observed for large values of t, the interval was
expanded from the assignment experiments to allow the use of one less value
of t and thereby save on simulation time.

The investigation of bilingual networks involves the same experimental

setup as on the gender assignment task to investigate the effects of L1 en-

trenchment alone (i.e., the no growth condition) and together with network

maturation (i.e., the unit growth, unit replacement, and connection growth

conditions) on the gender agreement task. As before, training consists of

two periods, the first consisting of t trials in which inputs come exclusively

from the designated L1, and the second consisting of 2 million trials where

inputs may be drawn from either language. Thirty networks learned the task

in each maturation condition and for each value of t—the duration of the

initial L1-only training period—in Figure 3.14.

Figure 3.15 shows the networks’ performance on their first languages,

broken out by language and maturation condition as before. As expected,

performance is approximately flat with respect to changing t across all the

conditions.

Figure 3.16 shows the final performance scores on L2 for networks in

each condition of the gender agreement task as a function of t on the x-axis.

The results for both languages here are similar to that observed in the gender

assignment task for the case of L2 French. The mature networks in the no

116

L1Only Training Time (t , in thousands of trials)

F
in

al
 L

1
A

gr
ee

m
en

t
P

er
fo

rm
an

ce
 (

fr
ac

ti
on

 c
or

re
ct

)

0.5

0.6

0.7

0.8

0.9

French Native

0 200 400 600 800

Spanish Native

0 200 400 600 800

Condition

No Growth

Connection Growth

Unit Growth

Unit Replacement

Figure 3.15: Final performance (fraction of test trials correctly answered) for
bilingual networks tested on the gender agreement task in their native lan-
guage after training was complete. The x-axis varies the time each network
spent with its native language in isolation before the second language was
introduced.

117

growth condition show a marked susceptibility to L1 entrenchment, with L2

performance decreasing by as much as 17% as t is increased, delaying the

onset of L2 relative to L1. However, the networks in the unit growth condi-

tion were largely able to mitigate this performance decrease by introducing

new units and connections during learning. Performance of networks in the

connection growth condition fall between these two. The addition of new

connections to the networks appears to successfully stave off entrenchment

effects when the level of entrenchment is small, but for values of t > 200,000

the entrenchment effects again start to become apparent. This suggests that

addition of new units and new connections both help to counteract deficits

due to entrenchment. Viewed from the cognitive perspective, growth in long-

term memory capacity—in the connection growth condition—during training

helped to mitigate the effects of L1 entrenchment, as did growth in work-

ing memory capacity, as evidenced by the superior performance of the unit

growth condition over the connection growth condition for higher values of t.

However, as shown by the unit replacement networks again tending to track

the performance of the no growth networks, the addition of fresh neural re-

sources is not all that is required to reap a performance benefit. Instead,

it seems that starting small, either in terms of working memory capacity

or long-term memory capacity, or both, is an essential factor leading to the

performance increase.

118

L1Only Training Time (t , in thousands of trials)

F
in

al
 L

2
A

gr
ee

m
en

t
P

er
fo

rm
an

ce
 (

fr
ac

ti
on

 c
or

re
ct

)

0.5

0.6

0.7

0.8

0.9

French as L2

0 200 400 600 800

Spanish as L2

0 200 400 600 800

Condition

No Growth

Connection Growth

Unit Growth

Unit Replacement

Figure 3.16: Final performance (fraction of test trials correctly answered) for
bilingual networks tested on the gender agreement task in their second lan-
guage after training was complete. The x-axis varies the time each network
spent with its native language in isolation before the second language was
introduced.

119

3.5 Discussion

With the exception of gender assignment in Spanish as an L2—by far

the easiest task—the data presented in Section 3.4 support the predictions

of established ideas of L1 entrenchment. The most dramatic of these can

be seen clearly in the no growth conditions, which show an initially steep

decline in learnability of the L2 task as time spent on the L1 task increases.

While this modeling approach does not directly implement cognitive

constructs such as working memory capacity, Section 3.3.2 argued that the

connection growth condition could be reasonably conceived as representing

growth from an initially small long-term memory capacity, and the unit

growth condition as growth of both long-term and working memory capaci-

ties from small beginning states. Allowing the networks to mature in either

of these conditions helped to mitigate the negative impacts of L1 entrench-

ment, especially for longer delays in L2 onset. The fact that the connection

growth condition generally improved upon the no growth condition suggests

that growth of long-term memory capacity may be a key maturational factor

during language learning. For the longest delays, the unit growth condition

appears to have had the greatest positive impact, which suggests that growth

of working memory capacity also has a positive influence in combating en-

trenchment effects.

The unit replacement condition, on the other hand, demonstrated the

effects of adding fresh long-term and working memory resources to the net-

120

work without starting small and without changing the network’s overall size.

The fact that the networks in this condition did not do substantially better

than those in the no growth condition implies that the only thing lacking

in the unit replacement condition—beginning from resources of modest ca-

pacity or starting small—is an essential factor underlying the performance

gains made by the unit growth and connection growth networks. This lends

support to the “less is more” hypothesis and clarifies that both the initial

size and resource acquisition during training are crucial.

The “less is more” hypothesis is usually presented at the cognitive level,

suggesting that a system with limited cognitive resources will latch on to the

low-hanging organizational fruit, learning representations efficient enough to

accommodate its small memory capacity. This can serve as a boon later

on, when new memory capacity is added and the system can tackle more

complex stimuli. This proposal also makes intuitive sense at the level of

neural information processing for a variety of reasons. A network that has its

full complement of resources when learning begins naturally learns to use all

the resources at its disposal to widely distribute its learned interpretations of

its L1 experiences. If an L2 is introduced later, the distributed L1 experience

cannot be easily or quickly consolidated to make room for independent L2

learning. Instead, the L2 and L1 experiences intermix and interact, creating

L1 entrenchment effects seen as performance deficits in L2. On the other

hand, a network that begins training with more modest resources will be

forced to attempt to encode the L1 using only the limited resources available.

121

Though these may initially be insufficient for a full understanding of L1, the

limitations will force the network to adopt more efficient and less widely

distributed encodings of the L1. This may entail segmenting the input into

smaller generative chunks, like phonemes and morphemes. This consolidation

of L1 knowledge in the resources that were added early leaves the later-added

neural resources free to adapt to novel data such as that presented by an L2.

If this reasoning is correct, starting with fewer resources and building

them up during language learning are key strategies to developing more mod-

ular representations for each language, which help to avoid the deleterious

effects of L1 entrenchment. In short, entrenchment contributes to observed

critical period effects, while childhood memory development helps to coun-

teract them. Of course, this should not be interpreted as an assertion that

the other purported causes of critical period effects, mentioned in Section 3.2,

are spurious; on the contrary, there exists credible evidence for each of them.

Rather, the purpose of this work is to help disentangle the confounded effects

of entrenchment and memory development, demonstrating how each might

contribute to the larger picture of age-correlated declines in second-language

attainment.

These results also support the notion that the LSTM-g algorithm trains

neural networks in a way that captures important artifacts of human learn-

ing, such as L1 entrenchment effects and the mollifying influence of memory

development. While LSTM-g is not the first neural network training algo-

rithm to reproduce some evidence of critical period effects, this confirmation

122

helps to justify the use of LSTM-g for training neural networks that aim to

model human learning, such as those presented in subsequent chapters.

123

Chapter 4

Grounding Language in Vision

4.1 Introduction

With the generalized neural network training algorithm from Chapter 2

in hand, and with the confirmation of the approach’s resemblance to human

learning provided by Chapter 3, this chapter begins to present the sentence-

level language modeling that is the main focus of this dissertation. The model

presented here completes the first half of the larger language acquisition task.

Through observation, it gains an understanding of spoken natural language

sentences that is grounded in terms of a visual micro-world. In this case, the

problem of grounding is that of forming one’s representation of language

in terms of other, nonlinguistic types of experience. Simple examples of

grounding include associating the word red with visual images of red things

or physically understanding the shape intended when hearing about a block.

Cognitive philosophers (e.g., Harnad, 1990) have argued convincingly that

grounding is essential to forming a true understanding of linguistic meanings,

as opposed to a mere understanding of how to manipulate linguistic symbols.

Most symbolic and statistical models of natural language processing do not

directly address this problem.

124

As in the previous chapter, the discussion presented here compares the

model’s learning to human learning. In this case, the analogy is tied directly

to theories of cognition, which expect human mental representations to have

the combinatorial power of symbol systems. More than twenty years ago,

Fodor and Pylyshyn famously rebuffed proponents of the burgeoning con-

nectionist movement, stating that “when construed as a cognitive theory,

[...] Connectionism appears to have fatal limitations” (1988, p. 48). Central

to their argument was the idea that classical theories of cognition, based on

combinatorial symbol systems, possessed a key component—systematicity—

that connectionist models seemed to lack. Systematicity, here, is the no-

tion that comprehension of a given situation is intrinsically connected to the

comprehension of related ones. Put another way, the ability to process novel

situations relies directly on skills learned from similar, previously processed

situations. Systematicity is routinely observed in human behavior, partic-

ularly in language. For example, if one understands the statement the girl

loves the boy, one certainly can also process the boy loves the girl. Fodor

and Pylyshyn argued that, practically by definition, a combinatorial sym-

bol system—one in which entities can be combined and composed according

to rules—is the only way to tractably describe systematicity as humans ex-

hibit it. Faced with the work of the connectionists of their time, Fodor and

Pylyshyn interpreted the movement as an attempt to replace classical cogni-

tive theory with neural networks that, on the face of it, lacked the ability to

operate on symbols systematically. They concluded that the only way neural

125

networks could behave systematically was to directly implement a combina-

torial symbol system. This would relegate connectionism to an explanatory

level below—and in their view, unlikely to be relevant to—cognition.

Many of the connectionists responded to Fodor and Pylyshyn’s asser-

tions with neural network models demonstrating systematic behavior. How-

ever, most of these efforts were susceptible to the argument that they were

not systematic enough to contradict Fodor and Pylyshyn’s claims. This

disconnect was possible because Fodor and Pylyshyn had given no straight-

forward means to measure or otherwise evaluate systematic behavior. To

clarify matters, Hadley (1994) operationalized systematicity as it pertains

to the use of natural language. Hadley defined systematicity in terms of a

learner’s ability to generalize from experience to correctly process novel sen-

tences. To satisfy each new level of linguistic systematicity, a learner must

make ever-larger leaps from the examples on which it has been trained. This

concrete definition of systematicity is useful in that it includes only those

forms of systematic behavior in which humans are known to engage. At the

time, no connectionist model could achieve the highest level, strong semantic

systematicity, which bolstered the arguments of Fodor and Pylyshyn.

Shortly after these systematicity requirements were codified, however,

Hadley and Hayward (1997) and Hadley and Cardei (1999) advanced re-

lated models that met them. These models took simple sentences as input

and produced something like a propositional representation of each sentence’s

126

meaning as output. The models were largely connectionist in form, consisting

primarily of simple processing elements and trainable weighted connections

between them, and in training utilizing Hebbian learning methods as well

as self-organizing maps (Kohonen, 1990). However, the models’ output lay-

ers possessed a “primitive, but combinatorially adequate conceptual scheme

prior to verbal training” (Hadley and Hayward, 1997, p. 33). This built-in

conceptual scheme consisted of single-node representations of each atomic

symbol as well as nodes for thematic roles and the binding of the two into

semantic compounds. Because all of the atomic symbols and all potential

bindings were innate, these models in fact subsumed the combinatorial sym-

bol systems whose mappings they were attempting to learn, imparting all the

related systematicity for free. Indeed, the stated goal of these models was

to “demonstrate that semantic systematicity is theoretically possible when

connectionist systems reflect some classical insights” (Hadley and Hayward,

1997, pp. 10–11). Seeing as they implemented classical symbol systems

in the most literal way possible—as part of the neural architecture itself—

these systems did not serve as counterexamples to the claims of Fodor and

Pylyshyn.

Recently, however, Frank et al. (2009) advanced a much more convinc-

ing neural network that they claimed was capable of demonstrating strong

semantic systematicity. Their model consisted of a simple recurrent network

(SRN; Elman, 1990) that learned distributed internal representations via er-

ror back-propagation (Rumelhart et al., 1986). Thus, the model was purely

127

connectionist—precisely the type of model that Fodor and Pylyshyn seemed

to argue could not be systematic. The Frank et al. model learned to map

an input sentence to a situation vector—an analogical representation of

the network’s beliefs about possible states of the world. The situation vector

that the model produced in response to a given sentence was not directly in-

terpretable, as a symbolic output would be. However, by manipulating these

vectors, Frank et al. were able to quantify the network’s level of belief in any

particular state of the world. To explain their model’s systematic behavior,

Frank et al. said that it “comes to display systematicity by capitalizing on

structure present in the world, in language, and in the mapping from lan-

guage to events in the world” (Frank et al., 2009, p. 2). They claimed further

that their model counters Fodor and Pylyshyn’s assertion, since it does not

contain an innate embedded symbol system.

The Frank et al. model, though completely distributed and purely

connectionist in nature, appears to possess the same combinatorial properties

as a classical symbol system. But these combinatorial properties are largely

what defines such a symbol system, leading directly to the suspicion that the

Frank et al. model must in fact function as a symbol system, even though,

on the surface, it is far from obvious how it might do this. One might

hypothesize that the Frank et al. model implements a combinatorial symbol

system in a much more interesting way than previous attempts. Instead of

an innate, hard-wired neural symbol system like the one present in Hadley

and Hayward’s model, it seems much more likely that the Frank et al. model

128

instantiates, through learning, a latent neural symbol system. The term

latent here means that the symbol system is not visible at the level of the

neural architecture; rather, it exists entirely as part of the learned internal

representations of the network. This would require the network to learn

distributed representations that it can manipulate in combinatorial ways,

thus gleaning the systematicity benefits of classical cognitive symbol systems

while preserving the distributed, incremental nature and graceful degradation

of connectionist representations. Frank et al. have not publicly analyzed their

model’s internal representations in ways that would reveal a latent symbol

system, complicating the evaluation of this hypothesis.

To examine the possibility of the emergence of a latent symbol system

through training in a neural network, the remainder of this chapter presents

a novel neural model that learns to ground a micro-language in a micro-world

(Monner and Reggia, 2011, under review). Section 4.3.1 first demonstrates

the model’s systematic behavior, and Section 4.3.2 subsequently presents

evidence that the trained network has created a latent symbol system inside

itself.

This model, termed the grounded-meaning model, has two parallel,

temporal input streams representing a visual scene and an auditory sentence.

It is tasked with interpreting the sentence it hears in the context of the vi-

sual scene, producing as output a corresponding propositional representation

of the meaning of the sentence. Put differently, the network needs to iden-

tify the intended referents and relations described in a given sentence and

129

construct the sentence’s grounded meaning with respect to those referents.

During training, the network learns to segment the input sentence—presented

at the phoneme level—into morphemes, words, and phrases. It develops ef-

ficient working memory representations of the collection of objects in the

visual scene. It learns to map both singular and plural noun phrases onto

a referent or referents in the scene. Crucially, the model behaves system-

atically, generalizing not only to novel sentences and scenes but to objects

and descriptions never before encountered. By way of explaining this sys-

tematic behavior, Section 4.3.2 provides a detailed analysis of the internal

representations learned by the network, showing how it manipulates these

representations combinatorially, consistent with a learned implementation of

a symbol system.

4.2 Methods

4.2.1 Task description

The grounded-meaning model learns to interpret a small subset of En-

glish in terms of a micro-world. Given input streams representing a visual

scene and an auditory sentence, the network must combine these streams to

create an output representation of the intended meaning of the speaker. By

way of explaining the task, this section describes each of the streams of infor-

mation that the network receives and produces: the input scene represented

by the visual stream, the input sentence represented by the auditory stream,

130

and the output grounded meaning represented by the intention stream. Fig-

ure 4.1 depicts the general structure of the inputs and outputs of the task,

and the following sections explain each input and output sequence in detail.

4.2.1.1 Visual input stream

Each trial in the grounding task involves a randomly generated visual

scene. A scene, in this context, is an abstract representation of a collection

of up to four objects, each of which has three properties: a shape, a color,

and a size. Each of these properties is described by discrete values:

• Shape: block, pyramid, or cylinder

• Color: red, green, or blue

• Size: small, medium, or large

Thus, 27 unique objects are possible. In the text, scene objects are

denoted in a fixed-width font enclosed in square brackets, as, for example,

[small blue pyramid].

The model receives input corresponding to a list of objects in the scene,

each of which is identified by its property values and also by a unique, iden-

tifying number. The latter allows the model to discriminate between objects

that otherwise have identical attributes, allowing a given scene to contain

[large red block 1] and [large red block 2] simultaneously while al-

lowing the model to transparently refer to either. These objects are presented

131

Neural Network Model

Collection of Predicates / “Meaning”

(Shape block 4)

(Color blue 4)

(Location near 1+2 4)

(Shape pyramid 1+2)

(Size small 1+2)

Sequence of Phonemes / “Sentence”

/ɔ/

Time ...

