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The two-price market theory is based on a new performance measure - ac-

ceptability indices, and provides a new way to describe incomplete markets. Unlike

the classical option pricing theory, in which the risk-neutral measure is unique and

derivatives are bought or sold at the same prices, in two-price markets - the unique-

ness of risk-neutral measure is not guaranteed, and derivative prices are determined

by the direction of the trade.

Based on the two-price market theory, this dissertation presents an argument

for the advantages of trading options spreads and exotic options from investors’

point of view. It is shown that from the investors’ perspective, the price of buying

these products is always lower than the price of trading their-component options

separately, and the price of selling these options is always higher than the price of

trading their-component options separately. The trading advantages of bull, bear,

strangle and butterfly spreads, as well as cliquet options, reverse cliquet options and

spread options, are illustrated with mathematical proofs and numerical work. We



also investigated the role of volatility, maturity, stress level and market skewness in

the trading benefits of these products. It is observed that the greater the complexity

of structured products, the greater packaging benefits of trading them.

Moreover, an investigation of liquidity risk implied by market option bid and

ask prices was conducted. The liquidity risk parameter included in option bid and

ask prices is modeled as a nonlinear function of strike prices and a linear function

of maturities. The Variance Gamma Scaled Self-Decomposable process is used to

model the risk-neutral process of the underlying asset. Calibration using market

option bid and ask prices could help to reveal the model parameters. The analysis

is performed on quarterly SPX, NDX and DJX options for the years 2007-2010.

A detailed structure of the implied liquidity parameter suggests that call options

are more liquid than put options. The implied liquidity parameter for at-the-money

options suggests that great liquidity risk existed during the eruption of the subprime

crisis in 2008.
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Chapter 1

Introduction and Preliminary Background

What you risk reveals what you value.

- Jeanette Winterson (1989)

1.1 Overview

European call and put options were first traded on the exchange market in

London in the 17th century. Today, many derivatives are traded on the Over-

The-Counter (OTC) market, which give the investors various choices to hedge and

speculate. However, the birth of options can be traced back to the 16th century.

Those option contracts were mainly for the tulip trade. In 1636, in order to speculate

on the soaring price of tulips, extensive trading of options on tulips led to the crisis

named tulip mania. History repeated itself in 2008, when the subprime mortgage

crisis took place. This time, speculated assets are not tulips but housing prices, and

the speculating instruments are not just options but more complicated derivatives.

The aftermath of the subprime mortgage crisis has led to derivatives and the OTC

market been blamed for the lack of regulations. On the other hand, the deficiencies of

models that are used to study today’s complex dynamic market invokes the research

interest on risk and derivatives.

Risk or the uncertainty in stock prices determines the price of derivatives.
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Stochastic processes are just one way to describe uncertainty in the future. The

marriage of stochastic processes and finance started in 1900 when the first mathe-

matical model to study the dynamics of stock markets was proposed by the French

mathematician Louis Bachelier [4]. In his model, the stock price S = {St, t ≥ 0} at

time t could be modeled as St = S0 + σWt, where S0 is the initial stock price, σ is

the volatility of the stock prices and Wt is a Brownian motion or a Wienner process.

Simply put, a Brownian motion {Bt : t ≥ 0} starts from 0 at the initial time with

independent increments Bti+1
− Bti following a normal distribution N(0, ti−1 − ti)

with zero mean and variance ti−1 − ti. The brilliant idea to use a Brownian motion

in modeling stock markets opened up a research area applying stochastic processes

to stock markets. The major flaw in this model is that stock prices can be negative.

During the following decades, a geometric Brownian motion (GBM) was introduced,

demonstrating that the log stock price, lnSt, follows a Brownian motion, i.e,

dln(St) = µdt+ σdWt,

where µ is the drift of the process. Then, the stock price at time t, St could be

written as:

St = S0e
(µ−σ2/2)t+σWt .

Compared with Bachelier’s model, the stock price St follows a geometric normal

distribution, rather than a normal distribution, which solves the problem of the

existence of negative stock prices. Option valuation on GBM soon became a hot

research topic in 1960s. However, researchers remained mired in the problem of

finding the risk premiums of options. In 1970s, Fisher Black and Myron Scholes [11]
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proposed the risk-neutral pricing method and dynamic hedging idea; this resulted in

the unique analytical solutions of European call and put options, called the ”Black-

Scholes formula,” by solving the stochastic partial differential equation. The story

on how they came up with the option formula could be found in [10]. Later, Robert

Merton [44] approached the same formula from other angles. Their work on the

risk-neutral pricing and dynamic hedging lay down the foundation for asset pricing

theory.

According to the asset pricing theory, all derivatives are priced under risk-

neutral measure in order to satisfy the non-arbitrage condition. Under the risk-

neutral measure Q, the drift µ in the GBM is the risk-free rate. For example, to

price a European call option, with the strike price K, the expiration date T , the

risk free rate r and the volatility as σ, the price of the European call at time t is

given by

C(t) = e−r(T−t)EQ[(ST −K)+].

This equation states that the option price at time t is the expectation of the terminal

payoff under the risk-neutral measure discounted at the risk-free rate.

Under the risk-neutral measure Q, the discounted stock price and the dis-

counted values of derivatives are martingales. Hence, the discounted stock price

and the discounted values of derivatives have no tendency to rise or fall during the

following time period. The option prices valued under the risk-neutral measure are

no different than under other probability measures, for instance, the physical mea-

sure. The reason that there is no pricing under the physical measure is that the
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discounted rate for the expected payoff under the physical measure could not be

easily obtained. On the other hand, the expected log return of any stock and the

discounted rate are the risk-free rate r under the risk-neutral measure. Black and

Scholes noticed that the option pricing process is independent of the risk prefer-

ences; here, this is represented in the model as µ. In other words, the expected rate

of log return on the underlying stock in the real world is not involved in the option

valuation. Therefore, we can treat the risk-neutral measure as an artificial device

for obtaining option prices.

The other major contribution of the Black-Scholes-Merton (BSM) model is

dynamic hedging. The option could be replicated by trading the stock and a money

market account dynamically in any infinitesimal time interval. In other words, we

can build up a riskless portfolio of the stock and the derivative. In a very short

time period, the gain or loss from the stock position offsets the gain or loss from the

derivative position. This is because the sources of uncertainties in the stock and the

option are the same: the movement in stock prices. Hence, the expected return of

this portfolio is the risk-free rate during this short time period. The delta hedging

states that for a short position in one call option, a long position in δ, number of

shares of stock would make this portfolio riskless, where δ = ∂C/∂S. δ is then

defined as the rate of change in the option prices with respect to the stock prices.

The dynamic delta-hedging requires that we continuously rebalance the position in

stocks in order to make the portfolio riskless in any infinitesimal time interval. We

can also see that the δ of the position in the stock offsets the δ of the position in

the option. This makes the δ in the riskless portfolio zero. In any infinitesimal time

4



interval, we have ∆C = δ∆S, and thus, the hedging cost δ∆S is indeed the option

price.

The successful BSM model as long as the Greeks became an extraordinary

powerful tool in research and trading. Empirical studies also demonstrate the de-

ficiencies in this model [21]. First, the implied volatility obtained by fitting the

market option prices by the BSM model is a function of strike price K with a shape

called the ”volatility smile,” whereas the volatility is assumed as a constant in the

model. Second, the generic properties of Brownian motion - continuity and scale

invariance - are not suitable descriptors for price behavior. Jumps exist in the paths

of stock prices over all time scales, especially short horizons (like intraday). Con-

tinuity in Brownian motion is insufficient to portray price movement. The scale

invariance states that the statistical properties of randomness in stock prices are all

the same for all time horizons. Market price behavior shows that jumps dominate

the movement in short time scales, and continuities dominate for long time scales.

Merton [45] then introduced a jump model into financial modeling. After that, stud-

ies of the combination of diffusion and jump processes, i.e., Lévy processes enrich

the research of mathematical finance. Popular Lévy processes, will be presented in

Section 1.2.

In the BSM world, the market is complete with existence of only one risk-

neutral measure. The benefit of being in complete markets is that all derivatives

can be perfectly replicated or hedged. This makes derivatives redundant in complete

markets. The prices of derivatives are the hedging costs. In a world with jumps,

market completeness becomes an exception, derivatives are not redundant, the risk-
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neutral measure is not unique and a perfect hedge does not exist. Under the BSM

model, a European call option is an instantaneously linear function of the underlying

asset in continuous time, resulting in perfect hedging. When jumps come in, the

linearity breaks down with positive variance of the jump term, which makes option

prices a nonlinear function of the underlying assets. This is the reason why a perfect

hedge does not exist in jump diffusion processes [21]. Incomplete markets are a fact

of life in the real world. Hedging in incomplete markets is necessary to minimize

the risk between the target payoff and its approximation by a trading strategy [26].

Thus, measuring this risk leads to various kinds of hedging approaches. The common

ways to hedge in incomplete markets are: superhedging, utility optimization, local

quadratic hedging, mean-variance hedging, and etc. Three important theories to

price and hedge in incomplete markets are indifference pricing [13], good deal bounds

[9] and coherent risk measures [3]. The conic finance theory [18] used in this study

is developed based on the coherent risk measures.

Cherny and Madan [18] developed a new performance measure called indices of

acceptability. These indices of acceptability are used to evaluate the quality of cash

flows, similar to the Sharpe ratio and the Gain Loss ratio, with improved economical

properties. The acceptability index, defined as a nonnegative real number, is associ-

ated with a collection of random cash flows that are acceptable at this nonnegative

real number. They then proposed conic finance theory [19], which described the

illiquid market as a counterparty. Bid and ask prices can be valued by the distorted

expectation, with acceptability indices as parameters. These closed-form formulas

for the bid and ask prices of European options are easily implemented and make
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possible the calibration of bid and ask option prices at the same time. The many

applications of the conic finance theory include credit, liquid risk modeling [23] [34]

using option prices, capital, profit, leverage and rate of return [17], dynamic gamma

hedging using nonuniform grids [30], dynamically consistent bid and ask prices using

a Markov chain [36], and etc. This two-price market based on the conic finance the-

ory does not only use option surface calibration for the mid-quote, with prices never

traded on the market. It also provides a new approach to studying the liquidity

risk.

