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Introduction and Summery 

The thesis consists of three papers and covers two topics: derivatives pricing and 
term structure modeling. The first paper is concerned with the pricing of equity 
swaps, in particular so called quanto equity swaps. The second paper deals with the 
pricing of index-linked instruments such as inflation indexed swaps and swaptions. 
The third paper investigates the term structure of futures prices. 

Paper 1: Pricing Equity Swaps in an Economy with Jumps 

Market data reveals that asset prices have discontinuities and that the distribution 
of asset returns exhibits skewness and excess kurtosis over the normal distribution. 
This has been empirically tested both for stock prices, and foreign exchange rates 
by for example Ball and Torous (1985), Campa et al. (1998) and Jorion (1989). 
One way of obtaining distributions that are consistent with market data and allow­
ing the price processes to have discontinuities is to model the asset price processes 
by jump-diffusion models. In this paper every asset price processes in the econ­
omy is modeled as a jump-diffusion. The processes are generated by a standard 
multidimensional Wiener process and a general marked point process. 

A swap is an agreement between two parties to exchange cash flows. In an equity 
swap, one of the parties agrees to pay a cash flow equal to the return on a stock or 
an equity index and in exchange she receives from the other a cash flow that can 
be either a fixed or floating interest rate or the return on another stock or equity 
index. Equity swaps are widely used in the international financial markets. They 
can be used to hedge an existing portfolio, or as a cost effective alternative to a 
direct investment in the underlying asset. 

We provide analytical pricing formulas for a wide range of equity swaps including 
quanto equity swaps which are settled in one currency but payed out in another. 
Our results are an extension of the results of Liao and Wang (2003). The pricing 
formulas are derived by using martingale methods and the technique of convexity 
corrections. The martingale method is the key that enables the extension to jump­
diffusions. 
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Paper 2: Inflation Indexed Swaps and Swaptions1 

The modern market for inflation linked products started around the 1980s when 
several countries including the United Kingdom, Canada and Sweden started to 
issue inflation indexed bonds. The derivatives market begun approximately at the 
same time as the United states issued the first inflation indexed bonds. The most 
common inflation linked derivatives are inflation indexed swaps, caps and floors. 
Inflation is defined as the percentage change of a particular reference index. Usu­
ally the reference index is a consumer price index. Inflation linked products can be 
used to hedge future cash flow against inflation. That is particularly attractive to 
investors that seek asset-liability matching such as for example insurance compa­
nies. Inflation linked derivatives are sometimes viewed as an asset class of its own 
and used for risk diversification purposes. 

In this paper we provide analytical pricing formulas for inflation indexed swaps and 
options on such swaps, i.e. swaptions. We model real and nominal interest rates 
and the reference index by the Heath-Jarrow-Morton (HJM) approach extended to 
the point process case. For the simplified case when the price processes are only 
driven by a multidimensional Wiener process, we also show how to hedge inflation 
indexed swaps. Furthermore we price options on inflation indexed bonds. 

Previously Jarrow and Yildirim (2003) has applied the HJM approach without 
jumps to inflation markets. They assumed a priori that the foreign-currency anal­
ogy can be applied. This foreign-currency analogy was introduced by Hughston 
(1998) and the idea is to regard nominal assets as domestic assets, real assets as 
foreign assets, and the consumer price index as the exchange rate between the nom­
inal and the real market. It is not clear a priori that this analogy is true, since there 
are differences between the markets. We show that the HJM approach, allowing 
for both jumps and stochastic volatility, can be used for the pricing of index linked 
instruments without assuming the foreign-currency analogy a priori. In fact, this 
proves the foreign-currency analogy. 

Our pricing formulas of inflation indexed swaps are an extension to the point 
process case of the results by Mercurio (2005). Other studies that assumes non­
Gaussian interest rates in an inflation market context include Slinko (2006) and 
Mercurio and Moreni (2006). To our knowledge no previous studies has considered 
the pricing of inflation indexed swaptions and options on inflation indexed bonds. 

Paper 3: Shifts in the Term Structure of Futures Prices 

A standard concept in interest rate theory is the yield curve, which essentially is the 
curve of bond prices plotted against time of maturity. This curve is also referred 
to as the term structure of interest rates. Modeling the term structure thus means 
modeling interest rates of all possible maturities. Like the bond price, the futures 

1 This paper is forthcoming in Journal of Banking and Finance. 
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price depends on the time of maturity. Thus modeling the term structure of futures 
prices is equivalent to modeling futures prices of all possible maturities. 

We consider an arbitrage free futures price model of HJM type which is driven by 
both a Wiener process and a marked point process. We thus take the futures prices 
as a priori given instruments. Assuming the arbitrage free model of HJM type; we 
investigate if, when and how the natural logarithm of this curve can be represented 
by a curve that only changes by parallel shifts. We find necessary and sufficient 
conditions on the stochastic differential equation for the futures price, and the shift 
function. The analysis is repeated for the case when the log futures price model 
can only change by proportional shifts. 

Affine structures are often desired for tractability reasons. Parallel and propor­
tional shifts are special cases of a single factor affine term structure. Finally we 
consider all other single factor affine term structures, besides parallel and propor­
tional structures. We find necessary and sufficient conditions for the purely Wiener 
driven log futures model to admit such single factor affine shifting curve and we 
characterize the shift functions. In addition we conclude that every model for a 
futures price with a tradable non-dividend paying underlying asset that admits 
a parallel shifting log futures price curve implies constant short rates. We also 
find that every purely Wiener driven log futures model that admits a proportional 
shifting curve will eventually be absorbed at zero. 

In interest rate theory the questions of consistent parallel and proportional shifts 
of the yield curve have been examined in Armerin et al. (2005). Our work parallels 
that by Armerin et al. and rests on the approach of invariant manifolds and consis­
tent forward rate curves introduced by Bjork and Cristensen (1999) and extended 
by Filipovic and Teichmann (2003) and Filipovic (2001). Other studies on the 
term structure of futures prices that takes the HJM approach includes papers by 
Reisman (1991), Cortazar and Schwartz (1994), Bjork and Landen (2002), Bjork 
et al. (2006), Miltersen and Schwartz (1998), Hilliard and Reis (1998) and Gaspar 
(2004). 
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Paper 1 

Pricing Equity Swaps 
Economy with Jumps 

• In an 

Empirical evidence confirms that asset price processes exhibits jumps and that asset 
returns are not Gaussian. We provide a pricing model for equity swaps, when all the 
asset price processes in the economy are allowed to jump. The market is driven by 
a general marked point process as well as by a standard multidimensional Wiener 
process. In order to obtain closed-form solutions of the swap values, we assume that 
all parameters in the asset price processes are deterministic, but possibly functions 
of time. We derive swap values using martingale methods and the technique of 
convexity corrections rather than using replicating portfolios. Our results are an 
extension of the results of Liao & Wang (2003). The martingale method is the key 
that enables the extension. 
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1 lntrod uction 

Market data reveals that asset prices have discontinuities and that the distribution 
of asset returns exhibits skewness and excess kurtosis over the normal distribution. 
This has been empirically tested both for stock prices, and foreign exchange rates 
by for example Ball and Torous (1985), Campa et al. (1998) and Jorion (1989). 
One way of obtaining distributions that are consistent with market data and allow 
the price processes to have discontinuities is to model the asset price processes by 
jump-diffusion models. In this paper we will allow all asset price processes in the 
economy to be jump-diffusions. 

An equity swap is an agreement between parties to exchange cash flows. In an 
equity swap, one of the parties agrees to pay a cash flow equal to the return on a 
stock or an equity index and in exchange she receives from the other a cash flow 
that can be either a fixed or floating interest rate or the return on another stock or 
equity index. Equity swaps are widely used in the international financial markets. 
They can serve as a hedging instrument to hedge an existing portfolio. They can 
also be used as an alternative to invest directly into the stock market, in order to 
lower transaction costs. This is especially attractive if the stock market has low 
liquidity or if there is tax or regulatory restrictions in the market. 

One of the early studies on the pricing of equity swaps was made by Chance and 
Rich (1998). They used arbitrage-free replicating portfolios to derive pricing for­
mulas for a number of equity swaps such as plain vanilla equity swaps, variable 
notional swaps, and cross currency equity swaps. Their result on swaps with a 
variable notional relies on an assumption of deterministic interest rates. However, 
their results on swaps with a constant notional are model independent. 

Kijima and Muromachi (2001) have studied equity swaps in a stochastic interest 
rate economy. In their model, the market is driven by Wiener processes and the 
volatilities of the interest rates and of the equity prices are assumed to be deter­
ministic functions of time, implying a Gaussian economy. They used martingale 
methods to derive their results. They showed that if the notional principal is 
variable and not constant, the equity price process affects the swap rate. 

Recently, Liao and Wang (2003) have provided a generalized formula for pricing 
equity swaps with a constant notional principal. They value swaps covering the 
international capital markets, allowing the underlying equity to be foreign and 
the notional principal to be specified in an arbitrary currency. Liao and Wang 
assumes a Gaussian economy where the market is driven by a multidimensional 
Wiener process and the volatilities of bond prices, equity prices and exchange rates 
are assumed to be deterministic. Their study shows that for swaps on foreign 
equity markets, the swap value is dependent of both the dynamics of the equity 
price process and the exchange rate process. Liao and Wang use the method of 
arbitrage-free replicating portfolios. Their results rely on the result of Musiela and 
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Rutkowski (1997) on the pricing of equity-linked foreign exchange options. 

The purpose of this paper is to provide a model for the valuation of equity swaps 
when all asset price processes in the economy are allowed to jump. Every asset 
price process will be modelled by a standard multidimensional Wiener process and 
a general marked point process. To ensure closed-form solutions we assume that 
the intensity of the point process as well as the volatilities of all asset prices and 
exchange rates, with respect to both the Wiener process and the point process, are 
deterministic. Our results are an extension of the results of Liao and Wang (2003). 
We use martingale methods and the technique of convexity corrections developed by 
Pelsser (2000). By using martingale methods, rather than the method of replicating 
portfolios, there is in no need for pricing formulas on equity-linked foreign exchange 
options in order to price equity swaps. Hence the martingale method is the key 
that enables the extension to jump-diffusions. 

This article is organized as follows: 

• In the first Section we extend the convexity corrections method of Pelsser 
(2000) to the case where we have random processes driven by both a Wiener 
process and a marked point process. This is one of the main tools used to 
derive our results. 

• In Section 3 we present our model of an international capital market and 
specify our assumptions. 

• In Section 4 a general definition of equity swaps are given. 

• Section 5 is devoted to pricing. In Section 5.1 we derive the price of the 
most simple equity swaps, the so called vanilla swaps. The real contribution 
is in Section 5.2, where we price quanto payoffs. This leads to a generalized 
pricing formula for equity swaps, presented in Section 5.3. 

• Section 6 concludes. 

• Appendix A contains two useful formulas on Ito calculus for jump diffusion 
driven processes that will be used repeatedly in this article. In Appendix B 
we have stated some of the well known, and for this article crucial, Theorems 
in measure theory. 

2 Convexity corrections 

In order to price equity swaps we will assume that the market is free of arbitrage 
and we will use martingale methods. Thus, pricing equity swaps is essentially 
equivalent to finding an appropriate numeraire under which we can calculate the 
expected value of the payoffs. With our choice of numeraire, it turns out that we 
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have to be able to calculate the expected value of the product of two martingales. 
In this Section, we show how this can be done by extending the convexity correc­
tions method of Pelsser (2000) to the case where we have random processes driven 
by both a Wiener process and a marked point process. This result will be used 
repeatedly in the preceeding Sections. 

Since the Wiener process that we will use is allowed to be n-dimensional, the 
volatility with respect to this process is an n-dimensional row vector. We will use 
the symbol (·)* to denote the transpose of(·). 

Proposition 2.1 Consider a filtered probability space (f!, :F, P, :F) that carries both 
an n-dimensional Wiener process W and a general marked point process f.l( dt, dv) 
on JR.+ x V with intensity measure At(dv)dt. The filtration :F = {:Ft}t;?:O is generated 
by both w and f.l, i.e. :Ft = :Ftw v :Ff. Assume that aM (t), aN (t), oM (t, v), 
oN (t, v) and At(dv)dt are deterministic. Let M(t), N(t) be two stochastic processes 
with dynamics: 

dM(t) M(t-) [aM(t)dW(t) + [ oM(t,v)jL(dt,dv)] 

dN(t) = N(t-) [aN (t)dW(t) + [ON (t, v)jL(dt, dv)] 

Note that M and N are P-martingales. Then 

(1) 

(2) 

E{'[M(T)N(T)] = M(t)N(t)eft(uM (u)uN*(u)+ fv oM (u,v)oN (u,v)A,.(dv) )du (3) 

Remark 2.1 The exponential term in equation (3} is sometimes called the con­
vexity correction. See Pelsser (2000} 

Proof. Define Y(t) = M(t)N(t). To find the P-dynamics of Y(t) we use Ito 
calculus and apply Lemma A.l stated in Appendix A: 

dY(t) Y(t) { aM(t)aN*(t) + [ oM(t,v)oN(t,v).>..t(dv)} dt 

+ Y(t) {aM (t) +aN (t)} dW(t) 

+ Y(t-) [ {8M (t, v) +oN (t, v) +oM (t, v)oN (t, v)} P(dt, dv) 

Since dW and P(dt, dv) are P-martingale increments, it follows that 

E{'[Y(T)J = Y(t) + E{' [iT Y(u)A(u)du] 
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where 

A(u) = aM (u)aN* (u) + i 8M (u, v)8N (u, v)-Au(dv) 

Moving the expectation within the integral sign in the du-integral, noting that A 
is non stochastic, and defining m(s) = Ef[Y(s)] we obtain: 

m(s) = Y(t) + 1s m(u)A(u)du 

Taking the s-derivative of this equation, we obtain the ordinary differential equa­
tion: 

m(s) m(s)A(s) 

m(t) M(t)N(t) 

Hence 
m(T) = M(t)N(t)ef[ A(u)du 

I 

3 The Economy 

In this Section we specify the dynamics of the processes governing the stock prices, 
bond prices, money market accounts and the exchange rates for one domestic mar­
ket d, and three foreign markets f, g and h. 

We consider an international financial market living on a filtered probability space 
( n, F, Qd, F) where Qd is the domestic risk neutral probability measure. The prob­
ability space carries both an n-dimensional Wiener process W and a general marked 
point process /l(dt, dv) on JR+ x V with predictable intensity measure At(dv)dt . 
The filtration F = { Ftlt>o is generated by both W and /l, i.e. Ft = Ftw V Ff". 

We assume that there are no arbitrage possibilities, i.e. the market is arbitrage 
free. 

Let r(t), rt(t), r9 (t) and rh(t) denote the domestic, !-foreign, g-foreign and h­
foreign risk free interest rates. We allow all the asset prices to jump and assume 
that the Qd-dynamics of the domestic stock price, S(t), and the domestic bond 
price, p(t, T), of a bond with maturity date Tare given by: 

dS(t) = S(t-) [r(t)dt + a(t)dW(t) + i 8(t, v)jj(dt, dv)] (4) 

dp(t,T) p(t-,T) [r(t)dt+b(t,T)dW(t)+ ij1(t,T,v)jj(dt,dv)] (5) 



12 Pricing Equity Swaps in an Economy with Jumps 

That the drift term is equal to the domestic short rate under the risk neutral 
measure is standard and follows from the assumption of arbitrage free markets. 
(see for example Bjork (2004) and Bjork et al. (1997)). 

Let Xi be the exchange rate of the i-foreign currency for i = f, g, h. Hence X f 
is the price in domestic units of one unit of the /-foreign currency. Similarly, X9 
is the price in domestic units of the g-foreign currency and Xh is the price in 
domestic units of the h-foreign currency. The Qd-dynamics of the exchange rates 
are assumed to be given by 

dXi(t) =Xi(t-) [{r(t) -ri(t)}dt+'Yi(t)dW(t) + i ~i(t,v)jl(dt,dv)] (6) 

fori= j,g,h 

Again general arbitrage free pricing theory explains the specification of the drift 
term of the exchange rate under the domestic risk neutral measure. 

Let B denote the domestic money market account and Bi denote the i-foreign 
money market account for i = j, g, h. The dynamics of the domestic and foreign 
money market accounts are given by: 

r(t)B(t)dt 

ri(t)Bi(t)dt fori= j,g, h 

(7) 

(8) 

To denote the i-foreign risk neutral measures, Qi are used for i = J, g, h. When we 
mark variables, we will suppress Q, so for example Wf is a Wiener process under 
Qf. For the forward measures we use QT,d, QTJ, QT,g and QT,h for the domestic, 
/-foreign, g-foreign and h-foreign measures respectively. Again, we suppress Q 
when we mark variables. So for example WT,d is a Wiener process under QT,d and 
E~:·d[·J denotes the conditional expectation given :Fr1 of (·) under the domestic 
T2-forward measure QT2 ,d. 

In the next Proposition, we derive the dynamics of the foreign stock prices and 
bond prices under the domestic risk neutral measure. We let Sf(t), S9(t) and 
Sh(t) denote the /-foreign, g-foreign and h-foreign stock prices at timet. Similarly 
let p(t, T)f, p(t, T)9 and p(t, T)h denote the /-foreign, g-foreign and h-foreign bond 
prices at time t for bonds with maturity date T. 

Proposition 3.1 The Qd-dynamics of the foreign stock prices, Sf (t), S9(t), Sh(t), 
and the foreign bond prices, pf (t, T), p9(t, T),ph(t, T), of bonds with maturity date 
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T are given by: 

{ri(t)- 'Yi(t)O"i(t)- i c5i(t, v)~i(t, v)At(dv)} dt 

+ O"i(t)dW(t)+ ic5i(t,v)jj(dt,dv) fori=J,g,h (9) 

dpi(t, T) 
pi(t-, T) 

{ ri(t)- !'i(t)bi(t, T)- i f3i(t, T, v)~i(t, v)At(dv)} dt 

+ bi(t,T)dW(t) + if3i(t,T,v)jl(dt,dv) fori= J,g,h (10) 

Proof. By standard results, Sf(t)jBf(t) is a Qf_martingale. Hence under the 
f- foreign risk neutral measure, Qf, the dynamics of Sf ( t) are given by 

dSf(t) = Sf(t-) [r1(t)dt+0"1(t)dWf + i c51(t,v)p,f(dt,dv)] 

where Wf(t) is a Wiener process under Qf and p,f(dt,dv) = f..L(dt,dv)- A{(dv)dt 
and A{ (dv)dt is the Qf_intensity. 

Define the likelihood process L~,d/Q,f by 

dQd LQ,d/Q,f-- on Ft 
t - dQf 

where 0 :=:; t :=:; T, for some finite T. 

Then by the Multi-Currency Change of Numeraire Theorem (Theorem B.3 in Ap­
pendix B), it follows that 

LQ,dfQ,f(t) = B(t) xt(o) 
Bf(t)Xf(t) 

To get the dynamics of LQ,d/Q,f (t), we use Ito and apply Lemma A.1 to Bf (t)X f (t), 
and thereafter Lemma A.2 to B(t)/(Bf(t)Xf(t)) and bear in mind that LQ,dfQ,f 
is a Qf_martingale. We get 

dLQ,dfQJ(t) = LQ,d/QJ(t-) [-!'1(t)dWf -1 ~J(t,v) p,f(dt,dv)] 
v1+~t(t,v) 

Thus by the Girsanov Theorem, Theorem B.1 in Appendix B 

-!'j(t)dt + dW 

1 f 
1+~J(t,v)At(dv) 
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Hence, the dynamics of Sf (t) under the domestic risk neutral measure, Qd, is 

dSf (t) 
Sf(t-) rt(t)dt- rt(t)aj(t)dt + aJ(t)dW- [ 8t(t, v)>J(dv)dt 

+ [ 8t(t, v)p,(dt, dv) + [ 8t(t, v)>..t(dv)dt 

{rt(t)- rt(t)aj(t)- [ 8t(t, v)~t(t)>..t(dv)} dt 

+ a1(t)dW + [ 8t(t,v)P,(dt,dv) 

Hereby equation (9) is proved for i = f. The Proof is completed by proceed­
ing in a similar way for the other five assets, using the standard results that 
pf(t,T)jBf(t) is a QLmartingale, SY(t)jBY(t), pY(t,T)jBY(t) are QY-martingales 
and Sh(t)/ Bh(t), ph(t, T)/ Bh(t) are Qh-martingales. I 

In subsequent Sections, we will use Proposition 2.1 on convexity corrections. In 
order to do that we need to assume that the intensity of the point process as well 
as the volatilities of all asset prices and exchange rates, with respect to both the 
Wiener process and the point process, are deterministic. 

