
Abstract

Title of dissertation Decision Making Under Uncertainty

Jian Li, Doctor of Philosophy, 2011

Directed by Professor Amol Deshpande

Department of Computer Science

Almost all important decision problems are inevitably subject to some level of
uncertainty either about data measurements, the parameters, or predictions de-
scribing future evolution. The significance of handling uncertainty is further am-
plified by the large volume of uncertain data generated by modern data gathering
or integration systems. Various types of problems of decision making under uncer-
tainty have been subject to extensive research in computer science, economics and
social science. In this dissertation, I study three major problems in this context,
ranking, utility maximization, and matching, all involving uncertain datasets.

First, we consider the problem of ranking and top-k query processing over
probabilistic datasets. By illustrating the diverse and conflicting behaviors of the
prior proposals, we contend that a single, specific ranking function may not suffice
for probabilistic datasets. Instead we propose the notion of parameterized ranking
functions, that generalize or can approximate many of the previously proposed
ranking functions. We present novel exact or approximate algorithms for efficiently
ranking large datasets according to these ranking functions, even if the datasets
exhibit complex correlations or the probability distributions are continuous.

The second problem concerns with the stochastic versions of a broad class
of combinatorial optimization problems. We observe that the expected value is
inadequate in capturing different types of risk-averse or risk-prone behaviors, and
instead we consider a more general objective which is to maximize the expected
utility of the solution for some given utility function. We present a polynomial
time approximation algorithm with additive error ε for any ε > 0, under certain
conditions. Our result generalizes and improves several prior results on stochastic
shortest path, stochastic spanning tree, and stochastic knapsack.

The third is the stochastic matching problem which finds interesting applica-
tions in online dating, kidney exchange and online ad assignment. In this problem,
the existence of each edge is uncertain and can be only found out by probing the
edge. The goal is to design a probing strategy to maximize the expected weight of
the matching. We give linear programming based constant-factor approximation
algorithms for weighted stochastic matching, which answer an open question raised
in prior work.

Decision Making Under Uncertainty

by

Jian Li

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2011

Advisory Committee:

Professor Amol Deshpande, Chair

Professor Samir Khuller

Professor David Mount

Professor MohammadTaghi Hajiaghayi

Professor Hal Daumé III

Professor Gang Qu, Dean’s representative

c© Copyright by

Jian Li

2011

Dedicated to my beloved parents

for always supporting me

ii

Acknowledgments

First, I would like to express my deepest gratitude to my advisors, Professor Amol

Deshpande and Professor Samir Khuller, for their continuous guidance and support

throughout my entire graduate life at Maryland. It has been a tremendous pleasure

to work with them. I have learnt a lot from them, not only knowledge on cutting-

edge research topics, but also effective presentation skills, and the customs of

the academic life. I am proud to be their academic descendant and hope that

one day I can become as wonderful advisors as they are. I would also like to

thank other members on my thesis committee board, Professors David Mount,

MohammadTaghi Hajiaghayi, Hal Daumé III and Gang Qu, for their willingness

to participate in my defense and their helpful comments.

The materials of the thesis come from several joint projects and I would like

to take this opportunity to thank all of my collaborators: Barna Saha, Julian

Mestre, Bhargav Kanagal, Qin Zhang, Ke Yi, Arvind Arasu, Raghav Kaushik,

Danny Z. Chen, Rudolf Fleischer, Mordecai Golin, Nikhil Bansal, Anupam Gupta,

Viswanath Nagarajan, Atri Rudra, Chandra Chekuri, Sungjin Im, Benjamin Mose-

ley and many others. Their insightful ideas and useful suggestions helped me to

develop my research interest and inspired me in discovering many algorithms pre-

sented in the thesis. My special thanks goes to Julian, who hosted me during

my visit to MPI in the summer of 2009, and Arvind, who was my mentor during

my internship at Microsoft in the summer of 2010. It was a very enjoyable and

beneficial experience for me to work with them. I am also indebted to Professor

Aravind Srinivasan for his excellent lectures on randomized algorithms and many

very helpful discussions on various parts of the thesis.

My study aboard experience in US would not be as enjoyable without my dear

friends. I would like to thank my roommates, Liang, Dan, Chen, Shule, Min, He,

Shengya, Xinlin, Changyi, Guohong, Ying, Hao and Cong (I have been moving

a lot). They are all extremely considerate and easy going and have made my

iii

iv

daily life so easy and pleasant. I would also like to thank my Starcraft-mates at

Microsoft: Yaodong, Rui, Hua; my table tennis-mates: Xiaoming, Tom, Hao, Xi,

Ke; and especially my soccer and poker-mates: Hao, Cong, Changyi, Zhuliang,

Huashuai, Yujie, Kejia. Without them, my leisure time would not be so rich and

colorful.

Finally, I want to thank my parents, whose support and love have made this

all possible.

Table of Contents

Acknowledgments iii

Table of Contents v

1 Introduction 1

1.1 Ranking under Uncertainty . 5

1.2 Maximizing Utility under Uncertainty 7

1.3 Matching under Uncertainty . 10

2 Preliminaries 13

2.1 Possible Worlds Semantics . 13

2.2 Stochastic Optimization . 14

2.3 Probabilistic Data Models . 17

2.3.1 Probabilistic And/Xor Trees 18

2.3.2 Markov Networks . 21

2.4 Prior Semantics on Ranking over Probabilistic Data 24

2.5 Distance between Two Top-k Answers 26

2.6 St. Petersburg Paradox and Expected Utility Theory 28

3 Related Work 31

4 Ranking over Probabilistic Datasets 40

4.1 Comparing Ranking Functions . 40

4.2 Overview of Our Approach . 42

4.2.1 Our Contributions . 44

4.3 Parameterized Ranking Functions (PRF) 46

4.4 Consensus Top-k Answers . 51

4.5 A Unified Viewpoint via Expected Utility 52

v

Table of Contents vi

4.5.1 Viewing Ranking as Maximizing Utility 52

4.5.2 Distinctions between Between Ranking and Top-k Queries . 56

4.5.3 A Classification of Top-k Semantics 57

5 Computing PRF: Discrete Distributions 60

5.1 Computing a PRF function . 60

5.1.1 Assuming Tuple Independence 60

5.1.2 Probabilistic And/Xor Trees 64

5.1.3 Computing a PRFe Function 68

5.1.4 Attribute Uncertainty or Uncertain Scores 70

5.1.5 Summary . 71

5.2 Approximating and Learning Ranking Functions 74

5.2.1 Approximating PRFω using PRFe Functions 74

5.2.2 Learning a PRFω or PRFe Function 79

5.2.3 An Interesting Property of PRFe 80

5.3 Experimental Study . 83

5.3.1 Approximability of Ranking Functions 84

5.3.2 Learning Ranking Functions 87

5.3.3 Effect of Correlations . 88

5.3.4 Execution Times . 90

5.4 PRF Computation for Graphical Models 91

5.4.1 Problem Simplification . 92

5.4.2 Algorithm for Markov Sequences 95

5.4.3 General Junction Trees . 97

6 Computing PRF: Continuous Distributions 100

6.1 Exact Algorithms . 101

6.1.1 Generating Functions Framework 102

6.1.2 Uniform Distribution . 104

6.1.3 Extensions . 109

6.2 Arbitrary Probability Densities . 111

6.2.1 A Generic Approximation Framework 111

6.2.2 Theoretical Comparisons . 113

Table of Contents vii

6.2.3 Approximating PRFe(α) by Legendre-Gauss Quadrature for

α ∈ R . 120

6.3 Expected Ranks and PRFl . 123

6.4 Application to Probabilistic k-Nearest Neighbor 126

6.5 Experimental Study . 128

6.5.1 Spline vs. Monte Carlo vs. Discretization 129

6.5.2 LG Quadrature vs. Monte Carlo vs. Discretization for PRFe 132

6.5.3 Execution Times for Exact Algorithms 133

7 Computing Consensus Answers 135

7.1 Consensus Answers . 136

7.2 Algorithms for Different Metrics . 138

7.2.1 Symmetric Difference and PT(k) Ranking Function 138

7.2.2 Weighted Symmetric Difference and PRFω 140

7.2.3 Intersection Metric . 141

7.2.4 Approximating the Intersection Metric by PRFω 142

7.2.5 Spearman’s Footrule . 143

7.2.6 Kendall’s Tau Distance . 144

7.3 Consensus Answers for Other Types of Queries 145

7.3.1 Set Distance Measures . 145

7.3.2 Aggregate Queries . 150

7.3.3 Clustering . 153

8 Maximizing Expected Utility for Stochastic Combinatorial Opti-

mization Problems 155

8.1 Introduction . 155

8.1.1 Our Contributions . 156

8.2 Algorithm . 160

8.2.1 Proof of Theorem 8.1 . 161

8.2.2 Approximating the Utility Function 165

8.2.3 A Particular Choice of AP: The Fourier Series Approach . . 168

8.2.4 Computing E[αwe] . 170

8.3 Applications . 172

8.3.1 Top-k Query with Set Interpretation (Top-SI) 173

Table of Contents viii

8.3.2 Stochastic Shortest Path . 173

8.3.3 Stochastic Spanning Tree . 174

8.3.4 Stochastic k-Median on Trees 174

8.3.5 Stochastic Knapsack with Random Sizes 174

8.3.6 Stochastic Knapsack with Random Profits 176

8.4 Extension to Multiple Utility functions 177

8.4.1 Stochastic Multiple Knapsack 178

8.4.2 Stochastic Multidimensional Knapsack 179

8.5 Extension to Multidimensional Weight 180

8.5.1 Stochastic Multidimensional Knapsack (Revisited) 181

8.6 Discussions . 182

9 Stochastic Matchings 183

9.1 Introduction . 183

9.1.1 Our Contributions . 184

9.2 Stochastic k-Set Packing . 187

9.2.1 Special Case: Monotone Column Outcomes 191

9.2.2 Safe versus Unsafe policies 193

9.3 Stochastic Matching . 194

9.3.1 Weighted Stochastic Matching: Bipartite Graphs 195

9.3.2 Weighted Stochastic Matching: General Graphs 204

9.4 Stochastic Online Matching with Timeouts 206

10 Conclusion 213

A Expanding Polynomials 216

A.1 Expanding a Nested Formula . 216

Bibliography 219

List of Tables

4.1 Normalized Kendall distance among various ranking functions for

two datasets . 41

4.2 Notation . 47

5.1 Summary of the running times. \: There is an additive O(n log(n))

term if the dataset is not pre-sorted by their scores.]: See Sec-

tion 5.1.5 for details. 72

6.1 Notation . 102

6.2 Running Time. TU means tuple uncertainty and P-Poly(γ) indi-

cates piecewise polynomial distributions with maximum degree γ.

We assume that all small intervals are already sorted. Otherwise, we

have another additive factor of |I| log(|I|) for each entry. The sum-

mation is over all small intervals. Recall mj is the overlap number

on small interval Ij. 107

ix

List of Figures

1.1 A data integration example. The two tuples shown on the left hand

side, each coming from a distinct data source, have the same key

(i.e., SSN), but different attribute values. In the integrated table,

we keep both tuples and associate probability 0.5 to each of them.

We also make them mutually exclusive, i.e., at most one tuple is

present in any possible realization (possible world). 2

1.2 (i) An automatically extracted Car Ads database may contain many

(attribute) uncertainties; (ii) Sensor data unavoidably contains com-

plex, continuous uncertainties. 3

2.1 A probabilistic graph with three uncertain edges. There are 23 = 8

possible worlds. 16

2.2 Example of a probabilistic database which contains automatically

captured information about speeding cars. Tuple t2 and t3 (simi-

larly, t4 and t5) are mutually exclusive. The corresponding and/xor

tree compactly encodes these correlations. 19

2.3 Example of a highly correlated probabilistic database with 3 possible

worlds and the and/xor tree that captures the correlation. 20

2.4 (i) A graphical model; (ii) A junction tree for the model along with

the (calibrated) potentials. 23

5.1 PRF computation on and/xor trees: (i) The left figure corresponds

to the database in Figure 2.3; the generating function obtained by

assigning the same variable x to all leaves gives us the distribution

over the sizes of the possible worlds. (ii) The right figure illustrates

the construction of the generating function for computing Pr(r(t4) =

3) in the and/xor tree in Figure 2.2. 62

x

List of Figures xi

5.2 Illustrating the effect of the approximation steps: w(i) = step func-

tion with N = 1000, L = 20 . 76

5.3 Approximating functions using linear combinations of complex ex-

ponentials: effect of increasing the number of coefficients 78

5.4 Illustration of Example 11. fi(α) = Υα(ti) for i = 1, 2, 3, 4. 82

5.5 Comparing PRFe with other ranking functions for varying values of

α; (i))IIP-100,000, (ii)Syn-IND-1000 85

5.6 (i) Approximating PT(1000) using a linear combination of PRFe

functions; (ii) Approximation quality for three ranking functions

for varying number of exponentials. 86

5.7 (i) Learning PRFe from user preferences; (ii) Learning PRFω from

user preferences. 87

5.8 (i) Effect of correlations on PRFe ranking as a varies; (ii) Effect of

correlations on PRFe, U-Rank and PT(h). 89

5.9 Experiments comparing the execution times of the ranking algo-

rithms (note that the y-axis is log-scale for (ii) and (iii)) 90

5.10 Conditioning on X5 = 1 results in a smaller junction tree, with un-

calibrated potentials, that captures the distribution overX1, X2, X3, X4

given X5 = 1. 93

5.11 Conditioning on X4 = 1 results in two junction trees. 94

5.12 (i) A Markov chain, and the corresponding junction tree; (ii) Illus-

trating the recursion for general junction trees. 96

6.1 Illustration of support intervals and small intervals for five tuples

with uniform probability distributions 105

6.2 Approximating a Gaussian distribution using a Cubic Spline with

6 pieces (e.g. in the interval [−2,−1], the approximation is done

using 1
6
(2 + x)3). 111

6.3 The asymptotic precision-complexity trade-offs for various methods.

Note the meaning of the axis: N = nx, precision is of order 1/ny.

All constants hidden in big O are ignored. 114

List of Figures xii

6.4 The comparison of various methods for computing general PRF

(weight function ω(t, j) = 1/j). Solid lines indicate the running

times (with axes drawn on the right hand side), whereas dashed

lines indicate the Kendall distance (an error measure). 130

6.5 The comparison of various methods for computing PRFe(α = 0.99).

Solid lines indicate the running times (with axes drawn on the right

hand side), whereas dashed lines indicate the Kendall distance (an

error measure). 132

6.6 Execution times for (a) SPLINE on UNIFM-datesets, PRF` on UNIFM-

datasets and (b)PRF` on GAUSS-datasets. 134

8.1 (1) The utility function χ̃(x), a continuous variant of the thresh-

old function χ(x); (2) A smoother variant of χ(x); (3) The utility

function χ̃2(x), a continuous variant of the 2-d threshold function

χ2(x). 157

Chapter 1

Introduction

Recent years have witnessed a dramatic increase in the number of application do-

mains that naturally generate uncertain data and that demand support for execut-

ing complex decision-support queries and solving large scale optimization problems

over them. Uncertainty can arise due to a variety of reasons, such as noisy mea-

surements, missing or conflicting data or predictions of the future. We list some

application domains to exemplify where the uncertainty comes from, what types

of uncertainty we may encounter, and how we may represent such uncertain data.

1. Data integration and cleaning: Data integration involves combining sev-

eral databases residing in different sources into a single unified database [63].

The integrated table is typically uncertain if the sources are not consistent.

See Figure 1.1 for an example. In the integrated table on the right hand

side, the existence of each tuple is uncertain (this is called tuple uncertainty).

Data cleaning is the process of detecting and correcting corrupt or inaccurate

records from a database [11]. Uncertainty may arise from data entry errors

or differences in data representation. For example, some records in the table

may use abbreviated conference names (e.g., FOCS) while the others may

use fully expanded names (e.g., Symposium on Foundation of Computer Sci-

ence). The data cleaning task should be able to identify such matches and

convert the tuples to a uniform format. However, the results of this pro-

cess could be erroneous and uncertain (e.g., FOCS also stands for Femme Of

Color Symposium).

1

2

Figure 1.1: A data integration example. The two tuples shown on the left hand side,
each coming from a distinct data source, have the same key (i.e., SSN), but different
attribute values. In the integrated table, we keep both tuples and associate probability
0.5 to each of them. We also make them mutually exclusive, i.e., at most one tuple is
present in any possible realization (possible world).

2. Information extraction: The goal of information extraction is to automat-

ically extract structured information (e.g., database tables) from unstruc-

tured and/or semi-structured information (e.g., HTML, XML files in the

Internet) [71]. The tables are typically constructed by crawling and combin-

ing data from multiple sources in the web. In this case, uncertainty may arise

because of incomplete data or lack of confidence in the extractions. Figure

1.2(i) is an automatically extracted Car Ads database that may contain many

uncertainties on the attribute values (this is called attribute uncertainty).

3. Sensor data: Large-scale instrumentation of nearly every aspect of our

world using sensor monitoring infrastructures has generated an abundance of

uncertain data [61,45,62]. In such applications, the presence of uncertainty is

largely due to measurement noises or failures. In sensor databases, uncertain

sensor readings are often captured by probabilistic models. For example,

Deshpande et al. [62] model the sensor data using Gaussian distributions

(Figure 1.2(ii)).

4. Unknown facts: A fact is, by its literal meaning, certain. But, very often,

a fact can only be found out by an experiment at a certain cost. Therefore,

before conducting the experiment, the fact is essentially uncertain to the de-

3

19

22

22

20

21
$4000-5000 Poor-FairRed

D. Blue:0.5
Black: 0.2
Green: 0.3

Fair

Blue:0.5
Black: 0.5 $15,000 Excellent

$8000-10000 Good-FairBlue

Color ConditionPriceMPG

-2-1 0 1 2

0.0
0.2
0.4
0.6
0.8 Gaussian(0, 0.6)

Cubic Spline Approx.

-2-1 0 1 2

0.0
0.2
0.4
0.6
0.8 Gaussian(0, 0.6)

Cubic Spline Approx.

-2-1 0 1 2

0.0
0.2
0.4
0.6
0.8 Gaussian(0, 0.6)

Cubic Spline Approx.

-2-1 0 1 2

0.0
0.2
0.4
0.6
0.8 Gaussian(0, 0.6)

Cubic Spline Approx.

-2-1 0 1 2

0.0
0.2
0.4
0.6
0.8 Gaussian(0, 0.6)

Cubic Spline Approx.

(i) (ii)

1

2

3

4

Figure 1.2: (i) An automatically extracted Car Ads database may contain many (at-
tribute) uncertainties; (ii) Sensor data unavoidably contains complex, continuous uncer-
tainties.

cision maker. In many cases, the uncertainty can be captured by probabilis-

tic models which are usually constructed from partial information, known

features, historical data and so on. In resource constrained scenarios, we

need to make judicious decisions by utilizing such probabilistic information,

without conducting experiments to find out all relevant facts, which can be

prohibitively expensive. In Section 1.3, we elaborate two examples, kidney

exchange and online dating, both involving designing policies to conduct ex-

periments and optimizing the outcomes subject to some resource constraints.

The increasing volume of uncertain data has resulted in a need for efficiently

supporting complex queries and decision-making over such data. In fact, various

types of problems in decision making under uncertainty have been a subject of

extensive research in computer science, economics, finance and social science. In

my dissertation research, I concentrate on three important problems in this domain:

(1) ranking under uncertainty, (2) maximizing utility under uncertainty, and (3)

matching under uncertainty.

4

Before introducing the problems, we would like to add a few general remarks

on decision making under uncertainty. There are many approaches that have been

developed to handle uncertainty in a variety of areas. Perhaps the most näıve

one is to somehow eliminate the uncertainty. For example, we can replace the

uncertain values with the expected or most likely values, and make decisions solely

based on these deterministic values. However, such approaches ignore the essential

interaction between the uncertainty and the decision, and often lead to undesirable

solutions. The most systematic way is to carry the uncertainty through the decision

process. In principle, making a decision on an uncertain instance produces a

random outcome, i.e., a distribution over possible outcomes. Typically, it is some

characteristic of the random outcome that we care about. The characteristic, which

is typically an aggregate value of some sort over that distribution of outcomes, is

chosen as the decision criterion for optimization. This approach is also called the

possible worlds semantics. We follow this approach for all of the three problems.

Quite often, choosing the correct decision criterion can be nontrivial. If the

outcomes are numerical values, e.g., profits or costs, optimizing the expected value

has been the most commonly used decision criterion, (partly) due to its mathe-

matical tractability. In the matching problem, we use the expected value as the

objective. However, researchers have discovered certain drawbacks of expected

value and proposed more general alternatives. This observation leads the formula-

tion of our second problem, which is based on the expected utility theory, a classic

generalization of expected value that is known to be powerful in expressing diverse

risk-aware behaviors in decision making. If the outcomes are not numerical values,

other semantics may be needed. For instance, in the problem of ranking under

uncertainty, the random outcome is a ranking (i.e., permutation) of a set of tuples.

Choosing a proper decision criterion is a nontrivial problem here.

Now, we introduce and motivate three major problems in this dissertation one

by one and also briefly state our contributions.

1.1 Ranking under Uncertainty 5

1.1 Ranking under Uncertainty

Ranking and top-k query processing are important tools in decision-making and

analysis over large datasets, and have been a subject of active research for many

years in the database community [100]. The deterministic setting of the problem

consists of a universe of elements. Each element is associated with a score. The

answer to the ranking problem is just a permutation of the elements in a non-

increasing score order, while the answer to the top-k query is the set of k elements

with the largest scores. Since we present the problem in the database context, we

often use the terms “tuple” and “attribute”. A tuple, which is a row in a database

table, corresponds to an element and the key of the tuple is the unique id of the

element. A tuple may have several attributes, e.g., cost, length, weight, and so on,

and one attribute (possibly a derived attribute) is chosen as the score, according

to which we rank the tuples.

In the probabilistic setting, the existence of each element or the score of each

element may be uncertain. The uncertainty introduces complex trade-offs between

scores and probabilities, which make the problem of ranking much harder than its

counterpart in deterministic datasets. Let us consider a very simple example with

two independent uncertain tuples t1 (score = 200, Pr(t1) = 1/3), and t2 (score =

50, Pr(t2) = 1.0) where Pr(ti) is the probability that ti exists for i = 1, 2. It may

appear to some people that t1 is better since t1 has a score 4 times of t2’s score but

a probability 1/3 of t2’s. In other words, t1 has a higher expected score. However,

if we look at the top tuple over all outcomes (a.k.a. possible worlds), we can find

the probability that t1 is the top-1 answer is only 1/3 (as long as t1 exists, it is the

top-1) whereas t2 is the top-1 with probability 2/3 (as long as t1 does not exist,

t2 is the top-1). Noticing this, many risk-averse 1 users might choose t2. Even in

this simple case, it is not clear whether to rank t1 above t2 or vice versa. The

1Risk aversion is the reluctance of a person to accept a bargain with an uncertain payoff over
another bargain with a more certain, but possibly lower payoff.

1.1 Ranking under Uncertainty 6

trade-off would become even more complicated if the scores of the tuples are also

uncertain and are correlated with each other. This subtlety has led to a plethora

of ranking functions being proposed in prior literature (we discuss most of them in

detail in Section 2.4). Indeed, our empirical study demonstrates that the behaviors

of several prior ranking functions can be quite diverse and even conflicting. Hence,

the foremost challenge in ranking under uncertainty is to define a proper semantics

that is capable of capturing different user preferences and, hopefully, unifying the

previous ranking functions.

Further, often even semantically clear queries like “rank the tuples in the

dataset based on their probabilities to be one of the top-10” (this is the proba-

bilistic threshold top-k query [98], which in turn is a special case of our general

ranking function), can be computationally nontrivial. Our second challenge is to

design efficient algorithms, especially when the probability distributions of the tu-

ples are correlated, in which case, we need to work on a compact correlation model

to ensure efficiency, and when the distributions are continuous, in which case we

need proper numerical techniques to handle continuous functions.

Our contributions (sketch): (Chapter 4–7) Ranking under uncertainty is the

primary focus of the dissertation and and occupies a majority of the space. We

conduct systematic studies of both the semantics and the algorithms for ranking

and top-k query processing over probabilistic datasets. By illustrating the diverse

and conflicting behavior of prior proposals, we contend that a single, specific rank-

ing function may not suffice for probabilistic datasets. Instead we proposed the

notion of “parameterized ranking functions”(PRF), which is a broad class of rank-

ing functions. More specifically, the PRF value of tuple t is the expected value of

a weight function ω(t, rpw(t)) where rpw(t) is the rank of t in possible world pw.

By choosing different weight functions, PRF generalizes or can approximate many

of the previously proposed ranking functions. We present novel exact or approx-

imate algorithms for efficiently ranking large datasets according to these ranking

1.2 Maximizing Utility under Uncertainty 7

functions, even if the datasets exhibit complex correlations or the probability distri-

butions are continuous. The time complexities of our algorithms match or improve

the best known algorithms developed for several prior ranking functions (which

are special cases of PRF). Second, we propose the notion of a consensus answer

which, roughly speaking, is a deterministic answer that is “closest in expectation”

to the possible answers over a probabilistic database. Under this framework, we

obtain polynomial time optimal or approximation algorithms for computing the

consensus top-k answers. We also show a close relationship between PRF and the

consensus top-k answer semantics.

The results in Chapter 5 appear in [127, 128] while those in Chapter 6 appear

in [125]. Chapter 7 is mainly based on [124].

1.2 Maximizing Utility under Uncertainty

The field of decision making under uncertainty is also known as stochastic op-

timization if the deterministic version of the problem under consideration is an

optimization problem in the usual sense, such as a mathematical program or a

combinatorial optimization problem. In this and the next section, we focus on

stochastic combinatorial optimization problems.

The most common approach to deal with optimization problems in presence of

uncertainty is to optimize the expected value of the solution. However, expected

value is inadequate in capturing diverse people’s preferences towards decision-

making under uncertain scenarios. In particular, it fails at capturing different

risk-averse or risk-prone behaviors that are commonly observed. Consider the fol-

lowing simple example where we have two lotteries L1 and L2. In L1, the player

could win 1000 dollars with probability 1.0, while in L2 the player could win 2000

dollars with probability 0.5 and 0 dollars otherwise. It is easy to see that both have

the same expected payoff of 1000 dollars. However, many, if not most, people would

treat L1 and L2 as two completely different choices. Specifically, a risk-averse player

1.2 Maximizing Utility under Uncertainty 8

is likely to choose L1 and a risk-prone player may prefer L2 (Consider a gambler

who would like to spend 1000 dollars to play double-or-nothing). A more involved

but also more surprising example is the St. Petersburg paradox (see e.g., [132, 1])

which has been widely used in the economics literature as a criticism of expected

value. See Section 2.6 for more details about the St. Petersburg paradox. These

observations and criticisms have led researchers, especially in economics, to study

the problem from a more fundamental perspective and to directly maximize user

satisfaction, often called utility. The uncertainty present in the problem instance

naturally leads us to optimize the expected utility.

Let F be the set of feasible solutions to an optimization problem. Each solution

S ∈ F is associated with a random weight w(S). For instance, F could be a set of

lotteries and w(S) is the (random) payoff of lottery S. We model the risk awareness

of a user by a utility function µ : R → R: the user obtains µ(x) units of utility

if the outcome is x, i.e., w(S) = x. Formally, the expected utility maximization

principle (EUMP) is simply stated as follows: the most desirable solution S is the

one that maximizes the expected utility, i.e.,

S = arg max
S′∈F

E[µ(w(S ′))]

The theory was formally initiated by von Neumann and Morgenstern in 1940s

[176, 70] and has been widely used to express diverse risk-averse or risk-prone

behaviors. See Section 2.6 for more details.

In this dissertation, we consider the stochastic versions of a broad class of

combinatorial problems including shortest paths, minimum weight spanning trees,

and minimum weight matchings over probabilistic graphs, and other combinatorial

problems like knapsack. Formally, the problem consists of a ground set of elements

U = {ei}i=1...n. Each element e is associated with a nonnegative random weight

we. We assume all wes are independent of each other. Each feasible solution is a

subset of the elements satisfying some property. Let F denote the set of feasible

1.2 Maximizing Utility under Uncertainty 9

solutions. For example, F is the set of all s-t paths in the shortest path problem.

We are also given a utility function µ : R+ → R+ which maps a weight value to

a utility value. By the expected utility maximization principle, our objective is to

find a feasible solution S ∈ F that maximizes E[µ(w(S))]. We call this problem

the expected utility maximization (EUM) problem. Many stochastic optimization

problems studied in literature are special cases of EUM. See below for an example.

More examples can be found in Section 8.3.

Example 1. (Stochastic Shortest Path): We are given a probabilistic graph where

the length `e of each edge e is a random variable. The objective is to find an s-t

path P connecting s and t such that the probability that the length of P is at most

a given threshold T , i.e., Pr(
∑

e∈P `e ≤ T), is maximized. The problem has been

studied in [141, 139]. To see the problem is a special case of EUM, just consider

the utility function: µ(x) = 1 for x ≤ T and µ(x) = 0 for x > T . We study this

problem in Section 8.3.

Our contributions(sketch): (Chapter 8) We show that we can obtain a poly-

nomial time approximation algorithm with additive error ε for any ε > 0, if the

utility function satisfies certain continuity or smoothness condition and there is a

pseudopolynomial time algorithm for the exact version of the problem.2 Our result

generalizes several prior results on stochastic shortest path [141, 139], stochastic

spanning tree [102], and stochastic knapsack [119, 79, 29]. For example, using our

result, we can show there is a polynomial time algorithm that computes an s-t

path P such that Pr(
∑

e∈P `e ≤ (1 + δ)T) ≥ OPT − ε for any fixed δ > 0 and

ε > 0, where OPT is the optimal solution for the above stochastic shortest path

problem. Moreover, our techniques can be generalized to handle multiple utility

functions and multi-dimensional weight distributions. Our algorithm for utility

2Following the literature [145], we differentiate between exact version and deterministic version
of a problem; in the exact version of the problem, we are given a target value and asked to find
a solution (e.g., a path) with exactly that value (i.e., path length).

1.3 Matching under Uncertainty 10

maximization makes use of the separability of exponential utility and a technique

to decompose a general utility function into exponential utility functions, which

may be useful in other stochastic optimization problems.

The results in this chapter appear in [126].

1.3 Matching under Uncertainty

We study the problem of finding a matching of maximum weight in an uncertain

graph. Maximum weight matching is a fundamental graph optimization problem

and has found numerous applications. It is well-known that the problem can

be solved exactly in polynomial time in the deterministic setting. However, in

practical applications, the pairwise relations between vertices are often uncertain

in the decision making stage. This motivates us to study its stochastic variants.

In particular, we consider the following stochastic matching problem. We are given

a probabilistic graph where each possible edge e is present independently with

some probability pe. Given these probabilities, we want to build a large/heavy

matching in the randomly generated graph. However, the only way we can find

out whether an edge is present or not is to probe it, and if the edge is indeed

present in the graph, we are forced to add it to our matching. Further, each vertex

i is associated with a patience level ti which means at most ti edges incident on

i can be probed. The question is how should we adaptively query the edges to

maximize the expected weight of the matching.

The problem is motivated by the recent kidney exchange program and the

popular online dating application which we now briefly describe.

• Kidney Exchange: It happens very often that a friend or a family member

of the patient would like to donate a kidney to the patient but the kidney

is incompatible with the patient’s body. To resolve this problem, the United

Network for Organ Sharing (UNOS) launched in year 2000 the kidney ex-

change program in which two incompatible patient/donor pairs are identified

1.3 Matching under Uncertainty 11

such that each donor is compatible with the other pair’s patient [154, 155].

Then, exchanging the kidneys between the pairs can be performed in order to

have two successful transplants. Clearly, the goal is to match the maximum

number of pairs. This problem can be modeled as a maximum matching

instance in which each node represents an incompatible pair and each edge

represents a possible exchange. To decide compatibility, three main tests

which indicate the likelihood of successful transplants should be performed.

The first two tests, the blood-type test and the antibody screen, compare the

blood of the recipient and donor. The third test, called crossmatching, is the

most critical one and the feasibility of a transplant can only be determined

after this test. However, this test is time-consuming and must be performed

close to the surgery date. Therefore, as soon as a pair passes the crossmatch

test, the transplant should be performed immediately. Thus, we can model

the probability that the exchange between two nodes (incompatible pairs)

will succeed based on the initial two tests by a probabilistic edge. The cross-

match tests performed between two nodes correspond to a probe on that

edge. Upon a successful probe, the exchange should be performed which

means we include this edge in our matching. The patience level for each

vertex models the fact that a patient will eventually die without a successful

match.

• Online Dating: In an online dating system, e.g., eHarmony, users submit their

profiles to the central server. The server then estimates the compatibilities of

men and women based on their profiles and then sends plausibly compatible

couples on blind dates. To see how this may be modeled as our stochastic

matching problem, we just think each person in the system as a node and the

edge probability between a pair of nodes as the probability that the pair is

compatible, which is estimated by the server based on the profiles of the pair.

Probing an edge corresponds to sending the pair on a date in this case. The

1.3 Matching under Uncertainty 12

patience level of a node indicates each person is only willing to participate

in at most a given number of unsuccessful dates.

Our contributions(sketch): (Chapter 9) We first consider a more general prob-

lem, called stochastic k-set-packing. In this problem, we try to pack hyperedges

of size k with random sizes and profits into a graph with d vertices, each having

a capacity constraint. The size of each hyperedge is a k-dimensional random 0/1

vector. The stochastic k-set-packing problem directly generalizes the stochastic

matching problem (for k = 4; see the reduction in Section 9.2). Our goal is to

design a probing strategy such that the expected profit is maximized. We show

that there is a 2k-approximation algorithm for this problem. When the column

outcomes are monotone (see the definition in Section 9.2.1), we can use the FKG

inequality to strengthen the probability bound and show that the approximation

ratio is at most k + 1. This implies a 5-approximation for weighted stochastic

matching, which answers an open question from [40]. Then, we design improved

probing strategies for stochastic matching by making use of the graph structure

and the dependent rounding scheme [73]. In particular, we give a 4-approximation

for weighted stochastic matching on general graphs, and a 3-approximation on

bipartite graphs. The probing strategy returned by the algorithm can in fact be

made matching-probing. In the more restrictive matching-probing model, we can

probe a set of vertex disjoint edges (i.e., a matching) in each round and there

are k rounds, where k is a given parameter. We introduce a generalization of the

stochastic online matching problem [68] that also models preference-uncertainty

and timeouts of buyers, and give a constant factor approximation algorithm.

The results in this chapter are mainly based on [16,17].

Chapter 2

Preliminaries

In this chapter, we review some preliminary knowledge that is necessary for latter

chapters. We first briefly review the prevalent possible worlds semantics, and then

discuss how decision making and query processing over probabilistic datasets are

typically done under possible worlds semantics. Next, we introduce some proba-

bilistic data models that we use throughout the article, including the probabilistic

and/xor tree and the Markov network. At last, we briefly describe the St. Peters-

burg paradox and the expected utility theory. The later semantically motivates

and underpins many problem formulations in this thesis.

2.1 Possible Worlds Semantics

The common semantics in decision making under uncertainty are the possible

worlds semantics, where an uncertain instance is considered to correspond to a

probability distribution over a set PW of deterministic instances {pw1, pw2,, pwN}
called possible worlds. We use p(pw) to denote the probability of possible world

pw. Because of the typically exponential size of PW , an explicit possible worlds

representation is not feasible, and hence the semantics are usually captured im-

plicitly by probabilistic models with polynomial size specification. In Section 2.3,

we introduce several probabilistic data models that we use in the thesis.

Under possible worlds semantics, making a decision in the uncertain instance

corresponds to making the decision over the possible worlds. Thus, we obtain a

distribution of possible outcomes, each resulting from the decision on some world.

The decision maker chooses the decision which optimizes the decision criterion,

13

2.2 Stochastic Optimization 14

which is typically defined as some aggregate value of the outcome distribution. We

discuss some commonly used decision criterions in the next section.

Our ranking problem is studied and presented in the probabilistic database

context. Conceptually, a probabilistic database is just a probability distribution

over deterministic databases, despite the actual probabilistic model and physical

implementation being used. Under possible worlds semantics, posing queries over

such a probabilistic database generates a probability distribution over a set of

deterministic results which we call “possible answers”. However, a full list of

possible answers together with their probabilities is not desirable in most cases since

the size of the list could be exponentially large, and the probability associated with

each single answer is extremely small. One approach to addressing this issue is to

“combine” the possible answers somehow to obtain a more compact representation

of the result. For simple SQL queries that return a list of tuples (often called select-

project-join queries), one proposed approach is to union all the possible answers,

and compute the probability of each result tuple by adding the probabilities of all

the possible answers it belongs to [54]. This approach, however, cannot be easily

extended to other types of queries like ranking or aggregate queries.

2.2 Stochastic Optimization

If a deterministic problem is an optimization problem in the usual sense, e.g.,

a mathematical optimization (e.g., linear programming) or a combinatorial opti-

mization problem, the corresponding optimization problem under uncertainty is

often known as a stochastic optimization problem. Suppose the objective function

for the deterministic problem is w : A × F → R, where A is the set of problem

instances and F is the solution space. Typically, the decision criterion (also called

the objective) of the stochastic optimization problem is some aggregate value of

the distribution of w(pw, S), where pw is a possible world drawn from the proba-

bilistic instance and S is the decision. For different applications, we may choose

2.2 Stochastic Optimization 15

different aggregate values as the objectives. For example, the following objectives

are considered in this dissertation:

• Expected value: We would like to find the solution S that optimizes

Epw[w(pw, S)] =
∑

pw∈PW

w(pw, S)p(pw).

This is the most commonly used objective for stochastic optimization.

• Overflow probability: For a given value γ, we optimize the probability

Pr(w(pw, S) ≥ γ) =
∑

pw:w(pw,S)≥γ

p(pw).

• Expected utility: Given a utility function µ : R → R, we optimize the

expected utility

Epw[w(pw, S)] =
∑

pw∈PW

µ(w(pw, S))p(pw).

This generalizes expected value (where µ(x) = x) and overflow probability

(where µ(x) = 0 for x ≤ γ and µ(x) = 1 otherwise). The motivation for

using other utility functions is discussed in Section 2.6.

Now, we use the stochastic shortest path problem as an illustrative example.

Example 2. (Stochastic Shortest Path) We illustrate this problem through an ex-

ample. Consider the probabilistic graph shown in Figure 2.1. The length `e of each

edge e is an independent random variable. If the objective is the expected length, the

optimal path is {s, c, d, t} whose expected length is (2+2+2)× .7+(2+3+2)× .3 =

6.3. In fact, due to the linearity of expectation, minimizing the expected path length

can be reduced to the deterministic shortest path problem by using E[`e] as the

length of edge e. If the user wants to maximize the probability that the length of

2.2 Stochastic Optimization 16

s t

a b

c d

`ab =
{

1 w.p.0.5
2 w.p.0.5

`cd =
{

2 w.p.0.7
3 w.p.0.3

`sa = 3

`sc = 2

`ad = 2

`cd = 3

`bt =
{

`dt = 2

1 w.p.0.1
3 w.p.0.9 PW `ab `cd `bt Prob

pw1 1 2 1 .035
pw2 1 2 3 .315
pw3 1 3 1 .015
pw4 1 3 3 .135
pw5 2 2 1 .035
pw6 2 2 3 .315
pw7 2 3 1 .015
pw8 2 3 3 .135

Figure 2.1: A probabilistic graph with three uncertain edges. There are 23 = 8 possible
worlds.

the path is at most 5, the optimal path is {s, a, b, t}. The optimal probability is

p(pw1) + p(pw3) = 0.05. Suppose the objective is to maximize the expected utility

with utility function µ(x) = 0.9x. The optimal path is {s, c, d, t} with expected util-

ity value µ(2 + 2 + 2)× .7 + µ(2 + 3 + 2)× .3 ≈ 0.515. This problem is studied in

Chapter 8.

Instead of replacing the deterministic objective with a stochastic one, we could

also use stochastic constraints (with or without a stochastic objective) to form a

stochastic optimization problem. The most common stochastic constraint is the

chance constraint that asserts the probability that a random event happens should

be at least (or at most) a given threshold. The following stochastic knapsack

problem is a typical chance-constrained stochastic optimization problem.

Example 3. (Stochastic knapsack) We are given a set U of n items and a positive

constant 0 ≤ γ ≤ 1. Each item i has a random size wi and a deterministic

profit vi. The goal is to find a subset S ⊆ U such that the chance constraint

Pr(w(S) ≤ 1) ≥ γ holds and the total profit v(S) =
∑

i∈S vi is maximized. This

problem is studied in Chapter 8.

Stochastic optimization problems can be further classified by the number of

stages in the problem, where in each stage a partial decision is made and the

2.3 Probabilistic Data Models 17

random effect will be carried over to later stages. The ranking and utility max-

imization problems we study involve only one stage, i.e., the decision must be

made before the random experiment, while the matching problem is a multi-stage

decision problem.

Many optimization problems are computationally hard, e.g., NP-hard or #P-

hard, which implies that it is very unlikely that there is a polynomial time al-

gorithm that can solve the problem exactly. A common way to tackle such a

problem is from the approximation algorithms perspective, that is to design ef-

ficient (typically polynomial time) algorithms which find solutions with objective

values close to the optimum. For a maximization (resp. minimization) problem, an

α-approximation algorithm is one that computes a solution with objective value at

least 1/α (resp. at most α) times the value of the optimal solution. A polynomial

time approximation scheme (PTAS) is an algorithm which takes an instance of a

maximization (resp. minimization) problem and a parameter ε > 0 and produces

a solution whose cost is at least a factor 1− ε (resp. at most a factor of 1 + ε) of

the optimum, and the running time, for any fixed ε, is polynomial in the size of the

input. Even more restrictive is the fully polynomial-time approximation scheme

(FPTAS), which requires the algorithm to be polynomial in both the size of the

input and 1
ε
. Sometimes, we can obtain additive approximations. We say an algo-

rithm is a β-additive approximation, if the absolute difference between the value

of the solution found by the algorithm and the optimum is at most β.

2.3 Probabilistic Data Models

Our general data model consists of a set of ground elements. Each element is

typically associated with a weight (also interchangeably called score). We may have

two types of uncertainties, existence uncertainty (the existence of each element is

uncertain) and value uncertainty (the weight of each element is uncertain).

The ranking problem is presented in the probabilistic database context. We

2.3 Probabilistic Data Models 18

assume that the elements are stored in a probabilistic table (a.k.a. probabilistic

relation). A tuple, which is a row in the table, corresponds to an element. The

key of the tuple is the unique id of the element. The key is also called the possible

worlds key, which means the key must be the unique identifier of a tuple in any

possible world. We note that in a probabilistic relation, there may be several tuples

having the same possible world key. However, they must be mutual exclusive, i.e.,

at most one of them is present in a possible world. A tuple may have several

attributes, but only one attribute is chosen as the ranking criterion, which we call

the score of the tuple. Note that the score can be a value derived from the values

of other attributes. Existence uncertainty and value uncertainty are also called

tuple-level uncertainty (or tuple uncertainty) and attribute-level uncertainty 1 (or

attribute uncertainty), respectively, in probabilistic database terminology.

If all elements (tuples) are independent of each other, the model is element-

independent (tuple-independent). In our utility maximization and matching prob-

lems, we only consider the element-independent model. For the ranking problem,

we consider two correlation models, the probabilistic and/xor tree model and the

Markov network model. We can handle arbitrarily correlated relations with cor-

relations modeled using Markov networks. However, in many parts of this work,

we focus on the probabilistic and/xor tree model, that can capture only a more

restricted set of correlations, but admits highly efficient ranking algorithms.

2.3.1 Probabilistic And/Xor Trees

A probabilistic and/xor tree captures two types of correlations: (1) mutual ex-

clusivity (denoted ∨© (xor)) and (2) mutual co-existence (∧© (and)). Two events

satisfy the mutual co-existence correlation if, in any possible world, either both

events occur or neither occurs. Similarly two events are mutually exclusive if there

1In general, attribute-level uncertainty allows for each tuple to have multiple uncertain at-
tributes. Since only the score attribute is relevant in the ranking problem, attribute-level uncer-
tainty means that the score of each tuple is uncertain.

2.3 Probabilistic Data Models 19

Time Car Loc. Plate No. Speed Prob Tuple Id
11:40 L1 X-123 120 . . . 0.4 t1
11:55 L2 Y-245 130 . . . 0.7 t2
11:35 L3 Y-245 80 . . . 0.3 t3
12:10 L4 Z-541 95 . . . 0.4 t4
12:25 L5 Z-541 110 . . . 0.6 t5
12:15 L6 L-110 105 . . . 1.0 t6

Possible Worlds Prob
pw1 = {t2, t1, t6, t4} .112
pw2 = {t2, t1, t5, t6} .168
pw3 = {t1, t6, t4, t3} .048
pw4 = {t1, t5, t6, t3} .072
pw5 = {t2, t6, t4} .168
pw6 = {t2, t5, t6} .252
pw7 = {t6, t4, t3} .072
pw8 = {t5, t6, t3} .108

∨ ∨ ∨

∧

t1 120, t2 130, t3 80, t4 95, t5 110, t6 105,

∨
.4 .7 .3 .4 .6 1

Figure 2.2: Example of a probabilistic database which contains automatically captured
information about speeding cars. Tuple t2 and t3 (similarly, t4 and t5) are mutually
exclusive. The corresponding and/xor tree compactly encodes these correlations.

is no possible world where both happen.

Now, let us formally define a probabilistic and/xor tree. In tree T , we denote

the set of children of node v by ChT (v) and the least common ancestor of two

leaves l1 and l2 by LCAT (l1, l2). We omit the subscript if the context is clear.

Definition 1. A probabilistic and/xor tree T represents the mutual exclusion and

co-existence correlations in a probabilistic dataset. In T , each leaf is an id-value

pair, representing a specific element with a specific weight value. Each inner node

has a mark, ∨© or ∧©. For each ∨© node u and each of its children v ∈ Ch(u), there

is a nonnegative value p(u,v) associated with the edge (u, v). Moreover, we require

• (Probability Constraint)
∑

v:v∈Ch(u) p(u,v) ≤ 1.

• (Id Constraint) For any two different leaves l1, l2 holding the same id, LCA(l1, l2)

is a ∨© node2.

Let Tv be the subtree rooted at v and Ch(v) = {v1, . . . , v`}. The subtree Tv in-

ductively defines a random subset Sv of its leaves by the following independent

2The id constraint is imposed to avoid two elements with the same id but different attribute
values coexisting in a possible world.

2.3 Probabilistic Data Models 20

Possible Worlds Prob
pw1 = {(t3, 6), (t2, 5), (t11)} .3
pw2 = {(t3, 9), (t1, 7)} .3
pw3 = {(t2, 8), (t4, 4), (t5, 3)} .4

t3, 6 t2, 5 t1, 1 t3, 9 t1, 7 t2, 8 t4, 4 t5, 3

∧ ∧ ∧

∨
.3 .3 .4

x3

Figure 2.3: Example of a highly correlated probabilistic database with 3 possible worlds
and the and/xor tree that captures the correlation.

process:

• If v is a leaf, Sv = {v}.

• If Tv roots at a ∨© node, then

Sv =





Svi with probability p(v,vi)

∅ with probability 1−
∑`

i=1 p(v,vi)

• If Tv roots at a ∧© node, then Sv = ∪`i=1Svi

This model subsumes a popular probabilistic data model, called x-tuples [157,

182] which can be used to specify mutual exclusivity correlations between tuples.

Specifically, x-tuples correspond to the special case where we have a tree of height

2, with a ∧© node as the root and only ∨© nodes in the second level. Figure 2.2

shows an example of an and/xor tree that models the data from a traffic moni-

toring application [167], where the tuples represent automatically captured traffic

data. The inherent uncertainty in the monitoring infrastructure is captured us-

ing an and/xor tree, that encodes the tuple existence probabilities as well as the

correlations between the tuples. For example, the leftmost ∨© node indicates t1 is

present with probability .4 and the second ∨© node dictates that exactly one of t2

and t3 should appear. The topmost ∧© node tells us the random sets derived from

2.3 Probabilistic Data Models 21

these ∨© nodes coexist.

We note that and/xor trees are able to represent any finite set of possible

worlds. This can be done by listing all possible worlds, creating one ∧© node for

each world, and using a ∨© node as the root to capture that these worlds are mutual

exclusive. Figure 2.3 shows how we can capture arbitrary possible worlds using an

and/xor tree.

Probabilistic and/xor trees significantly generalize x-tuples [157, 182], block-

independent disjoint tuples model, and p-or-sets [55]. The correlations captured

by such a tree can be represented by probabilistic c-tables [86] and provenance

semirings [85]. However, that does not directly imply an efficient algorithm for

ranking. We remark that Markov or Bayesian network models are able to cap-

ture more general correlations in a compact way [159], however, the structure of

the model is more complex and probability computations on them (inference) is

typically exponential in the treewidth of the model. The treewidth of an and/xor

tree (viewing it as a Markov network) is not bounded, and hence the techniques

developed for those models cannot be used to obtain a polynomial time algorithms

for and/xor trees. We note that no prior work on ranking in probabilistic databases

has considered more complex correlations than x-tuples.

2.3.2 Markov Networks

Among many models for capturing the correlations in a probabilistic database,

graphical models (Markov or Bayesian networks) perhaps represent the most sys-

tematic approach [161]. The appeal of graphical models stems both from the

pictorial representation of the dependencies, and a rich literature on doing infer-

ence over them. In this section, we briefly review some notations and definitions

related to Markov networks and junction trees. We only consider tuple-level un-

certainty. Let T = {t1, t2, . . . , tn} be the set of tuples. For each tuple t in T , we

associate an indicator random variable Xt, which is 1 if t is present, and 0 other-

wise. Let X = {Xt1 , . . . , Xtn}. For a set of variables S, we use Pr(S) to denote

2.3 Probabilistic Data Models 22

the joint probability distribution over those variables. So Pr(X) denotes the joint

probability distribution that we are trying to reason about. This joint distribution

captures all the correlations in the dataset. However, directly trying to represent

it would take O(2n) space, and hence is clearly infeasible.

Probabilistic graphical models allow us to represent this joint distribution com-

pactly by exploiting the conditional independences present among the variables.

Given three disjoint sets of random variables A,B,C, we say that A is conditionally

independent of B given C if and only if:

Pr(A,B|C) = Pr(A|C) Pr(B|C)

We assume that we are provided with a junction tree over the variables X
that captures the correlations among them. A junction tree can be constructed

from a graphical model using standard algorithms [69]. Recently junction trees

have also been used as a internal representation for probabilistic databases, and

have been shown to be quite effective at handling lightly correlated probabilistic

databases [111]. We describe the key properties of junction trees next.

Junction tree Let T be a tree with each node v associated with a subset Cv ⊆ X .

We say T is a junction tree if any intersection Cu∩Cv for any u, v ∈ T is contained

in Cw for every node w on the unique path between u and v in T (this is called

the running intersection property). The treewidth tw of a junction tree is defined

to be maxv∈T |Cv| − 1.

Denote Su,v = Cv ∩ Cu for each edge (u, v) ∈ T . We call Su,v a separator since

removal of Su,v disconnects the graphical model. The set of conditional indepen-

dences embodied by a junction tree can be found using the Markov property:

(Markov Property) Given variable sets A,B,C, if C separates A and B (i.e.,

removal of variables in C disconnects the variables in A from variables in B in the

junction tree), then A is conditionally independent of B given C.

Example 4. Let T = {t1, t2, t3, t4, t5}. Figure 2.4 (i) and (ii) show the (undirected)

2.3 Probabilistic Data Models 23

X5 X4 X3

X2

X1

(i)

X5X4 X4X3

X3X2

X3X1

X4

X3

X3

1 1 0.3
0.201
0.210
0.300

Pr(X5, X4)X4X5

1 1 0.2
0.301
0.410
0.100

Pr(X4, X3)X3X4

1 1 0.1
0.501
0.310
0.100

Pr(X3, X2)X2X3

1 1 0.2
0.401
0.310
0.100

Pr(X3, X1)X1X3

(ii)

Figure 2.4: (i) A graphical model; (ii) A junction tree for the model along with the
(calibrated) potentials.

graphical model and the corresponding junction tree T . T has four nodes: C1 =

{Xt4 , Xt5}, C2 = {Xt4 , Xt3}, C3 = {Xt3 , Xt1} and C4 = {Xt3 , Xt2}. The treewidth

of T is 1. We have, S1,2 = {X4}, S2,3 = {X3} and S2,4 = {X3}. Using the Markov

property, we observe that X5 is independent of X1, X2, X3 given X4.

