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ABSTRACT 

Two experiments used a dynamic control task (Berry & Broadbent, 1984) to examine 

the flexibility of experientially acquired knowledge.  The results suggest that 

experientially acquired knowledge of this task is represented by a lookup table, not a set 

of tuned strategies.  With practice, transfer to a new task was achieved through an 

extrapolation procedure.  Experiment 2 demonstrated far superior task and transfer 

performance in participants trained with a combination of experiential practice and 

model-based knowledge.  Transfer to new states was only possible when participants 

were provided with model-based knowledge through direct instruction.  Also, providing 

model-based knowledge during practice resulted in a more flexible representation 

compared to providing it before or after practice.  Pedagogical implications are 

discussed.
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INTRODUCTION 

A major goal of education is not only to teach content knowledge, but to teach 

content in a way which allows learners to transfer that knowledge to a variety of 

situations (Perkins & Salomon, 1992).  For example, medical students who learn about 

a disease in one case study are expected to recognize similar symptoms in a wide 

range of patients.   Similarly, pilots who learn to fly in small, single-engine planes are 

eventually able to transfer their knowledge of aviation to larger, more complex planes in 

a variety of flight conditions. 

Research suggests human learning is achieved through two separate, but 

complimentary processes; experience- and model-based processing (Anderson, 1982; 

Berry & Dienes, 1993; Mathews et al.,1989; Reber, 1993, for a single process theory, 

see Shanks & St. John, 1994).  In these two-process models, model-based processing 

involves the intentional use of a concrete representation, or a mental model of the task 

such as a set of instructions or a recipe to guide performance (Johnson-Laird, 1982).    

Experience-based knowledge, on the other hand, is acquired without intention, through 

direct interaction with the environment.  An example of experience-based learning is a 

young child acquiring language.  Children learn to communicate grammatically without 

direct instruction through their interaction with others who speak the language (Dienes, 

Broadbent, & Berry, 1991).   

While many researchers agree that knowledge is acquired through these two 

processes, the specific details of each process are debated.  One particular area of 

debate is the flexibility of experientially acquired knowledge.  This is particularly 

important as it pertains to training in some professional fields, such as medicine or 
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aviation, where practitioners are expected to apply knowledge learned through 

experience to mission critical decisions to new situations.    Some theories propose that 

experientially acquired knowledge becomes rigidly tied to the task context in such a way 

that transfer is unlikely (Dienes & Fahey, 1995, 1998).   Others suggest that in some 

sense, general rules or strategies are learned which may transfer to new task 

constraints (Lane, Mathews, Sallas, Prattini & Sun, 2007).  These theories are 

discussed below. 

 An example of a task that can be learned through experiential practice will help 

elucidate this debate.  The dynamic control task, developed by Berry and Broadbent 

(1984), has been used by a number of researchers (e.g. Dienes & Fahey, 1995; Lane, 

et al., in press; Marescaux, Luc, & Karnas, 1989; McGeorge & Burton, 1989; and 

Stanley, et al., 1989).  In this paradigm, participants control the output of a system by 

varying the input, where the system is governed by some formula unknown to the 

subject.  In one version of the task, participants are told they will play the role of a sugar 

factory manager, where the input is the number of workers and the output is production 

in tons of sugar (Berry & Broadbent, 1984).  Their “job” is to maintain sugar production 

at some prescribed level.  The system’s output is governed by a formula such as:    

P = 20W-Ptr-1 + N, where sugar production is P, the number of workers entered is W, 

the system’s output, or sugar production, on the previous trial is Ptr-1, and N is a noise 

function which randomly adds 1000, -1000, or 0 with equal probability to the output.  

Inputs range in hundreds from 100 to 1200 and outputs range in thousands from 1000 

to 12000.  For any given previous output, there is an input that will allow the system to 

reach within 1000 tons of the goal state.  For example, if the goal state were 6000 tons 
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of sugar, the correct input when the previous output is 12000 tons of sugar is 900 

workers (e.g. P = (20*900)-12000 + N)).  Production values which fall above or below 

the range of outputs are set to 12000 or 1000 respectively. 

Lane, et al. (2007) argued that while this task may seem rather simple, it 

functions in a way that makes it analogous to learning in the real world.  First, the task is 

dynamic, meaning that the state of the system changes with each input.  Additionally, 

the system is noisy such the same input can lead to multiple outputs.  Third, 

performance on the task improves with high levels of practice, but participants’ ability to 

verbalize their performance lags behind actual task performance (Stanley, et al., 1989).  

One example that shows how this task parallels real world learning is that of an 

educator teaching students.  Teaching is a dynamic task, in that a given strategy may 

work well with students at one point in the school year, and not in another.  Thus, 

teachers must base their behavior on the current state of their students.  Also, teachers 

receive noisy feedback.  A strategy that worked well with some students may fail with 

others.  Finally, becoming a highly effective teacher can take years to accomplish, and 

even then, it can be difficult for expert teachers to describe their behavior.   

While researchers agree that knowledge can be acquired through experiential 

practice with a dynamic control task, there is debate over whether knowledge gained 

through experience is stored as an inflexible set of specific instances or flexible, general 

rules.  In the case of the dynamic control task, researchers disagree over whether 

participants store a lookup table of specific output-input pairs (e.g. if the output is 12000 

tons of sugar, input 900 workers), or learn general rules or strategies (e.g. input a 

number between the previous output and the goal state).   
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One specific instance model was proposed by Dienes and Fahey (1995, 1997; 

see also Berry & Broadbent, 1984; Marescaux, Luc, & Karnas, 1989).  In this model, 

Dienes and Fahey argue that participants develop a lookup table of correct output-input 

pairs as they interact with the task.  Anytime the goal state is reached (plus or minus 

1000 tons), participants are said to store the correct action for that particular output.  

Future responses to “old-correct” outputs are made by recalling the correct response 

based on a match between the current output and a stored output.  Outputs which were 

experienced before but a correct response was not made can be called old-incorrect.  

Thus we can distinguish three types of trials: old-correct, old-incorrect, and new 

situations (never experienced before).  In this model, responses to situations without a 

stored correct answer are determined via the application of explicit strategy (e.g. if 

sugar production is below target, increase workers).  In a similar model, these 

responses are determined at random (see Cleeremans’ model, described in Marescaux, 

Luc & Karnas, 1989).  Dienes and Fahey provided evidence for their model by 

demonstrating that at test (following 80 training trials), participants respond above 

chance only to old-correct output states indicating very little transfer to other (old-

incorrect or new) states.  Furthermore, participants were more consistent in how they 

responded to old-correct states than to other states.  This pattern of results is consistent 

with the storage of specific output-input pairs.  If participants had developed a set of 

general rules for responding, one would expect similar performance across all outputs.  

Instead, a lookup table model would predict correct performance only for those outputs 

for which a correct output-input pair had been stored (old-correct). 
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Dienes and Fahey (1995, 1997) argue that this knowledge is acquired implicitly, 

or without intention.  While participants responded above baseline to old-correct states, 

this superior performance was independent of being able to recognize situations as old.  

In addition, Dienes and Fahey cite previous research with the dynamic control task 

which demonstrated that instructing participants to look for rules resulted in poor 

performance (Berry & Broadbent, 1998).  Berry and Broadbent argued that because the 

task is implicit, attempting to learn the task in an explicit manner was detrimental to 

performance.  In summary, Dienes and Fahey argue that participants learn the dynamic 

control task by developing an implicit lookup table consisting of specific correct output-

input pairs (see Table 1). These output-input pairs are inflexible meaning that 

knowledge of specific pairs does not transfer to old-incorrect or new output states.  

Furthermore, if such knowledge does not generalize even across situations within the 

task (i.e. old-incorrect states), it could not be expected to transfer when task constraints 

are changed (i.e. a different goal for sugar production). 

Unlike Dienes and Fahey (1995, 1997), Fum and Stocco (2003a, 2003b) argue 

that general strategies rather than specific output-input pairs are learned in the dynamic 

system task.  Their theory is based on the ACT-R procedural system (Anderson & 

Lebiere, 1998).  In this model, participants do not store specific instances, but instead 

performance is based on a set of strategies which are tuned according to previous 

performance.  Fum and Stocco posit that participants possess a set of strategies before 

experience with the task (e.g. choose random input, repeat-choice) and these strategies 

are unconsciously chosen according to their expected utility.  At first, strategies are 

randomly selected, but when a strategy results in loosely correct performance (target 



6 

 

plus or minus 1000 tons) its expected utility increases.  Strategies that work are likely to 

be used in the future while unsuccessful strategies are less likely to be used.   

Table 1.  Simple lookup table of output-input pairs. 

Output Input 

1000 400 

2000 400 

3000 500 

4000 500 

5000 600 

6000 600 

7000 600 

8000 700 

9000 700 

10000 800 

11000 800 

12000 900 

This tuning procedure might be likened to someone choosing a route to commute 

to work.  If there are five routes to choose from, the probability that any route will be 

chosen on Day 1 is 0.2.  However, if there is construction on the chosen route, its 

expected utility will decrease, and the commuter will be less likely to choose that route 

in the future.  Conversely, if there is no traffic on the route, its expected utility will 

increase and the commuter will be more likely to choose that route in the future.  Fum 

and Stocco’s (2003a, 2003b) model operates using the following five strategies: 

• “Choose Random”:  Choose a random input  

• “Repeat-Choice”:  Choose the same input entered on the previous trial  
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• “Stay-On-Hit”:  If the previous input was successful, repeat it.  (More selective 
version of “Repeat-Choice”)  

• “Pivot-Around-Target”:  Input a value that is the same value of the target, plus or 
minus one 

• “Jump On Middle”:  Choose  an input that lies midway between the previous 
output and the upper or lower limit  

Fum and Stocco (2003a, 2003b) present data showing unsymmetrical transfer 

between goal outputs as evidence for their model.  Like Dienes and Fahey, Fum and 

Stocco exposed participants to 2 blocks of 40 trials in the sugar factory task with one 

significant difference.  In the Dienes and Fahey (1995) task, goal performance was 

always 6000 tons of sugar.  Fum and Stocco used two goals (3000 and 9000) and 

manipulated whether the goal stayed the same or changed across blocks resulting in 

the following four groups:  3000-3000, 9000-9000, 3000-9000, and 9000-3000.  The 

potential success of a strategy is dependent on the goal state, such that some 

strategies work better for specific goals, while others are superior regardless of the goal.  

