
ABSTRACT

Title of dissertation: SHARING PRIVATE DATA
OVER PUBLIC NETWORKS

Randolph C. Baden, Doctor of Philosophy, 2012

Dissertation directed by: Professor Bobby Bhattacharjee
Department of Computer Science

Users share their sensitive personal data with each other through public ser-

vices and applications provided by third parties. Users trust application providers

with their private data since they want access to provided services. However, trust-

ing third parties with private data can be risky: providers profit by sharing that

data with others regardless of the user’s desires and may fail to provide the se-

curity necessary to prevent data leaks. Though users may choose between service

providers, in many cases no service providers provide the desired service without

being granted access to user data. Users must make a choice: forego privacy or be

denied service.

I demonstrate that fine-grained user privacy policies and rich services and

applications are not irreconcilable. I provide technical solutions to privacy problems

that protect user data using cryptography while still allowing services to operate on

that data. I do this primarily through content-agnostic references to data items and

user-controlled pseudonymity. I support two classes of social networking applications

without trusting third parties with private data: applications which do not require

data contents to provide a service, and applications that deal with data where the

only private information is the binding of the data to an identity. Together, these

classes of applications encompass a broad range of social networking applications.

SHARING PRIVATE DATA

OVER PUBLIC NETWORKS

by

Randolph C. Baden

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor Bobby Bhattacharjee, Chair/Advisor
Professor Ashok Agrawala
Professor Peter Keleher
Professor Mark Shayman, Dean’s Representative
Professor Neil Spring

c© Copyright by

Randy Baden

2012

Dedication

This thesis is dedicated to my brother, Billy. Without his love, his support,

and, perhaps most importantly, his bone marrow, I certainly could not have com-

pleted it.

ii

Acknowledgments

There are many people who I would like to thank for a variety of reasons,

without whom this thesis would not be possible. First and foremost, I would like

to thank my advisor, Bobby Bhattacharjee. Bobby both taught me how to identify

problems and gave me the tools I needed to tackle them. He has given me more op-

portunities to succeed than I can count, and without his guidance and understanding

I would never have been able to produce the work contained in this thesis.

I would also like to thank the other professors at the University of Maryland,

especially my committee members: Neil Spring, Peter Keleher, Mark Shayman, and

Ashok Agrawala. Neil in particular has almost been like a second advisor to me, and

has provided many invaluable lessons about research, measurement, and technical

writing.

Likewise, I have learned a lot from the many students who I have had the honor

of sharing a lab with over the past seven years: Rob Sherwood, Cristian Lumezanu,

David Levin, Adam Bender, Aaron Schulman, Katrina LaCurts, Vassilis Lekakis,

Kristin Stephens, Kevin McGehee, Hailey Lin, Kelly Lai, Jessy Kate-Schingler,

Karla Saur, Abdul Quamar, Greg Benjamin, Yunus Basagalar, and Ramakrishna

Padmanabhan. Without these people the long hours and sleepless nights would not

have been bearable.

I would also like to thank my collaborators, some of whom I’ve already men-

tioned: Adam Bender and Daniel Starin for their work on Persona, Matt Lentz for

his work on Twain, and Cristian Lumezanu and David Levin for allowing me to work

iii

on (and learn from) Peerwise. I would also like to thank Alan Mislove for providing

valuable comments and data for much of my work.

I would like to thank NSF and LTS for their generous contributions in the

form of grants that have made this work financially possible. LTS has also provided

valuable resources for feedback on much of my work that has directly led to better

research practices. I would also like to thank UMD for giving me the opportunity

to participate in its graduate program.

Finally, I would like to thank all of the people who provided non-technical

support for my time in graduate school, including: my family; my friends; my

doctors, Aaron Rapoport and Saul Yanovich; my nurses; and last but not least, my

significant other, Edward Clifford.

iv

Table of Contents

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1

2 Persona 6
2.1 Introduction . 6
2.2 Cryptography in a Private OSN . 8

2.2.1 Model . 10
2.2.2 Traditional public-key approach 10
2.2.3 ABE . 12

2.3 Group Key Management . 14
2.3.1 Operations . 15

2.3.1.1 DefineRelationship 16
2.3.1.2 DefineTransitiveRelationship 17
2.3.1.3 AssignRightsToIdentity 18
2.3.1.4 AssignRightsToGroup 19

2.3.2 Revocation of Group Membership 20
2.3.3 Publishing and Retrieving Data 21

2.4 Applications . 23
2.4.1 Storage Service . 24
2.4.2 Collaborative Data . 25

2.4.2.1 Wall using Doc . 28
2.4.2.2 Chat and Status Updates over Doc 28
2.4.2.3 News Feed using Doc 29
2.4.2.4 Other Applications 29

2.4.3 Selective Revelation . 30
2.4.4 Applications that use the social graph 31
2.4.5 Inherently private applications 32

2.5 Implementation . 32
2.5.1 Storage Service Application 32
2.5.2 Doc Application . 33
2.5.3 Browser Extension . 33
2.5.4 Integrating Persona with Facebook 36

2.6 Evaluation . 38
2.6.1 Desktop Performance . 40
2.6.2 Mobile Device ABE Performance 42

2.7 Discussion . 44
2.8 Conclusion: Persona in Perspective 45

v

3 Bond Breaker 47
3.1 Introduction . 47
3.2 Exclusive Shared Knowledge . 49

3.2.1 Design . 49
3.2.2 Attacks . 50
3.2.3 Existing Protocols . 51
3.2.4 Embedding SPEKE in an OSN 52

3.3 Can Users Ask Good Questions? . 53
3.3.1 Bond Breaker Game Rules . 53

3.3.1.1 Data Collection . 56
3.3.2 Results . 57

3.3.2.1 Question Success Rate 58
3.3.2.2 Web of Trust . 59

3.4 Conclusion . 64

4 Twain 66
4.1 Introduction . 66
4.2 Pseudonymous Rendezvous . 69

4.2.1 Identities and Pseudonyms . 69
4.2.2 Rendezvous Semantics . 71
4.2.3 Generic Pseudonymous Rendezvous 73

4.2.3.1 Definitions . 74
4.2.3.2 Matchability . 75
4.2.3.3 Constrainability and Revelation 77
4.2.3.4 Data Types and Comparison Functions 78

4.3 Implementation . 79
4.3.1 Architecture . 80
4.3.2 API . 82

4.4 Application Design using Twain . 84
4.4.1 Process . 85
4.4.2 Mobile P2P: Customizable Local Rendezvous 86
4.4.3 Game Matchmaking: Privacy-enabled Wide-Area Rendezvous 91
4.4.4 Privacy Preserving Search . 96
4.4.5 NAT Traversal using Twain 100
4.4.6 BitTorrent and other P2P Applications 100

4.5 Discussion . 101
4.5.1 Matching over Sensitive Data 101
4.5.2 User attacks: Denial-of-Service 103

4.6 Conclusion . 103

5 Related Work 105
5.1 OSNs . 105

5.1.1 Privacy Leakage . 105
5.1.2 Privacy-enabled OSNs . 106
5.1.3 Access control and ABE . 106

vi

5.1.4 OSN Impersonation . 107
5.2 Rendezvous . 108

5.2.1 Local Area Rendezvous . 108
5.2.2 Location-Based Rendezvous 109
5.2.3 Pseudonymous Communication 110
5.2.4 Wide-area Resource Location 111
5.2.5 Publish-Subscribe Protocols 113

6 Discussion 114
6.1 Open Problems . 114
6.2 Deployment Hurdles . 116
6.3 The “Best” Solutions . 117
6.4 Conclusion . 119

A LoKI Trace Methodology 121

B CBG Modifications 122

Bibliography 124

vii

List of Tables

2.1 Persona Notation . 16

3.1 Scoring in Bond Breaker . 55
3.2 Meddling Attempt Success Rates . 59

4.1 The Twain API . 83

viii

List of Figures

2.1 Size of Facebook profiles . 34
2.2 Time to display Facebook profiles in Persona 38
2.3 Storage overhead in Persona . 42

3.1 Friend graph in Bond Breaker experiments 57
3.2 Ability of Bond Breaker users to form good bonds 58
3.3 Bond graph in Bond Breaker experiments 60
3.4 Fraction of friends reachable by web of trust in Bond Breaker 62
3.5 Impersonation attack . 63

4.1 General pseudonymous rendezvous flow 73
4.2 Requests per second in Twain . 82
4.3 Common MAC addresses from proximal observers 89
4.4 CBG error with direct probes and with network coordinates 92

ix

List of Abbreviations

PKC Public Key Cryptography
ABE Attribute-Based Encryption
PKI Public Key Infrastructure

OSN Online Social Network
PGP Pretty Good Privacy
AS Autonomous System

u.SS u’s storage service location
u.K Key K created by u

(PK ,TSK) PKC public/secret keypair
(APK ,AMSK) ABE public/master secret keypair
ASK ABE user secret key
AS Access structure

TKeyGen() Generate RSA keypair
TEncrypt(K,m) RSA encrypt m with key K

TDecrypt(K, c) RSA decrypt ciphertext c

TSign(K,m) RSA sign m with key K

ABESetup Create attribute public key and master secret key
ABEKeyGen(K, attrs) Create attribute secret key with attributes attrs

ABEEncrypt(K,m,AS) ABE encrypt m with K and access structure AS

ABEDecrypt(SK, PK, c) ABE decrypt ciphertext c with secret key SK

RS Rendezvous service
X̂ Pseudonym for user X

PX Properties of user X

QX̂ Query for user X

(k, t, v) Key, type, value triplet
mX̂ Message from user X, of the form {(ki, ti, vi)}
dX̂ Thunk from user X to instruct further

communication

g(m1, m2) Comparison function for two collections of
(k, t, v) tuples

c(v1, v2) Comparison function for individual (k, t, v)
tuples

b(c, v) Bounding function for comparison function c

and value v

x

Chapter 1

Introduction

The rise of online social networks (OSNs) and mobile devices in recent years

has triggered a new era of applications that allow users to easily share information

on the public Internet. These applications provide novel services that, judging by

their popularity [100], are highly desired. In OSNs such as Facebook, Twitter, and

Google+, users use these applications to share personal data such as gender, religion,

and photos with friends. However, they also reveal that data to the service providers,

sometimes deliberately and willingly, sometimes accidentally or unknowingly [106].

Mobile devices have compounded the problem, by providing fine-grained location

information [110] and other mobile information [109] automatically to these appli-

cations – highly private information that concerns users who are not always sure

how to protect themselves from its exposure.

Even if the user trusts a provider with her personal data, she must also trust

that they will be able to protect it; several unintentional data leaks from otherwise

trustworthy providers [115, 116] have been publicly revealed in recent years. Unlike

in the case of leakage of, say, credit card information that leads directly to observable

fraud, it is difficult to anticipate or detect the direct and indirect means by which a

malicious entity might profit from personally identifiable information leaked in this

way. Research has illuminated the consequences of some of these leaks [46, 56], sug-

1

gesting that it is a significant problem that sometimes may even take years to arise

after the data is initially exposed. The true scope of this problem is immeasureable:

not only can we not fully assess the damage from the leaks that are known, but we

also cannot know if providers have had security breaches that they have not revealed

to the public.

Nevertheless, users continue to trust providers with their private data because

they want to use the applications that those third parties provide. Due to the nature

of these services and their popularity, users are under social pressure to provide their

data to these providers [35]. Unfortunately, it is the providers and not the users who

get to decide what the rules are for sharing private data: if the user wants to use the

provider’s services, she must agree to their terms [105, 108] about her private data.

Providers have little incentive other than potentially embarrassing public relations

gaffes to protect user data, but they have plenty of economic incentive to share

that data with advertisers or third party applications. Thus, current online social

networks retain excessive control over user data and users must make a difficult

choice between agreeing to the providers’ terms or abandoning the service.

I argue the following thesis: it is possible to provide technical mechanisms

to share private data over public networks, mechanisms that support desired user

privacy policies while maintaining a wide range of application functionality.

I envision systems in which users retain control over the disclosure of their

data, deciding precisely which other entities should be able to access which data

items. There are many challenges to providing the rich application functionality

to which users are accustomed while respecting the privacy policies that users may

2

choose. Though the challenges run the gamut from usability, to economic viability,

to deployment, I focus primarily on providing solutions to the technical challenges

associated with applications that handle private data. That is, I provide crypto-

graphic and system-level tools that enable users to explicitly control to whom their

private data is exposed. By providing this control locally, the user does not need to

trust her service providers with unfettered access to her data, nor does she need to

rely on her service providers to prevent data breaches.

To support my thesis, I first require an underlying framework for user-defined

privacy that is compatible with how users wish to disclose data in OSNs. OSN

communication takes many forms, including: one-to-one communication in the form

of private messages, one-to-many communication in the form of user-specified groups

such as “friends”, and one-to-many communication to (perhaps unknown) recipients

who are identified by others as in the case of friend-of-friend communication. I

describe a secure OSN communication substrate as a foundation for building the

case for my thesis. This supporting work is described primarily in Chapter 2 with

some additional support in Chapter 3.

Based on my OSN communication framework, I consider the varied nature

of OSN applications and identify large, generic classes of applications that I can

reason about abstractly. I identify a class of applications that are content-agnostic,

that is, applications that do not require access to data contents in order to provide

service. I discuss these applications in Chapter 2, especially with regards to content-

agnostic core OSN applications. The second class of applications that I identify

are those which operate on semi-private data, i.e., data whose contents are not

3

inherently private, but the linkability of that data to an identity is considered private

information. I describe many examples of these applications and provide a general

framework for providing privacy in these applications in Chapter 4. The remaining

class of applications fall outside of these two classes; such applications require access

both to data contents and to the mapping from data contents to identities.

Finally, I must identify how these classes of application services can be pro-

vided while respecting the users’ privacy policies. I describe how to do so for any

content-agnostic application in Chapter 2. I consider many example applications of

semi-private applications and possible user privacy policies that can be provided in

Chapter 4, though in practice every application in this category requires application-

specific analysis to determine which privacy policies can be provided. For the re-

maining class of leftover applications, I do not provide better solutions than that of

trusting the third party. Further dividing this final class of applications to provide

privacy in other ways is described in Chapter 6 as a topic of future work.

This dissertation is structured as follows. Chapter 2 describes Persona [6],

a distributed and decentralized OSN in which users choose with which provider

to store their data and protect their data content via encryption. Persona uses

attribute-based encryption (ABE) to intuitively share data with groups of friends

and even friends of friends. I describe how key OSN applications are implemented

in Persona despite the encryption of data contents.

Chapter 3 describes Bond Breaker [7]. Bond Breaker is a demonstration that

users can thwart OSN impersonation – a significant threat to the key distribution

problem in decentralized OSNs – using exclusive shared knowledge. It also demon-

4

strates that users can collaboratively create a decentralized OSN PKI in-band, a

valuable component for OSNs where users may not be willing to go out of their way

for security.

In Chapter 4 I describe Twain, a pseudonymous rendezvous abstraction that

can be used as a building block for privacy-enabled systems. Twain allows two users

to rendezvous subject to the constraints of both users, so that users only reveal their

true identities to each other if they are satisfied that the other user can be trusted.

Twain provides a framework to implement user privacy policies for applications that

require some amount of matching on private data contents.

Finally, in Chapter 6 I discuss the implications of this work. I describe open

problems in this space, both in terms of technical challenges that are immediately

relevant to this work and in terms of non-technical challenges that nevertheless

impede the deployability of a new, privacy-enabled infrastructure. I conclude with

an argument that my work describes the right approach to solving the complex

problems of general privacy-enabled applications.

5

Chapter 2

Persona

2.1 Introduction

OSNs have become a de facto portal for Internet access for millions of users.

These networks help users share information with their friends. Along the way,

however, users entrust the social network provider with such personal information

as sexual preferences, political and religious views, phone numbers, occupations,

identities of friends, and photographs. Although sites offer privacy controls that

let users restrict how their data is viewed by other users, sites provide insufficient

controls to restrict data sharing with corporate affiliates or application developers.

Not only are there few controls to limit information disclosure, acceptable use

policies require both that users provide accurate information and that users grant

the provider the right to sell that information to others. Facebook is a representative

example of a social network provider.

Cryptography is the natural tool for protecting privacy in a distributed setting,

but obvious cryptographic schemes do not allow users to scalably define their privacy

settings in OSNs. Users want to be able to share content with entire groups, such

as their friends, their family, or their classmates. Public key cryptography alone

is unsatisfactory when managing groups in an OSN: either users must store many

copies of encrypted data, users are unable to give data based on membership in

6

multiple groups, or users must know the identities of everyone to whom they give

access.

To meet the privacy needs of an OSN, we1 present Persona, an OSN that

puts policy decisions in the hands of the users. Persona uses decentralized, per-

sistent storage so that user data remains available in the system and so that users

may choose with whom they store their information. We build Persona using crypto-

graphic primitives that include attribute-based encryption (ABE), traditional public

key cryptography (PKC), and automated key management mechanisms to translate

between the two cryptosystems.

Persona achieves privacy by encrypting private content and prevents misuse of

a user’s applications through authentication. Persona allows users to store private

data persistently with intermediaries, but does not require that users trust those

intermediaries to keep private data secret. Modern web browsers can support the

cryptographic operations needed to automatically encrypt and decrypt private data

in Persona with plugins that intercept web pages to replace encrypted contents.

Lastly, Persona divides the OSN entities into two categories: users, who generate the

content in the OSN, and applications, which provide services to users and manipulate

the OSN content.

This chapter is organized as follows. We describe the cryptographic primitives

and how they comprise the correct cryptographic systems for Persona in Section 2.2.

We present novel compositions of ABE and PKC functions that allow users to create

1This work [6] involved the collaboration of Adam Bender, Bobby Bhattacharjee, Neil Spring,

and Daniel Starin.

7

flexible and dynamic access policies in Section 2.3. We describe the role of OSN

applications in Persona and show that Persona supports existing OSN applications

in Section 2.4. We present significant features of our implementation in Section 2.5.

We evaluate the performance of Persona using data from a Facebook crawl and ABE

microbenchmarks on a mobile device in Section 2.6. We discuss additional problems

beyond the scope of this work in Section 2.7, and conclude with some retrospection

about how OSNs have changed between when we conducted this research and the

present day in Section 2.8.

2.2 Cryptography in a Private OSN

There are two tasks for encryption in building the private online social net-

work. The first is to restrict the information available to applications as precisely

as possible, so that individual organizations are not entrusted with large volumes

of personal information. Although it is tempting to focus only on the exchange of

information with friends, some applications may benefit from limited access to a

user’s profile, location, or messages, while carefully avoiding broad exposure.

The second task is to restrict the information shared with “friends” to what

might be appropriate. We quote “friends” here because the type of social link might

be more than, less than, or different from “friend.” Family, neighbor, co-worker, boss,

teammate, and other relations might define a connection in the social network. That

connection is often simply termed “friend”, regardless of the actual, off-line relation-

ship. A user’s decision to accept one of these pseudo-friends into their neighborhood

8

(and avoid discussing certain topics) or exclude them (and avoid the benefits of so-

cial networking) represents a dilemma that can be avoided, if users may flexibly

classify their “friends.”

Alone, these two problems may be easily solved. A social network could help

users define access policies that include or exclude defined groups of friends accessing

different pieces of information. Such a feature would allow a user to tweet “called

in sick to work” without telling co-workers. In practice, users segregate work col-

leagues from personal friends by subscribing to different social networks. To provide

such functionality efficiently without the assistance of a trusted application provider

requires some form of cryptographic support for group keying. In this section, we

define two methods to share information with groups in an OSN.

What makes the OSN setting different from typical group keying scenarios is

that the sender (to the group) may not be in charge of group membership. For

example, Alice may post a message on Bob’s wall, encrypted for Bob’s friends,

without (necessarily) knowing the list of Bob’s friends. Further, Alice might wish

to send a message to Bob’s friends who live in the neighborhood: “Let’s meet up

tonight”. Another aspect of the OSN setting is that the number of potential groups

a user might encrypt to is very large (any possible combination of friends of their

friends). Cryptographic support alone is not sufficient for building a distributed

online social network; it is merely a necessary tool, difficult to apply, which shapes

the eventual design.

9

2.2.1 Model

With the abstract goals of hiding personal information from aggregators and

hiding personal information from colleagues, we next refine these goals down to

concrete requirements for cryptographic methods.

Each Persona user generates an asymmetric key-pair and distributes the public

key out-of-band to other users with whom she wants to share data. We refer to these

other users as friends, though the nature of each relationship is defined by the user.

Persona allows users to create “groups” and choose which users are part of

a given group. Users control access to personal data by encrypting to “groups.”

Restricting data to specific groups allows users to have fine-grained control over

access policy, which permits exchanging data with more restrictions.