/m/
/s/

/ǝ/
/ð/

Collection of Objects / “Scene”

[small green pyramid 2]

[medium red cylinder 3]

[large blue block 4]

[small red pyramid 1]

Figure 4.1: An overview of the inputs and outputs that comprise the task.
The auditory input is depicted on the lower left and is comprised of a sentence
represented as a temporally ordered sequence of phonemes. The visual input
on the lower right consists of a collection of objects comprising a scene; in
practice, these objects are presented to the model in a random order, one at
a time. The output that the model is expected to produce is a meaning for
the input sentence comprised of predicates involving objects from the input
scene. In practice, the model must produce the predicates as a temporal
sequence, one predicate at a time, in the order in which their corresponding
phrases appear in the input sentence.

132

[large red block 2] 0 0 1 1 0 0 1 0 0 0 1 0 0

sm
al
l

me
di
um

la
rg
e

re
d

gr
ee
n

bl
ue

bl
oc
k

cy
li
nd
er

py
ra
mi
d

ob
je
ct
1

ob
je
ct
2

ob
je
ct
3

ob
je
ct
4

[small blue pyramid 3] 1 0 0 0 0 1 0 0 1 0 0 1 0

Figure 4.2: Two examples of objects together with their associated neural
activity patterns. The first three groups of bits denote the size, color, and
shape of a given object, respectively. The final group of bits provides a single-
unit identifier for each object, which remains unique in a given scene; this
allows the network to transparently refer to any object, even in the presence
of objects with duplicate attributes.

to the model as neural activity patterns that combine single active units rep-

resenting each property value with a single active unit representing the unique

identifier. Figure 4.2 depicts two example objects and their associated neural

activity patterns as labeled binary vectors, where a 0 represents an inactive

neural unit and a 1 represents an active unit.

These neural activity patterns—each representing an object in the

scene—are presented to the visual input layer of the network in a temporal

sequence called the visual stream. During training, the network’s visual

pathway must learn to create distributed representations that can simulta-

neously encode several objects, maintaining the bindings between individual

objects and their (likely overlapping) attributes.

Clearly, the model could utilize more biologically faithful representa-

tions, such as a retinotopic depiction of the visual input. The grounded-

meaning model could be extended to work with such an input representation.

However, since the main concern here is language acquisition, it makes sense

to use the more computationally expedient representation just described,

133

which is closer to symbolic than sensory in nature. Something akin to this

abstract object representation could be constructed by higher-level visual re-

gions in response to sensory input. The model receives a scene’s objects as

a temporal sequence, rather than a single aggregate neural activity pattern,

in part because this allows variation in the number of objects presented,

which is important in light of research on the capacity limitations of human

working memory (see Cowan et al., 2005, for a review). Working memory

research shows that, while there are practical limits on the number of ob-

ject representations an individual can maintain simultaneously, these limits

are not hard and fast. A static array of object input units would provide

this capacity limit a priori, while with a temporal representation, network

dynamics determine the capacity limitations for the model’s equivalent of

working memory.

The visual stream is presented in its entirety before the presentation of

the auditory stream begins. This way, the model needs to build a full working

memory representation of a scene before hearing a sentence about that scene.

This forces the model to consult its memory to ground the sentence, as

opposed to consulting the external scene directly. Thus, to perform well on

the task, the model must learn to maintain the important attributes of the

scene in working memory, using an efficient scene representation—one that

the network can later deconstruct and match against the auditory input.

134

4.2.1.2 Auditory input stream

After experiencing the visual stream, the model hears a sentence in-

volving some of the objects in the scene. Sentences are generated from a

simple, mildly context-sensitive grammar (Figure 4.3) that describes objects

from the scene and relations between them. Crucially for systematicity test-

ing, the grammar allows many ways to refer to any particular object. For

example, a [small blue pyramid] could be described as a small blue pyra-

mid, a blue pyramid, a small pyramid, or simply a pyramid. Notably, the

grammar allows plural references to groups of objects, such that the pyramid

from above might be paired with a [large blue pyramid] to be collectively

referred to as the blue pyramids ; or the original pyramid could be grouped

with a [small green cylinder] to be collectively described as the small

things because of their one common attribute. Examples of complete sen-

tences that the grammar can generate are the large pyramids are green, the

blue things are under the small red blocks, and the small green pyramid is on

the large red cylinder.

Each word in an input sentence is transcribed into a phoneme se-

quence; these are then concatenated to create a single unsegmented se-

quence of phonemes representing the entire sentence. For example, the

sentence the large cylinder is green is encoded as the phoneme sequence

[D@lAôÃsIl@ndÄIzgôin]. Each phoneme in such a sequence is input to the net-

work as a neural activity pattern representing some of the acoustic features

135

S → NP VP
NP → the [Size] [Color] Shape
VP → Is Where | Is Color | Is Size
Is1 → is | are

Where2 → on NP | under NP | near NP
Size → small |medium | large

Color → red | blue | green
Shape → things | pyramid[s] | block[s] | cylinder[s]

Figure 4.3: The grammar used to generate the sentences. Terminals begin
with a lowercase letter, while nonterminals are in boldface and begin with an
uppercase letter. The symbol | separates alternative derivations, and terms
in brackets are optional.

1The evaluation chosen for the Is nonterminal must agree in number with its subject
NP.

2The object NP of on cannot describe a pyramid since, in the micro-world, pyramids
cannot support other objects due to their pointed tops. Similarly, the subject NP preced-
ing under cannot describe a pyramid. In other words: Nothing can be on a pyramid, and
a pyramid cannot be under anything. This restriction on pyramids will help to illustrate
how the network internalizes micro-world systematicity in Section 4.3.2.

of the phoneme that are known to be used for identification by human learn-

ers. Such features include voicing, affrication, and formant frequencies, and

are modeled after previous feature sets used in similar applications (Weems

and Reggia, 2006; Schulz and Reggia, 2004). The full list of phonemes and

features is given in Table 4.1. The features used here are more obviously

acoustic and auditory than the set used in Chapter 3 and provide a useful

contrast with the motor features that are used to describe the same set of

phonemes in Chapter 5. The model’s direct use of such features perhaps

pushes it a step away from the human auditory sensory system, which at its

basest level uses frequency-tuned neurons. However, these features have been

identified as playing crucial roles in phoneme recognition (Jakobson et al.,

1951; Singh, 1976; Paget, 1976), and the low-level auditory system is thought

136

to contain similar representations (Phillips, 2001). The model developed in

this chapter adopts this more computationally tractable method of repre-

senting speech sounds. Importantly, this set of features—or more likely a

superset containing a few features that were not necessary here—represents

a language-agnostic basis in which speech sounds can be described. Since

the features can describe any phoneme, and the model can handle any se-

quence of such phonemes, a model based on these features could potentially

represent words and sentences from any spoken human language.

These patterns—representing the phonemes in the sentence—are pre-

sented at the auditory input layer of the network as a temporal sequence

termed the auditory stream. During training, the auditory pathway must

simultaneously learn to segment the auditory stream into morphemes and

words (for which boundaries are not included), pay attention to the syn-

tactic relations between these elements, and discover the cues that identify

objects and relations.

4.2.1.3 Intention output stream

After receiving both the visual and auditory streams, the network is

tasked with constructing the sentence’s meaning in the context of the scene.

To do this, the network must combine its auditory and visual working mem-

ory representations to generate a sequence of predicates—as activity pat-

terns over its output layer—called the intention stream. Each predicate

137

Table 4.1: Binary Acoustic Features of Heard Phonemes

Phoneme
Feature b d e f g h i j k l mn o p s t u v wz æD ï A O @ Ä E I ô S U 2 Z ÃÙ T

Consonantal ++−+++−+++++−+++−+++−++−−−−−−++−−++++

Vocalic −−+−−−+−−+−−+−−−+−−−+−−+++++++−++−−−−
Compact −−−−+−−−+−−−−−−−−−−−−−+−−−−−−−+−−+++−

Diffuse ++−+−−−−−−++−+++−+−+−+−−−−−−−−−−−−−−+

Grave +−−+−−−−−−+−−+−−−+−−−−−−−−−−−−−−−−−−−
Acute −+−−−−−−−−−+−−++−−−+−+−−−−−−−−−−−−−−+

Nasal −−−−−−−−−−++−−−−−−−−−−+−−−−−−−−−−−−−−
Oral ++−+++−+++−−−+++−+++−+−−−−−−−++−−++++

Tense −−++−++−+−−−+++++−−−−−−+−−+−−−+−−−−++

Lax ++−−+−−−−−−−−−−−−+−+++−−++−++−−++++−−
Continuant −−−+−−−−−−−−−−+−−+++−+−−−−−−−−+−−+−−+

Interrupted ++−−+−−−+−−−−+−+−−−−−−−−−−−−−−−−−−++−
Strident −−−−−−−−−−−−−−+−−−−+−−−−−−−−−−−−−−++−
Mellow −−−−+−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−+

+Voicing +++−+−++−++++−−−++++++++++++++−++++−−
−Voicing −−−+−+−−+−−−−+++−−−−−−−−−−−−−−+−−−−++

+Duration −−−−−−−−−−−−−−+−−−−+−−−−−−−−−−+−−+−−−
−Duration ++−+++−+++++−+−+−++−−++−−−−−−+−−−−+++

+Frication −−−+−+−−−−−−−−+−−+−+−+−−−−−−−−+−−++++

−Frication ++−−+−−+++++−+−+−−+−−−+−−−−−−+−−−−−−−
Liquid −−−−−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−
Glide −−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

Retroflex −−−−−−−−−−−−−−−−−−−−−−−−−−+−−+−−−−−−−
F2,V H −−+−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−
F2,H −−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−

F2,HM −−−−−−−−−−−−−−−−−−−−−−−−−++−−−−−+−−−−
F2,LM −−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−
F2,L −−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−

F2,V L/F1,V H −−−−−−−−−−−−+−−−+−−−−−−−−−−−−−−−+−−−−
F1,H −−−−−−−−−−−−−−−−−−−−+−−+−+−−−−−−−−−−−

F1,HM −−−−−−−−−−−−−−−−−−−−−−−−+−−+−−−−−−−−−
F1,LM −−+−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−
F1,L −−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−
F1,V L −−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−

138

in the intention stream corresponds to an attribute or relation mentioned

in the sentence. Predicates are represented in the model as neural activity

patterns, but they are denoted in the text using a fixed-width font enclosed

in parentheses, distinguishing them from the square-bracketed visual objects.

If a sentence refers to the visual object [small red cylinder 2] as small

cylinder, the network should produce the predicates (Size small 2) and

(Shape cylinder 2), but not (Color red 2), since this attribute was not

mentioned. If a sentence states that a blue block (referring to visual object

3) is near the small cylinder, the network must output the predicate (near

3 2). Figure 4.4 shows two examples of predicates from the intention stream

along with their associated neural activity patterns.

In general, the order of the predicates in the intention stream follows

the order inherent in the auditory stream. That is, the intention stream for

the blue block is near the green block will begin with predicates describing

the blue block, followed by predicates describing the relation near, and ending

with predicates for the green block. It may be that some objects in the scene,

or even most of them, are not referenced in the sentence that accompanies

it. In this case, these objects can be considered distractor stimuli, and while

they are present in the visual stream input, they are not included in the

target intention stream.

After a training trial, the network is shown the target intention stream.

Comparing this behavior to that of a human language learner requires the

139

(Color blue 2)

0 0 0 0 0 0 0 0 0 1 1 0 0

sm
al
l

me
di
um

la
rg
e

re
d

gr
ee
n

bl
ue

bl
oc
k

cy
li
nd
er

py
ra
mi
d

ob
je
ct
1

ob
je
ct
2

ob
je
ct
3

ob
je
ct
4

0 0 1 0

ob
je
ct
1

ob
je
ct
2

ob
je
ct
3

ob
je
ct
4

0 0 0 1

Si
ze

Co
lo
r

Sh
ap
e

Lo
ca
ti
on

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 00 1 0 0

(Location on 1+2 3)

0 0 0

0 1 0

ne
ar on

un
de
r

Figure 4.4: Two examples of predicates together with their neural activity
patterns. The first group of units denotes the type of the predicate. For
the attribute-based predicate types Size, Color, and Shape, the arguments
consist of an activated attribute value unit and one or more object identifier
units, all active in the first group of such units. For the Location pred-
icate, the arguments are a relational term like near or on and two object
identifiers—or groups of identifiers—with each argument activating specific
units in its own group of identifier units. Above, the first example conveys the
blueness of object 2, while the second example states that objects numbered
1 and 2 are both located on object 3.

assumption that the learner can, at least sometimes, derive the speaker’s

meaning from other sources—a task at which language learners seem to ex-

cel (Tomasello, 2003)—and that this meaning is available in something re-

sembling a propositional form. This is perhaps not the most plausible of

assumptions, and the final model presented in Chapter 5 does not require it.

4.2.1.4 Example trial

To concretize the input and output descriptions, this section presents

a full trial of the language grounding task—that is, a complete specification

of related visual and auditory input streams as well as the desired intention

stream output. Figure 4.5 describes an input scene, consisting of four objects,

and an input phoneme sequence for the sentence the small pyramids are near

the blue block. A correct intention stream for these inputs must contain

predicates denoting the objects numbered 1 and 2 as the small pyramids.

140

(gloss: the small pyramids
are near the blue block)

[small red pyramid 1]
[large blue block 4]

[medium red cylinder 3]
[small green pyramid 2]

(Size small 1+2)
(Shape pyramid 1+2)
(Location near 1+2 4)
(Color blue 4)
(Shape block 4)

Input Visual Stream Input Auditory Stream Intention Stream
[ðǝsmɔlpɪɹəmədzɑɹnɪɹðəblʊblɑk]

Figure 4.5: An example trial of the language grounding task. Stream ele-
ments are depicted in human-readable form, but are presented to the network
as sequences of neural activity patterns representing objects, phonemes, and
predicates, respectively.

The intention stream should indicate object 4 as the referent of the blue

block, containing predicates at the end of the sequence matching these two

attributes with the appropriate object identifier. For the relation between

the objects, the intention stream must contain a predicate representing the

Location as near, indicating that objects 1 and 2, the pyramids, are close

to object 4, the block.

4.2.2 Model description

The neural network that learns the grounding task utilizes the long

short-term memory architecture (LSTM; Hochreiter and Schmidhuber, 1997;

Gers and Cummins, 2000; Gers and Schmidhuber, 2001). LSTM uses state-

ful self-connected neural units called memory cells, which are allowed to

have multiplicative input, output, and forget gates. The biologically mo-

tivated generalized long short-term memory (LSTM-g) algorithm, derived

in Chapter 2, serves to train the network. LSTM-g is a reformulation of

LSTM’s original gradient descent training algorithm that gains the ability

141

to accommodate arbitrary multi-level network architectures, while retaining

the spatial and temporal locality observed in biological neural networks.

The grounded-meaning model utilizes an LSTM network instead of a

more traditional recurrent network such as the SRN, in part because exper-

iments show LSTM to provide both faster convergence and better general-

ization in complex multi-input, multi-output tasks that require the network

to hold extensive information in working memory. Despite many attempts,

pilot experiments were unsuccessful in finding an SRN configuration that

could learn this language grounding task.

4.2.2.1 Network architecture

The specific network architecture of the grounded-meaning model is

depicted in Figure 4.6. The network has a visual processing pathway that

begins on the bottom right of the figure, comprised of a visual-stream input

layer followed by a visual accumulation layer. The latter is a collection

of memory cells that self-organize during training, gaining the capability to

integrate the temporal visual stream into a flexible representation of an entire

scene.

The network’s auditory pathway is set up much the same way and be-

gins on the bottom left of the figure with an auditory-stream input layer

followed by two auditory accumulation layers in series. Previous experi-

ments on learning ungrounded language representations, such as those in

142

Section 2.7.3, showed that a two-layer pathway outperforms a single-layer

pathway on the task of integrating a temporal phoneme sequence into a sen-

tence representation. This appears to be due to the multi-level segmentation

inherent in the auditory part of the task. When using two layers, the first

auditory layer is allowed to specialize in the aggregation of morphemes and

words from phoneme sequences, while the second layer chiefly processes re-

lationships between words. It should be noted, however, that performance

on the grounding task does not depend crucially upon this two-layer network

architecture choice.

To recover the intention stream, the model integrates the sentence rep-

resentation and the scene representation using another layer of memory cells

called the integration layer. This layer’s representation is then used to gener-

ate an appropriate temporal sequence of predicates on the intention-stream

output layer.

The three layers of memory cells in the auditory and visual pathways

have input gates and forget gates, but not output gates, as these cells feed

exclusively into other, input-gated memory cells. The memory cells in the

integration layer, in contrast, have all three types of gates. To assist in

the production of output sequences, the integration layer has a recurrent

connection from the previous time-step’s intention-stream output.