The rest of Chapter 1 will briefly introduce the Lévy processes that will be

used in this study, and the Fast Fourier Transform (FFT) based methods widely

used for recovering probability density function, distribution function and option

pricing. Chapter 2 will present the general idea of conic finance theory and how

to carry out option pricing in two-price markets. In Chapter 3, trading advantages

of structured products will be studied using the two-price market theory. Analysis

on options spreads and exotic options illustrate the benefits of packaging from the

investor’s perspective. The option implied liquidity will be studied in Chapter 4.

Analysis on major index options through the lens of the subprime mortgage crisis

offers insight into liquidity risk.

1.2 Lévy Processes in Finance

1.2.1 Definition and Properties

Definition 1.1. Lévy Process
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Lévy Proces is a ”cadlag” (right continuous and left limit) stochastic process X =

{Xt, t ≥ 0} on (Ω,F,P) with the following properties:

1. X0 = 0.

2. These random variables Xti+1
−Xti, for any 0 ≤ ti ≤ ti+1 are independent.

3. These increments Xti+∆t − Xti are stationary: the law of Xti+∆t − Xti is inde-

pendent of time t.

4. Jumps occur at random times, i.e., ∀ε > 0, lim∆t→0 P (|Xt+∆t −Xti | ≥ ε) = 0

One special property of Lévy processes is infinitely divisibility, which states

that the random variable Xt has the same distribution of a sum of n i.i.d. random

variables whose distribution is that of Xt/n, for any t > 0 and n > 1.

Definition 1.2. Infinitely Divisible

If the n-th convolution root of a probability distribution F is also a probability dis-

tribution, for any integer n > 1, the distribution F is said to be infinitely divisible.

Some examples of infinitely divisible laws are the Gaussian distribution, the

Gamma distribution, α-stable distribution and the Poisson distribution. The follow-

ing proposition states the relationship between the infinitely divisibility and Lévy

processes.

Proposition 1.3. For any Lévy processes X = {Xt, t ≥ 0}, for every t, {Xt} has an

infinitely divisible distribution. Conversely, given any infinitely divisible distribution

F , there is a Lévy processes {Xt} with the distribution of {X1} given by F.

This proposition implies that as long as we know the distribution of {Xt}

at a unit time, then the corresponding Lévy process {Xt} is determined. Using

8



this proposition, the characteristic function of a Lévy process {Xt}, ΦX(u) can be

written as:

ΦX(u) = etψX1
(u),

where ψX1
(u) is called the characteristic exponent of {Xt}. If we know a general

expression for the characteristic function of any infinitely divisible distribution, all

Lévy processes could be specified. Lévy-Kinchin formula presents the general ex-

pression for the characteristic function of Lévy processes.

Theorem 1.4. Lévy-Kinchin Representation

For any Lévy process X = {Xt, t ≥ 0} with characteristic triplet (A, ν, λ), its char-

acteristic function can be represented as:

ΦX(u) = etψX1
(u),

with

ψX1
(u) = iλu− 1

2
Au2 +

∫
R

(eiux − 1− iux1x≤1)ν(dx). (1.1)

In order to address the problem that how the statistical properties of re-

turn r(∆t) change with the time resolution ∆t, issues on scale invariance and self-

similarity were studied during 1990s. In other words, given a stochastic process

X = {Xt, t ≥ 0}, we want to study whether the statistical properties change or not

at different time resolutions.

Definition 1.5. Self-similarity

A stochastic process X = {Xt, t ≥ 0} is called self-similar if we have:

Xt
d
= tλX1,
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with the self-similar exponent λ > 0.

This states that the two Xt and cλX1 have the same distribution. The most

famous self-similar process is non-drift Brownian motion with λ = 1/2, and Brown-

ian motion with drift is not a self-similar process but a self-affine process [21]. The

only self-similar processes in Lévy processes are the symmetric α-stable processes

with the self-similar exponent λ ∈ [1
2
,∞] [21]. The symmetric α-stable processes

include the non-drift Brownian motion and processes with infinite variance. The

self-similarity in Lévy processes is due to heavy tailed independent increments.

Self-decomposable laws are associated with limit laws which state the laws of

centered sum of n independent random variables scaled by some constants when n

goes to infinity. The central limit theorem is a special case of limit laws. Lévy and

Khintchine connected self-decomposable laws with limit laws.

Definition 1.6. Self-decomposable Laws

For any constant c, c ∈ (0, 1), a random variable X is said to be self-decomposable

if

X
d
= cX +X(c),

where the random variable X(c) is independent of X.

The above equation states that the distribution of self-decomposable random

variables can be written as the sum of two parts, one is a scale down version of its own

cX, and the other is independent residuals X(c). Self-decomposable laws are sub-

class of infinitely divisible laws. The characteristic function of the self-decomposable

10



laws has the following form:

E[eiux] = exp

(
ibu− 1

2
Au2 +

∫ ∞
−∞

(eiux − 1− iux1|x|<1)
h(x)

|x|
dx

)
,

where A ≥ 0, b is a real constant,
∫∞
−∞(eiux − 1 − iux1|x|<1)h(x)

|x| dx < ∞. h(x) is

called the self-decomposability characteristic (SDC). Carr et al. [15] summarized

the special condition for infinitely divisible laws being self-decomposable based on

their characteristic functions. If the self-decomposability characteristic (SDC), h(x),

is increasing with negative x and decreasing for positive x, this infinitely divisible

law is self-decomposable. They then built up the processes associated with a self-

decomposable law at unit time.

1.2.2 Variance Gamma Model

The variance gamma process (VG) was first developed by Madan and Seneta

[42] as a two-parameter model, which is now called the symmetric variance gamma

process. Then Madan and Milne [35], Madan et al. [33] extended this model to a

three-parameter variance gamma model. Within the variance gamma process, the

Brownian motion at a random time change is given by a gamma process. In other

words, the continuously compound return during a unit time is normally distributed,

conditional on the realization of a random time, where the random time has a gamma

density. These three parameters are: the volatility of the Brownian motion σ, the

variance rate of the gamma time change ν and the drift of the Brownian motion θ.

Definition 1.7. Variance Gamma

If a random variable XV G(t;σ, ν, θ) follows a variance gamma process, the process

11



can be written as

XV G(t;σ, ν, θ) = θg(t; ν) + σW (g(t; ν)),

where g(t; ν) is a gamma process. The characteristic function is

ΨV G(u) = (1− iθνu+ σ2u2ν/2)−
1
ν . (1.2)

Variance gamma can be proved to be self-decomposable since its self-decomposability

characteristic h(x) is increasing with negative x and decreasing for positive x. Table

1.1 lists the characteristics of the Variance Gamma distribution.

Table 1.1: Moments of the Variance Gamma Process

V G(θ, σ, ν)

Mean θ

Variance σ2 + νθ2

Skewness θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2

Kurtosis 3(1 + 2ν − νσ4/(σ2 + νθ2)2)

1.2.3 Variance Gamma Scaled Self-Decomposable Process

The risk-neutral process for the stock price S(t) of Variance Gamma Scaled

Self-Decomposable (VGSSD) model follows:

S(t) = S(0)ert
eY (t)

E[eY (t)]
,
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where Y (t) is a self-similar additive process with Y (λµt)
d
= a(λ)a(µ)Y (t), a(t) = tλ,

r is the risk free rate. Then the characteristic function of ln(S(t)) is

E[eiuln(S(t))] = eiu(ln(S(0))+rt−ln(ΨY (t)(−i))ΨY (t)(u). (1.3)

The law of Y (t) as tλX(1), where X(1) follows a VG process, is

ΨY (u, t) = (1− iθνutλ + σ2u2t2λν/2)−1/ν . (1.4)

Substitute Eq(1.4) into (1.3), the distribution law of the log stock price at any

maturity could be obtained. The moments of VGSSD presented in [47] are listed in

Table 1.2.

A recent review on stochastic processes in finance by Madan [31] summarized

Lévy processes and Sato processes. More description on jump processes could be

found in [21] [48].

Table 1.2: Moments of the Variance Gamma Scaled Self-Decomposable Process

V GSSD(θ, σ, ν, γ)

Mean θtγ

Variance (σ2 + νθ2)t2γ

Skewness θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2

Kurtosis 3(1 + 2ν − νσ4/(σ2 + νθ2)2)
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1.3 The Fast Fourier Transform Based Methods in Option Pricing

Since the development of the famous Black-Scholes option model, more compli-

cated option models have been developed. Unfortunately, unlike the Black-Scholes

model, most of them do not have closed-form solutions. Thus, efficient numerical

methods are needed to price complex financial derivatives and calibrate various fi-

nancial models. There are three major types of numerical methods used for option

pricing: 1) Monte Carlo simulation, 2) partial integro differential equation, and 3)

numerical integration. Carr and Madan’s [16] FFT method has been widely used

in model calibration and option pricing as a numerical integration method. They

compared the numerical results of option pricing with the analytical solution and

other traditional methods. The use of FFT is faster and offers considerable accu-

racy. Later, Fang and Oosterlee [24] [25] proposed the COS method, which is an

FFT-based method but focuses on the Fourier-cosine expansion to recover the prob-

ability density function (PDF) from the characteristics function of Lévy processes.

It was shown that the COS method for recovering PDF converges faster than the

Carr and Madan FFT method. The COS method is applied to recover the PDF

and the cumulative distribution function (CDF) in this section. Then, the results

are compared with the PDF and CDF recovered from the Carr and Madan’s FFT

method, as well as the analytical solutions. The recovered PDF could be used for

model calibration on physical measure, and the recovered CDF could be used for

further option pricing.
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1.3.1 Mathematical Statement

In Carr and Madan [16] FFT method, the FFT is used to compute European

option price from a given characteristic function. Let f(x) be the probability density

function and Ψ(u) be the characteristic function. Apply the Fourier transform and

the inverse Fourier transform, we have:

Ψ(u) =

∫
R

eiuxf(x)dx. (1.5)

Nyquist relation to the grid sizes in the two domains gives:

dxdu =
2π

N
, (1.6)

where N denotes the number of grid points. According to the inverse Fourier trans-

form, we have:

f(x) =
1

π

∫ ∞
0

e−iuxΨ(u)du. (1.7)

Then the FFT algorithm is used to compute the following:

Ψ(k) =
N∑
j=1

e−i
2π
N

(j−1)(k−1)ψ(j). (1.8)

Let the truncation range on R be [−b, b], then,

xk = −b+ dx(k − 1), k = 1, ..., N.

and

uj = du(j − 1), j = 1, ..., N.

Thus,

f(xk) =
1

π

N∑
j=1

e−i
2π
N

(j−1)(k−1)eibujψ(uj)du. (1.9)
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Although no explicit derivation of CDF is given in Carr and Madan [16],

their way to price options could be adapted to derive the distribution function.

