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ABSTRACT 

The representation and aggregation of the variability of small scale processes are 

fundamental to distributed hydrologic modeling.  Addressing these issues via the 

examination of detailed information with large spatiotemporal coverage is infeasible due 

to the limitations of hydrological measurement techniques; however, data collected at 

discrete spatial scales are available.  The main objective of this thesis is to explore how 

useful insights into aggregating hydrologic processes can be obtained through 1) 

analyzing hydrologic systems at multiple spatial scales to identify patterns of hydrologic 

processes at various scales and 2) conducting diagnostic simulations to understand how 

these patterns are linked.  I first identified patterns of hydrologic processes by 1) 

comparing the surface runoff hydrographs (area-averaged discharges) from 12 hillslopes 

(0.5~3 ha) with spatial proximity in agricultural land in Iowa over 72 runoff events; 2) 

using consistent methods to analyze ~1000 recession curves observed in the nested Iowa 

and Cedar River basins (7~17000km
2
) over the period of 1995-2010; and 3) examining 

the long recession curves in the nested Iowa and Cedar River basins during the 1988 and 

2012 droughts.  I then developed a distributed model as a diagnostic tool to explore the 

controls on the aggregation of hydrologic processes.  In order to avoid other complex 

processes (e.g., partitioning of rainfall), I simplified the investigation by focusing on 

recession processes rather than on the entire response.  The diagnostic simulations in the 

Cedar River basins reproduced the observed patterns of hydrologic recessions, which 

allowed us to decipher the link between the spatial pattern of processes at the small scale 

and that at larger scales.  The results from this thesis demonstrate the usefulness of the 

“multiscale-analysis” approach and suggest that both the organization and randomness of 

process variability at the small scale should be considered for the spatial aggregation of 

the hydrologic response. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem statement 

Integrated catchment management aims to secure the water supply for human 

beings and ecosystems and to manage the flood and drought risks under the changing 

climate and environment (e.g., Sivapalan et al., 2003; Beven, 2011; Blöschl et al., 2013).  

The decision-making process is constrained by our abilities to collect the required 

information about hydrologic systems at various spatiotemporal scales.  Hydrologic 

modeling everywhere has been expected to help fill this information gap by allowing us 

to extrapolate our sparse and historical hydrologic variables in space and time.  However, 

hydrologic processes occur at a wide range of scales in space and time (e.g., Klemeš, 

1983; Blöschl and Sivapalan, 1995), and data about hydrologic processes are often 

collected at scales much larger or smaller than the scale of interest in hydrologic 

modeling.  Therefore, hydrologic modeling often involves either upscaling or 

downscaling, i.e., transferring the information from the small to the large scale or vice 

versa.   

Hydrologic modeling across scales, often using distributed models, has been 

acknowledged to be challenging due to the lack of effective approaches to represent and 

aggregate the spatial variability of small-scale hydrologic processes (e.g., Wood et al., 

1988; Seyfried and Wilcox, 1995; Woods, 2006).  Addressing this issue by examining 

detailed information with large spatiotemporal coverage is infeasible due to the 

limitations of hydrological measurement techniques; however, data collected at discrete 

spatial scales are available.  Consequently, the main objective of this thesis is to explore 

how useful insights for aggregating hydrologic processes can be obtained through 

examining hydrologic processes over a range of spatial scales.  The two primary research 
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questions that I will address in this study through the use of a “multiscale-analysis” 

approach are: 

1) Can we identify some patterns of hydrologic processes at multiple spatial 

scales?   

2) Can we obtain useful insight for the aggregation of hydrologic processes 

by investigating the connection between hydrologic processes at various 

spatial scales?   

1.2 Approach 

I address these research questions by 1) analyzing hydrologic systems at multiple 

spatial scales to identify patterns of hydrologic processes at various scales and 2) 

conducting diagnostic simulations to understand how these patterns are linked (Figure 

1-1).  Two hydrologic signatures, including the surface runoff responses and the 

recession processes, are used for data analyses.  I first identified patterns of hydrologic 

processes by 1) comparing the surface runoff hydrographs (area-averaged discharges) 

observed at neighboring hillslopes in agricultural land in Iowa; 2) analyzing recession 

curves observed in the nested Iowa and Cedar River basins over the period of 1995-2010; 

and 3) examining the long recession curves in the nested Iowa and Cedar River basins 

during the 1988 and 2012 droughts.  I then developed a distributed model as a diagnostic 

tool and used it to explore the link between the spatial pattern of processes at the small 

scale and that found at larger scales.  In order to avoid other complex processes (e.g., 

partitioning of rainfall), I simplified this investigation by focusing on recession processes 

rather than on the entire response.  The diagnostic simulations were run for the Cedar 

River basins.   

1.3 Structural overview 

In this thesis, the research questions have been addressed in the manuscripts of 

four studies that have been prepared for submission to research journals.  Chapter 2 
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compares the surface runoff hydrographs from 12 hillslopes with spatial proximity in 

agricultural land in Iowa over 72 runoff events.  The goal was to explore how the 

variability of surface runoff processes from areas with spatial proximity is organized in 

space.  Chapter 3 assesses the sensitivity of the analyses of individual recession events to 

the selection of recession segments and parameter estimation methods.  On the basis of 

Chapter 3, Chapter 4 analyzes recession curves observed in the nested Iowa and Cedar 

River basins over the period of 1995-2010, using consistent methods to identify the 

patterns in recession processes.  The implications of the identified evolution patterns of 

the recession exponent for hydrologic modeling are discussed.  Chapter 5 examines the 

effects of the spatial pattern of the drainage processes at the hillslope scale on the 

recession behaviors at the catchment scale.  First, the characteristics of late-time 

recession processes in the Iowa and Cedar River basins during the 1988 and 2012 severe 

droughts were identified using a consistent method.  Then, a distributed drainage model 

was developed in order to reproduce the observed catchment-scale recession 

characteristics.  Lastly, Chapter 6 summarizes this research and discusses its limitations 

and implications for future research.  Overall, the results from this thesis suggest that 1) 

analyzing hydrologic systems at multiple spatial scales can provide useful insight into the 

spatial aggregation of hydrologic processes and 2) both the organization and randomness 

of the process variability at the small scale should be considered for aggregating 

hydrologic responses.   

1.4 LITERATURE REVIEW 

The literature review first summarizes previous work related to the challenges of 

distributed hydrologic modeling, i.e., the representation and aggregation of the variability 

of hydrologic processes at the small scales, then presents current knowledge about the 

characteristics of hydrologic processes at the hillslope scale and at the catchment scale, 

and finally summarizes the attempts to connect hydrologic processes across spatial scales.   
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1.4.1 Distributed hydrologic modeling 

Hydrologic modeling across scales can be achieved in two ways: using scaling 

relationships and using distributed hydrologic models.  An example of the first approach 

entails designing hydrologic/hydraulic structures using the power-law relationship 

between peak discharge and basin drainage area (and maybe also some other variables).  

This thesis focuses on the second approach.  Distributed hydrologic modeling typically 

consists of two steps: distributing and aggregating.  Distributing refers to decomposing a 

catchment into elements and applying some governing equations to describe the 

hydrologic processes at the elementary scale.  Aggregating denotes collecting the 

responses from the elements to obtain the responses at larger scales.   

Distributed models make spatially distributed predictions, and their state variables 

and parameters represent averages over a local element area.  This type of model 

decomposes a catchment into a large number of elements and solves for the state 

variables for each element.  Conversely, lumped hydrologic models treat a basin as a 

single unit, and the spatial variability of their state variables and parameters are assumed 

to be unimportant and are therefore ignored.  A lumped hydrologic model becomes more 

distributed by splitting a basin into sub-units to account for the spatial variability.  

Inversely, a distributed hydrologic model becomes lumped by coarsening the size of the 

elements.  There is no clear boundary between distributed and lumped models.   

Distributed hydrologic modeling is preferred in hydrologic applications, though 

lumped models have relatively simpler structures and fewer parameters and furthermore 

require fewer inputs.  Distributed models require inputs and parameters to be specified 

for each element.  These requirements lead to the difficulties in preparing model inputs 

and calibrating model parameters.  The great amount of computation needed to solve for 

the multiple state variables at many time steps is another obstacle of distributed modeling.  

These burdens have been greatly reduced due to the rapid development of measuring 

techniques (e.g., Robinson et al., 2008; Entekhabi et al., 2010; Berne and Krajewski, 
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2013), the efforts dedicated to improving or avoiding the calibration process (e.g., 

Kirchner, 2006; Beven, 2012; Juston et al., 2013), and the advances in computer power 

(Small et al., 2013).  Despite more progress is needed, distributed hydrologic modeling 

has been gaining attention due to the demand for hydrologic prediction everywhere, its 

ability to account for small-scale variability, its potential to couple other types of 

modeling (e.g., transport of sediments and contaminants), and its potential to assess the 

impacts of land use (e.g., Foley et al., 2005) and climate (e.g., Milly et al., 2008) change.   

The spatial variability in distributed hydrologic models is commonly resolved to 

the levels of grids or representative elementary areas (REA).  For the grid-based 

distributed models, different cell sizes can be used, and they generalize the spatial 

variability to different degrees.  This artifact leads to the grid size dependency of the 

representation of the drainage features (e.g., Garbrecht and Martz, 1994; Zhang and 

Montgomery, 1994) and ultimately to the grid size dependency of the results of 

hydrologic modeling (e.g., Wolock and Price, 1994; Kuo et al., 1999).  The REA (Wood 

et al., 1988) concept proposes that there is a threshold scale above which the average 

hydrologic response occurs, indicating that the within-unit spatial variability is not 

important and can be ignored at a certain scale.  This hypothesis has the potential to 

reduce the complexity of hydrologic models and has been tested by numeric simulations 

(e.g., Blöschl et al., 1995; Fan and Bras, 1995) and filed studies (e.g., Woods et al., 1995; 

Wolock et al., 1997; Shaman et al., 2004; Uchida et al., 2005a; Asano and Uchida, 2010).  

However, the threshold values varied from 1 to 8 km
2
, and they depend on factors such as 

topography, storm duration, spatial variability of rainfall, and antecedent wetness 

(Blöschl et al., 1995).  Furthermore, at the scale of 1 to 8 km
2
, a significant variability of 

hydrologic processes (e.g., Loague and Gander, 1990; Faures et al., 1995; Grayson and 

Western, 1998; Krajewski et al., 2003) has been identified.  Overall, the optimal 

decomposition of watersheds into grids or REAs in distributed modeling needs further 

investigation.   
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To avoid the difficulty of optimizing the size of elementary areas, in this thesis, 

we adopt the geomorphologic decomposition of a basin into hillslope-channel links.  The 

hillslopes and channel links are used as sub-units in our distributed hydrologic model.  

Hillslopes are the smallest natural unit for the ecologic processes and for the cycling of 

water, sediment, and chemicals.  They can be defined easily from topographic 

information, and they integrate every component of the hydrologic cycle (e.g., Band, 

1986; Mantilla and Gupta, 2005).  The well-defined shapes make them easier to monitor 

and study.  In this dissertation, we adopt this hillslope-channel link based decomposition 

of a basin.  In our numerical simulations, the channel links and hillslopes are treated as 

the natural control volume, which is similar to the representative elementary watershed 

concept (e.g., Reggiani et al., 1998; Reggiani et al., 1999; Reggiani et al., 2000; Reggiani 

and Rientjes, 2005).   

However, regardless of how a catchment is partitioned, the representation of 

between-element variability in distributed hydrologic models is unavoidable, and simple 

yet effective approaches for this purpose remain a challenging and active research area.  

The representation of between-element variability has been performed by simply using 

statistical distributions, i.e., the variability is assumed to be randomly distributed or 

variable in a certain sense (e.g., Dagan and Bresler, 1983; Moore, 1985; Mantoglou and 

Gelhar, 1987; Bierkens et al., 2000; Harman et al., 2009), or by using some deterministic 

functions, i.e., the variability is a function of the state variable of hydrologic systems 

and/or characteristics of catchments (e.g., Beven and Kirkby, 1979; Wood et al., 1990; 

Moore and Grayson, 1991; McGlynn et al., 2003; Jencso et al., 2009).  Both types of 

watershed representations have shown some success, which raises the question: which 

one should be chosen?   

Overall, the lack of effective ways to represent small-scale variability and the 

limited knowledge about how extensively we should resolve it are major obstacles with 

respect to distributed hydrologic modeling.  Identifying emergent patterns of hydrologic 
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processes at multiple spatial scales and understanding the connections between them may 

provide useful insight into effectively addressing these issues.  To this end, we will 

review the current understanding of hydrologic processes at various spatial scales in the 

following sections.   

1.4.2 Hydrologic processes at the hillslope scale 

Hydrologic processes at the small scales are investigated through comprehensive 

field experiments and through detailed numeric modeling.  Hydrologic investigations at 

the small scales involving single or multiple processes are conducted in a wide variety of 

environments that are subject to diverse climates, topography, soils, vegetation, and land 

use manipulated by human activities.  Diverse results, e.g., different aspects of small-

scale hydrologic process, are seen and contribute to the difficulties of hydrologic 

understanding and modeling.   

Analyses of the intensive collected data reveal the heterogeneous and complex 

nature of the hydrologic processes at the hillslope scale.  Extensive monitoring and 

investigation of small sub-systems of a larger hydrologic system, i.e., experimental 

hillslopes, plots, or soil columns, is a commonly used approach to deepening our 

understanding of hydrologic processes.  Such studies generally reveal great complexities 

and variability in the hydrologic process.  For example, there are several classical 

perceptual runoff generation mechanisms that include the infiltration excess overland 

flow (Horton, 1933), the partial area infiltration excess overland flow (Betson, 1964), the 

saturation excess overland flow (Dunne and Black, 1970), the subsurface stormflow 

(Hewlett and Hibbert, 1967), and the perched subsurface stormflow (Weyman, 1970).  It 

is possible that infiltration excess, saturation excess, or purely subsurface responses may 

all occur in the same catchment at different times or different places due to different land 

uses, antecedent conditions, soil properties, or rainfall intensities and amounts.  

Furthermore, the rainfall-runoff relationship at the hillslope scale tends to be highly 
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nonlinear and dynamic (e.g., Minshall, 1960; Tromp-van Meerveld and McDonnell, 

2006b; Zehe and Sivapalan, 2009) and is very sensitive to the spatial variability of 

rainfall (e.g., Ogden and Julien, 1993; Faurès et al., 1995) and other factors.  Accordingly, 

complex numerical models with large number of parameters are required to capture the 

dominant hydrologic processes at the hillslope scale.   

Interestingly, the hydrologic processes at the hillslope scale also show some 

spatial organization due to the spatial patterns of the landscape (e.g., McGlynn et al., 

2003; McGlynn et al., 2004; Jencso et al., 2009), terrain (e.g., Western et al., 1999; 

McGuire et al., 2005), vegetation (e.g., Bautista et al., 2007), and soil properties (e.g., 

Tromp-van Meerveld and McDonnell, 2006a).  For example, the hydrologic connectivity 

to streams tends to be longer for hillslopes near the streams than for hillslopes in the 

uplands (e.g., Jencso et al., 2010).  The importance of such a spatial pattern (structures) in 

advancing hydrologic sciences has been recognized (e.g., Schulz et al., 2006).   

In summary, there is consensus that hydrologic responses at the hillslope scale are 

highly variable and complex yet show some degree of organization due to the spatial 

patterns of geology, soil, vegetation, rainfall, and soil moisture.   

1.4.3 Hydrologic processes at the catchment scale 

Hydrologic processes at the catchment scale (especially at large scales) are often 

sparsely monitored at the point scale.  On the one hand, comprehensive field campaigns 

that cover large areas require substantial budgets, while on the other hand, some 

hydrologic variables, such as rainfall and evapotranspiration, are difficult to accurately 

measure at the areal scale.  Therefore, hydrologic processes at the catchment scale are 

primarily investigated through data analyses and numeric modeling that use the limited 

data available.   

Hydrologic responses at the catchment scale are relatively “simpler,” though 

hydrologic processes at the hillslope scale are heterogeneous and complex.  For example, 
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hydrologic responses at larger catchment scales tend to be more linear (e.g., Wang et al., 

1981; Beven et al., 1988), less variable (e.g., Woods et al., 1995; Wolock et al., 1997; 

Asano and Uchida, 2010), and less sensitive to the spatial variability of rainfall (e.g., 

Mandapaka et al., 2009).  Also, it is commonly accepted that simple models, such as the 

unit hydrograph (e.g., Nash, 1957; Dooge, 1973) and the storage-discharge model (e.g., 

Klemeš, 1983; Kirchner, 2009), can reasonably reproduce some of the key aspects of the 

catchment-scale hydrologic processes under some circumstances.  Another example 

entails the modeling of groundwater.  The groundwater depletion at larger catchment 

scales can be represented by a simple linear model (e.g., Zecharias and Brutsaert, 1988; 

Fenicia et al., 2006; Brutsaert, 2008), while it needs to be described using the more 

complex, nonlinear Darcy’s equation  at the soil-column scale.   

1.4.4 Connecting and aggregating hillslope to catchment processes  

Demands from both hydrologic sciences and practices are the major driving 

forces behind synthesizing hydrologic knowledge at the hillslope and the catchment 

scales.  From the perspective of hydrologic practices, the hydrologic prediction is often 

required at the catchment scale, and we consequently have to extrapolate our small-scale 

information to the various scales of interest.  From the standpoint of the development of 

hydrologic science, understanding the linkage between the hydrologic processes at the 

hillslope and the catchment scales can potentially reveal the universal and fundamental 

governing laws of hydrologic systems (e.g., Dooge, 1986; Council, 1991; Eagleson, 1994; 

Sivapalan et al., 2003; Wagener et al., 2010; Beven, 2012; Council, 2012; Blöschl et al., 

2013).   

For distributed hydrologic modeling, directly linking the hydrologic responses at 

the hillslope scale to that at the catchment scale, i.e., applying hydrologic response 

mechanisms (represented by mathematic equations) to each elementary area and 

collecting the elementary responses to obtain the watershed response, is hindered by 
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several factors.  Firstly, because the number of parameters and inputs increases linearly 

with the number of hillslopes, simply connecting the similar detailed hillslopes models 

through channel routing will not reduce the complexity of the model at the catchment 

scale.  This large number of parameters in the catchment model may also lead to the 

calibration dilemma (e.g., Beven and Binley, 1992; Duan et al., 1992; Beven and Freer, 

2001b; Kirchner, 2006).  Secondly, it is likely that several hillslope models are needed to 

represent the multiple runoff mechanisms within a catchment across space and time.  

However, some of the details of small-scale processes variability may not be important 

for the hydrologic response at larger scales.   

Field experiments and numeric simulations highlight the connection between 

hydrologic processes at both smaller and larger scales.  For example, previous studies 

demonstrate that spatial averaging plays an important role in hydrologic aggregation.  

Analysis of experimental data showed that the variation of area-averaged streamflow 

magnitude (e.g., Woods et al., 1995; Shaman et al., 2004; Lyon et al., 2012) and stream 

chemistry (e.g., Wolock et al., 1997; Shaman et al., 2004; Asano and Uchida, 2010) tend 

to decrease with the space scale.  This observation is supported by numeric simulations 

(e.g., Blöschl et al., 1995; Fan and Bras, 1995).  These results indicate that as the spatial 

scale increases, the catchment-scale hydrologic behavior converges to the representative 

path of the geomorphologically-determined distribution of hillslope-scale hydrologic 

processes (e.g., Savenije, 2001).  Spatial averaging is an inherent property for distributed 

models. 

Another interesting example of hydrologic modeling across scales, i.e., the 

application of the TOPMODEL (e.g., Beven and Kirkby, 1979; Beven, 1997), implies the 

importance of spatial organization of small-scale hydrologic processes.  This model has 

been widely used around the world because it is simple, has a low demand for inputs, and 

performs acceptably well in some cases.  The simplicity originates by incorporating into 
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the model a topographic index as a quantitative measure of grid-scale spatial pattern (e.g., 

Beven and Freer, 2001a).   

Importantly, the spatial averaging is conducted within the framework of the self-

organization of the river networks (e.g., Rodríguez-Iturbe and Valdés, 1979; Gupta et al., 

1980; Rodriguez-Iturbe and Rinaldo, 1997).  The self-organized nature of the river 

network has been fundamental to explaining the observed spatial scaling of peak 

discharge (e.g., Gupta and Dawdy, 1995; Ogden and Dawdy, 2003; Gupta et al., 2010) 

and the physical origins of the unit hydrograph concept (e.g., Rodríguez-Iturbe et al., 

1979; Rodríguez-Iturbe and Valdés, 1979) and recession processes (e.g., Biswal and 

Marani, 2010; Mutzner et al., 2013; Biswal and Marani, 2014).  These successful 

applications suggest the importance of incorporating the self-similarity of the river 

network into hydrologic models.   

Simple means of aggregating hydrologic processes in space may be discovered by 

searching for concepts that can be easily connected across scales.  However, we have to 

find simple indicators to quantify the spatial organization.  For example, the spatial 

correlation function is mathematically sophisticated difficult to incorporate into 

distributed models.  Quantities including, but are not limited to, land use type, 

topographic indices, soil properties, and Strahler order can be good candidates.  The 

Strahler order, for example, reflects the hierarchical nature of the branching river network, 

which has been found to impose spatial organizations of bioecologic processes (e.g., 

Vannote et al., 1980; Gomi et al., 2002; Benda et al., 2004) and the hillslope hydrologic 

connectivity to the stream (e.g., McGlynn et al., 2003; McGlynn et al., 2004; Jencso et al., 

2009).   

Overall, the attempts to link hydrologic processes at various spatial scales have 

advanced our understanding of the spatial aggregation of hydrologic process.  However, 

most of the data analyses-based studies have small spatial scales (less than 10 km
2
) and 

small sample sizes in space due to the limited resources available for data collection.  
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Until significant advances in the capability of hydrologic measurement occur, directly 

connecting the processes at the small scale to that at larger scales will remain difficult.  

For modeling-based studies, consideration of the random yet organized small-scale 

process variability deserves more investigation.    

1.4.5 Summary of literature review  

The foregoing review illustrates that understanding the spatial aggregation of 

hydrologic processes remains challenging.  This challenge stems from the facts that 1) 

hydrologic processes observed at different spatial scales may show different patterns that 

vary with time and 2) it is difficult to measure and represent the pattern of small-scale 

process variability.  Based on the discipline of thermal dynamics, useful insight may be 

obtained through examining the patterns of collective hydrologic responses over a range 

of spatial scales rather than through examining the variability of individual response from 

each elementary area of a basin.  This work follows this notion and aspires to shed light 

on resolving the challenging issue of aggregating hydrologic processes across scales.   
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Figure 1-1.  Approach adopted to pursue the research goal of this thesis. 
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CHAPTER 2 

ORGANIZED VARIABILITY OF SURFACE RUNOFF PROCESSES ACROSS 

NEIGHBORING HILLSLOPES IN IOWA 

 

2.1 Introduction 

Variability in space and time is fundamental to hydrologic science and practice.  

Three comparative methods that can be used to study the variability of hydrologic 

responses are: 1) comparing the hydrologic responses to various atmospheric forcings 

observed at a fixed experimental watershed, which allows examining the temporal 

variability of hydrologic responses; 2) comparing the hydrologic responses observed at 

places with contrasting climates or physiographic conditions, i.e., investigating the space-

time variability of hydrologic responses; and 3) comparing the hydrologic responses to 

similar atmospheric forcings observed at watersheds with spatial proximity, which allows 

studying the spatial variability of hydrologic responses.  It seems that many aspects about 

the temporal variability of hydrologic responses are better understood, due to the relative 

ease with which we can measure at high temporal resolution for a long period.  For 

example, by adopting the first method, the nonlinearity of hydrologic responses has been 

recognized.  This widely accepted nonlinearity emphasizes the dynamical property of 

rainfall-runoff relationship at a site and it rises from the dependence of storm response on 

antecedent conditions and rainfall inputs (e.g., Minshall, 1960; Grayson et al., 1997; 

Sivapalan et al., 2002; Zehe and Bloschl, 2004; Tromp-van Meerveld and McDonnell, 

2006b; Graham et al., 2010).  Many applications of the second method, i.e., comparing 

the hydrologic responses observed at different places, (e.g., Chapman and Falkenmark, 

1989; Whitehead and Robinson, 1993; Jones, 2006) have demonstrated that hydrologic 

processes at the hillslope scale are rich in complexity and heterogeneity.  For example, 

different runoff generation mechanisms exist (e.g., Sivapalan, 2003; Uchida et al., 2005b; 
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Scherrer et al., 2007; Kienzler and Naef, 2008a; Kienzler and Naef, 2008b; de Araújo and 

González Piedra, 2009; Beven, 2012).   