Assumption 3.1 We assume that At(dv), a(t), at(t), a9 (t), ah(t), b(t, T), bt(t, T), 
b9 (t, T), bh(t, T), rt(t), r 9 (t), rh(t), 8(t, v), 8t(t, v), 89 (t, v), 8h(t, v), (3(t, T, v), 
(31(t, T, v), (39 (t, T, v), f3h(t, T, v), ~J(t, v), ~9 (t, v) and ~h(t, v) are deterministic. 

Note that the volatilities are independent of the measure under which the dynamics 
of the assets are specified. 

4 Defining Equity Swaps 

A swap is an agreement between two counter parties to exchange cash flows. The 
agreement specifies the cash flows and the dates when the cash flows are to be paid. 
In an equity swap, one party agrees to pay cash flows equal to the return on a stock 
or an equity index in a particular currency on a specific notional principal over a 
pre specified time period. In exchange she receives a cash flow from the other party 
that can be either a fixed or floating interest rate or the return on another stock 
or equity index in the same currency and based on the same notional principal. 

More specifically, let A and B be to counter parties in an equity swap and consider 
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two assets Z1 and Z2. Define the return over period Ti-l to Tj on asset Zi by 

(11) 

Let N denote the notional principal. Then an equity swap written on Z1 and Z2 

with constant notional principal can be defined as follows: 

• The contract starts at time T0 . 

• The payment dates are T1, T2, ... , Tm and t < T1 < T2, < · · · , Tm. 

• At time Tj party A pays NR1(Tj-l,Tj) to counterpart Band receives 
NR2(Tj-1, Tj) from B. 

Since the cash flows between party A and B are of the same size, but of opposite 
signs, it suffice to consider the cash flows of party A. Suppose that A enters into 
a two year long swap contract today, where the first payment date is in one year 
and the second and last payment date is in two years. Furthermore, assume that 
the US market is the domestic market for party A. For example let Z1 be the IBM 
stock and Z2 be the Intel stock. Let the notional principal be $100. Then, in one 
year from now, party A will receive the 1-year return on the IBM stock times 100 
USD and pay the 1-year return on the Intel stock times 100 USD. In two years 
from now, party A will receive the next 1-year return on the IBM stock times 100 
USD and pay the next 1-year return on the Intel stock times 100 USD. This is a 
domestic two-way equity swap. 

Another type of equity swap is the plain vanilla equity swap. In this swap one 
party receives a cash flow equal to the return on a domestic stock on a notional 
principal, expressed in the domestic currency, and pays a cash flow equal to interest 
at a predetermined fixed rate on the same notional principal. Hence if we exchange 
R2 , in the example above, from the return on the Intel share to a fixed swap rate, 
then we have an example of a plain vanilla equity swap where party A pays fixed 
and receives equity return. 

So far we have only considered domestic swaps, but there also exist cross currency 
swaps. Cross currency swaps belong to the type of derivatives that are called quanto 
derivatives. It is because the cash flows are defined in terms of an asset that is mea­
sured in one currency but payed out in another currency. This currency mismatch 
may seem unnatural but nevertheless, these contracts exist and are widely used. 
To illustrate a cross currency equity swap, again let Z1 be the IBM stock and the 
notional principal be $100. In contrast to previous examples, let Z2 be a foreign 
asset, for example the Ericsson share on the Swedish stock market. Then, in one 
year from now, party A will receive the 1-year return on the American IBM stock 
times 100 USD and pay the 1-year return on the Swedish Ericsson stock times 100 
USD. In two years from now, party A will receive the next 1-year return on the 
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IBM stock times 100 USD and pay the next 1-year return on the Ericsson stock 
times 100 USD. Note that in this example it is the cash flow that party A will pay 
that has the mismatch feature. The underlying asset of this cash flow is measured 
in SEK while it is paid in USD. 

Let us consider yet another example of a cross currency equity swap. As in the 
previous example, let Z1 be the IBM stock on the US market and Z2 the Ericsson 
stock on the Swedish market. However, let the notional principal be specified in 
British pounds, say 100 GBP. Then, in one year from now, party A will receive 
the 1-year return on the American IBM stock times 100 GBP and pay the 1-year 
return on the Swedish Ericsson stock times 100 GBP. In two years from now, party 
A will receive the next 1-year return on the IBM stock times 100 GBP and pay 
the next 1-year return on the Ericsson stock times 100 GBP. Since the notional 
principal is specified in British pounds but the domestic market for party A is the 
US market, we need the foreign exchange rate between USD and GBP in order 
to get the domestic cash flow for party A. Let X (Tj) denote the exchange rate 
between USD and GBP at time Tj. Then in terms of the domestic currency the 
net cash flow that party A will receive in one years time is: 

where RIBM(s, t) and RERI(s, t) denotes the return over period [s, t] on the IBM 
share and Ericsson share respectively. The net cash flow, expressed in the domestic 
currency, that party A will receive in two years from now is: 

The last example illustrates that if the notional principal is specified in a currency 
different from the domestic one, the exchange rate enters into the payoff measured 
in domestic units. Furthermore it is clear that, without loss of generality, the return 
R can be exchanged with 1 + R. Taking this into account, we rewrite the definition 
of an equity swap and we state it from the perspective of party A: 

Let Nh denote the notional principal specified in currency hand let Xh(Tj) denote 
the exchange rate between the units of the domestic currency to the units of the 
currency h. Then an equity swap written on the assets Z1 and Z2 , with constant 
notional principal can be defined as follows: 

• The contract starts at time T0 . 

• The payment dates are T1, T2, ... , Tm and t < T1 < T2, < · · · , Tm. 

• At time Tj party A pays Xh(Tj)NhZ1(Tj)/Z1(Tj-d units of the domestic 
currency to the counterpart and receives Xh(Tj)Nh Z 2(Tj)/Z2(Tj_ 1 ) units of 
the domestic currency. 
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Note that if the notional principal is specified in the domestic currency, i.e. if h 
is the domestic currency, then Xh = 1. Since the notional principal is just a size 
factor, it can be scaled to 1. Therefore without loss of generality we let Nh = 1. 
Hence the cash flows that party A will pay or receive at time Ti can be written as: 

(12) 

where Z is a domestic or foreign asset and Xh is equal to the h foreign exchange 
rate if the notional principal is specified in the h-foreign currency and equal to 1 if 
the principal is specified in the domestic currency. 

Now let us consider the economy specified in Section 3. Then the asset Z is the 
domestic or foreign stock. In the simplest case, Z is the domestic stock and the 
notional principal is one domestic unit. Hence equation (12) becomes: 

(13) 

If instead Z is the /-foreign asset, equation (12) becomes: 

Sf(T) 
cJ> = J 

Sf(Tj-d 
(14) 

If Z is the /-foreign asset and the notional principal is specified in the h-foreign 
currency, equation (12) becomes: 

(15) 

In the next Section we will price equity swaps. Pricing an equity swap is equivalent 
to pricing the cash flows of the equity swap. If we can price the three different types 
of cash flows Y, cJ> and 1l1, we can price any equity swap with constant notional 
principal. In fact, it is enough to be able to price cash flow w. This is because 1l1 is 
the most general case and we can get cJ> by letting h denote the domestic currency 
so that Xh is equal to 1. Similarly we can get Y by letting both h and J denote 
the domestic currency so that Xh is equal to 1 and Sf is equal to S. It is merely 
of illustrative purpose that we study all three cash flows Y, cJ> and 1l1, rather than 
1l1 only. 

5 Pricing Equity Swaps 

In this Section we will derive a general pricing formula for equity swaps. We will 
take as given the economy specified in Section 3 and price the cash flows Y, cJ> 
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and 1li defined in the previous Section. When we can price these cash flows, we 
can calculate the difference between any two of them and sum over the number of 
payment dates. Hence we can price any swap involving these payments. In Section 
5.1 we will focus on the relatively simple case of vanilla swaps that involves only 
the payments of the type T. In Section 5.2 we will price the payments <I> and 1li and 
this requires a somewhat deeper analysis. Finally, in Section 5.3 we will provide a 
generalized pricing formula that can be used to price any type of equity swap with 
constant notional principal. 

We will use martingale methods and the technique of convexity corrections de­
scribed in Section 2. We will let II(t, ·] denote the price, in the domestic currency, 
of the contract ( ·). 

5.1 Vanilla Swaps 

In this Section we will price contracts that has a payoff, T, given by equation (13) 
in Section 4. Even though this can be done by using a simple replicating argument 
we will, for the sake of completeness, provide a proof by martingale methods. 

Proposition 5.1 Lett:::; T1 :::; T2 . The value at timet, in the domestic currency, 
of a contract that pays out T = S(T2 )/ S(TI) units of the domestic currency at time 
T2 is given by: 

II[t, T] = p(t, TI) 

Proof. By using the domestic stock itself as numeraire, we get that 

II(t, T] Sd [ T ] S(t)Et' S(T
2

) 

s d [ 1 ] S(t)Et' S(Tl) (16) 

Noting that p(TI. TI) = 1, we have: 

Since p(t, Tl)/ S(t) is a Q8 •d-martingale equation (16) simplifies to 

S(t)Es,d [p(T1,T1)] = S(t)p(t,T1) = (t T) 
t S(TI) S(t) p ' 1 

I 
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Remark 5.1 This result could also have been achieved by a simple replicating argu­
ment: If you at time T1 use one unit of the domestic currency to buy 1/ S(TI) units 
of the domestic stock S(T1 ) you will at time S(T2) have a payoff of S(T2)/ S(T1). 

The value at time t of having one unit of the domestic currency at time T1 must 
be equal to p(t, T1 ). 

Remark 5.2 Regardless of if one uses the martingale method or the replicating 
argument to prove proposition 5.1 it should be noted that no assumptions on the 
dynamics of the assets are needed. The only assumption needed is that the stock is 
traded assets. Hence this result is model independent. 

Recall from Section 4 that in a domestic two-way equity swap one party receives 
the stock index return of a domestic stock and pays the return on another domestic 
stock. Hence both payments are of the type 1, so the value of the difference of the 
payments are zero. Consequently, we have the following Corollary. 

Corollary 5.1 The value, at any time up until maturity, of a domestic two-way 
equity swap is zero. 

So far we have completely neglected the so called two-way equity swap with ex­
change rate risk. This is because, from a mathematical point of view, it is equivalent 
to a domestic two-way equity swap. In the two-way equity swap with exchange rate 
risk one party pays a cash flow equal to the currency-adjusted return on a foreign 
stock on a notional principal, expressed in the domestic currency, and receives a 
cash flow equal to the currency-adjusted return on another foreign stock on the 
same notional principal. Hence both cash flows are of the type: 

Xf(T2)Sf(T2) 
Xf(TI)Sf(T1) 

(17) 

Note that Sf(t) units of the /-foreign currency Xf(t) are worth Sf(t)Xf(t) in 
the domestic currency. So, buying the /-foreign currency and investing it in the 
/-foreign stock is equivalent to investing it in a domestic asset with price process 
Sf (t), where 

f;! (t) =X f (t)Sf (t) 

Hence equation (17) can be written in terms of the domestic asset Sf: 

This is the same type of cash flow as in a domestic two-way equity swap. Conse­
quently, the value of a two-way equity swap with exchange rate risk must equal the 
value of a domestic two-way equity swap which is zero. 
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5.2 Quanto Swaps 

In this Section we will price contracts with payoffs equal to Z and \]! given by 
equation (14) and (15) in Section 4. These contracts are payed out in the domestic 
currency even though they are written on foreign equity. This currency mismatch 
is the reason to why they are called quanto derivatives. 

Both contacts have a payoff that is: 

• payed out at time T2 

• determined by foreign assets 

• payed out in the domestic currency 

The first contract that we consider has the payoff function 

This contract pays out an amount in the domestic currency that is based on the 
foreign stock return over the period T1 to T2 . So, even though investing in a foreign 
market, there is no currency risk. For example if the US-market is the domestic 
market, the notional principal is one USD and Sf is the price of the Swedish 
Ericsson stock, then this contract gives you, at time T2 , the gross return on the 
Ericsson stock over period T1 to T2 times one dollar. Hence if the price of Ericsson 
at time T1 is 20 SEK and at time T2 is 25 SEK, the contract will pay out 1.25 USD 
at time T2. 

The second contract that we will price has the payoff function 

Hence the contract pays out, in the domestic currency, the /-foreign stock return 
over the period T1 to T2 scaled by the exchange rate between the domestic currency 
and the h-foreign currency. For example if the US-market is the domestic market, 
the notional principal is one GBP, Xh is the exchange rate between USD and GBP 
and Sf is the price of the Swedish Ericsson stock, then this contract gives you, 
at time T2 , the gross return on the Ericsson stock over period T1 to T2 times the 
exchange rate times one dollar. Hence if the price of Ericsson at time T1 is 20 SEK 
and at time T2 is 25 SEK and the exchange rate at time T2 is 2 USD/GBP, then 
the contract will pay out 2.50 USD at time T2 . 

Before we price the first contract we will state five lemmas. The first two give the 
dynamics of some processes that will be needed in the subsequent. In the next 
two, we calculate some expected values that are needed. These two lemmas rely on 



5. Pricing Equity Swaps 21 

Proposition 2.1 on convexity corrections. The last lemma is also about expected 
values and relies on the two previous ones. The benefit of having these lemmas, is 
that the Proofs of the Propositions later on follows quite easily. 

Lemma 5.1 Let 0 :::; t :::; T2 • Let Qhd, Qhf and Qhh denote the T2-forward 
measure for the domestic, the f -foreign and the h-foreign market respectively. De­
fine the likelihood processes L'[2'd/T2,/ and L'[2'h/T2,/ as: 

dQT2,d 
LT2,d/T2,/ n -r (18) 

t dQT2,/ 0 .rt 

on :Ft 

Then the dynamics of L[2'd/T2,/ and L[2'h/T2,/ under QT2,/ are given by: 

where 

dLhd/T2,/ (t) 
LT2,d/hf(t-) 

dLT2,h/hf (t) 

LT2,h/hf (t-) 

jj,T2 ,/ ( dt, dv) 

)..Td (dv) 

b(t, T2)- bt(t, T2)- !t(t) 

{J(t, T2, v)- f3t(t, T2, v)- ~t(t, v)(1 + f3t(t, T2, v)) 
1 + f3t(t, T2, v) + ~t(t, v)(1 + f3t(t, T2, v)) 

bh(t, T2)- bt(t, T2)- bt(t)- /h(t)) 

f3h(t, T2, v) + ~h(t, v)(1 + {Jh(t, T2, v)) 
1 + f3t (t, T2, v) + ~~ (t, v )(1 + f3t(t, T2, v)) 

f3t(t, T2, v) + ~! (t, v)(1 + f3t(t, T2, v)) 
1 + f3t(t, T2, v) + ~t(t, v)(1 + f3t(t, T2, v)) 

~-L(t,dv)- >..Td(dv)dt 

(1 + f3t(t, T2, v) + ~t(t, v)(1 + f3t(t, T2, v))) >..(dv) 

Proof. By the Multi-Currency Change of Numeraire Theorem it follows that 

p(t,T2) pf(O,T2))(f(o) 
pf(t,T2))(f(t) p(O,T2) 

ph(t, T2))(h (t) pf (0, T2))( f (0) 
pf (t, T2))( f (t) ph(O, T2))(h(O)' 

(19) 

(20) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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To prove equation (20), first apply Lemma A.1 to pf (t, T2)Xf (t), thereafter apply 
Lemma A.2 to p(t,T2)/(pf(t,T2 )Xf(t)). Since Lhd/hf is a martingale under 
QTd the drift term is zero. Proceed similarly to prove equation (21). 1 

Lemma 5.2 Define Y1 (t) =Sf (t)jpf (t, T2 ) for 0 ~ t ~ T2 and Y2(t) = 
pf(t,T1)jpf(t,T2) for 0 ~ t ~ T1 . Then the dynamics ofYt(t) and Y2(t) under 
QT2 ,! are given by: 

dY1 (t) 
[ Cf (t, T2)dWhf (t) + [ Df (t, T2 , v)ji_T2 J (dt, dv)] (28) 

Yt (t-) 

dY2(t) 
[Mf(t,T2)dWhf(t) + [ Nf(t,T2,v)jihf(dt,dv)] (29) 

Y2(t-) 

where 

Cf(t, T2) O"j (t) - bf(t, T2) (30) 

Df(t,T2,v) 
Of(t,v)- f3f(t,T2,v) 

(31) 
1 + f3f(t, T2, v) 

Mf(t, T2) bf(t, T1)- bf(t, T2) (32) 

Nf(t,T2,v) 
f3f(t,Tt,v) -f3f(t,T2,v) 

(33) 
1 + f3f(t, T2, v) 

jihf (dt, dv) p,(t, dv)- >..T2 J (dv)dt (34) 

>72 J(dv) (1 + f3f(t, T2, v) + ~f(t, v)(1 + f3f(t, T2, v))) ,\(dv) (35) 

Proof. Immediate application of Lemma A.2, remembering that Sf (t)jpf (t, T2 ) 

and pf (t, TI)jpf (t, T2 ) are martingales under QT2 ,J. 1 

Lemma 5.3 Let t ~ T2. Then 

where 

Sf(t)g(t, T2) 
pf(t, T2 ) 

Sf (t)gh(t, T2) 
pf(t, T2 ) 

(36) 

(37) 
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and A(u, T2), B(u, T2, v), A1(u, T2), Bj(u, T2 , v), Cf (u, T2) and Df (u, T2, v) are given 
by equations (22) to (25), (30) and (31). 

Proof. Defining the likelihood process L'[2'd/hf as in equation (18), it follows 
from Bayes Theorem that 

(40) 

Noting that pf (T2 , T2 ) = 1, we have: 

Since £hd/T2,J (t) and Sf (t)jpf (t, T2 ) are QT2,J -martingales with dynamics given 
by equation (20) and (28) respectively, Proposition 2.1 gives that : 

where g(t, T2) is given by equation (38). Finally by inserting equation (41) into 
equation (40), equation (36) is proved. 

Equation (37) is proved by defining the likelihood process L'[2 'h/T2 ,J as in equation 
(19) and thereafter continuing as above. 1 

Lemma 5.4 Lett~ T1 ~ T2. Then 

where 

K(t, T1, T2) 

Kh(t, T1, T2) 

(42) 

(43) 

ef1T
1 { Mf (u,T2)A(u,T2)+ fv Nf (u,T2,v)B(u,T2,v)AT2./ (dv) }du ( 44) 

ef1T
1 

{ Mf (u,T2)A~(u,T2)+ fv Nf (u,T2,v)B~(u,T2,v)AT2./ (dv) }du ( 45) 

and A(u, T2), B(u, T2 , v), A1(u, T2 ), Bj(u, T2 , v), Mf (u, T2) and Nf (u, T2 , v) are given 
by equations {22} to (25}, (32} and (33}. 
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Proof. Define the likelihood process L'{'2'd/T2,f as in equation (18). Then, from 
Bayes Theorem, it follows that 

(46) 

Noting that pf ( T1 , T1) = 1 yields 

Since LT2 ,d/hf (t) and P~((!'~1 )) are QT2 ,J -martingales with dynamics given by equa-
P , 2 

tion (20) and (29) respectively, Proposition 2.1 gives that: 

where K(t, T1 , T2 ) is as in equation (44). Finally by inserting equation (47) into 
equation ( 46), equation ( 42) is proved. 