Cryptographic primitives in Persona must allow users to flexibly specify and

encrypt to groups. Users may specify groups using arbitrary criteria, but we expect

users to choose groups based on transparent relationships such as “neighbor” or “co-

worker” or on attributes such as “football fan” or “knitting buddy.” Groups created

by one user do not affect the groups that can be created by another. However, to

support OSN communication patterns, the groups created by one user should be

available for use, not just for decryption, but also for encryption, by friends.

2.2.2 Traditional public-key approach

Traditional public-key and symmetric cryptography can be combined to form

an efficient group encryption primitive [62, 92]. To create a new group from a list

10

of known friends, Alice encrypts a newly-generated group key with the public key

of each member of the new group. She then distributes this key to the members

of that group and uses the key to encrypt messages to the group. The group key

may be symmetric, in which case only group members can encrypt to the group, or

asymmetric, which allows non-members to encrypt as well.

Distributing a new group key may coincide with sending a new message: to

create a message for all of her friends, Alice might include both the keys and the

data in the same object for efficiency. To efficiently reuse a group and key for many

messages could require separating the keys from the data and caching the group key

for use on later messages. We informally term the re-use of keys to avoid wasteful

repetition of public key operations “recycling.”

This protocol is computationally inexpensive, in that it does not require sig-

natures; the worst an attacker could do is provide a faulty key that would soon be

discovered. It is also flexible for the group creator, in that the original creator can

enumerate any set of friends to include in the group. It is somewhat flexible for

others, in that a friend who is a member of two groups (“neighbor” and “football

fan”) may encrypt a message for the union of these groups (“neighbor OR football

fan”) by encrypting the message with both group keys separately. However, a friend

cannot further restrict access to an intersection (“neighbor AND football fan”) with-

out exposing the message to colluding friends that do not match the expression (one

a neighbor, the other a football fan). One could encrypt with one group key and

then the other, but the colluding members of each set could decrypt the message

intended for only the members with both attributes.

11

Allowing users to encrypt data for groups that they are not members of requires

additional infrastructure. Alice can give her friends the ability to encrypt messages

for any of her groups defined by an asymmetric keypair by publishing a list of her

groups and their public keys. Other users consult this list to send messages to Alice’s

groups. However, only group members can encrypt to groups defined by a shared

symmetric key.

2.2.3 ABE

Alternately, attribute-based encryption (ABE) [9] can be used to implement

encryption to groups. To use ABE, each user generates an ABE public key (APK)

and an ABE master secret key (AMSK). For each friend, the user can then generate

an ABE secret key (ASK) corresponding to the set of attributes that defines the

groups that friend should be part of. For instance, if Alice decides that Bob is a

“neighbor”, “co-worker”, and “football fan”, then she would generate and distribute to

Bob an ABE attribute secret key that includes those three attributes. Bob becomes

a member of the groups defined by combinations of those attributes.

In ABE, each encryption must specify an access structure: a logical expression

over attributes. For instance, Alice can choose to encrypt a message with access

structure (‘neighbor’ OR ‘football fan’), where ‘neighbor’ and ‘football fan’ are

attributes, rather than groups, and any of her friends who have an attribute secret

key with either attribute will be able to decrypt the message. Alice can also encrypt

to (‘neighbor’ AND ‘football fan’). In this case, the ABE construction ensures that

12

only friends with both attributes will be able to decrypt the message. Unlike in

the traditional cryptography approach, a single encryption operation constructs the

new group and provides the (symmetric) key that protects the rest of the message.

Furthermore, any user who knows Alice’s ABE public key can encrypt to any access

structure (and thus create any group) by knowing the names and definitions of the

attributes Alice defined.

ABE provides a natural mapping for the group encryption primitive that we

envision for OSNs. This simplicity comes at a performance penalty: ABE opera-

tions are about 100-1000 times slower than those of RSA. These ABE operations

can be avoided in practice by careful system design. Specifically, ABE defines new

groups through attributes and permits sharing efficient, symmetric keys that can

be “recycled” to avoid expensive operations. This approach means that ABE’s per-

formance penalty need only be paid when it provides its ease-of-use or third-party

group-definition advantages, not for each operation.

Consider our example access structure (‘neighbor’ AND ‘football fan’). In

creating this group, Alice had to enumerate all her friends and distribute a new

group key to matching friends. Now imagine that Bob wants to encrypt data to

the same (‘neighbor’ AND ‘football fan’) group. With ABE, Bob would encrypt

using (‘neighbor’ AND ‘football fan’) as the access structure. Under traditional

cryptography, if Alice had pre-defined this group (and invited Bob), then Bob could

encrypt using the group symmetric key. Otherwise, Bob can encrypt this message

only if he can enumerate all of Alice’s friends and know whether they belonged to

both groups.

13

Using ABE allows friend-of-friend interactions without requiring enumerations

of friend and attribute lists. A friend may limit who may read a response to a wall

post to a more restricted group. For example, if Alice writes “I want to watch Seren-

ity this weekend,” as a post to her ‘friends’, Bob might reply “I have the DVD, let’s

watch it at my place,” to Alice’s ‘friends’ who also have the ‘in-the-neighborhood’

attribute. Without ABE, Bob would have to rely on Alice to have created this

(intersection) group in advance. As long as users share attribute names (and their

meanings) with friends, ABE provides an elegant mechanism for users to target in-

formation for friends-of-friends. The same functionality can be implemented without

ABE, but requires more information exchange (lists of all friends-of-friends and their

attributes) and a key distribution mechanism (that maps groups defined by friends

to the group key).

2.3 Group Key Management

We describe how Persona users define groups and how users generate and use

keys corresponding to groups. Keys guard access to two types of objects in Persona:

user data and abstract resources. In Persona, all users store their data encrypted for

groups that they define. Any user that can name a piece of data may retrieve it, but

they can only read it if they belong to the group for which the data was encrypted.

Abstract resources represent non-data objects, for example, a user’s storage space or

a Facebook Wall. The set of possible operations on an abstract resource is tailored

to the resource (for example, it is possible to write onto a storage space or post to a

14

user’s Wall). Each resource has a home which maintains and enforces the resource’s

Access Control List (ACL). The resource’s owner may change the resource ACL

and allow specific groups different levels of access to the resource. The Persona

group management operations described in this section allow users to control access

to data and resources. All Persona applications (Section 2.4) are built using these

operations.

Each Persona user is identified using a single public key and stores her own

(encrypted) data with a storage service. We assume for now that users with existing

relationships exchange their public keys and storage service locations out of band2

Storage services support two operations for data storage and retrieval: put and get,

which mimic the store and retrieve operations of a hash table. Storage is a resource

in Persona, and users may grant other users (or groups) the ability to store (put)

onto their storage service using the operations described in this section. Storage

services are a specialized case of the broader class of Persona applications and are

described in more detail in Section 2.4.1.

We use the notation shown in Table 2.1. In the algorithm listings, u : 〈protocol step〉

means user u invokes the specified step.

2.3.1 Operations

Persona operations allow users to manage group membership and mandate

access to resources. The operations combine ABE and traditional cryptography,

2We describe in Chapter 3 and in Section 4.4.2 how this can be done securely in-band.

15

Term Definition

u.SS u’s storage service location
u.K Key K created by u

(PK ,TSK) PKC public/secret keypair
(APK ,AMSK) ABE public/master secret keypair
ASK ABE user secret key
AS Access structure

TKeyGen() Generate RSA keypair
TEncrypt(K,m) RSA encrypt m with key K

TDecrypt(K, c) RSA decrypt ciphertext c

TSign(K,m) RSA sign m with key K

ABESetup Generate an attribute public key and master secret key
ABEKeyGen(K, attrs) Generate an attribute secret key with attributes attrs

ABEEncrypt(K,m,AS) ABE encrypt m with key K and access structure AS

ABEDecrypt(SK, PK, c) ABE decrypt ciphertext c with secret key SK

Table 2.1: Notation used in this paper.

allowing individuals to be securely added to groups defined using ABE and allowing

group members authenticated access to abstract resources.

2.3.1.1 DefineRelationship

Users invoke the DefineRelationship function to add individuals to a group. The

user generates an appropriate attribute secret key using the ABEKeyGen function,

encrypts this key using the target user’s public key, and stores the encrypted key on

her storage service. The target user can retrieve this encrypted key using a process

described in Section 2.3.3, decrypt it, and use it as necessary.

Algorithm 1 DefineRelationship(u1, attrs, u2)

u1: A ← ABEKeyGen(u1.AMSK , attrs)
u1: C ← TEncrypt(u2.PK , A)
u1: u1.SS.put(H ′(u2.PK), C)
. . .
u2: C ← u1.SS.get(H ′(u2.PK))

16

Example Usage: Alice wants to confer the attribute ‘friend’ upon Bob. Alice

creates K = Alice.ASK‘friend’, an ABE key associated with the ‘friend’ attribute.

Alice computes C = TEncrypt(Bob.PK , K) after obtaining Bob’s public key from

out-of-band communication with Bob. Alice stores C on her storage service at the

location H ′(Bob.PK), where H ′(·) is a hash function defined in Section 2.3.3. Bob

retrieves C from Alice’s storage service and decrypts it, gaining the ability to decrypt

content guarded by the attribute ‘friend’. Although any user can retrieve C from

its well-known location, only Bob can decrypt it.

2.3.1.2 DefineTransitiveRelationship

The DefineTransitiveRelationship function allows a user Alice to define groups

based on a group defined by another user, Bob.

Alice creates a new attribute to describe the new group ‘bob-friend’ and gen-

erates an ASK‘bob-friend’ with that attribute. Alice encrypts ASK‘bob-friend’ with the

access structure (‘friend’) using Bob’s attribute public key and stores the ciphertext

on her storage service (Algorithm 2).

Algorithm 2 DefineTransitiveRelationship(u1,APK ,

access structure AS, attrs)

u1: A ← ABEKeyGen(u1.AMSK , attrs)
u1: C ← ABEEncrypt(u1.APK , A,AS)
u1: u1.SS.put(H ′(AS, u1.APK), C)

Users with the attribute ‘friend’ in Bob’s ABE domain may retrieve and de-

crypt this key and use it to view content encrypted within Alice’s ABE domain.

17

Alice may include a traditional keypair, used for authentication to ACLs, in the

ciphertext C. We describe how Bob’s friends retrieve these keys in Section 2.3.3.

Example Usage: Alice is advertising a party on an OSN and wants to invite

Bob and any of Bob’s friends. Alice discovers that Bob uses the attribute ‘friend’

to define who his friends are. Alice generates the group identity traditional PKC

keypair (PK ,TSK) for authentication, creates the new attribute ‘bob-friend’, and

generates the attribute secret key A = Alice.ASK‘bob-friend’. Alice calculates

C = ABEEncrypt(Bob.APK , [A, (PK ,TSK)] , ‘friend’)

and stores it on her storage service at H ′(‘friend’, Bob.APK). Alice also performs

AssignRightsToGroup to generate group identity keys and instruct the application

providing the event advertising service that PK can be used to authenticate RSVPs.

Bob sends to each of his friends a link to the application that directs them to

Alice’s event. Bob’s friends cannot initially view the data, so they get C, decrypt

it, and view the event. They then get the group identity key, which allows them to

authenticate and RSVP to the event.

2.3.1.3 AssignRightsToIdentity

Resource owners use AssignRightsToIdentity to provide other users specific

rights to named resources. An example of such a right would be the ability to

store data on another user’s storage service; we describe other resources and uses in

Section 2.4.

18

To assign rights, the user instructs the resource’s home to add a (public key,

set of rights) pair to the resource’s ACL. If the public key was already in the ACL,

then the rights are changed to those specified in the new rights set (Algorithm 3).

Algorithm 3 AssignRightsToIdentity(u1, rights,
PK , resource r, owner o)

u1: o.chACL(r,PK , rights)

User u2 who possesses TSK may exercise the named rights on the resource by

authenticating to the resource’s home node using TSK .

Example Usage: Alice wants to give Bob the ability to put data on her

storage service. Alice instructs her storage service to create a new ACL rule based

on Bob.PK that allows write access. Bob later calls the put function on the location

L with the world readable data m. Alice’s storage service issues a nonce n, and Bob

replies with TSign(Bob.TSK , [n, “write(L,m)”]). Alice’s storage service verifies the

signature against Bob.PK , authenticating Bob’s write according to Alice’s access

policy.

2.3.1.4 AssignRightsToGroup

The AssignRightsToGroup function allows a user Alice to provide resource ac-

cess to a group G rather than to an individual. The group is specified using attributes

defined in Alice’s ABE domain.

First, Alice creates a new (PK ,TSK) pair specifically for G. Alice ABE-

encrypts this keypair with an access structure that identifies members of G. Alice

stores the resulting ciphertext on her storage service. This pair of PKC keys becomes

19

the group identity and Alice can assign rights according to AssignRightsToIdentity.

The pseudocode is presented in Algorithm 4.

Algorithm 4 AssignRightsToGroup(u1, rights,
access structure AS, resource r, owner o)

u1: (PK ,TSK)← TKeyGen()
u1: C ← ABEEncrypt(u1.APK , (PK ,TSK),AS)
u1: u1.SS.put(H ′(AS,APK), C)
u1: AssignRightsToIdentity(u1, rights,PK , r, o)

Example Usage: Alice wants to give her friends and her family the ability

to put data on her storage service. Alice defines the group G as the users who

have ‘friend’ or ‘family’ in their ASK in Alice’s ABE domain. Alice creates K =

(PKG,TSKG), and stores

C = ABEEncrypt(Alice.APK , K, (‘friend’ or ‘family’))

on her storage service. Anyone who possesses either of these attribute keys can

retrieve C, decrypt it with their ASK , and use TSKG to authenticate to store data

on the storage service as described in AssignRightsToIdentity.

2.3.2 Revocation of Group Membership

Removing a group member requires re-keying: all remaining group members

must be given a new key. Data encrypted with the old key remains visible to the

revoked member. The nominal overhead is linear in the number of group members

but it may be possible to reduce it [92].

An ABE message can be encrypted with an access structure that specifies an

inequality (“keyYear < 2009”), and the message can be decrypted only if a user

20

possesses a key that satisfies the access structure. This facility can be used to

provide keys to new group members such that they cannot decrypt old messages

sent to the group.

2.3.3 Publishing and Retrieving Data

Private user data in Persona is always encrypted with a symmetric key3. The

symmetric key is encrypted with an ABE key corresponding to the group that is

allowed to read this data. The group is specified by an access structure as described

in Section 2.2.3. This two phase encryption allows data to be encrypted to groups;

reuse of the symmetric key allows Persona to minimize expensive ABE operations.

Users put (encrypted) data onto their storage service and use applications to

publish references to their data. Data references have the following format:

〈tag, storage service, key-tag, key-store〉

The tag and storage service specify how to retrieve the encrypted data item, and

the key-tag and key-store specify how to obtain a decryption key.

Users read data by retrieving both the item and the key. Suppose item i is

encrypted with symmetric key s. If user u1 wants to read i and u1’s local cache or

own storage service does not contain s, u1 can retrieve the ABE-encrypted s using

the key-tag and key-store information in the reference. s is encrypted under the

access structure AS in the ABE domain defined by APK (u1 can infer both from the

encrypted key). u1 tries to decrypt s using her ABE secret key, and if successful,

3Users may store public data in plain-text to reduce overhead.

21

decrypts i using s. u1 stores s, encrypted with her own public key, on her own

storage service for future use. The encrypted key is stored at H(AS,APK), where

H(·) is a hash function. If s is instead associated with traditional public key PK ,

u1 stores the encrypted s at H(PK).

Suppose user u2 wants to encrypt a message for a set of users specified by

access structure AS in the ABE domain with public key APK . The domain may

belong to u2 or to some other user; u2 only needs to know the public parameters for

this domain in order to encrypt.

u2 looks for a symmetric key for this group by invoking u2.SS.get(H(AS,APK)).

Such a key would exist if u2 had previously encrypted or decrypted messages for

this group. If the retrieval succeeds and the encrypted symmetric key is found, u2

decrypts it using his own public key and obtains the symmetric key s.

If the retrieve fails, u2 constructs a new symmetric key s, encrypts it with

his own PKC public key and stores it in u2.SS under the tag H(AS,APK). u2

further encrypts s using ABEEncrypt with access structure AS and APK and stores

this ABE-encrypted symmetric key on u2.SS with the tag H ′(AS,APK). H ′ is a

hash function different from H . By construction, the ABE-encrypted key can be

decrypted exactly by those users who belong to the group to which the message is

encrypted. This group may not include u2. If u2 wishes to encrypt s with traditional

PKC instead of ABE, u2 encrypts with public key PK and stores the encrypted key

at H ′(PK).

Finally, u2 encrypts the message using s and stores it using tag M . u2 can

22

then publish a reference to this item of the form:

〈M,u2.SS,H
′(AS,APK), u2.SS〉

Other users resolve the reference by invoking u2.SS.get(M) which will retrieve the

original message encrypted with s.

In this example, u2 obtained the decryption key from his own storage service

(or created a new key and put it on his own storage service). In general, however, u2

may already know a different key for this group (for example, one that was used by

a different user to encrypt to the same group) that is stored on some other storage

service. Instead of creating his own key, u2 may choose to refer to this pre-existing

key instead.

2.4 Applications

Persona users interact using applications. Even core functions of current OSNs,

including the Facebook Wall or Profile, exist in Persona as applications. In this

section, we describe how applications use the group key and resource management

operations of Section 2.3.

Persona applications export a set of functions (an API) and a set of resources

over which those functions operate. When there are resources, such as file stores or

documents, two functions are expected in the API. First, register allocates a resource

for a principal (to create a Wall, for example). Registration with an application re-

turns a reference to the newly-allocated resource to the client. Second, chACL allows

the owning principal to define access restrictions via ACLs: for a given resource and

23

a given principal, permit an operation. Applications will support further operations,

as we describe below, starting with the basic storage service.

2.4.1 Storage Service

Storage is a basic Persona application that enables users to store personal

data, make it available to others who request it, and sublet access to storage for

applications to use for per-user metadata. A user trusts a storage service to reliably

store data, provide it upon request, and protect it from overwrite or deletion by

unauthorized users. A user does not trust a storage service to keep data confidential,

relying instead on encryption to guard private information.

The storage service exports both get and put functions. The storage appli-

cation returns data whenever the get is invoked with a valid tag. The invoking

principal is not authenticated or validated, since the expectation is that data is

protected via encryption.

The put function requires the invoking principal n to authenticate to the stor-

age application. When n wants to put data, she presents her public key K and the

store identifier s to the storage application. The storage application ensures that

(K, put) exists in the resource ACL corresponding to s, and authenticates n using a

challenge-response protocol. n may write into s if the authentication succeeds.

Applications must store the metadata they have constructed. They can pro-

vide their own storage or use a storage service. If the application provides its own

storage resource, the application returns a handle to the resource when a user reg-

24

isters with the application. The user can then call AssignRightsToIdentity to give

other users access to the application’s storage resource.

The user can instead provide the storage resource to the application and invoke:

AssignRightsToIdentity(user, write, App.PK , c, user.SS)

where c is a storage resource on user.SS, to allow the application to write onto the

user’s storage server. The user now registers with the application, passing it the

storage resource c in which to store the metadata:

R← App.register(user.PK , c)

In turn, the application returns a reference (R) to the resource corresponding to the

application instance.

To prevent an attack in which another user u2 pretends to own c, the registering

user must prove that he owns c. He does this by writing a nonce provided by the

application into c. The application ensures the nonce is present before writing.

2.4.2 Collaborative Data

The predominant method of sharing data in OSNs is via collaborative multi-

reader/writer applications. For instance, the quintessential Facebook application,

the Wall, is a per-user forum that features posts and comments from the user and her

friends, the Facebook Photos application stores comments and tags for each picture

and displays them to friends, the MySpace comments section allows friends to write

to a user’s page and read others’ comments, and each photograph posted to Flickr

25

has a page where members of the Flickr community can comment on photographs.

Instead of re-implementing each OSN application in Persona, we present a generic

multi-reader multi-writer application named Doc. Doc can be used as a template

for implementing a variety of OSN applications, as we describe in Sections 2.4.2.1–

2.4.2.4.

Doc is organized around a document shared between collaborating users. Users

register with the Doc application and create a new Page. The application associates

a resource with this Page, and allows the user to provide read or write access to

other users (or groups). The Page metadata contains references to encrypted data;

the application is responsible for formatting this data for display. Users who are

allowed to write to the Page contact the application with data references, and Doc

updates the Page appropriately. The Page can be stored by the application or on a

storage server specified by the original user (in which case the user has to provide

the Doc with write access to the Page stored on the storage server). We describe

these steps next.