However, applying the third method in the field is rare, due to the difficulties of 

making comprehensive spatial measurements covering area large enough and period long 

enough to be hydrologically meaningful.  One example is that Bachmair examined the 

effects of vegetation cover on the subsurface flow processes at neighboring hillslopes 

with similar slope, exposure, curvature, geologic, and pedologic properties but different 

in vegetation cover (e.g., Bachmair et al., 2012).  The third method has the potential to 

answer the question - What is the relation between the hydrologic responses to similar 

rainfall but from different locations with geographic vicinity?  A good understanding of 

this issue is particularly helpful for distributed hydrologic modeling for a specific region.  

Distributed hydrologic models attempt to represent hydrological variability by 

partitioning watersheds into multiple computational elements.  Examples of such 

computational elements are the representative elementary watershed (REW) (e.g., 

Hubbert, 1957; Wood et al., 1988; Reggiani et al., 1998), hillslopes (e.g., Band, 1986; 

Yang et al., 2002; McGlynn and Seibert, 2003; Mantilla and Gupta, 2005), and grids (e.g., 

Liang et al., 1994; Arnold et al., 1998).  However, the challenge still remains in 

characterizing the spatial variability of hydrologic response between elements (e.g., 

hillslopes).  Applying the third method in the field, which allows exploring the 

organization (or pattern) of the spatial variability of hillslope hydrologic responses at the 

event scale (about few hours), is a first step to address this question.   

In this study, we investigated the spatial variability of surface runoff processes at 

the event scale (~few hours), i.e., how runoff processes are related across multiple 

instrumented hillslopes.  We used a unique data set of 5-min runoff records over 12 

agricultural experimental hillslopes in central Iowa, USA.  These hillslopes are clustered 

in three blocks and the distances between the clusters are about 2 km.  The hillslopes 

within each cluster locate closely and drain areas ranging from 0.48 to3.19 hectares.   
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We used the inter-site comparison method.  By pairing up the rest 11 hillslopes to 

the benchmark hillslope (i.e., hillslope B6 with no treatment), we investigated the 

relationship between the event scale surface runoff processes from these neighboring 

hillslopes.  We concerned about both the similarity and dissimilarity of the hydrologic 

responses.  Our comparison of neighboring hillslopes alleviates the common challenge of 

the inter-site comparison technique, i.e., its difficulty in differentiating whether the 

variability in hydrologic responses is caused by different underlying basin response 

mechanisms or variations in affecting factors including but not limited to rainfall forcings, 

soil properties, topology, and geology.   

We adopted the lagged regression method, which is a well-established approach 

to describe and model the relationship between two time series and to quantify the 

association between the rainfall-runoff behaviors of paired hillslopes.  In contrast to the 

commonly used runoff ratio, peak discharge, and total runoff volume based inter-site 

comparison, the lagged regression technique provides information about relation between 

the hydrologic responses at paired hillslopes from the perspectives of both magnitude and 

shape.   

In all, the large number and the spatial vicinity of these monitored hillslopes allow 

us to study the relation between rainfall-runoff processes across hillslopes.  We will first 

evaluate the variability/similarity of the hydrographs of these neighboring hillslopes for 

individual runoff events.  We then investigate how this variability/similarity in 

hydrologic responses from these hillslopes varies in space and time.  Finally, we explore 

the factors that control the characteristics of the hydrologic variability/similarity between 

these hillslopes.   

2.2 Study site and data 

2.2.1 Site description 
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We use the data sample collected from three clusters of hillslopes designed and 

maintained by the ecohydrology research group at Iowa State University (Helmers et al., 

2012).  A total of twelve hillslopes (Basswood (B1~B6), Interim (I1, I2, I3), and 

Orbweaver (O1, O2, O3)) were selected in the Neal Smith National Wildlife Refuge in 

central Iowa (Figure 2-1).  Their sizes range from 0.48 to3.19 hectares.  These hillslopes 

are distributed in three clusters and are monitored to evaluate the benefits of integrating 

prairie filter strips (PFS) in row crop agriculture for enhancing water quality.  They 

receive various treatments specified by the amounts and the planting positions of the 

PFSs (Table 2-1).  The PFSs were seeded on 7 July 2007.  Starting in spring 2007, a 2-yr, 

no-till corn–soybean rotation (soybeans in 2007) was grown in areas receiving row crop.  

The soil properties and agricultural management are similar over these hillslopes.  

Annual precipitation in the study area is about 900mm, and the majority occurs through 

May to August.  Detailed description about these hillslopes and the experiments can be 

found in the paper by Helmers and Zhou (2012).  In all, the physiographic and climatic 

characteristics of these hillslopes are similar. 

2.2.2 Surface runoff and rainfall measurements 

Overland flow at the bottom of each hillslope was measured by an H-flume at 5-

minute interval since 2007.  These hillslopes are drained by poorly defined ephemeral 

channels.  We did not use the data observed in 2007 to avoid the extensive disturbance 

due to site equipment malfunction.  To eliminate the size effect, we average the flow at 

the bottom of each hillslope over its drainage area in this study.  We use the rainfall data 

collected at a U.S. Climate Reference Network weather station maintained by the 

National Oceanic and Atmospheric Administration (NOAA), which is 1.1~3.3 km from 

the hillslopes.  The observational frequency is 5-minute for rainfall from 2008 to 2011.  

Another nearby Mesonet weather station operated by the National Weather, which is 1.3 

to 3.6 km from the hillslopes, collects hourly rainfall data.  Our comparison at the hourly 
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time scale showed that the rainfall data from these two stations are highly correlated with 

limited differences, indicating relatively similar storm events over this small region.  This 

is consistent with the analysis by Helmers and Zhou (2012).   

2.2.3 Soil moisture data 

Hourly soil moisture data is also collected from 2010 to 2011at the same NOAA 

weather station.  Soil dielectric permittivity are measured by the Hydra Probe soil water 

sensors installed in a vertical profile at depths 5 cm, 10 cm, 20 cm, 50 cm, and 100 cm, 

and are then converted to volumetric soil moisture content using an empirical relationship 

(Seyfried et al., 2005).  We calculated the depth-weighted soil moisture for the top 10, 20, 

and 50 centimeters layers at the weather station based on the point measurements.  Prior 

to the runoff events investigated in this study, the maximum depth-weighted soil moisture 

for the top 10, 20, and 50 centimeters layers was 0.50, 0.51, and 0.54 and the minimum 

was 0.29, 0.33, and 0.37, respectively.   

2.3 Method 

We use the paired basin technique combined with lagged regression method to 

quantify the relation between the runoff processes across the neighboring hillslopes in 

this study.  Magnitude, time to peak, and shape (i.e. the overall runoff process,) are 

important characteristics of a hydrologic response (Ehret and Zehe, 2011).  When 

comparing hydrologic responses from two hillslopes, we focus on the similarity in the 

overall shapes of hydrographs (hereafter referred to as shape similarity), and the 

similarity in magnitude of the flow values (hereafter referred to as scaling factor).  We 

chose to use B6 as our benchmark hillslope and paired it with each of the other 11 

hillslopes for two reasons.  First, B6 is a treatment-free (100% cropland) hillslope.  

Additionally, we have six side-by-side hillslopes clustered at Basswood, indicating a 

larger chance of smaller differences in the factors that affect their hydrologic responses.  

This second fact is advantageous, for example, it makes the event-based comparison 
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between Basswood hillslopes conditioned on the same rainfall process (at least very 

similar), which means that for each runoff event, discrepancies in the hydrologic 

responses over these hillslopes are caused by the differences in their response 

mechanisms rather than rainfall forcings. 

The lagged regression method consists of cross-correlation analysis and simple 

linear regression.  Cross-correlation analysis describes the similarity and alignment in 

time between two signals, and linear regression gives the scaling of magnitude of two 

signals.  Cross-correlation has been used as a metric to measure the shape similarity 

between two signals in many fields, including, but not limited to, neuroscience (e.g., Ts'o 

et al., 1986; Avants et al., 2008), , image processing (e.g., Van Heel, 1987), and it has 

also been employed by hydrologist to predict time series of streamflow for ungauged 

basins (e.g., Smakhtin et al., 1997; Hortness, 2006; Zhang and Kroll, 2007; Oudin et al., 

2010).  Linear regression of streamflow at one site against another has been used to study 

the relative runoff yield and the slope of a regression line can be used as an indicator of 

runoff reduction or increase (Jones and Grant, 1996; Beschta et al., 2000).  The lagged 

regression analysis can be mathematically expressed as  

tAB etkQtQ  )()(   (2-1) 

where   (   ) is the flow per unit area at time (   ) at site A,   ( ) is the flow per 

unit area at time   at site B,   is the slope of the simple linear model and it can only take 

positive values,    is independent and identically distributed (i.i.d.) random error with 

zero mean.  There is no intercept in equation (2-1) because our analysis of real data 

showed that the intercept was seldom different from zero at the significance level of 95%.  

By taking the variance for both sides of equation (2-1) we get 

  
      

    
 , (2-2) 
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where    is the standard deviation of flow at site A,    is the standard deviation of flow 

at site B,    is the standard deviation of random error. Based on equation (2-1) and (2-2), 

the cross-correlation    ( ) between time series of flow at site A and B at time lag   is 
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For two given hydrographs (thus    and    are determined), equation (2-3) 

indicates that the maximization of cross-correlation    ( ) is achieved by maximizing   

and minimizing   .  Interestingly, maximizing   and minimizing    can be accomplished 

simultaneously, according to equation (2-2).  Therefore, the maximization of cross-

correlation    ( ) is equivalent to the maximization of k.  The maximum of cross-

correlation          (   ( )) can be determined based on cross-correlograms. 

Base on the derivation above, we quantify the relation between the hydrologic 

responses from paired hillslopes using two measures.  One is the shape similarity 

(irrespective to the magnitude of runoff volume), which describes the degree of 

coincidence of two rescaled hydrographs, i.e., the concurrence in the sequence of 

occurrence of high-, mid-range, and low- flows.  It is defined as the maximum of cross-

correlation      and takes values from 0 to 1.  Another measure is the scaling factor, 

which represents the relative magnitude of hydrologic response, i.e., relative efficiency of 

runoff production.  It is defined as the slope   of lagged regression analysis and takes 

positive values.  The closer the values of shape similarity      and scaling factor   to 

unity, the more similar the hydrologic responses from the paired hillslopes are.  When 

applying this lagged regression analysis, we first construct a cross- correlogram to 

determine the maximum cross-correlation      and the associated time lag     .  Time 

lag      between two hydrographs is the time shift at which the cross-correlation 

functional achieves maximum     .  We then conduct simple linear regression analysis 
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at the time lag     .  Time lag will not be discussed in this paper because we are 

interested in the overall runoff process and the efficiency of runoff generation. 

2.4 Results 

We first examine the general rainfall and runoff characteristics of the hillslopes 

over the study period, then investigate the variation of shape similarity and the scaling 

factor in space conditioned on time, i.e., the relation between hydrologic responses 

triggered by similar rainfall forcing but from different hillslopes.  Last, we explore the 

variation of shape similarity and the scaling factor in time conditioned on space, i.e., the 

relation between hydrologic responses from the same paired-hillslopes but triggered by 

different storms. 

2.4.1 General rainfall and runoff characteristics  

The total depths of rainfall during the sampling periods from 2008 to 2011 are 

951, 798, 1198, and 703 mm, and the corresponding total depth of runoff at the hillslope 

B6 are 278, 166, 640, and 213 mm.  As the wettest year among the investigated, one half 

of the number of the runoff events occurred in 2011. Figure 2-2 shows the temporal 

patterns of rainfall and runoff events at the hillslope B6 over the study period.  The 

rainfall events tend to cluster between middle May to middle August, and the clustering 

is most significant in June and August of 2010.  The spiky hydrographs indicate that 

short-duration is another major characteristic of the runoff process over this hillslope.  A 

closer look at the original rainfall and runoff data shows that the runoff processes over 

these hillslopes last for about 2-8 hours (see the first column in Figure 2-3 for example), 

depending on the rainfall durations.   

2.4.2 Shape similarity and magnitude variability:  

analysis of a single event 
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We chose the storm occurred in middle May, 2010 as our example event for 

detailed analysis.  Corn development was at the very early stage and the vegetation cover 

condition was close to bare earth.  The depth-weighted soil moisture for the top 10, 20, 

and 50 centimeters at the weather station was 0.40, 0.42, and 0.44 before the beginning of 

rainfall.  This can be considered as wet condition when compared to the observed wettest 

condition.  The total amount of rainfall was 28.8mm and its temporal distribution can be 

seen in Figure 2-3.  Figure 2-3 shows the relation between hydrologic responses of each 

hillslope and the benchmark hillslope B6 for the selected example event.   

The overall shapes of the hydrographs among these hillslopes are highly similar.  

This high shape similarity can be reflected from three aspects.  First, the maximum cross-

correlation coefficients between the hydrologic responses of each hillslope and B6 are 

greater than 0.90 (the second column in Figure 2-3).  Second, the coefficients of 

determination of the lagged regression analysis are greater than 0.88 (the third column in 

Figure 2-3).  Lastly, the alignments between the rescaled hydrograph of each hillslope 

and the benchmark hydrograph are extraordinary (the last column in Figure 2-3). 

However, the magnitudes of hydrologic responses vary dramatically among these 

hillslopes.  This substantial variation in the scaling factor can be seen from the first 

column of Figure 2-3, which displays the direct comparison of hydrographs plotted with 

the same vertical scale.  It is also evidenced from the fact that the slopes of lagged linear 

regression varies from 0.3 to 1 (the third column of Figure 2-3), though we exclude the 

hillslope size impact by analyzing the area averaged flows.   

2.4.3 Shape similarity and magnitude variability: 

analysis of multiple events 

The analysis described above shows evident shape similarity but high spatial 

variation of scaling factor between the hydrologic responses from these hillslopes for a 

single runoff event.  To examine whether this relation sustained across runoff events, we 
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analyzed 72 individual runoff events following the same procedure.  The selection of 

runoff events is based on the runoff characteristics.  For example, sometimes short 

duration heavy rainfall occurred while none of the hillslopes produced notable flow 

because of dry field conditions.  This zero overland flow response would not help much 

in deepening our understanding of hydrologic process, and thus we chose events that flow 

were noticeable for at least most of the hillslopes. 

Figure 2-4 shows the results of the analysis on the 72 runoff events.  The upper 

panel confirms the high shape similarity among the hydrologic responses of theses 

hillslopes.  For each runoff event, the shape similarity values for most of the hillslopes 

are above 0.80 with few exceptions.  We find that for some events many hillslopes have 

low shape similarity values.  An example is event #22 occurred on June 12, 2009 under 

dry soil moisture condition.  We also find that some hillslopes tend to have larger chances 

to have low shape similarity values (e.g., I1 and I2).  We will investigate these exceptions 

in the following sections.  The lower panel of Figure 2-4 confirms the high spatial 

variation of the scaling factor between the hydrologic responses from these hillslopes.  

For most of the runoff events, the scaling factor range from about 0 to 1.0.  Extremely, 

for some sizable runoff events, the scaling factor varies from 0.3 to about 1.5 (The largest 

scaling factor values were obtained at I3, which is another 100% cropland hillslope). 

2.4.4 Controls of the spatial variation of shape similarity 

 and scaling factor  

In the previous two sections, we assessed the shape similarity and scaling factor 

between the hydrologic responses from the hillslopes, and we will investigate the control 

factors of the spatial variation in the shape similarity and scaling factor in this section.  

Figure 2-5 shows the annual distribution of events, estimated shape similarity     , and 

scaling factor   for each hillslope.  The majority of the events occurred during the period 

from May to mid-August, which is the rainy season for the study area. 
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The shapes of hydrographs are more similar between areas that are closer than 

those are further apart.  In Figure 2-5, the red pluses represent events with shape 

similarity lower than 0.8, and the red circles are the associated scaling factor.  There are 

few red pluses in the panels for the Basswood hillslopes (B1 to B5), while many more in 

the panels for I1, I2, I3, O1, O2, O3.  This indicates hillslopes from the Interim and 

Orbweaver blocks tend to have bigger chances to have low values in shape similarity.  

The hillslopes at Interim and Orbweaver are relatively further from B6.  Many other 

reasons, for example, the small-scale variability in soil moisture condition and rainfall 

field may also contribute to this low shape similarity.   

Moreover, the occasionally low shape similarity tends to accompany low runoff 

responses (Figure 2-5).  The data in Figure 2-5 shows that events with scaling factor 

lower than 0.05 (i.e., the runoff at a targeting hillslope is less than 5% of the runoff at B6) 

tend more often to have low shape similarity.  We applied a threshold of scaling factor 

k=0.05 to exclude the cases that some hillslopes did not generate noticeable runoff, and 

found that the shape similarity tends to be high with small variation across hillslopes and 

events.   

The spatial variation of the scaling factor conditioned on individual events cannot 

be consistently explained by structural characteristics of the hillslopes we investigated in 

this study (Figure 2-6).  For each event, we plotted the scaling factor against four possible 

predictive variables including width of prairie filter strips at footslope, maximum slope 

length, slope, and size of the hillslopes.  We also conducted simple linear regression 

analysis to reveal the predictive value of each of these variables alone for the scaling 

factor.  Figure 2-6 is one of such scatterplots constructed for the example runoff event 

occurred in middle May, 2010 (our example event), and it suggests weak relationships 

between scaling factor and the independent variables tested.  We did not find consistent 

pattern in similar scatterplots for other events (see Appendix A), indicating there is no 
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apparent relationship between the scaling factor and the independent variables 

investigated.   

Land use tends to affect the scaling factor, but its impact can be masked by others 

(Figure 2-5).  The within-cluster comparison shows that 100% cropland hillslopes (B6, 

O3, and I3) produced more runoff than the other hillslopes receiving prairie strip 

treatment for most of the events.  Note that for the Basswood block the scaling factors for 

B1~B5 are less than unity for most events, indicating B6 is more productive in runoff 

generation.  However, the inter-cluster comparison shows that 100% cropland hillslopes 

do not grantee higher runoff generation efficiency than those hillslopes receiving prairie 

strip treatment.  For example, B4 (20% of its total area receives prairie treatment) could 

be more productive in runoff generation than I3 and O3. 

2.4.5 Temporal variation of scaling factor and its controls 

The data analysis thus far is confined to the comparison of hydrologic responses 

among all of the hillslopes, and the goal was to explore how the shape similarity and 

scaling factor change across hillslopes conditioned on the same storm event.  We showed 

in Sections 2.4.3 and 2.4.4 that the shape similarity tends to be high and static among 

these hillslopes across events, and we will concentrate on exploring the dynamics of the 

scaling factor and its control factors in this section. 

The scaling factor for each hillslope shows high temporal variation, indicating 

substantial differences in the relative runoff generation efficiency across runoff events.  

Figure 2-5 shows that the scaling factors can vary from about 0 to 1 for nine of the 

hillslopes and a relatively narrower range for B1 and O1.  However, no apparent seasonal 

pattern of the scaling factor is detected.   

Given the spatial proximity of these hillslopes, the short-term factors, i.e., the 

antecedent soil moisture condition and the rainfall characteristics may lead to the 

observed substantial dynamics in the scaling factor for each hillslope.  We apply the 
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multiple linear regression technique to test this hypothesis.  The antecedent wetness and 

rainfall at the study hillslopes are repented by the soil moisture and rainfall measurements 

at the NOAA weather station.  Though the measurements at the weather station may not 

precisely represent those at the hillslopes but they provide good approximations to the 

dry/wet field conditions and rainfall characteristics.  This idea is similar to the concept of 

the widely used antecedent precipitation index (API).  Note that this approach neglects 

the spatial variability of soil wetness and rainfall between the hillslopes.  The antecedent 

wetness indices include the depth weighted average volumetric soil moisture contents 

(VSMC) for the top 10-, 20-, and 50-cm layers.  The variables describing rainfall 

characteristics include the total amount of rainfall, rainfall duration, maximum 5-minute 

rain accumulation, maximum hourly rain accumulation (MHRA), and the coefficient of 

variation of rain rate for each storm event (as a measure of the temporal variability of rain 

rate).  We used the 44 events occurred in 2010 and 2011 in our regression analysis 

because the soil moisture data is available starting from 2010.   

Multivariate linear regression analysis suggests a moderate functional relationship 

between the scaling factor and short-term factors (Figure 2-7).  Forward stepwise least 

squares linear regression shows that the volumetric soil moisture content (VSMC in top 

50cm) and maximum hourly rain accumulation (MHRA) account for about 36% to 75% 

of the temporal variation of the scaling factor.  As expected, the coefficients of 

volumetric soil moisture content and maximum hourly rain accumulation are positive and 

statistically significant at the p=0.05 level, indicating that the wetter the hillslopes are and 

the heavier the rain intensity is, the more similar the runoff generation efficiencies are.  

The consistent relationship at the other 9 hillslopes does not apply for B1 and O1 

(negative coefficient of volumetric soil moisture content).  B1 tends to have low and 

relatively constant scaling factor (the first panel in Figure 2-5) across events and hillslope 

O1 have relatively fewer points available for analysis.  Further investigation on these two 

hillslopes is needed in the future.   
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2.5 Discussion 

The effect of spatial variability of hydrologic processes at the small scale on the 

hydrologic responses at larger scales is essential for scaling in hydrologic modeling.  

However, the characteristics of the small-scale variability remain poorly understood.  The 

approach of inter-site comparison at the same storm event, as a complement to the 

approaches of inter-site comparison across climate regions and inter-event comparison at 

a fixed site, is adopted in this study to investigate the property of the variability of small-

scale surface runoff processes.  We calculated the shape similarities and scaling factors 

between surface hydrographs observed over 12 neighboring hillslopes for each individual 

runoff event.  We analyzed 72 runoff events over 4 years and examined the spatial and 

temporal variability of the shape similarity and scaling factors.   

2.5.1 Organized variability of small-scale hydrologic responses 

Our data analysis suggests that hillslopes with spatial proximity respond to the 

same storm event similarly in shapes but differently in magnitudes (section 2.4.3).  The 

spatial variability in the scaling factor for each storm event supports the finding 

established via inter-site comparisons across land use and climate regions that hydrologic 

processes at the hillslope scale are heterogeneous and complex (e.g., Sivapalan, 2003; 

Uchida et al., 2005b; Scherrer et al., 2007; Kienzler and Naef, 2008a; Kienzler and Naef, 

2008b; de Araújo and González Piedra, 2009; Beven, 2012).  The temporal variability in 

the scaling factor for each paired hillslopes agrees with the notion recognized through 

across-event comparison at a fixed site that hydrologic responses at the small scale are 

nonlinear (e.g., Minshall, 1960; Grayson et al., 1997; Sivapalan et al., 2002; Zehe and 

Bloschl, 2004; Tromp-van Meerveld and McDonnell, 2006b; Graham et al., 2010).  In 

contrast to the remarkable spatial and temporal variability of the scaling factor, the 

extraordinary high shape similarity of surface runoff processes across neighboring 

hillslopes for each storm event tends to be persistent.  These results indicate that the 
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small-scale surface runoff processes are spatially variable but organized in a linear 

manner.  It would be valuable to test this new feature of the variability of small-scale 

runoff responses in other land use and climate regions such that we can generalize and 

use it to assist distributed hydrologic modeling.   

2.5.2 Controls on the organized variability of  

small-scale hydrologic responses 

It is difficult to explain the spatial and temporal characteristics of the shape 

similarity and the scaling factor.  On the one hand, factors including antecedent soil 

moisture, rainfall characteristics, and hillslope properties individually are influential in 

determining the runoff responses, and probably more realistic, their complex nonlinear 

interactions control the runoff processes.  On the other hand, there is only limited data 

available and some of the key information is very challenging to be measured with high 

accuracy and spatiotemporal resolution.  These process complexity and measurement 

difficulty hamper us from deciphering the controlling factors using the simple linear 

regression tools and the incomplete information.  Nevertheless, we try to understand this 

organized-variability using the data available.   

The persistent high shape similarity in space and time may result from the spatial 

proximity of these hillslopes and the spatiotemporal characteristics of the rainfall field.  