Clique and Separator Potentials With each clique Cv in the junction tree, we

associate a potential πv(Cv), which is a function over all variables Xti ∈ Cv and

captures the correlations among those variables. Similarly, with each separator

Su,v, we associate a potential µu,v(Su,v). Without loss of generality, we assume

that the potentials are calibrated, i.e., the potential corresponding to a clique (or

a separator) is exactly the joint probability distribution over the variables in that

clique (separator). Given a junction tree with arbitrary potentials, calibrated

potentials can be computed using a standard message passing algorithm [69]. The

complexity of this algorithm is O(n2tw). Then the joint probability distribution of

X , whose correlations can be captured using a calibrated junction tree T , can be

2.4 Prior Semantics on Ranking over Probabilistic Data 24

written as:

Pr(X) =

∏
v∈T πv(Cv)∏

(u,v)∈T µu,v(Su,v)
=

∏
v∈T Pr(Cv)∏

(u,v)∈T Pr(Su,v)

2.4 Prior Semantics on Ranking over Probabilistic Data

The interplay between probabilities and scores complicates the semantics of ranking

on probabilistic datasets. This was observed by Soliman et al. [167], who first

considered this problem and presented two definitions of top-k queries. Several

other definitions of ranking have been proposed since then. We briefly review

the ranking functions 3 we consider in this work. We use the dataset shown in

Figure 2.2 to illustrate the ranking functions.

• Uncertain Top-k (U-Top) [167]: Here the query returns the k-tuple set that

appears as the top-k answer in most possible worlds (weighted by the proba-

bilities of the worlds).

As an example, for the dataset shown in Figure 2.2, the top-2 answer under this

semantics is {t2, t1}, since Pr({t2, t1} is the top-2 answer) = p(pw1)+p(pw2) =

0.112 + 0.168 = 0.28.

• Uncertain Rank-k (U-Rank) [167]: At rank i, we return the tuple with the

maximum probability of being at the i’th rank in all possible worlds. In other

words, U-Rank returns: {t∗i , i = 1, .., k}, where t∗i = arg maxt(Pr(r(t) = i)).

For example, the top-2 answer for our example dataset is {t2, t5}. This is

because Pr(r(t2) = 1) = p(pw1)+p(pw2)+p(pw5)+p(pw6) = 0.7 and Pr(r(t5) =

2) = p(pw4) + p(pw6) = 0.324.

3Unlike in deterministic settings, the answer to a top-k query on a set of uncertain tuples
may not be the length-k prefix of the ranking of the tuples computed according to some ranking
function. In Section 4.5.2, we draw a clear distinction between the two terms. However, we do
not distinguish the terms “ranking” and “top-k” and use them interchangeably in the rest of the
dissertation.

2.4 Prior Semantics on Ranking over Probabilistic Data 25

• Probabilistic Threshold Top-k (PT(h)) [98]: The original definition of a

probabilistic threshold query asks for all tuples with probability of being in

top-h answer larger than a pre-specified threshold, i.e., all tuples t such that

Pr(r(t) ≤ h) > threshold. For consistency with other ranking definitions, we

slightly modify the definition and instead ask for the k tuples with the largest

Pr(r(t) ≤ h) values. Zhang et al. [183] use the choice k = h and call the

resulting special case global top-k queries.

For example, we can see that Pr(r(t1) ≤ 2) = p(pw1) + p(pw2) + p(pw3) +

p(pw4) = 0.4. Similarly, Pr(r(t2) ≤ 2) = 0.7, Pr(r(t3) ≤ 2) = 0, Pr(r(t4) ≤
2) = 0.072, Pr(r(t5) ≤ 2) = 0.432 and Pr(r(t6) ≤ 2) = 0.396. Hence, the top-2

answer is {t2, t5} under PT(2) semantics.

• Expected Rank (E-Rank) [48]: The tuples are ranked in the increasing order

by:

Epw[rpw(t)] =
∑

pw∈PW

p(pw)rpw(t),

where rpw(t) = |pw|+ 1 if t /∈ pw.

For example, Epw[rpw(t1)] = 2 × (p(pw1) + p(pw2)) + 1 × (p(pw3) + p(pw4)) +

4× (p(pw5) + p(pw6) + p(pw7) + p(pw8)) = 2.92.

• Expected Score (E-Score): Another natural ranking function, also considered

by [48], is simply to rank the tuples by their expected score, Pr(t)s(t).

• c-typical top-k (TYP-Top) [76]: Let Spw (a random variable) be the total

score of the top-k answer in possible world pw. Let s1, . . . , sc be c values such

that Epw[mini |Spw − si|] is minimized where each si is some possible value of

Spw. The answer to the query is a set of c top-k lists l1, . . . , lc such that li is

the most probable top-k list that has a total score si.

Suppose c = 2 and k = 1. The distribution of the total score of the top-1

answer is {130,w.p.0.7; 120,w.p.0.12; 110,w.p.0.108; 105,w.p.0.072}. It is not

hard to see that s1 = 130 and s2 = 110. Hence, l1 = {t2} and l2 = {t5}.

2.5 Distance between Two Top-k Answers 26

2.5 Distance between Two Top-k Answers

In this section, we review some popular distance functions between two permuta-

tions or two top-k lists. The distance function is a measurement of (dis)similarity

and a higher value indicates a larger disagreement. Fagin et al. [66] provide a

comprehensive analysis of the problem of comparing two top-k lists. They present

extensions of the Kendall’s tau and Spearman footrule metrics (defined on full

rankings) to top-k lists and propose several other natural metrics, such as the in-

tersection metric and Goodman and Kruskal’s gamma function. We consider four

metrics discussed in that paper: the symmetric difference metric, the intersection

metric and one particular extension to Spearman’s footrule distance and an exten-

sion to Kendall’s tau distance. We briefly recall some definitions here. For more

details and the relation between different definitions, please refer to [66].

We use the symbol τ to denote a top-k ranked list, and τ i to denote the re-

striction of τ to the first i items. We use τ(i) to denote the ith item in the list τ

for positive integer i, and τ(t) to denote the position of t ∈ T in τ .

Symmetric Difference Given two top-k lists, τ1 and τ2, the symmetric difference

metric is defined as:

dis∆(τ1, τ2) =
1

2k
|τ1∆τ2| =

1

2k
|(τ1\τ2) ∪ (τ2\τ1)|.

Intersection Metric: While dis∆ focuses only on the membership, the intersec-

tion metric disI also takes the order of tuples into consideration. It is defined to

be:

disI(τ1, τ2) =
1

k

k∑

i=1

dis∆(τ i1, τ
i
2)

We note that both dis∆() and disI() values are always between 0 and 1.

Spearman’s Footrule: The original Spearman’s Footrule metric is defined as

the L1 distance between two permutations σ1 and σ2. Formally, F (σ1, σ2) =

2.5 Distance between Two Top-k Answers 27

∑
t∈T |σ1(t) − σ2(t)|. Let ` be a integer greater than k. The footrule distance

with location parameter `, denoted F (`) generalizes the original footrule metric.

It is obtained by placing all missing elements in each list at position ` and then

computing the usual footrule distance between them. A natural choice of ` is k+1

and we denote F (k+1) by disF . It is also proven that disF is a real metric and a

member of a big and important equivalence class 4 [66].

It is shown in [66] that:

disF (τ1, τ2) = (k + 1)|τ1∆τ2|+
∑

t∈τ1∩τ2

|τ1(t)− τ2(t)| −
∑

t∈τ1\τ2

τ1(t)−
∑

t∈τ2\τ1

τ2(t).

Kendall’s tau: Another prevalent distance function is Kendall’s tau distance de-

fined for comparing top-k answers [67]. It is also called Kemeny distance in the

literature and is considered to have many advantages over other distance met-

rics [64]. Let R1 and R2 denote two full ranked lists, and let K1 and K2 denote the

top-k ranked tuples in R1 and R2 respectively. Then Kendall tau distance between

K1 and K2 is defined to be:

dis(K1,K2) =
∑

(i,j)∈P (K1,K2)

K̂(i, j),

where P (K1,K2) is the set of all unordered pairs of K1 ∪ K2; K̂(i, j) = 1 if it can

be inferred from K1 and K2 that i and j appear in opposite order in the two full

ranked lists R1 and R2, otherwise K̂(i, j) = 0. Intuitively the Kendall distance

measures the number of inversions or flips between the two rankings. Sometimes,

for ease of comparison, we divide the Kendall distance by k2 to obtain normalized

Kendall distance, which always lies in [0, 1]. We adopt Kendall distance (or the

normalized version) for our experiments. To get some intuition, it is easy to see

that if the Kendall distance between two top-k answers is δ, then the two answers

4All distance functions in one equivalence class are bounded by each other within a constant
factor. This class includes several extensions of Spearman’s footrule and Kendall’s tau metrics.

2.6 St. Petersburg Paradox and Expected Utility Theory 28

must share at least 1−
√
δ fraction of tuples 5 (so if the distance is 0.09, then the

top-k answers share at least 70%, and typically 90% or more tuples). The distance

is 1 only if two top-k answers are completely disjoint.

2.6 St. Petersburg Paradox and Expected Utility Theory

The St. Petersburg paradox is a paradox related to decision making under un-

certainty. It is a classic example where the expected value criterion, i.e., making

decisions solely based on the expected value of the objective, suggests a course of

action that no rational person would be willing to take. It is therefore often used

as a criticism of the expected value criterion. The paradox is named from Daniel

Bernoulli’s presentation of the problem, published in 1738 in the Commentaries of

the Imperial Academy of Science of Saint Petersburg.

The paradox is as follows. Consider the following game: you pay a fixed fee X

to enter the game. In the game, a fair coin is tossed repeatedly until a tail appears

ending the game. The payoff of the game is 2k where k is the number of heads that

appears., i.e., you win 1 dollar if a tail appears on the first toss, 2 dollars if a head

appears on the first toss and a tail on the second, 4 dollars if a head appears on

the first two tosses and a tail on the third and so on. The question is what would

be a fair fee X to enter the game? First, it is easy to see that

E[payoff] =
1

2
· 1 +

1

4
· 2 +

1

8
· 4 +

1

16
· 8 + · · ·

=
1

2
+

1

2
+

1

2
+

1

2
+ · · · =

∞∑

k=1

1

2
=∞

If we use the expected payoff as a criterion for decision making, we should therefore

play the game at any finite price X (no matter how large X is) since the expected

5To see this, consider the worst case where two top-k lists which share the prefix of length
k − x. The remaining parts of the two lists are disjoint. The Kendall distance is (x

k)2 in this
case.

2.6 St. Petersburg Paradox and Expected Utility Theory 29

payoff is always larger. However, researchers have done extensive survey and found

that not many people would pay even 25 dollars to play the game [132], which

significantly deviates from what the expected value criterion predicts. We refer

interested reader to [132,1] for more information.

In fact, the paradox can be resolved by the classic expected utility theory with

a logarithmic utility function, suggested by Bernoulli himself. The expected utility

theory is a branch of the utility theory that studies “betting preferences” of people

with regard to uncertain outcomes (gambles). The theory was formally initiated by

von Neumann and Morgenstern in 1940s [176,70]6 who gave an axiomatization of

the theory (known as von Neumann-Morgenstern expected utility theorem). Since

then, the expected utility theory is widely used in economics and psychology to

explain diverse risk-aware behaviors under uncertainty.

Roughly speaking, the theory suggests to use a mathematical function to correct

the expected value depending on probability, to account for the risk-averse or risk-

prone behaviors. The mathematical function is called the utility function that

indicates the level of the user satisfaction associated with different objective values.

Instead of optimizing the expected value, the decision maker should optimize the

user satisfaction, i.e., the expected utility value. Formally, let F be the set of

feasible solutions to an optimization problem. Each solution S ∈ F is associated

with a random weight w(S). For instance, F could be a set of lotteries and w(S)

is the (random) payoff of lottery S. Assume the risk awareness of a user can be

captured by a utility function µ : R→ R: the user obtains µ(x) units of utility if the

outcome is x, i.e., w(S) = x. The expected utility maximization principle (EUMP)

simply suggests that the most desirable solution S is the one that maximizes the

expected utility, i.e.,

S = arg max
S′∈F

E[µ(w(S ′))]

6Daniel Bernoulli also developed many ideas, such as risk aversion and utility, in his work
Specimen theoriae novae de mensura sortis (Exposition of a New Theory on the Measurement of
Risk) in 1738 [22].

2.6 St. Petersburg Paradox and Expected Utility Theory 30

The theory is well known to be versatile in expressing diverse risk-averse or risk-

prone behaviors. The theory plays a key role in this dissertation, both in explaining

existing semantics and in formulating new problems. Let us see a simple example

explaining how the expected utility theory captures diverse risk aware behaviors.

Example 5. We recall the lottery example in Section 1.2. In L1, the player could

win 1000 dollars with probability 1.0, while in L2 the player could win 2000 dollars

with probability 0.5 and 0 dollars otherwise. Both lotteries have the same expected

payoff and therefore cannot be distinguished by the expected value criterion. Now,

we pick a concave utility function, e.g., µ(x) = lnx, which is typically used to

capture the risk-averse behavior. We can easily see that E[µ(L1)] ≥ E[µ(L2)] (This

can be also seen from Jensen’s inequality: E[f [X]] ≥ f(E[X]) for any concave

f). This result matches our intuition that a risk averse player would choose L1.

Conversely, we can see L2 is preferable under any convex utility function, which is

typically associated with risk-prone behaviors.

Chapter 3

Related Work

We begin with discussing work in managing uncertain data and probabilistic

databases in a broad sense, and then discuss the prior work in ranking and top-k

query processing over probabilistic data. Next, we discuss related work in stochas-

tic combinatorial optimization, in particular stochastic shortest path, stochastic

knapsack and stochastic matching. We also briefly mention some other work that

is conceptually or technically related to the thesis.

Probabilistic Databases: There has been much work on managing probabilistic,

uncertain, incomplete, and/or fuzzy data in database systems and this area has

received renewed attention in the last few years (see e.g. [101,84,20,122,71,45,54,

157, 180, 12, 178, 120]). The seminal work of Imielinski and Lipski [101] initiated

the study of incomplete database and proposed the notation of c-tables. Ear-

lier work on managing probabilistic data includes PDM [20], ProbView [122] and

PRA [71], to name a few. With a rapid increase in the number of application do-

mains where uncertain data arises naturally, such as data integration, information

extraction, sensor networks, pervasive computing etc., this area has seen renewed

interest recently [75]. This work has spanned a range of issues from theoretical de-

velopment of data models and data languages to practical implementation issues

such as indexing techniques, and several research efforts are underway to build

systems to manage uncertain data (e.g. MYSTIQ [54], Trio [180], ORION [45],

MayBMS [120], PrDB [161], MCDB [103]). Much of this work has used proba-

bilistic methods as the underlying foundation for representing uncertainty, where

the uncertainty is encoded in the form of probabilities and the operations on the

uncertainty itself are done in accordance with the laws of probability theory.

31

32

For efficient query evaluation over probabilistic databases, one of the key results

is the dichotomy of conjunctive query evaluation on tuple-independent probabilistic

databases by Dalvi and Suciu [54,55]. Briefly the result states that the complexity

of evaluating a conjunctive query over tuple-independent probabilistic databases

is either PTIME or #P-complete. For the former case, Dalvi and Suciu [54] also

present an algorithm to find what are called safe query plans, that permit correct

extensional evaluation of the query. Recently, Dalvi, Schnaitter and Suciu [53] have

extended the dichotomy results to the union of conjunctive queries. There has also

been much work on efficiently answering other types of queries over probabilistic

databases, including aggregates [153, 105], summarization [50], clustering [51, 88],

nearest neighbors [121,42,23,44,148], skyline queries [147,14] and so on.

Succinct Probability Correlation Models: Those probabilistic databases dif-

fer further based on whether they consider correlations or not. Most work has

either assumed independence or used BID model which can only capture mutual

exclusion [71, 54]. Some work has restricted the correlations that can be mod-

eled [122, 11]. More recently, several approaches have been presented that allow

succinct representation of more complex correlations, such as the probabilistic c-

tables [86,12] and the graphical models [159,178,161]. Several advanced indexing,

inferencing techniques have been developed to enhance the performance of query

processing on these models (see e.g. [160,111,112,143,179]).

Ranking and Top-k Query Processing over Probabilistic Databases: The

area of ranking and top-k query processing has also seen much work in databases

(see Ilyas et al. [100] for a survey). More recently, several researchers have consid-

ered top-k query processing in probabilistic databases. Soliman et al. [167] defined

the problem of ranking over probabilistic databases, and proposed two ranking

functions, U-Top and U-Rank, to combine tuple scores and probabilities. Yi et

al. [182] present improved algorithms for the same ranking functions. Ming Hua et

al. [98] recently presented a different approach called probabilistic threshold queries

33

(PT(h)). Zhang and Chomicki [183] present a desiderata for ranking functions and

a variant of the probabilistic threshold queries, called global top-k queries. Cor-

mode et al. [48] also present a semantics of ranking functions and a new ranking

function called expected rank. Ge et al. [76] propose the typical top-k queries to

capture the score distributions. We have reviewed those ranking functions in detail

in Section 2.4. Some of the above ranking/top-k queries have been considered in

more general settings. Chen et al. [39] develop a dynamic data structure to answer

online U-Top queries. Jin et al. [107] present a framework that answers U-Top, U-

Rank and PT(h) in uncertain data streams. Li et al. [123] consider the problem of

computing expected rank in a distributed setting. Chang et al. [37] study the case

where the scores and probabilities are not stored in the same relation and their

goal is to reduce the join cost. There has also been work on top-k query process-

ing in probabilistic databases where the ranking is by the result tuple probabilities

(i.e., probability and score are identical) [151]. The main challenge in that work is

efficient computation of the probabilities, whereas we assume that the probability

and score are either given or can be computed easily. Patil et al. [146] propose a

fully dynamic data structure that can answer PRFe query online. Their algorithm

takes O(n log n) time to rank the tuples and O(log n) time for updating a tuple.

Continuous Distributions: Many probabilistic systems support continuous at-

tribute distributions, such as ORION [45], Trio [5], PODS [175] and MCDB [103].

While query processing in ORION, Trio and PODS deals with continuous distribu-

tions directly, the MCDB system adopts the Monte-Carlo approach that simulates

continuous distribution using samples. As a well known fact, the naive sampling

approach is typically expensive at simulating events with tiny probabilities. We

will encounter a similar situation in Section 6.2.2 and 6.5 where the Monte-Carlo

method needs many samples to achieve a good error bound and to separate those

tuples whose PRF scores are very close. Recently, Arumugam et al. have extended

the MCDB system with a Gibbs sampler which is more capable of sampling from

34

the small tail of a query-result distribution [13]. Soliman and Ilyas [168] are the

first to consider the problem of handling continuous distributions in ranking prob-

abilistic datasets. In particular, they consider uniformly distributed scores and

their main algorithm is based on Monte Carlo integration to compute the posi-

tional probabilities. Therefore, their algorithm is randomized and only able to

get an approximate answer Recently, Soliman et al. [166] consider the problem

of ranking with uncertain scoring functions where the scoring function (a weight

vector (w1, . . . , wd)) is assumed to be a uniformly distributed random vector in the

d-dimensional simplex {w |
∑d

i=1 wi = 1}. They also study the sensitivity of the

ranking results to the refinements of the scores functions made by the user.

Aggregating Inconsistent Information: The problem of aggregating inconsis-

tent information from different sources arises in numerous disciplines and has been

studied in different contexts over decades. Specifically, the RANK-AGGREGATION

problem aims at combining k different complete ranked lists τ1, . . . , τk on the same

set of objects into a single ranking, which is the best description of the combined

preferences in the given lists. This problem was considered as early as the 18th

century when Condorcet and Borda proposed a voting system for elections [46,34].

In the late 50’s, Kemeny proposed the first mathematical criterion for choosing

the best ranking [116]. Namely, the Kemeny optimal aggregation τ is the ranking

that minimizes
∑k

i=1 dis(τ, τi), where dis(τi, τj) is the Kendall’s tau distance. While

computing the Kemeny optimal is shown to be NP-hard [65], 2-approximation can

be easily achieved by picking the best ranking from k given ranking lists. The other

well-known 2-approximation is from the fact the Spearman footrule distance, de-

fined to be disF (τi, τj) =
∑

t |τi(t)−τj(t)|, is within twice the Kendall’s tau distance

and the footrule aggregation can be done optimally in polynomial time [64]. We re-

fer the readers to [97] for a survey on the early development this problem. Recently

Ailon et al. [8] improved the approximation ratio to 4/3. For aggregating top-k

answers, Ailon [7] obtained an 3/2-approximation based on rounding an LP solu-

35

tion. In parallel to our work, Soliman et al. [168] also observed the relationship

between ranking in uncertain databases and the RANK-AGGREGATION problem

and proposed a polynomial time algorithm under Spearman’s footrule distance for

full rankings. The CONSENSUS-CLUSTERING problem asks for the best clustering

of a set of elements which minimizes the number of pairwise disagreements with

the given k clusterings. It is known to be NP-hard [177] and a 2-approximation

can also be obtained by picking the best one from the given k clusterings. The

best known approximation ratio is 4/3 [8].

Stochastic Optimization: The study of stochastic optimization can be dated

back to the work of Dantzig [56] in the 1950’s. The focus of the work is mainly

about the stochastic versions of various mathematical optimization problems, such

as linear programming and convex programming. Since then, this direction has

been followed in many research communities in operation research, industrial en-

gineering and management science and developed into a whole field also known as

stochastic programming (see e.g., [31]).

In recent years stochastic optimization problems have drawn much attention

from the computer science community and stochastic versions of many classical

combinatorial optimization problems have been studied. In particular, a significant

portion of the efforts has been devoted to the two-stage stochastic optimization

problem. In such a problem, in a first stage, we are given probabilistic information

about the input but the cost of selecting an item is low; in a second stage, the actual

input is revealed but the costs for the elements are higher. We are asked to make

decision after each stage and minimize the expected cost. Some general techniques

have been developed [93,163]. We refer interested reader to [172] for a comprehen-

sive survey. Another widely studied type of problems considers designing adaptive

probing policies for stochastic optimization problems where the existence or the

exact weight of an element can be only known upon a probe. There is typically

a budget for the number of probes (see e.g., [87, 43]), or we require an irrevocable

36

decision whether to include the probed element in the solution right after the probe

(see e.g., [59,58,40,16,58,29]). However, most of those works focus on optimizing

the expected value of the solution. There is also sporadic work on optimizing the

overflow probability or some other objectives subject to the overflow probability

constraints. In particular, a few recent works have explicitly motivated such ob-

jectives as a way to capture the risk-averse type of behaviors [6,139,171]. Besides

those works, there has been little work on optimizing more general utility func-

tions for combinatorial stochastic optimization problems from an approximation

algorithms perspective.

Stochastic Shortest Path: The most related work to our utility maximization

problem under uncertainty is the stochastic shortest path problem (Stoch-SP),

which was also the initial motivation for this work. The problem has been studied

extensively for several special utility functions in operation research community.

Sigal et al. [164] studied the problem of finding the path with greatest probability

of being the shortest path. Loui [129] showed that Stoch-SP reduces to the short-

est path (and sometimes longest path) problem if the utility function is linear or

exponential. Nikolova et al. [140] identified more specific utility and distribution

combinations that can be solved optimally in polynomial time. Much work consid-

ered dealing with more general utility functions, such as piecewise linear or concave

functions, e.g., [137, 138, 21]. However, these algorithms are essentially heuristics

and the worst case running times are still exponential. Nikolova et al. [141] stud-

ied the problem of maximizing the probability that the length of the chosen path

is less than some given parameter. Besides the result we mentioned before, they

also considered Poisson and exponential distributions. Despite much effort on this

problem, no algorithm is known to run in polynomial time and have provable per-

formance guarantees, especially for more general utility functions or more general

distributions. This is perhaps because the hardness comes from different sources,

as also noted in [141]: the shortest path selection per se is combinatorial; the dis-

37

tribution of the length of a path is the convolution of the distributions of its edges;

the objective is nonlinear; to list a few.

Stochastic Knapsack: Kleinberg et al. [119] first considered the stochastic knap-

sack problem with Bernoulli-type distributions and provided a polynomial-time

O(log 1/γ) approximation where γ is the given overflow probability. For item sizes

with exponential distributions, Goel and Indyk [79] provided a bi-criterion PTAS,

and for Bernoulli-distributed items they gave a quasi-polynomial approximation

scheme. Chekuri and Khanna [38] pointed out that a PTAS can be obtained for

the Bernoulli case using their techniques for the multiple knapsack problem. Goyal

and Ravi [82] showed a PTAS for Gaussian distributed sizes. Quite recently, Bhal-

gat et al. [29] developed a general discretizaton technique that reduces the distri-

butions to a small number of equivalent classes which we can efficiently enumerate

for both adaptive and nonadaptive versions of stochastic knapsack. They used this

technique to obtain improved results for several variants of stochastic knapsack,

notably a bi-criterion PTAS for the adaptive version of the problem. Dean at

al. [59] gave the first constant approximation for the adaptive version of stochas-

tic knapsack. The adaptive version of stochastic multidimensional knapsack (or

equivalently stochastic packing) has been considered in [58, 29] where constant

approximations and a bi-criterion PTAS were developed.

Stochastic and Online Matching: The online bipartite matching problem was

first studied in the seminal paper by Karp et al. [114] and an optimal 1 − 1/e

competitive online algorithm was obtained. Katriel et al. [115] considered the two-

stage stochastic min-cost matching problem. In their model, we are given in a

first stage probabilistic information about the graph and the cost of the edges is

low; in a second stage, the actual graph is revealed but the costs are higher. The

original online stochastic matching problem was studied recently by Feldman et

al. [68]. They gave a 0.67-competitive algorithm, beating the optimal 1 − 1/e-

competitiveness known for worst-case models [114,109,133,32,80]. Recently, some

38

improved bounds on this model were obtained [15, 131]. Our model for stochastic

matching differs from that in that we have a bound on the number of items each

incoming buyer sees, that each edge is only present with some probability, and

that the buyer scans the list linearly (until she times out) and buys the first item

she likes.

Our stochastic matching problem is also related to the Adwords problem [133],

which has applications to sponsored search auctions. The problem can be modeled

as a bipartite matching problem as follows. We want to assign every vertex (a

query word) on one side to a vertex (a bidder) on the other side. Each edge has

a weight, and there is a budget on each bidder representing the upper bound on

the total weight of edges that may be assigned to it. The objective is to maximize

the total revenue. The stochastic version in which query words arrive according to

some known probability distribution has also been studied [130].

The idea of using LP to bound the value of the optimal adaptive policy has

been applied to the stochastic knapsack problems (Dean et al. [59,58]) and multi-

armed bandits (see [89, 90] and references therein). Also related is some recent

work [30] on budget constrained auctions, which uses similar LP rounding ideas.

k-Set Packing: The k-set packing problem is a generalization of the maximum

matching problem (see the definition in Section 9.2). For the k-set packing prob-

lem, it is known that the simply greedy algorithm provides a k-approximation

and an improvement in the ratio, to k
2

can be obtained by a local search heuris-

tic [99], which is also the best known approximation to date. Recently, O(k)-

approximations were obtained for the more general k-column sparse packing prob-

lem (the entries of the matrix can be arbitrary positive numbers rather than just

0/1) [18]. It is also known that the k-set packing problem cannot be efficiently

approximated to within a factor of Ω(k
ln k

) unless P = NP [94]. This is also a

lower bound for our stochastic k-set packing problem. Additionally for LP-based

approaches (as in this paper) k-set packing has an integrality gap of k−1 + 1
k

[72].

39

Approximating Functions using Exponential Sums: There is a large volume

of work on approximating functions using short exponential sums over a bounded

domain, e.g., [144,24,25,27]. In Chapter 8, we will develop a generic algorithm that

takes such an algorithm as a subroutine and approximates the utility function in

the infinite domain [0,+∞). Some works also consider using linear combinations

of Gaussians or other kernels to approximate functions with finite support over

the entire real axis (−∞,+∞) [41]. This is however impossible using exponentials

since αx is either periodic (if |α| = 1) or approaches to infinity when x→ +∞ or

x→ −∞ (if |α| 6= 1).

Chapter 4

Ranking over Probabilistic Datasets

In this chapter, we begin with comparing the prior work on top-k query processing

in probabilistic databsets. We argue that a single specific ranking function may not

be sufficient to capture the intricacies of ranking with uncertainty. We then define

our parameterized ranking functions (PRF) in Section 4.3 and show it generalizes

many prior ranking functions. Moreover, we suggest another perspective to view

the top-k queries in probabilistic databases and propose the notion of CON in

Section 4.4. Finally, we show that both PRF and CON can be unified and explained

by the expected utility maximization principle (EUMP) in Section 4.5. Algorithms

for evaluating PRF and CON and their relationships will be discussed in Chapter

5, 6 and 7.

4.1 Comparing Ranking Functions

In this section, we compare the prior semantics on top-k query processing on

probabilistic datasets. The formal definitions can be found in Section 2.4. We

note that TYP-Top is not really a ranking or top-k query since its answer contains

more than one top-k rank list. Therefore, we will not compare TYP-Top with other

ranking/top-k semantics. We compared the top-100 answers returned by the five

ranking functions with each other using the normalized Kendall distance, for two

datasets with 100,000 independent tuples each (see Section 5.3 for a description of

the datasets). Table 4.1 shows the results of this experiment. As we can see, the

five ranking functions return wildly different top-k answers for the two datasets,

with no obvious trends. For the first dataset, E-Rank behaves very differently from

40

4.1 Comparing Ranking Functions 41

all other functions, whereas for the second dataset, E-Rank happens to be quite

close to E-Score. However both of them deviate largely from U-Top, PT(h) and

U-Rank. The behavior of E-Score is very sensitive to the dataset, especially the

score distribution: it is close to PT(h) and U-Rank for the first dataset, but far

away from all of them in the second dataset (by looking into the results, it shares

less than 15 tuples with the Top-100 answers of the others). We observed similar

behavior for other datasets, and for datasets with correlations.

E-Score PT(100) U-Rank E-Rank U-Top

E-Score – 0.1241 0.3027 0.7992 0.2760
PT(100) 0.1241 – 0.3324 0.9290 0.3674
U-Rank 0.3027 0.3324 – 0.9293 0.2046
E-Rank 0.7992 0.9290 0.9293 – 0.9456
U-Top 0.2760 0.3674 0.2046 0.9456 –

IIP-100,000 (k = 100)

E-Score PT(100) U-Rank E-Rank U-Top

E-Score – 0.8642 0.8902 0.0044 0.9258
PT(100) 0.8642 – 0.3950 0.8647 0.5791
U-Rank 0.8902 0.3950 – 0.8907 0.3160
E-Rank 0.0044 0.8647 0.8907 – 0.9263
U-Top 0.9258 0.5791 0.3160 0.9263 –

Syn-IND Dataset with 100,00 tuples (k = 100)

Table 4.1: Normalized Kendall distance among various ranking functions for two datasets

This simple experiment illustrates the issues with ranking in probabilistic databases

– although several of these definitions seem natural, the wildly different answers

they return indicate that none of them may be the “right” definition.

We also observe that in large datasets, E-Rank tends to give very high priority

to a tuple with a high probability even if it has a low score. In our synthetic dataset

Syn-IND-100,000 with expected size ≈ 50000, t2 (the tuple with 2nd highest score)

has probability approximately 0.98 and t1000 (the tuple with 1000th highest score)

has probability 0.99. The expected ranks of t2 and t1000 are approximately 10000

and 6000 respectively, and hence t1000 is ranked above t2 even though t1000 is only

4.2 Overview of Our Approach 42

slightly more probable.

As mentioned above, the original U-Rank function may return the same tuple

at different ranks (also observed by the authors [167]), which is usually undesir-

able. This problem becomes even severe when the dataset and k are both large.

For example, in Syn-IND-100,000, the same tuple is ranked at positions 67895 to

100000. In the table, we show a slightly modified version of U-Rank to enforce

distinct tuples in the answer (by not choosing a tuple at a position if it is already

chosen at a higher position).

4.2 Overview of Our Approach

Before formally defining our ranking functions, we give a high-level overview of

our approach to ranking over uncertain datasets. We begin with a systematic ex-

ploration of the aforementioned issues by recognizing that ranking in probabilistic

databases is inherently a multi-criteria optimization problem, and by deriving a set

of features, the key properties of a probabilistic dataset that influence the ranked

result. We empirically illustrate the diverse and conflicting behavior of several

natural ranking functions, and argue that a single specific ranking function may

not be appropriate to rank different uncertain databases that we may encounter in

practice. Furthermore, different users may weigh the features differently, resulting

in different rankings over the same dataset. We then define a general and pow-

erful ranking function, called PRF, that allows us to explore the space of possible

ranking functions. We discuss its relationship to previously proposed ranking func-

tions, and also identify two specific parameterized ranking functions, called PRFω

and PRFe, as being interesting. The PRFω ranking function is essentially a lin-

ear weighted ranking function that resembles the scoring functions typically used

in information retrieval, web search, data integration, keyword query answering

etc. [96, 108, 35, 60, 173]. We observe that PRFω may not be suitable for ranking

large datasets due to its high running time, and instead propose PRFe, which uses

4.2 Overview of Our Approach 43

a single parameter and can effectively approximate previously proposed ranking

functions for probabilistic databases.

We then develop novel algorithms for evaluate PRF functions for a number of

probabilistic data models. First we focus on tuple uncertainty and discrete at-

tribute uncertainty models and propose efficient algorithms based on generating

functions to efficiently rank the tuples using any PRF ranking function. Our al-

gorithms can handle a probabilistic dataset with arbitrary correlations modeled

by Markov networks; however, it is particularly efficient when the probabilistic

database contains only mutual exclusivity and/or mutual co-existence correlations,

modeled by probabilistic and/xor trees. The probabilistic and/xor tree model signif-

icantly generalizes previous probabilistic database models like x-tuples and block-

independent disjoint models, and is of independent interest. We also consider the

continuous attribute uncertainty models which arises naturally in many domains.

In many of the applications discussed in the introduction, the attributes of in-

terest are associated with continuous probability distributions. We systematically

address the problem of ranking in presence of continuous attribute uncertainty by

developing a suite of exact and approximate polynomial-time algorithms for com-

puting the rank distribution for each tuple, i.e., the probability distribution over

the rank of the tuple. The rank distributions are important statistics and have

direct applications in information retrieval (See e.g. [174,91]) and sensor networks

(See e.g. [165]).

Lastly, we consider the more general problem of combining the results for all

possible worlds in a systematic way by proposing the notion of consensus answers.

Roughly speaking, the most consensus answer is a answer that is closest in expec-

tation to the answers of the possible worlds. The “closeness” is measured via a

suitably defined distance function between answers. We use this notion to reex-

amine the top-k queries over probabilistic databases under a variety of distance

functions and discover a close relationship between the consensus top-k answers

and PRF functions. This relationship further helps to justify the validity of the

4.2 Overview of Our Approach 44

semantics of PRF.

4.2.1 Our Contributions

We summarize our technical contributions as follows.

1. (The remaining part of this chapter) We formally define PRF and show it

generalizes many prior ranking functions. Then, we define the notion of

consensus answers (CON). Moreover, we show that both PRF and CON

can be unified and explained by the expected utility maximization principle

(EUMP). From the EUMP viewpoint, we obtain a classification of top-k query

semantics on probabilistic datasets.

2. (Chapter 5) We focus on PRF computation with discrete probability distri-

butions. We first present novel algorithms based on generating functions that

enable highly efficient processing of top-k queries over very large probabilistic

datasets. Our key algorithm is an O(n log(n)) algorithm for ranking using

a PRFe function over low-correlation datasets (specifically, constant height

probabilistic and/xor trees). The algorithm runs in O(n) time if the dataset

is pre-sorted by score (Section 5.1). Our algorithms apply to some of the

previously proposed ranking functions as well (one of our results was also

independently obtained by Yi et al. [182]). We also develop a novel, DFT-

based algorithm for approximating an arbitrary weighted ranking function

using a linear combination of PRFe functions (Section 5.2.1). In case users

do not know which ranking function should be used, we propose algorithms

to learn the parameters for PRFω and PRFe (Section 5.2.2). Moreover, we

present a polynomial time algorithm for computing the PRF answers for a

correlated dataset, where the correlations are represented using a Markov

chain (Section 5.4). Then, we generalize the algorithm to handle correlations

modeled by a bounded-treewidth Markov network. The results in this chap-

ter 5 is mainly based on [127, 128]. Some results in Table 5.1 improve those

4.2 Overview of Our Approach 45

in [128].

3. (Chapter 6) We consider the problem of computing PRF with continuous

distributions. We first present polynomial time exact algorithms for com-

puting rank distributions for uniform and piecewise polynomial distributions

based on an extension of the previous generating function technique (Section

6.1). We develop a numerical approximation framework to deal with arbi-

trary density functions based on our polynomial-time algorithm for piecewise

polynomial distributions, by utilizing the spline technique. In particular,

our algorithms are capable of computing the positional probabilities, i.e., the

probability that a tuple is ranked at a particular position. We also present

theoretical analyses comparing the spline technique to two popular choices,

the discretization method and the Monte Carlo method (Section 6.2.2). For

approximate computation of PRFe function values for arbitrary density func-

tions, we propose using Legendre-Gauss Quadrature, which is much faster

and more accurate (Section 6.2.3). Furthermore, we present polynomial al-

gorithms for computing PRF` and E-Rank for several important continuous

distributions, such as uniform, Gaussian and exponential distributions (Sec-

tion 6.3). We also present an application of our algorithm to a version of

the probabilistic k-nearest-neighbor problem. The results in this chapter 6

appear in [125].

4. (Chapter 7) We propose the notion of a consensus answer, which is the an-

swer that is closest in expectation to the answers of the possible worlds. We

develop polynomial time algorithms for computing consensus top-k (CON)

answers under various metrics, such as the Symmetric difference metric, in-

tersection metric and generalized Spearman’s footrule distance [66]. We also

show that there a close relationship between CON and PRF. We also consider

some other types of queries (Section 7.3). In particular, for queries returning

a set of tuples, we present polynomial time algorithm for the symmetric dif-

4.3 Parameterized Ranking Functions (PRF) 46

ference and the Jaccard distance metric for and/xor tree models. For datasets

with more complicated correlations (generated from SPJ queries over inde-

pendent base tables), we show computing consensus answers is NP-hard. We

also consider the “group by count” queries and the clustering problem and

show constant approximations for them. The results in this chapter 7 appear

in [124].

In the next two sections, we formally define the parameterized ranking functions

and the consensus answers.

4.3 Parameterized Ranking Functions (PRF)

Ranking in uncertain databases is inherently a multi-criteria optimization problem,

and it is not always clear how to rank two tuples that dominate each other along

different axes. Consider a database with two tuples t1 (score = 100, Pr(t1) = 0.5),

and t2 (score = 50, Pr(t2) = 1.0). Even in this simple case, it is not clear whether to

rank t1 above t2 or vice versa. This is an instance of the classic risk-reward trade-

off, and the choice between these two options largely depends on the application

domain and/or user preferences.

We propose to follow the traditional approach to dealing with such tradeoffs,

by identifying a set of features, by defining a parameterized ranking function over

these features, and by learning the parameters (weights) themselves using user pref-

erences [96,108,35,60]. To achieve this, we propose a family of ranking functions,

parameterized by one or more parameters, and design algorithms to efficiently

find the top-k answer according to any ranking function from these families. Our

general ranking function, PRF, directly subsumes some of the previously proposed

ranking functions, and can also be used to approximate other ranking functions.

Moreover, the parameters can be learned from user preferences, which allows us to

adapt to different scenarios and different application domains.

Features Although it is tempting to use the tuple probability and the tuple score

4.3 Parameterized Ranking Functions (PRF) 47

Pr(r(ti) = j) Positional prob. of ti being ranked at position j
Pr(r(ti)) Rank distribution of ti

PRF Parameterized ranking function
Υω(t) =

∑
i>0 ω(t, i) Pr(r(t) = i)

PRFω(h) Special case of PRF: ω(t, i) = wi, wi = 0,∀i > h
PRFe(α) Special case of PRFω: wi = αi, α ∈ C

PRF` Special case of PRFω: wi = −i
δ(p) Delta function: δ(p) = 1 if p is true, δ(p) = 0 o.w.

Table 4.2: Notation

as the features, a ranking function based on just those two will be highly sensitive

to the actual values of the scores; further, such a ranking function will be insensitive

to the correlations in the database, and hence cannot capture the rich interactions

between ranking and possible worlds.

Instead we propose to use the positional probabilities as the features: for each

tuple t, we have n features,

Pr(r(t) = i), i = 1, · · · , n,

where n is the number of tuples in the database and r(t) is the rank of t. This set

of features succinctly captures the possible worlds. Further, correlations among

tuples, if any, are naturally accounted for when computing the features. We note

that in most cases, we do not explicitly compute all the features, and instead design

algorithms that can directly compute the value of the overall ranking function.

Ranking Functions

Next we define a general ranking function which allows exploring the trade-offs

discussed above. We use rpw(t) to denote the rank of t in possible world pw.

Definition 2. Let ω : T×N→ C be a weight function, that maps a tuple-rank pair

to a complex number. The parameterized ranking function (PRF), Υω : T → C in

4.3 Parameterized Ranking Functions (PRF) 48

its most general form is defined to be:

Υω(t) =
∑

pw:t∈pw

ω(t, rpw(t)) · Pr(pw)

=
∑

pw:t∈pw

∑

i>0

ω(t, i) Pr(pw ∧ rpw(t) = i)

=
∑

i>0

ω(t, i) · Pr(r(t) = i).

A top-k query returns k tuples with the highest |Υω| values.

In most cases, ω is a real positive function and we just need to find the k tuples

with highest Υω values. However we allow ω to be a complex function in order

to approximate other functions efficiently (see Section 5.2.1). Depending on the

actual function ω, we get different ranking functions with diverse behaviors. Before

discussing the relationship to prior ranking functions, we define two special cases.

PRFω(h) One important class of ranking functions is when ω(t, i) = wi (i.e., inde-

pendent of t) and wi = 0 ∀i > h for some positive integer h (typically h � n).

This forms one of prevalent classes of ranking functions used in domains such as

information retrieval and machine learning, with the weights typically learned from

user preferences [96, 108, 35, 60]. Also, the weight function ω(i) = ln 2
ln(i+1)

(called

discount factor) is often used in the context of ranking documents in information

retrieval [104].

PRFe(α) This is a special case of PRFω(h) where wi = ω(i) = αi, where α is a

constant and may be a real or a complex number. Here h = n (no weights are 0).

Typically we expect |α| ≤ 1, otherwise we have the counterintuitive behavior that

tuples with lower scores are preferred.

PRFω and PRFe form the two parameterized ranking functions that we propose in

this work. Although PRFω is the more natural ranking function and has been used

elsewhere, PRFe is more suitable for ranking in probabilistic databases for various

reasons. First, the features as we have defined above are not completely arbitrary,

4.3 Parameterized Ranking Functions (PRF) 49

and the features Pr(r(t) = i) for small i are clearly more important than the ones

for large i. Hence in most cases we would like the weight function, ω(i), to be

monotonically non-increasing. PRFe naturally captures this behavior (as long as

|α| ≤ 1). More importantly, we can compute the PRFe function in O(n log(n))

time (O(n) time if the dataset is pre-sorted by score) even for datasets with low

degrees of correlations (i.e., modeled by and/xor trees with low heights). This

makes it significantly more attractive for ranking over large datasets.

Furthermore, ranking by PRFe(α), with suitably chosen α, can approximate

rankings by many other functions reasonably well even with only real α. Finally,

a linear combination of exponential functions, with complex bases, is known to be

very expressive in representing other functions [26]. We make use of this fact to

approximate many ranking functions by linear combinations of a small number of

PRFe functions, thus significantly speeding up the running time (Section 5.2.1).

Relationship to other ranking functions We illustrate some of the choices of

weight function, and relate them to prior ranking functions1. We omit the subscript

ω if the context is clear. Let δ(p) denote a delta function where p is a boolean

predicate: δ(p) = 1 if p = true, and δ(p) = 0 otherwise.

– Ranking by probabilities: If ω(t, i) = 1, the result is the set of k tuples with

the highest probabilities [151].

– Expected Score: By setting ω(t, i) = s(t), we get the E-Score:

Υ(t) =
∑

pw:t∈pw

s(t) Pr(pw) = s(t) Pr(t) = E[s(t)]

– Probabilistic Threshold Top-k (PT(h)): If we choose ω(i) = δ(i ≤ h), i.e.,

ω(i) = 1 for i ≤ h, and = 0 otherwise, then we have exactly the answer for

1The definition of the U-Top introduced in [167] requires the retrieved k tuples belongs to a
valid possible world. However, it is not required in our definition, and hence it is not possible to
simulate U-Top using PRF.

4.3 Parameterized Ranking Functions (PRF) 50

PT(h).

– Uncertain Rank-k (U-Rank): Let ωj(i) = δ(i = j), for some 1 ≤ j ≤ k.

We can see the tuple with largest Υωj value is the rank-j answer in U-Rank

query [167]. This allows us to compute the U-Rank answer by evaluating Υωj(t)

for all t ∈ T and j = 1, . . . , k.

– Expected ranks (E-Rank): Let PRF` (PRF linear) be another special case of

the PRFω function, where wi = ω(i) = −i. The PRF` function bears a close

similarity to the notion of expected ranks. Recall that the expected rank of a

tuple t is defined to be:

E[rpw(t)] =
∑

pw∈PW

Pr(pw)rpw(t)

where rpw(t) = |pw| if ti /∈ pw. Let C denote the expected size of a possible

world. It is easy to see that: C =
∑n

i=1 pi due to linearity of expectation. Then

the expected rank of t can be seen to consist of two parts:

(1) the contribution of possible worlds where t exists:

er1(t) =
∑

i>0

i× Pr(r(t) = i) = −Υ(t)

where Υ(t) is the PRF` value of tuple t.2

(2) the contribution of worlds where t does not exist:

er2(t) =
∑

pw:t/∈pw

Pr(pw)|pw| = (1− p(t))(
∑

ti 6=t

Pr(ti | t does not exist))

2Note that, in the expected rank approach, we pick the k tuples with the lowest expected
rank, but in our approach, we choose the tuples with the highest PRF function values, hence the
negation.

4.4 Consensus Top-k Answers 51

If the tuples are independent of each other, then we have:

∑

ti 6=t

Pr(ti | t does not exist) = (C − p(t))

Thus, the expected ranks can be computed in the same time as PRF` in tuple-

independent datasets. This term can also be computed efficiently in many other

cases, including in datasets where only mutual exclusion correlations are permit-

ted. If the correlations are represented using a probabilistic and/xor tree (see

Section 5.1.2) or a low-treewidth graphical model (see Section 5.4), then we can

compute this term efficiently as well, thus generalizing the prior algorithms for

computing expected ranks.

As we can see, many different ranking functions can be seen as special cases of

the general PRF ranking function, supporting our claim that PRF can effectively

unify these different approaches to ranking uncertain datasets.

4.4 Consensus Top-k Answers

The notion of consensus answers proposed in this thesis is largely inspired by the

work in inconsistent information aggregation, especially the RANK-AGGREGATION

problem [64,8], which has been studied extensively in numerous contexts over the

last half century. In our context, the set of different query answers returned from

possible worlds can be thought as inconsistent information which we need to aggre-

gate to obtain a single representative answer. To the best of our knowledge, this

connection between query processing in probabilistic databases and inconsistent

information aggregation, though natural, has never been realized before in any

formal and mathematical way.

Roughly speaking, the consensus top-k answer (CON) is a top-k answer that is

4.5 A Unified Viewpoint via Expected Utility 52

closest in expectation to the answers of the possible worlds:

τ = arg min
τ ′∈Ω
{E[dis(τ ′, τpw)]}.

where Ω is the set of all feasible top-k answers and dis() can be any distance

function we discussed in Section 2.5. We further distinguish the notion of mean

answers and median answers based on whether we require each answer in the Ω to

be the answer of some possible world, We defer the formal definition to Chapter 7.

Computing CON for different distance measures can range from polynomial time

solvable to NP-hard. Besides being another ranking function, CON has a close

relationship with PRF. These results will be discussed in detail in Section 7.2.

4.5 A Unified Viewpoint via Expected Utility

In this section, we show that two definitions we just introduced, PRF and CON, can

be unified and explained by the expected utility maximization principle (EUMP).

Indeed, most top-k and ranking definitions we have discussed so far and many opti-

mization problems with probabilistic inputs can be cast in this form with different

instantiations of utility functions. We believe that viewing diverse definitions in

the unified framework and comparing their corresponding utility functions are cru-

cial for better understanding which aspect each definition is intended to capture,

the relationship among many semantics, and further for wisely choosing ranking

functions in particular applications.

4.5.1 Viewing Ranking as Maximizing Utility

As we have seen in Section 4.3, the PRF function generalizes quite a few of prior

ranking functions and seems to be very expressive due to the flexibility in choosing

parameters. A natural question is to ask whether PRF is the “ultimate” class of

ranking functions (assuming the scores are the only criterion we use in ranking

4.5 A Unified Viewpoint via Expected Utility 53

and we have access to the probability distributions of the scores). In other words,

we want to know whether PRF is able to encompass “all reasonable” definitions

by properly setting the weight function. Let us consider the following top-k query

considered in [78]:

Definition 3. (Probe-Min) We are given a set of n independent tuples t1, . . . , tn.

Tuple ti has a non-negative random score si. For simplicity, we assume the cost

of a top-k answer is the smallest score among the k retrieved tuples in a possible

world. Our goal is to retrieve k tuples such that the expected cost is minimized.

It is easy to see that the user prefers tuples with smaller scores in this problem.

Can we use PRF function to answer this top-k query? However, the answer is

simply “No”. In fact, it was shown in [78] that Probe-Min is NP-hard for discrete

distributions. To the contrary, we will show the PRF function can be evaluated

efficiently in polynomial time. Furthermore, we can see that Probe-Min violates

the containment property (proposed in [48]) 3. Since PRF produces a ranking of

all tuples, the containment property obviously holds. A less rigorous, but more

intuitive, explanation is that the contributions of the k tuples in a Probe-Min

answer towards the user’s satisfaction do not add up.

This observation leads us to study the ranking/top-k queries in a more fun-

damental perspective, that is to directly use the user’s satisfaction towards the

query answer as the objective to optimize. This leads us to adopt the expected

utility maximization principle which has been widely used in decision making un-

der uncertainty. Here, we use a slightly different form from the one in Section 1.2.

Suppose PW is the set of possible worlds. Let A be the set of valid answers. For

instance, in a top-k query, A is the family of all subsets of k tuples. The user

preference is captured by the utility function µ : PW × A → R. This means the

user could obtain µ(A, pw) units of utility in possible world pw ∈ PW if A ∈ A
3The containment property states that the top-k answer should be contained in the top-k+ 1

answer

4.5 A Unified Viewpoint via Expected Utility 54

is the chosen answer. The expected utility maximization principle (EUMP) simply

states as follows.

Definition 4. (EUMP) The most desirable answer A is the answer that maximizes

the expected utility, i.e.,

A = argA′∈A EPW [µ(A′, pw)]

In fact, the utility function defined in Section 1.2 can be thought as a special

case in which there is a random weight associated with each solution and the

utility only depends on the weight in any realization. The EUMP formulation

generalizes most existing top-k and ranking definitions and many optimization

problems considered in literature. In fact, to show that EUMP is a generalization

is quite straightforward for most cases. For completeness and further discussion,

we list some problems in the following.

1. CON: Just let µ(τ, pw) = −dis(τ, τpw) where τpw is the top-k answer of

possible world pw and dis is the distance measure. It is easy to see that

maximizing the expected utility E[µ(τ, pw)] is equivalent to minimizing the

expected distance E[dis(τ, τpw)].

2. PRF : Let µ(τ, pw) =
∑

t∈τ ω(t, rpw(t)). We can see that

E[µ(τ, pw)] =
∑

t∈τ

E[ω(t, rpw(t))] =
∑

t∈τ

∑

i>0

ω(t, rpw(t)) Pr(r(t) = i) =
∑

t∈τ

Υ(t).

Therefore, the set of k tuples with maximum Υ(t) values maximizes the

expected utility.

3. U-Top : Recall the query returns the k-tuple set that appears as the top-k

answer in most possible worlds (weighted by the probabilities of the worlds).