143

Phoneme Features (34) ID (4)Object Attributes (9)

ID (4)Object Attributes (12) ID (4)Predicate (4)

Integration Layer (80)

Auditory Accumulation II (80) Visual Accumulation (80)

Auditory Accumulation I (80)

Auditory Stream Input Layer Visual Stream Input Layer

Intention Stream Output Layer

Figure 4.6: The architecture of the network. Boxes represent layers of units
(with number of units in parentheses), and straight arrows represent banks of
trainable connection weights between units of the sending layer and units of
the receiving layer, though generally not all possible connections are present.
Layers with a curved self-connecting arrow are composed of memory blocks
(collections of memory cells and associated gates as described in Chapter 2;
following the convention of Chapter 3, the memory cell layers and gate layers
are collapsed into a single box for visual simplicity).

144

4.2.3 Levels of systematicity

As was the case with Frank et al. (2009), it is difficult to map Hadley’s

(1994) levels of systematicity onto observable performance attributes of the

language grounding task. For example, Hadley’s notion of strong seman-

tic systematicity requires the learner to understand the meanings of known

words encountered in novel syntactic positions, even in embedded sentences—

a demonstration which is not possible with the modest training grammar em-

ployed here. To provide a benchmark against which to measure the model,

this section defines four levels of systematicity as it relates to the task used

here. These levels of systematic grounding correspond roughly in difficulty

to those defined by Frank et al.—though not necessarily to those defined by

Hadley—while lending themselves more directly to use with this task:

1. Weak systematic grounding: The learner can label familiar objects in

novel scenes using familiar object descriptions. That is, having seen

a [medium blue block] before, and referred to it as a medium blue

block in a particular scene, the learner can generalize this ability to

new scenes and new sentences.

2. Categorical systematic grounding: The learner can label novel ob-

jects in a scene using familiar descriptions. For example, if the learner

has never previously seen a [small red block], but has encountered

objects referred to as red blocks, it can apply the label red block to this

145

novel object. This is “categorical” in the sense that applying familiar

labels to novel objects is tantamount to lumping them into existing

categories.

3. Descriptive systematic grounding: The learner can use novel descrip-

tions to label familiar objects in a scene. In this situation, the learner

has previously encountered, for example, a [small blue pyramid],

but has only ever heard it referred to as a small pyramid or a blue

pyramid or just a pyramid. If the learner can successfully apply the la-

bel small blue pyramid, which it has never heard before, to this object,

then it exhibits descriptive systematic grounding.

4. Strong systematic grounding: The learner can use novel descriptions

to label objects it has never previously encountered. That is, having

never encountered, for example, a [small green cylinder], and hav-

ing never heard the label small green cylinder, the learner can nonethe-

less recognize the novel object and refer to it using this novel label.

Section 4.3.1 uses these four criteria to demonstrate that the model pre-

sented in this chapter exhibits strong systematic grounding of the language

it learns.

4.2.4 Experimental evaluation

This experiment trains copies of the grounded-meaning model in four

different ways, evaluating it on sets of test sentences that probe the different

146

levels of grounding systematicity from Section 4.2.3. It is important to note

that in each of these four conditions, the test inputs serving as the basis

for the performance scores are always novel—the model has never seen them

during training. In what follows, an object or description is considered novel

if it consists of a combination of features (e.g., [large red pyramid]) or

words (e.g., large red pyramid) that does not occur in the training set. The

four training conditions are:

1. Weak condition: The set of all possible scene-sentence pairs is parti-

tioned at random with 10% reserved exclusively for testing. While test

pairs are completely novel to the model, the individual objects and

descriptions are likely to be familiar.

2. Categorical condition: One specific type of object—for example, a

[small green block]—is never present in scenes during training. The

model is tested in situations where this novel object is given a familiar

description—as a small block, a green block, or simply a block, all labels

that the network has previously applied to other types of objects.

3. Descriptive condition: One specific type of object—for example, a

[medium blue pyramid]—while allowed to be present in the scenes,

is never described fully; that is, the object can be referred to as, for

example, a blue pyramid or a medium pyramid, but never as a medium

blue pyramid. The model is scored on scenes containing this famil-

147

iar object paired with sentences containing the full, novel description,

medium blue pyramid.

4. Strong condition: One type of object—a [large red pyramid], for

example—is never described and never appears in scenes. The model

is scored in situations where this novel object appears and is referenced

using the novel description, which in this case is large red pyramid.

Ten distinct, randomized copies of the grounded-meaning model learn

the task set forth in each of the four conditions. For pairs of layers shown

as connected in Figure 4.6, individual pairs of units are connected with a

probability of 0.7, leading to networks with 320 memory blocks and approx-

imately 60 thousand trainable weights. The learning rate parameter is set

to 0.01. Each network is allowed to train on 3 million randomly selected

scene-sentence pairs from its training set.

Each training trial consists of a random scene comprising two, three,

or four distinct objects, with uniform probability. The grammar (Figure 4.3)

then generates a random sentence that describes some aspect of the scene.

Over half a million distinct scenes are possible, each giving rise to, on average,

36 possible grammatical sentences, for a total of approximately 18 million

distinct scene-sentence pairs. Since inputs, especially simple ones, are often

repeated, the network sees a very small fraction of the input space during

training, though the network, like most neural models, still appears to require

far more linguistic input than human learners, at least in terms of number of

148

repetitions. For each pair of test inputs, the network must produce the correct

intention stream, consisting of a temporal sequence of 2 to 7 predicates.

Before training, each network was evaluated on the set of test sentences

for its condition. In each case, the pre-training networks activated the cor-

rect output units at levels appropriate for chance performance. No network,

during any pre-training run, produced even a single correct output predicate,

let alone a correct sequence of predicates corresponding to a sentence. This

is consistent with chance performance, given the size of the space of potential

outputs.

4.3 Results

4.3.1 Systematicity

Figure 4.7 compares the accuracy of fully trained networks across the

four conditions. The ten networks in the weak condition produced all inten-

tion stream predicates correctly for, on average, 95% of novel scene-sentence

pairs, while those in the categorical, descriptive, and strong conditions were

93%, 93%, and 97% accurate, respectively. The networks clearly pass all of

these systematicity tests on the grounding task.

Comparing the conditions reveals a significant difference in performance

only between the descriptive condition and the strong condition on a Welch

two-sample t-test (t ≈ −3.2, df ≈ 17.5, p < 0.01). This likely has to do with

149

A
cc

u
ra

cy
 (

%
)

70

75

80

85

90

95

100
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●

●
● ●

●

Weak Categorical Descriptive Strong

Figure 4.7: The percentage of completely correct intention streams recovered
from random samples of 100 test-set sentences, averaged over 10 trials in each
of the conditions. The small dots represent the performance of individual
networks in a condition, and the large dots represent overall condition means.
The error bars denote the 95% confidence intervals on the condition means.

an (intentional) asymmetry in the descriptive condition’s training set. The

network, observing 27 different visual objects but only 26 complete auditory

object descriptions, is slightly impaired by this structural asymmetry. By

contrast, in the strong condition, the scenes and sentences maintain their

structural symmetry, with 26 visual objects corresponding to 26 complete

auditory descriptions.

The network had far more trouble with the grounding part of the task—

that is, selecting the referents for the various object descriptions—than it had

with parsing the linguistic descriptions themselves. These two subtasks can

be scored separately by observing how often the network produces the cor-

rect predicate sequence and attribute values—indicating that it processed the

linguistic description correctly—and how often it identifies the unique iden-

tifier of the correct referent for that description. When scoring on accurate

150

recognition of linguistic descriptions and ignoring referents, trained networks

produced, on average, less than one error per 1,000 novel sentences.

While trained networks produced the correct referent for 98% of noun

phrases—with their accuracy varying inversely with the number of objects in

the scene and the number of referents in the sentence, as one might expect—it

also took them much longer to reach this accuracy level, as can be seen in Fig-

ure 4.8. A typical network required only the first quarter of its training time

to achieve near-perfect accuracy when recognizing linguistic descriptions, at

which point it was identifying referents correctly only 80% of the time, a

figure that slowly improved for the duration of training. That referents are

so much more difficult to identify than object attributes and relations only

underscores the difficulty of the language grounding task.

4.3.2 Analysis

The results in the previous section demonstrate that a trained network

is capable of using grounded language systematically. To provide insight into

how this occurs, this section presents an analysis of the learned internal rep-

resentations of the network that enable this behavior. The analysis reveals

that the network’s linguistic representations capture important syntactic and

semantic features of the sentences; that the learned representations capture

latent micro-world regularities; and that the network’s grounded representa-

tions over the integration layer appear to be compositional with respect to the

151

Amount of Training (thousands of trials)

P
er

fo
rm

an
ce

 (
fr

ac
ti

on
 c

or
re

ct
)

0.0

0.2

0.4

0.6

0.8

1.0

500 1000 1500 2000 2500 3000

Output Type

Linguistic Description

Referent Identification

Figure 4.8: Depiction of performance versus training time for a randomly
selected network on both linguistic descriptions and referent identifications.
The network learns linguistic descriptions quickly, reaching maximal accu-
racy after a small fraction of the allowed training time. Achieving maximal
accuracy on referent identification requires much more training.

components of the desired output predicates, suggesting that the network’s

learned representations instantiate a combinatorial symbol system.

The data analyzed in this section come from a single, randomly selected

trained network from the weak systematicity condition. The choice of a

network from the weak condition ensures the absence of systematic biases in

the training set that the network experienced. That said, the representations

learned by networks in the other conditions were not fundamentally different

than the results presented.

The first avenue of investigation involves the information present in

learned representations distributed over the network’s second auditory ac-

cumulation layer. During processing of the auditory streams of each of 100

152

test sentences, the testing program takes snapshots of this layer’s activation

values at the end of each heard word. Averaging over all occurrences of a

given word provides a canonical representation for that word. These repre-

sentations are then hierarchically clustered to capture their similarities and

differences, resulting in Figure 4.9. The top cluster corresponds to the ad-

jectives present in the training grammar, and the nouns cluster individually

below, with the singular and plural versions of the same noun clustering to-

gether. The meta-cluster of adjectives breaks down neatly into two clusters

based on the function of the adjectives as color or size descriptors, though

this may be due to a syntactic difference present in the grammar: Size de-

scriptors always precede color descriptors when the two are present together,

as is common in English. Given the amount of structure in these clusters, it

is fair to say that the representations in the second auditory accumulation

layer capture a basic form of syntactic category information regarding heard

words.

Using the same methodology, one can examine the representations of

heard words in the next layer downstream, the integration layer. Looking

specifically at the words involved in number agreement—the singular and

plural nouns and the corresponding verbs is and are—Figure 4.10 reveals that

this layer’s representations differ significantly from those of the previous layer.

The representations here differ based in part on their number agreement class,

with the singular nouns and is forming a single cluster, whereas the plural

verb are is much more closely related to the plural nouns. One might initially

153

Figure 4.9: A hierarchical clustering of heard word representations from the
network’s second auditory accumulation layer. The hierarchy shows a tight
cluster of adjectives (top), subdivided by type, while the nouns (bottom)
cluster by word-form, with singular and plural representations forming indi-
vidual clusters.

guess that this clustering is simply based on the similar phonemes that end

the plural nouns, with all words ending in [s] or [z] forming one cluster to the

exclusion of the other words. By this logic, one would expect is to cluster

with the former group. However, the opposite is observed, suggesting instead

that the representational divide reflects number agreement information.

Drilling down further into the data involves moving away from averages

over all occurrences of a predicate type to averages over all occurrences of a

specific combination of a predicate and its arguments. So instead of averaging

over all Shape predicates, say, one needs to compute a separate average

over all the occurrences of (Shape block 1), (Shape cylinder 2), and so

on. A hierarchical clustering of these averages reveals the pattern shown in

154

Figure 4.10: A hierarchical clustering of representations of heard words from
the network’s integration layer. The clustering shows a tight cluster (top) of
singular nouns which also includes the singular verb is, which are is much
more closely related to the plural nouns (bottom).

Figure 4.11. One can immediately identify four major clusters corresponding

to the four unique object identifiers, suggesting that the representations in

this layer systematically separate predicates based on which objects they

involve. This hierarchical clustering pattern is also observed for the Color

and Size predicates. This provides a glimpse of how the network performs

grounding: It systematically varies its internal representations of predicates

based on which micro-world objects those predicates involve.

Interestingly, each of the four main clusters in Figure 4.11 has a sim-

ilar internal structure, with the cylinder and block attributes being con-

sistently more similar to each other than to the pyramid attribute. This

internal structure is due to subtle constraints that the micro-world places

on the various shapes: Blocks and cylinders are allowed to support other

objects, whereas pyramids are not, due, of course, to their pointed tops. No

155

Figure 4.11: A hierarchical clustering of representations from the network’s
integration layer that co-occur with output predicates. Canonical predi-
cate representations were obtained by averaging over all occurrences of a
specific predicate/argument combination. For readability, this hierarchy in-
volves only Shape predicates. The representations break down systematically
based on the object involved and then by the specific shape involved.

information about the differing functions of the various shapes is ever pre-

sented explicitly to the network. The only indication of a difference between

shapes is the absence of pyramid objects in certain argument positions of on

and under predicates specifying a Location. Nevertheless, the cluster sub-

structure in Figure 4.11 serves as evidence that the network encoded this

latent difference in the operational regularities of the micro-world.

To further interpret the integration layer’s internal representations, it

would be nice to be able to graph them directly. Unfortunately, these rep-

resentations exist in an 80-dimensional space–one dimension per unit in the

layer—rendering them difficult to visualize. An illuminating way to reduce

this complexity is via principal component analysis (PCA; Jolliffe, 2002),

156

which creates a new 80-dimensional space by taking linear combinations of

the original 80 dimensions in such a way as to account for as much of the

variance as possible with each new dimension. Thus, most of the interesting

variations in the data will appear in the first few dimensions, or principal

components (PCs), of the transformed space. This has the side effect of cen-

tralizing redundant parts of the representation into single PCs, allowing a

glimpse beyond the distributedness of the representations and making them

more amenable to analysis and visualization. This allows the depiction of

representations from the integration layer in several 2-dimensional spaces

defined by pairs of the first few PCs. That said, the meaning underlying

some of the PCs is still likely to be difficult to interpret, so this section only

contains graphs for those PCs where the underlying pattern is clear. These

graphs offer insights into the symbolic nature of the model’s learned internal

representations.

Snapshots of integration-layer representations that precede predicate

outputs in the intention stream provide the data for Figure 4.12, which graphs

the average integration-layer representations for predicates involving each

separate object identifier. These average representations, denoted by large

numbers representing each identifier, are very clearly separated when viewed

in the space defined by PC1 and PC4, indicating that the network has no

trouble determining which identifier belongs in a given predicate. This figure

also breaks averages down further, showing sub-averages over each predicate

type for a given object identifier, denoted by smaller text combining each

157

−0.4

−0.2

0.0

0.2

0.4

1

2

3

4

Color

Color

Color

Color

Shape

Shape

Shape

Shape

Size

Size

Size

Size

−1.0 −0.5 0.0 0.5

PC1

P
C
4

Figure 4.12: A PCA-space view of the integration layer’s representational
clusters (highlighted in gray polygons) for each of the four possible object
identifiers (the large numbers). The sub-structure labels of each cluster show
representational averages over predicate type for each identifier. There is
systematic variation of each predicate type from the cluster center: Shape

predicates above, Color predicates below and to the left, and Size predicates
to the right and slightly above. This systematic variation is evidence of
combinatorial symbolic representations.

predicate name with the appropriate identifier. One notes immediately the

similarity in the sub-structural organization of these clusters: The Shape

predicates always appear above the cluster center, while the Color and Size

predicates appear, respectively, below and to the right.

A complementary pattern emerges in Figure 4.13, which visualizes av-

erages over all instances of Color, Size, and Shape predicates, which are

well-separated when viewing PCs 2 and 6. The sub-structure of these clus-

ters depicts sub-averages over occurrences of each predicate type involving

158

−0.4

−0.2

0.0

0.2

0.4 Color

Shape

Size

1

1

1

2

2

2

3

3

3

4

4

4

−0.6 −0.4 −0.2 0.0 0.2

P
C
6

PC2

Figure 4.13: A PCA-space depiction of the integration layer’s representa-
tional clusters (highlighted in gray polygons) of the predicate types Color,
Size, and Shape. The sub-structure of these clusters shows averages over
predicates containing specific object identifiers. Again, the systematic varia-
tion is evident, where predicates involving identifier 1 are below the cluster
average; 2 are to the left; 3 are above; and 4 are to the right. This is further
evidence of combinatorial representations of predicates and object identifiers.

a specific object identifier. Again, one can locate a given identifier in each

cluster in a systematic way: The average of identifier 1 is below the cluster

average; 2 is to the left; 3 is above; and 4 is to the right.

These are important observations. They demonstrate that the net-

work’s learned representations for object identifier and predicate type are

essentially independent. For example, if the network is attempting to cre-

ate a representation of a Color predicate, it does not need to know which

object identifier is involved in the predicate; instead, it can simply decrease

the value of the representation along PC4 (as can be seen in Figure 4.12),

159

as this transformation is guaranteed to produce a Color predicate no matter

what the identifier is. Similarly, to produce a representation involving object

identifier 2, one need only translate the representation in the negative direc-

tion along PC2 (as in Figure 4.13), regardless of which predicate is involved.