These hillslopes have similar sizes ranging from 0.5 to 3 hectares and have major land 

use of crop land covering at least 80% of their total areas.  Furthermore, these hillslopes 

are closely located in space, indicating that 1) they have large chance to have similar soil 

and geology, and thus have relatively similar wetness condition though not exactly the 

same; 2) they subject to similar temporal configuration of rainfall processes.  It is quite 

possible that the states of these hillslopes are spatially similar prior to each storm event, 

and thus the shapes of the hydrologic responses are determined by the temporal 

characteristics of rainfall.   
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The high spatiotemporal variability of the scaling factor can be moderately 

(40%~70%) explained by the variability of rainfall intensity and antecedent soil moisture 

content.  We first investigated the impact of hillslope characteristics (slope, size, prairie-

strip width and slope) on their scaling factors but our scatterplots do not show consistent 

simple relationships across runoff events.  However, this does not exclude the potential 

that some other factors may affect the scaling factor.  For example, the various 

combinations of the locations and the amount of the prairie strips (see Table 2-1) installed 

on these hillslopes have been reported to have impact on the scaling factor (Hernandez-

Santana et al., 2013).  Furthermore, the lack of relationship does not mean that they are 

not important-maybe their importance is masked by other factors such as the variation in 

the antecedent conditions and rainfall at these hillslopes.  This hypothesis cannot be 

directly tested because we currently do not have the detailed measurements at each 

hillslope, while the theory of ergodicity or space-for-time substitution (e.g., Birkhoff, 

1931; Neumann, 1932; Harvey, 1968; Pickett, 1989) allows us to indirectly test it by 

analyzing the temporal variation of the scaling factor.  Our multivariate linear regression 

shows that 40%~70% of the temporal variability of the scaling factor can be attributed to 

the variability of rainfall intensity and antecedent soil moisture content.  Interestingly, the 

coefficients of rainfall intensity in Figure 2-7 are the same for all of the hillslopes (except 

for B1) while it is not the case for soil moisture content.  In other words, for a storm 

event, rainfall intensity contributed equally in determining the scaling factors across 

hillslopes if its spatial variability is neglected and the spatial variability of the scaling 

factor is cause by the spatial variability of soil moisture content.  This is consistent with 

our conscious that given similar rainfall, the runoff responses of areas with spatial 

proximity tend to rely on antecedent soil moisture condition.   

The results and discussions above suggest it will be interesting to explore the 

interaction between the spatial structures of rainfall(e.g., Krajewski et al., 2003), soil 

moisture (e.g., Western et al., 2004) and runoff processes at small scales (~ 3 kilometers).  
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To pursue this goal, we installed soil moisture and rain gauge platforms in 2013 to collect 

more data at the three clusters of hillslopes for future investigation.  This may allow us to 

gain more solid insights about the organized variability of small-scale runoff processes.  

For example, with the more detail rainfall measurements we can conduct the lagged 

regression analysis between rainfall measurements over these hillslopes to explore the 

control of the high shape similarity of the hydrographs.  Furthermore, this increase in 

instrumentation may also help to reduce the scatters in Figure 2-7 by using data at the 

hillslopes rather than that at the NOAA weather station.   

2.5.3 Implications for distributed hydrologic modeling 

Successful applications of spatial organization of hydrologic response have been 

applied both at the small and large scales.  At the extreme case of small scale – the grid 

scale, the widely applied TOPMODEL assumes that all locations within the catchment 

having the same topographic index respond similarly to similar inputs.  This assumption 

of topography based local hydrologic similarity has been recognized as an important 

contributor to the simplicity and success of the TOPMODEL (e.g., Beven, 1997).  A 

lesson from this example is that accounting for the relationships between small-scale 

hydrologic responses can be important for distributed hydrologic modeling at larger 

scales.  At large scale (i.e., the catchment scale ranging from tens to thousands of square 

kilometers), hydrologic similarity between neighboring catchments has been frequently 

used for all purposes.  Many studies use this idea for regionalization of models and 

parameters (e.g., Merz and Blöschl, 2004; Oudin et al., 2008; Oudin et al., 2010), some 

use this concept to predict streamflows for ungauged basins (PUB) (e.g., Hirsch, 1979; 

Hortness, 2006; Archfield and Vogel, 2010; Ssegane et al., 2013), and others for creating 

hydrologic models (Andréassian et al., 2012).  These studies generally showed the power 

of spatial organization in hydrologic modeling application, and raise to our question - 

how we can apply the spatial relationship of small-scale hydrologic response observed in 
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this study for distributed hydrologic modeling?  It would be great if we could explicitly 

account for it in the process of writing the equations for distributed hydrologic models 

(see for example, Andréassian et al., 2012), or at least we can use it as a feature to test the 

capabilities of our elementary models developed for the REWs of a distributed model. 

2.6 Conclusion 

This study used the lagged regression technique to examine the relationship 

between surface runoff processes from 12 closely located hillslopes in central Iowa, USA.  

The results show that areas with spatial proximity respond to the same storm event 

similarly in shapes but differently in magnitudes, indicating that the small scale surface 

runoff responses (hydrographs) are spatially variable but organized in a linear manner.  

We call this phenomenon as organized variability or spatial proportionality of surface 

runoff processes.  Further multivariate regression analysis shows that the organized 

variability tends to depend on the antecedent wetness condition and rainfall 

characteristics.  These results suggest that except for nonlinearity and heterogeneity, 

shape similarity in space (or spatial proportionality) is another feature of small-scale 

runoff process.   

On the basis of our analysis in the Iowa climate and agriculture lands, it is not 

ready to claim that this spatial proportionality in the hydrologic responses from hillslopes 

in geographic vicinity is universally true.  However, it will be interesting to test this 

possibility out for different geographic and climate regions by designing rigorous 

experiments and conducting similar data analysis illustrated in this study.  The 

confirmation of the existence of this between-element feature for other regions would 

benefit distributed hydrologic modeling.   
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Table 2-1.  Hillslope characteristics 

Site Size 

(ha) 

Slope 

(%) 

Max. Slope 

Lengths (m) 

Width of PFS at 

footslope (m) 

Location and percent of PFS 

B1 0.53 7.5 120 38.2 10% footslope 

B2 0.48 6.6 113 40.5 5% footslope and 5% upslope 

B3 0.47 6.4 110 37.6 10% footslope and 10% upslope 

B4 0.55 8.2 118 38.1 10% footslope and 10% upslope 

B5 1.24 8.9 144 46.4 5% footslope and 5% upslope 

B6 0.84 10.5 140 0 All rowcrops 

I1 3 7.7 288 51 3.3% footslope, 3.3% sideslope, and 

3.3% upslope 

I2 3.19 6.1 284 78.2 10% footslope 

I3 0.73 9.3 137 0 All rowcrops 

O1 1.18 10.3 187 57.3 10% footslope 

O2 2.4 6.7 220 52 6.7% footslope, 6.7% sideslope, and 

6.7% upslope 

O3 1.24 6.6 230 0 All rowcrops 

B: Basswood;  I: Interim;  O: Orbweaver 

Percent of prairie filter strips (PFS) = area of PFS / area of watershed 
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Figure 2-1.  Location and experiment design of the 12 hillslopes at Basswood, Orbweaver, 

and Interim. 
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Figure 2-2.  Time series of 5-minute accumulation of runoff at hillslope Basswood #6 and 

5-minute accumulation of rainfall at the NOAA weather station during the growing 

season over the period from 2008 to 2011. 
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Figure 2-3.  Lagged regression analysis of hydrographs between paired hillslopes 

(hillslope B6 as the benchmark).  Left to right are the hydrographs plotted in the same 

vertical scale, the cross correlation of hydrographs, the lagged regression of hydrographs, 

and the hydrographs plotted with different vertical scales for each paired hillslopes.  Top 

to bottom are comparisons for different pairs of hillslopes (e.g., B1 VS. B6).  The solid 

gray lines represent the hydrographs at B6, and the dashed black lines represent 

hydrographs at other hillslopes (y-axis unit: mm/5min).  Lagged regression was done at 

the time lag that cross-correlation achieves maximum.  In the last column, the vertical 

scaling ad horizontal shift was determined according to the associated lagged regression 

analysis.    
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Figure 2-4.  Event-based comparison of shape similarity and scaling factor at the twelve 

experimental hillslopes in Iowa. 
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Figure 2-5.  Annual distribution of single-event shape similarity (i.e., maximum cross-

correlation max ), and scaling factor (i.e., lagged regression slope k ).  Values of max  

and k were calculated between each hillslope and B6 for 72 events observed from 2008 

to 2011.   
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Figure 2-6.  Scatterplots of scaling factor k versus width of prairie strip width at footslope 

(a), maximum slope length (b), slope (c), and size (d) of the hillslopes.   
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Figure 2-7.  Comparison of the model versus data estimates of scaling factor k. The 1:1 

line is superimposed to the scatter plot.  Independent variables MHRA and VSMC are the 

maximum hourly rain accumulation, and the volumetric soil moisture content averaged 

over the top 50cm of soil, respectively. Both MHRA and VSMC are observed at the same 

NOAA weather station about 1.1~3.3km away.   
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CHAPTER 3 

RECESSION DATA ANALYSIS:  SENSITIVITY OF PARAMETER 

ESTIMATION TO THE CALCULATION PROCEDURE 

 

3.1 Introduction 

Quantitative analyses of recession curves involve the selection of mathematical 

expression and the estimation of the recession parameters.  Among the mathematical 

models, the power-law function proposed by Brutsaert and Nieber (1977) is widely 

adopted: 

BAQ
dt

dQ
 , (3-1) 

where dQ/dt is the time rate of change in streamflow Q, and recession intercept A and 

recession slope B are model parameters.  Examining the variability of recession behaviors, 

i.e., the variability of A and B, across and within basins has long been used to understand 

the functioning of watersheds.   

A number of factors can contribute to the variability of the parameters A and B.  

Some studies related the variability of A and B to the aquifer characteristics  (e.g., 

Brutsaert and Nieber, 1977; Troch et al., 1993; Brutsaert and Lopez, 1998; Szilagyi et al., 

1998; Eng and Brutsaert, 1999; Mendoza et al., 2003; Rupp et al., 2004; Troch et al., 

2013), which are summarized as the hydraulic theory based interpretation of recession 

behavior (e.g., Harman et al., 2009; Troch et al., 2013).  Recent development linked 

variability of A and B to other physical factors.  To name a few, Rupp and Selker (2006b) 

showed that the vertical heterogeneity of hydraulic conductivity and Harman et al. (2009) 

presented that the spatial heterogeneity of linear recession processes across hillslopes 

could influence the variability of B.  Clark et al. (2009) demonstrated the importance of 

landscape organization in shaping the recession behavior across scales.  Biswal and 
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Marani (2010) and Mutzner et al. (2013) linked the recession slope B to the shrink of the 

feeding river network or area to streamflow.  Shaw et al. (2013) found that the change in 

recession intercept A was moderately related to watershed moisture storage during the 

recession events.   

These studies unveiled various natural causes of recession variability, while little 

attention has been paid to the contribution by the artifacts of recession data analysis.  

There seems to be wide agreement on the functional form (Equation (3-1)) of the 

recession model, while many procedures have been developed to determine the 

parameters A and B (e.g., Brutsaert and Nieber, 1977; Vogel and Kroll, 1996; Wittenberg, 

1999; Rupp and Selker, 2006a; Kirchner, 2009).  The flexibility in determining model 

parameters leads to the artificial recession variability and arises from factors that include: 

1) deciding whether to examine average recession characteristics or individual recession 

behavior; 2) selecting starting points and lengths to extract recession segments; and 3) 

choosing parameter estimation methods.  To narrow this gap and thus to raise cautions 

for interpreting and comparing the results of recession analyses, the sensitivity of 

parameter estimation to the calculation procedure should be assessed.   

The parameters A and B can be determined by using multiple or individual 

recession events.  For example, Brutsaert and Nieber (1977) used the lower envelope, 

Vogel and Kroll (1992) employed the best regression line, and Kirchner (2009) used the 

binned curve fitting of the dQ/dt-Q data cloud to determine A and B.  Instead of studying 

multiple recessions that make up the data cloud, there has been increasing effort devoted 

to analyzing individual recession events.  Vogol and Kroll (1996) and Sujono et al. (2004) 

used different methods to determine the baseflow recession constants (assuming B = 1) 

for individual recession events.  Hammond and Han (2006) and Blume et al. (2007) used 

portions of individual recession curves to determine parameters A and B for hydrograph 

separation.  Biswal and Marani (2010) and Shaw et al. (2012; 2013) studied individual 

recession events within data clouds.  Van de Giesen et al. (2005), Rupp et al. (2009), and 
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Biswal and Nagesh Kumar (2014) investigated the relation between the characteristics of 

aquifer recharge and the temporal variability of A and B across individual events.   

In a systematical comparative study, Stoelzle et al. (2012) found considerable 

differences between the average recession characteristics (represented by A and B) 

obtained for the same basin using different methods of segment selection and parameter 

estimation.  These average recession characteristics were derived using multiple events.  

Compared to the recession analysis using multiple recession events, we foresee that 

individual recession analysis may be even more sensitive to the choice of the calculation 

procedure since, by definition, less information is available.  Fewer studies have 

systematically investigated the sensitivity of recession parameters for individual events to 

subjective factors such as the selection of recession segments and the choice of the 

method to calibrate the recession model.  This work aims to fill this gap.   

This paper will first investigate the sensitivity of the resulting recession model for 

individual events (Equation (3-1)) with respect to the starting points and lengths used to 

extract recession segments.  The recession segments used to calculate parameters A and B 

can be selected according to various criteria with different starting points and lengths 

(e.g., Brutsaert and Nieber, 1977; Vogel and Kroll, 1992; Tallaksen, 1995; Kirchner, 

2009; Aksoy and Wittenberg, 2011).  This arbitrariness can affect the estimation of 

recession parameters.  For example, even for baseflow recession analyses with linear 

assumption (B = 1), it has been documented that the estimates of A depend on the starting 

points (Vogel and Kroll, 1992; Tallaksen, 1995) and lengths (Vogel and Kroll, 1996) 

used to select recession segments.  These studies used strict criteria to select recession 

segments to “ensure” that groundwater was the only flow source.  Extending the analyses 

to include the early stage of recession (e.g., Hammond and Han, 2006; Kirchner, 2009; 

Biswal and Marani, 2010), which may have multiple flow sources feeding into the 

streamflow and lead to a higher sensitivity of parameter estimation to the starting points 

of recession segments.  For instance, Hammond and Han (2006) reported sensitivity of 
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the parameters A and B to the lengths and starting points of the recession segments.  Their 

goal was to find the optimum recession model for hydrograph separation.  This study will 

quantify the sensitivity of the parameters A and B with respect to the starting points and 

lengths used to extract segments from individual recession curves.   

We will then investigate how the results of analyzing individual recession events 

depend on parameter estimation methods.  Parameters A and B in Equation (3-1) can be 

estimated using the log-log linear least squares fitting method employed by Vogel and 

Kroll (1992), and the nonlinear direct fitting (hereafter the NDF method) method 

proposed by Wittenberg (1999).  Vogel and Kroll’s (1992) method uses constant time 

steps (hereafter the CTS method) to calculate dQ/dt and thus is sensitive to the noise in 

the recession data.  To overcome this restriction, Rupp and Selker (2006a) recommended 

to use variable time steps (hereafter the VTS method) to calculate dQ/dt and further to 

estimate the recession parameters.  This paper will evaluate the performances of these 

three methods (CTS, VTS, NDF) and investigate if their estimates of A and B are 

significantly different. 

Lastly, we will investigate the robustness of the parameter estimation methods to 

the uncertainty in streamflow data.  While it is difficult to avoid uncertainty in 

streamflow data, we can assess the robustness of the parameter estimation methods to 

data noise.  Streamflow data estimated by means of rating curve have substantial 

combined error, and this error can reach 100% for low flows (Harmel et al., 2006; 

McMillan et al., 2012).  To reduce the impact of the precision of streamflow data on the 

estimation of recession parameters, some strategies were proposed to tackle this problem.  

For example, using a scaled time step to calculate dQ/dt (Rupp and Selker, 2006a), 

smoothing the noise in the original streamflow records by applying a moving average 

(Kroll et al., 2004), and averaging out the noise in the calculated dQ/dt by binning 

(Kirchner, 2009) have been suggested.  All of these strategies are designed to smooth the 
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data noise, while limited effort has been devoted to comparing the robustness of 

parameter estimation methods with respect to the uncertainty in streamflow data.   

In conclusion, the objective of our study was to assess the sensitivity of the 

resulting model dQ/dt = -AQ
B
 for individual recession events with respect to: 1) the 

starting point and length used to extract segments from complete individual recession 

curves; and 2) the method used to estimate A and B.  We do not pretend to provide new 

insights into the physical mechanism of the recession processes.  We addressed this 

objective in three steps.  First, we compared the values of parameters that were estimated 

using the same regression method and the recession segments with the same starting 

point but varying lengths.  Second, we compared the values of parameters that estimated 

using the same regression method and recession segments with the same length but 

varying starting points.  Lastly, we estimated A and B for the same set of recession 

segments using multiple methods and tested whether they produce similar results.  We 

further examined the robustness of parameter estimation methods with respect to the 

noise in the streamflow data through Monte Carlo simulations.   

3.2 Data and method 

First, we define our terms in this paragraph.  A “complete recession curve” is the 

portion of a discharge hydrograph starting from the peak and extending to the point at 

which the hydrograph begins to increase.  A “recession segment” refers to a portion of a 

complete recession curve (Tallaksen, 1995; Sujono et al., 2004).  Therefore, different 

recession segments can be extracted from a complete recession curve by changing the 

starting point and the segment length, i.e., each recession event has one complete 

recession curve but multiple recession segments.  The “starting point” is the time elapsed 

since the occurrence of the hydrograph peak.  These definitions apply to the true 

hydrograph, i.e., the actual discharge values.  However, we only know the observed 

hydrograph, which is corrupted by the errors.  The data uncertainty issues will be 
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addressed later in the paper.  In this study, we focus on the recession slope B (see 

Equation (3-1)) to demonstrate the sensitivity of its estimates with respect to the 

calculation procedure.   

3.2.1 Data and study area 

We analyzed about 750 recession events observed over the period from 1995 to 

2010 at 25 USGS stream gauges in the Iowa and Cedar River Basins in Iowa, USA 

(Figure 3-1).  The corresponding drainage area at the gauge locations ranges from 7 to 

17000 km
2
.  For this region that has a rather flat terrain, approximately three-fourths of 

the 900 mm average annual precipitation and 85% of the 45-65 thunderstorms occur from 

April through September (Villarini et al., 2011).  Frozen soils and snow melting near the 

surface last from late October to early April.  Water level is recorded every 15 or 30 

minutes and is translated into discharge by applying the stage-discharge relation.  We 

downloaded this sub-hourly streamflow data from the USGS Instantaneous Data Archive 

and aggregated it to hourly time series.   

Most of the area investigated in this study has landforms of the Southern Iowa 

Drift Plain and the Iowan Surface.  These two landscapes both are formed of glacial 

deposits and have well-defined drainage networks, with the first has steep rolling hills 

and valleys and the later has gentle rolling slopes and low relief.  The width, depth, and 

alluvial fill of these valleys are shaped by gradual processes (i.e., frost action, wind and 

water erosion) as well as by intense flood events.   

We will show details of our analysis for the recession events observed at the Clear 

Creek stream gauge near Coralville, Iowa, USA (red dot in Figure 3-1) and present 

summaries of our analysis for all of the gauges.  Clear Creek is one of the U.S. National 

Science Foundation critical zone observatories and is representative of the U.S. 

Midwestern watersheds subject to agricultural land use and a humid climate.  Clear Creek 

is an intensively instrumented and studied experimental watershed (e.g., Bradley et al., 
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2002; Abaci and Papanicolaou, 2009; Rayburn and Schulte, 2009; Loperfido et al., 2010; 

Risley et al., 2010; Berne and Krajewski, 2013).  This basin drains an area of ~250 km
2
 

and has the longest flow length of ~50km.  The time of centration for this basin is on the 

order of 1 day if the channel velocity is assumed to be 0.5 m/s.  Land cover in this basin 

is dominated by agricultural uses including corn, soybeans, and pasture.   

3.2.2 Selection of complete recession curves 

and recession segments 

Considering the hydroclimatological characteristics of the region mentioned in 

Section 3.2.1, only summer and autumn recession events were analyzed in this study.  For 

each gauge, isolated events were selected from its continuous discharge hydrograph by 

applying a threshold.  The threshold was the estimate of the 95% quantile of hourly 

streamflow at the gauge.  Then the times of peak discharge for each event were marked 

and the hydrograph segments between two consecutive peaks (events) were extracted.  

For each of these selected segments, we identified a complete recession curve starting 

from the hydrograph peak and extending until the difference between consecutive 

observations is greater than 0.1mm/day.  The threshold of 0.1mm/day rather than 0 was 

chosen to account for spurious increases and “stair-step” patterns in lowflow 

measurements.  In this study, only complete recession curves longer than 10 days were 

considered.   

Figure 3-2 shows our approach to investigate how parameter estimation depends 

on the selection of recession segments.  Segments from a complete recession curve were 

extracted with various starting points and lengths.  By analyzing recession segments with 

constant length but varying starting points, as illustrated in Figure 3-2 (a), the dependence 

of B on the starting point were investigated.  Similarly, by analyzing recession segments 

with the same starting point but changing lengths, as illustrated in Figure 3-2 (b), the 

dependence of B on the lengths of recession segments were examined.  This analysis was 
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repeated for all hydrographs included in the study.  When investigating how the 

estimation of B depends on the starting point, we varied the starting points from 0, 3, 6, 9, 

12, 18, 24, 36, 48, 60, 72, 96, 120, 144 and 168 hours after the hydrograph peak.  When 

examining how the estimation of B depends on the recession length, we changed the 

recession lengths from 4, 5, 6,… up to 12 days if the recession was not interrupted by 

consecutive storms.   

3.2.3 Parameter estimation methods 

The constant time step method (CTS) 

The terms in equation (3-1) can be discretized as dQ/dt = (Qt-Qt-1)/∆t and 

Q=(Qt+Qt-1)/2 for a given recession segment, where the time step ∆t is constant.  The 

time step can be chosen to be 1 day (e.g., Brutsaert and Nieber, 1977; Vogel and Kroll, 

1992), 1 hour (e.g., Clark et al., 2009), or 15 minutes(e.g., Rupp and Selker, 2006a).  For 

the constant time step method investigated in this study, we first calculated dQ/dt and Q 

for an individual recession event using constant time step of 1 hour, and then adopted the 

log-log simple linear least squares regression method used by Vogel and Kroll (1992) to 

determine A and B.   

The variable time step method (VTS) 

Rupp and Selker (2006a) showed that the CTS method may bias the estimates of 

A and B, and they recommended to use variable time steps to calculate dQ/dt to remove 

this limitation.  For the variable time step method compared in this paper, we first 

calculated dQ/dt and Q for an individual recession event using variable time steps, and 

then adopted the log-log simple linear least squares regression method used by Vogel and 

Kroll (1992) to estimate A and B.  To implement the VTS method (Rupp and Selker, 

2006a), the stage-discharge relationship and the stage measurement accuracy are required 

to determine the threshold C (   , equation (15) in their paper) and thus ∆t.  However, 
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this information is often not available and the value of C ends up being arbitrary.  

Palmroth et al. (2010) proposed to use the criterion  

)/2Q+C(Q Q-Q 1-tt1-tt   (3-2) 

We followed this approach and set the value of C to be constant at 0.001 for all 

our analyses as Palmroth et al. (2010) used in their study.   

The nonlinear direct fitting method (NDF) 

The third method is the nonlinear direct fitting method recommended by 

Wittenberg (Wittenberg, 1999).  Accordingly, we varied B systematically, for example, 

from 0 to 5 with a step size of 0.01 and calculates the value of A at each value of B using 

equation 
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where n is the length of the recession segment, and ∆t is the observational interval.  

Solving equation (3-1) for Qt gives 
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where Q0 is the discharge at the starting point of the recession segment used to calculate 

B, and t is the number of hours elapsed from the starting point.  All recession segments 

are modeled using their initial discharges Q0, the values of A and B, and equation (3-4).  

The modeling error E is defined as 
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where Vobs and Vmod are the volume of the observed and modeled hydrographs, 

respectively.  The optimal paired values of A and B were selected by minimizing the 

modeling error.   

Data points used by parameter estimation methods 

After a recession segment is selected, the three methods are used to estimate its 

recession parameters.  To make log(-dQ/dt) valid, the CTS method requires excluding 

non-negative dQ/dt values.  This requirement is satisfied in the literature by eliminating 

the non-negative values after dQ/dt are calculated (e.g., Brutsaert, 2008; Stoelzle et al., 

2012).  We followed this approach in our study.  In the VTS method, the criterion 

(Equation (3-2)) automatically makes log(-dQ/dt) valid.  When small C values are chosen, 

Equation (3-2) selects strictly monotonically decreasing data points for parameter 

estimation.  The choice of the value of C determines the number of points used for 

parameter estimation.  The NDF method uses all of the data points to estimate A and B.  