For example, when the goal state is set to 3000 tons, the Choose Random strategy 

would result in an output within 1000 tons of the target on 18% of attempts.  If the target 

was 9000 tons, the same strategy would result in near target output on only 12% of 

attempts.  This difference is because 3000 is closer to the lower limit of 1000 than 9000 

is to the upper limit of 12000.  Outputs which fall below 1000 are set to the lower limit 

(1000 tons), and on one third of these trials, the noise function adds 1000 tons to the 

output, resulting in a loosely correct output.  The goal of 9000 tons is not close enough 

to the upper limit to benefit in this manner.  In terms of their model, this means that 

strategies which depend on the limit of the output scale work well when the goal is 

3000, but not when the goal is 9000.  Conversely, strategies which work when the goal 
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is 9000, work regardless of the goal.  For example, the Stay-On-Hit strategy works 

equally well for either goal. Thus, in this model, when the goal is 3000, participants tune 

their set of strategies such that the strategies that are likely reach the goal of 3000 are 

selected.  These strategies do not work as well when the goal is changed to 9000 and 

performance is expected to be poor until the strategies are re-tuned.  Strategies which 

work when the goal is 9000 work at least as well at the goal of 3000.  Thus, 

performance should increase when the goal changes from 9000 to 3000 as the 

strategies continue to be tuned with each successful trial. 

Fum and Stocco’s (2003a, 2003b) results revealed better performance in the 

3000-3000 condition relative to the 9000-9000 condition, confirming their hypothesis 

that there are strategies which have a higher success probability for the goal of 3000 

than for the goal of 9000.  Instance based models (e.g. Dienes & Fahey, 1995) would 

predict no difference between performance at any goal.  Secondly, when the goal 

changed from 3000 to 9000 performance was similar across blocks, but when the goal 

changed from 9000 to 3000, performance improved significantly.  Fum and Stocco 

argue that an instance-based account is not able to explain this non-symmetric transfer 

between goals.  If performance was based on stored instances, it should not improve 

when the goal changes as a lookup table is calibrated for a specific goal and would be 

of no use for a new goal.  Thus, they argue that performance in the dynamic control task 

is based on the expected utility of strategies, not stored instances.  In addition to 

arguing that instances are not stored, the strategies in this model are context 

independent.  The model does not choose a strategy based on the previous output 
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(unless the previous output was successful, as in the Stay-On-Hit strategy).  Only the 

strategy’s success in the past is valued. 

There is however one concern with Fum and Stocco’s (2003a, 20003b) 

interpretation against an instance-based model.  Dienes and Fahey (1995) reported a 

second experiment in which they varied the “salience” of the task.  In the salient 

condition, the correct input was always 600, while in the non-salient condition the 

correct input was contingent on the previous output.  Dienes and Fahey argued that 

participants in the salient condition learned partially by a lookup table and partially by 

learning a rule that could be applied across situations.  This argument was based on 

data showing that while participants still performed better on old-correct states 

(instance-based), they were also above baseline on new states (rule-based).   

It is possible that when the goal changed from 9000 to 3000, participants moved 

from an instance-only representation to a representation that included both a rule 

(always enter 200) and an instance-based representation.  When the goal changed from 

3000 to 9000, the representation would need to switch from a rule and instance-based 

representation to an instance-only based representation with a new set of output-input 

pairs.  In this case, a subject would have developed a representation calibrated for the 

goal of 3000 and learned a rule that worked because the goal was near the lower limit.  

When the goal changed to 9000 participants needed to recalibrate their representation 

for the new goal, and discover that the rule no longer works.  Conversely, when the goal 

changed from 9000 to 3000 participants’ lookup table was no longer calibrated for the 

new goal, but they may have quickly learned a rule which lead to good performance.  

Non-symmetric transfer does not necessarily rule out an instance-based model.  Fum 
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and Stocco’s data could be explained by a switch from an instance-based 

representation to a representation comprised of both instances and a rule.   

It is unclear what would cause this switch in representation.  Nososfsy, Clark, 

and Shin (1989) found in a perceptual classification task that a rule-based model fit 

participants’ data when they were instructed to use rules.  When no rules were 

provided, an instance-based model best fit the data.  Thus, instructing participants to 

use a rule can influence the type of representation participants develop.  While there 

was no instruction to use a rule in above studies, the salience of the rule may have 

driven the switch between the type of representation used.   

Lane, et al. (2007) added a third perspective on the representation of 

experientially acquired knowledge.  To review, Dienes and Fahey (1995, 1997) argue 

that participants develop a lookup table consisting of specific output-input pairs, while in 

Fum and Stocco’s (2003a, 2003b) model, individual instances are not stored, but a set 

of context-independent strategies is tuned over time such that the most successful 

strategies are most likely to be selected in the future.  Lane, et al. suggested that 

participants develop an implicit lookup table as proposed by Dienes and Fahey, but 

argue that more general, contextually relevant rules (e.g. if the output is high, use an 

input of 800), rather than specific instances are stored in the lookup table.  One problem 

with the proposal that knowledge is stored in a specific lookup table is dealing with the 

large volume of instances which must be stored.  If participants store all experienced 

output-input pairs that lead to “loosely correct” outputs, at some point interference would 

make it difficult to store new instances or recall old ones.  Lane et al.’s model is in line 

with Mathews’ (1991) Forgetting Algorithm in which the specific features of individual 
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instances are lost over time and replaced with features which are common across 

instances.   

Lane, et al. (2007) provided several pieces of data to support this claim.  First, 

participants who learned the task through experiential practice were able to transfer 

their knowledge to a new goal without a drop in performance.  If participants relied only 

on specific output-input pairs, transfer performance should have been poor as a specific 

lookup table is calibrated for a particular output.  Like Dienes and Fahey (1995), Lane, 

et al. provide evidence that this knowledge is implicit by showing that performance on a 

fill-in-the-blank style “table test”, which required participants to write the correct input for 

each previous output to attain the goal state, was worse than actual performance on the 

actual task completed just minutes before.  If participants had access to the knowledge 

they used to perform the task, performance should have been similar across both 

measures. 

Lane, et al. (2007) also argued against an instance-free representation like that 

of Fum and Stocco (2003a, 2003b).  While the Fum and Stocco’s model can account for 

transfer in Lane, et al.’s experiential practice condition, it cannot account for data 

demonstrating that providing hints to participants improved performance.  In Experiment 

1, Lane, et al. provided participants in a “hint” condition three correct output-input pairs.  

Performance on the dynamic control task was superior in participants who were 

provided the hints relative to participants who learned though experiential practice 

alone, even on output states for which no hint was provided.  This suggests that 

instances are important to learning the dynamic control task.   
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Also, in Experiment 2, Lane, et al. (2007) provided participants in a “table” 

condition with a full, correct lookup table.  Thus, before practice with the task, these 

participants knew how to reach the goal state from all previous states.  Performance in 

this group was superior to the experiential practice condition.  On a transfer test, where 

the goal changed from 6000 to 9000, participants in the table condition performed as 

well as those in the experiential practice condition.  This suggests that through 

extensive practice with the task, participants in the table condition also acquired some 

experiential knowledge.  In Fum and Stocco’s (2003a, 2003b) model, participants in the 

table condition would have not have the opportunity to tune a set of strategies as 

instead, they employed an explicit lookup table to perform the task.   

Lane, et al. (2007) provided evidence that when participants receive extensive 

practice, knowledge is stored as somewhat more general rules rather than specific 

instances (e.g. if output is high, input 800).  Performance on a transfer test in which the 

goal state was changed was compared between participants who had extensive 

experiential practice with the task and a control condition which had no practice, but 

was provided with a complete and correct look-up table to memorize before the test.  A 

specific look-up table model would predict similar performance across the two 

conditions as the table provided to the control condition is presumed to be the form 

which experientially acquired knowledge takes.  Their results showed significantly better 

performance on the transfer test for the experiential practice condition.  In fact, the 

experiential practice condition exhibited similar performance on both the new goal test 

and standard test, where the goal was the same as training.  Lane, et al. argued this 

superior performance over control was the result of the flexibility of more general rules 
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acquired through experiential practice compared to the inflexibility of a specific look-up 

table. 

One significant difference in the methodology between Lane, et al. (2007) and 

the other research cited above (Dienes & Fahey 1995, 1997; Fum & Stocco, 2003a, 

2003b) is amount of practice with the task that participants received.  In Lane, et al., 

participants in the experiential practice condition of Experiment 1 interacted with the 

task for an average of 3410 trials, compared to 80 trials in research by Dienes and 

Fahey and Fum and Stocco.  Both Lane, et al. and Dienes and Fahey (1998) speculate 

that learners with low levels of practice may represent experientially acquired 

knowledge in the form of a specific look-up table, which is replaced with a set of general 

rules with more experience.  Furthermore, Fum and Stocco (2003b) suggested that 

storing instances may be important to learning in a dynamic control task, but not in the 

levels of training provided to participants in their experiments.  While the idea that the 

representation of knowledge may change across time seems to fit the data described 

above, the hypothesis has not been explicitly tested within a single study, and 

extrapolation across studies is problematic due to several significant procedural 

differences beyond the number of training trials. 