Of course, translating the network’s representation along a PC entails small

changes to the activations of many or all of the involved neural units, such

that it would not be obvious to an observer that such a distributed change

was all part of a single symbolic operation.

This representational independence means that the distributed repre-

sentations are compositional—though one would be hard-pressed to spot it

without aids such as PCA. In this context, compositionality means that,

given representations for a block and a pyramid, one can create represen-

tations for blue block and blue pyramid by applying the same blue-ifying

transformation to each; additionally, one can apply the reverse transforma-

tion to a blue cylinder to yield a regular cylinder. Compositionality fol-

lows from the existence of independent structure in the representations and

allows representations to be manipulated based on their structure. Com-

positionality is, of course, the key property of classical symbols that allows

them to be manipulated combinatorially, giving rise to systematicity. The

fact that the network demonstrates representational independence, and thus

compositional distributed representations, explains its ability to perform sys-

tematically: It appears to have implemented, through learning, a latent com-

binatorial symbol system on top of its purely connectionist substrate.

160

4.4 Discussion

The evidence from the previous section suggests that the representa-

tions learned by the grounded-meaning model comprise an implementation

of a latent combinatorial symbol system in a neural architecture that is not

hard-wired or otherwise predisposed to the task. This type of representation

naturally combines the advantages of cognitive and connectionist representa-

tions in several ways. It is compositional, thus easily giving rise to systematic

behavior. It is fully distributed, lending the benefits of graceful degradation

due to damage that neural networks exhibit. Perhaps most importantly, it

emerges through learning as a consequence of systematicity in the environ-

ment.

This last point in particular requires elaboration. The assertion that

the symbolic structure emerges, and is not included in the system, may at

first seem to be subject to the same arguments advanced against Hadley and

Hayward’s claims about their model (1997). Their model’s representation

was such that the different roles and fillers were a priori delimited, and the

output criterion was that the best match from each class was chosen. This

resulted in a system that could only produce valid propositions as output.

In this sense, the output representation already included the relevant symbol

system. The grounded-meaning model’s output representation is fundamen-

tally different. While well-formed intention stream outputs, like Hadley and

Hayward’s, are propositional in nature, the grounded-meaning model’s train-

161

ing regimen does not constrain the combinatorial possibilities, allowing the

system to generate output sequences that do not form valid propositional

representations at all. The system must learn which symbols interact combi-

natorially, which are mutually exclusive, and so on. Thus no symbol system

can be said to be built in before training.

Additionally, both the Hadley and Hayward (1997) and Frank et al.

(2009) models, and indeed a large number of past connectionist models in-

volving language, built all the necessary words into the network as funda-

mental units. The approach used here differs by using unsegmented phoneme

sequences to represent entire utterances, leaving the model to learn a proper

segmentation that provides the best mapping to the regularities of the micro-

world. The model’s phoneme-based input representation also leaves open the

possibility of the model learning novel words without an experimenter mod-

ifying the network architecture.

Like the Frank et al. (2009) model, the LSTM network powering the

grounded-meaning model is trained by the method of gradient descent, which

utilizes back-propagated error signals throughout the neural network. Since

there exists little neurobiological evidence for back-propagated error signals,

one might argue that both models are unrealistic in this respect. However,

there is evidence that the overall architecture of these models is not as far

removed from biological plausibility as one might expect. Specifically, Xie

and Seung (2003) have recently discovered that gradient descent by back-

propagation is essentially a computationally expeditious implementation of

162

contrastive Hebbian learning. Hebbian learning methods are widely consid-

ered to be neurobiologically plausible and have been widely used in connec-

tionist modeling, including the models of Hadley and Hayward (1997) and

Hadley and Cardei (1999). Contrastive Hebbian learning, specifically, is the

main ingredient in the training regimen of more biologically oriented models

such as Leabra (O’Reilly, 2001). The model’s use of an LSTM network in

particular confers a few more benefits in terms of biological feasibility. Since

real neurons are stateful—that is, their current state is always dependent

upon their previous states in addition to their current inputs—they bear a

closer resemblance to LSTM’s stateful memory cells than to the stateless

neural units traditionally used in many connectionist models. Additionally,

the multiplicative functions of gate units in LSTM have close neurobiological

correlates, and similar mechanisms have been used in models of the prefrontal

cortex and basal ganglia (O’Reilly and Frank, 2006).

The grounded-meaning model differs significantly from the Frank et al.

(2009) model, particularly in that its output representations are directly

interpretable predicates, whereas their model’s situation vectors required ad-

ditional processing to ascertain the belief state of their model. Despite this

difference, the output representations in the Frank et al. model were, like

those in the grounded-meaning model, designed to convey the systematic-

ity present in the micro-world. Because of this, it seems likely that the

Frank et al. model, and indeed any other connectionist model that manages

anything resembling strong systematicity without hard-wired support for a

163

combinatorial symbol system, may in fact be learning a latent symbol sys-

tem representation similar to the one demonstrated by the grounded-meaning

model. While Frank et al. may at first appear to directly deny that their

network possesses combinatorial representations, they in fact only argue this

for the situation vector representations of their model’s output layer. In

light of the evidence presented here, on the other hand, one might guess that

their model’s learned representations over the hidden layer may come to be

compositional, and thus symbolic in the sense of Fodor and Pylyshyn (1988).

This prediction may be construed as a reinforcement of one of Fodor and

Pylyshyn’s most important points—namely, that connectionist networks, to

be truly systematic, must implement a symbol system (1988). While it is un-

clear whether Fodor and Pylyshyn meant to include emergent latent symbol

systems as a potential means of satisfying this requirement, their comment,

viewed in this inclusive way, seems to be essentially accurate. That said,

one can still disagree with Fodor and Pylyshyn on their corollary assertion

that connectionist networks, as implementors of classical cognitive theories,

have nothing new to provide to cognitive science. Smolensky (1988) argued

convincingly that any approach must account for both the soft, statistical na-

ture of some aspects of cognition as well as the seemingly hard, rule-driven

nature of other parts. He suggested that the best way to do this was to

start with the soft connectionist formalism and use that to build the hard

symbolic framework. The model presented here works towards this goal,

but in doing so, does not need to give up the inherent softness of its con-

164

nectionist roots. Symbolic cognitive theories often entirely ignore the issues

of how their symbolic representations are formed through learning, or how

they break down under load or because of deterioration from age or injury.

Connectionist approaches, many of which emphasize both learnability and

deterioration, are poised to address these questions, and in doing so, provide

valuable developmental insights to cognitive researchers.

While some (e.g., Smolensky, 1990; Plate, 1995) have already argued

convincingly that a marriage between symbols and distributed representa-

tions is both mathematically possible and neurocognitively necessary, this

work suggests a learnable route through which such a system may be realized.

This frees cognitive researchers to pursue both symbolic and connectionist

approaches to cognition, with each theory constraining the other. Thus,

symbolic approaches will continue to provide an extremely useful level of de-

scription of cognitive phenomena, and connectionist approaches will provide

a means of realizing the former through simple, general learning processes

over distributed neural networks. Barring a fundamental shift in science’s

understanding of how the brain processes information, this unified view is a

necessary step in relating the mind’s structure to the brain’s function.

165

Chapter 5

Question Answering and Language Production

5.1 Introduction

The grounded-meaning model from the previous chapter shows how a

neural network can learn to ground linguistic knowledge in other senses—an

essential ability underlying true understanding of any language. However, a

complete language model has more goals to fulfill, such as formulating re-

sponses to heard language and then producing those responses. This chapter

introduces two incremental descendants of the grounded-meaning model that

possess each of these abilities, gained by training in the domain of question

answering.

Most linguistic utterances can be roughly classified as requests for infor-

mation or sources of information, although some are both or neither of these.

In human discourse, it is often the case that speech acts of these two classes

alternate, with one party requesting information and the other responding,

followed by one of the parties expressing another request, and so on. There

is a considerable literature on how one could construct a program capable of

participating in the request/response paradigm. One of the most recent and

well-known examples of such a question-answering system is IBM’s Watson

166

(Ferrucci et al., 2010), which can often best experienced players in the quiz

show Jeopardy!. While Watson and systems like it are undoubtedly impres-

sive, their errors are often baffling and inscrutable to onlookers, suggesting

that the strategies they employ differ greatly from those humans use.

While question-answering systems have been well-studied in natural

language processing domains, little research has been done on how the ques-

tion/answer style of interaction might influence the ways in which humans

acquire language. In human language modeling, much interest has been paid

to the study of language comprehension (the transformation of an auditory

signal into a meaning) and of language production (the inverse problem of

transforming a meaning into an auditory signal), but there is little human

language modeling research that focuses specifically on learning to produce

appropriate responses to questions. This is an interesting subject in light of

the fact that, when listening to language, learners are constantly confronted

with these request/response, question/answer pairs. Particularly interesting

is the question of how the language faculties of a learner in this situation

could be implemented solely by a complex neural network like the human

brain.

This chapter investigates the extent to which a pure neural network

model of a human learner can develop a grasp of a micro-language by listen-

ing to simple question/answer pairs (Monner and Reggia, in press b). The

model is situated in a simulated micro-world along with two other speakers,

167

referred to as Watson and Sherlock. Watson asks simple questions about the

shared environment in a subset of English, and Sherlock responds to these

questions with the information Watson seeks. The model’s task is to learn to

emulate Sherlock. To do this effectively, the model must listen to the speech

sounds of Watson’s questions and learn to segment them into morphemes,

words, and phrases, and then interpret these components with respect to the

common surroundings, thereby grounding them in visual experience. The

model must then recognize what information Watson is asking for and pro-

vide that information in a form that aligns with an answer that Sherlock

would give.

This chapter examines two related models that differ in how the an-

swers are provided. The first model learns to provide the answer to a question

from Watson as a raw meaning—a series of predicates describing properties

of, and relations between, objects in the micro-world. This style of response

naturally resembles that of the grounded-meaning model in Chapter 4, since

grounded understanding of the question is a clear requirement of finding the

answer. As such, it is called the meaning-answer model. The answers

this model provides are meant to be analogous to the learner’s internal rep-

resentations of meaning, though the representational form the model uses is

determined a priori instead of learned. Teaching a model to answer this way

is useful because it demonstrates explicitly that such a model can ground

its answers by referring to concrete objects in the micro-world, rather than

simply rearranging the question and guessing a plausible answer. However,

168

for this to be a reasonable model of human language learning, it would need

to learn entirely based on data that are readily available to any language

learner. Thus, the model would need to have direct access to Sherlock’s in-

ternal meaning representations, which is, of course, not generally possible in

human language learning situations (though there is some evidence that the

listener may often be able to infer meanings from context; see Tomasello,

2003). However, examining this limited model can still be useful, as its

predicate-based outputs provide direct evidence that neural models can learn

to produce a fully grounded representation of an answer to a question.

A second model addresses this limitation of the meaning-answer model

by providing its answers much like the input questions—as sequences of

speech sounds. This second model is termed the spoken-answer model.

The representation of an answer in this case is unambiguously observable

whenever Sherlock responds to Watson, placing the spoken-answer model a

step closer to the reality of human language learning. The problem of learn-

ing to answer questions is more difficult in this case, since the network is

trained using only the observable linguistic stimuli produced by Sherlock,

which are not only more verbose than Sherlock’s intended meanings but also

potentially lossy translations thereof. Nonetheless, analysis of this model

provides evidence that this approach to training offers a tractable path to

both language comprehension and production.

169

5.2 Background

Previous efforts at neurocognitive modeling involving question answer-

ing have focused primarily on story understanding. Diederich and Long

(1991) presented a hybrid connectionist model that provides plausible an-

swers to open-class questions (“how,” “why,” “when,” and so on) about a

particular story. The model was a connectionist adaptation of a symbolic

question-answering system called QUEST (Graesser and Franklin, 1990) and

came equipped with pre-made spreading-activation modules containing both

general world knowledge and knowledge about the story in question. Whereas

this model used a vast database of general knowledge to answer open-class

questions, the models in this chapter are concerned with learning to answer

simpler, closed-class questions from first principles—that is, without building

any knowledge into the system.

Miikkulainen (1993, 1998) presented DISCERN, a cognitively inspired

connectionist model of story understanding that, unlike the Diederich and

Long (1991) model, learned by conventional incremental training methods,

such as Hebbian learning and gradient descent. Comprised of several dis-

tinct neural modules, DISCERN learned to process textual stories as famil-

iar scripts, assigning the roles in these scripts to the relevant elements in

the current story. In addition to story-paraphrasing capabilities, DISCERN

included a question-answering subsystem that would receive a simple tex-

tual question word by word and process it into a case-role representation,

170

generally with one unbound role representing the information the questioner

sought. The model matched this representation against known stories in

episodic memory to fill the vacant role and generate a textual answer to

the question. This system differs from the models presented here in several

ways. While DISCERN operated on text resolved down to the word level,

the models in this chapter are concerned with speech resolved down to the

phoneme level, and as such, with learning to distinguish words as well as

interpret sentences. Where the makers of DISCERN built much functional

modularity into the network, the models presented here develop such mod-

ularity via training, as their design provides no a priori functions to the

layers. Finally, where DISCERN answers questions based on memory of a

particular story, the models in this chapter are concerned with answering

questions grounded in the immediate context provided by a visual micro-

world. The related GLIDES model (Williams and Miikkulainen, 2006) dealt

with language grounding in a similar way but was concerned with free-form

descriptions of the world, rather than answering specific questions about it.

Besides direct questions and answers, one can consider other types of

request/response paradigms for training a neural network in language com-

prehension and production. Markert et al. (2009) trained a hybrid model,

composed of nonconnectionist sensory analysis systems in addition to neu-

ral networks, to recognize simple spoken commands and use them to direct

a robot in a motor task. The robot was able to recognize visual objects,

associate them with words gleaned from the speech signal, and interpret

171

commands to perform actions such as moving an object. This model is a

convincing demonstration of the applicability of neural modeling methods to

the task of integrating disparate input sources and learning to respond to a

verbal request. It was not, however, designed as a model of a human learner,

as evidenced by its non-neural preprocessing modules and built-in knowledge

of motor plans and sentence structures.

While not fitting neatly into the question-answering paradigm, the

model of sentence comprehension by St. John and McClelland (1990) serves

as inspiration for this work. This model used simple recurrent networks

(Jordan, 1986; Elman, 1990) to process a temporal sequence of words into

a spatial “sentence gestalt” representation that was refined by training the

network to complete role/filler pairs describing the sentence. Other mod-

els (e.g., Rohde, 2002) have since used this technique to great effect. The

models presented in this chapter develop similar gestalt representations of

both the visual scene and the auditory sentence before combining them into

a grounded whole that can be used to produce answers.

The spoken-answer model in particular takes inspiration from a number

of other language production models. Dell (1993) advanced a simple recur-

rent network model for sequentially producing the speech sounds of words

as collections of phonological features. The models presented here reuse this

notion of representing phonemes as bundles of features and extend Dell’s

model by producing speech sequences from learned internal semantic repre-

sentations of sentences instead of hand-designed lexical representations.

172

Plaut and Kello (1999) presented a connectionist model of word com-

prehension and production that learned to associate 400 words with random

unique “semantic” representations. An interesting contribution of this model

was the inclusion of a forward model from articulatory features—representing

the vocal tract movements necessary to produce speech sounds—to acoustic

features. This kind of forward model enables a learner to receive feedback on

appropriate productions by listening to speech—its own or that of others—

and propagating mismatched acoustic expectations backward to modify ar-

ticulatory representations. Rather than re-implement their forward model,

the models in this chapter presume, for computational expediency, that such

a model exists and that it can translate the available acoustic feedback into

articulatory feedback.

Another connectionist model of comprehension and production ad-

vanced by Chang et al. (2006) learned to produce word sequences from a

prespecified message. The main mechanism behind this learning was listen-

ing and imitation—listening to the utterances of others and actively predict-

ing upcoming words, using previous words and inferred partial meanings as

clues. The models presented here take this same approach of learning by lis-

tening and imitation, while improving the potential scalability of the model

by not relying on singleton word representations (which effectively place hard

limits on the learnable vocabulary) and, in the spoken-answer model, com-

pletely foregoing hand-coded representations of structured meaning (which

173

place similar limits on the set of learnable concepts) in favor of implicit,

learned meaning representations.

5.3 Methods

Both the meaning-answer model and the spoken-answer model have

the same general structure, shown in Figure 5.1. Both models receive visual

input from the environment via a sequence of temporally presented predicates

describing objects and relations between them. The models also hear each

question from Watson as auditory input consisting of a temporal sequence of

phonemes. The outputs of both models mimic Sherlock’s answers, but they

do so at different levels: The meaning-answer model produces an answer

to Watson’s question as a sequence of grounded predicates, much like the

grounded-meaning model in Chapter 4, whereas the spoken-answer model

gives each answer as a sequence of speech sounds. Both models are pure

neural networks, though the structure of these networks differs slightly to

accommodate the differences between their tasks.