When applying these three methods, possibly different data points from the same 

recession segment are used in parameter estimation.  However, these are the methods 

commonly used in the literature and little attention is paid to how they may give notably 

different parameter values for the same recession event. 

Comparison of the parameter estimates 

Once the estimates of A and B are obtained for a given recession segment using 

the three methods described above, Equations (3-4) and (3-5) can be used to assess the 

goodness of fit.  As done in other works (e.g., Wittenberg, 1999; Hammond and Han, 

2006), we assume the method producing the smallest modeling error E outperforms the 

others.  It is possible to improve the performance of the VTS method by adjusting the 

threshold C, while there is no solid guidance on how to optimize the selection of C value.  

Following Palmroth et al.(2010), we used a constant C value of 0.001.   
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Robustness with respect to uncertainty in streamflow data 

Investigating the robustness of the parameter estimation methods to data errors is 

important because errors in the data may lead to biased estimates of parameters (e.g., 

Draper et al., 1966; Gupta and Dawdy, 1995; Ciach and Krajewski, 1999; Fuller, 2009; 

Carroll et al., 2010).  Streamflow data are subject to stage measurement and rating curve 

errors, and the evapotranspiration in the vicinity of streams.  The uncertainty in 

streamflow data is usually described as percentages of flow rates when assessing the 

quality of streamflow measurements (Harmel et al., 2006; McMillan et al., 2012) and 

modeling errors in streamflow measurements (e.g., Georgakakos, 1986; Weerts and El 

Serafy, 2006).   

In this study, the Monte Carlo simulation method was used to assess the 

robustness of the parameter estimation methods with respect to the uncertainty in 

streamflow data.  First, a noise-free (“true”) recession segment of 7-day length at an 

hourly time step (168 values) was generated.  Then, for each run, the true curve was 

corrupted with a vector of noise with 168 elements and the methods discussed in section 

3.2.3 were applied to estimate the parameters A and B.  For each magnitude of noise, we 

ran 1000 simulations and took the mean and standard deviation of the estimates of A and 

B given by each of the methods.  The means were compared to the true values used to 

generate the noise-free recession segment. 

The noise-free recession segment was corrupted with either multiplicative 

uncorrelated noise or multiplicative correlated noise.  Errors in consecutive streamflow 

measurements have been assumed to be correlated (e.g., Kitanidis and Bras, 1980; 

Sorooshian and Dracup, 1980; Foglia et al., 2009) or uncorrelated (e.g., Georgakakos, 

1986; Weerts and El Serafy, 2006) in the literature.  We tested both cases in this study, 

and introduced noise to the true recession segments data by 

)()](1[)( tQtEtQ true , (3-6) 
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where E(t) is the noise process, and Q(t)and Qtrue(t) are the time-varying corrupted and 

noise-free recession segments.  We generated vectors of uncorrelated noise from a 

normal distribution of N(0, σ) following Weerts and El Serafy(2006) and vectors of 

correlated noise using the first order autoregressive model (Sorooshian and Dracup, 1980) 

)()1()( ttEtE    (3-7) 

where σ is the magnitude of noise, t = 1, 2, …, 168, ρ is the lag-one serial 

correlation coefficient for the errors and takes a positive value less than 1, and 𝜀(t) is an 

i.i.d. random variable with mean 0 and standard deviation  21 .  We investigated 

different magnitudes of noise at σ = 1%, 3%, 5%, 8%, 10%, and 15% and tested six levels 

of correlation atρ = 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.   

3.3 Results 

3.3.1 Variability due to starting point 

The analysis of a single event shows that the estimation of B varies substantially 

with the starting points of recession segments (Figure 3-3).  To show how the starting 

points of recession segments affect the estimation of B, we took a recession event 

observed at the Clear Creek stream gauge near Coralville, Iowa as an example.  The 

selected complete recession curve has a total length of 27 days and spanned from June 24, 

2007 until July 19, 2007 (Figure 3-2).  For each fixed length (e.g., 5, 7, 9,11 days), we 

first extracted segments from the complete recession curve using various starting points 

and then estimated the corresponding values of B.  Finally, we plotted the obtained B 

values against the associated starting points.  The result shows that, for the same 

complete recession curve, the estimates of B for its recession segments with the same 

length but different starting points can differ on the magnitude of 1.5.   

Analyses of all of the recession events selected in this study also show a high 

variation of the B estimates due to the change in the starting points of recession segments 
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(Figure 3-4).  For each event at a gauge, recession segments were extracted from the 

complete recession curve with a fixed length but various starting points.  Then the 

associated estimates of B were obtained using the same parameter estimation method.  

Next, the range of B (defined as ΔB=Bmax - Bmin) was calculated and used as a measure of 

the variation of B due to the change in starting points for the selected recession event.  

This analysis was repeated to obtain the values of ΔB for all recession events at each 

USGS gauge.  Figure 3-4 shows that ΔB can take values ranging from 0 to 3 if the values 

of B were estimated using recession segments extracted from the same complete 

recession curve with fixed length but various starting points.  The median values of ΔB 

(red dots in Figure 3-4) for all gauges are around 1.  Similar results (not shown) were 

obtained when repeating similar analysis using the CTS and VTS methods.  Precautions 

should be taken when using A and B to characterize individual recession behavior 

because the estimation of A and B is sensitive to the starting point of the recession 

segment.   

3.3.2 Variability due to recession length 

The analysis of a single event shows that the estimation of B tends to be affected 

by the lengths of recession segments (Figure 3-5).  The same recession event as described 

in Section 3.3.1 was used to investigate the dependence of B on the lengths of recession 

segments.  At each fixed starting point (e.g., 1 day, 3, 5, and 7 days after hydrograph 

peak), we first extracted recession segments using different lengths and then calculated 

the associated B values.  Finally, we plotted B against the associated lengths of recession 

segments.  The result shows that, for the same complete recession curve, the estimates of 

B for its recession segments with the same starting point but different lengths can vary on 

the magnitude of 0.5.   

Analyses of all of the recession events selected in this study also show that the B 

estimates tend to depend on the lengths of recession segments (Figure 3-6).  For each 
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event at a gauge, recession segments were extracted from the complete recession curve 

with a fixed starting point but various lengths.  Then the associated estimates of B were 

obtained using the same parameter estimation method.  Next, the range of B (defined as  

ΔB=Bmax - Bmin) was calculated and used as a measure of the variation of B due to the 

change in the segment lengths for the selected recession event.  This analysis was 

repeated to obtain the values of ΔB for all recession events at each USGS gauge.  Figure 

3-6 shows that ΔB can take values ranging from 0 to 2 (for most gauges) if the values of 

B were estimated using recession segments extracted from the same complete recession 

curve with fixed starting points but various lengths.  The median values of ΔB (red dots in 

Figure 3-6) for all gauges are around 0.5.  Similar results (not shown) were obtained 

when repeating similar analysis using the CTS and VTS methods.  Cautions should be 

exercised when comparing A and B values for different events, especially if the difference 

in the lengths of the two recession segments used to estimate A and B is large.   

3.3.3 Variability due to parameter estimation methods 

The analysis of a single event shows considerable differences among the values of 

B estimated by different methods (Figure 3-7).  A recession segment was extracted from 

the same recess event as described in Section 3.3.1 with a starting point of 2 days after 

the hydrograph peak and a length of 7 days.  This segment and the three methods 

introduced in Section 3.2.3 were used to estimate the value of B.  Figure 3-7 shows that 

the parameters estimated by the NDF method are most effective in terms of reproducing 

the given recession segment.  Surprisingly, the difference among the values of B 

estimated by these methods can be as high as ~0.6.  Both the CTS and the VTS methods 

estimate A and B in the log-log scale using the least squares linear regression, and 

therefore the goals are to maximize the amount of variation in log(-dQ/dt) rather than that 

in -dQ/dt that is explained by the power-law recession models.  In contrast, the NDF 

method estimates A and B in the original units using iterative direct curve fitting.  This 
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leads to different optimal solution for A and B.  A sensitivity analysis of these methods to 

the choice of Δt is provided in Appendix B at the end of the thesis.  The impact of noise 

in recession data on these discrepancies will be discussed later in Section 3.3.4.  We will 

investigate whether these differences in the values of B estimated by different methods 

are statistically significant.   

Analyses of all of the recession events selected at the Clear Creek near Coralville, 

Iowa shows that the values of B estimated by the three methods are statistically different 

(Table 3-1).  We selected one segment from each of the 30 recession events observed at 

the Clear Creek stream gauge near Coralville using a starting point of 2 days after the 

hydrograph peak and a length of 7 days.  For all recession segments, we estimated B 

values using the three methods and conducted three paired t-tests of the estimates: CTS 

versus VTS, CTS versus NDF, and VTS versus NDF, respectively.  Our paired t-tests 

showed that the estimates of B given by the three methods were different from each other 

at the significance level of p = 0.05.   

We repeated the paired t-tests described above for the other 24 sub-basins in the 

Iowa and Cedar River basins.  We extracted ~750 recession segments from observations 

at 25 USGS gauges using the same starting point of 2 days after the hydrograph peak and 

the same recession length of 7 days.  For 17 out of the 25 gauges investigated, the paired 

t-tests indicated that B estimates given by the three methods were statistically different at 

the significance level of p = 0.05 (Table 3-2).  This significant differences suggest that it 

would be wise to ascertain that recession parameters are estimated using the same method 

when comparing them across events. 

In conclusion, the artificial variability of B resulting from the calculation 

procedure is comparable to the variability of B among individual recession events.  For 

the Clear Creek basin, Table 3-1 shows that the variability of B among 30 individual 

recession events measured by interquartile range is about 0.7.  Table 3-1 also shows that, 

for individual events, the differences between estimates of B given by the three methods 
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can vary from 0 to ~1.  For multiple basins, Table 3-2 shows that the variability of B 

among individual recession events is around 1.0 (median value) and the difference caused 

by the method of choice is about 0.3 (median value).  Additionally, as we reported in 

Section 3.3.1 and 3.2, the differences in the estimates of B for the same recession event 

are 1.0 and 0.5 due to changes in the starting points and lengths used to extract recession 

segments, respectively.  These numbers suggest that when interpreting the temporal 

variability in the recession behavior (e.g., represented by A and B) of a basin, it is 

important to reduce the variability in the recession parameters caused by the procedure of 

recession segment selection and parameter estimation.   

Comparison showed that the parameters estimated by the NDF method better 

reproduced given recession segments (smaller modeling error) than those estimated by 

the CTS and the VTS methods (Table 3-2).  For the majority of ~750 recession events 

investigated, the given recession segments were the best and worst reproduced by the 

parameters estimated by the NDF and the CTS methods, respectively.  Based on this, it 

seems that the NDF method outperforms the other two in estimating the recession 

parameters.  It is worthy to note that the NDF method produces more reliable estimates of 

A and B at the expense of requiring slightly longer computational time (<1 second).  It is 

interesting to understand why the NDF method is more effective.  Probably the noise in 

recession data contributes to the differences in and the effectiveness of the parameter 

estimates.  Since the VTS method is more advanced in dealing with the noise in recession 

data than the CTS method is, we will use a Monte Carlo simulation method to compare 

only the robustness of the VTS and the NDF methods to the uncertainty in recession data 

in the next section.   

3.3.4 Effect of uncertainties in streamflow  

This investigation was limited to the Clear Creek basin as its recession analysis 

results are representative of other basins (Table 3-1 and Table 3-2).  We generated the 
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noise-free (“true”) recession segment based on our understanding of the recession 

behavior at the Clear Creek stream gauge near Coralville, Iowa.  A visual examination of 

the complete recession curves at this gauge reveals that discharge usually drops below 2 

mm/day two days after hydrograph peaks.  Typical values of A and B at this gauge are 

0.15 and 2.0, respectively, based on the analysis of the recession segments that start two 

days after a hydrograph peak with a length of seven days (Table 3-2).  Thus, we created a 

seven-day long noise-free recession segment with an hourly time step using the power 

law function 0.215.0 Qdt
dQ   and an initial discharge of 2 mm/day.  This noise-free 

recession segment was corrupted with either multiplicative uncorrelated noise or 

multiplicative correlated noise.   

Among the noise processes we investigated, the NDF method is more robust with 

respect to data errors and thus is preferred for parameter estimation.  Figure 3-8 shows 

that the mean values of the estimates of B given by the NDF method are close to the true 

value of 2.0, regardless of the existence of correlation in and the magnitude of the data 

noise.  In contrast, the mean values of the estimates of B given by the VTS method tend 

to deviate from 2.0 as the magnitude of uncorrelated error increases.  Furthermore, at 

each magnitude of the noise, the NDF method gives less variable estimates of B, 

indicating that it is more robust with respect to the noise in the recession data.  As 

anticipated, for both methods, the estimation of B deteriorates as the magnitude of 

uncertainty in recession data increases.  For the correlated error case shown in Figure 3-8, 

we contaminated the noise-free recession curve with noise correlated at the level of ρ = 

0.6.  We decided on this value based on a brief sensitivity study. 

We investigated how the levels of correlation of the data noise (ρ) and the length 

of recession segments affect the comparison results.  We first estimated the recession 

parameters for each of the observed recession events at Clear Creek using the NDF 

method and subsequently used the estimated A and B values to reproduce the associated 

recession segment.  We then fitted AR(1) models to the residuals of the recession model 
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for each of the events and found that the estimated values of ρ vary between 0.3 and 0.8, 

with a median value of around 0.6.  We tested six levels of correlation, ρ = 0.3, 0.4, 0.5, 

0.6, 0.7, and 0.8, and found similar results as reported in the previous paragraph.  We 

repeated the analysis for recession segments with lengths of 3, 5, 7, and 9 days and 

obtained similar results, except that longer segments tend to reduce the variance of the B 

estimates. 

3.4 Discussion  

Recent research has suggested examining individual recession events to gain 

insights into hydrological processes at the scale of large watersheds (e.g., Biswal and 

Marani, 2010; Shaw and Riha, 2012).  Such studies revealed some of the natural causes 

of recession variability by directly relating the recession slope and intercept and their 

variability to the physical factors such as aquifer recharge (Pauwels et al., 2002; van de 

Giesen et al., 2005; e.g., Rupp et al., 2009), evapotranspiration process (e.g., Shaw and 

Riha, 2012), watershed soil moisture storage (e.g., Shaw et al., 2013), and river network 

morphology (e.g., Biswal and Marani, 2010; Mutzner et al., 2013; Biswal and Nagesh 

Kumar, 2014).  However, the flexibility in the procedures to estimate the recession 

parameters(e.g., Brutsaert and Nieber, 1977; Vogel and Kroll, 1992; Wittenberg, 1999; 

Rupp and Selker, 2006a) may challenge the inversion problem of determining natural 

causes of the recession variability.  The results presented in this paper show that the 

variability of recession parameters due to artifacts of data analysis is comparable to that 

rising from natural processes.  For the same recession event (Figure 3-2), notable 

differences in the estimates of recession parameters can arise alone from the procedure of 

data analysis (Figure 3-3, Figure 3-5, Figure 3-7).  These differences are remarkable 

when compared to the range of values for the rescission slope from 1 to 3 (e.g., Brutsaert 

and Nieber, 1977; Rupp and Selker, 2006b).  This implies that the natural variability of 

recession parameters can be blurred by the artifacts of recession data analysis. 
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Our assessment of the sensitivity of individual recession analyses to the segment 

selection and parameter estimation methods is complementary to the work of Stoelzle et 

al. (2012), which shows the impacts of recession analysis methods on the resulting 

recession characteristics derived using multiple events collectively.  Comparative 

recession analyses of both individual events in a watershed and characteristic recessions 

between watersheds have been used in the literature to make inferences about hydrologic 

processes.  Interestingly, both studies have shown the sensitivity of the resulting 

recession models to the procedure of recession analysis.  Therefore, cautions should be 

exercised when interpreting and comparing the results of recession analysis. 

The systematic approach used here to assess the sensitivity of individual recession 

analysis to the methodological aspects is implemented by making simplifications.  First, 

evapotranspiration and the combined error in streamflow estimated by means of rating 

curve were treated as noise for recession data.  These two noise sources are different in 

nature that the first always tends to increase and the second can either increase or 

decrease the recession rate.  Second, the noise in recession data were characterized using 

either multiplicative uncorrelated or multiplicative correlated AR(1) error models in this 

study because there is no generally accepted error models for streamflow data.  Third, 

when selecting a complete recession curve starting from the peak and extending to the 

point at which the hydrograph begins to rise, we took the last peak as the hydrograph 

peak and omitted the short recession segments between multiple peaks.  Lastly, for the 

variable time step parameter estimation method, a constant threshold was used in this 

study.  Accounting for details of either of these simplifications would increase the 

accuracy of our sensitivity assessment, but would also make the assessment process more 

complex.  The findings presented above would remain.   
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3.5 Conclusion 

We used a systematic approach, similar to those designed by Tallaksen (1995), 

Hammond and Han (2006), and Stoelzle et al. (2012), to assess the sensitivity of 

individual recession analyses to the segment selection and parameter estimation methods.  

Our results draw from analyzing ~750 recession events observed at 25 USGS gauges 

suggested that: 1) the determination of the recession model dQ/dt = -AQ
B
 for individual 

recession events is sensitive to the segment selection and parameter estimation methods 

used; 2) due to using different recession segments and calculation methods, the variations 

of the parameter estimates for the same recession event were comparable to the variations 

of A and B between different recession events; and 3) among the parameter estimation 

methods investigated in this study, the nonlinear direct fitting method proposed by 

Wittenberg (1999) tends to be most robust with respect to the uncertainty in streamflow 

data.  The first two findings are consistent with Stoelzle and Stahl’s (2012) conclusion 

that the results of examining multiple recession events collectively are sensitive to the 

recession extraction and parameterization methods.   

Given the arbitrariness in the field of recession data analysis, our study 

complements the previous studies and raises cautions for comparative analyses of 

individual recessions.  When investigating the causal relation between natural processes 

and the dynamics of recession behavior (e.g. the variability in recession parameters), the 

artifacts introduced by the calculation procedure should be recognized and reduced.  To 

achieve this goal, we recommend using a consistent approach to select recession 

segments and using the nonlinear direct fitting method to estimate the recession 

parameters for individual events. 
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Table 3-1.  Comparison of the estimates of recession parameters A and B at Clear Creek 
near Coralville, Iowa (USGS 454300) calculated using the CTS, VTS and the NDF 
methods.  All recession segments have a starting point of 2 days and a length of 7 days.   

Starting Date A B Modeling error (%) 

Year/month/day CTS VTS NDF CTS VTS NDF CTS VTS NDF 

1995/07/06 0.22 0.19 0.20 0.30 1.41 1.94 54.63 9.82 0.41 

1996/06/07 0.18 0.14 0.11 1.05 0.68 1.04 18.50 4.04 0.53 

1997/05/08 0.20 0.16 0.21 0.42 1.20 2.08 41.51 5.71 0.68 

1997/05/26 0.20 0.15 0.15 0.32 0.98 1.48 17.06 0.58 0.13 

1998/10/05 0.26 0.13 0.13 1.42 2.17 2.52 15.49 3.38 0.51 

1998/11/10 0.16 0.09 0.06 0.86 1.42 2.32 19.02 3.96 0.07 

1999/04/23 0.17 0.06 0.06 1.13 2.32 1.84 21.00 5.66 0.23 

2000/06/15 0.29 0.16 0.14 0.72 1.26 2.24 29.07 0.67 0.42 

2000/07/10 0.32 0.18 0.18 1.13 1.76 2.08 29.54 0.17 0.96 

2001/06/14 0.30 0.08 0.07 0.59 2.55 3.04 29.67 0.12 0.75 

2001/10/23 0.29 0.53 1.48 0.54 1.92 3.78 47.87 11.45 3.49 

2002/04/28 0.18 0.15 0.13 0.56 1.77 1.92 27.03 5.54 0.17 

2002/08/23 0.30 1.33 1.84 0.37 2.23 2.54 60.57 3.31 0.40 

2002/10/04 0.25 0.55 0.89 0.41 2.83 3.68 50.61 2.74 0.50 

2004/05/31 0.21 0.13 0.12 1.23 1.66 2.12 20.19 2.82 0.46 

2005/04/12 0.22 0.14 0.14 1.03 2.20 3.02 25.59 3.59 0.18 

2007/04/13 0.17 0.12 0.09 0.88 1.92 2.92 18.31 5.45 0.77 

2007/05/07 0.16 0.11 0.09 1.17 1.74 2.66 10.08 1.23 0.18 

2007/06/24 0.26 0.14 0.14 1.02 1.36 1.60 16.17 7.28 0.07 

2007/08/24 0.22 0.14 0.14 1.14 1.87 2.18 3.70 3.55 0.44 

2007/10/02 0.23 0.22 0.24 0.31 3.00 3.72 37.19 1.92 0.11 

2007/10/18 0.24 0.08 0.08 0.81 2.15 2.32 10.67 3.96 0.77 

2008/07/22 0.27 0.10 0.09 0.69 1.46 1.66 23.47 0.41 0.16 

2008/09/29 0.35 0.24 0.17 2.37 3.90 4.00 25.82 4.43 1.25 

2009/06/24 0.10 0.08 0.08 1.70 2.15 2.20 1.47 3.16 0.06 

2009/07/11 0.10 0.08 0.09 1.87 2.13 2.20 3.43 4.27 0.03 

2009/07/25 0.13 0.13 0.15 0.49 1.83 2.64 16.19 2.51 0.18 

2009/08/28 0.09 0.07 0.08 1.85 2.13 2.12 2.43 2.95 0.24 

2009/10/30 0.04 0.04 0.03 2.30 2.54 2.80 2.21 3.01 0.25 

2010/08/21 0.14 0.12 0.13 0.89 1.94 2.74 12.66 2.25 0.03 

Median 0.21 0.14 0.13 0.88 1.92 2.28 19.61 3.35 0.33 

Interquartile Range 0.10 0.07 0.08 0.62 0.69 0.71 16.06 2.08 0.36 
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Table 3-2.  Comparison of the estimates of B at 25 gauges calculated with the CTS, VTS and NDF methods.  All gauges are located 
within the HUC05 of the United States, and we use only the last six digits of their complete USGS gauge ID.  NRec is the number of 
recession events analyzed; Median of B are the median values of B for multiple events at a gauge; IQR of B is the interquartile range 
of B estimates for multiple events at a gauge; Modeling error (%) is the median of the relative differences between the volumes of 
modeled and observed recession flows; p value is for the paired t-test; ∆B is the median value of absolute difference of B estimates 
given by two methods.   