Let f(x) be the PDF of the random variable x, and F (k) be the CDF, where

1− F (k) =
∫∞
k
f(x)dx. Let g(k) = eαk(1− F (k)), where α is a constant. We have,

ψ(u) =

∫ ∞
−∞

eiukg(k)dk

=

∫ ∞
−∞

eiukeαk(1− F (k))dk

=

∫ ∞
−∞

eiukeαk
∫ ∞
k

f(x)dxdk

=

∫ ∞
−∞

f(x)

∫ x

−∞
eiuk+αkdkdx

=

∫ ∞
−∞

f(x)
e(α+iu)k

α + iu
dx

=
φ(u− iα)

α + iu
.

Then,

g(k) =
1

2π

∫ ∞
−∞

e−iuk
φ(u− iα)

α + iu
du.

Thus,

F (k) = 1− e−αk

2π

∫ ∞
−∞

e−iuk
φ(u− iα)

α + iu
du. (1.10)

Similarly, the inverse form by the cosine transform method could also be ob-

tained. The following part illustrates the inverse Fourier integral by the cosine ex-

pansion for recovering the PDF from a given characteristics function. For function

f(θ) on [0, π], the cosine expansion reads:

f(θ) =
∞′∑
k=0

Akcos(kθ),

where Ak = 2
π

∫ π
0
f(θ)cos(kθ)dθ, and

∑′
denotes that the first term is weighted by
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0.5. For x ∈ [a, b] ∈ R, change of variables gives x = b−a
π
θ + a. Then, we can get

f(x) =
∞′∑
k=0

Akcos

(
kπ
x− a
b− a

)
. (1.11)

Given Equation (1.7), we have the coefficients Ak,

Ak =
2

b− a
Re

(
Ψ

(
kπ

b− a

)
e−i

kaπ
b−a

)
,

where ”Re” denotes the real part. Thus, the PDF f(x) is :

f(x) =
N−1′∑
k=0

Akcos

(
kπ
x− a
b− a

)
. (1.12)

In order to get the CDF, the discrete sine transform is used instead. The discrete

sine transform of the PDF f(x) can be expressed similarly as the cosine expansion,

f(x) =
N ′∑
k=1

Bksin

(
kπ
x− a
b− a

)
, (1.13)

with coefficients

Bk =
2

b− a
Imag

(
Ψ

(
kπ

b− a

)
e−i

kaπ
b−a

)
.

Thus, integrate the equation (1.13), the CDF F (x) in terms of the sine expansion

of density function is written as:

F (x) = −
N ′∑
k=1

Bk

(
sin

(
kπ
x− a
b− a

)
− 1

)
b− a
kπ

. (1.14)

The convergence of the series expansion representation of distribution function

F (x) can be proved by the following lemma.

Lemma 1.8. If f(x) =
∑N ′

k=1Bksin(kθ), and F (x) =
∫ x
−∞ f(θ)dθ, then Equation

(1.14) converges to F (x).
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Proof. It is known that the sine series of f(θ) converges to f(θ), which means the

limit of the tails, i.e., the sum of the residual terms after the N-th term in the

summation, is zero. In Equation (1.14), the new coefficients of F (x) are Bk
k

. Thus,

the sum of the new tails is smaller than that of f(θ) by a factor better than N,

since N+1 is the start term of the residual tail. Therefore, the new series converges

faster than the previous one, i.e., the new series expansion of F (x) based on the sine

expansion of f(x) converges faster than the sine series expansion of f(θ).

1.3.2 Numerical Comparison

Fang and Oosterlee [24] gave a truncation range of the distribution of log

return i.e., log(St/S0), using the COS method.

[a, b] = [c1 − L
√
c2 +

√
c4, c1 + L

√
c2 +

√
c4]

with L = 10 and cn denotes the n-th cumulant of the distribution of the log return.

Figure 1.1 shows the recovering PDF and CDF of a VG model using these two meth-

ods with inputs θ = −0.14, ν = 0.2, and σ = 0.12. Figure 1.2 presents the maximum

error over the whole domain on log10 base of the two methods when recovering PDF

of the VG distribution. The faster convergence rate of the COS method was shown

in Fang and Oosterlee [24]. Similar as the FFT, the COS method has the complexity

of O(NlogN). Given the same N, they share similar computational speed. With

the faster error convergence, the COS method could spend less time than the FFT

to reach the same accuracy.
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Figure 1.1: Recovered density function of the VG model by FFT and COS
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1.3.3 Statistical Fit

Seneta [49] presented a study on fitting the variance-gamma model to log re-

turns. Here, two methods - FFT and COS - are used to calibrate models. Six stocks

(Amazon, Apple, Dell, Cisco, IBM and Intel ) were selected from the technology

and industry sector. The study examined the period between January 1, 2001 and

December 31, 2004. The length of the data is 1004 for each stock. For each stock,

the log returns need to subtract their respective mean value. The Maximum likeli-

hood Estimation (MLE) is used for statistical model calibration. The following is

a brief of MLE. Let N denote the number of observations, Xt(σ, θ, ν). f(x;σ, θ, ν)

denotes the PDF of Xt(σ, θ, ν), the log likelihood function can be expressed as:

L(σ, θ, ν) =
N∑
i=1

log (f(x;σ, θ, ν)) . (1.15)

Then, the value of parameters σ, θ and ν can be obtained by maximizing the log

likelihood function L. Table 1.2 gives the estimation results for the three parameters

of Variance Gamma (VG) distribution. Madan [33] mentioned that θ is insignificant

when using a daily log return to calibrate VG. The reason is that θ is the parameter

for the drift of the Brownian motion, and the daily log return has a very small

drift close to zero. Thus, the other two parameters are much more important to

determine the VG process for the distribution of daily log return data. Figure 1.3

presents the empirical distribution of the market data with the calibrated VG and

normal distribution. The VG fit obviously gives a better statistical description on

the tails and peakness of the empirical distribution on all of the six stocks. The

statistics test also reveals the same information.
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Table 1.3: Estimated VG Parameters by MLE

NAME θ ν σ

DELL 0.00008 0.9095 0.0271

APPL -0.00004 0.5508 0.0303

IBM 0.0009 0.7094 0.0204

AMZN 0.0010 0.8292 0.0450

CISCO 0.0002 0.6392 0.0354

INTEL 0.0000 0.5335 0.0315

In statistics, the Kolmogorov-Smirnov test (KS-test) is widely used as a tool

to test these estimated parameters. The KS-test quantifies the distance between

the empirical distribution function of the samples and the cumulative distribution

function of the reference distribution. The KS-test used here has a significance level

of 5%, used to determine whether the data is from the distribution of the VG process

with the estimated parameters. The results are positive for the 6 stocks.
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Chapter 2

The Conic Two-Price Markets

2.1 Introduction

The evaluation of trading strategies or investment is always a major concern

in financial markets. A simple and powerful tool for measuring cash flows is the

Sharpe ratio [50], which describes the valuation as the ratio of the excess return or

the expectation of the asset return less the risk-free rate of turn, to the standard

deviation of the excess return. For investors, the Sharpe ratio of a good trade would

have high positive value, i.e., high excess return with low risk (standard deviation).

However, in some situations, the Sharpe ratio would not recognize a good trade

when asset returns are not normally distributed.

Like the Sharpe ratio, most performance measures are defined as ratios of

reward to risk. For example, the Treynor ratio is defined as the excess return

over the portfolio’s beta, while Jensen’s alpha evaluates the difference between the

abnormal return of the portfolio and its expected value. In order to develop a non-

arbitrage compatible performance measure, Bernardo and Ledoit [8] proposed the

Gain-Loss ratio, which recognizes an arbitrage if and only if the Gain-Loss ratio is

infinity. Although the Gain-Loss ratio improves the economical quality of the Sharpe

ratio, the symmetric treatment of small losses and large losses leaves some room for

improvement. Artzner, Delbaen, Eber and Heath [3] developed a new measurement
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of risk called the coherent risk measure with the following properties: monotonicity,

sub-additivity, positive homogeneity, and translation invariance. They pointed out

that the popular risk measure Value at Risk (VAR), which estimates the amount

of portfolio losses at a given confidence level based on the statistical distribution of

historical prices, lacks sub-additivity. Therefore, VAR violates the general idea that

diversification can reduce risk. Following these works [3] [14], Cherny and Madan

[18] proposed a new performance evaluation, acceptability indices. This nonnegative

real number is defined as the acceptability level of a set of random variables which

are the terminal cash flows of a trading strategy or an investment. Each acceptable

level is associated with a convex cone and a set of pricing kernels. If a cash flow is

said to be acceptable at level α, the expectation of the cash flow is positive under

every pricing kernel associated with the acceptability level α. When the acceptable

level is high, the associated convex cone is smaller and the set of the related pricing

kernels is large. An arbitrage is defined as the acceptability level reaches infinity,

which makes an agreement with the Gain-Loss ratio. Properties and examples of the

acceptability indices will be discussed later in this chapter. Both the acceptability

indices and the coherent risk measures are associated with the acceptability set [18]

[3]. Hence, on the same acceptability set, we can build up the associated coherent

risk measure and the associated acceptability indices [18].

Derivative pricing is mostly based on non-arbitrage argument. As discussed in

Chapter 1, in incomplete markets, non-arbitrage pricing is not plausible since there

is no perfect hedge to replicate the payoff of derivatives. Moreover, the prices of

derivatives are determined as the two directions of trading: buy or sell. Investors
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buy a security at ask prices and sell it at bid prices. Ask prices are always higher

than bid prices. The Gain-Loss ratio is used to price derivatives in incomplete

markets [8]. Treating the illiquid market as a counterparty, Cherny and Madan [19]

extended the new performance measure to the conic finance theory and proposed

a way to price derivatives based on the evaluation of residual cash flows using the

acceptability indices. They also developed closed-form formulas of ask and bid prices

of European options.

Here are some studies based on the conic finance theory and its associated

two-price market. Pricing and hedging of exotic derivatives such as cliquets, struc-

tured products, tensor specific in the two-price market is studied [37] [40] [36] [38].

[39] elaborated the connection between this conic financial market and corporate

finance. Credit and liquidity risk modeling are discussed in [23] [34]. [17] studied

profits, capital, leverage and return of markets. Hedging by adjusting gamma with

existence of skewness is discussed in [30], the equilibria model of structured prod-

ucts is proposed in [41], and an application of a new portfolio selection method is

presented in [29] .