Equation (43) is proved by defining the likelihood process L'{'2 ,h/T2 ,f as in equation 
(19) and thereafter continuing as above. I 

Lemma 5.5 Lett:::; T1 :::; T2. Then 

where 

pf (t, Tl)G;(t, T1, T2) 
pf(t, T2 ) 

pf(t, Tl)Gj(t, T1, T2) 

pf(t, T2) 

eft2 { C 1 (u,T2)A(u,T2)+ fv D 1 (u,T2,v)B(u,T2,v)>. T2,J (dv) }du 

eft1 { Cf (u,T!)A(u,T2)+ fv Df (u,T1 ,v)B(u,T2,v)>.T2.J (dv) }du 

eft2 { C 1 (u,T2)A,(u,T2)+ fv D 1 (u,T2,v)BJ(u,T2,v)>.T2.J (dv) }du 

eft1 { Cf (u,T!)A,(u,T2)+ fv Df (u,T1,v)BJ(u,T2,v)>.T2.f (dv) }du 

(48) 

(49) 

(50) 

(51) 

and A(u, T2), B(u, T2, v), Aj(u, T2), Bj(u, T2, v), Cf (u, T2) and Df (u, T2, v) are given 
by equations {22} to {25), {30} and {31). 
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Proof. From Lemma 5.3 and Lemma 5.5, we get that 

where 

ET2,d [-l-ET2,d[Sf(T )]] 
t Sf(Tl) Tl 2 

ET2,d [ g(Tl,T2)] 
t pf(T1,T2) 

g(Tl,T2)E[2,d [pf(T~,T2)] 
pf (t, TI) 

g(T1,T2) f( )K(t,T1,T2) 
p t,T2 
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Finally, noting that g(T1,T2)K(t,T1,T2) = G1(t,T1,T2), equation (48) is proved. 
Equation (49) is proved using the same arguments. I 

Now we are finally ready to price the quanto derivatives. In the next Proposition we 
price the contract with payoff function 4> = Sf (T2 )/ Sf (T1 ). Note that even though 
the payoff function is determined by the foreign asset Sf, which is measured in the 
!-foreign currency, the amount that the contract pays out is 4> units of the domestic 
currency. 

Proposition 5.2 Let t ~ T1 ~ T2 and 4> = Sf (T2) /Sf (TI). The value at time 
t, in the domestic currency, of a contract that pays out 4> units of the domestic 
currency at time T2 is given by: 

p(t, T2)pf (t, TI)G1(t, T1, T2) 
II[t, 4>] = f( T) p t, 2 

where G1(t, T1, T2) is given by equation (50}. 

Proof. By using the domestic bond with maturity T2 as numeraire and applying 
Lemma 5.5, we get that 

II[t, 4>] T2,d [Sf(T2)] 
p(t, T2)Et Sf(TI) 

p(t, T2)pf (t, T1)G1(t, T1, T2) 

pf (t, T2) 
(52) 
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Recall from Section 4 that in a cross currency two-way equity swap with domestic 
notional principal, one party pays the return of a domestic stock and receives the 
return on a foreign stock. Hence Proposition 5.1 and 5.2 immediately give the 
following Corollary. 

Corollary 5.2 If one counterpart in the equity swap pays the domestic equity index 
return Rand receives the !-foreign equity index Rt with the notional principal value 
scaled to one and denominated in the domestic currency, then the swap value at 
time t ::; To is equal to 

where G1(t, T1, T2) is given by equation (50). 

Proposition 5.2 also gives the next Corollary. 

Corollary 5.3 If one counterpart in the equity swap pays a fixed swap rate K and 
receives the !-foreign equity index Rt with the notional principal value scaled to 
one and denominated in the domestic currency, then the swap value at time t is 
equal to 

~ [pf(t,Ti_ 1 )G1(t,Ti_1 ,Ti) l 
~p(t, Ti) f( T·) - (1 + K) 
j=l p t, J 

where c;(t, T1 , T2) is given by equation (50). 

For the swap in Corollary 5.3, we define the par swap rate to be the value of K for 
which the price of the swap is zero. We denote the par swap rate by R(t), thus: 

In the next Proposition we price the contract with payoff function 
Ill= Xh(Tj)Sf(Tj)jSf(Tj_l). This contract has a payoff function that is deter­
mined by assets measured in the /-foreign and h-foreign currency but payed out 
in the domestic currency. 
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Proposition 5.3 Lett:::; T1 :::; T2 and Ill= Xh(T2)Sf(T2)jSf(T1 ). The value at 
timet, in the domestic currency, of a contract that pays out Ill units of the domestic 
currency at time T2 is given by: 

Proof. Define the likelihood process Li2 'd/T2 ,h as: 

then use the domestic bond with maturity date T2 as numeraire and apply Bayes 
Theorem, to find that 

II[t, Ill] = p(t, T2)EZ
2
'd [xh(T2) ~;~~~n 

Ez2,h [ Xh(T2) ~;f~~l LT2,d/hh(T2)] 

p(t, T2) £T2,d/T2,h(t) (54) 

By the Multi-Currency Change of Numeraire Theorem 

Insert the expression for Lhd/T2,h(T2) into (54). Then 

Finally, apply Lemma 5.5. I 

5.3 Generalized Pricing formula 

In this Section we will present a generalized pricing formula for equity swaps with 
constant notional principal. This pricing formula was presented by Liao & Wang 
(2003) for the case when all assets are Wiener driven, but is here extended to 
include also the point process case. 



28 Pricing Equity Swaps in an Economy with Jumps 

In the next Proposition we will specify the pricing formula for a cross currency two­
way equity swap with a foreign denominated constant notional principal. Then we 
will illustrate how this formula can be used to price any type of equity swap with 
constant notional principal. Hence the pricing formula in the next proposition is 
the generalized pricing formula for equity swaps with constant notional principal. 

Proposition 5.4 If one counterpart in the equity swap pays the equity index return 
R9 and receives another equity index return R f with the notional principal value, 
denominated in currency h, then the swap value at time t ~ T0 is equal to 

where 

and 

A7(t, T2) 

BJ(t, T2 , v) 

Df (t, T2 , v) 

eft2 { C 1 (u,T2)A~(u,T2)+ fv D 1 (u,T2,v)BJ(u,T2,v)>.T2J (dv) }du 

eft' { Cf(u,TI)A~(u,T2)+ fv Df(u,T,,v)BJ(u,T2,v)>.T2J(dv) }du 

eft2 { C9 (u,T2)A~(u,T2)+ fv D9 (u,T2,v)B~(u,T2,v)>.T2, 9 (dv) }du 

ef,r1 { CY(u,T,)A~(u,T2)+ fv D9(u,T,,v)B~(u,T2,v)>.T2,9(dv) }du 

bh(t, T2)- b1(t, T2)- ('y1(t)- rh(t)) 

f3h(t, T2, u) + ~h(t, u)(1 + f3h(t, T2, u)) 

1 + f3t(t, T2, u) + ~J(t, u)(1 + f3t(t, T2, u)) 

f3t(t, T2, u) + ~J(t, u)(1 + f3t(t, T2, u)) 
1 + f3t(t, T2, u) + ~J(t, u)(1 + f3t(t, T2, u)) 

bh(t, T2)- b9 (t, T2)- ('y9 (t)- rh(t)) 

f3h(t, T2, u) + ~h(t, u)(1 + f3h(t, T2, u)) 
1 + /39 (t, T2 , u) + ~9 (t, u)(1 + f39 (t, T2 , u)) 

(39 (t, T2, u) + ~9 (t, u)(1 + /39 (t, T2, u)) 
1 + /39 (t, T2, u) + ~9 (t, u)(1 + f39 (t, T2, u)) 

O"j(t, T2)- bt(t, T2) 

c5t(t, v)- f3t(t, T2, v) 

1 + f3t(t,T2 ,v) 
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P,T2,f ( dt, dv) 

p,h9 (t, dv) 

>..T2 J ( dv) 

)...T2.9(dv) 

a9 (t, T2)- b9 (t, T2) 

c59 (t, v)- f39 (t, T2, v) 

1 + f39 (t, T2, v) 

1-L(t, dv)- )..hi (dv)dt 

1-L(t, dv)- )...h9(dv)dt 

(1 + f3t(t, T2, v) + ~t(t, v)(1 + f3t(t, T2, v))) >..(dv) 

(1 + /39(t, T2, v) + ~9 (t, v )(1 + /39(t, T2, v))) >..( dv) 
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Proof. The swap payments are both of type \[1, hence the result follows from 
Proposition 5.3. I 

The pricing formula in Proposition 5.4 is general in the sense that it can be used 
to price different types of equity swaps with constant notional principal. We will 
illustrate by two examples. 

First consider a cross currency two-way swap with domestic constant notional prin­
cipal where one party pays the return on a domestic equity and receives the return 
on an !-foreign equity. We can price this swap using the general pricing formula 
above if we substitute both h and g with d. Since Xd(t) = 1 for all t, "/d = 0 and 
~d = 0, equation 5.4 becomes: 

(56) 

Hence equation (55) is reduced to the pricing formula of a cross currency swap with 
domestic notional principal given by equation (50) in Corollary 5.2. 

As another example we will show that equation (55) also can be reduced to the 
case of a domestic two-way equity swap with domestic notional principal. Here 
we substitute f with d1 and g with d2 so that one party will receive the domestic 
equity index return Rd1 and pay another domestic equity index return Rdl· To 
make the notional principal be denoted in domestic units we substitute h with d. 
We have that Xd(t) = 1 for all t so "/d = 0 and ~d = 0. Furthermore pd1(t, T) = 
pd2(t, T) = p(t, T) for all t and for all T so bd1 = bd2 = b, and f3dl = f3d2 = /3. 
Hence equation 5.4 reduces to: 

(57) 
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which is in accordance with Corollary 5.1. 

Similarly equation 5.4 can be used to price any kind of equity swap with constant 
notional principal by choosing j, g and h suitable. 

6 Conclusions 

By using martingale methods and the technique of convexity corrections we have 
extended the generalized pricing model for equity swaps first presented by Liao & 
Wang (2003). The extension allows for the international market to be driven by 
both a standard multidimensional Wiener process and a general marked point 
process. The martingale method and the convexity correlation result that we 
achieved is the key that enabled the extension. 
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A Two Useful Formulas 

Let W(t) be ann-dimensional Wiener process on (O,:F,P). Let f.J.(dt,dv) be an 
adapted marked point process over~+ x V with predictable intensity At(dv)dt and 
denote P,(dt, dv) = f.l.(dt, dv)- At(dv)dt. Assume that ax(t), ay(t) are adapted, and 
that Ox(t, v), Oy(t, v) are predictable processes. Let X(t), Y(t) be two stochastic 
processes with dynamics: 

dyt 

Xt- [ O:x(t)dt + ax(t)dW(t) + fv Ox(t, v)il(dt, dv)] 

yt_ [o:y(t)dt + ay(t)dW(t) + fv oy(t, v)P,(dt, dv)] 

(58) 

(59) 

Lemma A.l Let X(t), Y(t) be two stochastic processes with dynamics given by 
equation (58) and (59). Then the dynamic of the product, (XY)(t) is given by: 

d(XY)t Xtrt { o:x(t) + o:y(t) + ax(t)ay(t) + fv Ox(t, v)oy(t, v)>..t(dv)} dt 

+ Xtyt { ax(t) + ay(t)} dW(t) 

+ Xt-Yt- fv {ox(t,v) +oy(t,v) +8x(t,v)oy(t,v)}il(dt,dv) (60) 

Proof. 

d(XY)t Xtrt { O:x(t) + O:y(t) + ax(t)ay(t)} dt 

- Xtrt {fv Ox(t, v)>..t(dv) + fv Oy(t, v)>..t(dv)} dt 

+ Xtrt { ax(t) + ay(t)} dW(t) 

+ Xt-Yt- fv {ox(t,v)+oy(t,v)+ox(t,v)oy(t,v)}f.J.(dt,dv) 
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XtYt {ax(t) + ay(t) + ax(t)ay(t)} dt 

- XtYt {fv {8x(t, v) + 8y(t, v)} At(dv)} dt 

+ XtYt {ax(t) + ay(t)} dW(t) 

+ Xt-Yt- fv {8x(t,v) +8y(t,v) +8x(t,v)8y(t,v)}ji,(dt,dv) 

+ Xt-Yt- fv {8x(t,v)+8y(t,v)+8x(t,v)8y(t,v)})..t(dv)dt 

Simplifying the last expression gives equation (60). I 

Lemma A.2 Let X(t), Y(t) be two stochastic processes with dynamics given by 
equation {58) and (59). Then the dynamic of the ratio, (X/Y)(t) is given by: 

d ( ~) t = ~: { ax(t)- ay(t)- ax(t)ay(t) + a;(t)} dt 

_ Xt [ 8y(t,v) (8x(t,v)- 8y(t,v)) At(dv)dt 
Yt lv 1+8y(t,v) 

Xt + yt { ax(t) - ay(t)} dW(t) 

+ Xt- [ (8x(t, v)- 8y(t, v)) P,(dt dv) 
Yt- lv 1 + 8y(t, v) ' 

(61) 
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Proof. 

~t { ax(t)- ay(t)- ax(t)ay(t) + a~(t)} dt 

+ ~: {-i Dx(t, v).At(dv) + i 8y(t, v).At(dv)} dt 

Xt + yt {ax(t)- ay(t)}dW(t) 

Xt 1 (8x(t, v)- 8y(t, v)) (d d ) + - f.L t, v 
yt v 1+8y(t,v) 

~: { ax(t)- ay(t)- ax(t)ay(t) + a~(t)} dt 

- ~: i (8x(t,v)- 8y(t,v))At(dv)dt 

Xt + yt {ax (t) - ay(t)} dW(t) 

Xt-1 (8x(t,v)- 8y(t,v)) _(d d ) + - f.L t, v 
yt_ v 1+8y(t,v) 

+ Xt- { (8x(t, v)- 8y(t, v)) At(dv)dt 
Yt- lv 1 + 8y(t, v) 

Simplifying the last expression gives equation (61). 1 
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B Measure Theory 

The Theorems stated below are standard and can be found in Bjork (2004), Bjork 
et al. (1997) and Pelsser (2000). 

Theorem B.l (Girsanov Theorem) Let W(t) be ann-dimensional Wiener process 
on (0, F, P). Let !-l(dt, dv) be an adapted marked point process over JR.+ x V with 
predictable intensity At(dv)dt and denote ji(dt, dv) = 1-l(dt, dv)- At(dv)dt. Assume 
thatrp(t,v) 2 -1Vv E V, that r.p is predictable and that h(t) is adapted. Choose a 
fixed T and define L on [0, T] by 

dL(t) = L(t)h(t)dW(t) + L(t-) [ r.p(t, v)ji(dt, dv) 

L(O) = 1 

Assume EP[Lr] = 1 Define a new probability measure Q on Fr via 

dQ 
Lr = dP on Fr 

Then 
dW(t) = h*(t)dt + dWQ(t) 

where WQ is a Wiener process under the Q-measure. Furthermore the marked 
point process 1-l has a predictable Q-intensity ).. Q given by 

>.Q(dv) = (1 + r.p(t, v))>.t(dv) 

Theorem B.2 (Bayes' Theorem} Let X(t) be a random process on (0, F, P). Let 
Q be another probability measure on (0, F), absolutely continuous with respect to 
P and with Radon-Nikodym derivative 

L= dQ 
dP 

on F 

Let Q be a sigma-algebra with Q ~ F. Then 

Theorem B.3 (Change of Numeraire} Let QN be a martingale measure for the 
numeraire Nt on Fr. Let QM be an equivalent martingale measure for the nu­
meraire Mt on Fr. The Radon-Nykodym derivative that changes the equivalent 
martingale measure QM to QN is given by: 

N(T) M(O) 
----
M(T) N(O) 

on Fr 
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Theorem B.4 (Multi-Currency Change of Numeraire} Lett E [0, T]. Given an 

arbitrage free system of economies ( d,j), an exchange rate, X~f! d) and two nu­
meraires Nf and M( within the economies, with associated martingale measures 
QN,d and QMJ on Fr we have the Radon Nykodym-Derivative: 

N(T) M(O)Xdlf(O) 

Xdlf(T)M(T) N(O) 
on Fr 
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Paper 2 

Inflation Indexed Swaps and 
Swaptions 

This article considers the pricing and hedging of inflation indexed swaps, and the 
pricing of inflation indexed swaptions, and options on inflation indexed bonds. 
To price the inflation indexed swaps, we suggest an extended HJM model. The 
model allows both the forward rates and the consumer price index to be driven, 
not only by a standard multidimensional Wiener process but also, by a general 
marked point process. Our model is an extension of the HJM approach proposed 
by Jarrow and Yildirim [16] and later also used by Mercurio [18] to price inflation 
indexed swaps. Furthermore we price options on so called TIPS-bonds assuming 
the model is purely Wiener driven. We then introduce an inflation swap market 
model to price inflation indexed swaptions. All prices derived have explicit closed 
form solutions. Furthermore, we formally prove the validity of the so called foreign­
currency analogy. 
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1 Introduction 

Even though inflation linked products can be traced back to the middle of the 18th 
century, the modern inflation indexed market did not start until the beginning of 
the 1980s. Then the United Kingdom issued inflation indexed bonds and shortly 
thereafter Austria, Sweden and Canada followed. In 1997 the United States began 
to issue Treasury Inflation Protected Bonds (TIPS) and since then several countries 
have entered the inflation indexed bond market. About ten years ago, the inflation 
indexed swap market began to develop in the United Kingdom. Today inflation 
indexed swaps and other inflation indexed derivatives are traded in for example 
the United Kingdom, the United States, France, Japan and in the Euro Market. 
The derivatives market is still young though and most certainly we will experience 
more products develop. 

Inflation is defined as the percentage change of a particular reference index. The 
choice of reference index varies from country to country but usually it is a consumer 
price index ( CPI). The consumer price index measure the price of a representative 
basket of goods and services. Thus an increase in the consumer price index over a 
period of time implies that there has been inflation over that period. 

Inflation indexed products are tied to inflation. The main idea of inflation indexed 
bonds is that investing in the bond and keeping it until maturity will generate 
a certain real return. Thus, even though the nominal value of the coupons and 
principal may change, the real value of these remains the same. A zero coupon 
inflation indexed bond with principal equal to unity will pay out just enough in 
dollars to buy one unit of the consumer price index basket. 

A swap is an agreement between two counter parties to exchange cash flows. The 
agreement specifies the cash flows and the dates when the cash flows are to be paid. 
The most common types of swaps are interest rate swaps and currency swaps, but 
inflation indexed swaps are also traded and have gained more and more interest 
lately. In an inflation indexed swap at least one of the cash flows is tied to inflation. 

A swaption is an option to enter into a swap at a pre specified date for a pre specified 
swap rate. An inflation indexed swaption is a swaption where the underlying swap 
is an inflation indexed swap. 

Inflation linked products can be used to hedge future cash flow against inflation. 
That is particularly attractive to investors that seek asset-liability matching such 
as for example insurance companies. Inflation linked products may also be used 
for risk diversification and of course for speculation. From the issuers perspective, 
inflation linked bonds may prove as means of establishing a trustworthy inflation 
policy. 

