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ABSTRACT 

Key theoretical and empirical results from the past two decades have established 

that peak discharges exhibit power-law, or scaling, relation with drainage area across 

multiple scales of time and space.  This relationship takes the form ( ) θαAAQ =  where Q  

is peak discharge, A  is the drainage area, θ  is the flood scaling exponent, and α  is the 

intercept.  Motivated by seminal empirical studies that show that the flood scaling 

parameters α  and θ  change from one rainfall-runoff event to another, this dissertation 

explores how certain rainfall and catchment physical properties control the flood scaling 

exponent and intercept at the rainfall-runoff event scale using a combination of extensive 

numerical simulation experiments and analysis of observational data from the Iowa River 

basin, Iowa.  Results show that θ  generally decreases with increasing values of rainfall 

intensity, runoff coefficient, and hillslope overland flow velocity, whereas its value 

generally increases with increasing rainfall duration.  Moreover, while the flood scaling 

intercept is primarily controlled by the excess rainfall intensity, it increases with 

increasing runoff coefficient and hillslope overland flow velocity.  Results also show that 

the temporal intermittency structure of rainfall has a significant effect on the scaling 

structure of peak-discharges.  These results highlight the fact that the flood scaling 

parameters are able to be estimated from the aforementioned catchment rainfall and 

physical variables, which can be measured either directly or indirectly using in situ or 

remote sensing techniques.  The results of the study mark a step forward to provide a 

physically meaningful framework for regionalization of flood frequencies and hence to 

solve the long standing hydrologic problem of flood prediction in ungauged basins. 
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PUBLIC ABSTRACT 

For decades, engineers have been challenged with estimating design floods of a 

given probability of occurrence, which is required while designing hydraulic structures.  

The problem is often solved using historical annual maximum peak discharge data 

obtained from a location upstream of the site of interest.  However, as most of the basins 

in the world are ungauged, there are limited streamflow gauging sites from which the 

necessary information can be obtained.  In the 1960’s, the U.S. Geological Survey came 

up with a regional flood frequency estimation technique that can be used for flood 

prediction in ungauged basins.  This purely statistical method often uses drainage area 

alone to predict design floods.  Review of the regional equations show that the 

parameters of the power-law relation between peak discharge and drainage area change 

from one geographic region to another.  Moreover, the regional flood frequency 

equations established for different regions of the U.S. kept changing every time they are 

updated to include the latest peak discharge observations.  This shows the sensitivity of 

the method to the length of historical data, which has huge implications to the overall cost 

of hydraulic structures.  The overarching goal of this dissertation is to contribute towards 

providing a physical foundation for the regional equations by investigating the physical 

mechanisms that control the scaling invariance of peak discharges with drainage area at 

the rainfall-runoff event scale.  The dissertation also proposes and demonstrates a new 

flood forecasting framework that is based on the scaling theory of floods. 
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CHAPTER I 

INTRODUCTION 

1.1.Motivation 

It seems that the rivers know the theory. It only remains to convince the engineers of the 
validity of this analysis. – Emil Gumbel 

Regional flood frequency equations are extensively used for peak discharge 

prediction in ungauged and poorly gauged river basins.  In the United States, the U.S. 

Geological Survey (USGS) pioneered the methodology used for regionalization of flood 

frequencies in the 1960’s (Benson 1962; Benson 1964; Benson 1968), and the method 

has subsequently undergone several refinements (e.g., Hardison 1974; IACWD 1982; 

Tasker and Stedinger 1986).  Regional flood frequency equations relate the peak 

discharge with rainfall and catchment physical properties such as drainage area, main 

channel slope, longest stream length, soil type, land use, and mean annual precipitation.  

Among these, drainage area is the most important and often used as the single 

explanatory variable to predict peak discharge quantiles.  Observational data from across 

the world show that peak discharge quantiles exhibit scaling-invariance with drainage 

area and their relation can be described by the power-law ( ) )()( p
p ApcAQ φ= , where 

( )AQp  is the peak discharge quantile for a given drainage area )(A  and probability of 

exceedance )( p , )( pc  is the intercept, and )( pφ  is the flood scaling exponent.  The peak 

discharge quantiles used to estimate )( pc  and )( pφ  are obtained by fitting the Log-

Pearson type III distribution to the annual maximum peak discharge time series obtained 

from gauging sites that are located in hydrologically similar regions (IACWD 1982).  It is 

important to highlight that the peak discharge quantile scaling relationship is currently 
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used at the annual time scale to estimate peak discharge quantiles in ungauged basins that 

are nested within gauged basins from which historical peak discharge data that is required 

to estimate  )( pc  and )( pφ  is obtained.  The interested reader is referred to Dawdy et al. 

(2012) for a detailed review of the history of regional flood frequency analysis and future 

directions. 

A close examination of the regional flood-frequency methodology reveals that it 

has the following two major limitations: 1) peak discharge quantiles that are obtained 

from different gauging sites in hydrologically similar geographic regions do not 

necessarily come from the same rainfall-runoff event; in some cases they could actually 

come from events that occurred in different years, which leads to temporal mixing of 

peak discharge events that are not physically related and 2) peak discharge quantiles 

obtained from catchments that are not nested (i.e., catchments that don’t share the same 

drainage network) but are located in hydrologically similar geographic regions are put 

together, and as a result, peak discharge quantiles that are a product of independent 

rainfall-runoff events that occurred in independent (unnested) catchments are mixed.  

Consequently, the methodology ignores the fundamental role that the scale-invariant 

drainage network plays in determining the magnitude of peak discharges across a range 

of scales in the basin (Gupta et al. 1996; Gupta et al. 2007; Mantilla et al. 2006; Menabde 

and Sivapalan 2001).  As a result of the spatial and temporal mixing of independent peak 

discharges, the parameters of the power-law relationship between peak discharge 

quantiles and drainage area (i.e., )( pα  and )( pθ ) that are extensively used in regional 

flood frequency equations lack physical meaning (Dawdy et al. 2012).  Because of this 

and the lack of empirical data that is required to estimate )( pα  and )( pθ , the method 
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cannot be used for peak discharge estimation in ungauged basins located in ungauged 

regions. 

The physics behind the scaling invariance of peak discharges with drainage area 

can be determined by analyzing peak discharges from nested watersheds that occur 

following a runoff generating rainfall event.  Such an analysis would enable a precise 

description of the event-to-event variability of the flood scaling exponent and the 

intercept in terms of rainfall and catchment physical properties that govern the generation 

of peak discharges in space and time.  The resulting insights are of paramount importance 

in our quest to solve the longstanding problem of hydrologic predictions in ungauged 

basins (PUB) (Sivapalan et al. 2003).  In addition to being useful to develop a physically 

meaningful regionalization of flood frequency, such a framework will provide a flood 

prediction methodology that is not affected by climate change, as it does not depend on 

historical observations to predict future peak discharges (Dawdy et al. 2012; Gupta 2004; 

Gupta et al. 2010; Gupta et al. 2007).  It can also provide a framework that can be used to 

verify the streamflow simulation skills of physics based rainfall-runoff models.  To this 

end, a number of studies were undertaken in an effort to describe the flood scaling 

parameters in terms of rainfall and catchment physical properties (Di Lazzaro and Volpi 

2011; Furey and Gupta 2005; Gupta 2004; Gupta et al. 1996; Gupta et al. 2010; Gupta et 

al. 2007; Mandapaka et al. 2009; Mantilla et al. 2006; Mantilla et al. 2011; Morrison and 

Smith 2001; Ogden and Dawdy 2003).  These studies, which cover a range of theoretical 

and empirical studies, revealed that peak discharges from nested catchments exhibit 

scale-invariance with drainage area at the rainfall-runoff event scale and are able to 

connect both the intercept and the exponent to rainfall and catchment physical properties. 
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1.2.Research gaps and objectives 

The literature review of the physical basis of the event-to-event variability of the 

flood scaling intercept and exponent, which is presented in Chapter-II, reveals the 

following major research gaps: 

1) There is a lack of knowledge on whether or not the spatial-scaling structure of 

peak discharges at the individual rainfall-runoff event scale can be used to explain 

the spatial scaling structure of peak discharge quantiles at the annual time scale. 

2) There is a limited knowledge on the effect of the interplay among catchment 

antecedent soil moisture state, rainfall intensity, duration, hillslope overland flow 

velocity, and channel flow velocity on the scaling structure of peak discharges.  

Moreover, there is no study that looked into how the temporal intermittency 

structure of rainfall affects the scaling structure of peak discharges. 

3) The few empirical studies that demonstrated the occurrence of a scale invariant 

peak discharge spatial organization following a single rainfall event have done so 

using data from the 21 km2 Goodwin Creek Experimental Watershed located in 

Mississippi, USA.  There is a need to expand this analysis to larger river basins 

where flood with significant societal impacts often occur. 

4) There is a limited understanding of how the interplay among rainfall intensity, 

duration, hillslope overland flow velocity, and channel flow velocity control the 

occurrence and property of a scale break in the power-law relationship between 

peak discharge and drainage area. 

Motivated by the aforementioned research gaps, the overarching objective of my 

study is to contribute towards solving the longstanding problem of prediction in 
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ungauged basins (Sivapalan et al. 2003) by unveiling the physical connection between a 

host of rainfall and catchment physical properties and the flood scaling exponent and 

intercept at the rainfall-runoff event scale.  In summary, the thesis is devoted to address 

the following key research questions: 

1) Can regional flood frequency equations be understood in terms of the scaling 

invariance property of peak discharge with drainage area that is observed 

following the occurrence of a runoff generating rainfall event in a nested 

watershed (Chapter III)? 

2) How does the interplay among rainfall and catchment physical properties control 

the spatial scaling structure of peak discharges (Chapters IV, V, and VI)? 

3) How does the effect of certain rainfall and catchment physical properties on peak 

discharge at the rainfall-runoff event scale propagates to the annual time scale 

and, hence, affect flood frequency (Chapters VII and VIII)? 

4) How can the spatial scaling properties of peak discharges observed following 

single rainfall-runoff events in nested watersheds be used for flood prediction 

(forecasting) across a range of spatial scales (Chapter IX)? 

1.3.Thesis organization 

The thesis is organized as follows.  Chapter II presents the literature review where the 

research gaps stated above are discussed in greater detail.  Chapter III strictly defines a 

hydrologic region as a nested watershed and explores if scale invariant peak discharges 

frequently occur in a mesoscale river basin at the rainfall-runoff event scale.  The chapter 

also explores, provided that scaling invariance of peak discharges holds in a mesoscale 

river basin, the existence of a connection between the flood scaling parameters of peak 
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discharges resulting from individual rainfall-runoff events and the flood scaling 

parameters of peak discharge quantiles.  Chapters IV and V investigate the physical basis 

behind the observed scaling invariance of peak discharge at the rainfall-runoff event scale 

using diagnostic numerical simulations of four different watersheds from the state of 

Iowa, US.  Chapter VI provides empirical evidence for the simulation results obtained in 

Chapters IV and V and presents further insights into the effect of the temporal structure 

of rainfall on the spatial scaling structure of peak discharges. Chapter VII investigates 

how the drainage network geometry affects the magnitude of peak discharge at the 

rainfall-runoff event scale and how this effect propagates to the annual time scale 

affecting flood frequency.  Chapter VIII expands on Chapter III and explores how the 

effect of the interplay among rainfall intensity and duration on peak discharge at the 

rainfall-runoff event scale affects the scaling of peak discharge quantiles.  It also explores 

if a connection exists between event scale scaling and quantile based scaling of peak 

discharges that could help in regionalization of flood frequencies.  Chapter IX proposes a 

flood forecasting framework that utilizes the insights obtained from the analysis of the 

scaling of peak discharges at the individual rainfall-runoff event scale.  The predictive 

capability of the proposed framework is demonstrated using observed flood events that 

occurred in the Iowa River basin, Iowa. Chapter X synthesizes the findings of the thesis 

and provides concluding remarks on the main findings of the thesis, and ends with 

recommendations for future research.  Figure I-1 provides a graphic summary of the 

thesis structure. 
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Figure I - 1. A schematic summary of the thesis structure. 
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CHAPTER II 
LITERATURE REVIEW 

2.1. A brief review of scaling laws in channel networks 

Power-law relationships of the form baxxf =)( , which have an attribute of 

scaling invariance, have been shown to arise in numerous self-similar (self-affine) natural 

and artificial systems.  Power-law patterns are well documented in biology, physics, 

chemistry, astronomy, geology, computer science, and finance, to name a few (e.g., Benz 

et al. 2008; Brown et al. 2004; Brown et al. 2002; Gabaix 2009; Mandelbrot 1983; 

Mitzenmacher 2003; Newman 2005; Schroeder 1991).  Schroeder (1991) states that “self-

similarity is one of the decisive symmetries that shape our universe and our efforts to 

comprehend it.”  In drainage basin hydrology, the channel network, along which the 

fundamental processes of transportation, aggregation, and attenuation of streamflows 

occur, is shown to be self-similar (Peckham 1995; Rodriguez-Iturbe and Rinaldo 1997; 

Tarboton et al. 1988).  The self-similar property of channel networks is characterized by 

Horton’s (1945) laws of drainage composition.  These laws are stated as follows: 
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where ω is the Horton-Strahler stream order, ωN  is the number of streams of order ω, 

BR  is termed as the bifurcation ratio; Ω is the order of the main stem of the river network 

and hence called the network order; ωL  is the mean length of streams of order ω; 1L  is 
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the mean length of streams of order 1; LR  is termed the length ratio; ωA  is the mean 

drainage area of catchments draining into streams of order ω; 1A  is the mean drainage 

area of catchments draining into streams of order 1; and AR  is termed as the area ratio.  

The laws stated in equations Equation II-1, 2, and 3 are specifically known as Horton’s 

law of stream numbers, Horton’s law of stream lengths, and Horton’s law of stream 

areas, respectively.  These laws serve as the governing principles of drainage basin 

structure (Kirchner 1993).  A widely recognized power-law that emerges in drainage 

basins is the Hack’s law ςaAL ≈ , where L is mainstream length, A is the drainage area, 

and ς is the scaling exponent that typically ranges between 0.56 and 6. 

The seminal work of Leopold and Maddock (1953) introduced the concept of 

hydraulic geometry and showed that, at a given channel cross-section, channel width (w), 

depth (d), flow velocity (v), and suspended-sediment load (S L ) vary as a power-law 

function of discharge (Q) as shown below. 

baQw =   Equation II-4 

fcQd =   Equation II-5 

mkQv =   Equation II-6 

j
L pQS =  Equation II-7 

where a, c, k, p, b, f, m, and j are numerical constants that are constrained by the set of 

equations wdvQkcamfb ==××=++ since,1and1 .  They also showed that these 

relationships hold true for different downstream locations that are related through 

discharges that have the same exceedance probability. These power-law equations have 
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found wide range of applications in river hydraulics (Ferguson 1986).  A famous 

application is the streamflow rating curves that are used by the USGS to convert 

continuous streamflow stage measurements to discharge.  Leopold and Miller (1956) later 

extended these hydraulic geometric relations to Horton laws and showed that river basin 

geomorphology, hydrology, and channel hydraulics are interconnected.  Gupta and Mesa 

(2014) recently formulated Horton laws for the hydraulic-geometric variables and their 

scaling exponents using the self-similarity property of channel networks as a basis. 

An important characterization of the drainage network structure for hydrologic 

application is provided by the geomorphological width function.  The width function, 

which is defined as the total number of links at a given distance from the outlet, is 

connected to the streamflow response of a basin (Gupta et al. 1986; Gupta and Mesa 

1988; Kirkby 1976; Mesa and Mifflin 1986).  It is equivalent to the streamflow response 

that can be computed under the assumptions of spatially constant instantaneous rainfall; 

instantaneous injection of hillslope overland flow to adjacent channels, and the transport 

of channel flow with constant velocity and no attenuation (Gupta et al. 2010).  The 

geomorphological theory of the instantaneous unit hydrograph (GIUH) has its roots in the 

physical understanding of the width function (Gupta and Waymire 1983; Gupta et al. 

1980; Rodríguez-Iturbe and Valdés 1979).   

Recent research has shown that the maxima of the width function that is evaluated 

at the bottom of complete order Horton-Strahler streams within a given watershed 

exhibits scaling invariance with drainage area (Veitzer and Gupta 2001).  Moreover, 

empirical data shows that peak discharges, which are the subject of this dissertation, has a 

power-law relationship with drainage area over multiple scales of space and time (e.g., 
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Eash 2001; Eaton et al. 2002; Furey and Gupta 2005; Goodrich et al. 1997; Gupta et al. 

2010; Leopold et al. 1964; Lima and Lall 2010; Ogden and Dawdy 2003; Poveda et al. 

2007; Robinson and Sivapalan 1997).  The observed statistical self-similarity of peak 

discharges is believed to be a manifestation of the scale-invariant channel networks 

(Dawdy et al. 2012; Gupta 2004; Gupta et al. 2007; Gupta and Waymire 1998).  

Accordingly, I will give considerable emphasis to the role of the river network in all the 

empirical data analysis and diagnostic simulation exercises that I will conduct to reveal 

the rainfall and catchment physical properties that control the spatial scaling properties of 

peak discharges. 

2.2. Evidence for peak discharge quantile scaling 

Drainage area was first recognized as a peak discharge scaling parameter in the 

classical Rational Method (Mulvany 1850).  In this method, for a given soil type 

(topography), rainfall intensity I  and rainfall duration T , that is equivalent to the longest 

travel time in the watershed (“time of concentration,” ct ), peak discharge scales linearly 

with drainage area at internal locations in the catchment and can be estimated using the 

formula AIcAQ r ⋅⋅=)( , where rc  is the runoff coefficient.  Under this method, the flood 

scaling intercept corresponds to eI  ( IcI re ⋅= ) and the scaling exponent 1=θ .  The 

method is still being used in engineering practice for the design of small drainage 

structures and is applicable to small catchments with drainage areas as large as 15 km2 

(Brutsaert 2005).  At around the same time the Rational Method was outlined, 

(O’Connell 1868) proposed the power-law formula 5.0)( cAAQ =  that linked peak 

discharge to drainage area, where c  is a coefficient related to the region. 
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In the early 1960s, the United States Geological Survey (USGS) adopted and 

popularized an empirical quantile regression method for regional flood frequency 

estimation that is being used throughout the world (Dawdy et al. 2012).  These quantile 

regressions often use drainage area as the only predictor variable and follow the form 

( ) ( )p
p ApcAQ φ=)(  , where both the intercept c  and the exponent φ  are functions of the 

probability of exceedance p .  The flow quantile )(AQp  exhibits a log-log linear 

relationship with drainage areas located in a homogeneous region.  This means that 

streams that belong to different drainage networks, and are therefore not nested but are 

located in a homogeneous region, exhibit similar peak discharge scaling structure.  It is 

important to note here that the delineation of homogeneous regions is based on the 

residuals from regression analyses and on physiographic characteristics of river basins 

(Eash 2001). 

Empirical evidence resulting from quantile regression analysis carried out by USGS 

shows the existence of two types of peak discharge scaling: simple scaling and 

multiscaling.  Simple scaling describes the property that φ  is independent of the 

probability of exceedance of peak discharge, whereas multiscaling describes the property 

that φ  is either positively or negatively correlated with the probability of exceedance.  

Regional regression equations established by the USGS for different regions throughout 

the U.S. show that φ  generally decreases with decreasing probability of exceedance, 

which implies multiscaling.  Gupta and Dawdy (1995) suggested that the observed 

multiscaling property is a manifestation of the multiscaling property of rainfall and is 

generally observed in regions where rainfall-driven floods occur.  They also suggested 
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that the simple scaling observed in snowmelt-generated floods arises from the simple 

scaling structure of the spatial variability in snowmelt patterns.  However, empirical data 

analysis from the 21.2 km2 Goodwin Creek Experimental Watershed has revealed that 

simple scaling can also occur in geographic regions where convective rainfall patterns 

occur frequently (Ogden and Dawdy 2003).  

Goodrich et al. (1997) reported the first empirical evidence that showed peak 

discharge quantiles in nested watersheds exhibit self-similarity.  They used empirical data 

from the semi-arid Walnut Gulch experimental watershed in Arizona, whose nested 

watersheds have drainage areas that range from 0.0018 to 149 km2.  Their peak discharge 

quantile-based empirical analysis revealed φ  values of 0.85 and 0.90 for the 2-yr and 

100-yr return periods for drainage areas up to 1km2, whereas φ  equals 0.55 and 0.58 for 

the 2-yr and 100-yr return periods for drainage areas greater than 1km2, which suggests 

multiscaling.  The fact that φ  assumes different values for drainage areas above and 

below a certain critical drainage area, in this case 1km2, suggests the existence of scale 

break.  Ogden and Dawdy (2003) studied the scaling structure of peak discharge 

quantiles in a nested watershed where the spatial rainfall pattern is fairly uniform.  They 

analyzed peak discharge data from the 21.2 km2 Goodwin Creek experimental watershed 

(GCEW) located in Mississippi in the south-central United States.  They examined 16 

years of continuous rainfall and runoff data from subcatchments that have drainage areas 

ranging from 0.172 to 21.2 km2 at the outlet.  Their estimate of φ  with the value of 0.77 

was independent of the return period, which suggests simple scaling. 
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The quantile-based estimates of the flood scaling exponentφ  discussed thus far offer 

little that would enhance the understanding of which aspects of the rainfall-runoff 

processes control the flood scaling intercept α and exponent θ  during a single rainfall-

runoff event.  This is because, as discussed earlier, peak discharges used in the USGS’s 

regional quantile regression approach likely correspond to different rainfall events which 

may also come from different watersheds that are not nested and, hence, belong to 

different drainage networks. 

 

2.3. Evidence for peak discharge scaling following single rainfall-runoff events  

2.3.1. Results from theoretical studies 

Some of the first efforts to predict the flood scaling exponent θ  from catchment 

physical variables that control the generation of peak discharges in space and time had 

the drainage network at the center of their theoretical investigations. The 

geomorphological theory of the instantaneous unit hydrograph (GIUH) (Gupta et al. 

1980; Rodríguez-Iturbe and Valdés 1979), which for the first time connected the drainage 

network geometry to catchment runoff response, opened an avenue for such theoretical 

explorations.  To this end, Gupta et al. (1996) made the first attempt to predict the scaling 

exponent θ  from the self-similar properties of rainfall and drainage network.  Their 

highly idealized setup, which included a spatially constant instantaneous rainfall, 

instantaneous delivery of runoff to channels, constant channel velocity, and the self-

Research Gap 1: Although the regional flood frequency methods that are widely used 
in engineering practice in the United States and elsewhere in the world are known to 
be a statistical black-box (Dawdy et al. 2012), no meaningful attempt has been made 
to connect the physics of runoff generation at the individual rainfall-runoff event scale 
to the observed spatial scaling invariance of peak discharges at the annual time scale. 
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similar Peano network, resulted in a derived power-law scaling of peak discharge with 

drainage area.  They demonstrated that the flood scaling exponent can be described in 

terms of the fractal dimension of the spatial regions of a Peano basin that contributes to 

peak discharges at successively larger drainage areas.  Relaxing the spatially constant 

rainfall assumption resulted in a flood-scaling exponent that is smaller than the one that 

was previously calculated using a spatially constant rainfall.  Gupta and Waymire (1998) 

later used a more realistic random topology model (Shreve 1967) to demonstrate the role 

that rainfall duration plays in determining the flood-scaling exponent. They derived an 

analytical equation that relates mean peak discharge to drainage area A  and rainfall 

duration T  for a given excess rainfall depth eP  and showed that, as T  approaches zero, 

θ  assumes a value that ranges from 0 to 1 and can be estimated from the scaling 

exponent of the width function maxima ( β ).  Their results show that if every link in the 

drainage network drains hillslopes that have the same drainage area, then the value of θ  

that results from a spatially uniform instantaneous rainfall input is the same as the scaling 

exponent of the maxima of the width function.  Furthermore, they reported that when 

ctT → , 1→θ .  The later result is essentially what the Rational formula predicts, with 

the flood scaling intercept α  being the fraction of rainfall per unit area that appears as 

direct runoff at the catchment outlet. 

Both Gupta et al. (1996) and Gupta and Waymire (1998) derived their results under 

the assumption that there is no attenuation of streamflow as it propagates downstream.  

Menabde and Sivapalan (2001) extended these studies to the more realistic Mandelbrot-

Viseck tree (Mandelbrot and Vicsek 1989) over which the coupled mass and simplified 

momentum equations were solved at the hillslope-channel-link scale and investigated the 
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role of flow attenuation in channel networks.  Their result showed the dependence of the 

flood scaling exponent on excess rainfall intensity and duration.  They concluded that, as 

the rainfall duration approaches zero (i.e., instantaneous rainfall), the flood scaling 

exponent becomes less than the width function scaling exponent due to flow attenuation.  

Mantilla et al. (2006) expanded the analysis to real drainage networks and concluded that 

the flood scaling exponent is greater than the width function scaling exponent which 

contradicted results from earlier findings (Menabde and Sivapalan 2001; Menabde et al. 

2001) that were obtained through the analysis of peak discharge spatial organization over 

idealized mean self-similar networks.  Their result was further affirmed by Mandapaka et 

al. (2009) who, using the same methodology, extensively investigated the effect of the 

spatial variability of rainfall on the scaling structure of peak discharges in a real drainage 

basin. 

Furey and Gupta (2007) investigated the role of eP  and T  in determining α  and θ .  

They devised, based on the theory of GIUH, an analytical formula that relates the 

expected value of peak discharge to eP , T , and A .  Their diagnosis of power-laws 

observed in 148 rainfall-runoff events from the GCEW further confirmed the systematic 

dependence of α  and θ  on eP  and T .  They also reported the results from their 

preliminary analysis of the effect of channel velocity cv  and hillslope overland flow 

velocity hv  on α  and θ  and concluded that both α  and θ  can be affected by cv  and hv .  

Their theoretical estimations of the peak discharge were comparable with empirical data 

from GCEW only when realistic hv  values were used, thereby confirming the importance 

of the hillslope residence time in determining the scaling structure of peak discharge.  
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However, their study did not investigate how the flood scaling intercept and exponent are 

affected by changes in hillslope overland flow velocity and channel velocity, which are 

manifestations of important catchment physical properties such as the antecedent 

moisture state, soil type, land use, and topography.  Moreover, how the effect of both the 

channel and hillslope overland flow velocities on the spatial scaling of peak discharges is 

constrained by the interplay among rainfall intensity and duration that characterize a 

given rainfall event is not addressed.  

The theoretical advancements discussed so far, with the exception of Furey and Gupta 

(2007), have all neglected the role of hillslope residence time and assumed that runoff 

generated on hillslopes enters the drainage network instantaneously.  An interesting line 

of research has focused on determining the relative role of hillslope and channel network 

processes at different catchment scales.  Robinson et al. (1995) argued that hillslope 

processes dominate the runoff response of small catchments, while the network 

geomorphology dominates the runoff response at larger catchment scales.  They reported 

that the scale at which the catchment runoff response transitions from hillslope-

dominated to one that is dominated by the network geomorphology is on the order of 10 

km2.  D'Odorico and Rigon (2003), building on the theory of GIUH, also suggested that 

the contribution of hillslope residence time in the runoff dispersion is significant at 

smaller watersheds and can be neglected at larger scales.  They also suggested that the 

role of the hillslope is dependent on the catchment moisture condition and becomes 

significant due to the increased residence time when the catchment is saturated.  Contrary 

to these findings, Saco and Kumar (2004) showed that hillslopes play a significant role in 

shaping the runoff response at all scales.  Most importantly, they showed that, when 
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hillslope overland flow velocities are smaller than channel velocities, which is often the 

case, the effect of hillslope overland flow velocity through kinematic dispersion becomes 

more important than geomorphic dispersion.  Botter and Rinaldo (2003) analyzed the role 

of hillslopes in 150 sub-basins of the Brenta River in Italy that have sizes ranging from 4 

to 1500 km2 and further confirmed that hv  has a significant role in determining the runoff 

response at all scales. 

In a study that directly addressed the effect of hillslope overland flow velocity on the 

spatial scaling structure of peak discharges, Di Lazzaro and Volpi (2011) argued that the 

spatial variability of hillslope velocity breaks the scaling invariance property of peak 

discharges.  Their analytic approach was also based on the theory of GIUH.  They 

applied the methodology to 13 different river basins that have drainage areas ranging 

from 218 to 4116 km2 and are located in the Tiber catchment in central Italy.  They 

extracted the drainage network from a 2020×  m digital elevation model and calculated 

both cv  and hv  for each basin using observed rainfall-runoff data in the catchment.  They 

finally estimated peak discharge values at the outlet of each basin to study their scaling 

structure.  Their result showed that peak discharge estimates became scale invariant and 

followed a power-law with θ = 0.52 when the instantaneous rainfall input and both cv  

and hv  are all assumed to be uniform across all basins.  However, scale invariance of 

peak flow does not hold when they apply different hv  values to each basin while allowing 

both instantaneous rainfall input and cv  values to remain uniform across all basins.  

Although the applied hv  values were different from basin to basin, they were constant 

over a single basin.  Considering that the study basins were not nested, it is impossible to 
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conclude from this work how the aggregated effect of spatially variable hv  affects peak 

discharges at successively larger scales.  

 

2.3.2. Results from empirical study 

The first rainfall-runoff event-based empirical study of peak discharge comes from 

Ogden and Dawdy (2003), who studied the scaling structure of peak discharges in the 

nested Goodwin Creek Experimental Watershed where the spatial rainfall pattern is fairly 

uniform.  They analyzed 226 rainfall-runoff events that occurred in the watershed over a 

period of 16 years.  These events occurred over a time scale that range from few hours to 

a day.  Their results showed that the estimated θ  values were different for different 

rainfall-runoff events and generally varied between 0.6 and 1.  The event-to-event 

variability of θ  was also shown to decrease as the magnitude of peak discharge at the 

outlet increases.  This is because, they argued, more intense rainfall events that are 

responsible for larger peak discharge events have less spatial variability when compared 

with less intense rainfall events. 

Furey and Gupta (2005), motivated by the findings of Ogden and Dawdy (2003), 

undertook a rainfall-runoff event-based analysis of peak discharge scaling structure in the 

Research Gap 2: It is now very clear that the runoff response at all scales is not only 
shaped by the drainage network and cv  but also by hv .  The review of the literature 
also showed that the effect of the interplay among eI , T , hv , and cv  on the scaling 
structure is not fully addressed.  Moreover, no study has addressed the role of 
catchment antecedent soil moisture state in shaping the spatial scaling structure of 
peak-discharges.  This is important because, in reality, these catchment processes are 
interdependent, and understanding their relative roles in determining the spatial 
scaling structure of peak discharges provides further insight into our quest to estimate 
α  and θ  from catchment variables that can be either measured or estimated. 
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GCEW with the main objective of understanding which rainfall and catchment physical 

properties are responsible for the event-to-event variability of both α  and θ .  Their 

study, which was based on 148 rainfall-runoff events, showed that θ  increases with 

increasing rainfall duration T , whereas α  increases with increasing excess rainfall depth 

eP .  They explained that the significant event-to-event variability of θ  observed at 

smaller peak discharge values is due to the variability in the antecedent soil moisture state 

that is strongly seasonal and the increased spatial rainfall variability associated with less 

intense rainfall events. 

In a related study, Gupta et al. (2007) reported that peak discharges from the semiarid 

Walnut Gulch basin (A=150 km2) in Arizona also follow power-law scaling with 

drainage area at the individual rainfall-runoff event scale.  Recently, Gupta et al. (2010) 

analyzed the devastating June 2008 flood event in the Iowa River basin (A=32,400 km2) 

and demonstrated that power-law scaling holds following rainfall-runoff events in a 

mesoscale catchment.  Moreover, the predicted flood scaling exponent of 0.79 is different 

from the width function maxima scaling exponent of 0.47, which was estimated for the 

same river basin.  This indicates that the scaling exponent is controlled by other physical 

factors in the basin in addition to the drainage network along which the spatial 

aggregation and attenuation of flows occur.  The findings of Ogden and Dawdy (2003), 

Furey and Gupta (2005), Gupta et al. (2007), and Gupta et al. (2010) collectively 

represent mounting empirical evidences for the existence of scaling invariance of peak 

discharge with drainage area at the rainfall-runoff event scale and that the scaling 

parameters are controlled by rainfall and catchment physical properties that vary from 

event to event.  However, our ability to exploit this fundamental hydrologic discovery for 
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predictive purposes in ungauged and scarcely-gauged catchments depends on whether or 

not we succeed to physically describe both α  and θ  in terms of measurable catchment 

physical variables. 

 

2.4. Existence of scale break 

In the context of statistical scaling of peak discharges, a scale break occurs when the 

log-log linear relationship between peak discharge and drainage area exhibits different 

flood scaling exponents above and below a certain critical drainage area.  Empirical data 

suggests the existence of scale break in some catchments.  Using a quantile-based 

analysis of annual peak discharge data from the nested Walnut Gulch Experimental 

Watershed, Goodrich et al. (1997) showed the existence of scale break at about 1 km2 in 

the watershed.  They attributed the observed scale break to partial area storm coverage 

and ephemeral channel losses through infiltration as the stream flow propagates 

downstream.  Asquith and Slade (1997), also using a quantile-based regional regression 

analysis, reported the existence of a scale break for watersheds in Texas, US, that 

happens at about 83 km2 for the 100 year flood.  Contrary to the aforementioned findings, 

no scale break was reported in the event and quantile-based analysis of empirical data 

from the GCEW (Furey and Gupta 2005; Ogden and Dawdy 2003).  This leads to the 

Research Gap 3: Furey and Gupta (2005, 2007) undertook the only empirically-based 
effort to connect the event-to-event variability of the flood scaling exponent to rainfall 
and catchment physical properties using data from the 21 km2 GCEW.  In light of this, 
there is a need to expand the analysis to larger river basins at which scale devastating 
flood events often occur.  In addition to testing the validity of existing theoretical 
predictions, a similar empirically-based analysis using data from large river basins 
would enable us to unveil additional insights into catchment physical processes that 
govern the generation of scale invariant peak discharges in space and time. 
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questions: why is a scale break not observed in GCEW? Is that because the watershed is 

too small (A~21 km2) to detect a scale break? Or is that because of the difference in 

rainfall patterns and runoff generating mechanisms across different geographic regions? 

If the answer to the later question is yes, what is the physical basis for the observed scale 

break?  There is limited literature that addresses these questions. 

Gupta and Waymire (1998) investigated the effect of rainfall duration on the 

scaling structure of peak discharges and showed how a scale break in the log-log linear 

relationship between peak discharge and drainage area can result as a product of rainfall 

duration that is shorter than the catchment time of concentration.  They showed that the 

power-law scaling of peak discharge with drainage area is dominated by the rainfall-

runoff variability at smaller spatial scales, whereas it is dominated by the drainage 

network structure and flow dynamics at larger spatial scales.  Based on this observation, 

they theorized that the transition between the two processes marks the scale at which a 

scale break occurs.  It is important to note here that they derived their results under the 

assumption that there is no attenuation of streamflow as it propagates downstream.  

Menabde and Sivapalan (2001) extended these studies to the more realistic Mandelbrot-

Viseck tree over which the coupled mass and simplified momentum equations were 

solved at the hillslope-channel-link scale and investigated the role of flow attenuation in 

channel networks.  Their results also showed the existence of scale break whose spatial 

scale of occurrence is controlled by rainfall duration.  Mandapaka et al. (2009) expanded 

the analysis to a real river network and showed that, under the assumption of rainfall that 

is either spatially constant or spatially variable according to the Gaussian distribution, the 

spatial scale at which a scale break occurs varies as a function of rainfall duration when 
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linear channel velocity formulation is used whereas it varies as a function of the interplay 

among rainfall duration and intensity when a nonlinear channel velocity formulation is 

used.  Interestingly, they also reported that the scale break disappears when a realistic 

rainfall field that is either obtained from radar rainfall data or is randomly generated 

using a space-time rainfall model is used as input.  This later result suggests the role the 

space-time structure of rainfall plays in determining the spatial scaling structure of peak 

discharges. 

 

  

Research Gap 4: The literature review indicates that all of the studies that used a 
numerical simulation approach to address the issue of scale break ignored the role of 
hillslope residence time in determining the spatial scaling structure of peak-discharges 
(Gupta and Waymire 1998; Mandapaka et al. 2009; Menabde and Sivapalan 2001).  
This highlights the need for a comprehensive assessment of the effect of the interplay 
among rainfall intensity, duration, hillslope overland flow velocity, and channel flow 
velocity on the occurrence and property of a scale break. 
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CHAPTER III 

SCALING INVARIANCE OF PEAK DISCHARGES IN A MESOSCALE RIVER 
BASIN 

 

3.1. Introduction 

Ogden and Dawdy (2003) reported from the analysis of 223 rainfall-runoff events 

observed in the 21 km2 GCEW that the flood scaling intercept and exponent varies from 

event to event over a range of 0.6 to 1.0.  This result provided the first empirical evidence 

for the existence of a scale invariant spatial organization of peak discharges at the 

rainfall-runoff event scale.  The event-to-event variability of the flood scaling intercept 

and exponent are a direct consequence of the event-to-event variability of rainfall and 

catchment physical properties that govern the generation of runoff in space and time. 

While both the flood scaling exponent and intercept of peak discharges resulting from a 

single rainfall-runoff event vary from event to event, their annual maximum peak 

discharge quantile-based analysis of the same dataset revealed that the flood quantile 

scaling exponent φ  is constant (~0.77) for all the return periods considered suggesting 

simple scaling.  This leads me to ask the question: if the rainfall and other catchment 

physical variables that gave rise to the annual maximum peak discharges at each of the 

gauging sites are different from year to year, how can the exponent remain the same?  

Can similar observations be made in other river basins?  To date, no study is conducted if 

the observations from the GCEW also hold in mesoscale river basins where peak flood 

prediction is of paramount societal importance.  A significant step in this direction is the 

study by Gupta et al. (2010) who showed that scaling invariance of peak discharge holds 
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for the historical flood event of June 2008 that occurred in the mesoscale Iowa River 

basin (Mutel 2010; Smith et al. 2013). 

The main objectives of this chapter is to test if scaling-invariance of peak 

discharge with drainage area is observed in the mesoscale Iowa River basin (A=32,400 

km2) not only during rare flood events such as the one observed following the 2008 flood 

event but also during more frequent runoff generating rainfall events.  Moreover, I will 

test if a connection can be made between scaling of peak discharges originating from 

single rainfall-runoff events and scaling of peak discharge quantiles.  The reminder of the 

chapter is organized as follows.  I begin by describing the study area and the sources of 

data used in this study.  This is followed by a detailed description of the methodology 

used to identify rainfall-runoff events.  I follow this by presenting the results and 

discussing their implication on the potential use of the scaling theory of floods in 

ungauged basins.  I conclude the chapter by summarizing the major findings. 