The remainder of this section explores in detail the tasks performed by

the models and the representations for their input and output signals before

comparing and contrasting the neural network architectures of each.

174

/ð/

Neural Network Model

Imitation of Sherlock’s Answer

Watson’s Question

/ð/

...

Time

/ǝ/
/s/
/m/

/ɔ/

Environment

(Color blue 1)
(Size small 1)
(Shape block 1)
(Location near 1 3)
(Color red 3)
(Size medium 3)
(Shape pyramid 3)
...

(Color blue 1)
(Size small 1)
(Shape block 1)
(Location near 1 3)
(Color red 3)
(Size medium 3)
(Shape pyramid 3)
...

OR

...

Time

/ǝ/
/s/
/m/

/ɔ/

Figure 5.1: A high-level overview of the flow of information in the models.

175

5.3.1 Tasks

As mentioned in Section 5.1, the models are faced with the task of

learning to comprehend and produce language in the context of answering

questions. The overview of the task is simple: One of the models is placed

in a shared micro-world environment with two other speakers, Watson and

Sherlock. A training trial begins with Watson asking a question, the answer

to which is directly observable in the environment. Sherlock surveys his

surroundings and gives the answer, which the model observes and attempts

to mimic. A testing trial, in contrast, is one in which Watson asks a similar

question, but Sherlock is silent, relying on the model to produce the desired

answer.

During a trial, the model first takes stock of the micro-world environ-

ment, receiving a stream of visual input and compressing it into a sort of

visual gestalt representation for later reference. It then listens for Watson’s

question as a temporal sequence of speech sounds, processing these into an

auditory gestalt of sorts. After hearing the totality of the question, the model

attempts to combine the visual and auditory gestalts, internally mapping the

references in the sentence to objects in the environment and subsequently fig-

uring out what it is that Watson wants to know.

If the model in question is the meaning-answer model, it then provides

the answer in the form of a sequence of grounded predicates that could serve

as the meaning for a complete-sentence answer to Watson’s question. The

176

meaning-answer model must learn this behavior by imitating Sherlock, who

always knows the answers to Watson’s questions. In real human language

learning, Sherlock’s raw meaning would not necessarily be available for the

model to imitate. The motivation for the meaning-answer model is to trans-

parently demonstrate that a neural network model is capable of learning to

produce this type of precise answer by grounding its auditory input in the

visual scene.

In contrast to the meaning-answer model, the spoken-answer model

answers questions by generating sequences of speech sounds that together

form a complete sentence. The model again learns to produce these sounds

by imitating Sherlock, and since these sounds are observable, this addresses

the concern with the meaning-answer model and positions the spoken-answer

model much closer to the reality of a human language learner. Because the

model’s internal meaning representations are learned, they are also much

harder to interpret than the meaning-answer model’s hand-designed predi-

cates, and as such, it is more difficult to demonstrate robust grounding in

the spoken-answer model than in the meaning-answer model. However, the

spoken-answer model makes a different point: Mimicking ungrounded speech,

which is generally a lossy translation of the internal meaning of the speaker,

is sufficient to learn question-answering behavior.

The following subsections examine in detail the ways in which the au-

ditory inputs, visual inputs, and both predicate- and speech-based model

177

outputs are constructed, and also describe the vocabularies and grammars

to which Watson and Sherlock restrict themselves.

5.3.2 Environment input

The micro-world environment shared by the three participants consists

of a number of objects placed in relation to each other; an example envi-

ronment configuration is depicted in Figure 5.2. Each object has values for

the three attributes (Size, Shape, and Color), and each attribute has three

possible values: small, medium, and large for Size; block, cylinder, and

pyramid for Shape; and red, green, and blue for Color. Thus, 27 distinct

objects are possible. In addition, each object has a number that identifies it

uniquely in the environment, which is a useful handle for a specific object and

is necessary in the event that the participants need to distinguish between

two otherwise identical objects.

Each object is represented as three predicates, each of which binds an

attribute value to an object identifier. For example, a small red block with

unique identifier 2 is completely described by the predicates (Size small

2), (Color red 2), and (Shape block 2), which are presented to the mod-

els in a temporal sequence. An environment consists of two to four randomly

generated objects, and the predicates describing all of these objects are pre-

sented at the visual input layer of the model as a temporal sequence at the

start of a trial. Each predicate is presented as a set of input unit activations.

178

(Color blue 1)
(Size large 1)
(Shape block 1)
(Location under 1 4)
(Location near 1 3)

(Color green 4)
(Size medium 4)
(Shape pyramid 4)
(Location on 4 1)

(Color green 3)
(Size medium 3)
(Shape cylinder 3)
(Location under 3 2)
(Location near 3 1)

(Color red 2)
(Size small 2)
(Shape block 2)
(Location on 2 3)

Figure 5.2: An example of a micro-world environment with four objects,
along with the complete set of predicates that describe the environment.
The predicates are the environment input to the model; the visual depiction
of the objects here is simply for reference.

Input units are generally inactive, except for single active units correspond-

ing to the type of attribute (e.g., Color), the value of that attribute (e.g.,

blue), and the unique identifier (e.g., 3). See Figure 5.3 for a depiction of

example predicates and their representations in terms of neural activity.

Additional predicates are used to describe spatial relations between the

objects. One object may be near, on, or underneath another. For example,

if the small red block (with identifier 2) is on top of a medium-sized green

cylinder (identifier 3), that fact would be presented to the model as the pred-

icate (Location on 2 3). In the micro-world, the on and under relations

are complementary (meaning that (Location on 2 3) implies (Location

under 3 2)), and the near relation is symmetric (such that (Location near

1 3) implies (Location near 3 1)). The location predicates are presented

along with the attribute predicates and at the same visual input layer.

179

Shape

Color

Size

Location

block

red

small

on

pyramid

blue

medium

under

cylinder

green

large

near

1

2

3

4

1

2

3

4

Shape

Color

Size

Location

block

red

small

on

pyramid

blue

medium

under

cylinder

green

large

near

1

2

3

4

1

2

3

4

Predicate Attribute Identifiers

(L
oc
at
io
n
on
 2
 4
)

(C
ol
or
 b
lu
e
3)

Figure 5.3: Neural representations of two example predicates used as visual
input and meaning output. The left-most group of 4 cells in each case de-
notes the predicate type, of which only one cell will be active in a well-formed
predicate. Cells in the middle group of 12 each stand for an attribute value;
again, in well-formed predicates, only one of these is active at a time, and
the attribute value will correspond to the correct predicate type. The right-
most cells correspond to unique identifiers for environmental objects; in most
cases, only an identifier from the first column is active, binding the active
predicate-attribute pair to that identifier, as in the first example above rep-
resenting (Color blue 3). Location predicates, such as the second example
(Location on 2 4), activate two identifier nodes to establish a relationship
between them.

180

Though this space of possible environments may seem small at first,

the number of unique environmental configurations is quite large. Using

only two, three, or four objects at a time provides approximately 2.48× 1010

distinct possible micro-world configurations.1

The visual representation just described is a drastic simplification of

real visual input that the models adopt for reasons of computational tractabil-

ity. At the cost of moving away from sensory-level visual input, the models

gain enough computational efficiency to study the language acquisition phe-

nomenon of primary interest. This type of high-level visual representation

can be viewed as the equivalent of a representation that might be produced

by the later stages of the human visual system, though probably not in this

precise form.

This environment representation differs from that used in Chapter 4,

breaking each object up into single-attribute predicates. This ends up requir-

ing more work from the model, which must now learn to bind together many

attributes—based on the object identifier—to create a unified representation

of each object, taking care not to confuse objects with similar attributes.

Since each object is no longer presented to the network as a single coherent

pattern, this representation is in some sense lower level than that utilized

1This is calculated as
∑4

n=2 27n 2(n
2) 3(n

2) where n is the number of objects in an
environment and there are 27 featurally distinct objects. The first term denotes the number
of distinct combinations of objects possible. The second term denotes the independent
presence or absence of near predicates for all combinations of two objects, counted as
unordered because near is symmetric. The third term captures the three possibilities for
on and under predicates for each combination of two objects—neither of these predicates
exists, or both exist with two possible object orderings.

181

in Chapter 4, bringing the model one step—albeit a small one—closer to

sensory-level (i.e., retinotopic) visual input. The other major deviation from

the Chapter 4 visual representation is the inclusion of additional predicates

describing the spatial relations between the objects in the environment. This

addition allows answers to be conditioned on the locations of objects, so the

models can now distinguish, for example, two otherwise identical small red

blocks by the fact that one of them rests on top of a cylinder and the other

does not.

5.3.3 Question input

Watson produces complete English sentences that ask questions about

the current shared environment. There are many possible questions for each

environment; for the example environment in Figure 5.2, Watson might ask:

what color block is the green pyramid on?, what thing is under the small

block?, what color are the medium things?, or where is the pyramid?.

At the start of each trial, Watson examines the environment and then

begins deriving a question beginning at the Question nonterminal in the

mildly context-sensitive grammar of Figure 5.4. The derivation is constrained

not only by the grammar itself, but also by the environment. Specifically,

any objects that Watson refers to must be present in the environment and,

to a sophisticated observer, unambiguously identified by the full context of

the question. For example, Watson could not ask what color is the block?

182

because it is not clear which block is being referred to, and thus any answer

would be poorly defined. Watson can, however, ask questions about groups

of objects that share a property, such as what color are the medium things? ;

in this case, the medium things are the cylinder and pyramid, which are

both green, so the answer is well defined. Questions posed to the models are

required to have well-defined answers to maintain the simplicity of evaluation

and training; after all, if the answer is ambiguous, how can one tell whether

the model produced the correct answer or not? An important future research

task will be to relax this requirement and see if one can train a model such

that, when it is given an ambiguous question, it produces either an answer

that is plausible, or an answer indicating its uncertainty.

The words in Watson’s question are phonetically transcribed, and the

resulting phoneme sequences are appended to produce one uninterrupted

temporal sequence corresponding to the spoken sentence. Word and mor-

pheme boundaries are not marked, leaving the model to discover those on

its own, just as with real-world speech signals. When the speech sequence

for a question is presented as input to the model, individual phonemes are

given one at a time. Phonemes are represented using the same bundles of

binary acoustic features used in Chapter 4. These features include such cues

as voicing, affrication, and formant frequency categories. A full listing of

phonemes and their features can be found in Table 4.1.

183

Question → where Is Object |What Is Property

Answer → Object Is Property

Object → the [Size] [Color] Shape

What → what color [Size] Shape |
what size [Color] Shape |
what [Size] [Color] thing

Property1 → Location |Color | Size
Location2 → on Object | under Object | near Object

Is3 → is | are

Size → small |medium | large

Color → red | blue | green

Shape → things | pyramid[s] | block[s] | cylinder[s]

Figure 5.4: The mildly context-sensitive grammar used to train the meaning-
answer model on the question-answering task. Terminals begin with a lower-
case letter, while nonterminals are in boldface and begin with an uppercase
letter. The symbol | separates alternative derivations, and terms in brack-
ets are optional. Watson begins derivations from the Question nonterminal
to generate a question that can be given as input to the model, and Sher-
lock begins from the Answer nonterminal to generate an answer to such a
question.

1When the parent nonterminal is Question, the evaluation chosen for Property is
constrained so as not to reveal the missing property from the preceding What expansion.
For example, questions such as what color pyramid is red? are disallowed.

2Pyramid objects are disallowed as subjects of under and objects of on because, in
the micro-world, pyramids cannot support other objects due to their pointed tops.

3The evaluation chosen for Is must agree in number with the Object expansion that
serves as its subject.

184

5.3.4 Answer output

After Watson has finished asking a question, the model attempts a

response. On training trials, Sherlock then gives the correct response, and

the model adjusts its connection weights to better imitate this response in

the future. Training is supervised in the sense that complete training targets

are always provided, but it is a type of self-supervision where the model need

only observe the naturally occurring dialog between Watson and Sherlock

and attempt—perhaps covertly—to imitate the latter.

To answer Watson’s question, the model must examine the environment

and determine the set of object attributes and relations Watson is referring

to. If the question was what color block is the green pyramid on?, in the

context of the environment of Figure 5.2, the model must first determine that

(Color green 4) and (Shape pyramid 4) are of interest, and then find that

the on-relation only makes sense with object number 1, as (Location on 4

1). (Shape block 1) shows that object number 1 fits with the clue that

Watson has a block in mind. Finally, the model must deduce that Watson

asked about the color, and so must retrieve the predicate (Color blue 1)

from its working memory representation of the environment.

When training the meaning-answer model, Sherlock gives precisely

these five predicates as its answer, and the meaning-answer model must learn

to do the same. On the other hand, when training the spoken-answer model,

Sherlock gives the answer as a speech sequence. Specifically, Sherlock derives

185

a complete English sentence, starting from the Answer nonterminal in the

grammar of Figure 5.4. Sherlock constrains the derivation to conform to the

contents of the predicate-based answer. For the question what color block is

the green pyramid on? and the environment shown in Figure 5.2, Sherlock

will invariably answer the green pyramid is on the blue block. The answer

sentence is phonetically transcribed, just as Watson’s questions are, to form

an unsegmented temporal sequence of phonemes. The spoken-answer model

uses Sherlock’s speech stream as a temporal sequence of training targets to

be produced in response to the question input.

Previous models (e.g., Plaut and Kello, 1999) have proposed that a

learner run its internal representation of the answer’s meaning forward to

create a series of articulations for the sounds of the sentence. By feeding

these representations through a forward model mapping articulatory features

to auditory features, the learner could generate predictions about the speech

stream. This would enable the learner to compare Sherlock’s speech stream

with its own predictions, working backward to turn auditory prediction er-

rors into a training signal for articulatory features, and thus learning how

to produce the desired speech. The spoken-answer model, for computational

expediency, assumes that this process has already taken place, training di-

rectly on phonemes as bundles of binary articulatory features. The complete

list of binary articulatory features and associated phonemes can be found in

Table 5.1.

186

Table 5.1: Binary Articulatory Features of Spoken Phonemes

Phoneme
Feature b d e f g h i k l mn o p s t u v v wz æD ï A O @ Ä E I ô S U 2 Z ÃÙ T

Consonantal ++−+++−++++−+++−++++−++−−−−−−++−−++++

Vocalic −−+−−−+−+−−+−−−+−−−−+−−+++++++−++−−−−
Anterior ++−+−−−−+++−+++−−+−+−+−−−−−−−−−−−−−−+

Coronal −+−−−−−−+−+−−++−−−−+−+−−−−−−−++−−++++

+Voicing +++−+−+−++++−−−+++++++++++++++−++++−−
−Voicing −−−+−+−+−−−−+++−−−−−−−−−−−−−−−+−−−−++

Continuant −−++−++−+−−+−+−+++++++−+++++++++++−−+

Stop ++−−+−−+−++−+−+−−−−−−−+−−−−−−−−−−−++−
Nasal −−−−−−−−−++−−−−−−−−−−−+−−−−−−−−−−−−−−

Strident −−−+−−−−−−−−−+−−−+−+−−−−−−−−−−+−−+++−
Very High −−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−

High −−−−+−−+−−−−−−−−+−+−−−+−−−−−+−++−+++−
Middle ++++−−−−+++++++−−+−+−+−−−++−−+−−−−−−+

Low −−−−−+−−−−−−−−−−−−−−−−−−+−−+−−−−+−−−−
Very Low −−−−−−−−−−−−−−−−−−−−+−−+−−−−−−−−−−−−−

Front −−+−−−+−−−−−−−−−−−−−+−−−−−−++−−−−−−−−
Front Center −−−−−−−−−−−−−−−−−−−−−−−−−++−−−−−−−−−−

Center ++−+−+−−+++−+++−++−+−+−−−−+−−++−−++++

Back Center −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−
Back −−−−+−−+−−−+−−−+−−+−−−+++−−−−−−+−−−−−

In both the predicate-output and speech-output scenarios, the answers

to the questions differ, based on the micro-world environment, such that

the mapping from questions to answers is never one-to-one. Indeed, both

predicate-based and speech-based answers to Watson’s question what color

block is the green pyramid on? would change if the block under the green

pyramid were red instead of blue; the predicate-based answer would also

change (albeit slightly) if the scene were visually identical but the object

numbering was altered. Though this example suggests that the number

of possible answer variations is small, some questions admit much greater

environment-based variation than others. Questions that are more open-

ended, such as where is the block? could have literally hundreds of possible

187

answers stemming from the diversity of environments where the question

makes sense. Thus, neither the model nor Sherlock could answer questions

reliably without integrating information from the visual environment.

5.3.5 Neural architectures

To learn the tasks described in the previous section, the neural net-

works that comprise both the meaning-answer model and the spoken-answer

model need to accurately recognize and produce sequences that are as long

as 20 predicates or 40 phonemes. They are built using the long short-term

memory (LSTM; Hochreiter and Schmidhuber, 1997; Gers and Cummins,

2000; Gers and Schmidhuber, 2001) architecture, which has been previously

shown to perform very well on long temporal sequences, and trained using the

generalized long short-term memory (LSTM-g) training algorithm described

in Chapter 2.