The rest of this chapter presents the definition and properties of acceptability

indices, illustrates the way to price derivatives using the two-price market model

and last, discusses the hedging methods in the two-price markets.
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2.2 Acceptability Index

2.2.1 Definition

Definition 2.1. An index of acceptability α is said to be the acceptability index of

bounded random cash flows X, if for each γ ≥ 0, there exists a set of probability

measures Dγ that the expectation of X under each probability measure Q ∈ Dγ is

nonnegative, then the acceptability index α is defined as :

α(X) = sup{γ ≥ 0 : EQ[X] ≥ 0,∀Q ∈ Dγ}. (2.1)

Since the acceptability index is based on the coherent risk measures, the link

between the acceptability index and the coherent risk measure is elaborated in [18].

A coherent risk measure of random variable X is defined as:

ργ(X) = −infEQ[X],∀Q ∈ Dγ, γ ≥ 0, (2.2)

then we have the corresponding acceptability index α defined as:

α(X) = sup{γ ≥ 0 : ργ(X) ≤ 0}. (2.3)

The four properties of acceptability index are :

1 Monotonicity: if α(X) ≥ γ and Y ≥ X, then α(Y ) ≥ γ;

2 Quasi-concavity: if α(X) ≥ γ and α(Y ) ≥ γ, then α(X + Y ) ≥ γ;

3 Scale Invariance: if α(X) ≥ γ and a constant c > 0, then iα(cX) ≥ γ;

4 Fatou property: For a sequence of random variables {Yi}, if |Yi| ≤ 1, α(Yi) ≥

γ and converges to a random variable X in probability, then α(X) ≥ γ.
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2.2.2 Weighted Value at Risk (WVAR) Acceptability Indices

The Weighted Value at Risk (WVAR) [18], a coherent risk measure, is defined

as:

WVARγ = −
∫

R

ydΨγ(FX(y)), (2.4)

where Ψγ(x) has a one-to-one relationship with the original probability measure

FX(x). Moreover, Ψγ(x) is an increasing concave continuous function on the interval

[0, 1] with Ψγ(0) = 0 and Ψγ(1) = 1. Thus, Ψγ(x) is also called a concave distortion.

Then, the corresponding WVAR acceptability index α(X) is defined as

α(X) = sup{γ ≥ 0 :

∫
R

xdΨγ(FX(x)) ≥ 0}, (2.5)

where Ψγ(x) is an increasing function of γ. The distorted expectation
∫∞
−∞ xdΨγ(FX(x))

is the expected value of random variable X under a new probability measure Q, with

a new distribution function Ψγ(FX(x)), where FX(x) is the original distribution func-

tion of X. When γ increases, the new probability measure Q distort the original

distribution FX(x) increasingly to the left. When γ = 0, there is no distortion for

FX(x), i.e., Ψγ=0(FX(x)) = FX(x). Hence, we can think of α(X) as the maximum

distortion level γ that the distorted expectation of X keeps nonnegative. The dis-

tortion level γ can be treated as a measure of bad scenarios. We are looking for the

worst scenario level where the cash flow X can keep the expectation nonnegative.

It is obvious that a high α(X) indicates a good trade. In this sense, γ is also called

the stress level of the cash flow X.

If samples of the cash flow X are known, the distorted expectation can be
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computed as the following discrete form based on its empirical distribution:

∫ ∞
−∞

xdΨγ(FX(x)) =
N∑
i=1

xi

(
Ψγ

(
i

N

)
−Ψγ

(
i− 1

N

))
, (2.6)

where xi, i = 1...N are the samples of X sorted increasingly. This equation clearly

states that the distorted expectation is a weighted sum of the original distribution.

This computational form is very useful when using Monte Carlo simulation.

A list of WVAR acceptability indices are presented in [18]. Four popular ones

are MINVAR, MAXVAR, MAXMINVAR and MINMAXVAR.

Definition 2.2. MINVAR

The concave distortion of a MINVAR acceptability index is given by the func-

tion:

Ψγ(u) = 1− (1− u)γ+1, γ ≥ 0, u ∈ [0, 1]. (2.7)

Let u = FX(x), the derivative of Equation (2.7) is

dΨγ(FX(x))

dx
= (γ + 1)(1− FX(x))γfX(x),

where fX(x) is the PDF of X. The stress level γ is the largest number of independent

draws from the distribution of X such that the expected value of the minimum of

γ + 1 draws is still positive. The derivative shows that MINVAR puts more weight

on losses and less weight on gains than the original distribution. However, for large

losses, when x goes to negative infinity, FX(x) is close to 0 and the new weight on

large losses can not reach positive infinite levels.

Definition 2.3. MAXVAR
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The concave distortion of a MAXVAR acceptability index is given by the func-

tion:

Ψγ(u) = u
1

γ+1 , γ ≥ 0, u ∈ [0, 1]. (2.8)

Similar to MINVAR, we have the derivative of Equation (2.8)

dΨγ(FX(x))

dx
=

1

γ + 1
(FX(x))

−γ
γ+1fX(x).

The stress level γ is the largest number of independent draws from the distribution

of X such that the expected value of the maximum of γ + 1 draws is still positive.

When x goes to negative infinity, unlike MINVAR, the new weights by MAXVAR

can go to infinity. For large gains, FX(x) is close to 1 and the new weights are

always positive. It is the drawback of MAXVAR.

Definition 2.4. MAXMINVAR

The concave distortion of a MAXMINVAR acceptability index is given by the

function:

Ψγ(u) = (1− (1− u)γ+1)
1

γ+1 , γ ≥ 0, u ∈ [0, 1]. (2.9)

MAXMINVAR constructs the worst case by MINVAR followed by MAXVAR.

The derivative of Equation (2.9) is

dΨγ(FX(x))

dx
= (1− FX(x))γ(1− (1− FX(x))γ+1)

−γ
γ+1fX(x).

This derivative illustrates that MAXMINVAR could reweight large losses to infinity

and large gains to zero.

Definition 2.5. MINMAXVAR
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The concave distortion of a MINVAR acceptability index is given by the func-

tion:

Ψγ(u) = 1− (1− u
1

γ+1 )γ+1, γ ≥ 0, u ∈ [0, 1]. (2.10)

MINMAXVAR constructs the worst case by MAXVAR first then by MINVAR.

The derivative of equation (2.10) is

dΨγ(FX(x))

dx
= (1− FX(x)

1
γ+1 )γFX(x)

−γ
γ+1fX(x).

Same as MAXMINVAR, MINMAXVAR could reweight large losses to infinity and

large gains to zero.

2.3 Option Pricing in Two-Price Markets

WVAR acceptability indices can be used to build up a model for bid and

ask prices of random cash flows [19]. We now consider the trade direction from

the view of market makers because bid and ask prices are determined by their

competition. They sell securities at competitive ask or offer prices and buy them

back at competitive bid prices.

If the terminal cash flow of a contingent claim is X, a seller sells it at the

ask price a and at the same time owns the obligation to pay X back to her or his

counterparty at the maturity. The residual cash flow of the seller is a−X with the

performance measure, α(a−X). Given a stress level γ, we have:

α(a−X) ≥ γ,
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or apply Equation (2.5), ∫ ∞
−∞

xdΨγ(Fa−X(x)) ≥ 0, (2.11)

which gives

aγ(X) = −
∫ ∞
−∞

xdΨγ(F−X(x)). (2.12)

Equation (2.12) states that the ask price of a random cash flow X at the stress level

γ is the negative value of the distorted expectation of the random cash flow −X

based on the concave distorted function Ψγ.

If a buyer purchases this derivative X at the bid price b from investors, the

buyer pays out b and earns cash flow X at the maturity. The residual cash flow of

the buyer is X − b with the performance measure α(X − b). Given a stress level γ,

we have:

α(X − b) ≥ γ,

apply Equation (2.5), ∫ ∞
−∞

xdΨγ(FX−b(x)) ≥ 0, (2.13)

which gives

bγ(X) =

∫ ∞
−∞

xdΨγ(FX(x)). (2.14)

Equation (2.14) states that the bid price of a random cash flow X given the stress

level γ is the distorted expectation of X based on the concave distorted function

Ψγ.

Application of Equation (2.14) and Equation (2.12) onto European options

leads to closed-form formulas for bid and ask prices. A European call option C

written on the underlying asset S with strike price K and maturity T has a terminal
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payoff (S −K)+. A European put option P written on S with strike price K and

maturity T has a terminal payoff (K − S)+. The closed-form bid and ask prices

derived by [19] are

aγ(C) =

∫ ∞
K

Ψγ(1− FS(s))ds, (2.15)

aγ(P ) =

∫ K

0

Ψγ(FS(s))ds, (2.16)

bγ(C) =

∫ ∞
K

(1−Ψγ(FS(s)))ds, (2.17)

bγ(P ) =

∫ K

0

(1−Ψγ(1− FS(s)))ds. (2.18)

2.4 Hedging in Two-Price Markets

Hedging is the problem of deciding the optimal strategy to allocate the initial

capital in order to protect investors from the embedded risk of their positions in

derivatives. As discussed in Chapter 1, Black-Scholes delta hedging is a popular

choice for option hedging and it states that investors need to hold δ shares of stock

with price S to make their portfolio including an option with price V riskless. As

we know,

δ =
∂V

∂S
.

When jumps jeopardize market completeness, a perfect hedge of contingent claims is

not guaranteed. However, the way to hedge in complete markets provides ideas for

hedging in incomplete markets. As Föllmer and Schied discussed in [26], there are

some ways to hedge contingent claims in incomplete markets. Superhedging tries

to figure out the cheapest trading strategy, which has the minimal capital with the

obligation of the terminal cash flow of contingent claims. There is no risk-preference
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in this method, i.e., no need to determine the risk-aversion parameter. However,

it leads to wide price bounds of contingent claims. The way to maximize expected

utility functions is to minimize hedging errors. One popular way is local quadratic

hedging, which minimizes the quadratic hedging errors of contingent claims. For a

one-period problem, we can write the minimization of local quadratic hedging errors

as follows:

(v∗0, δ
∗
0) = argminE[(H − v0 − δ0(ST − S0))2],

where H is the terminal payoff of the contingent claim, v0 is the initial position in

money market account, v∗0 and δ∗0 are the optimized values of v0 and δ0, δ0 is the

number of shares of the underlying asset, ST is the stock price at the maturity, S0

is the initial stock price,

In [37], the one-period hedging problem is minimizing the capital, i.e., the ask

price less the bid price of a hedged cash flow over a time horizon. Using Equation

(2.12) and (2.14), we can write the one-period problem of capital minimization as,

δ∗0 = argmin

(
−
∫ ∞
−∞

xdΨλ(F−X(x))−
∫ ∞
−∞

xdΨλ(FX(x))

)
,

where X = H − δ0(ST − S0), FX(x) is the distribution function of X, Ψλ(x) is the

distorted function and λ is the stress level.