USGS 

Gauge 

No 

Area 

(km
2
) 

NRec 

Median of B  IQR of B  Modeling error (%)  p- value  ∆B 

CTS VTS NDF  CTS VTS NDF  CTS VTS NDF  
CTS-

VTS 

CTS- 

NDF 

VTS- 

NDF 
 

CTS-

VTS 

CTS- 

NDF 

VTS- 

NDF 

64942 7 14 0.55 1.31 2.06  0.80 0.88 0.70  31.21 11.39 0.83  0.15 0.01 0.00  1.31 1.75 0.76 

464220 774 21 1.39 2.42 2.72  0.86 0.77 0.40  8.63 1.78 0.26  0.00 0.00 0.00  1.09 1.44 0.22 

463500 784 18 2.03 2.38 2.63  0.73 0.71 0.82  0.69 0.87 0.39  0.00 0.00 0.00  0.32 0.62 0.20 

458000 792 25 1.73 2.14 2.24  1.12 0.99 0.66  4.34 2.10 0.62  0.00 0.00 0.28  0.48 0.43 0.23 

463000 898 30 1.78 2.20 2.48  1.09 0.75 1.02  1.25 1.19 0.56  0.00 0.00 0.01  0.33 0.41 0.23 

457000 1033 12 1.45 1.96 1.89  0.30 0.77 1.18  4.15 1.32 0.26  0.00 0.00 0.05  0.55 0.62 0.24 

459500 1362 38 1.19 1.45 1.62  0.81 0.85 1.17  4.03 1.26 0.37  0.02 0.00 0.01  0.26 0.58 0.15 

458900 2190 24 1.93 2.27 2.13  0.94 1.29 1.43  1.96 1.38 0.87  0.00 0.00 0.45  0.16 0.39 0.20 

457700 2729 22 1.47 1.65 2.08  0.70 1.05 1.43  8.21 3.19 0.52  0.00 0.01 0.25  0.37 0.68 0.27 

458500 4300 13 1.76 1.82 2.14  0.82 0.62 0.90  1.76 1.19 0.31  0.00 0.00 0.20  0.53 0.74 0.23 

462000 4520 33 1.19 1.59 1.66  0.62 0.63 0.84  1.60 0.83 0.24  0.00 0.00 0.25  0.23 0.33 0.13 

464000 13322 25 1.77 2.04 2.22  0.68 0.64 0.48  2.60 0.88 0.59  0.00 0.00 0.00  0.31 0.54 0.30 

464500 16854 9 1.54 1.67 2.18  1.15 1.23 1.54  5.60 1.42 0.30  0.07 0.06 0.08  0.47 0.98 0.51 

454000 66 41 0.32 1.42 2.16  0.38 0.46 0.80  24.66 10.03 0.61  0.00 0.00 0.00  1.13 1.82 0.76 

451900 145 41 0.73 2.11 2.70  0.48 0.90 0.90  29.52 5.51 0.45  0.00 0.00 0.00  1.31 1.85 0.64 

454220 151 30 0.98 1.84 2.37  0.41 0.28 0.86  21.73 2.88 0.26  0.00 0.00 0.00  0.85 1.35 0.49 

452200 184 35 0.67 1.51 2.14  0.49 0.39 0.69  28.45 4.36 0.40  0.00 0.00 0.00  0.81 1.47 0.62 

454300 254 30 0.88 1.92 2.28  0.62 0.69 0.71  19.61 3.35 0.33  0.00 0.00 0.00  1.04 1.49 0.53 
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Table 3-2. Continued 

 

 

                     

451700 306 25 1.21 1.96 2.62  0.52 0.48 0.88  7.31 2.43 0.61  0.00 0.00 0.00  0.66 1.36 0.69 

453000 489 39 1.13 2.17 2.62  0.77 0.86 0.99  18.93 1.98 0.62  0.00 0.00 0.00  0.78 1.18 0.38 

452000 520 31 1.63 2.45 2.82  0.85 0.52 0.80  6.65 0.94 0.29  0.00 0.00 0.00  0.73 1.34 0.46 

451210 580 34 1.47 2.03 2.20  0.58 0.55 0.75  10.55 1.77 0.56  0.00 0.00 0.00  0.45 0.69 0.18 

455500 1486 43 1.74 2.07 2.14  0.43 0.37 0.60  2.00 1.56 0.72  0.00 0.00 0.00  0.22 0.35 0.14 

451500 3966 21 1.20 1.56 1.46  0.58 0.75 0.78  2.54 1.58 0.53  0.00 0.02 0.58  0.29 0.33 0.20 

453100 7233 21 1.75 2.17 2.18  0.91 0.80 1.18  1.04 1.16 0.57  0.01 0.22 0.23  0.17 0.30 0.20 
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Figure 3-1.  Location of the USGS stream gauges used in this study. 
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Figure 3-2.  The schematic of selecting recession segments from a complete recession 
curve by fixing the length while varying the starting points (upper panels) and by fixing 
the starting point while varying the lengths (lower panels).  The starting point of a 
recession segment is measured from the hydrograph peak that is marked by the red 
dashed-line.  The blue curve is the recession segment used to estimate the recession 
parameters A and B.  This is a 27-day long complete recession curve observed at Clear 
Creek near Coralville, Iowa (USGS 454300) and spanned from June 24, 2007 until July 
19, 2007. 

 

  



65 
 

 
 

 

 

Figure 3-3.  Variability of B estimates due to the change in starting points of recession 
segments (a single event).  The same example recession event as in Figure 3-2 is used 
here.  The text at the top right corner is the length of the recession segments used to 
estimate B.  At each fixed recession length, we first extracted recession segments using 
different starting points (0~7 days after hydrograph peak) and then estimated the values 
of B using the NDF method.  The range of B values (defined as ΔB=Bmax - Bmin) due to 
the change in starting points is about 1.5 for this example event.   
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Figure 3-4.  Variability of B estimates due to the change in starting points of recession 
segments (multiple events).  For each USGS gauge (see gauge ID at the top right corner), 
we repeated the analysis in Figure 3-3 to obtain ΔB values for all of the recession events.  
Each red dot is the median value and each gray line segment represents the range of ΔB at 
a fixed recession length.  The median values of ΔB for all gauges are around 1.0. 
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Figure 3-5.  Variability of B estimates due to the change in lengths of recession segments 
(a single event).  The same example recession event as in Figure 3-2 is used here.  The 
text at the top right corner is the starting point (number of days after hydrograph peak) of 
the recession segments used to estimate B.  At each fixed starting point, we first extracted 
recession segments using different lengths (4~12 days) and then estimated the values of B 
using the NDF method.  The range of B values (defined as ΔB=Bmax - Bmin) due to the 
change in recession lengths is about 0.5 for this example event. 
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Figure 3-6.  Variability of B estimates due to the change in lengths of recession segments 
(multiple events).  For each USGS gauge (see gauge ID at the top right corner), we 
repeated the analysis in Figure 3-5 to obtain ΔB values for all of the recession events.  
Each red dot is the median value and each gray line segment represents the range of ΔB at 
a fixed starting point.  The median values of ΔB for all gauges are around 0.5.   
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Figure 3-7.  Variability of parameter estimates due to method choices.  The same 
example recession event as in Figure 3-2 is used here.  We extracted the recession 
segment from the complete recession curve using a starting point of 2 days and a length 
of 7 days.  The parameters for the selected segment were estimated using the CTS ((a) 
and (c)), VTS ((b) and (d)) and NDF ((e)) methods.  In (b), (d), and (e), the open circles 
are the measured streamflow values, and the lines are the modeled recession segments 
using the estimated parameters.  For the VTS method, the value C = 0.001 was used to 
reduce the impact of the noise in streamflow data on the estimation of recession 
parameters.  The modeling error was calculated as the relative difference between the 
volumes of modeled and observed recession flows.  
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Figure 3-8.  Robustness of the VTS (blue) and the NDF (red) methods to the noise in 
streamflow data.  The true value of B is 2.  Filled circles represent the mean values of B.  
Error bars show the standard deviation of B estimates at each magnitude of error.  The 
mean and standard deviation were obtained based on the results of 1000 simulations.  The 
length of the recession segment used is 7 days (168 hourly flow values).  The 
uncorrelated noise are generated from a normal distribution N(0, σ).  The correlated noise 
are generated from the AR(1) model E(t)= ρE(t-1) + 𝜀(t), where ρ is the correlation 
coefficient (ρ = 0.6 for this figure), 𝜀(t) is an i.i.d. random variable with mean 0 and 
standard deviation  21 , and σ is the magnitude of data noise in percentage. 
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CHAPTER 4 

DISSECTING RECESSION CURVES 

 

4.1 Introduction 

The hydrological response of a basin is determined by the flow paths of rainfall 

falling on each point within its boundary and the velocity of the water particles on their 

routes to the outlet.  Hydrograph separation using a recession curve is one of the most 

frequently used techniques to identify flow sources which are strongly associated with 

flow paths (e.g., Pilgrim et al., 1979; Hooper and Shoemaker, 1986; Quinn et al., 1991; 

Tallaksen, 1995; Brown et al., 1999).  The traditional multiple-reservoir hypothesis 

postulates that a basin partitions rainfall into different reservoirs, stores the water for 

various residence times, and ultimately releases the stored water at different rates in the 

forms of either evapotranspiration or streamflow (e.g., Griffiths and Clausen, 1997; 

Wagener et al., 2007).  Therefore, the recession curve is a composite, i.e., different 

reservoirs dominate different stages of the outflow process, and it is often decomposed 

into fast near-surface flow, delayed soil matrix flow, and further delayed groundwater 

flow (e.g., Brutsaert and Nieber, 1977; Sivapalan, 2003; Sivapalan et al., 2003).  The 

decomposition is commonly used to make inferences about hydrological processes in 

order to further assist basin storage estimation and enhance hydrological modeling (e.g., 

Brutsaert and Lopez, 1998; Wittenberg and Sivapalan, 1999; McDonnell et al., 2007; 

Spence, 2007; Kirchner, 2009; Seyfried et al., 2009; Biswal and Marani, 2010).  

Many methods that have been proposed to decompose hydrographs are more or 

less subjective (e.g., Nathan and McMahon, 1990; Arnold et al., 1995; Tallaksen, 1995; 

Smakhtin, 2001; Eckhardt, 2005).  The existing methods designed for hydrograph 

separation can be grouped into four general categories.  The first entails graphical 
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techniques such as the straight line, fixed base, variable slope, and inflection point 

methods.  These methods are based on a visual inspection of the recession curve’s shape.  

The second entails digital filters, including methods developed by Nathan and McMahon 

(1990) and Eckhardt (2005), which filter out high-frequency fast flow while retain low-

frequency base flow.  The third group includes thresholding methods based on the 

empirical recognition of the natural process of hydrograph recession.  These methods 

assume that fast flow ends either X-days (X≥2) after the hydrograph peak or when 

discharge drops below a certain threshold.  Lastly, the fourth group consists of a chemical 

tracer-based approach that adopts the end member analysis (e.g., McDonnell et al., 1990; 

Genereux, 1998).  The first three categories include various degrees of subjectivity: the 

graphic method depends on visual inspection; the digital filters eliminate some of the 

subjective elements but still rely on parameters which might be assigned subjectively; 

and the thresholding method is the most experience-based.  The chemical tracer-based 

approach is usually used in hillslope hydrology but is technically challenging (due to the 

difficulty in determining the end members) and expensive to apply to large basins (e.g., 

Genereux, 1998; Uhlenbrook and Hoeg, 2003).  These limitations weaken the reliability 

of the inferences made from hydrograph separation and hamper a wider use of the 

hydrograph separation technique.  

To explore whether there is a more objective way to dissect a hydrograph 

recession into stages of the outflow process dominated by different storages, we analyzed 

the evolution path of the recession exponent B in equation (4-1) and related it to the 

outflow process, 

BtQA
dt

tdQ
)]([

)(
   (4-1) 
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where Q(t) is the total discharge (as the sum of flow from different reservoirs) at time t 

and A and B are parameters.  The notion that different reservoirs can be characterized by 

different parameters, e.g., exponent B in equation (4-1) (Brutsaert and Nieber, 1977; 

Brutsaert and Lopez, 1998), implies that along with a recession process there is an 

associated evolution path of the recession exponent B.  We followed this track to dissect 

hydrograph recession curves.  Since there is no standard definition for streamflow 

components, in this study, fast flow refers to flow that vanishes in the first few hours after 

the peak discharge and contains both overland flow and quick subsurface flow.  We 

assume that streamflow can be decomposed into fast flow, delayed soil water flow, and 

groundwater flow and that hydrograph recession can be separated into stages that are 

dominated by fast flow, soil water, and groundwater storages, accordingly. 

The structure of this paper is as follows.  Section 4.2 describes the data set used in 

the study.  Section 4.3 introduces our method of recession analysis.  Section 4.4 reports 

the results of the recession analysis, and section 4.5 provides an explanation of the 

observed phenomena.  We close with a discussion and conclusions presented in sections 

4.6 and 4.7, respectively. 

4.2 Data 

To increase the reliability of our analysis, we used recessions from multiple sites 

across scales under various weather conditions.  We analyzed about 1000 recession 

curves over a period of around 15 years (1995-2010) from time-series of hourly discharge 

(USGS Instantaneous Data Archive streamflow data set) at 27 stream gauges in the Iowa 

and Cedar River basins in Iowa (Figure 3-1 and Table 4-1).  The corresponding drainage 

areas at the gauge locations range from ~10 to 17000 km
2
.  The study region is fairly flat 

and has an average annual precipitation of 900 mm.  Approximately three-fourths of the 

precipitation and 85% of the 45-65 thunderstorms occur from April through September 

(Villarini et al., 2011).  Frozen soils near the surface last from late October to early April.  
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Considering the aforementioned facts, we selected only summer and autumn recessions.  

To limit the study to recessions following significant storms, we selected recessions 

corresponding to peak discharges greater than the 95% quantile of the streamflow of each 

gauge.  Furthermore, to reduce the possible impacts of intervening rainfall and 

uncertainties carried by streamflow data, we analyzed only the recession segments with a 

monotonically decreasing trend.  A complete recession begins with peak discharge and 

ends when the 24-hour moving average discharge begins to increase.  We considered 

only recessions longer than five days as candidates.   

4.3 Method 

We assumed that each portion of a given recession curve represents the outflow 

process of a dominant reservoir (storage), and the reservoir can be characterized by 

parameter B.  To examine the evolution path of the recession exponent B for an 

individual hydrograph recession, we selected recession segments, i.e., portions from the 

entire hydrograph recession, by keeping the recession length constant and systematically 

changing the starting point, and calculated the corresponding recession exponent B (see 

Figure 4-1).  We repeated this analysis for all hydrographs included in the study.  The 

pattern seen in Figure 4-1 is a systematic feature of the recession process, as we 

demonstrate in subsequent sections.  There are tens of unique recession events for each 

basin; therefore, we needed a way to synthesize the evolution paths of B for all the 

hydrograph recessions.  We selected the sample median as the characteristic evolution 

path of recession exponent B to represent the recession behavior of a basin.  This is 

similar to the characteristic recession concept summarized by(Tallaksen, 1995). 

4.3.1 Selection of recession segments 

Since the calculation of B depends on both the recession’s starting point and 

length, Tallaksen (1995) suggests selecting recession segments with the same starting 
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point and length in a consistent way.  However, there is no standard guideline for when to 

start and end an analysis segment.  To examine the evolution path of B, i.e., how B 

changes with the starting points of recession segments, the potential impact of changing 

recession lengths should be considered.  We investigated the evolution paths of B at 

multiple recession lengths and checked for consistent patterns.  Figure 4-2 shows the 

procedures we used to construct the evolution paths of B for an individual recession event 

and for a basin.  In this study, we varied the starting points systematically from 0, 2, 4, 6, 

9, 12, 18, 24, 48, 72, and 96 hours after the hydrograph peak (hereafter we call it “time 

lag”) and the recession lengths from 1, 2, 3,… up to 10 days if the recession was long 

enough ( i.e., not interrupted by a following storm event).  For the selected recession 

segments, we calculated the corresponding values of B using the method described below 

in Section 4.3.2.   

4.3.2 Method to calculate event-based recession exponent 

For a given recession segment, we employed the iterative least-squares method 

suggested by Wittenberg (1999) to estimate the recession exponent B.  We varied 

exponent B systematically from 0 to 5 with a step size of 0.01.  For each value of B, value 

A was calculated using equation (4-2) 
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where n is the length of the recession curve, and 1t  hour is the time step.  Solving 
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where Q(0) is the discharge at the starting point of the recession segment used to 

calculate exponent B, and   is the number of hours elapsed from the starting point.  Using 

values of A, B, and Q(0), equation (4-3) provides a simulated hydrograph and the 

associated relative prediction error RE in volume (time-integrated discharge) is calculated 

as 

%100



obs

predobs

V

VV
RE  (4-4) 

We selected the optimal pairs of A and B when the relative error in equation (4-4) was at 

the minimum. 

4.4 Results of data analysis 

We examined hydrograph data from 27 sub-watersheds in the Cedar and Iowa 

River basins in Iowa following the method presented in Section 4.3.  Figure 4-3 presents 

the evolution path of B for four representative events observed at the USGS gauge Clear 

Creek near Coralville, Iowa.  Each panel of Figure 4-3 is similar to the lower portion of 

Figure 4-1 and shows how recession exponent B changes with recession start (i.e., lag 

from hydrograph peak) when recession length (labeled in the upper right corner) is fixed.  

For example, the panel in the second row and first column in Figure 4-3 shows that, for 

the recession event occurring on June 24, 2007, when the length of the recession segment 

is fixed as 4 days, the recession exponent B first increases, then decreases, and finally 

tends to remain approximately constant as the starting point of recession segment moves 

away from the hydrograph peak.  To determine whether this pattern is independent of the 

recession lengths used to calculate B, we repeated the procedure described in Figure 4-2 

for different recession lengths.  We summarize the results in Figure 4-3(a).  To further 

test if this pattern holds across recession events, we repeated the process used to create 

Figure 4-3(a) in order to produce Figure 4-3(c) ~ (d).  
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Our investigation of individual recession events shows that recession exponent B 

varies in three distinct ways as recession continues: (i) B increases, then decreases, and 

then finally remains roughly constant (Figure 4-3(a) and (c)); (ii) B increases and stays 

roughly constant (Figure 4-3(b)); and (iii) B increases at the beginning and then decreases 

(Figure 4-3(d)).  Generally, we observe more consistent patterns in the evolution of B 

when the recession length is greater than 5 days.  This is probably because the method 

used to estimate B is sensitive to uncertainties carried in the streamflow series, undetected 

light rainfall, and the neglect of evapotranspiration.  It is also interesting that the turning 

points of the evolution of B in Figure 4-3 do not change significantly with recession 

lengths.  This has practical significance of avoiding concerns about how to select a 

recession length to construct the evolution path of B, as long as the recession length is 

greater than 5 days. 

We followed the method described in Section 4.3 to further test whether the 

observed pattern is statistically significant across events in a specific basin.  We 

examined all of the 70 recession events observed at the USGS gauge at Clear Creek near 

Coralville, Iowa.  In Figure 4-4, we superimpose the characteristic evolution path of B 

onto its individual evolution paths.  At each combination of recession length and start, we 

calculated the B values (black dots along the same vertical line in each panel) for all of 

the recession events and selected the sample median as the characteristic recession 

exponent B (the red dots).  Each panel of Figure 4-4 shows how the characteristic 

recession exponent B changes with recession start (i.e., lag from hydrograph peak) when 

recession length (labeled in the upper right corner) is fixed.  For instance, the fourth panel 

in Figure 4-4 shows that, for the basin that drains through the outlet at the USGS gauge at 

Clear Creek near Coralville, Iowa, when the length of the recession segment is fixed as 4 

days, the characteristic recession exponent B first increases, then decreases, and finally 

tends to remain approximately constant as the starting point of the recession segment 

moves away from the hydrograph peak.  We explored the dependency of this pattern on 
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recession length and produced the rest panels of Figure 4-4.  Apparently in Figure 4-4, 

there are significant scatter along each vertical line.  This scatter shows that recession 

processes varied across time even in the same basin.  These differences in recession 

processes might be caused by discrepancies in spatiotemporal characteristics of rainfall 

fields, antecedent soil moisture condition, seasonality, and possibly the uncertainties 

embedded in streamflow observations. 

Figure 4-5 displays further investigation about how this pattern changes across 

basins.  In Figure 4-5, we show the characteristic evolution of B at 25 USGS gauges with 

drainage areas ranging from 7 to about 17000 Km
2
.  Examination of the characteristic 

evolution of basins shows that: (i) for small and medium size basins with drainage area 

less than ~1000 km
2
, the median values of B increase at the beginning, then decrease, and 

then finally remain roughly constant as the time lag increases; and (ii) for large basins, 

exponent B increases at the beginning then stays roughly constant. 

4.5 A theoretical explanation 

To study the evolution path of recession exponent B, we split a recession process 

into two stages, i.e., recession before and after fast flow ends.  We first explore 

mathematically how recession exponent B changes as recession continues before fast 

flow ends, and then we summarize how recession exponent B varies after fast flow ends 

by using meta-analysis.  

Our mathematical explanation begins with showing that the values of B calculated 

using the original and the peak-discharge normalized recession segment are the same.  

We define the peak-discharge normalized series  ( )  as 

pQ

tQ
tQ

)(
)*( 

 (4-5) 

where        ( ( )), which is the peak discharge.  By analogy to equation (4-1), 
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and substituting equation (4-5) into (4-6) gives 
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  (4-7) 

Comparing equation (4-1) and (4-7) indicates that B’ equals B and, for 

convenience, we use the normalized series for further mathematical analysis.  We 

decompose discharge Qt(t)
 
at the basin outlet into fast flow Qf(t)

 
and slow flow Qs(t) 

)()()( tQtQtQ sft 
  (4-8) 

Fast flow includes overland flow and quick subsurface flow, while slow flow 

consists of soil water and groundwater flow.  We assume that  

)()()( tQtrtQ sf 
  (4-9) 

where r(t)
 
 is the ratio between fast and slow flow and that it decreases monotonically 

from rmax at peak discharge to 0 at zero fast flow.  We further assume that before fast 

flow ends, Qs(t) remains approximately constant.  This assumption is reasonable since the 

rate of change in slow flow is expected to be much smaller than that of fast flow.  

Substituting equation (4-9) into (4-8) gives 

)()](1[)( tQtrtQ st 
  (4-10) 

and dividing both sides of (8) by    (      )  ( ) yields 

)()()(
***

tQtQtQ fst 
  (4-11) 

where 
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Taking the derivative for both sides of equation (4-11) with respect to t gives 
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Combining equation (4-6), (4-11), and (4-12) yields (note that we showed B’ = B) 
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and solving it for B gives 
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We make three observations from equation (4-14):  

(i) Since r(t) decreases monotonically from rmax at peak discharge to 0 at zero fast 

flow, it is apparent that  1
1

)(1
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
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(ii) Considering that recession exponent B takes only positive values, and given 

our observation (i), the numerator in equation (4-14) has to be negative; 
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(iii) It is apparent that as recession continues, both )
1

)(1
ln(

xr

tr

ma
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and )
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ln(

dt
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decrease, with the later decreasing faster (approaching    from 0); therefore, B 

increases monotonically until 0)( tQ f
.   

As demonstrated above, exponent B at early recession (before fast flow 

diminishes) increases as recession continues.  How exponent B changes after fast flow 

recedes can be explained as follows.  After fast flow ends, the streamflow is fed by soil 

water and groundwater sources, and these storages release water at various rates 

(Griffiths and Clausen, 1997).  According to equation (4-1), each of the storages can be 

characterized with different exponent B values.  The three well-known solutions of the 

Boussinesq equation under the scenarios of short, intermediate, and long time after 

hydrograph peak show that the corresponding exponent B values reduce from 3 to 1.5 and 

then to 1(e.g., Brutsaert and Nieber, 1977; Brutsaert and Lopez, 1998; Szilagyi and 

Parlange, 1998; Rupp and Selker, 2006a).  This theoretical result indicates that if both 

soil water and groundwater storages function actively after fast flow ends, we should 

observe exponent B decreasing as recession continues.  The evolution of exponent B 

depends on the duration over which each storage dominates.  Ideally, when a recession 

lasts long enough, exponent B would converge to a pseudo-constant recession exponent 

(with the gradient of B becoming approximately zero) characterizing the groundwater 

reservoir with the slowest response rate (Blume et al., 2007).  

In summary, from the theoretical perspective, a certain pattern in the plot of 

exponent B against time lag from hydrograph peak should be expected.  The evolution 

path of exponent B throughout an entire recession (starting from hydrograph peak) begins 

with a common increasing trend that is followed by a decreasing tendency that may or 

may not converge to a pseudo-asymptote.  Discussion of the evolution paths of recession 

exponent B will be covered in section 4.6.2.  For now, we conclude that exponent B 
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reaches the maximum and starts to stay roughly constant when fast flow ends and the 

groundwater flow begins to dominate streamflow response. 

4.6 Discussion 

The consistent patterns of the evolution paths of recession exponent B can serve 

as the foundation for many applications in hydrologic analysis.  It can be extended to an 

objective method to dissect a hydrograph recession, i.e., to determine the turning points 

of outflow processes dominated by various flow sources.  This is essential for base flow 

analysis, modeling, and management.  It can also be used to separate hydrographs and to 

help identify flow sources (and thus flow paths) and evaluate their relative contributions.  

The potential for these applications to deepen our understanding of hydrologic processes 

at the basin scale will be discussed in detail in the following sections. 

4.6.1 Ideal vs. real evolution paths of recession exponent 

The evolution paths of recession exponent B do not always include the increasing, 

decreasing, and pseudo-constant components, which is inconsistent with the concept we 

introduce in Figure 4-6.  We refer to such conceptual cases as ideal recession evolution.  

An ideal evolution path of B would be observed if a basin is effectively recharged and the 

recession continues long enough before a new storm event occurs.  Under these 

circumstances, the dominances of all of the three processes including fast response (i.e., 

overland flow and quick subsurface flow), soil water depletion to streams, and 

groundwater contribution would be observable and distinguishable.  These three 

processes correspond to the increasing, decreasing, and pseudo-constant parts of the 

evolution path of B, respectively (Figure 4-6).  If these conditions are not satisfied, we 

will not be able to obtain a complete evolution of the recession exponent.  Based on the 

~1000 recession events analyzed in this study, we found that the second or the last 

portion of an ideal evolution was frequently not observed for reasons which we discuss 

below.  
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We hypothesize that the duration over which a reservoir provides significant 

contribution to streamflow is determined by the amount of water stored in the respective 

storage and its release rate.  For a specific reservoir, the larger the actual storage it has, 

the longer it contributes to streamflow and the longer the duration that the recession 

process can be represented by a corresponding exponent B.  Note that actual storage is 

different from storage capacity (Spence, 2007; Spence, 2010).  Storage capacity is 

controlled by geological, topographic, soil, land use, and cover conditions, while actual 

storage is subject to recent historical rainfall characteristics including the total amount 

and the spatiotemporal variability.  This hypothesis leads to three scenarios of how 

exponent B would vary as recession continues after fast flow ends. 