Reading the Page. To allow Bob to read content in her Page, Alice must

give Bob appropriate keys and a reference to her Doc. In particular, Alice must

provide an attribute secret key ASK that will allow him to decrypt (some subset of)

the data in the Page. Alice decides which attributes Bob should get and calls

DefineRelationship(Alice, attrs,Bob)

to issue an ASK to Bob. Obviously, Alice may already have given Bob these at-

tributes, in which case this step can be skipped. In either case, she provides him

26

with a reference to her Page.

Bob can now retrieve the Page metadata, resolve data references, and decrypt

(potentially only a subset of) the Page data.

Writing to the Page. Alice may want to provide Bob with the ability to

write to her Page, where writing is a function exported by the Doc application. She

does so by adding Bob’s public key to the Page’s resource ACL by invoking:

AssignRightsToIdentity(Alice, write, Bob.PK , D,Doc)

Bob may now write onto the Page. Bob stores (appropriately encrypted) data

onto a storage-server and notifies the Doc of a write onto Alice’s Page. The Doc

application must authenticate Bob and ensure that his public key is in Alice’s Page’s

ACL with the proper right. If the authentication succeeds and Alice has provided

Bob the write right, then the Doc application updates the Page metadata (either

stored at the application or on a storage server specified by Alice) with the data

reference provided by Bob. The interpretation of the Page metadata is application-

specific.

Alice may authorize multiple users to write to the same Page. Conflicting

updates or concurrent writes are handled by the Doc application, possibly by storing

the Page as an append-only log. Users need not encrypt using a single access

structure, and may choose any access structure they desire. They may even write

onto a Page using an access structure that cannot be decrypted by some of the

Page’s readers.

In summary, Doc is a general multi-reader/writer template for storing and

27

formatting metadata with references to encrypted content. Doc can easily be tailored

to implement many useful OSN applications, as we demonstrate next.

2.4.2.1 Wall using Doc

The Facebook Wall is a multi-user collaborative application that allows a user’s

friends to read messages, post messages, and comment on posts onto a shared doc-

ument, called the user’s Wall. Doc can be used to (almost trivially) implement the

Wall application. Unlike the Facebook Wall, the Persona Wall is distributed: it

allows users to choose where the Wall metadata is stored. All posts and comments

are stored on storage servers owned by the poster/commenter. The Wall document

itself contains rendering information and references to writes onto the wall. These

references must be resolved (i.e., the data fetched from appropriate storage servers)

and decrypted before rendering the Wall. End-user applications may intelligently

cache data and keys to reduce rendering latency.

2.4.2.2 Chat and Status Updates over Doc

A chat application can use Doc as the template. A chat session is a shared

document to which the chat host invites other users (and provides them write access

to the chat Doc). The chat application has to implement auxiliary UI functions (such

as an invite notification, and polling for new messages), but the basic structure

follows that of a simple Doc onto which users may append messages.

28

Doc can also be used to implement user-specific status updates. The user

creates a status Doc and provides read-only access to other users (or groups) who

can periodically read the Doc to receive updates. The reference to the status update

Doc may be obfuscated such that unauthorized users are not able to detect changes

in status (even if they are not able to decrypt the status message).

2.4.2.3 News Feed using Doc

The news feed in Facebook collects “stories” from other applications to provide

a temporal view of Facebook activity. In Persona, the user provides the news feed

with a list of applications that she wants to appear in her feed, and an APK and AS

(or perhaps several access structures along with a policy dictating when to use each

access structure) with which to encrypt the feed. Only the user may change the list

of monitored applications. The news feed application retrieves the metadata from

the selected applications and parses it to create a history of changes to the user’s

applications’ metadata. The application writes this history as a user would write a

Page; only the news feed may write to this metadata. Viewing the feed consists of

viewing the Page. The contents of the Page are visible to anyone that can satisfy

AS.

2.4.2.4 Other Applications

Other popular Facebook applications such as Profiles, Photos, Groups, and

Events can be implemented using Doc as well. These applications can be imple-

29

mented by altering the interpretation and presentation of metadata and tailoring

the API to the relevant task. Though Doc is sufficient for many Facebook applica-

tions, we consider examples of existing applications that require additional features

in the following sections.

2.4.3 Selective Revelation

The user may want to share some personal data with an application. One such

example is an application that allows users to search for others. Alice can choose

exactly the information by which other users can find her by only sharing that

data with a Search application. Another example is the Where I’ve Been Facebook

application [117]. Users enter a list of countries or cities that they have lived in,

visited, or want to visit, and the application shows a map with these locations

highlighted. Users can also compare maps with another user to see which locations

they have in common.

In order to permit applications that post-process personal data, we allow them

to decrypt certain data by giving them an ASK . Alice encrypts a list of cities she has

visited with the access structure (‘classmates’ or ‘where-ive-been’). She generates

an ASK and encrypts it with the Where I’ve Been application’s PK :

DefineRelationship(Alice, ‘where-ive-been’,Where I’ve Been)

When she registers to use the application, she gives it a reference to the encrypted

key. The application retrieves the key and can now decrypt and parse Alice’s list of

cities to produce the highlighted map. This general approach of selectively revealing

30

user data to applications has been discussed earlier in [47], and, since the publication

of this work, has been integrated into modern OSNs and mobile devices in the form

of permission requests during application installation.

Application functionality that can be implemented without revealing personal

information is surprisingly broad; however, in some cases, the application must

compute transforms over the user’s data. This is the case for the Where I’ve Been

application, especially when it has to compare the locations of multiple users. We

return to the general problem of structuring private applications and the tussle

between application functionality and user privacy in Section 2.7, and describe a

general framework for untrusted third-party assisted rendezvous in Chapter 4.

2.4.4 Applications that use the social graph

The graph of social connections between Persona users is not public. It is

realized only in the collections of public keys of friends a user stores, and given

meaning only through the assignment of attributes using DefineRelationship. This

obscurity of friend links frustrates applications such as those that analyze the graph

of connections to help connect with more friends (People You May Know) or to

visualize interconnections between friends (the Friend Wheel).

To enable these applications, users have two options. A user may publish

social links to each application using selective revelation or by directly uploading a

set of relationships. Alternatively, a single, somewhat trusted social link application

might provide access to other applications.

31

Published edges in the social graph are protected just as other data in Persona:

encrypted to be hidden from arbitrary users and applications, but exported to chosen

users and useful applications that may access only what they require.

2.4.5 Inherently private applications

Persona allows for potential applications which are not realistic on OSNs with-

out privacy. For instance, a user might want to have a Medical Record application

where she stores her medical data. She might not want her employer or her friends

to see her data, but she would want to share it with her doctor. She may even have

many doctors, and it may be helpful for them to collaborate in a central location.

There is no technical difference between this application and Doc. However, these

applications are uniquely available on Persona because they operate on sensitive

private data.

2.5 Implementation

Our Persona implementation consists of two Persona applications (a storage

service and a customizable Doc application) and a browser extension for viewing

encrypted pages and managing keys.

2.5.1 Storage Service Application

Our Persona storage service application is an XML RPC server using PHP

and Apache with a MySQL database backend. The service implements the storage

32

API described in Section 2.4.1.

2.5.2 Doc Application

We have implemented a Doc application (Section 2.4.2) in PHP with a MySQL

backend for storing metadata. Using the Doc as the base, we implemented Profile

and Wall applications.

Our Profile application presents an interface for the user to put data onto

her profile and read others’ profiles. The profile metadata (stored by the Profile

application in a MySQL database) consists of references to encrypted profile data

items. The Profile application allows only the registered user to write onto the

DocPage.

Our Wall application is identical in structure to the Profile, but allows other

users to write onto the Doc as well. The Wall application allows users to post new

items and reply to existing items. The Wall application constructs the Wall Doc

metadata file threading posts and replies. As with all applications, the posts and

references themselves are stored on other storage services, and the Wall application

operates using item references only.

2.5.3 Browser Extension

Users interact with Persona using a Firefox extension. The extension uses

the XPCOM framework in the Mozilla Build Environment to access the OpenSSL

and cpabe [99] libraries for cryptographic operations. The extension allows users to

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Data Size (bytes)

Data Sizes

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Data Size (bytes)

Average
95th Percentile

Maximum

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

Number of Data Items

Number of Data Items

(c)

Figure 2.1: (a) CDF of the size of Facebook profile data items. (b) CDF of the

maximum, 95th percentile, and average of the size of data items per Facebook

profile. (c) CDF of the number of data items on Facebook profiles.

register with applications, encrypt data to groups, resolve data references, decrypt

data using appropriate keys, and facilitate out-of-band public-key exchange.

The browser extension is a trusted component in Persona; it is, in fact, the

only one. The extension implements a secure keystore, to which users upload their

private and public keys. The extension is given a list of public keys corresponding to

the user’s contacts. These keys are also stored (encrypted with the user’s public key)

on a storage service. When a user uses a new browser, the extension is initialized

with the user’s private key and a reference to the user’s permanent keystore. The

extension then downloads all of the other keys from the storage service.

When an encrypted Persona page is loaded, the extension processes the ele-

ments on the page and replaces them inline if necessary. There are two main types

of replacement: resolution of data references and replacement of special tags.

Data reference resolution. The extension parses item references, fetches

the items from storage services, decrypts the items, and verifies any signatures on

34

those items. In our implementation, all data is signed by the creator and verified if

the signer’s key is known. Data resolution is recursive: encrypted data may contain

references to more encrypted data.

Our extension uses an XML-RPC javascript library capable of sending asyn-

chronous RPCs. During page processing, all data items are fetched asynchronously

using XMLHttpRequest. If the items are encrypted with an unknown key, the keys

are also fetched asynchronously. Once all keys and data items have been fetched, the

extension sequentially decrypts (and verifies) each item, and replaces the references

with the decrypted text. We are currently extending our implementation to decrypt

items as they arrive rather than waiting for all fetches to complete.

Replacement of special tags. Persona users may not want to share their

list of contacts (to be precise, their public keys) with applications. Instead, this list

is kept encrypted with the user’s public key on a storage service, which the extension

downloads upon initialization. The extension recognizes a “friend-form” tag sent by

an application, and replaces this with a drop-down box containing a list of the user’s

contacts. This facility is used in our Profile application to allow a user to view their

contacts’ profiles.

The extension allows users to encrypt data to groups. It replaces embedded

forms with a text box into which the user can enter private data. When the submit

button is pressed, the extension prompts the user for a policy under which to encrypt

the data, performs the encryption (constructing and publishing symmetric keys as

necessary), puts the encrypted data on the user’s storage service, and replaces the

form data with a reference to the encrypted data item.

35

Caching. To reduce latency, the extension caches various keys and contact

information. This includes keys the user has created: an RSA public key (137 bytes

for 1024-bit moduli), RSA private key (680 bytes), APK (888 bytes), and AMSK

(156 bytes). For each friend, the extension caches their storage service information,

RSA public key, and APK . The extension also stores the ASK (the size varies: 407

bytes for one attribute and 266 bytes for each additional attribute) created for that

friend along with the attributes associated with the ASK . For each policy that the

user is a part of, whether it is created by the user or a friend, the extension caches

the RSA keypair and the symmetric key.

This caching and recycling of symmetric keys allows the extension to pay the

cost of an ABE decryption only when it encounters an item encrypted using a new

key reference. This will occur when the encryption uses a new policy (corresponding

to a new group) or an existing policy to which a user has encrypted with a new

symmetric key. The latter might occur if the encrypting user is not part of the group

and is unable to decipher existing symmetric keys for that policy. The common

operation of the extension does not require expensive ABE operations.

2.5.4 Integrating Persona with Facebook

Current deployments of OSNs underline their undeniable popularity. It is

not realistic to assume that Persona (or some other privacy-enabled network) will

replace existing OSNs. Instead, we expect users to migrate personal information

onto private networks, while continuing to use existing OSNs for public data.

36

We have designed Persona to inter-operate with existing OSNs, and our pro-

totype integrates with Facebook. Persona applications are accessible as Facebook

applications and can interact with Facebook’s API, providing privacy-enabled ap-

plications through the familiar Facebook interface. Conversely, existing Facebook

applications can be made Persona-aware on a per-application basis. Users protect

their private data by storing it on Persona storage services rather than on Facebook;

only fellow Persona users will be able to access the data, and only if they are given

the necessary keys and access rights.

Using Persona applications within Facebook. Users log-in to Persona

by authenticating to the browser extension (which then decrypts and encrypts data

transparently), and then log-in to Facebook as normal. A Facebook-aware Persona

application is akin to any third-party Facebook application, and can be selected for

use as any other Facebook application. Unlike other applications, Persona appli-

cations use markup that is interpreted by the Persona browser extension, and are

aware of data references.

Traditional Facebook applications may use the Facebook API to communicate

to users by sending notifications, displaying items on the Facebook wall, and sending

application invitations. The same facilities are available to Persona applications. We

have implemented an abstract OSN interface that Persona applications use to access

OSN APIs. While our design is general, our current implementation has only been

tested with Facebook. Our Doc-based applications are accessible via Facebook as

Facebook applications.

Using Facebook applications on Persona. Once users begin to use Per-

37

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

T
ot

al
 P

ro
fil

e
Lo

ad
 T

im
e

(s
ec

on
ds

)

Number of Data Items

Cool - 100 Policies
Cool - 10 Policies

Cool - 1 Policy
Warm

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Total Profile Load Time (seconds)

Warm
Cool - 1 Policy

Cool - 10 Policies
Cool - 100 Policies

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100T
im

e
to

 D
ec

ry
pt

 a
nd

 V
er

ify
 (

se
co

nd
s)

Number of Data Items

Cool

(c)

Figure 2.2: (a) Total time needed, in seconds, to present Facebook profiles composed

of encrypted data items. (b) CDF of total time to load Facebook profiles. (c) Total

time needed, in seconds, to decrypt encrypted data items in Facebook profiles in

the cool data set with 100 groups. Note the difference in scale from (a).

sona, existing Facebook applications may want to provide Persona users with the

ability to store private data. Minimally, each application has to be ported to operate

using Persona data references, though some applications that transform user data

may require a complete rewrite. We discuss application porting in Section 2.7.

2.6 Evaluation

In this section, we quantify the processing and storage requirements of Persona

and measure the time to render Persona-encrypted web pages.

The key parameters of our evaluation are the sizes and number of distinct

data elements that might be stored on a single Persona page. Each distinct element

represents a request to a storage server and may, if the policy and associated key

are unknown, also imply a request for a group key and its decryption with ABE.

This process represents the performance cost of Persona. We estimate these param-

38

eters using Facebook as a model, combining real user profiles from Facebook with

observations of application-provided limits on the number of items per page.

User profiles can contain hundreds of data items. We use profile data in our

evaluation because it exposes the worst case performance of Persona, where users

must fetch and decrypt many individually encrypted data items. Our data is from

a crawl of Facebook profiles gathered in January, 2009. The crawl contains the

HTML of the profile pages of 90,269 users in the New Orleans network; of those

pages, 65,324 pages contain visible profiles, and 39 pages had miscellaneous errors

that left them unusable.

We parse these Facebook profiles into data items that could be individually

encrypted. First, we parse the document based on fields such as Name, Birthday,

Activities, Interests, etc. We then decompose fields which contain multiple items

separated by commas, bullet points, or line breaks. Under this decomposition, users

would be able to, for example, individually encrypt every TV show, book, and movie

that they enjoy, if they chose to do so.

Figure 2.1 (a) shows a CDF of the sizes of all data items and Figure 2.1 (b)

shows a CDF of the maximum, 95th percentile, and average data item sizes on

a per-profile basis. These plots show that most of the data items are small, but

many pages also have a few large items. We also present a CDF of the number of

data items per profile in Figure 2.1 (c). These figures provide a backdrop for the

performance of Persona: our results show that the number of data items on a page

determines the page load time.

39

2.6.1 Desktop Performance

We evaluate our Persona implementation on a desktop computer using a 2.00

GHz processor and 2 GB of RAM. The desktop, storage service, and application

server are connected through a router which introduces an artificial delay, chosen

uniformly between 65ms and 85ms, on each packet. These values reflect high laten-

cies observed by King [32] and represent a case where the storage service is far away

from the user.

We use two experiment scenarios. The first, termed cool , represents Persona

in its initial state, when group symmetric keys must be retrieved from a storage

service and decrypted. The second, termed warm, represents Persona usage in the

steady state, when all symmetric keys associated with groups have been cached. We

repeat the cool experiment scenario three times, varying the number of user-defined

groups between 1, 10, and 100. We run only one warm experiment scenario since

no key fetches and no ABE decryptions are needed. In each data set, we randomly

assign each data item to one of the user-defined groups.

For each Facebook profile, we first encrypt and store each of the data items

in Persona. We then retrieve a page that contains references to all of these data

items. In the cool data set, we asynchronously fetch the keys needed to decrypt all

of the items in the page. In both cool and warm, we also asynchronously fetch the

encrypted data items themselves. Once all keys and data items have been fetched,

we decrypt the data items on the page, verify their signatures, and re-render the

page. For efficiency, rather than evaluating every profile, we evaluate a profile page

40

drawn randomly from the set of all pages that have x items, for all values x for

which there is a profile with x items.

Page load time. Page load times increase linearly with the number of ele-

ments. Figure 2.2 (a) shows how long it takes to download, decrypt, and display the

profile page for each of our experiments, as a function of the number of data items

on the page. We extrapolate the distribution of page load times per Facebook profile

in Figure 2.2 (b). The median page load time is 2.3 seconds and the maximum is

13.7 seconds. Most pages consist of a few, small entries, so most are loaded quickly.

The cool data sets are comparable to the warm data set, indicating that retrieving

keys is not too expensive. These times may also represent a worst case; if users

aggregate their data more coarsely there will be fewer data items, requiring fewer

fetches and thus fewer round-trip times. Another possible improvement would be to

cache commonly retrieved data items, but we have not performed this optimization.

Encrypted data size. We show how much larger the encrypted data is for

individual data items in Figure 2.3a and for entire profile pages in Figure 2.3b.

There is a substantial increase in the size of the stored data, and this will affect

both the storage capacity of the storage services and the network resources required

to transfer data. The storage services are inherently distributed, so they should be

able to scale to support the needs of the system.

41

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
at

a
S

iz
e

(K
B

s)

Number of Data Items

Stored
Plaintext

(a)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
D

F

Data Size (KBs)

Plaintext
Stored

(b)

Figure 2.3: (a) Total size of plaintext and stored (ciphertext and signature) data for

Facebook profile pages by number of data items on the page. (b) CDF of total size

of plaintext and stored (ciphertext and signature) data for Facebook profile pages.

2.6.2 Mobile Device ABE Performance

Mobile devices are increasingly used for limited access to OSNs. MySpace,

Facebook, and LinkedIn [112] all have iPhone applications, and there are many

twitter and instant messaging clients. Persona, to provide a substitute, must also be

realizable on mobile devices. Enabling mobile devices with Persona-based security

would enable users to exchange their current locations with friends but not third

parties, enabling functionality similar to that of Loopt [113] without trusting the

service provider.

The requirements for encryption performance of mobile OSN clients are a bit

different from their desktop counterparts. Because of their smaller screens and often

slower network connections, the requirements for decryption are less demanding:

when only a few messages may be retrieved or displayed at a time, decrypting only a

few items is necessary. Conversely, mobile devices tend to have limited computation

power and limited battery life, so the operations themselves should be reasonably

interactive.

42

We cross-compiled the cpabe [99] libraries and their dependencies (pbc [53],

gmp, glib, openssl, gettext, libiconv, and libintl) for the iPhone SDK 2.2.1 [101].4

Some of these libraries (e.g., libcrypto from OpenSSL) are present on the device but

not included in the official SDK. Cryptographic operations supported on the device

may be implemented using hardware acceleration when applications are written

using Apple’s defined APIs; writing directly to the OpenSSL library forgoes these

potential advantages. In other words, our benchmark is sufficient to show that ABE

is practical on a widespread mobile device, but not intended to compare ABE or

AES performance from one device to another.

On a first-generation iPhone (620MHz ARM), decryption of ABE encrypted

text fragments smaller than 1KB takes approximately 0.254 seconds. This value is

the average time to decrypt 40 randomly-generated messages of 40 different sizes

drawn uniformly at random from 0 to 4095 bytes of 5 different access structures

having one to five attributes. Message size and access structure have little effect:

the message itself is encrypted using AES-128, and the access structure appears to

have a greater effect on the time to encrypt than to decrypt. Encryption times

average 0.926 seconds with one attribute (an average of 25 messages of 25 sizes;

some of this time is likely consumed by AES-128 key generation) and 0.43 seconds

for each additional attribute.

We believe that the 0.254 second object decryption time compares favorably

to the typical RTT of cellular data systems (Lee [50] reported a 417ms average RTT

4Patches to enable cross-compilation of these libraries using Apple’s gcc compiler are available

at http://www.cs.umd.edu/projects/persona

43

for 1x EV-DO) and does not preclude a mobile Persona.

2.7 Discussion

Our Persona prototype and evaluation demonstrates new functionality and

reasonable performance. In this section, we discuss unexplored questions a large-

scale deployment will have to confront.