3.2. Study Area and Data Source 

The Iowa River basin, which is located in eastern Iowa, US, drains a total area of 

about 32,400 km2 before it joins the Mississippi River.  The average annual temperature 

in the region ranges between 7 and 11 °C with July being the hottest month with mean 

daily highs of up to 28 ºC.  The region gets mean annual precipitation of 965 mm with 

June being the wettest month (118 mm) and, as a result, floods are most frequent in June 

(Villarini et al. 2011).  Floods also occur between Mid-March and early April as a 

combined result of snowmelt and rain on frozen soils (source: National Climatic Data 

Center (NCDC)).  The region has recently suffered from frequent flooding with three of 

the top four peak discharge magnitudes of the past 112 years occurring at the catchment 
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outlet in June 2008, July 2014, and April 2013.  When it comes to the landscape, the 

region has undergone extensive land cover change over the past century and it is now 

predominantly covered by cropland that is dominated by corn and soybeans (Gallant et al. 

2011; Schilling et al. 2008). 

I used a 30 m digital elevation model (DEM) obtained from the USGS to extract the 

drainage network.  Geomorphic analysis of the drainage network show that the exponent 

that describes the power-law scaling of the width function maxima with drainage area is 

0.45.  The width function is calculated as the total number of channel-links at a given 

distance from the outlet of a catchment.  Gupta et al. (2010) defines the width function as 

being equivalent to the streamflow response to an instantaneous rainfall that is 

instantaneously injected to channel-links and moves along the drainage network with 

constant velocity and without attenuation.  Results from Mandapaka et al. (2009) and 

Mantilla et al. (2006) show that the scaling exponent of the width function maxima is the 

lower bound of the flood scaling exponent. 

I used streamflow estimates provided by the USGS through their web interface to 

identify peak discharge events.  These gauging sites provide instantaneous discharge data 

at a temporal resolution that ranges from 15 to 30 minutes.  The total number of 

functioning streamflow gauging sites in the basin varies from year to year and from 

event-to-event within a given year.  Accordingly, the total number of streamflow gauging 

sites used in our analysis varies from 30 to 42 and their corresponding drainage area 

range from 7 to 32,400 km2.  Moreover, I neglect two gauging sites that are located 

downstream of the Coralville dam which regulates a drainage area of 8070 km2 along the 

main stem of the Iowa River.  One of the gauging sites is located immediately 
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downstream of the dam whereas the other is located in Iowa City which is located 14 km 

further downstream.  The nearest gauging site to the dam that we used in our analysis is 

located about 60 km downstream from the dam.  I neglect the effect of the dam on the 

observed peak discharge at this gauging site and at those sites located further downstream 

by citing Smith et al. (2010) who reported that reservoirs have limited effect on the 

observed flood frequency for locations far downstream.  The study area and the 

geographic locations of the gauging sites within the study area are shown in Figure III-1. 

The streamflow time series is complemented by the Stage-IV radar rainfall product 

availability of which constrains my analysis to the 12 year period between 2002 and 

2013.  The radar rainfall product has a spatial resolution of 4×4 km and a temporal 

resolution of 1 hour.  The product, which is provided nationally on the Hydrologic 

Rainfall Analysis Project (HRAP) grid, is extensively used for hydrologic modelling 

purposes in the Iowa River basin and elsewhere with good success (e.g., Cunha et al. 

2012; Kalin and Hantush 2006). 

3.3. Selection of Rainfall-Runoff Events 

The first step in selecting rainfall-runoff events is to identify the time window that 

separates “independent” peak discharge events at the basin outlet.  The term 

“independent” is used here in the approximate sense because the long memory of the 

basin means that peak discharge events happening in a single season are not strictly 

independent.  Bearing this in mind, we used the basin’s time of concentration, which is 

the time required for a water parcel to travel along a hillslope and the river network from 

the farthermost location in the basin to the outlet, as the minimum size of the time 

window that separates independent peak discharge events.  I estimated the basin’s time of 
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concentration using the respective channel flow velocity and hillslope overland flow 

velocity values of 0.5 and 0.02 m/s and found that for the Iowa River basin it is about 15 

days.  These channel and overland flow velocity values are within the range of what is 

observed in field measurements (Grimaldi et al. 2010; Gupta and Waymire 1998; 

Leopold et al. 1964).  This means that rainfall events that occur more than 15 days before 

a peak discharge is observed at the basin outlet do not contribute directly to the observed 

peak discharge.  Note here that I am neglecting the contribution of the base flow which 

comes from rainfall events that occurred within the basin way beyond the 15 days 

window that I am using to define a rainfall-runoff event. 

3.4. Peak discharge Selection 

Once the time window that separates independent rainfall-runoff events was 

estimated, I used the following two criteria to identify peak discharges corresponding to a 

single event: (1) there is a single-peaked hydrograph at the outlet and (2) all the 

streamflow gauging sites exhibit a significant streamflow response at some point during 

the 15 days window leading up to the time when a peak discharge is observed at the 

outlet.  The second criterion ensures that the entire basin received a runoff generating 

rainfall event at some point during the 15 days window.  Finally, I estimated the flood 

scaling parameters using Ordinary Least Squares (OLS) regression.  I used the coefficient 

of determination from the OLS regression between peak discharge and drainage area as 

an additional criterion and neglected those events for which the coefficient of 

determination was less than 0.7. 
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3.5. Results 

3.5.1. Analysis of peak discharge scaling at the rainfall-runoff event scale 

Based on the strict criteria of rainfall-runoff event selection discussed in the 

previous section, I was able to identify, over the 12 year period, 50 events that exhibit 

scaling invariance.  These results indicate that scaling invariance of peak discharge with 

drainage area often occurs at the rainfall-runoff event scale in a mesoscale river basin 

such as the Iowa River basin.  This is the first empirical observation of its kind.  The 

analysis also show that scaling invariance of peak discharge fails when only part of the 

basin gets rainfall during the 15 day time window.  This is demonstrated in Figure III-2 

and 3 where two different rainfall-runoff events are presented to show when scaling 

invariant peak discharge occurs and does not occur.   

Figure III-4 shows four examples from the 50 events I have identified.  As 

expected, the flood scaling exponent and intercept change from event to event.  The 

temporal distribution of the flood scaling parameters estimated for the 50 events is 

presented in Figure III-5(a) and (b).  It can be seen that no significant temporal trend is 

observed for the months considered.  The results also show that the flood scaling 

exponent ranges between 0.5 and 1.3 leading to two important insights.  First, the flood 

scaling exponent can be greater than one.  This is contrary to results from theoretical 

predictions that set the upper bound of the flood scaling exponent to unity (Gupta and 

Waymire 1998).  Empirical results from the GCEW also show that the flood scaling 

exponent is always less than one (Furey and Gupta 2005; Ogden and Dawdy 2003).  The 

fact that the flood scaling exponent can be greater than one in the Iowa River basin 

whereas it is always less than one in the GCEW can be attributed to the spatial variability 
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of rainfall.  Analysis of rainfall data from the GCEW shows that rainfall can be assumed 

to be spatially uniform due to the small size of the catchment which is less than the 

estimated correlation distance of rainfall occurring in the catchment (Ogden and Dawdy 

2003).  However, such uniformity of rainfall cannot be expected over the mesoscale Iowa 

River basin. The second important insight that we gain from these results is that the flood 

scaling exponent is always greater than the width function maxima scaling exponent of 

the basin’s drainage network, which is found to be 0.45 (Figure III-1 c).   This means that 

the lower bound of the flood scaling exponent is the width function maxima scaling 

exponent.  

3.5.2. Analysis of peak discharge quantiles 

In the previous section, I have shown that scale invariant spatial organization of 

peak discharges often occur in a mesoscale river basin such as the Iowa River basin 

following single rainfall-runoff events.  An important additional question is to test if the 

scaling exponents and intercepts of peak discharges obtained from individual rainfall-

runoff events can be connected to the scaling exponents and intercepts of peak discharge 

quantiles.  Figure III-6 shows all the 50 peak discharge events observed at all the gauging 

sites in the basin.  These events are not annual maximums and hence can be considered as 

being equivalent to peak discharges above a certain threshold, with the threshold in this 

case being the strict criteria set out in earlier sections to define rainfall-runoff events in a 

mesoscale river basin.  The grey lines in Figure III-6 trace the OLS regression line fitted 

to peak discharges coming from individual rainfall-runoff events.  The dark black lines 

show the OLS regression line fitted to the lowest, median, and highest peak discharge 

quantiles.  
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I followed the following two steps to test if a connection exists between the 

scaling of basin wide peak discharges resulting from single rainfall-runoff events and 

scaling of peak discharge quantiles.  First, I calculated the probability of exceedance of 

the pair of scaling exponent and intercept corresponding to the 50 basin wide individual 

rainfall-runoff events using the probability of exceedance of the peak discharge observed 

at the outlet of the basin (Wapello) as a proxy.  Second, I calculated two types of peak 

discharge quantiles using Weibull’s plotting position formula. I call them Type-I and 

Type-II peak discharge quantiles. Type-I peak discharge quantiles are based on the 50 

individual rainfall-runoff events.  In this case, the 50 peak discharge events at each 

gauging sites are sorted in an increasing order and assigned a probability of exceedance 

according to their rank.  This will lead to the scenario that peak discharges at different 

gauging sites that have the same probability of exceedance can come from different 

rainfall-runoff events.  Type-II peak discharge quantiles are based on 12 annual 

maximum peak discharges that are observed at each gauging site over the 12 year period 

between 2002 and 2013.  Recall that the 50 individual basin wide rainfall-runoff events 

were also obtained over the same 12 year period.  The corresponding peak discharge 

quantile scaling exponents and intercepts for Type-I and Type-II peak discharge 

quantiles are then estimated by fitting an OLS regression line to logarithms of peak 

discharges that have the same exceedance probability and the logarithms of the 

corresponding drainage area, log (A j ) where j denotes a stream flow gauging site.  For 

the sake of comparison, I have also included the scaling exponent and intercept I 

calculated for annual maximum peak discharge quantiles (Type-II quantiles) that are 

observed over the 50 year period between 1963 and 2013.  This compares to the regional 
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flood frequency equations the USGS estimated for the hydrologic region to which the 

Iowa River basin belongs (Eash 2001). 

Figure III-7 shows superposition of the event based and quantile based estimates 

of the flood scaling exponents and intercepts as a function of the probability of 

exceedance of the peak discharges observed at the catchment outlet.  It can be seen that 

the peak discharge quantile scaling exponent increases with increasing probability of 

exceedance while the intercept decreases with increasing probability of exceedance.  The 

fact that the scaling exponent of peak discharge quantiles changes with probability of 

exceedance suggests that peak discharges from the Iowa River basin follow multiscaling.  

This result stands contrary to the results obtained from the GCEW where the peak 

discharge quantile scaling exponent remains constant irrespective of the probability of 

exceedance (Ogden and Dawdy 2003). 

The results presented in Figure III-7 also show that the exponents φ and intercepts 

c of Type-I quantiles traces midway through the event based estimates of the exponent θ  

and intercept α .  This connection between the scaling parameters corresponding to peak 

discharges resulting from basin wide single rainfall-runoff events and Type-I quantiles is 

made possible because the analysis is made in a nested watershed and peak discharges 

used for both sets of analysis are selected at the rainfall runoff event scale.  The results 

also show that Type-II (annual maximum peak discharge) quantile based estimates of the 

exponent is less than the event and Type-I quantile based estimates of the exponent.  The 

opposite is true for the intercepts estimated for Type-II quantiles.  It appears that the 

relatively small values of the exponents estimated for Type-II quantiles is compensated 

32 
 



by the corresponding values of the intercepts that are relatively higher than the intercepts 

estimated for the events and Type-I quantiles. 

The observed difference between single rainfall-runoff event based and quantile 

(Type-I and Type-II) based estimates of the scaling intercept and exponent does not 

necessarily mean that one is a better prediction framework than the other.  While both can 

be used to predict peak discharge events and quantiles across scales, the degree of their 

applicability to solve the problem of peak discharge prediction in ungauged basins sets 

them apart.  It is important to stress here that the quantile based estimates are used to 

predict peak discharges for ungauged basins located within gauged region.  In such cases, 

they are used to predict future floods in terms of their probability of exceedance under the 

assumption that that the hydroclimate system has been stationary and will remain so in 

the future.  However, this assumption is no longer valid as mounting evidence suggests 

that the climate is changing.  Moreover, the quantile based estimates cannot be used for 

predictions in basins that are located within ungauged regions because of the lack of data 

required to estimate the flood scaling intercept and exponent.  The promise of the event 

based peak discharge scaling analysis is that it can be used for prediction in ungauged 

basins embedded in ungauged regions.  This promise is hinged on the hope that the event 

based scaling intercept and exponent can be predicted from rainfall and catchment 

physical processes that control the generation of peak flows in space and time.  This 

means that historical peak discharge data is not required to predict the scaling exponent 

and intercept.  As a result, it can be used under the changing climate.  It is this exciting 

promise that motivated this dissertation.  The following 3 chapters are devoted to 
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understand the observed event-to-event variability of the flood scaling exponent and 

intercept in terms of catchment physical processes. 

3.6. Conclusion 

The main objective of this chapter is to test if scaling invariance of peak discharge 

with drainage area can be observed following runoff generating rainfall events in a 

mesoscale river basin.  To this end, I analyzed 50 rainfall-runoff events from the Iowa 

River basin (A=32,400 km2).  I selected these events in such a way that a single-peaked 

hydrograph is observed at the catchment outlet and that all the internal gauging sites 

exhibit a significant streamflow response at some point during a 15 days period leading 

up to the time when the peak discharge at the outlet is observed.  This duration 

corresponds to the basin’s time of concentration.   

The results indicate that scaling invariance of peak discharge with drainage area 

frequently occurs in a mesoscale river basin such as the Iowa River basin at the rainfall-

runoff event scale and the corresponding flood scaling parameters change from event-to-

event.  This finding extends the spatial scale of the only two other empirical findings 

obtained from the 21 km2 Goodwin Creek Experimental Watershed (GCEW) in 

Mississippi (Furey and Gupta 2005; Ogden and Dawdy 2003) and the 148 km2 Walnut 

Gulch Experimental Watershed (WGEW) in Arizona (Gupta et al. 2007).   

The results also show that a connection can be made between the scaling 

parameters of peak discharges resulting from single basin wide rainfall-runoff events and 

peak discharge quantiles as long as the analysis is made using single rainfall-runoff event 

based peak discharges obtained from a nested basin.  However, no apparent connection is 

evident between scaling exponent and intercept of peak-discharges obtained from single 
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rainfall-runoff events and the scaling exponent and intercept of annual maximum peak 

discharge quantiles. 
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Figure III - 1.  (a) The Iowa River basin and the geographic locations of the USGS 

gauging stations (black circles), (b) the width function evaluated at the outlet of the basin, 

and (c) scaling plot of the maxima of the width function that are evaluated at the bottom 

of the width function that are evaluated at the bottom of complete order Horton-Strahler 

streams in the basin. 
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Figure III - 2.  Example streamflow time series from representative USGS gauging sites 

in the basin (top panels) and the associated peak-discharge scaling plot (bottom panel) for 

the case where the entire basin got rainfall at some point during the 15 day travel time 

window. The streamflow time series is normalized by the annual maximum flow for each 

gauging site. 
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Figure III - 3.  Example streamflow time series from representative USGS gauging sites 

in the basin (top panels) and the associated peak-discharge scaling plot (bottom panel) for 

the case where only a portion of the basin got rainfall at some point during the 15 day 

travel time window. The streamflow time series is normalized by the annual maximum 

flow for each gauging site. 
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Figure III - 4.  Observed spatial scaling of peak-discharges with drainage area for four 

events in the Iowa River basin. 
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Figure III - 5.  Temporal distribution of the flood scaling exponent, intercept, and the 

coefficient of determination corresponding to the 50 rainfall-runoff events. 
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Figure III - 6.  Plot of the 50 peak discharge events observed at each gauging site.  The 

light grey line traces the OLS regression fitted through peak discharges coming from the 

same rainfall-runoff event.  The dark line traces OLS regression line fitted to example 

Type-I quantiles (minimum, median, and maximum of peak discharges observed at each 

gauging site). 
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Figure III - 7.  Comparison of flood scaling exponent and intercepts obtained from single 

rainfall-runoff events (grey hollow circles), Type-I quantiles (grey filled circles), and 

Type-II quantiles (blue circles).  For the sake of comparison, flood scaling exponents and 

intercepts calculated for 50 years of annual maximum peak discharge data is also 

included (black filled circles).  These are also categorized as Type-II quantiles.  
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CHAPTER IV 

CONNECTING THE POWER-LAW SCALING STRUCTURE OF PEAK 
DISCHARGES TO SPATIALLY UNIFORM RAINFALL AND CATCHMENT 

PHYSICAL PROPERTIES   1 

4.1. Introduction 

This chapter is devoted to understanding the role of the drainage network and the 

interplay among rainfall intensity )(I , duration )(T , channel flow velocity )( cv , and 

hillslope overland flow velocity )( hv  in determining the scaling structure of peak 

discharges at the rainfall-runoff event scale.  My approach involves simulation using the 

drainage network based hydrologic model CUENCAS (Mantilla and Gupta 2005).  I 

systematically altered the aforementioned catchment process variables to gain insight into 

their effects on the scaling structure of peak discharges.  To this end, I carried out 

systematic simulation experiments in multiple watersheds to determine whether or not 

my findings hold for watersheds that have different shapes, sizes, and width functions. 

Although the work reported in this chapter is closely connected to that of Furey and 

Gupta (2007), we use a drainage network-based hydrologic model simulation to provide 

an in-depth insight into the role of the interplay among , T , hv , and cv  in controlling α  

and θ , which Furey and Gupta (2007) did not fully address.  A further understanding of 

this problem is important because, in reality, these catchment processes are 

interdependent, and understanding their relative roles in determining the peak discharge 

1 Adapted from Ayalew, T. B., Krajewski, W. F., Mantilla, R., and Small, S. J. (2014). 
"Exploring the Effects of Hillslope-Channel Link Dynamics and Excess Rainfall 
Properties on the Scaling Structure of Peak-Discharge." Advances in Water Resources, 
64, 9-20. 
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scaling structure provides further insight into our quest to estimate α  and θ  from 

catchment variables that can be either directly measured or estimated. 

The chapter is organized as follows.  In the next section I discuss the study areas and 

the research methodology in greater detail.  This section outlines the drainage network 

based hydrologic model called CUENCAS and the three different watersheds I studied.  I 

also discuss the physical assumptions I have made, the associated limitation of the study, 

and the systematic setup of the simulation experiments.  This is followed by my 

presentation of results and a discussion on their implications for peak discharge 

estimation across scales.  I conclude the chapter with a summary of the main findings.  

4.2. Methodology 

4.2.1. Study watersheds 

I selected three different watersheds in Iowa: Clear Creek, Old Mans Creek, and 

Boone River, which have drainage areas of 254, 520, and 1082 km2, respectively.  I 

extracted their respective drainage networks and hillslopes from a one arc-second (~30 

m) digital elevation model (DEM) obtained from the USGS.  The smallest subcatchment 

that drains first order streams in all of the watersheds was on the order of 0.01 km2.  

Choosing these three different watersheds allow me to test the dependence of my findings 

on the river network structure as well as on the size and shape of drainage basins. 

The geometry of the drainage network determines the property of the streamflow 

response (hydrograph) at different locations in the catchment (Gupta et al. 1980; Rinaldo 

and Rodriguez-Iturbe 1996; Rodríguez-Iturbe and Valdés 1979).  Its manifestation in the 

streamflow response can best be described by the width function which is defined as the 
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number of channel-links at a given distance from the outlet of a catchment.  The width 

function will have the same shape as the discharge hydrograph under the conditions that 

(1) rainfall is spatially uniform and it occurs over a short duration, (2) runoff generated 

on hillslopes instantaneously joins the drainage network, and (3) water moves through the 

drainage network at a constant velocity and without attenuation (Gupta et al. 2010).  My 

analysis of the peak of the width function that is calculated at the bottom of complete 

order Horton-Strahler streams shows that it is scale invariant and can be estimated as a 

function of drainage area using a power-law.  This originates from the fractal property of 

the drainage network and is widely reported in the literature (e.g., Tarboton et al. 1988; 

Veitzer and Gupta 2001).  To this end, the respective values of the intercept c  and the 

exponent β  of the width function maxima were 4.88 and 0.46 for Clear Creek, 5.18 and 

0.44 for Old Mans Creek, and 3.98 and 0.47 for Boone River.  Figure IV-1 shows plots of 

each of the watersheds, their width function evaluated at the outlet, and the scaling of the 

width function maxima evaluated at the bottom of complete order Horton-Strahler 

streams.  Note that, based on the catchment outline shape and the width function, Clear 

Creek and Old Mans Creek appear similar to each other while Boone River appears to be 

different from both. 

4.2.2. Numerical framework 

I carried out my simulation-based study using the hydrologic model CUENCAS 

(Mantilla and Gupta 2005), which can be viewed as a contemporary numerical rainfall-

runoff simulation laboratory that has a drainage network at its core.  Unlike many grid-

based distributed rainfall-runoff models that are being used by the hydrologic 

community, CUENCAS decomposes the landscape into hillslope-channel-link 
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components and applies the mass and momentum conservation equations at the hillslope-

channel-link scale.  The model is implemented in a parallel computing framework by 

exploiting the tree-like structure of the river network which resulted in a significant 

reduction in computational time (Small et al. 2013). 

The fact that the drainage network is central to the modeling framework in 

CUENCAS makes it an ideal tool for my study.  This is because, as discussed earlier, the 

drainage network plays a dominant role in determining the shape of the discharge 

hydrograph and the magnitude of its peak at all scales.  As such, its accurate 

representation and modeling is important to understanding how peak discharges are 

organized at different scales and how their scaling property is controlled by different 

catchment physical properties.  CUENCAS is extensively tested in multiple watersheds 

with drainage areas ranging up to 20 000 km2 and is found to produce reasonable results 

(Cunha et al. 2011; Cunha et al. 2012).  

For the purpose of this study, I use a simplified version of CUENCAS where hillslope 

and channel processes are conceptualized using few parameters while adequately 

reproducing observed streamflow time series.  My deliberate choice of simple model 

derives from the fact that more complex models are characterized by a large number of 

parameters, which would make it difficult to separately study the effect of important 

catchment process variables on the scaling structure of peak discharges.  Figure IV-2 

shows a sketch of the hillslope-channel-link control volume at which scale relevant 

equations are written. 
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For a single hillslope-channel-link control volume, which serves as a local control 

volume, the mass conservation equation for a given channel-link is written as:
 
 

 ( ) ( )tqtqtqtq
dt

tdS
ijgisi

i −++= ∑)()()(  Equation IV-1 

where ( ) ][ 3LtSi  is the channel storage at channel-link i , ( ) ][ 13 −TLtqsi  is surface runoff 

to the link, ( ) ][ 13 −TLtqgi  is subsurface stormflow to the channel-link, ( )∑ tq j  ][ 13 −TL  is 

the summation of inflows from upstream channel-links indexed by j , ( ) ][ 13 −TLtqi is the 

outflow from the channel-link, and ][Tt  is time.  The hillslope overland flow rate into a 

channel-link is calculated by assuming that overland storage depth is uniform over the 

hillslope and using the set of equations: 

 )()( tdAtS hsi =  Equation IV-2 

)()( tLdvtq hsi =   Equation IV-3 

where ( ) ][ 3LtSsi  is the proportion of rainfall that is stored on the surface of the hillslope 

at a given time, ][ 2LAh is the hillslope area, )(td is the time dependent overland flow 

depth, ][ 1−LTvh is the hillslope overland flow velocity, ][LL  is the length of the 

channel-link, and )(tqsi  is as defined earlier.  Solving equations IV-2 and IV-3 

simultaneously yields: 

)()( tS
A
Lvtq si

h
hsi =  Equation IV-4 
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Rewriting equations IV-2 and IV-3 for the subsurface flow case and solving them 

simultaneously yields: 

)()( tS
A
Lvtq gi

h
ggi =   Equation IV-5 

where ][ 1−LTvg  is the subsurface flow velocity, and 
( ) ][ 3LtSgi  is the proportion of 

rainfall that is stored in the subsurface of the hillslope.  The rate of change of surface and 

subsurface storage is further calculated by assuming that rainfall is partitioned into 

surface and subsurface storage according to the runoff coefficient rc  and using the 

following set of ordinary differential equations:  

 ( ) )(tqtIAc
dt

dS
siihr

si −=  Equation IV-6 

 ( ) ( ) )(1 tqtIAc
dt

dS
giihr

gi −−=  Equation IV-7 

where rc is the runoff coefficient and ( ) ][ 1−LTtIi  is the rainfall intensity. 

The outflow from a channel-link, )(tqi , is calculated by assuming that the channel cross-

sectional area and flow depth is uniform over the channel-link and using the following set 

of equations: 

LatS ci =)(  Equation IV-8 

)()( tvatq cci =   Equation IV-9 
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where ( ) ][ 3LtSi  is the channel storage at link i , ][ 2Lac  is the channel-link cross-section 

area, ][ 1−LTvc  is the channel flow velocity, and the rest is as defined earlier.  

Combining equations IV-8 and IV-9 yields: 

L
tStvtq i

ci
)()()( ⋅=  Equation IV-10 

Equation IV-10 is not yet complete since cv  is unknown.  We used the following 

equation to estimate cv : 

21)()(
λλ









⋅








⋅=

rr

i
rc A

A
Q

tqvtv   Equation IV-11 

where ][ 1−LTvr  is the reference channel velocity, ( ) ][ 13 −TLtqi  is the discharge from 

the link, ][ 2LA is the drainage area upstream of the outlet of link i , and ][ 13 −TLQr  and 

][ 2LAr  are the reference discharge and drainage area, whose values are taken in this 

study to be 1m/s and 1km2, respectively.  The parameters 1λ and 2λ  are the scaling 

exponents for discharge and drainage area, respectively.  The derivation of equation IV-

11 is rooted in the assumption that channel velocity scales as a function of drainage area 

and discharge.  The interested reader is encouraged to refer to Mantilla (2007) for the 

theoretical background and its detailed derivation. 

Finally, the outflow from the link is calculated by combining equations IV-10 and 

IV-11 and solving for ( )tqi .  The result leads to a channel storage-discharge relationship 
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which can be considered as a simplified form of momentum conservation equation and is 

written as follows:  

 ( ) ( )




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i
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L

tSvtq  Equation IV-12 

Solving the above set of equations over the drainage network results in channel flows that 

mimic the dispersion and attenuation of flows as the flood wave propagates downstream. 

In order to illustrate the model’s capability to reproduce observed streamflow data 

I simulated observed rainfall-runoff events in all the three study catchments using Stage-

IV radar rainfall data as input.  The Stage-IV product is widely used in hydrologic 

applications.  It provides hourly radar-rainfall estimates that are adjusted by rain gauge 

data in real time(Habib et al. 2013; Kitzmiller et al. 2013).  While quality and accuracy of 

the product may vary across the U.S., over Iowa the multiplicative bias is close to unity 

(Seo and Krajewski 2011).  For all the catchments, we also used a spatially uniform rv , 

1λ , 2λ , hv , and rc  values of 0.25m/s, 0.3, -0.1, 0.01m/s, and 0.3, respectively.  The 

simulation results, which are shown in Figure IV-3, indicate that the model is capable of 

reproducing real events and hence fits the purpose of our study. 

4.2.3. Scope of the study 

The rainfall-runoff simulation-based study that I report in this chapter uses the 

following assumptions: (1) rainfall is spatially uniform and its intensity I  is constant over 

its duration T ; (2) the entire watershed has the same soil moisture deficit; (3) hv  is 

constant both in space and time, and (4) cv  is either constant both in space and time or 
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variable as a nonlinear function of drainage area and discharge.  Relevant theoretical 

accomplishments were advanced using similar assumptions at comparable or even higher 

scales (e.g., Botter and Rinaldo 2003; Di Lazzaro and Volpi 2011; Menabde and 

Sivapalan 2001).  These simplifying assumptions are the main limitations of the study 

reported in this chapter.  This is because spatially uniform and temporally constant I , rc , 

hv  and cv  seem unrealistic at the scale of the watersheds we investigated.  However, 

these assumptions are helpful to separately study the role of these important rainfall and 

catchment physical variables in shaping the scaling structure of peak discharges.  Thus, 

the results reported in this chapter should be taken within the context of these 

assumptions.  Chapter 5 builds on the findings of this chapter by relaxing some of these 

assumptions. 

4.2.4. Experimental setup 

I systematically organized the simulation experiment into four distinctive groups in 

order to separately study the effect of variation in one variable on both α  and θ  by 

keeping the other variables constant.  I used both the constant and nonlinear channel 

velocity formulations in each group.  For the constant channel velocity case, I set 

021 == λλ  and used rc vv = values that range from 0.1 to 2 m/s with a typical value of 

0.5 m/s and applied it uniformly both in space and time.  When experimenting with 

nonlinear channel velocity as described by equation IV-11, I used rv values that range 

from 0.1 to 2 m/s and set 3.01 =λ  and 1.02 −=λ .  These 1λ and 2λ values are supported 

by field data (Cunha et al. 2011; Mantilla 2007) and, as shown in Figure IV-3, are also 

appropriate for our study catchments.  For a given rv , these 1λ  and 2λ  values generally 
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lead to cv values that, in addition to increasing with increasing rainfall intensity, increase 

in the downstream direction.  Figure IV-4 shows the range cv  values will assume at 

different scales and for different values of rv  and I .  For this study, when experimenting 

with nonlinear channel velocity, I take rv  =0.25 m/s as the typical value and the resulting 

cv  values are in the range of 0.1 to 1 m/s.  These scale dependent cv  values are also 

reported in the literature (Leopold et al. 1964). 

When modeling the hillslope response, I used a spatially uniform and temporally 

constant hv  value that range from 0.001 to 0.1 m/s with a typical value of 0.01 m/s.  

These values are also supported by results from field studies (Botter and Rinaldo 2003; 

Di Lazzaro and Volpi 2011; Grimaldi et al. 2010; Huff et al. 1982).  Gupta and Waymire 

(1998) also reported that the maximum value hv  could attain is in the range of 0.03 m/s.  

In addition, we also assumed a constant subsurface flow velocity value of 

smvg /005.0=  which is in the range of what is observed in tracer-based field studies 

(Anderson et al. 2009; Anderson et al. 1997).  Furthermore, a spatially uniform and 

temporally constant runoff coefficient value of 5.0=rc  was also used for all the 

simulations.  This rc value was determined in an ad-hoc fashion and is immaterial for our 

study.  A detailed summary of the simulation experiments is outlined in Table IV-1. 

Peak discharge estimates were extracted at the bottom of complete order Horton-

Strahler streams whose drainage areas are known from the analysis of the DEM in 

CUENCAS.  I then used the ordinary least-squares (OLS) regression method in the log-

log scale to parameterize the power-law relationship between peak discharge and 
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drainage area.  I used the OLS regression even though I recognize that the residuals are 

correlated in violation of one of the OLS regression assumptions.  This arises because, in 

a nested watershed, peak discharges in higher order Horton-Strahler streams are 

dependent on peak discharges from lower order streams that drain into them.  However, 

since the purpose of my study is to identify systematic trends of 𝛼𝛼 and 𝜃𝜃 in response to 

changes in the magnitude of important catchment physical parameters (and not to develop 

a predictive model), OLS remains a valid method of regression analysis. 

4.3. Results and discussion 

4.3.1. Effect of rainfall duration and intensity on the scaling structure 

I began by investigating the effect of rainfall duration T  on the scaling exponent θ .  

For this experiment, I used a spatially uniform rainfall depth of 25 mm, which is 

equivalent to the 1-year, 1-h rainfall for the study sites (Huff and Angel 1992).  I applied 

this rainfall depth over the following values of T : 5-min, 10-min, 15-min, 30-min, 1-hr, 

2-hr, 3-hr, 6-hr, 12-hr, 18-hr, 1-day, and 2-day.  This arrangement means that I  decreases 

as T  increases while the rainfall volume remains constant.  Additionally, I used the 

constant channel velocity formulation with cv  and hv  values of 0.5 m/s and 0.01 m/s, 

respectively.  In order to separately study the effect of rainfall duration, I repeated the 

above experiment by keeping the rainfall intensity constant at 25 mm/h for all durations 

considered here.  The result, which is presented in Figure IV-5, shows how α  and θ  

systematically change with I  and T .  It reveals that, under the assumptions we employed 

here, θ  starts at a value greater than the scaling exponent of the width function maxima 

β  for small values of T  and systematically converges to a value closer to 1 as T  
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increases.  This property is previously observed in empirical studies (Furey and Gupta 

2005) and in theoretical results (Furey and Gupta 2007; Gupta and Waymire 1998).  The 

value of θ , under the present constant channel velocity assumption, is independent of the 

rainfall intensity and is determined solely by T , which is evident in Figure IV-5 where I  

values of TI /25= mm/h (top panels) and 25=I mm/h for all T  (bottom panels) lead to 

the same θ  values. 

Plots of hydrographs at the bottom of selected complete order Horton-Strahler 

streams (not shown here) revealed that θ  converges to 1 only when the rainfall duration 

equals or exceeds the time of concentration for the subsurface stormflow.  This duration 

is in the order of few weeks at the scale of the catchments I studied.  This long duration is 

the result of the considerably low subsurface flow velocity.  The corresponding time of 

concentration for overland flow calculated using the constant cv  and hv  values discussed 

above was about 60-hour, 80-hour, and 100-hour for the Clear Creek, Old Mans Creek, 

and Boone River, respectively.  Since a rainfall duration that is in the order of few weeks 

is highly unrealistic, we conclude that 1=θ  is the upper bound value for the scaling 

exponent when both rainfall and catchment antecedent moisture state are spatially 

uniform and temporally constant.  Furthermore, the fact that θ  increases with T  

convincingly lends itself to the argument that, under a given set of cv  and hv , longer T  

values increase the proportion of subcatchments that contribute to the peak discharge at 

the outlet, which is reflected in the increasing magnitude of θ  (Gupta and Waymire 

1998). 
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The result presented in Figure IV-5 (top panels) also shows that, for a fixed rainfall 

depth, α  decreases with decreasing I .  Moreover, Figure IV-5 (bottom panels) shows, 

for a fixed I , α  increases with increasing T .  These results clearly show that, for given 

cv  and hv  values, α  is controlled by both I  and T .  Building on a similar results to 

those shown in Figure IV-5 (top panels), Furey and Gupta (2007) suggested a decreasing 

concave relationship between α  and T  for a fixed P .  However, I underscore the 

observed decreasing concave relationship as due to the resulting concave (inverse) 

relationship between I  and T  for a fixed P .  Figure IV-5 (bottom panels) clearly shows 

that if I  is fixed, there is an increasing convex relationship between α  and T .  To further 

elucidate this, in the subsequent sections we demonstrate that, under realistic assumptions 

of cv  and hv , α  is an increasing function of I  for a given rainfall duration T .  This 

means that the decrease in α  with increasing T  observed in empirical data (Furey and 

Gupta 2005) can be partially explained by the generally decreasing relationship of I  with 

increasing T , which is also observed in empirical data (e.g., Huff and Angel 1992). 

To further understand the effect of T  and I  on α  and θ , I set up simulation 

experiments where I used a constant hr1=T  and systematically increased I .  I used both 

the constant and nonlinear channel velocity assumptions.  I also experimented with a 

range of other values of T  and obtained the same result.  The results presented in Figure 

IV-6(top panels) show that, for the constant channel velocity case, θ  is independent of I

and remains constant despite the increasing I .  This means that the scaling structure 

follows simple scaling when both hillslope overland flow and channel flow velocity are 

assumed to be constant both in space and time.  We can also see in the same Figure 

55 
 



(bottom panels) that, for the nonlinear channel velocity case, θ  increases with increasing 

I  suggesting multiscaling.  This is due to the fact that, under nonlinear velocity 

assumption, channel velocity increases as I  increases.  And for a given T , the increased 

cv  further leads to an increase in the proportion of subwatersheds connected to the outlet 

which is in turn reflected in the increased θ .  More interestingly, θ  appears to 

asymptotically converge to some limiting value, determined by cv  and T, as I  increases.  

This suggests that even when cv  is nonlinear and varies in both space and time, simple 

scaling is potentially sufficient for explaining the scaling structure of extreme flood 

events.  Figure IV-6 also shows that, when the rainfall duration is fixed, α  is a linear 

function of I  for both the constant and nonlinear channel velocity cases.  This is 

because of the increasing rainfall volume which is in turn reflected in the increasing peak 

discharge at all scales.  The linearity of α as a function of I , irrespective of the channel 

velocity formulation, is a direct consequence of the linear response of hillslopes 

represented in the model. 

The results presented in this section also show that both the Clear Creek and Old 

Mans Creek catchments exhibit similar α  and θ  values that are significantly different 

from those estimated for Boone River (Figure IV-5 and IV-6).  This is explained by the 

shape of the boundaries and the width function of the respective catchments.  Both Clear 

Creek and Old Mans Creek catchments have elongated shapes and, as a result, exhibit 

quite similar width functions, whereas the Boone River catchment has a circular shape 

and, consequently, a markedly different width function.  Because the results for all three 

watersheds exhibit essentially the same trends and properties of α  and θ  as a function of 
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the catchment physical variables I investigated, the rest of the chapter will only present 

(unless otherwise stated) the results for the Clear Creek catchment. 

4.3.2. Effect of channel velocity on the scaling structure 

In a given catchment, cv varies from location to location depending on the local 

channel geometry, slope, roughness, and discharge.  In this section, I investigate how 

changes in cv  affect θ .  I ignore the velocity fluctuations across the channel as well as 

those at small scale (e.g. single channel-link).  In the scenario considered herein, I used a 

constant hv  value of 0.01 m/s and considered two cv  cases.  In the first case, I used a 

constant cv  that was selected from the range of 0.1 to 2 m/s.  I kept 021 == λλ which 

means that cv  is constant both in space and time.  In the second case, I used the nonlinear 

channel velocity formulation (see Eq. 11) and varied rv  between 0.1 and 2 m/s and kept

3.01 =λ  and 1.02 −=λ .  In this case, as a result of the nonlinear relationship between 

channel velocity and discharge, cv  varies both in space and time with a generally 

increasing trend in the downstream direction.  In both cases, I applied a spatially uniform 

rainfall depth of 25 mm over T  values that ranged from 5-min to 12-hours.  This implies 

that I  decreases as T  increases. 

The results, shown in Figure IV-7(a and c), reveal that increasing cv  leads to an 

increase in θ  with its effect being significant at shorter T  values.  This is explained by the 

fact that cv  reflects how the catchment retards the runoff response.  To this end, for a 

given T , an increase in the magnitude of cv  yields an increase in the proportion of 
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subcatchments contributing to the peak discharge at the outlet, which eventually leads to 

an increase in θ .  The effect of increasing cv  is less significant for longer T  because the 

catchment already has sufficient time for a larger proportion of the catchment to 

contribute to the peak discharge regardless of the effect of increasing cv .  An interesting 

finding here is that as cv  increases, θ  converges to a certain limiting value that is largely 

determined by T .  This is similar to the effect of increasing I  under the assumption of 

nonlinear cv  (Figure IV-6 (bottom panels)).   

Channel velocity also controls α  in the same way it controls θ , as discussed above.  