Another difference is that both Dienes and Fahey (1995, 1997) and Fum and 

Stocco (2003a, 2003b), used long blocks of trials which may have limited participants’ 

exploration of the problem space (Newell & Simon, 1972).  In these studies, each block 

consisted of 40 trials, with each new output dependent on the previous output and the 

subject’s input.  Thus, participants may have spent more time at one particular output 

level, as several inputs (100, 200, 300, 1000, 1100, and 1200) result in an output at the 
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lower or upper limit in most situations in which they are applied.  Additionally, both 

Dienes and Fahey and Fum and Stocco used a procedure which always set the output 

to 6000 at the beginning of the block and displayed the previous input as 600.  Some 

participants may have assumed, correctly, that they should input 600 when the output is 

6000.  The resulting answer would be correct, and participants would have no incentive 

to input any other value.  Lane, et al. (2007) used blocks of ten trials and randomly 

chose a starting position at the beginning of each block.  Thus participants were 

exposed to each output state multiple times in practice while those in the other studies 

reported here did not experience all system states.  It is possible that when very few 

states are experienced, a look-up table is most effective representation.  Conversely, 

when many states are experienced, a more general representation may be more 

effective. 

Also, different cover stories have been used across studies.  Dienes and Fahey 

(1995, 1997) and Fum and Stocco (2003a, 2003) used the Sugar Factory task 

described above.  Lane, et al. (2007) used a nuclear reactor cover story in which 

participants entered fuel pellets and the system’s output was reactor temperature.  

While it is unlikely that the cover story contributed to differences in knowledge 

representation, a single cover story (nuclear reactor) will be used in the proposed 

experiments. 

Another significant difference between Lane, et al. (2007) and the research of 

Fum and Stocco (2003a, 2003b) and Dienes and Fahey (1995, 1997) is that Lane, et al. 

provided some participants with model-based knowledge about the task.  Lane, et al. 

suggested that participants may learn best from a combination of direct instruction and 
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experiential practice compared to either type of instruction in isolation.  Though 

numerous studies demonstrate that the dynamic control task can be learned through 

experiential practice alone (Berry & Broadbent, 1983; Dienes & Fahey, 1995, 1997; 

Fum & Stocco 2003a, 2003b; Stanley, 1989), participants in Lane, et al. who memorized 

the full look-up table before practicing the task achieved much better performance than 

those who learned the task through experiential practice only.  However, when the goal 

state was changed on a new goal test or response time was limited on a speeded test, 

performance suffered in participants who received both model-based knowledge and 

experiential practice, falling to levels similar to the experiential practice only condition 

(but still significantly better than a no practice control condition).  Lane, et al. argued that 

participants who memorized the table before practice also acquired experiential 

knowledge through practice with the system.  Thus when the system parameters 

changed, making it difficult to use their model-based knowledge, they reverted to their 

less precise experiential knowledge.  Lane, et al. claim that participants in the table 

condition must have acquired a similar level of experiential knowledge as those 

participants in the experiential practice condition.  However, it is possible that 

participants who memorized the table may not have developed as much experiential 

knowledge as those in the practice-only condition.  Because participants in the table 

condition knew the correct input for each output, there was no need for them to explore 

the problem space and develop additional knowledge.  The relatively poor performance 

on the new goal and speeded tests may have been the result of not exploring the 

problem space.  If participants followed the look-up table, they would reach the target 

after the first trial of each block, and noise would move the output between 5000-7000.  
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Thus, participants would need to recall the input for one of those three outputs on nine 

of every ten trials.  Additionally, 25% of the first trials of each block would begin on one 

of those numbers (5000, 6000, or 7000), meaning that if participants exclusively 

followed the table, they would recall the input (600) for those three outputs more than 

nine times as often as the other inputs combined.   

Secondly, data from Lane, et al. (2007) suggest that model-based knowledge 

can be transferred without any experiential practice.  Two control groups were run with 

both groups taking the transfer test (9000 goal) with no prior experience with the task.  

One of the groups memorized a table with the output-input pairs calibrated for the 

standard test goal (6000 goal).  While not a significant effect, participants who 

memorized the table performed nominally better than those without the table (p = .07).   

Both the experiential practice and table plus practice conditions outperformed both of 

the control conditions on the new goal test, demonstrating that model-based knowledge 

alone does not transfer to a new goal as well as model-based knowledge combined with 

experiential practice.  However, that model-based knowledge alone does seem to 

transfer slightly better than no knowledge at all could be evidence that participants in 

the table condition were not only relying on experientially acquired knowledge during the 

transfer test.  Thus, while Lane, et al. (2007) demonstrate that providing model-based 

knowledge along with experiential practice improves task performance and transfer, it is 

possible that the provision of model-based knowledge before practice reduces 

participants’ exploration of the problem space resulting in superior performance for only 

some output states.  The implication of this is that providing model-based knowledge 

before practice may reduce the amount of experientially acquired knowledge.  By 
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delaying the point at which model-based knowledge is provided it may be possible to 

increase participants’ acquisition of experiential knowledge.  This, in turn, may reduce 

the decline in performance when the goal is changed or the response time is limited 

associated with the provision of model-based knowledge found by Lane, et al. 

The first goal of the current experiments is to study the flexibility of experientially 

acquired knowledge as a function of length of practice.  Experiment 1 will test the 

speculation of both Dienes and Fahey (1995) and Lane, et al. (2007) that with little 

practice, participants represent experientially acquired knowledge as a lookup table 

which is rigidly tied to the task context and unlikely to transfer, and that with more 

practice knowledge is represented as general rules which are still valid when the task 

constraints change.   

Of course, not all learning occurs experientially.  Some knowledge is acquired via 

direct instruction or a combination of direct instruction and experiential practice.  From 

Lane, et al. (2007), it is clear that participants who received model-based knowledge 

outperformed those who only acquired experiential knowledge, but the model-based 

knowledge group was not able to transfer their knowledge as well as the experiential 

practice group.  So while instructing learners with model-based knowledge may lead to 

strong task performance, there is a cost in terms of transfer to a new goal associated 

with direct instruction.   Experiment 2 will examine the hypothesis that allowing 

participants to practice the task before providing them with model-based knowledge will 

allow participants to develop a flexible representation which can transfer when the task 

constraints change and also acquire very accurate task-specific knowledge.   
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EXPERIMENT 1 

Participants in experiment 1 were assigned to 1 of 2 conditions, which differed 

only in the amount of training on the process control task.  Those in the short training 

condition completed 14 blocks, with each block consisting of six trials.  This resulted in 

slightly (84 vs. 80) more trials than participants in Dienes and Fahey (1995, 1997) and 

Fum and Stocco (2003a, 2003b) experienced.  However, the previous output for the first 

trial of each block was selected using a random without replacement selection 

procedure, such that each output state was seen at least once across the 84 trials.  

Unlike previous research using long blocks, this ensured that participants were exposed 

to the entire problem space.  Participants in the long training condition completed 280 

blocks (1680 trials), or 20 times the amount of practice in the short training condition.   

After a short or long training phase, participants took a series of tests.  The first 

test was similar to the training phase, except that the range of outputs were extended 

from 1000-12000 to -3000-16000.  Additionally, after selecting a response, participants 

were required to place a wager on the outcome of their response as a measure of 

confidence in their decision (Persaud, McLeod, & Cowey, 2007).  Following the 

extended range test, participants took a new goal test, as in Lane, et al. (2007) in which 

the goal output was 8000 rather than 6000.  Finally, also like Lane, et al., participants 

completed a table test.  Here, participants were asked a series of questions about the 

correct input for each previous output (e.g. If the reactor’s temperature is 12000 

degrees, how many fuel pellets should you enter to move the temperature to 6000 

degrees).   
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This procedure allowed for the testing of multiple hypotheses.  The first 

hypothesis is that with little training, participants represent knowledge acquired through 

experiential practice as a specific lookup table (Dienes & Fahey, 1995, 1997), not a set 

of tuned strategies (Fum & Stocco, 2003a, 2003b).  A look-up table model predicts poor 

performance on previously unseen states while a strategy-based model would predict 

similar performance across both previously seen and unseen (extended range) states.  

In a lookup table model, if the learner has not experienced a state, they could not 

possibly store a condition-action link for that state.  Dienes and Fahey provided 

evidence for this model by demonstrating that participants performed poorly at test for 

states which they had not seen, or had not entered a loosely correct input, at practice.  

By extending the range, it was assured that participants encountered some output 

states for which they could not possibly have the correct output-input pair stored.  If 

performance is based on a lookup table, superior performance should be expected on 

old-correct output states.   

If participants tuned a set of strategies during training (Fum & Stocco 2003a, 

2003b), performance should be consistent across all states on the Extended-Range 

Test.  Any strategy tuned to reach the goal of 6000 in practice, where the range is 1000-

12000, will work equally as well when the range is extended.  The goal of 6000 is not 

near enough to the upper or lower limit in the standard or extended range to benefit 

from the limit as the goal of 3000 did in Fum and Stocco.  Thus, if participants use a set 

of tuned strategies to perform the task, no difference in performance should be 

expected across output states in the standard and extended range. 



20 

 

One criticism of this analysis might be that subject could possibly have a lookup 

table and use some extrapolation procedure to “fill in” missing cells in the table.  In the 

proposed experiment, reaction times will be measured.  It is reasonable to assume that 

recalling an output-input pair will take significantly less time than calculating the correct 

input based on known output-input pairs.  Thus if participants extrapolate missing 

output-input pairs based on their current lookup table, the data should show similar 

performance on old-correct compared to new and old-incorrect outputs, as participants 

should be able to “work out” the correct answer.  Also, participants should take longer to 

respond to new and old-incorrect outputs, as the extrapolation procedure should come 

at a time cost over simply recalling a stored output-input pair.  It is not expected that the 

results will suggest such extrapolation, as Dienes and Fahey (1995) found on their 

specific situation test that participants responded correctly to new items less than 10% 

of the time compared to 32% for old-correct items.  If an extrapolation procedure was 

being used, one would expect above chance performance on these new states.  That 

responses on new states were at chance is not indicative of an extrapolation strategy. 