Although the basic components of the two models are the same, the

network architectures differ slightly, based on the demands of each task. The

network architecture of the meaning-answer model is shown in Figure 5.5.

The network has an input layer for visual predicates (bottom right), which

are presented temporally and accumulated into the visual gestalt in a visual

accumulation layer. Internal layers such as this one are composed of the self-

recurrent LSTM memory blocks described in Chapter 2 and are identified

by the small recurrent arc on the top-left side. The network also has an

188

Auditory Features (34)

Integration Layer (120)

Auditory Accumulation II (60) Visual Accumulation (60)

Auditory Accumulation I (60)

Visual Predicates (24)

Meaning Predicates (24)

Figure 5.5: The neural network architecture of the meaning-answer model,
which is closely related to that of the grounded-meaning model (see Figure 4.6
for comparison and explanation).

input layer for auditory features, which feed through two successive layers of

memory cells, forming an auditory gestalt on the second such layer. The two

pathways differ in serial length because pilot experiments showed that the

visual and auditory gestalt representations are best formed with one and two

layers of intermediary processing, respectively. After both input gestalts have

formed, they are integrated by another layer of memory cells, which is then

used to sequentially generate predicates that specify the grounded output

that answers the input question. The network’s previous output is fed back

to the integration layer in the style of a simple recurrent network (SRN;

Jordan, 1986) to provide a more specific context for sequential processing.

The network that implements the spoken-answer model, detailed in

Figure 5.6, differs from that of the meaning-answer model in only a few key

respects. The main change is that the meaning-answer model’s output layer,

189

which used to specify predicates, now consists of articulatory features used

to create output speech sequences. The other change is the addition of an-

other layer of memory cells between the integration layer and the output.

Pilot experiments showed that network architectures lacking this additional

layer had more trouble converting the intended speech stream into articu-

latory features. A key feature of the spoken-answer model architecture is

that, unlike the meaning-answer model, it does not prespecify any semantic

representations. This forces the network to learn its own internal meaning

representations, which have the benefit of being distributed while supporting

the strongly systematic generalization that language use requires (Fodor and

Pylyshyn, 1988; Hadley, 1994).

5.4 Results

5.4.1 The meaning-answer model

Ten independent instances of the meaning-answer model, each with

randomly chosen initial connection weights, train on the question-answering

task for 5 million randomly generated trials. This duration of training may

seem long, but it represents a mere fraction of a percent of the input space,

leaving the model to generalize across the rest. An arrow between a pair

of layers in Figure 5.5 indicates that a given pair of units from these layers

possesses a trainable weighted connection with a probability of 0.7. The

networks have 300 memory cells in all internal layers combined and about 60

190

Auditory Features (34)

Integration Layer (120)

Auditory Accumulation II (60) Visual Accumulation (60)

Auditory Accumulation I (60)

Production Layer (120)

Articulatory Features (20)

Visual Predicates (19)

Figure 5.6: The neural network architecture of the spoken-answer model,
depicted in the style described in Figure 4.6. This architecture has an addi-
tional production layer that helps the network learn to generate the output
phonemes from the internal meaning representations of the integration layer.
The number of units in the visual predicate input layer decreased from 24 to
19 to accommodate the slightly simplified grammar that the spoken-answer
model learns (see Figure 5.11).

191

thousand trainable connection weights in total. The networks use a learning

rate of 0.01.

Reported accuracy results are based only on trials that the model had

never encountered before evaluation time, and as such, always reflect gen-

eralization and never memorization. For each such trial, the model must

produce a sequence of predicates, where a predicate is counted as correct

only if it occurs in the correct sequential position and has all unit activa-

tions on the correct side of 0.5. On average, the trained meaning-answer

models were able to produce a perfect sequence of grounded predicates to

answer a novel input question 92.5% of the time, strongly suggesting that

this style of observe-and-imitate training is sufficient even for the difficult

task of grounded question comprehension and answering.

To evaluate the relative difficulty of the components of the task, one

can decompose the output predicates into three categories: attribute val-

ues corresponding to linguistic descriptions that are present in the question,

referent identifications made by grounding the question in the environment,

and attributes that are inferred from the environment to answer the ques-

tion. Comparing the time-course of accuracy over these three categories,

Figure 5.7 shows that the model learns to understand spoken descriptions

fairly quickly, with accuracy leveling off above 95% after the first million tri-

als. At this point, accuracy on referent identifications and question-answers

is relatively weak, at 80% and 70%, respectively; however, accuracy on these

192

Amount of Training (in millions of trials)

A
cc
ur
ac
y
(f
ra
ct
io
n
co
rr
ec
t)

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

Type of Information

Linguistic Descriptions

Referent Identifications

Attribute Inferences

Figure 5.7: Accuracy versus training time for three separate components of
the question-answering task, averaged over all ten training runs.

areas continues to slowly improve as training progresses, providing evidence

that grounding the language in the environment is much more difficult than

recognizing a sequence of words and the basic outline of the meaning it

entails. It also shows that using the environment to infer the answers to

questions is harder still.

To begin to gain an understanding of how the model acquires this sys-

tematic ability to answer novel questions in novel environments, one must

examine the internal representations that the model learns during training.

These are obtained from snapshots of one trained model’s integration layer

taken immediately after it finishes hearing Watson’s question. For certain

very simple questions, such as what color is the block?, there are enough in-

stances in the test data such that each possible answer—in this case, red,

green, or blue—is represented multiple times. Looking for systematic dif-

193

ferences between related sets of questions—and between multiple instances

of the same question where the different micro-world environments would

suggest differing answers—reveals what the model knows at the instant im-

mediately after it hears the complete question.

The representations of three related questions are examined first. Each

question asks about the color of a different type of object—a block, a pyramid,

or a cylinder—and can have any of the three possible colors as its answer, de-

pending on the environment. Applying principal component analysis (PCA)

to the representations aids in analysis by removing some of the redundancy

and distributedness that is characteristic of learned representations in neural

networks. While variation along the principal components (PCs) need not,

by design, correspond to interpretable changes in the internal representa-

tion, this is in fact the case for many PCs. This indicates that the models

are learning representations that can vary systematically in many dimen-

sions. The following figures only involve those PCs for which the variation

is easily interpretable. Though lower PC numbers represent larger amounts

of variation in general, the PC number is essentially immaterial here, since

the goal is merely to point out systematic variation in some PC.

Figure 5.8 graphs the representations in PCA-space, grouping them by

question type, and subdividing those groups based on the expected answer.

Here, each shaded polygon corresponds to a group of questions that are

identical, though they may have different answers. For example, a polygon

194

might represent the question what color is the pyramid?. Valid answers to this

question involve a color attribute: red, green, or blue. Each vertex of such

a polygon is labeled with the answer Watson is looking for and represents

an average over all such questions that have this answer. So, to complete

the example, the vertex labeled blue (the top-left-most vertex in Figure 5.8)

represents the average representation over all instances where Watson asked

what color is the pyramid? and had a blue pyramid in mind.

In this figure and those that follow, the representations for some of the

shaded groups may seem to overlap, which one might expect to cause the

model to mistake one group for another. These representations, however,

are always well-separated by other principal components that are not shown,

leaving the model with no such ambiguity.

The results show a remarkably systematic pattern. First, the model’s

internal representations differ consistently, based on the expected answer to

the question, which was not present in the auditory input and has not yet

been produced by the network as output predicates. This systematic differ-

ence implies that the model is aware of the expected answer to the question as

soon as it is asked. While the model possessing the answer is not surprising,

since all the information needed to deduce it is present in the visual input,

the clarity of the answer’s presence in the internal representation just after

the question input suggests that the model processed the question online,

deriving the answer immediately from its working-memory representation of

195

PC6

P
C
7

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

what color is the block?

what color is the cylinder?

what color is the pyramid?

−0.2 0.0 0.2 0.4 0.6

blue

blue

blue

green

green

green

red

red

red

Figure 5.8: Learned internal representations generated by the model for a set
of what color? questions, visualized in PCA-space and separated according
to the expected answer to the question. Shaded polygons correspond to sets
of questions that are identical but might nonetheless have different answers.
Each possible answering attribute corresponds to a labeled vertex of the
polygon.

196

the micro-world environment. Additional systematicity is apparent in the

respective orientations of the answer-groups for each question. Regardless

of which question was asked, a blue answer is always a positive shift along

PC7 and a red answer is always a negative shift, with green answers falling

in the middle and along a positive shift in PC6. This type of organization

recalls the representations discovered in the model from Chapter 4, where

they served as evidence of compositional, symbol-like representations for the

various color concepts.

This analysis was repeated for a collection of similar what size? ques-

tions, with very similar results as shown in Figure 5.9. Again, the model

displays clear representational differences that reveal its knowledge of the

question’s answer and further show it represening this information using sys-

tematic variations that are largely independent of the question being asked.

One might next inquire about the extent to which the model’s internal

representations reflect the environmental referents present in the question

and answer. This can be gauged by analyzing the same set of what color?

and what size? questions, again partitioning the trials into groups by ques-

tion, but this time subdividing these groups based on the unique identifier

that the micro-world assigned to the referent. These identifiers are never

represented in auditory input. Thus, the network’s reliable knowledge about

identifying number is direct evidence that the model’s internal sentence rep-

resentations are grounded in the visual input. The results in Figure 5.10 show

197

PC8

P
C
6

−0.2

0.0

0.2

0.4

what size is the block?

what size is the cylinder?

what size is the pyramid?

−0.2 −0.1 0.0 0.1 0.2 0.3

small

medium
large

small

small

medium

medium

large

large

Figure 5.9: Learned internal representations generated by the model for a set
of what size? questions, visualized in PCA-space and separated according to
the expected answer to the question, in the style of Figure 5.8.

198

a remarkably systematic representation that makes clear several distinctions

at once. First, the two question types what color? and what size? are sep-

arated along PC1. Second, the shape of the object in each question has an

observable effect on its representation regardless of question type, with pyra-

mid questions producing markedly smaller shaded regions in this projection

than the other questions, while the cylinder and block questions produce

regions of similar size, with the former shifted down along PC4 across both

question types. Finally and most importantly, each question’s representation

reveals clear knowledge of the numerical identifier of the question’s referent,

with questions about objects 1 and 4 being distinguished along PC4, while

questions about objects 2 and 3 differ along PC1. This figure definitively

shows the systematic independence of the model’s knowledge about the type

of answer being sought (size or color), the shape of the object in question

(block, pyramid, or cylinder), and the identifying number of the referent.

5.4.2 The spoken-answer model

Because of the additional size and complexity of the spoken-answer

model, it trains on a slightly smaller grammar for computational expedi-

ency. This grammar is a subset of the one in Figure 5.4, arrived at by

disallowing cylindrical objects and removing the size attribute altogether.

For reference, the resulting grammar is shown in Figure 5.11. Pilot experi-

ments indicate that the spoken-answer model has no trouble learning the full

199

PC1

P
C
4

−1.5

−1.0

−0.5

0.0

0.5

1.0

what color is the block?

what color is the cylinder?

what color is the pyramid?
what size is the block?

what size is the cylinder?

what size is the pyramid?

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

1

2

3 4

1

1

1

1
12

2

2 2
23

3

3

3
3

4

4

4

4

4

Figure 5.10: Learned internal representations generated by the model for a
set of what color? and what size? questions, visualized in PCA-space and
separated according to the object number of the sentence’s referent, in the
style of Figure 5.8.

200

Question → where Is Object |What Is Property

Answer → Object Is Property

Object → the [Color] Shape

What → what color Shape |
what [Color] thing

Property1 → Location |Color

Location2 → on Object | under Object | near Object

Is3 → is | are

Color → red | blue | green

Shape → things | pyramid[s] | block[s]

Figure 5.11: The slightly simpler grammar on which the spoken-answer model
is trained. For comparison, and for the text of the footnotes, see the original
grammar in Figure 5.4.

grammar, and scales from smaller grammars at approximately the same rate

as the meaning-answer model. However, computational resource constraints

impeded replicated experiments with the model at that size.

Ten individual instances of the spoken-answer model train for up to

5 million randomly generated trials to learn the question-answering task,

using the grammar from Figure 5.11. The networks are connected as shown

in Figure 5.6, with each pair of units in connecting layers having a probability

of 0.7 of sharing a weighted connection. This probability, combined with the

420 total memory cells across all internal layers, results in networks with

approximately 120 thousand connection weights. The learning rate is 0.002.

Trained models are assessed on their ability to produce a perfect se-

quence of phonemes comprising a full-sentence answer to an input question

on a novel trial. Each phoneme in a sequence is considered correct if each

201

feature unit has an activation on the correct side of 0.5. On average, the

spoken-answer models are able to accomplish this for 96.9% of never-before-

seen trials. For example, in a micro-world containing a blue block on top

of a red block, as well as a red pyramid nearby, Watson asked the model

what red thing is the blue block on?, to which the model responded with

[D@blUblAkIzAnD@ôEdblAk], which translates as the blue block is on the red block.

This response was correct in the sense that the phoneme sequence the model

chose represents the desired answer to the question; additionally, the model

produced these phonemes in the correct sequence, and each had exactly the

right articulatory features.

The occasional errors made by the networks fall into roughly three cat-

egories. The first and most common is a slight mispronunciation of an other-

wise correct answer. For example, the model was asked what color pyramid

is on the red block?, and it produced the answer [D@bl?pIô@m@dIzAnD@ôEdblAk],

where the “?” indicates that the network produced a pattern of articula-

tory features that does not precisely correspond to one of the language’s

phonemes. However, it is clear from context that the model meant to say the

blue pyramid is on the red block, which is the correct answer to the question

in the environment provided during that trial. Despite the fact that the net-

work clearly knew the correct answer and came extremely close to producing

it, the reported statistics count every trial like this as an error.

The other type of error occurs in cases where the model seems unsure

of the expected answer to the question. Sometimes, this takes the form

202

of a direct and confident substitution of an incorrect answer, as was the

case when the model was asked what color is the block? and confidently

answered the block is green when the block was in fact blue. Other times,

the model muddles two possible answers when speaking. For example, when

asked what color block is the blue pyramid under?, the model responded with

[D@blUpIô@m@dIz@ndÄD@gl?blAk], which glosses roughly as the blue pyramid is

under the glih block. The correct answer for the malformed word here would

have been blue, but the model was apparently confused by a preponderance of

green objects present in the micro-world on that trial, producing this hybrid

of the two words in its answer. In other instances, the model trails off or

“mumbles” when it does not know which word to say in its answer. A trial

where the model was asked where is the blue pyramid? provides an example

of this behavior. The pyramid in question was on top of a green block,

which required the model to produce three salient pieces of information that

were not present in the question (i.e., on, green, and block) as part of its

answer. The model came back with [D@blUpIô@m@dIzAnD@gôinb??], roughly the

blue pyramid is on the green buhhh.... Though the model produced the first

two components of the expected answer, it was apparently unsure enough

about block that it trailed off into unrecognizable phonemes and, in fact,

stopped producing phonemes short of where the utterance would normally

end.

Looking at the spoken-answer model’s learned distributed represen-

tations reveals the same sorts of patterns that were present in those of

203

the meaning-answer model. Figures 5.12–5.14 examine the spoken-answer

model’s internal representations by analyzing snapshots of the integration

layer activations immediately after a question is presented. PCA strips some

of the redundancy out of the representations, identifying the main compo-

nents for productive visualization, two at a time. This time, the investigation

focuses on a more involved set of where? questions, which each require the

network to produce three pieces of information that were not present in the

question. In response to the example question where is the red block?, the

model would need to respond by placing the red block in relation to a refer-

ence object, as in the red block is under the blue pyramid. Figures 5.12–5.14

test the internal representations for the presence of information about the

location (under), color (blue), and shape (pyramid) of the reference object

immediately after the model hears the question and before it begins its re-

sponse.

Figure 5.12 shows a view of internal representations from PCs 2 and

3, depicting not only a clear separation of three variations of the where?

question, but also systematic manipulations of PC3 to distinguish the on

and near relationals, while PC2 separates these from under.

Figure 5.13 shows the color of the reference objects in PCs 4 and 8.

While other PCs not depicted here demarcate representations of the different

question types, this figure shows PC4 separating red from green and PC8

distinguishing blue from either of these.

204

PC3

P
C
2

−0.5

0.0

0.5

1.0

where is the blue block?

where is the green block?

where is the red block?

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

on near

under

on

on

near

near

under

under

Figure 5.12: Learned internal representations generated by the spoken-
answer model for a set of where? questions, visualized in PCA-space and
separated according to the relational word that positions the reference ob-
ject in relation to the question’s subject. Shaded polygons correspond to sets
of questions that are identical but might nonetheless have different answers.
Each possible word representing a valid answer corresponds to a labeled ver-
tex of the polygon.

205

PC8

P
C
4

−0.2

−0.1

0.0

0.1

0.2

0.3

blue
blue

blue

green

green

green

red

red

red

where is the blue block?

where is the green block?

where is the red block?