An increase in cv  leads to an increase in the magnitude of α  until a certain limiting 

value, with its effect particularly significant as T  gets shorter.  This limiting value is 

associated with the maximum discharge the catchment can attain under given values of I  

and T .  As previously discussed, increasing cv  leads to an increase in the proportion of 

the catchment that contributes to the peak discharge at larger scales.  This causes an 

increase in the magnitude of the peak discharge that is reflected in the increasing 

magnitude of α .  When T  is limiting, there is a maximum limit on the proportion of the 

catchment that contributes to peak discharge.  This limiting value explains the asymptotic 

behavior of both α  and θ  under increasing cv  at shorter values of T .  This finding 

highlights the dependence of both α  and θ  on cv  in addition to their already 

acknowledged dependence on I  and T .  In the following section I also show that hillslope 
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dynamics play an even more significant role in determining the magnitude of both α  

and θ . 

4.3.3. Effect of hillsope overland flow velocity on the scaling structure 

Recent studies suggest that hillslopes play a significant role in determining the runoff 

response of a catchment (Botter and Rinaldo 2003; Furey and Gupta 2007; Saco and 

Kumar 2004).  Furey and Gupta (2007) represent the only study that report the role of 

hillslopes in determining the scaling structure of peak discharges from nested watersheds 

during a single rainfall-runoff event.  I continue on this trajectory and further investigate 

the significant role hillslopes play in determining the scaling structure of peak discharges.  

In this phase of my study, I first used a constant cv  of 0.5 m/s and varied hv  in the range 

of 0.001 and 0.1 m/s among different simulations.  I followed this by repeating the 

simulation experiment using the nonlinear channel velocity formulation by setting 

m/s, 3.01 =λ  and 1.02 −=λ .  In both cases, I used a rainfall depth of 25 mm 

that is applied over T  values ranging from 5-min to 12-hours.  The results revealed how 

the interplay between T  and hv  affect the peak discharge scaling statistics. 

The results presented in Figure IV-8 reveal that, for the constant cv  case, θ  decreases 

with increasing hv  when 1<T hr, whereas it increases with increasing hv  when 1≥T hr.  

This is because, although the increase in hv  leads to smaller catchments to discharge 

water at a higher rate per unit area than larger catchments, their contribution to discharge 

at larger scales is determined by T , which controls the time available for peak discharges 

from smaller scales to be transported and contribute to peak discharges at larger scales.  
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This means that when T  gets shorter, the impact of increasing hv  is reflected in the 

increased peak discharge rate per unit drainage area at smaller subcatchments that is 

higher than the corresponding rate at larger scale subcatchments.  Additionally, shorter 

rainfall durations and higher hillslope overland flow velocity values will satisfy, as 

discussed in section 4.2.1, the first two conditions required for the discharge hydrograph 

to resemble the width function of the catchment at all scales.  Consequently, the exponent 

θ  decreases with increasing hv  and converges to the scaling exponent β  of the width 

function maxima.  This convergence to β  is not seen in Figure IV-8 because we allowed 

for flow attenuation to occur in the drainage network, effectively invalidating the third 

condition required for the discharge hydrograph to resemble the width function of the 

catchment.  Following the assumptions employed in this study, these results indicate that 

the lower limit of θ  is β . 

It can also be seen in Figure IV-8 that θ  increases with increasing hv  when T  get 

longer.  This is because, as T  gets longer, there will be sufficient time available for a 

larger proportion of subcatchments to contribute to peak discharges at larger scales.  In 

this case, increasing hv  further increases the proportion of the catchment that contributes 

to peak discharge at larger scales, which is reflected in the increasing values of θ .  

Furthermore, the value of T , above and below which we see contrasting effects of hv  on 

θ , is also controlled by the magnitude of cv .  It can be seen that its value increased to 2-

hr when the nonlinear cv  was used (Figure IV-8 (c)).  This is because, at smaller scales, 

the nonlinear channel velocity formulation leads to cv  values that are generally smaller 
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than the corresponding  m/s that is used for the constant channel velocity case 

(see Figure IV-4).  This simply means that higher cv  and hv  values shorten the time 

required for a larger proportion of the watershed to contribute to peak discharge at higher 

scales.  Although not shown here, this magnitude of T  is the same for all the three 

catchments.  However, it is likely that it will assume higher values as the catchment 

becomes bigger than those considered in this study. 

As shown in Figure IV-8 (b and d), it can also be seen thatα  increases with 

increasing hv  as well as with increasing I .  We should note that, due to the constant P  

applied, I  increases with decreasing T .  An important result here is that in addition to I , 

hv  plays a more dominant role in controlling α  than cv  does.  This is because hv  

controls the rate at which excess rainfall is delivered to the channel network whereas cv  

determines how the water traffic aggregates at successively larger scales.  This is evident 

in Figure IV-7(b and d) where an increase in cv  for a given hv  leads to a smaller 

increase in α  than the increase of α  due to the effect of hv  for a given cv , as can be 

seen in Figure IV-8(b and d).  I checked this for various combinations of hv  and cv  and 

found similar results.  This observation highlights the dominant role of hillslope 

processes in determining both α  and θ . 

4.3.4. Hillslope overland flow velocity and scale break 

In the context of statistical scaling of peak discharge, a scale break occurs when the 

log-log linear relationship between peak discharge and drainage area exhibits different 

slopes (θ ) above and below a certain critical drainage area value.  Empirical data 
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suggests the existence of scale break in some catchments.  Using a quantile-based 

analysis of annual peak discharge data, Goodrich et al. (1997) showed the existence of 

scale break at about 1 km2 in the Walnut Gulch basin.  Asquith and Slade (1997), also 

using a quantile-based regional regression analysis, reported the existence of scale break 

for watersheds in Texas (U.S.) that happens at about 83 km2 for the 100 year flood.  

Because these empirical studies were not event based, it is difficult to physically describe 

the reasons for the observed scale break.  To this end, a number of event-based 

theoretical studies have been conducted that either directly or indirectly addressed the 

issue of scale break (Gupta and Waymire 1998; Mandapaka et al. 2009; Mantilla et al. 

2006; Menabde and Sivapalan 2001).  All these important theoretical contributions 

assume that runoff generated on hillslopes instantaneously enters the river network and 

studied the property of the scale break as a function of rainfall duration only.  In this 

study, I relax the assumption of instantaneous runoff delivery to the river network by 

making use of appropriate hillslope overland flow velocities and investigate the role the 

interplay among hv , cv , and T  plays in determining the occurrence and property of scale 

break. 

To separately study how hillslope overland flow velocity affects the scale break, I 

setup a simulation where I set the rainfall duration hour, its intensity mm/h, 

and used the constant channel velocity parameters  m/s, 01 =λ  and 02 =λ .  I then 

varied the hillslope overland flow velocity hv  between 0.01 and 1 m/s per simulation.  

The results presented in Figure IV-9 show how hv  affect the scale break in each of the 

three catchments.  For the sake of comparison, we superimposed peak discharge 
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estimates (black lines) calculated using the rational formula ( AIcAQ rp ⋅⋅=)( ) for which 

1=θ .  These results clearly show that, for a rainfall duration of hour, a scale break 

occurs at around 1 km2 and is caused when part of the catchment that is drained by lower 

order streams achieves saturation, i.e., converge to the 1=θ  line.  It can be seen that 

higher than average hv values are responsible for the quick saturation of smaller 

subcatchments resulting in the decreasing scatter of peak discharge with increasing hv . 

The same experiment was repeated where I investigated the role of the interplay 

among rainfall duration and channel velocity on the occurrence and property of scale 

break.  In order to achieve this, I set  m/s and varied cv  between 0.5 and 1.5 m/s 

while always keeping 01 =λ  and 02 =λ .  Moreover, the rainfall depth was kept constant at 

25 mm and was applied over durations T  between 5-min and 12-hr.  Since the results 

from the three catchments exhibit similar properties, I will only discuss those results from 

the Clear Creek catchment.  Also, I only present the results for the constant channel 

velocity case since the results are similar to the case when the channel velocity is a 

nonlinear function of discharge and drainage area. 

The results presented in Figure IV-10 reveal that the critical catchment area at which 

the scale break is observed generally increases with increasing T .  This is explained by 

the fact that, under a given set of hv  and cv , subcatchments whose drainage area is less 

than the critical area have already achieved saturation, and as such an increase in T  would 

only result in an increased proportion of the catchment achieving saturation.  Although 

not presented here, under the present channel and hillslope overland flow velocity values 
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of smvc /5.0=  and smvh /1= , the scale break disappears when hrT 24≥ , hrT 36≥ , 

and hrT 32≥  for the Clear Creek, Old Mans Creek, and Boone River, respectively.  No 

noticeable scale break is observed when min5=T  which is because the rainfall duration 

is not long enough for smaller subcatchments to achieve saturation and, as previously 

discussed, the discharge hydrograph at all scales resembles the corresponding width 

function.  Another important feature of the results presented in Figure IV-10 is that the 

channel velocity also plays a role in determining the scale at which the scale break 

occurs.  These results show that an increase in cv  also leads to an increase in the scale at 

which the scale break occurs.  This happens because an increase in cv  results in a 

decrease in ct , which means that more subcatchments achieve saturation for a given T .  In 

conclusion, the results discussed so far indicate that the occurrence of a scale break is 

dictated by the interplay among hv , cv , and T .  Among these, hv  plays the dominant 

role. 

4.4. Summary and conclusions 

In this chapter, the role of the interplay among rainfall intensity )(I , duration )(T , 

hillslope overland flow velocity )( hv , and channel velocity )( cv  in determining the 

scaling structure of peak discharge is investigated.  I used the drainage network-based 

hydrologic model CUENCAS (Mantilla and Gupta 2005), which decomposes a given 

catchment into a hillslope-channel-link system at which scale it solves the mass and a 

simplified momentum conservation equations.  I applied the model to three different 

catchments in the state of Iowa in central U.S. and systematically set up approximately 
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1000 different event-based simulations per each catchment.  These simulations were 

carried out under the assumption that: (1) rainfall is spatially uniform and I  is constant 

over T ; (2) the entire catchment has the same soil moisture deficit; (3) hv  is constant both 

in space and time; and (4) cv  is either constant in space and time for the constant channel 

velocity case or it varies in space and time for the nonlinear channel velocity case.  These 

assumptions were necessary prerequisites to gain a first-order understanding of which 

catchment physical variables determine the scaling structure of peak discharge observed 

in empirical data. 

Analysis of the simulation results reveal that peak discharge exhibits a log-log 

linear relationship with drainage area for all the three catchments that are investigated 

and for all combinations of I , T  , hv , and cv  values that are considered.  The results 

show that when a spatially uniform and temporally constant cv  is used, peak discharge 

follows simple scaling.  Moreover, the results show that the use of a nonlinear channel 

velocity formulation, which leads to spatially and temporally variable cv  values, leads to 

exponents that are a function of rainfall intensity, which provides an important insight 

into the multiscaling of peak discharge generally observed in empirical flood quantile 

data analyses.  Another interesting result is the dependence of the intercept )(α  and the 

scaling exponent )(θ  on the spatial organization of the drainage network, which is 

reflected in the catchment width function.  We showed that under similar values of I , T ,

hv , and cv , our estimates of α  and θ  for the Boone River catchment are significantly 

different from those estimated for the Clear Creek and Old Mans Creek catchments.  This 
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is because the width function of the Boone River catchment is significantly different from 

the width functions of Clear Creek and Old Mans Creek, which are similar to each other. 

The results further showed that α  reflects the magnitude of the peak discharge, 

whereas θ  reflects the proportion of the catchment that contributes to the peak discharge 

at the outlet.  This means that α  is controlled by the rainfall and catchment physical 

properties that affect the magnitude of the peak discharge and θ  is controlled by the 

rainfall and catchment physical properties that affect the proportion of the catchment that 

contribute to the peak discharge at the outlet irrespective of its magnitude.  To this end, I 

showed that, for a given catchment, T  and hv  play a dominant role in controlling θ , 

followed by cv  and I .  I also showed that, for a given catchment, α  is controlled by 

the interplay among I , T , hv , and cv  with cv  playing the least dominant role.  These 

results reveal that, under the assumptions we used, the scaling structure is controlled by 

the interplay among I , T , hv , and cv .  The variation of α  and θ  observed in empirical 

data across multiple watersheds can therefore be explained by the drainage network 

structure, the local climate that determines the properties of I  and T , the local 

topography, soil type, land use, and land cover that controls hv  and cv .  The event-to-

event variability of α  and θ  can also be described based on the event-to-event 

variability of rainfall, the antecedent catchment moisture state, and nonlinearities related 

to hv  and cv . 

Under the assumptions I used, the results also reveal that the interplay between T  

and hv  determines if and when a scale break happens whereas the scale at which the 
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break happens is controlled by the interplay among T , hv , and cv .  Most importantly, a 

scale break happens when runoff generated on hillslopes quickly enters the drainage 

network and, for catchment scales we investigated, when 12≤T hr.  These results show 

the importance of understanding the hillslope scale processes in order to predict both α  

and θ  in a physically meaningful way. 
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Table IV - 1.  Summary of the simulation experiments 

Objective of the 
experiment 

Channel velocity 
formulation Parameter varied Parameters kept 

constant 

Study the effect of 
rainfall intensity and 
duration 

Constant 

day2min5 ≤≤ T  
mm25P = ,
m/s5.0=rv

m/s01.0vh =  

mm/hr75I15 <<  
min60=T , 
m/s5.0=rv

m/s01.0vh =  

Nonlinear 

day2Tmin5 ≤≤  
mm25P = , 

m/s25.0=rv  
m/s01.0vh =  

mm/hr75I15 <<  
min60=T , 

m/s25.0=rv
m/s01.0vh =  

Study the effect of 
channel velocity 

Constant hr12Tmin5 ≤≤  
m/s21.0 ≤≤ rv  

mm25P =  
m/s01.0vh =  Nonlinear 

Study the effect of 
hillslope overland 
flow velocity 

Constant hr12Tmin5 ≤≤
m/s1.0v001.0 h ≤≤

 
mm25P =  

Nonlinear 
Study the 
relationship between 

hv , cv , T , and scale 
break 

Constant hr12Tmin5 ≤≤  
m/s1v01.0 h ≤≤  

m/s21.0 ≤≤ rv  Nonlinear 
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Figure IV - 1.  Plot of the drainage network, the width function, and scaling of the width 

function maxima for Clear Creek, Old Mans Creek, and Boone River catchments.  For 

the sake of clarity, only streams of order 4 and higher are shown for the drainage 

network. 
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Figure IV - 2.  Sketch depicting the decomposition of the Clear Creek catchment into 

hillslope-channel-link system.  The hillslope-channel-link control volume is also shown. 
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Figure IV - 3.  Plot of Observed versus Simulated Hydrographs. 

71 
 



 

Figure IV - 4.  Change of the channel velocity cv  as a function of rv  and A  for a fixed 

mm/hr25=I (left) and its change as a function of I and A  for a fixed m/s25.0=rv  (right). 
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Figure IV - 5.  Systematic dependence of both the intercept α  and the scaling exponent 

θ  on excess rainfall duration T  and intensity I  (top panels) for a fixed excess rainfall P  

where TPI /=  and (bottom panels) for a fixed I . 
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Figure IV - 6..  Systematic dependence of the intercept α  and the scaling exponent θ  on 

excess rainfall intensity I  for both the constant channel velocity (top panels) and 

nonlinear channel velocity cases (bottom panels).  The rainfall had a constant duration of 

1 hr. 
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Figure IV - 7.  Dependence of the intercept α  and the scaling exponent θ  on channel 

velocity cv  for the constant channel velocity case (a and b) and for the nonlinear channel 

velocity case (c and d).  The respective values of rainfall duration T  shown here are 5-

min, 10-min, 15-min, 30-min, 1-hr, 2-hr, 3-hr, 6-hr, and 12-hr. 
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Figure IV - 8..  Dependence of the intercept α  and the scaling exponent on hillslope 

overland flow velocity hv  for the constant channel velocity case (a and b) and for the 

nonlinear channel velocity case (c and d).  The respective values of rainfall duration T  

shown here are 5-min, 10-min, 15-min, 30-min, 1-hr, 2-hr, 3-hr, 6-hr, and 12-hr. 

76 
 



 

Figure IV - 9.  Plot of peak-discharge as a function of drainage area in the three 

catchments for T =1 hr and different hv  values.  The solid black line represents the peak 

discharge calculated using the rational formula for which 1=θ .  The red line is a 

regression line fitted to those peak discharge values coming from subcatchments with 

drainage area greater than 1km2. 
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Figure IV - 10.  Plot of peak-discharge as a function of drainage area in the Clear Creek 

catchment for m/s1=hv  and different T  and cv values.  The solid black line represents 

peak discharge calculated using the rational formula for which 1=θ .  The red line is a 

regression line fitted through those peak discharges that depart from the 1=θ  line. 
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CHAPTER V 

HOW DO SPATIALLY VARIABLE RAINFALL AND CATCHMENT PHYSICAL 
PROPERTIES CONTROL THE POWER-LAW SCALING STRUCTURE OF PEAK 

DISCHARGES? 2 

5.1. Introduction 

The main limitations of the results reported in chapter IV come from the 

simplifying assumptions I made in order to separately understand the effect of rainfall 

and catchment physical variables on the scaling structure of peak discharges.  In doing so, 

we gained significant insight into their respective roles.  However, at the catchment 

spatial scales I investigated, both rainfall and the catchment antecedent moisture state are 

not constant both in space and time.  The same goes for hv  and cv .  I already showed that 

the aggregated effect of a spatially and temporally variable cv  leads to a scale invariant 

peak discharge spatial organization.  The main objective of this chapter is, therefore, to 

build upon the findings reported in chapter IV by: (1) expanding the analysis to a larger 

catchment than those considered in chapter IV, (2) relaxing the assumptions of spatially 

constant rainfall, antecedent soil moisture, and hillslope overland flow velocity by setting 

these variables to be spatially variable, (3) expanding the analysis to investigate the role 

of catchment antecedent moisture state by using the runoff coefficient as a proxy, (4) 

introducing a nonlinear hillslope model in which the hillslope overland flow velocity is 

dynamically calculated as a function of hillslope overland storage using the Manning’s 

equation, and (5) investigating the effect of rainfall movement speed and direction on the 

2 Adapted from Ayalew, T. B., Krajewski, W. F., and Mantilla, R. (2014). "Connecting 
the power-law scaling structure of peak-discharges to spatially variable rainfall and 
catchment physical properties." Advances in Water Resources, 71(0), 32-43. 
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runoff response across scales.  To this end, I undertook a number of systematic 

simulation experiments to describe the dependence of the flood-scaling exponent θ  and 

intercept α  on the significant, aforementioned catchment physical variables. 

The chapter is organized as follows.  First, I describe the study catchment and the 

application of the model to observed rainfall events, which justifies the model’s use as a 

simulation tool.  I will then discuss the scope and limitations of the study conducted in 

this chapter, followed by an in-depth discussion of the results within the framework of 

the scaling theory of floods.  I conclude with a summary of the major findings. 

5.2. Study area and model application to real events 

To demonstrate the “reasonableness” of the model and its ability to reproduce 

observed streamflow time series across scales, I applied CUENCAS to the Cedar River 

basin in Cedar Rapids, Iowa, which has a drainage area of 16,861 km2.  The basin is 

located in eastern Iowa in the Midwestern United States in the Upper Mississippi River 

basin.  This region experienced the devastating flood events of June 2008 (Mutel 2010; 

Smith et al. 2013).  Figure V-1a and b show the location of the Cedar River in Iowa and 

its drainage network, respectively.  Figure V-1c shows the width function of the river at 

the catchment outlet.  The width function represents the catchment runoff response under 

the highly idealized conditions of equal area hillslopes, spatially constant instantaneous 

rainfall input that is directly delivered to the channel network, constant channel flow 

velocity, and no channel flow attenuation (Gupta et al. 2010).  Figure V-1d shows how 

the peaks of the width functions, evaluated at the bottom of complete order Horton-

Strahler streams, scale as a function of drainage area with a scaling exponent ( β ) of 0.47.  

In fact, the early efforts to estimate the scaling parameters of peak discharge used the 
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scaling properties of the width function as a key explanatory variable (Gupta et al. 1996; 

Mantilla et al. 2006; Mantilla et al. 2011; Menabde and Sivapalan 2001; Veitzer and 

Gupta 2001). 

We simulated the 2008 flood event in the Cedar River using the Stage IV radar 

rainfall product (Kitzmiller et al. 2013) as an input.  This radar rainfall product has a 

spatial and temporal resolution of about 4-km and 1-hr, respectively.  Furthermore, we set 

the values of rC , hv , rv , 1λ , and 2λ  to 0.8, 0.02 m/s, 0.4 m/s, 0.25, and -0.2, respectively.  

Figure V-2a shows a comparison of observed and simulated streamflow time series at six 

different USGS streamflow gauging sites that represent different spatial scales in the 

catchment.  Gupta et al. (2010) previously studied the power-law scaling property of the 

2008 flood event, shown in Figure V-2b, using observed streamflow data from the Iowa 

River basin, which has a drainage area of 32,400 km2.  To compare the scaling property 

of simulated peak discharge with observation, I extracted simulated peak discharge 

estimates at the bottom of complete order Horton-Strahler streams and plotted them 

against their respective drainage areas, as shown in Figure 3(c).  Note here that the Cedar 

River is a tributary of the Iowa River, which drains into the Mississippi River.  The 

simulation results show that the model reasonably reproduced both the streamflow time 

series and the power-law scaling statistics of peak discharges in the catchment.  The 

minor discrepancy between the observed and simulated values of α  and θ  is to be 

expected considering uncertainties due to the rainfall input data, the model structure, 

model parameters, and sample size bias in observations (see also Cunha et al. 2012; Seo 

et al. 2013). 
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5.3. Scope of the chapter 

This chapter builds on the findings reported in chapter IV, which were obtained under 

the assumptions that rainfall, runoff coefficient, and hillslope overland flow velocity are 

constant both in space and time.  In this chapter, I relax these assumptions by allowing all 

of the parameters to vary randomly in space (i.e., from hillslope to hillslope) statistically 

by sampling rainfall intensity from an exponential distribution and the remaining 

parameter values from a lognormal distribution.  Using the Manning’s equation and 

randomly varying the Manning’s n  value in space, I also introduce a nonlinear hillslope 

case in which the hillslope overland flow velocity varies both in space and time.  

However, I maintain the assumption that, for a given hillslope, both rainfall intensity and 

the runoff coefficient are time invariant. 

My assumption of random spatial variability of rainfall and catchment physical 

variables is by no means an accurate representation of the physical reality because 

rainfall, the runoff coefficient, land use, and topography are known to exhibit some form 

of spatial organization.  However, through this simplification, I systematically build our 

process understanding before embarking on a similar investigation based on a complex 

representation of the rainfall-runoff process.  Note that the purely random variability of 

rainfall, the runoff coefficient, and the hillslope overland flow velocity I simulate here 

represents the opposite bound of the earlier (chapter IV) assumption in which these 

parameters were considered to be constant both in space and time.  Accordingly, the 

results of this study should be taken within the context of these assumptions. 

The simulation experiments were organized in such a way that the effect of one 

variable on α  and θ  is investigated by fixing other variables to their respective values 
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that were randomly sampled from a distribution whose mean is obtained from the set of 

parameters that resulted in a good agreement between model simulated flows and 

observational data.  The ranges of parameter values used for each simulation experiment 

are summarized in Table 1.  These values are selected based on observational data that 

are reported in the literature (Botter and Rinaldo 2003; Di Lazzaro and Volpi 2011; Huff 

and Angel 1992; Leopold et al. 1964). 

5.4. Results and Discussion 

The first objective is discuss how the peak discharge scaling parameters were 

calculated and also to revisit the concept of scale break, which is necessary in order to 

understand the results that will be discussed in the subsequent sections.  The peak 

discharge scaling intercept α  and exponent θ  for each of the simulations were calculated 

using Ordinary Least Square (OLS) regression in the log-log space.  I used peak 

discharge estimates at the bottom of complete order Horton-Strahler streams whose 

respective drainage area was processed in CUENCAS (Mantilla and Gupta 2005) and 

considered only those complete order streams that have a drainage area of greater than 1 

km2.  This decision is based on the visual inspection of peak discharge versus drainage 

area plots, which showed a significant scatter of peak discharges for those subcatchments 

that have a drainage area of less than 1 km2.  Plots of peak discharge versus drainage area 

also revealed the existence of a scale break, and the spatial scale of its occurrence ( cA ) 

varies among different simulations that have different input parameters.  I have already 

shown in chapter IV that the magnitude of cA  is dependent on the interplay among 

rainfall duration, channel flow velocity, and hillslope overland flow velocity.  In this 

chapter, I determined the magnitude of cA  for each simulation and separately calculated 
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the scaling parameters for the group of subcatchments whose drainage areas are greater 

and smaller than cA . 

I determined the spatial scale at which a scale break occurs (i.e., cA ) using the 

statistical method proposed by Main et al. (1999).  I call the scaling parameters 1α  and 1θ  

for those groups of subcatchments in which cAA ≤ , whereas I call them 2α  and 2θ  for 

those groups of subcatchments where cAA > .  Figure V-3 shows a scaling plot for peak 

discharges following rainfall events that have different durations.  In all of the cases, the 

spatially variable input parameter values are sampled from ( )25/1~)( ExpmmP , 

( )225.0,5.0~ LognCr , and ( )201.0,02.0~)/( Lognsmvh .  Simulation results show that cA  

increases with increasing rainfall duration, and it occurs between 15 and 450 km2 for the 

set of parameters used in this study.  I will further discuss how rainfall duration controls 

both α  and θ  in the subsequent sections. 

5.4.1. Effect of spatial variability of input parameters on the runoff response 

In this section, I show how the runoff response at different spatial scales is affected 

by the hillslope-scale spatial variability of rainfall, the runoff coefficient, and the 

hillslope overland flow velocity.  The results presented in Figure V-4 show five separate 

simulation cases.  Figures V-4a, b, c, and d illustrate the respective cases when only P , 

rC , hv , or n  is spatially variable while other parameters are kept spatially constant.  

Figure V-4e represents the case in which all parameters ( P , rC , and hv ) are spatially 

variable.  For each case, I simulated 100 independent realizations of the input parameters.  

The dark black line shown on all of the plots represents the case in which spatially 
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constant values of ][IE , ][ rCE , and ][ hvE  (or ][nE ) are used as an input.  In all cases, I 

used the nonlinear channel velocity formulation.  These results indicate that the effect of 

the spatial variability of the model’s input parameters on the simulated runoff response is 

significant at smaller catchment spatial scales and decrease with increasing catchment 

area.  Carpenter and Georgakakos (2004) arrived at a similar conclusion using a different 

modeling framework. 

Visual inspection also reveals that, of all the simulation results presented in Figure V-

4, the spatial variability of hv  (or n ) tends to exhibit a different effect on the runoff 

response of small to medium sized catchments when compared to the effects of the 

spatial variability of P  and rC .  It can be seen (Figure V-4c and d) that the spatial 

variability of the hillslope overland flow velocity leads to a higher dispersion of the 

runoff response at smaller scales.  Moreover, the runoff response tends to converge to a 

different hydrograph that has a reduced peak value and a longer tail than the one obtained 

by simulating the basin using average rainfall and model parameter values that are 

spatially constant (i.e., the black line).  Grimaldi et al. (2010) showed a similar result by 

applying a different modeling framework to different catchments that have drainage areas 

ranging from 35 to 131 km2.  Their approach used a constant channel flow velocity and a 

spatially variable hillslope overland flow velocity that was calculated using the 

Manning’s equation, whose parameters are obtained from terrain and land use data.  The 

results presented in Figure V-4 suggest that the spatial variability of the hillslope 

overland flow velocity has a significant impact on the runoff response in small to medium 

sized catchments, and the effect reduces with increasing drainage area. 
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The fact that, with increasing spatial scale, the mean hydrograph of different 

realizations converges to the hydrograph obtained using spatially constant mean 

parameter values shows that predictions in large scale catchments appear to be simpler 

than in smaller scale catchments, as long as we get the spatial mean parameter values 

correct.  This observation can be tied to the observed process simplicity in empirical data 

with increasing spatial scale (e.g., Goodrich et al. 1997; Gupta et al. 2010; Ogden and 

Dawdy 2003). 

5.4.2. Effect of hillslope overland flow velocity 

The role hillslope overland flow velocity plays in affecting the runoff response at 

different catchment scales has been the subject of past research, and contrasting results 

exist in the literature.  Robinson et al. (1995) argued that hillslope processes dominate the 

runoff response of small catchments, while the network geomorphology dominates the 

runoff response at larger catchment scales.  They reported that the scale at which the 

catchment runoff response transitions from one that is hillslope-dominated to one that is 

dominated by the network geomorphology is on the order of 10 km2.  D'Odorico and 

Rigon (2003), building on the theory of GIUH, also suggested that the contribution of 

hillslope residence time to the runoff dispersion is significant at smaller watersheds and 

negligible at larger scales.  They also suggested that the role of the hillslope is dependent 

on the catchment moisture condition and becomes significant due to the increased 

residence time when the catchment is saturated.  Contrary to these findings, Saco and 

Kumar (2004) showed that hillslopes play a significant role in shaping the runoff 

response at all scales.  Most importantly, they showed that when hillslope velocities are 

smaller than channel velocities, which is often the case, the effect of hillslope overland 

86 
 



flow velocity through kinematic dispersion becomes more important than geomorphic 

dispersion.  Botter and Rinaldo (2003) analyzed the role of hillslopes in 150 sub-basins of 

the Brenta River in Italy that range in size from 4 to 1500 km2 and showed that hv  plays 

a significant role in determining the runoff response at all scales. 

My findings, albeit using a different methodology that is based on the numerical 

simulation of hillslope-channel-link dynamics, highlight that the role that hv  plays in 

determining the runoff response is a function of spatial scale and rainfall duration.  The 

results presented in Figure V-5a and b, which are obtained by increasing hv  100 fold 

between two different simulations, show that hv  has a more significant effect on the 

runoff response when the rainfall duration is short than when the rainfall duration is 

longer.  In both cases, the effect of hv  on the runoff response decreases with increasing 

spatial scale.  Furthermore, we see in Figure V-5a that there is a significant dispersion of 

peak discharge estimates when the hv value is high and the rainfall duration is short.  This 

dispersion is a manifestation of the geomorphic dispersion (see Figure V-1d) that 

dominates the runoff response when the hillslope residence time is significantly reduced 

through a combination of very high hv  and short rainfall duration. 

My results also suggest, as shown in Figure V-5c and d, that channel flow velocity cv  

plays a significant role in determining the runoff response with increasing spatial scale, 

which indicates that cv  and hv  have contrasting effects across scales.  The reason behind 

the increasing significance of cv  with increasing catchment scale is that increasing cv  

significantly increases the proportion of hillslopes connected to the outlet due to the 
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reduced travel time.  The role of cv  is less significant at smaller catchment scales because 

the reduced time of concentration due to an increase in channel velocity is countered by 

the competing rainfall duration that itself determines the time available for the 

connectivity of hillslopes to the outlet of smaller scale subcatchments to occur.  Building 

on a similar result, have shown in chapter IV that both α  and θ  increase with increasing 

cv . 

I explored the sensitivity of α  and θ  to a spatially variable hv  by systematically 

increasing the mean of the lognormal distribution from which hv  is sampled while 

keeping the coefficient of variation vc  constant at 0.5.  For the nonlinear hillslope case, 

we calculated hv  using Manning’s equation and sampling Manning’s n  from a lognormal 

distribution with a specified mean and 5.0=vc .  Rainfall P  and runoff coefficient rC  

were sampled from ( )25/1~)( ExpmmP  and ( )225.0,5.0~ LognCr , respectively.  My 

analysis of the aggregated runoff response at the bottom of the complete order Horton-

Strahler streams indicate that scale-invariance of peak discharge with drainage area is 

preserved.  This result is contrary to the findings of Di Lazzaro and Volpi (2011), who 

argued that the spatial variability of hillslope velocity breaks the scale-invariance 

property of peak discharges.  However, since the study catchments they used were not 

nested, it is difficult to conclude from their work how the aggregated effect of spatially 

variable hv  affects peak discharges at successively larger scales. 

The results presented in Figure V-6 show how both constant and nonlinear hv  affect 

the scaling structure of peak discharge by systematically controlling the magnitudes of 
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1α , 1θ , 2α , and 2θ .  The scaling parameters were calculated by taking the average of the 

scaling parameters computed from 100 independent realizations of P , rC , and hv .  It 

can be seen that 1θ  and 2θ  generally decrease with increasing ][ hvE  and appear to 

converge to some limiting value that is also controlled by the rainfall duration.  As shown 

in Figure V-5a and b, this is because an increase in hillslope overland flow velocity leads 

to a greater increase of peak discharge per unit drainage area at smaller catchment scales 

than at larger catchment scales, thereby reducing the magnitude of the flood scaling 

exponent.  It can also be seen that at hr12=T , 1θ  initially decreases with increasing 

][ hvE , recovers back to increase with increasing ][ hvE , and finally converges to unity as 

the time of concentration is equaled or exceeded.  The same is not observed for 2θ , even 

at hr48=T , because of the generally longer time of concentration in larger catchments.  

To add perspective to our analysis, the time of concentration at the outlet of the study 

catchment is about 12 days, whereas it is about 18 hours in a typical 64 km2 catchment.  

These concentration time estimates were calculated using constant m/s4.0=cv  and 

m/s01.0=hv  values.  Note also that 1θ  is for those sets of subcatchments whose 

minimum area is 1 km2 and whose maximum area is in the range of 15 - 450 km2, 

depending on the specific combination of T and hv .  An important insight that emerges 

from these results is that the effect of hv  on both α  and θ  is significant at shorter 

rainfall durations, and its effect dampens as the rainfall duration increases depending on 

the size of the catchment. 

The results also show that, irrespective of whether the hillslope is linear or nonlinear, 

both the intercepts 1α  and 2α  generally increase with increasing ][ hvE  because, as 
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shown in Figure 6 (a and b), an increase in ][ hvE  leads to smaller catchments to 

discharge water at a higher rate per unit drainage area than larger catchments.  It is also 

shown in Figure V-6 that both 1α  and 2α  increase with decreasing rainfall duration.  

This inverse relationship is explained by the increasing rainfall intensity with decreasing 

duration for a fixed rainfall volume ][PE .  This will be discussed in greater detail in the 

following sections.  A similar result was reported in chapter IV where a linear hillslope is 

used under the assumption of a spatially constant P , rC , and hv . 

5.4.3. Effects of the runoff coefficient 

The runoff coefficient varies both in space and time.  Its spatial variability is mainly 

due to the spatial variability of rainfall (Merz et al. 2006), whereas its temporal variability 

is mainly due to the antecedent moisture condition that is itself tied to the temporal 

variability of rainfall and evapotranspiration (Merz and Blöschl 2009).  Land use, soil 

types, and geology play a less significant role in determining the runoff coefficient at the 

catchment scale (Merz and Blöschl 2009; Merz et al. 2006).  In this chapter, a spatially 

variable runoff coefficient is used to partition the input rainfall into surface and 

subsurface flow, which essentially makes saturation-excess overland flow the only runoff 

production mechanism.  I neglected the temporal variability of the runoff coefficient by 

assuming that it is constant at the event scale.  Furthermore, its spatial variability is 

modeled as a purely random process by sampling from a uniform distribution.  However, 

the latter assumption is not realistic, as the runoff coefficient follows a spatially 

organized structure.  However, Merz and Plate (1997) showed that the assumptions of 

spatially random and spatially structured soil moisture, which can be considered as a 
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proxy for the runoff coefficient, seem to yield comparable runoff estimates with 

increasing spatial scale in a catchment whose drainage area is 6.3 km2. 

The results presented in Figure V-7 show how, for a given rainfall event that is 

described by its intensity and duration, the runoff coefficient can lead to a range of flood 

scaling parameters.  This means that the catchment antecedent moisture state, which 

mainly controls the runoff coefficient, plays a significant role in determining the scaling 

structure of peak discharges.  In particular, we can see that 2θ  generally decreases with an 

increasing ][ rCE  for both the linear hillslope (Figure V-7, second column) and nonlinear 

hillslope (Figure V-7, fourth column) cases.  The reason why the scaling exponent 

decreases with an increasing runoff coefficient is that an increase in the runoff coefficient 

increases the proportion of water on the hillslope that is transported more quickly (since 

gh vv >> ).  This means that increasing the runoff coefficient is equivalent to increasing 

hv , which is why the runoff coefficient affects the power-law scaling parameters in such 

a way that is comparable to the effect of hv , as is presented in Figure V-6.  Furthermore, 

it is shown in Figure V-7 that the effect of the runoff coefficient on the power-law scaling 

parameters is significant when the rainfall intensity is higher (smaller rainfall duration) 

and the hillslope is nonlinear.  This is because, in the nonlinear hillslope case, hv  

increases with an increasing rainfall intensity and runoff coefficient, which increase the 

hillslope surface storage. 

It is also evident in Figure V-7 that the exponent 1θ , which describes the scaling 

property of peak discharges in smaller catchments, is affected by the runoff coefficient 

only slightly when the hillslope is linear (Figure V-7, first column), whereas it is affected 
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comparatively more significantly when the hillslope is nonlinear (Figure V-7, third 

column).  This is attributed to, as discussed earlier, the difference in the range of hv

values among the two hillslope models.  In all cases, 1α  and 2α  increase with an 

increasing runoff coefficient, which is simply a reflection of the increased peak discharge 

that results from a higher runoff coefficient.  It can also be seen that 2α  is a nonlinear 

function of the runoff coefficient when the hillslope is nonlinear. 

5.4.4. Effects of rainfall duration and intensity 

Empirical evidence from the 21 km2 GCEW catchment suggests that rainfall duration 

controls the flood-scaling exponent, whereas rainfall intensity controls the intercept 

(Furey and Gupta 2005).  The mechanism by which the rainfall duration controls the 

flood-scaling exponent is that it determines the proportion of subcatchments that 

contribute to peak discharge (Gupta and Waymire 1998).  Under the assumption of a 

spatially constant rainfall, I have showed in chapter IV that the scaling exponent 

converges to unity as the rainfall duration approaches or exceeds the catchment’s time of 

concentration, which is itself a function of the size of the catchment, hillslope overland 

flow velocity, and channel velocity.  This is also one of the principles on which the 

Rational Formula was built (Mulvany 1850), which is being used for peak discharge 

estimation in small scale catchments. 

In this chapter, I expanded the analysis to a spatially variable rainfall, runoff 

coefficient, and hillslope overland flow velocity.  The scale of the watershed is also 

greatly extended.  The results presented in Figure V-8 show that both 1θ  and 2θ  increase 

with increasing rainfall duration, which is consistent with earlier studies (Furey and 
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Gupta 2005; Furey and Gupta 2007).  It is also evident in Figure V-8 that 1θ  is generally 

greater than 2θ  and that it asymptotically converges to unity quickly because of the 

shorter time of concentration in the smaller catchments.  The results also show that both 

1α  and 2α  decrease with increasing rainfall duration.  It is important to note here that, in 

this experimental setup, increasing rainfall duration leads to a decreasing rainfall intensity 

since the rainfall depth is kept constant ( )25/1(~mm)( ExpP ). 