We simply let Let µ(τ, pw) = 1 if τ = τpw, i.e. τ is the top-k answer of pw.

We can see that E[µ(τ, pw)] =
∑

pw Pr(pw)δ(τ = τpw) = Pr(τ = τpw).

4.5 A Unified Viewpoint via Expected Utility 55

4. Probe-Min: (See the problem definition in Section 4.5). It is not hard to

see the utility function in the problem is µ(τ, pw) = −minti∈τ si(pw) where

si(pw) is the score of tuple ti in possible world pw.

5. Generalized Expected Score (GES): This is a generalization of E-Score. We

have a weight function ω : R → R. The top-k answer should return the k

tuples that maximize E[ω(s(t))]. It is easy to see the corresponding utility

function is µ(τ, pw) =
∑

t∈τ ω(s(t)).

6. Volume Maximization (Vol-Max): We are given a set of n edges. The lengths

of these edges are positive random variables. We would like to pick k edges

to span a k-dimensional rectangle such that the expected volume of the

rectangle is maximized. We can easily see the utility of a set of k edges is

simply the product of their lengths.

7. Top-k Query with Set Interpretation (Top-SI): In the deterministic setting,

the answer to a top-k query is to return k tuples with the smallest total

weight. However, in a probabilistic dataset, the weight of the tuples are

uncertain. Under the expected utility maximization principle, we can define

the top-k semantics, that is to find the k tuples maximizing the expected

utility, where the utility function is a function of the total weight of the

subset.

8. Probabilistic k-center/median Clustering: We consider the unassigned ver-

sion in [49,88]: Let P be a finite metric space. There are n input nodes. The

position pi of node i is an independent random variable over P . The proba-

bilistic k-center (or k-median) objective is to find a set τ of k deterministic

points in P 4 such that E
[
maxi dis(pi, τ)

]
(or E

[∑
i dis(pi, τ)

]
) is minimized.

It is easy to see the utility function in probabilistic k-means (or k-median)

is µ(τ, pw) = −maxi dis(pi, τ) (or µ(τ, pw) = −
∑

i dis(pi, τ)).

4For any a ∈ P and S ⊂ P, dis(a, S) = minb∈S dis(a, b).

4.5 A Unified Viewpoint via Expected Utility 56

We would like to remark here that despite the powerful semantic expressibility,

EUMP is of little help in computation. This is because the utility function may

requires exponential space to store. In some cases, even the utility function has a

compact representation, computing the function itself can be NP-hard (e.g., the

probabilistic k-center problem). On the other hand, PRF, the subject of the this

work, lies in a sweet spot where the computation can be done efficiently and a

number of prior definitions can be encompassed.

4.5.2 Distinctions between Between Ranking and Top-k Queries

Top-k answers are often understood as the ranking answers truncated to the first

k tuples and two terms are used interchangeably in many prior works. To be more

formal, we say a top-k query reduces to (or is consistent with) a ranking query,

if the top-k answer is the length-k prefix of ranking answer for any k. However,

we have seen many top-k queries that do not reduce to any ranking queries (e.g.,

Probe-Min). Therefore, we need to draw a clear distinction between ranking and

top-k queries for clarification. From the perspective of EUMP, we would like to

ask the following question:

• What property the utility function should satisfy so that the corresponding

top-k query reduces to a ranking query?

To answer this, we need the the following notation of separability.

Definition 5. The utility function ω is called additively separable (or multiplica-

tively separable) if for any possible world pw, the joint utility of any top-k answer

τ is exactly the sum (or product) of the utilities of individual tuples in τ , i.e.,

ω(pw, τ) =
∑

t∈τ ω(pw, t) (or ω(pw, τ) =
∏

t∈τ ω(pw, t)).

For example, it is not difficult to check that the utility functions corresponding

to PRF and Vol-Max are additively separable and multiplicative separable, respec-

4.5 A Unified Viewpoint via Expected Utility 57

tively. If ω is additively separable, we can write

EPW [ω(pw, τ)] = EPW [
∑

t∈τ

ω(pw, t)] =
∑

t∈τ

EPW [ω(pw, t)].

It is easy to see that the expected utility can be maximized by choosing the k tuples

with the maximum individual utilities. Equivalently, the values EPW [ω(pw, t)]

define a ranking of the tuples and the top-k list is simply the length-k truncation

of the ranking answer.

In fact, for a multiplicatively separable utility function µ, there is an additively

separable µ′ = log µ that captures the same preference. This is because log is an

increasing function and the answer that maximizes µ also maximizes µ′. The above

argument can be easily generalized to the following proposition.

Proposition 4.1. A top-k query, which maximizes E[µ] for some utility function

µ, is consistent with some ranking query if there is a monotone increasing function

f such that f(µ) is additively separable.

However, we note that the converse of the above proposition, that is, for every

top-k query that reduces to a ranking query there exists a monotone increasing

function f such that f(µ) is additively separable, is not necessarily true.

4.5.3 A Classification of Top-k Semantics

In this subsection, we provide a classification of the existing top-k semantics based

on their corresponding utility functions.

1. Score-based: The utility µ(τ, pw) depends only on the scores of the tuples in

the top-k answer τ in possible world pw. Such a utility function is relevant

if the scores (or some known function of the scores) are linearly associated

with the user satisfaction (e.g., a tuple with score 2 is two times better than

a tuple with score 1). Such utility functions are typically associated with

4.5 A Unified Viewpoint via Expected Utility 58

monetary applications where the scores are the profits or cost, measured in

currency units.

(a) Separable utility function: This class is exactly GES if the utility func-

tion is additively separable. Note that E-Score is a special case of GES.

Vol-Max also belongs to this class since its utility function is multi-

plicatively separable. By Proposition 4.1, any top-k query in this class

reduces to a ranking query (rank the tuples by E[µ(s(t))]).

(b) Nonseparable utility function: We can see that Probe-Min and Top-SI

belongs to this class. Many problems in this class are NP-hard or even

harder. New algorithmic techniques are typically required to answer (or

approximate) top-k queries in this class. Probe-Min is studied in [78].

Top-SI will be handled in Section 8.3.1.

2. Position-based: The utility µ(τ, pw) depends only on the ranks of the tuples

in the top-k answer τ in possible world pw. Such a utility function is preferred

if the ranks determines the user satisfaction, or the magnitudes of the scores

do not directly correspond to the user satisfaction (or at least we do not know

what is the exact correspondence). Such utility functions typically appear

in applications such as search engines where the rank of an object is what

matters.

(a) Separable utility function: PRFω belongs to this class. By Proposi-

tion 4.1, any top-k query in this class reduces to a ranking query (rank

the tuple by Υµ(t) = E[µ(r(t))]).

(b) Nonseparable utility function: Many members in CON belong to this

class, e.g., CON under Spearman’s Footrule or Kendall distance.

A more general class of utility functions may depend on both the scores and

positions of the answer. In fact, the general form of PRF corresponds to such a

utility function, which is also additively separable. In practical applications, such

4.5 A Unified Viewpoint via Expected Utility 59

utility functions are supposed to be designed by domain experts who are familiar

with the interaction between the scores, the ranks and the user satisfaction levels.

As we have already seen, nonseparable utility functions are in general much

harder to deal with. In Chapter 8, we develop approximation techniques to op-

timize expected utility for large class of combinatorial problems where the corre-

sponding utility functions are nonseparable. As one application of the technique,

we can approximate the Top-SI query (see Section 8.3.1).

Chapter 5

Computing PRF: Discrete Distributions

In this chapter, we present algorithms for efficiently ranking according to a PRF

function when the probability distributions are discrete as well as for learning the

weights for a PRFω function from the user feedbacks. At the end of the chapter, we

conduct a comprehensive experimental study, which demonstrates the effectiveness

of our parameterized ranking functions, especially PRFe, at approximating other

ranking functions and the scalability of our proposed algorithms for exact or ap-

proximate ranking.

5.1 Computing a PRF function

We first present the basic idea behind our algorithms assuming mutual indepen-

dence, and then consider correlated tuples with correlations represented using an

and/xor tree. We then present a very efficient algorithm for ranking using a PRFe

function, and then briefly discuss how to handle attribute uncertainty.

5.1.1 Assuming Tuple Independence

First we show how the PRF function can be computed in O(n2) time for a general

weight function ω, and for a given set of tuples T = {t1, . . . , tn}. We assume there

is only tuple-level uncertainty. In all our algorithms, we assume that ω(t, i) can be

computed in O(1) time.

Clearly it is sufficient to compute Pr(r(t) = j) for any tuple t and 1 ≤ j ≤ n

in O(n2) time. Given these values, we can directly compute the values of Υ(t)

in O(n2) time. (Later, we will present several algorithms which run in O(n) or

60

5.1 Computing a PRF function 61

O(n log(n)) time which combine these two steps for some special ω functions).

We first sort the tuples in a non-increasing order by their scores (which are

assumed to be deterministic); assume t1, . . . , tn indicates this sorted order. Suppose

now we want to compute Pr(r(ti) = j). Let Ti = {t1, t2, . . . , ti} and σi be an

indicator variable that takes value 1 if ti is present in a possible world, and 0

otherwise. Further, let σ = 〈σ1, . . . , σn〉 denote a vector containing all the indicator

variables. Then, we can write Pr(r(ti) = j) as follows:

Pr(r(ti) = j) = Pr(ti)
∑

pw:|pw∩Ti−1|=j−1

p(pw)

= Pr(ti)
∑

σ:
i−1P
l=1

σl=j−1

∏

l<i:σl=1

Pr(tl)
∏

l<i:σl=0

(1− Pr(tl))

The first equality says that tuple ti ranks at the jth position if and only if ti and

exactly j−1 tuples from Ti−1 are present in the possible world. The second equality

is obtained by rewriting the sum to be over the indicator vector (each assignment

to the indicator vector corresponds to a possible world), and by exploiting the

fact that the tuples are independent of each other. The naive method to evaluate

the above formula by explicitly listing all possible worlds needs exponential time.

Now, we present a polynomial time algorithm based on generating functions.

Consider the following generating function over x:

F(x) =
n∏

i=1

(ai + bix)

The coefficient of xk in F(x) is:

∑

|β|=k

∏

i:βi=0

ai
∏

i:βi=1

bi

where β = 〈β1, . . . , βn〉 is a boolean vector, and |β| denotes the number of 1’s in

5.1 Computing a PRF function 62

t3, 6 t2, 5 t1, 1 t3, 9 t1, 7 t2, 8 t4, 4 t5, 3

∧ ∧ ∧

∨
.3 .3 .4

∨ ∨ ∨

∧

t1 120, t2 130, t3 80, t4 95, t5 110, t6 105,

∨
.4 .7 .3 .4 .6 1

x x x1 y xx x x x x x x x

.6 + .4x .3 + .7x .6x + .4y xx3 x2 x3

(.6 + .4x)(.3 + .7x)(.6x + .4y)x.7x3 + .3x2

(i) (ii)

Figure 5.1: PRF computation on and/xor trees: (i) The left figure corresponds to the
database in Figure 2.3; the generating function obtained by assigning the same variable
x to all leaves gives us the distribution over the sizes of the possible worlds. (ii) The right
figure illustrates the construction of the generating function for computing Pr(r(t4) = 3)
in the and/xor tree in Figure 2.2.

β. Now consider the following generating function:

F i(x) =

(∏

t∈Ti−1

(
1− Pr(t) + Pr(t) · x

))
Pr(ti) · x =

∑

j≥0

cjx
j.

We can see that the coefficient cj of xj in the expansion of F i is exactly the

probability that ti is at rank j, i.e., cj = Pr(r(ti) = j). We note F i contains at

most i + 1 nonzero terms. We observe this both from the form of F i above, and

also from the fact that Pr(r(ti) = j) = 0 if j > i. Hence, we can expand F i to

compute the coefficients in O(i2) time. This allows us to compute Pr(r(ti) = j)

for ti in O(i2) time; Υ(ti), in turn, can be written as:

Υ(ti) =
∑

j

ω(ti, j) · Pr(r(ti) = j) =
∑

j

ω(ti, j)cj (5.1)

which can be computed in O(i2) time.

Example 6. Consider a relation with 3 independent tuples t1, t2, t3 (already sorted

according to the score function) with existence probabilities 0.5, 0.6, 0.4, respectively.

The generating function for t3 is:

F3(x) = (.5 + .5x)(.4 + .6x)(.4x) = .12x3 + .2x2 + .08x

This gives us:

5.1 Computing a PRF function 63

Algorithm 1: IND-PRF-RANK(DT)

F0(x) = 1;1

for i = 1 to n do2

F i(x) = Pr(ti)
Pr(ti−1)

F i−1(x)
(

1− Pr(ti−1) + Pr(ti−1)x
)

;3

Expand F i(x) in the form of
∑

j cjx
j ;4

Υ(ti) =
∑n

j=1 ω(ti, j)cj ;5

return k tuples with largest Υ values;6

Pr(r(t3) = 1) = .08,Pr(r(t3) = 2) = .2,Pr(r(t3) = 3) = .12

If we expand each F i for 1 ≤ i ≤ n from scratch, we need O(n2) time for each

F i and O(n3) time in total. However, the expansion of F i can be obtained from

the expansion of F i−1 in O(i) time by observing that:

F i(x) =
Pr(ti)

Pr(ti−1)
F i−1(x)

(
1− Pr(ti−1) + Pr(ti−1)x

)
(5.2)

This trick gives us a O(n2) time complexity for computing the values of the ranking

function for all tuples. See Algorithm 1 for the pseudocode. Note that O(n2) time

is asymptotically optimal in general since the computation involves at least O(n2)

probabilities, namely Pr(r(ti) = j) for all 1 ≤ i, j ≤ n.

For some specific ω functions, we may be able to achieve faster running time.

For PRFω(h) functions, we only need to expand all F i’s up to xh term since ω(i) = 0

for i > h. Then, the expansion from F i−1(x) to F i(x) only takes O(h) time. This

yields an O(n · h + n log(n)) time algorithm. We note the above technique also

gives an O(nk + n log(n)) time algorithm for answering the U-Rank top-k query

(all the needed probabilities can be computed in that time), thus matching the

best known upper bound by Yi et al. [182] (the original algorithm in [167] runs in

O(n2k) time).

We remark that the generating function technique can be seen as a variant of

dynamic programming in some sense; however, using it explicitly in place of the

5.1 Computing a PRF function 64

obscure recursion formula gives us a much cleaner view and allows us to generalize

it to handle more complicated tuple correlations. This also leads to an algorithm

for extremely efficient evaluation of PRFe functions (Section 5.1.3).

5.1.2 Probabilistic And/Xor Trees

Next we generalize our algorithm to handle a correlated database where the corre-

lations can be captured using an and/xor tree. In fact, many types of probability

computations on and/xor trees can be done efficiently and elegantly using gener-

ating functions. Here we first provide a general result and then specialize it for

PRF computation.

As before, let T = {t1, t2, . . . , tn} denote the tuples sorted in a non-increasing

order of their score function, and let Ti = {t1, t2, . . . , ti}. Let T denote the and/xor

tree. Suppose X = {x1, x2, . . .} is a set of variables. Define a mapping π which

associates each leaf l ∈ T with a variable π(l) ∈ X . Let Tv denote the subtree

rooted at v and let v1, . . . , vh be v’s children. For each node v ∈ T , we define a

generating function Fv(X) = Fv(x1, x2, . . .) recursively:

• If v is a leaf, Fv(X) = π(v).

• If v is a ∨© node,

Fv(X) = (1−
∑h

l=1 p(v,vl)) +
∑h

l=1 p(v,vl)Fvl(X)

• If v is a ∧© node, F iv(X) =
∏h

l=1Fvl(X).

The generating function F(X) for tree T is the one defined above for the root.

It is easy to see, if we have a constant number of variables, the polynomial can be

expanded in the form of
∑

i1,i2,...
ci1,i2...x

i1
1 x

i2
2 . . . in polynomial time.

Now recall that each possible world pw contains a subset of the leaves of T
(as dictated by the ∨© and ∧© nodes). The following theorem characterizes the

relationship between the coefficients of F and the probabilities we are interested

in.

5.1 Computing a PRF function 65

Theorem 5.1. The coefficient of the term
∏

j x
ij
j in F(X) is the total probability

of the possible worlds for which, for all j, there are exactly ij leaves associated with

variable xj.

Proof: Suppose T is rooted at r, r1, . . . , rh are r’s children, and Tl is the subtree

rooted at rl. We denote by S (or Sl) the random set of leaves generated according

to model T (or Tl). We let F (or Fl) be the generating function corresponding

to T (or Tl). For ease of notation, we use i to denote index vector 〈i1, i2, . . .〉, I
to denote the set of all such is and X i to denote

∏
j x

ij
j . Therefore, we can write

F(X) =
∑

i1,i2,...
ci1,i2...x

i1
1 x

i2
2 . . . =

∑
i∈I ciX i. We use the notation S ∼= i for some

i = 〈i1, i2, . . .〉 ∈ I to denote the event that S contains ij leaves associated with

variable xj for all j. Given the notations, we need to show ci = Pr(S ∼= i).

We shall prove by induction on the height of the and/xor tree. We consider

two cases. If r is a ∧© node, we know from Definition 1 that S = ∪hl=1Sl. First, it

is not hard to see that given Sl ∼= il for 1 ≤ l ≤ h, the event S ∼= i happens if and

only if
∑

l il = i. Therefore,

Pr(S ∼= i) =
∑

P
l il=i

h∏

l=1

Pr(Sl ∼= il). (5.3)

Assume Fl can be written as
∑

il
cl,ilX il . From the construction of the generating

function, we know that

F(X) =
h∏

l=1

Fl =
h∏

l=1

∑

il∈I

cl,ilX il =
∑

i∈I

(∑
P
l il=i

h∏

l=1

cl,ilX il
)

=
∑

i∈I

(∑
P
l il=i

h∏

l=1

cl,il

)
X i (5.4)

By induction hypothesis, we have Pr(Sl ∼= il) = cl,il for any l and il. Therefore, we

can conclude from (5.3) and (5.4) that F(X) =
∑

i Pr(S ∼= i)X i.

Now let us consider the other case where r is a ∨© node. From Definition 1, it

5.1 Computing a PRF function 66

is not hard to see that

Pr(S ∼= i) =
h∑

l=1

Pr(Sl = i)p(r,rl) (5.5)

Moreover, we have

F(X) =
h∑

l=1

p(r,rl)Fl(X) =
h∑

l=1

p(r,rl)

∑

il

cl,ilX il

=
∑

i

(h∑

l=1

p(r,rl)cl,i

)
X i =

∑

i

Pr(S ∼= i)X i

where the last equality follows from (5.5) and induction hypothesis. This completes

the proof. �

We first provide two simple examples to show how to use Theorem 5.1 to

compute the probabilities of two events related to the size of the possible world,

and then show how to use the same idea to compute Pr(r(t) = i).

Example 7. If we associate all leaves with the same variable x, the coefficient of

xi is equal to Pr(|pw| = i). The above can be used to obtain a distribution on the

possible world sizes (Figure 5.1(i)).

Example 8. If we associate a subset S of the leaves with variable x, and other

leaves with constant 1, the coefficient of xi is equal to Pr(|pw ∩ S| = i).

Next we show how to compute Pr(r(ti) = j) (i.e., the probability ti is ranked

at position j). Let s denote the score of the tuple. In the and/xor tree T , we

associate all leaves with score value larger than s with variable x, the leaf (ti, s)

with variable y, and the rest of leaves with constant 1. Let the resulting generating

function be F i. By Theorem 5.1, the coefficient of xj−1y in the generating function

F i is exactly Pr(r(ti) = j). See Algorithm 2 for the pseudocode of the algorithm.

Example 9. We consider the database in Figure 2.2. Suppose we want to compute

Pr(r(t4) = 3). We associate variable x to t1, t2, t5 and t6 since their scores are

5.1 Computing a PRF function 67

Algorithm 2: ANDXOR-PRF-RANK(T)

π(ti)← 1∀i {π(ti) is the variable associated to leaf ti};
for i = 1 to n do

if i 6= 1 then s(ti−1)← x;
π(ti)← y;
F i(x, y) = GENE(Ti, π);
Expand F i(x, y) in the form

∑
j c
′
jx
j + (

∑
j cjx

j−1)y;
Υ(ti) =

∑n
j=1 ω(ti, j)cj;

return k tuples with largest Υ values;
Subroutine: GENE(T , π);
r is the root of tree T ;
if T is a singleton node then

return π(r);
else
Ti is the subtree rooted at ri for ri ∈ Ch(r);
p =

∑
ri∈Ch(r) p(r,ri);

if r is a ∨©© node then
return 1− p+

∑
ri∈Ch(r) p(r,ri) · GENE(Ti, t);

if r is a ∧© node then
return

∏
ri∈Ch(r) GENE(Ti, t);

larger than t4’s score. We also associate y to t4 itself and 1 to t3 whose score is

less t4’s. The generating function for the right hand side tree in Figure 5.1 is (.6 +

.4x)(.3+.7)(.4x+.6y)x = .168x4+0.112x3y+0.324x3+0.216x2y+0.108x2+0.072xy.

So we get that Pr(r(t5) = 3) is the coefficient of x2y which is 0.216. From Figure

2.2, we can also see Pr(r(t5) = 3) = Pr(pw3) + Pr(pw5) = .048 + .168 = .216.

If we expand F iv for each internal node v in a naive way (i.e., we multiply the

polynomials one by one), we can show the running time is O(n2) at each internal

node, O(n3) for each tree F i and thus O(n4) overall. We can use some tricks

to improve the running time as follows. First, we can get rid of the variable y

as follows. Suppose the generating function is F(x, y) = P1(x) + yP2(x). We can

write F(x, y) in this form because the degree of y is at most 1. So, P1(x) = F(x, 0)

and P2(x) = F(x, 1) − F(x, 0). Hence, computing F(x, y) reduces to computing

5.1 Computing a PRF function 68

two uni-variable polynomials F(x, 0) and F(x, 1). From now on, we only need to

focus on manipulating uni-variable polynomials. In fact, expanding each F i can

be done in O(n2) time. We outline two algorithms in Appendix A.1. The total

running time is therefore O(n3). For PRFω and and/xor trees with low heights, we

can obtain better algorithms. See the details in Section 5.1.5.

5.1.3 Computing a PRFe Function

Next we present an O(n log(n)) algorithm to evaluate a PRFe function (the algo-

rithm runs in linear time if the dataset is pre-sorted by score). If ω(i) = αi, then

we observe that:

Υ(ti) =
n∑

j=1

Pr(r(ti) = j)αj = F i(α) (5.6)

This surprisingly simple relationship suggests we don’t have to expand the polyno-

mials F i(x) at all; instead we can evaluate the numerical value of F i(α) directly.

Again, we note that the value F i(α) can be computed from the value of F i−1(α) in

O(1) time using Equation (5.2). Thus, we have O(n) time algorithm to compute

Υ(ti) for all 1 ≤ i ≤ n if the tuples are pre-sorted.

Example 10. Consider Example 6 and the PRF e function for t3. We choose

ω(i) = .6i. Then, we can see that F3(x) = (.5 + .5x)(.4 + .6x)(.4x). So, Υ(t3) =

F3(.6) = (.5 + .5× .6)(.4 + .6× .6)(.4× .6) = .14592.

We can use a similar idea to speed up the computation if the tuples are correlated

and the correlations are represented using an and/xor tree. Let Ti be the and/xor

tree where π(tj) = x for 1 ≤ j < i, π(ti) = y and π(tj) = 1 for j > i. Suppose

the generating function for Ti is F i(x, y) =
∑

j c
′
jx
j + (

∑
j cjx

j−1)y and Υ(ti) =
∑n

j=1 α
jcj. We observe an intriguing relationship between the PRFe value and the

5.1 Computing a PRF function 69

generating function:

Υ(ti) =
∑

j

cjα
j =

(∑

j

c′jα
j + (

∑

j

cjα
j−1)α

)
−
∑

j

c′jα
j

= F i(α, α)−F i(α, 0).

Given this, Υ(ti) can be computed in linear time by bottom up evaluation of

F i(α, α) and F i(α, 0) in T i. If we simply repeat it n times, once for each ti, this

gives us a O(n2) total running time.

By carefully sharing the intermediate results among computations of Υ(ti), we

can improve the running time to O(n log(n) + nd) where d is the height of the

and/xor tree. This improved algorithm runs in iterations. Suppose the tuples are

already pre-sorted by their scores. Initially, the label of all leaves, i.e., π(ti), is 1.

In iteration i, we change the label of leaf ti−1 from y to x and the label of ti from

1 to y. The algorithm maintains the following information in each inner node v:

the numerical values of F iv(α, α) and F iv(α, 0). The values on node v need to be

updated when the value of one of its children changes. Therefore, in each iteration,

the computation only happens on the two paths, one from ti−1 to the root and one

from ti to the root. Since we update at most O(d) nodes for each iteration, the

running time is O(nd). Suppose we want to update the information on the path

from ti−1 to the root. We first update the F iv(., .) values for the leaf ti−1. Since

F iti−1
= π(ti−1) = x, we have F iti−1

(α, α) = α and F iti−1
(α, 0) = α. We assume

v’s child, say u, just had its values changed. The updating rule for F iv(., .)(both

F iv(α, α) and F iv(α, 0)) in node v is as follows.

1. v is a ∧© node, then:

F iv(., .)← F i−1
v (., .)F iu(., .)/F i−1

u (., .) (5.7)

5.1 Computing a PRF function 70

2. v is a ∨© node, then:

F iv(., .)← F i−1
v (., .) + p(v,u)F iu(., .)− p(v,u)F i−1

u (., .) (5.8)

The values on other nodes are not affected. The updating rule for the path from

ti to the root is the same except that for the leaf ti, we have F iti(α, α) = α and

F iti(α, 0) = 0 since F iti(x, y) = π(ti) = y. See Algorithm 3 for the psuedo-code.

We note that, for the case of x-tuples, which can be represented using a two-level

tree, this gives us an O(n log(n)) algorithm for ranking according to PRFe.

Algorithm 3: ANDXOR-PRFe-RANK(T)

Fti(α, α) = 1,Fti(α, 0) = 1,∀i ;
for i = 1 to n do

if i 6= 1 then
Fti−1

(α, α) = α,Fti−1
(α, 0) = α ;

UPDATE(T , ti−1);

Fti(α, α) = α,Fti(α, 0) = 0 ;
UPDATE(T , ti);
Υ(ti) = Fr(α, α)−Fr(α, 0);

return k tuples with largest Υ values;
Subroutine: UPDATE(T , v);
while v is not the root do

u← v;
v ← parent(v);
if v is a ∧© node then
Fv(., .)← Fv(., .)F iu(., .)/Fu(., .);

if v is a ∨© node then
Fv(., .)← Fv(., .) + p(v,u)Fu(., .)− p(v,u)Fu(., .);

5.1.4 Attribute Uncertainty or Uncertain Scores

We briefly describe how we can do ranking over tuples with discrete attribute

uncertainty where the uncertain attributes are part of the tuple scoring function

(if the uncertain attributes do not affect the tuple score, then they can be ignored

5.1 Computing a PRF function 71

for the ranking purposes). More generally, this approach can handle the case when

there is a discrete probability distribution over the score of the tuple.

Assume
∑

j pi,j ≤ 1 for all i. The score si of tuple ti takes value vi,j with

probability pi,j and ti does not appear in the database with probability 1−
∑

j pi,j.

It is easy to see the PRF value of ti is

Υ(ti) =
∑

k>0

ω(ti, k) Pr(r(ti) = k)

=
∑

k>0

ω(ti, k)
∑

j

Pr(r(ti) = k ∧ si = vi,j)

=
∑

j

(∑

k>0

ω(ti, k) Pr(r(ti) = k ∧ si = vi,j)
)

The algorithm works by treating the alternatives of the tuples (with a separate al-

ternative for each different possible score for the tuple) as different tuples. In other

words, we create a new tuple ti,j for each vi,j value. ti,j has existence probability

pi,j. Then, we add an xor constraint over the alternatives {ti,j}j of each tuple ti. We

can then use the algorithm for the probabilistic and/xor tree model to find the val-

ues of the PRF function for each ti,j separately. Note that Pr(r(ti) = k ∧ si = vi,j)

is exactly the probability that r(ti,j) = k in the and/xor tree. Thus, by the

above equation, we have that Υ(ti,j) =
∑

k>0 ω(ti, k) Pr(r(ti) = k ∧ si = vi,j) and

Υ(ti) =
∑

j Υ(ti,j). Therefore, in a final step, we calculate the Υ score for each

original tuple ti by adding the Υ scores of its alternatives {ti,j}j. If the original

tuples were independent, the complexity of this algorithm is O(n2) for computing

the PRF function, and O(n log(n)) for computing the PRFe function where n is the

size of the input, i.e., the total number of different possible scores.

5.1.5 Summary

We summarize the complexities of the algorithms for different models in Table 5.1.

Now, we explain the entries with a superscript lable] in the table.

5.1 Computing a PRF function 72

PRF PRFω(h) PRFe

Independent O(n2) O(nh) \] O(n) \

And/Xor tree (height: d) O(n3) or O(n2 log(n)d)] O(n2d)] O(nd) \]

x-tuples O(n2)] O(nh) \] O(n) \

Table 5.1: Summary of the running times. \: There is an additive O(n log(n)) term if
the dataset is not pre-sorted by their scores.]: See Section 5.1.5 for details.

1. PRFω(h) over independent tuples: This matches the best known upper

bounds for U-Top by Yi et al. [182,181] (the original algorithm in [167] runs

in O(n2k) time) and for PT(h) by Hua et al. [98], for independent tuples.

2. PRF over and/xor trees: We assume the height of the and/xor tree is

d. We have two choices here. We have explained the O(n3) algorithm in

Section 5.1.2. Now, we show how to achieve a running time of O(n2 log(n)d),

which is much better than O(n3) if d� n. The idea is similar to the one we

used for computing PRFe on and/xor trees in Section 5.1.3. At each node v

in the and/xor tree, we maintain the generating function Fv(x, y) which is

a polynomial of x, y. In the ith iteration, we need to update the labels of

ti−1 and ti. The label update of a leaf f incurs the updates of the generating

functions associated with the nodes on the leaf-to-root path, according to

the updating rules (5.7) and (5.8). We use the FFT (fast Fourier transform)

algorithm to implement the polynomial multiplication and division. Hence,

each update can be done in O(n log(n)) time. We have n iterations and in

each iteration, we need to update at most d nodes. So the total running time

is O(n2 log(n)d).

3. PRFω(h) over and/xor trees: We can decompose an PRFω into a linear

combination of n PRFe functions using Equation 5.10 (see the next section)

and use the O(nd) time algorithm to compute each of the PRFe values. Thus,

the total running time is O(n2d). This is better than the algorithm for

computing general PRF functions by a logarithmic factor.

5.1 Computing a PRF function 73

4. PRFe over and/xor trees: For PRFe computation on and/xor trees, we use

ANDXOR-PRFe-RANK. Now, the procedure UPDATE(T , ti) runs in O(di)

time where di is the depth of tuple ti in the and/xor tree, i.e., the length

of path from the root to ti. Therefore, the total running time is O(
∑

i di +

n log(n)). If the height of the and/xor tree is bounded by d, the running

time is simply O(nd+ n log(n)).

5. PRF over x-tuples: For x-tuples, we can achieve a better running time than

for general and/xor trees. The algorithm is the same as in 2. But we notice

that in each iteration, we only need to update the generating function for the

parent of the leaf, which is a ∨© node, and the generating function for the

root, which is a ∧© node. Also observe that the degree of generating function

for the ∨© node is at most 1 for both variables x and y. So the update on

this node can be done in O(1) time. The update on the root takes at most

O(n) time (multiplication/division of a polynomial of degree at most n and

a polynomial of degree at most 1). We have n iterations, each taking linear

time. Therefore, the total running time is O(n2).

6. PRFω(h) over x-tuples: The algorithm is the same as in 4, except that we

only keep the first O(h) terms of the polynomial associated with the root.

Each update of the root takes O(h) time instead of O(n). Hence, the running

time is O(nh).

Note that the previously best known bound for U-Rank (for k = h) over

x-tuples is O(n2h) [167, 181] and the best known algorithm for PT(h) over

x-tuples runs in O(n2h) worst case time [98]. Our algorithm improves these

bounds by a factor of n and is essentially optimal.

5.2 Approximating and Learning Ranking Functions 74

5.2 Approximating and Learning Ranking Functions

In this section, we discuss how to choose the PRF functions and their parameters.

Depending on the application domain and the scenarios, there are two approaches

to this:

1. If we know the ranking function we would like to use (say PT(h)), then we

can either simulate or approximate it using appropriate PRF functions.

2. If we are instead provided user preferences data, we can learn the parameters

from them.

Clearly, we would prefer to use a PRFe function, if possible, since it admits

highly efficient ranking algorithms. For this purpose, we begin with presenting an

algorithm to find an approximation to an arbitrary PRFω function using a linear

combination of PRFe functions. We then discuss how to learn a PRFω function

from user preferences, and finally present an algorithm for learning a single PRFe

function.

5.2.1 Approximating PRFω using PRFe Functions

A linear combination of complex exponential functions is known to be very expres-

sive, and can approximate many other functions very well [26]. Specifically, given

a PRFω function, if we can write ω(i) as: ω(i) ≈
∑L

l=1 ulα
i
l, then we have that:

Υ(t) =
∑

i

ω(i) Pr(r(t) = i) ≈
L∑

l=1

ul

(∑

i

αil Pr(r(t) = i)

)

This reduces the computation of Υ(t) to L individual PRFe function computations,

each of which only takes linear time. This gives us an O(n log(n) + nL) time

algorithm for approximately ranking using PRFω function for independent tuples

(as opposed to O(n2) for exact ranking).

5.2 Approximating and Learning Ranking Functions 75

Several techniques have been proposed for finding such approximations using

complex exponentials [106, 26]. Those techniques are however computationally

inefficient, involving computation of the inverses of large matrices and the roots of

polynomials of high orders.

In this section, we present a clean and efficient algorithm, based on Discrete

Fourier Transforms (DFT), for approximating a function ω(i), that approaches

zero for large values of i (in other words, ω(i) ≥ ω(i + 1)∀i, ω(i) = 0, i > h).

As we noted earlier, this captures the typical behavior of the ω(i) function. An

example of such a function is the step function (ω(i) = 1∀i ≤ h,= 0∀i > h) which

corresponds to the ranking function PT(h). At a high level, our algorithm starts

with a DFT approximation of ω(i) and then adapts it by adding several damping,

scaling and shifting factors.

Discrete Fourier transformation (DFT) is a well known technique for repre-

senting a function as a linear combination of complex exponentials (also called

frequency domain representation). More specifically, a discrete function ω(i) de-

fined on a finite domain [0, N − 1] can be decomposed into exactly N exponentials

as:

ω(i) =
1

N

N−1∑

k=0

ψ(k)e
2π
N
ki i = 0, . . . , N − 1. (5.9)

where  is the imaginary unit and ψ(0), · · · , ψ(N − 1) denotes the DFT transform

of ω(0), · · · , ω(N − 1). An immediate consequence of the above equation is that

we can decompose the PRFω value of a tuple into n PRFe values (recall that n is

the number of tuples) :

Υ(t) =
n∑

i=1

ω(i) Pr(r(t) = i) =
1

N

n−1∑

k=0

ψ(k)Υk(t) (5.10)

where Υk(t) =
∑n

i=1 α
i
K Pr(r(t) = i) and αk = e

2π
n
k.

If we want to approximate ω by fewer, say L, exponentials, we can instead use

the LDFT coefficients with maximum absolute value. Assume that ψ(0), . . . , ψ(L− 1)

5.2 Approximating and Learning Ranking Functions 76

0 500 1000 1500 2000 2500

x

0.0

0.5

1.0

y

y=w(x)
DFT
DFT+DF
DFT+DF+IS
DFT+DF+IS+ES

Figure 5.2: Illustrating the effect of the approximation steps: w(i) = step function with
N = 1000, L = 20

are those coefficients. Then our approximation ω̃DFTL of ω by L exponentials is

given by:

ω̃DFTL (i) =
1

N

L−1∑

k=0

ψ(k)e
2π
N
ki i = 0, . . . , N − 1. (5.11)

However, DFT utilizes only complex exponentials of unit norm, i.e., er (where

r is a real), which makes this approximation periodic (with a period of N). This

is not suitable for approximating an ω function used in PRF, which is typically

a monotonically non-increasing function. If we make N sufficiently large, say

larger than the total number of tuples, then we usually need a large number of

exponentials (L) to get a reasonable approximation. Moreover, computing DFT

for very large N is computationally non-trivial. Furthermore, the number of tuples

n may not be known in advance.

We next present a set of nontrivial tricks to adapt the base DFT approximation

to overcome these shortcomings. We assume ω(i) takes non-zero values within

interval [0, N − 1] and the absolute values of both ω(i) and ωDFTL (i) are bounded

5.2 Approximating and Learning Ranking Functions 77

by B. To illustrate our method, we use the step function:

ω(i) =





1, i < N

0, i ≥ N

with N = 1000 as our running example to show our method and the specific short-

comings it addresses. Figure 5.2 illustrates the effect of each of these adaptations.

1. (DFT) We perform pure DFT on the domain [1, aN], where a is a small

integer constant (typically < 10). As we can see in Figure 5.2 (where N =

1000 and a = 2), this results in a periodic approximation with a period of

2000. Although the approximation is reasonable for x < 2000, the periodicity

is unacceptable if the number of tuples is larger than 2000 (since the positions

between 2000 and 3000 (similarly, between 4000 and 5000) would be given

high weights).

2. (Damping Factor (DF)) To address this issue, we introduce a damping

factor η ≤ 1 such that BηaN ≤ ε where ε is a small positive real (for example,

10−5). Our new approximation becomes:

ω̃DFT+DF
L (i) = ηi · ω̃DFTL (i) =

1

N

L−1∑

k=0

ψ(k)(ηe
2π
N
k)i. (5.12)

By incorporating this damping factor, the periodicity is mitigated, since we

have: limi→+∞ ω̃
DFT+DF
L (i) = 0. Especially, ω̃DFT+DF

L (i) ≤ ε for i > αN .

3. (Initial Scaling (IS)) However the use of damping factor introduces another

problem: it gives a biased approximation when i is small (see Figure 5.2).

Taking the step function as an example, ω̃DFT+DF
L (i) is approximately ηi for

0 ≤ i < N instead of 1. To rectify this, we initially perform DFT on a

different sequence ω̂(i) = η−iω(i) (rather than ω(i)) on domain ∈ [0, aN].

5.2 Approximating and Learning Ranking Functions 78

0 500 1000 1500 2000 2500

x

0.0

0.5

1.0

y

(i) w(i) = step function

y=w(x)
y=w10(x)
y=w20(x)
y=w30(x)
y=w50(x)
y=w100(x)

0 500 1000 1500

x

0

500

1000

1500

y

(ii) w(i) =1000-i (i<=1000), =0 (i>1000)

y=w(x)
y=w5(x)
y=w10(x)
y=w20(x)
y=w50(x)

0 500 1000 1500

x

0.0

0.5

1.0

y

(iii) w(i) = an arbitrary smooth function

y=w(x)
y=w10(x)
y=w20(x)
y=w30(x)
y=w50(x)

Figure 5.3: Approximating functions using linear combinations of complex exponentials:
effect of increasing the number of coefficients

Therefore, ω̃DFT+IS is a reasonable approximation of ω̂. Then, if we apply

the damping factor, it will give us an unbiased approximation of ω, which

we denote by ω̃DFT+DF+IS.

4. (Extending and Shifting (ES)) This step is in particular tailored for opti-

mizing the approximation performance for ranking functions. DFT does not

perform well at discontinuous points, specifically at i = 0 (the left bound-

ary), which can significantly affect the ranking approximation. To handle

this, we extrapolate ω to make it continuous around 0. Let the resulting

function be ω̄ which is defined on [−bN,+∞] for small b > 0. Again, taking

the step function for example, we let ω̄(i) =





1, −bN ≤ i < N ;

0, i ≥ N .
Then,

we shift ω̄(i) rightwards by bN to make its domain lie entirely in positive

axis, do initial scaling and perform DFT on the resulting sequence. We

denote the approximation of the resulting sequence by ω̃′(i)(by performing

(5.12)). For the approximation of original ω(i) values, we only need to do

corresponding leftward shifting , namely ω̃DFT+DF+IS+ES(i) = ω̃′(i + bN).

Figure 5.2 shows that DFT+DF+IS+ES gives a much better approximation

than others around i = 0.

Figures 5.2 and 5.3(i) illustrate the efficacy of our approximation technique for the

5.2 Approximating and Learning Ranking Functions 79

step function. As we can see, we are able to approximate that function very well

with just 20 or 30 coefficients. Figure 5.3(ii) and (iii) show the approximations

for a piecewise linear function and an arbitrarily generated continuous function

respectively, both of which are much easier to approximate than the step function.

5.2.2 Learning a PRFω or PRFe Function

Next we address the question of how to learn the weights of a PRFω function or the

α for a single PRFe function from user preferences. To learn a linear combination of

PRFe functions, we first learn a PRFω function and then approximate it as above.

Prior work on learning ranking functions (e.g., [96, 108, 35, 60]) assumes that

the user preferences are provided in the form of a set of pairs of tuples, and for

each pair, we are told which tuple is ranked higher. Our problem differs slightly

from this prior work in that, the features that we use to rank the tuples (i.e.,

Pr(r(t) = i), i = 1, . . . , n) cannot be computed for each tuple individually, but

must be computed for the entire dataset (since the values of the features for a

tuple depend on the other tuples in the dataset). Hence, we assume that we are

instead given a small sample of the tuples, and the user ranking for all those tuples.

We compute the features assuming this sample constitutes the entire relation, and

learn a ranking function accordingly, with the goal to find the parameters (the

weights wi for PRFω or the parameter α for PRFe) that minimize the number of

disagreements with the provided ranking over the samples.

Given this, the problem of learning PRFω is identical to the problem addressed

in the prior work, and we utilize the algorithm based on support vector machines

(SVM) [108] in our experiments.

On the other hand, we are not aware of any work that has addressed learning

a ranking function like PRFe. We use a simple binary search-like heuristic to

find the optimal real value of α that minimizes the Kendall distance between the

user-specified ranking and the ranking according to PRFe(α). In other words, we

try to find arg minα∈[0,1](dis(σ, σ(α))) where dis() is the Kendall distance between

5.2 Approximating and Learning Ranking Functions 80

two rankings, σ is the ranking for the given sample and σ(α) is the one obtained

by using PRFe(α) function. Suppose we want to find the optimal a within the

interval [L,U] now. We first compute dis(σ, σ(L + i · U−L
10

) for i = 1, . . . , 9 and

find i for which the distance is the smallest. Then we reduce our search range to

[max(L,L+(i−1) · U−L
10
,min(U,L+(i+1) · U−L

10
)] and repeat the above recursively.

Although this algorithm can only converge to a local minimum, in our experimental

study, we observed that all of the prior ranking functions exhibit a uni-valley

behavior (Section 5.3), and in such cases, this algorithm finds the global optimal.

5.2.3 An Interesting Property of PRFe

We have seen that PRFe(α) admits very efficient evaluation algorithms. We also

suggest that the parameter α should be learnt from samples/feedbacks in Sec-

tion 5.2.2. In fact, we do so since since we hold the promise that by changing the

parameter α, PRFe can span a spectrum of rankings, and the true ranking should

be in or close to some point of the spectrum. We will demonstrate this fact shortly

in our experiment section (Section 5.3). In this section, we want to make some

interesting theoretical observation, which may help to further reveal this fact and

understand the behavior of PRFe itself.

First, we can easily observe that for α = 1, the PRFe ranking is equivalent to

the ranking of tuples by their existence probabilities; On the other hand, when

α approaches to 0, PRFe tends to rank the tuples by their probabilities to be the

Top-1 answer, i.e, Pr(r(t) = 1). Thus, it is a natural question to ask that is how

the ranking changes when we vary α from 0 to 1. Now, we prove the following

theorem which gives a important characterization of the behavior of PRFe on tuple

independent databases.

Theorem 5.2. Let τ0 and τ1 be the rankings obtained by sorting the tuples in a

nonincreasing Pr(r(t) = 1) and Pr(t) order, respectively. Let τα be the ranking

obtained by PRFe(α).

5.2 Approximating and Learning Ranking Functions 81

1. If ti >τ0 tj (ti is ranked higher than tj in τ0) and ti >τ1 tj, then ti >τα tj any

0 ≤ α ≤ 1.

2. If ti >τ0 tj and ti <τ1 tj, then there is exactly one point β such that ti >τα tj

for α < β and ti <τα tj for α > β.

Proof: We denote Υα(ti) be the PRF(α) value of tuple ti. We know that

Υα(ti) = F i(α) =

(∏

t∈Ti−1

(
1− Pr(t) + Pr(t)α

))
Pr(ti)α.

Assume that i < j. Dividing Υα(tj) by Υα(ti), we get

ρj,i(α) =
Υα(tj)

Υα(ti)
=

∏
t∈Tj−1

(
1− Pr(t) + Pr(t)α

)
∏

t∈Ti−1

(
1− Pr(t) + Pr(t)α

) · Pr(tj)

Pr(ti)

=

j−1∏

l=i

(
1− Pr(tl) + Pr(tl)α

)
· Pr(tj)

Pr(ti)

Notice that 1− Pr(t) + Pr(t)α is always nonnegative and a increasing function of

α. Therefore, ρj,i(α) is increasing in α. If i > j, the same argument show ρj,i(α)

is decreasing in α. In either case, the ratio is monotone in α.

If ρj,i(0) < 1 and ρj,i(1) < 1, then ρj,i(α) < 1 for all 0 < α ≤ 1. Therefore, the

first half of the theorem holds. If ρj,i(0) < 1 and ρj,i(1) > 1, then there is exactly

one point 0 < β < 1 such that ρj,i(β) = 1 and ρj,i(α) < 1 for all 0 < α < β. and

ρj,i(α) < 1 for all β < α ≤ 1. This proves the second half. �

Some nontrivial questions can be immediately answered by the theorem. For

example, one may ask the question “Is it possible that we get some ranking τ1,

increase α a bit and get another ranking τ2, and increase α further and get τ1

back?” and we can quickly see that the answer is no since if two tuples change

positions, they never change back. Another example question asks “Suppose t1

dominates t2 (i.e., t1 has a higher score and probability), should t1 always rank

5.2 Approximating and Learning Ranking Functions 82

0.0 0.2 0.4 0.6 0.8 1.0

a

0.0

0.2

0.4

0.6

0.8

1.0

y

f1(a)

f2(a)

f3(a)

f4(a)

intersection of f1&f4

Figure 5.4: Illustration of Example 11. fi(α) = Υα(ti) for i = 1, 2, 3, 4.

above t2 no matter what α is?” and we can easily say yes by just checking the fact

that t1 ranks above t2 in both τ0 and τ1.

Interestingly, the process of the changing of the rank list is a reminiscence of

the execution of the bubble sort algorithm. We assume the true order of the tuples

is τ1 and the initial order is τ0. We increase α from 0 to 1 gradually. Each time

when the rank list changes, the change is just a swap of a pair of adjacent tuples

that is not in the right relative order initially. The number of swaps is exactly the

number of reverse pairs. This is just like bubble sort! The only difference is that

the order of those swaps may not be the same.

Example 11. Suppose we have four independent tuples: (t1 : 100, .4), (t2 : 80, .6), (t3 :

50, .5), (t4 : 30, .9). Using (5.6), it is easy to see that Υα(t1) = .4α,Υα(t2) =

(.6+ .4α).6α,Υα(t3) = (.6+ .4α)(.4+ .6α).5α and Υα(t4) = (.6+ .4α)(.4+ .6α)(.5+

.5α).9α. In Figure 5.4, each curve corresponds to one tuple. We can see in interval

(0, 1], any two curves intersect at most once. The change of the rank happens right

at the intersection points and one adjacent pair swap their positions. For instance,

the + sign in the figure is the intersection point of f1 and f4. The rank list is

{t2, t1, t4, t3} right before the point and {t2, t4, t1, t3} right after the point.

In fact, if we think h as a parameter of PT(h) and we vary h from 1 to n, the

process that the rank list changes is quite similar to the one for PRFe: On one

5.3 Experimental Study 83

extreme where h = 1, the rank list is τ0, i.e., the tuples are sorted by Pr(r(t) = 1)

and on the other extreme where h = n, the rank list is τ1, i.e., the tuples are

sorted by Pr(r(t) ≤ n) = Pr(t). However, PT(h) is only able to explore at most n

different rankings (one for each h) “between” τ0 and τ1, while PRFe may explore

O(n2) of them.

5.3 Experimental Study

We conducted an extensive empirical study over several real and synthetic datasets

to illustrate: (a) the diverse and conflicting behavior of different ranking functions

proposed in the prior literature, (b) the effectiveness of our parameterized ranking

functions, especially PRFe, at approximating other ranking functions, and (c) the

scalability of our new generating functions-based algorithms for exact and approx-

imate ranking. We discussed the results supporting (a) in Section 2.4. In this

section, we focus on (b) and (c).

Datasets We mainly use the International Ice Patrol (IIP) Iceberg Sighting Dataset1

for our experiments. This dataset was also used in prior work on ranking in proba-

bilistic databases [107,98]. The database contains a set of iceberg sighting records,

each of which contains the location (latitude, longitude) of the iceberg, and the

number of days the iceberg has drifted, among other attributes. Detecting the

icebergs that have been drifting for long periods is crucial, and hence we use the

number of days drifted as the ranking score. The sighting record is also associ-

ated with a confidence-level attribute according to the source of sighting: R/V

(radar and visual), VIS (visual only), RAD (radar only), SAT-LOW (low earth

orbit satellite), SAT-MED (medium earth orbit satellite), SAT-HIGH (high earth

orbit satellite), and EST (estimated). We converted these six confidence levels into

probabilities 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.4 respectively. We added a very small

Gaussian noise to each probability so that ties could be broken. There are nearly a

1http://nsidc.org/data/g00807.html

5.3 Experimental Study 84

million records available from 1960 to 2007; we created 10 different datasets for our

experimental study containing 100, 000 (IIP-100,000) to 1, 000, 000 (IIP-1,000,000)

records, by uniformly sampling from the original dataset.

Along with the real datasets, we also use several synthetic datasets with varying

degrees of correlations, where the correlations are captured using probabilistic

and/xor trees. The tuple scores (for ranking) were chosen uniformly at random

from [0, 10000]. The corresponding and/xor trees were also generated randomly

starting with the root, by controlling the height (L), the maximum degree of the

non-root nodes (d), and the proportion of ∨© and ∧© nodes (X/A) in the tree.

Specifically, we use five such datasets:

1. Syn-IND (independent tuples): the tuple existence probabilities were chosen

uniformly at random from [0, 1].

2. Syn-XOR (L=2,X/A=∞,d=5): Note that the Syn-XOR dataset, with height

set to 2 and no ∧© nodes, exhibits only mutual exclusivity correlations (mim-

icking the x-tuples model [157,182])

3. Syn-LOW (L=3,X/A=10,d=2)

4. Syn-MED (L=5,X/A=3,d=5)

5. Syn-HIGH (L=5,X/A=1,d=10).

Setup We use the normalized Kendall distance (Section 2.5) for comparing two

top-k rankings. All the algorithms were implemented in C++, and the experiments

were run on a 2.4GHz Linux PC with 2GB memory.

5.3.1 Approximability of Ranking Functions

We begin with a set of experiments illustrating the effectiveness of our parame-

terized ranking functions at approximating other ranking functions. Due to space

5.3 Experimental Study 85

0 50 100 150 200

i

0.0

0.2

0.4

0.6

0.8

1.0

K
e
n

d
a

ll
 D

is
ta

n
c
e

Score

Prob

Exp-score

PT(100)

U-rank

Exp-rank

UTop-k

Approximating with PRF-e (a=1-0.9^i): (i) IIP-100000, k=100; (ii) Syn-IND-1000, k=100

0 50 100 150 200

ii

0.0

0.2

0.4

0.6

0.8

1.0

K
e
n

d
a

ll
 D

is
ta

n
c
e

Score

Prob

Exp-score

PT(100)

U-rank

Exp-rank

UTop-k

Figure 5.5: Comparing PRFe with other ranking functions for varying values of α; (i))IIP-
100,000, (ii)Syn-IND-1000

constraints, we focus on PRFe here because it is significantly faster to rank accord-

ing to a PRFe function (or a linear combination of several PRFe functions) than it

is to rank according a PRFω function.