−0.2 −0.1 0.0 0.1

Figure 5.13: Learned internal representations generated by the model for a
set of where? questions, visualized in PCA-space and separated according to
the color of the reference object used to locate the question’s subject, in the
style of Figure 5.12.

206

PC3

P
C
1

−0.5

0.0

0.5

1.0

block

block

block

pyramid

pyramid

pyramid

where is the blue block?

where is the green block?

where is the red block?

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

Figure 5.14: Learned internal representations generated by the model for a
set of where? questions, visualized in PCA-space and separated according to
the shape of the reference object used to locate the question’s subject, in the
style of Figure 5.12.

Finally, Figure 5.14 breaks out the question representations in PCs

1 and 3, showing that the identity of the reference object as a block or a

pyramid is primarily represented along the first principal component.

In total, Figures 5.12–5.14 present convincing evidence that the spoken-

answer model learns internal representations much like those of the meaning-

answer model. These representations quantize the input space and vary

systematically along a number of principal dimensions to represent complex

knowledge.

This section on the spoken-answer model, unlike the previous section

on the meaning-answer model, does not contain a figure depicting informa-

207

tion about the remaining property of the reference objects—the identifying

number assigned to each. This is because an analysis of the representations

showed no underlying systematicity to the representations when broken down

by object number. However, this is not surprising. Being more speech-like,

the responses that the spoken-answer model produces differ from those of the

meaning-answer model in that they do not involve explicit specification of

object numbers. Object numbers only exist in the visual input to the spoken-

answer model, and to perform the question-answering task, the model must

use them to bind attributes together to form coherent objects—that is, bind-

ing (Color blue 2) with (Shape pyramid 2) and (Location near 2 3)

to produce the conception of a blue pyramid that is near some other object.

Once this binding is complete for the entire environment, the model has no

reason to retain the object number that was used to perform the binding; the

number has served its function and is henceforth superfluous since it is not

needed as part of the response. Therefore, one should not expect the high-

level representations at the integration layer to involve object number at all,

and indeed, the variation due to object number is small and unsystematic

compared to the meaning-answer model.

5.5 Discussion

The results from the previous section suggest that for both the meaning-

answer model and the spoken-answer model, observation and imitation are

208

realistic methods by which a question-answering behavior can be learned.

The meaning-answer model learned to answer questions by directly mimick-

ing the intended meaning of another speaker, Sherlock. While such imitation

may occasionally be possible in situations where the learner can readily infer

the speaker’s meaning, such situations might not be frequent enough to fa-

cilitate full language learning. In any event, such a model could only hope to

explain how the answers are derived, but not how they are communicated.

Besides serving as a simplified proof-of-concept and a stepping stone from the

grounded-meaning model to the spoken-answer model, the meaning-answer

model provides clear evidence that a purely neural network model is capa-

ble of integrating two separate sensory streams to produce a coherent whole.

The meaning-answer model is the only known neural network model able to

successfully learn to map sentence-level questions, represented at sub-lexical

resolution, onto complex, composable symbolic meanings representing their

answers.

The spoken-answer model improves on the meaning-answer model in

two ways. First, it learns to perform the question-answering task not by

mimicking Sherlock’s meaning, but by mimicking Sherlock’s speech. Even

though speech is often a lossy translation of the meaning, it has the virtue

of always being observable—a property that places this model closer to real-

world plausibility. Second, the spoken-answer model’s performance encom-

passes not only answer derivation but also response generation, giving it an

extra level of explanatory power over the meaning-answer model. This final

209

model is the only known neural network able to map sub-lexical representa-

tions of natural language questions to natural language answers, devising its

own semantic representations along the way.

As was the case with the grounded-meaning model in Chapter 4, both

of the models presented here appear to devise internal representations that

are approximately compositional, imbuing them with the generative power

of symbolic approaches to cognition. At the same time, these learned rep-

resentations are distributed, conferring beneficial properties like redundancy

and graceful degradation.

These models suggest that simple observation and imitation might be

sufficient tools for learning to solve question-answering tasks. As discussed

at the outset of this chapter, question answering—or more generally, the re-

quest/response mode of communication—is fundamental to language. Since

the principles in question are so elementary, computational models that ob-

serve and imitate seem to be ideal for application to complex language learn-

ing tasks.

210

Chapter 6

Conclusion

The work presented in this thesis makes a variety of original contribu-

tions to multiple fields, including computer science, second-language acquisi-

tion, and cognitive neuroscience. It also has a number of limitations as well

as possibilities for future work.

6.1 Contributions

The first major contribution is the generalized long short-term mem-

ory (LSTM-g), a variant of the original training algorithm for networks of

the long short-term memory architecture. The original LSTM training algo-

rithm has the desirable and biologically realistic trait that it depends only

on information that is spatially and temporally local to the memory cell be-

ing trained; it also has a serious limitation in that it is applicable only to

shallow networks with no more than a single hidden layer in series. Deeper

recurrent networks are trainable by other means, but all previously known

algorithms make use of information that is nonlocal in either time or space,

seriously impairing their biological plausibility while simultaneously harming

their efficiency. The new LSTM-g algorithm from Chapter 2 begins with the

211

basic template of gradient descent on the error function and, by reorganiz-

ing the formalism and truncating error signals in a novel fashion, produces

a general training algorithm for second-order networks with arbitrarily deep

architectures while utilizing only local information. Combined with other

recent results demonstrating the biological plausibility of gradient descent

(if not specifically error back-propagating implementations thereof; Xie and

Seung, 2003), LSTM-g provides an approach to neural network training that

is simultaneously powerful, efficient, and biologically inspired.

The neural models of the acquisition of grammatical gender presented

in Chapter 3 address the suitability of LSTM-g to model human learning

artifacts, which has bearing on its potential to create more human-like nat-

ural language processing models. These models, in addition to their role

of validating the use of LSTM-g in human language models in general, are

major contributions of this research in their own right because they bear on

the long-standing debate over critical period effects observed in the second-

language acquisition literature. The models use diverse real-world input to

examine how a language learner with no preconceived notions about gram-

matical gender—or even knowledge of its existence—can develop a functional

knowledge of gender assignment and agreement by merely predicting the in-

puts it will see next. The models show that grammatical gender is highly

learnable under these conditions by approaching human-level performance

on gender-related tasks in two languages. Examinations of bilingual mod-

els show that final attainment is absolutely affected by entrenchment—that

212

is, the longer the learner is exposed to the native language before a second

language is introduced, the lower the learner’s peak performance on tasks

in the second language. This major effect is mediated in part by memory

development, which lends support to the “less is more” hypothesis because

model comparisons show that starting with a small working memory capac-

ity and augmenting it during language learning contributes to better overall

performance. Since these two contributors to critical period effects are usu-

ally irreparably confounded in human learners, the ability of the models to

vary them independently is key to their importance as contributions to the

second-language acquisition literature.

The greatest contributions of this dissertation, however, come from

the neurocomputational models of grounded language comprehension, ques-

tion answering, and language production introduced in Chapters 4 and 5.

Of these, the spoken-answer model from Chapter 5 is the most advanced

and serves as the culmination of the language modeling work in this dis-

sertation. This model learns using fine-grained auditory input at the level

of individual phonemes, segmenting the auditory stream into morphemes,

words, and phrases grounded in its visual knowledge of its surroundings.

The grounded-meaning model and the meaning-answer model learn to com-

prehend language and answer questions, respectively, by mapping them to

an output representation consisting of sets of predicates that describe the in-

tended meaning. In contrast, the spoken-answer model learns to understand

speech by devising its own distributed representations of meaning. From

213

these learned meaning representations, the spoken-answer model learns to

speak, generating sequences of articulatory movements that specify speech

streams forming complete-sentence answers to questions. The model does

all this using the language-agnostic media of acoustics and articulation for

its inputs and outputs, allowing it to, in theory, repeat the experiments pre-

sented here using virtually any spoken language, without modification. This

feature of the model is fundamental because the human language-learning

substrate is clearly just as general, allowing children to learn any language

to which they are exposed.

All told, the spoken-answer model captures many important facets of

the language learning process, including segmentation of unbroken phoneme

streams, grounding of words and phrases in meanings derived from other

senses, word selection and ordering for production, and the inferences re-

quired to answer questions. Though previous models have addressed some of

these themes, no other known neural network models to date have combined

them all, especially with so much care paid to input and output realism and

biological plausibility of the underlying neural network methods. This puts

the spoken-answer model in a unique position to serve as the basis for more

human-relatable natural language processing models.

One important point that these models make clear is the compatibility

of compositional, classically symbolic representations with distributed neural

representations. Compositionality is key in achieving both efficient encod-

ing of, and computation over, large multi-dimensional data. The assertions

214

of cognitive scientists that mental representations must be compositional to

explain human behavior (Fodor and Pylyshyn, 1988) need not be in conflict

with assertions by connectionists that the brain’s representations must be

distributed. While it is difficult to intuit, such compatibility has been shown

possible in theory (Smolensky, 1990; Plate, 1995), though little attention has

been paid to how a learner might gradually modify its distributed represen-

tations to achieve compositionality. Chapters 4 and 5 present evidence that

the models learn such compositional representations using gradient descent,

constituting perhaps the strongest evidence to date that such learning is

possible. However, this work does not shed light on how or why the models

developed compositionality, leaving that question as a promising topic for

future research.

6.2 Limitations and future work

Though the gender models of Chapter 3 serve both as an excellent jus-

tification for the human-like learning properties of LSTM-g and as a useful

contribution to discussions about critical period effects, they have a number

of limitations. The largest of these is that the models learn solely about the

acoustic properties of words. This may be sufficient to study phonological,

morphological, and possibly even syntactic properties of grammatical gen-

der learning, but it completely ignores semantic aspects that are known to

play a role in the assignment of gender to words. A more complete model

215

would take semantic knowledge into account, although doing so with any-

thing approaching realistic input would be a daunting challenge due to a lack

of large semantically labeled corpora. A second limitation of the gender mod-

els is their restriction to two languages in the work presented—specifically

two siblings in the lingustic family tree, French and Spanish, that have very

similar gender systems. Since the models can, because of the phonological

nature of their input and output representations, learn about gender systems

of varying complexity in any spoken language, it would be enlightening to

test them with further languages—in particular those having very different

gender systems. It would also be useful to examine a variety of language

pairs to discover whether similarity between the first- and second-language

gender systems is a benefit or a detriment to bilingual learning. Finally, the

models neglect a number of other documented causes of critical period ef-

fects, including social and motivational factors, which would be interesting

to study in tandem with entrenchment and development.

The final spoken-answer model of Chapter 5 has limitations as well.

For example, it could be improved to have stronger fidelity to human-like

sensory inputs and motor outputs. The current auditory input, at the level

of sequences of acoustic features, is essentially a single step removed from the

frequency-sensitive neurons of the human cochlea. The model’s visual inputs

are predicates, on the other hand, which provide a built-in understanding of

the environment that is much more abstract than a biologically motivated

retinotopic map. The abstractness of these representations certainly aids the

216

model, since the objects, attributes, and even relational predicates already

correspond to words in heard sentences, rather than having to be built up

in conjunction with the representations for the words themselves. Lowering

the abstraction level of these inputs will be an important avenue for future

extension of the spoken-answer model, once considerations of computational

resources permit. Additionally, the spoken-answer model in its current form

relies on direct error feedback at the articulatory level, which is not plausible

for human learners. Current theories posit a forward model from articulation

to audition, allowing a listener to predict the auditory signals that will arise

from articulatory outputs. The learner can then compare these predictions

with the heard signal to generate auditory prediction errors which can be

transformed into articulatory error information (e.g., Kello and Plaut, 2004).

A future version of the model could learn this forward model via a babbling

stage and propagate errors backward across it to train speech production in

a more natural manner.

A further limitation of the spoken-answer model involves the tasks that

the model learned to perform. All of the open-class words used in the lan-

guage learning tasks were concrete in the sense that they were tied directly

to environmental stimuli. An important avenue for future work will be to

include abstract notions, such as ownership, in the task.

Finally, the spoken-answer model is limited in its immediate applicabil-

ity to the human brain because no attempt has been made to map its layers

217

to specific brain regions. As mentioned in Chapter 1, one of the main goals

of this modeling effort was to develop a sentence-level successor to the word-

level Wernicke-Lichtheim-Geschwind (WLG) model developed by Weems and

Reggia (2006). As such, a productive future avenue for investigation could

include an attempt to extend the spoken-answer model by relating it to the

brain regions present in the WLG model. Such work would also include a de-

tailed lesioning study of the model, which could now focus on several aphasia

metrics, such as fluency and grammaticality, that had no analogues in the

original WLG model because it was limited to single words. Such a study

could be invaluable in predicting deficits due to lesions in specific areas and

might even be able to shed light on patient-specific therapies best suited to

stimulate recovery.

In addition to its future extension as a brain model, the spoken-answer

model, or even the simpler grounded-meaning model, has potential applica-

bility in studies of psycholinguistic phenomena. Since a major focus of the

model is grounding, one could easily teach the model to perform anaphor

resolution by training it on an appropriate grammar. This would provide a

fine-grained sense of the sorts of input necessary to produce a model that

matches human behavior on the task. Listener interpretation of quantifier

scope would provide another fertile test bed, as the model’s interpretations of

quantifiers can be observed via the grounded predicates it produces. Such a

model could be studied during development to see if it makes the same inter-

pretive missteps that children make when learning any particular language.

218

Many psycholinguistic tasks that explore listener interpretations would be

ripe for investigation with this type of model.

This dissertation showcases important insights gained by starting from

a low level in the hierarchy of the study of the brain and mind. From collec-

tions of simple interacting neurons, a wealth of data has emerged concerning

the genesis and composition of cognitive representations, as well as the ori-

gin of behaviors as complex as the inference necessary to answer a question.

This data can lead not only to more accurate models of cognition but also

to more sophisticated natural language processing systems that more closely

emulate a mind. The human brain is the most complex natural machine

known. To fully understand the wonders that spring from it, we must study

its organization at every level, from molecule to mind.

219

Bibliography

Abrahamsson, N. and K. Hyltenstam (2008). The robustness of aptitude
effects in near-native second language acquisition. Studies in Second Lan-
guage Acquisition 30 (4), 481–509.

Abrahamsson, N. and K. Hyltenstam (2009). Age of onset and nativelike-
ness in a second language: Listener perception versus linguistic scrutiny.
Language Learning 59 (2), 249–306.

Baddeley, A. (2003). Working memory and language: An overview. Journal
of Communication Disorders 36, 189–208.

Bayer, J., D. Wierstra, J. Togelius, and J. Schmidhuber (2009). Evolving
memory cell structures for sequence learning. In Proceedings of the Inter-
national Conference on Artificial Neural Networks, pp. 755–764.

Bley-Vroman, R. (1988). The fundamental character of foreign language
learning. In W. Rutherford and M. S. Smith (Eds.), Grammar and second
language teaching: A book of readings, pp. 19–30. New York: Newbury
House.

Broca, P. (1861). Loss of speech, chronic softening and partial destruction of
the anterior left lobe of the brain. Bulletin de la Societe Anthropologique 2,
235–238.

Carroll, S. E. (1995). The hidden dangers of computer modelling: Remarks
on Sokolik and Smith’s connectionist learning model of French gender.
Second Language Research 11 (3), 193–205.

Chang, F., G. Dell, and K. Bock (2006). Becoming syntactic. Psychological
Review 113 (2), 234–272.

Cochran, B. P., J. L. McDonald, and S. J. Parault (1999). Too smart for
their own good: The disadvantage of a superior processing capacity for
adult language learners. Journal of Memory and Language 41, 30–58.

Corbett, G. (1991). Gender. New York: Cambridge University Press.

Cowan, N., E. M. Elliott, J. Scott Saults, C. C. Morey, S. Mattox, A. His-
mjatullina, and A. R. A. Conway (2005). On the capacity of attention:
Its estimation and its role in working memory and cognitive aptitudes.
Cognitive Psychology 51 (1), 42–100.

CUMBRE (2010). Corpus del Español Contemporáneo de España e His-
panoamérica. Madrid: SGEL.

220

DeKeyser, R. M. (2000). The robustness of critical period effects in second
language acquisition. Studies in Second Language Acquisition 22 (4), 499–
533.

DeKeyser, R. M. (in press). Age effects in second language learning. In
S. Gass and A. Mackey (Eds.), Handbook of second language acquisition.
London: Routledge.

DeKeyser, R. M., I. Alfi-Shabtay, and D. Ravid (2010). Cross-linguistic evi-
dence for the nature of age effects in second language acquisition. Applied
Psycholinguistics 31 (3), 413–438.

DeKeyser, R. M. and J. Larson-Hall (2005). What does the critical period
really mean? In J. F. Kroll and A. M. B. de Groot (Eds.), Handbook
of bilingualism: Psycholinguistic approaches, pp. 89–108. Oxford: Oxford
University Press.

Dell, G. (1993). Structure and content in language production: A theory of
frame constraints in phonological speech errors. Cognitive Science 17 (2),
149–195.

Diederich, J. and D. L. Long (1991). Efficient question answering in a hybrid
system. In Proceedings of the International Joint Conference on Neural
Networks, pp. 479–484.