Scenario 1.  Exponent B decreases monotonically as recession goes on (Figure 

4-3(c)).  This scenario appears when the basin is effectively recharged (therefore a longer 

soil depletion process) and the recession is interrupted by a new storm event before 

groundwater flow begins to dominate streamflow.  

Scenario 2.  Exponent B decreases monotonically at the beginning and then stays 

pseudo-constant (Figure 4-3(a) and (d)).  This is primarily because the reservoirs with 

smaller residence times have small actual storages.  The small actual storages could be 

result from limited storage capacities or insufficient recharges during the storm events.  

In contrast, the reservoir characterized by the pseudo-constant of B stores a large amount 

of water and is therefore able to support the streamflow for a longer duration.  This 

scenario happens when the basin is relatively dry and soil depletion can only support 

streamflow for a short duration. 

Scenario 3.  Exponent B remains pseudo-constant (Figure 4-3(b)).  This occurs 

when all the reservoirs with shorter response times have small actual storages.  This 

scenario is most probable when the basin is very dry and rainfall is ineffective to recharge 

the soil storages; therefore, the streamflow is dominated by groundwater after fast flow 

recedes. 
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In all, the real evolutions of recession exponent usually are incomplete.  On the 

one hand, ideally, if a recession lasts long enough, exponent B would converge to a 

pseudo-asymptote characterizing the groundwater reservoir with the slowest response 

speed.  However, in reality, for wet and semi-arid basins (e.g., Hammond and Han, 2006), 

streamflow is forced to rise before it is controlled dominantly by groundwater due to 

frequent rainfall, and thus the last portion of the evolution of B will not be easily 

observable (Figure 4-3(c)).  And on the other hand, for arid basins or dry periods, it is 

possible that soil water plays a very limited role in supporting streamflow, therefore, the 

decreasing portion of the evolution of B is missing (Figure 4-3(b)).  As we explain in the 

following sections, these incomplete evolution paths offer great opportunities to explore 

the mechanism of basin hydrological response under various circumstances. 

4.6.2 Application: dissecting recession curves 

To obtain reliable recession analysis results, the first question to answer is what 

flow source is of interest and when should we assign the beginning and end of the 

associate recession process (Tallaksen, 1995).  This question is strongly related to the 

segmentation of a recession curve.  There are many proposals to separate hydrograph 

recessions, including graphical, threshold, digital filter, and isotope-based methods (e.g., 

Nathan and McMahon, 1990; Arnold et al., 1995; Tallaksen, 1995; Smakhtin, 2001; 

Eckhardt, 2005).  However, for decades, there has been no consistent theory-based 

methodology to select recession segments for recession analysis.  The flexibilities in 

selecting the starting and ending point of recession analysis make it difficult to compare 

results within or between basins from different studies.  Based on physical and 

mathematical reasoning, and as is borne by intensive data analysis, we propose to dissect 

a recession to different stages of release of stored water in a basin by examining the 

evolution path of exponent B.  As concluded at the end of Section 4.5, exponent B 

reaches the maximum and starts to remain roughly constant when fast flow ends and the 
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groundwater flow begins to dominate streamflow response.  We use these two turning 

points to divide a hydrograph recession. 

Once the dissection of a recession curve is complete, we can conduct recession 

analysis for each of the segments to make inferences about the associated hydrologic 

processes.  For example, to analyze groundwater recession, groundwater storage, and 

recharge, we start from the time that the recession exponent begins to stay approximately 

constant until the end of the recession.  To analyze soil water recession, we start from the 

point where the recession exponent reaches its maximum and continue until the time that 

the recession exponent begins to remain a pseudo-constant (Halford and Mayer, 2000; 

Brutsaert, 2008).  This method can also help with base flow separation and event-based 

runoff coefficient calculation.  We can work backwards to calculate the contributions of 

water to the total streamflow by each of the flow sources using the estimated recession 

parameters and the discharge at the turning points (e.g., Szilagyi and Parlange, 1998; 

Wittenberg and Sivapalan, 1999; Blume et al., 2007). 

Compared to traditional methods, the method presented herein tends to reduce the 

dependency on human judgment.  Instead, the streamflow data indicates the turning 

points.  This is advantageous because it provides a strategy to reduce the arbitrariness in 

recession analysis.  Our method can be used as a consistent criterion to select segments 

for recession analysis and promote comparative recession analysis (Figure 4-6). 

In addition, our approach allows investigations of the entire recession limb rather 

than merely the recession tails typically used by traditional recession analysis.  There is 

an increasing need to understand how a basin responds to storms across scales and to 

further advance event-based hydrological modeling and forecasting (e.g., Sivapalan, 2003; 

Sivapalan et al., 2003).  Hydrograph recession, as a result of continuous release of water 

from various natural storages, has the potential to provide unique insight into basin 

hydrological response.  However, the information it carries has been partially decoded, 

i.e., traditional recession analysis with goals of estimating the amount of groundwater 
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stored in a basin or studying base flow uses only recession tails to avoid the noise 

introduced by fast flow as a result of storm events (e.g., Wittenberg and Sivapalan, 1999; 

Brutsaert, 2008; Brutsaert and Sugita, 2008).  By expanding the analysis to the earlier 

portion of a hydrograph recession, our method can be used not only to obtain knowledge 

about groundwater response but also to decode information about the fast response and 

delayed soil response(e.g., Brutsaert and Lopez, 1998; Wittenberg and Sivapalan, 1999; 

McDonnell et al., 2007; Spence, 2007; Kirchner, 2009; Seyfried et al., 2009; Biswal and 

Marani, 2010). 

4.6.3 Application: within- and between- basin comparisons 

In the long history of exploring the mechanism of streamflow generation, there 

have been many attempts to produce generalizations or theories that might be widely 

accepted through comparative analyses of catchment responses (e.g., Wagener et al., 

2007; Sivapalan, 2009).  These studies use short-term based indices (e.g., event runoff 

coefficient), long-term based indices (e.g., mean monthly variation of runoff, annual 

runoff coefficient), and long-term representative curves (e.g., flow duration curves) to 

characterize basin hydrologic responses.  However, in these studies, the hydrologic 

response is either described by a single number that obscures details or by metrics that 

cannot be used for comparison at different temporal scales.  To fill this gap, we propose 

to use evolution paths of the recession exponent as a metric for hydrological comparison.  

This metric is process-based in the sense that it provides some information about the 

contribution history and magnitude of streamflow sources, while also being useful for 

both an event-based comparison of the individual evolution paths and a long-term 

comparison of the characteristic evolution paths.  On one side, future efforts can be made 

to investigate how rainfall fields interact with initial basin conditions across events by 

comparing the evolution paths of the recession exponent within individual basins (as 

shown in Figure 4-3) (e.g., Zehe and Blöschl, 2004; Zehe et al., 2005; Hammond and 
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Han, 2006; Blume et al., 2007).  And on the other, it will be interesting to explore how 

climate, together with basin characteristics, determines the representative (or the average) 

hydrologic response behavior across basins by comparing their characteristic evolution 

paths of the recession exponent (as shown in Figure 4-5) (e.g., Merz et al., 2006; Berthet 

et al., 2009).  For example, Figure 4-5 shows that the evolution of the recession exponent 

for all of the basins converged to approximately 2.  This indicates that these basins have 

similar groundwater releasing behavior, which makes sense because they are all from the 

same region.  With these advantages, comparison of the evolution paths of the recession 

exponent might assist the paradigm shift in hydrology research by providing a consistent 

way to learn from data and to develop new hypotheses for more advanced hydrological 

process understanding (e.g., Dooge, 1986; Beven, 1989; Sivapalan et al., 2003; Troch et 

al., 2009; Spence, 2010).   

4.6.4 Application: importance of groundwater 

contribution to streamflow 

It is generally recognized that groundwater is the most important contributor to 

streamflow under dry conditions.  The lengthy and widespread 2012-2013 North 

American drought provides us a good opportunity to test this recognition.  We selected 

nested sub-basins in the Iowa River basin and their associated recession curves starting 

from early May to late August.  Figure 4-7 shows the evolution of the recession exponent 

across nested basins obtained using the method introduced in Section 4.3 but using daily 

streamflow data.  The recession length used was 90 days.  There are some fluctuations 

around unit in the evolution paths of the recession exponent of theses basins.  

Nevertheless, the recession exponent tends to remain around unit across scales.  This 

scale-invariance in recession exponent indicates that, during the drought, streamflow for 

all of the investigated nested basins originates from the same groundwater storage.  We 

explain the pseudo-asymptote of the recession exponent to be unit, rather than 2 as shown 
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earlier, by arguing that the basins were under severe drought in 2012 so their streamflow 

was fed by deep groundwater with a slower release rate. 

Groundwater contribution to streamflow is important not only during dry periods, 

but also during high flows in some cases.  It is also widely recognized that the temporal 

variability of streamflow decreases with spatial scales, i.e., the discharge response for 

large basins is less sensitive to individual storm events.  A straightforward explanation 

might be because the water fluxes induced by storm events are much smaller compared to 

storages for large basins, while the opposite is true for small to medium size basins.  This 

shows the importance of basin storage in streamflow generation.  Interestingly, a similar 

inference can be made by investigating the characteristic evolution paths of the recession 

exponent.  On the one hand, Figure 4-5 shows that the contribution from soil water 

storage decreases as basin scale increases, and it diminishes when a basin drains an area 

larger than ~     km
2
 (the decreasing portion of the evolution of   is missing).  On the 

other hand, Figure 4-5 specifies that the groundwater contribution to streamflow becomes 

more important as spatial scale increases, and it starts to dominate when the spatial scale 

is greater than some threshold.  This is consistent with the findings that streamflow 

generation at large basins is not just the aggregation of responses from hillslopes and 

small catchments (e.g., Shaman et al., 2004; Uchida et al., 2005a; Frisbee et al., 2011).  

Through this example, it seems that we can study the characteristic evolution path to infer 

the importance of groundwater in supporting streamflow for a basin.  This inference can 

be valuable in determining the hydrological model structure for a basin which is in the 

spirit of a top-down approach to hydrological modeling. 

4.6.5 Limitations 

The proposed method for dissecting recession curves eliminates the arbitrariness 

in determining the starting point for recession analysis.  However, it is subject to some 
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limitations.  First, we observed diurnal cycles in daily streamflow during low flow 

periods due to evapotranspiration, which may impact the rate of recession (e.g., Federer, 

1973; Weisman, 1977; Wittenberg and Sivapalan, 1999; Gribovszki et al., 2010) .  

Second, land use and tile drainage in Iowa have been shown to increase the volume of 

baseflow (e.g., Schilling and Libra, 2003; Schilling, 2005; Zhang and Schilling, 2006; 

Schilling and Helmers, 2008). The impact of evapotranspiration and human activities on 

the shape of the recession curve warrant further investigation.  Another challenge is the 

uncertainty in streamflow measurements (Harmel et al., 2006; McMillan et al., 2012), 

which is more severe under extreme low flow conditions.  Regulations of water resources 

may also fail our method.  The most significant challenge might be applying this method 

to basins in which streamflow may originate from interconnected subsurface storages 

with different depletion speeds, and this problem could be even worse for large basins 

with significant heterogeneity in geological configurations.  We see a consistent 

evolution path of the recession exponent in the Iowa and Cedar River basins.  This is 

because the diurnal cycle in streamflow is not significant due to the humid climate, and 

more importantly, the subsurface geological structure and soil are relatively 

homogeneous.  However, this does not mean that we can generalize this phenomenon to 

other regions without inspection due to the reasons discussed above.  Nevertheless, this 

method can be used to test if the streamflow for a basin is controlled by simple or 

complex configuration of subsurface reservoirs, and the first case is more likely for most 

of the small to median sized basins because of the relative smooth change in geology. 

4.7 Conclusions 

Recession curves, resulting from the continuous release of water from various 

natural storages, carry a wealth of information about basin hydrological response.  

Isolating different flow sources, such as fast flow, delayed soil water flow, and base flow, 

is essential to decode this information but has long been hindered by subjectivity.  The 
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notion that a hydrograph recession can be dissected into stages of the outflow process 

dominated by different storages and that different reservoirs can be characterized by 

functions in the form of dQ/dt = -AQ
B
 (Brutsaert and Nieber, 1977) implies that along 

with a recession process there is an associated evolution path of the recession exponent B.  

We followed this approach and developed an objective method to dissect a recession 

curve into stages of different outflow processes.  The method allows the analysis of the 

evolution path of the recession exponent B in dQ/dt = -AQ
B
 and relates it to the outflow 

process.  Both data-based and theoretical analysis indicates that as recession continues, 

recession exponent B first increases, then decreases, and finally remains approximately 

constant.  Occasionally, one of the last two portions is missing due to the negligible 

contribution from soil water storage or the interruption of following storm events.  The 

points where recession exponent B reaches its maximum and begins to level off are the 

times that fast response and soil water response end, respectively. 
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Table 4-1.  Description of the USGS stream gauges investigated in this study 

USGS Gauge No. Gauge Name Drainage Area (km
2
) 

464942 Hoover Cr at Hoover Nat Hist Site, IA 7 

464220 Wolf Creek near Dysart, IA 774 

463500 Black Hawk Creek at Hudson, IA 784 

458000 Little Cedar River near Ionia, IA 792 

463000 Beaver Creek at New Hartford, IA 898 

457000 Cedar River near Austin, MN 1033 

459500 Winnebago River at Mason City, IA 1362 

458900 West Fork Cedar River at Finchford, IA 2190 

457700 Cedar River at Charles City, IA 2729 

458300 Cedar River at Waverly, IA 4005 

458500 Cedar River at Janesville, IA 4300 

462000 Shell Rock River at Shell Rock, IA 4520 

464000 Cedar River at Waterloo, IA 13322 

464500 Cedar River at Cedar Rapids, IA 16854 

454090 Muddy Creek at Coralville, IA 22 

454000 Rapid Creek near Iowa City, IA 66 

451900 Richland Creek near Haven, IA 145 

454220 Clear Creek near Oxford, IA 151 

452200 Walnut Creek near Hartwick, IA 184 

454300 Clear Creek near Coralville, IA 254 

451700 Timber Creek near Marshalltown, IA 306 

453000 Big Bear Creek at Ladora, IA 489 

452000 Salt Creek near Elberon, IA 520 

451210 South Fork Iowa River, IA 580 

455500 English River at Kalona, IA 1486 

451500 Iowa River at Marshalltown, IA 3966 

453100 Iowa River at Marengo, IA 7233 

All of these gauges are located within the HUC05 of the Unite States, and we use only 

the last six digits of their complete USGS gauge numbers. 
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Figure 4-1.  Schematic of the evolution path of an individual recession event.  The lag 
represents the starting point of a recession segment, and it is measured from the 
hydrograph peak marked by the red dashed-line.  The blue curve is the recession segment 
used to estimate the recession exponent B.  In the lower panel of Figure 4-2, each circle 
represents the B value that is calculated using a specific starting point (horizontal axis) 
and recession length (the text at the upper right corner.).  For example, the first circle in 
the lower panel represents the value of exponent B calculated using the selected recession 
segment starting from the hydrograph peak with a recession length of 5 days. 
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Figure 4-2.  Flowchart of constructing the evolution path of the recession exponent B for 

an individual recession event (a) and a basin (b). 
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Figure 4-3.  Evolution paths of recession exponent B for individual recession events: June 

24, 2007 (a), August 25, 2007 (b), July 25, 2009 (c), and August 28, 2009 (d) at 

USGS454300, Clear Creek near Coralville, area = 254.0 km
2
.  Each panel in this figure is 

similar to the lower panel in Figure 4-2. 
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Figure 4-4.  The characteristic evolution path of recession exponent B at USGS454300, 

Clear Creek near Coralville, area = 254.0 km
2
.  Each gray dot is the exponent B 

calculated from a recession segment with a certain starting point and recession length.  

Gray dots along the same vertical line represent B values calculated using different 

recession segments that are selected with the same starting point and recession length.  

The red dots are the medians of the B values along the same vertical line.  The text at the 

upper right corner is the length of the recession segment used to estimate exponent B.  

For example, the first red dot in the first panel represents the median value of exponent B 

calculated for all of the selected recession segments starting from the hydrograph peak 

with a recession length of 1 day. 
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Figure 4-5.  Characteristic evolution paths of recession exponent B for USGS streamflow 

gauges in the Iowa and Cedar River basins, Iowa.  Two out of 27 gauges are not shown 

here because of the small numbers of recession events available.  The explanation of the 

plot is the same as that for Figure 4-5.  For simplicity and clarity, we do not plot the gray 

dots as in Figure 4-5.  The lengths of recession segments used are 5 days.   
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Figure 4-6.  Dissecting hydrograph recessions according to the evolution path of B.  

Upper panel: evolution of the recession exponent B; Middle panel: contributors to 

streamflow for different periods of recession; Bottom panel: periods for soil water and 

groundwater recession analysis.  The periods are identified according to the evolution 

path of B. 
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Figure 4-7.  Characteristic evolution paths of recession exponent B for nested USGS 

streamflow gauges in the Iowa River basin, Iowa during the lengthy and widespread 

drought in 2012. The recession lengths used were 90 days for each basin.  The horizontal 

and vertical axes are the same as that for the plot at USGS gauge 451210. 



99 
 

 
 

CHAPTER 5 

RECESSION ANALYSIS ACROSS SCALES: IMPORTANCE OF ORGANIZED-

RANDOM SPATIAL VARIABILITY FOR AGGREGATING HYDROLOGIC 

RESPONSES 

 

5.1 Introduction 

Catchments are categorized as complex systems with some degree of organization 

(Dooge, 1986), indicating that both aspects of organization (spatial pattern) and 

randomness of smaller-scale process are important for hydrologic response at larger 

scales.  In the practice of aggregating hydrologic processes across spatial scales, the 

effect of the randomness of variability represented by statistical distributions has been 

extensively studied (e.g., Dagan and Bresler, 1983; Moore, 1985; Mantoglou and Gelhar, 

1987; Bierkens et al., 2000; Harman et al., 2009; Troch et al., 2009).  Meanwhile, the 

importance of the organization of variability represented by spatial distribution functions 

has been recognized (e.g., Beven and Kirkby, 1979; Moore and Grayson, 1991; Grayson 

et al., 1997; McGlynn et al., 2003; Schulz et al., 2006; Jencso et al., 2009; Van 

Nieuwenhuyse et al., 2011).  However, the influence of the intersection of the random 

and organized small-scale variability on aggregating hydrologic processes across spatial 

scales remains poorly understood.   

Recession process, as an important portion of hydrologic response, has been 

widely used to provide insights for hydrologic understanding and modeling (e.g., Hall, 

1968; Zecharias and Brutsaert, 1988; Vogel and Kroll, 1992; Troch et al., 1993; 

Tallaksen, 1995; Szilagyi et al., 1998; Smakhtin, 2001; Chapman, 2003; Rupp and Selker, 

2006a; Brutsaert, 2008; Kirchner, 2009; Shaw et al., 2013; Troch et al., 2013).  Among 

these applications, recession analyses across spatial scales have been used to understand 
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the role of variability of landscape properties in the upscaling of hydrologic processes.  

By analyzing the early-time recessions for three nested catchments in the Panola 

Mountain Research Watershed, Clark et al. (2009) found that the early stage recession 

process was approximately linear for the hillslope and became more nonlinear with 

increasing spatial scale (from 0.1 to 10, and 41 ha).  Different approaches were used to 

reproduce and explain this observed change of recession behavior with scale.  Clark et al. 

(2009) delineated the watersheds into three landscape classes including hillslopes, 

ephemeral riparian aquifers, and permanent stream aquifers.  They assumed that the 

variations of recession behavior were substantial between landscape classes and there 

was no difference between elements within each landscape class.  Their delineation of the 

watersheds with similar recession behavior implies the organization of the between-

element variability of recession processes, i.e., the major difference in recession process 

is between landscape classes rather than between each element.  In contrast, Harman et al. 

(2009) divide the watersheds into hillslopes and used statistical distributions to represent 

the between-hillslope variability of recession processes.  Additionally, Harman et al. 

(2009) presumed that the recession behaviors at the hillslopes were randomly distributed 

in space.  This representation of the watersheds suggests the randomness of the between-

hillslope variability of recession processes.   

The works of Clark et al. (2009) and Harman et al. (2009) only investigated early-

time recession processes at the small scales ranging from 0.1 to 10, and to 41 ha due to 

data limitations.  However, a larger range of scales is of interest to practical applications.  

Also, Clark et al. (2009) and Harman et al. (2009) demonstrated the individual effects of 

the organization and randomness of small-scale recession behavior on the spatial 

aggregation of recession process, respectively.  It is a more realistic representation of the 

natural recession processes to account for both.  Lastly, the functioning of the stream 

network in transferring the outflows from local areas to the watershed outlet is not 

important at the small scales investigated by Clark et al. (2009) and Harman et al. (2009), 
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while it is of great importance for aggregating hydrologic processes to larger scales (e.g., 

Rodríguez-Iturbe and Valdés, 1979; Gupta and Mesa, 1988; Biswal and Marani, 2010; 

Mutzner et al., 2013).   

In this study, we extend the works of Clark et al. (2009) and Harman et al. (2009) 

to explore the recession process across spatial scales ranging from ~70 to 17000 km
2
.  

We analyzed recession curves from 25 nested USGS stream gauges located in the Iowa 

and Cedar River basins over a period of about 150 days with negligible precipitation 

during the 2012-2013 North American drought.  Focus on these long individual 

recessions in nested basins over the same time period reduces confounding factors 

typically encounter when comparing recessions across space and time.  These recession 

processes all occur at basins with similar geophysical characteristics and have similar 

wetting and drying history.  Differences in recession behaviors are therefore related to the 

change in spatial scales, if such exist.  We ask the following questions in this study: 1) 

How do late-time recession characteristics change across spatial scales?  2) What is the 

effect of the organized and random variability of small-scale recession behaviors on the 

spatial aggregation of recession process?  We address the first question by analyzing 

observed recession data and the second question through diagnostic simulation using a 

distributed drainage model.   

5.2 Recession data analysis for the 2012-2013 drought 

5.2.1 Site description 

We analyzed recession curves that were observed over the period from early May 

to late September of 2012 at 25 USGS stream gauges in the Iowa and Cedar River Basins 

in Iowa, USA (Figure 3-1 and Table 4-1).  The corresponding drainage areas at the gauge 

locations range from ~70 to 17000 km
2
.  These gauges are free from reservoir regulation 

and notable water withdraws for agricultural or municipal use.  The agricultural practices 

are rain fed and the region has a small number of farm ponds.  For this region that has a 
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rather flat terrain, approximately three-fourths of the 900 mm average annual 

precipitation and 85% of the 45-65 thunderstorms occur from April through September.  

Frozen soils and snow melting near the surface last from late October to early April.  The 

recession data used in this study are daily streamflow data downloaded from USGS 

National Water Information System (http://waterdata.usgs.gov/nwis.sw).   

5.2.2 Recession analysis using individual events 

Long recession curves would be preferred for examining late-time recession 

process for a catchment if they are available.  However, short recession curves, which 

contain limited information about late-time recession process, are more often in reality.  

To overcome this problem, the master recession curve method (Nathan and McMahon, 

1990) and the Brutsaert-Nieber method (Brutsaert and Nieber, 1977) have been most 

commonly used for quantifying the late-time recession characteristics of a catchment.  

The former method increases the information needed by merging multiple recession 

curves, while the later by studying the lower envelopes of the cloud plot of log(dQ/dt) 

against log(Q)that ensembles multiple recessions.  Though these methods partially solve 

short length problem by mixing information from multiple recession events, they neglect 

the substantial between-event variation of recession processes due in part to different 

wetting and drying histories.  There has been discussion about analyzing recession curves 

individually instead of collectively (e.g., Biswal and Marani, 2010; Shaw and Riha, 2012).   

The extreme 2012-2013 drought provides us a unique opportunity to rigorously 

investigate recession process across scales.  On one hand, the long period with negligible 

precipitation started from late April of 2012 and persisted until late November of 2012 

during the drought event.  This long-duration drought provides recession curves with 

lengths much longer than the characteristic recession timescale of shallow groundwater 

aquifers (around 1545  days (Brutsaert, 2008)), thus allowing for examining late-time 

recession events individually.  On the other hand, the nested Iowa and Cedar River basins 
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experienced similar wetting and drying history during the widespread 2012-2013 drought, 

thus isolating the effect of catchment size on late-time recession process.  Overall, we use 

these long recession curves (about 150 days) observed during the individual extreme 

2012-2013 drought event to explore how the late-time recession process depend on 

spatial scales.   