I further investigated the role played by the rainfall intensity in determining the 

power-law scaling parameters.  I varied the rainfall intensity among different simulations 

and fixed the rainfall duration at min60=T .  Furthermore, I used both constant and 

nonlinear hillslope overland flow velocity and channel flow velocity formulations in 

order to separately address the role played by the hillslope and channel flow 

nonlinearities in determining the runoff response at multiple spatial scales.  The results 

show that, for the linear hillslope case (Figure 10, top row), both 1θ  and 2θ  nonlinearly 

increase with increasing spatial average rainfall intensity ][IE  when using the nonlinear 

channel velocity formulation (Figure V-9a and b), whereas both 1θ  and 2θ  remain 

independent of rainfall intensity when using constant channel velocity (Figure V-9c and 

d).  However, both 1θ  and 2θ  decrease as a nonlinear function of rainfall intensity when 

the hillslope is nonlinear (Figure V-9, bottom row), irrespective of the linearity or 

nonlinearity of the channel flow velocity. 

The results also show that, when the hillslope is linear (Figure V-8, top row), both 1α  

and 2α  vary linearly with rainfall intensity regardless of whether the channel velocity is 

constant or nonlinear.  However, it can also be seen that both 1α  and 2α  are nonlinear 
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functions of rainfall intensity irrespective of whether the channel velocity is constant or 

nonlinear.  These results suggest that nonlinearities in the catchment runoff response are 

dictated by nonlinearities in the hillslope rather than by nonlinearities in channel flow 

routing. 

5.4.5. Effects of rainfall movement direction and speed 

In mesoscale catchments such as the one used in our present study, storms that have 

smaller size than the catchment are the norm rather than the exception.  Several studies 

have shown that rainfall movement speed and direction with respect to the direction of 

streamflow have a significant effect on the timing and peak discharge magnitude at the 

catchment outlet (De Lima and Singh 2002; Niemczynowicz 1984; Ogden et al. 1995; 

Seo et al. 2012).  These studies independently concluded that a storm moving in the 

downstream direction with speed comparable to the channel flow velocity leads to peak 

discharge that is significantly greater than peak discharge that can result from either a 

stationary storm that covers the entire catchment or a storm that moves in the upstream 

direction.  In addition to storms moving upstream or downstream, storms can also pass 

through different sections of a given basin.  For example, consecutive storms passing 

through successive downstream sections of the basin represent one of the drivers behind 

the devastating flood event of June 2008 in the Cedar River basin (Krajewski and 

Mantilla 2010). 

In this section, I consider the case where consecutive storms pass through different 

parts of the basin at different time intervals (lag times).  A storm is then said to be 

moving in the downstream (upstream) direction when consecutive storms pass through 

successive downstream (upstream) sections of the catchment.  Obviously, this setup also 
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mimics a storm that is actually moving either downstream or upstream with the speed of 

movement determined by the lag time between successive storms.  I set up the simulation 

experiment so that the study basin is partitioned into six travel time zones according to 

the geometric distance of hillslopes from the basin outlet (Figure V-10a).  This particular 

partitioning is based on the assumption that the average storm that moves across the 

catchment has a width of 40 km.  We set a rainfall event to move either in the upstream 

or downstream direction in such a way that it arrives in a given travel time zone at time t  

and stays there for a certain duration T .  Hillslopes located in the next upstream or 

downstream travel time zone will begin to get rain after a certain lag time lagt  after t .  

Note that lagt  can also be used as a proxy to rainfall movement speed.  For example, 

hr1=lagt is equivalent to a storm speed of 41 km/hr in the upstream or downstream 

direction.  This arrangement means that neighboring travel time zones could receive rain 

in overlapping times for those cases where lagtT > .  Furthermore, we used a spatially 

variable rainfall, runoff coefficient, and hillslope overland flow velocity. 

The results presented in Figure V-10b and c show the results for the case in which the 

rainfall duration over each partition is hr1=T .  Although not shown here, similar results 

were obtained for other rainfall durations.  These results show that the runoff response at 

different scales is affected differently by the rainfall movement direction and speed.  

When the rainfall is moving in the upstream direction, the highest peak discharge at all 

scales is caused by the fastest moving rainfall ( hr5.0=lagt ).  Furthermore, multiple peaks 

are observed when the rainfall is moving slowly in the upstream direction, and the 

number of peaks is equivalent to the number of partitions in the catchment 
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(subcatchment).  The time between these multiple peaks in a given catchment is dictated 

by the rainfall speed.  The results also show that, when rainfall is moving in the 

downstream direction (Figure V-10c), the storm speed that leads to the highest peak 

discharge is scale dependent.  These results demonstrate that rainfall that moves in the 

downstream direction with the “perfect speed” can lead to major flooding. 

Analysis of peak discharges indicates that the scale-invariance of peak discharge with 

drainage area is preserved under a moving rainfall, irrespective of its movement 

direction.  However, the correlation coefficient between the peak discharge and drainage 

area decreases with decreasing rainfall speed (i.e. higher lagt  values).  The decrease in the 

coefficient of correlation is more significant when a storm is moving in the upstream 

direction, and it improves as the rainfall duration increases.  The reason behind the 

decrease in the coefficient of correlation is that the slow movement of rainfall leads to 

localized runoff-responses that do not contribute to the runoff-response at larger scales, 

and as a result, at larger scales, the area within the catchment that contributes to the peak 

discharge is smaller than the actual catchment area that is used in the power-law formula. 

The results presented in Figure V-11 show that, for a given rainfall speed defined by 

lagt , the flood-scaling exponent 2θ  increases with increasing rainfall duration, which is in 

agreement with results obtained earlier under the assumption of a spatially variable 

rainfall that covers the entire catchment.  The intercept 2α  also decreases with increasing 

rainfall duration (decreasing rainfall intensity).  The effect of rainfall speed on both 2α , 

and 2θ  appears to be less significant when the rain is moving in the upstream direction.  

However, it becomes significant when rainfall moves in the downstream direction.  It can 

be seen in Figure V-11d that, within the range of lagt  that we considered, 2θ  increases 
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with increasing lagt , whereas 2α  decreases with increasing lagt .  Higher lagt values than 

those considered here lead to disconnected runoff-responses at different scales, thereby 

invalidating the occurrence of spatial aggregation of flows which is a prerequisite for the 

power-law scaling structure to hold.  Both 1α , and 1θ  are not affected by the storm 

movement direction and speed because they represent those subcatchments whose 

drainage area is smaller than the spatial extent of the storm. 

5.5. Summary and conclusions 

In this chapter, I used a diagnostic numerical simulation methodology that is based on 

an accurate representation of the drainage network to investigate the role played by 

rainfall and catchment physical properties in shaping the power-law scaling structure of 

peak discharge with drainage area.  My simulation methodology implemented a simple 

hillslope model with three physically meaningful parameters ( ghr vvC and,, ) when using 

a linear hillslope response and with four parameters ( gor vSnC and,,, ) when using a 

nonlinear hillslope response.  This simplification warrants a concise, first-order 

understanding of the problem that would be difficult to achieve using an over-

parameterized complex model.  Furthermore, I assumed that rainfall is spatially variable 

according to the exponential distribution, whereas hillslope overland flow velocity and 

runoff coefficient are spatially variable according to the lognormal distribution.  

Although not reported in this dissertation, I also experimented with spatially variable 

rainfall and hillslope parameters that are sampled from a uniform distribution and found 

similar results. 

The key results of this chapter can be summarized as follows: 
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1) The effect of the random spatial variability of rainfall, runoff coefficient, and 

hillslope overland flow velocity on the runoff response decreases with increasing 

spatial scale.  The results show that, at some scale (~500 km2), hydrographs 

resulting from a spatially variable hillslope overland flow velocity appear to 

converge to a mean hydrograph that has a lesser peak and longer tail than the 

hydrograph obtained using a spatially-constant mean hillslope overland flow 

velocity.  However, convergence to the mean hydrograph occurs as the drainage 

area increases.  This means that peak discharge prediction at larger catchment 

scales is possible with spatially uniform rainfall and model parameters as long as 

their spatially averaged mean values are accurately estimated. 

2) The effect of the hillslope overland flow velocity on the runoff response decreases 

with increasing spatial scale, whereas the effect of channel flow velocity increases 

with increasing spatial scale.  However, the significance of the effect of both 

hillslope overland flow velocity and channel flow velocity on the runoff response 

across scales is controlled by rainfall duration, which dampens their effect as it 

lengthens.  These mechanisms are the reason why, at relatively shorter rainfall 

durations, increasing the hillslope overland flow velocity leads to a decrease in 

the flood-scaling exponent, whereas increasing the channel flow velocity has the 

opposite effect.  As the rainfall duration gets longer, more and more hillslopes 

(subcatchments) achieve saturation irrespective of the reduced time of 

concentration due to increased hillslope and channel flow velocities.  This 

condition is reflected in the reduced effect of hillslope and channel flow velocities 

on the flood-scaling exponent.  Furthermore, increasing the runoff coefficient 

98 
 



appears to affect the flood-scaling exponent in a way that is similar to the 

hillslope overland flow velocity.  To conclude, the results show that hillslope 

overland flow velocity dominates small scale catchment responses whereas 

channel flow velocity significantly affects large scale catchment responses. 

3) Rainfall duration controls the scaling structure of peak discharge by controlling 

the proportion of subcatchments that achieve saturation and that contribute to the 

peak discharge at the outlet.  As such, under the assumption that rainfall covers 

the entire catchment, the flood-scaling exponent increases with increasing rainfall 

duration and converges to unity when the rainfall duration approaches or exceeds 

the catchment time of concentration, which is controlled by the drainage area, 

channel flow velocity, and, to a lesser extent, by hillslope overland flow velocity.  

Furthermore, increasing rainfall duration leads to a decrease in the variance 

(scatter around the regression line) of peak discharge that is mainly introduced by 

the variance of the width function maxima.  Rainfall intensity, an additional 

rainfall property, affects the scaling structure of peak discharge through its 

indirect effect on the magnitude of hillslope overland flow velocity and channel 

velocity.  Rainfall intensity does not have any effect on the flood-scaling 

exponent when both the hillslope and channel flow velocity are constant. 

4) Rainfall movement direction and speed have an effect on the runoff response at 

different scales.  Rainfall moving in the downstream direction increases the 

magnitude of peak discharge through its synchronization with travel time zones.  

When rainfall moves in the downstream direction, the rainfall speed that leads to 

the highest possible peak discharge is scale dependent.  Also, scale-invariance of 
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peak discharge with drainage area holds irrespective of the rainfall movement 

direction, and the flood-scaling parameters are controlled by the rainfall duration 

and, when it is moving in the downstream direction, by the storm movement 

speed. 
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Table V - 1.  Summary of the range of input parameters used for each simulation 

experiment. 

Study 
Objective 

Hillslope 
type Range over which input parameters are varied 

Effect of  
overland 
flow 
velocity 

Linear  
( )( )2][*5.0],[~)/( hhh vEvELognsmv  where 

1.0][001.0 ≤≤ hvE  

Nonlinear  ( )( )2][*5.0],[~ nEnELognn  where 1.0][01.0 ≤≤ nE  
Effect of 
runoff 
coefficient 

Linear  
( )( )2][*5.0],[~ rrr CECELognC  where 9.0][1.0 ≤≤ rCE  

Nonlinear  
Effect of 
rainfall 
duration 

Linear  
hr48min5 ≤≤T  

Nonlinear  

Effect of 
rainfall 
intensity 

Linear  ( ) 







][

1~/
IE

ExphrmmI  where 100][5 ≤≤ IE  and 

min60=T  Nonlinear  

Unless otherwise stated, the following set of parameter values were used in all of the 
experiments: 

• ( ) ( )25/1~ ExpmmP  applied over durations hr48min5 ≤≤T ,  
• )25.0,5.0(~ 2LognCr , 
• ( )201.0,02.0~)/( Lognsmvh  for the linear hillslope case and, 
• ( )20175.0,035.0~ Lognn  and ( ) 001.0/ =mmSo  for the nonlinear hillslope case. 
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Figure V - 1.  Cedar River basin, its drainage network (stream order 5 and above), its 

width function evaluated at the outlet, and scaling of the width function maxima with 

drainage area. 
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Figure V - 2.  (a) Comparison of observed and simulated streamflow time series at 

different spatial scales in the river basin and (b) observed and (c) simulated peak-

discharge scaling plots. 
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Figure V - 3.  Scaling structure of peak-discharge for different rainfall durations. 
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Figure V - 4.  Effect of spatial variability of (1) rainfall, (2) runoff coefficient, (3) 

hillslope overland flow velocity, (4) manning’s n, and (5) rainfall, runoff coefficient, and 

hillslope overland flow velocity.  Each row represents different spatial scales as shown in 

column one. 
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Figure V - 5.  Effect of hillslope overland flow velocity (top row) and channel routing 

velocity (bottom row) on the scaling structure of peak-discharge. 
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Figure V - 6.  Effect of constant (first two columns) and nonlinear (last two columns) 

hillslope overland flow velocity on the intercept and exponent.  Each black circle is an 

average θ  or α  calculated using 100 realizations of P , rC , and hv .  Each line 

represents rainfall duration of 5min, 10min. 15min, 30min, 1hr, 2hr, 3hr, 6hr, 12hr, 1day 

and 2day, respectively. 
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Figure V - 7.  Effect of runoff coefficient on the intercept and exponent for constant (first 

two columns) and nonlinear hillslope overland flow velocity (last two columns).  Each 

black circle is an average θ  or α  calculated using 100 realizations of P , rC , and hv .  

Each line represents rainfall duration of 5min, 10min. 15min, 30min, 1hr, 2hr, 3hr, 6hr, 

12hr, 1day and 2day, respectively. 
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Figure V - 8.  Effect of rainfall duration on the intercept and exponent.  Each black circle 

is an average θ  or α  calculated from 100 realizations of P , rC , and hv . 
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Figure V - 9.  Effect of rainfall intensity on the flood scaling exponent and intercept for 

constant (top row) and nonlinear hillslope overland flow velocity (bottom row).  The first 

two columns (a, b, e, f) represent results when nonlinear channel velocity is used, 

whereas the last two columns (c, d, g, h) show results when constant channel velocity is 

used.  Each black circle is an average θ  or α  calculated using 100 realizations of P , rC

, and hv . 

110 
 



 

Figure V - 10.  Effects of storm movement direction and lag times (shown in the legend) 

on the runoff response at different scales in the catchment.  Shown in the figure are (a) 

the catchment partitioning, (b) hydrographs at the outlet resulting from a rainfall moving 

upstream, and (c) hydrographs resulting from a rainfall moving downstream. 
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Figure V - 11.  Effect of storm movement in the upstream direction (a, b, e, and f) and 

downstream direction (c, d, g, and h) on the flood scaling exponent and intercept.  Storm 

lag times are indicated on the right-most column.  Storm lag times are arranged in the 

following order: 30-min, 3-hr, 6-hr, 12-hr, 24-hr, and 36-hr.  Each black circle is an 

average θ  or α  calculated from 100 realizations of P , rC , and hv . 
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CHAPTER VI 

EMPIRICALLY BASED ANALYSIS OF THE EFFECTS OF EXCESS RAINFALL 
PROPERTIES ON THE SCALING STRUCTURE OF PEAK DISCHARGES 3 

6.1.Introduction 

Although significant theoretical advances have been made in linking the intercept 

and the flood scaling exponent to rainfall and catchment physical properties that vary 

from event-to-event, little progress has been made in testing the theories using empirical 

data.  Furey and Gupta (2005) made the first attempt to connect the flood scaling 

exponent and intercept to rainfall properties.  They analyzed 148 rainfall-runoff events 

from the GCEW and showed that the exponent varies as a function of rainfall duration 

whereas the intercept varies as a function of excess rainfall intensity.  Furey and Gupta 

(2007) affirmed these results through a detailed diagnostic study of the same dataset.  

While these studies highlighted the respective dependence of the exponent and the 

intercept on the excess rainfall duration and intensity, more is needed to be done to test 

whether or not these findings hold true in bigger catchments and also investigate 

interplay of these parameters with other catchment physical variables.  There is yet no 

study that demonstrated if the findings from the 21 km2 GCEW (Furey and Gupta 2005; 

Furey and Gupta 2007) hold true in a larger watershed.  Such a study would go a long 

way in establishing the physical connection between the flood scaling parameters and 

rainfall and catchment physical properties that vary from event-to-event.  I address this 

need in this chapter. 

3 Adapted from Ayalew, T. B., Krajewski, W. F., and Mantilla, R. (2015). "Analyzing 
the effects of excess rainfall properties on the scaling structure of peak-discharges: 
Insights from a mesoscale river basin." Water Resources Research. 
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The chapter is organized as follows.  I begin by discussing the methodology I 

used to identify and characterize the rainfall events that are associated with the 52 basin 

wide peak-discharge events discussed in Chapter-III.  I also discuss the methodology 

used to characterize the catchment soil moisture state.  This is followed by a discussion of 

the results.  I conclude the chapter by summarizing the major findings. 

6.2.Methodology 

The methodology used to identify peak-discharge events in the Iowa River basin 

is already discussed in greater detail in Chapter-III.  Recall that I was able to identify 52 

basin wide peak-discharge events that exhibit scaling invariance with drainage area at the 

rainfall-runoff event scale.  These events occurred over the 12 year period between 2002 

and 2012.  In this section, I describe the procedures I designed to identify and 

characterize the rainfall events that led to these peak discharge events. 

6.2.1. Rainfall event selection and characterization 

I selected and analyzed rainfall data corresponding to the peak discharge events 

using the assumption that it occurs over the time window that starts two to five days 

before the first peak discharge is observed in the catchment and lasts until the time when 

the peak discharge at the catchment outlet is observed.  The first peak discharge is 

observed in one of the small scale subcatchments whose concentration time ranges 

between two and five days.  Therefore, the two to five day advance time window before 

the first peak discharge is observed in the basin is a reasonable estimate of the time when 

the rainfall event begins.  The rainfall event ends at the time when the peak discharge at 

the outlet is observed.  Any rainfall that is observed over this time window constitutes the 

rainfall event that generated the observed peak discharges in the study basin.  The 
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maximum overall time window over which the excess rainfall occurs is 15 days, which is 

equivalent to the basin’s concentration time. 

To examine the dependence of the flood scaling parameters on the properties of 

rainfall, We need to first establish the excess rainfall time series corresponding to the 

observed peak discharges in the basin.  The estimation of the excess rainfall time series is 

achieved by using the runoff coefficient to partition rainfall into excess rainfall and “lost” 

rainfall (i.e., evapotranspiration, percolation, etc.).  To this end, I estimated a monthly 

runoff coefficient time series for the twelve-year period since 2002.  To accomplish this, I 

performed a water balance analysis at the monthly time scale and estimated the runoff 

coefficient as the ratio of the observed monthly runoff volume at the catchment outlet to 

the rainfall volume that is integrated over the entire catchment and the same time period.  

As discussed earlier, I used the Stage-IV radar rainfall product as the rainfall data source.  

The Iowa River basin is covered by 1,788 HRAP grid cells (~4×4 km2) over which 

hourly rainfall accumulation data is provided.  Although the runoff coefficient is known 

to vary both in space and time from event to event as a result of the spatio-temporal 

variability of rainfall and other catchment physical variables (Merz and Blöschl 2009; 

Merz et al. 2006), I considered the runoff coefficient as constant both in space and time 

for a given month.  I used this resulting runoff coefficient time series to construct the 

hourly excess rainfall time series for each of the HRAP grid cells.  Finally, I constructed 

a spatially averaged excess rainfall time series from the excess rainfall intensities 

calculated at each pixel. 

I characterized the selected excess rainfall time series using two metrics: rainfall 

volume and duration.  The rainfall event volume is easily calculated by integrating the 
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excess rainfall time series over the time window in which it is observed.  However, 

estimating the rainfall duration is not as easy due to the temporal intermittency of rainfall.  

To circumvent this problem, I calculated the following basic characteristics (temporal 

moments) of the mean areal excess rainfall time series: 
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)(   Equation VI-1 
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where V  is the rainfall volume, )(tI  is the excess rainfall intensity, t  is time, and T  is 

the time at which the peak discharge at the catchment outlet is observed.  Recall that 

0=t  starts two to five days before the first peak discharge is observed in the basin, 

which is observed at the outlet of one of the small scale gauged subcatchments in the 

basin.  The choice of two to five days is based on a conservative estimate of the time of 

concentration of smaller subcatchments in the basin.  For example, the smallest gauged 

subcatchment in the Iowa River basin has a 6 hr time of concentration.  Note also that µ  

describes the mean time of the excess rainfall, whereas 2σ  describes how the excess 

rainfall is spread around the time when the peak excess rainfall intensity is observed, 

making it a better measure of the excess rainfall duration.  Hence, I decided to use σ  as a 

surrogate to estimate excess rainfall event duration.  A more sophisticated 

characterization of the rainfall events (e.g., fractal-based) is difficult, and perhaps 

unnecessary, due to the shortness of the series.  Figure VI-1 shows an example rainfall, 
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runoff event time series for selected streamflow gauging sites and the associated peak 

discharge scaling plot. 

6.3.Results and discussion 

6.3.1. Effects of excess rainfall on the intercept 

I begin by discussing my findings regarding the effects of excess rainfall 

properties on the flood scaling intercept (α) shown in equation (2).  It is important to 

recall that the physical meaning of the flood scaling intercept is that it is equivalent to the 

peak discharge at 1km2, when metric units are used.  This means that the flood scaling 

intercept is expected to have a positive correlation with excess rainfall depth.  Similarly, 

excess rainfall depth is a result of a host of rainfall and catchment physical properties 

such as rainfall intensity, soil type, land use, and antecedent soil moisture, which itself is 

a function of antecedent rainfall and a host of other catchment physical properties.  

Figure VI-2 shows how the natural logarithm of the flood scaling intercept varies with the 

natural logarithm of excess rainfall depth.  It can be seen that the flood scaling intercept 

appears to increase with increasing excess rainfall depth.  This result further confirms the 

results found in the theoretical studies of simulated hypothetical rainfall-runoff events 

from subcatchments of the study basin (Ayalew et al. 2014; Ayalew et al. 2014) and 

analysis of empirical data from the 21 km2 GCEW (Furey and Gupta 2005; Furey and 

Gupta 2007). 

Any insight that can be gained from Figure VI-2 is based purely on visual 

examination of the plot and it is important to explore if the observed relationship between 

excess rainfall depth and the flood scaling intercept is statistically significant.  Moreover, 

We need to explore if the observed scatter in the relationship between the flood scaling 
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intercept and excess rainfall depth can be explained by other properties of rainfall.  To 

this end, I conducted a multiple linear regression analysis where the natural logarithm of 

the flood scaling intercept is regressed against the natural logarithms of excess rainfall 

depth and duration.  The results presented in Table VI-1 show that the event to event 

variability of the flood scaling intercept can be partially described by excess rainfall 

depth and duration in a statistically significant way (at a 99% confidence level).  The 

Shapiro-Wilk test (W = 0.98, p-value = 0.76) indicates that the residuals of the regression 

model presented in Table 1 are normally distributed.  The plots of the residuals against 

the fitted flood scaling intercept, excess rainfall depth and duration, which are not shown 

here for the sake of brevity, indicate that the residuals have constant variance.  These 

diagnostics confirm the robustness of the multiple linear regression model presented in 

Table 1. 

The results presented in Table VI-1 show how excess rainfall depth and duration 

can be linearly combined to predict the flood scaling intercept.  However, We still need 

to confirm how the excess rainfall depth and duration individually affect the flood scaling 

intercept.  This can be achieved by constructing partial regression plots.  Partial 

regression plots can be used to examine the relationship between the dependent variable 

and a specific independent variable (Faraway 2004).  The following procedure is used to 

make the partial regression plots that show the individual relationship between the flood 

scaling intercept and the excess rainfall depth and duration.  First, the natural logarithm 

of the flood scaling intercept is regressed on the natural logarithm of the excess rainfall 

duration.  Second, the natural logarithm of the excess rainfall depth is regressed on the 

natural logarithm of the excess rainfall duration.  Finally, the residuals from the first step 
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are plotted against the residuals from the second step.  The resulting plot shows the 

relationship between the flood scaling intercept and excess rainfall depth with the effect 

of excess rainfall duration taken out.  A similar procedure is followed to establish the 

partial regression plot of the intercept and excess rainfall duration. 

The results presented in Figure VI-3 summarize the results from the partial 

regression analysis.  In particular, Figure VI-3a confirms that the flood scaling intercept 

increases with increasing excess rainfall depth.  The slope of the regression line shown in 

the same figure is statistically significant at a 99% confidence level and is equivalent to 

the corresponding slope (coefficient) reported in Table VI-1.  Figure VI-3b shows that the 

flood scaling intercept decreases with increasing excess rainfall duration and the 

relationship is statistically significant at a 99% confidence level.  Again, the coefficient 

of the regression line depicted in Figure VI-3b is the same as the corresponding 

coefficient reported in Table VI-1. This later result reinforces theoretical (Ayalew et al. 

2014; Ayalew et al. 2014) and empirical (Furey and Gupta 2005; Furey and Gupta 2007) 

findings that showed that the flood scaling intercept decreases with increasing excess 

rainfall duration.  Ayalew et al. (2014) attributed this to an observed trend in empirical 

data that shows that rainfall intensity decreases with increasing rainfall duration (Huff 

and Angel 1992).  

6.3.2. Effects of excess rainfall on the flood scaling exponent 

We turn attention now to factors that control the flood scaling exponent (θ).  In 

Figure VI-4, We show that the flood scaling exponent generally increases with increasing 

rainfall duration.  The simulation results presented in previous chapters as well as a 

number of other theoretical results have shown that the flood scaling exponent increases 
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with increasing rainfall duration, and it is attributed to the fact that the proportion of the 

watershed that contributes to the peak discharge at the outlet increases as the excess 

rainfall duration increases (Gupta and Waymire 1998; Mandapaka et al. 2009; Menabde 

and Sivapalan 2001). 

The results presented in Figure VI-4 show that the flood scaling exponent is 

always greater than the width function scaling exponent ( )β , which is 0.45 for the study 

basin.  This particular result further confirms my findings reported in chapter IV and V 

where I showed βθ > . A similar finding is also reported elsewhere (Mandapaka et al. 

2009; Mantilla et al. 2006).  An additional insight that emerges from these results is that, 

contrary to findings from simulation-based studies that put the upper limit of the flood 

scaling exponent to one (e.g., Gupta and Waymire 1998; Menabde and Sivapalan 2001), 

the flood scaling exponent can be greater than one.  The reason behind this discrepancy is 

the main simplifying assumption that the simulation-based studies used, which is that 

excess rainfall is continuous both in space and time and has constant intensity over its 

duration.  These assumptions do not hold true in reality because rainfall exhibits temporal 

and spatial variability.  By relaxing the spatial uniformity of excess rainfall assumption, I 

have shown in Chapter-V that the spatial variability of rainfall coupled with its duration 

can lead to a flood scaling exponent that is greater than one. 

The scatter plot presented in Figure VI-4 combine all classes of excess rainfall 

depth and duration into a single group.  I conducted multiple linear regression to test if 

the dependence of the flood scaling exponent on excess rainfall duration and depth is 

statistically significant.  Table VI-2 presents the results from the multiple linear 
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regression analysis where the flood scaling exponent is regressed against the natural 

logarithms of excess rainfall duration and depth.  It can be seen that part of the event to 

event variability of the flood scaling exponent can be described by the excess rainfall 

duration and depth in a statistically significant way (at a 99% confidence level).  The 

robustness of the regression model is confirmed using a series of diagnostic tests.  The 

Shapiro-Wilk test (W = 0.99, p-value = 0.90) conducted on the residuals indicates that the 

residuals are normally distributed.  Similarly, the plots of the residuals against the fitted 

flood scaling exponent, excess rainfall depth and duration, which are not shown here for 

the sake of brevity, support the assumption of homogeneous variance of the residuals. 

In order to separately study the effect of excess rainfall duration and depth on the 

flood scaling exponent, I conducted a partial regression analysis following the procedure 

outlined in Faraway (2004) and summarized in section 4.1 of this paper.  The partial 

regression plot presented in Figure VI-5a show that the flood scaling exponent decreases 

with increasing excess rainfall depth after the effect of excess rainfall duration is taken 

out.  These results also support the findings I reported in Chapter-V, where I have shown 

that the exponent decreases with increasing excess rainfall depth due to its direct effect 

on the hillslope overland flow velocity.  Specifically, my simulation based study of 

Chapter-V demonstrated that rainfall and catchment physical properties that lead to an 

increase in the hillslope overland flow velocity lead to a decrease in the flood scaling 

exponent.  This is because the effect of hillslope overland flow velocity on peak 

discharges decreases with increasing catchment scale.  In other words, the rate at which 

peak discharges increase with increasing hillslope overland flow velocity is greater at 

smaller catchment scales than at larger catchment scales, which in turn leads to a 
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decrease in the flood scaling exponent.  This explains the physical reason behind the 

results presented in Figure VI-5a.  The interested reader can refer to Chapter-V for a 

detailed discussion on how the interplay among hillslope overland flow velocity and 

rainfall duration affect the flood scaling exponent.    In addition, the partial regression 

plot presented in Figure VI-5b show that the flood scaling exponent increases with 

increasing excess rainfall duration after the effect of excess rainfall depth is taken out, 

which again confirms results from the theoretical (Gupta and Waymire 1998; Menabde 

and Sivapalan 2001) and empirical studies of Furey and Gupta (2005); Furey and Gupta 

(2007) that were conducted using data from the 21 km2 GCEW.  An interesting 

connection that can be made here based on the results presented in Figure VI-4a and VI-

5a is that rare flood events are described by bigger flood scaling intercept and smaller 

flood scaling exponent.  Regional flood frequency studies often show a similar trend 

(e.g., Eash 2001; Gupta and Dawdy 1995).  These reports show that the flood quantile 

scaling intercept and exponent shown in equation (1) respectively increase and decrease 

with decreasing probability of exceedance. 

6.3.3. Effects of rainfall temporal intermittency on the scaling structure of peak 
discharge 

The data analyses results presented thus far show that the flood scaling exponent 

increases with increasing excess rainfall duration and with decreasing excess rainfall 

depth.  Similarly, the flood scaling intercept generally increases with increasing excess 

rainfall depth and with decreasing excess rainfall duration.  However, these trends are 

dominated by a significant scatter. The scatter could be attributed to how accurately I 

estimated the excess rainfall depth, which is undermined by two factors.  First, I have 

assumed that the runoff coefficient is constant both in space and time over a given month.  
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This assumption will certainly introduce some error into my excess rainfall estimation.  

Second, I used radar-rainfall data to estimate both the monthly runoff coefficients and the 

hourly excess rainfall time series.  The radar-rainfall estimate has its own error (Ciach et 

al. 2007; Villarini and Krajewski 2010) that will eventually propagate into our excess 

rainfall estimation.  Although the excess rainfall depth estimation error may explain some 

of the scatter, it is important to investigate the role of additional rainfall and catchment 

properties in determining the scaling structure of peak discharges.   

A close examination of the results presented in Figure VI-5 indicated that, as a 

consequence of the scatter, two events that have different excess rainfall duration can 

have a similar flood scaling exponent, and two events that have the same excess rainfall 

duration can have a different flood scaling exponent.  The same can be said about the 

intercept.  Although the multiple linear regression results shown in Figures VI-3 and VI-5 

show the dependence of the flood scaling exponent and intercept on excess rainfall depth 

and duration, they also exhibit a significant scatter.  These results call for the search of 

additional rainfall and catchment physical properties that could improve the prediction of 

the flood scaling exponent and intercept.  To this end, I examined the excess rainfall time 

series corresponding to each of the 52 rainfall-runoff events and found that the temporal 

intermittency structure could play a significant role in determining the magnitudes of the 

flood scaling exponent and intercept.  Figure VI-6 presents an example case where two 

completely different rainfall time series, one occurring over a period of 12 days (Figure 

VI-6a) and the other occurring over a period of 8 days (Figure VI-6b), lead to comparable 

flood scaling exponents.  The obvious difference in the two rainfall events is the temporal 

structure of the storms, which is evident in the significant intra-storm dry period shown in 
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Figure VI-6a.  This suggests that the temporal intermittency of rainfall could play a 

significant role in determining the scaling structure of peak discharges.  This section is 

devoted to investigating this important issue using numerical simulation of hypothetical 

rainfall-runoff events in the Iowa River basin. 

To investigate the effect of the temporal intermittency of excess rainfall on the 

flood scaling structure, I used the model described in Chapter-IV to simulate the Iowa 

River basin using a hypothetical rainfall time series as input.  I set up the simulation 

experiment in such a way that the temporal intermittency structure of rainfall is 

conceptualized using two storm cells that have the same intensity and duration ( )T  and 

are separated by a dry period ( )dryt  (see a schematic in Figure VI-7).  Conceptualizing a 

rainfall event as a convolution of a random number of storm cells that have a random 

duration and that could be separated by a random dry period is a common practice in 

synthetic rainfall time series generation (e.g., Cowpertwait et al. 2007; Rodriguez-Iturbe 

et al. 1987).  I undertook a number of simulations by varying the duration of the 

individual storm cells and the intra-storm dry period.  I set the total excess depth to be 

constant (25 mm) with the two storm cells each having a rainfall depth of 12.5 mm.  This 

means that the intensity of the individual storm cells decreases with increasing storm cell 

duration.  Since I used a constant runoff coefficient value of 0.5, the excess rainfall depth 

for the entire event is 12.5 mm.  This configuration will enable us to understand how the 

intra-storm dry period and the duration and intensity of the individual storm cells control 

the flood scaling structure for a fixed rainfall volume.  In this experiment, rainfall is 

assumed to be spatially constant, and its temporal structure is the same throughout the 

basin.   
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Figure VI-8 shows the streamflow response as a function of the catchment spatial 

scale and the intra-storm dry period.  Two storm cells lead to either one or two peak 

discharge events, depending on the magnitude of the intra-storm dry period and the 

spatial scale of the catchment.  The intra-storm dry period that leads to independent peak 

discharge events in watersheds that have spatial scales of 10, 100, 1000, and 32400 km2 

is on the order of 1, 5, 10, and 30 days, respectively, which  means that the effect of the 

intra-storm dry period on peak discharge is scale dependent.  For example, We can see in 

Figure VI-8 that when day, the respective peak discharge at catchment scales of 

10, 100, 1000, and 32400 km2 has decreased by 50, 50, 25, and 5% in comparison to 

when 0=dryt .  Accordingly, the flood scaling exponent corresponding to  day 

should be greater than the flood scaling exponent corresponding to 0=dryt .  Recall that 

the flood scaling exponent is the slope of the regression line that describes the power-law 

relationship between peak discharge and drainage area across a range of spatial scales.  

As dryt  increases further, however, the peak discharge at the outlet starts decreasing, and 

the resulting flood scaling exponent will be less than the exponent calculated when

day.  This means that the flood scaling exponent initially increases with 

increasing dryt  before decreasing as dryt  continues to increase further.  This simple 

exercise shows how the temporal intermittency of excess rainfall systematically controls 

the magnitude of peak discharge across a range of spatial scales in the basin. 

Figure VI-9a recaps the results obtained after simulating storm cells of varying 

durations that are separated by a range of intra-storm dry periods.  When the duration of 

the individual storm cells 3≤T hr, the flood scaling exponent initially increases with 
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increasing excess rainfall duration before starting to decrease as the duration increases.  

However, when 6>T hr, the flood scaling exponent is a decreasing function of the 

excess rainfall duration.  The results also show that, for a given excess rainfall duration, 

the flood scaling exponent increases as the duration of the individual storm cells 

increases.  Figure VI-9b shows that when 3≤T hr, the flood scaling intercept decreases 

with increasing excess rainfall duration and converges to a certain value that is 

determined by the intensity of the individual storm cells.  The convergence happens at 

dryt  values that lead to the maximum flood scaling exponent for a given storm cell 

duration.  When 6>T hr, however, the intercept appears to slightly increase with 

increasing excess rainfall duration.  These results highlight how the interplay between the 

storm cell duration and intra-storm dry period affects the scaling structure of peak 

discharge. 

To further understand how the temporal intermittency of excess rainfall affects 

the scaling structure of peak discharge, I expanded the above analysis to an excess 

rainfall time series that has more than two storm cells.  I fixed the total excess rainfall 

depth to 12.5 mm and divided it equally among a predetermined number of storm cells 

(n), each of which has a duration of 1 hr.  The results presented in Figures VI-10a and b 

show that an increase in n leads to an increase in the flood scaling exponent and a 

decrease in the intercept.  The exponent increases because an increase in n is equivalent 

to increasing the overall excess rainfall duration, as seen from the point of view of larger 

subcatchments.  Moreover, the intercept decreases because, for a fixed total excess 

rainfall depth, the intensity of the individual storm cells decreases as n increases.   
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The results presented in Figures VI-9 and 10 show that the effect of the interplay 

among the number of storm cells, their duration, and the intra-storm dry period is 

manifested in the scatter observed in empirical data while relating the flood scaling 

exponent and intercept to excess rainfall duration (see Figures 5, 6, 7, and 8).  This 

observation is further summarized in Figure VI-11, where the results obtained from both 

empirical data analysis and numerical simulation are superimposed on the same plot.  In 

the plot, the blue line shows how the flood scaling exponent and intercept vary as a 

function of the duration of a single storm cell that has an excess rainfall depth of 12.5 

mm, whereas the grey shaded area shows the range over which the flood scaling 

exponent and intercept obtained from the numerical simulation vary due to the effect of 

the temporal structure of rainfall.  The grey circles depict the results obtained from 

empirical data discussed in earlier sections.  It can be seen that a significant majority of 

the grey circles fall within the shaded area.  Furthermore, it can be seen that a flood 

scaling exponent of greater than one is observed in empirical data, whereas the exponent 

obtained from numerical simulations is always less than one.  This is because the 

numerical simulations used a spatially uniform rainfall input.  I have already showed in 

Chapter-V that a flood scaling exponent of greater than one can occur due to spatially 

variable rainfall.  To conclude, these results reveal the important role that the temporal 

structure of excess rainfall plays in shaping the scaling structure of peak discharges. 

6.4.Conclusions 

I analyzed 52 rainfall-runoff events from the Iowa River basin (A=32,400 km2) to 

investigate how certain rainfall and catchment physical properties control the spatial 

scaling structure of peak discharges in a mesoscale river basin.  I selected these events in 
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such a way that a single-peaked hydrograph is observed at the catchment outlet and that 

all the internal gauging sites exhibit a significant streamflow response at some point 

during a 15 days period leading up to the time when the peak discharge at the outlet is 

observed.  This duration corresponds to the basin’s time of concentration.  I used the 

Stage-IV radar rainfall data to identify and characterize the rainfall time series that drives 

the observed peak discharges.  The following are summary of the key findings: 

(1) The flood scaling exponent generally increases with increasing excess rainfall 

duration where as it decreases with increasing excess rainfall depth.  The results 

also show that the intercept increases with excess rainfall depth whereas it 

decreases with increasing excess rainfall duration.  These results confirm the 

findings I reported in Chapters IV and V and other findings from simulation-

based studies (Gupta and Waymire 1998; Mandapaka et al. 2009; Mantilla et al. 

2006; Menabde and Sivapalan 2001; Menabde et al. 2001).  Moreover, these 

results provide additional insights to findings from empirical studies (Furey and 

Gupta 2005; Furey and Gupta 2007; Gupta et al. 2007; Ogden and Dawdy 2003). 