Factoring applications. Persona was motivated by the observation that current

OSN applications have complete access to user data. Current Persona applications,

on the other hand, have no access to user data and must operate entirely using

data references. Applications that act on user data must be given selective access as

described in Section 2.4.3. This approach is similar to how others [47] have discussed

statically classifying user data in OSNs for application access.

An alternate design is to refactor applications into one piece administered by

the application provider (as now), and another piece capable of transforming user

data that would be executed on a trusted host (likely, within the user’s browser).

Existing taint-tracking techniques [79, 95] can be used to guarantee that user-data

remains safe. This option relieves the user from thinking about what data should

be released to which applications; however, application design and implementation

must undergo a substantial change.

Factored data. Persona decouples application metadata from encrypted content.

This may lead to cases when one is available but not the other. Ideally, data and

metadata would share availability, but combining both might lead to unacceptable

44

performance or violate storage policy (about where data might be stored). A scalable

policy-compliant design for a fate-sharing [17] dissemination infrastructure is an

open problem.

Deployment incentives. OSNs are popular, in part, because they are free. Per-

sona’s design requires users to contract with applications, and some applications,

such as the storage service, may have little incentive to provide free service. Users

may have to pay for this storage or agree to use some other service or applications in

exchange for free storage. Other applications—for instance, versions of Doc—may

augment the metadata with advertisements, which may provide a sustaining deploy-

ment model. As privacy-enhanced OSNs become popular, current OSN providers

may choose to incorporate privacy features, in effect supporting the Persona + Face-

book model we have implemented.

2.8 Conclusion: Persona in Perspective

Privacy controls provided by existing OSNs are not sufficient since they rely on

trusting the OSNs with data from which they can profit. We have shown how ABE

and traditional public key cryptography can be combined to provide the flexible,

user-defined access control needed in OSNs. We have described group-based access

policies and the mechanisms needed to provide decryption and authentication by

both groups and individuals. We have demonstrated the versatility of these oper-

ations in an OSN design called Persona, which provides privacy to users and the

facility for creating applications like those that exist in current OSNs.

45

Persona was among the earliest work to solve the problem of privacy in OSNs,

and, as OSNs are a part of a rapidly developing industry, much has changed in the

three years since the original publication of the work. Privacy controls in popular,

centralized OSNs have improved to satisfy user complaints. In particular, the launch

of Google+ saw the introduction of “circles” for controlling the privacy of posted

information; these circles were well-received and vindicate the design decision of

attribute-based grouping in Persona. However, despite their improved privacy con-

trols, today’s popular OSNs still rely on a centralized service that the user must

trust in order to participate. Persona and other decentralized OSNs provide a level

of privacy and security that cannot be provided by a centralized service, by provid-

ing users the ability to choose with whom they will store their data and (through

local cryptography) how that data will be stored.

46

Chapter 3

Bond Breaker

3.1 Introduction

OSNs have persuaded millions of users to give their offline identities an online

presence. While these OSN identities are convenient for online communication, they

risk impersonation [98] and may provide personal information that threatens the se-

curity of other systems [71, 114]. Users, aware that their personal information is

valuable, may choose only to allow their friends to see their information. However,

even correct privacy settings can be foiled if someone has infiltrated their circle of

friends. Users cannot trust that the person behind an online account is actually

their offline friend, even if that account has the correct picture and profile infor-

mation [11]. Solving the problem of OSN impersonation is necessary to establish a

secure, privacy-enabled OSN such as Persona (Chapter 2).

Many modern applications allow users to authenticate using an OSN account.

Authenticatr [72] shows that these identities can be a valuable tool in system design.

Unfortunately, an OSN provider is not equipped to verify user identities since the

provider knows almost nothing about its users other than what they themselves

supply, and that supplied data can be easily forged. Though OSN users are also

not able to identify arbitrary OSN users, they are actually well-equipped to detect

when an attacker is impersonating one of their friends.

47

Offline users have ways of identifying a friend—such as recognizing her ap-

pearance or voice—that are either difficult or impossible in online communication.

Instead they can use exclusive shared knowledge for identification: they can identify

a friend (either online or offline) by asking questions that only she can answer.

Once the user identifies his friend, he can ask her to provide or verify a public

encryption key associated with her identity. By repeating this process with all of

his friends, the user bootstraps a public key infrastructure (PKI) that he can use

on the OSN, a PKI that is important for emerging OSN applications that require

security or privacy.

We1 face several challenges by verifying OSN identities with shared knowledge.

We must guarantee that shared knowledge remains secret or we open ourselves up

to impersonation attacks. Users may not share exclusive knowledge with all of their

friends, so the PKI we create may be limited in scope. Lastly, an impostor may

be able to guess the knowledge shared by a pair of users, so we must limit and, if

possible, detect such attacks.

Our contributions are the following. We show that existing protocols can be

used in an OSN to exchange keys without revealing shared knowledge. We perform

a user study that shows that strangers have less than a 2% chance of guessing

the answers to shared knowledge questions; this compares favorably to web-based

security questions—another identification scheme based on personal information—

which can be guessed 17% of the time by strangers [77]. We show that even when

users only exchange keys with a few friends, we can discover the keys of many friends

1This work [7] involved the collaboration of Bobby Bhattacharjee and Neil Spring.

48

and friends-of-friends with a web of trust [81]. Finally, we show that the same web

of trust detects 80% of all successful impersonation attacks.

We organize this chapter as follows. In Section 3.2 we describe how to use

exclusive shared knowledge to distribute public keys and show that we can avoid

impersonation attacks with existing protocols. We describe our user study in Sec-

tion 3.3 and show that shared knowledge exists and can be used to identify friends.

We describe related work in Section 5 and conclude in Section 3.4.

3.2 Exclusive Shared Knowledge

The strength of exclusive shared knowledge lies in its secrecy, so we must

handle it delicately to prevent attacks. We seek a key exchange protocol in which

one user can use shared knowledge to verify another user’s offline identity, without

either user revealing that knowledge in the process.

3.2.1 Design

One user, the asker, wishes to verify the identity of her friend, the askee. The

users are communicating over an insecure channel and we assume their messages

can be intercepted by a man-in-the-middle attacker, the meddler. Key exchange

is asymmetric: in one instance of the protocol, the asker identifies the askee only.

Symmetry is not required in OSNs that have directed friend relationships, such as

Twitter. For symmetric OSNs like Facebook, we realize symmetry by repeating the

asymmetric protocol with the asker and askee roles reversed.

49

We will apply exclusive shared knowledge in our protocol as follows. The asker

formulates a question Q with answer A that relies on the exclusive knowledge shared

between the asker and askee. At the end of the protocol, the asker will receive a

public key PK with the guarantee that the person who sent the key used the answer

A in the protocol, even though A is never communicated in any way.

3.2.2 Attacks

We first consider the askee impersonation attack. The meddler, though he

does not know A, may make a guess G that could be equal to A, especially if the

set of possible answers to Q is small. The meddler will attempt to use G to offer the

fake key FK instead. If G = A, the asker will receive FK and be convinced that it

belongs to the askee, meaning the impersonation is successful. However, if G 6= A,

the asker will be unable to verify the askee’s identity and may grow suspicious of an

impersonation attempt.

A meddler who can prevent messages from being delivered could also prevent

successful verification of the askee. The general problem of denial of service attacks

is outside of the scope of this work; we expect that existing techniques can be applied

straightforwardly to this setting.

Alternatively, the meddler could attempt to impersonate an asker rather than

the askee. The meddler chooses a question Q′ and asks it of the askee. The askee

does not reveal A′ in the protocol, so the meddler can only learn A′ if her guess G′

is correct. A′ is only useful information in a subsequent askee impersonation attack,

50

and even then only if the asker chooses to use Q′ as a question.

In either of these attacks, the meddler can impersonate a person who is not

actually a user of the OSN by creating a fake account on the OSN with that person’s

information. The same attacks apply even when there is not a “real” asker or askee

for the meddler to impersonate, i.e., when the impersonated person does not have

an account on the OSN.

In order to maintain shared knowledge secrecy, the meddler must be unable to

recover A from the protocol even with an offline dictionary attack. Therefore, any

attempt to test whether G = A must require the cooperation of either the askee or

the asker, to limit the number of guesses a meddler may make.

3.2.3 Existing Protocols

Two existing protocols satisfy the requirements for our problem. Jablon [36]

describes SPEKE, a protocol designed to establish a secure channel between a client

and a server who share a common passphrase. As Jablon suggests, this can also

be used with shared knowledge as the passphrase between two users. SPEKE is

specifically designed to preserve the secrecy and require online verification of the

passphrase. The secure channel in SPEKE can be trivially used to exchange a

public key once the protocol is complete.

SPEKE achieves these properties by modifying the Diffie-Hellman protocol,

replacing the ordinarily fixed primitive base with a primitive base given by a well-

chosen function of the shared information. We omit further details of SPEKE.

51

Ellison [23] describes a multi-question protocol that also satisfies the properties

we require. This protocol allows the asker to ask several questions before deciding

that she is in fact communicating with the askee. Although it may prevent some

honest users from exchanging keys successfully, askers and askees must limit the

number of verifications they will perform to reduce the number of guesses a meddler

may make.

3.2.4 Embedding SPEKE in an OSN

Facebook is one of many web-based OSNs, and we use it as an example of

how one would augment an existing OSN to support SPEKE. Facebook provides

private messages between users, which could be used as the communication channel

in SPEKE.

Several steps of the protocol require local cryptographic operations that must

not reveal certain information such as private keys or the answer. One can perform

the SPEKE protocol on an OSN by embedding the protocol in a Firefox extension.

SPEKE requires several messages, so the asker and askee must either visit the OSN

simultaneously or they must interleave their visits to the OSN several times to com-

plete the exchange. This solution is also appropriate for other OSNs; in particular,

Persona [6] already relies on a Firefox extension for cryptographic operations.

In addition to key exchange with SPEKE and exclusive shared knowledge, we

can increase a user’s view of trusted public keys through a web of trust built on

the OSN friend graph. Although users might hesitate to ascribe trust to all of their

52

Facebook friends, they might be more willing to trust the friends they know well

enough to identify through exclusive shared knowledge. We consider the benefit of

using a web of trust in Section 3.3.2.2.

3.3 Can Users Ask Good Questions?

Since the security of our system relies on the ability of users to ask good

questions, we performed a real-world user study to determine whether users can do

so. This study presents a challenge that most user studies do not face: the results

depend on getting data about both participants and their friends. Rather than

bring individual users in for interviews, we perform our study directly on Facebook

to take advantage of the existing friendship information that Facebook provides.

We describe our user study, Bond Breaker, in this section.

Like many other viral Facebook applications, Bond Breaker is a social game.

We wanted to ensure that users had the right goals while using Bond Breaker, so

scoring in the game reflects desirable behavior in an actual system built for secure

key exchange. We also believed that a game – rather than a survey – might be seen

as fun and might convince users to encourage their friends to participate.

3.3.1 Bond Breaker Game Rules

We present the rules to the users before they begin playing Bond Breaker.

In Bond Breaker, users are rewarded for establishing bonds. A user establishes a

bond by asking a question of a friend, providing an answer, and getting the friend

53

to provide the same answer; this is analogous to successful (one-way) completion of

the key exchange protocol in Section 3.2. Both the asker and the askee are rewarded

for successfully establishing a bond, and they are also rewarded for establishing a

bond in the other direction.

For example, Alice asks Bob, “Where did we meet for the first time?”, and

Alice and Bob answer, “a roller disco”, forming a bond. Bob independently asks

Alice, “What color is my bike?”, and both answer “blue”, forming another bond in

the other direction.

As the name Bond Breaker suggests, we also encourage users to break bonds.

A user is rewarded when she guesses the correct answer to a question that was not

intended for her. A user may break a bond in this way even if the intended askee is

unable to answer the question correctly, since this still corresponds to a successful

attack in the actual key exchange protocol. A given asker and askee may establish

only one bond at any given time: if that bond is broken, they may try to use a

new question. Since we want to discourage users from asking and answering poor

questions, we penalize the asker and askee whenever a bond is broken.

Continuing our previous example, Eve guesses the answers to Alice and Bob’s

questions. To the first, she guesses “high school”, and fails to break their bond. To

the second, she guesses “blue”, breaking the bond from Bob to Alice. Unless Eve

knows more information about Alice and Bob, Alice’s question is good because there

are many places to choose from and the answer is relatively obscure. Bob’s question

is not as good because the answer is easily guessed.

We reward and punish users based on a point system and include a leaderboard

54

Asker Askee Meddler

Creating a bond +1 (each) +1 (each) -
Breaking a bond -2 (once) -1 (once) +1 (each)

Table 3.1: Scoring in Bond Breaker. Askers and askees earn points for each bond
they create and only lose points once per bond if the bond is broken. Each meddler
earns points for breaking a bond, even if the bond was already broken by another
meddler.

to give users incentive to earn points. We present our scoring rules in Table 3.1.

The asker and askee are penalized once for having a bond broken, but arbitrarily

many meddlers can earn points for breaking the same bond. We penalize the asker

more than the askee when a bond is broken since the asker chose the question and

has more at stake in the key exchange protocol; if the bond is established and then

broken, the net result would be that the asker loses one point and the askee breaks

even.

In our study, each meddler only gets one guess per question, corresponding

to the requirement that askers and askees limit the number of answer verifications

they will make. In practice, some users asked questions that the askee was unable

to answer only because of slight formatting problems and then asked the same ques-

tion again, giving meddlers an extra chance to answer. We used case-insensitive

matching as the only transformation on answers and have not evaluated any other

transformations. Any transformation that makes matching more lax will favor us-

ability at the expense of security: the easier it is for friends to identify each other,

the easier it will be for an attacker to guess the correct answer.

The rules that we have described provide an effective analogy between success

in Bond Breaker and success in an actual system. Users are rewarded for asking

55

questions of as many users as possible, but punished whenever those questions can

be answered by a meddler; in a real system users would obtain benefit from learning

many public keys and could incur substantial costs when meddlers convince them

to use false public keys. By rewarding users for breaking bonds, we provide an

incentive to do so, just as meddlers in an actual system would have incentive to

falsify public key information. We believe that Bond Breaker measures well the

usability of shared knowledge for identity verification.

3.3.1.1 Data Collection

We opened Bond Breaker to the public on April 3rd, 2009 and collected data

for three months. We primarily advertised by word-of-mouth, but also with flyers

and a Facebook advertisement. In total, 171 people agreed to participate in Bond

Breaker, but 70 of the participants did not ask, answer, or attempt to meddle in any

of the questions. Of the remaining 101 active users, 92 chose to ask or answer at

least one question while 9 chose only to meddle. In total, there were 225 questions,

200 answers from the askees, and 300 answers from meddlers.

The friend graph among participants in our study is not as densely connected

as we would expect in a complete OSN friend graph. 41% of the active users had

only one or two friends actively participating in the study. Through user feedback

we found that this was a combination of the following: users did not want to bother

their friends with what could be seen as spam invitations, the signup process required

reading a detailed description of the rules, and users felt discouraged from using the

56

Figure 3.1: Friend graph for active users in Bond Breaker.

application if none of their friends had signed up for it yet. In contrast, 14% of active

users had ten or more friends participating; many of these users were connected to

each other, forming the densely connected core in Figure 3.1. Most of our results

do not depend on how densely connected the friend graph is, but we may be able to

obtain more accurate results about the web of trust if we obtain a more complete

friend graph in the future.

3.3.2 Results

We use the results of our user study to answer the following questions. Can

users easily formulate answerable questions based on exclusive shared knowledge?

How likely is an attacker to guess the answer to those questions? Finally, can we

57

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

ve
r

us
er

s

Fraction of adjacent links

Bond Broken
Bond Made

Bond Attempted

Figure 3.2: Fraction of friends to whom users asked questions, created bonds, and

had bonds broken.

use these local verifications to bootstrap a PKI, similar to the PGP web of trust?

3.3.2.1 Question Success Rate

We first consider whether the participants were able to successfully use shared

knowledge to establish bonds. Figure 3.2 shows that users had varying degrees of

success in their ability to pose questions to friends: about a fifth of the users did

not ask questions of any of their friends, another fifth asked questions of all of their

friends, and the remainder were distributed nearly evenly. However, when users did

pose a question, the friend answered correctly 69% of the time.

Unlike askees, meddlers are rarely able to answer questions, with only a 6%

success rate. Table 3.2 shows that strangers meddled with nearly as many questions

58

Friend Stranger All

Unsuccessful 50% 44% 94%
Successful 5% 1% 6%

All 55% 45% 100%

Table 3.2: Breakdown of meddling attempts based on whether the meddler was a
stranger or a friend and whether the meddler was successful or unsuccessful.

as friends. However, five out of six successful break attempts were by a friend of

either the asker or askee. Though users may have spiteful friends who try to interfere

with their efforts, we expect most attacks in practice to come from strangers. The

ratio of successful attacks to attempts is only 9% for friends and 2% for strangers.

To provide a point of comparison, web-based security questions can be answered

28% of the time by friends and 17% of the time by strangers [77]. Though this

provides a point of comparison to deployed systems, there are significant differences

between the problems being solved and the experimental methodologies of these two

studies. This comparison is meant only to put the results in context.

From these results we conclude that users are only able to use shared knowledge

with some of their friends, and it is usually difficult for a meddler to guess the answer

to a shared knowledge question.

3.3.2.2 Web of Trust

Though we have demonstrated that many users only formed bonds with only

a small fraction of their friends, we now show that users can learn the keys of other

users in the OSN. Figure 3.3 shows the bonds and broken bonds between active

users. Based on this graph, we define a user U ’s web of trust to be the set of users

59

Figure 3.3: Bond graph in Bond Breaker; solid lines with filled arrows represent

successful bonds and dashed lines with empty arrows represent broken bonds.

60

reached by breadth-first search on the directed bond edges beginning at user U .

The web of trust may also be limited to a fixed number of hops away from U ; a

web of trust restricted to 2 hops would include U , any of U ’s friends to which U

has established a bond (hop 1), and any user reachable from those users (hop 2).

Restricting the web of trust sacrifices graph coverage for the sake of security. Our

definition assumes that trust is related to hops in the friend graph, but in practice

we advocate the use of explicit, user-defined trust information.

With a web of trust, the user can do two things: discover the identities of

users she does not bond with first-hand, and detect when an attacker has falsified

an identity. Since most OSN communication is between friends or between friends-

of-friends (FoFs), we focus on learning the keys of those users.

We first show a CDF of the fraction of friends and friends-of-friends reachable

via a web of trust in Figure 3.4. If we restrict the web of trust to 2 hops, meaning

that the user trusts her friends to attest to keys belonging to her FoFs, 18% of users

can identify more than half of their friends or FoFs in the OSN. However, if we do

not restrict the web of trust, half of the users with at least one outgoing bond can

reach at least 73% of their friends or FoFs. This suggests that the web of trust is a

powerful tool in creating a PKI for friends and FoFs and that the study of trust in

OSNs deserves further research.

We also discovered that 12 of the 15 unique broken bonds could be detected by

the unrestricted web of trust. That is, for 80% of the broken bonds, there is a path

of good bonds from the asker to the askee in the unrestricted web of trust. We can

use this feature of the web of trust to reduce impersonation in an OSN. Our results

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

ve
r

us
er

s

Fraction of friends and FoFs covered by web of trust

1 Hop (Direct Verification)
2 Hop (Trust Friends)
3 Hops (Trust FoFs)

5 Hops
All Hops

Figure 3.4: CDF of the fraction of friends and FoFs reachable through the web of

trust, by web of trust restriction. 36% of the users have no outgoing bonds, so they

gain nothing from the web of trust.

62

Figure 3.5: Carl incorrectly believes that the account created by Ivy belongs to

Alice, and his web of trust does not detect his error.

63

use Facebook account ids to identify nodes in the web of trust, but an impostor

could create a fake account to thwart this. Figure 3.5 shows an example of how the

web of trust could fail: the path of good bonds (Carl to Bob to Alice) points to a

different node in the friend graph than the broken bond (Carl to Ivy), so Carl will

be oblivious to Ivy’s attack if he cannot discover that the accounts created by Alice

and Ivy refer to the same offline identity. In order to use the web of trust to detect

impostors, bond edges must therefore encode information about offline identity to

be able to match fake accounts to their real counterparts.

These results demonstrate that we can bootstrap a PKI that provides the keys

of friends and FoFs in an OSN. This PKI is distributed and decentralized; we do not

require a centralized authority and we can exchange keys entirely online, as opposed

to the offline key signing parties of PGP. This PKI is a critical tool for providing

security and privacy in emerging OSN-based applications.

Even though shared knowledge is a good starting point for a social PKI, it is

not the only technique. We should provide users with as many independent options

for in-band key exchange as possible, and shared knowledge is just one of those

options. We consider another technique for exchanging keys based on mobile device

proximity in Section 4.4.2.