5.2.3 Quantifying late-time recession characteristics 

Mathematical expression for recession modeling 

Modeling recession curve consists of two steps: (1) choosing a suitable functional 

form, and (2) determining the model parameters.  The hydraulic groundwater theory 

suggests that the outflow from the groundwater storage in a basin can be approximated by 

a power function (Brutsaert and Nieber, 1977; e.g., Rupp and Selker, 2006b) 

bKQS   (5-1) 

where S (mm) is the groundwater storage in the basin, Q (mm/day) is the discharge 

measured at the basin outlet, and K and b are parameters.  Both S and Q are averaged 

over the catchment area.  The parameters K and b could be directly determined if 

measurements of both S and Q were available.  However, it is difficult to measure 

groundwater storage S for a basin and thus the most commonly adopted method to 

estimate K and b is through combining the storage-discharge relation with the mass 

conservation equation 

EQP
dt

dS


 (5-2) 

where P (mm) and E (mm) are the precipitation and evapotranspiration averaged over the 

basin, respectively.  To study recession process, usually a period with the absence (or at 

least negligible amount) of recent precipitation and evapotranspiration is chosen such that  
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Q
dt

dS


 (5-3) 

Taking the derivative of equation (5-1) with respect to time t and combining it 

with equation (5-3) yields 

Bb2 AQ=Q
Kb

1
=

dt

dQ


 

 (5-4) 

where 
Kb

1
A  and bB  2 .  Parameters A and B are named as recession intercept and 

recession slope, respectively, in the plot of log(-dQ/dt) against log(Q).  The recession 

intercept A and recession slope B represent two characteristics of a recession event, i.e., 

the linearity and the recession rate, respectively.  We will investigate these two in this 

study.  Under the scenario of B = 1, i.e., a linear reservoir, K=1/A is named as recession 

timescale (has a unit of time).  Note that the linear late-time recession process is not an 

assumption but a hypothesis to be tested in this work.  We will use the widely adopted 

Equation (5-4) in the literature as our mathematical expression to describe the observed 

recession data.   

Consistent approach to estimate recession parameters 

The estimation of recession parameters has been documented to depend on the 

calculation procedure, i.e., the selection of recession segment (e.g., Vogel and Kroll, 

1992; Vogel and Kroll, 1996; Hammond and Han, 2006) and parameter estimation 

methods (e.g., Wittenberg, 1994; Tallaksen, 1995; Stoelzle et al., 2012).  However, there 

is no precise guidance on how to reduce the inconsistency in determining recession 

parameters.   

To lessen the artifacts introduced by the calculation procedure, thereby allowing 

reliable between-catchment comparison of the recession characteristics, we use a 
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consistent selection of recession segments and use the same method to estimate the 

recession parameters.  We use the same starting point of 12 days after hydrograph peak 

and the same segment length of 120 days to select late-time recession segments from both 

the observed and simulated hydrographs.  The large lag after hydrograph peak helps to 

limit the contribution from sources other than the groundwater reservoir and the long 

recession segments provides rich information about the groundwater drainage process.  

Then for each of the selected recession segment, we adopt the nonlinear direct fitting 

method recommended by Wittenberg (1999) to estimate the late-time recession 

parameters.  Accordingly, we varied B systematically, e.g., from 0 to 5 with a step size of 

0.01, and calculated the value of A at each value of B using equation 
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where n is the length of the recession segment, and ∆t is the observational interval.  

Solving equation (5-4) for Q (here we explicitly express Q as a function of t) gives 
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 (5-6) 

where Q0 is the discharge at the starting point of the recession segment used to calculate 

B, and t is the number of days elapsed from the starting point.  All recession segments are 

modeled using their initial discharges Q0, the values of A and B, and equation (5-6).  

Following Wittenberg (1999), the modeling error E is defined as 

%100mod 



obs

obs

V

VV
E

 (5-7) 
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where Vobs and Vmod are the volume of the observed and modeled hydrographs, 

respectively.  The optimal paired values of A and B were selected by minimizing the 

modeling error.   

5.3 Results of data analysis 

For each basin, we used different combinations of starting points (10, 12, 14 days 

after hydrograph peak) and lengths (90, 100, 110, 120 days) to extract recession segments 

and then to estimate its late-time recession parameters.  The estimates obtained for each 

basin are similar probably because the information provided by these long segments are 

representative for the late-time recession process.  We present only the results obtained 

using a starting point of 12 days after hydrograph peak and a segment length of 120 days.  

Figure 5-1 displays the performances and parameter estimates of the dQ/dt = -AQ
B
 model 

for the observed recessions during the 2012-2013 drought for all 25 gauges, as a function 

of drainage area.  The low values of modeling error (<6%) shown in the top panel of 

Figure 5-1 indicate that the power law (Equation (5-4)) model provides good fits to the 

observed recession curves, and thus allowing us to infer how the two important 

characteristics of late-time recession process vary with spatial scale.   

The first is the linearity/nonlinearity of the late-time recession process represented 

by the parameter B.  The values of B, shown in the middle panel of Figure 5-1, appear to 

be scattered around B = 1.  The estimated B values tend to be more variable for relatively 

smaller basins than for larger ones.  The larger variability at the smaller scales might be 

caused by the noise in the streamflow data.  Smaller streams tend to have smaller flow 

rates and thus may subject to more uncertainties in the flow measurements.  Nevertheless, 

the estimates of B at 16 out of the 25 sites investigated remain within the interval of [0.75, 

1.25] and the median value of B for all 25 sites is 1.05.  This indicates that the linear 

reservoir hypothesis is a reasonable approximation to the late-time recession behavior in 

the Iowa Cedar River basins during the 2012-2013 drought.   
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The second characteristic is the recession timescale of the late-time recession 

process represented by the parameter A.  Given the linearity of the late-time recession 

process, the reciprocal of A has the physical interpretation of recession timescale and a 

unit of time (days in this study).  The values of A, shown in the bottom panel of Figure 

5-1, appear to be scattered around the median value of 0.029/day.  This indicates that the 

late-time recession timescales tend to be relatively invariant (34 days) for the Iowa Cedar 

River basins during the 2012-2013 drought.  Similar analyses for the 1988 drought of 

these basins also indicate a relatively invariant recession timescale of 36 days (Appendix 

C).  Similarly to the case of parameter B, the variation of the estimates of A tends to 

decrease with increasing spatial scales.   

Overall, analyses of observed recession data suggest that the late-time recession 

process at the large scale (70 ~ 17000 km
2
) in the Iowa and Cedar River basins tend to be 

linear (B = 1) and homogeneous (constant A = 0.029/day) during the 2012-2013 drought.  

To more rigorously test this hypothesis of linearity and homogeneity, we reproduced 

these late-time recession curves for all 25 gauges during the 2012-2013 drought with the 

median values of A = 0.029/day and B = 1.  The overall good fit as shown in Figure 5-2 

supports our hypothesis.   

5.4 Diagnostic drainage experiment 

The linearity and homogeneity of late-time recession processes at the catchment 

scale (70 ~ 17000 km
2
) raises the question: what is the connection between the process 

linearity and homogeneity at the catchment scale and the process variability at the 

hillslope scale?  Two types of explanation to the recession behavior at the catchment 

scale are the hydraulic interpretation (e.g., Brutsaert and Nieber, 1977; Rupp and Selker, 

2006b; Troch et al., 2013) and the landscape interpretation (e.g., Clark et al., 2009; 

Harman et al., 2009).  We follow the later in this paper to explore our question   
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We adopt diagnostic drainage experiment for this purpose, as Clark et al. (2009) 

and Harman et al. (2009) did in their studies.  Diagnostic experiment (Weiler and 

McDonnell, 2004) is a comment instrument in hydrology and it does not attempt to 

model the hydrologic system, but serves as a tool to understand the effects of essential 

elements under consideration (Van Nieuwenhuyse et al., 2011) and test hypotheses 

(Weiler and McDonnell, 2006).  However, different from the hypothesis testing on the 

basis of hypothetical models (Pappenberger and Beven, 2006), our diagnostic experiment 

does refer to observations.   

5.4.1 Conceptual design of the simulation study 

Our diagnostic simulation is inspired by empirical observations and the widely 

accepted fact that the catchment-scale hydrologic response is the manifestation of the 

self-similarity of the river network (Rodriguez-Iturbe and Rinaldo, 1997) and the 

variability of the small-scale hydrologic processes (Blöschl and Sivapalan, 1995).  We 

empirically observed the spatial organization of basin drainage process.  As a basin drains, 

hillslopes attached to the tips of the river network become first disconnected from the 

permanent stream aquifers.  This disconnection becomes more pronounced from 

hillslopes to larger catchment scales as the basin drainage continues without recharge.  

This observation suggests that hillslopes feeding small streams (small Strahler orders) 

have shorter recession timescales, indicating a spatially organized sequential drainage 

process.  Our observation is consistent with two independent lines of study.  The first 

argues that landscape organization is the first-order control on the mean residence time of 

water in a basin (e.g., McGlynn et al., 2003; McGuire et al., 2005; Jencso et al., 2009) 

and that residence time increases with the ratio between riparian and hillslope area 

(Jencso et al., 2010).  The second line of study reveals the effect of the sequential 

shrinkage of the river network (from smaller to larger streams) on catchment recession 

behavior (e.g., Biswal and Marani, 2010; Biswal and Nagesh Kumar, 2013; Mutzner et 
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al., 2013).  Overall, our observation and the literature suggest the releasing of water from 

catchment storage is hierarchical, i.e., is sequential and spatially organized.  Accordingly, 

we pursue our goal by using a distributed drainage model with capabilities to explicitly 

consider the randomness and organization of the recession variability at the hillslope 

scale.   

5.4.2 Structure of the distributed drainage model 

In our model, a basin is decomposed to hillslopes that are interconnected by the 

river network.  Each channel link and the associated hillslope (drainage area on the two 

sides of the channel link) are assigned a Strahler order.  For more information about this 

hillslope-link based representation of the landscape, please refer to our previous papers 

(e.g., Mantilla, 2007; Mandapaka et al., 2009; Small et al., 2013).  As done in the works 

of Clark et al. (2009) and Harman et al. (2009), our model assumes linear drainage 

process at the hillslope scale 
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where Qc,i,t and Qc,k,t (mm/day) is the outflow from the i
th

 and k
th

 channel link, vc,r is 

universe reference flow velocity with a value of 0.3 m/s for low flows, Ai (km
2
) and Li 

(km) are the accumulative upstream drainage area and the length of the i
th

 channel link, 

and n is the number of links that drain into the i
th

 link.  The actual channel flow velocity 
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at each channel link is locally adjusted according to its accumulative upstream drainage 

area and flow rate as shown in Equation (5-9).   

5.4.3 Parameterization of the distributed drainage model 

We follow the works of Clark et al. (2009) and Harman et al. (2009) to represent 

the spatial organization and randomness of the hillslope-scale drainage processes, 

respectively.  The organization is represented by classifying the landscape into three 

categories, such as areas drain into ephemeral, intermittent, and perennial streams.  The 

randomness is represented by randomly assigning parameter values in space regardless of 

the differences between landscape categories.   

We assigned recession timescales (K) over the hillslopes with three schemes 

(Table 5-1).  The first is the organized scenario, under which hillslopes are classified to 

three categories according to their Strahler orders.  Each category has the uniform value 

of K (0.5, 5, 30 days for the three categories), indicating the recession processes at the 

hillslope scale are hierarchical and only the between-category variability is important and 

propagates to larger scales.  This scenario is similar to that explored by Clark at al. (2009), 

but we implicitly assign the fractional area according to the Strahler order.  The second 

scheme represents the random scenario, under which there is no classification of 

hillslopes.  We generate random numbers of K from Gamma distributions and randomly 

distribute them over the hillslopes regardless of their Strahler order.  Therefore, the 

between-hillslope variability has no order.  This scenario is similar to that investigated by 

Harman et al. (2009).  The last scheme represents the organized-random scenario, which 

is the mixture of the former two scenarios.  Under the last scenario, hillslopes are 

classified to three categories according to their Strahler orders.  However, we generate K 

values from Gamma distributions with a different mean value (0.5, 5, 30 days for the 

three categories) for each category and assign them over the hillslopes from this category.  

This scenario considers both the between-category variability and the between-hillslope 



111 
 

 
 

variability within each category, and thus allows aggregating both the organized and 

random variability at the hillslope scale to larger scales.  Note that we assume that the 

coefficient of variation of K reduces with the Strahler order for the organized-random 

scenario and we will discuss about this assumption in Section 5.4.  The mean values of K 

for each category are similar to those used by Clark (2009) and to those found by Jencso 

et al. (2010) through their field surveys.   

5.4.4 Steady-state drainage experiment for the Cedar River basin 

We run the designed simulations in the Cedar River basin, which has been divided 

to around 305,000 hillslope-link pairs.  This basin has the highest stream order of 9 and a 

median hillslope area of 0.041 km
2
.  Figure 5-3 describes the structure of the Cedar River 

basin.  Of the total drainage area of about 17000 km
2
, the hillslopes of order 1 cover 

~50%, the order 2 hillslopes cover ~20%, and the remainder covers about 30%.  For each 

stream order, we selected 100 channel links randomly and saved their simulated 

hydrographs for further analysis (900 hydrographs in total for each simulation scenario).   

Similar to Clark’s (2009) and part of Harman’s (2009) work, we first drove the 

entire basin to a steady state (when recharge equals discharge) by applying 180 days 

recharge with constant low intensity of 2.4 mm/day.  The recharge duration and intensity 

are selected such that each hillslope reaches its steady state and the flow rates are similar 

to that observed during the 2012-2013 drought.  We then stopped the recharge to let the 

basin drain for 180 days.   

5.4.5 Analyses of the simulated recession curves 

For each simulation run, we conducted recession analysis for the simulated 

hydrographs using exactly the same procedure as described in Section 5.2.  For each 

sampled channel link, we used different combinations of starting points (10, 12, 14 days 

after hydrograph peak) and lengths (90, 100, 110, 120 days) to extract recession segments 

and then to estimate its late-time recession parameters.  The estimates obtained for each 
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channel link were similar for different combinations and therefore we consistently use a 

starting point of 12 days after hydrograph peak and a segment length of 120 days to 

extract recession segments.  The early recession processes are nonlinear, which is 

consistent with the findings of Clark et al. (2009) and Harman et al. (2009).  Figure 5-4 

displays the performance and parameter estimates of the dQ/dt = -AQ
B
 model for 

simulated recessions for all 900 links sampled, as a function of upstream drainage area.  

The low values of modeling error (<8%) shown in the top panel of Figure 5-4 indicate 

that the power law model provide a good fit to the simulated recession curves.  Note that 

we generated many realizations and redid the same analysis and obtained similar results.  

We present only the results obtained by analyzing hydrographs sampled from a randomly 

selected realization.   

Results show that, for each of the three scenarios, the late-time recession 

processes for basins larger than 10 km
2
 can be approximated by the same recession model 

(middle and bottom panel of Figure 5-4).  This may due to the spatial averaging of the 

small-scale recession processes through the river network.  However, the values of B 

level off at about 1 for the organized and organized-random scenarios and at values far 

from 1 for the random scenario.  For example, we found that the level-off value of B is 

1.23 when the coefficient of variation of K is 0.5 for the random scenario (middle panel 

of Figure 5-4) and it increases (and thus deviates more from 1) with increasing coefficient 

of variation of K.  This is consistent with the finding of Harman et al. (2009) that for the 

random scenario: 1) the exponent B depends only on and increases with the coefficient of 

variation of K and 2) the coefficient of variation of K increased from 0.31 in the 0.1 ha 

hillslope to 1.20 in the 41 ha catchment.  These results indicate that it is necessary to 

account for the spatial organization of recession processes at the hillslope scale to 

reproduce the approximate linearity of the late-time recession behavior at the large scale 

(>10 km
2
).  Apparently, all of these three scenarios are able to reproduce the nonlinear 

early-time recession behavior.   
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Compared to the organized scenario, the organized-random scenario provides the 

flexibility to account for between-hillslope variability of the drainage processes within 

each landscape category.  Figure 5-4 shows that considering the within-category 

variability of K allows presenting the variation of late-time recession characteristics at the 

scale smaller than 10 km
2
.  Though we do not have observed data in this study to show 

this variation at smaller scales, the literature documented that probably larger variation 

exists at small scales (e.g., Savenije, 2001).  Also, at the scales less than 10 km
2
 (contain 

less than 250 hillslopes), the spatial averaging of the hillslope processes is not sufficient 

and therefore more rigorous variation present at the scales less than 10 km
2
.   

The analyses of the simulated recession curves are not sensitive the routing 

scheme, magnitude and spatial variability of recharge rate.  We investigated the effect of 

channel velocity and found that the constant channel velocity of 0.3m/s and the variable 

channel velocity (see Equation (5-9)) have negligible impact on the shape of the 

recessions.  Regarding recharge rate, we found that different mean values of recharge rate 

only affect the amount of runoff but have no effect on the shape of the recessions, which 

is consistent with the findings of Clark et al.(2009).  Furthermore, spatial uniform or 

variable recharge rates produce almost the same shape of the recessions.   

5.5 Discussion 

The individual influence of the organized and random spatial variability of the 

hillslope scale hydrologic processes on the catchment scale hydrologic response is of 

intense interest.  However, the combined influence of the random and organized between-

hillslope process variability on the spatial aggregation of hydrologic response remains 

poorly understood.  We attempted to gain insight regarding this aspect by analyzing 

drainage processes for individual recession event in nested basins.  We first quantified the 

late-time recession characteristics of the 25 nested basins ranging in size from 70 to 

17000 km
2
 in the Iowa and Cedar River basins during the 2012-2013 drought.  We then 
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developed a distributed drainage model with three parameterization schemes to 

investigate how the spatial aggregation of hydrologic processes is affected by the 

intersection of the randomness and organization of the between-hillslope variability.   

5.5.1 On the Linearity and homogeneity of recession processes 

The result of data analyses presented in Section 5.2 suggests that the late-time 

recession process is approximately linear (B = 1) and homogeneous (A = 0.029/day, i.e., a 

recession timescale of 34 days) for the Iowa and Cedar River basins (70 ~ 17000 km
2
) 

during the long-duration 2012-2013 drought.  This linearity is consistent with the 

previous data analyses based studies, which showed that the late-time recession behavior 

can be described by the linear reservoirs (e.g., Vogel and Kroll, 1992; Brutsaert and 

Lopez, 1998; Eng and Brutsaert, 1999).  It is also consistent with the analytical solutions 

to the linearized one-dimensional Boussinesq equation (Brutsaert and Nieber, 1977) and 

the two-dimensional Laplace equation (van de Giesen et al., 2005).  A more complete 

overview can be found in the articles by Rupp and Selker (2006b) and Troch et al. (2013) 

and the references therein.  This homogeneity at the large scale is consistent with the 

findings that late-time recession timescale becomes more stable (Savenije, 2001) and 

converges to 45±15 days as the catchment size increases (Brutsaert, 2008).  Overall, these 

studies indicate that the late-time recession behavior for large basins, in at least some 

regions, can be described by a linear and homogeneous groundwater reservoir.   

Meanwhile, data analysis (e.g., Troch et al., 1993; Szilagyi et al., 1998; 

Wittenberg, 1999; Biswal and Marani, 2010; Aksoy and Wittenberg, 2011; Mutzner et al., 

2013; Shaw et al., 2013) and analytical derivation (Brutsaert and Nieber, 1977; Rupp and 

Selker, 2006b) both indicate that the early-time recession process is nonlinear (B > 1).  It 

is also interesting that Cark et al. (2009) and Harman et al. (2009) found that the early-

time recession process becomes more nonlinear, i.e., B deviates more from 1, with 

increasing spatial scales.   
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5.5.2 A random or organized representation of watersheds? 

Spatial aggregation of hydrologic process depends on the watershed 

representation.  Watershed representation in distributed hydrologic models consists of 

two components, which are model parameters and mathematical equations describing the 

runoff generation and transportation mechanisms.  Given a similar runoff generation 

mechanism, the spatial variability of hydrologic process is characterized by the spatial 

distribution functions of model parameters.  On the one hand, the spatial distribution 

function of parameters may often be conveniently viewed as identical to statistical 

distributions, i.e., the model parameters is assumed to be randomly distributed or variable 

in a certain sense (e.g., Dagan and Bresler, 1983; Moore, 1985; Mantoglou and Gelhar, 

1987; Bierkens et al., 2000; Harman et al., 2009).  This is a random representation of a 

catchment.  On the other hand, the spatial distribution function of parameters may be 

regarded as deterministic, i.e., the model parameters are functions of state variable of 

hydrologic systems and/or characteristics of catchments (Beven and Kirkby, 1979; e.g., 

Wood et al., 1990; Moore and Grayson, 1991; McGlynn et al., 2003; Jencso et al., 2009).  

This is an extremely organized (or actually deterministic) representation of a watershed.  

Both types of watershed representations have shown some success, raising the question: 

which one should be chosen?   

We show through our diagnostic simulations (Section 5.5.3) that, at least for 

recession process, it is necessary to use the combination of the two to represent 

watersheds and therefore to appropriately aggregate hydrologic response in space.  Our 

simulation study show that the nonlinearity of recession behavior at the larger scale 

increases with the degree of the random between-hillslope variability of drainage 

processes (see Section 5.3.5).  This is consistent with the finding of Harman et al. (2009) 

and implies that small and sufficient between-hillslope variability is needed to produce 

the linear and nonlinear recession behavior, respectively, at the larger scales.  This can be 

used, as Harman et al. (2009) did, to provide an explanation to the increasing nonlinearity 
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of early-time recession behavior with increasing spatial scales by assuming that the 

variability of recession timescales increases with spatial scales.  However, this 

configuration cannot explain the linear late-time recession process at the larger scales.  

We worked around this problem by adding some degree of organization to the between-

hillslope variability of drainage processes.  We classified hillslopes to three categories 

according to their Strahler orders, and used three Gamma distributions with increasing 

mean values (0.5, 5, 30 days) and decreasing coefficient of variation (0.75, 0.5, 0.125) to 

characterize the spatial variability of the recession timescales (Table 5-1).  With this 

hierarchical configuration, we were able to simultaneously reproduce 1) the increasing 

nonlinearity of early-time recession behavior with increasing spatial scales by introducing 

sufficient between-hillslope variability; and 2) the linear late-time recession process at 

the large scale by embracing small between-hillslope variability.   

Our argument of an organized-random representation of watersheds is consistent 

with the notion that catchments are complex systems with some degree of organization 

and randomness (Dooge, 1986).  We use the Strahler order and Gamma distribution to 

simultaneously address both the organization and randomness of hillslope-scale 

variability.  This approach can be viewed as a simple implementation of the hierarchical 

representation of watersheds (e.g., McGlynn and McDonnell, 2003; McGlynn and Seibert, 

2003; McDonnell et al., 2007; Clark et al., 2009), in the sense that it jointly contrasts the 

organized variability between classes and limits the random variability within each class.  

It allows us to identify the dominant process controls that should be considered in 

aggregating hydrologic processes across scales.  This approach can be used as a starting 

block for distributed recession modeling.   

Though in this study we have extended the works of Clark et al. (2009) and 

Harman et al. (2009) to larger spatial scales, to the late-time recession behavior, and to 

examine how the spatial aggregation of recession process is affected by the intersection 

of the randomness and organization of the between-hillsope variability, we still simplified 
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our approach by making assumptions.  For our data analyses of late-time recessions, we 

neglect the impact of evapotranspiration and other noise in the data (see the hydrographs 

for 45700 and 45770 in Figure 5-2).  Probably this negligence will not significantly bias 

the results of data analyses because we use long segments and the basins were extremely 

dry and the plants had difficulty in extracting water from deeper aquifers.  For our 

diagnostic drainage experiment, we assume that the hillslope drainage process is linear, 

though supported by the data analysis of Clark et al. (2009), this assumption needs to 

tested or can be relaxed.  Also, we only investigate the recession process after steady 

state recharge in our simulations and it may be worthwhile to include other cases of 

recession process after more realistic recharge scenarios.  Lastly, we classify the 

landscape into three categories according to the Strahler order, aiming to connect to the 

common classification of landscape units into areas drain into ephemeral, intermittent, 

and perennial streams.  This classification metric might be replaced by other surrogates 

(Van Nieuwenhuyse et al., 2011).   