We compare the two hedging methods, local quadratic hedging error minimiza-

tion and capital minimization, with a numerical test. In order to hedge a European

call option with strike price 105 and one-year maturity, we assume the underlying

asset S follows a Variance Gamma process with σ = 0.2, θ = −0.3 and ν = 0.5.

The initial prices are from 50 to 250. The strike price of the European call option is
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105. Monte Carlo simulation with 50,000 simulation paths is used. The position in

the stock at the initial time is presented in Figure 2.1. The observation shows that

for out-of-the-money call options, option writers need to hold more stocks if using

the quadratic hedging error minimization method. For in-the-money call options,

option writers need to hold more stocks if using the capital minimization method.

As the stress level λ increases, more stocks are needed for out-of-the-money options

and fewer stocks are needed for in-the-money options.

Observation in [37] shows that the gamma-adjusted delta of a target cash flow

is less than the Black-Scholes delta since the downside risk exposure is more expen-

sive when markets are skewed downwards. Hence, the adjusting gamma part exists

in the presence of skewness. A multi-period dynamic hedging model is developed

from the nonlinear expectation theory by Cohen and Elliott [20], which provides a

consistent time series of bid and ask prices. A non-uniform grid of 100 stock price

levels is constructed for each time period based on the algorithm described by Mija-

tović and Pistorius [46]. The gamma-adjusted deltas for each period are then chosen

to minimize the capital of each period, successively. The processes of the bid and

ask prices at time t, i.e., Y u
t for a time step of h are presented as:

Y u
t = Et[Y

u
t+1] + h

∫ ∞
−∞

xdΨ(F u
t (x), λ, γ)

F u
t (x) = Pr(Y u

t+1 − Et[Y u
t+1]) ≤ x)

where u = a, b denotes ask prices or bid prices, Et[Z] denotes the expectation of

the random variable Z at time t and Pr denotes the probability. More interesting

hedging problems can also be addressed using this dynamic hedging system.
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Figure 2.1: Hedging strategy comparison of local quadratic error minimization and

capital minimization with input variables S0 = [50 : 5 : 200], K = 105, σ = 0.2,

θ = −0.3 and ν = 0.5. The underlying asset follows a Variance Gamma model.
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Chapter 3

The Trading Advantages of Structured Products

3.1 Introduction

Equity structured products, which are combinations of fundamental instru-

ments from the spot and derivative markets, have been popular in the United States

since the 1980s. Since their introduction, this type of investment tools has grown

very rapidly. Structured products are designed and tailored to meet customers’

specific needs. The major advantage of these products is that they provide various

positions in derivatives without the need for actual transactions. In addition, the

bid-ask spreads of structured products are always lower than those of the corre-

sponding components. Generally, structured products can be separated into two

types: those with plain vanilla option components and those with exotic option

components.

Structured products usually combine several fundamental instruments, result-

ing in a variety of payoff patterns with maturities ranging from months to years. The

complexity of these products makes pricing them unclear. A series of studies have

been conducted to discuss the pricing fairness and embedded risk of these structured

products. The study by Stoimenov and Wilkens [52] revealed the discrepancies be-

tween market prices and theoretical values of these products in German primary

and secondary markets. Burth, Kraus and Wohlwend [12] investigated the differ-
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ence in the pricing behavior of different issuers of structured products. From the

perspective of classical finance theory, Bernard and Boyle [7] explained the reasons

why consumers might prefer more complex contracts when they believe there is a

good chance to get the maximum return. The two-price market theory by Cherny

and Madan [18] [19] is used to demonstrate the trading advantages of structured

products from the investors’ point of view. The theory is constructed by describing

the market as a counterparty. There have also been applications of this theory us-

ing structured products. Madan and Schoutens [38] investigated the implied stress

levels from the bid and ask prices of exotic options and observed negative stress

levels for capped cash flows as well as positive stress levels for uncapped cash flows.

Madan, Pistorius and Schoutens [36] obtained dynamically consistent bid and ask

prices by applying the two-price market theory and a Markov chain.

In this study, in order to investigate the trading advantages, the bid and ask

prices are derived under the two-price market framework. Mathematical proofs and

numerical modeling illustrate the trading advantages from the investors’ perspective.

It is observed that for investors, it is always cheaper to buy these products than to

trade their component instruments separately, and it is always more expensive to

sell these products than to trade their component instruments separately.

The outline of the rest of the section is as follows. Section 3.2 briefly describes

the two-price market theory. Section 3.3 presents the closed-form formulas for the

bid and ask prices of option spreads: bull spreads, bear spreads, strangles, straddles

and butterfly spreads with numerical illustrations based on a geometric Brownian

motion (GBM) and VGSSD. Section 3.4 discusses the advantages of trading exotic
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options: cliquet options, reverse cliquet options and spread options. The bid and

ask prices are computed using Monte Carlo Simulation for the Geometric Brownian

Motion and Variance Gamma Process (VG).

3.2 The Two-Price Markets

The two-price market theory developed by Cherny and Madan [18] [19] starts

from a market as a counterparty and states that the bid and ask prices of contingent

claims are determined by the acceptability or quality of the cash flows. The following

is a brief introduction to the two-price market theory. In two-price market theory,

the quality of the cash flows given a certain acceptability level is determined by the

nonlinear expectation of the cash flows. For a contingent claim with the terminal

payoff X, at the maturity T , the seller pays the cash flow X and the buyer receives

the cash flow X. Then the bid and ask prices in terms of distortions are defined as

b(X) =

∫ ∞
−∞

xdΨ(F (x), λ), (3.1)

a(X) = −
∫ ∞
−∞

xdΨ(1− F (−x), λ). (3.2)

where x is a random variable of the cash flow, F (x) is the distribution function

of x, Ψ(x, λ) is called the distorted function, and λ is the stress level. There is a

list of choices for the distorted functions. We use the MINMAXVAR defined as

Ψ(u, λ, γ) = 1− (1− u
1

1+λ )1+λ, which reweights large losses up to infinity and large

gains down to zero. The distorted expectation used for bid and ask prices can also be

computed numerically using the empirical distribution of the cash flows as described
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in Cherny and Madan [19]:∫ ∞
−∞

xdΨ(F (x), λ, γ) =
N∑
n=1

xn

(
Ψ
( n
N
, λ, γ

)
−Ψ

(
n− 1

N
, λ, γ

))
, (3.3)

where xi are samples from the distribution of X and are sorted in increasing order.

3.3 Option Spreads

Option spreads are linear combinations of plain vanilla options which are often

used as strategies. Investigation of option spreads could lead to interesting discov-

eries regarding packaging benefits in two-price markets. Bull call spreads, bear put

spreads, straddles, and butterfly spreads all have plain vanilla options as a compo-

nent. The trading advantages are illustrated by comparing the cost of trading these

spreads and the cost of trading their components separately using the GBM and

VGSSD process introduced in Section 1.2.

3.3.1 Bull Spread

A bull spread longs a call option at the strike price K1 and shorts a call option

at the strike price K2 with the same maturity T , where K2 > K1. The cash flow is

C = (S −K1)+ − (S −K2)+.

Bull spreads could be used to replicate digital options. For the bid price, the

cash flow is C = (S −K1)+ − (S −K2)+. The terminal payoff shows that the cash

flow C ∈ [0, K2−K1]. The distribution function of C in terms of S has three parts:

C < 0, FC(c) = 0;
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C ∈ [0, K2 −K1), FC(c) = FS(s);

C ≥ K2 −K1, FC(c) = 1.

Thus, the bid price of a bull spread is∫ ∞
−∞

cdΨ(FC(c)) =

∫ 0

−∞
cdΨ(FC(c)) +

∫ K2−K1

0

cdΨ(FC(c)) +

∫ ∞
K2−K1

cdΨ(FC(c))

=

∫ K2−K1

0

cdΨ(FC(c))

= cΨ(FC(c))|K2−K1
0 −

∫ K2

K1

Ψ(FS(s))ds

= K2 −K1 −
∫ K2

K1

Ψ(FS(s))ds

For the ask price, the cash flow is C = −(S −K1)+ + (S −K2)+. The range

of the cash flow is C ∈ [K1 −K2, 0]. The distribution function of C in terms of S

also has three parts:

C ≥ 0, FC(c) = 1;

C ∈ [K1 −K2, 0), FC(c) = 1− FS(s);

C < K1 −K2, FC(c) = 0.

We define a new random variable C̃ = C+K2−K1 with the same distribution

as C. Thus, the ask price of a bull spread is

−
∫ ∞
−∞

cdΨ(FC(c)) = −
∫ ∞
−∞

(c̃−K2 +K1)dΨ(FC(c̃))

= −
∫ ∞
−∞

c̃dΨ(FC(c̃)) + (K2 −K1)

∫ ∞
−∞

dΨ(FC(c̃))

= −
∫ K2−K1

0

c̃dΨ(FC(c̃)) + (K2 −K1)

= −(K2 −K1) +

∫ K2

K1

Ψ(1− FS(s))ds+ (K2 −K1)

=

∫ K2

K1

Ψ(1− FS(s))ds
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In short, the bid and ask prices for a bull spread are:

Bull SpreadBid = K2 −K1 −
∫ K2

K1

Ψ(FS(s))ds, (3.4)

Bull SpreadAsk =

∫ K2

K1

Ψ(1− FS(s))ds. (3.5)

For investors, buying a bull spread at the ask price is equivalent to buying a

call option with the strike price K1 at the ask price and selling a call option with

the strike price K2 at the bid price. Hence, the buying advantage is defined as:

buying advantage bull =
(CallK1

Ask − Call
K2
Bid)−Bull SpreadAsk

CallK1
Ask − Call

K2
Bid

=

∫∞
K2

(Ψ(FS(s)) + Ψ(1− FS(s))− 1)ds∫∞
K1

Ψ(1− FS(s))ds−
∫∞
K2

(1−Ψ(FS(s)))ds
.