3.4 Conclusion

Impersonation is a fundamental problem of OSNs. We have described how to

use exclusive shared knowledge to allow users to take responsibility for identifying

64

their own friends in an OSN in a completely online way. We described a user study,

Bond Breaker, that takes takes advantage of existing Facebook friend information

to study our idea in a real setting. We demonstrated through Bond Breaker that

exclusive shared knowledge is a practical tool for identifying friends in an OSN and

that users can establish a PKI among their friends and friends-of-friends with a web

of trust.

Though Bond Breaker reveals the potential of exclusive shared knowledge, it

does not test the extent of its use. In both the feedback we received from par-

ticipating users and from our own experience with the Bond Breaker application,

we observed that (1) users have trouble creating questions with difficult-to-guess

answers, but (2) users can come up with many weak questions that collectively are

a thorough test of the askee’s shared knowledge. To facilitate the identification of

friends, we should take advantage of the weak shared knowledge that users possess

more abundantly. We believe that the use of multiple identifying questions may be

able to bridge the gap between the results we have presented and a complete PKI,

and leave this as a topic of future research.

65

Chapter 4

Twain

4.1 Introduction

We1 consider the problem of “rendezvous” over the Internet: two entities wish

to communicate but do not know each other’s “addresses”. More generally, users

may want to find entities that possess specific attributes. This general problem

appears (and is solved) in many guises, e.g. users of a social network look for other

users with the same interest; users wish to construct a secure communication link to

another whom they met in the past; peers sharing a file on BitTorrent may need to

find peers; Bluetooth devices need to pair before they can communicate; client pro-

grams may need to reach a server that is behind a NAT device. Prior solutions have

relied on local area broadcast or multicast (e.g, mDNS [16] and Bluetooth [102]),

network layer services (e.g., IP anycast [68], GIA [40]), modifications to DNS (e.g.,

application-layer anycast [10], CDN redirection [20]), trusted-third parties (STUN

servers for NAT [74], matchmaking services such as match.com), or untrusted well-

known servers (location-based rendezvous protocols [55]). While efficient for the

domains they were designed for, these ad-hoc solutions do not provide a general

solution to rendezvous problems. For example, mDNS, which relies on link-layer

multicast, is only useful if two devices are on the same local network; two co-located

1This work involved the collaboration of Bobby Bhattacharjee and Matt Lentz.

66

3G devices cannot discover each other using mDNS. Bluetooth discovery can be used

to find nearby resources, the discovery range is limited to a few tens of meters. Ex-

isting infrastructure-based solutions are either tailored for network-layer discovery

(anycast) or require participants to trust the server (social matchmaking) thereby

limiting applicability. We assert that rendezvous is an useful- and common-enough

abstraction that it merits being factored out and implemented as a standalone ser-

vice.

We propose a general pseudonymous rendezvous abstraction, called Twain,

that can be applied in any of the aforementioned contexts and can be realized as

a publicly available service on the Internet. Twain users construct pseudonymous

identities and associate attributes that they wish to be discovered by (or query for)

with these identities. Using the attributes provided by users, an untrusted third

party finds initial matches. In a way, Twain is a formalization of a “process” similar

to those employed by matchmaking web sites, where users provide information which

is used by the site to generate potential matches. In Twain however, users specify

attributes to match on, and then, they may use an interactive protocol brokered by

the service to validate that the match before committing to revealing their identities.

Our design goal is to construct a template that can be used for rendezvous in

a completely application-agnositic manner. Thus, Twain must efficiently a) capture

location context that is implicit in solutions that employ network-layer abstractions

(e.g., broadcast [102], link-layer multicast [16]), b) implement diverse matching poli-

cies (e.g., location-based matches [18, 55], BitTorrent peer location), and c) preserve

user privacy in sensitive contexts (e.g., social matchmaking).

67

Our primary contribution is an evaluation of Twain by applying the abstrac-

tion to seemingly independent applications that span the networking stack and have

markedly different requirements and semantics for matches. We show how the Twain

template can be used to easily implement rendezvous for BitTorrent clients looking

for peers interested in sharing blocks of the same file. However, the Twain frame-

work immediately enables BitTorrent clients to independently construct, advertise,

and match on expressive criteria (e.g., peers from a specific AS, peers who support

specific transport layer enhancements, peers who offer a particular upload to down-

load ratio) without further protocol change. Using similar ideas, we show how a

more general privacy-preserving search application can be implemented in Twain.

We introduce two new applications that benefit from pseudonyous rendezvous:

mobile P2P and privacy-preserving matching for wide-area gaming. We show how

mobile users can find nearby users who match (essentially) arbitrary criteria regard-

less of whether the others are on the same provider network or within the same

broadcast domain. This application demonstrates that Twain can effectively cap-

ture spatio-temporal context, and it is indeed feasible to efficiently implement local

search using a wide-area service.

In our game matchmaking application, we describe how proposed systems for

matching gamers can leak user location, and describe how Twain can be used to

efficiently implement various latency-sensitive matchmaking algorithms. We show

how the basic framework is expressive enough to elegantly capture a range of local

policies, including policies that restrict revelation of location information only to

friends or only to those within a specified distance, and a policy that does not

68

restrict revelation at all.

The chapter is organized as follows. We provide definitions and describe the

design of the Twain abstraction in Section 4.2. We describe a PlanetLab-based

implementation and the Twain API in Section 4.3. We enumerate example applica-

tions to which Twain can be applied in Section 4.4. We discuss attacks that can be

launched by a misbehaving rendezvous service and by malicious users in Section 4.5.

We conclude in Section 4.6.

4.2 Pseudonymous Rendezvous

4.2.1 Identities and Pseudonyms

An identifier is a globally unique bitstring that names specific data or prin-

cipal. An identity is a public identifier that represents a user2. Although we say

that identities are public, they may or may not be globally known. We say that

information is bound to data (such as an identifier) if that information is implicitly

revealed when the data is revealed as well. For instance, AS registry information is

bound to IP addresses. We say that an identifier is addressable if it is possible to

deliver a message to the owner of that identifier over some communication channel.

Users possess private information, that is, information whose disclosure they

wish to control. Some information is inherently private, for example the private key

corresponding to a user’s public key, and should never be transmitted over a public

2User, in this context, is a participant in a protocol. Users may be human, but could also

represent devices or other protocol entities.

69

communication channel in plaintext. Other information is not inherently private,

but the binding between the information and the user’s identity is. For example,

a phone number by itself is not private information, but the binding of that phone

number to a person may be. In this case, transmission of the information over public

channels is safe as long as such a transmission does not also reveal the binding.

Pseudonyms are semantic-free opaque identifiers that are owned by a given

user. Pseudonyms must provide a proof of ownership, and, by default, should not

reveal information that identifies its owner. Therefore, it should be impossible to

map a pseudonym to a user, but users should not be able to communicate using

pseudonyms they do not own. One way to construct a pseudonym is for the user to

generate a public/private keypair. The public key is the pseudonym and the user

has the ability to generate signed messages from that pseudonym using the private

key; the user can therefore communicate authoritatively as any of her pseudonyms

without binding the communicated information to her identity. A user might explic-

itly bind a pseudonym to an identity, as we describe in Section 4.4, in which case all

information bound to the pseudonym is likewise bound to the identity. A user may

construct arbitarily many pseudonyms. This is encouraged: we expect users to use

independent pseudonyms for different applications so that binding one pseudonym

to the user’s identity does not affect the user’s other pseudonyms.

Pseudonyms, unlike other identifiers, are particularly useful for privacy pre-

cisely because, if handled correctly, they are not bound to other identifiers. Contrast

this with identifiers typically used for addressing at various layers such as MAC ad-

dresses, IP addresses, social network accounts, user-specific public/private keypairs,

70

and cookie information. These identifiers can be bound to each other — and to

users themselves — in a variety of ways [64, 65]. Pseudonyms provide a layer of

indirection in which addressing is still possible while binding can be controlled by

the pseudonym owner.

4.2.2 Rendezvous Semantics

Twain is a formalization of a “process” similar to those employed by matchmak-

ing web sites, where users provide information which is used by the site to generate

potential matches. In Twain, users specify both their attributes and criteria func-

tions for generating a match. Twain provides the following properties.

Asymmetry. Rendezvous is asymmetric: one user makes herself available for

rendezvous, subsequently one other completes the rendezvous. Symmetry, if desired,

can be achieved if both users make themselves available for rendezvous.

Matchability. Users can rendezvous based on a variety of conditions, in-

cluding but not limited to: shared information, proximity, and interest based on

attributes or tags. A user who makes herself available for rendezvous binds at-

tributes to (only) her pseudonym, and publicly discloses the binding. The user who

completes the rendezvous issues queries over published user attributes to locate

matching users.

Constrainability. A user who makes herself available for rendezvous main-

tains control over who may rendezvous with her based on a set of criteria that must

be fulfilled by the user completing the rendezvous.

71

Revelation. When rendezvous completes, at least one of the two users learns

the information necessary to continue communication on another channel, typically

by binding a pseudonym to an addressable identity. Revelation binds any revealed

attributes to both the pseudonym and the addressable identity.

The matchability property provides a lightweight means of filtering out unin-

teresting users, while the constrainability property provides a heavier, proof-based

assurance that the matched users are considered safe to communicate with under

the user’s policy. Matchability provides scalability, while constrainability provides

privacy or security.

We present the overall flow of a pseudonymous rendezvous — match, constrain,

and reveal — in Figure 4.1. In this process, one user, Alice, makes herself available

for rendezvous under the pseudonym A by contacting the rendezvous service. Then,

the other user, Bob, queries the rendezvous service under another pseudonym B, and

the rendezvous service returns the matches, including A. At this point, either Alice

and Bob engage in an interactive protocol through the rendezvous service so that Bob

can prove that he satisfies Alice’s constraints, or Alice non-interactively publishes

information through the rendezvous service that Bob will only be able to interpret

if he satisfies the constraints (through possession of out-of-band information, such

as a cryptographic key). Either case concludes with proof that Bob satisfies Alice’s

constraints and a final message that reveals the binding between Alice and A to

Bob.

72

A RS B
A.propertiesA.constraints B.query

A,A.constraints...

...

A,Enc(Alice,B)

Interactive P
roof

(a)

A RS B

A.properties

B.query

A,Enc(Alice,S)...

Enc(Alice,S)

(b)

Figure 4.1: Alice makes herself available for rendezvous under the pseudonym A,

and Bob discovers A through a query. (a) Alice reveals her identity specifically

to B after completing an interactive protocol that satisfies her constraints, or (b)

Bob learns Alice’s identity with local information S that implicitly satisfies Alice’s

constraints.

4.2.3 Generic Pseudonymous Rendezvous

We introduce the data structures and communication required for a generic

pseudonymous rendezvous. All applications that use Twain undertake this basic

procedure to generate matches. To illustrate each concept, we use a running exam-

ple of a customizable BitTorrent tracker. Using Twain to find peers in BitTorrent

provides end-users with capabilities that are not part of the base protocol. For in-

stance, the Twain tracker would allow users, for improved performance or for policy

reasons, to selectively find peers in specific ASes. The Twain tracker also allows

73

users to match using non-network related criteria, e.g., a user may specify that she

will only peer with others who support specific transport layer features or possess a

certificate from a trusted CA or is willing to provide two data blocks in return for

each block she uploads. Each of these policies can easily be implemented in isola-

tion; Twain provides a framework for implementing any of them and allows users to

craft their own policies as necessary.

4.2.3.1 Definitions

Let RS be the rendezvous service. Let A, B be users. In our example, A makes

herself available for rendezvous and B seeks to rendezvous with a matching user (A

in this case). Let Â, B̂ be pseudonyms for A and B respectively. In this section,

we’ll assume that the RS executes correctly and returns only (and all) matches that

it finds. We discuss different forms of RS and user misbehavior in Section 4.5.

Let A have some properties PA and some criteria CÂ. The properties PA are a

set of bitstrings that represent the complete set of defining characteristics of A. In

our BitTorrent example, A may have the property that she belongs to a certain AS

and that she is willing to trade blocks of a specific file. The criteria is a predicate

that represents the requirements that B must satisfy to learn the binding between

A and Â. A may specify a criterion that whomever she peers with must upload two

blocks for every block that she provides.

Similarly let B have some properties PB and some query QB̂. This query is a

predicate that is satisfied by the properties of those users with whom B is interested

74

in rendezvousing. The definitions of A and B implicitly provide the asymmetry

property we desire. In our example, B wants to peer with a user from a set of

whitelisted ASes for the same file, and will be willing to provide twice the upload

bandwidth to do so. A’s home AS is in the set of ASes that B wants to peer with.

4.2.3.2 Matchability

The Twain protocol proceeds as follows. Initially, A publishes a pair (mÂ, dÂ)

to the RS. The pair consists of a message mÂ to indicate availability for rendezvous,

and a data thunk dÂ that is used for continued processing if a match for the message

is found. B publishes only a message mB̂ that specifies a query to RS to request

matches. If B’s query matches A’s message, B can use the data thunk obtained via

the match to continue communication.

We’ll use g to denote a generic matching function that the RS uses to match

users. The inputs to g are A’s properties, as specified in the message mÂ, and B’s

query (in mB̂). These messages are formatted in a standard manner such that the

RS can match users without necessarily understanding the underlying sematics of

the data being matched. Note also that A may not necessarily want to publish

her properties in the clear, nor might B want to publish his query in the clear.

Instead, we assume that the properties and query are transformed using application

specific functions that obfuscate them as necessary, but still allow matching using

the function g. Obviously, the transformation functions are crafted such that such

that g(mÂ, mB̂) = 1 iff PA satisfies QB̂.

75

The output of the transformation functions contains a key (k) that is application-

specific. Keys are unique for each match domain (e.g., for each application) and

allow for multiple matching conditions. Along with the key, each transformation

function also emits a value (v) for the match key, and identifies a specific data type

(t) and its associated comparator function. Thus, the output of the transformation

function is a set of triplets, denoted mA = {(ki, ti, vi,Â)} and mB = {(ki, ti, vi,B̂)}.

The messages published in this step provide the matchability property. For Bit-

Torrent, the keys could be “BitTorrent::FileNameHash” and “BitTorrent::Peer-AS”.

The data types are string for filename and positive integer for AS, with associated

comparator functions string matching and numeric comparison.

We support comparator functions that can match within a range. In general,

users may choose to specify upper and lower thresholds that can be used for a non-

exact match, or even empty thresholds that indicate that any value will match.

Thus, g outputs 1 iff the users agree on the keys being used in the match and the

key-wise comparison of every tuple lies within both users’ specified thresholds.

In our design, the matching function and the comparator functions are known

a priori to the RS. Applications transform their input to conform to comparator

functions from the set of supported comparators. The set of supported comparators

is described in detail in Section 4.2.3.4. The generic matching function g emits the

conjunction of all of the individual comparators.

76

4.2.3.3 Constrainability and Revelation

Upon finding a match, the RS returns the matching message and data thunk

to the querying user. The data thunk contains sufficient information for the querier

to continue. In particular, it may contain a nonce which the querier may use as a key

to publish a message and it may contain an encryption key under which to publish

information in that message. The message will match a query that the original

publisher may issue (or have already placed in the system). Subsequent messages

should interactively publish attributes that, collectively, provide a proof that B

satisfies A’s constraints. Messages published in this step provide the constrainability

property. This interactive process eventually leads to final message in which one

party reveals an addressable identity. The final message provides the revelation

property.

In our BitTorrent example, the RS notifies B of a match, and using information

in A’s data thunk, B can publish a message with an attribute that asserts that he

is willing to upload at least two blocks for each block that A provides. In his data

thunk, B publishes a nonce and a public key. Once A submits a query using her

original nonce as the key, she will find all matching users, in particular B. A may

choose to publish an addressable identifier (IP address and port) encrypted with

B’s public key using the nonce published by B.

In our implementation, once the RS determines a match, it creates an ephemeral

session for publishing subsequent messages. Even though each message contains a

nonce as described, the RS does not have to match over the entire database; it sim-

77

ply keeps track of sessions with active interaction until the rendezvous is complete

or the session times out. Note that the nonces allow the interactive protocol to

proceed completely asynchronously — sessions are maintained by the RS only to

improve runtime efficiency.

4.2.3.4 Data Types and Comparison Functions

To be truly application-agnostic, the RS needs to support general comparator

functions. However, in order to scale and be implemented as a network-wide service,

the comparisons must be computationally efficient.

We implement comparisons over primitive data types, such as integers, floating

point values, and strings. We also support comparisons over aggregates, in particular

sets and fixed dimensional coordinate spaces.

In the case of arbitrary-sized sets S1 and S2, the application can use for

c(S1, S2) the size of the sets obtained through set arithmetic, namely: |S1∩S2|, |S1∪

S2|, |S1 − S2|, |S2 − S1|, and|(S1 ∪ S2)− (S1 ∩ S2)|. Of these, set intersection is par-

ticularly useful for rendezvous since it captures the intuitive notion that two users

have something in common.

Enumerating all possible comparison functions on m-dimensional coordinates

is difficult. We identify two desirable classes of coordinate comparison functions,

aware that there may be useful other classes that we have not considered. The first

class is based on the p-norms, namely:

• ∀p ≥ 1, cp(x,y) =
∑m

i=0
|xi − yi|

p

78

• c∞(x,y) = max({|xi − yi|}
m
i=0

)

The second class is that of great-circle angular distance on the surface of

a sphere. This class is particularly useful for the m = 2 case as it provides a

way to compare geographical coordinates, a common requirement of location-based

rendezvous.

Using these pre-specified comparators is a specific design tradeoff that sacrifices

generality for scalability. An alternate design would be to have applications specify

an arbitrary matching function, specified in a safe language, that is executed over

the properties published by different users. However, we chose to constrain the

comparators to sequences of mathematical operations on primitive types as this

allows us to introduce the notion of “bounding boxes” that reduce the number of

potential matches that the RS has to consider for each user and that assist in

partitioning the data in the system. That is, any comparison function c should have

a corresponding bounding function b(c, v) = {l, u} where l and u represent bounds

on the values which could possibly match for the given comparison function and the

given value. As we demonstrate next, our choice of comparators provides sufficient

flexibility to implement a wide range of rendezvous.

4.3 Implementation

We describe an implementation of the Twain abstraction called TM-1 (Twain,

Mark I). TM-1 is a distributed, publicly available service that could for instance be

79

run on PlanetLab or Amazon EC2. We first describe the TM-1 architecture and

then describe the Twain API exported by TM-1.

4.3.1 Architecture

TM-1 is a distributed system comprised of two types of nodes: controllers and

data. The data nodes are relational database backends that support our matchabil-

ity operations for a given partition of the overall rendezvous data. The controllers

manage the data partitions dynamically as requests are made, splitting and merg-

ing partitions as necessary as data nodes and controllers become overloaded with

requests. One of the controllers also serves as a “master” node. The service DNS

name should resolve to the master controller, since this node serves as the ingress

into the Twain system. Initial rendezvous requests are handled by the the master

node, which hands-off the request to a unloaded controller. Subsequent requests

in the same session bypass the master. The master node also serves to serialize

partitioning operations to maintain consistency in the system. If the master node

fails, any of the surviving nodes can take over as the new master. In large deploy-

ments, the DNS name could resolve to a load-balancing router, which could direct

initial requests to different controllers. We do not use a load-balancing router in our

implementation.

The goal of TM-1 is to demonstrate the feasibility of scaling Twain to the needs

of real systems. In our implementation, partitioning is done as needed based on the

value portion of a data tuple. When a data node becomes overloaded – i.e., it passes

80

a certain threshold of disk usage – it informs a controller that it is overloaded and

picks the splitting value that will most significantly decrease its load. The controller

forwards this request to the master who splits the partition and assigns the new

partition to the least loaded data node. Queries are then directed to each data

node whose partition covers some portion of the query’s bounding box as described

in Section 4.2.3.4. TM-1’s load-based split and merge allows it to scale as match

volume increases since new data and controller nodes can be added dynamically as

needed.

We evaluate TM-1 on PlanetLab using 20 controllers and 20 data nodes, in-

creasing the number of available and querying clients across experiments from 10

to 110. The clients issue requests immediately after the previous request returns;

this is likely to be a much faster rate than we would expect from “real” clients who

may only issue one request every so often. The number of clients in our experi-

ments is not meant to directly correspond to some number of users of Twain, but

instead indicates the behavior of the system as more clients connect. We present

the results in Figure 4.2. The system is able to handle the additional requests as the

ratio of clients to servers increases, processing 44 requests per second when there

are 110 clients in the largest experiment we ran. Also, the system is able to op-

erate much more efficiently with bounding boxes than without, so it is important

for application developers to construct appropriate bounding boxes for applications

with custom comparison functions. TM-1 is more of a proof-of-concept than a true

test of Internet-scale scalability. We have used it to validate scaling to millions of

queries per day using only forty PlanetLab nodes (slivers to be precise). In reality,

81

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120

R
eq

ue
st

s
pe

r
se

co
nd

of Clients

With Bounding Boxes
Without Bounding Boxes

Figure 4.2: Number of requests per second in Twain as the number of requesting

clients increases, with and without bounding boxes to assist in partitioning.

we did not (try to) saturate the PlanetLab nodes; instead, we wanted to obtain a

conservative measure of the resources required for processing a million queries a day.