5.6 Conclusion 

This study shows that the intersection of the organization and randomness of the 

processes variability at the hillslope scale is important for the spatial aggregation of 

hydrologic response.  While other data analysis shows that the early-time recession 

process becomes more nonlinear as spatial scale increases at relatively smaller scales 

(Clark et al., 2009), the data analyses of individual and concurrent recession events in 

nested basins here suggest that the late-time recession behavior tends to be linear with 

homogeneous recession timescale at the large scale.  Our diagnostic simulation study 

show that these observations can be simultaneously reproduced using a distributed 

drainage model with a hierarchical description of the recession processes at the hillslope 

scale.  This suggests that under the template of the self-similar structure of the river 

network(Rodríguez-Iturbe and Valdés, 1979), the hierarchical representation of 
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watersheds (Blöschl and Sivapalan, 1995; Sivapalan, 2003), which simultaneously 

considers the organized (between-category) and random (within-category) variability of 

process at the hillslope scale, provides an approach for the spatial aggregation of 

hydrologic response.   
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Table 5-1.  Parameterization schemes of the recession timescales K over hillslopes 

 

 

  

Parameterization schemes 
Mean value 

of K (days) 

Coefficient of  

variation of K 

Organized scenario 

Order 1: 0.5 

Order 2:    5 

Others:    30 

0 

0 

0 

   Random scenario All:         30 0.5 

   

Organized-random scenario 

Order 1: 0.5 

Order 2:    5 

Others:    30 

0.75 

0.5 

0.125 
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Figure 5-1.  Performance and parameters of the dQ/dt = -AQ
B
 model plotted as a function 

of the drainage area top: modeling error of reproducing the observed recession curves; 

middle: parameter B; and bottom: parameter A.  The horizontal gray lines represent the 

corresponding median values.  The result is obtained by analyzing the observed recession 

curves (late-time) in the Iowa and Cedar River basins during the 2012-2013 drought.  The 

starting point used is 12 days after hydrograph peak and the recession length is 120 days. 
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Figure 5-2.  Comparison between the observed (gray) and modeled (red) recession curves.  

Constant values of A = 0.029 and B = 1are used for modeling recession curves at all 

gauges.   
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Figure 5-3.  Structure of the Cedar River basin. 
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Figure 5-4.  Parameters and performance of the dQ/dt = -AQB model versus drainage 

area.  In the vertical direction, top: parameter A; middle: parameter B; and bottom: 

relative error of reproducing the simulated recession curves.  In the horizontal direction, 

left: the organized scenario; middle: the random scenario; right: the organized-random 

scenario.  The solid gray lines represent the corresponding median values.  The dashed 

lines represent the value of B = 0.75 and B = 1.25.  This result is obtained by analyzing 

simulated recession curves (late-time) for the Cedar River basin.  The starting point used 

is 12 days after hydrograph peak and the recession length is 120 days. 



124 
 

 
 

CHAPTER 6 

SUMMARY AND FUTURE RESEARCH 

 

6.1 Conclusions 

The results of data analysis show that patterns of hydrologic processes can be 

identified both at the small (<1 km
2
) and the large spatial (>~10 km

2
) scales.  This is 

supported by: 

1) The results from Chapter 2 show that the surface runoff responses from areas with 

spatial proximity (in the range of distance about 0~2 km) are spatially variable in 

magnitude while being similar in shape (the sequence of high and low flows).  

This spatial patter persists in time;   

2) Chapter 4 shows that as a recession continues, the recession exponents associated 

with the stages of water being released from various storages tend to show some 

temporal evolution paths.  Investigation of the characteristic evolution paths 

suggests that recession processes that occur 2-3 days after the hydrograph peak 

tend to be homogeneous with respect to the recession exponent (convergent to the 

value of 2) in the Iowa and Cedar River basins.  It also indicates that subsurface 

drainage processes becomes more important as the spatial scale increases from 7 

to 17000 km
2
;   

3) The data analyses in Chapter 5 suggests that the late-time recession processes 

over the 1988 and 2012 periods of severe drought in the Iowa and Cedar River 

basins can be approximated by a linear reservoir with a constant recession 

timescale of about 35 days.   
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The results of diagnostic simulations using recession in the Cedar River Basin as 

an example suggest that hydrologic processes at larger scales bear the spatial patterns of 

hydrologic processes at the small-scale: 

4) The diagnostic simulation study in Chapter 5 shows that, at least for recession 

process, it is necessary to consider both the randomness and organization of small 

scale process variability in order to appropriately aggregate the hydrologic 

response in space.  By introducing a hierarchical representation of watersheds, 

which jointly contrasts with the organized variability between classes and limits 

the random variability within each class, we were able to simultaneously 

reproduce 1) the increasing nonlinearity of early-time recession behavior with 

increasing spatial scales by introducing sufficient between-hillslope variability 

and 2) the linear late-time recession process at the large scale by embracing small 

between-hillslope variability.   

The results of data analyses and diagnostic simulation study together show that 

while analysis of hydrologic systems at multiple spatial scales can provide useful insight 

into the spatial aggregation of hydrologic processes,  

5) Thoughtful data collection (such as the experimental design in Chapter 2) and 

careful data analysis (as illustrated in Chapter 3) are the basis for the attempts made in 

this thesis.  

6.2 Limitations 

I simplified my study by making some assumptions.  For the study of the spatial 

pattern of the surface runoff processes across neighboring hillslopes in Chapter 2, I 

assumed that the precipitation and soil moisture data from a NOAA weather station that 

is about 1~3 km away were representative for the 12 hillslopes of interest.  The Iowa 

Flood Center is collaborating with colleagues from Iowa State University to enhance the 

monitoring network at these experimental sites.  A more thorough analysis of more 
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detailed precipitation and soil moisture data collected at the hillslopes may help deepen 

our understanding of the controls of the pattern.  When analyzing recession curves, I 

followed many other studies that neglect the impact of evapotranspiration on recession 

process.  It seems reasonable to assume that the influence of evapotranspiration on the 

late-time recession processes during the server 1988 and 2012 droughts are negligible, 

while it is not true in the case of early-time recession processes under normal conditions.  

Contrasting recession processes at late-time during periods of severe drought (nearly no 

evapotranspiration) with those at the early-time may facilitate assessment of how the zero 

evapotranspiration assumption affects the results presented in this study.  In the 

diagnostic simulation study, the interactions between neighboring hillslopes are not 

considered and warrant enhancement in future work.   

I centered my exploration of hydrologic processes in Iowa for four reasons.  First, 

Iowa is representative of the U.S. Midwestern watersheds subject to agricultural land use 

and a humid climate.  Second, the landscape in Iowa is relatively uniform and the 

regulation due to such as big reservoirs and lakes is rare.  Third, the topic of this thesis 

follows the mission of the Iowa Flood Center, which is to develop physically-based 

hydrologic models for flood prediction to better serve the communities in the state of 

Iowa.  Lastly, I have superior knowledge about this region.  It would be interesting to test 

the validity of the results found in Iowa in other regions in order to assess the universality 

of the characteristics of hydrologic processes.   

Lastly, increasing my knowledge of the physiography and geology of the study 

region and being exposed to more field work would enhance my interpretation of the 

results of data analysis in the thesis. 

6.3 Future research 
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I discuss two aspects of future research including the short-term plans to refine 

the work that has been done in this thesis and the long-term more broad research 

perspectives.   

Using the lagged regression method to analyze rainfall time series measured at 

sites with spatial proximity may provide insights for the understanding of the observed 

spatial patterns of the surface runoff presented in Chapter 2.  This proposed approach 

may help to understand how small-scale rainfall characteristics affect the magnitude, 

overall shape, and timing of spatial runoff fields.  The 12 hillslopes studied are nested in 

two nearby USGS gauges, providing us the opportunity to investigate how this small-

scale runoff patterns scale up.   

It would be interesting to investigate the sources of the water consumed by 

vegetation and thus to assess the impact of evapotranspiration on various stages of the 

recession processes.  This can be pursued by comparing the amount of soil moisture 

depletion with the evapotranspiration data available.  Attacking this problem may also 

shed light on the estimation of evapotranspiration using streamflow data.   

Groundwater dominates baseflow recession processes during extreme drought 

periods.  Examining the concurrent hydrograph recessions of streamflow and 

groundwater levels have the potential to provide a more comprehensive and reliable 

characterization of the subsurface drainage processes.   

The results of this thesis offer insight into the connection between the patterns of 

hydrologic processes at multiple spatial scales and foster the aggregation of hydrologic 

processes in space.  However, the challenge to find a simple yet effective representation 

of small scale process variability remains.  Catchments are categorized as complex 

systems with some degree of organization (Dooge, 1986), which indicates that both 

aspects of organization (spatial pattern) and randomness of smaller-scale process are 

important for the hydrologic response at larger scales.  This inspires many potential 

approaches to represent watersheds.  One approach is to adopt the representative 
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elementary volume concept (e.g., Hubbert, 1957; Wood et al., 1988; Reggiani et al., 

1998), which is still open to debate.  A second approach is to look for emergent spatial 

patterns and consider them in the context of hydrologic modeling (e.g., Beven and Kirkby, 

1979; Moore and Grayson, 1991; Blöschl and Sivapalan, 1995; Grayson et al., 1997; 

McGlynn et al., 2003; Sivapalan, 2003; Schulz et al., 2006; Jencso et al., 2009; Van 

Nieuwenhuyse et al., 2011).  This thesis follows the second method.  Identifying patterns 

of hydrologic processes at various spatial scales is limited by the innovative data 

collection.  The explosive development of new technologies, such as the application of 

tracers, ground penetrating radar, electrical resistance tomography, and remote sensing 

techniques, together with thoughtful experimental designs such as the nested basin and 

paired basin approaches, have the potential to identify spatial patterns in the future.  

Quantitative consideration of the identified small scale spatial patterns using simple 

indices (e.g., Beven and Kirkby, 1979; McGlynn et al., 2003; Jencso et al., 2009; Van 

Nieuwenhuyse et al., 2011) also warrants further investigation.  Therefore, measuring, 

identifying, and accounting for spatial patterns of hydrologic processes to enhance the 

capability of distributed hydrologic models, and thus providing useful information for 

water resources management under the changing climate and environment, is an 

emerging area of interest for hydrologists.   
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APPENDIX A 

CONTROLS OF THE SCALING FACTOR 

 

For each individual runoff event, we explored the spatial variation of the scaling 

factor by plotting the scaling factor of each hillslope against the structural characteristics 

of the hillslope including 1) width of prairie strip at footslope; 2) maximum slope length; 

3) slope; 4) and drainage area.  High shape similarity persists across hillslopes for all of 

the events showed in Figure A-1 to A-3.  These figures suggest that the spatial variation 

of the scaling factor for individual events is weakly related to and cannot be consistently 

explained by the individual structural characteristics of the hillslopes we investigated in 

this study.  However, the combined effects of these structural characteristics of the 

hillslopes on the spatial variation of the scaling factor cannot be detected through the 

analysis presented here. 

We also explored the relationship between the temporal variation of the scaling 

factor and the rainfall and runoff characteristics for each hillslope.  For most of the 

hillslopes, the scaling factors are weakly related to the total amount of rainfall (Figure A-

4), indicating that the effect of the total amount of rainfall on the scaling factor is masked 

by other factors that are more important.  Figure A-5 shows that for most of the hillslopes, 

the scaling factor increases towards unity with the increase in the peak runoff rate, 

implying that the more runoff generated, the more similar the hillslopes are in producing 

runoff.   

These analyses suggest exploring how other factors, such as the rainfall intensity, 

antecedent soil moisture, and seasonality influence the spatiotemporal variability of the 

scaling factor.  This was done in Chapter 2.   
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Figure A-1.  Scatterplots of scaling factor k versus width of prairie strip widths at 

footslope (a), maximum slope lengths (b), slopes (c), and sizes (d) of the hillslopes for the 

event on May 25 of 2008.  
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Figure A-2.  The same as Figure A-1but for the event on April 26 of 2009.  
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Figure A-3.  The same as Figure A-1but for the event on June 10 of 2011.   
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Figure A-4.  Relationship between the scaling factor and the total amount of rainfall of 

each storm event.  
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Figure A-5.  Relationship between the scaling factor and the peak flow at each hillslope 

for each storm event.  
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APPENDIX B 

SENSITIVITY OF RECESSION ANALYSIS TO THE CHOICE OF ∆T 

 

The most widely used approach for analyzing recession curve, which is proposed 

by Brutsaert and Nieber, examines the rate of change of discharge dQ/dt as a function of 

discharge Q, thus eliminating the need of determining a time reference: 

)(Qf
dt

dQ


 (B-1) 

where f is the characteristic function for a recession event.  Since Q is the discharge 

observed at the basin outlet, equation (B-1) is a lumped recession model.  As suggested 

by Brutsaert and Nieber and has been validated by extensive recession analyses across 

geographical and climate regions, f typically takes the form of the power law relationship: 

BAQ
dt

dQ


 (B-2) 

where A and B are parameters.  Parameters A and B are named as recession intercept and 

recession slope, respectively, in the plot of log(-dQ/dt) against log(Q).  The recession 

intercept A and recession slope B represent two characteristics of a recession event, i.e., 

the linearity of recession process and the recession rate, respectively.  Under the scenario 

of B = 1, i.e., a linear reservoir, 1/A is named as recession timescale (has a unit of time).   

The terms in equation (B-2) can be calculated using the backwards difference and 

average as dQ/dt = (Qt-Qt-∆t)/∆t and Q=(Qt+Qt-∆t)/2 for a given recession segment, where 

the time step ∆t can be constant or variable.  The constant time step can be chosen to be 1 

day (e.g., Brutsaert and Nieber, 1977; Vogel and Kroll, 1992), 1 hour (e.g., Clark et al., 

2009), or 15 minutes(e.g., Rupp and Selker, 2006b).  Rupp and Selker (2006a) showed 

that the constant time step method may bias the estimates of A and B, and they 

recommended the use of variable time steps to calculate dQ/dt in order to remove this 
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limitation.  The terms in equation (B-2) can also be numerically expressed using other 

schemes, such as the central difference and average.   

The optimal choice of the time step ∆t is determined from the consideration of the 

drainage process of interest, the observational frequency, and the magnitude of noise of 

streamflow data.  Using a too small ∆t may suffer from the noise in the streamflow data, 

i.e., ∆Q = (Qt-Qt-∆t) may become comparable to the magnitude of data uncertainty, while 

choosing a too large ∆t may lose the capability to capture the temporal evolution of the 

different drainage processes for a single recession event.  Two ways can be used to tackle 

this problem: 1) using a shorter time step for the early stages and a longer time step for 

the late stages of the recession process (variable ∆t); and 2) using a method that is not 

sensitive the choice of ∆t.  Rupp and Selker (2006a) pursued the along the first direction 

and we chase the second in the following.   

The recession segment that observed at the USGS gauge at Clear Creek near 

Coralville over the 7-day period from June 26 to July 3 of 2007 is used as an example to 

investigate the sensitivity of recession analysis to the choice of ∆t.  We first aggregated 

the streamflow data originally observed at the interval of 15 minutes to hourly and daily 

data by averaging over the aggregation intervals, and then estimated the recession 

parameters A and B using the constant time step (CTS), variable time step (VTS), and the 

nonlinear direct fitting (NDF) method.   

Comparison shows that the nonlinear direct fitting method is not sensitive to the 

choice of time step ∆t (Figure B-1).  Consistent with the literature, our result indicates 

that the constant time step method is most sensitive the choice of time step (the same as 

the temporal resolution of the data) and the variable time step method greatly reduces this 

sensitivity.  Interestingly, the estimates given by the nonlinear direct fitting method are 

almost identical when data with different temporal resolutions are used.  Furthermore, the 

differences in the parameter estimates decrease with the degradation of the temporal 

resolution of streamflow data and are negligible at the daily scale.  The similar values of 
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A and B showed in the bottom and rightmost panels indicate that the nonlinear direct 

fitting method is most capable among the three to deal with data noise, allowing for 

analyzing both the early- and the late-time recession data with high temporal resolution.  

The variable time step method can also be used for this purpose, while more information 

is needed to determine the threshold value C.   

We provide more details about our data analysis to explain the significant 

differences between the estimates and the data in Figure B-1.  We discuss three aspects of 

the model fitting that logically demonstrate the correctness of the results: 

1) Theoretical aspects: regression in the log-log and the original scales 

Both the CTS and the VTS methods estimate A and B in the log-log scale using 

the least squares linear regression.  Therefore, the goal is to maximize the amount of 

variation in    (      ) rather than the variation in        that is explained by the 

power-law recession models.  In contrast, the NDF method uses iterative direct curve 

fitting to estimate A and B in the original units.  This leads to different optimal solutions 

for A and B, especially when significant noise (such as measurement error in stages, 

errors due to the rating curves, and evapotranspiration) exists in the recession data.   

2) Theoretical aspects: handling data noise 

Mathematically, the CTS and the VTS methods calculate        using forward 

or backward differences, which are subject to numerical errors.  This indicates that the 

estimates of A and B given by these two methods may be sensitive to the local noise in 

the recession data.  In contrast, the NDF method estimates the parameters using 
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by systematically varying B.  The summations in the equation make the estimation more 

robust with respect to local errors in the recession data due to the smoothing effect.   
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3) Practical aspects: Code checking 

There is always a possibility that we made errors in our codes.  We carefully 

checked our code.  In addition, using the event shown in Figure B-1 as an example, we 

also compared the results given by our code and Excel.  A comparison of the middle 

panel of Figure B-1 to Figure B-2 shows that the results given by our code and Excel are 

consistent.  It is difficult to check the NDF method using Excel, but we do not think that 

its result is questionable.  Also, our simulation shows that the method performs well in 

the limit of “low noise” (the rightmost panel in Figure B-1). 
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Figure B-1.  Comparison of A and B estimated using three methods and streamflow data 

with three temporal resolutions.  This 27-day long recession segment was observed at the 

USGS gauge at Clear Creek near Coralville (USGS05454300) with an observational 

interval of 15 minutes.  We extracted the recession segment from the complete recession 

curve using a starting point of 2 days and a length of 7 days.  We aggregated the 15-

minute streamflow data to hourly and daily data by taking the mean values.  The open 

circles are the observed streamflow values, and the lines are the modeled recession 

segments using the estimated parameters.  For the variable time step method, the value C 

= 0.001 was used to reduce the impact of the noise in streamflow data on the estimation 

of recession parameters.  The modeling error was calculated as the relative difference 

between the volumes of modeled and observed recession flows. 
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Figure B-2.  Estimating the recession parameters using the CTS and the VTS methods in 

Excel.  The same hourly data as that in the middle panel of Figure B-1 is used here.  This 

figure is used to verify the results given by our code.   
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APPENDIX C 

ANALYSIS OF LATE-TIME RECESSIONS DURING SEVERE DROUGHT EVENTS 

 

We compare the characteristics of late-time recession behaviors for the nested 

basins in the Iowa and Cedar River basins during the 1988 and 2012 severe droughts.  

Since our goal is to investigate the effect of spatial scales on the late-time recession 

behavior for a relatively homogeneous region, long periods over which all the basins 

experience similar wetting and drying history will be our targets.  Though there are many 

other drought years since 1970, the 1988 and 2012 drought events similarly last for long 

periods and cover wide areas, allowing for an apple-to-apple comparison.  Daily 

streamflow data are used here.   

Stability of the results of analyzing recessions during the 2012 drought 

We first show the stability of the results of analyzing 2012 drought recessions 

using our carefully designed calculation procedure.  The result of recession analysis is 

sensitive to the calculation procedure, i.e., the selection of recession segment and 

parameter estimation methods (see Chapter XXX).  This sensitivity originates from the 

complex temporal evolution of the dominant drainage processes for each recession event 

and the noise in the recession data.  It is not unreasonable to assume that the dominant 

drainage process is the releasing of water from the unconfined aquifers during the late-

time (10 days after hydrograph peak) recession processes.  Therefore, data noise in the 

recession data is of our major concern that may impact the results of our analyses.  The 

major sources of noise in streamflow data are the stage measurement inaccuracies and the 

transformation of stage to discharge using rating curves.  We assume that the impact of 

evapotranspiration on recession process is negligible during the severe drought periods, 

such as the 1988 and 2012 droughts.  We note that the magnitude of data error is more 

pronounced for during the periods of floods and droughts, and thus we use long recession 
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segments and noise-robust method (the nonlinear direct fitting method) to estimate the 

recession parameters for this analysis.   

The parameter estimates for the 2012 drought are stable.  Figure C-1, Figure C-2, 

and Figure C-3show that the values of A and B are around 0.03 and 1, respectively, when 

different starting points and recession lengths are used.  This indicates that the late-time 

recession behaviors for the Iowa and Cedar River basins during the 2012 drought can be 

approximated by a linear reservoir with a recession timescale ( equals 1/A) of about 33 

days.   

Stability of the results of analyzing recessions during the 1988 drought 

We now analyzing the recessions in the Iowa and Cedar River Basins during the 

1988 drought.  Though the 1988 drought might be a good candidate to study the late-time 

recession behaviors across scales, the quality of the recession data is poor.  The flow rates 

at the beginning of the recessions for most gauges are around or below their 25% 

quintiles.  This makes the accurate measurement of streamflow difficult, which can partly 

explain the high data noise.  The data noise together with other factors such as small 

amount of precipitation make the usable duration for late-time recession analysis to be 

around 45 days.   

The parameter estimates for the 1988 drought are stable.  Figure C-4 and Figure 

C-5 show that the estimated recession timescales are around 35 days (A = 0.028), 

respectively, when different recession lengths (30 and 45 days) are used.  Figure C-6 

illustrates that the recession segments that are effective for our data analysis at all gauges 

can be reasonably modeled with fixed parameters, indicating that the late-time recession 

behaviors for the Iowa and Cedar River basins during the 1988 drought can be 

represented by a linear reservoir with a recession timescale of about 35 days (i.e., A = 

0.028).  Since the usable lengths of recession segments are limited and the flows are too 
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low, we fixed the starting point of the recession segments to be 5 days after hydrograph 

peak and constrained the value of B to be 1 for this analysis.   

Comparison between the 1988 and the 2012 recessions 

As summarized in Figure C-7, the results of analyzing the 1988 and 2012 drought 

are consistent, suggesting that the late-time recession processes in the Iowa and Cedar 

River basins tend to be linear and homogeneous.  The recession timescale of late-time 

drainage processes tends to be constant (~ 33 days) at the spatial scales ranging from 

about 70 to 17000 km
2
.  This is consistent with the findings that late-time recession 

timescale becomes more stable (e.g., Savenije, 2001) and converges to 45±15 days as the 

catchment size increases (Brutsaert, 2008).  Overall, our analysis supports the hypothesis 

that the late-time recession behavior for large basins, in at least some regions, can be 

described by a linear and homogeneous groundwater reservoir.   
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Figure C-1.  Performance and parameters of the dQ/dt = -AQ
B
 model plotted as a 

function of the drainage area top: modeling error of reproducing the observed recession 

curves; middle: parameter B; and bottom: parameter A.  The horizontal gray lines 

represent the corresponding median values.  The result is obtained by analyzing the 

observed recession curves (late-time) in the Iowa and Cedar River basins during the 

2012-2013 drought.  The starting point used is 10 days after hydrograph peak and the 

recession length is 120 days.   
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Figure C-2.  Similar to Figure C-1 but the starting point used is 20 days after hydrograph 

peak and the recession length is 120 days.  
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Figure C-3.  Similar to Figure c-1 but the starting point used is 10 days after hydrograph 

peak and the recession length is 90 days.  
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Figure C-4.  Performance and parameters of the dQ/dt = -AQ
B
 model plotted as a 

function of the drainage area top: modeling error of reproducing the observed recession 

curves; and bottom: recession timescale (1/A).  The horizontal gray lines represent the 

corresponding median values.  The result is obtained by analyzing the observed recession 

curves (late-time) in the Iowa and Cedar River basins during the 1988 drought.  The 

starting point used is 5 days after hydrograph peak and the recession length is 30 days.  
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Figure C-5.  Similar to Figure C-4 but the starting point used is 5 days after hydrograph 

peak and the recession length is 45 days.   

  



149 
 

 
 

 

 

Figure C-6.  Comparison between the observed (gray) and modeled (red) recession 

curves during the 1988 drought.  Constant values of A = 0.028 (recession timescale of 36 

days) and B = 1 are used for modeling recession curves at all gauges.   
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Figure C-7.  Recession timescales of late-time drainage processes plotted as a function of 

the drainage area for a) the 1988 drought; and b) the 2012 drought.  The horizontal gray 

lines represent the corresponding median values.  The result is obtained by analyzing the 

observed recession curves (late-time) in the Iowa and Cedar River basins.  
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