Figures 5.5 (i) and (ii) show the Kendall distance between the Top-100 answers

computed using a specific ranking function and PRFe for varying values of α, for

the IIP-100,000 and Syn-IND-1000 datasets. For better visualization, we plot i on

the x-axis, where α = 1 − 0.9i. The reason behind this is that the behavior of

the PRFe function changes rather drastically, and spans a spectrum of rankings,

when α approaches 1. First, as we can see, the PRFe ranking is close to ranking by

Score alone for small values of α, whereas it is close to the ranking by Probability

when α is close to 1 (in fact, for α = 1, the PRFe ranking is equivalent to the

ranking of tuples by their existence probabilities)2. Second, we see that, for all

other functions (E-Score, PT(h), U-Rank, E-Rank), there exists a value of α for

which the distance of that function to PRFe is very small, indicating that PRFe can

indeed approximate those functions quite well. Moreover we observe that this “uni-

valley” behavior of the curves justifies the binary search algorithm we advocate for

learning the value of α in Section 5.2.2. Our experiments with other synthetic and

2On the other hand, for α = 0, PRFe ranks the tuples by their probabilities to be the Top-1
answer.

5.3 Experimental Study 86

50 100 150 200

#terms : L

0.0

0.2

0.4

0.6

0.8

1.0

K
e
n

d
a
ll

 D
is

ta
n

c
e

(i) Approximating PT(1000)-1000 (n=100000)

DFT

DFT+DF

DFT+DF+IS

DFT+DF+IS+ES

50 100 150 200

#terms : L

0.0

0.1

0.2

K
e
n

d
a
ll

 D
is

ta
n

c
e

(ii) No. of Terms vs Approximation Quality

PT(1000) (n=100000,k=1000)

PT(1000) (n=1000000,k=1000)

sfunc (n=100000,k=1000)

sfunc (n=1000000,k=1000)

Linear(n=100000,k=1000)

Linear(n=1000000,k=1000)

Figure 5.6: (i) Approximating PT(1000) using a linear combination of PRFe functions; (ii)
Approximation quality for three ranking functions for varying number of exponentials.

real datasets indicated a very similar behavior by the ranking functions.

Next we evaluate the effectiveness of our approximation technique presented

in Section 5.2. In Figure 5.6 (i), we show the Kendall distance between the top-k

answers obtained using PT(h) (for h = 1000, k = 1000) and using a linear combi-

nation of PRFe functions found by our algorithms. As expected, the approximation

using the vanilla DFT technique is very bad, with the Kendall distance close to

0.8 indicating little similarity between the top-k answers. However, the approx-

imation obtained using our proposed algorithm (indicated by DFT+DF+IS+ES

curve) achieves a Kendall distance of less than 0.1 with just L = 20 exponentials.

In Figure 5.6 (ii), we compare the approximation quality (found by our algo-

rithm DFT+DF+IS+ES) for three ranking functions for two datasets: IIP-100,000

with k = 1000, and IIP-1,000,000 dataset with k = 10000. The ranking functions

we compared were: (1) PT(h) (h = 1000), (2) an arbitrary smooth function, sfunc,

and (3) a linear function (Figure 5.6(ii)). We see that L = 40 suffices to bring the

Kendall distance to < 0.1 in all cases. We also observe that smooth functions

(for which the absolute value of the first derivative of the underlying continuous

function is bounded by a small value) are usually easier to approximate. We only

need L = 20 exponentials to achieve a Kendall distance less than 0.05 for sfunc.

5.3 Experimental Study 87

1000 10000 100000

Samples

0.0

0.5

1.0

K
en

d
a
ll

 D
is

ta
n

ce

(i) Learning PRF-e (n=100000,k=100)

PT(100)

PRF-e (alpha=0.95)

Exp-score

U-rank

Exp-rank

0 50 100 150 200

Samples

0.0

0.2

0.4

0.6

0.8

1.0

K
en

d
a
ll

 D
is

ta
n

ce

(ii) Learning PRF-w (n=100000,k=100)

PT(100)

PRF-e (alpha=0.95)

EXP-score

U-rank

EXP-rank

Figure 5.7: (i) Learning PRFe from user preferences; (ii) Learning PRFω from user pref-
erences.

The Linear function is even easier to approximate.

5.3.2 Learning Ranking Functions

Next we consider the issue of learning ranking functions from user preferences.

Lacking real user preference data, we instead assume that the user ranking func-

tion, denoted user-func, is identical to one of: E-Score, PT(h), U-Rank, E-Rank, or

PRFe(α = 0.95). We generate a set of user preferences by ranking a random sam-

ple of the dataset using user-func (thus generating five sets of user preferences).

These are then fed to the learning algorithm, and finally we compare the Kendall

distance between the learned ranking and the true ranking for the entire dataset.

In Figure 5.7(i), we plot the results for learning a single PRFe function (i.e., for

learning the value of α) using the binary search-like algorithm presented in Section

5.2.2. The experiment reveals that when the underlying ranking is done by PRFe,

the value of α can be learned perfectly. When one of PT(h) or U-Rank is the

underlying ranking function, the correct value a can be learned with a fairly small

sample size, and increasing the number of samples does not help in finding a better

α. On the other hand, E-Rank cannot be learned well by PRFe unless the sample

size approaches the total size of whole dataset. This phenomenon can be partly

5.3 Experimental Study 88

explained using Figure 5.5(i) and (ii) in which the curves for PT(h) and U-Top

have a fairly smooth valley, while the one for E-Rank is very sharp and the region

of α values where the distance is low is extremely small ([1 − 0.990, 1 − 0.9110]).

Hence, the minimum point for E-Rank is harder to reach. Another reason is that

E-Rank is quite sensitive to the size of the dataset, which makes it hard to learn it

using a smaller-sized sample dataset. We also observe that while extremely large

samples are able to learn E-Score well, the behavior of E-Score is quite unstable

when the sample size is smaller.

Note that if we already know the form of the ranking function, we don’t need

to learn it in this fashion; we can instead directly find an approximation for it

using our DFT-based algorithm.

In Figure 5.7 (ii), we show the results of an experiment where we tried to learn

a PRFω function (using the SVM-lite package [108]). We keep our sample size

≤ 200 since SVM-lite becomes drastically slow with larger sample sizes. First we

observe that PT(h) and PRFe can be learned very well from a small size sample

(distance < 0.2 in most cases) and increasing the sample size does not benefit

significantly. U-Rank can also be learned, but the approximation isn’t nearly as

good. This is because U-Rank cannot be written as a single PRFω function. We

observed similar behavior in our experiments with other datasets. Due to space

constraints, we omit a further discussion on learning a PRFω function; the issues

in learning such weighted functions have been investigated in prior literature, and

if the true ranking function can be written as a PRFω function, then the above

algorithm is expected to learn it well given a reasonable number of samples.

5.3.3 Effect of Correlations

Next we evaluate the behavior of ranking functions over probabilistic datasets

modeled using probabilistic and/xor trees. We use the four synthetic correlated

datasets, Syn-XOR, Syn-LOW, Syn-MED, and Syn-HIGH, for these experiments.

For each dataset and each ranking function considered, we compute the rank-

5.3 Experimental Study 89

0.0 0.2 0.4 0.6 0.8 1.0

alpha

0.0

0.2

0.4

0.6

0.8

1.0

K
en

d
a
ll

 D
is

ta
n

ce

(i) Effect of correlation

x-tuples (Syn-XOR)

Low Correlation (Syn-LOW)

Medium Correlation (Syn-MED)

High Correlation (Syn-HIGH)

Syn-LOW Syn-MED Syn-HIGH

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

K
en

d
a
ll

 D
is

ta
n

ce

(ii) Effect of correlation

PRF-e (alpha=0.9)

PT(100)

U-rank

Figure 5.8: (i) Effect of correlations on PRFe ranking as a varies; (ii) Effect of correlations
on PRFe, U-Rank and PT(h).

ings by considering the correlations, and by ignoring the correlations, and then

compute the Kendall distance between these two (e.g., for PRFe, we compute the

rankings using PROB-ANDOR-PRF-RANK and IND-PRF-RANK algo-

rithms). Figure 5.8(i) shows the results for the PRFe ranking function for varying

α, whereas in Figure 5.8(ii), we plot the results for PRFe(α = 0.9), PT(100), and

U-Rank.

As we can see, on highly correlated datasets, ignoring the correlations can result

in significantly inaccurate top-k answers. This is not as pronounced for the Syn-

XOR dataset. This is because, in any group of tuples that are mutually exclusive,

there are typically only a few tuples that may have sufficiently high probabilities

to be part of the top-k answer; the rest of the tuples may be ignored for ranking

purposes. Because of this, assuming tuples to be independent of each other does

not result in significant errors. As α approaches 1, PRFe tends to sort the tuples

by probabilities, so all four curves in Figure 5.8(i) become close to 0. We note that

ranking by E-Score is invariant to the correlations, which is a significant drawback

of that function.

5.3 Experimental Study 90

0 200000 400000 600000 800000 1000000

Number of tuples

0

10

20

30

40

50

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

(i)

PRF-e (alpha=0.95)

PT(100)

U-rank

Exp-rank

Top-10

Top-50

Top-100

0 200000 400000 600000 800000 1000000

Number of tuples

1

10

100

1000

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

(ii)

PT(10000),k=10000

PT(1000),k=1000

w100

w50

w20

0 20000 40000 60000 80000 100000

Number of tuples

0

1

10

100

1000

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

(iii) k=1000

Syn-HIGH, PT(1000)

Syn-XOR, PT(1000)

Syn-HIGH, w50

Syn-XOR, w50

Syn-HIGH, w20

Syn-XOR, w20

Syn-HIGH, PRF-e

Syn-XOR, PRF-e

Figure 5.9: Experiments comparing the execution times of the ranking algorithms (note
that the y-axis is log-scale for (ii) and (iii))

5.3.4 Execution Times

Figure 5.9(i) shows the execution times for four ranking functions: PRFe, PT(h),

U-Rank and E-Rank, for the IIP-datasets, for different dataset sizes and k. We

note that the running time for PRFω is similar to that of PT(h). As expected,

ranking by PRFe or E-Rank is very efficient (1000000 tuples can be ranked within

1 or 2 seconds). Indeed, after sorting the dataset in an non-decreasing score order,

PRFe needs only a single scan of the dataset, and E-Rank needs to scan the dataset

twice. Execution times for PT (h) and U-Rank-k increase linearly with h and k

respectively and the algorithms become very slow for high h and k. The running

times of both PRFe and E-Rank are not significantly affected by k.

Figure 5.9(ii) compares the execution time for PT(h) and its approximation

using a linear combination of PRFe functions (see Figure 5.6(i)), for two different

5.4 PRF Computation for Graphical Models 91

values of k. w50 indicates that 50 exponentials were used in the approximation

(note that the approximate ranking, based on PRFe, is insensitive to the value of k).

As we can see, for large datasets and for higher values of k, exact computation takes

several orders of magnitude more time to compute than the approximation. For

example, the exact algorithm takes nearly 1 hour for n = 500, 000 and h = 10, 000

while the approximate answer obtained using L = 50 PRFe functions takes only 24

seconds and achieves a Kendall distance 0.09.

For correlated datasets, the effect is even more pronounced. In Figure 5.9(iii),

we plot the results of a similar experiment, but using two correlated datasets:

Syn-XOR and Syn-HIGH. Note that the number of tuples in these datasets is

smaller by a factor of 10. As we can see, our generating functions-based algorithms

for computing PRFe are highly efficient, even for datasets with high degrees of

correlation. As above, approximation of the PT(h) ranking function using a linear

combination of PRFe functions is significantly cheaper to compute than using the

exact algorithm.

Combined with the previous results illustrating that a linear combination of

PRFe functions can approximate other ranking functions very well, this validates

the unified ranking approach that we propose in this paper.

5.4 PRF Computation for Graphical Models

In this chapter, we present an algorithm for computing the PRF function values

for all tuples of a correlated dataset when the correlations are represented using a

graphical model. We assume that the probability distributions considered in this

chapter are discrete. The resulting algorithm is a non-trivial dynamic program

over the junction tree of the graphical model. Our main result is that we can

compute the PRF function in polynomial time if the junction tree of the graphical

model has bounded treewidth. It is worth noting that this result cannot subsume

our algorithm for and/xor trees (Section 5.1.2) since the treewidth of the moralized

5.4 PRF Computation for Graphical Models 92

graph of a probabilistic and/xor tree may not be bounded. In some sense, this is

close to instance-optimal since the complexity of the underlying inference problem

is itself exponential in the treewidth of the graphical model (this however does

not preclude the possibility that the ranking itself could be done more efficiently

without computing the PRF function explicitly – however, such an algorithm is

unlikely to exist).

5.4.1 Problem Simplification

We begin with describing the first step of our algorithm, and defining a reduced

and simpler to state problem. Let T = {t1, t2, . . . , tn} be the set of tuples, sorted

in an non-increasing order of their score values. For each tuple t in T , we associate

an indicator random variable Xt, which is 1 if t is present, and 0 otherwise. Let

X = {Xt1 , . . . , Xtn} and Xi = {Xt1 , . . . , Xti}. Assume that the junction tree over

X is known to us.

Recall that our goal is to rank the tuples according to Υ(ti) =
∑

j>0 ω(j) Pr(r(ti) =

j). For this purpose, we first compute the positional probabilities, Pr(r(ti) = j)

∀j ∀ti, using the algorithms presented in the next two subsections. Given those,

the values of Υ(ti) can be computed in O(n2) time for all tuples, and the ranking

itself can be done in O(n log(n)) time (by sorting). The positional probabilities

(Pr(r(ti) = j)) may also be of interest by themselves.

For each tuple ti, we compute Pr(r(ti) = j) ∀j at once. Recall that Pr(r(ti) = j)

is the probability that ti exists (i.e., Xi = 1) and exactly j − 1 tuples with scores

higher than ti are present (i.e.,
∑i−1

l=1 Xl = j − 1). In other words:

Pr(r(ti) = j) = Pr(Xi = 1 ∧
i−1∑

l=1

Xl = j − 1)

= Pr((
i−1∑

l=1

Xl = j − 1)|Xi = 1) Pr(Xi = 1)

5.4 PRF Computation for Graphical Models 93

X5X4 X4X3

X3X2

X3X1

X4

X3

X3

1 1 0.3
0.201
0.210
0.300
π(X4)X4X5

1 1 0.2
0.301
0.410
0.100

π(X4, X3)X3X4

1 1 0.1
0.501
0.310
0.100

π(X3, X2)X2X3

1 1 0.2
0.401
0.310
0.100

π(X3, X1)X1X3

Figure 5.10: Conditioning on X5 = 1 results in a smaller junction tree, with uncalibrated
potentials, that captures the distribution over X1, X2, X3, X4 given X5 = 1.

Hence, we begin with first conditioning the junction tree by setting Xi = 1, and

re-calibrating. This is done by identifying all cliques and separators which contain

Xi, and by updating the corresponding probability distributions by removing the

values corresponding to Xi = 0. More precisely, we replace a probability distribu-

tion Pr(Xi1 , . . . , Xik , Xi), by a potential π(Xi1 , . . . , Xik) computed as:

π(Xi1 = v1, . . . , Xik = vk) = Pr(Xi1 = v1, . . . , Xik = vk, Xi = 1)

π is not a probability distribution since the entries in it may not sum up to

1. Further, the potentials may not be consistent with each other. Hence, we

need to recalibrate this junction tree using message passing [69]. As mentioned

earlier, this takes O(n2tw) time. We use Example 4 (in Section 2.3.2) to illustrate

the algorithm. Figure 5.10 shows the resulting (uncalibrated) junction tree after

conditioning on X5 = 1.

If Xi is a separator in the junction tree, then we get more than one junction

tree after conditioning on Xi = 1. Figure 5.11 shows the two junction trees we

would get after conditioning on X4 = 1. The variables in these junction trees

are independent of each other (this follows from the Markov property), and the

junction trees can be processed separately from each other.

Since the resulting junction tree or junction trees capture the probability dis-

5.4 PRF Computation for Graphical Models 94

X5

X3X2

X3X1

X3

Figure 5.11: Conditioning on X4 = 1 results in two junction trees.

tribution conditioned on the event Xi = 1, our problem now reduces to finding the

probability distribution of
∑i−1

l=1 Xl in those junction trees. For cleaner description

of the algorithm, we associate an indicator variable δXl with each variable Xl in

the junction tree. δXl is set to 1 if l ≤ i− 1, and is 0 otherwise. This allows us to

state the key problem to be solved as follows:

Redefined Problem3: Given a junction tree over m binary variables Y1, . . . , Ym,

where each variable Yj is associated with an indicator variable δYj ∈ {0, 1}, find

the probability distribution of the random variable PS =
∑m

l=1 Ylδl.

If the result of the conditioning was a single junction tree (over m = n − 1

variables), we multiply the resulting probabilities by Pr(Xi = 1) to get the rank

distribution of ti.

However, if we get k > 1 junction trees, then we need one additional step.

Let PS1, . . . , PSk be the random variables denoting the partial sums for each of

junction trees. We need to combine the probability distributions over these partial

sums, Pr(PS1), . . . ,Pr(PSk), into a single probability distribution over Pr(PS1 +

· · ·+PSk). This can be done by repeatedly applying the following general formula:

Pr(PS1 + PS2 = a) =
a∑

j=0

Pr(PS1 = j) Pr(PS2 = a− j)

A naive implementation of the above takes time O(n2). Although this can be

3We rename the variables to avoid confusion.

5.4 PRF Computation for Graphical Models 95

improved using the ideas presented in Appendix ??, the complexity of computing

Pr(PSi) is much higher and dominates the overall complexity.

Next we present algorithms for solving the redefined problem.

5.4.2 Algorithm for Markov Sequences

We first describe an algorithm for Markov chains, a special, yet important, case

of the graphical models. Markov chains appear naturally in many settings, and

have been studied in probabilistic database literature as well [110, 152, 118]. Any

finite-length Markov chain is a Markov network whose underlying graph is simply

a path: each variable is directly dependent on only its predecessor and successor.

The junction tree for a Markov chain is also a path in which each node corresponds

to an edge of the Markov chain. The treewidth of such a junction tree is one.

Without loss of generality, we assume that the Markov chain is Y1, . . . , Ym (Figure

5.12(i)). The corresponding junction tree T is a path with cliques Cj = {Yj, Yj+1}
as shown in the figure.

We compute the distribution Pr(
∑m

l=1 Ylδl) recursively. Let PSj =
∑j

l=1 Ylδl

denote the partial sum over the first j variables Y1, . . . , Yj.

At the clique {Yj−1, Yj}, j ≥ 1, we recursively compute the joint probability

distribution: Pr(Yj, PSj−1). The initial distribution Pr(Y2, PS1), PS1 = δ1Y1, is

computed directly:

Pr(Y2, PS1 = 0) = Pr(Y2, Y1 = 0) + (1− δi) Pr(Y2, Y1 = 1)

Pr(Y2, PS1 = 1) = δi Pr(Y2, Y1 = 1).

Given Pr(Yj, PSj−1), we compute Pr(Yj+1, PSj) as follows. Observe that PSj−1

and Yj+1 are conditionally independent given the value of Yj (by Markov property).

Thus we have:

Pr(Yj+1, Yj, PSj−1) =
Pr(Yj+1, Yj) Pr(Yj, PSj−1)

Pr(Yj)

5.4 PRF Computation for Graphical Models 96

Y1 Y2 Ym-1 Ym

A Markov Chain

.......

Y1Y2 Y2Y3Y2 Ym-1YmYm-1

Corresponding Junction Tree
(i)

C

S

S1 S2 Sk
.......

(ii)

Pr(S1,PS1) Pr(Sk,PSk)

Pr(S,PS)

Pr(Y2,P1) Pr(Ym-1,Pm-2) Pr(Ym,Pm-1)

TS

Figure 5.12: (i) A Markov chain, and the corresponding junction tree; (ii) Illustrating
the recursion for general junction trees.

Using Pr(Yj+1, Yj, PSj−1), we can compute:

Pr(Yj+1, PSj = a) = Pr(Yj+1, Yj = 0, PSj−1 = a)

+ Pr(Yj+1, Yj = 1, PSj−1 = a− δj)

At the end, we have the joint distribution: Pr(Ym, PSm−1). We can compute a

distribution over PSm as:

Pr(PSm = a) = Pr(Ym = 0, PSm−1 = a)

+ Pr(Ym = 1, PSm−1 = a− δm)

Complexity The complexity of the above algorithm to compute Pr(PSm) is

O(m2) – although we only perform m steps, Pr(Yj+1, PSj) contains 2(j+1) terms,

each of which takes O(1) time to compute. Since we have to repeat this for every

tuple, the overall complexity of ranking the dataset can be seen to be O(n3).

5.4 PRF Computation for Graphical Models 97

5.4.3 General Junction Trees

We follow the same general idea for general junction trees. Let T denote the

junction tree over the variables Y = {Y1, . . . , Ym}. We begin by rooting T at an

arbitrary clique, and recurse down the tree. For a separator S, let TS denote the

subtree rooted at S. Denote by PSS the partial sum over the variables in the

subtree TS that are not present in S, i.e.,:

PSS =
∑

j∈TS ,j /∈S

δjXj

Consider a clique node C, and let S denote the separator between C and its

parent node (S = φ for the root clique node). We will recursively compute the

joint probability distribution Pr(S, PSS) for each such separator S. Since the root

clique node has no parent, at the end we are left with precisely the probability

distribution that we need, i.e., Pr(
∑m

j=1 Yiδi).

C is an interior or root node Let the separators to the children of C be S1, . . . , Sk

(see Figure 5.12(ii)). We recursively compute Pr(Si, PSSi), i = 1, . . . , k.

Let Z = C \ S. We observe that Z is precisely the set of variables that

contribute to the partial sum PSS, but do not contribute to any of the partial

sums PSS1 , . . . , PSSk , i.e.:

PSS = PSS1 + · · ·+ PSSk +
∑

Zi∈Z

δZiZi

We begin with computing Pr(C,PSS1 + · · ·+PSSk). Observe that the variable set

C \ S1 is independent of PSS1 given the values of the variables in S1 (by Markov

property). Note that it was critical that the variables in S1 not contribute to the

partial sum PSS1 , otherwise this independence would not hold. Given that, we

5.4 PRF Computation for Graphical Models 98

have:

Pr(C,PSS1) = Pr(C \ S1, S1, PSS1)

=
Pr(C \ S1, S1) Pr(S1, PSS1)

Pr(S1)

Using PSS2 is independent of C ∪ {PSS1} given S2, we get:

Pr(C,PSS1 , PSS2) =
Pr(C,PSS1) Pr(S2, PSS2)

Pr(S2)

Now we can compute the probability distribution over Pr(C,PSS1 + PSS2) as

follows:

Pr(C,PSS1 + PSS2 = a) =
a∑

j=0

Pr(C,PSS1 = j, PSS2 = a− j)

=
a∑

j=0

Pr(C,PSS1 = j) Pr(S2, PSS2 = a− j)
Pr(S2)

By repeating this process for S3 to Sk, we get the probability distribution: Pr(C,PSS1+

· · ·+ PSSk).

Next, we need to add in the contributions of the variables in Z to the partial

sum PSS1 + · · · + PSSk . Let Z contain l variables, Z1, . . . Zl, and let δZ1 , . . . , δZl

denote the corresponding indicator variables. It is easy to see that:

Pr(C \ Z,Z1 = v1, . . . , Zk = vk,
k∑

j=1

PSSj +
l∑

j=1

δzjZj = a)

= Pr(C \ Z,Z1 = v1, . . . , Zk = vk,
k∑

j=1

PSSj = a−
l∑

l=1

δzjZj)

where vi ∈ {0, 1}. Although it looks complex, we only need to touch every entry of

the probability distribution Pr(C,PS1 + · · ·+ PSk) once to compute Pr(C,PSS).

All that remains is marginalizing that distribution to sum out the variables in

5.4 PRF Computation for Graphical Models 99

C \ S, giving us Pr(S, PSS).

C is a leaf node (i.e., k = 0) This is similar to the final step above. Let Z =

C \ S denote the variables that contribute to the partial sum PSS. We can apply

the same procedure as above to compute Pr(C,PSS =
∑

Zi∈Z δZiZi), which we

marginalize to obtain Pr(S, PSS).

Overall Complexity The complexity of the above algorithm for a specific clique

C is dominated by the cost of computing the different probability distributions

of the form Pr(C,PS), where PS is a partial sum. We have to compute O(n)

such probability distributions, and each of those computations takes O(n22|C|)

time. Since there are at most n cliques, and since we have to repeat this process

for every tuple, the overall complexity of ranking the dataset can be seen to be:

O(n42tw), where tw denotes the treewidth of the junction tree, i.e., the size of the

maximum clique minus 1.

Chapter 6

Computing PRF: Continuous Distributions

Continuous attribute uncertainty models arise naturally in many domains. Prior

work on ranking in probabilistic databases (or more generally query processing

in probabilistic databases with some exceptions) has mostly proposed somewhat

simplistic solutions to this problem. Cormode et al. [48] suggested to discretize

the continuous distributions to an appropriate level of granularity, and thus reduce

the problem to discrete attribute uncertainty [48, 123]. Soliman et al. made the

first attempt to deal with continuous score distributions directly [168], however,

their main technical tool is the Monte Carlo method which, in most cases, can only

obtain an approximate solution.

In this chapter, we systematically address the problem of ranking in presence

of continuous attribute uncertainty by developing a suite of exact and approximate

polynomial-time algorithms for computing the rank distribution for each tuple, i.e.,

the probability distribution over the rank of the tuple. The rank distributions can

be used to order the tuples according to any PRF function, but may be of inter-

est by themselves. For example, Taylor et al. [174] and Guiver et al. [91] treat

document scores in an Information Retrieval context as Gaussian random vari-

ables, and explicitly compute the rank distributions, which they use to smooth the

ranked results. They only consider Gaussian distributions and present heuristics

to compute the rank distributions. We consider many different types of probability

distribution functions, and present exact or approximate solutions depending on

the functions.

In Section 6.1, we develop exact polynomial time algorithms for uniform and

piecewise polynomial distributed scores. In Section 6.2, we present an efficient

100

6.1 Exact Algorithms 101

approximation schemes with provable guarantees for arbitrary probability distri-

butions based on the exact algorithm for piecewise polynomial distributions. We

also show how to efficiently rank the dateset by E-Rank or PRF` in Section 6.3. In

Section 6.4, we show an application of our algorithms for PRF to answering the

k-nearest neighbor query in uncertain datasets We show our experimental results

at the end of this chapter.

6.1 Exact Algorithms

We begin with presenting efficient polynomial-time algorithms for exact compu-

tation of the PRF functions when the probability distributions on the scores are

either uniform or piecewise polynomial. We begin with showing that the gener-

ating functions framework developed in Section 5.1.1 can be extended to handle

continuous distributions.

We first introduce some necessary notations. For each tuple ti, we denote its

existence probability by p(ti) or pi for short. We assume that the attribute value

uncertainties are transformed into a single probability distribution over the score

of the tuple. If an attribute does not contribute to the score, its uncertainty can be

ignored for ranking purposes. For tuple ti, we denote by s(ti) (or si) the random

variable corresponding to its score. si may be distributed according to a variety of

probability distributions, e.g., uniform, piecewise polynomial, Gaussian (Normal)

etc. We denote by µi the probability density function (pdf) of si. The support

of µi is defined to be the set of reals where µi is nonzero, i.e., supp(µi) = {x |
µi(x) 6= 0, x ∈ R}. The cumulative density function (cdf) of si is defined to be:

ρi(`) = Pr(si ≤ `) =
∫ `
−∞ µi(x)dx. Let ρ̄i(`) = 1 − ρi(`). The notations are

summarized in Table 6.1.

6.1 Exact Algorithms 102

p(ti) or pi Existence prob. of ti
s(ti) or si Random variable denoting the score of ti

µi Probability density function (pdf) of si
supp(µi) Support of µi (i.e. {x | µi(x) 6= 0, x ∈ R})
ρi, ρ̄i Cumulative density function (cdf) of si

ρi(`) =
∫ l
−∞ µid`, ρ̄i(`) = 1− ρi(`)

Pr(r(ti) = j) Positional prob. of ti being ranked at position j
I = [lI , uI] A small interval and its range

Table 6.1: Notation

6.1.1 Generating Functions Framework

In this and the next subsection, we consider only attribute value uncertainty, i.e.,

we assume there is no tuple existence uncertainty. Let us begin with looking at

the formula for computing positional probability Pr(r(ti) = j) closely. First, we

observe that ti is ranked at position j in a possible world iff there are exactly

(j − 1) tuples with higher score present in that world. Given this, we get:

Pr(r(ti) = j) = Pr
(∑

j 6=i

δ(sj > si) = j − 1
)

=

∫ ∞

−∞
Pr
(∑

j 6=i

δ(sj > `) = j − 1
)
µi(`)d`

The last equality follows from independence. The following theorem provides an

explicit form of the generating function for the positional probabilities and plays

a central role in our algorithms.

Theorem 6.1. For any tuple ti, define

zi(x) = x

∫ ∞

−∞
µi(`)

∏

j 6=i

(
ρj(`) + ρ̄j(`)x

)
d` (6.1)

6.1 Exact Algorithms 103

Then, zi(x) is the generating function for the sequence {Pr(r(ti) = j)}j≥1, i.e.,

zi(x) =
∑

j≥1

Pr(r(ti) = j)xj.

Proof: First, we note that zi(x) defined in (6.1) is a polynomial of x. This is

because each term in the expansion of the product inside the integral is of the form

f(`)xk for some integer k and function f(), and taking integral on ` eliminates the

variable ` but has no effect on x.

Let us consider how to compute Pr
(∑

j 6=i δ(sj > `) = j
)

for any fixed `, i.e.,

the probability of the random event that there are exactly j tuples other than ti

that have score larger than `. The key observation here is that computing the

probability is equivalent to the following problem: Given a set of tuples tj, j =

1, . . . , n, j 6= i, with tuple tj having existence probability ρ̄j(`) = Pr(sj > `),

compute Pr(j tuples exist). Consider the following generating function:

Fi(x, `) =
∏

j 6=i

(
ρj(`) + ρ̄j(`)x

)
. (6.2)

If we treat ` as a fixed value and Fi(x, `) as a polynomial of x, the coefficient of

the term xj is Pr
(∑

j 6=i δ(sj > `) = j
)

(see Section 5.1). Thus, we can write:

Fi(x, `) =
∑

j≥0

Pr
(∑

j 6=i

δ(sj > `) = j
)
xj.

6.1 Exact Algorithms 104

Multiplying by xµi(`) and taking integrals on both sides, we get:

zi(x) = x

∫ ∞

−∞
Fi(x, `)µi(`)d`

= x

∫ ∞

−∞

∑

j≥0

Pr
(∑

j 6=i

δ(sj > `) = j
)
µi(`)x

jd`

=
∑

j≥1

∫ ∞

−∞
Pr
(∑

j 6=i

δ(sj > `) = j − 1
)
µi(`)d`x

j

=
∑

j≥1

Pr(r(ti) = j)xj

Therefore, zi(x) is the generating fn. for {Pr(r(ti) = j)}j≥0. �

In light of Theorem 6.1, we can see that the task of computing the positional

probabilities reduces to expanding the polynomial zi in terms of xjs and obtaining

the coefficients.

6.1.2 Uniform Distribution

In this section, we consider the case where µi is uniform over its support interval

[li, ui]. It is easy to see the cdf of si is a piecewise linear function, i.e.,

ρi(`) = Pr(si ≤ `) =





0, ` < li;

`−li
ui−li , li ≤ ` ≤ ui;

1, ` > ui.

6.1.2.1 Expanding z(x)

For clarity, we assume that all numbers in ∪nj=1{lj, uj} are distinct throughout the

paper. The general case where not all points are distinct can be handled easily.

Those 2n points partition the real line into exactly 2n+ 1 intervals (see Figure 6.1

for an illustrative example with 5 tuples). For convenience of exposition, we call

these intervals small intervals (in contrast to the support intervals [li, ui]).

6.1 Exact Algorithms 105

S2 S3

S4

S5S1

l1 u1 l5 u5
l4 u4

l2 u2
l3 u3

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11
} Small intervals

} Support intervals

} PDFs

Figure 6.1: Illustration of support intervals and small intervals for five tuples with uni-
form probability distributions

For the small interval I, let lI and uI denote its left and right endpoints re-

spectively. Denote the set of small intervals (from left to right) by I = {Ij}2n+1
j=1

and the subset of those contained in support interval [li, ui] by Ii, i.e., Ii = {I |
lI ≥ li ∧ uI ≤ ui}.

Example 12. In the example shown in Figure 6.1, I2 = {I4, I5}, whereas I3 =

{I5, I6, I7}.

Since I is a disjoint partition of the real line and since µi(l) is equal to 1
ui−li in

the interval [li, ui] and 0 otherwise, we have that:

zi(x) = x
∑

I∈Ii

∫ uI

lI

µi(l)
∏

j 6=i

(
ρj(`) + ρ̄j(`)x

)
d` (6.3)

=
x

ui − li

∑

I∈Ii

∫ uI

lI

Fi(x, `)d` (6.4)

Thus to be able to expand zi(x), we just need to be able to expand
∫ uI
lI
Fi(x, `)d`

for all small intervals I.

Now, it is not hard to see that ρ̄j(`) and ρj(`) are linear functions for all

1 ≤ j ≤ n in each small interval I. Thus, for ` ∈ I, we can write:

ρj(`) + ρ̄j(`)x = aI,j + bI,j`+ cI,jx+ dI,jx`

6.1 Exact Algorithms 106

In particular, we have:

(aI,j, bI,j, cI,j, dI,j) =





(1, 0, 0, 0), uI ≤ lj;(
−lj
uj−lj ,

1
uj−lj ,

uj
uj−lj ,

−1
uj−lj

)
, I ∈ Ij;

(0, 0, 1, 0), lI ≥ uj.

(6.5)

Hence, within each small interval I:

Fi(x, `) =
∏

j 6=i

(
aI,j + bI,j`+ cI,jx+ dI,jx`

)

can be easily expanded in the form of
∑

j,k αI,i,j,kx
j`k in polynomial time. There-

fore, we can write:

∫ uI

lI

Fi(x, `)d` =
∑

j,k

(
αI,i,j,k

∫ uI

lI

`kd`xj
)

=
∑

j,k

(
αI,i,j,k

1

k + 1

(
uk+1
I − lk+1

I

)
xj
)
.

The last equality is because:
∫ uI
lI
`kd` = 1

k+1
(uk+1

I − lk+1
I).

Summing over all intervals in Ii, we get

∫ ui

li

Fi(x, `)d` =
∑

I∈Ii

∫

I

F(x, `)d` =
∑

j

(∑

I∈Ii

∑

k

αI,i,j,k
k + 1

(
uk+1
I − lk+1

I

))
xj

Finally, combining with Theorem 6.1 and (6.3), we get

Pr(r(ti) = j) =
1

ui − li

∫ ui

li

Pr
(∑

j 6=i

δ(sj > `) = j
)

d`

=
1

ui − li

∑

I∈Ii

∑

k

αI,i,j,k
k + 1

(
uk+1
I − lk+1

I

)
(6.6)

6.1 Exact Algorithms 107

PRF PRFω(h)

Uniform O(
∑

jm
3
j) O

(∑
j(m

2
j min(mj, h))

)

Uniform+TU O(
∑

jm
2
j(mj +m′′j)) O

(∑
j

(
m2
j min(mj +m′′j , h)

)

P-Poly(γ) O(γ2
∑

jm
3
j) O

(
γ2
∑

j(m
2
j min(mj, h))

)

P-Poly(γ)+TU O(γ2
∑

jm
2
j(mj +m′′j)) O(γ2

∑
jm

2
j min(mj +m′′j , h))

PRFe PRF`

Uniform O(
∑

jm
2
j) O(

∑
jmj)

Uniform+TU O(
∑

jmj(mj +m′′j)) O(
∑

jmj)

P-Poly(γ) O(γ2
∑

jm
2
j) O(γ2

∑
jmj)

P-Poly(γ)+TU O(γ2
∑

jmj(mj +m′′j)) O(γ2
∑

jmj)

Table 6.2: Running Time. TU means tuple uncertainty and P-Poly(γ) indicates piecewise
polynomial distributions with maximum degree γ. We assume that all small intervals
are already sorted. Otherwise, we have another additive factor of |I| log(|I|) for each
entry. The summation is over all small intervals. Recall mj is the overlap number on
small interval Ij .

6.1.2.2 Implementation and Analysis of Running Time

For each small interval Ij ∈ I, let Mj (M ′
j or M ′′

j) be the set of tuples whose score

interval contains (lies to the left or right) Ij. i.e., {ti | Ij ⊆ Ii} ({ti | uIj ≤ li} or

{ti | lIj ≥ ui}). Let mj = |Mj|, m′ = |M ′
j|, m′′ = |M ′′

j | and m =
∑

jmj. We call

mj the overlap number on Ii

Naively constructing each Fi(x, `) in each small interval and expanding the

polynomial from scratch is too expensive (we need to expand at most O(n2) poly-

nomials and expanding each of them could take up to O(n3) time). We notice the

significant similarity of the polynomials that we can take advantage of to reduce

the running time. For example, in a interval I, Fi(x, `) and Fj(x, `) differ in only

two multiplicative terms.

6.1 Exact Algorithms 108

Consider a tuple i and a small interval Ij ∈ Ii. Define

F̃Ij(x, `) =
n∏

j=1

(
ρj(`) + ρ̄j(`)x

)
=
∏

j∈M ′j

1
∏

j∈Mj

(
ρj(`) + ρ̄j(`)x

) ∏

j∈M ′′j

x

=
∏

j∈Mj

(−lj + `+ ujx− x`
uj − lj

)
xm
′′
j (6.7)

From (6.2) and (6.5), we can see that on interval Ij,

Fi(x, `) = F̃Ij(x, `)
ui − li

−li + `+ uix− x`
. (6.8)

Our algorithm first constructs and expands F̃j(x, `) for each small interval

Ij ∈ I in a straightforward manner. This can be done in O(m3
j) time. Then, we

compute the expansion for Fi(x, `) for each i ∈Mj, for small interval Ij, based on

6.8, which needs O(m2
j) time. We summarize the overall steps in Algorithm 4. It

is not hard to see that this process takes O(
∑

jm
3
j) time, provided the intervals I

are already computed and sorted.

Algorithm 4: PRF-Uniform

Sort ∪nj=1{lj, uj} in an increasing order and construct intervals1

Ij, 0 ≤ j ≤ 2n;
F̃0(x, `) = 1;2

for t = 1 to 2n do3

Expand F̃t(x, `) ;4

for each ti ∈Mt do5

Expand Fi(x, `) according to (6.8); (Note that we can obtain6

coefficients αIt,i,j,ks in this step);

Compute Υ(ti) according to (6.6);7

Return k tuples with largest |Υ| values;8

6.1 Exact Algorithms 109

6.1.3 Extensions

We first show how to improve the running time of the above algorithm for some

important special cases. We then extend the basic algorithm to handle tuple

uncertainty, and piecewise polynomial distributions.

Computing PRFω(h): Since ω(j) = 0 for all j > h, we only need the probability

values Pr(r(ti) = j) for j ≤ h. Therefore, we only need to expand zi(x) up

to the xh term. See Table 6.2 for the running time. Since h is typically much

smaller than the number of tuples n, the improvement can be significant.

Computing PRFe: As in Section 5.1.3, we have the same relationship between

the generating function and the PRFe(α) value:

Υ(ti) =
∑

j≥1

Pr(r(ti) = j)αj = zi(α).

Therefore, instead of expanding Fi(x, `) as a polynomial with two variables x

and `, we can substitute the variable x with the numerical value α and expand

Fi(α, `) instead by treating it as a polynomial with a single variable `. Manip-

ulating polynomials with a single variable can be done much faster than with

two variables. See Table 6.2 for the exact running time.

Combining with Tuple Uncertainty: The results described so far can be eas-

ily extended to handle tuple uncertainty. Let pi denote the existence probability

associated with tuple ti. All we need to do is to replace the definition of ρi(`)

with: ρi(`) = Pr(ti does not exist or si ≤ `) = (1− pi) + pi
∫
−∞ µi(x)dx

and still let ρ̄i(`) = 1 − ρ′i(`). It can be seen that Theorem 6.1 still holds (we

omit the proof due to space constraints). Therefore, all algorithms developed

can be applied with the new definitions.

The running time is reported in Table 6.2. We notice that, although the al-

gorithms are almost the same, the running time may be a bit higher than the

case without tuple uncertainty. The reason is that a tuple may contribute non-

6.1 Exact Algorithms 110

trivially to another tuple’s generating function even if their supports do not

overlap.

Piecewise Polynomial Distributions: Finally, and perhaps most importantly,

this is the last polynomially solvable case that we have been able to identify for

computing general PRF functions. However, this class of distributions allows

us to connect to the rich literature of approximation theory from which we can

borrow powerful techniques and algorithms to approximate arbitrary density

functions. We elaborate on that in the next section.

For a piecewise polynomial pdf, the density function is expressed using different

(typically low-degree) polynomials in different intervals. Figure 6.2 shows an

example of this where the pdf is expressed using 6 different polynomials, two of

which are 0 (this piecewise polynomial is also a very good approximation to a

Gaussian distribution).

The algorithm for computing the PRF values given that all tuples have piece-

wise polynomial pdfs, is quite similar to the one for uniform distribution. We

partition the real line into small intervals such that the density function of

each tuple can be represented as a single polynomial in each small interval.

Consider the small interval I = [lI , uI]. Assume the pdf of si is µi(x) =
∑hi

j=0 ai,jx
j for all x ∈ I. By indefinite integration, the cdf of si over I is

ρi(x) =
∑hi

j=0
ai,j
j+1

xj+1 + Ci,I where Ci,I is a constant which can be determined

by the equation ρi(lI) =
∫ lI
−∞ µi(x)dx. Thus, we know every term inside the

integral in (6.1) is a polynomial of x and `, and their product can be easily ex-

panded in polynomial time. The rest is the same as in the uniform distribution

case and we can use similar trick to (6.8) to improve the running time. See

Table 6.2 for the exact running time.

6.2 Arbitrary Probability Densities 111

-2 -1 0 1 2

x

0.0

0.2

0.4

0.6

0.8

f(x
)

Gaussian(0, 0.6)
Cubic Spline Approx.

(2+x)31
6 (2-x)31

6(4-6x2-3x3)1
6 (4-6x2+3x3)1

6
00

Gaussian(0, 0.6)
Cubic Spline Approx

Figure 6.2: Approximating a Gaussian distribution using a Cubic Spline with 6 pieces
(e.g. in the interval [−2,−1], the approximation is done using 1

6(2 + x)3).

6.2 Arbitrary Probability Densities

For arbitrary probability density functions, the term inside the integral of (6.1) is

not a polynomial any more, and in fact may not even have a closed form expres-

sion. This is true for one of the most widely used probability distributions, namely

the Gaussian distribution. For most such distributions, the best we can hope for

is an efficient approximation. In this section, we first present a general frame-

work for approximate ranking in presence of arbitrary density functions through

use of piecewise polynomial approximations (specifically, cubic spline approxima-

tion). We then analyze the approximation quality of our cubic spline technique

and compare it with the discretization method and the Monte Carlo method. Fi-

nally, we propose a highly efficient approximation algorithm to compute PRFe using

Legendre-Gauss Quadrature.

6.2.1 A Generic Approximation Framework

The class of piecewise polynomials, also called splines, is known to be very powerful

at approximating other functions. There are many different types of splines and

the study of them has a long history with a huge body of literature. In this paper,

6.2 Arbitrary Probability Densities 112

we focus on the perhaps most widely used one, cubic spline, in which each piece

of polynomial is of degree at most 3.

The high level idea of our approximation framework is very simple: For each

tuple, we use one cubic spline to approximate the probability density function of

its score, then we apply the exact polynomial-time algorithm developed in the

previous section to compute the PRF values.

Now, we briefly discuss how to use cubic spline to approximate an arbitrary

function µ(x). We assume µ(x) is defined over a closed interval [l, u] and we can

evaluate the value of µ(x) and the first derivative dµ
dx

(x) at any l ≤ x ≤ u. We

choose k breaking points τi such that l = τ1 < τ2 < . . . < τk = u. We assume for

now τi+1− τi = u−l
k−1

for all i. For each interval [τi, τi+1], we construct a polynomial

Pi(x) of degree at most 3 such that the value and the first derivative of Pi(x) agree

with µ(x) at τi and τi+1, i.e.,

Pi(τi) = µ(τi),
dPi
dx

(τi) =
dµ

dx
(τi),

Pi(τi+1) = µ(τi+1),
dPi
dx

(τi+1) =
dµ

dx
(τi+1).

It can be shown that (see e.g. [57, pp. 40] for the derivation)

Pi(x) = ci,1 + ci,2(x− τi) + ci,3(x− τi)2 + ci,4(x− τi)3

where the coefficients can be computed as:

ci,1 = µ(τi), ci,2 =
dµ

dx
(τi),

ci,4 =
1

(τi+1 − τi)2

(
dµ

dx
(τi) +

dµ

dx
(τi+1)− 2

µ(τi)− µ(τi+1)

τi − τi+1

)

ci,3 = ci,4(τi+1 − τi) +
1

τi+1 − τi

(
µ(τi)− µ(τi+1)

τi − τi+1

− dµ

dx
(τi)

)

We can easily see that the running time to construct a spline approximation for

6.2 Arbitrary Probability Densities 113

one tuple is only linear in the number of breaking points. In general, more break-

ing points implies better approximation quality, however, this will also increase the

running time for both constructing the splines and in particular, of the exact al-

gorithm for computing PRF. We empirically evaluate this trade-off in Section 6.5.

It is possible to use higher order splines or unequal length partitions which, some-

times, are better choices for approximation. Exploring these opportunities is left

for future work.

6.2.2 Theoretical Comparisons

Here we compare the asymptotic behavior of convergence of the spline approx-

imation with other two methods that have been considered in prior work, the

Monte Carlo method and the discretization method. Our analysis reveals interest-

ing precision-complexity trade-offs among various methods and suggest that spline

approximation is more advantageous when a high precision is required, while the

Monte Carlo method is more efficient otherwise.

For completeness of the paper, we briefly describe the Monte Carlo method and

the discretization method. Monte Carlo simulation is a widely used and much sim-

pler method to approximate a variety of quantities such as probability, expectation

etc., and it can be used to approximate PRF functions as well. To approximately

rank a dataset using Monte Carlo simulation, we draw N independent random

samples from the probabilistic database D (each sample being a possible world),

and sort every sample. Let ri(t) be the rank of tuple t in the ith sample. Our

estimate of Υω(t) is simply:

Υ̃ω(t) =
1

N

N∑

i=1

ω(t, ri(t)).

The method of discretizing continuous distribution has been suggested in [48],

however, no further detail and analysis is provided. In this paper, we consider

6.2 Arbitrary Probability Densities 114

0 1 2 3 4 5

x (N = n^x)

0

2

4

6

y
(

pr
ec

is
io

n
:

1/
n^

y
) Monte-Carlo

Cubic Spline
Discretization
Legendre-Gauss(deg=2)
Legendre-Gauss(deg=10)

Figure 6.3: The asymptotic precision-complexity trade-offs for various methods. Note
the meaning of the axis: N = nx, precision is of order 1/ny. All constants hidden in big
O are ignored.

the following natural discretization: We partition the supp(µi) into N equal-length

intervals Ii,1, Ii,2, . . . , Ii,N . The number N depends on the granularity we decide

to use. Then, ti is replaced by a set of x-tuples (the set of tuples are mutually

exclusive) t′i,1, . . . , t
′
i,N such that t′i,j has a fixed score si,j = midpoint of Ii,j and

existence probability Pr(ti,j) =
∫
Ij
µi(x)dx.

In order to prove anything interesting, we have to make some assumptions; we

discuss their generality and applicability later. Assume that for each i, supp(µi) is

an interval of length O(1) and µi(x) and its first four derivatives are bounded for

all x ∈ supp(µi). We stick ourselves to the cubic spline approximations.

Theorem 6.2. We partition each supp(µ) into small intervals such that the max-

imum length ∆ of any small interval is O(n−β) for some β > 3/8 where n is the

number of tuples. If we use cubic spline to approximate µi based on the partition

and compute the approximation Υ̂ω(t) by the algorithm in Section 6.1, then

|Υ̂ω(t)−Υω(t)| ≤ O(n3/2−4β).

We need a few lemmas before establishing the theorem.

Lemma 1. c1, . . . , cn and e1, . . . , en are complex numbers such that |ci| ≤ 1 and

6.2 Arbitrary Probability Densities 115

|ei| ≤ n−β for all i and some β > 1.

∣∣∣
n∏

i=1

(ci + ei)−
n∏

i=1

ci

∣∣∣ ≤ O(n1−β)

Proof:

∣∣∣
n∏

i=1

(ci + ei)−
n∏

i=1

ci

∣∣∣ =
∣∣∣
∑

S⊆[n],S 6=∅

∏

i∈S

ci
∏

i∈[n]\S

ei

∣∣∣

≤
∣∣∣
n∑

k=1

∑

S⊆[n],|S|=k

∏

i∈S

ci
∏

i∈[n]\S

ei

∣∣∣

≤
n∑

k=1

(
n

k

)
n−kβ ≤

n∑

k=1

nk(1−β)

k!

≤ en
1−β − 1 = O(n1−β)

The third inequality holds because
(
n
k

)
≤ nk

k!
. The last inequality holds since

ez =
∑

i>0
zi

i!
and the last equality is due to the fact that eO(f(n)) = 1 +O(f(n)) if

f(n) = O(1) (e.g. [83, p.452]).

Lemma 2. Let µ be a probability density function with |supp(µ)| = O(1). µ̂ is

another function such that supp(µ̂) = supp(µ) and |µ̂(x) − µ(x)| ≤ ε1 < 1. Let

f, f̂ : R→ C be two functions such that |f(x)| ≤ 1 and |f(x)− f̂(x)| ≤ ε2 < 1 for

all x. Then,

∣∣∣
∫ ∞

−∞
µ(x)f(x)dx−

∫ ∞

−∞
µ̂(x)f̂(x)dx

∣∣∣ ≤ O(ε1 + ε2)

6.2 Arbitrary Probability Densities 116

Proof:

LHS =
∣∣∣
∫

supp(µ)

(
µ(x)f(x)− µ̂(x)f̂(x)

)
dx
∣∣∣

≤
∣∣∣
∫

supp(µ)

(
µ(x)f(x)− µ(x)f̂(x)

)
dx
∣∣∣+
∣∣∣
∫

supp(µ)

ε1f̂(x)dx
∣∣∣

≤
∫

supp(µ)

µ(x)
∣∣f(x)− f̂(x)

∣∣dx+
∣∣∣
∫

supp(µ)

ε1f̂(x)dx
∣∣∣

≤
∫

supp(µ)

µ(x)ε2dx+ ε1|supp(µ)| = O(ε1 + ε2)

The first inequality holds since |a+ b| ≤ |a|+ |b| for any complex numbers a, b. �

Lemma 3. Suppose ω(i) ≤ 1 for all 0 ≤ i ≤ n− 1. Let ψ(0), . . . , ψ(n− 1) denote

the discrete Fourier transform of ω(0), . . . , ω(n− 1). Then
∑n−1

i=0 |ψ(i)| ≤ n3/2.

Proof:

(n−1∑

i=0

|ψ(i)|
)2

≤
n−1∑

i=0

1
∑

i=0

|ψ(i)|2 = n
∑

i=0

|ψ(i)|2 = n2

n−1∑

i=1

ω(i)2 ≤ n3

The first inequality is the the CauchySchwarz inequality which states |〈x, y〉|2 ≤
〈x, x〉〈y, y〉 for any vectors x and y where 〈, 〉 is the inner product. The second

equality follows from Parseval’s equality
∑n

i=0 |ω(i)|2 = 1
n

∑n
i=0 |ψ(i)|2. �

PROOF OF THEOREM 6.2: Let µ̂i be the approximated distribution of si for each

i. Let ρ̄i(`) = Pr(si > `) =
∫∞
`
µi(x)dx, ρi(`) = 1− ρ̄i(`), ρ̂i(`) =

∫∞
`
µ̂i(x)dx and

%̂i(`) = 1− ρ̂i(`). It is known that (e.g. [57, p.40]), for each small interval I,

|µi(x)− µ̂i(x)| ≤
(
|I|
2

)4
maxy∈I |µ(4)(y)|

4!
.

Since |supp(µ)| = O(1) and maxy∈supp(µ) µ
(4)(y) = O(1), we can see |µi(x)−µ̂i(x)| =

O(n−4β). From Lemma 2, it follows that |ρ̄i(`) − ρ̂i(`)| ≤ O(|I|4) = O(n−4β) for

all `.