The second hypothesis is that with high levels of training, participants’ 

representation of experientially acquired knowledge changes from a specific lookup 

table to a set of contextually relevant rules.  Dienes and Fahey (1995) show that with 

little training participants rarely answer correctly on items for which they had not 

previously answered correctly.  On the other hand, Lane, et al. (2007) demonstrated 

that participants with extensive experiential practice do equally well on a standard and a 

far transfer test where the goal was changed from 6000 to 9000.  In the current 
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experiment, both the extended range and the new goal tests required participants to 

transfer knowledge. 

If knowledge is represented as a look-up table, performance on outputs 

previously answered correctly in the extended range test should be superior to unseen 

(extended range) outputs.  Conversely, a general rules model would predict no 

difference across both types of items.  If knowledge representation changes with 

practice participants with little training should show poor performance on new and old-

incorrect output states, suggesting the use of a lookup table, while those in the long 

training condition should show similar performance across all output states, suggesting 

the use of a set of general rules.  Again, reaction times can be used to ensure that 

participants are not extrapolating empty cells from a lookup table.   

Similarly on the new goal test, if knowledge is stored as a lookup table, 

participants should show poor performance across all output states because they would 

not have the correct output-input pairs stored for the new goal.  If knowledge were 

stored as flexible general rules, this knowledge should transfer to a new goal.   

The extended range test was also used to test the hypothesis that with practice, 

participants become increasingly aware of their knowledge of the task.   Many 

researchers argue that experientially acquired knowledge is stored implicitly, or without 

awareness.  Berry and Broadbent (1984) reported that with low levels of practice, 

participants showed better than chance performance, but could not verbalize how they 

were performing the task.  Additionally, Hayes and Broadbent (1988) found that a 

concurrent memory task did not harm task performance.  Most models of implicit 

knowledge assume it is deployed automatically, and thus impervious to the demands of 
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other tasks (Anderson, 1983).  On the other hand, Stanley, et al. (1989) asked 

participants to write instructions for novices at multiple points during training and found 

that while performance based on these instructions lagged behind the participants’ 

actual task performance, participants were able to report some knowledge.  The results 

of Stanley, et al. suggest that knowledge acquired experientially may at first be implicit, 

but that participants may become aware of at least some of this knowledge with greater 

experience with the task.  It is important to note that using verbal reports as evidence 

that participants are unaware of their knowledge has been criticized (Holender, 1986; 

Shanks & St. John, 1994; Tunney and Shanks, 2003).  Shanks and Tunney argue that 

participants do not report experientially acquired knowledge due to a response bias, 

rather than a lack of access to this knowledge.  They claim that participants set their 

own criteria for responding, and that this criterion may be set too conservatively.  Thus, 

they argue participants do not report awareness of knowledge even though they have 

some level of awareness.   

Recently, Persaud, McLeod, and Cowey (2006) used a post-decision wagering 

procedure to demonstrate a lack of awareness of experientially acquired knowledge.  

Three tasks which are often used in the implicit learning literature were employed; 

blindsight, the Iowa gambling task, and artificial grammar learning.  In each of these 

tasks, participants typically are able to perform the task at above chance levels, but 

cannot report how they make their decisions (Reber, 1967).  Persaud, et al. asked 

participants to make either a large or small wager after each decision, but before 

feedback was given.  If participants are aware of the knowledge they use to make 

decisions, they should attempt to maximize their earnings by placing large wagers after 
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responses they know to be correct, and small wagers following responses they are 

unsure of.  While participants responded with greater than chance accuracy to the 

primary task, participants did not systematically place wagers to maximize winnings, 

suggesting a lack of awareness.  Additionally, participants did not consistently place the 

minimum wager, which would have suggested the placement of a high criterion such as 

Shanks and Tunney have suggested.  Persaud, et al. speculate that subjective 

measures of awareness force an introspective process, asking participants how aware 

they are of their awareness.  Asking participants to make a wager may allow for a more 

precise measure of awareness due to the fact that participants need only make a binary 

choice (high or low wager) and can base their decision on any evidence they feel has 

utility. 

If with low levels of practice, knowledge is stored as an implicit lookup table, 

participants should not demonstrate awareness through advantageous wagering.  

However, as Stanley, et al. (1989) reported, participants who receive high levels of 

training can verbalize at least some of their knowledge of the task, though verbal reports 

lagged behind actual task performance.  As experience with the task increases, 

participants with more practice should be more successful at maximizing earnings, 

thereby demonstrating awareness of the knowledge used to perform the task.  

However, in line with Stanley, et al., participants in the long training condition may not 

exhibit perfect wagering performance as awareness may lag behind task performance. 

Finally, participants will be asked to articulate their knowledge on a table test.  

Lane, et al. (2007) found that when asked to complete a table that asked them to write 

the correct input for a given output, participants who only practiced the task performed 
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worse on the table test than their task performance would predict.  Again, Stanley, et al. 

(1989) suggested that participants’ ability to articulate task knowledge lagged behind 

task performance.  A similar pattern should be expected in experiment 1 such that 

participants with little practice should not be able to report any task knowledge, even for 

output states for which they have the correct input stored (old-correct).  Like in Lane, et 

al., participants with more training should perform better than those with little training on 

the table test, but not as well as their task performance would predict. 

Method 

Participants.  Eighty undergraduate students enrolled in introductory psychology 

courses at Louisiana State University were recruited to voluntarily participate in return 

for extra credit.  These participants were randomly assigned to either to either the short 

(N = 40) or long (N = 40) training condition.   

Task.  The reactor control task, used in both experiments, is a computer-based 

task in which participants imagine they are the manager of a nuclear reactor (see figure 

1).  Participants attempted to achieve and maintain a specified level of an output 

variable, reactor temperature, by controlling the number of fuel pellets consumed by the 

reactor.  Participants were given the goal of maintaining temperature at 6000 degrees. 

Task trials were grouped into blocks of six trials and each block began with a randomly 

selected reactor temperature level.  On each task trial, participants saw a display which 

depicted two graphs; output temperature and number of fuel pellets input.  On both 

graphs, trial number was depicted on the X-axis, while output temperature or number of 

fuel pellets entered was depicted on the Y-axis.  Reactor temperature varied from 1000 

degrees to 12000 degrees in 1000-degree increments.  A horizontal line was positioned 
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across the entire output graph at the 6000 degree level to remind participants of the 

goal state.  Participants selected a number of fuel pellets ranging from 100 to 1200 in 

multiples of 100.  Participants responded by entering the number of pellets to be fed into 

the reactor.  This was done by clicking on one of twelve input buttons on the left side of 

the screen.  The computer then determined the new output level based on a formula 

and displayed the new output on the temperature graph.  At the end of each block 

(every 6 trials), the display was cleared and a new graph was displayed for the next 

block of trials. The main dependent measure was the mean unsigned deviation from 

target production, in degrees.  Response times were also recorded. 

 

Figure 1.  Reactor control task. 

Procedure.  Participants were tested in groups up to eight.  Each group was 

randomly assigned to one of two conditions.  Participants completed a prescribed 

number of practice trials followed by the extended range test, the new goal test, and the 

table test, in that order. 
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 During the practice phase, participants were instructed to take on the role of 

manager of a nuclear reactor, where their job was to achieve and maintain a target 

temperature level (6000 degrees) by interacting with the simulator.  They were told that 

the only variable they would control was the number of fuel pellets entered into the 

reactor, which would be done by clicking on the button with the corresponding number 

of fuel pellets with their mouse.  Participants in the short training condition completed 14 

blocks (84 trials) while those in the long training condition completed 280 blocks (1680) 

trials. 

   After completing the practice phase, participants completed the extended range 

test.  This test required participants to enter an input for a given output.  The interface 

for this test was the same as the practice trials, but this test was comprised of a series 

of single-trial blocks.  An output between -3000 and 16000 was randomly selected and 

participants selected an input between 100 and 1200 fuel pellets.  After selecting an 

input, participants choose between placing a large or small wager on the outcome of 

their response.  No feedback was given in terms of the resulting output state nor the 

status of the wager.  After the wager was selected, the computer redrew the screen with 

a new output level.  This continued until participants responded to all outputs between   

-3000 and 16000.  This test used a single trial format to limit the amount of exposure to 

the task for participants in the short training condition.  Using a six-trial block like the 

practice phase would have more than doubled their exposure to the task and provided 

feedback during that exposure.  The test ended after participants responded to all 20 

output states. 
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After completing the extended range test, participants took the new goal test.  

This test consisted of 30 blocks and followed the procedure of the practice phase with 

the only change being that participants will be instructed to maintain an output of 8000 

instead of 6000 degrees.  Like the practice phase, a horizontal line was drawn across 

the output graph at the goal state of 8000 degrees. 

Finally, participants completed a text-based table test which required them to 

provide the correct number of fuel pellets for each output state (from 1000-12000 in 

increments of 1000) to achieve a temperature of 6000 degrees (e.g. “If the temperature 

is 9000 how many fuel pellets should you enter to move the reactor’s temperature to 

6000”). 

Results  

The primary variable of interest was performance, or unsigned deviation from the 

goal state, with a lower score indicating better performance.  A log transformation, 

log10(deviation+1),  was performed on deviation scores due to the high variability of the 

scores.  A constant of 1 was added to all deviation scores so a deviation of 0 could be 

transformed, as the log of 0 is undefined.  While untransformed means are reported 

(see Table 2), all analysis on performance scores were preformed on transformed data.  

After practice, participants first took the extended range test.  Deviation from the 

goal state was measured, which allowed for analysis of performance on old states and 

transfer to new, extended range states.  Reaction time was also measured to determine 

if participants were using different strategies to respond on old versus new states.  In 

addition, participants made a wager after selecting their response for each output.  This 

was done as a measure of confidence in their response. 
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Participants next took the new goal test and deviation and reaction time was 

measured.  This test measured participants’ ability to transfer their knowledge acquired 

while practicing the task when the goal was 6000 to a new goal output state of 8000.  