We believe this deployment is sufficient demonstration that the Twain architecture

is scalable.

4.3.2 API

We present the Twain API in Table 4.1. Most operations are associated with

a given service, such as BitTorrent, to assist in data partitioning. Each PK pro-

vides a reference for a pseudonym; API calls that take two PK pseudonyms should

be thought of as belonging a session between those two pseudonyms, sessions that

are established when the query function returns non-empty sets of matches. The

82

Remote functions invoked at a Twain control node

available(service, PK, {(k, t, v)}, expiry, σ, channel?)
→ success

query(service, PK, {(k, t, v)}, nonce, σ, limit, offset, store?,
expiry?, channel?) → {PKi, {(k, t, v)}i, expiry, σi}

interact(service, PK1, PK2, message, nonce, σ, channel?)
→ success

reveal(service, PK1, PK2?, message, nonce, σ)
→ success

pollQueries(PK) → {servicei, PKi}

pollResponse(service, PK1, PK2) → (type, message, nonce, σ)

Local functions and event handlers

createPseudonym() → (PK, SK)

recvQueries(PK) → channel

recvResponse(service, PK1, PK2) → channel

onQueries(channel) → {servicei, PKi}

onInteract(channel) → (message, nonce, σ)

onReveal(channel) → (message, nonce, σ)

Table 4.1: The Twain API.

store, expiry, and channel parameters of the query function can be used to pro-

vide matching symmetry: rather than have a user issue an available call followed

by a query call, these two operations are consolidated into the query call with

appropriate parameters.

Under this API, B’s query is never implicitly revealed to A: pollQueries and

recvQueries only return results if B initiates an interactive protocol. If A wishes

to know B’s query, the query can be explicitly revealed as part of the interactive

protocol. There is no guarantee that the query that B reveals is the same as the

query that B issued to RS, but A can at least verify that her properties satisfy the

claimed query.

83

TM-1 supports both push and pull communication with the rendezvous ser-

vice. The recv functions establish a communication channel that listens for re-

sponses from the rendezvous service and triggers the appropriate event handler.

Alternatively, the application may choose not to establish an active channel (for

instance, if communication is expected to be infrequent and not time-sensitive, or if

the anonymity layer between the user and the rendezvous service precludes a persis-

tent response channel) and instead may use the poll functions to periodically check

for new matches, interactions, or revelations. A combination of these two modes is

also reasonable: the application may poll for queries, but once a query is discov-

ered it may want immediate updates for the interactive protocol and revelation to

complete the rendezvous as quickly as possible.

4.4 Application Design using Twain

Twain as a standalone service has utility only if it supports a range of applica-

tions. In this section, we use examples to demonstrate how application requirements

can be mapped on to Twain. We begin with a discussion of the general steps that

the application designer must undertake, and follow up with a discussion of five

specific application scenarios.

Our goal in this section is to demonstrate the versatility of Twain; we’ve chosen

to showcase the breadth of applications supported by Twain at the cost of a complete

analysis of any one.

84

4.4.1 Process

The process of instantiating an application using Twain follows a sequence of

steps —idenfity, map, validate, and reveal— which we briefly discuss in the abstract

next.

Identify. The application designer has to identify attributes that she wants

to publish or query for, and make a decision about whether these properties and

queries should be bound to an addressable identifier. The RS is untrusted, thus

any sequence of messages that reveal sensitive attributes needs to be anonymized.

In these cases, we assume the user communicates with the Twain service using

an anonymity layer, such as Tor [21] or a mixnet [15], which serves to decouple

attributes from an addressable identity. The Twain API is designed to compose

with existing anonymity services.

Map. Once attributes and queries are identified, they need to be mapped to a

comparator supported by Twain. However, the problem here is more than molding

the application requirement to a supported comparator. The mere existence of a

non-obfuscated attribute (or conjunction of attributes) may leak information about

a user, regardless of whether the user communicates using an anonymity layer or

not. Even for obfuscated attributes, it may be possible for the RS or a user to

mount a dictionary attack using well-known match keys over small match domains.

(For instance, in our BitTorrent example, the a montoring agency will be able to

determine whether a particular file is being shared or not simply by iterating over

variations of names for the file using “BitTorrent::FileNameHash” key). We describe

85

possible techniques for addressing the problem of leaked attributes in Section 4.5.

Validate. Once an initial match is found, constraints need to be satisfied using

the interactive protocol. The requirements and concerns in this step are similar to

the mapping step.

Reveal. Once users validate each other, one of the users must provide an

addressable indentifier. As described previously, the interactive communication se-

quence can be used to securely exchange cryptographic material such that only

validated users can map pseudonyms to addresses.

In the rest of this section, we demonstrate how specific applications can use

Twain. Our first two examples – mobile peer discovery and privacy preserving game

matchmaking – not only demonstrate the utility of the Twain abstraction but also

provide novel solutions to unsolved problems.

4.4.2 Mobile P2P: Customizable Local Rendezvous

As smart mobile devices become ubiquitous, mobile P2P systems such as

SMILE [55], BlueTorrent [38], and MobiClique [69] rely on the ability of these de-

vices to discover and communicate with other nearby devices for location-dependent

purposes. Discovering peers in mobile P2P systems should be much easier even than

locating peers in global Internet-based P2P systems because of the inherently nar-

rowed spatial scope coupled with the broadcast nature of wireless communication.

However, locating nearby mobile devices remains difficult. Devices may not

always support broadcast (3G) or be on the same broadcast domain (different WiFi

86

networks). Bluetooth broadcast has limited range, and is prohibited by certain

OS/hardware combinations. Even if a robust link layer broadcast were universally

available, it is not a panacea for rendezvous. For large user populations, broadcast

is inefficient, both at the link layer and because it requires devices to sift through

many false positives (imagine using broadcast to find friends at a sporting event).

Finally, broadcast solutions inherently leak information because it is possible for

third parties to monitor attributes (or queries).

Assuming interested parties can reach a RS, Twain provides a potentially

elegant solution to the problems we have outlined. The main technical question

revolves around whether it is possible to construct robust co-location cues entirely

passively. We’ve designed a mobile P2P application, LoKI, that answers in the

affirmative. We next describe how we used Twain in the LoKI design.

LoKI’s goal is to allow proximal users to periodically exchange shared secret

data for the purposes of post-hoc identity verification in a social PKI. This is sim-

ilar to Bond Breaker (Chapter 3), except in this case the shared knowledge will be

a combination of hard-to-guess bitstrings and the users’ knowledge of when social

meetings occurred. In order to periodically exchange secret bitstrings, matching

users must exchange MAC addresses, a task that we perform using Twain. We as-

sume that users exchange bluetooth addresses, but LoKI is not specific to bluetooth.

We designed and evaluated LoKI using commodity hardware, specifically Android

smartphones running supported (non-rooted) software.

Map. The relevant attributes for LoKI are the user’s location, specific at-

tributes she wishes to be searched on, and her bluetooth MAC address. The user

87

may also impose validation criteria before disclosing her address. We assume that

the user does not wish to share the mapping between her address and her attributes

publicly. That is, only other users who are actually nearby and can satisfy all other

constraints should be able to see that a given bluetooth MAC address is in that

vicinity. To simplify our presentation, we’ll describe the case where users wish to

locate any nearby user, i.e., the additional attributes and validation are null. These

can (and should) be added based on the application- and user-requirements as we

have described earlier.

Commodity devices (non-rooted smartphones) limit ambient observations re-

ported to applications. The standard Android API exports a list of visible MAC

addresses of WiFi access points and discoverable bluetooth devices and the RSSI for

each such signal. Is this information sufficient to find co-located users? In particular,

are there sufficient addresses to form a robust cue, and do proximal devices “see” the

same addresses? We’ve conducted a measurement study, described in Appendix A,

that suggests that the answer is a qualified “yes” (Figure 4.3). A relatively small

match threshold is likely necessary because of the variety of MAC addresses observed

even from devices less than a foot apart. However, as we expect most real-world,

socially relevant meetings to occur in stationary settings, we believe that rendezvous

based on these MAC addresses will generally succeed even with a threshold of, say,

k = 5 common MAC addresses.

Our current implementation constructs location tags using the information

exported by the Android API. This information is susceptible to being spoofed, since

the set of visible APs is usually stable. It is possible to construct more robust, time-

88

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
D

F

of shared MAC Addresses

Train
Car

Walking
Bus

Stationary

Figure 4.3: Number of common bluetooth and wifi MAC addresses visible from two

proximal Android devices at any given time under typical daily movement (described

in Appendix A).

varying, signals, for instance by combining the high order bits in the timestamps

in each beacon message or with other information [66]. These are not available to

LoKI due to API limitations but can readily be incorporated when available.

IP addresses of mobile devices are ephemeral and harder to bind to an identity

than non-mobile devices. However, depending on the sensitivity of attributes that

are published, even a temporary binding may be undesirable. LoKI connects to the

RS through Tor, unless the user opts out of this feature.

Map. Let VA and VB be the set of visible wifi and bluetooth MAC addresses

from A and B’s respective devices. Let t be matching parameters that indicate the

use of set intersection on strings with a lower threshold of k and an unlimited upper

89

threshold. Let T be the current application epoch, retrieved from the rendezvous

service. A and B publish:

mÂ = {(LoKI visible MACs, t, {H(M ||T)}M∈VA
)} (4.1)

mB̂ = {(LoKI visible MACs, t, {H(M ||T)}M∈VB
)} (4.2)

By hashing the visible MAC addresses with the current epoch, neither user

reveals the plaintext MAC addresses visible at the location at that time with this

published information. Without knowing the plaintext MAC addresses at a loca-

tion, an attacker cannot track location across epoch boundaries. A also publishes a

data thunk that provides the information necessary for the revelation step and an

indication that no interactive protocol is necessary.

Validate. In this example, the only constraint that A need put on revealing

her identity — in this case, her bluetooth MAC address — is that B knows the

threshold number of visible MAC addresses in the vicinity. No interactive protocol

is necessary since A does not constrain matches based on any attribute other than

location.

Reveal. We reveal A’s bluetooth MAC address BMA through Shamir’s Secret

Sharing [78]. In this case,

e = {Enc(S(BMA,M ||t, k),M ||t)} (4.3)

where Enc(m,K) is symmetric encryption of m with key K and S(m, p, k) computes

the secret share for message m, point p, and threshold k. Then, assuming B actually

knows sufficiently many visible MAC addresses for the current epoch, d consists of

90

B decrypting the secret shares corresponding to the MACs he has observed and

combining them to recover BMA. At this point, rendezvous completes with B

learning the bluetooth MAC address of A, who both have observed similar ambient

MAC addresses and thus are likely to be proximal.

LoKI demonstrates how Twain can be used to implement a MAC-protocol

agnostic customizable rendezvous service. Even after a successful rendezvous, LoKI

cannot guarantee the establishment of a communication channel; the devices may be

barely out of bluetooth range of each other despite being able to observe the same wifi

access points. Our experiments show that Twain can be used to replace broadcast

for locating nearby users. Twain does not eliminate potential concerns regarding

privacy, but we believe LoKI demonstrates that these aspects are orthogonal to

rendezvous, even when an untrusted third-party is used to match users.

4.4.3 Game Matchmaking: Privacy-enabled Wide-Area Rendezvous

Users of multiplayer online games are often matched to each other in such a

way as to minimize latency, the most critical network measure for a smooth online

gameplay experience. Since all-to-all pings are impractical, systems such as Htrae [3]

rely on network coordinates [19] to estimate the latency between any two users

without testing the connections directly.

Although network coordinates are intended only to estimate latency, work in

IP geolocation such as CBG [30] demonstrates that coarse geographical informa-

tion can be ascertained given latency information from a collection of probes. Since

91

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Distance (km)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

CBG on Coordinates
CBG on Latencies

Figure 4.4: Comparison of CBG error distances, defined as the difference between

the actual location and CBG estimate, when applied to both measured latencies

and network coordinate latency estimates for the East Coast node set.

embedding hosts into a metric space can introduce errors in latency, it is unclear

whether CBG can be applied to learn geolocation from network coordinates. We

conducted an experiment on PlanetLab to confirm our hypothesis that location can

indeed be inferred using latencies gleaned from network coordinates. We describe

our experiment and modifications to CBG in Appendix B. Our results, presented

in Figure 4.4, indicate that CBG using network coordinate latency estimations per-

forms just as well as when using measured latencies, with a median error distance of

279 km for network coordinate latencies and 301 km for directly measured latencies.

Therefore, network coordinates may be unintentionally and unexpectedly bound

to geographical location information. Twain can be used to enhance matchmaking

92

by providing a measure of privacy for users concerned about leaking location infor-

mation. We’ve implemented a matchmaking application, Viveil, that uses Twain to

match gamers.

We assume that there exists a trusted authority for a given game, and that

this authority provides a certified network coordinate system [39] and certifies that

users are in fact valid players (e.g., paying subscribers, not cheaters, etc.). Certified

network coordinates are bound to the pseudonyms Â and B̂ upon creation.

The goal in Viveil is not to obscure inevitable direct latency measurements,

but to prevent attackers from inferring the geolocation of a user’s gamer id from

publicly available network coordinates. Said another way, we want to ensure that

an attacker must probe the user directly (either with latency measurements to her

hard-to-discover IP, or by requesting revelation of her network coordinate) in order

to learn the geolocation of the user’s gamer id, and that the user should have some

measure of control over who may probe her directly.

The actual level of privacy provided will be decided by user policy: some users

may not desire unlinkability of geographical location to gamer ids in favor of ease

of matchmaking, while others may want stronger guarantees. We identify three

policies that represent basic privacy requirements that users might choose: Public,

Valid-Users, and Friends-Only. In Public, the user is willing to share any of

her properties with anyone, and is only using the rendezvous service for discovery,

not privacy. In Valid-Users, the user is willing to reveal her IP address to any

valid user who can present a suitably close certified network coordinate, and is only

willing to reveal her gamer id to those users who can demonstrate a sufficiently fast

93

connection for the purposes of gameplay. Finally, in Friends-Only, the user is only

willing to reveal her gamer id and IP address to friends: this provides much stricter

privacy guarantees, though in this case network coordinates are only necessary if

the user has many friends.

Identify. The salient properties for a user in Viveil are her network coordi-

nates, her gamer id (such as a Xbox Live gamertag or a Playstation Network ID),

the IP address of her gaming device, and a collection of observed latencies to both

a) landmarks or peers for the purposes of computing network coordinates, and b)

peers from gaming sessions. If the user’s IP address is known, an attacker could

use standard IP geolocation techniques to estimate the user’s geographical location.

Therefore Viveil users connect to the rendezvous service through Tor for any policy

other than Public.

Map. Let G be a string that represents the game the users want to play,

and let l be the maximum latency that that game supports. Let cÂ and cB̂ be

the network coordinates of A and B. Let t be the type of network coordinate along

with the coordinate comparison function3 and with no lower threshold and an upper

threshold of l milliseconds. Then A and B publish mÂ = {(Viveil:G, t, cÂ)} and

mB̂ = {(Viveil:G, t, cB̂)}, respectively.

Validate. No interactive protocol is necessary for the Public or the Friends-

Only policies, so A’s data thunk will reveal her IP address as described in the next

step.

3To our knowledge, our implementation supports comparisons of any type of network coordinate

proposed in the literature through the generic mathematical expression comparator.

94

For the Valid-Users policy, A publishes a data thunk that instructs B to

publish his IP address (suitably encrypted), which he does. A first verifies that

the coordinate in mB̂ is a valid certified coordinate and that it lies within the

acceptable threshold l, then she likewise publishes her encrypted IP address. These

IP addresses are twice encrypted: first, with the public key associated with the

other user’s pseudonym for one-on-one communication, and second with a symmetric

key periodically distributed to all users considered to be valid users by the game

authority. At this point, A and B can connect directly over the Internet and measure

the latency between their gaming devices. A decides to reveal her identity (her

gamertag) after comparing this measurement to l. Note that this requires that both

A and B subscribe to the Valid-Users policy; if A does but B does not, he cannot

rendezvous with A since he is unwilling to reveal his IP address.

Reveal. Under the Public policy, e is simply the plaintext gamer id and IP

address information, and d is the identity function.

For the Valid-Users policy, A encrypts her IP with B̂’s public key, and B

simply decrypts with his private key.

For the Friends-Only policy, B’s friends distribute nonces periodically (say,

hourly). A publishes the nonce she received from B hashed with Â in plaintext and

B compares the published nonce to the list of received friend nonces.

95

4.4.4 Privacy Preserving Search

Search describes many social networks applications. By aggregating informa-

tion through a service, users can find: classmates or peers (LinkedIn, Facebook),

buyers or sellers of a product (Craigslist, eBay), potential dates (Match.com, eHar-

mony), tagged content (Twitter, Facebook, Blogger), or nearby friends, strangers,

or content (Google+, Foursquare, Yelp).

Often this information is private in nature, so publishing it to an untrusted

service raises privacy concerns for users. Application-specific solutions exist [42, 54,

66, 80] to handle search in its various forms, and many of these solutions can be

straightforwardly applied using our rendezvous service as the aggregation point. For

certain user policies the indirection provided by pseudonyms can further enhance

the user’s privacy guarantees beyond the original solutions.

Policies. The relevant properties of users in a privacy preserving search ap-

plication vary based on what is being searched for, but generally can be expressed

as a collection of key-value mappings where the keys are strings and the values are

either strings or geographical locations. Some individual key-value pairs are inher-

ently private while others are only considered private if used in conjunction with

other key-value pairs.

For example, a user interested in selling a used car might have the following

properties: {product : ‘car’, make : ‘Honda’, model : ‘Civic’, year : ‘2009’, color :

‘orange’, price : ‘$18,000’, location : ‘City, State’, email : ‘user@host.domain’, phone :

‘800-555-1212’}. Individual values such as the user’s email address and phone number

96

— values which are not unlike identities in their own right — may be considered to be

completely private, intended only to be revealed after a successful rendezvous (i.e.,

after the rendezvousing user satisfies the criteria set forth by the seller). Though

other individual values may not be private, the combination of them may be able

to uniquely identify a user4.

There exists a fundamental tradeoff between findability and privacy that can

only be reconciled by the user’s privacy policy, though this policy can be informed

by querying the state of the system. Before making the user available for ren-

dezvous, the application can test queries over the properties the user is publishing

to see if there are sufficiently many other users, providing a sort of empirical k-

anonymity [97], advising the user to, for instance, remove the car’s color if she does

not want it to be uniquely identifiable. Recent work [91] has tried to quantify pri-

vacy leakage as more information is revealed, and a search application could use

these techniques to better inform users.

Without a verifiable proof of possession, however, attackers can create fake

products to pollute attribute statistics. Sampling, dictionary, and pollution attacks

are inherent in any system that aggregates user information. Twain does not intro-

duce a new mechanism for either proving possession of attributes or for addressing

sampling attacks, but it does not enable new attack surfaces either.

Since we expect users to have an interest in at least some amount of privacy

4On Jan 27th, 2012, within 125 miles of the authors, there were over 5000 Honda Civics listed

for sale on the autotrader.com web site. Only two were orange. There were no orange Honda

Civics available within 100 miles.

97

and it is not easy to predict the linkability of a user’s IP address and arbitrary

searchable information, we conservatively use Tor as a default anonymity layer for

this application.

Map. For the purposes of deciding how to transform her properties prior to

publishing, we first must know: is the user making herself searchable to friends or

to strangers? For simplicity, we consider a friend to be anyone with whom the user

shares a piece of secret information, such as a symmetric key, while strangers lack

this information.

To be searchable by strangers, the user must advertise plaintext versions of

her properties according to her policy decisions. If the user is concerned that some

combination of her properties will identify her too narrowly, she splits the prop-

erties into subsets across multiple pseudonyms Â1, Â2, ..., Ân and publishes these

properties as mÂ1
, mÂ2

, ..., mÂn
.

There are two alternative options for being searchable by friends based on

obfuscated versions of her properties. These options differ in type of overhead they

introduce, making them appropriate for different classes of applications. In both

cases, we assume that the user periodically distributes a temporary symmetric key

SKA to all of her friends. This scheme applies equally well to attribute-based groups

as used in Persona [6].