One of the early studies on inflation derivatives was made by Hughston [14] and 
introduces a methodology based on the foreign-currency analogy. Here nominal 
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assets are thought of as domestic assets, real assets as foreign assets, and the 
consumer price index is treated as the exchange rate between the nominal and the 
real markets. Developing a theory where the dynamics of the consumer price index 
and the real and nominal discount bonds have the same structure as in a HJM 
model, Hughston shows how index linked derivatives can be treated in much the 
same way as foreign-exchange derivatives. However no derivative pricing formulas 
are calculated explicitly. 

Also relying on the foreign-currency analogy, Jarrow and Yildirim [16] have devel­
oped a three factor HJM model in order to price TIPS and options written directly 
on the inflation index. They assume that the volatilities of all asset prices and 
the consumer price index are deterministic. They use a parameterization of the 
forward volatility that corresponds to the Hull-White short rate model in order to 
obtain an explicit formula for the option. Hence they obtain pricing formulas for 
the case when bond prices are Gaussian. 

Mercurio [18] has studied the pricing of zero coupon inflation indexed swaps, year­
on-year inflation indexed swaps, as well as inflation indexed caplets and floorlets. 
The swaps are priced first using the Jarrow & Yildirim model with the Hull-White 
parameterization and then using two different market model approaches. In the 
market model, the forward CPI is modelled and is, along with the asset price 
processes, assumed to be Gaussian. A similar approach, also influenced by market 
models, have been independently suggested by Kazziha [17] who uses teh model to 
price options on inflation. 

In a more recent paper, Mercurio & Moreni [19] price inflation indexed caplets and 
floorlets under the assumption of stochastic volatility and are able to derive closed 
form solutions. 

All the above articles, except the last, are based on Gaussian interest rates and 
none admits jumps in interest rates. In this paper we will allow interest rates 
to jump. There is strong empirical evidence supporting that interest rates have 
embedded jumps. Several studies argue that jump-diffusion models more accurately 
describe the observed term structure of interest rates than pure diffusion models 
do. General explanations for jumps include surprises in the information flow. For 
instance jumps can reflect macroeconomic announcements concerning GDP growth, 
unemployment and inflation, policy shocks and monetary actions by the Federal 
Reserve. See Das [9], Johannes [12] and Piazzesi [22]. 

The literature on term structures of interest rates has evolved from pure diffusion 
models to jump-diffusions models and many of the popularly used interest rate 
models that originally was pure diffusion models have been extended to include 
also jumps. There is a rather large literature on interest rate term structures that 
considers jump-diffusion models. See for example Ahn & Thompson [1], Chacko & 
Das [11], Bjork et al. [6] and Duffie et al. [10]. 

Information surprises of the type mentioned above could cause jumps, not only 
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in nominal interest rates but also in real interest rates and in the inflation rate. 
Hence it is natural to extend the literature on inflation derivatives from pure dif­
fusion models to jump-diffusion models. Slinko [23] who considers nominal and 
real interest rates in a two-country setting, has independently proposed a jump­
diffusion model for inflation. From a practical point of view, all bonds including 
indexed linked bonds may jump and thus both the real and nominal interest rate 
should be allowed to jump. The need for including jumps in the inflation process 
is less articulate since today CPis are usually monitored discretely1 . For the sake 
of completeness we will allow also the inflation process to exhibit jumps. Further­
more, Mercurio & Moreni [19] stress the importance of the smile effect in inflation 
derivatives pricing and allows the forward CPI to have stochastic volatility. Since 
jumps, as stochastic volatility, can be used to handle smile effects (see Cont & 
Tankov [8]), it is natural to allow for jumps in the inflation process. 

The purpose of this paper is to: 

• Specify an extended HJM framework, allowing for both jumps and stochastic 
volatility for a market consisting of a money market account, zero coupon 
bonds and indexed zero coupon bonds that are based on a non-traded index. 

• Show how this framework can be used for the pricing of indexed derivatives 
without assuming a priori the foreign-currency analogy. 

• In fact, we prove that the foreign-currency analogy holds for a completely 
arbitrary process, including the case where the process does not even have 
an economic interpretation. The proof is done with fewer assumptions than 
what we have seen in the previous literature. 

• Once the foreign-currency analogy is established, the additional assumption 
of deterministic volatilities are introduced. The framework is then used to 
explicitly calculate prices of inflation indexed derivatives. Compared to the 
model suggested by Jarrow and Yildirim [16] we allow for more than three 
factors and also allow for the possibility of jumps in the economy. Thus, in 
our model the random processes describing the real and nominal market as 
well as the consumer price index are allowed to be driven by both a standard 
multidimensional Wiener process and a general marked point process. We 
assume that the intensity of the point process as well as the volatilities of all 
asset prices and the consumer price index, with respect to both the Wiener 
process and the point process, is deterministic. This assumption will assure 
us of closed-form solutions. The derivatives we price are: 

- Zero coupon inflation indexed swaps2 

- Year-on-year inflation indexed swaps 

1 For instance, the CPI is published monthly both in the United States and in Sweden. 
2 This has been proved earlier by Mercurio [18]. 
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Zero coupon inflation indexed swaptions 

Options on TIPS 3 

• Show how to hedge inflation indexed swaps when there is no jump risk. 
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• Specify two different inflation indexed swap market models. Under these 
models we price and zero coupon inflation indexed swaptions and year-on­
year inflation indexed swaptions. 

The article is organized as follows: In the next Section we will present the extended 
HJM model. We will also prove the validity of the foreign-currency analogy. Section 
3 is devoted to inflation indexed swaps. For preparatory purposes we will in Section 
3.1 show how to find the model independent price of the zero coupon inflation 
indexed swap. Then we will price the year-on-year inflation indexed swap, given 
the model specified in Section 3.2. In the last part of Section 3.1 we study hedging 
issues of inflation indexed swaps. In Section 4 we will study inflation indexed 
swaptions. We will introduce two different inflation indexed swap market models 
and use these to price the year-on-year inflation indexed swaption. This is done 
in Section 4.1. In Section 4.2 we show that the zero coupon inflation indexed 
swaption can be priced by using the inflation indexed swap market models as well 
as by the multi factor HJM model without jumps. In Section 5, options on TIPS 
are priced using the model specified in Section 3 with zero jump-volatilities. Section 
6 concludes. 

2 The extended HJM model 

In this section we specify an extended HJM model under the objective probability 
measure. From this specification we derive the dynamics of the nominal bonds, 
the inflation protected bonds, the inflation process and of what we call the (fictive) 
real bonds. Furthermore we will be able to define a real martingale measure. 
Everything will be done without using any prior assumption about the foreign­
currency analogy. We will instead show that the foreign-currency analogy does 
indeed hold. 

Assumption 2.1 We consider a financial market where all objects are defined on a 
filtered probability space (f!, F, P, F) where P is the objective probability measure. 
The probability space carries both an n-dimensional Wiener process WP and a 
general marked point process J.L(dt, dv) on JR.+ x V with compensator .>..P(t, dv)dt 
The filtration F = {Ft}t>o is generated by both WP and J.L, i.e. Ft = Ftw V Ff. 

3 Under the additional assumption of no jumps. 
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Let Pn(t, T) denote the price in dollars at time t of a nominal zero-coupon bond 
that pays out one dollar at the maturity date, T. We will refer to these bonds 
as T-bonds. Let I(t) be any stochastic process at timet. By Prp(t, T) we denote 
the price in dollars at time t of a contract that pays out I(T) dollars at time T. 
We will refer to these contracts as T-IP-bonds. If I(T) denotes CPI at timeT, 
then PI p(t, T) is the price at time t of a contract that at maturity will pay out 
the dollar value of one CPI-unit at time T. Hence, in this case p1 p(t, T) is the 
price of an inflation protected zero-coupon bond. The inflation protected bonds 
are often called TIPS-bond, where TIPS stands for treasury inflation protected 
security. Since I(t) can be any process, we can let I(t) = i(t) · 1 where l(t) is the 
temperature at the top of the Eiffel tower at timet and 1 has the unit of number of 
dollars over the squared temperature. That is I is measured as number of dollars 
per temperature degree. Then, prp(t, T) is the price at timet of a contract that 
will pay out an amount in dollars that is equal to the number of degrees on the 
scale at the top of the Eiffel tower at timeT. 

Define Pr(t, T) as 

(t T) = prp(t, T) 
Pr ' I(t) 

This implies that Pr(t, t) = 1. Note that the unit of Pr(t, T) is equal to the number 
of dollars per one unit of I. Since CPI is expressed as dollars per CPI-basket, then 
if I(t) is the CPI-index at timet, the unit of Pr(t, T) will be CPI-baskets. Hence 
Pr(t, T) is the price in CPI-baskets of a (fictive) real bond that pays out one CPI­
basket at time T. Suppose for simplicity that the CPI-basket consists of carrots 
only, then Pr(t, T) will be the price at time t, expressed in carrots, of a contract 
that pays out one carrot at time T. In the case where I denotes the temperature 
the interpretation of Pr(t, T) is a bit awkward, but of course this did not prevent 
us from defining it. If I ( t) is the temperature of the top of the Eiffel tower at time 
t then Pr(t, T) is the price, expressed as degrees, of a contract that pays out one 
degree at timeT. 

Assumption 2.2 We assume that there exists a {dollar) market forT-bonds and 
T-IP-bonds for all maturities T > 0. Furthermore we assume that for every fixed 
t, Pn(t, T) and Prp(t, T) are differentiable with respect to the maturity T. 

Define, for each fixed T, two types of instantaneous forward rates, contracted at 
timet by 

fi(t, T) = - 8ln ~t, T) fori= r, n 

Using these forward rates, we now define two types of interest rates by ri(t) 
fi(t, t) for i = r, n. If I is the CPI, then the forward rates can be interpreted as 
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the nominal and the real forward rates respectively. Analogously the interest rates 
can be interpreted as the nominal and real short rates. Finally we define Bn and 
Br by, 

Bi(t) = ef~ r'(s)ds for i = r, n 

If I is the CPI then Bn(t) is the nominal money market account at timet, measured 
in dollars while Br(t) is a (fictive) real money market account at timet, measured 
in CPI-baskets. 

Assumption 2.3 We assume that there exists a (dollar) market for the money 
market account Bn(t) 4 

Assumption 2.4 Assume that under the objective probability measure P, the dy­
namics of fr and fn for every fixed T > 0 and the dynamics of I are given by: 

di(t) 

ci(t, T)dt + ai(t, T)dW[ + i ~i(t, v, T)J..L(dt, dv) fori= r, n 

I(t)J..L1 (t)dt + I(t)a1 (t)dW{ + I(t-) i ···-/ (t, v)J..L(dt, dv) 

where ar, an, ai are :F -adapted and ~r, C, '"·/ and >.. P are :F -predictable. 

Even though the notation only states explicitly that the parameters are functions of 
time; the parameters are also allowed to be stochastic, as long as the adaptability 
and predictability requirements are fulfilled. In addition to Assumption 2.4 we 
need to know that the above processes possess some boundedness and regularity 
properties, see Bjork et al. [6]. 

Assumption 2.5 We assume that there are no arbitrage possibilities, i.e. the 
market is arbitrage free. 

From general no arbitrage theory5 it follows by Assumption (2.5) and (2.2) that 
there exists an equivalent martingale measure Qn such that, for each fixed T, 

Pn(t, T) 

Bn(t) 

PIP(t, T) 
Bn(t) 

are Qn-martingales 

This result is the main tool in the proof of the next proposition. 

It is the next Proposition, together with Corollary 2.2, that constitutes the proof 
of the foreign-currency analogy. It is an extension of the analogy proposed by 

4 Bjork et a!. [5] have shown that this actually follows from the part of Assumption 2.2 con­
cerning the nominal T-bonds. 

5 See for example Bjork [4] 
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Jarrow & Yildirim [16] from a complete market, driven by Gaussian processes, to 
an incomplete market with processes driven by a multidimensional Wiener process, 
a marked point process and possibly also stochastic volatility. We would like to 
emphasize that the proof of Proposition 2.1 is different from what is presented by 
Jarrow & Yildirim [16], since they make the additional and unneccesary assumption 
that: 

I(t)Br(t) 
Bn(t) 

is a Qn-martingale 

We believe that this assumption cannot be made a priori. Since the real market is 
fictive, we cannot consider the real money market account as a traded asset. Neither 
do we have an inflation protected money market account in the nominal market. 
Hence we cannot find suitable economic arguments for making this assumption. 
Instead we prove Proposition 2.1 without this assumption. Then, as a result of 
Proposition 2.1, we find that I(t)Br(t)/Bn(t) is indeed a Qn-martingale. This is 
done in Corollary 2.2. 

Proposition 2.1 If fn(t, T), fr(t, T) and I(t) satisfies Assumption (2.4), then I, 
Pn, PIP and Pr will under the nominal martingale measure Qn satisfy: 

di(t) 
{rn(t)- rr(t)} dt + a1 (t)dWt + [ --/ (t, v)jl,(dt, dv) (1) 

I(t-) 

dpn(t, T) 
rn(t)dt + j1n(t, T)dWt + [ 8n(t, v, T)jl,(dt, dv) (2) 

Pn(t-, T) 

dpJp(t, T) 
rn(t)dt + j11P(t, T)dWt + [ 81P(t, v, T)jl,(dt, dv) (3) 

PIP(t-, T) 

dpr(t, T) 
a(t,T)dt+/1r(t,T)dWt+ [ 8r(t,v,T)jl,(dt,dv) (4) 

Pr(t-, T) 

where 

j1i(t, T) -lT ai(t, s)ds fori= r,n 

j1IP(t,T) ai(t) + /1r(t, T) 

Ji(t, v, T) e- j,T e(t,v,s)ds _ 1 fori= r,n 

J1P(t,v,T) Jr(t, v, T) + '/ (t, v) + Jr(t, v, T)'/ (t, v) 

a(t, T) rr(t)- ai(t) · j1r(t, T)- [ Jr(t, v, T)'/ (t, v))..f(dv) 
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P,(dt,dv) 

At(dv) 

f.L(dt, dv)- At(dv)dt 

>.f (dv)(l + p(t, v)) 
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We have suppressed Qn to shorten notation soW is the Qn-Wiener process, and).. 
is the intensity of the marked point process under the Qn-measure. Furthermore 
ht and Pt(v) are the Girsanov kernels for the transition from P to Qn with respect 
to the Wiener process and the marked point process respectively. That is -ht and 
-pt(v)>.t(dv)P are the market price of diffusion risk and jump risk respectively. 

Proof. Given the ?-dynamics of fn(t, T) and fr(t, T), then Bjork et al. [6] show 
that 

where 

dpi(t, T) 
Pi(t-, T) 

+ i oi(t, v, T)f.L(dt, dv) fori= r, n (5) 

Ai(t, T) = -1T (i(t, s)ds fori= r, n 

By using the ?-dynamics of Pr(t, T) that we just obtained, together with the ?­
dynamics of I(t) that is given by Assumption 2.4, Ito's lemma gives that 

dpJp(t, T) 
PIP(t-, T) 

+ 

{rr(t) + Ar(t, T) + ~li,Br(t, T)ll 2
} dt 

{f.l1 (t) + a 1 (t) · {Jr(t, T)} dt 

+ {fJr(t, T) + a 1 (t)} dW{ + i 81P(t, v, T)f.L(dt, dv) 

where o1 p(t, v, T) = or(t, v, T) + ·/ (t, v) + -l (t, v)or(t, v, T) 

Next, we would like to change measure from P to the equivalent (nominal) mar­
tingale measure Qn. By the Girsanov theorem, we know there exist a P-adapted 
process ht and a ?-predictable process Pt ( v) 2': -l'v't, v such that dLt = htLtdW{ + 
Lt-fvPt(v){f.l(dt,dv)->.f(dv)dt} where Lr = dQ/dP on Fr so that dW{ = 
htdt+ dWt and >.t(dv) = >.{'(dv)(l + Pt(v)). Here W denotes a Qn-Wiener process 
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and >.t(dv)dt is the intensity measure of the marked point process under the Qn­
measure. We will use i1( dt, dv) to denote the compensated marked point process 
under Qn that is jj,(dt, dv) = J.L(dt, dv) - >.t(dv)dt. Hence the dynamics of I(t), 
Pn(t, T) and PIP(t, T) under Qn are given by: 

where 

di(t) 
I(t-) 

dpn(t, T) 
Pn(t-, T) 

dp1 p(t, T) 
PIP(t-, T) 

{J.L1 (t) + h(t) · c/ (t)} dt 

+ i '/(t,v) (1 + p(t,v))>.P(t,dv)dt 

+ ai(t)dWt + i ,../ (t, v, T)[l,(dt, dv) 

+ i 8n(t, v, T){l(dt, dv) 

J.L1 P (t, T)dt + {!Y(t, T) + a1 (t)} dWt 

+ i 81P(t,v,T){l(dt,dv) 

rn(t) + An(t, T) + ~II,Bn(t, T)ll 2 

(6) 

(7) 

(8) 

+ h(t)·,Bn(t,T)+ i 8n(t,v,T)(l+p(t,v))>.P(t,dv) (9) 

rr(t) + Ar(t, T) + ~ II,Br(t, T)ll 2 + J.L1 (t) 

+ a1 (t) · ,Br(t, T) + h(t) · ,Br(t, T) + h(t) · a1 (t) 

+ i 81P(t,v,T)(l+p(t,v))>.P(t,dv) (10) 

As stated above, the assumption of arbitrage free markets implies that 

Pn(t, T) PIP(t, T) 
Bn(t) Bn(t) 

are Qn -martingales 
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hence the drift of Pn(t, T) and p1 p(t, T) must equal the nominal short rate, that 
is J-Ln(t, T) = J-L1P(t, T) = rn(t). This condition together with equation (7) and (8) 
immediately gives that the Qn-dynamics of Pn(t, T) and p1p(t, T) satisfies equation 
(2) and (3) respectively. 

Next we insert the conditions J-Ln(t, T) = J-L1P(t, T) = rn(t) into the drift equations 
(9) and (10). By noting that this must hold for all T and using that 81P(t,v,T) = 
8r(t, v, T) + ,./ (t, v) + 'l (t, v)8r(t, v, T) we get three drift conditions: 

An(t, T) = - ~ lltJn(t, T) 11 2 
- h(t) · t)n(t, T) 

i 8n(t, v, T) (1 + p(t, v)) ..\f(dv) 

-~ lltJr(t, T) 11 2 
- u1 (t) · t)r (t, T) - h(t) · tJr(t, T) 

(11) 

i 8r(t, v, T) (1 + ,./ (t, v)) (1 + p(t, v)),.\f(dv) (12) 

J-L 1 (t) rn(t)- rr(t)- h(t) · u 1 (t) 

- i '/(t,v)(l+p(t,v)),.\f(dv) (13) 

From condition (13) and equation (6) we now see that under Qn the dynamics of 
I satisfy equation ( 1). 

By definition Pr(t, T) = p1p(t, T)/ I(t), so by Ito's lemma and the equations (1) 
and (3) we finally see that the Qn-dynamics of Pr(t, T) satisfies equation (4). I 

Corollary 2.1 The drift conditions that have to be satisfied under the objective 
probability measure in order for the market to be free of arbitrage are: 

un(t,T) ·(iT ur(t,s)ds- h(t)) 

- i {8n(t, v, T) + 1} C(t, v, T) (1 + p(t, v)) ..\f(dv) 
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ar(t, T) · (lT ar(t, s)ds- a 1 (t)- h(t)) 

- fv (1 + '"/ (t, v)) (1 + p(t, v)) (1 + 1sr(t, v, T)) ~r(t, v, T)>-.f(dv) 

p/(t) = rn(t)- rr(t)- h(t) · a 1(t)- fv -l(t,v) (1 + p(t,v)) >-.f(dv) 

The corollary follows from the three drift equation (11), (12) and (13) and by taking 
the T-derivative of the first two. 