Selling a bull spread at the bid price is equivalent to selling a call option with

the strike price K1 at the bid price and buying a call option with the strike price

K2 at the ask price. Hence, the selling advantage is defined as:

selling advantage bull =
Bull SpreadBid − (CallK1

Bid − Call
K2
Ask)

CallK1
Bid − Call

K2
Ask

=

∫∞
K2

(Ψ(FS(s)) + Ψ(1− FS(s))− 1)ds∫∞
K1

(1−Ψ(FS(s)))ds−
∫∞
K2

Ψ(1− FS(s))ds
.

Bid and ask prices of call options with strike prices K1 and K2 could be

computed using Equation (2.15) and Equation (2.17). We proved that selling a

call option with the strike price K1 and buying a call option with the strike price

K2 at the same time is always cheaper than selling the bull spread. On the other

hand, the cost of buying a call option with the strike price K1 and selling a call

option with the strike price K2 at the same time is always more expensive than

buying the bull spread. The proof is presented in the Appendix. For the buying
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advantages of bull spread, the numerator is always positive. When K2 − K1 goes

to 0, the denominator decreases to 0 first and then reaches the minimum value∫∞
K2

(1 − Ψ(1 − FS(s)) − Ψ(1 − FS(s)))ds. Thus, as K1 increases to K2, the sell

benefits of bull spread increases to infinity before decreasing to -1. For the selling

advantages of bull spread, the numerator is always positive. When K2−K1 goes to 0,

the denominator decreases to the minimum value
∫∞
K2

(Ψ(FS(s))+Ψ(1−FS(s))−1)ds.

Thus, as K1 increases to K2, the buy benefit of bull spread increases and reaches

the maximum value 1.

A numerical test was performed on a Geometric Brownian motion (GBM) for

better illustration. The input variables are:

S0 = 100;K1 = 80;K2 = 120; r = 0.02;σ = 0.2;λ = 0.25,

where r is the risk free rate, σ is the volatility and λ is the stress level in the

distorted function MINMAXVAR Ψ(x) in Equation (2.10). Figure 3.1 depicts the

packaging benefits of trading a bull call spread rather than trading its components,

with two separate call options having a constant high strike price K2. Figure 3.2

presents the packaging benefits of trading a bull call spread rather than trading its

components, with the two separate call options having a constant low strike price

K1. The observation from both figures demonstrates that the trading advantage of

bull spreads increases as maturity increases, and the maximum benefit exists when

the two strike prices are close to the spot price. Hence, for investors who buy a

bull call spread, longing a deep in-the-money option and shorting a deep out-of-

the-money option leads to few benefits; for investors who sell a bull call spread,
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shorting deep in-the-money option and longing deep out-of-the-money option also

leads to few benefits. The smaller the difference between the two strike prices,

the more benefits the investors gain. More tests show that the benefits of trading

bull spreads increase when the volatility of the underlying asset and the stress level

increase. Thus, trading a bull spread in illiquid and volatile markets has more

benefits than trading it in liquid and less volatile markets.

The VGSSD is used to investigate the benefits of trading a bull spread in

skewed markets. The input variables of VGSSD are:

S0 = 100;K2 = 120; r = 0.02;σ = 0.2; ν = 0.5; γ = 0.5;λ = 0.25.

Figures 3.3 and 3.4 depict how the packaging benefits vary when the market changes

from left-skewed with θ = −0.1 to right-skewed with θ = 0.1. As presented in Table

1.2, θ in VGSSD controls the skewness of the distribution. Empirical work [5]

discovered that the distribution of financial returns after the 1987 crash were left-

skewed with a typical value of θ = −0.3. We observed that the packaging benefits

increase as the market skewness changed from negative to positive. Significant

selling advantages of bull spreads with maturity at one year and K1 = 90 were

observed in the right-skewed market. This is due to a large increase in the ask

price of the call option with strike price K2 in the right-skewed market. Thus, the

cash flow of selling a call option with strike price K1 and buying a call option with

strike price K2 reduces dramatically in the right-skewed market. Take T = 1 and

K1 = 90 as an example. In the right-skewed market with θ = 0.1, the ask price of

the out-of-the-money (OTM) call option with strike price K2 increases much more
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Figure 3.1: Buy and sell advantages of trading a bull spread using GBM with input

variables S0 = 100, K2 = 120, σ = 0.2 and λ = 0.25.
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Figure 3.2: Buy and sell advantages of trading a bull spread using GBM with input

variables S0 = 100, K2 = 120, σ = 0.2 and λ = 0.25.
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than the bid price. This enlarges the bid-ask spread of this OTM call option. For

the in-the-money (ITM) call option, the price variations in both the ask price and

the bid price of the ITM call option are trivia. As we can see in Figure 3.5, the

probability of stock price being at the maturity larger than K2 in the right-skewed

market higher than that in the left-skewed market, which makes the ask price of

call option with strike price K2 in the right-skewed market much higher than in the

left-skewed market. It is not hard to imagine that in a right-skewed market with

unlimited upside gains and limited downside losses, investors favor longing OTM call

options rather than shorting them. If the positive skewness continues to increase,

the probability of unlimited upside gains increase and ask prices of OTM call options

continue to increase. In terms of a buying advantage, both the ask prices of the call

option with strike price K1 and bid prices of the call option with strike price K2

increase in the right-skewed market; however, the ask prices of the call option with

strike price K1 increase more, which make a slight increase in buying advantages in

the right-skewed market.

When negative skewness continues to decrease, the probability of stock price

at the maturity larger than K2 increases as described in Figure 3.5. This increases

the ask price of the OTM call option and increases the selling advantage in a more

left-skewed market. As negative θ continues to decrease, the variance of VGSSD

increases, which in turn increases the trading benefits. More tests show that when

the market skewness changes from positive to negative, the benefits (especially the

selling benefits) decrease before increasing. It is observed that the minimum value

occurs at θ = −0.25. Thus, for investors, there are more benefits to trading bull
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spreads in right-skewed or more left-skewed markets.

3.3.2 Bear Spread

A bear spread sells a put option at the strike price K1 and longs a put option

at the strike price K2 with the same maturity T , where K2 > K1. The cash flow is

C = (K2 − S)+ − (K1 − S)+.

For the bid price, the cash flow is C = (K2−S)+−(K1−S)+. The distribution

function of C in terms of S has three parts:

C < 0, FC(c) = 0;

C ∈ [0, K2 −K1), FC(c) = 1− FS(s);

C ≥ K2 −K1, FC(c) = 1.

Thus, the bid price of a bear spread is

∫ ∞
−∞

cdΨ(FC(c)) =

∫ 0

−∞
cdΨ(FC(c)) +

∫ K2−K1

0

cdΨ(FC(c)) +

∫ ∞
K2−K1

cdΨ(FC(c))

=

∫ K2−K1

0

cdΨ(FC(c))

= cΨ(FC(c))|K2−K1
0 −

∫ K2

K1

Ψ(1− FS(s))ds

= K2 −K1 −
∫ K2

K1

Ψ(1− FS(s))ds

For the ask price, the cash flow is C = −(K2 − S)+ + (K1 − S)+. The range

of the cash flow is C ∈ [K1 −K2, 0]. The distribution function of C in terms of S

also has three parts:

C ≥ 0, FC(c) = 1;
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Figure 3.3: Buy and sell advantages of trading a bull spread using VGSSD with

input variables S0 = 100, K2 = 120, σ = 0.2, ν = 0.5, γ = 0.5 and λ = 0.25.
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Figure 3.4: Buy and sell advantages of trading a bull spread using VGSSD with

input variables S0 = 100, K1 = 80, σ = 0.2, ν = 0.5, γ = 0.5 and λ = 0.25.
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Figure 3.5: Cumulative distribution function of VGSSD with T=1.

C ∈ [K1 −K2, 0), FC(c) = FS(s);

C < K1 −K2, FC(c) = 0.

A new random variable is defined as C̃ = C + K2 −K1 with the same distri-

bution as C. Thus, the ask price of a bear spread is

−
∫ ∞
−∞

cdΨ(FC(c)) = −
∫ ∞
−∞

(c̃−K2 +K1)dΨ(FC(c̃))

= −
∫ ∞
−∞

c̃dΨ(FC(c̃)) + (K2 −K1)

∫ ∞
−∞

dΨ(FC(c̃))

= −
∫ K2−K1

0

c̃dΨ(FC(c̃)) + (K2 −K1)

= −(K2 −K1) +

∫ K2

K1

Ψ(FS(s))ds+ (K2 −K1)

=

∫ K2

K1

Ψ(FS(s))ds

In short, the bid and ask prices for a bear spread are:

Bear SpreadBid = K2 −K1 −
∫ K2

K1

Ψ(1− FS(s))ds, (3.6)

Bear SpreadAsk =

∫ K2

K1

Ψ(FS(s))ds. (3.7)
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Buying a bear spread is equivalent to buying a put option with the strike price

K2 at the ask price and selling a put option with the strike price K1 at the bid price.

Hence, the buying advantage is defined as:

buying advantage bear =
(PutK2

Ask − Put
K1
Bid)−Bear SpreadAsk

PutK2
Ask − Put

K1
Bid

=

∫ K1

0
(Ψ(FS(s)) + Ψ(1− FS(s))− 1)ds∫ K2

0
Ψ(FS(s))−

∫ K1

0
(1−Ψ(1− FS(s)))ds

.

Selling a bear spread is equivalent to selling a put option with the strike price

K2 at the bid price and buying a put option with the strike price K1 at the ask

price. Hence, the selling advantage is defined as:

selling advantage bear =
Bear SpreadBid − (PutK2

Bid − Put
K1
Ask)

PutK2
Bid − Put

K1
Ask

=

∫ K1

0
(Ψ(FS(s)) + Ψ(1− FS(s))− 1)ds∫ K2

0
(1−Ψ(1− FS(s)))ds−

∫ K1

0
Ψ(FS(s))

.

We proved that buying a bear spread is always cheaper, which indicates that

the cost of buying a put option with the strike price K2 and selling a put option

with the strike price K1 at the same time will always be more expensive than the

cost of buying the bear spread. On the other hand, selling a bear spread is always

more expensive, which indicates that the price of selling a put option with the strike

price K2 and buying a put option with the strike price K1 at the same time is

always cheaper than the price of selling the bear spread. For buying advantages

of bear spread, the numerator is always positive. When K2 − K1 goes to 0, the

denominator decreases to the minimum value
∫ K2

0
(Ψ(FS(s)) + Ψ(1−FS(s))− 1)ds.