In the Publish-Per-Friend case, A creates a pseudonym Âfi per friend and

publishes values under those respective pseudonyms that contain Enc(PA, SKfi),

i.e., she encrypts her data independently for each friend. Then B can simply match

once with the value Enc(QB, SKB) to find all of his friends’ content that matches

98

the given query. This option is more suited to applications where there are fewer

publishes than queries, such as user profiles or product sales.

In the Query-Per-Friend case, A creates a single pseudonym Â and publishes

values that contain Enc(PA, SKA). B on the other hand, issues queries under

pseudonyms B̂fi containing the value Enc(QB, SKfi). This option is more suited to

applications where there is much more content published than there will be queries,

such as searching through all of the status updates on a friend feed.

Validate. Users of privacy-preserving search have many options for interac-

tive protocols that can be used to constrain who may learn their identity, depending

on the nature of the data being searched:

• Shared knowledge questions, as in Bond Breaker (Chapter 3).

• CAPTCHAs [89] to thwart automated identity harvesting.

• Biometric tests. For instance, A could request that B include an audio clip of

a certain phrase, if A would recognize B’s voice.

• Reputation-based certifications through a trusted third-party service, for in-

stance to ensure a highly-rated buyer on eBay without necessarily revealing

identity.

• Currency exchange, perhaps with BitCoins [61].

• Information from other distributed credit or reputation systems, such as Credo [87].

Reveal. Upon successful completion of the protocol in the previous step, A

reveals her identity encrypted with B̂’s public key.

99

4.4.5 NAT Traversal using Twain

A well-known problem stems from the use of Network Address Translation

boxes (NATs) designed to address the limited number of available IP addresses

on the public Internet. A device behind a NAT can easily communicate to other

devices with public IP addresses, but not to other devices behind NATs. A simple

solution to this is STUN [74], in which one of the devices contacts a STUN server

to learn the public-facing IP address and port allocated by the NAT, advertising

that addressing information to the other user. This assumes that the users have

some way of addressing each other at a higher layer. Twain naturally provides both

higher-layer addressing in the form of rendezvous matches, and can easily provide

the public-facing IP address and port to any host that contacts it, even if that

addressing information corresponds to the egress of an anonymity layer.

4.4.6 BitTorrent and other P2P Applications

We have already described an enhanced BitTorrent tracker built using the

pseudonymous rendezvous abstraction in Section 4.2.3. The same model can be

applied for other decentralized peer-to-peer applications as well. Clients for decen-

tralized multi-user applications, e.g., DHTs [73], media streaming [90], backup [49],

can use the same schematic to replace ad-join protocols. As a bonus, using Twain

will allow users to specify customizable join criteria, and also maintain privacy if

users choose to join using a anonymizing layer.

100

4.5 Discussion

Users access a rendezvous service (RS), which is an untrusted process accessed

over the Internet at an publicly known address. Minimally, users expect the RS to

store attributes and queries, and produce matches within a reasonable time period.

We assume that the RS can reveal messages it receives to other parties (effec-

tively rendering it a public communication channel). The rendezvous service could

also return false rendezvous matches or false messages from a pseudonym it does not

own, but this type of misbehavior can be detected by the user. The RS may sup-

press matches; without external protocol mechanisms, such as randomized checks

or witness sets [33], match supression cannot be detected by users.

4.5.1 Matching over Sensitive Data

Users need not entrust the rendezvous service with private data. However,

some applications, e.g., a service matching potential dates, may entail the rendezvous

service matching pseudonyms using attributes that contain sensitive information.

Even though a match reveals only a pseudonym, existing work has demonstrated

that relatively small amounts of correlated information [84, 64, 37] is sufficient to

identify individuals.

Twain does not provide a generic solution to deanonymization, and the ren-

dezvous service can mount known attacks to try to unmask pseudonyms. The re-

stricted case in which users wish to rendezvous with others with whom they’ve

previously shared a secret key has been addressed using identity-based cryptogra-

101

phy [63]. In this setting, the rendezvous service does not learn any information

about the attributes over which users are matched. The general case is open: a

possible approach is for users to intentionally create “Sybils” – a set of plausible

user profiles along with their own and submit each profile with a different pseu-

donym. The Sybil profiles should be created using expected distributions in each

profile category such that the rendezvous service (or any other users) are unable

to distinguish Sybils from “real” users. This scheme assumes that the entire match

database is public, enabling users to able to pick attributes using profile value dis-

tributions. A similar approach for obfuscating real user information using Sybils

generated via the expected distribution of attributes is described in NOYB [31].

Note that if the database is not public (or when the system is being initiated), users

may choose Sybil attributes that follow the distribution of public profiles in existing

social networks, as described in NYOB.

Sybil profiles would (ideally) ensure that the rendezvous service cannot as-

certain whether they are matching a “real” user or a Sybil. In the worst case, as

long as real users choose attributes carefully (by following a known distribution),

they can plausibly deny being the owner of a pseudonym that matches their known

attributes. Further, the availability of the expected attribute data provides the user

(or application) with sufficient information to obtain a measure of the amount of

identifying information that is leaked by information associated with a pseudonym.

We note that the creation of Sybil profiles that mixes user data within noise for

placement in a untrusted database is a dual of well-known ideas in differential pri-

vacy [22], whereby a trusted database perturbs query results with noise such that

102

untrusted users cannot ascertain details of individual datum.

4.5.2 User attacks: Denial-of-Service

In addition to attacks by the RS, it is worth noting at this point that users

are generally untrusted as well. The rendezvous service cannot distinguish users;

it deals purely in pseudonyms and so a user may issue arbitrarily many queries

under different pseudonyms. Malicious users can therefore launch various attacks.

User initiated attacks fall into two broad categories: users may attack the system by

launching a DoS attack consisting of spurious match requests. Alternately, malicious

(or curious) users may try to deanonymize pseudonyms by launching “dictionary”

attacks that scan through different attributes.

Even though users are anonymous, the rendezvous service can address DoS

attacks by using well-known techniques such as CAPTCHAs [89] or automated

proof-of-work techniques described in Portcullis [67]. Dictionary attacks by users

(in the worst case where users are not rate-limited or if the RS colludes with users)

are equivalent to deanonymization attacks launched by the rendezvous service, and

are addressed in the same way.

4.6 Conclusion

We have described the Twain abstraction, a primitive that allows two users who

wish to communicate but who do not know how to address each other to find each

other based on potentially private information. We provided diverse examples of how

103

the abstraction could be used to solve problems in networked systems, demonstrating

the utility of the abstraction as a modular component in system design. We have

shown how Twain can implement well-known rendezvous mechanisms, and how re-

casting old problems (such as BitTorrent peer-selection) within Twain enables more

expressive solutions. We have described two new problems —mobile P2P rendezvous

and privacy-preserving matchmaking for games— for which Twain provides clean

solutions. Finally, we have described an implementation of Twain and demonstrated

its feasibility for use in actual systems.

104

Chapter 5

Related Work

5.1 OSNs

5.1.1 Privacy Leakage

Several works examine the characteristics and recent growth of OSNs [27, 43,

45, 59, 60]. Krishnamurthy and Willis [47] study how OSNs share users’ personal

data with third parties such as applications and advertisers. They note that Face-

book places no restrictions on the data that is shared with external applications.

Advertisers use personal data, as well as information acquired through cookies, to

serve targeted ads.

Prior research has characterized privacy problems with OSNs. Acquisti and

Gross [1, 29] show that Facebook users at CMU often share more data than they are

aware of. Lam et al. [48] study a Taiwanese OSN to show that users’ annotations

compromise the privacy of others. Ahern et al. [4] study Flickr to see how location

information is leaked through users’ photographs. Several studies [34, 44, 93] exploit

the friend graph to infer characteristics about users. Persona resolves these issues

by allowing users to precisely express the policies under which their data, including

friend information, is encrypted and stored.

105

5.1.2 Privacy-enabled OSNs

The research community has recognized the problem of privacy in OSNs and

proposed several solutions which build on top of existing OSNs. NOYB [31] hides

an OSN user’s personal data by swapping it with data “atoms” of other OSN users.

NOYB provides a way to map these atoms to their original contents. flyByNight [52]

is a Facebook application that facilitates secure one-to-one and one-to-many mes-

sages between users. Finally, Lockr [86] uses ACLs based on social attestations of

the relationship between two users, similar to how Persona distributes ASK s to users

that satisfy certain attributes. Persona and Lockr both use XML-based formats to

transfer privacy-protecting structures.

5.1.3 Access control and ABE

In Persona, the attributes a user has determines what data they can access.

This resembles role-based access control [26] and attribute-based access control,

which bases authorization decisions on the attributes assigned to users [12, 96].

Attribute based encryption (ABE) was introduced as an application of a type of

identity based encryption (IBE) called fuzzy IBE [75]. Unlike early ABE schemes,

CP-ABE [9], which Persona uses, binds ciphertexts to access structures while secret

keys contain attributes. Ciphertexts can be decrypted with a key that contains a

set of attributes that satisfies the access structure. Multi-authority ABE [14, 51]

removes the need for transitive key translations but requires each user to have a

globally-unique identifier and the attribute set to be partitioned amongst the users.

106

Pirretti et al. [70] show how to build a dating social network that only reveals

information about a user if their attributes match another user’s desired descrip-

tion. Unlike Twain or Persona, their system relies on a single authority to generate

all secret keys. Traynor et al. [88] introduce a tiered architecture to improve the

performance of ABE so that it scales to millions of users.

5.1.4 OSN Impersonation

Toomim et al. [85] show that shared knowledge could be used as an alternative

to group-based access control in OSNs. In their work, users protect OSN content

by guarding it with a question; only users who can answer the question can access

the content. In contrast, Bond Breaker uses exclusive shared knowledge to verify

identity rather than group membership, and exchange cryptographic keys on which

access control can be built.

Studies of OSN security show that current methods of identifying users are

insufficient. Bilge et al. [11] describe an attack in which the attacker copies a victim’s

information from one OSN to another to impersonate the victim on the new OSN.

This allows the attacker to befriend the victim’s friends, learn information about

them, and continue the attack on those new users. Key exchange with shared

knowledge could be used to prevent such attacks; the attacker may have access to

personal information, but not exclusive shared knowledge. Felt [25] also describes

an exploit for hijacking Facebook accounts (which has since been patched). Our

work could be used to detect hijackings and repair them.

107

Alexander et al. [5] describe a modification to off-the-record (OTR) instant

messaging that allows users to authenticate each other using shared secrets. Sted-

man et al. [82] study how a small group of users interact with the modification.

Our work instead considers shared knowledge in the broader arena of OSNs and

quantitatively demonstrates the ability of users to employ shared knowledge.

5.2 Rendezvous

5.2.1 Local Area Rendezvous

Multicast DNS (mDNS) [16] allows networked devices to locate services in the

local area using a link-local top-level domain (“.local”) . mDNS uses link-layer multi-

cast to advertise and query for resources. Resource information is stored using DNS

records of type SRV (service) or special TXT records known as DNS-SD (service

discovery), also known as “Rendezvous” records. Unlike Twain, mDNS requires par-

ticipants to be on the same broadcast domain (link), and requires users to explicitly

advertise services on the local network.

Bluetooth [102] devices broadcast query messages in order to find nearby de-

vices, with those in discoverable mode responding to the query, supplying device

properties and information on its addressable identity (MAC address). Through

the process of pairing, which completes the rendezvous between two devices, both

devices generate a link key in order to create an encrypted channel for further com-

munication.

By design, Bluetooth is only useful for pairing users within range (few tens

108

of meters), and both Bluetooth and mDNS rely on a broadcast channel. Unlike

these protocols, Twain allows users on a local network (or nearby users regardless of

network) to rendezvous without divulging interests or queries on the local network.

We further discuss the merits of non-broadcast rendezvous in Section 4.4.2.

5.2.2 Location-Based Rendezvous

SMILE [55] is a protocol for anonymous communication between users who

have encountered each other at some time in the past. SmokeScreen [18] provides

similar functionality, including "presence-sharing" among users. In both systems,

devices exchange cryptographic information in the background, which can subse-

quently be used to initiate a conversation. Both systems use a server (untrusted

in SMILE, trusted in Smokescreen) for rendezvous. These protocols are prominent

examples of how the pseudonymous rendezvous abstraction is being replicated ad

hoc on a per-application basis.

Detecting proximity based on observable, location-based signals is a well-

studied problem with a number of solutions for other settings. Narayanan et al. [66]

describe the use of location tags to allow for private proximity testing of two de-

vices, for instance if two devices with known identities want to verify proximity even

though they do not intend to communicate. By relying on wifi broadcast packets

for location tags, general non-rooted devices will not be able to participate in their

system. They also assume the existence of known identities — the very problem we

are trying to solve.

109

Varshavsky et al. [57] and Mathur et al. [58] similarly describe mechanisms for

confirming device identity based on observable radio signals to prevent man-in-the-

middle attacks on Diffie-Helman key exchange. Their goal is slightly different than

ours: they wish to ensure that two specific devices pair securely based on proximity,

while we wish to construct temporary pseudo-anonymous identities for all proximal

devices that can be matched to permanent identities later.

Applications such as KeySlinger [111] and Bump [103] use real world meetings

to exchange information, including public keys. These exchanges are user-initiated

at the time of the meeting, but we provide flexibility for users to initiate key-

exchange long after a meeting has occurred, which we believe more closely resembles

typical establishment of OSN relationships.

5.2.3 Pseudonymous Communication

In his Ph.D. thesis, Goldberg [28] describes PIP, a pseudonymous communi-

cation infrastructure for the Internet. Many of the ideas he presents have influ-

enced our work, though there are key differences between PIP and Twain. Most

notably, PIP allows for pseudonymous rendezvous but it requires that one end of

the rendezvous have a well-known identifier, restricting PIP to only client-server

rendezvous. I3 (Internet Indirection Infrastructure) [83] allows for pseudonymous

rendezvous-based communication, where the pseudonyms of the users exist as trig-

ger id’s in the system. In order to send packets, senders are only required to know

the corresponding id for the receiver, without needing to use the actual address-

110

able identity (IP address) of the receiver. By matching on more complex criteria,

Twain supports peer-to-peer rendezvous, enabling more applications including the

ones described in Section 4.4.1.

Unlike PIP and I3, Twain is intended only as a communication bootstrapping

mechanism: once two users rendezvous, they are expected to continue their com-

munication elsewhere. If this intention can be enforced, e.g., using the techniques

outlined in Section 4.5, it will limit both the resources that Twain must provide and

the ability of malicious users to abuse the service for illicit distribution. This prop-

erty of Twain also enables it to be a globally available persistent service as opposed

to the ad hoc, temporary services described by Goldberg.

Finally, there is a fundamental difference in how pseudonyms are meant to be

used in Twain, compared with that of PIP and I3. In Twain, the pseudonyms are

a means to an end; once rendezvous has completed, we expect that at least one of

the two parties involved will bind her pseudonym to a real identifier. Twain, unlike

PIP and I3, is not specifically intended for long-term pseudonymous communication.

Despite this intention, Twain does support pseudonymous communication; the user

need only bind her temporary Twain pseudonym with some other addressable pseu-

donym at the end of rendezvous.

5.2.4 Wide-area Resource Location

RFC 1546 [68] (Host Anycasting Service) is perhaps the earliest wide-area

attribute-based routing protocol defined for IP. Hosts share the same anycast IP

111

address, and packets may be directed to any host that shares the address. Thus, it

is possible to rendezvous using anycasting using only the anycast address, instead

of the unique IP address of the destination host. Global IP-Anycast [40] describes a

scheme for scalable routing of anycast addresses. The idea of rendezvous is the same,

with anycast hosts being reachable without needing to know their unique IP address.

Anycasting is routinely used to provide fault-tolerance and improve performance for

wide-area distributed services, prominently the root name servers [76]. Being an

entirely network layer abstraction, anycasting is limited in the flexibility it permits

in terms of “attributes” that a host can advertise, and how queries are matched to

hosts.

Anycasting can be implemented at higher layers as well: Application-Layer

Anycast [10] is an extension to DNS that uses a top-level domain “.any” to allow

clients to specify metrics which are used to select one from a set of eligible servers.

Application-layer anycasting is more flexible than network-layer implementations,

but in that it is designed to resolve hostnames. Intentional Naming Service (INS [2])

uses attribute/value names for message routing. Along with regular name resolution,

INS supports late-binding anycast and multicast. INS supports message forward-

ing based on application-specific metrics for early-binding and anycast. Like these

systems, Twain can be used to resolve hostnames, but allows for more flexible match-

ing criteria, including approximate matches and interactive proofs, which would be

likely be cumbersome to encode in a hostname.

112

5.2.5 Publish-Subscribe Protocols

Publish-subscribe protocols [8, 13, 24, 83] enable asynchronous communication

and rendezvous by design. Twain is akin to a publish-subscribe system to which pri-

vacy conscious users connect using an anonymous communication system. However,

Twain provides a structure for communication that is tailored for locating resources

by attribute, and not for continual receiving continual messages on subscribed chan-

nels. Unlike most pub-sub systems, Twain allows not only the querying user, but

also the the advertising user to constrain matches. Users may specify policies, in

the form of an interactive protocol, that are used to validate that both advertiser

and querier possess requisite attributes.

113

Chapter 6

Discussion

6.1 Open Problems

Many challenges remain in building systems that allow users to manipulate

private data through the types of applications to which they have become accus-

tomed. Though I have provided technical solutions to many of these problems, I

anticipate that future research will yield novel solutions to the problems I have yet

to solve.

Although I have described two very broad classes of applications – content-

agnostic applications and applications that operate on semi-private data – there

are applications that do not fit into either of these categories. That is, there are

applications that require an unobfuscated mapping between user identities and data

contents. Future work in this area would be to first, carve out any more classes of

applications that can provide privacy without trusting a third party; second, prove

that any remaining applications cannot provide privacy without trusting a third

party; and last, for a given application thought to lie in this class of remaining

applications, search for alternative means to provide the application service that

would allow the application to be included in one of the other classes.

One example for another class of applications that might include applications

not already found in the two classes I identify in this work is the set of applications

114

that can provide privacy through secure multi-party communication techniques [94],

i.e., when two or more known parties want to agree to the output of some function

of their private attributes. Developing a rigorous taxonomy of privacy-enabled ap-

plications – along with the intersections between application classes – is a natural

extension of the work I have started.

Much of my work includes proof-of-concept implementations that demonstrate

that a given design is practical, but they do not consider the many optimizations

that could be applied to my designs or what the privacy implications might be for

those optimizations. A more rigorous evaluation of my designs would be a significant

contribution, but has so far been hampered by a lack of extensive, realistic bench-

marks on which to test them. One future venture that I would strongly support is

that of a social network simulator, to provide the power and convenience of network

simulators to the social network setting for system designers. I envision that a social

network simulator would provide empirically-derived, configurable settings to sim-

ulate both the friend graph and application workloads for core OSN services such

as the activity feed, wall, profiles, and photos. The system designer would define

simulation parameters to choose the size of the network, how densely connected its

users are, and a distribution for the endpoints and sizes of data transmissions across

the social network; ideally user-to-user connections and data distributions could be

derived empirically from real networks. A social network simulator would facilitate

evaluation of many ideas including differential privacy, scalable OSN data storage

architectures, and social data caching.

Though I provide high-level descriptions of the privacy concerns associated

115

with certain applications and sketch solutions to provide certain privacy policies,

individual attention should be applied to these problems to construct complete

and rigorous privacy solutions. This is especially true for those problems that I

have newly identified, namely, mobile peer-to-peer background communication and

privacy-enabled game matchmaking.

Revocation of access to data remains a challenging problem; once data has

been published, it is nearly impossible to verifiably destroy it, and moving forward

with correct privacy requires expensive, difficult, and complicated key distribution

mechanisms. Technical mechanisms that assist a user in recovering from a privacy

error are unfortunately lacking and would be a beneficial addition to the advocacy

of user-oriented privacy design.

6.2 Deployment Hurdles

One of the hardest questions that remains is how to migrate users from ex-

isting social networks to a newly designed one. The technical solutions that I have

described provide certain objective advantages over state-of-the-art practices in cur-

rent OSNs, yet current OSNs possess a sort of “gravity” that discourages competition

from new OSNs. That is, the more users an OSN has, the more utility that OSN can

offer to a typical user. Persona, if fully developed with many Twain-based applica-

tions, would still have difficulty getting off the ground without a substantial initial

influx of highly-connected users. Though this is not a technical problem, there may

be more technical contributions to be made to facilitate the network effect [41] on

116

a new OSN.