Corollary 2.2 Define BJp(t) by 

BJp(t) = I(t)Br(t) 

Then 

is a Qn -martingale 

Proof. By the definition of Br(t) and the Qn-dynamics of I(t) given in equation 
(1), Ito's lemma gives that 

dBJp(t,T) n I 1 I )-
B ( T) = r (t)dt +a (t)dWt + 1 (t, v p(dt, dv) 

IP t-, V 

I 

The following results follows from the general result of Geman et al. [13]. 

Proposition 2.2 (Geman et al.) Define Q1P and QT-IP respectively by 

dQ 1 P LrdQn on Fr 

dQT-IP LrdQn on Fr 

where 

Lt 
BJp(t) Bn(O) 

Bn(t) BJp(O) 

it 
PJp(t,T) Bn(O) 

Bn(t) P1p(O, T) 

then Q1P is a martingale measure for the numeraire BIP and QT-IP is a martin­
gale measure for the numeraire P1p(t, T) 
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Thus far we have only considered nominal measures but now we shall also consider 
real martingale measures. That the next Proposition holds can be realized directly 
from the analogy to the foreign-currency. Alternatively it can easily be proved from 
Proposition 2.2. 

Proposition 2.3 Let IIn denote an arbitrage free price process in the nominal 
economy. Define the process IIr by IIr(t) = IIn(t)/I(t). Define Qr and QT,r 
respectively by 

where 

Br(t)I(t) Bn(O) 

Bn(t) Br(O)I(O) 

Pr(t, T)I(t) Bn(O) 

Bn(t) Pr(O, T)I(O) 

Then Qr is a martingale measure for the real numeraire Br(t) and QT,r is a mar­
tingale measure for the real numeraire Pr(t, T). Furthermore 

Corollary 2.3 

IIr(t) 
Br(t) 

IIr(t) 
Pr(t, T) 

Pr(t,T) 

Br(t) 

Pr(t, S) 

Pr(t, T) 

is a Qr -martingale 

is a QT,r -martingale 

is a Qr -martingale 

is a QT,r -martingale 

From standard no arbitrage theory we can now conclude that the price at time t 
of a simple contingent claim on I, <I>(Ir ), that is payed out at timeT is given by 

EQ,n [ Bn(t) <I>(J )IF,] 
Bn(T) T t 



54 Inflation Indexed Swaps and Swaptions 

where the dynamics of I under Qn are given by equation (1). Should we find it 
more convenient we can for example also write the price as 

EQ,r [ J(t)Br(t) <P(J )IF,] 
J(T)Br(T) T t 

We finish this section by making one additional assumption that will be needed for 
some of the calculations in the coming sections. 

Assumption 2.6 We assume that ar, an, ai, ~r, ~n, '""·/ and >.P are deterministic. 

3 Inflation indexed swaps 

In this section we will study inflation indexed swaps. In particular, we will price the 
zero coupon inflation indexed swap and the year-on-year inflation indexed swap. 
In what follows II[t, T, ·] is used to denote the price at time t, in dollars, of the 
payoff(·) that is payed out at timeT. Furthermore E['r[·] denotes the conditional 
expectation of (·) given :Ft under the T-forward measure QT,i where i = n for a 
nominal measure and i = r for a real measure. 

A swap is an agreement between two counter parties to exchange cash flows. The 
agreement specifies the cash flows and the dates when the cash flows are to be 
paid. In an inflation-indexed swap at least one of the cash flows is dependent on 
an inflation index or an inflation protected security. If we let T0 , T1 , · · ·, TM be a 
fixed set of increasing times and define ai by 

ai = Ti- Ti-l for i = 1, · · · , M 

Then, typically the swap starts at time T0 and the payments occur at the dates 
T1 , T2 , · · ·, TM. By a receiver swap we refer to a swap where the holder at each 
payment date receives a fixed amount and pays a floating amount. The fixed 
payment is known at the start date of the swap while the floating payment is not. 
By a payer swap we mean a swap where the payments go in the opposite direction 
to a receiver swap. 

3.1 Pricing Zero Coupon Inflation Indexed Swap 

In this Section we will price Zero Coupon Inflation Indexed Swap (ZCIIS). Mer­
curio [18] priced ZCIIS by using martingale methods and showed that the price is 
model independent. As a preparation for the next Section on Year-on-Year Infla­
tion Swaps we will also show this result. Furthermore we will provide an alternative 
proof by a simple replicating argument. 
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In a ZCIIS one party pays a fixed interest rate and receives the inflation rate over 
the specified time period. The inflation rate is calculated as the percentage return 
of the consumer price index. The other party of the swap receives the same flows 
but of opposite signs. As the name indicates, a ZCIIS has only one time interval 
[To, T] with payments at timeT and no intermediary payments. That is, cash flows 
are exchanged only once. Let Zo(T, K) denote a payer ZCIIS that starts at time 
T0 , has payment date at time T and has a swap rate equal to K. Then a fixed 
amount of 

(1 + K)T-To - 1 

is payed out at time T and floating amount of 

is received at timeT. 

I(T) - 1 
I(To) 

Let Z0 (t, T, K) denote the price of a Z0 (T, K) at timet. Then the payoff to the 
holder of a Z0 (T, K) is 

Z (T T K) = I(T) - (1 + K)T-To 0 
' ' I(To) 

and 

Z0 (To, T, K) IT [To, T, :(~;) - (1 + K)T-To] 

IT [To, T, :(~;)] -IT [To, T, (1 + Kf-To] 

where the first part is 

[ 
I(T) ] 

IT To, T, I(To) 
Pn(To, T) ET,n [I(T)] 

I(To) To 

Pn(To,T) ET,n [I(T)Pr(T,T)] = p (T. T) 
I(To) To Pn(T, T) r 0

' 

since I(t)pr(t, T)/Pn(t, T) = PIP(t, T)/Pn(t, T) is a QT,n_martingale. 

The second part is 

IT [To, T, (1 + Kf-To] = Pn(To, T)(1 + K)T-To 

Hence equation (14) becomes equal to 

Pr(To, T) - Pn(To, T)(1 + Kf-To 

(14) 

This result was first stated in the article by Mercurio [18]. We note that there is 
also a simple replicating argument that proves the result. 
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Remark 3.1 To replicate the floating leg of the swap: At time To buy 1/ I(T0 ) 

TIPS-bonds with maturity date T. Then at timeT we will receive the dollar value 
of 1/I(T0 ) CPI units, that is I(T)/I(To). The price at time To of 1/I(To) TIPS­
bonds is 1/ I(To) times I(To)Pr(To, T), ie PI p(To, T)/ I(To) = Pr(To, T). 

Remark 3.2 Regardless of whether one uses the martingale method or the repli­
cating argument to price the ZCIIS, it should be noted that no assumptions on the 
dynamics of the assets are needed. Hence this result is model independent. 

3.2 Pricing Year-on-Year Inflation Indexed Swaps 

In this Section we will price Year-on-Year Inflation Indexed Swaps (YYIIS) using 
the jump-diffusion model specified in Section 2. 

Let Y~(K) denote a payer Year-on-Year Inflation Indexed Swap that starts at 
time Tm with payment dates at Tm+l, Tm+2 , · · ·, TM. For every period [Ti, Ti+l] 
for i = m, · · · , M - 1 a fixed amount of 

is payed out at time Ti+l· For the same period a floating amount of 

ai+l [Xi+l - 1] 

where 

is received at time Ti+l· 

If we let Y~ (t, K) denote the price of a Y~ (K) at time t where t ::::; Tm, then 

M-1 M-1 
Y:!(t,K) = L II[t,Ti+1,ai+l (Xi+l -1)]- L II[t,Ti+1,ai+1K] 

i=m i=m 

M-1 M-1 
L II [t, Ti+l, ai+1Xi+1]- (K + 1) L ai+lPn(t, Ti+l) (15) 
i=m i=m 

where we have used standard no-arbitrage pricing theory. We are thus left .with the 
exercise of calculating E~-;;.1 II [t, Ti+1, O!i+1Xi+1l· However, before we do that, we 
will define the forward swap rate. We define the forward swap rate of a Year-on­
Year Inflation indexed swap to be the value of K for which the price of the swap 
is zero. We denote the forward swap rate for the swap Y~ (K) by R~ (t). Hence 
Y~ (t, R~ (t)) = 0 and so R~ (t) is given by: 

RM (t) = E~-;;.1 II [t, Ti+l, O!i+!Xi+l]- E~-;;.1 ai+lPn(t, Ti+l) 

m L~-;;.1 O!i+!Pn(t, Ti+l) 
(16) 
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Next we want to calculate 2:~-;;.1 II [t, Ti+l, ai+1XiH]· As we will see this expres­
sion is model-dependent and in order to calculate it we will use the model that 
was setup in Section 2. This will enable us to obtain explicit formulas for both the 
swap price and the forward swap rate. 

To calculate II [t, Ti+1, XiH] when t < Ti we simplify and look at the case when i = 
1. That is we calculate II [t, T2, X2] when t < T1. The general case II [t, Ti+l, XiH] 
is obtained by the obvious extention. II [t, T2, X2] is the value at timet of the payoff 
X 2 = a2I(T2)/I(T1) that is payed out at time T2 and in order to calculate it we 
will use the T2-forward measure and iterated expectation along with the fact that 
I(t)pr(t, T2)/Pn(t, T2) = PIP(t, T2)/Pn(t, T2) is a Qhn_martingale. We find that 

[ l ( ) T2 ,n [ J(T2)] IIt,T2,X2 = Pnt,T2Et a2I(T
1
) 

Pn(t, T2)a2E'{2 ,n [J(~l) E~:,n [J(T2)]] 

(t y. ) Ehn [-1-Er2 ,n [I(T2)Pr(T2, T2)]] 
Pn ' 2 0!2 t J(T!) Tl Pn(T2, T2) 

(17) 

To calculate the expected value in equation (17) we change the numeraire to the 
QT1 ,n-forward measure by using Bayes formula and the likelihood ratio L'['2 'n/T1 ,n 

where 

Hence 

Pn(t, T2) Pn(O, TI) 
Pn(t, T!) Pn(O, T2) 

Combining equation (17) and (18) we find that 

II [t, T2, X2] = a2Pn(t, T1)E'{1 ,n [pr(TI, T2)] 

(18) 

(19) 
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This result is also stated in the article by Mercurio [18]. Note that we have not 
yet made use of any model assumption. However, the expected value in equation 
(19) is model dependent. Mercurio calculates it using a diffusion model. We will 
calculate it using the jump-diffusion model specified in Section 2. 

We change measure from the nominal QTt,n_forward measure to the real QTt,r_ 
forward measure. Again we use Bayes formula and the expected value in equation 
(19) can thus be rewritten as 

Since 
LTt,n/Tt,r = __ _ dQTt,nl 

t dQTt,r t 

Pn(t,l"l) Pr(O,Jrl)I(O) 

Pr(t, l"I)I(t) Pn(O, 1"1) 

the dynamics of L'[t,n/Tt,r under QTt,r is given by: 

dLTt,n/Tt,r 
t 

LTt,n/Tt,r 
t-

+ 

{(J
n,l _ (Jr,l _ i} dWTt ,r 
t t (Jt t 

1 
bn,l br,l + I + <)r,l I 

t - t It t It jl,Tt,r(dt, dv) 
1 + br,l + I + <)r,l I v t It t It 

where we have used the simplifying notation (J~,j = (3k(t,1"j), 8~,j = 8k(t,v,1"j) 

and ,:,j = ri(t,v,Jrj)· Since both Pr(t,Jr2)/Pr(t,Jrl) and L'[t,n/Tt,T are QTt,r_ 
martingales Ito gives that 

where 
(20) 

and 
bn,l br,l + I + .cr,l I 

.6.1,2 = (8r,2 _ br,l) t - t Tt Ut Tt 
t t t 1 + 8r,l + I + br,l I 

t It t It 

where we have used that ),Tt,r = (1 + 15r,l )>. which follows from Radon-Nikodym 
derivative between the QTt,r_measure and the Qn-measure. Equation (19) thus 
gives that 

Changing back to the general case with 1 = i and 2 = i + 1 we have that 

(21) 
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Hence the pricing equation (15) is found to be 

Y~(t,K) 

M-1 

(K + 1) L O:i+lPn(t, Ti+1) (22) 
i=m 

and the forward swap rate (16) is found to be 

"'M-1 <>i+lPn(t,Ti)pr(t,T;+l)C(t,T;,T;H) _ "'M-1 . (t T ) 
RM( ) = ui=m Pr(t,Ti) ui=m a,+1Pn , t+1 

m t M-1 
I:i=m O:i+1Pn(t, Ti+1) 

(23) 

If we choose all volatilities to be zero and the volatilities of the real and nominal 
forward rates to be ~n(t, T) = ae-b(T-t) and e(t, T) = ce-d(T-t) for some positive 
constants a, b, c, d as in the model by Jarrow and Yildirim [16] then the pricing 
formula (22) reduces to that in the article by Mercurio [18]. 

As the valuation formula appears in equation (22), it looks as if one has to es­
timate real parameters in order to price a YYIIS. However, the pricing formulas 
can be rewritten so that they do not depend on any real bond prices or any real 
volatilities. Instead they will be functions of the inflation protected TIPS-bonds 
and the volatilities of these inflation protected bonds. This is good news since it 
means that we do not need to estimate any real parameters in order to price a 
YYIIS. The trick is just to use that PIP(t, Tk) = I(t)pr(t, Tk)· Hence if we extend 
the right hand side of equation ( 22) by I ( t) /I ( t). The time t price of a Y ~ ( K) 
can be rewritten as 

Y~(t,K) 

M-1 

(K + 1) L O:i+1Pn(t, Ti+I) 
i=m 

Since PIP(t, Tk) = I(t)pr(t, Tk), the Ito formula gives that (3IP = (3r + ai and 
1/ P = /jr + "YI + "YI /jr. This is what we will use to rewrite the correction term 
C(t, Ti, Ti+I) to a function of the volatilities of the TIPS-bonds rather than of the 
volatilities of real bonds. Recall that 

and 
/jn,i /jr,i + I + /jr,i I 

.6. i,i+1 = (/jr,i+1 _ /jr,i) t - t "ft t "ft 
t t t 1 + 8r,t + I + .cr,t I 

t "ft Ut "ft 
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In the nominator of C(t, Ti, Ti+I), we extend the second parenthesis in the exponent 
by +a-1 -a-1 and use the relation (31P = (3r +a-1 . In the denominator of C(t, Ti, Ti+I) 
we extend ~~,i+ 1 by (1 + -l)/(1 + -/) and use the relation oiP =Or+ -yl +"-/Or. 
We find that 

where 

Similarly the forward swap rate in equation (23) can be rewritten as 

""M-1 <>i±lPn(t,T,)pJp(t,Titi)C(t,T,,T,±i) _ ""M-1 Q· (t T ) 
R

M( ) = Ui=m PIP(t,T,) ui=m t+1Pn ' t+1 
m t M-1 

Li=m Cti+lPn(t, Ti+I) 

3.3 Hedging Inflation Indexed Swaps 

In this section we will show how to hedge inflation indexed swaps. Given Assump­
tion 2.2, the fixed cash flows of a swap is trivial to hedge. Thus we will only 
consider the floating cash flows, i.e. the inflation leg. 

The hedge of a ZSIIS is given by Remark 3.1. For the YYIIS we will only consider 
the pure diffusion case, i.e. we will find the hedge for the special case when all 
jump parameters are zero. 

Since the floating leg of a YYIIS is a sum of cash flows we can hedge each cash 
flow separately. Thus it suffice to consider the cash flow X(Ti+I) = I(Ti+I)/ I(Ti) 
that is paid out at time 1i+1 . By Remark 3.1 we know that at time Ti we can 
replicate this cash flow with a buy and hold portfolio consisting of 1/ I(Ti) inflation 
protected bonds with maturity date Ti+ 1 . The price at time Ti of this portfolio 
is p1p(Ti,Ti+I)/I(Ti)· Thus we are left with the exercise of finding a replicating 
portfolio for the claim that pays out p1 p(Ti, Ti+I)/ I(Ti) at time Ti. This is done in 
the next Proposition, which shows that replicating portfolio consists of Ti-bonds, 
inflation protected Ti-bond and inflation protected 1i+1-bonds. 

Proposition 3.1 Lett:::; Ti, and 

S1(t) Pn(t, Ti) 

S2(t) Prp(t, Ti+I) 

S3(t) Prp(t, Ti) 
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and 

where 

II[t, Ti+l, Xi+l] 

Pn(t, Ti) 

II[t, Ti+l, Xi+1] 

PIP(t, Ti+l) 

II[t, TH1, Xi+1J 

PIP(t, Ti) 

( T:·) ( T, ) Jt'(f3~·'-f3!P,i)·(f3!P,i+l_f3!P,i)ds 
II[t T X ] - Pn t, • PIP t, •+1 e 

' •+1, •+1 - (t T) 
PIP ' • 

61 

Finally letS= [S1, Sz, S3] and h = [h1, h2 , h3]. Then his a self-financing portfolio 
with value process Vh(t) and 

Note that II[t, Ti+l, Xi+1] is the price process6 that we calculated in section 3.2. 

Proof. The value process of the portfolio h is given by: 

3 

vh(t) = L hi(t)Si(t) = II[t, Ti+l, xi+1l 
i=1 

and so 
Vh(T) = PIP(Ti,Ti+l) 

' I(Ti) 

To see that his self-financing, we apply Ito's lemma to Vh(t) 

+ Vh(t)f3~,i, !3{P,i+ldt- Vh(t)f3~,i, !3{P,idt 

- Vh(t)f3{P,i. !3{P,i+ldt + Vh(t)f3{P,i, !3{P,idt 

3 

L hi(t)dSi(t) 
i=1 

I 

6 here without jumps 
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4 Inflation Indexed Swaptions 

A Swaption is an option to enter into a swap at a pre specified date for a pre 
specified swap rate. An inflation indexed swaption is an option to enter into an 
inflation indexed swap. In this Section we will price two types of swaptions, the 
zero coupon inflation indexed swaption (ZCIISO) and the year-on year inflation 
indexed swaption (YYIISO). We will start with the latter one. 

4.1 YYIISwaption 

A YYIISwaption is an option to enter into a YYIIS at a pre specified date for a 
pre specified swap rate. More specifically, let YO~ (K) denote an option to enter 
into a payer Y ~ ( K) at time T m with the fixed swap rate K and let Y 0~ ( t, K) 
denote the price of this option at time t. Then the payoff of YO~ (K) is: 

Yo::; (Tm, K) = max[Y~ (Tm, K), OJ (24) 

where according to equation (15) in Section 3.2 

M-1 M-1 

Y~ (t, K) = L II [t, Ti+l, O:i+lXi+ll- (K + 1) L o:i+1Pn(t, Ti+l) (25) 
i=m i=m 

We will state an alternative formulation of the payoff of a YYIISwaption which 
involves the forward swap rate. To find this formulation, recall from equation (16) 
the forward swap rate is given by 

RM (t) = L~-;;_.1 II [t, Ti+l, o:i+1Xi+1]- L~-;;_.1 o:i+lPn(t, Ti+l) (26) 

m L~-;;_.1 O:i+1Pn(t, Ti+I) 

For each pair m,k such that m < k, define s;;,(t) by 

k-1 

s;;.(t) = L O:i+1Pn(t, Ti+l) 
i=m 

Since s;;, is a weighted sum of tradable assets, it is a self-financing portfolio. Hence 
there exist a martingale measure for the numeraire asset s;;,. We will denote this 
measure by Q~. 

Using s;;, ( t), the forward swap rate can be rewritten as: 

(27) 
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Proposition 4.1 The forward swap rate R':n, is a Q':n -martingale. 