Again, reaction time was collected as a way to gain insight to the strategies participants 

used to transfer their knowledge. 

Finally, the table test as a way to assess participants’ ability to use their acquired 

knowledge in a different context.  Better than chance performance on this test would 

indicate access to experientially acquired knowledge, rather than the knowledge being 

completely implicit. 

Table 2.  Mean deviation scores for Experiment 1. 

 Last 5 
Practice 
Blocks 

Extended 
range Test-
Old States 

Extended 
range Test-
New States 

new goal 
Test 

Table test 

Long 
Training 

2889 (831) 3667 (1513) 6266 (1667) 2766 (980) 2788 (1112) 

Short 
Training 

3079 (593) 5079 (1212) 6856 (1092) 3584 (623) 3677 (771) 

Note.  Standard deviations presented in parentheses. 

Extended Range Test.  Performance was analyzed using a 2x2 mixed factorial 

ANOVA with training condition (short, long) as a between-subject factor and state type 

as a within-subject factor (old, new) (see Figure 2).  This analysis revealed a main effect 

of state type with performance on old items being superior to performance on new 

states (M = 4372.9, 6560.9; F (1, 78) = 43.1, p< .001 ηp
2 = .44).  A significant main 

effect of condition was also found, with participants in the long training condition 

producing lower deviation scores than those in the short training condition (M = 4966.2, 

5967.7; F (1, 78) = 5.89, p < .05 ηp
2 = .07).  The main effects were qualified by an 

interaction revealing that the superior performance of the long condition was only 
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observed on old states (F (1, 78) = 4.2, p< .05 ηp
2 = .051).  Subsequent analysis 

revealed that performance of both groups was better than chance on old states but did 

not differ from chance on new states.  Chance deviation from goal on old states was 

5792 and 6473 on new states.  

 

Figure 2. Performance on extended range test in Experiment 1.  Dependent measure is 

the absolute deviation from target.   

Due to the long practice phase, there were no old-incorrect states on the 

extended range test for participants in the long training condition, meaning there was at 

least one loosely correct response for each output state during practice.  This was not 

the case for those in the short training condition.  Analysis revealed that performance on 

old-correct states was superior to that on old-incorrect (M = 4261.4, 5929.9; t (39) = 

2.54, p< .05).  While performance on old-incorrect states was inferior to old-correct 

states, performance on old-incorrect states still significantly better than chance, unlike 

performance on new states. 

 Similar analyses were conducted on reaction time data from the Extended range 

test (see Figure 3).  A main effect of group was found, with participants in the long 
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training condition responding more quickly than those in the short training condition (M = 

4563.4, 6475.5; F (1, 78) = 16.3, p< .001 ηp
2 = .172).  A main effect of state type was 

found as well, with participants responding more quickly on new states than old (M = 

4933.8, 6105.1; F (1, 78) = 12.6, p< .01 ηp
2 = .139).  There was no significant interaction 

(F < 1).  Additionally, no difference was found in reaction times between old-correct and 

old-incorrect states for participants in the short training condition.   

 

Figure 3. Reaction time on extended range test in Experiment 1.  Dependent measure is 

the reaction time in ms.   

Taken together, data from the extended range test suggest a lookup table model 

at both levels of training as predicted by Dienes and Fahey (1995, 1997).  Both a 

general rule model (Lane et al., 2007) and a strategy tuning model (Fum & Stocco 

2003a, 2003b) would predict similar performance across both old and new states, while 

a lookup table model would predict better performance on old states.  While chance 

performance and fast responses on new states is consistent with Cleeremans’ model, 

(described in Marescaux, Luc & Karnas, 1989) which predicts that situations for which 
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there is no stored output-input pair are answered with a random input, a visual analysis 

of the distribution of inputs for new states suggests participants were responding 

incorrectly, but not randomly.  Participants in the short training condition tended to input 

low levels of fuel pellets across all new states.  This pattern is difficult to interpret.  If 

participants were using some strategy based on real world knowledge (e.g. if the 

temperature is very high, enter a low level of fuel pellets), one would expect low levels 

of pellets inputted at high temperature levels and high levels of pellets at low 

temperatures.  Instead, low levels of pellets are input across all new states.  Again, this 

pattern is difficult to interpret but it is not random.  While this is inconsistent with 

Cleereman’s model, it is important to note that new states in that model were states 

within the standard range (1000-12000) which were not encountered during a very short 

practice phase. 

Participants in the long training condition demonstrated a more easily 

interoperated strategy.  Here, participants tended to avoid entered very low (100, 200) 

or very high (1100, 1200) levels of fuel pellets.  While this strategy lead to poor 

performance on the extended range states, it is a valid strategy for responding to old 

states.  Participants learned through practice that very high and low inputs always led to 

extreme outputs (1000, 12000) and seemed to use this strategy at new states which 

lead to poor performance.  Because no feedback was given on the extended range test, 

there was no opportunity for participants to see that this strategy did not work.  This 

pattern of results in both the short and long training conditions is consistent with Dienes 

and Fahey’s (1995) model suggesting that responses to new states are generated using 

a strategy. 
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In addition to deviation and reaction time measures, a knowledge score was 

derived from participants wagering behavior.  The knowledge score was the proportion 

of correct wagers; high wager when correct or low wager when incorrect.  An analysis 

revealed a significantly higher knowledge score for participants in the long training 

condition (M = .664, .573; F (1, 78) = 4.56, p< .05 ηp
2 = .055).  Additional analysis 

revealed the knowledge scores of both groups to be significantly above chance (.5).  A 

knowledge score above chance in both conditions would suggest that participants have 

some access to the knowledge used to perform the task, contrary to notion that 

experientially acquired knowledge is implicit, or inaccessible. 

New Goal Test.  The effect of training condition on transfer to a new goal was 

analyzed using a 2 x 2 mixed factorial ANOVA with training condition (short, long) as a 

between-participants factor and goal as a within-participants factor (6000, 8000) (see 

Figure 3)1.  The analysis revealed a main effect of condition, with participants in the long 

training condition performing better than those in the short training condition (M = 2766, 

3584; F (1, 78) = 4.0, p< .05 ηp
2 = .048).  A main effect of goal was also found with 

superior performance seen at the goal of 6000 (M = 2834, 3175; F (1, 78) = 8.76, p< 

.005 ηp
2 = .101).  A trend towards an interaction was also found (F (1, 78) = 3.83, p= 

.054 ηp
2 = .047).  A planned comparison paired-sample t-test revealed a significant 

decline in performance in the short training condition (t (39) = -3.35, p< .01).  No 

significant difference was found between goals in the long training condition (t < 1).  

Both groups performed better than chance on the new goal test. 

                                                           
1
 Performance at the 6000 goal was derived from the participants’ mean deviation from 6000 over the last 
five blocks during the practice session.  Performance on the extended range test was not used because it 
does not allow for multiple step procedures.  Some participants may have develop a strategy in which 
they use two or more steps to reach the target (e.g. enter 1200 to move to the top of the range, and then 
enter 900) which would not have been captured on their performance on the Extended range test.   
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A similar analysis on reaction time data showed a significant main effect of 

condition (see Figure 5), with participants in the long training condition responding more 

quickly than those in the short training condition (M = 1091, 2918; F (1, 78) = 25.5, p< 

.001 ηp
2 = .247).  A main effect of goal was also found, showing faster reaction times at 

the goal of 6000 (M = 1535.9, 2004.3; F (1, 78) = 25.8, p< .001 ηp
2 = .249).  There was 

no significant interaction (F < 1). 

 

Figure 4. Performance on the last 5 blocks of practice and the new goal test in 
Experiment 1.  Dependent measure is the absolute deviation from target.   

Like the extended range test, these data are consistent with a lookup table model 

(Dienes & Fahey 1995, 1997).  A general rules model (Lane et al., 2007) and a strategy 

tuning model (Fum & Stocco 2003a, 2003b) would predict similar performance across 

both goals.  While participants in the long training condition did not exhibit a significant 

decline in performance on the new goal test, they, along with the short training 

condition, did show significantly slower reaction times.  This is consistent with the use of 

an extrapolation procedure to derive new actions based on old condition-action (output-
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input) pairs.  A general rule or set of tuned strategies would not predict slower reaction 

times. 

 

Figure 5. Reaction time on last 5 blocks of practice and new goal test in Experiment 1.  

Dependent measure is the reaction time in ms.   

Table Test.  A one-way ANOVA with group as the between subjects factor 

revealed a significant difference in table test performance between the long and short 

training conditions (M = 2788, 3677; F (1, 78) = 10.9, p< .01 ηp
2 = .123).  Performance 

of both groups is better than chance (see Figure 6).  An analysis of the correlation 

between performance on the last 5 blocks of practice and performance on the table test 

showed a significant positive correlation for the long training condition (r = .373, p < .05) 

and no significant correlation in the short training condition (r = .144, ns).   Like the data 

from the wagering task, these data run contrary to the idea that participants do not have 

access to any knowledge of the task.  Better than chance performance demonstrates 

that participants in both conditions can use knowledge learned in one setting (a dynamic 

task with graphic displays) to a static task with questions asked in text form.  Along the 

same line, superior performance in the long training condition demonstrates greater 
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access to task knowledge as practice increases.  Also, the significant correlation in the 

long but not short training condition suggests as task knowledge increases, so does 

access to that knowledge.  This is in line with Stanley, et al. (1989) who argued that 

access to task knowledge increases with practice but lags behind task performance.   

 

Figure 6. Performance on the table test in Experiment 1.  Dependent measure is the 
absolute deviation from target.   

Discussion 

 The results of Experiment 1 replicated Lane et al. (2007) by demonstrating 

transfer to a new goal with experiential practice.  However, transfer to new states was 

not observed.  To return to the original hypotheses, the results of Experiment 1 suggest 

that knowledge of the process control task is represented as a lookup table, rather than 

a set of tuned strategies (Fum & Stocco, 2003a, 2003b).  The data fit well with a lookup 

table comprised of specific output-input pairs (Dienes & Fahey, 1995, 1997).  