(2) The temporal intermittency of rainfall plays a significant role in determining the 

spatial scaling structure of peak discharges.  The results, which are obtained from 

a systematic diagnostic simulation study that is guided by observations in 

empirical data, revealed that, for a fixed excess rainfall depth and shorter storm 

cell durations, the flood scaling exponent initially increases with increasing intra-

storm dry period before starting to decrease when the inter-storm dry period 

increases beyond a certain point.  However, the flood scaling exponent appears to 

always be a decreasing function of the intra-storm dry period for longer storm cell 
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durations. Furthermore, the results show that the flood scaling exponent increases 

with increasing duration of the individual storm cells and with increasing number 

of storm cells.  The results also show that the intercept decreases with increasing 

inter-storm duration and the duration of individual storm cells and converges to a 

value that is determined by the intensity of the individual storm cells.  
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Table VI - 1.  Results of the multiple linear regression of the flood scaling intercept on 

excess rainfall depth and duration 

Variable  Coefficient Std. Error t value P-value 

(Intercept) -4.604 0.869 -5.301 0.000 

Log(Excess rainfall depth) 1.814 0.255 7.109 0.000 

Log(Excess rainfall duration) -0.751 0.233 -3.226 0.002 

Residual standard error: 1.27 on 45 degrees of freedom   
Multiple R-squared:  0.538,    Adjusted R-squared:  0.517    

F-statistic: 26.16 on 2 and 45 DF,  p-value: 0.000 
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Table VI - 2.  Results of the multiple linear regression of the flood scaling exponent on 

excess rainfall depth and duration 

Variable  Coefficient Std. Error t value P-value 

(Intercept) 0.854 0.093 9.228 0.000 

Log(Excess Rainfall Depth) -0.108 0.027 -3.971 0.000 

Log(Excess Rainfall Duration) 0.084 0.025 3.374 0.002 

Residual standard error: 0.135 on 45 degrees of freedom 
Multiple R-squared: 0.323,     Adjusted R-squared: 0.293 

F-statistic: 10.72 on 2 and 45 DF,  p-value: 0.0002 
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Figure VI - 1.  (a) An example excess rainfall and (b) the associated streamflow time 

series at selected gauging sites in the Iowa River basin.  The streamflow time series is 

normalized by the corresponding peak discharge of the event at each streamflow gauging 

site.  The corresponding peak discharge scaling plot is also shown (c).  The shaded region 

indicates the 15 day time window over which peak discharges in the basin were selected. 
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Figure VI - 2.  A scatter plot depicting the relationship between the natural logarithms of 

flood scaling intercept (α) and excess rainfall depth (V). 
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Figure VI - 3.  Partial regression plots showing (a) the dependence of the flood scaling 

intercept on the excess rainfall depth after the effect of excess rainfall duration is taken 

out and (b) the dependence of the flood scaling intercept on the excess rainfall duration 

after the effect of excess rainfall depth is taken out. 
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Figure VI - 4.  A scatter plot depicting the relationship between the flood scaling 

intercept exponent and the natural logarithm of excess rainfall depth (V). 
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Figure VI - 5.  Partial regression plots showing (a) the dependence of the flood scaling 

exponent on the excess rainfall depth after the effect of excess rainfall duration is taken 

out and (b) the dependence of the flood scaling exponent on the excess rainfall duration 

after the effect of excess rainfall depth is taken out. 
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Figure VI - 6.  Comparison of two different rainfall-runoff events and the associated peak 

discharge scaling plots.  The shaded region depicts the 15 day time window preceding the 

time when the peak discharge at the catchment outlet is observed. 
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Figure VI - 7.  A schematic of the excess rainfall temporal structure that is simulated in 

this study.  
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Figure VI - 8.  The effect of an intra-storm dry period on the streamflow response, as 

seen across four representative spatial scales.  In order for the hydrographs to be 

comparable, the discharge in each panel is normalized by the peak discharge obtained 

when the intra-storm dry period is zero (grey lines). 
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Figure VI - 9.  Event-to-event variability of (a) the flood scaling exponent and (b) the 

natural logarithm of the flood scaling intercept as a function of the natural logarithm of 

the excess rainfall duration.  The different colors depict the duration of the individual 

storm cells (T). 
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Figure VI - 10.  Event-to-event variability of (a) the flood scaling exponent and (b) the 

natural logarithm of the flood scaling intercept as a function of the natural logarithm of 

the excess rainfall duration.  The different colors indicate the number of storm cells (n) 

associated with a single storm. 
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Figure VI - 11.  Comparison of the range over which (a) the flood scaling exponent and 

(b) the intercept obtained from empirical data analysis (grey circles) and numerical 

simulations (grey shaded area) vary.  The blue line depicts how the flood scaling 

parameters obtained from numerical simulation of a single storm cell vary as a function 

of its duration for a fixed rainfall volume. 
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CHAPTER VII 

THE EFFECT OF CATCHMENT SHAPE ON FLOOD FREQUENCY – 
INSIGHTS FROM TWO CATCHMENTS IN THE IOWA RIVER BASIN  

7.1.Introduction 

Regional flood frequency equations are established for the purpose of predicting peak 

flood magnitudes in ungauged basins.  These peak flood magnitudes, which are 

calculated for a range of exceedance probabilities, are used to design hydraulic structures 

such as bridges and culverts and to delineate flood inundation zones for flood risk 

assessment purposes.  In the United States, the regional flood frequency equations are 

established by the U.S. Geological Survey (USGS) on a state by state basis.  These 

equations are defined for hydrologically similar regions that are identified based on 

physical and statistical reasoning.  The regional flood frequency equations relate peak 

discharge quantiles to rainfall and catchment physical properties such as drainage area, 

basin shape, basin length, drainage density, main channel slope, soil hydraulic 

conductivity, temperature, and mean annual precipitation.  Among these, drainage area is 

the most important and is often used as the single explanatory variable to predict peak 

discharge quantiles.  A close examination of the regional flood frequency equations 

established for all the 52 states of the U.S. indicate that the shape of the drainage basin is 

a largely ignored catchment property.  In this case, catchments with the same drainage 

area but different shape and drainage network geometry are expected to have the same 

peak discharge quantiles.  This is contrary to the long standing hydrologic knowledge that 

the shape of a basin affects the magnitude of peak flow at the outlet (Horton 1932; 

Morisawa 1958; Sherman 1932; Strahler 1964; Taylor and Schwarz 1952).  The main 

objective of this chapter is therefore to show, using two equally sized catchments from 
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Iowa River basin, how the shape and the resulting network geometry affects the peak 

discharge at the single rainfall-runoff event and annual time scale. 

7.2.Study area and data source 

To demonstrate the effect of catchment shape on flood frequency, I use two 

catchments that have the same drainage area but markedly different shapes.  These 

catchments are: Old Mans Creek (USGS ID: 05455100) and Salt Creek (USGS ID: 

05452000).  They are shown in Figure VII-1.  Both of the catchments drain a catchment 

area of 521 km2.  The geometric distance between the centroid of the two catchments is 

about 65 km, indicating their geographical proximity.  In terms of shape, Old Mans Creek 

is elongated whereas Salt Creek is fairly circular.  Both of the catchments are located in 

the Iowa River basin, Iowa and belong in the same hydrologic region, which is called 

Region 2 according to a USGS report on regional flood frequencies in Iowa (Eash et al. 

2013).  Hence, the same set of regional flood frequency equations are used to predict 

peak flood quantiles in these catchments. 

The catchments are monitored by two USGS stream gauging sites whose unique 

gauge identification number is shown above.  Old Mans Creek has 64 annual maximum 

peak discharge observations that occurred in the years between 1951 and 2014 whereas 

Salt Creek has 70 annul maximum peak discharge observations that occurred in the years 

between 1944 and 2014.  There is an instantaneous streamflow observation data available 

since 1990 for Old Mans Creek and 1986 for Salt Creek.  To check for the similarity of 

the rainfall over the two basins, we selected the closest available rain gauge station to 

each of the catchments.  Data from the rain gauge stations is obtained through the 

National Climatic Data Center (NCDC) web service.  Figure VII-2 presents a statistical 
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comparison of daily rainfall accumulation from the two rain gauge sites.  As expected, 

the rainfall statistics are similar and hence the catchments are subject to the same rainfall 

regime. 

7.3.At site flood frequency analysis 

I begin by estimating the flood frequency curve for each of the catchments using the 

annual maximum peak discharge obtained from the USGS streamflow gauging sites 

located at the outlet of the catchments.  We use the PeakFQ (Veilleux et al. 2014) 

software that is freely provided by the USGS to undertake the at site flood frequency 

analysis.  In this step, I used annual maximum peak discharge data from the 64 years 

when peak flow information is available at both sites.  The results presented in Figure 

VII-3 show plot of the Log-Pearson Type-III distribution fitted to the annual maximum 

peak discharges according to the procedure outlined in Bulletin-17B (IACWD 1982).  

The confidence interval of the fitted curve is also shown.  It can be seen that the flood 

magnitudes calculated for the two catchments are significantly different although the 

confidence intervals overlap.  Given that these two catchments are located in the same 

hydroclimatic region, and share similar land use and soil type, the observed difference in 

peak flood magnitudes across a range of exceedance probabilities calls for the 

investigation of other catchment physical properties that control the generation of the 

streamflow response in space and time.  In this regard, one obvious difference between 

the two catchments is their shape.  The role that the shape of the catchments played in the 

observed difference in peak flood magnitudes is discussed in the following section. 
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7.4.Effect of the drainage network geometry on the observed difference in peak flood 
magnitudes in the two catchments 

It is long known that the shape of the catchment affects the peak of the streamflow 

hydrograph through its effect on the drainage network geometry (Black 1972; Chorley et 

al. 1957; Horton 1932; Morisawa 1958; Sherman 1932; Taylor and Schwarz 1952).  All 

rainfall and catchment physical properties being equal, catchments that have rounded 

shape exhibit higher peak discharges than catchments that have an elongated shape 

(Strahler 1964).  This is because of the difference in the resulting geometry of the 

drainage network, along which the fundamental processes of streamflow aggregation, 

translation, and attenuation occurs, and, as a result, is intimately connected to the 

hydrograph (Gupta et al. 1980; Rinaldo et al. 1995; Rodríguez-Iturbe and Valdés 1979).  

The drainage network geometry is described by the width function, which is defined as 

the number of channel links at a given distance from the outlet (Kirkby 1976; Lee and 

Delleur 1976).  It is equivalent to the streamflow hydrograph under the assumptions that 

a spatially uniform rainfall is instantaneously injected to all channel links and the 

resulting streamflow travels with constant velocity and without attenuation (Gupta et al. 

2010; Kirkby 1976).   

Figure VII- 4 shows plot of the width functions of the two catchments that are 

estimated from a 30 m digital elevation model (DEM) obtained from the USGS.  It can be 

seen that longest travel distance in Salt Creek is about 52 km whereas it is 75 km in Old 

Mans Creek.  The plot also shows that the peak of the width function of the Salt Creek 

catchment, which has rounded shape, is greater than the peak of the width function of the 

Old Mans Creek catchment by a factor of 2.5.  This indicates that, given the same rainfall 

input and simillar catchment physical properties such as catchment soil moisture state, 
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soil type, and land use, higher peak discharge magnitudes can be observed in Salt Creek 

than in Old Mans Creek.  Can peak discharges in Salt Creek be greater than peak 

discharges from Old Mans Creek by the same factor?  We will address this question in 

the following sections. 

It is discussed above that the width function resembles the hydrograph observed at 

the outlet under the assumption that a spatially uniform rainfall instantaneously enters the 

drainage network and the resulting flow moves with constant velocity and without 

attenuation.  However, this is a highly idealized case because rainfall is spatially and 

temporally variable over its duration and streamflow attenuates as it propagates in the 

downstream direction.  With this view in mind, I remove the above assumptions by (1) 

allowing for a finite duration rainfall whose rate of delivery to the channel network is 

controlled by a spatially and temporally constant hillslope overland flow velocity and (2) 

a constant channel flow velocity that is incorporated in a channel transport formulation 

(i.e., channel storage discharge relationship) that allows for flow attenuation.  

Furthermore, we deliberately assume that rainfall and runoff coefficient are spatially 

constant.  These assumptions will enable us to separately characterize the effects of the 

interplay among rainfall duration and drainage network geometry on the observed peak 

discharge differences in the two study catchments.  

I simulated the two catchments using the hydrologic model presented in Chapter-

IV.  I used 25 mm rain as input and applied it over a range of durations.  This allows for 

the rainfall volume to remain constant while the intensity changes with duration.  I used a 

runoff coefficient of 0.5, a hillslope overland flow velocity of 0.02 m/s, and a channel 

flow velocity value of 0.4 m/s.  These values are within the range of what is observed in 
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reality (Botter and Rinaldo 2003; Di Lazzaro and Volpi 2011; Grimaldi et al. 2010; 

Gupta and Waymire 1998; Huff et al. 1982).  The simulation results presented in Figure 

VII- 5 show that the difference in the peak discharges observed at the outlet of the two 

catchments decrease with increasing rainfall duration.  These results indicate that it is not 

only the shape of the catchments but also the rainfall duration that affects the peak 

discharge difference that could be observed in these two catchments and by extension in 

any other catchments that have the same drainage area. 

The results presented above showed how the interplay among the drainage 

network geometry and rainfall duration affects the peak discharge.  An additional 

question is: how do these rainfall and catchment properties affect the spatial scaling 

properties of peak discharges?  To address this question, we simulated the two 

catchments using a spatially uniform rainfall depth of 25 mm that is applied over a range 

of durations.  Peak discharges corresponding to each simulation experiment are computed 

at the bottom of complete order Horton-Strahler streams.  The resulting peak discharges 

exhibit scaling invariance with drainage area that is described by the power law relation 

θαAAQ =)(  where Q is the peak discharge observed at a drainage area A, α is the scaling 

intercept and θ is the scaling exponent.  The results presented in Chapter-IV and V 

showed that the scaling exponent and intercept increase with rainfall duration and rainfall 

intensity, respectively.  While these results are evident in Figure VII- 6a, it can be seen 

that significantly different scaling exponents are observed in the two catchments at 

shorter rainfall durations.  This is because, shorter time to peak means that less time is 

required to arrive to equilibrium state.   As expected for the case of a spatially uniform 

rainfall application, the scaling exponents converge to unity at larger rainfall durations.  
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Figure VII- 6b shows that the scaling intercept values estimate for the two catchments 

appear to be similar.  Given that the intercept is equivalent to the expected value of peak 

discharges observed in subcatchments that have a unit drainage area (i.e., 1 km2 when 

metric units are used) and there are a lot of them in each of the study catchments, the 

similarity of the scaling intercept in these two catchments is a manifestation of the fact 

that there are a number of subcatchments and hence the expectation of peak discharges 

from these subcatchments converges to a similar value. 

7.5.Effect of the drainage network geometry on flood frequency 

I have showed in the previous section how the interplay among rainfall duration and 

drainage network geometry affects the peak discharge at the rainfall-runoff event scale.  

The results were obtained under the assumption that the rainfall intensity is constant over 

its duration.  However, this is an unrealistic assumption as rainfall exhibits significant 

temporal variability.  This leads us to the main objective of this study, which is to 

investigate how the interplay among the temporal structure of rainfall and the network 

geometry affect the peak discharge at the annual time scale and hence the flood 

frequency.  To this end, I adopted a continuous simulation approach where a 

stochastically generated 5000 years long rainfall time series is used to derive the rainfall-

runoff model.  In such a way, a random combination of rainfall intensities and storm 

durations can lead the annual maximum peak discharge.  Furthermore, the rainfall 

intensity, runoff coefficient, hillslope overland flow velocity, and channel flow velocity 

values are kept constant in space with the objective of studying the role of the network 

geometry alone. 
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The stochastic rainfall generator is based on the well-known Bartlett-Lewis 

Rectangular pulse model (Rodriguez-Iturbe et al. 1987; Rodriguez-Iturbe et al. 1988), 

which belongs to the family of Poisson-cluster processes.  The model is fitted to the 

rainfall time series observed at the Iowa City airport (NCDC Station ID: COOP 134101) 

that is located closer to the outlet of the Old Mans Creek.  The rainfall data, which has a 

temporal resolution of 15 min and covers the period between 1979 and 2013, is obtained 

from the National Climatic Data Center (NCDC).  By fitting the stochastic rainfall 

generator to a point rainfall time series that is observed within close proximity of the 

study catchments, some elements of the local rainfall temporal pattern is preserved. 

The results of the continuous simulation experiment is shown in Figure VII- 7.  It 

can be seen that the simulated peak discharges at the outlet of Salt Creek are greater than 

those simulated at the outlet of Old Mans Creek across all exceedance probabilities.  This 

result suggests that the effect of the drainage network geometry on peak-discharge at the 

rainfall-runoff event scale also propagates to the annual time scale.  

 

7.6.Conclusion 

The main objective of this chapter is to show how the drainage network geometry 

affects the peak discharge magnitude at the rainfall-runoff event scale and at the annual 

time scale.  To demonstrate this, I used two catchments that have the same drainage area 

and different drainage network geometry.  The catchments are Old Mans Creek and Salt 

Creek, both of which are located in the Iowa River basin.   These catchments are also 

located in the same hydrologic region and hence the same regional flood frequency 

equations are used to estimate peak discharge quantiles at any location in these 
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catchments.  The catchments also exhibit similar soil type and land use patterns.  

Analysis of daily rainfall accumulation data from rain gauge sites located closer to the 

catchments indicate that they receive similar rainfall depths. 

The at site flood frequency analysis conducted using 64 years of annual maximum 

peak discharge data since 1951 shows a significant difference of peak discharge 

magnitudes for all the exceedance probabilities considered.  Given that the two 

catchments are located in the same hydroclimatic region, the observed difference in the 

flood frequency at the outlet of the two catchments is attributed to the observed 

difference in the drainage network geometry of the two catchments.  To further 

substantiate this claim, I conducted a systematic simulation experiment by using the same 

rainfall depth, runoff coefficient, hillslope overland flow velocity and channel flow 

velocity values as input.  The results show how the interplay among drainage network 

geometry and rainfall duration affect the simulated peak discharge at the outlet.  The 

analysis is expanded to the annual time scale by simulating a stochastically generated 

10,000 years long rainfall time series as input.  Analysis of the simulation results show 

that the effect of the network geometry at the rainfall-runoff scale propagates to the 

annual time scale.  The results show the significant effect that the drainage network 

geometry has on flood frequency. 
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Figure VII - 1.  The geographic location of the two catchments.  Streams of Horton-

Strahler order 4 and beyond are shown for the sake of clarity. 

  

Salt Creek Old Mans Creek  
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Figure VII - 2.  Comparison of the first (Q1), second (Q2), and third( Q3) quantiles of the 

daily rainfall accumulation estimated using data from two rain gauge sites that are each 

located close to the catchments. 
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Figure VII - 3.  Comparison of the at site flood frequency computed at the outlet of the 

Old Mans Creek and Salt Creek catchments.  The shaded region is the confidence 

interval.  The hollow circles are the annual maximum peak discharges used for the 

analysis.  Weibull’s plotting position formula is used to calculate the exceedance 

probabilities. 
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Figure VII - 4.  Comparison of the geometric width function estimated at the outlet of the 

Old Mans Creek and Salt Creek catchments 
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Figure VII - 5.  Comparison of the hydrographs at the outlet of the two catchments that 

are simulated using a fixed rainfall depth of 25 mm that is applied over a range of 

durations. 
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Figure VII - 6.  Comparison of the flood scaling exponent and intercept estimated for the 

two catchments using a fixed rainfall depth of 25 mm that is applied over a range of 

durations. 
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Figure VII - 7.  Comparison of simulated flood frequencies computed at the outlet of Old 

Mans Creek and Salt Creek catchments. 
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CHAPTER VIII 

CONNECTING EVENT AND QUANTILE SCALING OF PEAK 
FLOODS: IMPLICATIONS TO REGIONAL FLOOD FREQUENCY 

ESTIMATIONS  

8.1. Introduction 

I showed in previous chapters how the interplay among rainfall intensity, duration, 

antecedent soil moisture state, hillslope overland flow velocity, channel flow velocity, 

and drainage network geometry affect the spatial scaling structure of peak discharges.  In 

Chapter-VII, I showed how the effect of the drainage network geometry on the peak 

discharge at the rainfall-runoff event scale propagates to the annual time scale affecting 

flood frequencies.  A remaining question is to test if, for a given catchment, the effect of 

rainfall intensity and duration at the rainfall-runoff event scale can describe the spatial 

scaling structure of peak discharges of a given quantile at the annual time scale and hence 

flood frequencies.  I address this issue in this chapter. 

In Chapter-III, I showed that the scaling structure of peak discharges at the rainfall-

runoff event scale can be connected to the scaling of peak-discharge quantiles provided 

that peak discharges are selected in such a way that they come from the same basin wide 

rainfall-runoff event.  However, our attempt to fully understand the connection between 

single event peak discharge scaling and peak discharge quantile scaling is limited by the 

lack of sufficient empirical data.  To circumvent this problem, I used the hydrologic 

model presented in Chapter-IV as a diagnostic tool.  The reminder of the chapter is 

organized as follows.  I begin by discussing the study area.  This is followed by the 

model setup used to systematically address the question I posed earlier and an in depth 
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discussion of the simulation results.  I conclude the chapter by summarizing the main 

findings. 

8.2. Study area 

I use the 21 km2 Goodwin Creek Experimental Watershed (GCEW) as a test 

catchment.  The catchment, which is heavily instrumented to a level not seen elsewhere 

in the world, is located near Batesville, Mississippi.  The catchment is continuously 

monitored by 31 rain gauges and 14 stream gauges.  Ogden and Dawdy (2003) analyzed 

279 rainfall-runoff events and showed for the first time the existence of a scale invariant 

spatial organization of peak flows at the rainfall-runoff event scale.  Furey and Gupta 

(2005) later on investigated 148 rainfall-runoff events from the same catchment and 

showed how the event to event variability of the scaling exponent and intercept is 

controlled by the event to event variability of excess rainfall duration and depth.  There is 

an ongoing effort to empirically connect peak discharge event scaling to quantile scaling 

using data from the GCEW (Furey et al. submitted).  I selected the same study site to 

complement this ongoing effort. 

8.3. Model setup 

I simulated a spatially variable runoff response by introducing a spatially variable 

runoff coefficient ( ) that was sampled from a uniform distribution .  This 

will allow for a spatially variable runoff response.  As a result, when this experiment is 

conducted within a Monte Carlo simulation framework, peak discharges that have the 

same probability of exceedance can come from different realizations (events).  In this 

Monte Carlo simulation experiment, rainfall is kept spatially uniform and temporally 
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constant over its duration. This is a reasonable assumption given the basin’s small size.  

Two cases of channel velocities were then considered: constant (linear) and nonlinear.  

The channel velocity is constant both in space and time for the constant channel velocity 

case whereas it is a nonlinear function of upstream area and channel storage for the 

nonlinear channel velocity case which results in a channel flow velocity that is variable 

both in space and time. The later case has its root in hydraulic geometry (Leopold et al. 

1964; Mantilla 2007).  Furthermore, two cases of hillslope velocities were considered: 

constant (linear) and nonlinear.  A spatially uniform and temporally constant hillslope 

overland flow velocity was used in the first case.  In the second case, a spatially uniform 

but temporally variable hillslope overland flow velocity was used by dynamically 

calculating the velocity using the Manning’s equation.  These different channel and 

hillslope overland flow velocity cases are important to show how different channel and 

hillslope overland flow velocity setups could lead to different results as the rainfall 

intensity and duration changes. 

8.4. Results 

Before I embark on discussing the relationship between single peak discharge event 

scaling and quantile scaling, it is imperative to discuss how the spatial variability of the 

runoff coefficient introduced at the hillslope scale affects the runoff response at different 

spatial scales in the basin.  The results presented in FigureVIII-1 show that the spatially 

variable  introduced at the hillslope scale led to a significant variability of the runoff 

response in small-scale sub-basins (FigureVIII-1, top row). However, the variability of 

the runoff response decreases with increasing spatial scale and appear to converge to the 

mean runoff response at the GCEW outlet (FigureVIII-1, bottom row).  The same result 
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is reported in Chapter V where the combined effect of spatially variable rainfall, , and 

 on the runoff response is shown to decrease with increasing spatial scale.  The results 

reported in Chapter V further show that, as the drainage area gets larger, the runoff 

response converges to the mean hydrograph that is obtained by using a spatially uniform 

mean rainfall intensity, , and  values as input. 

8.4.1. Peak discharge event scaling: effect of rainfall intensity 

Quantile-based analyses of peak discharge scaling have shown that the scaling 

exponent ( ) decreases with decreasing probability of occurrence in some regions of the 

continental US and it increases with decreasing probability of occurrence in other regions 

of the US (Gupta and Dawdy 1995). However, to the best of my knowledge, there is no 

study that looked into how the scaling statistics changes with probability of occurrence of 

peak discharges at the rainfall-runoff event scale.  How  changes with changing 

probability of occurrence of peak discharge events can be studied by simulating different 

rainfall intensity values and assuming that higher rainfall intensity is associated with less 

frequent peak discharge events.  To this end, I simulated several combinations of rainfall 

intensity and duration and the results are presented in FigureVIII-2. 

The results presented in FigureVIII-2 show that  is independent of the rainfall 

intensity when both  and  are constant (FigureVIII-2, left column).  FigureVIII-2 

(middle column) shows that, when the hillslope is linear and channel flow velocity is 

nonlinear,  increases with increasing rainfall intensity before converging to some 

limiting value that is largely determined by the rainfall duration.  The observed increase 

in  with increasing rainfall intensity is due to the fact that  increases as a function of 
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rainfall intensity.  An increase in  means that more subcatchments achieve saturation 

for a given rainfall duration.  FigureVIII-2 (right column) shows that  decreases with 

increasing rainfall intensity for shorter rainfall durations whereas it increases with 

increasing rainfall intensity for longer rainfall durations.  This result is a manifestation of 

the increasing  with increasing rainfall intensity.  The results also show that the 

intercept is a linear function of rainfall intensity except when the hillslope is nonlinear.  

All these results are reported in greater detail in Chapters IV and V 

We can conclude from the above results that  is independent of the probability of 

occurrence of peak discharges when the runoff generation and transport mechanism is 

linear.  When the runoff generation mechanism is linear and transport in channels is 

nonlinear,  increases with decreasing probability of occurrence of peak discharges.  

Note that the rainfall intensity is used as a proxy for probability of exceedance of peak 

flows.  Furthermore, for the more realistic case of nonlinear runoff generation and 

transport mechanism, results show that  decreases with decreasing probability of 

exceedance at shorter rainfall durations whereas it increases with decreasing probability 

of occurrence at longer rainfall durations.  The results also show that  increases with 

decreasing probability of exceedance irrespective of the type of runoff generation and 

transport mechanism.  These results provide a first order understanding into how the 

scaling statistics change with changing probability of occurrence of peak discharge 

events.  
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8.4.2. Peak discharge quantile scaling: effects of rainfall intensity 

I simulated 100 realizations of spatially variable  that are sampled from 

 for different combinations of rainfall duration and intensity.  For each 

realization, peak discharge data was obtained from different locations that represent a 

range of spatial scales in the basin.  The probability of exceedance of each of the 

resulting peak discharges is then calculated using the Weibull plotting position formula.  

This means that peak discharges that represent different spatial scales in the basin and 

have the same exceedance probability can come from different realizations (rainfall-

runoff events). 

FigureVIII-3 shows the result for which the rainfall depth varies between 1 and 55 

mm over a fixed duration of 1-minute.  The results show that, for a given class of rainfall 

duration and intensity,  decreases with decreasing probability of exceedance whereas 

 increases with decreasing probability of exceedance.  The results discussed in section 

8.4.1 are clearly at play in determining the scaling structure of peak discharge quantiles.  

FigureVIII-3 (left column) shows that  is independent of rainfall intensity when both  

and  are constant.  However, for each non-exceedance probability,  increases with 

increasing rainfall intensity when  is nonlinear and is constant (FigureVIII-3, middle 

column) whereas it decreases with increasing rainfall intensity when both  and  are 

nonlinear (FigureVIII-, right column).  This later result would change when the rainfall 

duration is greater than or equal to 120-min.  For example, FigureVIII-4 (right column) 

shows that  increases with increasing rainfall intensity when the rainfall duration gets 
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longer which in this case is 360-min.  Note here that the same result was obtained from 

analysis of peak discharge events (FigureVIII-1, right column). 

8.4.3. Peak discharge quantile scaling: effects of rainfall duration 

Few empirical studies (Furey and Gupta 2005; Furey and Gupta 2007) and several 

theoretical studies of an event scale peak discharge scaling analysis (e.g., Gupta and 

Waymire 1998; Menabde and Sivapalan 2001) including the results reported in Chapters 

IV, V, And VI have shown that  increases with increasing rainfall duration.  In this 

section, we look into how peak discharge quantile scaling statistics change with rainfall 

duration.  To this end, I simulated 100 realizations of  for a range of rainfall durations 

that have a fixed volume of 5-mm.  The results shown in FigureVIII-5 show that, for a 

given rainfall duration,  decreases with decreasing probability of exceedance whereas 

 increases with decreasing probability of exceedance.  The results also show that, for a 

given probability of exceedance,  increases with increasing rainfall duration whereas  

decreases with increasing rainfall duration.  I have shown in Chapter IV that this  later 

result is a direct consequence of the decreasing rainfall intensity, which is a result of the 

fixed rainfall volume that is applied over a range of durations. 

8.4.4. Connecting single event peak discharge scaling to quantile scaling 

The results I presented so far indicate that rainfall intensity and duration affect the 

scaling statistics of peak discharge quantiles in the same way they affect the scaling 

statistics of peak discharges at the rainfall-runoff event scale.  This means that there is 

indeed a physical connection between quantile scaling and single event scaling of peak 

discharges provided that the peak discharges are selected on a rainfall-runoff event basis.  

In other words, peak discharges observed at all locations in the basin following a basin 

θ

θ

θ
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wide runoff generating event make it to the sample used to calculate peak discharge 

quantiles.  I have called such quantiles as Type-I quantiles in Chapter-III.  In this case, 

since multiple basin wide runoff generating rainfall event can occur in any given year, the 

approach leads to the selection of multiple peak discharges at each gauging site per year.  

This approach can be compared to the peak over threshold approach of flood frequency 

analysis, with the threshold in this case being the occurrence of a basin wide runoff-

generating rainfall event over the time window that is equivalent to the basin’s 

concentration time.  In such a way, we can make sure that the peak discharges that are 

observed at all gauging sites are driven by rainfall and catchment physical properties that 

have similar characteristics.   

In order to show the physical connection between quantile scaling and single event 

scaling of peak discharges, I started by assuming that each realization of  represents a 

single rainfall-runoff event.  A probability of exceedance was then assigned to each event 

based on the plotting position of the peak discharge obtained at the outlet.  The grey 

circles in FigureVIII-6 show the scaling statistics for individual realizations of rainfall-

runoff events that are driven by rainfall that has 1-min duration and 5-mm depth.  The 

dark black circles are peak discharge quantile scaling statistics calculated using the same 

set of results as above but a probability of exceedance was assigned to individual peak 

discharge values obtained from individual locations of different spatial scales in the 

basin.  Peak discharge values that have the same exceedance probability were then used 

to calculate the peak discharge quantile scaling statistics.  The results show that single 

event peak discharge scaling statistics are bounded by the scaling statistics of peak 

discharge quantiles.  More specifically, the expected value of single event peak discharge 
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scaling statistics is equal to the 50th percentile of the peak discharge quantile scaling 

statistics.  Similar results were obtained for different combinations of rainfall intensity 

and duration. 

The connection between single event scaling and quantile scaling exists only 

when they belong to the same class of rainfall intensity, duration, and other catchment 

physical characteristics that determine the magnitude of the runoff response at the event 

scale.  In order to demonstrate this, I simulated 100 realizations of  for each class of 

rainfall depth (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, and 55 mm) and duration (1, 5, 10, 

15, 30, 60, 120, 180, 360, and 720 minutes) combination.  This has resulted in 1200 

rainfall-runoff events that are simulated using the nonlinear hillslope overland flow and 

channel flow routing equations.  Finally, I mixed all these simulations into a single group 

and calculated both event and quantile scaling statistics.  For both cases, probability of 

exceedance was calculated based on the peak discharge obtained at the basin outlet.  The 

results presented in FigureVIII-7 show that it is difficult to predict single event scaling 

statistics from quantile scaling statistics and vice versa.  Based on this, we can say that 

the scaling statistics of peak discharge quantiles reported by the USGS in their regional 

flood frequency studies lack physical meaning since they combine different classes of 

rainfall and catchment physical properties that are responsible for driving the streamflow 

response at the event scale. 

8.5. Conclusions 

Using the Goodwin Creek Experimental Watershed (GCEW) as a study 

catchment, I conducted a Monte Carlo simulation experiment where I simulated 100 
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realizations of runoff coefficient that is randomly variable in space.  For each set of 100 

realizations, I used rainfall that has a unique intensity and duration.  In this setup, each 

realization produces a spatially variable streamflow response and can be considered as 

representing a single basin wide rainfall-runoff event.  The experiment is repeated using 

various combinations of rainfall intensity and duration.  Using the simulated peak 

discharges at 14 streamflow gauging sites that are extracted for each realization, the 

following analysis was undertaken.  First, for each realization that is forced by a unique 

combination of rainfall intensity and duration, I calculated the flood scaling exponent and 

intercept.  I assigned a probability of exceedance for each rainfall-runoff event based on 

the simulated peak discharge at the catchment outlet. Second, I ranked the streamflow 

response simulated at each streamflow gauging site and calculated the peak discharge 

quantiles.  I previously called these quantiles, which are selected based on the occurrence 

of a basin wide single rainfall-runoff event, as Type-I quantiles.  In this step I also 

calculated the flood scaling exponent and intercept corresponding to peak discharges that 

have the same exceedance probability.  Finally, I compared the scaling exponents and 

intercepts calculated for individual rainfall-runoff events (realizations) with the 

corresponding scaling parameters calculated for Type-I quantiles.  The results show that 

the expected values of the flood scaling exponent and intercept of single rainfall-runoff 

events are equivalent to the expected values of the flood scaling exponent and intercept 

calculated using Type-I peak discharge quantiles.  This indicates that there is indeed a 

connection between event scaling and quantile scaling provided that peak discharges used 

for quantile based analysis are selected from nested watersheds on a rainfall-runoff event 

basis than selecting only one peak discharge event per year per streamflow gauging site. 
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Figure VIII - 1.  The runoff response at two different spatial scales in the basin (0.18 km2 

(top row) and 21.39 km2 (bottom row)) and three different cases of channel and hillslope 

overland flow velocity combinations (constant  and  (left column); nonlinear  and 

constant  (middle column); and nonlinear  and  (right column)). The grey lines 

show the runoff response for each of the 100 realizations of runoff coefficient we 

simulated. The dark black line is for the case where a spatially uniform mean runoff 

coefficient value of 0.5 was used. 
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Figure VIII - 2.  Effect of rainfall intensity on the power-law scaling structure of peak 

discharge events.  The results shown here are for the cases of constant  and (left 

column); nonlinear  and constant  (middle column); and nonlinear  and  (right 

column). 
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Figure VIII - 3.  Peak discharge quantile scaling statistics for rainfall duration of 1-min 

and rainfall depths of 1, 5,10,15,20,25,30,35,40,45,50, and 55 mm. 100 realizations of  

were simulated for each rainfall depth group.  The results shown here are for the cases of 

constant  and (left column); nonlinear  and constant  (middle column); and 

nonlinear  and  (right column). 
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Figure VIII - 4.  Peak discharge quantile scaling statistics for rainfall duration of 360-min 

and rainfall depths of 1, 5,10,15,20,25,30,35,40,45,50, and 55 mm.  100 realizations of 

 were simulated for each rainfall depth group.  The results shown here are for the cases 

of constant  and (left column); nonlinear  and constant  (middle column); and 

nonlinear  and  (right column). 
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Figure VIII - 5.  Peak discharge quantile scaling statistics for constant rainfall depth of 5-

mm that occur over durations of 1,5,10,15,30,60,120,180,360, and 720 minutes.  100 

realizations of  were simulated per each rainfall duration.  The results shown here are 

for the cases of constant  and (left column); nonlinear  and constant  (middle 

column); and nonlinear  and  (right column). 
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Figure VIII - 6.  Peak discharge quantile scaling statistics (dark circles) and peak 

discharge event scaling statistics (grey circles) for rainfall duration of 1-min and rainfall 

depths of 5 mm.  100 realizations of  were simulated.  The results shown here are for 

the cases of constant  and (left column); nonlinear  and constant  (middle 

column); and nonlinear  and  (right column). 
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Figure VIII - 7.  Peak discharge quantile scaling statistics (dark circles) and peak 

discharge event scaling statistics (grey circles) for rainfall depths of 1, 5, 10, 15, 20, 25, 

30, 35, 40, 45, 50, and 55 mm that are each applied over durations of 1, 5, 10, 15, 30, 60, 

120, 180, 360, and 720 minutes.  100 realizations of  were simulated for all rainfall 

depth and duration combinations. 
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CHAPTER IX 

CAN FLOODS IN LARGE RIVER BASINS BE PREDICTED FROM FLOODS 
OBSERVED AT SMALL SUBBASINS? 

9.1. Introduction 

Foundational analyses of peak discharge data from rainfall-runoff events from 

nested watersheds have been driving the development of a nonlinear geophysical theory 

of floods over the past couple of decades (Dawdy et al. 2012; Gupta 2004; Gupta et al. 

1996; Gupta et al. 2010; Gupta et al. 2007; Gupta and Waymire 1998; Ogden and Dawdy 

2003).  The main hypothesis of the theory is that, provided that the entire basin receives a 

runoff generating rainfall event, the solution of the coupled mass and momentum 

conservation equations over the self-similar drainage network leads to a scale invariant 

spatial organization of peak discharges that is described by a power law relation as, 

)()(]|[ e
e AeAQE θα=  Equation IX-1 

where Qe is peak discharge [m3/s] for a given rainfall-runoff event ‘e’, A is upstream 

drainage area [km2], α(e) is the scaling intercept [m3/s], θ(e) is the scaling exponent.  This 

hypothesis is validated through the results presented in Chapters III and VI as well as a 

host of other empirically based studies (Furey and Gupta 2005; Gupta et al. 2010; Ogden 

and Dawdy 2003) and numerical rainfall-runoff simulations in synthetic and natural river 

basins (Furey and Gupta 2007; Gupta et al. 1996; Gupta et al. 2007; Gupta and Waymire 

1998; Mandapaka et al. 2009; Mantilla et al. 2006; Mantilla et al. 2011; Menabde and 

Sivapalan 2001; Menabde et al. 2001). 

Recent studies have been geared towards describing the event to event variability of 

the scaling intercept α(e) and scaling exponent θ(e) in terms of rainfall and catchment 
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physical properties that govern the generation of streamflow in space and time, 

contributing towards the long standing hydrologic problem of predictions in ungauged 

basins (PUB) (Hrachowitz et al. 2013; Sivapalan et al. 2003).  The importance of the 

problem ranges from addressing the effect of climate change on flood frequency to 

predicting floods in ungauged basins, which is typical of developing regions of the world.  