Proof. Since both "L~~1 II [t, Ti+ 1 , ai+1Xi+d and S!:( are self financing-portfolios, 
the numerator of R~ is a self financing portfolio. Hence R~ is the value of a self 
financing portfolio divided by the numeraire S!:(. 1 

Using the expression for the forward swap rate given in equation (27), the price of 
the swap Y ~ ( K) can be expressed as: 

Y~ (t, K) = (R:;; (t)- K) S~ (t) (28) 

and the payoff of the YYIISwaption in equation (24) can be rewritten as: 

YO:;; (Tm, K) = S~ (Tm)max[R:;; (Tm)- K, OJ (29) 

From which we see that the YO~ (K) can be regarded as a call option on the 
forward swap rate, expressed in units of s~. 

The natural choice of measure to use for pricing the YYIISwaption is the Q~­
measure. However even if we choose the jump volatilities to be zero in the model 
specified in Section 2, so that the model is purely Wiener driven, the swap rate will 
involve a sum of lognormal variables and so the swap rate has a nasty distribution 
in this model. It seems plausible that there does not exist any explicit formula for 
the YYIISwaption in this case. The problem is similar to that of pricing standard 
interest rate swaptions assuming a HJM model for the forward rates. 

For standard interest rate swaptions, the Swap Market Model by Jamshidian [15] 
is a practical solution which has proved to be very useful. This model, which is 
connected to the Libor Market Model due to Miltersen et al. [20] and Brace et al. [7] 
is based on the assumption that the forward swap rate is lognormally distributed. 
One main advantage with this assumption is that it justifies the use of Black's 
model7 for the pricing interest rate swaptions. 

In the next section we introduce an Inflation Indexed Swap Market Model. We 
too, make the assumption that the forward swap rate is lognormally distributed. 
It should be noted that this assumption does not spring from empirical evidence 
but is made for technical convenience, so as to fit Black's model also in the case of 
inflation indexed swaptions. Since inflation rates can become negative, the swap 
rate can as well. Hence this model is less suited for pricing horizons that covers 
periods of negative inflation. Being aware of this shortcoming, the model provides 
a simple solution to the pricing problem of inflation indexed swaptions. 

In section 4.1 we provide a second solution to the pricing problem of inflation in­
dexed swaptions. In this model the forward swap rates are assumed to be normally 
distributed instead of lognormally distributed. Thus this model allows for negative 
swap rates. 

7 See Black [3] 
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A Lognormal Inflation Indexed Swap Market Model 

In this Section we will define an inflation indexed swap market model. Given this 
model, we will price the YYIISwaption. 

Definition 4.1 Given a set of increasing resettlement times T0 , T1 , ... , TM we de­
fine B to be the set consisting of pairs ( m, k) of positive integers m and k such that 
0 :<:::: m < k < M. For any given pair (m, k) in B we assume that the forward swap 
rate R':r, has dynamics given by 

dR':,(t) = R':,(t)a':,(t)dW!(t) (30) 

where W! is a multidimensional Wiener process under the Q':r,-measure and a':r,(t) 
is a vector of non-stochastic functions of time. 

Proposition 4.2 For the swap market model {30}, the price YO~ (t, K) at time 
t where t :<:::: Tm of a payer Y~ is given by 

YO~ (t, K) = s;;; (t) (R~ (t)N(d1)- KN(d2)) 

where 

_1_ (ln (R~(t)) + ~L:2 M) 
L:m,M K 2 m, 

d1- L:m,M 

and 

Proof. By assumption, under the Qt;;-measure we have 

Hence conditional on timet, 
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So by letting f x ( x) denote the density function for a standard normal random 
variable and using the Q~ -measure, no-arbitrage pricing gives that 

YO~(t,K) = S![(t)E~~ [max{R~(TM)- K,O}] 

where 

S![ (t) (R~ (t)N[-(xa- L:m,M)]- KN[-xol) 

l ( K ) + ~~.M n R!{!(t) -2-
Xo = ---'--"'----'---­

L:m,M 

which proves the proposition. I 

A Normal Inflation Indexed Swap Market Model 

In this Section we will define an alternative inflation indexed swap market model 
under which we will price the YYIISwaption. 

Definition 4.2 Given a set of increasing resettlement times T0 , T11 ... , TM we de­
fine B to be the set consisting of pairs (m, k) of positive integers m and k such that 
0 :=:; m < k < M. For any given pair ( m, k) in B we assume that the forward swap 
rate R':, has dynamics given by 

(31) 

where W! is a multidimensional Wiener process under the Q':, -measure and a':, ( t) 
is a vector of non-stochastic functions of time. 

Proposition 4.3 For the swap market model {31}, the price YO~ (t, K) at time 
t where t :=:; Tm of a payer Y~ is given by 

YO~ (t, K) ~ S~ (t) ( ~ (t)N(d) - K N(d) + Em~'\') 
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where 
d= K-R~(t) 

L:m,M 
fT.,. 

L:;,,M = lt lla~ (s)ll 2
ds 

Proof. Conditional on time t, under the Q~ -measure 

R~ (TM) rv N (R~ (t), L:;,,M) 

So by letting f x ( x) denote the density function for a standard normal random 
variable and using the Q~ -measure, no-arbitrage pricing gives that 

YO~(t,K) = S~(t)E~~ [max{R~(TM)- K,O}] 

S~(t) I: max{R~(t)+xL:m,M-K,O}fx(x)dx 
S~ (t) ( { R~ (t)- K} N[-xo] + 1~ x L:m,M fx(x)dx) 

where 
R~(t)- K 

xo = 
L:m,M 

which proves the proposition. I 

4.2 ZCIISwaption 

In this Section we will price ZCIISwaptions, given a standard HJM model without 
jumps. A payer ZCIISwaption is an option to enter into a ZCIIS for a given pre 
specified swap rate at a pre specified time. Let Z00 (T, K) denote an option with 
maturity date T0 to enter into a payer ZCIIS that starts at time T0 , has payment 
date at timeT and a swap rate equal to K. Let Z00 (t, T, K) denote the price at 
timet of a Z00 (T, K). Then the payoff of this option is given by: 

ZOo(To, T, K) = max{Zo(To, T, K), 0} (32) 

where as in previous sections Z0 (t, T, K) is the price at time t of a payer ZCIIS 
that starts at time To, has payment date at timeT and a swap rate equal to K. 
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Proposition 4.4 The price, at timet, of the payer ZCIISwaption, Z00 (T, K), is 
given by 

ZOo(t, T, K) = Pr(t, T)eM N[d1]- Pn(t, T)GN[d2] (33) 

where 

ln( Pr(t,T) ) + M + E
2 

Gpn(t,T) 2 

I; 

M i
To 

t {a(s,T)-rn(s)}ds 

Proof. From Section 3.1 we know that 

Zo(To, T, K) = Pr(To, T)- Pn(To, T)(1 + Kf-To 

Hence equation (32) is equal to 

max {Pr(To, T)- Pn(To, T)(1 + Kf-To, 0} 

By letting (1 + Kf-To = G and defining 

w(t T) = Pr(t, T) 
' Pn(t, T) 

we can rewrite the payoff again so that equation (32) is equal to 

Pn(To, T) (max {w(To, T)- G, 0}) 

Using Pn(t, T) as the numeraire, the price of the swaption at timet is: 

ZOo(t, T, K) = Pn(t, T)E['n[max {w(T0 , T)- G, 0}] (34) 

Since we assume a standard HJM model without jumps, 1lt(T0 , T) is lognormally 
distributed. The Qn-dynamics of Pn(t, T) and Pr(t, T) are given by equation (2) 
and (4) with the assumption that 15n = 0 and 15r = 0. Hence by Ito's lemma the 
dynamics of w(t, T) under the nominal risk neutral measure Qn is: 

dw(t, T) 
w(t, T) 

{a(t, T)- rn(t) + (Jn(t, T) · ((Jn(t, T)- (J(t, TY)} dt 

+ {(Jr(t, T)- (Jn(t, T)} dWt 
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To change measure to the nominal T-forward measure QT,n we use that 

LT,nfn = dQT,n I 
t dQn t 

Pn(t, T) 1 

B(t) Pn(O, T) 

hence the dynamics of Radon-Nykodym is given by 

So by the Girsanov Theorem 

where * denotes transpose. Hence the dynamics of w(t, T) under the nominal 
T-forward measure QT,n is 

By Ito's lemma we find that 

dln W(t, T) { a(t, T)- rn(t)- ~ 11,8r(t, T)- ,Bn(t, T)ll 2
} dt 

+ {,Br(t, T)- ,an(t, T)} dwr·n 

Hence 

ln w(T0 , T) "'N (1n w(t, T) + M- ~
2

, 2;2) 

So by letting f x ( x) denote the density function for a standard normal random 
variable, we can write the expected value in equation (34) as 

/_:max { w(t, T)eM- E2

2 

+xE- G, 0} fx(x)dx 

The remaining part of the proof contains straight forward calculations similar to 
those in the proof of Proposition 4.2 and is therefore omitted. 1 

Since a ZCIISwaption is a special case of a YYIISwaption, the ZCIISwpation can 
also be priced using the inflation swap market models. More precisely ZOm(t, Tm+l, K) = 
YO:+l(t, G). 
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5 TIPStions 

In this section we will price a TIPStion, assuming a standard HJM model without 
jumps. A TIPStion is an option on a TIPS-bond. A call TIPStion gives the buyer 
the right to purchase a TIPS-bond for a given pre specified price at maturity date. 
Let t denote the maturity date of a call option on a TIPS-bond that pays out the 
dollar value of one CPI unit at time T. Let K be the strike price of the option. 
Then the payoff of the option at maturity is 

X= max[prp(t, T)- K, 0] 

Proposition 5.1 The price, at time 0, of a TIPStion with payoff X and maturity 
date t, is given by 

11[0, t, X]= Prp(O, T)N(dl)- Pn(O, t)KN(d2) (35) 

where 

ln (PIP(O,T)) + !I;2 
Pn(O,t)K 2 

Proof. The price of the option at time 0 is 

11[0, t, X] = 11[0, t,prp(t, T)ITA]- 11[0, t, KITA] (36) 

where 
A= {prp(t, T) > K} 

Define 
Y(s, t, T) = Pn(s, t) 

Prp(s, T) 

Since Y is the quotient of two traded assets where the inflation protected T-bond 
is the numeriare, it is a QT-IP_martingale. The Qn-dynamics of Pn and PIP are 
given by equations (2) and (3) with 15n = 0 and JIP = 0. By Ito's lemma we find 
that the volatility of Y(s, t, T) under Qn is {Jn(s, t)- {31P(s, T). Since the volatility 
is preserved under measure changes we have that the Q1 P -dynamic of Y is 
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so under QT-IP 

lnY(t,t,T) "'N (1nY(O,t,T)- ~~;2,:E2) 

Define 
r(s t T) = PIP(s, T) = 1 

' ' Pn(s, t) Y(s, t, T) 

Since r is a Qt-martingale, the dynamics under Qt is 

dr(s, t, T) = _ {f3n( t) _ f3IP(s T)} dwT-IP 
r(s,t,T) 

8
' ' s 

hence 

Using the nominal T-IP forward measure, we calculate the first part of equation 
(36) to 

11[0, t,pJp(t, T)ITA] PIP(O, T)ET;-IP [ITA]= PIP(O, T)QT-IP (PIP(t, T) ~ K) 

T IP ( ) 1) PIP(O, T)Q - Y(t, t, T ~ K = PIP(O, T)N[d1] 

Using the nominal t-forward measure we calculate the second part of equation (36) 
to 

11[0, t, KITA] 

I 

6 Conclusion 

Pn(O, t)KE6 [ITA]= Pn(O, t)KQt (PIP(t, T) ~ K) 

Pn(O, t)KQt (r(t, t, T) ~ K) = Pn(O, t)KN[d2] 

We have priced options on TIPS-bonds and zero coupon inflation indexed swap­
tions given a multidimensional HJM model for the real and nominal forward rates. 
Furthermore we have priced year-on-year inflation indexed swaps given this finite 
dimensional HJM model but extended to also allow the bond prices and the con­
sumer price index to jump. We have shown that the price of inflation indexed 
swaps can be expressed as a funtion of zero coupon bonds, inflation protected zero 
coupon bonds and volatility parameters of these bonds. Hence there is no need for 
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estimating any real parameters in order to price these swaps. In addition we have 
shown, for the case when there are no jumps that an inflation indexed swap can be 
hedged by using zero coupon bonds and inflation protected zero coupon bonds. 

We have proposed two inflation swap market models and used these to price year­
on-year inflation indexed swaptions. We have priced the zero coupon inflation 
indexed swaptions also under these models. Furthermore, we have extended and 
formally proved the validity of the so called foreign-currency analogy. 
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Paper 3 

Shifts in the Term Structure 
of Futures Prices 

We consider an arbitrage free futures price model of Heath-Jarrow-Morton type 
which is driven by both a multidimensional Wiener process and a marked point 
process. We find necessary and sufficient conditions for this model to produce a log 
futures curve that changes only trough parallel shifts. The same analysis is done 
for the case when the log futures curve changes only trough proportional shifts. 
We prove that there exists nontrivial parallel and proportional shifting log futures 
curves and we show how to specify the futures price model in order to obtain them. 
Additionally the shift functions are characterized. Finally we consider the case of all 
other single factor affine models which are neither parallel nor proportional shifting 
curves. We find necessary and sufficient conditions for the purely Wiener driven 
log futures model to admit such a strictly affine shifting curve and we characterize 
the shift functions. 
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1 Introduction 

In this paper we study the term structure of futures prices. We divide the class 
of single factor affine term structures into parallel shift, proportional shift and 
strictly affine term structures. We consider an arbitrage free futures price model 
of Heath-Jarrow-Morton (henceforth HJM) type which is driven by both a Wiener 
process and a marked point process. We investigate if, when and how this model 
can produce a log futures curve that changes only trough parallel (proportional) 
shifts. Using the terminology from Bjork and Cristensen [7] we investigate when 
the family of parallel (proportional) shifting log futures curves is consistent with 
the dynamics of the futures price model. 

We find necessary and sufficient conditions for the log futures price to have a parallel 
shift term structure and a proportional shift term structure. For the purely Wiener 
driven case we also find necessary and sufficient conditions for the log futures price 
to have a strictly affine term structure. Additionally we find the dynamics for the 
induced spot price that are necessary for admitting parallel shifts. We also find the 
dynamics for the induced spot price that are necessary for admitting proportional 
shifts, in the purely Wiener driven case. 

Futures prices have been considered by Amin and Pirrong [1 J, Schwartz [19], 
Hilliard and Reis [15] and Gibson and Schwartz [14]. These articles all use the 
so called state space approach. In the state space approach, there is an a priori 
given state vector from which the futures prices are then derived. An alternative 
approach is the HJM approach which originate from interest rate theory. In this 
approach, there is no a priori given state space vector. Instead the entire futures 
price curve is modeled. Examples of this approach, applied to the term struc­
ture of futures prices, can be found in the papers by Reisman [18], Cortazar and 
Schwartz [10], Bjork and Landen [6], Bjork et al. [4], Miltersen and Schwartz [16] 
and Gaspar [13]. In this paper we take the HJM approach. We model the fu­
tures curve in a very general setting, allowing the curve to be driven by both a 
multidimensional Wiener process and a marked point process. 

In interest rate theory the questions of consistent parallel and proportional shifts 
of the yield curve have been examined by Armerin et al. [2]. The questions and 
arguments in this study essentially parallels those by Armerin et al. [2]. Thus, as 
[2], this study rests on the approach of invariant manifolds and consistent forward 
rate curves introduced by Bjork and Cristensen [7] and later and extended by 
Filipovic and Teichmann [12] and Filipovic [11 J. 

This paper is organized as follows: In section 2 we set up the model for the dy­
namics of the futures prices and state our assumptions. Section 3 is divided into 
three subsections. In the first subsection we consider parallel shifts. In the second 
subsection we consider proportional shifts. In the third and last subsection we 
consider all other (single factor) affine term structures. That is all term structures 
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which are affine but neither a parallel shifting model nor a proportional shifting 
model. 

2 The Model 

We begin this section by reproducing the definition of a futures contract, ( see 
Bjork [3]). 

Definition 2.1 (The futures contract) Let {Xt}t?::O be an adapted process. A fu­
tures contract on Xr with time of delivery T, is a financial asset with the following 
properties: 

• At every point in time t, with 0 :::; t :::; T, there exists in the market a quoted 
object F(t, T), known as the futures price for Xr at time t for delivery at 
timeT. 

• At time T of delivery, the holder of the contract pays F(T, T) and receives 
the claim X T. 

• During an arbitrary time interval, (s, t], the holder of the contract receives 
F(t, T)- F(s, T). 

• The spot price, at any time t prior to delivery, of obtaining the futures con­
tract, is by definition equal to zero. 

The stochastic process { Xt} is commonly referred to as the underlying process of 
the futures contract. 

Assumption 2.1 All objects on the financial market are defined on a filtered prob­
ability space (fl, F, Q, F) where Q is the risk neutral probability measure. The 
probability space carries both an n-dimensional Wiener process W and a marked 
point process J..L(dt, dv) on JR+ x V where the mark space is a finite point set 
V = {1, ... , N}. The compensator is of the form v(dt, dv) and admits a pre­
dictable intensity measure >.(t, dv)dt. The filtration F = {Ft}t>O is generated by 
both Wand J..L, i.e. Ft = Fi" V Ff. -

Note that since V is a point set, >.is determined by its point masses i.e. >.i(t) = 
>.(t,{i}) fori= l, ... ,N. Thus integrals of the type fvf(v)>.(dv) are equivalent 

to sums i.e. to 2::~ 1 fi>.i. We stick to the more general notation, since this allows 
us to discuss extensions to the general marked point process. 

Assumption 2.2 There are no arbitrage possibilities, i.e. the market is arbitrage 
free. 
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A standard result states that 

F(t, T) = Et[Xr] (1) 

where Et[·J denotes the conditional expectation of(·) given :Ft under the risk neutral 
measure Q. 

One way to look at the relation between the underlying process and the futures 
price is to consider the underlying process as the primary object and the futures 
price as the secondary object that can be derived from the underlying process. If 
for instance { Xt} denotes the price process of a stock and we start by assuming that 
{Xt} evolves according to some stochastic differential equation (henceforth SDE), 
we can calculate the price of F(t, T) by using equation (1). This is an example of 
the so called state space approach. 

Another way to look at the relation between the underlying process and the futures 
price is to consider the futures price as the primary object. This is the case in the 
Heath-Jarrow-Morton (henceforth HJM) approach, where the whole curveT 1---4 

F(t, T) is modeled. Since this curve connects the futures prices with the time of 
maturity, these models are referred to as term structure models. Here Xt is the 
secondary object given by the relation 

X(t) = F(t, t). (2) 

This relation follows directly from the definition of a futures contract and is in 
agreement with equation (1). The process {Xt} is in this approach referred to as 
the induced spot process. Note that X is not necessarily the price of a traded asset. 

In this paper we use the HJM approach. Hence we will not make any assumptions 
about the underlying claim. Instead we will consider the entire term structure of 
futures contracts as the primary objects. 

Assumption 2.3 We assume that there exists a market for futures contract of all 
maturities T 2 0. 

It is clear from equation (1) that for every fixed T, F(t, T) is a Q-martingale, which 
leads us to make the following assumption. 