Participants were able to transfer to a new goal, but with a significant cost in response 

time which may indicate the use of an extrapolation procedure.  This transfer could also 

be explained by a more general, contextualized table comprised of general rules (Lane 
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et al.) where an effective rule for a goal of 6000 (if temperature is high, input 800 fuel 

pellets) may be slightly less effective when the goal changes to 8000.  Unlike transfer to 

a new goal, participants were not able to transfer to new states.  While on the surface, 

this pattern seems to be consistent with Cleermans’ argument (described in Marescaux, 

Luc & Karnas, 1989) that unseen states are answered randomly, further inspection 

revealed strategic, but incorrect responses.   

 In addition to addressing the issue of flexibility, awareness of experientially 

acquired knowledge was also assessed.  The results of the wagering task and the Table 

test demonstrate that even with very little practice, participants have some awareness of 

the knowledge used to operate the process control task and that awareness increases 

with practice.  This is contrary to the idea of an implicit lookup table proposed by Dienes 

and Fahey (1995, 1997) 

While this representation does not seem to change as amount of practice is 

increased, it is important to note that participants in the long practice condition in 

Experiment 1 completed only one-third of the training trials as those in Lane et al.  

Future research should investigate if extremely high levels of practice result in a shift in 

knowledge representation from a lookup table to a general rule.   

  



37 

 

EXPERIMENT 2 

 The goal of Experiment 1 was to investigate the flexibility of knowledge acquired 

through experiential practice with the process control task.  Results revealed that 

regardless of practice level, task knowledge was represented as a specific lookup table.  

While in the laboratory, it is appropriate to study experiential practice in isolation, but 

real world learning often combines experiential practice and model-based knowledge. 

Experiment 2 sought to examine the flexibility of knowledge as a function of instruction 

type. 

 Instruction, at a simple level, can be divided into two types.  In direct instruction, 

complete knowledge is provided directly by the teacher to the learner (Kirschner, 

Sweller, & Clark, 2006).  In experiential practice, the learner is given very little guidance 

and is said to construct the knowledge themselves (Bruner, 1961; Papert, 1980, Steffee 

& Gale, 1995).  While the experiential practice method is very popular with educators, 

its efficacy has been questioned (Klahr & Nigam 2004; Mayer, 2004).  Proponents of 

experiential practice argue that excessive guidance during acquisition may impair the 

learner’s performance on tests of retention and transfer (Kirschner, Sweller, & Clark, 

2006)  However, in a review of the literature, Mayer (2006) consistently found superior 

task performance learners taught using direct instruction and no advantage of 

experiential practice on tests of retention or transfer performance.   

While the Mayer’s (2004) work would make it seem that direct instruction is the 

superior pedagogical methodology, the results of Lane et al. (2007) cast some doubt 

onto this argument.  Lane, et al. found that providing participants with a complete lookup 

table before practice with the task produced superior performance on the process 
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control task when compared to participants who practiced the task without a table.  

There were, however, costs associated with this provided lookup table.  Specifically, a 

significant decline in performance was observed when time to respond was limited 

(speeded test) or when the goal state was changed (new goal test).  Although 

performance declined when the task parameters of the task changed, transfer 

performance in this table group was at similar levels to those subjects in the practice-

only condition.  Lane, et al., suggested that some experiential knowledge, gained 

through practice with the task, was acquired in addition to the lookup table.  However, 

as detailed in the introduction, it is unclear whether participants in Lane, et al. who 

memorized the table before experiential practice acquired as much experiential 

knowledge as participants who practiced the task without a table.  When using very 

precise model-based knowledge, learners may get limited exposure to the task.  By only 

entering the correct input for a given output, learners do not explore the problem space, 

thus reducing the amount of experientially acquired knowledge.  While direct instruction 

improved task performance, providing that instruction before experiential practice may 

not be the optimal point for its introduction.  Thus it is possible that proponents of both 

direct instruction and experiential practice are partially correct, and that the best 

pedagogical approach is a combination of the two. 

To examine this issue, Experiment 2 used the same Nuclear Reactor task as 

Experiment 1.  Participants engaged in a practice phase followed by a standard test, in 

which the goal was 6000 degrees, a speeded test where time to respond was limited to 

1100 ms, an extended range test with wagering, a new goal test, and table test.  

Participants were assigned to 1 of 7 conditions; four training conditions and three no-
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training control conditions.  The amount of training was consistent across the training 

conditions, but the point at which a lookup table was provided differed.  Participants in 

the pre-training condition memorized the table before practice began, those in the in-

training condition were given the table after completing half of the training trials, and 

those in the post-training condition received the table after training was completed.  A 

no-table training condition completed the full practice phase, but did not memorize the 

lookup table.  In addition, four control conditions were run. The standard test control 

took the standard test with no prior experience.  The standard test table-control 

memorized a lookup table calibrated for the goal output of 6000 and took only the 

standard test.  The new goal control condition took only the new goal test. 

This procedure allowed for testing several hypotheses.  The first hypothesis is 

that the point of introduction of model-based knowledge will affect the amount of 

experiential knowledge acquired.  Lane, et al. (2007) demonstrated the facilitative 

effects of providing model based knowledge on task performance.  Experiential practice 

before model-based knowledge may increase the amount of experiential knowledge 

acquired, thus combining the precision of model-based knowledge and the flexibility of 

experiential knowledge.  If providing model based knowledge limits participants’ 

exploration of the problem space, participants may not experience a wide enough range 

of instances which may limit the amount of experiential knowledge acquired.  If this is 

the case, participants who memorize the table before practice should perform as well as 

participants who memorize the table during and after practice on the Standard test, but 

may show worse performance than those two conditions when the goal is changed and 

on “new” states in the extended range test.  This pattern of results would suggest that 
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providing model-based knowledge before practice limits the amount of experiential 

knowledge participants acquired.  However, it is also possible that providing model-

based knowledge after practice may be sub-optimal.  In this case, participants may not 

have an opportunity to integrate the lookup table with their experiential knowledge, or 

memorizing the lookup table may interfere with the deployment of experiential 

knowledge.    

Providing model-based knowledge before practice may limit the acquisition of 

experiential knowledge while providing it after practice may interfere with the 

deployment of experiential knowledge.  It is possible that providing model-based 

knowledge half-way through practice will allow participants to both acquire experiential 

knowledge and then integrate the provided model-based knowledge into their 

representation of the task.  If this prediction is correct, the data will show superior 

performance in participants who memorize the table during training across the standard, 

new goal, speeded, and extended range tests compared to participants in the pre-

training and post-training conditions.   

Method 

Participants.  A total of 265 undergraduate students enrolled in introductory 

psychology courses at Louisiana State University were recruited to voluntarily 

participate in return for extra credit.  These participants were randomly assigned to one 

of seven conditions.  There were four training conditions: Pre-Training (N = 37), In-

Training (N = 40), Post-Training (N = 37), and No-Table Training (N = 37).  In addition, 

there were also three control groups:  standard  test Control (N = 37), standard  test 

Table-Control (N = 38), new goal Control (N = 39). 
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Task.  The same reactor control task used in Experiment 1 was used in 

Experiment 2. 

Procedure.  Participants were tested in groups up to eight.  Participants in the 

training conditions completed 280 blocks of six trials in which the goal was to maintain a 

goal output of 6000 degrees.  Participants in the Pre-Training condition memorized a full 

lookup table before training, those in the In-Training condition memorized the lookup 

table after completing 140 blocks, and those in the Post-Training condition memorized 

the table after completing all 280 blocks.  Participants in all table conditions were given 

a set of 12 index cards, with an output level on one side of the card, and the correct 

input on the reverse.  Participants were instructed to learn the correct input for each 

output level and told that they would complete a quiz before being allowed to proceed.  

After reviewing the cards, participants were given a fill-in-the-blank paper quiz with 12 

questions, one for each output level (i.e. If the temperature is 1000 degrees, how many 

fuel pellets should you input?).  Participants in the No-Table Training condition 

completed 280 trials but did not memorize the table. 

 After completing the training phase, participants took a 30-block standard test.  

This test is similar to the training task in that participants were required to maintain a 

goal output of 6000 degrees.  Participants then took a 30-block speeded test in which 

the goal is 6000 and response time was limited to 1100 ms.  This response time was 

chosen based on a pilot test which included the author who has extensive experience 

with the task.  During pilot testing, the response time was increasingly lowered until 

testers found it difficult to maintain the target output.  If participants did not respond 

within the time limit, the computer entered a random input.  Following the speeded test, 
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participants took the extended range test.  Like in Experiment 1, the output range was 

extended from -3000 to 16000 degrees and participants placed a wager before 

receiving feedback.  The extended range test was followed by a 30-block new goal test 

where the goal was 8000 degrees.  Finally, participants complete a table test similar to 

that in Experiment 1. 

 Participants in the standard test control took only the standard test with no prior 

experience with the task.  Those in the standard test table-control memorized the table 

before taking the standard test.  Participants in the new goal control took the new goal 

test with no prior experience with the task. 

Results 

 After practice, participants first the standard test with the goal state set at 6000, 

the same as in practice.  The analysis run on the data from this test compared 

performance of participants who learned the table and practiced, participants who only 

practiced, participants who learned the table but did not practice, and participants who 

did not learn the table or practice the task.  The purpose of this analysis was to 

demonstrate that practice alone is better than no practice, but that table knowledge 

alone is comparable to table knowledge and practice on the standard test. 