Provided that the physical connection between the flood scaling parameters (i.e., α and θ) 

and rainfall and catchment physical properties is established, the nonlinear geophysical 

theory of floods can be used to predict peak floods using rainfall and catchment physical 

properties that can be measured either directly or indirectly.  To this end, few studies 

have been undertaken to investigate how the interplay among the network geometry, 

excess rainfall duration, depth, antecedent soil moisture, hillslope overland flow velocity, 

and channel flow velocity control the flood scaling parameters.  Chapters IV to VIII were 

devoted to contribute to the understanding of these issues. 

The review of the literature presented in Chapter II indicates that the efforts have 

been focused on examining the physical connections that both the scaling exponent and 

intercept have with rainfall and catchment physical properties.  In particular, much 

attention has been given to the scaling exponent in comparison to the scaling intercept 

(Gupta et al. 1996; Gupta and Waymire 1998; Mandapaka et al. 2009; Mantilla et al. 

2006; Menabde and Sivapalan 2001; Menabde et al. 2001).  The study presented in this 

chapter is inspired by a recent discovery by Gleason and Smith (2014), who proposed a 

framework that can be used for accurate estimation of river discharge from measurements 

of the flow width that is obtained from satellite images.  At the core of their proposed 

methodology is the largely ignored empirical relationship between the intercepts and 
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exponents of the hydraulic geometry power law equations first proposed in the seminal 

work of Leopold and Maddock (1953).  Specifically, their proposed streamflow 

measurement framework uses the observed at-many-stations relationship between the 

intercept a and exponent b in the power law hydraulic geometry relation baQw = , where 

w is the river’s flow width and Q is discharge.   

Motivated by this breakthrough, I investigated if there exists a physically meaningful 

relationship between the scaling intercept α(e) and scaling exponent θ(e) in the power law 

relation between peak discharges and drainage area shown in Equation IX-1.  If a 

physically meaningful relationship between the scaling intercept and exponent exists, it 

would suggest that the problem of flood prediction in ungauged basins using this power 

law relationship between peak discharge and drainage area is simplified to estimating 

only the scaling intercept from rainfall and catchment physical properties.   Interestingly, 

the intercept appears to be simpler to measure or estimate as it is equivalent to the 

observed peak discharge at the outlet of subcatchments that have a unit drainage area, i.e., 

1 km2 when metric units are used (Furey and Gupta 2005). 

The chapter is organized as follows.  In section 9.2 I discuss the results from the data 

analysis conducted to test if there is a physically meaningful relationship between the 

scaling exponent and intercept.  In section 9.3 I provide further evidence for the results 

reported in section 9.2 using peak discharge data obtained from observations and 

numerical simulations of the study basin.  In section 9.4 I present a methodology for 

predicting the scaling intercept from small-scale peak discharge observations in the basin.  

Finally, in section 9.5 I demonstrate how the relationship between the scaling exponent 

and intercept can be used to predict peak discharges across a range of spatial scales in the 
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basin.  I close the chapter with summary of the main findings and concluding remarks in 

section 9.6. 

9.2. Relationship between the scaling intercept and exponent 

I use the 52 rainfall-runoff events that occurred in the Iowa River basin between 

2002 and 2013, which I identified and reported in detail in Chapter-III.  Figure IX-1 

shows the scaling plot of peak discharges resulting from each of these rainfall-runoff 

events. I used the 52 pairs of scaling intercepts and scaling exponents shown in Figure 

IX-1 to test if a statistically significant relationship exists between the two.  To this end, I 

regressed the scaling exponent on the natural logarithm of the scaling intercept.  The 

results presented in Figure IX-2 show that there is a strong log-linear relationship 

between the scaling exponent and the scaling intercept.  The resulting linear regression 

model is summarized by the following equation  

( )αθ ln0845.0655.0 −=  Equation IX-2 

A Student’s t-test on the coefficients of equation (2) indicate that they are statistically 

significant at the 99% confidence interval.  Examination of the Q-Q plot of the residuals 

and the Shapiro-Wilk test for normality, W=0.99 and p=0.93, show that the residuals are 

normally distributed.  Also, the Breusch-Pagan test for homoscedasticity, BP=0.03 and 

p=0.87, indicate that the residuals have constant variance.  These results confirm the 

robustness of the statistical inference of the scaling exponent from the natural logarithm 

of the scaling intercept.   

The log-linear relationship between the scaling exponent and scaling intercept shown 

in Figure IX-2 is an important finding because it essentially reduces the problem of flood 
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prediction in ungauged basins to a one-parameter estimation problem, i.e., the scaling 

intercept from rainfall and catchment physical properties.  This is of course based on the 

assumption that the log-linear relationship between the scaling exponent is already 

parametrized using either some physical reasoning or following the same procedure that I 

followed to arrive at Equation IX-2 using hisorical peak discharge observations.   

An additional interesting insight is that, in the flood scaling relationship shown in 

Equation IX-1, the scaling intercept α(e) is equivalent to the expected value of peak 

discharges observed at subcatchments that have a drainage are of 1 km2 (Furey and Gupta 

2005).  This can be easily shown by setting the value of the drainage area in Equation IX-

1 to unity.  Because of this, the scaling intercept appears to be simpler to estimate than 

the scaling exponent.  I postulate that, if the observed log-linear relationship is physically 

meaningful, we can use this relationship to predict floods across a range of spatial scales 

in the basin by only estimating the scaling intercept from rainfall and catchment physical 

properties that control the magnitude of peak dicharges in small scale subcatchments. 

9.3. Physical basis of the relationship between the scaling exponent and intercept  

Figure IX-2 shows that the scaling exponent decreases as the scaling intercept 

increases.  Why?  Is this observation physically meaningful? Or is it simply the 

consequence of the OLS regression procedure used to estimate α(e) and θ(e) in our 

attempt to describe the spatial scaling properties of observed peak discharges in terms of 

the upstream drainage area?  I address these questions in the following sections using 

evidence in empirical data and results from the numerical simulation of hypothetical 

rainfall-runoff events in the Iowa River basin.  
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9.3.1. Evidence based on empirical data 

Let us begin with inspecting observational peak discharge data from the Iowa 

River basin.  Figure IX-3 shows the combined scatter plot of all of the peak discharges 

resulting from the 52 rainfall-runoff events shown in Figure IX-1.  The grey lines in 

Figure IX-3 depict the power law regression line fitted to each rainfall-runoff events.  

The dark solid regression lines, which are fitted to the corresponding peak discharges 

shown in blue and light blue colors, depict rainfall-runoff events that resulted in the 

smallest and highest peak discharge values observed at the smallest gauged subcatchment 

in the basin.  Visual examination of Figure IX-3 reveals that the variance of observed 

peak discharges at each stream gauge site decrease with increasing catchment spatial 

scale.  Although not shown here for the sake of brevity, my calculation of the coefficient 

of variation (CV) of observed peak discharges at each stream gauge sites indicates that it 

decreases with drainage area.  This property is also reported to exist in annul maximum 

peak discharges, whose CV exhibit a tendency to decrease with drainage area (Bloschl 

and Sivapalan 1997; Smith 1992). 

The consequence of the decreasing CV with drainage area of peak discharges 

shown in Figure IX-3 is that an increase in the peak discharge at smaller scale 

subcatchments do not necessarily lead to an equivalent increase in the peak discharges 

observed at larger catchment scales.  In other words, the rate at which peak discharges 

increase with drainage area decreases as the streamflow response at smaller catchment 

scales increases.  This implies that the rate at which peak discharges increase with excess 

rain decreases with drainage area. 
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In Chapter-VI, I analyzed the same dataset and showed that the excess rainfall 

depth has a statistically significant positive relationship with the scaling intercept and 

negative relationship with the scaling exponent.  In Chapter-V, I showed that an increase 

in the hillslope overland flow velocity, which itself has a positive relationship with excess 

rainfall depth, leads to a higher rate of increase of peak discharges at smaller catchment 

scales than at larger catchment scales leading to a decrease in the scaling exponent.  

These results suggest that the effect of hillslope overland flow velocity, which is a 

function of the excess rainfall depth for a given catchment topography, land use and land 

cover, on peak discharge decreases with increasing drainage area.  Note also that the 

streamflow response is affected more and more by attenuation as the flood wave moves 

downstream.  As a direct consequence of these physical phenomena, the scaling intercept 

increases with excess rainfall depth whereas the scaling exponent decreases with excess 

rainfall depth.  Similarly, Robinson et al. (1995) also showed that the hillslope overland 

flow velocity dominates the streamflow response of smaller catchments whereas drainage 

network geomorphology, along which the fundamental process of flow aggregation, 

attenuation and translation occurs, dominates the streamflow response at larger catchment 

scales.  These results show that the decreasing relationship between the scaling exponent 

and intercept is explained by rainfall and catchment physical processes that govern the 

generation of streamflow in space and time. 

9.3.2. Evidence from numerical simulations 

To further demonstrate how rainfall and catchment physical properties control the 

relationship between the scaling exponent and intercept, I undertook a numerical 

simulation experiment in the Iowa River basin using the hydrologic model that is based 
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on the decomposition of the landscape to hillslopes and channel-links as discussed in 

Mantilla and Gupta (2005), which I described in Chapter-IV.  I setup a systematic 

simulation experiment where I altered the model configuration by using different 

formulations of hillslope overland flow and channel flow velocities.  These simulations 

are designed with the objective of testing if different approximations of hillslope overland 

flow and channel flow velocities could lead to different relationships between the scaling 

exponent and scaling intercept.  If different model formulations lead to different results 

that are either similar or dissimilar to the result shown in Figure IX-2, it will then mean 

that the log-linear relationship between the scaling exponent and scaling intercept is 

controlled by the physics behind the generation of streamflow in space and time.   

The results presented in Figure IX-4 show that different model configurations of 

hillslope and channel flow velocity values result in a different relationship between the 

scaling exponent and scaling intercept.  Specifically, when constant hillslope and channel 

flow velocities are used (Figure IX-4a), the scaling exponent is independent of the scaling 

intercept.  This is because, the increasing excess rainfall depth has no effect on the 

hillslope and channel velocity values, which are set to always be constant.  This is similar 

to the Unit Hydrograph theory (Sherman 1932), which postulates that the streamflow 

response as depicted by the hydrograph is a linear function of the excess rainfall depth for 

a given excess rainfall duration.  Additional results show that when the constant hillslope 

velocity and a nonlinear channel flow velocity formulation is used (Figure IX-4b), the 

scaling exponent increases with scaling intercept as the excess rainfall depth increases.  

This is because of the nonlinear channel flow velocity formulation (see Equation IV-11) 

which allows for the increase in channel flow velocity as a function of drainage area and 
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discharge.  The results shown in Figure IX-4a and b are contrary to the findings from 

empirical data analysis shown in Figure IX-2. 

Results from the simulation of the Iowa River basin using nonlinear hillslope 

overland flow (i.e., Manning’s equation) and constant channel flow velocity formulations 

(Figure IX-4c) suggest that the scaling exponent decreases with the scaling intercept as 

the excess rainfall depth increases.  This is because the hillslope overland flow velocity 

increases with increasing excess rainfall depth and, as a result, peak discharges at smaller 

catchment scales increase at a much faster rate than peak discharges observed at larger 

catchment scales.  Finally, when nonlinear hillslope overland flow and channel flow 

velocity formulations are used (Figure IX-4d), which are reasonable approximations of 

reality, the scaling exponent decreases with the scaling intercept as the excess rainfall 

depth increases.  Together, all these results confirm that the decreasing log-linear 

relationship between the scaling exponent and intercept shown in Figure IX-2 is a result 

of rainfall and catchment physical processes that control the streamflow response in space 

and time, and not a statistical artifact. 

9.4. How the scaling intercept can be predicted from observational data 

The results presented in Section 9.3 suggest that the log-linear relationship between 

the scaling exponent and scaling intercept is a product of the physics of runoff generation 

in space and time.  The next step is to explore how the scaling intercept can be predicted 

from certain observables in the basin.  To this end, I propose an avenue that is based on 

the physical meaning of the scaling intercept, which equates the intercept to the expected 

value of peak discharges observed at subcatchments that have a unit drainage area (Furey 

and Gupta 2005).  I use this concept to predict the scaling intercept using peak discharges 
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observed at the smallest available gauged subcatchment in the Iowa River basin whose 

drainage area is 7 km2 (USGS ID: 05464942).   

Using data from the 52 rainfall-runoff events shown in Figure IX-1, I regressed the 

natural logarithm of the scaling intercept on the natural logarithm of the peak discharge 

observed at the 7 km2 subcatchment in the basin.  The results presented in Figure IX-5 

show that there is a strong log-log relationship between the scaling intercept and the peak 

discharge observed at the smallest gauged subcatchment in the basin.  The following 

equation summarizes the resulting linear regression model: 

21.1)ln(09.1)ln( 27 −= kmQα  Equation IX-3 

A Student’s t-test on the coefficients of Equation IX-3 indicate that they are 

statistically significant at the 99% confidence interval.  Examination of the Q-Q plot of 

the residuals and the Shapiro-Wilk test for normality, W=0.96 and p=0.12, show that the 

residuals are normally distributed.  Similarly, the Breusch-Pagan test for 

homoscedasticity, BP=0.02 and p=0.88, indicate that the residuals have constant 

variance.  These results confirm the robustness of the regression model presented in 

Equation IX-3 and demonstrates that the scaling intercept can be predicted using the peak 

discharge observed at the smallest gauged subcatchments in the basin. 

9.5. Application of the log-linear relationship between the scaling exponent and 
intercept to predict peak discharges across scales 

I now propose a flood prediction framework that is based on the log-linear 

relationship between the scaling exponent and intercept.  I demonstrate the framework 

using four example rainfall-runoff events that occurred in the basin over the spring and 
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summer of 2014.  This period includes the flood event of June-July 2014, which is the 

third largest flood event recorded at the basin’s outlet (USGS ID 05465500) over the past 

112 years of record.  I followed the following procedure to estimate the expected value of 

peak discharges across different spatial scales in the basin.  First, I obtained the observed 

peak discharge at the 7 km2 subcatchment (USGS ID 05464942) that corresponds to the 

particular rainfall-runoff event.  Second, I used the regression model presented in 

Equation IX-3 to estimate the scaling intercept from the observed peak discharge at the 7 

km2 subcatchment.  Third, the regression model presented in Equation IX-2 is used to 

estimate the corresponding scaling exponent from the natural logarithm of the scaling 

intercept estimated in step two.  Finally, the estimated scaling exponent and scaling 

intercept are used to predict the expected value of peak discharges across a range of 

spatial scales in the basin using Equation IX-1.  The steps presented so far provide the 

estimate of the expected value of peak discharges across a range of spatial scales for a 

given rainfall-runoff event in the basin.  However, the data presented in Figure IX-1 

shows that peak discharges exhibit variability around their expected value that is shown 

in black line in Figure IX-1.  Gupta et al. (submitted) recently introduced a framework 

that can be used to quantify the variability (uncertainty) of peak discharges around their 

expectation that is calculated using Equation IX-1.  They called the proposed framework 

the Natural Uncertainty Measure for Peak Discharges (NUMPD).  I briefly review the 

framework here. 

The NUMPD framework for quantifying the natural variability of peak discharges 

is based on two important findings.  The first is the finding by Peckham and Gupta 
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(1999) who showed that drainage area exhibits a ‘Generalized Horton Law’ that is 

written as follows.   

 Equation IX-4 

where ω is the Horton-Strahler stream order, Aω is the drainage area for stream order ω, 

1A  is the expected value of drainage area for order 1 streams, RA is the area ratio, and Z is 

a random variable whose expected value E[Z] = 1.  The symbol 
d
=  denotes equality in 

probability distributions of random variables.  The second finding is due to Gupta et al. 

(submitted) who showed that peak discharges exhibit a ‘Generalized Horton Law’ as 

follows. 

 Equation IX-5 

where ‘e’ denotes a rainfall-runoff event and it is used to index the 52 rainfall-runoff 

events used in this study, Qω,e is the peak discharge observed in a catchment that is 

drained by an order ω stream, θ(e) is the scaling exponent, and Y(e) is a random variable 

whose expectation E[Y(e)] = 1.  To arrive at Equation IX-5, they postulated that 
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Similarly, after combining and manipulating Equations IX-4 and IX-1 that is rewritten as 
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stream orders, they obtained the expression for the expected value of peak discharge for a 

stream of order ω that is written as, 

]E[)())((][)(]}|[{][ )(1)()(
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ee
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ωωωωω αα −==== Equation IX-7 

Combining Equations IX-6 and IX-7 yields Equation IX-5.  An important finding of 

Gupta et al. (submitted), which is obtained through the analysis of the empirical 

distribution of Y(e) obtained from the 52 rainfall-runoff events shown in Figure IX-1, is  

that the probability distribution of Y(e) is event independent suggesting the statistical 

simple scaling of Y in the limit of large Horton-Strahler order ω.  This discovery sets the 

foundation for quantifying the natural variability of peak discharges in nested catchments. 

Finally, the following procedure is used to establish the natural variability bound 

(confidence interval) for peak discharge predictions made using Equation IX-1.  First, the 

empirical distribution of Z (see Equation IX-4) is obtained by processing a 30 m digital 

elevation model (DEM) of the Iowa River basin obtained from the USGS.  This is done 

using CUENCAS (Mantilla and Gupta 2005).  The Horton-Strahler stream orders (ω) of 

the streams along which the USGS stream gauges are located are also determined.  It 

turns out that the stream gauges monitor flows from streams whose ω ranges between 4, 

at the smallest gauged subcatchments in the basin, and 9, at the outlet.  Analysis of the 

extracted drainage network shows that the values of 1A  and RA for the Iowa River basin 

are 0.045 km2 and 4.81, respectively.   Second, the empirical distribution of Y (Equation 

IX-5) is determined from the 52 rainfall-runoff events shown in Figure IX-1.  Third, ωA  

is estimated using the classical Horton law for drainage area 1
1 )( −= ω

ω ARAA .  eQ ,ω  is 

also estimated using equation (15) for all stream orders (ω=1,2,3…,9) in the basin.  Note 
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that Equation IX-7 uses as an input the scaling exponent θ(e) and the scaling intercept 

α(e) that are predicted using Equations IX-2 and IX-3.  Finally, the 95% confidence 

interval over which peak discharges naturally vary is estimated by combining the results 

from step three and the empirical probability distributions of the random variables Z and 

Y obtained in steps one and two, respectively.   

The results presented in Figure IX-6 depict comparison of the observed and predicted 

peak discharges for the four rainfall-runoff events that occurred in the Iowa River basin 

in the spring and summer of 2014.  The grey circles depict the peak discharges observed 

at the USGS stream gauge stations.  The black solid lines represent the power law fitted 

to the observed peak discharges.  The blue line is the expected value of peak discharges 

estimated using Equations IX-2 and IX-3.  The red lines depict the 95% confidence 

interval over which peak discharges naturally vary and are estimated using the NUMPD 

framework proposed by Gupta et al. (submitted).  The observed (αobs, θobs) and predicted 

(αpred, θpred) flood scaling parameters are also shown on each panel. It can be seen that the 

log-linear relationship between the scaling exponent and scaling intercept shown in 

Equations IX-2 and the log-log dependence of the scaling intercept on the peak discharge 

that is observed in the smallest gauged subcatchments in the basin can be used in 

conjunction with the NUMPD framework to reasonably predict peak discharges across 

scales in the basin.  This is an important discovery that can be used to predict peak floods 

in ungauged basins.  Considering the fact that there is a time delay between the time 

when peak discharges are observed in small scale subbasins and the time when peak 

floods are observed at large scale basins, the flood prediction framework proposed in this 

study can also be used for short term flood forecasting purposes. 
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9.6. Summary and Conclusion  

Using 52 rainfall-runoff events observed in the Iowa River basin over a 12-year 

period between 2002 and 2013, I revealed an entirely overlooked log-linear relationship 

between the exponent and intercept of the power law relationship that characterizes the 

scaling invariance of peak discharges with drainage area, which is often observed in 

nested watersheds following a basin wide runoff generating rainfall event.  This finding 

reduces the number of flood scaling parameters we need to infer from rainfall and 

catchment physical properties in order to predict floods across a range of spatial scales in 

the basin using the nonlinear geophysical theory of floods.  I demonstrated the potential 

application of the discovery by formulating a framework that can be used to predict the 

expected value of peak discharges at large basin scales using peak discharges observed at 

the smallest gauged subcatchment in the basin.   

The proposed flood prediction framework is a four step process.  First, the scaling 

intercept is estimated from the peak discharge observed in the smallest gauged 

subcatchment in the basin, which in this case has a drainage area of 7 km2.  This step is 

based on the fact that the scaling intercept is equivalent to the expected value of peak 

discharges observed at the outlet of subcatchments that has a unit drainage area (Furey 

and Gupta 2005).  Second, the scaling exponent is estimated from the scaling intercept 

using the log-linear relationship observed between the two.  The log-linear relationship 

between the scaling exponent and intercept is established using peak discharge data from 

52 rainfall-runoff events.  Third, the expected value of peak discharges across a range of 

spatial scales is predicted using the estimated scaling exponent and scaling intercept that 

are used to parametrize the power law relationship between peak discharge and drainage 
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area.  Finally, the uncertainty (natural variability) of the predicted peak discharges is 

quantified by using a methodology that is recently proposed by Gupta et al. (submitted) 

and called Natural Uncertainty Measure for Peak Discharges (NUMPD).  The results 

show that peak floods at large basin scales can be reasonably predicted from peak floods 

observed in small scale subcatchments which typically have short streamflow response 

time.  These results suggest that the flood prediction framework that I proposed provides 

reasonable estimates of peak discharges across a range of spatial scales. 
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Figure IX - 1.  Scaling plot of peak discharges for 52 rainfall-runoff events that occurred 

in the Iowa River basin over the period 2002-2013.  Note that scaling intercept and 

exponent change from event to event. 
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Figure IX - 2.  Scatter plot of the scaling exponent versus the natural logarithm of the 

scaling intercept.  The ordinary least squares regression line is shown in black solid line.  
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Figure IX - 3.  Scatter plot of all the 52 peak discharge events observed in the basin 

following a single rainfall-runoff event. 
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Figure IX - 4.  Plot of simulation results that show how different formulations of the 

hillslope overland flow and channel flow velocities lead to different relationships 

between the scaling intercept and exponent.  The rainfall duration is set to one hour for 

all the simulations. The excess rainfall depth is shown in the legend. 
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Figure IX - 5.  Scatter plot of the natural logarithm of the scaling intercept versus the 

natural logarithm of peak discharges observed at a 7 km2 subcatchment of the Iowa River 

basin (USGS ID: 05465500).  The OLS regression line is shown in black solid line. 
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Figure IX - 6.  Comparison of observed and predicated peak discharges for four rainfall-

runoff events that occurred in the Iowa River basin in the spring and summer of 2014.  

Grey circles are observed peak discharges, solid black line is the power law fitted to 

observation whose parameters are shown on the plot (αobs, θobs), the dotted blue line 

connects the expected value of peak discharges that are calculated using the predicted 

flood scaling parameters (αpred, θpred), and the dotted red lines are the 95% confidence 

intervals estimated using the NUMPD framework. 
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CHAPTER X 

DISCUSSION AND CONCLUSIONS 

Conservation of mass dictates that the magnitude of peak discharge should increase 

with drainage area provided that there is no significant abstraction or other losses 

(storages) as the streamflow propagates downstream.  It is perhaps because of this simple 

fact that drainage area is the single most important explanatory variable that is used in 

regional flood frequency equations.  Empirical evidence from basins across different 

hydroclimatic regions show that the magnitude of peak discharges of a given probability 

of exceedance increases as a power-law function of drainage area suggesting the 

existence of a scale invariant spatial organization of peak discharge quantiles time 

(Bloschl and Sivapalan 1997; Goodrich et al. 1997; Gupta and Dawdy 1995; Gupta et al. 

2010; Lima and Lall 2010; Ogden and Dawdy 2003; Smith et al. 2010).  These studies 

also show that the parameters describing the power-law relationship, which we call the 

flood quantile scaling intercept and exponent, vary from one geographic region to 

another.  This observation has been the subject of a number of fundamental research 

efforts that addressed the following two important questions:  why do peak discharges 

exhibit scaling invariance with drainage area?  Why is it that the parameters of the 

power-law relationship between peak discharge quantiles and drainage area vary from 

one geographic region to another?  The answer to the first question cites the observed 

self-similarity of the river network, along which the fundamental processes of streamflow 

aggregation, translation, and attenuation occurs, as the reason behind the observed scaling 

invariance of peak discharge with drainage area (Gupta 2004; Gupta et al. 1996; Gupta 

and Waymire 1998; Menabde et al. 2001).  Researches that were geared to addressing the 
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second question revealed that the geographic variability of rainfall and catchment 

physical properties that control the magnitude of peak discharge at the rainfall-runoff 

event scale is the reason behind the observed variability of the flood quantile scaling 

parameters from one region to another and as a function of the probability of exceedance 

of flood peaks (Bloschl and Sivapalan 1997; Gupta and Dawdy 1995; Merz and Bloschl 

2003; Sivapalan et al. 2005; Smith 1992).  

Although the regional flood frequency methodology has been successfully used 

for design flood estimations in ungauged basins, it remains a statistical tool that is largely 

detached from the physics of runoff generation at the rainfall-runoff event scale (Bloschl 

and Sivapalan 1997; Dawdy et al. 2012; Gupta and Dawdy 1995).  This means that it is 

dependent on availability of historical data and as a result cannot be used in ungauged 

basins that are located in ungauged regions, which is typical of developing countries.  

Even in gauged regions, the regional flood frequency equations are changing every time 

they are updated to include newly available peak discharge data or use newly available 

statistical methods.  Eash et al. (2013) recently compared the 100 year flood that is 

estimated using the regional flood frequency equations that they established for the state 

of Iowa in 2013 with the 100 year flood that is estimated using the regional flood 

frequency equations that were established in 2001 and showed that they are different by 

roughly ±40%.  This has a huge implication on the overall cost of hydraulic infrastructure 

building and flood risk mitigation initiatives.  Moreover, the assumption of stationarity 

may no longer be valid as the hydroclimate is changing and hence the past may no longer 

be used to predict the future.  Under such circumstances, understanding the physical 
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mechanisms that control the spatial scaling property of peak floods is of paramount 

importance.  It is this challenge that inspired this dissertation. 

The physics behind the scaling invariance of peak discharges with drainage area 

can be understood by analyzing observed peak discharges at the rainfall-runoff event 

scale within a nested watershed.   There are very few studies that are conducted under 

this premise because of the lack of observational data.  The first empirical evidence for 

the existence of a scale invariant spatial organization of peak discharges at the rainfall-

runoff event scale within a nested watershed is due to Ogden and Dawdy (2003) who 

analyzed observational data from the 21 km2 Goodwin Creek Experimental Watershed 

(GCEW).  They showed also that the flood scaling exponent and intercept change from 

one rainfall-runoff event to another.  Furey and Gupta (2005) analyzed the same dataset 

and showed that the event to event variability of the flood scaling parameters can be 

partly explained by the intensity and duration of the excess rainfall that is associated with 

the peak discharge events.  Their study clearly showed the need to investigate the role of 

other catchment physical properties and to expand the spatial scale of the analysis.  

Progress in this line of research that will lead to the complete understanding and 

description of the physical reasons as to why the flood scaling intercept and exponent 

change from one rainfall-runoff event to another is tantamount to solving the long 

standing hydrologic problem of prediction in ungauged basins (PUB).  With this goal in 

mind, I conducted extensive analysis of empirical data obtained from the mesoscale Iowa 

River basin.  I also undertook extensive diagnostic rainfall-runoff simulations to address 

questions that otherwise are very difficult to address using empirical data alone.  I will 

summarize the main findings of my study as follows. 
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I began by analyzing streamflow data from the 32,400 km2 Iowa River basin for 

the period between 2002 and 2013.  I defined a rainfall-runoff event by following a two-

step process.  First, I check if a single peaked hydrograph is observed at the basin outlet.  

Second, based on the answer from the first step, I check if all the internal streamflow 

gauging sites also exhibit a significant streamflow response over the time window that is 

equivalent to the concentration time of the basin.  If these two criteria are met, it means 

that a basin wide runoff generating rainfall event has occurred.  Based on these two 

criteria, I have identified 52 rainfall-runoff events over the 13 years period of record.  

The results indicate that a scale invariant spatial organization of peak discharges 

frequently occurs in a mesoscale river basin such as the Iowa River basin.  In this 

Chapter, I also investigated if a connection exists between scaling of peak discharges 

obtained from single rainfall-runoff events and scaling of peak discharge quantiles.  To 

this end, I defined two type of peak discharge quantiles which I called Type-I and Type-II 

quantiles.  Type-I quantiles are peak discharge quantiles that I calculated using peak 

discharges that are obtained using the rainfall-runoff event definition described above.  

As such, there could be multiple peak discharges observed at all gauging sites in any 

given year.  This is similar to the peak over threshold method of flood frequency analysis 

with the threshold in this case being the basin wide occurrence of a runoff generating 

rainfall event.  Type-II quantiles are the traditional peak discharge quantiles estimated 

based on the annual maximum peak discharge observed at each gauging sites.  The 

results indicate that the expected value of the flood scaling parameters describing the 

spatial scaling propertied of peak discharges resulting from individual rainfall-runoff 

events is equivalent to the flood quantile scaling parameters estimated for Type-I 
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quantiles, suggesting for the possibility of a physically meaningful connection between 

the two.  The results also show that the flood scaling parameters estimated for individual 

events and Type-I quantiles are different from those estimated for Type-II quantiles.  This 

later result confirms the apparent disconnect of the traditional flood frequency estimation 

methodology from the physics governing the generation of the streamflow response in 

space and time at the rainfall runoff event scale. 

In Chapter IV, I conducted an extensive diagnostic simulation experiment using a 

hydrologic model that is based on the decomposition of the landscape to hillslopes and 

channel-links as discussed in Mantilla and Gupta (2005).  The experiments were 

conducted using three different watersheds from the state of Iowa representing different 

catchment spatial scales.  Moreover, I conducted the numerical experiments under the 

assumption that rainfall, runoff coefficient, and hillslope overland flow velocity are 

constant in space and time.  The results revealed how the interplay among rainfall 

intensity, duration, hillslope overland flow velocity, and channel flow velocity control the 

flood scaling intercept and exponent.  In particular, the results show that the flood scaling 

exponent increases with increasing rainfall duration and channel flow velocity.  The 

effect of hillslope overland flow velocity on the flood scaling exponent is shown to be a 

function of the rainfall duration.  For shorter duration rainfall events, the scaling 

exponent decreases with increasing hillslope overland flow velocity whereas the opposite 

is true for longer duration rainfall events with the transition occurring at a rainfall 

duration of about 3 hr.   When it comes to the flood scaling intercept, the results show 

that, while it is mainly an increasing function of the rainfall intensity (excess rainfall 

depth), it also increases with increasing hillslope overland flow velocity and channel flow 
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velocity.  In this Chapter, I also investigated how the scale break in the relationship 

between peak discharge and drainage area is controlled by the interplay among rainfall 

duration, hillslope overland flow velocity and channel flow velocity.  In particular, I 

showed that the spatial scale at which the scale break occurs decreases with increasing 

hillslope overland flow velocity whereas it increases with increasing rainfall duration and 

channel flow velocity.  The results also show that the flood scaling exponent is always 

greater than the exponent of the scaling of the width function maxima and converges to 

unity as the rainfall duration approaches the catchment’s concentration time.  The fact 

that the scaling exponent converges to unity when the catchment is in dynamic 

equilibrium (steady state) is in agreement with the Rational Formula, which is 

extensively used to predict design floods in small ungauged catchments and predicts that 

the peak discharge linearly increases with drainage area for a given excess rainfall 

intensity that is applied over a duration that is equivalent to the concentration time of the 

catchment (Mulvany 1850). 

In Chapter V, I expanded the diagnostic study by relaxing some of the 

assumptions I used in Chapter IV.  Specifically, I allowed the rainfall intensity, runoff 

coefficient, and hillslope overland flow velocity to randomly vary in space.  Additionally, 

I introduced a nonlinear hillslope overland flow formulation by using the Manning’s 

formula.  By varying the Manning’s n in space, this formulation allows for a hillslope 

overland flow velocity that varies both in space and time.  The most important finding of 

this chapter is the result that shows the contrasting effects of hillslope overland flow 

velocity and channel flow velocity on the magnitude of peak discharges as a function of 

scale.  In particular, the results show that the effect of hillslope overland flow velocity on 
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the magnitude peak discharges decreases with increasing catchment spatial scale whereas 

the opposite is true with increasing channel flow velocity.  This means that small scale 

catchment responses are dominated by hillslope processes whereas large scale catchment 

responses are dominated by the channel flow velocity and the river network geometry.  

As a result, the flood scaling exponent decreases with increasing hillslope overland flow 

velocity whereas it increases with increasing channel flow velocity. An additional insight 

that emerged due to the use of a nonlinear hillslope overland flow velocity is that rainfall 

and catchment physical properties that lead to an increase in hillslope overland flow 

velocity will result in a decrease in the flood scaling exponent.  In this regard, I showed 

that the flood scaling exponent generally decreases with increasing excess rainfall depth 

and runoff coefficient, which I used as a proxy to antecedent soil moisture content.  

Finally, the results show that a scaling exponent of greater than unity occurs when 

rainfall and other catchment physical properties are spatially variable. 

While the diagnostic simulation studies reported in Chapter IV and V revealed 

several insightful results, it is important to test if the simulation results can be supported 

by empirical observations.  To this end, I used the 52 rainfall-runoff events that occurred 

in the Iowa River basin over the 13 years period between 2002 and 2013.  The 

methodology used to identify these events is discussed in Chapter III.  In Chapter VI, I 

analyzed the rainfall data that corresponds to each of the 52 rainfall-runoff events.  I used 

the Stage-IV radar rainfall data as my data source.  The results show that the flood 

scaling exponent increases with increasing rainfall duration whereas it decreases with 

increasing excess rainfall depth.  The opposite is shown to be true for the flood scaling 

exponent.  These results confirm the simulation results I reported in Chapters IV and V.  
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This chapter also uncovered the fundamental role played by the temporal intermittency of 

rainfall.  Specifically, using a diagnostic simulation that is supported by evidence in 

empirical data, I showed that the flood scaling exponent initially increases with 

increasing intra-storm period before starting to decrease as the intra-storm period 

increases further.  This later result qualifies the temporal intermittency structure of 

rainfall as an important rainfall property that controls the event to event variability of the 

flood scaling exponent and calls for an in depth exploration of the problem. 

The results reported in Chapters IV, V, and VI show how certain properties of 

rainfall and the catchment affect the spatial scaling properties of peak discharges at the 

rainfall-runoff event scale.  A remaining question was how the effect of these and other 

catchment physical properties on the magnitude of peak discharge at the rainfall-runoff 

event scale propagates to the annual time scale and hence affect flood frequency.  Such 

line of enquiry will provide an avenue to connect the scaling of peak discharges resulting 

from single rainfall-runoff events to the scaling of peak discharge quantiles at the annual 

time scale.  To this end, I investigated in Chapter VII how the interplay among rainfall 

duration and the drainage network geometry, which is intimately connected to the 

streamflow hydrograph, affect the magnitude of peak discharge at the rainfall-runoff 

event scale and how this propagates to the annual time scale and affects flood frequency.  

I used two catchments that have the same drainage area (521 km2) and different shape.  

These catchments, which are called Old Mans Creek and Salt Creek, are both located 

within the same flood frequency region and hence the same set of regional flood 

frequency equations are used to predict floods in these catchments.  Analysis of the 

respective drainage network geometry show that the peak of the width function of Salt 
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Creek, which has circular shape, is higher than the peak of the width function of Old 

Mans Creek by a factor of 2.5, which has an elongated shape.  Moreover, the peak of the 

width function is closer to the outlet in Salt Creek than it is in Old Mans Creek.  

Simulation of the catchments using the same spatially constant rainfall input indicates 

that the peak discharge at the outlet of Salt Creek is greater than the peak discharges at 

the outlet of Old Mans Creek at shorter rainfall durations.  This result is expected due to 

the obvious difference in the drainage network geometry and has been reported upon for 

quite a while (Black 1972; Chorley et al. 1957; Horton 1932; Morisawa 1958; Sherman 

1932; Taylor and Schwarz 1952).  However, as the rainfall duration gets longer, the 

hydrographs observed at the outlet of the two catchments appear to converge.  Analysis 

of the scaling structure of peak discharges in these catchments show that the flood scaling 

exponent in Salt Creek is greater than the scaling exponent in Old Mans Creek and these 

values converge to unity as the rainfall duration increases.  This indicates the role the 

interplay among rainfall duration and drainage network geometry affects the magnitude 

of peak discharges across scales at the rainfall-runoff event scale.   

I expanded the above analysis to the annual time scale by computing the at site 

flood frequency using the Bulletin 17B methodology (IACWD 1982) implemented in 

PeakFQ software (Veilleux et al. 2014) and 64 years of annual maximum peak discharge 

data observed at the outlet of the catchments indicated that peak discharges at the outlet 

of Salt Creek are always greater than those at the outlet of Old Mans Creek for all 

exceedance probabilities.  To show that this difference is mainly due to the drainage 

network geometry, I conducted a continuous simulation experiment using a stochastically 

generated 10,000 year point rainfall time series by keeping everything the same in the 
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two catchments except the drainage network geometry.  The results show that the 

drainage network geometry can significantly affect the flood frequency.  Comparison of 

the simulated and observed at site flood frequency with the flood frequency estimated 

using the regional flood frequency equations reported in Eash et al. (2013) indicate that 

the metric used to account for the shape of the catchment, which is the ratio of the square 

of the catchment length to its drainage area, do not adequately address the effect of the 

drainage network geometry on flood frequency.  This later result calls for a review or 

search of a better drainage network geometry metric that can be used in regional flood 

frequency equations. 

In Chapter VIII, I revisit the results from Chapter III and investigate how the 

effect of the interplay among rainfall duration and intensity on the peak discharge at the 

rainfall-runoff event scale affects the scaling of Type-I peak discharge quantiles.  Recall 

that I defined Type-I peak discharge quantiles as those calculated from peak discharges 

that are selected from nested watersheds under the condition that they result from a basin 

wide runoff generating rainfall event that occurs over the time window that is equivalent 

to the basin’s concentration time.  Results from my Monte Carlo simulation experiment, 

which is based on the simulation of runoff coefficients that are randomly variable in 

space that are set up to mimic a spatially variable runoff response,  show that the flood 

scaling exponent describing the spatial organization of Type-I quantiles decreases with 

probability of exceedance.  This is in support of the result I reported in Chapter III based 

on the analysis of observational data from the Iowa River basin.  The results also show 

that for a given probability of exceedance, the flood quantile scaling exponent increases 

with increasing rainfall duration and decreases with increasing excess rainfall depth.  
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This later result shows how the effect of rainfall and catchment physical properties that 

control the peak discharge at the rainfall-runoff event scale affect the spatial scaling 

properties of peak discharge.   This is further confirmed through the finding that showed 

the expected value of the flood scaling parameters of individual rainfall-runoff events is 

equivalent to the expected value of the flood scaling parameters corresponding to peak 

discharge quantiles.  These results indicate that how we select and organize peak 

discharge events may go a long way in helping establish a physically meaningful 

regionalization of flood frequencies. 