Assumption 2.4 Assume that under the risk neutral probability measure Q, the 
dynamics of F(t, T) for every fixed T is given by: 

{ 

~F(t, T) = ~(t, T)a(t, T)dWt + F(t-, T) fv {(t, v, T)jj,(dt, dv), 

F(O, T) = F0 (T), T 2 0 

0:::; t:::; T, 
(3) 

where a, is :F -adapted, ~ is :F -predictable and [1,( dt, dv) = J.L( dv) - At ( dv )dt and 
T 1---4 Fo(T) is a given curve. 
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Above we have used time of maturity, T, to parameterize the futures price. Even 
though this probably is the most common parameterization, it is not the only one. 
For our purposes it is more convenient to parameterize the forward prices by time 
to maturity, rather than by time of maturity. This is analogous to the Musiela 
parameterization of forward rates, (see Bjork [3] and Bjork et al. [4]). Let x denote 
time to maturity so that T = t + x. Next define F as 

F(t, x) = F(t, t + x) 

then it follow from Ito's formula and equation (3) that 

dF(t,x) 

F(O,x) 

where 

aF(t,x) 
ax dt + F(t, T)(J"(t, x)dWt 

+ F(t-, T) i ~(t, v, x)ji(dt, dv), 

Fo(x) 

(J"(t, x) 

~(t,v,x) 

a(t, t + x), 

~(t, v, t + x). 

(4) 

(5) 

(6) 

It turns out that for computational purposes it is more convenient to study the 
logarithm of F(t,x) rather F(t,x) itself. For this reason we define 

q(t,x) = logF(t,x). (7) 

We will refer to the curve x f-----+ q( t, x) at time t as the log futures curve or the 
qccurve. 

With q0 (x) = 1nF0 (x) equation (5) and (6) gives, by Itos formula, that 

J .U,(t,x) : 

l q(O,x) 

(aq1~x)- ~ 2::::1 (J"f(t,x)- fv~(t,v,x)>..t(dv)) dt 

(J"(t, x)dWt + fv ln (1 + ~(t, v, x)) J.L(dt, dv), 

qo(x). 

(8) 

If we consider each fixed time to maturity x at a time, equation (8) can be regarded 
as a scalar SDE for each fixed time to maturity x. 

However if we instead consider x as a (infinite dimensional) vector, equation (8) can 
be regarded as an infinite dimensional SDE, describing the dynamics of the entire 
qccurve at once. This is the interpretation we will use. The qt-curve, which is a 
vector of infinite dimension, can be interpreted as a point in an infinite dimensional 
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space 'H. The space 'H, which is defined as the space of all log futures curves, needs 
to be specified. This was first done by Bjork and Svensson [8], where 1t is the space 
of all infinitely differentiable functions satisfying a norm under which 1t is complete 
so that 1t is a Hilbert space. Later, the space was extended by Filipovic DF3 and 
Filipovic and Teichmann [12] to include square root processes, like the CIR process, 
which was not included with the original specification. We refer to [8], [11], [12] 
for a detailed description of the space 'H. 

To ensure that the log futures curve process is Markovian, we need to impose some 
assumptions on the structure of the volatilities and the intensity 

Assumption 2.5 We assume that: 

• The Wiener volatility structure is of the form 

a(t,x) = a(qt,x) 

where each component ai of the vector a(q,x) = [a1 (q,x), · · · ,am(q,x)] is a 
mapping from 1t x R+ to R. 

• The jump volatility structure is of the form 

~(t,v,x) = ~(qt,v,x) for all v E V 

where ~ is a mapping from 1t x V x R+ to R. 

• The intensity structure is of the form 

where for each fixed q, >..(q, .) is a nonnegative measure on V. 

Each Wiener volatility, ai is a functional of q and a function of x. However we can 
also view a i as a mapping that takes q as input and leaves the curve x ~----+ a i ( q, x) 
as output. Thus ai can be viewed as vector field on 1t, mapping ai : 1t to 'H. 
Similarly, for each fixed v in V, the jump volatility ~v can be viewed as a vector 
field on 'H. 

Assumption 2.6 We assume that the curves: 

belongs to 1t. 

x~---+ai(q,x) Vi=1, ... ,m 

X~---+~v(q,v,x) VvEV 
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In addition, some regularity conditions are needed. For instance the vector fields 
ai and ~v are required to be smooth on H. See Bjork and Svensson [8] for further 
details. 

Given our additional assumptions we can now rewrite the dynamics of qt from 
equation (8) as 

dqt ( Lqt- ~Da(qt)- [ ~v(qt)A(qt, dv)) dt 

+ a(qt)dWt + [ ln (1 + ~v(qt)) f-t(dt, dv) 

where the operators L and D are defined by 

L 

D 

a 
ax 
llll~m 

Note that by Assumption 2.5, the volatilities a and ~ does not depend directly on 
t, i.e. we have restricted our study to time homogenous systems. Non-homogenous 
models have been considered by Bjork et al. [4] and the results turn out to be 
straightforward generalizations of homogeneous results. 

In the next section we will use results concerning consistency from Bjork and 
Cristensen [7]. For this purpose we need the dynamics of Qt to be written on 
Stratonovich form. (See Protter [17] for the definition of Stratonovich integrals.) 
Hence we rewrite the dynamics of Qt once again. 

dqt ( Lqt- ~Da(qt)- ~a'(qt)aq(qt)- [ ~v(qt)A(qt,dv)) dt 

+ a(qt) o dWt + [ ln (1 + ~v(qt)) f-t(dt, dv) 

where o denotes Stratonovich integral and a~(qt) denotes the Fn§chet derivative 
with respect to the variable q. 

3 Parallel and Proportional shifts 

Definition 3.1 The log futures curve Qt is said to have a (homogenous) parallel 
shift term structure if 

qt(x) = h(x) + Zt V(t, x) E R+ x R 

where h is a time homogenous deterministic function from R+ to R and Zt is an 
adapted process. 



84 Shifts in the Term Structure of Futures Prices 

Thus as time changes, say from s to t, the entire curve Qt will shift vertically by the 
size Zt - Z 8 • Using vector notation a parallel shift term structure can be written 
as Qt = h + Zte where e(x) = 1 for all x. However will suppress the e-vector and 
just write Qt = h + Zt. 

Definition 3.2 The log futures curve Qt is said to have a {homogenous) propor­
tional shift term structure if 

Qt(x) = Ztg(x) V(t,x) E R+ x R 

where g is a time homogenous deterministic function from R+ to R and Zt is an 
adapted process. 

With vector notation this can be written as Qt = Ztg. 

Definition 3.3 The log futures curve Qt is said to have a degenerate shift term 
structure if 

Qt(x) = Zt V(t, x) E R+ x R 

where Zt is an adapted process. 

Remark 3.1 The degenerate shift term structures is both a parallel and a propor­
tional shift term structure. 

Definition 3.4 The log futures curve Qt is said to have a one dimensional {ho­
mogenous) affine term structure if 

q(t,x) = h(x) + Ztg(x) V(t,x) E R+ x R (9) 

where h and g are time homogenous deterministic functions, and Zt is an adapted 
process. 

With vector notation we write Qt = h + Ztg. 

Remark 3.2 Both the parallel shift and the proportional shift term structures are 
special cases of the affine term structure. 

We normalize by setting h(O) = 0 and g(O) = 1 thus implying that qt(O) = Zt. 
This is without loss of generality since if we start with another equation q( t, x) = 
H(x) + G(x)Yt where H(x) =f. 0 and G(x) =f. 1 we can define Z = H(O) + G(O)Y 
and g and has 

g(x) 

h(x) 

G(x) 

G(O)' 

H( ) _ H(O)G(x) 
X G(O) , 
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which will give us equation (9) with h(O) = 0 and g(O) = 1. 

Unless there is a need to emphasize the word homogenous, it will hereafter be 
suppressed. 

In the next sections we will analyze the parallel shift, the proportional shift term 
and other affine term structures. However, we will first state some results that 
applies to all cases and that will be used in each of the coming sections. 

Next, the task is to find under what conditions the model for the log futures prices 
in equation (8) produces affine log futures curves according to definition above. If 
we start with an initial curve q0 (x) that can be written on the form (9), we would 
thus like to find out what conditions that has to be satisfied in order to ensure that 
also qt(x) will be of the form (9) for arbitrary t. To answer this question we will use 
results from Armerin et al. [2] which are based on the theory on invariant manifolds 
and consistent forward rate curves developed by Bjork and Cristensen [7]. 

If we write the affine log futures curve with vector notation so that qt = h + Ztg 
where q, h and g are vectors in 1i it is clear that an affine log futures curve will 
always lie on the line that passes through the vector h and has direction g. It is 
thus natural to believe that a consistent log futures model will produce qt-curves 
that lies on this line. The next Proposition, which follows from Proposition 4.1 by 
Armerin et al. [2] formalizes this idea. 

Proposition 3.1 The futures model will have a one dimensional affine term struc­
ture if and only if the manifold defined by 

g = {q E H.; q = h + zg, z E R} 

is invariant under the action of the log futures price equation and qo E g. 

The question is now when g is invariant. The next Proposition, based on Propo­
sition 6.2 by Bjork and Cristensen [7], provides the answer. 

Proposition 3.2 Let Tg(q) be the tangent space ofQ at point q. Then g is locally 
invariant if and only if the following conditions hold for all q in g: 

Lq- ~Da(q)- ~a'(q)aq(q)- i ~v(q)A(q,dv) E Tg(q), (10) 

ai(q) E Tg(q) fori= 1, ... ,m, (11) 

ln (1 + ~v(q)) E Tg(q) for all v E V. (12) 
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Proof. The conditions in equations (10) and (11) follows directly from Proposition 
6.2 by Bjork and Cristensen [7]. The condition in equation (12) follows from the 
third invariance condition in Proposition 6.2 in Bjork and Cristensen [7] which is: 

q+ln(1 +~v(q)) E g 't/q E 9, 't/v E V 

This is true if and only if ln (1 + ~v(q)) E Tg(q) since the manifold in our setting is 
linear. I 

Since the manifold is the line that passes through h with direction g, every point 
will have the same direction g. Thus g spans the tangential manifold and so Tg = 
{zg, z E R}. Hence the invariance conditions in Proposition 3.2 can be written 
as 

Lq- ~Da(q)- ~a1 (q)aq(q)- [ ~v(q)>..(q,dv) = ~(q)g, (13) 

ai(q) = 'Yi(q)g fori= 1, ... , m, (14) 

ln (1 + ~v(q)) = <5v(q)g for all v E V. (15) 

where ~' 'Yi and <5v are smooth scalar fields on H. 

By equation (14) it follows that a~(q)ai(q) lies in Tg since the Frechet derivative 
w.r.t q, a~(q), operating on ai(q) yields 

where 'Y~(q)[g] and 'Yi(q) are real numbers and g is in H. Thus the first condition 
given in equation (13) is reduced to 

Lq- ~Da(q)- { ~v(q)>..(q, dv) = ~(q)g 
2 lv (16) 

for some scalar field \II. 

Plugging the expressions for a and~ from the equations (14) and (15) into equation 
(16) and using that 

0 ( ) I I Lq = ox h + zg = h + zg , 

yields 

1 m 1 h1(x) + zg1(x)- 2 L 'Yl(q)g2 (x)- (e"v(q)g(x)- 1) >..(q, dv) = ~(q)g(x). (17) 
i=l v 

Note that this is a drift condition, specifying that the drift term in equation (8) 
is proportional to g. This equation of course simplifies if either g1 = 0 or h1 = 0. 
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We start by analyzing the case when g' = 0, which is the case of parallel shifts. 
Thereafter we continue with the case when h' = 0, which is the case of proportional 
shifts. Lastly, in section 3.3, we will look at the case when both g' ;f: 0 and h' ;f: 0. 

Before we continue to the next section we state a Lemma, which will be of use in 
the subsequent sections. The proof follows directly from the definition of linear 
independence. 

Lemma 3.1 Assume that Y is a linear vector space and S is an arbitrary set. 
Furthermore, assume that y1 , y2 , ... , YM are linearly independent in Y and that 
a1(s), a2(s), ... , aM(s) are real valued functions ai: S--+ R. If "2:~ 1 ai(s)yi is a 
constant function of the variable s E S, then fori= 1, 2 ... , M each ai, must be a 
constant function of s E S. 

3.1 Parallel shifts 

In this section we will find conditions under which the model for the log futures 
prices in equation (8) produces a parallel shift term structure, i.e. takes the form 
qt(x) = h(x) + Zt. Furthermore we will find the spot price which is induced by a 
parallel shift term structure for the futures price. The results in this section also 
holds for the case of a general marked point process, i.e. it is not necessary for V 
to be a finite point set. 

Proposition 3.3 If a log futures price model admits parallel shifts, such that 
qt(x) = h(x) + Zt, then h(x) must have the form 

h(x)=Ax AER (18) 

Proof. If a log futures model admits parallel shifts, then by Propositions 3.1 and 
3.2, the three invariance conditions in equations (14), (15) and (17) are satisfied 
with g = 1. Since g = 1 implies that g' = 0 equation (17) gives that 

1 m 1 h'(x) = 2 L '"YI(q) + (e8
v(q)- 1) >-.(q, dv) + 'lj;(q). 

i=1 v 

Integrating over [0, x] and using that h(O) = 0 gives that 

Since the left hand side does not depend on q, the right hand side cannot depend 
on q. Hence~ "I:Z::,1 '""/f(q) fv (e8v(q)e -1) >-.(q,dv) +'lf;(q) =A for some A E R. I 
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Proposition 3.4 The log futures price model in equation (8) admits a parallel shift 
term structure if and only if 

ai(q, x) = 'Yi(q) fori= 1, ... , m, (19) 

~v(q,x) = e8v(q) -1 for all V E V, (20) 

qo(x) =a+ Ax for some a, A E R, (21) 

where -y and 8v are scalar fields, -y : 1i ---> R and 8v : 1t ---> R for all v in V. 

Thus the necessary and sufficient conditions for existence of parallel shifts in the log 
futures curve are that the volatilities in the log futures model are independent of 
time to maturity and that the initial log futures curve is linear in time to maturity. 

Proof. That the conditions (19) and (20) are necessary for existence of parallel 
shifts follows by condition (14) and (15) since g = 1. By Proposition 3.3, qt(x) 
must be on the form qt(x) = Zt +Ax, for some A in R. Especially this must hold 
for q0 (x) which implies condition (21). 

Next we prove that the conditions are sufficient for admitting a parallel shift model. 
We define a function h(x) to be of the type given in equation (18) and choose A to be 
same real number as in condition (21). We define Q = {q E H; q(x) = z + h(x), z E R}, 
thus q0 (x) is in Q. We need to show that the invariance conditions in equations 
(14), (15) and (17) are satisfied for every q such that q(x) = z + h(x) where z E R. 
Remembering that g = 1 equations (19) and (20) immediately gives the invariance 
conditions (14) and (15). To show that condition (17) is satisfied, we need to check 
that the expression 

1 m r 
h'(x)- 2 :~:::>r(q)- }" (e8

v(q) -1) >-.(q,dv) 
i=l v 

(22) 

is independent of x, i.e that it is equal to some scalar field t/J(q). But this follows 
directly, since h' ( x) = A. 
I 

Corollary 3.1 The log futures price model in equation (8) admits a non-degenerate 
parallel shift term structure if and only if the conditions in Proposition 3.4 are 
satisfied and A -1- 0. 

Proposition 3.5 For every h that satisfies h(x) = Ax with A E R, there exists 
log futures price models that admits parallel shifts with that particular h as shift 
function. 
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Proof. The model can be obtained by first choosing any real numbers "(; and 6v 
and then defining O";(q, x) ="(;fori= 1, ... , m and ~v(q, x) = e0

v -1 for all v E V. 
The intensity .>..(q, dv) can be freely specified. We can choose any real number b to 
be the spot value of the log futures curve, i.e. q(O) = b for any bin R. However to 
ensure that the shift function is exactly h(x) =Ax, the initial curve q0 (x) must be 
specified by q0 (x) = b +Ax. I 

Note that to create a model that admits parallel shifts with a particular shift 
function h(x) =Ax, we can choose any volatilities that are time independent. It 
is the initial curve alone, that determines the shift function. For instance both 
O" = 5% and O" = 40% can generate a parallel shifting curve with shift' function 
h(x) = 3x, as log as in the initial curve has h(x) = 3. 

Proposition 3.6 If the dynamics of the log futures price qt(x) are given by 

+ t "f;(q)dWf + i 6v(q)J.L(dt, dv), (23) 

q(O,x) = b+Ax forsomeA,bER, (24) 

then Qt ( x) can be represented as Qt ( x) = Ax+ Zt and Zt has the following dynamics 

Zo b, 

where 

ai(z) "fi(h + z) fori= 1, ... , m, 

f3v(z) 6v(h + z) for all v E V, 

.>..(z,dv) .>..(h + z, dv) for all v E V . 
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Proof. Since the futures price dynamics satisfies the conditions in Proposition 3.4, 
it is clear that it admits a parallel shift term structure model such that qt(x) = 
Ax+ Zt. Thus 

dq(t,x) {A-~~ 'YT(q)- [ (e8v(q) -1) At(dv)} dt 

+ ~ /i(q)dWti + [ bv(q)f.L(dt, dv) (25) 

Defining o:, (3 and ).. as above and applying Ito to qt(x) = h(x) + Zt gives the 
Z-dynamics. I 

Since Zt = In Xt, the next Corollary follows from Ito's formula. 

Corollary 3.2 The spot price, Xt, induced by a futures price that admits a parallel 
shift term structure has the following dynamics: 

dXt = XtAdt + Xto:(lnXt)dWt + Xt- fv ( ef3v(lnX,)- 1) ji(dt, dv) (26) 

Consider a tradable asset without dividends X. It follows by no arbitrage and 
Corollary 3.2, that the drift term A has to equal the short rate. Since A is constant 
over time, the short rate must also be constant. Thus we have that: 

Corollary 3.3 If the futures price of a tradable asset without dividends admits a 
homogenous parallel shift term structure, then the interest rate is constant. 

It is well known that if the interest rate is constant, then F(t, T) = Xter(T-t) 
thus implying that the log futures price has a parallel shift term structure with 
shift function h(x) = rx. However our results states that if the log futures curve 
has a parallel shift term structure, then the shift function must be h(x)=rx, which 
implies constant interest rates. 

3.2 Proportional shifts 

In this section we will search for the conditions under which the model for the 
log futures prices in equation (8) produces a proportional shift term structure, 
qt(x) = Ztg(x). Since the Propositions 3.2 and 3.1 in the beginning of this section 
are specified for qt(x) = h(x) + Ztg(x), we get the results for proportional shifts by 
letting h = 0. 

It turns out to be somewhat easier to find the sufficient conditions for a log futures 
model to admit a proportional shift term structure, hence we begin with this. 
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Proposition 3. 7 The following conditions are sufficient for existence of a propor­
tional shift term structure, such that qt(x) = g(x)Zt 

• The log futures volatilities are proportional to the shift function for all q: 

ai(q, x) = 'Yi(q)g(x) fori= 1, ... , m, (27) 

~v(q, x) = e8v(q)g(x) - 1 for all v E V. (28) 

• There exist a real number A such that 

m 

L -'fl(q) = Aq(O) Vq (29) 
i=l 

• The integral expression R given by 

R(q,y) = i (e8
v(q)y -1) >..(q,dv) (30) 

satisfies 
R(q, y) = f(y)q(O) Vq (31) 

for some mapping f : R -+ R. 

• The shift function g satisfies 

g'(x) = ~l(x) + Bg(x) + f(g(x)) (32) 

where A is the real number in (29 ), B is any real number and f is the mapping 
in {31). 

• The initial log futures curve is proportional to the shift function: 

qo(x) = cg(x) (33) 

where c is any real number except 0. 

As will become apparent in the proof, we do not make use of the earlier assumption 
that the mark space V is a point set. Thus Proposition 3. 7 is true also for a general 
marked point process. 