Thus, as K1 increases to K2, the buy benefit of bear spread increases and reaches the

maximum value 1. For selling advantages of bear spread, the numerator is always
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positive. When K2−K1 goes to 0, the denominator decreases to the minimum value∫ K2

0
(1−Ψ(FS(s))−Ψ(1− FS(s)))ds. Thus, as K1 increases to K2, the sell benefit

of bear spread increases to infinity first as long as the denominator keeps positive

and then drops to limits -1, since the denominator reaches the minimum negative

value.

Figure 3.6 presents the trading advantages of a bear spread when the model

of the underlying asset is GBM and the high strike K2 is a constant. Figure 3.7

presents the buying and selling benefits of trading a bear spread when the model of

the underlying asset is GBM and the low strike K1 is a constant. The input variables

are the same as those used for the bull spread. These two figures demonstrate that

trading bear spreads with deep OTM put options and deep ITM put options leads

to few benefits. More tests show that as the stress level and the volatility of the

underlying assets increase, the packaging benefits increase.

Additionally, VGSSD is used to investigate the impact of market skewness in

trading bear spreads. Input variables are the same as those used in the bull spread.

Unlike bull spreads, when market skewness changes from negative to positive, the

packaging benefits reduce first and then increase after a critical point. We also found

that negative-skewed and more positive-skewed markets enlarge bid-ask spreads of

put options and bear spreads. When θ increases from -0.1 to a positive value, the

ask and bid prices for the bear spread and the put option with high strike price K2

increase; however, the bid and ask prices for the put option with low strike price

K1 reduce first and then increase. When θ increases from -0.1 to 0.1, the relatively

large increase in the ask price of the bear spread dominates the variation in buying
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benefits and reduces the benefits. On the other hand, the relatively large decrease in

the ask price of the put option with strike price K1 dominates the variation in selling

benefits while reducing the selling benefits. When θ continues to increase to 0.5,

the relatively large increase in the ask prices of the put option with strike price K2

and K1 dominates the variation in buying and selling benefits respectively, resulting

in an increase in the benefits. The significant increase in the variance of VGSSD

increases the trading benefits when θ increases to 0.5. When the market skewness

changes from positive to negative with limited upside gain and unlimited downside

risk, investors tend to favor longing deep OTM put options and shorting deep ITM

put options. Thus, trading bear spreads in left-skewed or more right-skewed markets

brings investors more packaging benefits.

3.3.3 Strangle

A strangle longs a put option at strike price K1 and a call option at strike

price K2 with the same maturity. K2 is higher than the put strike price K1. The

cash flow of the strangle is

C = (K1 − S)+ + (S −K2)+.
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Figure 3.6: Buy and sell advantages of trading a bear spread using GBM with input

variables S0 = 100, K2 = 120, σ = 0.2 and λ = 0.25.
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Figure 3.7: Buy and sell advantages of trading a bear spread using GBM with input

variables S0 = 100, K1 = 80, σ = 0.2 and λ = 0.25.
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Figure 3.8: Buy and sell advantages of trading a bear spread using VGSSD with

input variables S0 = 100, K2 = 120, σ = 0.2, ν = 0.5, γ = 0.5 and λ = 0.25.
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Figure 3.9: Buy and sell advantages of trading a bear spread using VGSSD with

input variables S0 = 100, K1 = 80, σ = 0.2, ν = 0.5, γ = 0.5 and λ = 0.25.

57



The bid price of the strangle is

∫ ∞
−∞

cdΨ(FC(c)) =

∫ K1

−∞
cdΨ(FC(c)) +

∫ ∞
K1

cdΨ(FC(c))

=

∫ K1+K2

K2

(S −K2)dΨ(FS(s)− FS(K2 +K1 − s)) +∫ ∞
K1+K2

(S −K2)dΨ(FS(s))

= K1 +

∫ ∞
K1+K2

(1−Ψ(FS(s)))ds−
∫ K1+K2

K2

Ψ(FS(s)− FS(K2 +K1 − s))ds.

For the ask price, the cash flow is C = −(K1 − S)+ − (S − K2)+. The ask

price of the strangle is the negative of the following:

∫ ∞
−∞

cdΨ(FC(c)) =

∫ −K1

−∞
cdΨ(FC(c)) +

∫ 0

−K1

cdΨ(FC(c))

=

∫ K1+K2

∞
(K2 − S)dΨ(1− FS(S)) +∫ 0

−K1

cdΨ(FS(c+K1) + FS(K1 +K2)− FS(K2 − c))

= −
∫ ∞
K1+K2

Ψ(1− FS(s))ds−
∫ K1

0

Ψ(FS(s) + 1− FS(K1 +K2 − s))ds.

In summary, the bid and ask prices for a strangle are:

StrangleBid = K1 +

∫ ∞
K1+K2

(1−Ψ(FS(s)))ds−
∫ K1+K2

K2

Ψ(FS(s)− FS(K2 +K1 − s))ds,

StrangleAsk =

∫ ∞
K1+K2

Ψ(1− FS(S))ds+

∫ K1

0

Ψ(FS(s) + 1− FS(K1 +K2 − s))ds.

Buying a strangle is equivalent to buying a put option with strike price K1

and a call option with strike price K2. Hence, the buying advantage is defined as:

buying advantage strangle =
(PutK1

Ask + CallK2
Ask)− StrangleAsk

PutK1
Ask + CallK2

Ask

.
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Selling a strangle is equivalent to selling a put option with strike price K1 and a call

option with strike price K2. Hence, the selling advantage is defined as:

selling advantage strangle =
StrangleBid − (PutK1

Bid + CallK2
Bid)

PutK1
Bid + CallK2

Bid

.

Figures 3.10 and 3.11 depict the benefits of trading a strangle using a Geo-

metric Brownian motion. The input variables are the same as those used in the

bull spread test. As previously discussed, when the maturity, volatility, and stress

levels increase, the trading benefits increase. Generally, when the maturity is close

to zero and the strike price of the put option is close to the spot price, the bid

and ask prices of the strangle, put option, and call option are all very small. This

results in a serious decrease near the spot price as shown in Figure 3.10. Trading a

short-maturity strangle with a deep OTM call option and a deep OTM put option

may only lead to a few benefits.

Figures 3.12 and 3.13 present the benefits of trading a strangle using VGSSD.

As θ increases from negative to positive, buying and selling advantages decrease.

As the market skewness increases, the ask prices of the OTM call option and the

strangle increase dramatically. The difference between the ask price of the strangle

and the sum of the ask prices of the two options does not change much. The increase

in the sum of the ask prices of the two options reduces the buying benefits.

3.3.4 Straddle

A straddle longs a put option and a call option at the same strike price K with

the same maturity. When it reaches the expiration date, a large movement in either
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Figure 3.10: Buy and sell advantages of trading a strangle using GBM with input

variables S0 = 100, K2 = 120, σ = 0.2 and λ = 0.25.
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Figure 3.11: Buy and sell advantages of trading a strangle using GBM with input

variables S0 = 100, K1 = 80, σ = 0.2 and λ = 0.25.
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Figure 3.12: Buy and sell advantages of trading a strangle using VGSSD with input

variables S0 = 100, K2 = 120, σ = 0.2, ν = 0.5, γ = 0.5 and λ = 0.25.
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Figure 3.13: Buy and sell advantages of trading a strangle using VGSSD with input

variables S0 = 100, K1 = 90, σ = 0.2, ν = 0.5, γ = 0.5 and λ = 0.25.
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direction leads to profit for a long position. On the other hand, if the stock price

at maturity is close to the strike price K, the payoff is close to zero. Straddles are

used as trading instruments for volatility. If the volatility is expected to be high in

the future, a long position in straddle is desired. Moreover, straddles could be used

to replicate the payoff of variance swaps with weights inversely proportional to K2

[27]. The cash flow of a straddle is

C = (K − S)+ + (S −K)+.

According to the bid and ask prices of strangles, for straddles, K1 = K2 = K,

the bid and ask prices for a straddle are:

StraddleBid = K +

∫ ∞
2K

(1−Ψ(FS(s)))ds−
∫ 2K

K

Ψ(FS(s)− FS(2K − s))ds,

StraddleAsk =

∫ ∞
2K

Ψ(1− FS(S))ds+

∫ K

0

Ψ(FS(s) + 1− FS(2K − s))ds.

Buying a straddle is equivalent to buying a put option and a call option at the

the strike price K . Hence, the buying advantage is defined as:

buying advantage straddle =
(PutKAsk + CallKAsk)− StraddleAsk

PutKAsk + CallKAsk
.

Selling a straddle is equivalent to selling a put option and a call option at the the

strike price K. Hence, the selling advantage is defined as:

selling advantage straddle =
StraddleBid − (PutKBid + CallKBid)

PutKBid + PutKBid
.

Figure 3.14 presents the numerical results performed on a Geometric Brownian

motion. The input variables are the same as the bull spread test except only one
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strike price is used and the range of the strike price is [50, 150]. The maximum

benefit for trading straddles is found near the spot price. Thus, longing straddles

with an ATM call and put options would provide the maximum benefits.

3.3.5 Butterfly Spread

A butterfly spread longs one call option at the strike price K1 and one call

option at the strike price K3 at the same time, shorts two call options at the strike

price K2 with the same maturity T , where K3 > K2 > K1 and K3−K2 = K2−K1 =

a, a is a constant. The cash flow is

C = (K1 − S)+ − 2(K2 − S)+ + (K3 − S)+.

For the bid price, the cash flow is C = (K1 − S)+ − 2(K2 − S)+ + (K3 − S)+

which can be separated into the following parts:

S ∈ [0, K1)
⋃

(K3,∞), C(S) = 0;

S ∈ [K1, K2], C(S) = S −K1;

S ∈ [K2, K3], C(S) = K3 − S.
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Figure 3.14: Buy and sell advantages of trading a straddle using GBM with input

variables S0 = 100, σ = 0.2 and λ = 0.25.
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Thus, the bid price of a butterfly spread is

∫ ∞
−∞

cdΨ(FC(c)) =

∫ 0

−∞
cdΨ(FC(c)) +

∫ a

0

cdΨ(FC(c)) +

∫ ∞
a

cdΨ(FC(c))

=

∫ a

0

cdΨ(FC(c))

=

∫ a

0

cdΨ (FC(S −K1 ≤ c)1K1≤s≤K2 + FC(K3 − S ≤ c)1K2≤S≤K3)

=

∫ K2

K1

(s−K1)dΨ(FS(s) + 1− FS(2K2 − s))

= K2 −K1 −
∫ K2

K1

Ψ(FS(s) + 1− FS(2K2 − s))ds

= a−
∫ K2

K1

Ψ(FS(s) + 1− FS(2K2 − s))ds.