 The next analysis reported is the from the new goal test.  Like in Experiment 1, 

the new goal test measured participants’ ability to transfer their knowledge from the goal 

of 6000 to 8000.  In addition to comparing performance across goals, a difference score 

was calculated by subtracting performance on the standard test from that on the new 

goal test.  This allowed for a comparison of the decline in performance between learning 

conditions to see which groups were most hindered by the change in goal.  
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 A similar analysis to that conducted on the new goal data was conducted on data 

from the speeded test.  This test allowed for a comparison of performance on the 

standard test, and performance when time to respond is limited.  A difference score was 

calculated to compare the decline in performance across conditions. 

 As in Experiment 1 performance on the extended range test was compared 

across old and new states as a measure of transfer.  A knowledge score was also 

calculated for each participant by dividing the number of advantageous wagers by the 

total number of wagers. 

 Performance on the table test was measured in mean deviation from target.  This 

test was a measure of how well knowledge acquired in the graphical setting could be 

applied to the same task in a text format.  This along with the knowledge score was a 

measure of how accessible task knowledge was.   

Standard Test.  As in Experiment 1, untransformed means for deviation are 

reported (see Table 3) while analyses were performed on transformed data.   A 2 x 2 

ANOVA with exposure to practice (practice, no practice) and exposure to the lookup 

table (lookup table, no lookup table) as factors was conducted (participants who learned 

the table before, during, and after practice were collapsed into one group for this 

analysis).  There was a main effect of exposure to practice in which participants who 

practiced the task before the standard test exhibited superior performance to those who 

did not practice (M = 1882, 2249; F (1, 222) = 7.87, p< .05 ηp
2 = .034).  There was also 

a main effect of the lookup table, such that participants who memorized the table 

showed superior performance compared to those who did not memorize the table (M = 

1154, 2934; F (1, 222) = 281.8, p< .001 ηp
2 = .559).  There was also an interaction (F 
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(1, 222) = 4.5, p< .05 ηp
2 = .02).  A follow up one-way ANOVA revealed that participants 

who memorized the table and practiced (M = 1112) showed no significant performance 

advantage over those who only memorized the table (M = 1280).  Both of those 

conditions displayed superior performance to that of participants who practiced but did 

not memorize the lookup table (M = 2651), and all conditions were superior to 

participants who did not practice or memorize the lookup table.  These results show no 

performance advantage of practice when participants have access to the lookup table.  

However, when no lookup table is available, participants who practice show superior 

performance to those who do not practice.  This demonstrates that memorizing a lookup 

table results in the best performance, but some knowledge is gained though experiential 

practice as well. 

Table 3.  Mean deviation scores from Experiment 2. 

 Standard  
Test 

Extended 
Range 
Test-Old 
States 

Extended 
Range 
Test-New 
States 

Speeded 
Test 

New 
Goal Test 

Pre-
Training 

941 
(237) 

1210   
(840) 

2578 
(1973) 

2485  
(748) 

2018 
(518) 

In-Training 1186 
(697) 

1285 
(1161) 

2594 
(2665) 

2461  
(569) 

1696 
(793) 

Post-
Training 

1205 
(665) 

1552 
(1206) 

2517 
(2018) 

2876  
(533) 

1833 
(942) 

No-Table 
Training 

2651 
(696) 

3917 
(1679) 

6422 
(1565) 

2870  
(259) 

2951 
(862) 

standard  
test 
Control 

3218 
(502) 

           
        -                                   

           
        -                                   

           
        -                                   

           
        -                                   

standard  
test Table-
Control 

1280 
(793) 

           
        -                                   

           
        -                                   

           
        -                           

           
        -                                   

new goal 
Control 

           
        -                                   

           
        -                                   

           
        -                                   

           
        -                                   

3681 
(469) 

Note.  Standard deviations presented in parentheses. 
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New Goal Test.  A one-way ANOVA (including new goal control) analyzing 

deviation scores on the new goal test was significant by group ( F (3, 183) = 28.4, p< 

.001 ηp
2 = .383).  A Dunnett’s t-test compared all groups against the control and found a 

significant performance advantage for all groups relative to the control.  This analysis 

demonstrates that even with training alone, participants can transfer knowledge to a 

new goal. 

A 4 x 2 ANOVA with condition (Pre-Training, In-Training, Post-Training, and No-

Table Training) as a between-subject factor and test as a within-subject factor 

(Standard  test, new goal Test) was also run (see Figure 7).  A main effect of condition 

was found, with conditions that memorized the table performing better than those who 

did not (F (3, 147) = 29.5, p< .001 ηp
2 = .376).  A main effect of test type was also 

found, as participants performed better on the standard test compared to the new goal 

Test (M = 1489, 2018; F (1, 147) = 135.7, p< .001 ηp
2 = .48).  An interaction was also 

found (F (3, 147) = 20.0, p< .001 ηp
2 = .29).  A one-way ANOVA run on the difference 

scores between new goal and standard test performance revealed that some groups 

declined more than others (F (3, 147) = 19.9, p< .001 ηp
2 = .29).  While all conditions 

performed poorly on the new goal test relative to the standard test, the No-Table 

Training condition showed the smallest decline.  Both the In-Training and Post-Training 

conditions exhibited a larger decline across tests than the No-Table Training condition, 

and the Pre-Training condition showed the largest decline of all (see Figure 8).  A follow 

up one-way ANOVA on the new goal test found a main effect of condition (F (3, 147) = 

11.8, p< .001 ηp
2 = .191).  A Tukey post hoc test showed that participants in the Pre-

Training condition exhibited worse performance at the new goal than those in the In- 
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and Post-Training conditions.  This suggests that the Pre-Training condition acquires 

less knowledge which can be transferred than other conditions.  One possible 

explanation for this is that when participants have the lookup table before practice 

began, they know the correct input for each output and spend little time exploring the 

problem space.  An analysis of the number of trials at each output state revealed that 

participants in the Pre-Training condition spent 67% of trials in the practice phase at 

5000, 6000, and 7000, significantly more than any other condition. 

 

Figure 7. Performance on the standard test and the new goal test in Experiment 2.  
Dependent measure is the absolute deviation from target.  

Better performance on the new goal test by participants who memorized the 

lookup table suggests that the lookup table along with some correction factor is used 

when the goal changes.  While those who do not memorize the lookup table show a 

small decline when the goal is changed, their performance is still far worse than those in 

the lookup table conditions.  Thus, experiential knowledge is transferable across goals, 

but experiential knowledge and a well-defined lookup table results in superior transfer 
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performance.  Clearly, providing the lookup table prior to a transfer test is necessary for 

good transfer performance.   

 
 
Figure 8. Difference score between standard test and new goal test.  Dependent 
measure is the absolute deviation from target. 

 One important factor when providing model-based knowledge seems to be the 

point at which it is introduced, as those who practiced the task before memorizing the 

table showed a smaller decline across tests.  It may be that experience with the task 

before the introduction of model based knowledge allows greater exploration of the 

problem space, which in turn results in the acquisition of more experiential knowledge.  

Participants who memorized the table prior to practice were focused only on recalling 

the correct input for each output and did not acquire the experiential knowledge 

necessary for transfer to a new goal. 

Speeded Test.  Another 4 x 2 ANOVA with condition (Pre-Training, In-Training, 

Post-Training, and No-Table Training) as a between-subject factor and test as a within-

subject factor (standard test, speeded test) was run (see Figure 9).  A main effect of 
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condition was found (F (3, 147) = 34.6, p< .001 ηp
2 = .414) in which participants who did 

not memorize the lookup table showed worse performance than those who did.  There 

was also a main effect of test type with performance on the standard test superior to 

that on the speeded test (M = 1489, 2669; F (1, 147) = 349.6, p< .001 ηp
2 = .704).  A 

significant interaction was found (F (3, 147) = 27.1, p< .001 ηp
2 = .356).  An analysis of 

difference scores between the two tests show that all conditions but the No-Table 

Training condition exhibited a significant decline in performance on the speeded test.  

Additional post hoc analyses found no significant difference between the Post-Training 

and No-Table Training conditions on the speeded test, suggesting that participants in 

the Post-Training fell back on experiential knowledge rather than using the lookup table 

when time to respond was limited (see Figure 10).  This is in line with Anderson’s (1983) 

idea that with extensive practice, declarative knowledge (lookup table), which is slow to 

deploy, becomes proceduralized, or automatic.  Those participants in the Post-Training 

condition did not have extensive practice deploying the lookup table, and therefore were 

unable to use it when time was limited. 

Extended Range Test.  Performance on the extended range test was analyzed 

using a 2 x 2 mixed factorial ANOVA with training condition as the between-subject 

factor and state type (old states, new states) as the within-subject factor (see figure 11).  

A main effect of condition was found (F (3, 147) = 43.3, p< .001 ηp
2 = .469) in which the 

No-Table training condition performed worse than all other conditions.  There was also 

a main effect of state type, with a smaller deviation from goal on old states compared to 

new states (M = 1977, 3509; F (1, 147) = 53.0, p< .001 ηp
2 = .265).  An interaction was 

also found (F (3, 147) = 6.6, p< .001 ηp
2 = .119).  A follow up analysis using paired 
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sample t-tests showed that all groups decline in performance from old states to new.  

However, a one-way ANOVA on the difference between old and new states showed that 

the decline in performance of No-Table Training condition was greater than that of all 

other conditions.  Furthermore, performance in this condition was at chance on new 

states, suggesting random responding as in Experiment 1.  

 

Figure 9. Performance on standard test and the speeded test in Experiment 2.  
Dependent measure is the absolute deviation from target.   

 
Figure 10. Difference score between standard test and speeded test.  Dependent 
measure is the absolute deviation from target. 
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The same 2 x 2 ANOVA was run on data from the wagers made during the 

Extended range Test.  A main effect of condition was found (F (3, 147) = 40.4, p< .001 

ηp
2 = .452) with No-Table Training winning significantly less than other conditions.  An 

effect of state type was also found with participants winning more money on old states 

than new (M = 55.2, -3.7; F (1, 147) = 353.1, p< .001 ηp
2 = .706).  An interaction was 

also observed (F (3, 147) = 16.6, p< .001 ηp
2 = .253) such that the No-Table training 

condition shows a smaller decline (greater losses) in winnings from old to new states 

than all other conditions.  