6.2 Arbitrary Probability Densities 117

For ease of description, we assume that the rank start from 0. Let us focus on

the estimation of Υω(t) for a particular tuple t. Let ψ(0), . . . , ψ(n− 1) denote the

discrete Fourier transform of ω(t, 0), . . ., ω(t, n− 1). Hence, we have

ω(t, i) =
1

n

n−1∑

k=0

ψ(k)e
2π
n
ki i = 0, . . . , n− 1.

where  is the imaginary unit. Denote the PRFe value of t with parameter e
2π
n
k by

Υk(t). Therefore, we have

Υω(t) =
1

n

n−1∑

k=0

ψ(k)Υk(t). (6.9)

Now, we analyze the approximation error for the approximated PRFe value with

any parameter α such that |α| = 1. Since the PRFe value with parameter α

equals the value of the generating function evaluated at α, it suffices to bound

|z(α)− ẑ(α)| where z is the generating function for t (see Eq. 6.1) and ẑ is its

approximation (replace ρ̄is and ρis with ρ̂is and %̂is respectively).

We observe that, for any α ∈ C with α = 1 and any ` ∈ R, |ρj(`) + ρ̄j(`)α| ≤
|ρj|+ |ρ̄j(`)α| = 1. Also,

|%̂i(`) + ρ̂i(`)α− (ρi(`) + ρ̄i(`)α)| ≤ |%̂i(`)− (ρi(`)|+ α|ρ̂i(`)− ρ̄i(`)| ≤ O(n−4β)

Therefore, by Lemma 1, we have

∣∣∣
∏

j 6=i

(
%̂j(`) + ρ̂j(`)α

)
−
∏

j 6=i

(
ρj(`) + ρ̄j(`)α

)∣∣∣ ≤ O(n1−4β)

Recall that zi(x) = x
∫∞
−∞ µi(`)

∏
j 6=i

(
ρj(`) + ρ̄j(`)x

)
d`. Applying Lemma 2, we

6.2 Arbitrary Probability Densities 118

can get

|ẑi(α)−zi(α)| ≤ O(n1−4β + n−4β) = O(n1−4β)

Hence, from (6.9) and Lemma 3, we obtain

|Υ̂ω(t)−Υω(t)| =
∣∣∣ 1
n

n−1∑

k=0

ψ(k)
(
Υ̂k(t)−Υk(t)

)
]
∣∣∣

=
∣∣∣ 1
n

n−1∑

k=0

ψ(k)
(
ẑk(e

2π
n
k)−zk(e

2π
n
k)
)∣∣∣

≤ 1

n
O(n1−4β)

∣∣∣
n−1∑

k=0

ψ(k)
∣∣∣ = O(n3/2−4β)

This completes the proof of the theorem. �

Assuming bounded length of the support and continuity of the first derivative

of µi for each i, we can prove the following asymptotic convergence behavior for

the discretization method.

Theorem 6.3. If we replace the continuous distribution µi with a discrete distri-

bution over O(nβ) points (in the way described above) for some β > 3/2, and we

compute the PRF value Υ̂ω(t) for the discrete distribution. Then, we have:

|Υ̂ω(t)−Υω(t)| ≤ O(n3/2−β).

On the other hand, the following fact about the Monte Carlo method is a well

known folklore (see [136, Ch.11]) : With N = Ω(1
ε2

log 1
δ
) samples, we can get a

approximated Υω(t) value within an additive error ε with probability at least 1−δ.
To better compare it with the other two methods, we rephrase this fact as follows:

Theorem 6.4. With N = Ω(nβ log 1
δ
) samples, the Monte Carlo method yields an

approximation Υ̃ω(t) of Υω(t) such that

Pr
(
|Υ̃ω(t)−Υω(t)| ≤ O(n−β/2)

)
≥ 1− δ

6.2 Arbitrary Probability Densities 119

For ease of comparison, we use N to denote (1) the number of small intervals

into which we partition the support of one tuple for the spline technique, (2)

the number of discrete points which we use to approximate a continuous pdf for

discretization method and (3) the number of samples we take for Monte Carlo

method. Doubling N is roughly equivalent to doubling the execution time for each

method. With Theorems 6.2, 6.3 and 6.4, the precision-complexity trade-offs of

the three methods become clear: spline method has a relatively high overhead

O(
∑

jm
3
j), the discretization method has an O((nN)2) implementation (use an

and/xor tree to represent the attribute uncertainty and then apply the algorithm

in Section 5.1.2) while Monte Carlo method only needs O(n log n) time for each

sample. However, roughly speaking, doubling N increases the precision by 24 = 16

times for the spline method, 2 times for discretization, but only by
√

2 times for

Monte Carlo method. Therefore, the spline method starts to outperform the other

two when higher precision is required. See Figure 6.3 for a clearer illustration of

the trade-off.

In many applications, very high precision is often required. Now, we give a

contrived but still simple example. Consider the problem of ranking a subset of

10 tuples {ti}10
i=1, in a database which has 20 tuples {ti}20

i=1, by their probability of

being the top answer, i.e., Pr(r(t) = 1) (this is a special case of PRFω). Assume

the score si of ti is certain and around 6 for 11 ≤ i ≤ 20. The other 10 tuples are

the ones we want to rank and their scores follow Gaussian distribution with mean

around 0 and standard deviation around 1. By a rough analytic estimation, we

can show that Υ(ti) = Pr(ti = 1) for all 1 ≤ i ≤ 10 are in an order of magnitude

O(10−11), and it is likely that the Monte Carlo estimates for them are all zero with

even O(109) samples. Therefore, in order to get a relatively accurate estimate, an

astronomical number of samples are needed. On the other hand, by partitioning

[−10, 10] into 105 small intervals (let β = 4), the spline approximation can give us

an estimate with error in an order of O(10−14) by Theorem 6.2, which should be

fairly good estimates of Υ(ti).

6.2 Arbitrary Probability Densities 120

Now, we discuss the assumptions we made for Theorem 6.2 and Theorem 6.3.

For some distributions, for example, the Gaussian distribution, the support is not

bounded. However, in many cases, we can truncate the distribution and ignore the

tail with minuscule probability. For example, for a random variable x following

the standard Gaussian distribution N (0, 1), the probability that x > 6 is less

than 2× 10−9. Note that the truncation needs to be done by taking the precision

requirement into consideration, like what we did in the previous example, i.e., we

truncated Gaussian at ±10. The assumption |supp(µi)| = O(1) captures the fact

that (most of) the probability mass of a distribution concentrates within a bounded

range and does not scale with the size of the database. For instance, the variance

of the temperature reported by a sensor does not scale with the number of sensors

deployed and the number of readings that are stored. Assuming certain continuity

of the density function and its derivatives is necessary for most approximation

techniques with provable bounds, and is usually satisfied in practice.

In the end, we would like to remark that all analyses done in this section

are worst case analyses and better bounds may be obtained if more information

about the dataset is provided. For example, if the variances of the PRF values

are small, less samples are needed to obtain an approximation with the prescribed

error bound (See e.g. [52] 1).

6.2.3 Approximating PRFe(α) by Legendre-Gauss Quadrature for α ∈ R

As we discussed in Section 6.1.3, the PRFe(α) value of tuple ti has a closed form

expression, which is the value of the generating function (6.1) evaluated at α,

i.e., zi(α). For arbitrary distributions, we can of course use the approximation

technique developed for general PRF functions. However, we observe that zi(α)

is simply the integral of the function f(`) =
∏

j 6=i(ρj(`) + ρ̄j(`)α)µ(`), which we

1Actually, the aim of [52] is to obtain an estimation with a relative error. It is straightforward
to translate the result in terms of additive error. However, the worst case is the same as in
Theorem 6.4.

6.2 Arbitrary Probability Densities 121

can evaluate at any point ` in polynomial time2. Given this, we can use Legendre-

Gauss quadrature, an existing numerical integration method, to achieve a much

more efficient approximation of PRFe(α) for real α. For completeness, we briefly

describe the integration technique next.

Suppose we want to approximate
∫ b
a
f(x)dx by a linear sum

∑k
i=1 cif(xi) for

a fixed integer k where ci and xi are to be determined but independent of the

function f . Actually, if we let c1 = . . . = ck = c = 1/(k − 1), xi = a + ci and

k approach to infinity, the linear sum is exactly the Riemann sum which should

be equal to the value of the integral. However, in practice, we are only allowed to

evaluate the function at a finite number of points which results in an approximation

of the integral. Assume that a = −1 and b = 1. The Legendre-Gauss quadrature

of degree k evaluates the function at xi for 1 ≤ i ≤ k where xis are the k roots of

Legendre polynomial of degree k and ci can be computed by

ci =

∫ 1

−1

∏

j 6=i

(
x− xj
xi − xj

)
dx.

For example, the roots of Legendre polynomial of degree 3 are x1 = −
√

3/5, x2 =

0, x3 =
√

3/5. Then we can get c1 = 5/9, c2 = 8/9 and c3 = 5/9. Therefore, our

approximation is simply:

∫ 1

−1

f(x)dx =
5

9
· f(−

√
3

5
) +

8

9
· f(0) +

5

9
· f(

√
3

5
) + error

Computing the roots {xi}i=1,...,k for general k is computationally nontrivial. How-

ever, due to the practical importance of the method, the values of xi and ci have

already been tabulated for every k up to a few hundreds [170] and we can use these

values directly.

2We assume ρi(x) and ρ̄i(x) can be computed easily.

6.2 Arbitrary Probability Densities 122

If the integral is not [−1,+1], we can use the following simple transform:

∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f
(
a+

b− a
2

(y + 1)
)
dy

and then approximating
∫ 1

−1
g(y)dy where g(y) = f(a+ b−a

2
(y+ 1)). Sometimes, if

the length of [a, b] is very large, it is better to partition [a, b] into small intervals,

approximate the integral over each small interval such that we do not need to

evaluate the function at many points in each small interval, thus can still use the

existing xi and ci values from the tablet. It is called composite rule.

Theoretically, assuming continuity of the 2kth derivative of f(x), if we partition

[a, b] into N small intervals and apply Legendre-Gauss quadrature of degree k on

each small interval, the approximation error is

Error =
(b− a)2k+1

N2k

(k!)4

(2k + 1)[(2k)!]3
f (2k)(ξ)

where ξ is some points in (a, b) [150, pp.116]. Let ∆ = b−a
N

. If we treat k, f(x) as

fixed, the behavior of the error (in terms of ∆) is Error(∆) = O(∆2k). Although it

seems that the error decays exponentially with k (assuming N fixed) and polyno-

mially with N (assuming k fixed), in practice, people usually use Legendre-Gauss

quadrature with a bounded degree (typically k < 20). This is because (1) it is good

enough for most applications, (2) the roots for high order Legendre polynomial are

nontrivial to compute and (3) it is hard to analyze and control the behavior of

the higher order derivative of f(x), thus the error. See Figure 6.3 for the asymp-

totic Error-N (precision-complexity) trade-offs. In our experimental study, we use

Legendre-Gauss quadrature of degree 10.

6.3 Expected Ranks and PRFl 123

6.3 Expected Ranks and PRFl

Recall that PRF` is a special case of the PRF function where the weight function is

linear, i.e., wi = ω(i) = n− i. Aside from being a natural weight function, another

key reason to study PRF` is its close relationship to expected ranks (Section 4.3).

From the definition, we can see that:

PRF`(t) = −
∑

i>0

i× Pr(r(t) = i) + np(t)

Next, we present algorithms for computing
∑

i>0 i × Pr(r(t) = i), and hence for

ranking according to PRF` or expected ranks.

Since tuple uncertainty is also considered, we let ρ̄i(`) = Pr(si ≥ `) = pi
∫∞
`
µi(x)dx.

We can then see:

∑

i>0

i Pr(r(t) = i) = pi

∫ +∞

−∞
E
[∑

j 6=i

δ(sj > `) | si = l
]
µi(`)d`

= pi
∑

j 6=i

∫ +∞

−∞
E
[
δ(sj > `)

]
µi(`)d`

= pi
∑

j 6=i

∫ +∞

−∞
ρ̄j(`)µi(`)d`

= pi
∑

j 6=i

pj

∫ +∞

−∞

∫ +∞

l

µj(x)µi(`)dxd`

Let A be a class of functions. Suppose each µi(`) is a piecewise function such

that each piece can be expressed by a function in A. Similar to Section 6.1.2,

we partition the real line into a set I of small intervals such that in each small

interval, every µi(`) can be expressed by a single formula.

In general, given i, j and small interval I, if we can obtain the numerical value

of: ∫ uI

lI

∫ ∞

`

µj(x)µi(`)dxd`

6.3 Expected Ranks and PRFl 124

in O(γ) time, then we can compute
∑

j>0 i Pr(r(ti) = j) in O(γn|Ii|) time.

The expected ranks and the PRF` values for all tuples can then be computed in

O(γn
∑

i |Ii|) = O(γn
∑

jmj) time. Next we look at different classes of functions

A in turn.

Gaussian: Suppose si is a normally distributed with mean λi and variance σ2,

denoted si ∼ N (λi, σ
2
i). Since Gaussians are defined on the entire real line,

we have a single partition [−∞,+∞]. By the above discussion, the problem

reduces to computing
∫ +∞
−∞

∫∞
`
µj(x)µi(`)dxd` for any i, j. The key observation

here is that the above formula is exactly Pr(sj ≥ si). Also, it is well known that

sj − si ∼ N (λj − λi, σ2
j + σ2

i). Therefore,

Pr(sj ≥ si) = 1− Φ
(λi − λj√

σ2
j + σ2

i

)
= Φ

(λj − λi√
σ2
j + σ2

i

)

where Φ(x) is the cdf of the standard normal distribution N (0, 1), i.e.,

Φ(x) =
1√
2π

∫ x

−∞
e−

x2

2 dx.

Indeed, the first equality is due to the fact that the cdf of N (λ, σ2) is Φ(x−λ
σ

)

and the second holds since Φ(x) = 1− Φ(−x).

Φ(x) has been widely used in scientific and statistical computing and its numer-

ical value with high precision can be computed extremely efficiently [2]. It is a

built-in function in many programming languages now-a-days. Therefore, it is

very reasonable to assume that it can be computed in O(1) time even though it

does not have a closed form expression. The overall running time for computing

PRF` values of all tuples is then O(n2).

A similar relationship between expected ranks and Pr(sj ≥ si) was also ob-

served by Cormode et al. [48], who use it to to obtain algorithms for discrete

distributions.

6.3 Expected Ranks and PRFl 125

We can generalize this algorithm to handle convex combinations of Gaussians.

We refer the reader to the extended version of the paper for details.

Exponential: Suppose si follows the exponential distribution with rate parameter

λi, i.e., µi(x) =




λie
−λix, x ≥ 0,

0, x < 0.

We only need to consider the positive axis. It is easy to see that:

∫ ∞

0

∫ ∞

`

µj(x)µi(`)dxd` = λiλj

∫ +∞

0

∫ ∞

`

e−λjxe−λi`dxd`

= λi

∫ +∞

0

e−(λi+λj)`d` =
λi

λi + λj
.

Hence, the PRF` values can be computed in O(n2) time.

Piecewise polynomial of order γ: Directly applying the above framework gives

anO(γ2n
∑

jmj) time algorithm. We can improve the running time toO(γ2
∑

jmj)

as follows. For each small interval Ij, we first compute the expansion of the

polynomial
∑

j ρ̄j(`) which can be done in O(γmj) time (mj additions of poly-

nomials of degree γ). Subsequently, for each i such that Ij ∈ Ii, the expansion

of
∑

j 6=i ρ̄j(`)µi(`) can be obtained in O(γ2) time (subtract ρ̄j(`) from
∑

j ρ̄j(`)

and then multiply with µi(`))
3 and computing the numerical value of:

AIj ,i =

∫

Ij

∑

j 6=i

ρ̄j(`)µi(`)d`

takes an additional O(γ) time (integrating each term of the polynomial takes

O(1) time). Therefore, the overall running time is O(γ
∑

jmj+
∑

jmj(γ
2+γ)) =

O(γ2
∑

jmj).

3Actually, this can be done in O(γ log γ) time by using FFT. However, since γ is usually very
small, we can just do the polynomial multiplication in the straightforward manner which takes
O(γ2) time.

6.4 Application to Probabilistic k-Nearest Neighbor 126

Uniform: This is a special case of the previous one with γ = 1. Thus, the running

time is O(
∑

jmj).

To summarize, the expected ranks and the PRF` values for all tuples can be com-

puted very efficiently (in O(n2) time) for many continuous probability distribu-

tions. This significantly generalizes the results on these two functions in the prior

work.

6.4 Application to Probabilistic k-Nearest Neighbor

The nearest neighbor (NN) and k-nearest neighbor queries (k-NN) are of great

importance on both graphs and relations. Given a distance or dissimilarity function

and a query point q, the NN (or k-NN) query returns the node (or the k nodes)

that is closest to q according to the distance function. Both queries have been

extended to probabilistic datasets in recent years [121,42,23,44,148].

In this section, we briefly sketch how to apply our algorithms for PRF to prob-

abilistic nearest neighbor (Prob-NN) and probabilistic k-nearest neighbor (Prob-k-

NN) queries over uncertain objects. For generality, we only consider Prob-k-NN

since Prob-NN is just special case of Prob-k-NN with k = 1. Suppose we are given a

set of uncertain objects {ti}ni=1 in d-dimensional Euclidean space Rd. The position

of each object ti is captured by a pdf pi : Rd → R+ and is independent of other

objects. For a set of deterministic points, define kNN(q) to be the set of k points

that have the smallest Euclidean distances from q.

Definition 6. Given a query point q ∈ Rd, a Prob-k-NN query retrieves k objects

that have highest Pknn values where Pknn(ti, q) = Pr(ti ∈ kNN(q)).

In other words, we are looking for the objects that have the highest probability

of being one of the k nearest neighbors of the query point. Kriegel et al. [121] and

Cheng et al. [42] considered the threshold version of the query with k = 1, i.e., all

objects with P1nn values above a given threshold are returned. Beskales et al. [23]

6.4 Application to Probabilistic k-Nearest Neighbor 127

studied exactly the above query with k = 1. Cheng et al. [44] also considered kNN

queries in a probabilistic setting. However, their semantics focus on the probability

that a set of vertices is (as a whole) the set of k nearest neighbors (a semantics

similar to U-Top-k [167]). This is not captured by the above definition (and cannot

be captured using a PRF function either).

In fact, it is not hard to see that the Prob-k-NN query can be directly translated

into a PRFω query with the weight function:

ω(i) = 1 ∀i ≤ k; ω(i) = 0 ∀i > k

and the pdf of ti’s score being µi(x) = Pr(dis(ti, q) = x). If p is a deterministic

point, all µis are independent and we can apply our exact or approximate algo-

rithms developed in Section 6.1 and 6.2 directly, depending on the type of the

probability distributions µis.

Example 13. If the dimension d = 1 and each pi is a uniform distribution over

interval [ui, li], then µi is a piecewise constant function with at most 2 pieces.

In fact, if q ≥ li or q ≤ ui, µi is a uniform distribution over [min(ui − q, li −
q),max(ui − q, li − q)]; if ui < q < li, µi(x) = 2

li−ui for x ∈ [0,min(li − q, q − ui)]
and = 1

li−ui for x ∈ [min(li− q, q−ui),max(li− q, q−ui)]. Therefore, we can apply

the polynomial time exact algorithm for piecewise polynomials developed in Section

6.1.

Beskales et al. [23] also considered the case where the query point q itself can

be uncertain. Although we can still translate it into a PRF query, our algorithms

cannot be directly applied since the probabilities Pr(dis(ti,q) = x) are correlated

for different objects ti. Theoretically, we can generalize the generating function

technique we developed in Section 6.1 to handle this special correlation. However,

this may introduce integration in higher dimensional space. How to handel such

integration is an interesting research challenge. Finally, we would like to remark

that it is possible to explore the spatial properties and design effective pruning

rules to speed up the running time as the prior work has done. We leave it as an

6.5 Experimental Study 128

interesting future direction.

6.5 Experimental Study

In this section, we present results from an extensive empirical study over several

datasets to illustrate the effectiveness and efficiency of our algorithms and to com-

pare them with the Monte Carlo method and other heuristics proposed in prior

work.

Datasets: We mainly use several synthetic datasets with various distributions

and deviations to study our algorithms.

• UNIFM-n-d: We have 40 datasets, each of which contains a mixture of certain

tuples and uncertain tuples with uniformly distributed scores. All scores are

between [0, 10000]. n(= 10000, . . . , 100000) is the number of tuples and d(=

1, 2, 3, 4) indicates the degree of “variance” of the data. Specifically, for d = 1

(2, 3, 4 resp.), we have 10% (%30, %50, %90 resp.) uncertain tuples and the

average length of the support intervals is 2 (5, 10, 20 resp.).

• GAUSS-n-d: We have 40 datasets which is a mixture of certain tuples and

uncertain tuples with normally distributed scores. All scores and the means of

Gaussians are uniformly chosen between [0, 1000]. n(= 1000, . . . , 10000) and

d(= 1, 2, 3, 4) have the same meaning as in the uniform case. Specifically, for

d = 1 (2, 3, 4 resp.), we have 10% (%30, %50, %90 resp.) uncertain tuples and

the average standard deviation of the uncertain scores is 2 (5, 10,20 resp.).

• ORDER-d: There are 5 datasets that are specially designed to test the con-

vergence of various methods. Each of them has 1000 tuples {t1, . . . , t1000}.
All scores are normally distributed with the same standard deviation 1. In

ORDER-d (where d = 0, 1, 2, 3, 4, 5), the mean of the score of ti is i · 10−d.

Note that as d increases, the Gaussian distributions have means very close to

each other, and become harder to separate from each other.

6.5 Experimental Study 129

Setup: All the algorithms were implemented in C++, and the experiments were

run on a 2GHz Linux PC with 2GB memory. We compare the following algorithms

with varying parameters:

• SPLINE: The exact algorithm for uniform and spline distributions (developed in

Section 6.1.2) and the spline approximation. For spline approximation, we run

the algorithms on various granularities, i.e., the maximum length of the small

intervals.

• DISC: The discretization method (outlined in Section 6.2.2). The parameter is

the number of discrete points that we use to replace a continuous distribution.

After discretizing the continuous distributions, we use the algorithm developed

in Section 5.1.2 to compute PRF value for x-tuples.

• MC: We run the Monte Carlo method (outlined in Section 6.2.2) with different

number of samples.

To measure the approximation quality of an algorithm, we use the Kendall’s

tau distance between the true ranking and the ranking obtained by the algorithm.

Kendall’s tau distance between two rankings is defined to be the number of rever-

sals, i.e., tuple pairs that are in different order in the two rankings [117].

6.5.1 Spline vs. Monte Carlo vs. Discretization

We begin with considering the speed of convergence of various approximation

methods by varying the granularity or the number of samples. Our first set of

experiments is to approximate an arbitrary PRF function for the GAUSS datasets

using SPLINE, DISC and MC. The weight function we use is ω(ti, j) = 1/j. Since no

polynomial time algorithm is known to compute PRF values with such a weight

function for general distributions, there is no easy way to know the true (ground)

ranking. We however take the presumed truth to be the ranking obtained by SPLINE

with a very fine granularity (the length of each small interval is 0.005). As we can

see from Figure 6.4(a), when the granularity is finer than 0.5, SPLINE converges to

6.5 Experimental Study 130

 1 0.5 0.2 0.1 0.05 0.02

1000

2000

3000

4000

5000

K
en

d
a

ll
 D

is
ta

n
ce

GAUSS-1000-1

GAUSS-1000-2

GAUSS-1000-3

GAUSS-1000-4

Granularity (max len. of small intervals)

0

1

10

100

1000

10000

(a) Spline

ru
n

n
in

g
 t

im
e

(s
ec

.)

5 10 20 50 100 200

50

100

150

200

250

K
en

d
a

ll
 D

is
ta

n
ce

GAUSS-1000-1

GAUSS-1000-2

GAUSS-1000-3

GAUSS-1000-4

Granularity (number of discrete pts)

0

1

10

100

1000

10000

(b) Discretization

ru
n

n
in

g
 t

im
e

(s
ec

.)

10 100 1000 10000 100000

200

400

600

800

1000

K
en

d
a

ll
 D

is
ta

n
ce

GAUSS-1000-1

GAUSS-1000-2

GAUSS-1000-3

GAUSS-1000-4

Number of samples

0

0

1

10

100

1000

10000

(c) Monte Carlo

ru
n

n
in

g
 t

im
e

(s
ec

.)

10 100 1000 10000 100000

0

1

10

100

1000

10000

100000

K
en

d
a

ll
 D

is
ta

n
ce

ORDER-0

ORDER-1

ORDER-2

ORDER-3

ORDER-4

ORDER-5

Number of samples

0

0

1

10

100

1000

(d) Monte Carlo

ru
n

n
in

g
 t

im
e

(s
ec

.)

Figure 6.4: The comparison of various methods for computing general PRF (weight
function ω(t, j) = 1/j). Solid lines indicate the running times (with axes drawn on the
right hand side), whereas dashed lines indicate the Kendall distance (an error measure).

a fixed ranking. We also check the changes of the actual PRF value for the tuples

– when the granularity is finer than 0.1, is less than 10−10. Therefore, we can be

confident that the presumed true ranking is actually the true ranking. We also

note that the running time of SPLINE depends heavily on the overlap numbers.

Figure 6.4(c) shows the convergence rate and running time of MC. We can see

that MC converges slower than SPLINE in all cases, especially when the average

standard deviation becomes larger. This is not quite surprising since the conver-

gence rate of MC highly depends on the variance of the random variable – a higher

variance in general implies a slower convergence rate. A closer look at the actual

6.5 Experimental Study 131

approximated PRF values reveals that the changes are in a order of magnitude of

10−3 ∼ 10−5 even when more than 10000 samples are used. The running time of

MC is roughly linear in the number of samples, and does not depend on the overlap

number as oppose to SPLINE. So, the running time curves for all GAUSS-1000-d

datasets are roughly the same and we only plot one of them.

From Figure 6.4(b), we can see that the convergence rate of DISC is slower than

SPLINE, but much faster than MC. We can see that by replacing a Gaussian with

a distribution over only k = 5 discrete points, we can get an approximate ranking

with less than 200 reversals w.r.t. the true ranking.

Next we compare the behaviors of three algorithms on ORDER-datasets. Since

all Gaussian distributions have the same standard deviation, a Gaussian distribu-

tion with a higher mean stochastically dominates one with a lower mean, thus

having a higher Υω value for any positive decreasing weight function ω. So we

know the true ranking is {t1000, t999, . . . , t1}. Both SPLINE and DISC can find the

exact ranking, with even the coarsest granularity, so we omit their curves. This

phenomena may be due to the regularity in the datasets and the approximation

algorithms, which result in homogeneous errors in the estimation of PRF values,

thus the correct order is preserved. On the other hand, MC behaves drastically

differently from other datasets (Figure 6.4(d)). MC can find the exact ranking with

a reasonable number of samples, for ORDER-0 and ORDER-1, where the means of

the tuples are well separated. However, when the means of tuples become closer,

so do their PRF values, which makes it really hard for the randomized strategy MC

to separate and rank them. We can see the convergence rate of MC on ORDER-5 is

particular slow: with 100000 samples, the approximate ranking is not much better

than a random permutation.

We also tested a few other weight functions ω, such as piecewise linear function,

and observed similar behaviors. We omit those curves due to space constraints.

6.5 Experimental Study 132

1 0.5 0.2 0.1 0.05 0.02

500

1000

1500

K
en

d
a

ll
 D

is
ta

n
ce

GAUSS-1000-1

GAUSS-1000-2

GAUSS-1000-3

GAUSS-1000-4

Granularity (max len. of small intervals)

0

1

10

100

1000

(a) Spline

ru
n

n
in

g
 t

im
e

(s
ec

.)

1 0.5 0.2 0.1 0.05 0.02

50

100

150

K
en

d
a

ll
 D

is
ta

n
ce

GAUSS-1000-1, deg=10

GAUSS-1000-2, deg=10

GAUSS-1000-3, deg=10

GAUSS-1000-4, deg=10

Granularity (max len. of small intervals)

0.0

0.5

1.0

1.5

2.0

(b) Legendre-Gaussian quadrature

ru
n

n
in

g
 t

im
e

(s
ec

.)

5 10 20 50 100 200 500 1000

50

100

150

200

250

K
en

d
a

ll
 D

is
ta

n
ce

GAUSS-1000-1

GAUSS-1000-2

GAUSS-1000-3

GAUSS-1000-4

Granularity (number of discrete pts)

0.0

0.5

1.0

1.5

(c) Discretization

ru
n

n
in

g
 t

im
e

(s
ec

.)

10
20

50
100

200

500

1000

2000

5000

10000

50000

100000

0

100

200

300

400

500

K
en

d
a

ll
 D

is
ta

n
ce

GAUSS-1000-1

GAUSS-1000-2

GAUSS-1000-3

GAUSS-1000-4

Number of samples

0

0

1

10

100

(d) Monte Carlo

running time

ru
n

n
in

g
 t

im
e

(s
ec

.)

Figure 6.5: The comparison of various methods for computing PRFe(α = 0.99). Solid
lines indicate the running times (with axes drawn on the right hand side), whereas dashed
lines indicate the Kendall distance (an error measure).

6.5.2 LG Quadrature vs. Monte Carlo vs. Discretization for PRFe

We compared the four techniques for PRFe computation: (1) Spline (SPLINE), (2)

Legendre-Gauss Quadrature (LGQ), (3) Monte Carlo (MC), and (4) Discretization

(DISC). The key parameter for LGQ is the granularity of intervals. For SPLINE

and DISC, there are faster implementations, which we will call SPLINE-E and DISC-E

respectively, for computing PRFe.

Figure 6.5(a),(b),(c) and (d) show the execution times and convergence rates

for SPLINE-E, LGQ, DISC-E, and MC, respectively. The “true” ranking is computed

6.5 Experimental Study 133

by using SPLINE-E with a granularity of 0.005. We can see that SPLINE-E converges

very fast, just like the general SPLINE algorithm, but the running time is faster. In

Figure 6.5(b), we can see LGQ (with degree 10) also converges very fast: Exact

ranking can be obtained when the granularity is less then 0.05, which is a bit slower

than SPLINE-E, but the execution time is much lower. For example, LGQ takes less

than 2 seconds to get an exact answer on GAUSS-1000-4 while SPLINE needs more

than 10 seconds. Actually, a significant portion of the execution time is for the

construction of small intervals, so using a higher degree quadrature does not incur

a significant increase in the running time. In Figure 6.5(c), we observe that the

convergence of MC is quite similar to the previous case and the running time is

almost the same since MC does not utilize any special property of PRFe to speed

up the execution. For DISC-E the convergence rate is also similar to the general

DISC algorithm while the running time is much faster.

We also did the experiments on ORDER datasets. The convergence rates for

SPLINE-E, MC and DISC-E are quite similar to their counterparts for the general PRF

computation: SPLINE-E and DISC-E continue to find exact ranking in all granularities

we tested while MC converges rather slowly on ORDER-4 and -5. For LGQ, a

granularity of 1 is able to find the exact ranking for all ORDER-datasets and

execution time is always less then 1 second. Due to space constraints, we omit

those curves.

6.5.3 Execution Times for Exact Algorithms

Figure 6.6(a) shows the execution time of SPLINE, for the UNIFM-datasets, for

different dataset sizes and variances. Recall in all UNIFM-datasets, the scores

are in [0, 10000]. So generally speaking, the higher the variance d is, the larger

the overlap numbers are. The execution time is directly related to the overlap

number, thus increases with d. We can also see the execution time does not

scale linearly with the number of tuples. Again, the reason is that an increasing

number of tuples results in larger overlap numbers. The execution time of SPLINE

6.5 Experimental Study 134

0 20000 40000 60000 80000 100000

n

1

10

100

1000

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
.)

(a) Execution Time for Spline

UNIFM-n-1

UNIFM-n-2

UNIFM-n-3

UNIFM-n-4

0 20000 40000 60000 80000 100000

number of tuples: n

0.5

1.0

1.5

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
.)

(b) Execution Time for PRF-l

UNIFM-n-1

UNIFM-n-2

UNIFM-n-3

UNIFM-n-4

0 2000 4000 6000 8000 10000

number of tuples: n

5

10

15

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
.)

(c) Execution Time for PRF-l

GAUSS-n-1

GAUSS-n-2

GAUSS-n-3

GAUSS-n-4

Figure 6.6: Execution times for (a) SPLINE on UNIFM-datesets, PRF` on UNIFM-
datasets and (b)PRF` on GAUSS-datasets.

for piecewise polynomial was shown in the experiment of approximating PRF for

GAUSS-datasets (the time for constructing splines for each Gaussian distribution

is much smaller compared to computing PRF values for spline distribution). For

PRF` function (see Appendix 6.3 for the details of the algorithm), the execution

time is faster than the general SPLINE method. Figure 6.6(b) and (c) show the

execution time of PRF` on UNIFM- and GAUSS- datasets. As we can see, the

running time increases with d on UNIFM-datasets (running time is O(
∑

jmj))

and is independent of d on GAUSS-datasets (running time is O(n2)).

Chapter 7

Computing Consensus Answers

Recall that in the possible worlds semantics, a probabilistic database is considered

to correspond to a probability distribution over a set of deterministic databases

called possible worlds. Dierent possible worlds may generate dierent top-k answers,

which signicantly complicate the semantics of the top-k queries over probabilistic

databases, as we have already seen from previous chapters. In fact, many other

queries on probabilistic databases have similar semantical issues. One approach

to addressing this issue is to “combine” the possible answers somehow to obtain

a more compact representation of the result. We note that for select-project-join

queries, for instance, one proposed approach is to union all the possible answers,

and compute the probability of each result tuple by adding the probabilities of all

the possible answers it belongs to [54]. This approach, however, cannot be easily

extended to top-k queries or other types of queries like aggregate queries.

In this chapter, we propose another systematic way to to combine the top-k

answers for all possible worlds by putting it in the context of inconsistent infor-

mation aggregation which has been studied extensively in numerous contexts over

the last half century. In our context, the set of different query answers returned

from possible worlds can be thought as inconsistent information which we need to

aggregate to obtain a single representative answer. Concretely, we propose the no-

tion of the consensus answer. Roughly speaking, the consensus answer is a answer

that is closest in expectation to the answers of the possible worlds. To measure

the closeness of two answers τ1 and τ2, we need to define suitable distance function

dis(τ1, τ2) over the answer space. If the most consensus answer can be taken from

any point in the answer space, we refer it as the mean answer. A median answer,

135

7.1 Consensus Answers 136

on the other hand, must be the answer for some possible world with non-zero prob-

ability. We use CON as a shorthand notation to denote the mean answer for top-k

queries.

We briefly summarize the algorithmic results in this chapter. The problem of

aggregating inconsistent rankings has been well-studied under the name of rank

aggregation [64]. We develop polynomial time algorithms for computing mean

and median top-k answers under the symmetric difference metric, and the mean

answers under intersection metric and generalized Spearman’s footrule distance [66]

1, for the and/xor tree model. If the query results are sets and we use the set

difference metrics as the distance function, we show that the mean and the median

answers can be found in polynomial time for the symmetric difference metric for

and/xor tree model. For the Jaccard distance metric, we present a polynomial

time algorithm to compute the mean and median world for a tuple independent

database. Then, we study a specific type of group by count queries and present a

4-approximation to the problem of finding a median answer (finding mean answers

is trivial). We also consider the consensus clustering problem for the and/xor tree

model and get a constant approximation by extending a previous result [8].

We first formally define the consensus answers in Section 7.3.3. Then, we

develop efficient exact or approximate algorithms for computing consensus top-k

answers under different distance functions in Section 7.2. Lastly, we consider some

other types of queries, such as SPJ queries and aggregate queries, in Section 7.3.

7.1 Consensus Answers

We formally define the most consensus answers in this section. We first set up

some notations. Suppose we have n tuples t1, . . . , tn, where tuple ti has a score

s(ti). In the tuple-level uncertainty model, s(ti) is fixed for each ti, while in the

attribute-level uncertainty model, it is a random variable. In the and/xor tree

1We have reviewed these distance functions in Section 2.5.

7.1 Consensus Answers 137

model, we assume that the attribute field is the score (uncertain attributes that

don’t contribute to the score can be ignored). We further assume no two tuples can

take the same score for avoiding ties. We use r(t) to denote the random variable

indicating the rank of t and rpw(t) to denote the rank of t in possible world pw.

If t does not appear in the possible world pw, then rpw(t) = ∞. So, Pr(r(t) > i)

includes the probability that t’s rank is larger than i and that t doesn’t exist. We

say t1 ranks higher than t2 in possible world pw if rpw(t1) < rpw(t2). We use the

symbol τ to denote a top-k ranked list, and τ i to denote the restriction of τ to the

first i items. We use τ(i) to denote the ith item in the list τ for positive integer i,

and τ(t) to denote the position of t ∈ T in τ .

We denote the domain of answers for a query by Ω and the distance function

between two top-k answers by dis().

Definition 7. The most consensus answer τ is defined to be a feasible query answer

such that the expected distance between τ and the answer τpw of the (random) world

pw is minimized, i.e,

τ = arg min
τ ′∈Ω
{E[dis(τ ′, τpw)]}.

We call the most consensus answer in Ω the mean answer when Ω is the set of

all feasible answers. If Ω is restricted to be the set of possible answers (answers

of some possible worlds with non-zero probability), we call the most consensus

answer in Ω the median answer. Taking the example of the top-k queries, the

median answer must be the top-k answer of some possible world while the mean

answer can be any sorted list of size k. dis() can be any distance function discussed

in the last section. We use CON to denote the query that asks for the mean answer

for a top-k query on a probabilistic database.

Example 14. Consider the example in Figure 2.2. Assume k = 2 and the distance

function is the symmetric difference metric dis∆ = |(τ1\τ2) ∪ (τ2\τ1)|. The most

consensus top-2 answer is {t2, t5} and the expected distance is E[dis(τ ′, τpw)] =

.112× 2 + .168× 2 + .048× 4 + .072× 4 + .168× 2 + .252× 0 + .072× 4 + .108× 2.

7.2 Algorithms for Different Metrics 138

We first show that a CON answer under symmetric difference is equivalent to

PT(k), a special case of PRFω. Then, we generalize the result and show that any

PRFω function is in fact equivalent to some CON answer under some suitably de-

fined distance function that generalizes symmetric difference. This new connection

further justifies the semantics of PRFω from an optimization point of view in that

the top-k answer obtained by PRFω minimizes the expected value of some distance

function, and it may shed some light on designing the weight function for PRFω

in particular applications. We also consider the problem of evaluating consensus

answers for other distance metrics.

7.2 Algorithms for Different Metrics

7.2.1 Symmetric Difference and PT(k) Ranking Function

In this section, we show how to find mean and median top-k answers under sym-

metric difference metric in the and/xor tree model. Recall PT(k) query returns k

tuples with the largest Pr(r(t) ≤ k).

Theorem 7.1. If τ = {τ(1), τ(2), . . . , τ(k)} is the set of k tuples with the largest

Pr(r(t) ≤ k), then τ is the mean top-k answer under metric dis∆, i.e, the answer

minimizes E[dis∆(τ, τpw)].

Proof: Suppose τ is fixed. We write E[dis∆(τ, τpw)] as follows:

E[dis∆(τ, τpw)] = E[
∑

t∈T

δ(t ∈ τ ∧ t /∈ τpw) + δ(t ∈ τpw ∧ t /∈ τ)]

=
∑

t∈T\τ

E[δ(t ∈ τpw)] +
∑

t∈τ

E[δ(t /∈ τpw)]

=
∑

t∈T\τ

Pr(r(t) ≤ k) +
∑

t∈τ

Pr(r(t) > k)

= k +
∑

t∈T

Pr(r(t) ≤ k)− 2
∑

t∈τ

Pr(r(t) ≤ k)

7.2 Algorithms for Different Metrics 139

The first two terms are invariant with respect to τ . Therefore, it is clear that

the set of k tuples with the largest Pr(r(t) ≤ k) minimizes the expectation. �

To find a median answer, we essentially need to find the top-k answer τ of some

possible world such that
∑

t∈τ Pr(r(t) ≤ k) is maximum. Next we show how to do

this given an and/xor tree in polynomial time.

We write P (t) = Pr(r(t) ≤ k) for ease of notation. We can’t simply pick k

tuples with the highest P (t) values since some of them may be mutually exclusive.

We use dynamic programming over the tree structure. For each possible attribute

value a ∈ A (A value is used to rank the tuples in the deterministic setting), let T a

be the tree which contains all leaves with attribute value at least a. We recursively

compute the set of tuples pwa(v, i), which maximizes the value
∑

t∈pwa(v,i) P (t)

among all possible worlds generated by the subtree T av rooted at v and is of size

i, for each node v in T a and 1 ≤ i ≤ k. We compute this for all different a values,

and the optimal solution can be chosen to be maxa(pw
a(r, k)).

Suppose v1, v2, . . . , vl are v’s children. The recursion formula is:

1. If v is a ∨© node,

pwa(v, i) = arg max
pw∈PW (T avi)

∑

t∈pw

P (t) = arg max
1≤j≤l

pwa(vj, i).

2. If v is a ∧© node, pwa(v, i) = ∪1≤j≤lpwj such that pwj ∈ PW (T avj),
∑

j |pwj| =
i and

∑
t∈∪jpwj P (t) is maximized.

In the latter case, the maximum value can be computed by dynamic programming

again as follows.

We denote by pwa([v1 . . . vh], i) the set ∪hj=1pwj such that pwj ∈ PW (T avj),
∑h

j=1 |pwj| =
i and

∑
t∈∪hj=1pwj

P (t) is maximized. pwa([v1, . . . vh], i) can also be computed re-

cursively. Let

p = arg max
0≤p≤i

∑

t∈pwa([v1...vh−1],p)∪pwa(vh,i−p)

P (t).

7.2 Algorithms for Different Metrics 140

Then, we have

pwa([v1 . . . vh], i) = pwa([v1 . . . vh−1], p) ∪ pwa(vh, 1− p).

Finally, it is easy to see pwa(v, i) is simply pwa([v1, . . . , vl], i).

Theorem 7.2. The median top-k answer under symmetric difference metric can

be found in polynomial time for a probabilistic and/xor tree.

7.2.2 Weighted Symmetric Difference and PRFω

We present a generalization of Theorem 7.2.2, that is the equivalence between any

PRFω(k) function and CON under weighted symmetric difference distance functions

which generalize the symmetric difference. Suppose ω is a positive function defined

on Z+ and ω(i) = 0∀i > k.

Definition 8. The weighted symmetric difference with weight ω of two top-k an-

swers τ1 and τ2 is defined to be

disω(τ1, τ2) =
k∑

i=1

ω(i)δ(τ2(i) /∈ τ1).

Intuitively, if the ith item of τ2 cannot be found in τ1, we pay a penalty of ω(i)

and the distance is just the total penalty. If ω is a decreasing function, the distance

function captures the intuition that top ranked items should carry more weight. If

ω is a constant function, it reduces to the ordinary symmetric difference distance.

Note that disω is not necessarily symmetric 2. Now, we present the theorem which

is a generalization of Theorem 7.2.2.

Theorem 7.3. Suppose ω is a positive function defined on Z+ and ω(i) = 0∀i > k.

If τ = {τ(1), τ(2), . . . , τ(k)} is the set of k tuples with the largest Υω(t) values,

2Rigorously, a distance function (or metric) should satisfy positive definiteness, symmetry and
triangle inequality. Here we abuse this term a bit

7.2 Algorithms for Different Metrics 141

then τ is the CON answer under the weighted symmetric difference disω, i.e, the

answer minimizes E[disω(τ, τpw)].

Proof: The proof mimics the one for Theorem . Suppose τ is fixed. We can write

E[disω(τ, τpw)] as follows:

E [disω(τ, τpw)] = E
[∑

t∈T

ω(τpw(t))δ(t ∈ τpw ∧ t /∈ τ)
]

=
∑

t∈T\τ

E[ω(τpw(t))δ(t ∈ τpw)]

=
∑

t∈T\τ

k∑

i=1

ω(i) Pr(r(t) = i) =
∑

t∈T\τ

Υω(t)

Therefore, it is clear that the set of k tuples with the largest Υω(t) values minimizes

the above quantity. �

Although the weighted symmetric difference appears to be a very rich class of

distance functions, its relation with other well studied distance functions, such at

Spearman’s rho and Kendall’s tau, is still not well understood. We left it as an

interesting open problem.

7.2.3 Intersection Metric

Note that the intersection metric disI is a linear combination of the normalized

symmetric difference metric dis∆. Using a similar approach used in the proof of

Theorem 7.2.2, we can show that:

E[disI(τ, τpw)] =
1

k

k∑

i=1

E[dis∆(τ i, τ ipw)]

=
1

k

k∑

i=1

1

i

(
k +

∑

t∈T

Pr(r(t) ≤ k)− 2
∑

t∈τ i
Pr(r(t) ≤ i)

)

Thus we need to find τ which maximizes the last term, A(τ) =
∑k

i=1

(
1
i

∑
t∈τ i Pr(r(t) ≤ i)

)
.

7.2 Algorithms for Different Metrics 142

We first rewrite the objective as follows, using the indicator (δ) function:

A(τ) =
k∑

i=1

(
1

i

∑

t∈T

Pr(r(t) ≤ i))δ(t ∈ τ i)

)

=
∑

t∈T

(
k∑

i=1

1

i
Pr(r(t) ≤ i)

i∑

j=1

δ(t = τ(j))

)

=
∑

t∈T

k∑

j=1

(
δ(t = τ(j))

k∑

i=j

1

i
Pr(r(t) ≤ i)

)

The last equality holds since
∑k

i=1

∑i
j=1 aij =

∑k
j=1

∑k
i=j aij.

The optimization task can thus be written as an assignment problem, with each

tuple t acting as an agent and each of the top-k positions j as a task. Assigning

task j to agent t gains a profit of
∑k

i=j
1
i

Pr(r(t) ≤ i) and the goal is to find an

assignment such that each task is assigned to at most one agent, and the profit

is maximized. The best known algorithm for computing the optimal assignment

runs inO(nk
√
n) time, via computing a maximum weight matching on the bipartite

graph [134].

7.2.4 Approximating the Intersection Metric by PRFω

We define the following ranking function, where Hk =
∑k

i=1 1/i denotes the kth

Harmonic number:

ΥH(t) =
k∑

i=1

(Hk −Hi−1) Pr(r(t) = i) =
k∑

i=1

Pr(r(t) ≤ i)

i
.

This is a special case of PRFω with weight function ω(i) = Hk−Hi−1. We claim that

the top-k answer τH returned by ΥH function, i.e., the k tuples with the highest ΥH

values, is a good approximation of the mean answer with respect to the intersection

metric by arguing that τH = {t1, t2, . . . , tk} is actually an approximated maximizer

of A(τ). Indeed, we prove the fact that A(τH) ≥ 1
Hk
A(τ ∗) where τ ∗ is the optimal

7.2 Algorithms for Different Metrics 143

mean top-k answer.

Let B(τ) =
∑

t∈τ ΥH(t) for any top-k answer τ . It is easy to see A(τ ∗) ≤
B(τ ∗) ≤ B(τH) since τH maximizes the B() function. Then, we can get:

A(τH) =
k∑

j=1

k∑

i=j

1

i
Pr(r(tj) ≤ i)

≥
k∑

j=1

(
Hk −Hj−1

Hk

)
k∑

i=1

1

i
Pr(r(tj) ≤ i)

=
k∑

j=1

(
Hk −Hj−1

Hk

)ΥH(tj) ≥
1

k

k∑

i=1

(
Hk −Hi−1

Hk

)
k∑

i=1

ΥH(ti)

=
1

Hk

B(τH) ≥ 1

Hk

A(τ ∗).

The second inequality holds because for non-decreasing sequences ai(1 ≤ i ≤ n)

and ci(1 ≤ i ≤ n),
∑n

i=1 aici ≥
1
n
(
∑n

i=1 ai)(
∑n

i=1 ci).

7.2.5 Spearman’s Footrule

For a top-k answer τ = {τ(1), τ(2), . . . , τ(k)}, we define:

• Υ1(t) =
∑k

i=1 Pr(r(t) = i)

• Υ2(t) =
∑k

i=1 Pr(r(t) = i) · i

• Υ3(t, i) =
∑k

j=1 Pr(r(t) = j))|i− j|+ iPr(r(t) > k).

It is easy to see Υ1(t),Υ2(t),Υ3(t) can be computed in polynomial time for a

probabilistic and/xor tree using our generating functions method.

A careful rewriting of E[F ∗(τ, τpw)] shows that it also has the form:

E[F ∗(τ, τpw)] = C +
∑

t∈T

k∑

i=1

δ(t = τ(i))f(t, i)

7.2 Algorithms for Different Metrics 144

where C is a constant independent of τ , and f(t, i) is a function of t and i that is

polynomially computable. More specifically, f(t, i) = Υ3(t, i)+Υ2(t)−2(k+1)Υ1(t)

The exact derivation is shown below:

E[F ∗(τ, τpw)] = E

24(k + 1)|τ∆τpw|+
X

t∈τ∩τpw

|τ(t)− τpw(t)| −
X

t∈τ\τpw

τ(t)−
X

t∈τpw\τ
τpw(t)

35
= (k + 1)E[|τ∆τpw|] +

X
t∈T

E [δ(t ∈ τ ∩ τpw)|τ(t)− τpw(t)|]

−
X
t∈T

E [δ(t ∈ τ \ τpw)τ(t)]− E

24 X
t∈τpw\τ

τpw(t)

35
= (k + 1)E[|τ∆τpw|] +

X
t∈T

kX
i=1

kX
j=1

E [δ(t ∈ τ ∩ τpw)δ(t = τpw(i))δ(t = τ(j))|i− j|]

−
X
t∈T

kX
i=1

E [δ(t ∈ τ \ τpw)δ(t = τ(i))i]−
X
t∈T\τ

Υ2(t)

= (k + 1)E[|τ∆τpw|] +
X
t∈T

kX
i=1

0@δ(t = τ(i))

kX
j=1

Pr(r(t) = j)|i− j|

1A
−

X
t∈T

kX
i=1

(δ(t = τ(i))iPr(r(t) > k))−
X
t∈T\τ

Υ2(t)

= (k + 1)(k +
X
t∈T

Υ1(t)− 2
X
t∈τ

Υ1(t)) +
X
t∈T

kX
i=1

δ(t = τ(i))Υ3(t, i)−
X
t∈T\τ

Υ2(t)

= (k + 1)k +
X
t∈T

((k + 1)Υ1(t)−Υ2(t))

+
X
t∈T

kX
i=1

δ(t = τ(i))(Υ3(t, i) + Υ2(t)− 2(k + 1)Υ1(t))

Thus, we only need to minimize the second term, which can be modeled as the

assignment problem and can be solved in polynomial time.

7.2.6 Kendall’s Tau Distance

Then Kendall’s tau distance (also called Kemeny distance) disK between two top-

k lists τ1 and τ2 is defined to be the number of unordered pairs (ti, tj) such that

that the order of i and j disagree in any full rankings extended from τ1 and τ2,

respectively. It is shown that disF and disK and a few other generalizations of

7.3 Consensus Answers for Other Types of Queries 145

Spearman’s footrule and Kendall’s tau metrics form a big equivalence class, i.e.,

they are within a constant factor of each other [66]. Therefore, the optimal solution

for disF implies constant approximations for all metrics in this class (the constant

for disK is 2).

However, we can also easily obtain a 3/2-approximation for disK by extending

the 3/2-approximation for partial rank aggregation problem due to Ailon [7]. The

only information used in their algorithm is the proportion of lists where ti is ranked

higher than tj for all i, j. In our case, this corresponds to Pr(r(ti) < r(tj)). This

can be easily computed in polynomial time using the generating functions method.

We also note that the problem of optimally computing the mean answer is NP-

hard for probabilistic and/xor trees. This follows from the fact that probabilistic

and/xor trees can simulate arbitrary possible worlds, and previous work has shown

that aggregating even 4 rankings under this distance metric is NP-Hard [64].

7.3 Consensus Answers for Other Types of Queries

7.3.1 Set Distance Measures

We first consider the problem of finding the consensus world for a probabilistic

relation under two set distance measures: symmetric difference, and Jaccard dis-

tance; the probabilistic relation may be an existing relation in the database, or the

result of executing a conjunctive query over it.