Through extensive analysis of empirical data and diagnostic simulation 

experiments, I have uncovered a host of insights pertaining to the mechanism through 

which selected rainfall and catchment physical properties control the event to event 

variability of the flood scaling exponent and intercept and how these effects propagate 

from the rainfall-runoff event scale to the annual time scale and affect flood frequency.  

These results, which are reported in Chapters III to VIII, indicate that the flood scaling 

exponent and intercept can be predicted from rainfall and catchment physical properties 

and hence can be used to predict floods across a range of spatial scales.  In Chapter IX, 

using the 52 rainfall-runoff events I reported upon in Chapters III and VI, I discovered 

the existence of a physically meaningful log-linear relationship between the flood scaling 

exponent and intercept, which will essentially reduce the problem of flood prediction 

using the scaling theory of floods to a one parameter estimation problem.  The fact that 

the flood scaling intercept, which is equivalent to the peak discharge observed at 1km2 

when metric units are used, is easier to estimate than the flood scaling exponent 

highlights the potential use of the discovery for flood prediction (forecasting) across 
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scales.  To this end, I proposed a flood forecasting framework that has three major 

components.  First, the flood scaling intercept is predicted from the peak discharge that is 

observed at the smallest gauged subcatchments in the basin of interest.  Second, the flood 

scaling exponent is predicted using the flood scaling intercept estimated in step one.  

Third, using the flood scaling exponent and intercept estimated in steps one and two, 

predict the expected value of peak discharges across scales.  I used the Natural 

Uncertainty Measure of Peak Discharges (NUMPD) recently introduced by Gupta et al. 

(submitted) to estimate the confidence interval for the predicted peak discharge.  I have 

successfully demonstrated the capability of the framework using four rainfall-runoff 

events that occurred in the Iowa River basin in the spring and summer of 2014. 

Although, in my proposed flood prediction framework, the scaling intercept is 

estimated from peak discharges that are observed in the smallest gauged subcatchment in 

the basin, the results presented in Chapters IV to VII studies show that it can also be 

predicted from rainfall and catchment physical properties.  Advances in this line of 

research will provide an alternative approach to estimate the scaling intercept.  This will 

enhance our capability to predict peak floods using rainfall forecasts at some lead time 

before the first peak discharge in the smallest gauged subcatchment in the basin is 

observed without the need to run expensive numerical models.  This later information, 

i.e., peak discharges that occur in small scale subcatchments of the basin within few 

hours of the occurrence of the rain event due to the short catchment response time, can be 

used to refine the forecasted peak discharges as the rainfall event unfolds in the basin.  

Several interesting questions arise from this work.  Are the parameters of the log-linear 

relationship between the scaling exponent and scaling intercept universal? Or are they 
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regional?  If the latter is the case, can they be used for regionalization of flood 

frequencies?  I am making progress in addressing some of these questions and it is my 

hope that this study will inspire many more studies that will contribute towards solving 

the grand hydrologic problem of predictions in ungauged basins (PUB) (Hrachowitz et al. 

2013; Sivapalan et al. 2003). 
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APPENDIX A 

EXPLORING THE EFFECT OF A SINGLE FLOOD STORAGE RESERVOIR ON 
FLOOD FREQUENCY 4 

A.1. Introduction 

I have showed in the preceding three chapters how the event-to-event variability 

of the flood scaling exponent and the intercept can be described by rainfall and catchment 

physical variables that also vary from event to event.  These results were obtained under 

the assumption that both the simulated and observed peak discharges are not regulated.  

The USGS also uses streamflow data obtained from unregulated gauging sites while 

establishing the regional flood frequency equations for homogeneous hydrologic regions.  

In their analysis, they only ignore stream flow data obtained from those gauging sites that 

are located in the immediate downstream of major reservoirs (Eash 2001).  However, this 

appears to be an unrealistic assumption because it ignores the effect of the numerous 

small dams that are scattered across the US.  Data from the US Army Corps of 

Engineers’ National Inventory of Dams show that there are more than 87,035 dams 

already built in the US.  In Iowa, where the study basins of this dissertation are located, 

there are more than 3,927 dams and the trend appears to suggest that the construction of 

small dams is continuing.  There is essentially no study that addressed how these dams 

are affecting the flood frequency in the river basin of their location.  Understanding how 

these spatially distributed dams affect the flood frequency is of paramount importance in 

managing our water resources.  One potential application is to provide a statistical 

4 Adapted from Ayalew, T. B., Krajewski, W. F., and Mantilla, R. (2013). "Exploring 
the Effect of Reservoir Storage on Peak Discharge Frequency." Journal of Hydrologic 
Engineering, 18(12), 1697-1708. 

 

211 
 

                                                 



framework that can be used to correct flood frequencies that are estimated using the 

scaling theory of floods or any other methodology that ignores the existence of these 

dams. 

This and the following two chapters are devoted to understanding how flood 

retention reservoirs affect flood frequency.  I use a continuous simulation approach to 

systematically address this problem by first studying the effect of a single reservoir on 

flood frequency.  The results will serve as a building block to Chapter VIII where I 

investigate how the spatial organization of two dams and their storage and release 

capacities relative to their location in the drainage network affect the flood frequency at 

different locations in the basin.  Chapter IX will expand the analysis to the 660 km2 Soap 

Creek catchment located in southeastern Iowa that hosts more than 132 dams.   

This chapter is organized as follows.  I begin with review of the current literature 

as regard to the effect of storage reservoirs on downstream flood frequency followed by a 

brief discussion of reservoir-regulated flows obtained from the Iowa River. This is 

followed by a description of the continuous simulation methodology I adopted in this 

study.  The methodology section details the stochastic rainfall model and the simple but 

realistic rainfall-runoff model that is used to generate stream flow time series data that 

serve as the input to the reservoir model.  I also describe the reservoir routing module that 

I used to derive reservoir regulated flow time series data.  I then present the data analyses 

of the synthetic regulated streamflow time series and show how reservoirs modify the 

peak discharge frequency.  Following this, I discuss how the reservoir operation rule, 

reservoir storage size, and size of its release structures affect the regulated flood 

frequency.  Finally, I detail the existing method of estimating regulated flood frequency 
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that is being used by the USACE to estimate regulated flood frequencies and show why 

the approach may lead to incorrect results.  I end the chapter with a summary of the major 

findings. 

A.2. Review of the effect of flood storage reservoirs on flood frequency 

The regional flood frequency equations discussed in section 2.2 are established 

using streamflow records that are not affected by flow regulation due to reservoirs or 

other engineered structures (e.g., Eash 2001).  Moreover, the nonlinear geophysical 

theory (or scaling theory) of floods that has been developing over the past two decades, to 

which this dissertation will significantly contribute, also assumes that there is no 

regulation of flow along the river network.  This means that these flood prediction 

methods cannot be used to predict peak discharge quantiles or events for those locations 

downstream of a flood storage reservoir.  To put the problem into perspective, according 

to the United States Army Corps of Engineers (USACE) national inventory of dams 

(NID) there are more than 79,000 dams built in the continental U.S. of which about 4,000 

are built in the state of Iowa.  This highlights the need to study how a single and a system 

of distributed flood storage reservoirs modify the flood frequency across different spatial 

scales in the basin. 

It is common (hydrologic) knowledge that reservoirs attenuate incoming flood 

peaks.  The magnitude of the attenuation depends on the reservoir’s available storage 

capacity at the time of flood wave arrival, the release capacity, and the operation rules 

determined by the purpose of the reservoir.  Other factors pertain to the dynamics of the 

incoming flood waves and are characterized by their total water volume and the inter 

arrival time.  The manner in which all these factors combine determines how flood 

213 
 



frequency is modified for locations immediately downstream from the reservoir.  What is 

not well known is how exactly the flood frequency is modified and how to best estimate 

it.  Despite its practical significance, this problem has not been fully discussed in the 

literature.  It was partially addressed by Bradley and Potter (1992), but we still lack an in-

depth understanding.  Currently, the standard methodology for estimating regulated flow 

frequencies is empirical (Goldman 2001; USACE 2010).  Therefore, a more complete 

analysis of this problem is required to quantify the limits of reservoirs in reducing flood 

peak frequencies and the associated flood risk for downstream locations. 

Bradley and Potter (1992) proposed a runoff volume-based approach, which they 

called a peak-to-volume approach, to estimate regulated flood frequency from peak 

discharges obtained using a continuous rainfall-runoff simulation of watersheds regulated 

by distributed engineered storages.  To illustrate their approach, they chose the 47.4 km2 

Salt Creek watershed in Illinois as an example and simulated flows with and without a 

hypothetical reservoir placed at the outlet of the catchment.  The peak-to-volume 

relationship they established using the 41 years of data was incomplete as it lacked the 

low frequency events that are most important in terms of flood frequency estimation.  To 

resolve this issue and construct an accurate peak-to-volume relationship, they transposed 

and simulated extreme rainfall events of various durations from around the region where 

the study site was located.  Hess and Inman (1994) used an event based rainfall-runoff 

model to study the effects of urban flood-detention reservoirs on peak discharges and 

flood frequencies.  They had access to 68 years of daily rainfall data from which they 

selected four to eight rainfall events per year.  They then modeled each of these events 

with and without reservoirs and later fitted the log Pearson Type III distribution to the 
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resulting annual peak flood time series.  The flood frequency of the two cases, with and 

without reservoirs, indicated no sign of convergence for the calculated annual flood 

exceedance probabilities between 0.01 and 0.5. 

The existing Volume-Duration-Frequency (VDF)-based methodology that is 

being used by the United States Army Corp of Engineers (USACE) for estimating 

reservoir regulated flood frequency is a four step process.  The first step involves the 

estimation of site-specific VDF relationships using a methodology that is closely 

connected to the Bulletin 17B guidelines (IACWD 1982).  The second step involves the 

estimation of the critical inflow duration that leads to peak annual regulated flows.  This 

step is often achieved by analyzing existing reservoir inflow-outflow data or by 

performing reservoir routing studies.  The third step deals with the development of a 

relationship between unregulated inflow volume and peak outflow for the critical inflow 

duration identified earlier.  Finally, this relationship is used to translate an inflow volume 

of a given frequency to peak outflow of the same frequency.  In this way, the regulated 

flood frequency is estimated from the inflow volume frequency. 

The traditional method discussed above has two methodological shortcomings 

that could lead to the underestimation of the peak of the regulated outflow.  The first 

shortcoming is due to the assumption made about the initial water level in the reservoir 

when extending the inflow volume to peak outflow relationship to low frequency events 

which are often missing from observed data.  According to this method, to determine the 

inflow volume to peak outflow relationship for low frequency events, historical flood 

events are scaled up and then routed through the reservoir.  The reservoir routing is 

achieved by assuming that the initial water level in the reservoir is at the bottom of the 
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flood control pool.  However, for a given reservoir, the initial water level is determined 

by the antecedent inflow condition and how the reservoir was operated prior to and 

during the arrival of such an event.  This means that the initial water level is a random 

function of time that varies between the bottom of the reservoir (for purely flood control 

reservoirs) or the bottom of the flood control pool (for multi-purpose reservoirs) and the 

reservoir’s spill level.  Goldman (2001) acknowledges this challenge and argues that 

assuming the initial water level to be at the bottom of the flood control pool is “the 

simplest and most defensible approach.”  The second shortcoming of the method is the 

implicit assumption made during the development of the relationship between inflow 

volume and peak outflow.  It assumes that the relationship between inflow volume and 

peak outflow is unique for a given reservoir and can be determined by relating inflow 

volume to peak outflow of individual flood events.  However, depending on the initial 

water level and how the reservoir is operated, a given inflow volume could lead to a 

range of peak outflows.  This makes it impossible to determine a reservoir specific 

unique curve that relates inflow volume to peak outflow.  Moreover, due to the stochastic 

nature of the initial water level in the reservoir, assigning the same exceedance 

probability to both inflow volume and peak outflow leads to incorrect results.  For 

example, a high frequency inflow volume that occurs when the reservoir is full leads to a 

low frequency peak outflow. 

The methodological shortcomings of the existing VDF-based approach can be 

overcome using a continuous simulation of a catchment-reservoir system using either 

observed or synthetically generated rainfall time series.  Nehrke and Roesner (2004) used 

the continuous simulation of 50 years of hourly rainfall records to investigate how 
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different configurations and sizes of orifices in a single flood detention pond affect the 

flood frequency curve.  They designed the detention pond so that it had multiple 

vertically-stacked orifices whose size increased with increasing elevation.  Each of these 

orifices controls peak discharges that have different return periods.  They showed that the 

size and configuration of the orifices systematically control the departure of the regulated 

flood frequency curve from the unregulated flood frequency curve, its slope, and the 

return period at which a break in the slope occurs. 

The literature reviewed above has discussed the limited studies that have been made 

to investigate how a single reservoir modifies the flood frequency in the immediate 

downstream of a flood storage dam.  However, a survey of reservoirs built in the U.S. 

indicates that there could be a number of reservoirs scattered across a given river basin, 

with the spatial density of reservoirs varying across geographic regions.  For example, 

there are over 3,928 dams built across the state of Iowa.  Moreover, due to the 

acknowledged economic, environmental, and safety limitations of large reservoirs, the 

construction of distributed small retention ponds has become an alternative approach to 

reducing flood risk in urban and rural watersheds (Chen et al. 2007; Verstraeten and 

Poesen 1999).  In the United States, the Environmental Protection Agency (EPA) 

recommends such ponds as an alternative best management practice (BMP) for 

stormwater management, because, in addition to attenuating flood peaks, retention ponds 

contribute to improved water quality (Bottcher et al. 1995; Guo and Urbonas 1996).  

Furthermore, when distributed across the watershed, these ponds provide distributed 

flood reduction benefits, a feature that large reservoirs lack due to their typically 

benefitting only locations immediately downstream from the dam.  Despite their wide use 
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for stormwater management, little is known about how a system of flood retention ponds 

affects the flood frequency at different locations in the watershed.  Understanding this 

problem is of paramount importance as it addresses such questions as: what is the best 

spatial configuration of retention ponds? and what are the best sizes of storage and outlet 

structures of ponds given their location in the drainage network?  Answers to these 

questions would greatly assist floodplain managers in planning, designing, and managing 

systems of retention ponds. 

There is no study, to the best of my knowledge, which addressed how distributed 

reservoirs modify the flood frequency across scales in the watershed that host them.  The 

only related study is conducted by Kusumastuti et al. (2008b) who investigated a 

catchment that has a chain of natural lakes connected in series.  As a first step, 

Kusumastuti et al. (2008a) investigated the catchment and lake physical properties that 

affect the magnitude and frequency of lake-overflow in a catchment that has a single lake 

located at its outlet.  They used a continuous simulation approach that employed a 

stochastic rainfall model and a simple conceptual rainfall-runoff model.  The lake can be 

considered as a reservoir that doesn’t have an outlet (orifice) at the bottom, and its 

spillway is therefore the only outflow structure.  Their study revealed that the most 

dominant catchment and lake threshold driven processes that determine the magnitude 

and frequency of lake overflow are the antecedent catchment-lake storage condition, the 

magnitude of storm depth, and the catchment area to lake area ratio, AC/AL.  The latter 

determines the size of the storm events that fill and overflow the catchment-lake storage 

system.  Kusumastuti et al. (2008b) built on this study and investigated a catchment that 

has a chain of lakes connected in series.  In addition to the threshold driven processes 
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identified in Kusumastuti et al. (2008a), the follow-up study by Kusumastuti et al. 

(2008b) revealed that the spatial organization of lakes in the landscape, which determines 

their connectivity, plays a determining role in the magnitude and frequency of lake 

overflow.  In particular, they showed that when the ALAC  of the chain of lakes 

decreases in the downstream direction, i.e., when the lake area increases in the 

downstream direction relative to the catchment area it drains, the resulting peak discharge 

at the outlet of the catchment-lake system is greater than the peak discharge obtained 

when the ALAC  either increases in the downstream direction or remains constant.  

 

A.3. How does a single reservoir modify flood frequency?  

Consider a single reservoir built with the main purpose of flood mitigation.  If the 

inflows can be characterized by a given peak discharge frequency, how is the frequency 

modified by the existence of the reservoir?  Furthermore, how can we best estimate the 

reservoir regulated flood frequency based on available data?  While these questions 

appear straightforward and easily answered by reservoir design analysis, they are actually 

quite complicated.  Answering the first question requires a model of the dynamic 

interactions of the inflows with the reservoir.  We can gain insight into the answer 

through a theoretical analysis or a computer simulation.  Note that answering the first 

question does not necessarily lead to answering the second one.  This is mainly due to 

observed data limitations.  First, our knowledge of the frequency of the inflows is based 

either on observed record of discharge at the site upstream from the reservoir or by a 

Research Gap: Based on the current literature, it is clear that there is a need to 
investigate how the design and operational aspects of a single and a system of 
geographically distributed flood storage reservoirs affect the flood frequency at 
different spatial scales in the catchment. 
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regional peak discharge analysis.  In either case, the estimated frequency is subject to 

significant uncertainty.  Second, the observational records of reservoir outflows are often 

too short to reveal the effect of the reservoir on low frequency flows associated with 

extreme floods.  Third, hydrologic models that could be used in a simulation framework 

to provide simulated inputs into the reservoir require long records of data for the 

parameter calibration necessary for the models to perform satisfactorily.  Fourth, 

reservoirs modify the inflow peaks indirectly through storage volume, where the 

relationship between peak inflow volumes and peak outflow rate is non-unique due to the 

stochastic nature of the initial water level in the reservoir at the time of flood wave 

arrival.  Therefore, the downstream probability distribution of peak flows is not a trivial 

derived distribution of the probability density of the inflows.  Clearly, there are several 

factors that complicate our ability to answer the questions we have posed. 

What should we expect based on general reasoning?  A conceptual answer is 

presented in Figure VII-1(a), which shows the expected shape of the relationship between 

peak inflow ( IQ ) and peak outflow ( OQ ) for a hypothetical reservoir.  For low inflows, 

which correspond to high probability of exceedance, we would not want to change the 

outflow due to the environmental considerations associated with the low-flow regime of 

the river (stream).  Consequently, the inflows and outflows will have a one-to-one 

relationship, as will their frequencies.  For higher flows that could potentially cause 

flooding downstream, we want to reduce the outflow peak as appropriate (i.e. to keep it 

below the (significant) flood level).  Therefore, the associated outflow will veer to the 

right of the 1:1 line so that lower outflows correspond to higher inflows.  However, as the 

inflow increases in peak and volume, the potential for reducing the outflow is diminished 
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because the remaining storage capacity is limited.  For very high flows, such reduction is 

a small (insignificant) portion of the inflow, and the corresponding flows will come back 

to the 1:1 line.   

The degree of departure from the 1:1 line depends on the operating rules of the 

reservoir and the initial water level in the reservoir at the time of flood wave arrival.  

Assuming that the black envelope line describes the maximum possible reduction in 

inflow peaks, which would happen if the reservoir is empty at the time of flood wave 

arrival, the grey area represents other possibilities.  In the opposite limit, keeping the 

reservoir full would be equivalent to staying on the 1:1 line.  Note that all possible 

combinations of inflow vs. outflow in the grey area are possible, though not equally 

likely.  Thus, answering the question, “what is the frequency of peak outflow given a 

frequency of peak inflows?” depends upon whether we know how the reservoir is 

operated and if we consider all possible combinations of initial water storage and inflow 

volume.  This question is best answered by the grey line in Figure VII-1(a) that 

corresponds to pairs of inflow-outflow values (let’s say Iq  vs. Oq ) for which 

( ) ( )OOII qQPqQP >=> .  The grey line is simply the quantile-quantile plot of possible 

inflow-outflow pairs in the grey area. 

To further illustrate the effect of reservoirs, we use data collected upstream and 

downstream from the Coralville Reservoir located 12 miles upstream (north) from Iowa 

City, Iowa on the Iowa River.  The dam was built in the early 1950s to provide flood 

protection for Iowa City, where The University of Iowa is located.  The dam was 

designed based on 49 years of streamflow data collected by the US Geological Survey 

(USGS) at Marengo, Iowa, located further upstream and north of Iowa City.  For our 
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analysis, I selected 54 years (1957-2010) of annual flood peak time series of the Iowa 

River from the gauging stations located in Marengo and Iowa City, which are upstream 

and downstream of the dam, respectively.  These two gauging stations provide real-time 

measurement of inflow to and outflow from the reservoir.  The quantile-quantile plot of 

the two datasets shown in Figure VII-(1b) reveals a hint of the outflow and the inflow 

converging.  The two highest values correspond to the historic floods of 1993 and 2008 

(Galloway 1994; Gupta et al. 2010; Mutel 2010; Smith et al. 2013), when water had to be 

released through the emergency spillway.  Clearly, the reservoir’s flow control ability 

was compromised during these two flood events. 

If the qualitative behavior discussed so far is correct, full understanding of the problem 

implies our ability to describe the above relationships in quantitative terms by relating the 

characteristics of the inflow, outflow, storage capacity, flow dynamics, and operating 

rules to each other.  I will address these issues using a continuous simulation approach 

that is discussed in the following sections. 

A.4. Simulation methodology  

To explore the important problem of estimating reservoir regulated flood 

frequency and to gain insight into the associated issues, I use a stochastic rainfall model 

to generate long and statistically homogeneous rainfall time series with high temporal 

resolution.  The long length of the generated rainfall time series allows us to get around 

the problem of having short periods of observed data.  I use a simple rainfall-runoff 

model to convert the generated rainfall to runoff.  The generated runoff forms the 

reservoir inflow time series.  I use a numerical model of reservoir routing to calculate the 

outflow time series for a given reservoir operation rule, reservoir storage size, and release 
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capacity.  Stochastic rainfall generators in combination with rainfall-runoff models have 

been extensively used in the literature to estimate flood frequency in data limited gauged 

catchments (e.g., Aronica and Candela 2007; Blazkova and Beven 1997; Cameron et al. 

1999) and ungauged catchments (e.g., Blazkova and Beven 2002) and to study the effect 

of land use change on flood frequency (Brath et al. 2006).  Reservoir routing is also a 

well-established technique used to transform inflow hydrographs to outflow hydrographs.  

I illustrate how storage affects peak flow frequency by using a simplified case of 

reservoir operation and inflows where the roles of specific problem variables can be 

separated.  First, I consider a hypothetical catchment that is regulated by a small reservoir 

built at the outlet and has storage capacity of 140,000 m.  The storage capacity is 

comparable with some of the small dams built in Iowa.  The hypothetical catchment has 

an area of 3.75 km2 and a catchment storage coefficient of about 1.3-hour.  The small size 

of the catchment implies that the point rainfall time series generated using the stochastic 

rainfall model can be reasonably assumed to be uniformly distributed in space (see Seo 

and Krajewski (2011)for a study of rainfall variability).  By studying a small reservoir, 

we can use very simple rainfall and rainfall-runoff models without compromising the 

general mechanism of how storage modifies peak discharge frequency.  Second, I 

propose a rainfall-runoff generation model for our hypothetical catchment.  The relatively 

fast catchment response time and the size of the reservoir necessitate the use of a high 

resolution rainfall time series.  Therefore, I chose a stochastic rainfall model with the 

capacity to generate synthetic rainfall time series at 5-minute resolution.  Finally, I 

specify deterministic routing and operation rules for a reservoir with a unique storage vs. 

elevation relationship.  We discuss these three distinct components, i.e. the stochastic 
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rainfall generator, the simple rainfall-runoff model, and the reservoir flood routing 

module in the following subsections.  

A.4.1. The stochastic rainfall model 

A variety of stochastic rainfall models of varying complexity exist in the 

literature.  Some of these models, which are relatively simple, use an event based 

approach that requires minimal parameterization, where distributions of inter-storm 

arrival time, storm duration, and storm intensity are treated as random variables described 

by a parametric probability distribution function, often the exponential distribution, to 

mimic the alternating wet-dry characteristics of rainfall (e.g., Acreman 1990; Eagleson 

1972).  These approaches consider the inter-storm arrival and storm depth processes 

separately and superimpose them to form the rainfall model.  More complex models are 

based on the Neyman-Scott or Bartlett-Lewis cluster processes (Cox and Isham 1980).  In 

these approaches, storm origins arrive in a Poisson process, with each storm origin 

leading to the formation of a random number of storm cells that have random cell 

duration and depth.  In the Neyman-Scott clustered model, no storm cell exists at the 

storm origin.  The cell arrival times, which are independently and identically distributed, 

are measured from the storm origin.  Unlike the Neyman-Scott clustered model, the 

Bartlett-Lewis clustered model assumes the existence of a storm cell at the storm origin.  

The cell arrival times are then the interval times between successive cells, which are also 

independently and identically distributed.  Two well-developed cluster-based rainfall 

models are the Neyman-Scott Rectangular Pulses model (NSRP) and the Bartlett-Lewis 

Rectangular Pulses (BLRP) model, first developed by Rodriguez-Iturbe et al. (1987).  An 
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important characteristic of these models is their ability to generate a continuous rainfall 

time series that can consistently be further aggregated to different time scales. 

The BLRP model is extensively used in the literature to generate hourly point 

rainfall with good success, preserving rainfall statistics at different aggregation levels 

(e.g., Islam et al. 1990; Khaliq and Cunnane 1996; Onof and Wheater 1993; Rodriguez-

Iturbe et al. 1987).  More recent efforts have been geared towards modifying the model to 

reproduce the sub-hourly rainfall variability that is evident in historical data that 

rectangular pulse models are unable to reproduce (Cowpertwait et al. 2007; Kaczmarska 

2011).  Models of this kind allow us to study the behavior of hydrologic systems that 

have a quick response time, such as small watersheds and urban storm water sewerage 

systems.  Herein, I adopt the modified Bartlett-Lewis pulse (BLP) model proposed by 

Cowpertwait et al. (2007). 

The modified BLP model uses three Poisson processes to reproduce the sub-

hourly rainfall structure and has a total of six parameters.  First, it assumes that storm 

origins arrive at time iT  in a Poisson process of rate λ .  A storm lasts for an independent 

random duration of length iD  that is exponentially distributed with parameterγ .  During 

the duration of the storm, cell origins arrive at time ijT , which is described by a 

secondary Poisson process of rate β , and their arrival process terminates at the end of the 

storm duration, i.e. iiij DTT +< .  The model assumes that the cells have a random 

duration of ijL  that is also exponentially distributed with parameter η .  A third Poisson 

process is used to describe the arrival of pulses of random duration and intensity during 

the lifetime of a cell.  The model further assumes that each cell origin ( ijT ) leads to the 
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onset of a sequence of pulses that arrive at time ijkT  in a Poisson process of rateξ .  Each 

of these pulses has random rainfall depths ijkX  that are exponentially distributed with 

parameter θ and are terminated at the end of the cell duration.  This approach replaces the 

constant cell intensity assumption of the original BLRP model.  It follows that, in the 

modified BLP model, the mean number of cells per storm is γβ /  and the mean number 

of pulses embedded in each cell is ( )ηγξ +/ , leading to the mean number of pulses in 

each storm ( ){ } 1−+= ηγγβξµP .  The expected total rainfall depth per storm is, therefore, 

XPµµ , where ( )ijkXP XE=µµ  .  The interested reader is referred to Cowpertwait et al. 

(2007) for an in-depth description of the model. 

In this study, I made no attempt to fit the model to any particular site.  Instead, I 

assigned sensible values to the model parameters to generate a hypothetical rainfall 

regime with a sub-hourly structure similar to what we observe in historical data.  I 

referred to the modified BLP model fitted to 5-minute rainfall data at Kelburn (near 

Wellington in New Zealand) to learn the order of magnitudes the modified BLP model 

parameters could assume and to inform our parameter selection accordingly 

(Cowpertwait et al. 2007).  

A.4.2. The rainfall-runoff model 

Hydrologic models that have a varying range of complexity and calibration 

requirements are used in the literature for continuous simulation-based flood frequency 

estimation studies.  Examples include the grid based spatially distributed hydrologic 

model used by Brath et al. (2006); the semi-distributed hydrologic model called 

TOPMODEL used by Cameron et al. (1999) as well as Blazkova and Beven (1997; 2002; 
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2004); and the unit hydrograph theory based simple model used by Aronica and Candela 

(2007).  As the main intention of this study is not to estimate flood frequency for a 

specific site but rather to study how a single reservoir modifies flood frequency, I gave 

little attention to the accuracy of runoff generation and, hence, used a simple hydrologic 

model.  A good candidate for our requirement is the simple conceptual hydrologic model 

that was proposed by Chow et al. (1988) that is based on the determination of runoff 

hydrograph by the linear-reservoir method.    

In the linear-reservoir method, the storage ( S ) in the catchment is assumed to be 

linearly related to the runoff ( R ) as, 

 kRS = , Equation A-1 

where k  is a constant commonly called a storage coefficient.  The storage in the 

catchment is also a function of the effective precipitation ( )P and runoff ( )R , as 

described by the continuity equation as 

)()( tRtP
dt
dS

−=   Equation A-2 

Differentiating Equation A-1 with respect to time and substituting the result into Equation 

VII-2, we will have: 

)()()( tRtP
dt

tdRk −=   Equation A-3 

This is a first-order linear differential equation that has a well-known solution as follows 

(Chow et al. 1988): 
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where OR  is the initial runoff condition and τ  is the integration variable.  If we assume 

that the initial condition 0=OR , the above equation turns into the convolution integral, 
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in the above equation.  This is called a step 

response function and its solution is similar to what is commonly called the S-hydrograph 

in hydrology.  One can easily show 

ktetg /1)( −−=   Equation A-6 

The runoff hydrograph ( ))(tRh  corresponding to an effective precipitation of duration dT  

can therefore be calculated from Equation A-6 using the principle of superposition as 

follows: 
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where A is the catchment area and )(tRh  has a unit of volume per time.  Equation A-8 

forms the basis of the simple rainfall-runoff model used in this study. 

The storage coefficient, k  , for a single linear reservoir model is equal to the 

hydrograph time lag and can be determined from the relationship between a stream flow 

hydrograph and the related effective precipitation hyetograph.  The reader can refer to 

Chow et al. (1988) for the detailed derivations of the above set of equations.  I further 

simplified the model by assuming that the runoff coefficient is 0.2.  This simplification 

was made to ensure that we have a realistic stream flow time series that is proportional to 

the catchment size considered in this study.  We can check this by comparing the results 

with estimation made using the rational method (Brutsaert 2005).  Using rainfall intensity 

and rational method C runoff coefficient values appropriate for the study area, the 10, 50, 

and 100 year return period peak discharge values estimated using the rational method 

were 21, 31, and 35 m/s, respectively.  These results are in good agreement with the 

results obtained in this study (see Figure A-8). 

A.4.3. Reservoir routing 

Reservoir routing determines the outflow hydrograph from a given inflow 

hydrograph and known reservoir characteristics.  It is often accomplished by means of 

hydrologic routing, which is a method that considers the reservoir as a lumped system 

and computes the flow as a function of time at the reservoir outlet.  The method solves 

the mass conservation (continuity) equation (Chow et al. 1988).  The continuity equation 

as applied to a reservoir system is a first-order differential equation that can be solved 

numerically.  Fenton (1992) showed that the second-order Runge-Kutta method can be 
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used to solve this problem with an acceptable degree of accuracy.  In this work, I use the 

Runge-Kutta method to calculate the reservoir outflow time series. 

The continuity equation for storage in a reservoir is expressed as 

),()( VtQtI
dt
dV

−=   Equation A-9 

where V  is the volume of water stored in the reservoir; )(tI  is the inflow into the 

reservoir as a function of time; and ),( VtQ is the outflow from the reservoir. 

The outflow from the reservoir is computed as a function of the water level, 

which is itself a function of the stored volume in the reservoir.  I established the 

relationship between storage and water level, often called the elevation-area-storage 

relationship, for our hypothetical reservoir site in the Clear Creek watershed, Iowa, using 

ArcGIS tools for terrain data processing.  Based on this relationship, I selected a reservoir 

that has a maximum storage capacity of 140,000 m and a total dam height of 4.6 m.  I 

further assumed that the reservoir has a spillway weir length of 2 m and an outflow 

orifice diameter of 762 mm.  

The relationship between the outflow and storage is non-linear and is described by 

the following set of equations for the outflow: 
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where 1c  is the orifice coefficient; cA  is the orifice cross-sectional area; h  is the water 

level in the reservoir; spillH  is the reservoir spill level; damH  is the total dam height; 2c  
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is the weir coefficient; and L  is the length of the weir crest.  We assumed the outflow to 

be equal to the inflow when the reservoir is full.  

Using the Runge-Kutta method, the storage volume at the thi )1( +  time step is 

expressed as: 
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In addition to the above set of equations, we need to specify a reservoir operation rule to 

complete the reservoir routing model.  

The optimal operation of a reservoir is a well-researched study area.  For a flood 

control reservoir, optimal operation implies the maximum reduction of flood risk in 

downstream areas.  Research has shown that reliable forecasts and adaptive decision 

systems can substantially contribute to optimal reservoir operation endeavors (Yao and 

Georgakakos 2001).  In this work, I make no effort to find the optimal operation rule for 

the single flood control reservoir that formed the basis of the study.  Instead, I investigate 

two basic types of reservoir operation rules: passive control and active control.  In the 

passive control strategy, the reservoir gate was set to remain fully open for the entire 

simulation period.  In this case, the reservoir regulates the flow based only on its storage-

discharge relationship, which means that the reservoir is operating at its maximum 

release potential at any given time during the simulation period.  In the active control 

strategy, the outflow is regulated by dynamically changing the opening size of the 

reservoir gate in such a way that the outflow should not exceed a prescribed flow 

magnitude that is assumed to create downstream flooding.  For the case of active control, 
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I assumed a simple streamflow forecast methodology known as persistence.  In this case, 

the inflow to the reservoir for the coming 1-hour duration is assumed to be the same as 

the inflow over the past 1-hour duration leading up to the current time.  This allows for 

decisions to be made to either partially or fully open the sluice gate of the reservoir based 

on available reservoir storage space.  This strategy works as long as there is enough space 

left in the reservoir to store some portion of the incoming flood wave which otherwise 

could create flooding at downstream areas.  In the simulation, there were also instances 

when the outflow was set to be equivalent to the inflow because the reservoir was already 

full.  It is important to note here that the reservoir operation rules investigated in this 

work are very simple types of reservoir control strategies in which the reservoir under 

consideration is a single purpose (flood control) reservoir with a single constraint 

(downstream flood level) as opposed to a multi-purpose reservoir with a multi-objective 

operation, which is a common situation in practice. 

A.5. Statistical analysis of simulated inflow and outflow time series 

Using the stochastic rainfall model, I generated a 5-minute rainfall time series for 

a period of 1000 years.  The notion of time and its units is unimportant for the 

conclusions of this study; we could as easily talk in terms of sample size only.  However, 

to bring a degree of realism to our hypothetical example, I use time units commensurate 

with the watershed and the reservoir at hand.  The generated rainfall was then used as an 

input to generate runoff with a temporal resolution similar to the rainfall data.  Finally, 

the runoff was routed through a hypothetical reservoir characterized by the size of its 

storage capacity, outlet gate, dam height, and spillway length.  The inflow and outflow 

time series were then treated as unregulated and regulated streamflow data, respectively.  
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I further analyzed the data to study the effect of the reservoir on the immediate 

downstream flood frequency. 

There are two well-established techniques of flood peak data selection for 

estimating flood quantiles: the block maxima (BM) and the peak-over-threshold (PoT) 

methods (Coles 2001).  In the BM method, we need to specify the time window from 

which the peak flow value is selected.  The selected BM peaks are independently and 

identically distributed random variables that follow the Generalized Extreme Value 

(GEV) distribution (Fisher and Tippet, 1928).  In the PoT method, we need to specify 

some threshold flow value above which peak flow value is selected.  Flood peak values 

selected in such a way follow the Generalized Pareto (GP) distribution (Pickands 1975).  

In the BM approach, too small of a block size leads to bias, whereas too large of a block 

size leads to high variance.  Similarly, in the PoT approach, too small of a threshold value 

leads to bias whereas too large of a threshold value leads to high variance.  Therefore, the 

choice of optimum block size or threshold value is based on a compromise between bias 

and variance (Coles 2001; Engeland et al. 2004). 

I used both the BM and PoT methods.  I selected peak flow values from both 

regulated and unregulated streamflow data using different magnitudes of block size and 

threshold value.  I assigned exceedance probability values to the selected peak flow time 

series according to the Weibull plotting position formula and plotted the resulting peak 

flow quantile estimates of regulated and unregulated flows against each other.  Figure A-

2 and Figure A-3 show the results for different peak threshold values and block sizes, 

respectively. 
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I found that the PoT method is very sensitive to selected threshold values, making 

it an inappropriate approach to compare the peak flow quantile estimates of regulated and 

unregulated flows.  This is because the PoT data of regulated and unregulated streamflow 

time series will have uneven sample sizes which will lead to a distorted relationship 

between the two.  Fig. 2 shows cases when an increased threshold value yields results in 

which the outflow is greater than the inflow for a given quantile value.  However, both 

PoT and BM approaches give comparable results when the block size and the threshold 

value are very small (see Figure A-2(a) and Figure A-3(a)).  

Once I ruled out the PoT method, I decided to use a block size equivalent to one 

month for all of our subsequent analyses using the BM method.  Although flood 

frequency is often estimated based on annual peak flows in conformance with the 

assumption of stationarity (to mitigate against the effects of annual cycle in runoff 

regime), the small reservoir being investigated here requires a smaller block size to 

understand the complete picture of flood frequency modification due to the reservoir.  

This is evident in Figure A-3 where the quantile-quantile relationship corresponding to 

high frequency events does not exist when we use a block size of one year.  This part of 

the curve corresponds to low flows, which could have been captured if the block size was 

smaller.  Hence, in order to preserve the stationary assumption and make sure that 

“monthly” peak flows are independently and identically distributed, the same rainfall 

model parameters were used for all 12 months of the year while generating the stochastic 

rainfall time series. 

The Weibull plotting position formula is used to calculate monthly unregulated 

and regulated flow exceedance probabilities.  Figure A-4 shows the flood frequency of 
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unregulated and reservoir regulated flows for a given reservoir size and operation rule.  

Our findings here clearly reveal how reservoirs modify flood frequency.  They also show 

how the flood frequency of regulated and unregulated flows converge for large floods.  

This marks the upper limit beyond which reservoirs no longer contribute to regulating 

flood events.   

The regulated flood frequency discussed thus far is only an estimation of flood 

frequency for a unique set of stationary climate, reservoir operation rule, reservoir size, 

and size of the reservoir’s release structures.  For a reservoir with a given storage and 

release capacities, the operation rule will be the single most important factor contributing 

to uncertainty in the estimation of the regulated flood frequency.  The problem becomes 

further complicated when the uncertainty related to the estimation of the inflow time 

series is factored in.  In the following sections, I will use simple examples to explain how 

the reservoir operation rule, the reservoir storage size, and the size of its orifice affect the 

regulated flood frequency. 