Another question is whether users actually want to be in control of their private

data, and if so, how much are they willing to pay for it? Certainly there are some

users who do care, but if the majority of users do not care about privacy, will it even

be possible to entice enough users to use an OSN in which the only advantage is

that of greater privacy control? Here I am somewhat discouraged: history suggests

that ease-of-use is far more important than privacy as users have transitioned to

cloud-based storage [104], and membership of pay-to-use services is generally less

than that of comparable advertising-based free services [107]. If I realistically expect

for most users to migrate to a new OSN, it must be at least as easy to use as any

OSNs they currently use and it must be free to use. It remains an open, cross-

disciplinary problem to create an OSN that simultaneously: supports user-defined

privacy through cryptography, is no more difficult to use than existing OSNs, and

can pay for its costs without targetted advertising based on access to private user

data.

6.3 The “Best” Solutions

A last question that I consider is whether the solutions I have provided to the

problems I have identified in my work are really the best solutions to the problems.

In Persona, by design I mandate decentralization to give users some control over

their social network account and identity through competition. The decentralized

requirement motivates much of my design of Persona. I also choose to use ABE to

117

facilitate secure OSN communication; though it is likely that secure OSN communi-

cation could be provided using an alternate scheme that involves only symmetric and

asymmetric cryptography, the simplicity of the ABE abstraction fits the situation

of Persona extraordinarily well and provides both users and application designers

with intuition about privacy in the system.

As far as I can tell, there is no reason to not include Bond Breaker as a

component of OSN PKI bootstrapping. Though my study shows that some users

have difficulty using Bond Breaker for PKI bootstrapping, it provides an extra option

for key exchange that, as my results show, remains difficult to attack. Including

Bond Breaker as a component of PKI bootstrapping does not preclude the use of

other, potentially better solutions, and merely gives the user another intuitive way

to verify identity.

Pseudonymous rendezvous, or at least something that resembles it, appears

to be the only solution to providing privacy for many applications. This statement

is supported by the fact that many existing systems implement a pseudonymous

rendezvous component in an ad hoc way. The real question is whether extracting

pseudonymous rendezvous as a modular component has utility or whether these ad

hoc solutions are sufficient. My argument that the Twain abstraction is useful is an

anecdotal one, the result of consecutive attempts to solve different privacy problems.

In each case I returned to the same problem of pseudonymous rendezvous, confident

that that was the best solution I could provide. It is my opinion that when the

opportunity for reuse presents itself so often and so strongly that abstraction and

generalization are clearly the path to pursue to reduce the amount of work that

118

needs to be done in the future.

6.4 Conclusion

In this work, I have demonstrated technical solutions to many problems that

involve manipulating private data on public networks. My solutions are practical

and solve a wide range of privacy problems on the Internet today. Collectively my

solutions combine to form a social network in which users, not providers, control

the exposure of their own private data.

I demonstrated with Persona that private data can be protected even when

stored with untrusted third parties, and that many OSN applications only require

references to data rather than data contents. I solved the problem of key man-

agement, even in difficult settings such as with friends-of-friends, where a group’s

membership may be unknown.

With Bond Breaker I showed that, even though it is easy for attackers to

impersonate users on an OSN to subvert their friends’ privacy policies, I can use user-

driven shared knowledge to detect and eliminate these attacks. I also demonstrated

that I could bootstrap a robust social PKI by propagating public key attestations

through a web-of-trust.

Finally, through Twain I was able to broadly expand upon the set of appli-

cations to which I can provide users with (hopefully sufficient) privacy policies. I

showed that the Twain pseudonymous rendezvous abstraction is a useful way to

think about both privacy and connectivity through a variety of examples, some old

119

and some new. Together with Persona, Twain presents the case that it is generally

possible to provide user-defined privacy without sacrificing application functional-

ity.

120

Appendix A

LoKI Trace Methodology

Our trace collection used two Motorola Droids less than a foot apart from each

other in a backpack pocket. The Droids periodically scanned every thirty seconds for

wifi access points, discoverable bluetooth devices, and GPS coordinates. The scans

were not synchronized; we merely matched up measurements based on the nearest

time as an approximation. The traces consisted of two trips walking through the

University of Maryland campus, two trips from College Park, MD to Bethesda, MD

by way of the Washington, DC metro rail system, and two trips from College Park,

MD to Baltimore, MD by car.

121

Appendix B

CBG Modifications

In order to verify that geolocation information can be derived from network

coordinates, we deployed Pyxida on two sets of Planetlab nodes: a low-density set

consisting of 30 nodes located throughout the US, and a high-density set consisting

of 27 nodes located primarily near the East Coast of the US. We computed two-

dimensional network coordinates with a height component, and queried the nodes

after convergence. In addition, we measured actual node-to-node latencies to pro-

vide a grounds for comparison to the results of CBG based on network coordinate

estimated latencies.

Applying the base CBG algorithm to the latency estimations derived from

network coordinates was not effective. Due to the inaccuracies of embedding nodes

into a coordinate space, the network coordinate latency estimations would underes-

timate or overestimate the actual measured latency between the two nodes, possibly

beyond what should be physically possible. This affects CBG during the landmark

RTT vs. distance bestline calculation, where landmark (RTT, distance) pairs would

exist below the “baseline”, defined as the speed of information along fiber optic cable

(1 ms RTT per 100 km). In addition, there were a number of cases where one or

more distance contraints were incorrectly derived due to the inaccuracy of the esti-

mated latencies. In the base CBG algorithm, this would return that the geolocation

122

of a given node could not determined.

To better apply CBG to network coordinates, several modifications were im-

plemented on top of the CBG algorithm as described by Gueye et al. [30]. Any

estimated (RTT, Distance) point that lies below the baseline is dismissed as it is a

result of underestimation of the latency and cannot physically occur. In addition,

outliers in the set of distance constraints are removed based on the area formed as a

result of the intersection of the largest number of distance constraints. These mod-

ifications relax the CBG algorithm so that it can be applied to network coordinates

which may not follow the baseline assumption of CBG.

123

Bibliography

[1] Alessandro Acquisti and Ralph Gross. Imagined communities: Awareness,
information sharing, and privacy on the facebook. In PET, 2006.

[2] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley.
The design and implementation of an intentional naming system. SIGOPS

Operating Systems Review, 2000.

[3] Sharad Agarwal and Jacob R. Lorch. Matchmaking for online games and other
latency-sensitive p2p systems. In SIGCOMM, 2009.

[4] Shane Ahern, Dean Eckles, Nathaniel S. Good, Simon King, Mor Naaman, and
Rahul Nair. Over-exposed?: privacy patterns and considerations in online and
mobile photo sharing. In Human Factors in Computing Systems, 2007.

[5] Chris Alexander and Ian Goldberg. Improved user authentication in off-the-
record messaging. In WPES, 2007.

[6] Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel
Starin. Persona: An online social network with user-defined privacy. In SIG-

COMM, 2009.

[7] Randy Baden, Neil Spring, and Bobby Bhattacharjee. Identifying close friends
on the internet. In HotNets, 2009.

[8] Roberto Baldoni, Leonardo Querzoni, and Antonino Virgillito. Distributed
event routing in publish/subscribe communication systems: A survey. Techni-
cal report, Dipartimento di Informatica e Sistemistica, UniversitÃă di Roma,
2005.

[9] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy
attribute-based encryption. In IEEE Symposium on Security and Privacy,
2007.

[10] Samrat Bhattacharjee, Mostafa H. Ammar, Ellen W. Zegura, Viren Shah, and
Zongming Fei. Application-layer anycasting. IEEE Infocom, 1997.

[11] Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. All your
contacts are belong to us: Automated identity theft attacks on social networks.
In WWW, 2009.

[12] Piero A. Bonatti and Pierangela Samarati. A uniform framework for regulat-
ing service access and information release on the web. Journal of Computer

Security, 2002.

124

[13] Antonio Carzaniga and Alexander Wolf. Content-based networking: A new
communication infrastructure. In Developing an Infrastructure for Mobile and

Wireless Systems, Lecture Notes in Computer Science. 2002.

[14] Melissa Chase. Multi-authority attribute based encryption. In TCC, 2007.

[15] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 1981.

[16] S. Cheshire and M. Krochmal. Multicast DNS. IETF Draft; Expires June
2012, December 2011.

[17] David D. Clark. The design philosophy of the darpa internet protocols. In
SIGCOMM, 1988.

[18] Landon P. Cox, Angela Dalton, and Varun Marupadi. Smokescreen: flexible
privacy controls for presence-sharing. In MobiSys, 2007.

[19] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: a
decentralized network coordinate system. In SIGCOMM, 2004.

[20] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitaraman,
and Bill Weihl. Globally distributed content delivery. 2002.

[21] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In USENIX Security, 2004.

[22] Cynthia Dwork. Differential privacy. In International Colloquium on Au-

tomata, Languages and Programming, 2006.

[23] Carl M. Ellison. Establishing identity without certification authorities. In
SSYM, 1996.

[24] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys,
2003.

[25] Adrienne Felt. Defacing facebook: A security case study. White paper, UC
Berkeley, 2007.

[26] David F. Ferraiolo and D. Richard Kuhn. Role-based access controls. In
National Computer Security Conference, 1992.

[27] Minas Gjoka, Michael Sirivanos, Athina Markopoulou, and Xiaowei Yang.
Poking facebook: Characterization of OSN applications. In WOSN, 2008.

[28] Ian Avrum Goldberg. A Pseudonymous Communications Infrastructure for

the Internet. PhD thesis, University of California Berkeley, 2000.

125

[29] Ralph Gross and Alessandro Acquisti. Information revelation and privacy in
online social networks. In WPES, 2005.

[30] Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida. Constraint-
based geolocation of internet hosts. Transactions on Networking, 2004.

[31] Saikat Guha, Kevin Tang, and Paul Francis. Noyb: Privacy in online social
networks. In WOSN, 2008.

[32] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: estimating
latency between arbitrary internet end hosts. SIGCOMM Computer Commu-

nications Review, 2002.

[33] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview: prac-
tical accountability for distributed systems. In SOSP, 2007.

[34] Jianming He, Wesley W. Chu, and Zhenyu (Victor) Liu. Inferring privacy
information from social networks. In ISI, 2006.

[35] Pan Hui and Sonja Buchegger. Groupthink and peer pressure: Social influence
in online social network groups. In ASONAM, 2009.

[36] David P. Jablon. Strong password-only authenticated key exchange. SIG-

COMM Computer Communications Review, 1996.

[37] Rosie Jones, Ravi Kumar, Bo Pang, and Andrew Tomkins. I know what you
did last summer: Query logs and user privacy. In CIKM, 2007.

[38] Sewook Jung, Uichin Lee, Alexander Chang, Dae-Ki Cho, and Mario Gerla.
Bluetorrent: Cooperative content sharing for bluetooth users. Pervasive and

Mobile Computing, 2007.

[39] Mohamed Ali Kaafar, Laurent Mathy, Chadi Barakat, Kave Salamatian,
Thierry Turletti, and Walid Dabbous. Certified internet coordinates. In IC-

CCN, 2009.

[40] Dina Katabi and John Wroclawski. A framework for scalable global ip-anycast
(gia). In SIGCOMM, 2000.

[41] Michael L Katz and Carl Shapiro. Network externalities, competition, and
compatibility. American Economic Review, 75:424–40, June 1985.

[42] Lea Kissner and Dawn Song. Privacy preserving set operations. In CRYPTO,
2005.

[43] John Kleinberg. Challenges in social network data: Processes, privacy and
paradoxes. In KDD, 2007.

[44] Aleksandra Korolova, Rajeev Motwani, Shubha U. Nabar, and Ying Xu. Link
privacy in social networks. In CIKM, 2008.

126

[45] Balachandar Krishnamurthy. A measure of online social networks. In COM-

SNETS, 2009.

[46] Balachander Krishnamurthy and Craig Wills. On the leakage of personally
identifiable information via online social networks. In WOSN, 2009.

[47] Balachander Krishnamurthy and Craig E. Wills. Characterizing privacy in
online social networks. In WOSN, 2008.

[48] Ieng-Fat Lam, Kuan-Ta Chen, and Ling-Jyh Chen. Involuntary information
leakage in social network services. In IWSEC, 2008.

[49] Martin Landers, Han Zhang, and Kian-Lee Tan. Peerstore: Better perfor-
mance by relaxing in peer-to-peer backup. In P2P, 2004.

[50] Youngseok Lee. Measured TCP performance in CDMA 1x EV-DO network.
In PAM, 2006.

[51] Huang Lin, Zhenfu Cao, Xiaohui Liang, and Jun Shao. Secure threshold
multi authority attribute based encryption without a central authority. In
INDOCRYPT, 2008.

[52] Matthew Lucas and Nikita Borisov. flyByNight: Mitigating the privacy risks
of social networking. In WPES, 2008.

[53] Ben Lynn. On the implementation of pairing-based cryptosystems. PhD thesis,
Stanford, 2008.

[54] Justin Manweiler, Ryan Scudellari, Zachary Cancio, and Landon P. Cox. We
saw each other on the subway: secure, anonymous proximity-based missed
connections. In HotMobile, 2009.

[55] Justin Manweiler, Ryan Scudellari, and Landon P. Cox. Smile: Encounter-
based trust for mobile social services. In ACM CCS, 2009.

[56] Huina Mao, Xin Shuai, and Apu Kapadia. Loose tweets: An analysis of privacy
leaks on twitter. In WPES, 2011.

[57] Suhas Mathur, Robert Miller, Alexander Varshavsky, Wade Trappe, and
Narayan Mandayam. Amigo: Proximity-based authentication of mobile de-
vices. In UbiComp, 2007.

[58] Suhas Mathur, Robert Miller, Alexander Varshavsky, Wade Trappe, and
Narayan Mandayam. ProxiMate: Proximity-based secure pairing using ambi-
ent wireless signals. In MobiSys, 2011.

[59] Alan Mislove, Meeyoung Cha, Hema Swetha Koppula, Krishna P. Gummadi,
Peter Druschel, and Bobby Bhattacharjee. Growth of the Flickr social network.
In WOSN, 2008.

127

[60] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel,
and Bobby Bhattacharjee. Measurement and analysis of online social networks.
In IMC, 2007.

[61] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:

//www.bitcoin.org/bitcoin.pdf.

[62] Dalit Naor, Moni Naor, and Jeffrey B. Lotspiech. Revocation and tracing
schemes for stateless receivers. In CRYPTO, 2001.

[63] Shivaramakrishnan Narayan, Parampalli Udaya, and Peter Lee. Identity based
signcryption without random oracles. In International Conference on Security

and Cryptography, 2008.

[64] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large
sparse datasets. In IEEE Symposium on Security and Privacy, 2008.

[65] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks.
In IEEE Symposium on Security and Privacy, 2009.

[66] Arvind Narayanan, Narendran Thiagarajan, Michael Hamburg, Mugdha
Lakhani, and Dan Boneh. Location privacy via private proximity testing.
In NDSS, 2011.

[67] Bryan Parno, Dan Wendlandt, Elaine Shi, Adrian Perrig, Bruce Maggs,
and Yih-Chun Hu. Portcullis: Protecting connection setup from denial-of-
capability attacks. In SIGCOMM, 2007.

[68] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service. RFC
1546, 1993.

[69] Anna-Kaisa Pietiläinen, Earl Oliver, Jason LeBrun, George Varghese, and
Christophe Diot. Mobiclique: middleware for mobile social networking. In
WOSN, 2009.

[70] Matthew Pirretti, Patrick Traynor, Patrick McDaniel, and Brent Waters. Se-
cure attribute-based systems. In ACM CCS, 2006.

[71] Ariel Rabkin. Personal knowledge questions for fallback authentication: secu-
rity questions in the era of facebook. In SOUPS, 2008.

[72] Anirudh Ramachandran and Nick Feamster. Authenticated out-of-band com-
munication over social links. In WOSN, 2008.

[73] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Rat-
nasamy, Scott Shenker, Ion Stoica, and Harlan Yu. Opendht: a public dht
service and its uses. SIGCOMM Computer Communications Review, 2005.

[74] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities
for NAT (STUN). RFC 5389, 2008.

128

[75] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Eurocrypt,
2005.

[76] Sandeep Sarat, Vasileios Pappas, and Andreas Terzis. On the use of anycast
in dns. In SIGMETRICS, 2005.

[77] Stuart Schechter, A. J. Bernheim Brush, and Serge Egelman. It’s no secret:
Measuring the security and reliability of authentication via ’secret’ questions.
In IEEE Symposium on Security and Privacy, 2009.

[78] Adi Shamir. How to share a secret. Communications of the ACM, 1979.

[79] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, , and David Wagner. De-
tecting format-string vulnerabilities with type qualifiers. In USENIX Security,
2001.

[80] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques
for searches on encrypted data. In IEEE Symposium on Security and Privacy,
2000.

[81] William Stallings. The pgp web of trust. BYTE, February 1995.

[82] Ryan Stedman, Kayo Yoshida, and Ian Goldberg. A user study of off-the-
record messaging. In SOUPS, 2008.

[83] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana.
Internet indirection infrastructure. Transactions on Networking, 2004.

[84] Latanya Sweeney. Computational Disclosure Control: Theory and Practice.
PhD thesis, Massachusetts Institute of Technology, 2001.

[85] Michael Toomim, Xianhang Zhang, James Fogarty, and James A. Landay.
Access control by testing for shared knowledge. In CHI, 2008.

[86] Amin Tootoonchian, Kiran K. Gollu, Stefan Saroiu, Yashar Ganjali, and Alec
Wolman. Lockr: Social access control for web 2.0. In WOSN, 2008.

[87] Nguyen Tran, Jinyang Li, and Lakshminarayanan Subramanian. Collusion-
resilient credit-based reputations for peer-to-peer content distribution. In
NetEcon, 2010.

[88] Patrick Traynor, Kevin Butler, William Enck, and Patrick McDaniel. Real-
izing massive-scale conditional access systems through attribute-based cryp-
tosystems. In NDSS, 2008.

[89] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford.
Captcha: Using hard ai problems for security. In Eurocrypt, 2003.

[90] Long Vu, Indranil Gupta, Jin Liang, and Klara Nahrstedt. Measurement of a
large-scale overlay for multimedia streaming. In HPDC, 2007.

129

[91] Steven Euijong Whang and Hector Garcia-Molina. Managing information
leakage. Technical report, Stanford University, 2010.

[92] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group com-
munications using key graphs. Transactions on Networking, 2000.

[93] Wanhong Xu, Xi Zhou, and Lei Li. Inferring privacy information via social
relations. In ICDEW, 2008.

[94] Andrew C. Yao. Protocols for secure computations. In Symposium on Foun-

dations of Computer Science, 1982.

[95] Heng Yin, Dawn Song, Manuel Egele, Engin Kirda, and Christopher Kruegel.
Panorama: Capturing system-wide information flow for malware detection
and analysis. In ACM CCS, 2007.

[96] Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured
credentials and sensitive policies through interoperable strategies for auto-
mated trust negotiation. Transactions on Information and System Security,
2003.

[97] Ge Zhong and Urs Hengartner. Toward a distributed k-anonymity protocol
for location privacy. In WPES, 2008.

[98] ABC News. http://www.abcnews.go.com/Technology/Story?id=7960020.

[99] Advanced crypto software collection. http://acsc.cs.utexas.edu/.

[100] Android market: 10 billion apps served so far, and an-
other 1 billion each month. http://techcrunch.com/2011/12/

06/android-market-10-billion-apps-served-so-far-and-another-1-billion-each-month/.

[101] Apple iPhone SDK. http://developer.apple.com/iphone/.

[102] Specification of the bluetooth system. https://www.bluetooth.org/Technical/
Specifications/adopted.htm.

[103] Bump. http://bu.mp/.

[104] Re-examining Dropbox and its alternatives. http://windowssecrets.com/

top-story/re-examining-dropbox-and-its-alternatives/.

[105] Facebook terms of service. https://www.facebook.com/legal/terms.

[106] Following data leak, facebook proposes encryption for uids. http://mashable.
com/2010/10/21/facebook-uid-encryption/.

[107] Free vs. paid Android apps. http://www.appbrain.com/stats/

free-and-paid-android-applications.

130

[108] Google terms of service. http://www.google.com/intl/en/policies/terms/.

[109] HTC android flaw leaks smartphone user data. http://www.informationweek.
com/news/security/mobile/231700100.

[110] Exactly what does your apple iphone or ipad record about you?
http://www.pcworld.com/article/225754/exactly_what_does_your_apple_

iphone_or_ipad_record_about_you.html.

[111] Keyslinger. http://www.cylab.cmu.edu/keyslinger/.

[112] Linkedin. http://www.linkedin.com/.

[113] Loopt. http://www.loopt.com/.

[114] PC World. http://www.pcworld.com/article/168462/.

[115] Sony makes it official: Playstation network hacked. http://www.pcworld.com/

article/226128/sony_makes_it_official_playstation_network_hacked.html.

[116] Verisign hacked: Security repeatedly breached at key internet operator. http:
//www.huffingtonpost.com/2012/02/02/verisign-hack_n_1249275.html.

[117] Where I’ve Been. http://apps.facebook.com/whereivebeen.

131