7.3.1.1 Symmetric Difference

The symmetric difference distance between two sets S1, S2 is defined to be

dis∆(S1, S2) = |S1∆S2| = |(S1 \ S2) ∪ (S2 \ S1)|.

Note that two different alternatives of a tuple are treated as different tuples here.

7.3 Consensus Answers for Other Types of Queries 146

Theorem 7.4. The mean world under the symmetric difference distance is the set

of all tuples with probability > 0.5.

Proof: Suppose S is a fixed set of tuples and S̄ = T−S. Let δ(p) =





1, if p = true

0, if p = false

be the indicator function. We write Epw∈PW [dis∆(S, pw)] as follows:

E[dis∆(S, pw)] = E[
∑

t∈S

δ(t /∈ pw) +
∑

t∈S̄

δ(t ∈ pw)]

=
∑

t∈S

E[δ(t /∈ pw)] +
∑

t∈S̄

E[δ(t ∈ pw)]

=
∑

t∈S

Pr(¬t) +
∑

t∈S̄

Pr(t)

Thus, each tuple t contributes Pr(¬t) to the expected distance if t ∈ S and

Pr(t) otherwise, and hence the minimum is achieved by the set of tuples with

probability > 0.5. �

Thus, finding the mean answer for a conjunctive query is easy if we can decide

which result tuples have probability > 0.5.

Finding the consensus median world is somewhat trickier, with the main con-

cern being that the world that contains all tuples with probability > 0.5 may not

be a possible world.

Corollary 1. If the correlations can be modeled using a probabilistic and/xor tree,

the median world is the set containing all tuples with probability greater than 0.5.

The proof is by induction on the height of the tree, and is omitted for space

constraints. This however does not hold for arbitrary correlations. Next we show

that finding a median answer for a conjunctive query is NP-Hard even if result tuple

probability computation is easy (i.e., even if the query has a safe plan) because of

the correlations between the result tuples.

Theorem 7.5. For conjunctive queries over databases with arbitrary correlations,

finding a median answer under the symmetric difference distance is NP-Hard.

7.3 Consensus Answers for Other Types of Queries 147

Proof: Consider the query:

Q(C) := πC(R on S)

where R = R(C, x, b) are S = S(x, b) are two relations independent with each

other. We show finding a median world for this query is NP-Hard by showing a

reduction from the MAX-2-SAT problem. Recall that in a MAX-2-SAT instance,

we are given a conjunctive normal form expression with 2 literals per clause and the

task is to determine the maximum number of clauses that can be simultaneously

satisfied by an assignment. Let the MAX-2-SAT instance consist of n variables,

x1, . . . , xn, and k clauses. Let S(x, b) = {(x1, 0), (x1, 1), (x2, 0), (x2, 1), . . . } contain

two mutually exclusive tuples each for n variables; all tuples are equi-probable with

probability 0.5. R(C, x, b) is a deterministic table, and contains two tuples for each

clause: Suppose xj (or x̄j) is a literal in clause ci, R contains tuple (ci, xj, 1) (or

(ci, xj, 0)). We can see that R on S has the same set of tuples as R and each tuple

has probability 0.5. Moreover, two tuples with the same C value are independent.

Therefore, the result of πC(R on S) contains one tuple for each clause, associated

with a probability of 1− 0.5× 0.5 = 0.75.

Now, consider the possible deterministic answer which is generated by a de-

terministic instance S̃ of S. It is easy to see the answer contain clause ci if and

only if ci is satisfied by the assignment defined by S̃. According to the proof of

Theorem 7.4, the median answer is the possible deterministic answer containing

maximum number of tuples, which corresponds to finding the assignment that

maximizes the number of satisfied clauses. �

7.3.1.2 Jaccard Distance

The Jaccard distance between two sets S1, S2 is defined to be

disJ(S1, S2) =
|S1∆S2|
|S1 ∪ S2|

.

7.3 Consensus Answers for Other Types of Queries 148

Jaccard distance always lies in [0, 1] and is a real metric, i.e, satisfies triangle

inequality. Next we present polynomial time algorithms for finding the mean and

median worlds for tuple independent databases, and median world for the BID

model.

Lemma 4. Given an and/xor tree, T and a possible world for it, W (corresponding

to a set of leaves of T), we can compute E[dis(W, pw)] in polynomial time.

Proof: A generating function FT is constructed with the variables associated with

leaves as follows: for t ∈ W (t /∈ W), the associated variable is x (y). For example,

in a tuple independent database, the generating function is:

F(x, y) =
∏

t∈W

(Pr(¬t) + Pr(t)x)
∏

t/∈W

(Pr(¬t) + Pr(t)y)

From Theorem 5.1, the coefficient ci,j of term xiyj in generating function F is

equal to the total probability of the worlds such that the Jaccard distance between

those worlds and W is exactly |W |−i+j|W |+j . Thus, the distance is
∑

i,j ci,j
|W |−i+j
|W |+j . �

Lemma 5. For tuple independent databases, if the mean world contains tuple t1

but not tuple t2, then Pr(t1) ≥ Pr(t2).

Proof: Say W1 is the mean world and the lemma is not true, i.e, ∃t1 ∈ W1, t2 /∈ W1

s.t. Pr(t1) < Pr(t2). Let W = W1−{t1}, W2 = W +{t2} and W ′ = T−W−{t1}−
{t2}. We will prove W2 has a smaller expected Jaccard distance, thus rendering

contradiction. Suppose |W1| = |W2| = k. We let matrix M = [mi,j]i,j where

mi,j = k−i+j
k+j

. We construct generating functions as we did in Lemma 4. Suppose

F1 and F2 are the generating functions for W1 and W2, respectively. We write

||A|| =
∑

i,j ai,j for any matrix A and let A⊗B the Hadamard product of A and

B (take product entrywise). We denote:

F ′(x, y) =
∏

t∈W

(Pr(¬t) + Pr(t)x)
∏

t∈W ′
(Pr(¬t) + Pr(t)y)

7.3 Consensus Answers for Other Types of Queries 149

We can easily see that:

F1(x, y) = F ′(x, y) (Pr(¬t1) + Pr(t1)x) (Pr(¬t2) + Pr(t2)y)

F2(x, y) = F ′(x, y) (Pr(¬t1) + Pr(t1)y) (Pr(¬t2) + Pr(t2)x)

Then, taking the difference, we get F̄ = F1(x, y)−F2(x, y) is equal to:

F ′(x, y) (Pr(¬t1) Pr(t2)− Pr(t1) Pr(¬t2)) (y − x) (7.1)

Let CF = [ci,j] be the coefficient matrix of F where ci,j is the coefficient of term

xiyj. Using the proof of Lemma 4:

E[dis(W1, pw)]− E[dis(W2, pw)] = ||CF1 ⊗M|| − ||CF2 ⊗M|| = ||CF̄ ⊗M||

Let c′i,j and c̄i,j be the coefficient of xiyj in F ′ and F̄ , respectively. It is not hard to

see c̄i,j = (c′i,j−1−c′i−1,j)p from (7.1) where p = (Pr(¬t1) Pr(t2)− Pr(t1) Pr(¬t2)) >

0.

Then we have:

||CF̄ ⊗M|| = p
∑

i,j

(
(c′i,j−1 − c′i−1,j)mi,j

)

= p
∑

i,j

c′i,j(mi,j+1 −mi+1,j)

= p
∑

i,j

c′i,j

(
k − i+ j + 1

k + j + 1
− k − i− 1 + j

k + j

)

The proof follows because, for any i, j ≥ 0, we have that k−i+j+1
k+j+1

− k−i−1+j
k+j

> 0.

�

The above two lemmas can be used to efficiently find the mean world for tuple-

independent databases, by sorting the tuples in the decreasing order by probabili-

ties, and computing the expected distance for every prefix of the sorted order.

7.3 Consensus Answers for Other Types of Queries 150

Theorem 7.6. Under Jaccard distance metric ,there is polynomial time algorithms

for computing mean and median world for tuple independent databases.

A similar algorithm can be used to find the median world for the BID model

(by only considering the highest probability alternative for each tuple). Finding

mean worlds or median worlds under more general correlation models remains an

open problem.

7.3.2 Aggregate Queries

Consider a query of the type:

SELECT groupname, count(*)

FROM R

GROUP BY groupname

We assume the dataset is represented by the BID model in which there are

m potential groups (indexed by groupname) and n independent tuples with at-

tribute uncertainty. The probabilistic database can be specified by the matrix

P = [pi,j]n×m where pi,j is the probability that tuple i takes groupname j and
∑m

j=1 pi,j = 1 for any 1 ≤ i ≤ n. A query result (on a deterministic relation)

is a m-dimensional vector r where the ith entry is the number of tuples having

groupname i. The natural distance metric to use is the squared vector distance.

Computing the mean answer is easy in this case, because of linearity of expec-

tation: we simply take the mean for each aggregate separately, i.e., r̄ = 1P where

1 = (1, 1, . . . , 1). We note the mean answer minimizes the expected squared vector

distance to any possible answer.

The median world requires that the returned answer be a possible answer. It is

not clear how to solve this problem optimally in polynomial time. To enumerate

all worlds is obviously not computationally feasible. Rounding entries of r̄ to the

nearest integers may not result in a possible answer.

Next we present a polynomial time algorithm to find a closest possible answer to

7.3 Consensus Answers for Other Types of Queries 151

the mean world r̄. This yields a 4-approximation for finding the median answer. We

can model the problem as follows: Consider the bipartite graph B(U, V,E) where

each node in U is a tuple, each node in V is a groupname, and an edge (u, v), u ∈
U, v ∈ V indicates that tuple u takes groupname v with non-zero probability. We

call a subgraph G′ such that degG′(u) = 1 for all u ∈ U and degG′(v) = r[v], an r-

matching of B for some m-dimensional integral vector r. Given this, our objective

is to find an r-matching of B such that ||r − r̄||22 is minimized. Before presenting

the main algorithm, we need the following lemma.

Lemma 6. The possible world r∗ that is closest to r̄ is of the following form: r∗[i]

is either br̄[i]c or dr̄[i]e for each 1 ≤ i ≤ m.

Proof: Let M∗ be the corresponding r∗-matching. Suppose the lemma is not

true, and there exists i such that |r∗[i]− r̄[i]| > 1. W.l.o.g, we assume r∗[i] > r̄[i].

The other case can be proved the same way. Consider the connected component

K = {U ′, V ′, E(U ′, V ′)} containing i. We claim that there exists j ∈ V ′ such that

r∗[j] < r̄[j] and there is an alternating path P with respect to M∗ connecting i

and j 3. Therefore, M ′ = M∗∆P = (M∗ \ P) ∪ (P \M∗) is also a valid matching.

Suppose M ′ is a r′-matching. But:

||r′ − r̄||22 =
m∑

v=1

(r′[v]− r̄[v])2

=
m∑

v=1

(r∗[v]− r̄[v])2 − (r∗[i]− r̄[i])2 −

(r∗[j]− r̄[j])2 + (r′[i]− r̄[i])2 + (r′[j]− r̄[j])2

= ||r∗ − r̄||22 − (r∗[i]− r̄[i])2 − (r∗[j]− r̄[j])2

+(r∗[i]− 1− r̄[i])2 + (r∗[j] + 1− r̄[j])2

= ||r∗ − r̄||22 + 2− 2r∗[i] + 2r̄[i] + 2r∗[j]− 2r̄[j]

< ||r∗ − r̄||22.
3An alternating path is a path with alternating unmatched and matched edges [47].

7.3 Consensus Answers for Other Types of Queries 152

This contradicts the assumption r∗ is the vector closest to r̄.

Now, we prove the claim. We grow a alternating path tree (w.r.t. M∗) rooted

at i in a Bread-First-Search (BFS) manner 4. Let Odd ⊆ V be the set of nodes at

odd depth (the root is at depth 1) and Even ⊆ U the set of nodes at even depth.

For any subset S of vertices, let NB(S) denote the set of neighbors of S in graph B.

It is easy to see NB(Even) = Odd, Even ⊆ NB(Odd) and
∑

v∈Odd r∗[v] = |Even|.
Suppose r∗[v] ≥ r̄[v] for all v and r∗[i] > r̄[i]. However, the contradiction follows

since:

|Even| =
∑

v∈Odd

r∗[v] >
∑

v∈Odd

r̄[v] =
∑

v∈Odd

∑

u∈NB(Odd)

P[u, v]

=
∑

v∈Odd

∑

u∈Even

P[u, v] = |Even|.

Therefore, there must be a vertex j such that r∗[j] < r̄[j] in the alternating path

tree. �

With Lemma 6 at hand, we can construct the following min-cost network flow

instance to compute the vector r∗ closest to r̄. Add to B a source s and a sink t.

Add edges (s, u) with capacity upper bound 1 for all u ∈ U . For each v ∈ V and

r̄[v] is not integer, add two edges e1(v, t) and e2(v, t). e1(v, t) has both lower and

upper bound of capacity br̄[v]c and e2(v, t) has capacity upper bound 1 and cost

(dr̄[v]e − r̄[v])2 − (br̄[v]c − r̄[v])2. If r̄[v] is a integer, we only add e1(v, t). We find

a min-cost integral flow of value n on this network. For any v such that e2(v, t)

is saturated, we set r∗[v] to be dr̄e and br̄c otherwise. Such a flow with minimum

cost suggests the optimality of the vector r∗ due to Lemma 6.

Theorem 7.7. There is a polynomial time algorithm for finding the vector r∗ to

r̄ such that r∗ corresponds to some possible answer with non-zero probability.

Finally, we can prove that:

4An alternating path tree is a tree in which each path from the root to another node is an
alternating path with its first edge being a matched edge [47].

7.3 Consensus Answers for Other Types of Queries 153

Corollary 2. There is a polynomial time deterministic 4-approximation for finding

the median aggregate answer.

Proof: Suppose r∗ is the possible answer closest to the mean answer r̄ and rm

is the optimal median answer. Let r be the vector corresponding to the random

answer. Then:

E[dis(r∗, r)] ≤ E[2(dis(r∗, r̄) + dis(r̄, r))] = 2 (dis(r∗, r̄) + E[dis(r̄, r)])

≤ 4E[dis(r̄, r)] ≤ 4E[dis(rm, r)].

The proof is complete. �

7.3.3 Clustering

The CONSENSUS-CLUSTERING problem is defined as follows: given k clusterings

C1, . . . , Ck of V , find a clustering C that minimizes
∑k

i=1 dis(C, Ci). In the setting

of probabilistic databases, the given clusterings are the clusterings in the possible

worlds, weighted by the existence probability. The main problem with extend-

ing the notion of consensus answers to clustering is that the input clusterings are

not well-defined (unlike ranking where the score function defines the ranking in

any world). We consider a somewhat simplified version of the problem, where

we assume that two tuples ti and tj are clustered together in a possible world, if

and only if they take the same value for the value attribute A (which is uncer-

tain). Thus, a possible world pw uniquely determines a clustering Cpw. We define

the distance between two clustering C1 and C2 to be the number of unordered

pairs of tuples that are clustered together in C1, but separated in the other (the

CONSENSUS-CLUSTERING metric). To deal with nonexistent keys in a possible

world, we artifically create a cluster containing all of those.

Our task is to find a mean clustering C such that E[dis(C, Cpw)]. Approxi-

mation with factor of 4/3 is known for CONSENSUS-CLUSTERING [8], and can

7.3 Consensus Answers for Other Types of Queries 154

be adapted to our problem in a straightforward manner. In fact, that approx-

imation algorithm simply needs wti,tj for all ti, tj, where wti,tj is the fraction of

input clusters that cluster ti and tj together, and can be computed as: wti,tj =
∑

a∈A Pr(i.A = a ∧ j.A = a).

To compute these quantities given an and/xor tree, we associate a variable x

with all leaves with value (i, a) and (j, a), and constant 1 with the other leaves.

From Theorem 5.1, Pr(i.A = a ∧ j.A = a) is simply the coefficient of x2 in the

corresponding generating function.

Chapter 8

Maximizing Expected Utility for Stochastic

Combinatorial Optimization Problems

8.1 Introduction

In this chapter, we study a broad class of combinatorial optimization problems in

presence of uncertainty. The deterministic version of the problem has the following

form: we are given a ground set of elements U = {ei}i=1...n; each element e is

associated with a weight we; each feasible solution is a subset of the elements

satisfying some property. Let F denote the set of feasible solutions. The objective

for the deterministic problem is to find a feasible solution S with the minimum

total weight w(S) =
∑

e∈S we. We can see that many combinatorial problems such

as shortest path, minimum spanning tree, and minimum weight matching belong

to this class. In the stochastic version of the problem, the weight we of each

element e is a nonnegative random variable. We assume all wes are independent

of each other. We use pe(.) to denote the probability density function for we (or

probability mass function in discrete case). As we have argued in Section 1.2,

we use the expected utility as the decision criterion. Hence, we are also given a

utility function µ : R+ → R+ which maps a weight value to a utility value. By the

expected utility maximization principle, our goal here is to find a feasible solution

S ∈ F that maximizes the expected utility, i.e., E[µ(w(S))]. We call this problem

the expected utility maximization (EUM) problem.

Let us use the following toy example to illustrate the rationale behind EUM.

There is a graph with two nodes s and t and two parallel links e1 and e2. Edge

e1 has a fixed length 1 while the length of e2 is 0.9 with probability 0.9 and 1.9

155

8.1 Introduction 156

with probability 0.1 (the expected value is also 1). We want to choose one edge to

connect s and t. It is not hard to imagine that a risk-averse user would choose e1

since e2 may turn out to be a much larger value with a nontrivial probability. We

can capture such behavior using the utility function (8.1) (defined in Section 8.1.1).

Similarly, we can capture the risk-prone behavior by using, for example, the utility

function µ(x) = 1
x+1

. It is easy to see that e1 maximizes the expected utility in

the former case, and e2 in the latter.

8.1.1 Our Contributions

We discuss in detail our result for EUM. We assume µ is part of the specification

of the problem but not part of the input. Moreover, we assume µ(x) is upper

bounded by a constant and limx→∞ µ(x) = 0. The later captures the fact that if

the weight of a solution is too large, it becomes almost useless for us. W.l.o.g. we

can also assume 0 ≤ µ(x) ≤ 1 for x ≥ 0, by scaling. We say a function µ̃(x) is an

ε-approximation of µ(x) if |µ̃(x)− µ(x)| ≤ ε∀x ≥ 0. For ease of exposition, we let

µ̃(x) be a complex function. Recall that a polynomial time approximation scheme

(PTAS) is an algorithm which takes an instance of a minimization problem and

a parameter ε and produces a solution whose cost is within a factor 1 + ε of the

optimum, and the running time, for any fixed ε, is polynomial in the size of the

input. We use A to denote the deterministic combinatorial optimization problem

under consideration. The exact version of a problem A asks the question whether

there is a feasible solution of A with weight exactly equal to a given number K. We

say an algorithm runs in pseudopolynomial time for the exact version of A if the

running time is polynomial in n and K. Our first main theorem is the following.

Theorem 8.1. Assume that there is a pseudopolynomial algorithm for the exact

version of A. Further assume that given any ε > 0, we can find an ε-approximation

of the utility function µ as µ̃(x) =
∑L

k=1 ckφ
x
k, where L is a constant and |φk| ≤

1∀k; φk may be complex numbers. Then, there is an algorithm that runs in time

8.1 Introduction 157

Figure 8.1: (1) The utility function χ̃(x), a continuous variant of the threshold function
χ(x); (2) A smoother variant of χ(x); (3) The utility function χ̃2(x), a continuous variant
of the 2-d threshold function χ2(x).

(n/ε)O(L) that approximates EUM(A) with an additive error O(ε). If the optimal

expected utility is Θ(1), we obtain a PTAS.

For many combinatorial problems, a pseudopolynomial algorithm for the exact

version is known. Examples include shortest path, spanning tree, matching and

knapsack. Hence, the only task left is to find a short exponential sum that ε-

approximates µ. For this purpose, we adopt the Fourier series technique. However,

the technique cannot be used directly since it works only for periodic functions with

bounded periodicities. In order to get a good approximation for x ∈ [0,∞), we

leverage the fact that limx→∞ µ(x) = 0 and develop a general framework that uses

the Fourier series decomposition as a subroutine. Generally speaking, such an

approximation is only possible if the function is “well behaved”, i.e., it satisfies

some continuity or smoothness conditions. In particular, we prove Theorem 8.2.

We say that the utility function µ satisfies the α-Hölder condition if |µ(x)−µ(y)| ≤
C |x− y|α, for some constant C and some constant α.

Theorem 8.2. If µ satisfies the α-Hölder condition for some constant α > 1/2,

then, for any ε > 0, we can obtain an exponential sum with O(poly(1
ε
)) terms which

is an ε-approximation of µ for x ≥ 0.

8.1 Introduction 158

Consider the utility function

χ̃(x) =





1 x ∈ [0, 1]

−x
δ

+ 1
δ

+ 1 x ∈ [1, 1 + δ]

0 x > 1 + δ

(8.1)

where δ > 0 is a small constant (See Figure 8.1(1)). We can verify that χ̃ satisfies 1-

Hölder condition with C = 1
δ
. Therefore, Theorem 8.2 is applicable. This example

is interesting since it can be viewed as a continuous variant of the threshold function

χ(x) =





1 x ∈ [0, 1]

0 x > 1
, (8.2)

for which maximizing the expected utility is equivalent to maximizing Pr(w(S) ≤
1). This special case has been considered several times in literature for various

problems including stochastic shortest path [141], stochastic spanning tree [102,77],

stochastic knapsack [79] and some other stochastic problems [6, 139].

It is interesting to compare our result with the result for the stochastic shortest

path problem considered by Nikolova et al. [141,139]. In [141], they show that there

is an exact O(nlogn) time algorithm for maximizing the probability that the length

of the path is at most 1, i.e., Pr(w(S) ≤ 1), assuming all edges are normally

distributed and there is a path with its mean at most 1. Later, Nikolova [139]

extends the result to an FPTAS for any problem under the same assumptions, if

the deterministic version of the problem has a polynomial time exact algorithm.

We can see that under such assumptions, the optimal probability is at least 1/2.1

Therefore, provided the same assumption and further assuming that Pr(we < 0)

is miniscule,2 our algorithm is a PTAS for the continuous variant of the problem.

1The sum of multiple Gaussians is also a Gaussian. Hence, if we assume the mean of the
length of a path (which is a Gaussian) is at most 1, the probability that the length of the path
is at most 1 is at least 1/2.

2Our technique can only handle distributions with positive supports. Thus, we have to assume

8.1 Introduction 159

Indeed, we can translate this result to a bi-criterion approximation result of the

following form: for any fixed δ, ε > 0, we can find in polynomial time a solution S

such that

Pr(w(S) ≤ 1 + δ) ≥ (1− ε) Pr(w(S∗) ≤ 1).

where S∗ is the optimal solution (Corollary 4). We note that such a bi-criterion

approximation was only known for exponentially distributed edges before [141].

Let us consider another application of our results to the stochastic knap-

sack problems defined in [79]. Given a set U of independent random variables

{x1, . . . , xn}, with associated profits {v1, . . . , vn} and an overflow probability γ, we

are asked to pick a subset S of U such that

Pr(
∑

i∈S

xi ≥ 1) ≤ γ

and the total profit
∑

i∈S vi is maximized. Goel and Indyk [79] showed that,

for any ε > 0, there is a polynomial time algorithm that can find a solution

S with the profit as least the optimum and Pr(
∑

i∈S xi ≥ 1 + ε) ≤ γ(1 + ε)

for exponentially distributed variables. They also gave a quasi-polynomial time

approximation scheme for Bernoulli distributed random variables. Quite recently,

in parallel with our work, Bhalgat et al. [29] obtained the same result for arbitrary

distributions under the assumption that γ = Θ(1). Their technique is based on

discretizing the distributions and is quite involved. Our result, applied to stochastic

knapsack, matches that of Bhalgat et al. We remark that our algorithm is much

simpler and has a much better running time (Theorem 8.5). Despite a little loss

in the approximation guarantees in some cases, our technique can be applied to

almost all positive probability distributions, and a much richer class of utility

functions.

Equally importantly, we can extend our basic approximation scheme to handle

that the probability that a negative value appears is miniscule and can be safely ignored.

8.2 Algorithm 160

generalizations such as multiple utility functions and multidimensional weights.

Interesting applications of these extensions include generalizations of stochastic

knapsack, such as stochastic multiple knapsack (Theorem 8.8) and stochastic mul-

tidimensional knapsack (stochastic packing) (Theorem 8.9).

8.2 Algorithm

We first note that EUM is #P-hard in general since the problem of computing the

overflow probability of a set of items with Bernoulli distributions, a very special

case of our problem, is #P-hard [119].

Our approach is very simple. We first observe that the problem is easy if

the utility function is an exponential function. We approximate the utility func-

tion µ(x) by a short exponential sum, i.e.,
∑L

i=1 ciφ
x
i with L being a constant

(ci and φi may be complex numbers). Hence, E[µ(w(S))] can be approximated

by
∑L

i=1 ciE[φ
w(S)
i]. Then, we consider the following multi-criterion version of the

problem with L objectives {E[φ
w(S)
i]}i=1,...,L: given L complex numbers v1, . . . , vL,

we want to find a solution S such that E[φ
w(S)
i] ≈ vi for i = 1, . . . , L. We achieve

this by utilizing the pseudopolynomial time algorithm for the exact version of

the problem. We argue that we only need to consider a polynomial number of

v1, . . . , vL combinations (which we call configurations) to find out the approximate

optimum. In Section 8.2.1, we show how to solve the multi-criterion problem pro-

vided that a short exponential sum approximation of µ is given. In particular, we

prove Theorem 8.1. Then, we show how to approximate µ by a short exponential

sum by proving Theorem 8.2 in Section 8.2.2 and Section 8.2.3.

Let us first consider the exponential utility function µ(x) = αx for any α ∈ C.

Fix an arbitrary solution S and α > 0. Due to the independence of the elements,

8.2 Algorithm 161

we can see that

E[αw(S)] = E[α
P
e∈S we] = E[

∏

e∈S

αwe] =
∏

e∈S

E[αwe]

Taking log on both sides, we get log E[αw(S)] =
∑

e∈S log E[αwe]. If α is a positive

real number and E[αwe] ≤ 1 (or equivalently, − log E[αwe] ≥ 0), this reduces to the

deterministic optimization problem.

We still need to show how to compute E[αwe]. If we is a discrete random variable

with a polynomial size support, we can easily compute E[αwe] in polynomial time.

If we has an infinite discrete or continuous support, we cannot compute E[αwe]

directly and may need to approximate it. We briefly discuss this issue and its

implications on our results in Section 8.2.4.

8.2.1 Proof of Theorem 8.1

Now, we prove Theorem 8.1. We start with some notations. We use |c| and

arg(c) to denote the absolute value and the argument of the complex number c,

respectively. In other words, c = |c|(cos(arg(c)) + i sin(arg(c)))) = |c|ei arg(c). We

always require arg(c) ∈ [0, 2π) for any c ∈ C. Recall that we say the exponential

sum
∑L

i=1 ciφ
x
i is an ε-approximation for µ(x) if the following holds:

|µ(x)−
L∑

i=1

ciφ
x
i | ≤ ε ∀x ≥ 0

We first show that if the utility function can be decomposed exactly into a

short exponential sum, we can approximate the optimal expected utility well.

Theorem 8.3. Assume µ̃(x) =
∑L

k=1 ckφ
x
k is the utility function where |φk| ≤ 1

for 1 ≤ k ≤ L. We also assume that there is a pseudopolynomial algorithm for the

exact version of A. Then, for any ε > 0, there is an algorithm that runs in time

8.2 Algorithm 162

(n/ε)O(L) and finds a solution S such that

|E[µ̃(w(S))]− E[µ̃(w(S̃))]| < ε

where S̃ = arg maxS′ |E[µ̃(w(S ′))|.

We use the scaling and rounding technique that has been used often in multi-

criterion optimization problems (e.g., [156, 145]). Since our objective function is

not additive and not monotone, the general results for multi-criterion optimization

[145, 135, 156, 3] do not directly apply here. We briefly sketch our algorithm. Let

γ = δ = ε
Ln

. For each e ∈ U , we associate it with a 2L dimensional integer vector

〈a1(e), b1(e), . . . , aL(e), bL(e)〉 where ai(e) = b− ln |E[φwei]|
γ

c and bi(e) = barg(E[φwei])

δ
c.

ai(e) and bi(e) are the scaled and rounded versions of − ln |E[φwei]| and arg(E[φwei]),

respectively. Since |φi| ≤ 1, we can see that ai(e) ≥ 0 for any e ∈ U . We maintain

(JK)L configurations where J = d− ln(ε/L)
γ
e and K = d2πn

δ
e. The number of con-

figurations is (n/ε)O(L). Each configuration σ(a) is indexed by a 2L-dimensional

vector a = 〈α1, β1, . . . , αL, βL〉 where 1 ≤ αi ≤ J and 1 ≤ βi ≤ K for i = 1, . . . , L.

In other words, the configurations are σ(〈1, 1, . . . , 1, 1〉), . . . , σ(〈J,K, . . . , J,K〉)).
For vector a = 〈α1, β1, . . . , αL, βL〉, configuration σ(a) = 1 if and only if there is

a feasible solution S ∈ F such that for all j = 1, . . . , L, βj =
∑

e∈S bj(e), and

αj = min(J,
∑

e∈S aj(e)). Otherwise, σ(a) = 0. Lemma 7 tells us the expected

utility for the rounded instance is close to the true value of the expected utility.

Lemma 8 shows we can compute those configurations in polynomial time.

Lemma 7. For vector a = 〈α1, β1, . . . , αL, βL〉, σv(a) = 1 if and only if there is a

solution S such that

|E[µ̃(w(S))]−
L∑

k=1

cke
−αkγ+iβkδ| ≤ O(ε).

8.2 Algorithm 163

Proof: We first notice that

E[µ̃(w(S))] = E[
L∑

k=1

ckφ
w(S)
k] =

L∑

k=1

ckE[φ
w(S)
k].

Therefore, it suffices to show that for all k = 1, . . . , L,

|E[φ
w(S)
k]− e−αkγ+iβkδ| ≤ O(

ε

L
).

First, we can see that

arg(E[φ
w(S)
k])− βkδ =

∑

e∈S

(arg(E[φwek])− bk(e)δ) ≤
∑

e∈S

δ ≤ nδ =
ε

L
.

If
∑

e∈S ak(e) > J , we know that

− ln(|E[φ
w(S)
k]|) =

∑

e∈S

(− ln(|E[φwe|)) > Jγ.

In this case, we have αk = J . Thus, we have

∣∣∣|E[φ
w(S)
k]| − |e−αkγ|

∣∣∣ < e−Jγ = eγd
ln(ε/L)

γ
e <

ε

L
.

If
∑

e∈S ak(e) ≤ J , we can see that

− ln(|E[φw(S))|)− αkγ =
∑

e∈S

(− ln(|E[φwe|)− αk(e)γ) ≤
∑

e∈S

γ ≤ nγ ≤ ε

L
.

Since the derivative of ex is less than 1 for x < 0, we can get

∣∣∣|E[φ
w(S)
k]| − |e−αkγ|

∣∣∣ ≤ |e−αkγ− ε
L − e−αkγ| ≤ ε

L
.

For any two complex numbers a, b with |a| ≤ 1 and |b| ≤ 1, if
∣∣|a| − |b|

∣∣ < h

and | arg(a) − arg(b)| < h, we can easily show that |a − b| < O(h). The proof is

8.2 Algorithm 164

complete. �

Lemma 8. Suppose there is a pseudopolynomial time algorithm for the exact ver-

sion of A, which runs in time polynomial in n and t (t is the maximum integer in

the instance of A). Then, we can compute the values for these configurations in

time (n
ε
)O(L).

Proof: For each element e, we associate a new vector āe = 〈ā1, b̄1, . . . , āL, b̄L〉. If

ai(e) > J , we let āi(e) = n(J + 1) and āi(e) = ai(e) otherwise. Let b̄i(e) = bi(e)

for all e and i. For each node v and each vector a = 〈α1, β1, . . . , αL, βL〉 such that

0 ≤ αi ≤ n2(J + 1)∀i and 0 ≤ βi ≤ K∀i, we want to compute the value σ̄v(a)

which is defined as follows: σ̄v(a) = 1 if and only if there is a feasible solution

S ∈ F such that for all j = 1, . . . , L, βj =
∑

e∈S b̄j(e), and αj =
∑

e∈S āj(e) (or

more compactly, a =
∑

e∈S āe) ; σ̄v(a) = 0 otherwise.

We can encode each vector as a nonnegative integer upper bounded by (n2JK)L =

(n
ε
)O(L). Then, determining the value of a configuration is equivalent to determin-

ing whether there is a feasible solution S such that the total weight of S is exactly

a given value. Suppose the pseudopolynomial time algorithm for the exact version

of A runs in time PA(n, t) for some polynomial PA. Therefore, the value of each

such σ̄v(a) can be also computed in time PA(n, (n
ε
)O(L)) = (n

ε
)O(L). Since J and

K are bounded by (n
ε
)O(1), the number of configuration is (n

ε
)O(L). The value of

σ(〈α1, β1, . . . , αL, βL〉) can be easily answered from the values of σ̄s as follows :

1. If αi < J ∀i, σv(a) = σ̄v(a);

2. Denote a′ = 〈α′1, β′1, . . . , α′L, β′L〉 and S = {i | αi = J}. σv(a) = maxa′(σ̄v(a
′) |

β′i = βi ∀i, α′i ≥ J ∀i ∈ S, α′i = αi ∀i /∈ S).

The total running time is (n
ε
)O(L) × (n

ε
)O(L) = (n

ε
)O(L). �

Now, we can easily prove Theorem 8.3.

8.2 Algorithm 165

Proof of Theorem 8.3: We first use the algorithm in Lemma 8 to compute the

values for all configurations. Then, we find the configuration σ(〈α1, β1, . . . , αL, βL〉)
that has value 1 and that maximizes the quantity |

∑L
k=1 cke

−αkγ+iβkδ|. The feasible

solution S corresponding to this configuration is our final solution. It is easy to

see that the theorem follows from Lemma 7. �

Theorem 8.1 can be readily obtained from Theorem 8.3 and the fact µ̃ is an

ε-approximation of µ.

Proof of Theorem 8.1: Suppose S is our solution and S∗ is the optimal so-

lution for utility function µ. From Theorem 8.3, we know that |E[µ̃(w(S))] ≥
E[µ̃(w(S∗))]| − ε. Since µ̃ is an ε-approximation of µ, we can see that

∣∣E[µ(w(S))]− E[µ̃(w(S))]
∣∣ =

∣∣∣
∫

(µ(x)− µ̃(x))pS(x)dx
∣∣∣ ≤

∣∣∣
∫
εpS(x)dx

∣∣∣ ≤ ε

for any solution S, where pS is the probability density function of S. Therefore,

we have

|E[µ(w(S))]| ≥ |E[µ̃(w(S))]| − ε ≥ |E[µ̃(w(S∗))]| − 2ε ≥ |E[µ(w(S∗))]| − 3ε

The proof is complete. �

8.2.2 Approximating the Utility Function

In this subsection, we discuss the issue of approximating µ. In particular, we

develop a generic algorithm that takes as a subroutine an algorithm AP for ap-

proximating functions in a bounded interval domain, and approximates µ(x) in

the infinite domain [0,+∞). In the next subsection, we use the Fourier series ex-

pansion as the choice of AP and show that important classes of utility functions

can be approximated well.

There are many works on approximating functions using short exponential

sums, e.g., the Fourier decomposition approach [169], Prony’s method [144], and

8.2 Algorithm 166

many others [24,25]. However, their approximations are done over a finite interval

domain, say [−π, π] or over a finite number of discrete points. No error bound

can be guaranteed outside the domain. Our algorithm is a generic procedure

that turns an algorithm that can approximate functions over [−π, π] into one that

can approximate our utility function µ over [0,+∞), by utilizing the fact that

limx→∞ µ(x) = 0.

Since limx→∞ µ(x) = 0, for any ε, there exist a point Tε such that µ(x) ≤ ε ∀x >
Tε. Since we assume the utility function µ is specified as a part of the problem

but not a part of the input instance, Tε is a constant for any constant ε. We also

assume there is an algorithm AP that, for any function f (under some conditions

specified later), can produce an exponential sum f̂(x) =
∑L

i=1 ciφ
x
i which is an ε-

approximation of f(x) in [−π, π] such that |φi| ≤ 1 and L depends only on ε and f .

In fact, we can assume w.l.o.g. that AP can approximate f(x) over [−B,B] for any

B = O(1). This is because we can apply AP to the scaled version g(x) = f(x · B
π

)

(which is defined on [−π, π]) and then scale the obtained approximation ĝ(x) back

to [−B,B], i.e., the final approximation is f̂(x) = ĝ(π
B
· x). Scaling a function by

a constant factor B
π

typically does not affect the smoothness of f in any essential

way and we can still apply AP. Recall that our goal is to produce an exponential

sum that is an ε-approximation for µ(x) in [0,+∞). We denote this procedure by

ESUM.

8.2 Algorithm 167

Algorithm: ESUM

1. Initially, we slightly change function µ(x) to a new function µ̂(x) as follows:

We require µ̂(x) is a “smooth ” function in [−2Tε, 2Tε] such that µ̂(x) = µ(x)

for all x ∈ [0, Tε]; µ̂(x) = 0 for |x| ≥ 2Tε. We choose µ̂(x) in [−2Tε, 0] and

[Tε, 2Tε] such that µ̂(x) is smooth. We do not specify the exact smoothness

requirements now since they may depend on the choice of AP. Note that

there may be many ways to interpolate µ such that the above conditions are

satisfied (see Example 15 below). The only properties we need are: (1) µ̂ is

amenable to algorithm AP; (2) |µ̂(x)− µ(x)| ≤ ε ∀x ≥ 0.

2. We apply AP to f(x) = ηxµ̂(x) over domain [−hTε, hTε] (η ≥ 1 and h ≥ 2

are constants to be determined later). Suppose the resulting exponential sum

f̂(x) =
∑L

i=1 ciφ
x
i which is an ε-approximation of f on [−hTε, hTε].

3. Let µ̃(x) =
∑L

i=1 ci(
φi
η

)x, which is our final approximation of µ(x) on [0,∞).

Example 15. Consider the utility function µ(x) = 1/(x+ 1). Let Tε = 1
ε
− 1. So

µ(x) < ε for all x > Tε. Now we create function µ̂(x) according to the first step

of ESUM. If we only require µ̂(x) to be continuous, then we can use, for instance,

the following piecewise function: µ̂(x) = 1
x+1

, x ∈ [0, Tε]; µ̂(x) = x
εT

+ 2
ε
, x ∈

[Tε, 2Tε]; µ̂(x) = 0, x > 2Tε; µ̂(x) = −µ̂(x), x < 0. It is easy to see that µ̂ is

continuous and ε-approximates µ. �

By setting η = 2 and

h ≥ log(
∑L

i=1 |ci|/ε)
Tε

, (8.3)

we can show the following theorem.

Lemma 9. µ̃(x) is a 2ε-approximation of µ(x).

8.2 Algorithm 168

Proof: We know that |f̂(x)− f(x)| ≤ ε for x ∈ [0, hTε]. Therefore, we have that

|µ̃(x)− µ̂(x)| = | f̂(x)

ηx
− f(x)

ηx
| ≤ ε

ηx
≤ ε.

Combining with |µ̂(x) − µ(x)| ≤ ε, we obtain |µ̃(x) − µ(x)| ≤ 2ε for x ∈ [0, hTε].

For x > hTε, we can see that

|µ̃(x)| = |
L∑

i=1

ci(
φi
η

)x| ≤
L∑

i=1

|ci(
φi
η

)x| ≤ 1

2x

L∑

i=1

|ci| ≤
1

2hTε

L∑

i=1

|ci| ≤ ε

Since µ(x) < ε for x > hTε, the proof is complete. �

Remark: Since we do not know ci before applying AP, we need to set h to be

a constant (only depending on µ and ε) such that (8.3) is always satisfied. In

particular, we need to provide an upper bound for
∑L

i=1 |ci|. In the next subsection,

we use the Fourier series decomposition as the choice for AP, which allows us to

provide such a bound for a large class of functions.

8.2.3 A Particular Choice of AP: The Fourier Series Approach

Now, we discuss the choice of algorithm AP and the conditions that f(x) needs to

satisfy so that it is possible to approximate f(x) by a short exponential sum in a

bounded interval. In fact, if we know in advance that there is a short exponential

sum that can approximate f , we can use the algorithms developed in [25, 27]

(for continuous case) and [24] (for discrete case). However, those works do not

provide an easy characterization of the class of functions. From now on, we restrict

ourselves to the classic Fourier series technique, which has been studied extensively

and allows such characterizations.

Consider the partial sum of the Fourier series of the function f(x):

(SNf)(x) =
N∑

k=−N

cke
ikx

8.2 Algorithm 169

where the Fourier coefficient ck = 1
2π

∫ π
−π f(x)e−ikxdx. It has L = 2N + 1 terms.

Since f(x) is a real function, we have ck = c−k and the partial sum is also real.

We are interested in the question under which conditions does the function SNf

converge to f (as N increases) and what is convergence rate? Roughly speaking,

the more “smooth” f is, the faster SNf converges to f . In general, this question is

extremely intricate and deep and is one of the central topics in the area of harmonic

analysis. In the following, we give one classic result about the convergence of

Fourier series and show how to use it in our problem. Then we provide a few

concrete examples.

We say f satisfies the α-Hölder condition if |f(x) − f(y)| ≤ C |x − y|α, for

some constant C and α > 0 and any x and y. The constant C is called the Hölder

coefficient of f , also denoted as |f |C0,α . We say f is C-Lipschitz if f satisfies

1-Hölder condition with coefficient C.

Example 16. It is easy to check that the utility function µ in Example 15 is

1-Lipschitz since |dµ(x)
dx
| ≤ 1 for x ≥ 0. We can also see that (8.1) is 1

δ
-Lipschitz.

We need the following classic result of Jackson.

Theorem 8.4. (See e.g., [149]) If f satisfies the α-Hölder condition, it holds that

|f(x)− (SNf)(x)| ≤ O
(|f |C0,α lnN

Nα

)
.

For later development, we need a few simple lemmas. The proofs of these

lemmas are straightforward and thus omitted here.

Lemma 10. Suppose f : [a, c]→ R is a continuous function which consists of two

pieces f1 : [a, b] → R and f2 : [b, c] → R. If both f1 and f2 satisfy the α-Hölder

condition with Hölder coefficient C, then |f |C0,α ≤ 2C.

Lemma 11. Suppose f : [a, c] → R is a continuous function satisfying the α-

Hölder condition with Hölder coefficient C. Then, for g(x) = f(hx) for some

constant h, we have |g|C0,α ≤ Chα.

8.2 Algorithm 170

Using Theorem 8.4 and Lemma 11, we obtain the following corollary.

Corollary 3. Suppose f ∈ C0[−hTε, hTε] satisfies the α-Hölder condition with

|f |C0,α = O(1) and N = O
(
hTε(

1
ε

log 1
ε
)1/α

)
. Then, it holds that |f(x)−(SNf)(x)| ≤

ε for x ∈ [−hTε, hTε].

Everything is in place to prove Theorem 8.2. Consider the algorithm AP. If µ

is α-Hölder with coefficient O(1), we can construct µ̂ which is also α-Hölder with

coefficient O(1), by Lemma 10. Then, we can easily see that f(x) = ηxµ̂(x) is also

α-Hölder with coefficient O(1) in [−hTε, hTε] for any η = 2. Hence, we can apply

Corollary 3. By Lemma 9, we complete the proof of Theorem 8.2.

How to Choose h: Now, we discuss the issue left in Section 8.2.2, that is how

to choose h (the value should be independent of cis and L) to satisfy (8.3), when

µ satisfies the α-Hölder condition for some α > 1/2. Indeed, we can choose h =

O(1
Tε

log 1
ε
).

8.2.4 Computing E[αwe]

If X is a random variable, then the characteristic function of X is defined as

G(z) = E[eizX].

We can see E[αwe] is nothing but the value of the characteristic function of we

evaluated at −i lnα (here ln is the complex logarithm function). For many im-

portant distributions, including negative binomial, Poisson, exponential, Gaussian,

Chi-square and Gamma, a closed-form characteristic function is known. See [142]

for a more comprehensive list.

Example 17. Consider the Poisson distributed we with mean λ, i.e., Pr(we = k) =

λke−λ/k! . Its characteristic function is known to be G(z) =eλ(eiz−1). Therefore,

E[αwe] = G(−i lnα) =eλ(α−1).

8.2 Algorithm 171

Example 18. For Gaussian distribution N(µ, σ2), we know its characteristic func-

tion is G(z) = eizµ−
1
2
σ2z2 . Therefore,

E[αwe] = G(−i lnα) = αu+ 1
2
σ2 lnα.

For some continuous distributions, no closed-form characteristic function is

known and we need proper numerical approximation method.

If the support of the distribution is bounded, we can use for example Gauss-

Legendre quadrature [150] (see Section 6.2.3 for a brief description). If the support

is infinite, we can truncate the distribution and approximate the integral over the

remaining finite interval. A typical practice is to use composite rule, i.e., to parti-

tion [a, b] into N subintervals and approximate the integral using some quadrature

formula over each subinterval. Assuming continuity of the 2kth derivative of f(x)

for some constant k, if we partition [a, b] into M subintervals and apply Gauss-

Legendre quadrature of degree k to each subinterval, the approximation error is

Error =
(b− a)2k+1

M2k

(k!)4

(2k + 1)[(2k)!]3
f (2k)(ξ)

where ξ is some point in (a, b) [150, pp.116]. Let ∆ = b−a
M

. If we treat k as a con-

stant, the behavior of the error (in terms of ∆) isError(∆) = O(∆2k maxξ f
(2k)(ξ)).

Therefore, if the support and maxξ f
(2k)(ξ) are bounded by a polynomial, we can

approximate the integral, in polynomial time, such that the error is O(1/nβ) for

any fixed integer β.

The next lemma shows that we do not lose too much even though we can only

get an approximation of E[αwe].

Lemma 12. Suppose in Theorem 8.3, we can only compute an approximate value

of E[φwei], denoted by Ee,i, for each e and i, such that |E[φwei]−Ee,i| ≤ O(n−β) for

some positive integer β. Denote E(S) =
∑L

k=1 ck
∏

e∈S Ee,i. For any solution S,

8.3 Applications 172

we have that

|E[µ̃(w(S))]− E(S)| ≤ O(n1−β).

Proof: We need the following simple result (see [125] for a proof): a1, . . . , an and

e1, . . . , en are complex numbers such that |ai| ≤ 1 and |ei| ≤ n−β for all i and some

β > 1. Then, we have

∣∣∣
n∏

i=1

(ai + ei)−
n∏

i=1

Ei

∣∣∣ ≤ O(n1−β).

Since |φi| ≤ 1, we can see that

|E[φwei]| = |
∫

x≥0

φxi pe(x)dx| ≤ 1.

The lemma simply follows by applying the above result and noticing that L and

all cks are constants. �

We can show that Theorem 8.1 still holds even though we only have the ap-

proximations of the E[αwe] values. The proof is straightforward and omitted.

8.3 Applications

We first consider two utility functions χ(x) and χ̃(x) presented in the introduction.

Note that maximizing E[χ(w(S))] is equivalent to maximizing Pr(w(S) ≤ 1). The

following lemma is straightforward.

Lemma 13. For any solution S,

Pr(w(S) ≤ 1) ≤ E[χ̃(w(S))] ≤ Pr(w(S) ≤ 1 + δ).

Corollary 4. Suppose there is a pseudopolynomial time algorithm for the exact

version of A. Then, for any fixed constants ε > 0 and δ > 0, there is an algorithm

8.3 Applications 173

that runs in time (n
ε
)O(1

ε2
log 1

ε
), and produces a solution S ∈ F such that

Pr(w(S) ≤ 1 + δ) + ε ≥ max
S′∈F

Pr(w(S ′) ≤ 1)

Proof: By Theorem 8.1, Theorem 8.2 and Lemma 13, we can easily obtain the

corollary. Note that we can choose Tε = 2 for any ε > 0. Thus h = O(log 1
ε
) and

L = O(1
ε2

log 1
ε
). �

Now, let us see some applications of our general results to specific problems.

8.3.1 Top-k Query with Set Interpretation (Top-SI)

Imagine a top-k query where we would like to return k tuples with the smallest

total weight (the order of these tuples does not matter). However, the weights of

the tuples are uncertain. In this case, we can define the top-k semantics under the

expected utility maximization principle, i.e., to find the size-k subset maximizing

the expected utility, where the utility function is a function of the total weight

of the subset. It is not hard to see that the exact version of the problem in

the deterministic setting, i.e., to find a size-k set of tuples with a given target

weight, can be solved in pseudopolynomial time by dynamic programming. Thus,

our result directly gives us a way to maximize the expected utility for a utility

function satisfying the condition of Theorem 8.2.

8.3.2 Stochastic Shortest Path

Finding a path with the exact target length (we allow non-simple paths)3 can

be easily done in pseudopolynomial time by dynamic programming. Therefore,

as discussed in Section 8.1.1, Corollary 4 generalizes several results for stochastic

shortest path in prior work [141,139].

3The exact version of simple path is NP-hard, since it includes the Hamiltonian path problem
as a special case.

8.3 Applications 174

8.3.3 Stochastic Spanning Tree

Our objective is to find a spanning tree T in the given probabilistic graph such

that Pr(w(T) ≤ 1) is maximized. Polynomial time algorithms have been devel-

oped for Gaussian distributed edges [102, 77]. To the best of our knowledge, no

approximation algorithm with provable guarantee is known for other distributions.

Noticing there exists a pseudopolynomial time algorithm for the exact spanning

tree problem [19], we can directly apply Corollary 4.

8.3.4 Stochastic k-Median on Trees

The problem asks for a set S of k nodes in the given probabilistic tree G such that

Pr(
∑

v∈V (G) dis(v, S) ≤ 1) is maximized, where dis(v, S) is the minimum distance

from v to any node in S in the tree metric. The k-median problem can be solved

optimally in polynomial time on trees by dynamic programming [113]. In fact, we

can easily modify the dynamic program to get a pseudopolynomial time algorithm

for the exact version. We omit the details.

8.3.5 Stochastic Knapsack with Random Sizes

We are given a set U of n items. Each item i has a random size wi and a determin-

istic profit vi. We are also given a positive constant 0 ≤ γ ≤ 1. The goal is to find

a subset S ⊆ U such that Pr(w(S) ≤ 1) ≥ γ and the total profit v(S) =
∑

i∈S vi

is maximized.

If the profits of the items are polynomially bounded integers, we can see the

optimal profit is also a polynomially bounded integer. We can first guess the

optimal profit. For each guess g, we solve the following problem: find a subset S

of items such that the total profit of S is exactly g and E[χ̃(w(S))] is maximized.

The exact version of the deterministic problem is to find a solution S with a given

total size and a given total profit, which can be easily solved in pseudopolynomial

time by dynamic programming. Therefore, by Corollary 4, we can easily show that

8.3 Applications 175

we can find in polynomial time a set S of items such that the total profit v(S) is

at least the optimum and Pr(w(S) ≤ 1 + ε) ≥ (1− ε)γ for any constant ε and γ.

If the profits are general integers, we can use the standard scaling technique to

get a (1 − ε)-approximation for the total profit as follows. We first make a guess

of the optimal profit, rounded down to the nearest power of (1 + ε). There are at

most log1+ε
nmaxi vi
mini vi

guesses. For each guess g, we solve the following problem. We

discard all items with a profit larger than g. Let ∆ = εg
n2 . For each item with a

profit smaller than εg
n

, we set its new profit to be v̄i = 0. Then, we scale each of

the rest profits vi to v̄i = ∆bvi
∆
c. Now, we define the feasible set

F(g) = {S |
∑

i∈S

(1− 2ε)g ≤
∑

i∈S

v̄i ≤ (1 + 2ε)g}.

Since there are at most n2

ε
distinct v̄ values, we can easily show that finding a

solution S in F(g) with a given total size can be solved in pseudopolynomial time

by dynamic programming.

Denote the optimal solution by S∗ and the optimal profit by OPT . Suppose

g is the right guess, i.e., (1
1+ε

)OPT ≤ g ≤ OPT . We can easily see that for any

solution S, we have that

(1− 1

n
)
∑

i∈S

vi − εg ≤
∑

i∈S

v̄i ≤
∑

i∈S

vi

where the first inequalities are due to vi ≥ εg
n

and we set at most εg profit to zero.