Proof. Define a function g such that g(O) = 1, and 

A 
g'(x) = 2 g2 (x) + Bg(x) + f(g(x)) (34) 
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where we choose A to be the real number given in equation (29), f(g(x)) is the 
function in equation (31) and B is any real number. Using this g, we define 
g = {q E 'H; q = zg, z E R}. Note that by condition (33), the initial curve, 
q0 (x), belongs to g. Equations (27) and (28) immediately gives that conditions 
(14) and (15) are satisfied for all q in g. To show that also condition (17) is 
satisfied, we need to check that the expression 

1 m r 
q(O)g'(x)- 2 L''d(q)- }~; (e8v(q)g(x) -1) >..(q,dv) 

i=l v 

is proportional to the shift function, i.e that there exist a functional 'lj;(q) such that 
the above expression is equal to 'lj;(q)g(x). Plugging in our g from equation (34) 
yields 

Aq(O) 
-

2
-g2 (x) + Bq(O)g(x) + f(g(x))q(O) 

1 m r -2 LIZ(q)- }~; (e"v(q)g(x) -1) >..(q,dv), 
i=l v 

which by using condition (31) is equal to 

A (0) 1 m 
+l(x) + Bq(O)g(x)- 2 L rf(q). 

i=l 

(35) 

For all q in g such that q(O) :f. 0, we can substitute A with the expression from 
equation (29) and thus get: 

Bq(O)g(x) 

For all q in g such that q(O) = 0, the expression (35) reduces to 0. Thus there exist 
a 'lj;, given by 'lj; = Bq(O), such that the expression is proportional tog for all q in 
g. Hence by Proposition 3.2, g is invariant and hence by Proposition 3.1 admits a 
proportional term structure. 1 

Remark 3.3 An obvious way to guarantee condition {31) is by choosing 8 and>.. 
such that 8v(q) = 8v and >..(q, dv) = q(O)>..(dv). 

It turns out to be somewhat more complicated to prove that these conditions are 
also necessary. We need to make one additional assumption in order to achieve 
the proof. We assume that the jump volatility 'v is independent of q for all v E V 
and thus 8v is independent for all v E V. Thus the jump volatility is deterministic. 
This assumption is needed in order to achieve conditions (29), (31) and (32). 
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Proposition 3.8 If the log futures price model has deterministic jump volatility, 
the conditions in Proposition 3.2 are necessary for existence of a proportional shift 
term structure, such that qt(x) = g(x)Zt, 

Proof. Assume that there exists a log futures model that admits a proportional 
shift term structure. It then follows from Propositions 3.2 and 3.1 that there exists 
a nonempty set R E R such that the manifold 

Q = { q E H; q = zg, g(O) = 1, z E R} 
is invariant. Thus the three invariance conditions (14), (15) and (17) are satisfied 
for all q E Q. The conditions (14) and (15) immediately gives condition (27) and 
(28). 

Condition (17), applied to proportional shifts is 

1 m r 
q(O)g'(x)- 2 L rr(q)g2(x)- J'v (e 8vg(x) -1) >-.(q,dv) = 1j!(q)g(x). 

i=1 v 

Note that the extra assumption gives 8v(q) = 8v independent of q. Since g(O) = 1 
for all q in Q, we have that q(O) = z. By assumption there exists a proportional 
shift curve, different from the trivial shift Qt = 0 for all t. Hence R cannot be the 
singleton set {0}. That is, there exists q in Q such that q(O) i= 0. For every q in 
Q such that q(O) i= 0 we can divide the invariance condition by q(O). Furthermore 
we use that V is a point set and thus 

1 m 1 1 M 

g' (x) = 2q(O) t; rl ( q)l (x) + q(O) 1)1( q)g(x) + q(O) t; ( e
8
'g(x) - 1) Ai(q). (36) 

For simplicity we now assume that the real numbers 81 , 82 , ... , 8 M are distinct. 
Since g(O) = 1 it follows that g' :j:. 0, thus g(x), g2 (x ), eo,g(x) - 1, e02 g(x) -
1, ... e8Mg(x) - 1 are linearly independent. By Lemma 3.1 it follows that 
2::::7:1 rf(q)/q(O) =A for some A E R, 1j!(q)/q(O) = B for some BE Rand that the 
last term in equation (36) does not depend on q, i.e. q(~) 2::::::!1 (e

8'Y- 1) Ai(q) = 
f (y) for some real valued function f. With a slight modification of the arguments, 
it can be shown that this is true also when not all real numbers 81 , 82 , ... , 8 M are 
distinct. Thus we have found that 

A 
g'(x) = 2l(x) + Bg(x) + f(g(x)). (37) 

If 0 E R then there exist q(O) in Q such that q(O) = 0. The condition (17) is here 
reduced to 

1m 1 -2 L rr(q)g2 (x)- (e"vg(x)- 1) A(q,dv) = 1j!(q)g(x) 
i=1 v 
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Similar arguments as used for the case q(O) =1- 0 yields that for every q in g such that 
q(O) = 0 it must hold that I;Z:,1 'Yf(q) = 'l/;(q) = fv (e6v(q)g(x)- 1) >.(q, dv) = 0. 

Finally q0 ( x) must be of the form q0 ( x) = cg( x) for some real number c since q0 ( x) 
belongs to g. For non-trivial shifts c =1- 0. 1 

Remark 3.4 

• If the jump volatility is deterministic, then the conditions (27)-(33) implies 
that the global intensity is proportional to q(O), i.e. 

i >.(q, dv) = q(O)C for some real number C E R. 

• If the jump volatility is deterministic and o1 , o2 , ... , oM are distinct real num­
bers, then the conditions in (27)-(33) implies that every intensity )..i is pro­
portional to q(O) for all i E V : 

>.i(q) = q(O)Ci for some real number Ci E R, ViE V. 

Corollary 3.4 The log futures price model in equation (8) admits a non-degenerate 
proportional shift term structure if and only if the conditions in Proposition 3. 7 are 
satisfied and B =/=- -A/2- f(1). 

Proof. To see that B =/=- -A/2- f(1) is a sufficient extra condition, we just note 
that if g = 1 in equation (32), then B = -A/2- f(l). 

To see that B =/=- -A/2- f(1) is a necessary extra condition, we need to show that 
B = -A/2- f(1) implies that g = 1. Inserting B = -A/2- f(1) into equation 
(32) yields 

g'(x) = Al(x)- (~A+ !(1)) g(x) + f(g(x)). 

We know that g(x) = 1 is one solution to this equation. By equations (30) and 
(31) it follows that f is differentiable with respect toy. It then follows by Picard's 
theorem g( x) = 1 is the unique solution. I 

We have seen that the conditions in Proposition 3. 7 are both sufficient and neces­
sary1 for proportional shifts. However, we can by analyzing the conditions in closer 
detail make some further conclusions. 

1 When the jump volatility is independent of q 
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Corollary 3.5 Assume that a log futures price model has deterministic jump volatil­
ity and admits proportional shifts i.e. qt(x) = g(x)Zt. Then Zt can take only 
nonnegative values or only non positive values for all t. 

Proof. If the futures price model has a diffusion term then condition (29) must 
hold. Since 2::;:1 'Y[(q) is always positive, condition (29) implies that sgn A = sgn 
q(O). If the model has a jump term, then by Corollary 3.4, fv .A(q, dv) = q(O)C for 
some real number C. Since fv .>..(q, dv) always is positive, sgn C = sgn q(O). Since 
q(O) = z, the Corollary is proved. 

I 

Proposition 3.9 Assume that a log futures price model has deterministic jump 
volatility and admits proportional shifts i.e. qt(x) = g(x)Zt. Then g'(x) must 
satisfy an ODE of the following form: 

g'(x) = 4l(x) + Bg(x) + D [ (e8
vg(x)- 1) .>..(dv) (38) 

where .A(dv) is a positive finite measure, A, Bare real numbers and DE { -1, +1}. 
A and D are nonnegative (nonpositive) when Zt is positive (negative). 

Proof. By assumption, it follows from Proposition 3.8 that 

g'(x) = 4g2 (x) + Bg(x) + f(g(x)) 

where 

f(y) = qtO) [ (e8
vY -1) .A(q,dv) 

Choose an arbitrary ij E g. Then in particular it holds that 

f(y) = q(~) [ (e8
vY -1) .A(ij,dv) 

we define .>..(dv) via 

A(dv) ~ { + >.~~,~v) 'Vv E V f ij(O) is nonnegative 

- >.~~,~v) '</v E V f ij(O) is nonpositive 

Inserting this into the expression for g'(x) we thus get equation (3.9). It is clear 
that the intensity .>..( dv) is a positive measure and that D is positive (negative) 
for nonnegative (nonpositive) q(O). By corollary 3.5, A is positive (negative) for 
nonnegative (nonpositive) q(O). Finally we remember that q(O) = z. 
I 
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Remark 3.5 If we in addition to the assumptions in Proposition 3.9 assume that 
81 , 82, ... , 8M are distinct real numbers. Then equation (38) can be replaced by: 

A M 
g'(x) = 2g2 (x) + Bg(x) + D L ( e8

;g(x)- 1) Ai (39) 
i=1 

where Ai = Ai(q)jq(O) for all q E g such that q(O) is nonnegative and Ai = 
-Ai(q)jq(O) for all q E g such that q(O) is nonpositive and with A, B and D 
as in Proposition 3. 9. 

Proposition 3.10 

1. For every g such that g' satisfies equation (38) and every positive value of Zt, 
there exist a log futures price model that admits proportional shifts, admitting 
the particular g as the shift function. 

2. For every g such that g' satisfies equation (38) and every negative value of Zt, 
there exist a log futures price model that admits proportional shifts, admitting 
the particular g as the shift function. 

Proof. To attain the positive log futures model, we first define 

Q = {q E 1i; q = zg, z E R+} 

where g satisfies equation (38). Next we choose any real numbers 11 , ... , lm such 
that .L7:1 rf = A and define ai(q,x) = riv'Q(O)g(x). We define ~(q,v,x) = 
f3(v)g(x) for some real valued function 8(v) on V and A(q,dv) = q(O)A(dv) for some 
positive finite measure A(dv) on V. It is clear that the conditions in Proposition 
3. 7 are satisfied for every q in g an thus we are done. 

The negative log futures model is obtained as follows. Define 

Q={qE1i; q=zg, zER_} 

where g satisfies equation (38). Next choose any real numbers 11 , ... , lm such that 
.L7:1 rf =A and define ai(q,x) = ri)-q(O)g(x). Define ~(q,v,x) = /3(v)g(x) and 
A(q,dv) = -q(O)A(dv) for some real valued function 8(v) on V and some positive 
finite measure A(dv) on V. I 

Examples 

In Proposition 3.9, equation (38) gives an expression for g' rather than for g since 
it is not possible to solve for g in the general case. However there are some simple 
special cases in which equation (38) can be solved analytically. We consider the 
case where Zt takes only positive values. First we consider the case of a purely 
Wiener driven log futures model that admits a proportional shift term structure. 
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Example 1 (The purely Wiener driven log futures model) 
By Proposition 3.9 equation (38) reduces to 

97 

which is a Riccati equation that can be solved by separation of variables: By letting 
y = g(x) we have that 

J (i- ~ ) dy 
y ~+B 

2 

J dx+c 

for some constant c. Thus 

1 1 Ay 
-ln y- -ln(- +B) = x +c. 
B B 2 

Replacing g(x) = y, rearranging terms and using the initial condition g(O) = 1, 
finally yields that 

eBx 

g(x) = 1 + 2~ (1- eBx). 

It then follows by Proposition 3.8 that the dynamics of q reduces to 

m 

dq(t,x) = Bq(O)g(x)dt + g(x) L ri(q)dWf 
i=l 

where 2:::1 rf(q) = Aq(O). Thus we can define a scalar Wiener process W by 

dW= k fri(q)dWi 
Aq(O) i=l 

and rewrite the dynamics of q as: 

dq(t, x) = Bq(O)g(x)dt + g(x)J Aq(O)dWt. 

Since qt(x) = Ztg(x), Ito gives that 

This is a CIR process with mean reversion level zero. 

We have thus proved the following Corollary. 

(40) 
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Corollary 3.6 If a purely Wiener driven log futures model admits proportional 
shifts such that qt = Ztg(x) then it must hold that 

eBx 

g(x) = 1 + 2~ (1- eBx) 

and 
dZt = BZtdt + ~dWt 

where A and B are real numbers and Wt is a scalar Wiener process. 

Remark 3.6 A CIR process with zero mean reversion level will in finite time be 
absorbed at 0 a.s. (See Cairns [9}.) Thus the only proportional shifts that can be 
admitted by a purely Wiener driven model are the degenerate shift qt ( x) = Zt and 
a shift model which eventually becomes the trivial qt(x). 

Since Zt = ln Xt, the next Corollary follows from Ito's formula. 

Corollary 3. 7 The spot price, Xt, induced by a futures price that admits a pro­
portional shift term structure has the following dynamics: 

dXt = Xt lnXt { B + ~} dt + XtV AlnXtdWt. (41) 

Example 2 (The pure jump driven log futures model) 
Here we consider the special case when the log futures model is a pure jump process. 
We assume that Nt is a counting process with intensity Aq(O) for some positive real 
number A and that the log futures curve satisfies the SDE 

dq(t, x) = (Jg(x)dNt. ( 42) 

Thus the Wiener volatility u is zero. For tractability reasons we have also assumed 
that the drift term is zero. If this model admits a proportional shift term structure, 
then by equation (38), 

g'(x)= (1-e,6g(x))A. 

By letting f(x) = e,6g(x) this can be rewritten as 

J'(x) = -A(Jf2 (x) + (JAJ(x), 

which can be solved by separation of variables. After some calculations and using 
the initial condition g(O) = 1 we find that 

1 
g(x) =AX- /3ln(e-,6- 1 + e>.,6x). 

Since Zt = qt(O) and g(O) = 1 we see from equation (42) that 

dZt = (JdNt. 
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3.3 Other affine shifts 

Recall that the log futures model is said to have an affine term structure if 

q(t,x) = h(x) + Ztg(x) \i(t,x) E R+ x R (43) 

We divide affine term structure models into four categories: 

1. Parallel shifts: 
g'(x) = 0 

2. Proportional shifts: 
h'(x) = 0 

3. Strictly affine shifts: 
h' (X) -=j:. 0 g' (X) -=j:. 0 

Thus far we have studied the two first cases of an affine term structure, the parallel 
structure and the proportional structure. In this section we will analyze the affine 
structures which are neither parallel nor proportional. We call these other shifts 
strictly affine shifts and define them via item 3 above. 

Proposition 3.11 A log futures model with deterministic jump volatility that ad­
mits strictly affine shifts such that q( t, x) = h( x) + Ztg( x), must have h' ( x) linearly 
dependent on g(x), g2 (x) and (e8'g(x)- 1) for all i E V. 

Proof. Assume h'(x) is linearly independent of g(x), g2 (x) and (e<l,g(x)- 1) for 
all i E V. If the model admits a strictly affine term structure model then by 
Propositions 3.2 there exist a nonempty set R ~ R where R =/=- {0} such that the 
manifold 

g = { q E H; q = h + zg, z E R} 
is invariant for all q in g. Thus by Proposition 3.1 the three invariance conditions 
(14), (15) and (17) are satisfied. 

For every q in g such that q(O) =/=- 0, equation (17) gives that 

g'(x) 1 ~ 2 2 1 
2q(O) ~ /i (q)g (x) + q(O) '1/J(q)g(x) 

+ 1 "' ( 8 (x) ) h'(x) - ~ e ' 9 - 1 Ai(q)- --. 
q(O) q(O) 

For simplicity we now assume that the real numbers (h, (h, ... , 8M are distinct. 
Since g(O) = 1 it follows that g' -=j:. 0, thus g(x), g2(x), e81g(x) - 1, e82g(x) -
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1, ... e6Mg(x) - 1 are linearly independent. Thus by Lemma 3.1 it follows that 
1/q(O) is independent of q. This is impossible and thus h'(x) cannot be linearly 
independent of g(x), g2 ( x) and ( e&,g(x) - 1) for all i E V if it admits a strictly affine 
term structure. With a slight modification of the arguments, this contradiction can 
be shown also for the case when not all real numbers (h, (h, ... , 8M are distinct. 1 

Proposition 3.12 There exist a purely Wiener driven log futures price model that 
admits a strictly affine shift term structure, such that qt(x) = h(x) + g(x)Zt if and 
only if 

• The function h satisfy 
h'(x) = ag(x) 2 + bg(x) (44) 

where a and b are real numbers, not both equal to zero. 

• The log futures volatilities are proportional to the shift function for all q: 

ai(q, x) = /'i(q)g(x) fori= 1, ... , m, (45) 

• There exist a real number A such that 

m 

L 'Yf(q) = 2a + Aq(O). (46) 
i=l 

• The shift function g satisfies 

g'(x) = ~g2 (x) + Bg(x) (47) 

where A is the real number in (46) and B is any real number. 

• The initial log futures curve is strictly affine: 

Qo(x) = h(x) + cg(x) (48) 

where c is any real number except 0. 

Proof. It follows by Proposition 3.11 that h must be of the form (44). Thus by 
Propositions 3.2 and 3.'1 there exist a manifold 

g = { q E H; q = h + zg, h = ag2 + bg, z E R, R ~ R} 
such that for all q in g, the three invariance conditions (14), (15) and (17) are 
satisfied. 
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For every q in g such that q(O) f:. 0, equation (17) gives that 

g'(x) = 2q~O) {~ "r'f(q)- 2a} g
2
(x) + q(~) N(q)g(x)- b} 

+ qtO) i ( e8v(q)g(x) - 1) )..(q, dv). 

Since the left hand side does not depend on q, the right hand side cannot depend on 
q either. Since g and g2 are linearly independent condition (46) follows by Lemma 
3.1. The rest of the necessary part follows similarly as in Proposition 3.8. 

Next we show that the conditions are sufficient. For some function g, define h as 
in equation (44). Define the function g such that g(O) = 1 and 

(49) 

where we choose A to be the real number given in equation ( 46) and B is any real 
number. Using the g and h just defined, we define g = { q E 7t; q = h + zg, z E R}. 
Note that by condition ( 48) the initial curve is in 9. Equation ( 45) immediately 
gives that the condition (14) is satisfied for all q in 9. To show that also condition 
(17) is satisfied, we need to check that the expression 

h'(x) + q(O)g'(x)- ~ f --yf(q)l(x) 
i=l 

is proportional to the shift function, i.e that there exist a functional '1/J(q) such that 
the above expression it is equal to 'lj;(q)g(x). Plugging in our g and h from equation 
(49) and (44) respectively yields 

(Aq(O; + 2a) g2(x) + (Bq(O) +b) g(x)- ~ f IZ(q). (50) 
i=l 

For all q in g such that q(O) f:. 0, we can substitute A with the expression from 
equation ( 46) and thus get: 

(B + b)q(O)g(x). 

For all q in g such that q(O) = 0, the expression (50) reduces to 0. Thus there exist 
a '1/J, given by 'lj; = (B + b)q(O), such that the expression is proportional tog for all 
q in Q. Hence by Proposition 3.2, g is invariant and by Proposition 3.1 it admits 
a strictly affine term structure. I 

Proposition 3.13 If there exists a log futures price model that admits strictly 
affine shifts, such that qt(x) = h(x) + g(z) and h'(x) = ag2(x) + bg(x) then 
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• g'(x) must satisfy an ODE of the following form: 

g'(x) = ~g2 (x) + Bg(x) (51) 

where (3( v) is a real valued function on V, A( dv) is a positive finite measure, 
A and B are real numbers and C E { -1, +1 }. 

• When a ~ 0 and Zt is positive {negative), then A must be positive (negative). 

Proof. Suppose that a ~ 0. By restriction ( 46) it follows that if q(O) > 0, then A 
must be positive since L::;:1 rf(q) is positive. If instead q(O) < 0, then A must be 
negative. I 
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