 

Figure 11. Performance on old and new states from the extended range test in 
Experiment 2.  Dependent measure is the absolute deviation from target.   

 Like in Experiment 1, a knowledge score was calculated by dividing the number 

of advantageous wagers (high when correct, low when incorrect) by the total number of 

wagers.  No significant differences between conditions were observed (F (3, 147) = .32, 

ns) and all conditions were above chance.  There was a difference in total amount 

wagered (F (3, 147) = 8.4, p< .001 ηp
2 = .147) such that the No-Table Training condition 
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wagered less than all other conditions.  When broken down between old and new 

states, participants who memorized the table wagered more on old items than those in 

the No-Table Training condition.  On new states, there was no difference in amount 

wagered.  That the knowledge score data were above chance suggests that all 

participants had some knowledge of how they were performing the task.  While those 

participants who memorized the table performed relatively well on new states, they did 

not consistently place high wagers at those states.  This switch from high wagers on old 

states to low wagers on new states suggests that participants were not aware of how 

they were performing the task at new states.  It is possible that they simply recalled an 

input for each old states, and used an extrapolation procedure for new states.  This 

extrapolation hypothesis is supported by reaction time data which show that participants 

who memorize the table respond slower on new states.  Recalling the correct input at 

an old state is fast, while extrapolating the lookup table to account for a new state is 

slow, and less accurate.   

The results from Experiment 1 suggest that knowledge acquired from experiential 

practice takes the form of a lookup table.  Thus, it is interesting that participants who 

memorize a lookup table can transfer their knowledge to new states, while those who 

presumably develop their own lookup table cannot.  One possible explanation for this 

discrepancy is how the lookup table is organized.  A self-generated lookup table may be 

poorly organized with multiple inputs for each output.  Providing participants with one 

correct input for each output may have allowed them to see the “big picture”, or pattern 

across the output-input pairs, making transfer to new states more likely.  Participants 

who developed their own lookup table through practice may not have organized their 
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table in such a way that would have allowed them to see the pattern.  Without 

understanding the pattern, these participants were not able to extrapolate their table to 

new states and instead respond randomly, as evidenced by their chance level 

performance and significantly faster responses on new states. 

Table Test.  Performance on the table test was analyzed using a one-way 

ANOVA, and an effect of condition was found (F (3, 147) = 11.7, p< .001 ηp
2 = .192).  A 

Tukey post hoc test revealed no significant difference between conditions which learned 

the lookup table, and significantly worse performance for the no-table training condition 

relative to the other three conditions (see Figure 12).  This analysis demonstrates that 

while participants who learn the task through experiential practice have some access to 

the knowledge they use to operate in the task, their access is limited compared to those 

who learn the lookup table. 

 

Figure 12. Performance on the table test in Experiment 2.  Dependent measure is the 
absolute deviation from target.   
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Discussion 

 As expected, instruction type had an effect on flexibility of knowledge acquired.  

Of course, providing a lookup table improved performance on the standard test, but also 

on all other tests as well.  The data from Experiment 2 suggest that participants who 

memorized a lookup table gained experiential knowledge from practicing the task.  This 

resulted in significantly better transfer to a new goal than practice alone.  Similarly, only 

participants who memorized the lookup table were able to transfer to new states.  The 

level of experiential knowledge acquired seemed to have been affected by the point at 

which the model-based knowledge was introduced.  Providing the lookup table prior to 

practice seemed to discourage exploration of the problem space, potentially limiting the 

amount of experiential knowledge acquired, and impeding transfer to a new goal.  In 

addition, providing the lookup table after practice was also not optimal as experience 

with the table is needed before it can be quickly deployed, as in the speeded test.  
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GENERAL DISCUSSION 

 Experiment 1 examined the representation of experientially acquired knowledge 

as a function of practice duration.  On the Extended range test, both the long and short 

training conditions exhibited better performance on old compared to new states.  

Performance on new states was at chance and responses on new states were 

significantly faster than old states.  Taken together, these data suggest that participants 

were recalling the correct input for a given output on old states, and selecting a random 

input at new states.  A strategy tuning model (Fum & Stocco 2003a, 2003b) would 

predict similar performance across old and new states as a strategy which worked for 

old states would be equally successful at new states.  The data are more in line with a 

lookup table model such as that proposed by Dienes and Fahey (1995, 1998), although 

the chance performance on new states supports Cleermans’ (see Marescaux, Luc & 

Karnas, 1989) idea that inputs at states not yet seen are chosen at random, not by 

some explicit strategy.  These results do not rule a more general lookup table model 

(Lane et al., 2007). 

 Data from the new goal test show support the idea of a lookup table model 

(specific or general) (Dienes & Fahey, 1995, 1998; Lane et al., 2007).  While 

performance of the long training condition at the new goal test did not decline 

significantly from performance at practice, participants were slower to respond when the 

goal was changed.  One explanation for the additional time needed to respond is that 

participants applied a transformation to the lookup table (e.g. add 100 to the input for 

any given output-input pair). 
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 Dienes and Fahey’s model (1995, 1998) suggests that the lookup table is implicit, 

or inaccessible to learners.  The data from both the extended range test wagering task 

and the Table test are in conflict with this notion.  Both the long and short training 

conditions exhibited a pattern of advantageous wagering at an above chance level 

suggesting at least some awareness of how the task was being performed.  That 

participants in the long training condition wagered more advantageously than those 

whose training was short could mean that as training increasing, task knowledge 

becomes more accessible.  A similar pattern was seen on the Table test with both 

groups performing above chance and the long training condition performing better than 

the short training condition.  When the context of the task was changed, participants 

were still able to perform at an above chance level.  This demonstrates some access to 

knowledge of the task.  That Table test performance did not correlate perfectly with 

performance at practice is in line with Stanley et al.’s (1989) argument that the ability to 

express knowledge gained through experiential practice lags behind actual task 

performance. 

 While Experiment 1 demonstrated that at least with moderate levels of practice, 

experientially acquired knowledge is represented as a lookup table, Experiment 2 

sought to examine the best way to combine direct instruction using a lookup table and 

experiential practice of the task.  Lane et al. (2007) found that providing a lookup table 

before practice resulted in very good performance on a standard test, but saw 

performance decline on a transfer and a speeded test.  The data from Experiment 2 

replicated those results and expanded on them by showing that model-based 

knowledge was necessary for transfer to new states.  The results of Experiment 2 
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demonstrate that providing model-based knowledge is necessary for a generalizable 

representation.  Without the direct instruction of model-based knowledge, transfer to a 

new goal is poor and transfer to new states is at chance.   

Also, the results of Experiment 2 demonstrated that memorizing the lookup table 

at the mid-point of practice reduced the costs associated with model-based knowledge 

seen in Lane et al. (2007).  Participants who learned the table before practice 

demonstrated relatively poor performance on the new goal test.  An analysis of their 

practice phase revealed that these participants spent the majority of the trials at three 

states (5000, 6000, and 7000).  This limited exploration of the problem space (Newell & 

Simon, 1972) may have limited the amount of experiential knowledge acquired making it 

more difficult to transfer their knowledge to the new goal.  Those who learned the table 

after practice performed no better than the No-Table training condition on the speeded 

test.  Thus it would seem that practice after direct instruction is needed if the learned 

material needs to be deployed quickly, which is consistent with Anderson’s (1983) ACT-

R model in which declarative knowledge becomes procedural knowledge with practice.  

The results of experiment have implications for pedagogy.  Proponents of 

instruction through experiential practice, or discovery learning as it is often called, cite 

social constructivism literature (e.g. Vygotsky 1978), arguing that information is more 

easily learned and transferred to new topics when the learner is an active participant in 

the learning process (Bruner, 1961, Von Glasersfeld, 1989).  Mayer (2004) challenged 

the notion that pure discovery methods of instruction are superior to other types of 

instruction.  In his review of the literature, he consistently shows that guiding learners 

(e.g. providing learners with information about the task) consistently produces superior 
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results (e.g. learners remember more or produce fewer errors).  One particularly 

important claim of discovery learning proponents refuted by Mayer is that discovery 

learning leads to superior transfer of knowledge to new situations (Kittle, 1957, Gagne & 

Brown, 1961, Shulman & Keisler, 1966).   

The results of Experiment 2 clearly demonstrate that direct instruction in addition 

to experiential practice results in superior performance on the original task, transfer to a 

new goal and new states, and when time to respond is limited.  While direct instruction 

at any point during training was far superior to experiential practice alone, the best 

results were obtained when the direction instruction was scheduled for the mid-point of 

the practice phase. This allowed for full exploration of the problem space as well as 

sufficient practice deploying the model-based knowledge.  This instructional model may 

be best when the learner will be required to apply the knowledge in a wide variety of 

situations and under time pressure.  One example might be training for pilots who fly in 

a variety of conditions and are often called on to make split-second decisions.  The 

advantage of combining model-based knowledge with experiential practice has been 

demonstrated in the literature before (Mathews et al., 1989; Sallas et al., 2006).  The 

results of experiment 2 expand on this by demonstrating that the point at which the 

model based knowledge is introduced has an effect on performance.  

 While these results may generalize to all types of learning, they are particularly 

relevant to situations in which knowledge needs to be applied quickly and across a wide 

range of situations.  For example, pilots learn to fly in one type of airplane, but need to 

transfer that knowledge across many planes.  Additionally, they need to be able to use 

their knowledge of landing procedures learned on their home airport, and apply it to 
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landing strips which they have never seen before.  Pilots must use their knowledge to 

make mission critical decisions very quickly.  The difference between mediocre and 

good performance when time to respond is limited could be life and death.  Training for 

pilots and other professionals who are expected to deploy their knowledge quickly and 

across a wide variety of situations would likely benefit from an instruction schedule 

which includes direct instruction bookended by experiential practice. 
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