Therefore, we can see S∗ ∈ F(g). Applying Corollary 4, we obtain a solution S

such that Pr(w(S) ≤ 1 + δ) + ε ≥ Pr(w(S∗) ≤ 1 + δ). Moreover, the profit of this

solution v(S) =
∑

i∈S vi ≥
∑

i∈S v̄i ≥ (1− 2ε)g ≥ (1−O(ε))OPT. In sum, we have

obtained the following result.

Theorem 8.5. For any constants ε > 0 and γ > 0, there is a polynomial time

algorithm to compute a set S of items such that the total profit v(S) is within a

1− ε factor of the optimum and Pr(w(S) ≤ 1 + ε) ≥ (1− ε)γ.

8.3 Applications 176

Recently, Bhalgat et al. [29, Theorem 8.1] obtained the same result, with a

running time n2poly(1/ε) , while our running time is (n
ε
)O(1

ε2
log 1

ε
) = npoly(1/ε).

Moreover, we can easily extend our algorithm to generalizations of the knap-

sack problem if the corresponding exact version has a pseudopolynomial time al-

gorithm. For example, we can get the same result for the partial-ordered knapsack

problem with tree constraints [74, 156]. In this problem, items must be chosen in

accordance with specified precedence constraints and these precedence constraints

form a partial order and the underlining undirected graph is a tree (or forest). A

pseudopolynomial algorithm for this problem is presented in [156].

8.3.6 Stochastic Knapsack with Random Profits

We are given a set U of n items. Each item i has a deterministic size wi and a

random profit vi. The goal is to find a subset of items that can be packed into

a knapsack with capacity 1 and the probability that the profit is at least a given

threshold T is maximized. Henig [95] and Carraway et al. [36] studied this problem

for normally distributed profits and presented dynamic programming and branch

and bound heuristics to solve this problem optimally.

We can solve the equivalent problem of minimizing the probability that the

profit is at most the given threshold. It is straightforward to modify our algorithm

to work for the minimization problem and we can also get an ε additive error

for any ε > 0. In fact, we can show that violation of the capacity constraint is

necessary unless P = NP . Consider the following knapsack instance. The profit

of each item is the same as its size. The given threshold is 1. We can see that

the optimal probability is 1 if and only if there is a subset of items of total size

exactly 1. Otherwise, the optimal probability is 0. Therefore, it is NP-hard to

approximate the original problem within any additive error less than 1 without

violating the capacity constraint.

The corresponding exact version of the deterministic problem is to find a set

of items S such that w(S) ≤ 1 and v(S) is equal to a given target value. In fact,

8.4 Extension to Multiple Utility functions 177

there is no pseudopolynomial time algorithm for this problem. Since otherwise

we can get an ε additive approximation without violating the capacity constraint,

contradicting the lower bound argument. Note that a pseudopolynomial time

algorithm here should run in time polynomial in the profit value(not the size).

However, if the sizes can be encoded in O(log n) bits (we only have a polynomial

number of different sizes), we can solve the problem in time polynomial in n and

the largest profit value by standard dynamic programming.

For general sizes, we can round the size of each item down to the nearest

multiple of ε
n
. Then, we can solve the exact version in pseudopolynomial time by

dynamic programming. It is easy to show that for any subset of items, its total size

is at most the total rounded size plus ε. Therefore, the total size of our solution is

at most 1 + ε.

Theorem 8.6. If the optimal probability is Ω(1), we can find in polynomial time a

subset S of items such that Pr(v(S) > (1− ε)T) ≥ (1− ε)OPT and w(S) ≤ 1 + ε,

for any constant ε > 0.

8.4 Extension to Multiple Utility functions

In this and the next sections, we discuss some extensions to our basic approxima-

tion scheme. We first consider optimizing a constant number of utility functions

in this section. Then, we study the problem where the weight of each element is a

random vector in Section 8.5.

The problem we study in this section contains a set U of n elements. Each

element e has a random weight we. We are also given d utility functions µ1, . . . , µd

and d positive numbers λ1, . . . , λd. We assume d is a constant. A feasible solution

consists of d subsets of elements that satisfy some property. Our objective is to

find a feasible solution S1, . . . , Sd such that E[µi(w(Si))] ≥ λi for all 1 ≤ i ≤ d.

We can easily extend our basic approximation scheme to the multiple utility

functions case as follows. We decompose these utility functions into short expo-

8.4 Extension to Multiple Utility functions 178

nential sums using ESUM as before. Then, for each utility function, we maintain

(n/ε)O(L) configurations. Therefore, we have (n/ε)O(dL) configurations in total and

we would like to compute the values for these configurations. We denote the de-

terministic version of the problem under consideration by A. The exact version of

A asks for a feasible solution S1, . . . , Sd such that the total weight of Si is exactly

the given number ti for all i. Following an argument similar to Lemma 8, we can

easily get the following generalization of Theorem 8.1.

Theorem 8.7. Assume that there is a pseudopolynomial algorithm for the exact

version of A. Further assume that given any ε > 0, we can ε-approximate each

utility function by an exponential sum with at most L terms. Then, there is an

algorithm that runs in time (n/ε)O(dL) and finds a feasible solution S1, . . . , Sd such

that E[µi(w(Si)] ≥ λi−ε for 1 ≤ i ≤ d, if there is a feasible solution for the original

problem.

Now let us consider two simple applications of the above theorem.

8.4.1 Stochastic Multiple Knapsack

In this problem we are given a set U of n items, d knapsacks with capacity 1, and d

constants 0 ≤ γi ≤ 1. We assume d is a constant. Each item i has a random size wi

and a deterministic profit vi. Our objective is to find d disjoint subsets S1, . . . , Sd

such that Pr(w(Si) ≤ 1) ≥ γi for all 1 ≤ i ≤ d and
∑d

i=1 v(Si) is maximized.

The exact version of the problem is to find a packing such that the load of each

knapsack i is exactly the given value ti. It is not hard to show this problem can be

solved in pseudopolynomial time by standard dynamic programming. If the profits

are general integers, we also need the scaling technique as in stochastic knapsack

with random sizes. In sum, we can get the following generalization of Theorem 8.5.

Theorem 8.8. For any constants d ∈ N, ε > 0 and 0 ≤ γi ≤ 1 for 1 ≤ i ≤ d, there

is a polynomial time algorithm to compute d disjoint subsets S1, . . . , Sd such that

8.4 Extension to Multiple Utility functions 179

the total profit
∑d

i=1 v(Si) is within a 1− ε factor of the optimum and Pr(w(Si) ≤
1 + ε) ≥ (1− ε)γi for 1 ≤ i ≤ d.

8.4.2 Stochastic Multidimensional Knapsack

In this problem we are given a set U of n items and a constant 0 ≤ γ ≤ 1.

Each item i has a deterministic profit vi and a random size which is a random d-

dimensional vector wi = {wi1, . . . , wid}. We assume d is a constant. Our objective

is to find a subset S of items such that Pr(
∧d
j=1(

∑
i∈S wij ≤ 1)) ≥ γ and total profit

is maximized. This problem can be also thought as the fixed set version of the

stochastic packing problem considered in [58,29]. We first assume the components

of each size vector are independent. The correlated case will be addressed in the

next subsection.

For ease of presentation, we assume d = 2 from now on. Extension to general

constant d is straightforward. We can solve the problem by casting it into a

multiple utility problem as follows. For each item i, we create two copies i1 and

i2. The copy ij has a random weight wij. A feasible solution consists of two sets

S1 and S2 such that S1 (S2) only contains the first (second) copies of the elements

and S1 and S2 correspond to exactly the same subset of original elements. We

enumerate all such pairs (γ1, γ2) such that γ1γ2 ≥ γ and γi ∈ [γ, 1] is a power of

1− ε for i = 1, 2. Clearly, there are a polynomial number of such pairs. For each

pair (γ1, γ2), we solve the following problem: find a feasible solution S1, S2 such

that Pr(
∑

i∈Sj wij ≤ 1) ≥ γj for all j = 1, 2 and total profit is maximized. Using

the scaling technique and Theorem 8.7 for optimizing multiple utility functions,

we can get a (1−ε)-approximation for the optimal profit and Pr(
∧2
j=1(

∑
i∈Sj wij ≤

1)) =
∏2

j=1 Pr(
∑

i∈Sj wij ≤ 1) ≥ (1−O(ε))γ1γ2 ≥ (1−O(ε))γ.

We note that the same result for independent components can be also obtained

by using the discretization technique developed for the adaptive version of the

problem in [29] 4. If the components of each size vector are correlated, we cannot

4With some changes to the discretization technique, the correlated case can be also handled

8.5 Extension to Multidimensional Weight 180

decompose the problem into two 1-dimensional utilities as in the independent case.

Now, we introduce a new technique to handle the correlated case.

8.5 Extension to Multidimensional Weight

The general problem we study contains a set U of n elements. Each element e

has a random weight vector wi = (wi1, . . . , wid). We assume d is a constant. We

are also given a utility functions µ : Rd → R+. A feasible solution is a subset of

elements satisfying some property. We use w(S) as a shorthand notation for vector

(
∑

i∈S wi1, . . . ,
∑

i∈S wid). Our objective is to find a feasible solution S such that

E[µi(w(S)] is maximized.

From now on, x and k denote d-dimensional vectors and kx (or k · x) denotes

the inner product of k and x. As before, we assume µ(x) ∈ [0, 1] for all x ≥ 0

and lim|x|→+∞ µ(x) = 0, where |x| = max(x1, . . . , xd), Our algorithm is almost the

same as in the one dimension case and we briefly sketch it here. We first notice

that expected utilities decompose for exponential utility functions, i.e., E[φk·w(S)] =
∏

i∈S E[φk·wi]. Then, we attempt to ε-approximate the utility function µ(x) by a

short exponential sum
∑
|k|≤N ckφ

kx
k (there are O(Nd) terms). If this can be done,

E[φk·w(S)] can be approximated by
∑
|k|≤N ckE[φk·w(S)]. Using the same argument

as in Theorem 8.1, we can show that there is a polynomial time algorithm that

can find a feasible solution S with E[µ(w(S))] ≥ OPT − ε for any ε > 0, provided

that a pseudopolynomial algorithm exists for the exact version of the deterministic

problem.

To approximate the utility function µ(x), we need the multidimensional Fourier

series expansion of a function f : Cd → C (assuming f is 2π-periodic in each

axis): f(x) ∼
∑

k∈Zd cke
ikx where ck = 1

(2π)d

∫
x∈[−π,π]d

f(x)e−ikx dx. The rectangular

[28].

8.5 Extension to Multidimensional Weight 181

partial sum is defined to be

SNf(x) =
∑

|k1|≤N

. . .
∑

|kd|≤N

cke
ikx.

It is known that the rectangular partial sum SNf(x) converges uniformly to f(x)

in [−π, π]d for many function classes as n tends to infinity. In fact, a generalization

of Theorem 8.4 to [−π, π]d also holds [9]: If f satisfies the α-Hölder condition, then

|f(x)− (SNf)(x)| ≤ O
(|f |C0,α lndN

Nα

)
for x ∈ [−π, π]d.

Now, we have an algorithm AP that can approximate a function in a bounded

domain. It is also straightforward to extend ESUM to the multidimensional case.

Hence, we can ε-approximate µ by a short exponential sum in [0,+∞)d, thereby

proving the multidimensional generalization of Theorem 8.2. Let us consider an

application of our result.

8.5.1 Stochastic Multidimensional Knapsack (Revisited)

We consider the case where the components of each weight vector can be corre-

lated. Note that the utility function χ2 corresponding to this problem is the two

dimensional threshold function: χ2(x, y) = 1 if x ≤ 1 and y ≤ 1; χ2(x, y) = 0 oth-

erwise. As in the one dimensional case, we need to consider a continuous version

χ̃2 of χ2 (see Figure 8.1(3)). By the result in this section and a generalization of

Lemma 13 to higher dimension, we can get the following.

Theorem 8.9. For any constants d ∈ N, ε > 0 and 0 ≤ γ ≤ 1, there is a

polynomial time algorithm for finding a set S of items such that the total profit

v(S) is 1− ε factor of the optimum and Pr(
∧d
j=1(

∑
i∈S wij ≤ 1 + ε)) ≥ (1− ε)γ.

8.6 Discussions 182

8.6 Discussions

Convergence of Fourier series: The convergence of the Fourier series of a func-

tion is a classic topic in harmonic analysis. Whether the Fourier series converges to

the given function and the rate of the convergence typically depends on a variety

of smoothness condition of the function. We refer the readers to [169] for a more

comprehensive treatment of this topic. We note that we could obtain a smoother

version of χ (e.g., see Figure 8.1(2)), instead of the piecewise linear χ̃, and then

use Theorem 8.4 to obtain a better bound for L. This would result in an even

better running time. Our choice is simply for the ease of presentation.

Discontinuous utility functions: If the utility function µ is discontinuous, e.g.,

the threshold function, then the partial Fourier series behaves poorly around the

discontinuity (this is known as the Gibbs phenomenon). However, informally speak-

ing, as the number of Fourier terms increases, the poorly-behaved strip around the

edge becomes narrower. Therefore, if the majority of the probability mass of our

solution lies outside the strip, we can still guarantee a good approximation of

the expected utility. There are also techniques to reduce the effects of the Gibbs

phenomenon (See e.g., [81]). We leave the problem of directly dealing with dis-

continuous utility functions, especially the threshold function, to obtain a true

approximation (instead of a bi-criterion approximation) as an interesting open

problem.

Chapter 9

Stochastic Matchings

9.1 Introduction

Motivated by applications in kidney exchanges and online dating, Chen et al. [40]

proposed the following stochastic matching problem: we want to find a maximum

matching in a random graph G on n nodes, where each edge (i, j) ∈ [
(
n
2

)
] exists

with probability pij, independently of the other edges. However, all we are given

are the probability values {pij}. To find out whether the random graph G has the

edge (i, j) or not, we have to try to add the edge (i, j) to our current matching

(assuming that i and j are both unmatched in our current partial matching)—we

call this “probing” edge (i, j). As a result of the probe, we also find out if (i, j)

exists or not—and if the edge (i, j) indeed exists in the random graph G, it gets

irrevocably added to M . Such policies make sense, e.g., for dating agencies, where

the only way to find out if two people are actually compatible is to send them on a

date; moreover, if they do turn out to be compatible, then it makes sense to match

them to each other (see Section 1.3 for the details of the motivations). Finally, to

model the fact that there might be a limit on the number of unsuccessful dates a

person might be willing to participate in, “timeouts” on vertices are also provided.

More precisely, valid policies are allowed, for each vertex i, to only probe at most

ti edges incident to i. Similar considerations arise in kidney exchanges, details of

which can be found in Section 1.3.

Chen et al. [40] asked the question: how can we devise probing policies to

maximize the expected cardinality (or weight) of the matching? They showed that

the greedy algorithm that probes edges in decreasing order of pij (as long as their

183

9.1 Introduction 184

endpoints had not timed out) was a 4-approximation to the unweighted version

(i.e., all edges have the same weight 1) of the stochastic matching problem. Quite

recently, Adamczyk has proved that the greedy algorithm is a 2-approximation

for unweighted stochastic matching [4]. However, this greedy algorithm (and other

simple greedy schemes) can be seen to be arbitrarily bad in the presence of weights,

and they left open the question of obtaining good algorithms to maximize the ex-

pected weight of the matching produced. In addition to being a natural gener-

alization, weights can be used as a proxy for revenue generated in matchmaking

services. (The unweighted case can be thought of as maximizing the social wel-

fare.) In this chapter, we resolve the main open question from Chen et al. [40] by

obtaining constant approximations for the weighted stochastic matching problems.

9.1.1 Our Contributions

First, we consider a more general problem, called stochastic k-set-packing, where

we try to pack k-hyperedges with random sizes and profits into a d-dimensional

knapsack of a given size. The stochastic k-set-packing problem is a direct gen-

eralization of the stochastic matching problem (for k = 4; See the reduction in

Section 9.2). We also note that this is a slight generalization of the stochastic

b-matching problem of [58]. In particular, our model allows correlations between

the profit of an item and its size-vector, whereas in [58] the profit of each item is

fixed (or independent of its size-vector). Indeed, it is the discreteness in the sizes

(i.e., 0− 1 values) that allows the LP-based approach to work for stochastic k-set-

packing; if the instantiations were allowed to be in [0, 1] then the LP has a large

integrality gap even with just one constraint (see e.g., Appendix A of [92]). More-

over, our focus is on the situation where k � d. For this setting of parameters,

we improve on the
√
d-approximation of [58] (which only holds for independent

profits and sizes) by showing the following (Section 9.2).

Theorem 9.1. There is a 2k-approximation algorithm for the weighted stochastic

9.1 Introduction 185

k-set-packing problem. When the column outcomes are monotone, there is a k+ 1

approximation algorithm.

Our main idea is to use the knowledge of item probabilities to solve a linear

program where each item e has a variable 0 ≤ ye ≤ 1 corresponding to the prob-

ability that a strategy packs e (over all possible realizations of the hypergraph).

This is similar to the approach for stochastic packing problems considered by Dean

et al. [59,58]. Our improved approximation for monotone column outcomes is ob-

tained using the FKG inequality to strengthen the probability bound. Our usage

of the FKG inequality is similar to that in [162]. The second part of Theorem 9.1

also implies a simple 5-approximation for stochastic matching. However, using

more structure in the matching problem, we could obtain the following better

approximation ratios.

Theorem 9.2. There is a 4-approximation algorithm for the weighted stochastic

matching problem. For bipartite graphs, there is a 3-approximation algorithm.

The improved approximations use the same linear program as before, but more

involved rounding methods to decide which edges to probe. The rounding proce-

dure for bipartite graphs uses dependent rounding [73] on the y-values to obtain a

set Ê of edges to be probed, and then probes edges of Ê in a uniformly random

order. For non-bipartite graphs, the algorithm first samples a random bipartite

subgraph and then applies the bipartite rounding algorithm on it.

The probing strategy returned by the algorithm can in fact be made matching-

probing [40]. In this alternative (more restrictive) probing model we are given

an additional parameter k and edges need to be probed in k rounds, each round

being a matching. It is clear that this matching-probing model is more restrictive

than the usual edge-probing model (with timeouts min{ti, k}) where one edge is

probed at a time. Our algorithm obtains a matching-probing strategy that is only

a small constant factor worse than the optimal edge-probing strategy; hence, we

also obtain the same constant approximation guarantee for weighted stochastic

9.1 Introduction 186

matching in the matching-probing model. It is worth noting that previously only

a logarithmic approximation in the unweighted case was known [40].

Theorem 9.3. There is a 4-approximation algorithm for the weighted stochastic

matching problem in the matching-probing model. For bipartite graphs, there is a

3-approximation algorithm.

Apart from solving these open problems and yielding improved approximations,

our LP-based analysis turns out to be applicable in a wider context.

Online Stochastic Matching with Timeouts: In a bipartite graph (A,B;E)

of items i ∈ A and potential buyer types j ∈ B, pij denotes the probability that a

buyer of type j will buy item i. A sequence of n buyers are to arrive online, where

the type of each buyer is an i.i.d. sample from B according to some pre-specified

distribution—when a buyer of type j appears, he can be shown a list L of up to tj

as-yet-unsold items, and the buyer buys the first item on the list according to the

given probabilities p·,j. (Note that with probability
∏

i∈L(1−pij), the buyer leaves

without buying anything.) What items should we show buyers when they arrive

online, and in which order, to maximize the expected weight of the matching?

Building on the algorithm for stochastic matching in Section 9.2, we prove the

following in Section 9.4.

Theorem 9.4. There is a 6e2

2e2−e−1
≈ 4.008-approximation algorithm for the online

stochastic matching problem with timeouts.

This question is an extension of similar online stochastic matching questions

considered earlier in [68]—in that paper, wij, pij ∈ {0, 1} and tj = 1. Our model

tries to capture the facts that buyers may have a limited attention span (using the

timeouts), they might have uncertainties in their preferences (using edge probabil-

ities), and that they might buy the first item they like rather than scanning the

entire list.

The results in this chapter are mainly based on [16,17]. Theorem 9.4 improves

Theorem 4 in [17].

9.2 Stochastic k-Set Packing 187

A note on optimal solutions: We must clarify here the notion of an optimal

solution. In standard worst case analysis we would compare our solution against

the optimal offline solution, e.g. the value of the maximum matching, where the

offline knows all the edge instantiations in advance (i.e. which edge will appear

when probed, and which will not). However, it can be easily verified that due to

the presence of timeouts, this adversary is too strong [40]. Consider the following

example. Suppose we have a star where each vertex has timeout 1, and each edge

has pij = 1/n. The offline optimum can match an edge whenever the star has

an edge i.e. with probability about 1 − 1/e, while our algorithm can only get

expected 1/n profit, as it can only probe a single edge. Hence, for all problems

in this paper we consider the setting where even the optimum does not know the

exact instantiation of an edge until it is probed. This gives our algorithms a level

playing field. The optimum thus corresponds to a “strategy” of probing the edges,

which can be chosen from an exponentially large space of potentially adaptive

strategies.

We note that our algorithms in fact yield non-adaptive strategies for the cor-

responding problems, that are only constant factor worse than the adaptive opti-

mum. This is similar to previous results on stochastic packing problems: knapsack

(Dean et al. [59,58]) and multi-armed bandits (Guha-Munagala [89,90] and refer-

ences therein).

9.2 Stochastic k-Set Packing

We first consider a generalization of the stochastic matching problem to hyper-

graphs, where each edge has size at most k. Formally, the input to this stochastic

k-set packing problem consists of

• n items/columns, where each item has a random profit vi ∈ R+, and a

random d-dimensional size Si ∈ {0, 1}d; these random values and sizes are

drawn from a probability distribution specified as part of the input. We

9.2 Stochastic k-Set Packing 188

note that the size-vector Si and profit vi of each item i are allowed to be

correlated (this is what distinguishes our model from [58]). The probability

distributions for different items are independent. Additionally, for each item,

there is a set Ci of at most k coordinates such that each size vector takes

positive values only in these coordinates; i.e., Si ⊆ Ci with probability 1 for

each item i.

• A capacity vector b ∈ Zd
+ into which the items must be packed.

The parameter k is called the column sparsity of the problem. The instantiation

of any column (i.e., its size and profit) is known only when it is probed. The goal is

to compute an adaptive strategy of choosing items until there is no more available

capacity such that the expectation of the obtained profit is maximized.

Note that the stochastic matching problem can be modeled as a stochastic 4-

set packing problem in the following way: we set d = 2n, and associate the ith

and (n+ i)th coordinate with the vertex i—the first n coordinates capture whether

the vertex is free or not, and the second n coordinates capture how many probes

have been made involving that vertex. For any t ∈ [d], let et ∈ {0, 1}d denote the

indicator vector with a single 1 in the tth position. Now each edge (i, j) is an item

which has the following distribution: with probability pij the value is wij and size

is ei + ej + en+i + en+j, and with remaining probability 1− pij the value is 0 and

size is en+i + en+j. Note that for each item, its size and value are correlated. If we

set the capacity vector to be b = (1, 1, · · · , 1, t1, t2, · · · , tn), this precisely captures

the stochastic matching problem. In this special case each size vector has ≤ k = 4

ones.

This stochastic k-set packing problem was studied (among many others) as the

“stochastic b-matching” problem in Dean et al. [58]; however their model assumed

deterministic values of items, so their results do not apply here directly. Moreover

the authors of that work did not consider the ‘column sparsity’ parameter k and

instead gave an O(
√
d)-approximation algorithm for the general case. Here we

9.2 Stochastic k-Set Packing 189

consider the performance of algorithms for this problem specifically as a function

of the column sparsity k, and prove Theorem 9.1.

A quick aside about “safe” and “unsafe” adaptive policies: a policy is called

safe if it can include an item only if there is zero probability of violating any

capacity constraint. In contrast, an unsafe policy may attempt to include an item

even if there is non-zero probability of violating capacity—however, if the random

size of the item causes the capacity to be violated, then no profit is received for the

overflowing item, and moreover, no further items may be included by the policy.

The model in Dean et al. [58] allowed unsafe policies, whereas we are interested in

safe policies. However, due to the discreteness of sizes in stochastic k-set packing,

it can be shown that our approximation guarantee is relative to the optimal unsafe

policy (see Subsection 9.2.2).

For each item i ∈ [n] and constraint j ∈ [d], let µi(j) := E[Si(j)], the ex-

pected value of the jth coordinate in size-vector Si. For each column i ∈ [n], the

coordinates {j ∈ [d] | µi(j) > 0} are called the support of column i. By column

sparsity, the support of each column has size at most k. Also, let wi := E[vi], the

mean profit, for each i ∈ [n]. We now consider the natural LP relaxation for this

problem, as in [58].

maximize
n∑

i=1

wi · yi (LP1)

subject to

n∑

i=1

µi(j) · yi ≤ bj ∀j ∈ [d] (9.1)

yi ∈ [0, 1] ∀i ∈ [n] (9.2)

The following claim shows that the LP above is a valid relaxation for the

stochastic k-set-packing problem.

9.2 Stochastic k-Set Packing 190

Claim 1. The optimal value for (LP1) is an upper bound on any (adaptive) algo-

rithm for stochastic k-set-packing.

Proof: Let pi be the probability that an adaptive strategy A packs item i. To show

the claim, it suffices to show that pis satisfy the constraints (9.1) for any adaptive

strategy A. Consider the jth constraint. Conditioned on any instantiation of all

items, A can pack at most bj items for which µi(j) = 1, since A is a safe policy.

Hence these constraints hold unconditionally as well, which implies that any valid

strategy satisfies (9.1). �

Let y∗ denote an optimal solution to this linear program, which in turn gives us

an upper bound on any adaptive (safe) strategy. Our rounding algorithm proceeds

as follows. Fix a constant α ≥ 1, to be specified later. The algorithm picks a

uniformly random permutation π : [n] → [n] on all columns, and probes only a

subset of the columns as follows. At any point in the algorithm, column c is safe

iff there is positive residual capacity in all the coordinates in the support of c—

in other words, irrespective of the instantiation of Sc, it can be feasibly packed

with the previously chosen columns. The algorithm inspects columns in the order

of π, and whenever it is safe to probe the next column c ∈ [n], it does so with

probability yc
α

. Note that the algorithm skips all columns that are unsafe at the

time they appear in π.

We now prove the first part of Theorem 9.1 by showing that this algorithm is

a 2k-approximation for a suitable value of α. For any column c ∈ [n], let {Ic,`}k`=1

denote the indicator random variables for the event that the `th constraint in the

support of c is tight at the time when c is considered under the random permutation

π. Note that the event “column c is safe when considered” is precisely
∧k
`=1 ¬Ic,`.

By a trivial union bound, the Pr[c is safe] ≥ 1−
∑k

`=1 Pr[Ic,`].

Lemma 14. For any column c ∈ [n] and index ` ∈ [k], Pr[Ic,`] ≤ 1
2α

.

9.2 Stochastic k-Set Packing 191

Proof: Let j ∈ [d] be the `th constraint in the support of c. Let U j
c denote the

usage of constraint j, when column c is considered (according to π). We have:

E[U j
c] =

n∑

a=1

Pr[column a appears before c AND a is probed] · µa(j),

≤
n∑

a=1

Pr[column a appears before c] · ya
α
· µa(j),

=
n∑

a=1

ya
2α
· µa(j) ≤

bj
2α
.

Since Ic,` = {U j
c ≥ bj}, Markov’s inequality implies that Pr[Ic,`] ≤ E[U j

c]/bj ≤ 1
2α

.

�

Again using the trivial union bound, the probability that a particular column

c is safe when considered under π is at least 1 − k
2α

, and thus the probability

of actually probing c is at least yc
α

(1 − k
2α

). Finally, by linearity of expectations

(since the instantiation of item c is independent of the event that it is probed)

the expected profit is at least 1
α

(1 − k
2α

) ·
∑n

c=1 wc · yc. Setting α = k implies an

expected profit of at least 1
2k
·
∑

cwcyc, which proves the first part of Theorem 9.1.

9.2.1 Special Case: Monotone Column Outcomes

We now consider a special case of stochastic k-set packing where the outcomes

of each column e form a total order w.r.t. the vector dominance relation; ie.

for any column i ∈ [n] and outcomes a, b ∈ {0, 1}d for column i, either a ≤ b

or b ≤ a coordinate-wise. Observe that this is true for the stochastic matching

problem. The algorithm for monotone column outcomes is identical to the one for

the general case when we set parameter α = 1. We show below that this algorithm

achieves a k+ 1 approximation; this bound nearly matches the LP integrality gap

of k − 1 + 1
k

for even deterministic k-set packing [72].

As above, consider the indicator random variables {Ic,`}k`=1 for each column

9.2 Stochastic k-Set Packing 192

c ∈ [n]. The improvement for the monotone-outcome case comes from the following

strengthened bound on Pr[
∧
`(¬Ic,`)] which is obtained via the FKG inequality

([10, Theorem 6.2.1]). Given a vector X = {X1, . . . , Xn} of independent events

and an event F which is a function of X, we say F is an increasing (decreasing)

event if for any vector X that F (X) holds, F (Y) also holds when Yi ≥ Xi ∀i
(Xi ≥ Yi ∀i). The FKG inequality says that for any collection of increasing

(decreasing) events F1, . . . , Fk, it holds that Pr[
∧k
i=1 Fi] ≥

∏k
i=1 Pr[Fi].

Lemma 15. For any column c ∈ [n], Pr[
∧
`(¬Ic,`)] ≥ 1

k+1
.

Proof: We can assume that the random permutation π is chosen by the following

random experiment: For each column e, we pick independently and uniformly at

random a real number ae ∈ [0, 1]. The columns are then sorted in increasing order

of these numbers to obtain π.

We first condition on ac = x, and bound Pr[
∧
`(¬Ic,`)|ac = x]. For each column

e ∈ [n] \ {c}, let the random variable Be = 1 if ae ≤ x and Be = 0 otherwise.

Let Ze be the random variable corresponding to the random outcome of column e,

with values consistent with the total-order of its outcomes. Let Ye be the indicator

random variable that is 1 w.p. ye. Observe that random variables {Be, Ze, Ye|e ∈
[n] \ {c}} are mutually independent. Since the outcomes of each column e forms

a total ordering, we can see that ¬Ic,` (for each ` ∈ [k]) is a decreasing function of

{Be, Ze, Ye|e ∈ [n] \ {c}}. Therefore, by the FKG inequality, we have

Pr

[∧

`

(¬Ic,`) | ac = x

]
≥
∏

`

Pr[(¬Ic,`) | ac = x] (9.3)

Claim 2. For any column c ∈ [n] and index ` ∈ [k], Pr[Ic,` | ac = x] ≤ x.

Proof: Let j ∈ [d] be the `th constraint in the support of c. Let U j
c denote the

9.2 Stochastic k-Set Packing 193

usage of constraint j, when column c is considered (according to π). Then,

E[U j
c | ac = x] =

n∑

e=1

Pr[ae < x AND e is probed] · µe(j),

=
n∑

e=1

Pr[ae < x] · ye · µe(j),

=
n∑

e=1

x · ye · µe(j),≤ x · bj.

Since Ic,` = {U j
c ≥ bj}, Markov’s inequality implies that Pr[Ic,` | ac = x] ≤

E[Ujc |ac=x]
bj

≤ x. �

Now using Inequality (9.3) and Claim 2, we have that

Pr

[∧

`

(¬Ic,`)

]
=

∫ 1

0

Pr

[∧

`

(¬Ic,`) | ac = x

]
dx ≥

∫ 1

0

∏

`

Pr[(¬Ic,`) | ac = x]dx

≥
∫ 1

0

∏

`

(1− x)dx ≥
∫ 1

0

(1− x)kdx =
1

1 + k

This completes the proof of Lemma 15. �

Now, the probability of actually probing column c is at least yc ·Pr[∧`(¬Ic,`)] ≥
yc
k+1

. Finally, by linearity of expectations (since the instantiation of item c is

independent of the event that it is probed) the expected profit is at least 1
k+1
·

∑n
c=1wc · yc. This proves the second part of Theorem 9.1.

9.2.2 Safe versus Unsafe policies

Here we show that our algorithm’s policy (which is safe) achieves a good approx-

imation even relative to the optimal unsafe policy. Recall that an item can be

probed in a safe policy only if there is zero probability of violating any capacity

constraint. Whereas an unsafe policy may probe an item even if there is positive

probability of violating capacity—but if capacity is violated then no profit is re-

9.3 Stochastic Matching 194

ceived from that item and the policy ends. For a given set of items (with their

distributions) and capacity vector b′ ∈ Zd
+, let Safe(b′) (resp. Unsafe(b′)) denote

the value of the optimal safe (resp. unsafe) policy with capacity b′; LP(b′) the op-

timal value of (LP1) with right hand side in (9.1) being b′; and ALG(b′) the value

obtained by our algorithm. Let b ∈ Zd
+ denote the capacity vector for the given

instance; i.e. bj ≥ 1 for all j ∈ [d] (if bj was allowed to be 0 then clearly any safe

policy gets zero value from items participating in this constraint j, but an unsafe

policy can get positive value). We have:

Unsafe(b) ≤ Safe(b+ 1) ≤ LP(b+ 1) ≤ 2 · LP

(⌈
b+ 1

2

⌉)
≤ 2 · LP(b)

where 1 is the all-ones vector. The first inequality uses the fact that each size lies in

{0, 1}, the second is by Claim 1, the third is by scaling (since b+1
2
≤
⌈
b+1

2

⌉
), and the

last inequality uses b ∈ Zd
+. Finally, the analysis in the previous subsections implies

that ALG(b) ≥ 1
2k
· LP(b) in general; and ALG(b) ≥ 1

k+1
· LP(b) in case of monotone

column-outcomes. Combined with the above inequality we have ALG(b) ≥ 1
4k
·

Unsafe(b), and ALG(b) ≥ 1
2k+2
· Unsafe(b) in the monotone column-outcomes case.

9.3 Stochastic Matching

We consider the following stochastic matching problem. The input is an undirected

graph G = (V,E) with a weight we and a probability value pe on each edge e ∈ E.

In addition, there is an integer value tv for each vertex v ∈ V (called patience

parameter). Initially, each vertex v ∈ V has patience tv. At each step in the

algorithm, any edge e(u, v) such that u and v have positive remaining patience can

be probed. Upon probing edge e, one of the following happens: (1) with probability

pe, vertices u and v get matched and are removed from the graph (along with all

adjacent edges), or (2) with probability 1 − pe, the edge e is removed and the

remaining patience numbers of u and v get reduced by 1. An algorithm is an

9.3 Stochastic Matching 195

adaptive strategy for probing edges: its performance is measured by the expected

weight of matched edges. The unweighted stochastic matching problem is the

special case when all edge-weights are uniform.

Consider the following linear program: as usual, for any vertex v ∈ V , ∂(v)

denotes the edges incident to v. Variable ye denotes the probability that edge e =

(u, v) gets probed in the adaptive strategy, and xe = pe · ye denotes the probability

that u and v get matched in the strategy. (This LP is similar to the LP used for

general stochastic packing problems by Dean, Goemans and Vondrák [58].)

maximize
∑

e∈E

we · xe (LP2)

subject to

∑

e∈∂(v)

xe ≤ 1 ∀v ∈ V (9.4)

∑

e∈∂(v)

ye ≤ ti ∀v ∈ V (9.5)

xe = pe · ye ∀e ∈ E (9.6)

0 ≤ ye ≤ 1 ∀e ∈ E (9.7)

9.3.1 Weighted Stochastic Matching: Bipartite Graphs

In this section, we consider the stochastic matching problem on bipartite graphs.

In fact, the algorithm produces a matching-probing strategy whose expected value

is a constant fraction of the optimal value of (LP2) (which was for edge-probing).

Algorithm. First, we find an optimal fractional solution (x, y) to (LP2) and round

y to identify a set of interesting edges Ê. Then we use König’s Theorem [158, Ch.

20] to partition Ê into a small collection of matchings M1, . . . ,Mh. Finally, these

matchings are then probed in random order. If we are only interested in edge-

9.3 Stochastic Matching 196

probing strategies, probing the edges in Ê in random order would suffice. We will

refer to this algorithm as round-color-probe:

1. (x, y) ← optimal solution to (LP2)

2. ŷ ← round y to an integral solution using GKSP

3. Ê ← {e ∈ E : ŷe = 1}
4. M1, . . . ,Mh ← optimal edge coloring of Ê

5. For each M in {M1, . . . ,Mh} in random order, do:

a. probe {(u, v) ∈M : u and v are unmatched}

The algorithm above uses the GKSP procedure of Gandhi et al. [73], which we

describe next.

The GKSP algorithm. We state some properties of the dependent rounding

framework of Gandhi et al. [73] that are relevant in our context.

Theorem 9.5 ([73]). Let (A,B;E) be a bipartite graph and ze ∈ [0, 1] be fractional

values for each edge e ∈ E. The GKSP algorithm is a polynomial-time randomized

procedure that outputs values Ze ∈ {0, 1} for each e ∈ E such that the following

properties hold:

P1. Marginal distribution. For every edge e, Pr[Ze = 1] = ze.

P2. Degree preservation. For every vertex u ∈ A ∪B,
∑

e∈∂(u) Ze ≤
⌈∑

e∈∂u ze
⌉
.

P3. Negative correlation. For any vertex u and any set of edges S ⊆ ∂(u):

Pr[
∧

e∈S

(Ze = 1)] ≤
∏

e∈S

Pr[Ze = 1].

We note that the GKSP algorithm in fact guarantees stronger properties than

the ones stated above. For the purpose of analyzing round-color-probe, how-

ever, the properties stated above will suffice.

9.3 Stochastic Matching 197

9.3.1.0.1 Feasibility. Let us first argue that our algorithm outputs a feasible

strategy. If we care about feasibility in the edge-probing model, we only need to

show that each vertex u is not probed more than tu times. The following lemma

shows that:

Lemma 16. For every vertex u, round-color-probe probes at most tu edges

incident on u.

Proof: Vertex u is matched in
∣∣{e ∈ ∂ bE(u)

}∣∣ matchings. This is an upper bound

on the number of times edges incident on u probed. Hence we just need to show

that this quantity is at most tu. Indeed,

∣∣{e ∈ ∂ bE(u)
}∣∣ =

∑

e∈∂(u)

ŷe ≤
⌈ ∑

e∈∂(u)

ye

⌉
≤ tu,

where the first inequality follows from the degree preservation property of The-

orem 9.5 and the second inequality from the fact that y is a feasible solution to

(LP2). �

Let us argue that the strategy is also feasible under the matching-probing

model. Recall that in the latter model we are given an additional parameter k

(which without loss of generality we can assume to be at most maxv∈V tu) and

we can probe edges in k round, with each round forming a matching. Let Ê be

the set of edges in the support of ŷ, i.e., Ê = {e ∈ E | ŷe = 1}. Let h =

maxv∈V deg bE(v) ≤ maxv∈V tv. König’s Theorem allows us to decomposed Ê into

h matchings. Therefore, the probing strategy devised by the algorithm is also

feasible in the matching-probing model.

Performance guarantee. Let us focus our attention on some edge e = (u, v) ∈ E.

Our goal is to show that there is good chance that the algorithm will indeed probe

e. We first analyze the probability of e being probed conditioned on Ê. Notice

that the algorithm will probe e if and only if all previous probes incident on u and

9.3 Stochastic Matching 198

v were unsuccessful; otherwise, if there was a successful probe incident on u or v,

we say that e was blocked.

Let π be a permutation of the matchings M1, . . . ,Mh. We extend this ordering

to the set Ê by listing the edges within a matching in some arbitrary but fixed

order. Let us denote by B(e, π) ⊆ Ê the set of edges incident on u or v that appear

before e in π. It is not hard to see that

Pr [e was not blocked | Ê] ≥ Eπ

[∏

f∈B(e,π)

(1− pf) | Ê
]
; (9.8)

here we assume that
∏

f∈B(e,π)(1− pf) = 1 when B(e, π) = ∅.
Notice that in (9.8) we only care about the order of edges incident on u and v.

Furthermore, the expectation does not range over all possible orderings of these

edges, but only those that are consistent with some matching permutation. We

call this type of restricted ordering random matching ordering and we denote it by

π; similarly, we call an unrestricted ordering random edge ordering and we denote

it by σ. Our plan is to study first the expectation in (9.8) over random edge

orderings and then to show that the expectation can only increase when restricted

to range over random matching orderings.

The following simple lemma is useful in several places.

Lemma 17. Let r and pmax be positive real values. Consider the problem of min-

imizing
∏t

i=1(1− pi) subject to the constraints
∑t

i=1 pi ≤ r and 0 ≤ pi ≤ pmax for

i = 1, . . . , t. Denote the minimum value by η(r, pmax). Then,

η(r, pmax) = (1− pmax)b
r

pmax
c
(

1− (r −
⌊

r
pmax

⌋
pmax)

)
≥ (1− pmax)r/pmax .

Proof: Suppose the contrary that the quantity is minimized but there are two

pis that are strictly between 0 and pmax. W.l.o.g, they are p1, p2 and p1 > p2 Let

9.3 Stochastic Matching 199

ε = min(pmax − p1, p2). It is easy to see that

(1− (p1 + ε))(1− (p2 − ε))
t∏

i=3

(1− pi)−
t∏

i=1

(1− pi) = ε(p2 − p1 − ε)
t∏

i=3

(1− pi) < 0.

This contradicts the fact the quantity is minimized. Hence, there is at most one

pi which is strictly between 0 and pmax.

The last inequality holds since 1− b ≥ (1− a)b/a for any 0 ≤ b ≤ a ≤ 1. �

Let ∂ bE(e) be the set of edges in Ê incident on either endpoint of e excluding e

itself.

Lemma 18. Let e be an edge in Ê and let σ be a random edge ordering. Let

pmax = maxf∈ bE pf . Assume that
∑

f∈∂ bE(e) pf = r. Then,

Eσ

[∏

f∈B(e,σ)

(1− pf) | Ê
]
≥
∫ 1

0

η(xr, xpmax)dx.

Proof: We claim that the expectation can be written in the following continuous

form:

Eσ

[∏

f∈B(e,σ)

(1− pf) | Ê
]

=

∫ 1

0

∏

f∈∂ bE(e)

(1− xpf)dx.

The lemma easily follows from this and Lemma 17.

To see the claim, we consider the following random experiment: For each edge

f ∈ ∂(e), we pick uniformly at random a real number af in [0, 1]. The edges are

then sorted according to these numbers. It is not difficult to see that the experiment

produces uniformly random orderings. For each edge f , let the random variable

9.3 Stochastic Matching 200

Af = 1− pf if f ∈ B(e, σ) and Af = 1 otherwise. Hence, we have

Eσ

[∏

f∈B(e,σ)

(1− pf) | Ê
]

=

∫ 1

0

E
[∏

f∈∂ bE(e)

Af | ae = x
]
dx

=

∫ 1

0

∏

f∈∂ bE(e)

E
[
Af | ae = x

]
dx

=

∫ 1

0

∏

f∈∂ bE(e)

(
x(1− pf) + (1− x)

)
dx

=

∫ 1

0

∏

f∈∂ bE(e)

(1− xpf)dx

The second equality holds since the Af variables, conditional on ae = x, are inde-

pendent. �

Lemma 19. Let ρ(r, pmax) =
∫ 1

0
η(xr, xpmax)dx. For any r, pmax > 0, we have

1. ρ (r, pmax) is convex and decreasing on r.

2. ρ (r, pmax) ≥ 1
r+pmax

·
(

1− (1− pmax)1+ r
pmax

)
> 1

r+pmax
·
(

1− e−r
)

Proof: To see the first part, let us consider the function values on discrete points

r = pmax, 2pmax, Let F (x) = 1
x
(1 − cx) where c = 1 − pmax. From Lemma 17,

we can easily get that for integral t,

ρ (tpmax, pmax) =

∫ 1

0

(1− xpmax)tdx =
1

pmax(t+ 1)

(
1− ct+1

)
=

1

pmax

F (t+ 1).

The function F (x) is a convex function for any 0 < c < 1. Indeed, it is not hard to

prove that d2

dx2F (x) = 2
x3 +cx

(
− 2
x3 + 2 ln a

x2 − ln2 a
x

)
> 0 for any 0 < c < 1. However,

ρ (tpmax, pmax) only coincides with 1
pmax

F (t + 1) at integral values of t. Now, let

us consider the value of ρ(r, pmax) for γpmax < r < (γ + 1)pmax (for some integer

9.3 Stochastic Matching 201

γ ≥ 0):

ρ (r, pmax) =

∫ 1

0

(1− xpmax)γ
(

1− x(r − γpmax)
)

dx (9.9)

The key observation is that for fixed values of pmax and γ the right hand side of

(9.9) is a just linear function of r. The dependency of ρ in terms of r then becomes

clear: it is a piecewise linear function that takes the value F (t+1)/pmax at abscissa

points tpmax for t ∈ Z≥0. Therefore, ρ is a convex decreasing function of r.

The second part follows easily from Lemma 17:

ρ (r, pmax) =

∫ 1

0

η(xr, xpmax)dx ≥
∫ 1

0

(1− xpmax)r/pmaxdx

=
1

r + pmax

·
(

1− (1− pmax)1+ r
pmax

)

≥ 1

r + pmax

·
(

1− e−r
)

�

Lemma 20. Let e = (u, v) ∈ Ê. Let π be a random matching ordering and σ be a

random edge ordering of the edges adjacent to u and v. Then

Eπ

[∏

f∈B(e,π)

(1− pf) | Ê
]
≥ Eσ

[∏

f∈B(e,σ)

(1− pf) | Ê
]
.

Proof: We can think of π as a permutation of bundles of edges: For each matching,

if there are two edges incident on e, we bundle the edges together; if there is a single

edge incident on e this edge is in a singleton bundle by itself. The random edge

ordering σ can be thought as having all edges incident on e in singleton bundles.

Consider the same random experiment as in Lemma 18 except that we only pick

one random number for each bundle. Let G(e) be the set of all bundles incident

9.3 Stochastic Matching 202

on e. Using the same argument as in Lemma 18, we have

Eπ

[∏

f∈B(e,π)

(1− pf) | Ê
]

=

∫ 1

0

∏

g∈G(e)

(
x ·
∏

f∈g

(1− pf) + (1− x)
)

dx.

But for any bundle g ∈ G(e) and 0 ≤ x ≤ 1, we claim that

x ·
∏

f∈g

(1− pf) + (1− x) ≥
∏

f∈g

(1− xpf).

For singleton bundles we actually have equality. For a bundle g = {f1, f2}, we

have

x(1− pf1)(1− pf2) + (1− x) = 1− xpf1 − xpf2 + xpf1pf2

≥ 1− xpf1 − xpf2 + x2pf1pf2

= (1− xpf1)(1− xpf2).

This completes the proof. �

As we shall see shortly, if
∑

f∈∂ bE(e) pe is small then the probability that e is

not blocked is large. Because of the marginal distribution property of the GKSP

rounding procedure, we can argue that this quantity is small in expectation since
∑

f∈∂(e) peye ≤ 2 due to the fact that y is a feasible solution to (LP2). This,

however, is not enough; in fact, for our analysis to go through, we need a slightly

stronger property.

Lemma 21. For every edge e,

E
[∑

f∈∂ bE(e)

pf | e ∈ Ê
]
≤
∑

f∈∂(e)

pf yf .

9.3 Stochastic Matching 203

Proof: Let u be an endpoint of e.

E
[∑

f∈∂ bE(u)−e

pf | e ∈ Ê
]

=
∑

f∈∂(u)−e

Pr[ŷf = 1 | ŷe = 1] · pf ,

≤
∑

f∈∂(u)−e

Pr[ŷf = 1] · pf , [by Theorem 9.5 P3]

=
∑

f∈∂(u)−e

yf pf . [by Theorem 9.5 P1].

The same bound holds for the other endpoint of e. Adding the two inequalities

we get the lemma. �

Everything is in place to derive a bound the expected weight of the matching

found by our algorithm.

Theorem 9.6. If G is bipartite then round-color-probe is a 1/ρ(2, pmax) ap-

proximation under the edge- and matching-probing model, where ρ is defined in

Lemma 19. The worst ratio is attained at pmax = 1, where it is 3. The ratio tends

to 2
1−e−2 as pmax tends to 0.

Proof: Recall that the optimal value of (LP2) is exactly
∑

e∈E weyexe. The ex-

9.3 Stochastic Matching 204

pected weight of the matching found by the algorithm is

E [ALG] =
∑

e∈E

we pe Pr[e ∈ Ê] · Pr [e was not blocked | e ∈ Ê]

=
∑

e∈E

we pe ye · Pr [e was not blocked | e ∈ Ê] [by Theorem 9.5 P1]

≥
∑

e∈E

we pe ye · Eπ

[∏

f∈B(e,π)

(1− pf) | e ∈ Ê
]

[by (9.8)]

≥
∑

e∈E

we pe ye · Eσ

[∏

f∈B(e,σ)

(1− pf) | e ∈ Ê
]

[by Lemma 20]

≥
∑

e∈E

we pe ye · E
[
ρ
(∑

f∈∂ bE(e)

pf , pmax

)
| e ∈ Ê

]
[by Lemma 18]

≥
∑

e∈E

we pe ye · ρ
(
E
[∑

f∈∂ bE(e)

pf | e ∈ Ê
]
, pmax

)
[by Jensen’s inequality]

≥
∑

e∈E

we pe ye · ρ
(∑

f∈∂(e)

yf pf , pmax

)
[by Lemma 23]

≥
∑

e∈E

we pe ye · ρ(2, pmax) [y is feasible for (LP2)].

Notice that we are able to use Jensen’s inequality because, as shown in Lemma 19,

ρ(r, pmax) is a convex and decreasing function of r. The last two inequalities also

use the fact that ρ is decreasing.

It can be checked directly that ρ(2, pmax) is minimized at pmax = 1 where it is

1/3. Moreover ρ(2, pmax)→ 2
1−e−2 as pmax tends to 0. �

This proves the second parts of Theorem 9.2 and Theorem 9.3.

9.3.2 Weighted Stochastic Matching: General Graphs

We now present an algorithm for weighted stochastic matching in general graphs

that builds on the algorithm for the bipartite case. The basic idea is to solve

(LP2), randomly partition the vertices of G into two sets A and B, and then run

round-color-probe on the bipartite graph induced by (A,B). For the analysis

9.3 Stochastic Matching 205

to go through, it is crucial that we use the already computed fractional solution

instead of solving again (LP2) for the new bipartite graph in the call to round-

color-probe.

1. (x, y) ← optimal solution to (LP2)

2. randomly partition vertices into A and B

3. run round-color-probe on the bipartite graph and the fractional solution

induced by (A,B)

Theorem 9.7. For general graphs there is a 2/ρ(1, pmax) approximation under the

edge- and matching-probing model, where ρ is defined in Lemma 19. The worst

ratio is attained at pmax = 1, where it is 4. The ratio tends to 2
1−e−1 as pmax tends

to 0.

Proof: The analysis is very similar to the bipartite case. Essentially, conditional

on a particular outcome for the partition (A,B), all the lemmas derived in the

previous section hold. In other words, the same derivation done in the proof of

Theorem 9.6 yields:

E[ALG | (A,B)] ≥
∑

e∈(A,B)

wepeye · ρ
(∑

f∈∂A,B(e)

pf yf , pmax

)
,

where ∂A,B(e) = ∂(e) ∩ (A,B).

Hence, the expectation of algorithm’s performance is:

E[ALG] ≥
∑

e∈E

we pe ye Pr[e ∈ (A,B)] · E
[
ρ
(∑

f∈∂A,B(e)

pf yf , pmax

)
| e ∈ (A,B)

]
,

≥
∑

e∈E

we pe ye
1

2
· ρ
(
E
[∑

f∈∂A,B(e)

pf yf | e ∈ (A,B)
]
, pmax

)
,

≥
∑

e∈E

we pe ye
1

2
· ρ
(∑

f∈∂(e)

pf yf
2

, pmax

)
,

≥
∑

e∈E

we pe ye
1

2
· ρ
(
1, pmax

)
,

9.4 Stochastic Online Matching with Timeouts 206

where the second inequality follows from Jensen’s inequality and the fact that

ρ(r, pmax) is a convex decreasing function of r. Finally, noting that
∑

e∈E we pe ye

is a lower bound on the value of the optimal strategy, the theorem follows. �

This proves the first parts of Theorem 9.2 and Theorem 9.3.