A.5.1. Active vs. passive reservoir operation 

As we discussed in the reservoir routing section, I considered two cases of 

reservoir operation strategies: passive control and active control.  In the passive control 

case, the gate of the reservoir is kept open throughout the simulation time.  In the active 

control case, the reservoir is operated in such a way that the discharge from the reservoir, 

where possible, did not exceed the threshold peak discharge level that could cause 

flooding downstream.  Analysis of both sets of results showed that the manner in which 

the reservoir modifies flood frequency depends on how it is operated.  
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For both reservoir operation strategies, the flood frequency of the regulated flow 

converges to the flood frequency of the unregulated flow both at the lower and upper 

ends of the flow quantiles.  However, for the case of active control, there is a flattening of 

the regulated flood frequency at the specified threshold discharge level that was assumed 

to cause flooding at downstream locations.  In some instances, while operating at this 

threshold level, the reservoir gets filled and no sufficient storage space is left for 

incoming flows.  This situation leads to the release of water at a much higher rate than the 

threshold discharge level due to the combined use of the spillway and the now fully open 

sluice gate.  This is shown in the quantile-quantile plot of Figure A-5 where the outflow 

jumped drastically for a small increase in inflow.  

The result also showed an interesting aspect of the tradeoff a reservoir operator 

makes between choosing different operation strategies.  Interestingly, in comparison to 

the passive control strategy, the active control strategy was able to reduce the magnitude 

of higher frequency events by partially closing the sluice gate and holding back more 

water in the reservoir.  However, as a direct consequence of the reduced storage space 

left in the reservoir, the active control strategy led to the magnitude of relatively low 

frequency flood events being higher than when passive control strategy was used.  This 

result confirms the fact that the best reservoir operation strategy for flood control 

purposes is to keep as much spare storage space as possible.  This result also indicates 

how a reservoir operation rule contributes to the uncertainty related to the regulated flood 

frequency estimate.  
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A.5.2. Effects of release gate size and storage capacity 

I investigated the effects of the reservoir’s release gate size and storage capacity 

on the regulated flood frequency by using the passive control strategy only.  The 

simulation result (Figure A-6) indicates that increased gate size, for a given storage 

capacity, reduced the magnitude of some low frequency flood events while increasing the 

magnitude of some other high frequency flood events.  The reason behind this result is 

that, by releasing flow at a much higher rate, the reservoir has some storage space left 

that is later used to regulate incoming low frequency flood events.  An alternative 

interpretation of the results from this simple experiment is that the area bound between 

the 1:1 line and the quantile-quantile curve for the biggest gate size represents the 

uncertainty related to the reservoir’s capability to modify flood frequency.  This 

uncertainty is partly determined by the reservoir’s operation rule, which is, in this case, 

how wide its gate is allowed to remain open.  The result also shows that, in keeping with 

existing hydrologic knowledge, increasing the reservoir storage capacity offers a greater 

degree of control over the outflow flood peaks.  However, we have shown that the upper 

limit at which any flood frequency intersects with the 1:1 line depends on the specific 

conditions of the reservoir.  This is shown in Figure A-6, where all flood quantile curves 

of regulated flows corresponding to different reservoir storage capacities converge to the 

unregulated flow quantile curve for different values of the flood frequency. 

A.6. Connecting results to the VDF-based traditional method of estimating regulated 
flood frequencies 

As we discussed earlier, there is scarce literature on the issue of reservoir 

regulated flood frequency analysis.  However, there is an empirical methodology that is 

based on inflow volume-duration-frequency (VDF) analysis and its relationship to peak 
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outflow.  This method is currently used in practical applications by the USACE and other 

agencies (Goldman 2001; USACE 2010).  We also discussed earlier that, when low 

frequency peak outflows are estimated by simulating rainfall events that are scaled up 

from historical extreme events, the VDF-based traditional methodology proposes that 

routing of the incoming flood wave be conducted under the assumption that the reservoir 

is at the bottom of the flood control pool.  An important connection that must be made 

here is that the relationship proposed by the traditional methodology to relate peak inflow 

volumes and peak outflows of the same frequency corresponds to the lower envelope of 

the peak inflow to peak outflow relationship (red line in Figure A-1(a)). 

I argue that the traditional method is incorrect, due primarily to the implicit 

assumption made about the relationship between unregulated inflow volume and 

regulated outflow.  The methodology assumes that the relationship between unregulated 

inflow volume and regulated outflow for the critical inflow duration is unique, when in 

actuality it is non-unique.  The non-uniqueness arises because: (1) the reservoir’s water 

level at the time of flood wave arrival is a random variable that is determined by 

antecedent inflow sequences and (2) the operation rule of a reservoir is often a function 

of the water level, which implies that the operation rule is also a random variable.  

Consequently, there are instances where the same inflow volume will lead to different 

peak outflow values.  Hence, the use of a single inflow volume to peak outflow 

relationship may lead to incorrect results.  This non-uniqueness is confirmed using the 

results from the Monte Carlo simulations for a range of inflow durations (Figure A-7 (b), 

(c), and (d)).  It is important to highlight that for the synthetic example we used in this 

work, i.e., a small 3.75 km2 catchment with a catchment storage coefficient of 1.3-hour, it 
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appears that the critical inflow duration is between 2-hour and 4-hour.  Figure A-7(a) also 

shows that the same non-uniqueness is observed in the relationship between peak inflow 

and peak outflow.  Hence, the correct curve to relate equally likely peak inflows to peak 

outflows is the curve of the most likely peak flow reduction that is depicted using the 

grey line in Figure A-1(a) and Figure A-7(a).  In Figure A-7(a), all the simulated inflow-

outflow pairs (light grey dots), the maximum possible attenuation curve (black envelop 

line), and the quantile-quantile inflow-outflow relationship (grey line) are shown to 

illustrate the differences I mentioned previously. 

Another questionable conjecture in the VDF based traditional method arises from 

the assumption that unregulated inflows and regulated outflows share the same 

probability of occurrence.  As discussed above, a given inflow volume will lead to a peak 

outflow that has a probability of occurrence that is either lower or higher than the 

probability of occurrence of the inflow volume.  Figure A-8 shows how a peak inflow of 

a given exceedance probability could lead to a peak outflow that has a range of 

exceedance probabilities.  

In addition to showing the dynamics of the inflow-outflow relationship, this work 

also reveals that the quantile-quantile relationship between inflow and outflow is unique 

for a given reservoir’s design specification and operation rule.  To show this, I simulated 

three independent realizations of 1000-year inflow time series and found that their 

quantile-quantile curves fall on top of each other (Figure A-9).  We already demonstrated 

that the quantile-quantile plots became non-unique when the reservoirs are operated 

differently (Figure A-6).  In this case, the different operation strategies were assumed to 

have come from using different orifice sizes for each simulation.  Finally, I compared the 
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regulated flood frequency estimates that would be calculated using the traditional method 

with the regulated frequency estimated using the simulated results.  I found that the 

traditional methodology leads to an underestimation of the flood risk.  For example, when 

the lower envelope curve in Figure A-7(a) is used, the inflow with a 2% exceedance 

probability (30 m/s) would correspond to an outflow of 15 m/s that has the same 

exceedance probability.  In contrast, the quantile-quantile plot established using the 

Monte Carlo simulation (the green line in Figure A-7(a)) yields an outflow of 29 m/s.  

This difference would lead to an incorrect perception of flood risk for locations 

downstream of the reservoir.  This result can easily be extrapolated to other flood 

frequency estimations by realizing that the inflow to outflow transformation proposed by 

the traditional methodology corresponds to the lower envelope shown in Figure A-7(a).  

This underestimation of risk is not unique to our simulation but is a general feature of the 

empirical methodology that is rooted in its implicit assumptions.  However, the 

generalization of my conclusion would require a more sophisticated study in which each 

of the components of the estimation framework (stochastic rainfall, hydrologic model, 

and reservoir routing and operation) are closer approximations to realistic conditions. 

Although more research needs to be conducted before we can translate the 

simulation framework illustrated here into practice, this work provides a road map for 

understanding how reservoirs regulate peak flows and, hence, a statistically sound 

methodology for quantifying reservoir regulated flood frequency.  The use of a stochastic 

rainfall-runoff model for estimating flood frequency in poorly gauged catchments has 

already shown promise (Aronica and Candela 2007), and this work extends the 
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methodology to the estimation of a reservoir regulated flood frequency where regulated 

flow data is often characterized by short record length. 

A.7. Summary and Conclusions 

A simple Monte Carlo simulation approach is used to investigate the effect of flood 

control reservoirs on downstream flood frequency.  The simulation is necessary because 

sufficiently large samples of observations are not available for a data-based study of the 

problem.  By limiting the scope to small watersheds and, thus, to small storages, the 

complexities of modeling the spatial and temporal variability aspects of rainfall and 

runoff is avoided.  I also ignored the seasonal cycle of the rainfall-runoff process while 

assuming a perfect short-term forecast of inflows.  These simplifications do not 

compromise the generic insights we gained into the relationship between the quantile 

estimates of inflows to and outflows from storage reservoirs.   

Two distinct cases of reservoir operation rules are analyzed: (1) passive control where the 

reservoir specifications determine the outflow and (2) active control where a reservoir 

“operator” adjusts the gate opening according to some operating rules.  Analysis of the 

two cases revealed that the flood frequency of unregulated and regulated flows converge 

for low probability flood events.  In addition, the results revealed that there exists a break 

in the regulated flood frequency estimate.  The observed break marks the point where the 

outflow transitions from a sluice gate (orifice) only controlled outflow to sluice gate and 

spillway controlled outflow.  It is important to acknowledge here that a detailed study of 

sophisticated operation rules used to operate multipurpose reservoirs might further reveal 

additional properties of the regulated flood frequency. 
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By using a simple hydrologic example, the study also showed that the VDF-based 

traditional methodology used in current engineering practice could lead to an 

underestimation of flood risk for locations downstream of reservoirs.  This 

underestimation is primarily due to the implicit assumption made about the relationship 

between unregulated inflow volume and regulated outflow.  In the VDF methodology, it 

is assumed that the relationship between unregulated inflow volume and regulated 

outflow for the critical inflow duration is unique, when in actuality it is non-unique.  The 

non-uniqueness arises because: (1) the reservoir’s water level at the time of flood wave 

arrival is a random variable that is determined by antecedent inflow sequences, and (2) 

the operation rule of a reservoir is often a function of the water level, which implies that 

the operation rule is also a random variable.  Consequently, there are instances where the 

same inflow volume will lead to different peak outflow values.  The results also show 

that the VDF-based methodology can lead to incorrect results.   

Finally, this study marks a significant step towards determining how passive and 

active storage systems modify flood frequency for locations downstream from reservoirs 

and how this modification could be quantified.  While the benefits of skillful reservoir 

operation have been well documented in the literature, a better understanding of 

frequency modifications could aid discussions on flood mitigation policy.  The problem 

is difficult, as extending the case to large single reservoirs that regulate drainage from 

complex basins or to a system of reservoirs would invalidate many of the simplifying 

assumptions this study was able to justify. 
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Figure A - 1.  (a) Hypothesized inflow-outflow relationship and (b) a quantile-quantile 

relationship between inflow and outflow data of the Coralville dam.  
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Figure A - 2.  The quantile-quantile relationship between unregulated (inflow) and 

regulated (outflow) flows based on the peak over threshold approach using threshold 

values of 1 m/s (a), 2 m/s (b), 5 m/s (c), and 15 m/s (d). 
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Figure A - 3.  The quantile-quantile relationship between unregulated (inflow) and 

regulated (outflow) flows based on the block-maxima approach using block sizes of 1 

month (a), 3 months (b), 1 year (c), and 2 years (d). 
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Figure A - 4.  An illustration of the reservoir regulated flood frequency curve. 
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Figure A - 5.  The quantile-quantile relationship between unregulated (inflow) and 

regulated (outflow) flows for active and passive reservoir control strategy. 
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Figure A - 6.  The quantile-quantile relationship between unregulated and regulated flows 

for different outflow gate diameters (450, 650, 762, 900 mm from light to dark, 

respectively) with a constant storage capacity of 140000 m (top) and for different 

reservoir storage capacities (2500, 35500, 140000, and 263000 m from light to dark, 

respectively) with a constant outflow gate diameter of 762 mm (bottom). 
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Figure A - 7.  The peak monthly inflow to peak monthly outflow event to event and 

quantile-quantile relationship (a).  The remaining plots show the event to event 

relationship between peak monthly outflow and peak monthly inflow volume of 2-hour 

(b), 3-hour (c), and 4-hour durations (d). 
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Figure A - 8.  The plot of an event to event relationship between monthly inflow and 

outflow exceedance probabilities (top) and monthly inflow and the outflow quantile-

quantile relationship (bottom).  The grayscale bar represents the common logarithm of 

inflow exceedance probabilities. 
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Figure A - 9.  A plot of the peak monthly inflow and outflow relationship for three 

independent realizations of 1000 year inflow-outflow time series (top) and their quantile-

quantile plot following the same reservoir operation rule (bottom).  
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APPENDIX B 

ANALYZING THE EFFECT OF THE SPATIAL CONFIGURATION OF FLOOD 
STORAGE PONDS ON FLOOD FREQUENCY 5 

 

B.1. Introduction 

The results discussed in Appendix A has shown how the design and operation 

aspects of a single flood storage reservoir affect the flood frequency in the immediate 

downstream of the dam.  Based on the current literature reviewed in section 2.5, it is clear 

that there is a need to investigate how distributed flood storage reservoirs affect the flood 

frequency at different locations in the catchment.  The main objective of this chapter is, 

therefore, to build on the results reported in Appendix A and expand the analysis to 

multiple retention ponds that are spatially organized either in series or in parallel.  In 

addition to the spatial configuration of flood storage reservoirs, I also address how the 

storage and release capacity of the reservoirs relative to their location in the drainage 

network change the regulated flood frequency curve.  The remainder of the paper is 

organized as follows: I begin with a detailed description of the continuous simulation 

methodology.  I then present the results from the simulation of regulated and unregulated 

peak discharges.  Specifically, I discuss the effects of spatial configuration, storage 

capacity, and release capacity of distributed flood storage reservoirs on flood frequencies.  

I conclude with a summary of the major findings.  

5 Adapted from Ayalew, T. B., W. F. Krajewski, and R. Mantilla (2015), Insights into 
expected changes in regulated flood frequencies due to the spatial configuration of flood 
retention ponds, Journal of Hydrologic Engineering, 04015010. 
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B.2. Experimental setup 

Two important factors need to be considered in our experimental setup in order to 

provide definitive conclusions and to meet the objectives of this study.  First, retention 

ponds get filled and emptied quickly due to their small size.  Second, since the 

catchments that are regulated by the retention ponds are also small, they have a quick 

runoff response time following a runoff generating rainfall event.  These two factors 

impose the requirement of using high-resolution rainfall-runoff data over long periods of 

time (~ hundreds of years).  This precludes the use of historically observed data because 

such time series do not exist.  To circumvent this problem, I use a continuous simulation 

approach that has two main components.  First, a stochastic rainfall model is used to 

generate a 1000 year-long rainfall time series with 5-minute resolution.  The stochastic 

rainfall model is discussed in detail in section 7.3.1. Second, the rainfall is used as input 

into a rainfall-runoff model that is capable of generating both the regulated and 

unregulated streamflow time series with a temporal resolution of 5-minutes.  In this 

chapter, I use the physically based distributed hydrologic model CUENCAS (Mantilla 

and Gupta 2005).  Outflow from the flood storage reservoirs is calculated according to 

Equation A-10. 

To make a fair comparison among different spatial configurations of retention 

ponds, it is imperative that ponds that have the same flood storage capacity regulate flows 

from subcatchments that have the same drainage area.  In addition to this, the ponds 

should be located at an equal distance from the outlet where their effect on the flood 

frequency is evaluated.  This requirement is introduced to discount the effect of flood 

peak attenuation as the streamflow propagates downstream.  With these requirements in 
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mind, I constructed an artificial catchment drained by a river network that is consistent 

with the deterministic Mandelbrot-Viseck tree (Mandelbrot and Vicsek 1989).  

Mandelbrot-Viseck trees have been successfully used in numerous studies that have 

advanced our understanding of catchment hydrologic processes (e.g., Menabde and 

Sivapalan 2001).  

Figure B-1(a) shows an embedded order four Mandelbrot-Viseck tree (Mantilla et 

al. 2012).  I set each of the channel-links to have the same length (1.4 km) and their 

associated hillslopes to have the same drainage area (1 km2).  This means that our study 

basin has a total drainage area of 29 km2.  Also shown in the figure are the proposed sites 

for retention ponds.  I considered two ponds that have the same storage capacity and 

placed them either in parallel or in series.  Ponds are said to be configured in parallel 

when they are located at sites A and B, and in series when they are placed at sites A and 

D.  For comparative purposes, I also simulated one large pond whose flood storage and 

release capacity is twice as large as those placed either in parallel or in series.  This large 

pond is placed either at site C or D.  Figure B-1(b) shows the width function of the 

drainage network.  As discussed in earlier chapters, the width function is defined as the 

total number of links in the catchment at a given distance from the outlet (Rodriguez-

Iturbe and Rinaldo 1997), and it resembles the instantaneous streamflow response at the 

outlet following an instantaneous injection of rainfall to the drainage network, assuming 

that the resulting hydrographs from hillslopes propagate downstream with constant 

velocity and without attenuation (Gupta et al. 2010). 
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B.3. Results and Discussion 

I begin by first simulating a single “big” pond that is located near the outlet 

(location D in Fig. 1(a)).  It has a storage capacity of 600,000 m3 and an orifice diameter 

(OD) of 1.0 m.  This will help us evaluate the benefits of the two small ponds that are 

configured either in parallel or in series in comparison to a single big pond located near 

the outlet.  The small ponds used in this study have a storage capacity of 300,000 m3 and 

an orifice diameter of 0.5 m.  To make the comparison fair, the orifice diameter and 

spillway dimensions of the big pond are selected in such a way that the pond’s storage-

discharge relationship is equivalent to the storage-discharge relationship of the small 

ponds that is scaled up by a factor of two (see Figure B-2). 

I selected peak discharges from the simulated time series by using the block 

maxima method to estimate flood frequency.  In this method, the maximum peak 

discharge over a specified time window is selected (Coles 2001), and the resulting peak 

discharges are independently and identically distributed and follow the generalized 

extreme value (GEV) distribution (Fisher and Tippett 1928).  I used a time window of 30 

days as the block size.  Using a comparable spatial basin scale and flood retention pond, I 

have showed in Chapter A that time windows longer than 30 days reduce the selection 

chance of low flows that directly pass through the pond’s orifice, and the resulting flood 

frequency curve would consequently be incomplete.  Figure B-3 shows how a single 

pond located near the catchment outlet modifies the flood frequency for downstream 

locations.  It can be seen that the regulated flood frequency curve is the same as the 

unregulated flood frequency curve for low flows of high exceedance probability that go 

directly through the orifice and for high flows of low exceedance probability that arrive 
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while the pond is full from an earlier rainfall event.  The sharp break in the regulated 

flood frequency curve marks the transition from orifice-only regulated flows to flows 

regulated by both the orifice and the spillway.  

B.3.1. Ponds configured in parallel 

To study the effect of ponds that are configured in parallel on the regulated flood 

frequency, I placed two ponds at locations A and B (shown in Fig. 1(a)) and simulated 

the following three cases: i) both ponds have the same storage (S=300,000 m) and release 

capacity (OD=0.5 m); ii) both ponds have the same storage capacity (S=300,000 m), but 

the orifice diameter of pond A (OD=1.0 m) is twice the orifice diameter of pond B 

(OD=0.5 m); and iii) pond A (S=450,000 m, OD=0.75 m) has 1.5 times the storage and 

release capacity of pond B (S=300,000 m, OD=0.5 m).  As discussed earlier, a single 

“big” pond (S=600,000 m, OD=1.0 m) located at D (Figure B-1(a)) is also simulated for 

the purpose of comparison. 

The results presented in Figure B-4(a) show how two ponds that have the same 

storage and release capacity and are configured in parallel change the regulated flood 

frequency curve in comparison to a single but bigger pond located at the catchment 

outlet.  The results show that, for peak discharge events whose exceedance probability is 

greater than 0.1, the two small ponds configured in parallel control the flood frequency at 

the catchment outlet in a comparatively similar way to the single but bigger pond located 

at the outlet.  However, the two small ponds configured in parallel appear to have a better 

control over peak discharge events whose exceedance probability is less than 0.1.  Note 

also that, in comparison to the single “big” pond located at the catchment outlet, the 

ponds configured in parallel have the added benefit of reducing flood risk for locations 
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along the main stem of the river, which do not benefit from the pond located at the 

catchment outlet.  The reason why the two ponds in parallel control the regulated flood 

frequency curve better than the single “big” pond located at the outlet is explained by 

their locations in the drainage network, which allows them to regulate peak discharges 

from locations that contribute directly to the maxima of the width function.  This means 

that these ponds regulate the portion of the streamflow response that directly contributes 

to the peak of the hydrograph at the outlet.  This result is consistent with a related and 

recent study by Yang et al. (2011), who showed that land use and land cover changes in 

regions that contribute to the peak of the width function of a catchment significantly 

affect the magnitude of peak discharge at the outlet. 

Figure B-4 (b) shows the effect of two ponds configured in parallel that have the 

same storage capacity but different release capacities (OD=1.0 m and OD=0.5 m).  The 

results show that the resulting regulated flood frequency curve is different from the one 

obtained when the two ponds have the same release capacity.  It can be seen that, in 

comparison to the results presented in Figure B-4 (a), this configuration offers better 

control over unregulated peak discharges with a lower probability of exceedance.  This 

shows that the release capacity of the two ponds can be configured to systematically 

control peak discharges that have a wider range of probability of occurrence.  This result 

highlights the added advantage of having multiple ponds rather than having a single 

bigger pond that offers the capability of regulating peak discharges over a narrower range 

of exceedance probability.  Figure B-4(c) shows the results for the case in which one 

small pond (S=300,000 m, OD=0.5 m) and one bigger pond (S=450,000 m, OD=0.75 m) 
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are placed in parallel.  The resulting regulated flood frequency curve is qualitatively 

similar to the earlier case (S= S B =300,000 m, OD=1.0 m, and OD=0.5 m). 

I would like to highlight that the better flood reduction capability of the two ponds 

configured in parallel in comparison to the single “big” pond located at the catchment 

outlet does not imply that the two small ponds make a better flood mitigation project.  I 

acknowledge that a more detailed cost-benefit analysis of the two alternatives may yield a 

different result.  For example, a preliminary analysis of the construction costs using the 

wet retention pond construction cost formula presented in Young et al. (1996) reveals that 

the single “big” pond is approximately 15% cheaper than the two small ponds configured 

in parallel.  However, as discussed above, the two small ponds benefit a larger proportion 

of areas along the main stem of the drainage network.  This simple exercise indicates that 

any final decision should be based on quantifying costs and benefits corresponding to the 

sets of flood retention pond design alternatives being considered.  Such an analysis is 

beyond the scope of this study. 

B.3.2. Ponds configured in series 

Two ponds were placed at locations A and D (Figure B-1(a)), and the following 

five cases were investigated: i) both ponds have the same storage (S=300,000 m) and 

release capacity (OD=0.5 m); ii) both ponds have the same storage capacity (S=300,000 

m) but the orifice diameter of the upstream pond (OD=1.0 m) is twice the orifice 

diameter of the downstream pond (OD D =0.5 m); iii) both ponds have the same storage 

capacity (S=300,000 m) but the orifice diameter of the upstream pond (OD=0.5 m) is half 

the orifice diameter of the downstream pond (OD D =1.0 m); iv) the upstream pond 

(S=450,000m, OD=0.75 m) has 1.5 times the storage and release capacity of the 
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downstream pond (S D =300,000m, OD D =0.5 m); and v) the downstream pond 

(S D =450,000 m, OD D =0.75 m) has 1.5 times the storage and release capacity of the 

upstream pond (S=300,000m, OD=0.5 m).  For comparative purposes, a single “big” 

pond (S=600,000m, OD=1.0 m) that is located at D is also simulated. 

The results presented in Figure B-5(a) show that, when compared to the single 

bigger pond located at the outlet, the two ponds in series perform better than the single 

“big” pond in terms of controlling peak discharges whose probabilities of exceedance is 

less than 0.05.  However, the single pond located at the outlet controls peak discharges 

with high exceedance probability (0.05<p<0.3) better than the ponds in series.  The 

results also show that the regulated flood frequency curve of flows controlled by ponds in 

series has a different feature than when the flow is controlled by ponds in parallel.  It can 

be seen in Figure B-5(a) that the regulated flood frequency curve (black line) appears to 

converge towards the unregulated flood frequency curve for exceedance probability value 

of around 0.5 before diverging again.  This characteristic becomes more apparent when 

the upstream pond has higher release capacity (black line in Figure B-5(b)) or higher 

storage capacity (black line in Figure B-5(c)) than the downstream pond.  This means that 

the spatial configuration of ponds and their storage and release capacities relative to their 

location in the drainage network will introduce additional breaks in the slope of the 

regulated flood frequency curve.  

An important operational question regarding ponds in series concerns which of 

the two ponds should be emptied first during a flood event.  I simulated two cases where 

the release capacity of one of the ponds is greater than the other.  In this way, I was able 

to mimic what happens to the regulated flood frequency curve when either of the ponds is 
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emptied faster than the other.  The results presented in Figure B-5(b) show that better 

control over peak discharges that have lower exceedance probability is achieved when the 

upstream pond has a greater release capacity than the downstream pond (black line).  

This is contrary to the existing reservoir operation strategy where it is recommended to 

empty the downstream pond first (Lund and Guzman 1999 and literature cited therein).  

The physical reason behind our result is rooted in the location of the upstream pond in the 

drainage network, which allows it to control the bulk of the streamflow that contributes to 

the peak discharge at the outlet.  This means that waiting for the next flood event with the 

maximum possible available flood storage capacity in the upstream pond warrants the 

maximum possible reduction in peak discharges of low probability of exceedance at the 

outlet. 

An additional important question concerning ponds in series is that, given the 

possibility of building two ponds with different storage capacities, where should the 

bigger pond be placed relative to the smaller pond?  To address this, I simulated two 

ponds in series where one of the ponds has 1.5 times the storage and release capacity of 

the other.  The results presented in Figure B-5(c) show those peak discharges with lower 

exceedance probability are better controlled when the bigger pond is placed in the 

upstream section (black line).  This result is again explained by the location of the 

upstream pond in the drainage network.  Kusumastuti et al. (2008b) arrived at a similar 

conclusion after investigating the effect of multiple lakes in series on the peak discharge 

frequency at the catchment outlet. 
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B.3.3. Comparison of the effects of ponds in series and in parallel 

All of the results discussed thus far have revealed how retention ponds configured 

either in parallel or in series control the regulated flood frequency curve.  Additional 

important questions that are not yet addressed include: which of the two spatial 

configurations of retention ponds (i.e., ponds in parallel or in series) is better at 

controlling the regulated flood frequency? and if we have the resource to build only one 

pond, where in the drainage network should it be placed? 

Figure B-6(a) shows the results from simulating two ponds that have the same 

flood storage and release capacity but are configured either in parallel or in series.  It can 

be seen that, when compared at the catchment outlet, ponds configured in parallel 

perform better at controlling peak discharges with exceedance probability ranging 

between 0.05 and 0.5.  It can also be seen that both spatial configurations of ponds 

control peak discharges with lower probabilities of exceedance comparatively equally.  

However, it is intuitively clear that the ponds configured in parallel offer larger 

reductions of flood peaks for those locations along the main stem of the drainage network 

(i.e, from location A/B to D as shown in Figure B-1).  These locations will not experience 

similar flood risk reduction benefit if the ponds are configured in series.  Considering the 

fact that the two ponds have the same storage and release capacities and hence the same 

construction cost, the parallel configuration of the ponds warrant a better flood mitigation 

project due to its above mentioned superior capability of reducing peak discharges for 

larger portions of the catchment. 

I also simulated a bigger pond (S=600,000m; OD=1.0 m) that is placed either at C 

or D (see Fig. 1).  The results presented in Figure B-6(b) show that a single pond located 
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at C performs better than a single pond that is located at D (i.e., closer to the outlet) at 

controlling peak discharges whose probability of exceedance is less than 0.1, whereas the 

pond placed at the outlet does a better job of controlling peak discharges of higher 

probability of exceedance (p>0.1).  This is again attributed to the fact that the pond at 

location C has greater control over flows that contribute to the peak of the hydrograph 

observed at the catchment outlet.  The same argument is behind the reason why ponds 

configured in parallel and placed in the upstream section of the catchment outperform 

ponds configured in series.  These results show that, in addition to the storage and release 

capacities of a pond; its location in the drainage network plays a significant role in 

determining its peak discharge reduction capability. 

B.3.4. Effect of ponds on peak flood reduction at different catchment spatial scales 

The results discussed thus far reveal how different spatial configurations of 

retention ponds modify the flood frequency at the outlet.  The resulting regulated flood 

frequency comparisons at the catchment outlet has enabled us to gain insights into the 

optimal spatial configuration of retention ponds and the design of their release structures, 

or their operation, according to their location in the drainage network.  An important 

remaining question is, how do the different spatial configurations of ponds affect the 

flood frequency at different locations in the catchment?  To address this question, I 

calculated the percentage peak discharge reduction due to the ponds as a function of the 

probability of exceedance of the regulated peak discharge at two different locations in the 

catchment, namely location C and D (see Figure B-1).  It is clear that the catchment 

drainage area increases as we move from C to D.   I calculated the percentage peak 

discharge reduction as the ratio of the difference between unregulated and regulated peak 

262 
 



discharges to the unregulated peak discharge.  This is done for ponds configured in 

parallel, in series, and a single “big” pond located in the upstream section of the 

catchment (location C). 

The results presented in Figure B-7 show that the percentage peak discharge 

reduction due to construction of retention ponds initially increases with decreasing 

probability of exceedance before starting to decrease as the probability of exceedance 

decreases further.  The maximum peak discharge reduction occurs at a probability of 

exceedance value that corresponds to the point where the flow transitions from orifice 

only regulated flow to orifice and spillway regulated flow, i.e., when the spillway is 

overtopped.  This point also marks the break observed in the slope of the regulated flood 

frequency curve (see, for example, Figure B-6).  In particular, the results presented in 

Figure B-7(a) show that when the ponds are configured in parallel the percentage peak 

discharge reduction reduces in the downstream direction for events whose probability of 

exceedance range between 0.06 and 0.8.  Figure B-7(b) show the percentage peak 

discharge reduction for the case where the ponds are configured in series.  It can be seen 

that the percentage peak discharge reduction increases in the downstream direction for 

peak discharges with exceedance probability of greater than 0.3 whereas the opposite is 

true for peak discharges whose exceedance probability is between 0.02 and 0.3, in which 

case the percentage peak discharge reduction in the upstream section of the catchment 

(black line) is greater than the corresponding reduction at the outlet (broken grey line).  

Comparison of the percentage peak discharge reduction due to ponds configured in series 

(Figure B-7(b)) and in parallel (Figure B-7(a)) reveals that, as discussed earlier, ponds 

configured in parallel offer greater reduction of peak discharge magnitude over a wider 
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range of exceedance probability at both locations in the catchment.  Finally, the results 

shown in Figure B-7(c) reveal how the effect of a single bigger pond located in the 

upstream section of the catchment on the flood frequency changes in the downstream 

direction.  It can be seen that the percentage peak discharge reduction reduces in the 

downstream direction for peak discharges whose exceedance probability ranges between 

0.04 and 0.7. 

The results discussed above shows that the flood reduction benefit of the retention 

ponds generally decreases in the downstream direction for peak discharge events whose 

exceedance probability range approximately between 0.05 and 0.8.  However, for those 

events whose probability of exceedance is less than 0.05, it appears that the percentage 

peak discharge reduction at the upstream section of the catchment (location C) and the 

catchment outlet are similar.  This is true due to the small size of the catchment I have 

investigated.  However, it should be expected that the percentage peak discharge 

reduction should also decrease in the downstream direction for low exceedance 

probability events as the catchment gets bigger.  This is because two important catchment 

processes become dominant as the catchment gets bigger and the number of retention 

ponds remains constant.  First, the proportion of streamflow that comes from unregulated 

subcathments and contributes to the peak discharge at bigger catchment scales increases 

with increasing catchment area.  This leads to a reduction in the flood mitigation benefit 

of the retention ponds in the downstream direction.  Secondly, the role of the space-time 

rainfall variability on the observed peak discharge reduction becomes significant as the 

catchment gets bigger.  As a result, a scenario in which peak discharges observed at 

bigger catchment scales results from a rainfall event that occurred in subcatchments that 
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are not regulated by the retention ponds will become more common.  This means that 

peak discharges with a lower probability of exceedance could occur at downstream 

locations purely due to a rainfall event that occurred in the subcatchments that are not 

regulated by the retention pond(s).  This will also result in the reduction of the flood 

mitigation benefits of the ponds at locations far downstream.  Our argument is supported 

by the findings of Smith et al. (2010) who showed through analysis of observational data 

from the Delaware River basin (USA) that the effect of reservoirs on flood frequency for 

locations far downstream from a dam is limited.  To conclude, an important insight that 

we gained from these results is that, since the effect of reservoirs on the flood frequency 

is primarily local, distributed storages will have the added value of distributing the flood 

mitigation benefits across the catchment. 

B.4. Summary and Conclusion 

A continuous simulation approach is adopted in order to investigate how different 

spatial configurations of retention ponds control the regulated flood frequency curve.  

This approach used a stochastic rainfall model that is capable of reproducing a sub-hourly 

rainfall structure (Cowpertwait et al. 2007) to generate a 1000 year-long rainfall time 

series that has 5 minute resolution, which is an important requirement when simulating 

small scale catchments such as the one used in this study.  The rainfall time series was 

used as input into the hydrologic model CUENCAS (Mantilla and Gupta 2005) that is 

configured for an order four Mandelbrot-Viseck tree (Mandelbrot and Vicsek 1989).  The 

resulting regulated and unregulated streamflow time series at the catchment outlet were 

analyzed by selecting peak discharges using the method of block maxima.  The results 

showed that the spatial configuration of the retention ponds and the storage and release 
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capacity of the ponds relative to their location in the drainage network systematically 

control the magnitude of the departure of the regulated flood frequency curve from the 

unregulated flood frequency curve, its slope, and the recurrence interval at which the 

slope breaks.  Three important insights emerge from analysis of the results: 

1) Retention ponds that are configured in parallel have greater control over flood peaks 

with low to medium probabilities of exceedance when compared to ponds that have 

the same storage and release capacity but are configured in series.  The results also 

show that ponds in parallel regulate the flood frequency comparatively similarly to a 

single, bigger pond whose storage and release capacity is twice that of the small 

ponds and that is located at the catchment outlet.  Considering also that the 

comparison is made at the catchment outlet, the ponds configured in parallel have 

the added value of reducing the flood risk for locations between the ponds and the 

catchment outlet where the bigger pond is located.  Furthermore, the results also 

show that the parallel configuration of ponds enables control over a wider range of 

peak discharge recurrence intervals, which can be achieved by setting the two ponds 

to have different storage and/or release capacities.  This superior capability of ponds 

configured in parallel is attributable to their location in the drainage network that 

enables them to regulate flows that contribute to the width function maxima.  These 

results highlight the need to account for the geomorphic structure of the drainage 

network while selecting potential flood retention pond sites. 

2) When the retention ponds are configured in series, the results show that emptying the 

upstream pond before the downstream pond, which can be achieved by setting the 

upstream pond to have a greater release capacity than the downstream pond, offers 
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greater control over low probability peak discharges.  This finding is contrary to 

existing operational practices that recommend emptying the downstream reservoir 

first (Lund and Guzman 1999 and literature cited therein).  Furthermore, the results 

also show that, if we have to build two ponds that have different storage capacities in 

series, putting the bigger pond upstream of the smaller pond will lead to better 

control over low probability peak discharges.  Moreover, the results show that if we 

only have to build a single big pond, it is better to place it at the upstream sections of 

the catchment that contribute to the maxima of the width function.  In this way, 

greater control over lower probability peak discharges can be achieved. 

3) The results also show that, for locations downstream from the retention ponds, the 

percentage peak discharge reduction initially increases with decreasing probability of 

exceedance before starting to decrease as the probability of exceedance increases 

further.  The maximum possible reduction happens for those events that fill the 

ponds but do not flow over the spillway.  The results also show that the flood control 

benefit of ponds is mainly local as their flood reduction benefits quickly reduce in 

the downstream direction.  This is mainly because, for a fixed number of retention 

ponds, the proportion of unregulated subcatchments that contribute to the peak 

discharge at the outlet increases in the downstream direction.  Moreover, we argue 

that the flood reduction benefits of retention ponds will further reduce in the 

downstream direction, i.e., as the catchment gets bigger, at which scale the effect of 

the space-time variability of rainfall on the regulated flood frequency becomes 

significant.  This insight can explain findings from data analyses by Smith et al. 
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(2010), who demonstrated that flood control reservoirs have little peak discharge 

reduction capability at locations farther downstream from the reservoirs. 
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Figure B - 1. (a) The drainage network of the hypothetical watershed and the proposed 

flood retention pond sites and (b) the width function of the drainage network as evaluated 

at the outlet.  
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Figure B - 2. Storage-discharge relationships of all the retention ponds used in this study. 
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Figure B - 3. Comparison of the regulated and unregulated flood frequency curve at the 

catchment outlet.  The flow is regulated by a single flood retention pond located near the 

outlet (location D in Figure B-1) that has a storage capacity (S) of 600,000 m3 and an 

orifice diameter (OD) of 1.0 m. 
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Figure B - 4. Probability of exceedance plot of unregulated and regulated flows for the 

cases where the two ponds configured in parallel have (a) the same storage (S=300,000 

m3) and release capacity (OD=0.5 m); (b) the same storage capacity (S=300,000 m3) but 

the orifice diameter of pond A (ODA=1.0 m) is twice the orifice diameter of pond B 

(ODB=0.5 m); and (c) pond A (SA=450,000 m3, ODA=0.75 m) has 1.5 times the storage 

and release capacity of pond B (SB=300,000 m3, ODB=0.5 m).  The locations of the 

ponds is shown in Figure B-1. 
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Figure B - 5. Probability of exceedance plot of unregulated and regulated flows for the 

cases in which the two ponds configured in series have (a) the same storage (S) and 

release capacity (orifice diameter, OD); (b) the same storage capacity but different 

release capacities; and (c) different storage and release capacities.  The locations of the 

ponds is shown in Figure B-1. 
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Figure B - 6. Comparison of (a) the flood frequency controlling capability of ponds in 

parallel and in series (storage capacity S=300,000 m3 and orifice diameter OD=0.5 m) 

and (b) a single pond (S = 600,000 m3 and OD = 1.0 m) placed at different locations in 

the catchment.  The comparisons are made at the catchment outlet. 
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Figure B - 7. Comparison of the percentage peak-discharge reduction of flood retention 

ponds that are configured (a) in parallel; (b) in series; and (c) a single bigger pond that is 

located at location C in the upstream section of the catchment.  The comparisons are 

made at locations C and D as shown in Figure B-1.  The ponds that are configured either 

in parallel or in series have a storage capacity of 300, 000 m3 and an orifice diameter of 

0.5 m whereas the single “big” pond located at C has a storage capacity of 600,000 m3 

and an orifice diameter of 1.0 m.   
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