Duncan, J., R. J. Seitz, J. Kolodny, D. Bor, H. Herzog, and A. Ahmed (2000).
A neural basis for general intelligence. Science 289 (5478), 399–401.

Elman, J. L. (1990). Finding structure in time. Cognitive Science 14, 179–
211.

Elman, J. L. (1993). Learning and development in neural networks: The
importance of starting small. Cognition 48 (1), 71–99.

Ferrucci, D., E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyan-
pur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager, N. Schlaefer, and
C. Welty (2010). Building Watson: An overview of the DeepQA project.
AI Magazine 31 (3), 59–79.

Fodor, J. A. and Z. W. Pylyshyn (1988). Connectionism and cognitive ar-
chitecture: A critical analysis. Cognition 28 (1-2), 3–71.

Frank, S. L., W. F. G. Haselager, and I. van Rooij (2009). Connectionist
semantic systematicity. Cognition 110 (3), 358–379.

Gathercole, S. E. (1999). Cognitive approaches to the development of short-
term memory. Trends in Cognitive Sciences 3 (11), 410–419.

221

Gers, F. A. and F. Cummins (2000). Learning to forget: Continual prediction
with LSTM. Neural Computation 12 (10), 2451–2471.

Gers, F. A., J. A. Pérez-Ortiz, D. Eck, and J. Schmidhuber (2003). Kalman
filters improve LSTM network performance in problems unsolvable by tra-
ditional recurrent nets. Neural Networks 16 (2), 241–250.

Gers, F. A. and J. Schmidhuber (2000). Recurrent nets that time and count.
In Proceedings of the International Joint Conference on Neural Networks,
pp. 189–194.

Gers, F. A. and J. Schmidhuber (2001). LSTM recurrent networks learn
simple context-free and context-sensitive languages. IEEE Transactions
on Neural Networks 12 (6), 1333–1340.

Geschwind, N. (1965). Disconnexion syndromes in animals and man.
Brain 88, 585–644.

Giles, C. L. and T. Maxwell (1987). Learning, invariance, and generalization
in high-order neural networks. Applied Optics 26 (23), 4972–4978.

Goldowsky, B. N. and E. L. Newport (1993). Modeling the effects of pro-
cessing limitations on the acquisition of morphology: The less is more
hypothesis. In E. Clark (Ed.), Proceedings of the 24th Annual Child Lan-
guage Research Forum, pp. 124–138. Stanford, CA: Center for the Study
of Language and Information.

Graesser, A. C. and S. P. Franklin (1990). QUEST: A cognitive model of
question answering. Discourse Processes 13 (3), 279–303.

Graves, A., D. Eck, N. Beringer, and J. Schmidhuber (2004). Biologically
plausible speech recognition with LSTM neural nets. In Proceedings of the
International Workshop on Biologically Inspired Approaches to Advanced
Information Technology, pp. 127–136.

Graves, A. and J. Schmidhuber (2008). Offline handwriting recognition with
multidimensional recurrent neural networks. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou (Eds.), Neural Information Processing Systems
21, pp. 545–552. Vancouver: MIT Press.

Guillelmon, D. and F. Grosjean (2001). The gender marking effect in spoken
word recognition: The case of bilinguals. Memory & Cognition 29, 503–
511.

Hadley, R. (1994). Systematicity in connectionist language learning. Mind
& Language 9 (3), 247–272.

Hadley, R. F. and V. C. Cardei (1999). Language acquisition from sparse
input without error feedback. Neural Networks 12 (2), 217–235.

222

Hadley, R. F. and M. Hayward (1997). Strong semantic systematicity from
Hebbian connectionist learning. Minds and Machines 7 (1), 1–37.

Hakuta, K., E. Bialystok, and E. Wiley (2003). Critical evidence: A test of
the critical-period hypothesis for second-language acquisition. Psycholog-
ical Science 14 (1), 31–38.

Harley, B. (1979). French gender “rules” in the speech of English-dominant,
French-dominant and monolingual French-speaking children. Working Pa-
pers in Bilingualism 19, 129–156.

Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear
Phenomena 42 (1-3), 335–346.

Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelli-
gence 40 (1-3), 185–234.

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural
Computation 9 (8), 1735–1780.

Holmes, V. and B. de la Bâtie (1999). Assignment of grammatical gender
by native speakers and foreign learners of French. Applied Psycholinguis-
tics 20, 479–506.

Hyltenstam, K. and N. Abrahamsson (2003). Maturational constraints in
second language acquisition. In C. J. Doughty and M. H. Long (Eds.),
Handbook of second language acquisition, pp. 539–588. Oxford, UK: Black-
well.

Iverson, P., P. K. Kuhl, R. Akahane-Yamada, E. Diesch, Y. Tohkura, and
A. Kettermann (2003). A perceptual interference account of acquisition
difficulties for non-native phonemes. Cognition 87, B47–B57.

Jaeger, H. (2001). The “echo state” approach to analysing and training re-
current neural networks. GMD Report 148, German National Research
Center for Information Technology.

Jaeger, H. (2002). Short term memory in echo state networks. GMD Report
152, German National Research Center for Information Technology.

Jakobson, R., G. Fant, and M. Halle (1951). Preliminaries to speech analysis:
The distinctive features and their correlates. Boston: MIT Press.

Jia, G. and D. Aaronson (2003). A longitudinal study of Chinese children
and adolescents learning English in the United States. Applied Psycholin-
guistics 24 (1), 131–161.

Jia, G., D. Aaronson, and Y. Wu (2002). Long-term language attainment of
bilingual immigrants: Predictive variables and language group differences.
Applied Psycholinguistics 23 (4), 599–621.

223

Johnson, J. S. and E. L. Newport (1989). Critical period effects in second
language learning: The influence of maturational state on the acquisition
of English as a second language. Cognitive Psychology 21, 60–99.

Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York:
Springer-Verlag.

Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist
sequential machine. In Proceedings of the Conference of the Cognitive
Science Society, pp. 531–546.

Kareev, Y., I. Lieberman, and M. Lev (1997). Through a narrow window:
Sample size and the perception of correlation. Journal of Experimental
Psychology: General 126 (3), 278–287.

Kello, C. T. and D. C. Plaut (2004). A neural network model of the
articulatory-acoustic forward mapping trained on recordings of articula-
tory parameters. Journal of the Acoustical Society of America 116 (4),
2354–2364.

Kersten, A. W. and J. L. Earles (2001). Less really is more for adults learning
a miniature artificial language. Journal of Memory and Language 44, 250–
273.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE 78,
1464–1480.

Lapkin, S. and M. Swain (1977). The use of English and French cloze tests
in a bilingual education program evaluation: Validity and error analysis.
Language Learning 27, 279–314.

Lenneberg, E. H. (1967). Biological foundations of language. New York:
Wiley.

Lew-Williams, C. and A. Fernald (2010). Real-time processing of gender-
marked articles by native and non-native Spanish speakers. Journal of
Memory and Language 63, 447–464.

Li, P., I. Farkas, and B. MacWhinney (2004). Early lexical development in
a self-organizing neural network. Neural Networks 17 (8-9), 1345–1362.

Li, P., X. Zhao, and B. MacWhinney (2007). Dynamic self-organization and
early lexical development in children. Cognitive Science 31 (4), 581–612.

Lichtheim, L. (1885). On aphasia. Brain 7, 433–484.

Long, M. (1990). Maturational constraints on language development. Studies
in Second Language Acquisition 12 (3), 251–285.

224

MacWhinney, B. (2006). Emergent fossilization. In Z. Han and T. Odlin
(Eds.), Studies of fossilization in second language acquisition, pp. 134–156.
Clevedon, UK: Multilingual Matters.

MacWhinney, B., J. Leinbach, R. Taraban, and J. McDonald (1989). Lan-
guage learning: Cues or rules? Journal of Memory and Language 28 (3),
255–277.

Markert, H., U. Kaufmann, Z. Kara Kayikci, and G. Palm (2009). Neural
associative memories for the integration of language, vision and action in
an autonomous agent. Neural Networks 22 (2), 134–143.

Matthews, C. A. (1999). Connectionism and French gender attribution:
Sokolik and Smith re-visited. Second Language Research 15, 412–427.

Mayberry, R. I., E. Lock, and H. Kazmi (2002). Linguistic ability and early
language exposure. Nature 417 (6884), 38.

Miikkulainen, R. (1993). Subsymbolic natural language processing: An in-
tegrated model of scripts, lexicon, and memory. Cambridge, MA: MIT
Press.

Miikkulainen, R. (1998). Text and discourse understanding: The DISCERN
system. In R. Dale, H. Moisl, and H. Somers (Eds.), A handbook of natu-
ral language processing: Techniques and applications for the processing of
language as text. New York: Marcel Dekker.

Miller, C. B. and C. L. Giles (1993). Experimental comparison of the effect
of order in recurrent neural networks. Pattern Recognition 7 (4), 849–872.

Monner, D. and J. A. Reggia (2009). An unsupervised learning method for
representing simple sentences. In Proceedings of the International Joint
Conference on Neural Networks, pp. 2133–2140.

Monner, D. and J. A. Reggia (2011). Systematically grounding language
through vision in a deep, recurrent neural network. In Proceedings of the
Conference on Artificial General Intelligence, Berlin. Springer-Verlag.

Monner, D. and J. A. Reggia (in press a). A generalized LSTM-like training
algorithm for second-order recurrent neural networks. Neural Networks .

Monner, D. and J. A. Reggia (in press b). Towards a biologically inspired
question-answering neural architecture. In Proceedings of the Conference
on Biologically Inspired Cognitive Architectures, Amsterdam. IOS Press.

Monner, D. and J. A. Reggia (under review). Systematicity and emergent
latent symbol systems in recurrent neural networks.

225

Monner, D., K. Vatz, G. Morini, S.-O. Hwang, and R. DeKeyser (under re-
view). A neural network model of the effects of entrenchment and memory
development on grammatical gender learning.

Movellan, J. R. (1990). Contrastive Hebbian learning in the continuous Hop-
field model. In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E.
Hinton (Eds.), Connectionist Models: Proceedings of the 1990 Summer
School, pp. 10–17. San Mateo, CA: Morgan Kaufmann.

New, B. (2006). Lexique 3: Une nouvelle base de données lexicales. Louvain,
Belgique: Actes de la Conférence Traitement Automatique des Langues
Naturelles (TALN 2006).

Newport, E. (1988). Constraints on learning and their role in language ac-
quisition: Studies of the acquisition of American Sign Language. Language
Sciences 10, 147–172.

Newport, E. (1990). Maturational constraints on language learning. Cognitive
Science 14 (1), 11–28.

O’Reilly, R. C. (2001). Generalization in interactive networks: The benefits of
inhibitory competition and Hebbian learning. Neural Computation 13 (6),
1199–1241.

O’Reilly, R. C. and M. J. Frank (2006). Making working memory work: A
computational model of learning in the prefrontal cortex and nasal ganglia.
Neural Computation 18 (2), 283–328.

Paget, R. (1976). Vowel resonances. In D. Fry (Ed.), Acoustic phonetics, pp.
95–103. Cambridge: Cambridge University Press.

Paradis, M. (2009). Declarative and procedural determinants of second lan-
guages. Amsterdam: Benjamins.

Phillips, C. (2001). Levels of representation in the electrophysiology of speech
perception. Cognitive Science 25 (5), 711–731.

Plate, T. (1995). Holographic reduced representations. IEEE Transactions
on Neural Networks 6 (3), 623–641.

Plaut, D. and C. Kello (1999). The emergence of phonology from the inter-
play of speech comprehension and production: A distributed connectionist
approach. In B. MacWhinney (Ed.), The emergence of language, pp. 381–
415. Mahwah, NJ: Lawrence Erlbaum Associates.

Prokhorov, D. (2005). Echo state networks: Appeal and challenges. In
Proceedings of the International Joint Conference on Neural Networks, pp.
1463–1466.

226

Psaltis, D., C. Park, and J. Hong (1988). Higher order associative memories
and their optical implementations. Neural Networks 1 (2), 149–163.

Puskorius, G. V. and L. A. Feldkamp (1994). Neurocontrol of nonlinear
dynamical systems with Kalman filter trained recurrent networks. IEEE
Transactions on Neural Networks 5 (2), 279–297.

Rohde, D. L. T. (2002). A connectionist model of sentence comprehension
and production. Ph.D. dissertation, Carnegie Mellon University.

Rohde, D. L. T. and D. C. Plaut (1999). Language acquisition in the absence
of explicit negative evidence: How important is starting small? Cogni-
tion 72 (1), 67–109.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning repre-
sentations by back-propagating errors. Nature 323 (9), 533–536.

Scherag, A., L. Demuth, F. Rösler, H. J. Neville, and B. Röder (2004). The
effects of late acquisition of L2 and the consequences of immigration on L1
for semantic and morphosyntactic language aspects. Cognition 93, B97–
B108.

Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees.
In Proceedings of the International Conference on New Methods in Lan-
guage Processing, pp. 44–49.

Schmidhuber, J., D. Wierstra, M. Gagliolo, and F. Gomez (2007). Training
recurrent networks by Evolino. Neural Computation 19 (3), 757–779.

Schulz, R. and J. A. Reggia (2004). Temporally asymmetric learning sup-
ports sequence processing in multi-winner self-organizing maps. Neural
Computation 16 (3), 535–661.

Schulz, R. and J. A. Reggia (2005). Mirror symmetric topographic maps
can arise from activity-dependent synaptic changes. Neural Computa-
tion 17 (5), 1059–1083.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain
Sciences 3 (03), 417–457.

Shin, Y. and J. Ghosh (1991). The pi-sigma network: An efficient higher-
order neural network for pattern classification and function approximation.
In Proceedings of the International Joint Conference on Neural Networks,
pp. 13–18.

Singh, K. (1976). Distinctive features: Theory and validation. New York:
University Park Press.

227

Smolensky, P. (1988). The constituent structure of connectionist mental
states: A reply to Fodor and Pylyshyn. Southern Journal of Philoso-
phy 26 (S1), 137–161.

Smolensky, P. (1990). Tensor product variable binding and the representation
of symbolic structures in connectionist systems. Artificial Intelligence 46,
159–216.

Sokolik, M. E. and M. E. Smith (1992). Assignment of gender to French
nouns in primary and secondary language: A connectionist model. Second
Language Research 8, 39–58.

St. John, M. F. and J. L. McClelland (1990). Learning and applying contex-
tual constraints in sentence comprehension. Artificial Intelligence 46 (1-2),
217–257.

Surridge, M. E. (1989). Le facteur sémantique dans l’attribution du genre
aux inanimés en français. Revue Canadienne de Linguistique 34, 19–44.

Surridge, M. E. (1993). Gender assignment in French: The hierarchy of
rules and the chronology of acquisition. International Review of Applied
Linguistics in Language Teaching 31, 77–95.

Surridge, M. E. (1995). Le ou la? The gender of French nouns. Philadelphia:
Multilingual Matters.

Sutton, R. S. and A. G. Barto (1998). Temporal-difference learning. In
Reinforcement Learning: An Introduction, pp. 167–200. Cambridge, MA:
MIT Press.

Teschner, R. V. and W. M. Russell (1984). The gender patterns of Spanish
nouns: An inverse dictionary-based analysis. Hispanic Linguistics 1, 115–
132.

Tomasello, M. (2003). Constructing a language: A usage-based theory of
language acquisition. Cambridge, MA: Harvard University Press.

Turing, A. M. (1950). Computing machinery and intelligence. Mind 59 (236),
433–460.

Ullman, M. T. (2004). Contributions of memory circuits to language: The
declarative/procedural model. Cognition 92, 231–270.

Uylings, H. B. M. (2006). Development of the human cortex and the concept
of “critical” or “sensitive” periods. Language Learning 56, 59–90.

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells
in the striate cortex. Kybernetik 14 (2), 85–100.

228

Weems, S. A. and J. A. Reggia (2006). Simulating single word processing in
the classic aphasia syndromes based on the Wernicke-Lichtheim-Geschwind
theory. Brain and Language 98 (3), 291–309.

Werbos, P. J. (1990). Backpropagation through time: What it does and how
to do it. Proceedings of the IEEE 78 (10), 1550–1560.

Wernicke, C. (1874). Der aphasische symptomenkomplex eine psychologische
studie auf anotomomischer basis. In G. Eggert (Ed.), Wernicke’s work on
aphasia, pp. 219–283. The Hague: Mouton.

Wikipedia (2011). Wikipedia, the free encyclopedia. [Online; accessed Jan-
uary 2011].

Williams, P. and R. Miikkulainen (2006). Grounding language in descriptions
of scenes. In Proceedings of the Conference of the Cognitive Science Society,
pp. 2381–2386.

Williams, R. J. and D. Zipser (1989). A learning algorithm for continually
running fully recurrent neural networks. Neural Computation 1 (2), 270–
280.

Xie, X. and H. S. Seung (2003). Equivalence of backpropagation and con-
trastive Hebbian learning in a layered network. Neural Computation 15 (2),
441–454.

229