9.4 Stochastic Online Matching with Timeouts

As mentioned in the introduction, the stochastic online matching with timeouts is

best imagined as selling a finite set of goods to buyers that arrive over time. The

input to the problem consists of a bipartite graph G = (A,B,A× B), where A is

the set of items that the seller has to offer, with exactly one copy of each item, and

B is a set of buyer types/profiles. For each buyer type b ∈ B and item a ∈ A, pab

denotes the probability that a buyer of type b will like item a, and wab denotes the

revenue obtained if item a is sold to a buyer of type b. Each buyer of type b ∈ B
also has a patience parameter tb ∈ Z+. There are n buyers arriving online, with

eb ∈ Z denoting the expected number of buyers of type b, with
∑
eb = n. Let D

denote the induced probability distribution on B by defining PrD[b] = eb/n. All

the above information is given as input.

The stochastic online model is the following: At each point in time, a buyer

arrives, where her type b ∈D B is an i.i.d. draw from D. The algorithm now shows

her up to tb distinct items one-by-one: the buyer likes each item a ∈ A shown to

her independently with probability pab. The buyer purchases the first item that

she is offered and likes; if she buys item a, the revenue accrued is wab. If she does

not like any of the items shown, she leaves without buying. The objective is to

maximize the expected revenue.

We get the stochastic online matching problem of Feldman et al. [68] if we have

wab = pab ∈ {0, 1}, in which case we need only consider tb = 1. Their focus was

on beating the 1− 1/e-competitiveness known for worst-case models [114,109,133,

32,80]; they gave a 0.67-competitive algorithm that works for the unweighted case

9.4 Stochastic Online Matching with Timeouts 207

with high probability. On the other hand, our results are for the weighted case

(with preference-uncertainty and timeouts), but only in expectation. Furthermore,

in our extension, due to the presence of timeouts (see Section ??), any algorithm

that provides a guarantee whp must necessarily have a high competitive ratio.

By making copies of buyer types, we may assume that eb = 1 for all b ∈ B,

and D is uniform over B. For a particular run of the algorithm, let B̂ denote the

actual set of buyers that arrive during that run. Let Ĝ = (A, B̂, A × B̂), where

for each a ∈ A and b̂ ∈ B̂ (and suppose its type is some b ∈ B), the probability

associated with edge (a, b̂) is pab and its weight is wab. Moreover, for each b̂ ∈ B̂
(with type, say, b ∈ B), set its patience parameter to tb̂ = tb. We will call this the

instance graph; the algorithm sees the vertices of B̂ in random order, and has to

adaptively find a large matching in Ĝ.

It now seems reasonable that the algorithm of Section 9.2 (specialized to stochas-

tic matching) should work here. But the algorithm does not know Ĝ (the actual

instantiation of the buyers) up front, it only knows G, and hence some more work

is required to obtain an algorithm. Further, as was mentioned in the preliminaries,

we use OPT to denote the optimal adaptive strategy (instead of the optimal offline

matching in Ĝ as was done in [68]), and compare our algorithm’s performance with

this OPT.

The Linear Program. For a graphH = (A,C,A×C) with each edge (a, c) having

a probability pac and weight wac, and vertices in C having patience parameters tj,

consider the LP(H):

maximize
∑

a∈A, c∈C

wac · xac (LP3)

subject to

9.4 Stochastic Online Matching with Timeouts 208

∑

c∈C

xac ≤ 1 ∀a ∈ A (9.10)

∑

a∈A

xac ≤ 1 ∀c ∈ C (9.11)

∑

a∈A

yac ≤ tc ∀c ∈ C (9.12)

xac = pac · yac ∀a ∈ A, c ∈ C (9.13)

yac ∈ [0, 1] ∀a ∈ A, c ∈ C (9.14)

Note that this LP is very similar to the one in Section 9.3, but the vertices in

A do not have timeout values. Let LP(H) denote the optimal value of this LP.

The algorithm:

1. Before any buyers arrive, solve the LP on the expected graph G to get values

y.

2. ŷ ← round y to an integral solution using GKSP

3. Ê ← {e ∈ E : ŷe = 1}
4. When any buyer b̂ (of type b) arrives online:

a. If b̂ is the first buyer of type b, consider the set of items {a ∈ A | (a, b) ∈
Ê} in a uniformly random order. One by one, offer each item a (that

is still unsold) to b̂; stop if either tb offers are made or b̂ purchases any

item.

b. If b̂ is not the first arrival of type b, do not offer any items to b̂.

In the following, we prove that our algorithm achieves a constant approxima-

tion to stochastic online matching with timeouts. The first lemma show that the

expected value obtained by the best online adaptive algorithm is bounded above

by E[LP(Ĝ)].

9.4 Stochastic Online Matching with Timeouts 209

Lemma 22. The optimal value OPT of the given instance is at most E[LP(Ĝ)],

where the expectation is over the random draws to create Ĝ.

Proof: Consider an algorithm that is allowed to see the instantiation B̂ of the

buyers before deciding on the selling strategy—the expected revenue of the best

such algorithm is clearly an upper bound on OPT. Given any instantiation B̂,

the expected revenue of the optimal selling strategy is at most LP(Ĝ) (see e.g.

Claim 1). The claim follows by taking an expectation over B̂. �

For any buyer-type b ∈ B, in the following, b̂ refers to the first type-b buyer

(if any). For each b ∈ B, let random variable Tb ∈ [n] ∪ {∞} denote the earliest

arrival time of a type-b buyer; if there is no type-b arrival then Tb =∞.

Let Ab ≡ (Tb < ∞) denote the event that there is some type-b arrival in the

instantiation B̂. Since each arrival is i.i.d. from the uniform distribution over B,

Pr[Ab] = 1− (1− 1

n
)n ≥ 1− 1

e
.

Recall ∂ bE(e) is the set of edges in Ê incident on either endpoint of e.

Lemma 23. For every edge e = (a, b),

E
[∑

f∈∂ bE(e)∩Ĝ

pf | Ab, e ∈ Ê
]
≤
∑

f∈∂(b)

pf yf + (1− 1

e
)
∑

f∈∂(a)

pf yf .

Proof:

E
[∑

f∈Ĝ∩∂ bE(a)−e

pf | Ab, e ∈ Ê
]

=
∑

(a,u)∈∩∂(a)−e

Pr[ŷau = 1 | Ab, ŷe = 1] · Pr[Au] · pau,

≤ (1− 1

e
)
∑

f∈∂(a)−e

Pr[ŷf = 1] · pf ,

= (1− 1

e
)
∑

f∈∂(a)−e

yf pf .

9.4 Stochastic Online Matching with Timeouts 210

The same bound holds for the other endpoint b except we do not have the extra

factor (1− 1
e
). Adding the two inequalities we get the lemma. �

Lemma 24. Our expected revenue is at least 2e2−e−1
6e2

· LP(G).

Proof:

Note that our algorithm obtains positive revenue only for buyers {b̂ | b ∈
B, Tb < ∞}; let Rb denote the revenue obtained from buyer b̂ (if any). The

expected revenue of the algorithm is E[
∑

b∈B Rb]. We now estimate E[Rb] for a

fixed b ∈ B.

In the following, we condition on Ab and (a, b) ∈ Ê and bound E[Rb | Ê,Ab].
Similar to the argument in Section 9.3.1, we can see that

Pr[item a offered to b̂ | Ê,Ab] = Pr [e = (a, b̂) was not blocked | Ê,Ab]

≥ Eπ

[∏

f∈B(e,π)

(1− pf) | Ê,Ab
]
;

Therefore, we have that

Pr[item a offered to b̂ | Ab] = Pr[(a, b) ∈ Ê] · Eπ

[∏

f∈B(e,π)

(1− pf) | Ê,Ab
]
;

≥ ya,b · ρ
(∑

f∈∂(b)

pf yf + (1− 1

e
)
∑

f∈∂(a)

pf yf ., 1
)

≥ ya,b · ρ(2− 1

e
, 1) =

2e+ 1

6e
ya,b.

The first inequality follows from the same argument as in the proof of Theorem 9.6.

This implies:

E[Rb | Ab] =
∑

a∈A

wab · pab · Pr[item a offered to b̂ | Ab] ≥ 2e+ 1

6e

∑

a∈A

wab · xab.

9.4 Stochastic Online Matching with Timeouts 211

Since Pr[Ab] ≥ 1− 1
e
, we also have

E[Rb] ≥
e− 1

e
· we+ 1

6e

∑

a∈A

wab · xab ≥
2e2 − e− 1

6e2

∑

a∈A

wab · xab.

Finally, the expected revenue obtained by the algorithm is:

∑

b∈B

E[Rb] ≥
2e2 − e− 1

6e2
LP(G).

This proves Lemma 24. �

Note that we have shown that E[LP(Ĝ)] is an upper bound on OPT, and that we

can get a constant fraction of LP(G). The final lemma relates these two, namely the

LP-value of the expected graph G (computed in Step 1) to the expected LP-value

of the instantiation Ĝ; the proof uses a simple but subtle duality-based argument.

Lemma 25. LP(G) ≥ E[LP(Ĝ)].

Proof: Consider the dual of the linear program (LP3).

min
∑

a∈A

αa +
∑

c∈C

(αc + tc · βc) +
∑

a∈A, c∈C

zac (9.15)

zac + pac · (αa + αc) + βc ≥ wac · pac ∀a ∈ A, c ∈ C (9.16)

α, β, z ≥ 0 (9.17)

Let (α, β, z) denote the optimal dual solution corresponding to graph G; note that

its objective value equals LP(G) by strong duality. For any instantiation Ĝ, define

dual solution (α̂, β̂, ẑ) as follows:

1. For all a ∈ A, α̂a = αa.

2. For each c ∈ B̂ (of type b), α̂c = αb and β̂c = βb.

3. For each a ∈ A and c ∈ B̂ (of type b), ẑac = zab.

9.4 Stochastic Online Matching with Timeouts 212

Note that (α̂, β̂, ẑ) is a feasible dual solution corresponding to the LP on Ĝ: there

is constraint for each a ∈ A and c ∈ B̂, which reduces to a constraint for (α, β, z)

in the dual corresponding to G. By weak duality, the objective value for (α̂, β̂, ẑ)

is an upper-bound on LP(Ĝ). For each b ∈ B, let Nb denote the number of type b

buyers in the instantiation B̂; note that E[Nb] = 1 by definition of distribution D.

Then the dual objective for (α̂, β̂, ẑ) satisfies:

∑

a∈A

αa +
∑

b∈B

Nb · (αb + tb · βb) +
∑

a∈A, b∈B

Nb · zab ≥ LP(Ĝ).

Taking an expectation over B̂, we obtain:

E[LP(Ĝ)] ≤
∑

a∈A

αa +
∑

b∈B

E[Nb] ·

(
αb + tb · βb +

∑

a∈A

zab

)

=
∑

a∈A

αa +
∑

b∈B

(αb + tb · βb) +
∑

a∈A, b∈B

zab = LP(G).

This proves the lemma. �

Applying Lemmas 22, 24 and 25 completes Theorem 9.4’s proof.

Chapter 10

Conclusion

Managing large-scale uncertain data and solving decision-making problems over

them have become increasingly important in computer science and other disci-

plines. This is in part due to the rapid increase in the volume of uncertain data

automatically generated by modern data gathering or integration systems. In this

thesis, we studied three important problems in decision making under uncertainty:

ranking under uncertainty, utility maximization under uncertainty, and matching

under uncertainty.

In the first half of the thesis, we considered the problem of ranking and top-

k query processing over probabilistic datasets. We observed that several prior

ranking proposals, while all seem to be natural, behaved in drastically diverse,

even conflicting manners. This observation led us to contend that a single, spe-

cific ranking function may not suffice for probabilistic datasets. Hence, instead of

proposing yet another specific ranking function, we proposed using two parame-

terized ranking functions, called PRFω and PRFe that allow the user to control

their behavior by properly setting the parameters. We presented novel exact or

approximate algorithms for computing PRF functions, even if the datasets exhibit

complex correlations, modeled using probabilistic and/xor trees or Markov net-

works, or the probability distributions are continuous. Our algorithms match or

improve the time complexities of several algorithms developed for previous ranking

functions. We also developed an approach for approximating a ranking function

using a linear combination of PRFe functions thus enabling highly efficient, albeit

approximate computation, and also for learning a ranking function from user pref-

erences. Moreover, we proposed the notion of a consensus answer (CON) which,

213

214

roughly speaking, is a deterministic answer that is “closest in expectation” to the

possible answers over a probabilistic database. Under this framework, we obtained

optimal or approximation algorithms for computing the consensus top-k answers,

under different distance metrics. We also showed a close relationship between PRF

and the consensus top-k answer semantics.

The second set of problems we studied are the stochastic versions of a broad

class of combinatorial optimization problems, including shortest paths, spanning

trees, matchings and knapsacks. An instance of the problem consists of a set

of ground elements (edges, items, etc.) and a feasible solution is a subset of the

elements satisfying some property. The weight of each element is a random variable

and the probability distribution is part of the input. We could formulate the

problem as minimizing the expected total weight of the solution – this is perhaps

the first problem formulation that comes to our mind. However, we observed

that the expected value is inadequate in capturing different types of risk-averse

or risk-prone behaviors. To resolve this issue, we adopted the expected utility

theory and considered a more general objective which is to maximize the expected

utility of the solution for some given utility function. We presented a polynomial

time approximation algorithm with additive error ε for any ε > 0, under certain

conditions. Our result generalizes and improves several prior results on stochastic

shortest path, stochastic spanning tree, and stochastic knapsack. A key ingredient

in our algorithm is to the Fourier series based technique for decomposing the

utility function into a short exponential sum, which may find other applications in

stochastic optimization. Our technique works only in settings where the solution

is a fixed set. It would be interesting to see if such technique can handle more

general stochastic models, e.g., the non-adaptive (or adaptive) setting considered

in Dean et al. [59].

The last part of the thesis is devoted to the stochastic matching problem, which

is motivated by interesting applications in online dating, kidney exchange and on-

line ad assignment. In this problem, we are given a probabilistic graph where each

215

possible edge is present independently with some probability. However, the pres-

ence of each edge can be only found out by probing the edge. The goal is to design

a probing strategy to maximize the expected total weight of the matching. We

obtained constant approximations for the weighted stochastic matching problems

by using an LP rounding approach. This resolved the main open question from

Chen et al. [40]. We also obtained constant approximations for the more restricted

matching-probing model, significantly improving on the previous logarithmic ap-

proximation ratio by Chen et al. [40].

A common, sometimes confusing, yet very important issue in decision making

under uncertainty is to choose the right problem formulation. Recall that in our

first and second problem, we spent significant amount of space to motivate and jus-

tify our problem formulations. From illustrating diverse behavior of several prior

ranking functions to criticizing expected values via the St. Petersberg paradox, all

roads lead to Rome – we end up adopting some form of the expected utility theory

(both PRF and CON can be cast into an expected utility maximization problem,

while EUM is a direct adoption of the theory). The theory has been quite success-

ful in economics and game theory. We expect that more decision making problems

under uncertainty that araise from computer science, especially in stochastic com-

binatorial optimization and probabilistic databases, can be formulated and studied

under the framework of the expected utility theory. Typically, optimizing the ex-

pected utility for general utility functions is a hard task since it generalizes the

problem of optimizing the expected value and the overflow probability. For many

problems with the new objective, much less is known and new computational tech-

niques are required. We believe it is a fruitful direction for further research.

Appendix A

Expanding Polynomials

A.1 Expanding a Nested Formula

We consider the the general question how fast can we expand a nested expression

of a uni-variable polynomial (with variable x) into the standard form
∑
cix

i. Here

a nested expression refers to a formula that only involves constants, the variable

x, addition +, multiplication ×, and parenthesis (and), for example, f(x) =

((1 + x+ x2)(x2 + 2x3) + x3(2 + 3x4))(1 + 2x). Formally, we define recursively an

expression to be either (1) A constant or the variable x, or (2) The sum of two

expressions, or (3) The product of two expressions.

We assume the degree of the polynomial and the length of the expression are of

sizes O(n). The näıve method runs in time O(n3) by expanding each subformula.

If we use the divide-and-conquer method for expanding each subformula, we can

easily achieve O(n2 log2 n). We omit the details. Now, we sketch two improved

algorithms with running time O(n2).

Algorithms 1

1. Choose n+ 1 different numbers x0,, xn .

2. Evaluate the polynomial at these points, i.e., compute f(xi). It is easy to

see that each evaluation takes linear time (bottom-up over the tree). So this

step takes O(n2) time in total.

3. Use any O(n2) polynomial interpolation algorithm to find the coefficient. In

fact, the interpolation reduces to finding a solution for the following linear

216

A.1 Expanding a Nested Formula 217

system: 


xn0 xn−1
0 xn−2

0 . . . x0 1

xn1 xn−1
1 xn−2

1 . . . x1 1
...

...
...

...
...

xnn xn−1
n xn−2

n . . . xn 1







cn

cn−1

...

c0




=




f(x0)

f(x1)
...

f(xn)



.

The commonly used Gaussian elimination for inverting a matrix requires

O(n3) operations. The matrix we used is a special type of matrix and is

commonly referred to as a Vandermonde matrix. There exists numerical

algorithms that can invert a Vandermonde matrix in O(n2) time, for example

[33].

A small drawback of the above algorithm is that the algorithms used to invert

a Vandermonde matrix is nontrivial to implement. The next algorithm does not

need to invert a matrix, is much simpler to implement and has the same running

time of O(n2).

Algoirthm 2

Instead of picking arbitrary n + 1 real points x0, . . . xn to evaluate the poly-

nomial, we pick n + 1 complex points 1, u, u2, . . . , un where Let u = e−
2π
n+1 be the

n+ 1th root of unit. The Vandermonde matrix formed by these points, i.e.,

F =




u0·0 u0·1 . . . u0·n

u1·0 u1·1 . . . u1·n

...
...

. . .
...

un·0 un·1 . . . un·n




has a very nice property that

F−1 =
1

n+ 1
F∗

where F∗ is the conjugate of F (This can be verified easily). Therefore, we can

A.1 Expanding a Nested Formula 218

obtain F−1 for free. The coefficients can be simply obtained by

(c0, . . . , cn)T =
1

n+ 1
F∗ (f(un), . . . , f(u0))T .

Bibliography

[1] “St. Petersburg paradox,” http://en.wikipedia.org/wiki/St. Petersburg

paradox.

[2] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions.

National Bureau of Standards, Applied Mathematics Series - 55, 1972.

[3] H. Ackermann, A. Newman, H. Röglin, and B. Vöcking, “Decision making

based on approximate and smoothed pareto curves,” International Sympo-

sium on Algorithm and Computation, pp. 675–684, 2005.

[4] M. Adamczyk, “Improved analysis of the greedy algorithm for stochastic

matching,” Information Processing Letters, vol. 111, no. 15, pp. 731–737,

2011.

[5] P. Agrawal and J. Widom, “Continuous Uncertainty in Trio,” in MUD, 2009.

[6] S. Agrawal, A. Saberi, and Y. Ye, “Stochastic Combinatorial Optimization

under Probabilistic Constraints,” Arxiv preprint arXiv:0809.0460, 2008.

[7] N. Ailon, “Aggregation of partial rankings, p-ratings and top-m lists,” in

ACM-SIAM Symposium on Discrete algorithms, 2007, pp. 415–424.

[8] N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent informa-

tion: Ranking and clustering,” in Journal of the ACM, vol. 55(5), 2008.

[9] S. Alimov, R. Ashurov, and A. Pulatov, “Multiple fourier series and fourier

integrals, in commutative harmonic analysis. IV: Harmonic analysis in Rn,”

Encyclopedia of Mathematical Science, vol. 42, 1992.

[10] N. Alon and J. H. Spencer, The probabilistic method. Wiley-Interscience,

2008.

219

http://en.wikipedia.org/wiki/St._Petersburg_paradox
http://en.wikipedia.org/wiki/St._Petersburg_paradox

BIBLIOGRAPHY 220

[11] P. Andritsos, A. Fuxman, and R. J. Miller, “Clean answers over dirty

databases,” in IEEE International Conference on Data Engineering, 2006.

[12] L. Antova, C. Koch, and D. Olteanu, “From complete to incomplete informa-

tion and back,” in ACM SIGMOD International Conference on Management

of Data, 2007.

[13] S. Arumugam, R. Jampani, L. Perez, F. Xu, C. Jermaine, and P. Haas,

“MCDB-R: Risk Analysis in the Database,” Proceedings of the VLDB En-

dowment, vol. 3, no. 1, 2010.

[14] M. Atallah and Y. Qi, “Computing all skyline probabilities for uncertain

data,” in ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems. ACM, 2009, pp. 279–287.

[15] B. Bahmani and M. Kapralov, “Improved bounds for online stochastic

matching,” in European Symposia on Algorithms. Springer, 2010, pp. 170–

181.

[16] N. Bansal, A. Gupta, J. Li, J. Mestre, V. Nagarajan, and A. Rudra, “When

LP is the Cure for Your Matching Woes: Improved Bounds for Stochastic

Matchings,” European Symposia on Algorithms, pp. 218–229, 2010.

[17] ——, “When LP is the Cure for Your Matching Woes: Improved Bounds for

Stochastic Matchings,” Algorithmica, pp. 1–30, 2011. [Online]. Available:

http://dx.doi.org/10.1007/s00453-011-9511-8

[18] N. Bansal, N. Korula, V. Nagarajan, and A. Srinivasan, “On k-column sparse

packing programs,” Integer Programming and Combinatorial Optimization,

pp. 369–382, 2010.

[19] F. Barahona and W. Pulleyblank, “Exact arborescences, matchings and cy-

cles,” Discrete Applied Mathematics, vol. 16, no. 2, pp. 91–99, 1987.

[20] D. Barbara, H. Garcia-Molina, and D. Porter, “The management of prob-

abilistic data,” IEEE Transactions of Knowledge Data Engineering, vol. 4,

no. 5, pp. 487–502, 1992.

http://dx.doi.org/10.1007/s00453-011-9511-8

BIBLIOGRAPHY 221

[21] J. Bard and J. Bennett, “Arc reduction and path preference in stochastic

acyclic networks,” Management Science, vol. 37, no. 2, pp. 198–215, 1991.

[22] D. Bernoulli, “Exposition of a new theory on the measurement of risk,”

Econometrica, vol. 22, no. 1, pp. 22–36, 1954, originally published in 1738;

translated by Dr. Lousie Sommer.

[23] G. Beskales, M. Soliman, and I. IIyas, “Efficient search for the top-k probable

nearest neighbors in uncertain databases,” International Conference on Very

Large Data Bases, 2008.

[24] G. Beylkin and L. Monzón, “On Generalized Gaussian Quadratures for Expo-

nentials and Their Applications* 1,” Applied and Computational Harmonic

Analysis, vol. 12, no. 3, pp. 332–373, 2002.

[25] ——, “On approximation of functions by exponential sums,” Applied and

Computational Harmonic Analysis, vol. 19, no. 1, pp. 17–48, 2005.

[26] ——, “On approximation of functions by exponential sums,” Applied and

Computational Harmonic Analysis, vol. 19, pp. 17–48, 2005.

[27] ——, “Approximation by exponential sums revisited,” Applied and Compu-

tational Harmonic Analysis, vol. 28, no. 2, pp. 131–149, 2010.

[28] A. Bhalgat, 2011, personal Communication.

[29] A. Bhalgat, A. Goel, and S. Khanna, “Improved approximation results for

stochastic knapsack problems,” in ACM-SIAM Symposium on Discrete algo-

rithms, 2011.

[30] S. Bhattacharya, G. Goel, S. Gollapudi, and K. Munagala, “Budget con-

strained auctions with heterogeneous items,” in ACM Symposium on Theory

of Computing. ACM, 2010, pp. 379–388.

[31] J. R. Birge and F. Louveaux, “Introduction to stochastic programming,”

1997.

[32] B. E. Birnbaum and C. Mathieu, “On-line bipartite matching made simple,”

SIGACT News, vol. 39, no. 1, pp. 80–87, 2008.

BIBLIOGRAPHY 222

[33] A. Bjorck and V. Pereyra, “Solution of vandermonde systems of equations,”

Mathematics of Computation, vol. 24, no. 112, pp. 893–903, 1970.

[34] J. C. Borda, “Mémoire sur les élections au scrutin,” Histoire de l’Académie

Royale des Sciences, 1781.

[35] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and

G. Hullender, “Learning to rank using gradient descent,” in ICML, 2005.

[36] R. Carraway, R. Schmidt, and L. Weatherford, “An algorithm for maximizing

target achievement in the stochastic knapsack problem with normal returns,”

Naval research logistics, vol. 40, no. 2, pp. 161–173, 1993.

[37] L. Chang, J. Yu, L. Qin, and X. Lin, “Probabilistic ranking over relations,”

in International Conference on Extending Database Technology. ACM, 2010,

pp. 477–488.

[38] C. Chekuri and S. Khanna, “A PTAS for the multiple knapsack problem,”

in ACM-SIAM Symposium on Discrete algorithms, 2000, pp. 213–222.

[39] J. Chen and K. Yi, “Dynamic structures for top-k queries on uncertain data.”

in International Symposium on Algorithm and Computation, 2007, pp. 427–

438.

[40] N. Chen, N. Immorlica, A. R. Karlin, M. Mahdian, and A. Rudra, “Approxi-

mating matches made in heaven,” in International Colloquium on Automata,

Languages and Programming, 2009, pp. 266–278.

[41] W. Cheney and W. Light, A Course in Approximation Theory. Brook/Cole

Publishing Company, 2000.

[42] R. Cheng, J. Chen, M. Mokbel, and C. Chow, “Probabilistic verifiers: Eval-

uating constrained nearest-neighbor queries over uncertain data,” in IEEE

International Conference on Data Engineering, 2008.

[43] R. Cheng, J. Chen, and X. Xie, “Cleaning uncertain data with quality guar-

antees,” in International Conference on Very Large Data Bases, 2008, pp.

722–735.

BIBLIOGRAPHY 223

[44] R. Cheng, L. Chen, J. Chen, and X. Xie, “Evaluating probability threshold

k-nearest-neighbor queries over uncertain data,” in International Conference

on Extending Database Technology, 2009.

[45] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating probabilistic

queries over imprecise data,” in ACM SIGMOD International Conference

on Management of Data, 2003.

[46] M. J. Condorcet, Éssai sur l’application de l’analyse à la probabilité des

décisions rendues à la pluralité des voix, 1785.

[47] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms.

The MIT Press, 2001.

[48] G. Cormode, F. Li, and K. Yi, “Semantics of ranking queries for probabilis-

tic data and expected ranks,” in IEEE International Conference on Data

Engineering, 2009.

[49] G. Cormode and A. McGregor, “Approximation algorithms for clustering

uncertain data,” in ACM SIGMOD-SIGACT-SIGART Symposium on Prin-

ciples of Database Systems, 2008, pp. 09–12.

[50] G. Cormode and M. Garofalakis, “Histograms and wavelets on probabilistic

data,” in IEEE International Conference on Data Engineering, 2009.

[51] G. Cormode and A. McGregor, “Approximation algorithms for clustering

uncertain data,” in ACM SIGMOD-SIGACT-SIGART Symposium on Prin-

ciples of Database Systems, 2008.

[52] P. Dagum, R. Karp, M. Luby, and S. Ross, “An optimal algorithm for Monte

Carlo estimation,” in Annual IEEE Symposium on Foundations of Computer

Science, 1995.

[53] N. Dalvi, K. Schnaitter, and D. Suciu, “Computing query probability with

incidence algebras,” in ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems. ACM, 2010, pp. 203–214.

[54] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic

databases,” The VLDB Journal, 2006.

BIBLIOGRAPHY 224

[55] ——, “Management of probabilistic data: Foundations and challenges,” in

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, 2007.

[56] G. Dantzig, “Linear programming under uncertainty,” Management Science,

vol. 1, no. 3, pp. 197–206, 1955.

[57] C. de Boor, A Practical Guide to Spline. Springer, 2001.

[58] B. Dean, M. Goemans, and J. Vondrák, “Adaptivity and approximation

for stochastic packing problems,” in ACM-SIAM Symposium on Discrete

algorithms, 2005, pp. 395–404.

[59] ——, “Approximating the Stochastic Knapsack Problem: The Benefit of

Adaptivity,” Mathematics of Operations Research, vol. 33, no. 4, pp. 945–

964, 2008.

[60] O. Dekel, C. Manning, and Y. Singer, “Log-linear models for label-ranking,”

in Advances in Neural Information Processing Systems, 2004.

[61] A. Deshpande, C. Guestrin, and S. Madden, “Using probabilistic models for

data management in acquisitional environments,” in CIDR, 2005.

[62] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong,

“Model-driven data acquisition in sensor networks.” in International Con-

ference on Very Large Data Bases, 2004, pp. 588–599.

[63] X. L. Dong, A. Y. Halevy, and C. Yu, “Data integration with uncertainty,”

in International Conference on Very Large Data Bases, 2007.

[64] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation meth-

ods for the web,” in International World Wide Web Conference, 2001.

[65] ——, “Rank aggregation revisited,” in Manuscript, 2001.

[66] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” SIAM

Journal on Discrete Mathematics, vol. 17, no. 1, pp. 134–160, 2003.

BIBLIOGRAPHY 225

[67] ——, “Comparing top k lists,” in ACM-SIAM Symposium on Discrete algo-

rithms, 2003.

[68] J. Feldman, A. Mehta, V. S. Mirrokni, and S. Muthukrishnan, “Online

stochastic matching: Beating 1−1/e,” in Annual IEEE Symposium on Foun-

dations of Computer Science. IEEE, 2009, pp. 117–126.

[69] J. Finn and J. Frank, “Optimal junction trees,” in Uncertainty in Artificial

Intelligence, 1994.

[70] P. Fishburn, Utility Theory and Decision Making. John Wiley & Sons, Inc,

1970.

[71] N. Fuhr and T. Rolleke, “A probabilistic relational algebra for the integra-

tion of information retrieval and database systems,” ACM Transactions on

Information System, 1997.

[72] Z. Füredi, J. Kahn, and P. Seymour, “On the Fractional Matching Polytope

of a Hypergraph,” Combinatorica, vol. 13, no. 2, pp. 167–180, 1993.

[73] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan, “Dependent

rounding and its applications to approximation algorithms,” Journal of the

ACM, vol. 53, no. 3, p. 360, 2006.

[74] M. Garey and D. Johnson, Computers and intractability. A guide to the

theory of NP-completeness. A Series of Books in the Mathematical Sciences.

WH Freeman and Company, San Francisco, California, 1979.

[75] M. Garofalakis and D. Suciu, Eds., IEEE Data Engineering Bulletin Special

Issue on Probabilistic Data Management, March 2006.

[76] T. Ge, S. Zdonik, and S. Madden, “Top-k queries on uncertain data: on score

distribution and typical answers,” in ACM SIGMOD International Confer-

ence on Management of Data, 2009.

[77] S. Geetha and K. Nair, “On stochastic spanning tree problem,” Networks,

vol. 23, no. 8, pp. 675–679, 1993.

BIBLIOGRAPHY 226

[78] A. Goel, S. Guha, and K. Munagala, “Asking the right questions: Model-

driven optimization using probes,” in ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, 2006, pp. 203–212.

[79] A. Goel and P. Indyk, “Stochastic load balancing and related problems,”

in Annual IEEE Symposium on Foundations of Computer Science, 1999, p.

579.

[80] G. Goel and A. Mehta, “Online budgeted matching in random input mod-

els with applications to adwords,” in ACM-SIAM Symposium on Discrete

algorithms, 2008, pp. 982–991.

[81] D. Gottlieb and C. Shu, “On the Gibbs phenomenon and its resolution,”

SIAM review, vol. 39, no. 4, pp. 644–668, 1997.

[82] V. Goyal and R. Ravi, “Chance constrained knapsack problem with random

item sizes,” Operation Research Letter, 2009.

[83] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics: A Foun-

dation for Computer Science, 2nd ed. Addison-Wesley, 1994.

[84] G. Grahne, “Horn tables - an efficient tool for handling incomplete infor-

mation in databases,” in ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, 1989.

[85] T. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,” in

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, 2007, pp. 31–40.

[86] T. Green and V. Tannen, “Models for incomplete and probabilistic informa-

tion,” in International Conference on Extending Database Technology, 2006.

[87] S. Guha and K. Munagala, “Adaptive Uncertainty Resolution in Bayesian

Combinatorial Optimization Problems,” ACM Transactions on Algorithms,

2008.

[88] ——, “Exceeding expectations and clustering uncertain data,” in ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

2009, pp. 269–278.

BIBLIOGRAPHY 227

[89] ——, “Approximation algorithms for partial-information based stochastic

control with markovian rewards,” in Annual IEEE Symposium on Founda-

tions of Computer Science, 2007, pp. 483–493.

[90] ——, “Multi-armed bandits with metric switching costs,” in International

Colloquium on Automata, Languages and Programming, 2009, pp. 496–507.

[91] J. Guiver and E. Snelson, “Learning to rank with softrank and gaussian

processes,” in ACM SIGIR Conference on Research and Development in In-

formation Retrieval, 2008.

[92] A. Gupta, R. Krishnaswamy, M. Molinaro, and R. Ravi, “Approximation al-

gorithms for correlated knapsacks and non-martingale bandits,” 2011, coRR,

abs/1102.3749.

[93] A. Gupta, M. Pál, R. Ravi, and A. Sinha, “Boosted sampling: approximation

algorithms for stochastic optimization,” in ACM Symposium on Theory of

Computing. ACM, 2004, pp. 417–426.

[94] E. Hazan, S. Safra, and O. Schwartz, “On the complexity of approximating

k-set packing,” Computational Complexity, vol. 15, no. 1, pp. 20–39, 2006.

[95] M. Henig, “Risk criteria in a stochastic knapsack problem,” Operations Re-

search, vol. 38, no. 5, pp. 820–825, 1990.

[96] R. Herbrich, T. Graepel, P. Bollmann-Sdorra, and K. Obermayer, “Learning

preference relations for information retrieval,” in ICML-98 Workshop: Text

Categorization and Machine Learning, 1998.

[97] J. Hodge and R. E. Klima, The mathematics of voting and elections: a

hands-on approach. AMS, 2000.

[98] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on uncertain data:

A probabilistic threshold approach,” in ACM SIGMOD International Con-

ference on Management of Data, 2008.

[99] C. Hurkens and A. Schrijver, “On the size of systems of sets every t of which

have an SDR, with an application to the worst-case ratio of heuristics for

BIBLIOGRAPHY 228

packing problems,” SIAM Journal on Discrete Mathematics, vol. 2, no. 1,

pp. 68–72, 1989.

[100] I. Ilyas, G. Beskales, and M. Soliman, “A survey of top-k query processing

techniques in relational database systems,” ACM Computing Surveys, 2008.

[101] T. Imielinski and W. Lipski, Jr., “Incomplete information in relational

databases,” Journal of the ACM, 1984.

[102] H. Ishii, S. Shiode, and T. Nishida Yoshikazu, “Stochastic spanning tree

problem,” Discrete Applied Mathematics, vol. 3, no. 4, pp. 263–273, 1981.

[103] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and P. Haas, “MCDB:

a monte carlo approach to managing uncertain data,” in ACM SIGMOD

International Conference on Management of Data. ACM, 2008, pp. 687–

700.

[104] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir tech-

niques,” ACM Transactions on Information Systems, vol. 20, no. 4, 2002.

[105] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee, “Estimating

statistical aggregates on probabilistic data streams,” in ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, 2007.

[106] J.F.Hauer, C. Demeure, and L.L.Scharf, “Initial results in prony analysis

of power system response signals,” IEEE Transactions on Power Systems,

vol. 5, no. 1, pp. 80–89, 1990.

[107] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin, “Sliding-window top-k queries on

uncertain streams,” in International Conference on Very Large Data Bases,

2008, pp. 301–312.

[108] T. Joachims, “Optimizing search engines using click-through data,” in ACM

SIGKDD Conference on Knowledge Discovery and Data Mining, 2002, pp.

133–142.

[109] B. Kalyanasundaram and K. Pruhs, “Online weighted matching,” Journal of

Algorithms, vol. 14, no. 3, pp. 478–488, 1993.

BIBLIOGRAPHY 229

[110] B. Kanagal and A. Deshpande, “Efficient query evaluation over temporally

correlated probabilistic streams,” in ICDE, 2009.

[111] ——, “Indexing correlated probabilistic databases,” in ACM SIGMOD In-

ternational Conference on Management of Data. ACM, 2009, pp. 455–468.

[112] ——, “Lineage processing over correlated probabilistic databases,” in ACM

SIGMOD International Conference on Management of Data. ACM, 2010,

pp. 675–686.

[113] O. Kariv and S. Hakimi, “An algorithmic approach to network location prob-

lems. II: The p-medians,” SIAM Journal on Applied Mathematics, vol. 37,

no. 3, pp. 539–560, 1979.

[114] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal algorithm for

online bipartite matching,” in ACM Symposium on Theory of Computing.

ACM, 1990, pp. 352–358.

[115] I. Katriel, C. Kenyon-Mathieu, and E. Upfal, “Commitment under uncer-

tainty: Two-stage stochastic matching problems,” Theoretical Computer Sci-

ence, vol. 408, no. 2-3, pp. 213–223, 2008.

[116] J. G. Kemeny, “Mathematics without numbers,” Daedalus, vol. 88, pp. 571–

591, 1959.

[117] M. Kendall, “A new measure of rank correlation,” Biometrica, vol. 30, pp.

81–89, 1938.

[118] B. Kimelfeld and C. Ré, “Transducing markov sequences,” in ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

2010, pp. 15–26.

[119] J. Kleinberg, Y. Rabani, and É. Tardos, “Allocating bandwidth for bursty

connections,” in ACM Symposium on Theory of Computing, 1997, p. 673.

[120] C. Koch, “MAYBMS: A System for Managing Large Probabilistic

Databases,” Managing and Mining Uncertain Data, pp. 149–183, 2009.

BIBLIOGRAPHY 230

[121] H. Kriegel, P. Kunath, and M. Renz, “Probabilistic nearest-neighbor query

on uncertain objects,” in International Conference on Database Systems for

Advanced Applications, 2007.

[122] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian, “Prob-

view: a flexible probabilistic database system,” ACM Transactions on

Database Systems, vol. 22, no. 3, 1997.

[123] F. Li, K. Yi, and J. Jestes, “Ranking distributed probabilistic data,” in ACM

SIGMOD International Conference on Management of Data, 2009.

[124] J. Li and A. Deshpande, “Consensus answers for queries over probabilistic

databases,” in ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems, 2009.

[125] ——, “Ranking continuous probabilistic datasets,” Proceedings of the VLDB

Endowment, vol. 3, no. 1, 2010.

[126] ——, “Maximizing expected utility for stochastic combinatorial optimiza-

tion problems,” in Annual IEEE Symposium on Foundations of Computer

Science, 2011.

[127] J. Li, B. Saha, and A. Deshpande, “A unified approach to ranking in prob-

abilistic databases,” in International Conference on Very Large Data Bases,

2009.

[128] ——, “A unified approach to ranking in probabilistic databases,” The VLDB

Journal, vol. 20, no. 2, pp. 249–275, 2011.

[129] R. Loui, “Optimal paths in graphs with stochastic or multidimensional

weights,” Communications of the ACM, vol. 26, no. 9, pp. 670–676, 1983.

[130] M. Mahdian, H. Nazerzadeh, and A. Saberi, “Allocating online advertise-

ment space with unreliable estimates,” in ACM Conference on Electronic

Commerce, 2007, pp. 288–294.

[131] V. H. Manshadi, S. O. Gharan, and A. Saberi, “Online stochastic matching:

Online actions based on offline statistics,” in ACM-SIAM Symposium on

Discrete algorithms, 2011.

BIBLIOGRAPHY 231

[132] R. Martin, “The St. Petersburg Paradox,” The Stanford Encyclopedia

of Philosophy, 2004, http://plato.stanford.edu/archives/fall2004/entries/

paradox-stpetersburg.

[133] A. Mehta, A. Saberi, U. V. Vazirani, and V. V. Vazirani, “Adwords and

generalized on-line matching,” in Annual IEEE Symposium on Foundations

of Computer Science, 2005, pp. 264–273.

[134] S. Micali and V. V. Vazirani, “An o(
√
|v||e|) algoithm for finding maximum

matching in general graphs,” in Annual IEEE Symposium on Foundations of

Computer Science, 1980, pp. 17–27.

[135] S. Mittal and A. Schulz, “A general framework for designing approxima-

tion schemes for combinatorial optimization problems with many objectives

combined into one,” Approximation, Randomization and Combinatorial Op-

timization. Algorithms and Techniques, pp. 179–192, 2008.

[136] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge Univer-

sity Press, 1995.

[137] I. Murthy and S. Sarkar, “Exact algorithms for the stochastic shortest path

problem with a decreasing deadline utility function,” European Journal of

Operational Research, vol. 103, no. 1, pp. 209–229, 1997.

[138] ——, “Stochastic shortest path problems with piecewise-linear concave util-

ity functions,” Management Science, vol. 44, no. 11, pp. 125–136, 1998.

[139] E. Nikolova, “Approximation Algorithms for Reliable Stochastic Combina-

torial Optimization,” International Workshop on Approximation Algorithms

for Combinatorial Optimization Problems, pp. 338–351, 2010.

[140] E. Nikolova, M. Brand, and D. Karger, “Optimal route planning under uncer-

tainty,” in Proceedings of International Conference on Automated Planning

and Scheduling, 2006.

[141] E. Nikolova, J. Kelner, M. Brand, and M. Mitzenmacher, “Stochastic shortest

paths via quasi-convex maximization,” in European Symposia on Algorithms,

2006, pp. 552–563.

http://plato.stanford.edu/archives/fall2004/entries/paradox-stpetersburg
http://plato.stanford.edu/archives/fall2004/entries/paradox-stpetersburg

BIBLIOGRAPHY 232

[142] F. Oberhettinger, Fourier transforms of distributions and their inverses: a

collection of tables. Academic press, 1973.

[143] D. Olteanu, J. Huang, and C. Koch, “Approximate confidence computation

in probabilistic databases,” in IEEE International Conference on Data En-

gineering, 2010, pp. 145–156.

[144] M. R. Osborne and G. K. Smyth, “A modified prony algorithm for fitting

sums of exponential functions,” SIAM Journal of Scientific Computing, 1995.

[145] C. Papadimitriou and M. Yannakakis, “On the approximability of trade-

offs and optimal access of web sources,” in Annual IEEE Symposium on

Foundations of Computer Science, 2000.

[146] M. Patil, R. Shah, and S. Thankachan, “Fully Dynamic Data Structure for

Top-k Queries on Uncertain Data,” Arxiv preprint arXiv:1007.5110, 2010.

[147] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain

data,” in International Conference on Very Large Data Bases. VLDB En-

dowment, 2007, pp. 15–26.

[148] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “k-Nearest Neighbors

in Uncertain Graphs,” Proceedings of the VLDB Endowment, vol. 3, no. 1,

2010.

[149] M. J. D. Powell, Approximation theory and methods. Cambridge University

Press, 1981.

[150] A. Ralston and R. Rabinowitz, A First Course in Numerical Analysis, 2001.

[151] C. Re, N. Dalvi, and D. Suciu, “Efficient top-k query evaluation on proba-

bilistic data,” in IEEE International Conference on Data Engineering, 2007.

[152] C. Ré, J. Letchner, M. Balazinska, and D. Suciu, “Event queries on corre-

lated probabilistic streams,” in ACM SIGMOD International Conference on

Management of Data, 2008.

[153] C. Ré and D. Suciu, “Efficient evaluation of HAVING queries on a proba-

bilistic database,” in DBPL, 2007.

BIBLIOGRAPHY 233

[154] A. Roth, T. Sonmez, and U. Unver, “Kidney exchange,” Quarterly Journal

of Economics, vol. 119, pp. 457–488, 2004.

[155] ——, “Pairwise kidney exchange,” Journal of Economic Theory, vol. 125,

pp. 151–188, 2005.

[156] H. Safer, J. B. Orlin, and M. Dror, “Fully polynomial approximation in

multi-criteria combinatorial optimization,” 2004, mIT Working Paper.

[157] A. Sarma, O. Benjelloun, A. Halevy, and J. Widom, “Working models for

uncertain data,” in IEEE International Conference on Data Engineering,

2006.

[158] A. Schrijver, Combinatorial Optimization. Springer-Verlag, 2003.

[159] P. Sen and A. Deshpande, “Representing and querying correlated tuples in

probabilistic databases,” in IEEE International Conference on Data Engi-

neering. IEEE, 2007, pp. 596–605.

[160] P. Sen, A. Deshpande, and L. Getoor, “Exploiting shared correlations in

probabilistic databases,” Proceedings of the VLDB Endowment, vol. 1, no. 1,

pp. 809–820, 2008.

[161] ——, “Prdb: managing and exploiting rich correlations in probabilistic

databases,” The VLDB Journal, vol. 18, no. 5, pp. 1065–1090, 2009.

[162] H. Shachnai and A. Srinivasan, “Finding large independent sets in graphs

and hypergraphs,” SIAM Journal on Discrete Mathematics, vol. 18, no. 3,

pp. 488–500, 2005.

[163] D. Shmoys and C. Swamy, “An approximation scheme for stochastic linear

programming and its application to stochastic integer programs,” Journal of

the ACM, vol. 53, no. 6, pp. 978–1012, 2006.

[164] C. Sigal, A. Pritsker, and J. Solberg, “The stochastic shortest route prob-

lem,” Operations Research, vol. 28, no. 5, pp. 1122–1129, 1980.

BIBLIOGRAPHY 234

[165] A. Silberstein, R. Braynard, C. Ellis, K. Munagala, and J. Yang, “A

sampling-based approach to optimizing top-k queries in sensor networks,”

in IEEE International Conference on Data Engineering. IEEE, 2006, p. 68.

[166] M. Soliman, I. Ilyas, D. Martinenghi, and M. Tagliasacchi, “Ranking with

uncertain scoring functions: Semantics and sensitivity measures,” in ACM

SIGMOD International Conference on Management of Data, 2011.

[167] M. Soliman, I. Ilyas, and C. Chang, “Top-k query processing in uncertain

databases,” in IEEE International Conference on Data Engineering. IEEE,

2007, pp. 896–905.

[168] M. A. Soliman and I. F. Ilyas, “Ranking with uncertain scores,” in IEEE

International Conference on Data Engineering, 2009, pp. 317–328.

[169] E. Stein and R. Shakarchi, Fourier analysis: an introduction. Princeton

University Press, 2003.

[170] A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas. Prentice-Hall

Inc., 1966.

[171] C. Swamy, “Risk-Averse Stochastic Optimization: Probabilistically-

Constrained Models and Algorithms for Black-Box Distributions.” ACM-

SIAM Symposium on Discrete algorithms, 2010.

[172] C. Swamy and D. Shmoys, “Approximation algorithms for 2-stage stochastic

optimization problems,” ACM SIGACT News, vol. 37, no. 1, p. 46, 2006.

[173] P. Talukdar, M. Jacob, M. Mehmood, K. Crammer, Z. Ives, F. Pereira,

and S. Guha, “Learning to create data-integrating queries,” in International

Conference on Very Large Data Bases. VLDB Endowment, 2008, pp. 785–

796.

[174] M. Taylor, J. Guiver, S. Robertson, and T. Minka, “Softrank: optimizing

non-smooth rank metrics,” in WSDM, 2008.

[175] T. Tran, L. Peng, B. Li, Y. Diao, and A. Liu, “PODS: A new model and

processing algorithms for uncertain data streams,” in ACM SIGMOD Inter-

national Conference on Management of Data. ACM, 2010, pp. 159–170.

BIBLIOGRAPHY 235

[176] J. von Neumann and O. Morgenstern, Theory of Games and Economic Be-

havior, 2nd ed. Princeton Univ. Press, 1947.

[177] Y. Wakabayashi, “The complexity of computing medians of relations,” in

Resenhas, vol. 3(3), 1998, pp. 323–349.

[178] D. Wang, E. Michelakis, M. Garofalakis, and J. M. Hellerstein, “BayesStore:

Managing large, uncertain data repositories with probabilistic graphical

models,” in International Conference on Very Large Data Bases, 2008.

[179] M. Wick, A. McCallum, and G. Miklau, “Scalable Probabilistic Databases

with Factor Graphs and MCMC,” Proceedings of the VLDB Endowment,

vol. 3, no. 1, 2010.

[180] J. Widom, “Trio: A system for integrated management of data, accuracy,

and lineage,” in The Conference on Innovative Data Systems Research, 2005.

[181] K. Yi, F. Li, G. Kollios, and D. Srivastava, “Efficient processing of top-

k queries in uncertain databases with x-relations,” IEEE Transactions on

Knowledge and Data Engineering, pp. 1669–1682, 2008.

[182] K. Yi, F. Li, D. Srivastava, and G. Kollios, “Efficient processing of top-k

queries in uncertain databases,” in IEEE International Conference on Data

Engineering, 2008.

[183] X. Zhang and J. Chomicki, “On the semantics and evaluation of top-k queries

in probabilistic databases,” in DBRank, 2008.

	Acknowledgments
	Table of Contents
	Introduction
	Ranking under Uncertainty
	Maximizing Utility under Uncertainty
	Matching under Uncertainty

	Preliminaries
	Possible Worlds Semantics
	Stochastic Optimization
	Probabilistic Data Models
	Probabilistic And/Xor Trees
	Markov Networks

	Prior Semantics on Ranking over Probabilistic Data
	Distance between Two Top-k Answers
	St. Petersburg Paradox and Expected Utility Theory

	Related Work
	Ranking over Probabilistic Datasets
	Comparing Ranking Functions
	Overview of Our Approach
	Our Contributions

	Parameterized Ranking Functions (PRF)
	Consensus Top-k Answers
	A Unified Viewpoint via Expected Utility
	Viewing Ranking as Maximizing Utility
	Distinctions between Between Ranking and Top-k Queries
	A Classification of Top-k Semantics

	Computing PRF: Discrete Distributions
	Computing a PRF function
	Assuming Tuple Independence
	Probabilistic And/Xor Trees
	Computing a PRFe Function
	Attribute Uncertainty or Uncertain Scores
	Summary

	Approximating and Learning Ranking Functions
	Approximating PRF using PRFe Functions
	Learning a PRF or PRFe Function
	An Interesting Property of PRFe

	Experimental Study
	Approximability of Ranking Functions
	Learning Ranking Functions
	Effect of Correlations
	Execution Times

	PRF Computation for Graphical Models
	Problem Simplification
	Algorithm for Markov Sequences
	General Junction Trees

	Computing PRF: Continuous Distributions
	Exact Algorithms
	Generating Functions Framework
	Uniform Distribution
	Extensions

	Arbitrary Probability Densities
	A Generic Approximation Framework
	Theoretical Comparisons
	Approximating PRFe() by Legendre-Gauss Quadrature for R

	Expected Ranks and PRFl
	Application to Probabilistic k-Nearest Neighbor
	Experimental Study
	Spline vs. Monte Carlo vs. Discretization
	LG Quadrature vs. Monte Carlo vs. Discretization for PRFe
	Execution Times for Exact Algorithms

	Computing Consensus Answers
	Consensus Answers
	Algorithms for Different Metrics
	Symmetric Difference and PT(k) Ranking Function
	Weighted Symmetric Difference and PRF
	Intersection Metric
	Approximating the Intersection Metric by PRF
	Spearman's Footrule
	Kendall's Tau Distance

	Consensus Answers for Other Types of Queries
	Set Distance Measures
	Aggregate Queries
	Clustering

	Maximizing Expected Utility for Stochastic Combinatorial Optimization Problems
	Introduction
	Our Contributions

	Algorithm
	Proof of Theorem 8.1
	Approximating the Utility Function
	A Particular Choice of AP: The Fourier Series Approach
	Computing E[we]

	Applications
	Top-k Query with Set Interpretation (Top-SI)
	Stochastic Shortest Path
	Stochastic Spanning Tree
	Stochastic k-Median on Trees
	Stochastic Knapsack with Random Sizes
	Stochastic Knapsack with Random Profits

	Extension to Multiple Utility functions
	Stochastic Multiple Knapsack
	Stochastic Multidimensional Knapsack

	Extension to Multidimensional Weight
	Stochastic Multidimensional Knapsack (Revisited)

	Discussions

	Stochastic Matchings
	Introduction
	Our Contributions

	Stochastic k-Set Packing
	Special Case: Monotone Column Outcomes
	Safe versus Unsafe policies

	Stochastic Matching
	Weighted Stochastic Matching: Bipartite Graphs
	Weighted Stochastic Matching: General Graphs

	Stochastic Online Matching with Timeouts

	Conclusion
	Expanding Polynomials
	Expanding a Nested Formula

	Bibliography