For the ask price, the cash flow is C = −(K1−S)+ + 2(K2−S)+− (K3−S)+.

The range of the cash flow is C ∈ [−a, 0]. Random variable C is a function of S

which also has the following parts:

S ∈ [0, K1)
⋃

(K3,∞), C(S) = 0;

S ∈ [K1, K2], C(S) = K1 − S;

S ∈ [K2, K3], C(S) = S −K3.

Thus, the ask price of a butterfly spread is

−
∫ ∞
−∞

cdΨ(FC(c)) = −
(∫ 0

−∞
cdΨ(FC(c)) +

∫ a

0

cdΨ(FC(c)) +

∫ ∞
a

cdΨ(FC(c))

)
= −

∫ 0

−a
cdΨ(FC(c))

= −
∫ 0

−a
cdΨ (FC(K1 − s ≤ c)1K1≤s≤K2 + FC(s−K3 ≤ c)1K2≤s≤K3)

= −
∫ K3

K2

(s−K3)dΨ(FS(s)− FS(2K2 − s))

=

∫ K3

K2

Ψ(FS(s)− FS(2K2 − s))ds.
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In summary, the bid and ask prices for a butterfly spread are:

ButterflyBid = a−
∫ K2

K1

Ψ(FS(s) + 1− FS(2K2 − s))ds, (3.8)

ButterflyAsk =

∫ K3

K2

Ψ(FS(s)− FS(2K2 − S))ds. (3.9)

Buying a butterfly is equivalent to buying one put option with the strike price

K1 and one with K3 the same time selling two put options with the strike price K2.

Hence, the buying advantage of a butterfly spread is defined as:

buying advantage butterfly =
(PutK1

Ask + PutK3
Ask − 2× PutK2

Bid)−ButterflyAsk
PutK1

Ask + PutK3
Ask − 2× PutK2

Bid

.

Selling a butterfly is equivalent to selling one put option with the strike price at K1

and one with K3 at the same time buying two put options with the strike price at

K2. Hence, the selling advantage of a butterfly is defined as:

selling advantage butterfly =
ButterflyBid − (PutK1

Bid + PutK3
Bid − 2× PutK2

Ask)

PutK1
Bid + PutK3

Bid − 2× PutK2
Ask

.

We proved that buying a butterfly spread is always cheaper, which indicates

that the price of buying one put option with the strike price K1 together with K3

and selling two put options with the strike price K2 is always more expensive than

the price of buying the butterfly spread. On the other hand, the selling advantage

of a butterfly spread is always positive, which indicates that the price of of selling

one put option with the strike price K1 as well as one with K3 and buying two

put options with the strike price K2 is always lower than the price of selling the

butterfly. The numerical test for the trading advantages of butterfly spreads with

constant K2 under GBM is shown in Figure 3.15. The input variables are:

S0 = 100;K2 = 100; a = [15 : 5 : 30]; r = 0.01;σ = 0.2;λ = 0.05.
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Relatively low stress levels are used to study butterfly spreads. It is observed

that butterfly spreads, a combination of two bear put spreads, are more sensitive

to stress levels than a single bear spread. Hence, in the same market, a butterfly

spread has more trading benefits than its components, a single bear spread, or a

single bull spread. This suggests that the more options there are in the combination,

the greater the packaging benefits of trading it.

Figure 3.16 depicts the benefits of trading a butterfly spread in skewed markets.

Similar to bull spreads, trading butterfly spreads in more left-skewed and right-

skewed markets brings more benefits to investors. As the difference of the two strike

prices decreases and the maturity increases, the trading benefits also increase.

3.3.6 Risk Reversal

A risk reversal longs a call option at the strike price K2 and shorts a put option

at the strike price K1 with the same maturity T , where K2 > K1. The cash flow is

C = (S −K2)+ − (K1 − S)+.

For the bid price, the cash flow is C = (S −K2)+ − (K1 − S)+. The range of

the terminal payoff is C ∈ [−K1,∞]. The distribution function of C in terms of S

is:

FC(c) = FS(s).

69



15
20

25
30

0

0.5

1
0

0.2

0.4

0.6

0.8

a: difference between each strike 

Buy Advantage

Maturity

15
20

25
30

0

0.5

1
0

5

10

15

20

a: difference between each strike

Sell Advantage

Maturity

Figure 3.15: Buy and sell advantages of trading a butterfly spread using GBM with

input variables S0 = 100, K2 = 120, σ = 0.2 and λ = 0.05.
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Figure 3.16: Buy and sell advantages of trading a butterfly spread using VGSSD

with input variables S0 = 100, K2 = 120, σ = 0.2, ν = 0.5, γ = 0.5 and λ = 0.05.
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Thus, the bid price of a risk reversal is∫ ∞
−∞

cdΨ(FC(c)) =

∫ 0

−K1

cdΨ(FC(c)) +

∫ ∞
0

cdΨ(FC(c))

=

∫ K1

0

(S −K1)dΨ(FS(s)) +

∫ ∞
K2

(S −K2)dΨ(FS(s))

= (S −K1)Ψ(FS(s))|K1
0 −

∫ K1

0

Ψ(FS(s))ds+

(S −K2)Ψ(FS(s))|∞K2
−
∫ ∞
K2

Ψ(FS(s))ds

=

∫ ∞
K2

(1−Ψ(FS(s)))ds−
∫ K1

0

Ψ(FS(s))ds

= CallK2
Bid − Put

K1
Ask.

For the ask price, the cash flow is C = −(S −K2)+ + (K1 − S)+. The range

of the cash flow is C ∈ [−∞, K1]. The distribution function of C in terms of S is:

FC(c) = 1− FS(s).

Thus, the ask price of a risk reversal is

−
∫ ∞
−∞

cdΨ(FC(c)) = −
∫ 0

−∞
cdΨ(FC(c))−

∫ K1

0

dΨ(FC(c))

=

∫ ∞
K2

Ψ(1− FS(s))ds−
∫ K1

0

(1−Ψ(1− FS(s)))ds

= CallK2
Ask − Put

K1
Bid.

Recall Equation (2.15)-(2.18) which described bid and ask prices of European

call and put options. We discovered that the bid price of a risk reversal is the bid

price of a call option with strike price K2, less the ask price of a put option with

strike price K1, and the ask price of a risk reversal is the ask price of a call option

with strike price K2, less the bid price of a put option with strike price K1. Thus,

there is no packaging benefit in trading risk reversal aside from trading the two
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component options separately. For the part with nonzero terminal cash flows, there

is no overlap payoff in the two options. This is the reason why trading a risk reversal

is not different from trading its component options.

3.4 Exotic Options

Cliquet type options are essentially a series of consecutive forward-start at-

the-money options with a single premium determined in advance. Their payoffs are

dependent on relative returns of the underlying assets after a series of predetermined

dates. Caps and floors are used to fix the maximum and minimum of returns. As a

result, investors are protected from downside risk and limited in upside gains.

3.4.1 Cliquet Options

An N -month cliquet is defined with the end of every month as the predeter-

mined date. These returns, which are protected capital and limited gain, are first

floored with zero and then capped with a positive value. A comparison of pricing

cliquet options using different models by simulation could be found in [51]. The

final payoff for this cliquet is the sum of these modified relative returns, and defined

as:

CL =
N∑
i=1

min

(
max

(
Si − Si−1

Si
, 0

)
, cap

)
.

Holding a cliquet is equivalent to holding a series of call spreads. Hence, the buying

advantage is defined as:

buying advantage cliquet =
Call SpreadAsk − CliquetAsk

Call SpreadAsk
.
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Selling a cliquet is equivalent to selling a series of call spreads. Hence, the selling

advantage is defined as:

selling advantage cliquet =
Call SpreadBid − CliquetBid

Call SpreadBid
.

Since closed-form pricing formulas for cliquets are hard to obtain, the Monte

Carlo approach is popular in pricing these instruments. The number of the simula-

tion path is 50,000. Equation 3.3 is used for computing the distorted expectation

numerically. The range of caps is [0.05, 0.15]. Table 3.1 presents the bid and ask

prices of cliquets and their corresponding series of call spreads under GBM with the

following input variables:

S0 = 100; floor = 0;T = [0.5, 1, 2]; r = 0.01;σ = 0.2;λ = 0.1.

The pricing comparison is also illustrated under the Variance Gamma (VG) pro-

cess described in Madan and Seneta [42] and Madan, Carr and Chang [33], a time

changed Brownian motion by a gamma process. If X(t;σ, ν, θ) follows VG, the

process can be described as:

X(t;σ, ν, θ) = θg(t; ν) + σW (g(t; ν)),

where σ is the volatility, ν is the variance rate of the gamma time change, θ is the

drift and W is a Brownian motion. Table 3.2 presents the computed bid and ask

prices under the VG process with the same variables for GBM and the others are:

θ = −0.3;

ν = 0.5;
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It is observed that the bid-ask spreads of cliquets are lower than the corresponding

series of call spreads under both models. The positive selling advantages and buy-

ing advantages indicate the package advantages of trading structured products for

investors. Moreover, when N increases, i.e., more call spreads are added into the

series, the results suggest that greater trading advantages to cliquets exist.

3.4.2 Reverse Cliquet Options

An N-month reverse cliquet can also be defined using the end of every month

as the predetermined monthly date. These returns are first capped with zero and

floored with a negative value. These contracts give holders a nominal return R∗ for

bearing the downside risk. The range of floors is [−0.15,−0.05]. The final payoff is

the sum of the modified relative returns, and defined as:

RECL = R∗ +
N∑
i=1

max

(
min

(
Si − Si−1

Si
, 0

)
, f loor

)
.

Holding a reverse cliquet is equivalent to holding a series of put spreads and

bonds. Hence, the buying advantage is defined as:

buying advantage reverse cliquet =
Put SpreadAsk −Reverse CliquetAsk

Call SpreadAsk
.

Selling a reverse cliquet is equivalent to selling a series of put spreads. Hence, the

selling advantage is defined as:

selling advantage reverse cliquet =
Put SpreadBid −Reverse CliquetBid

Put SpreadBid
.

The same parameters for cliquet options are used with R∗ = [0.25, 0.5, 1.0] for 6-

month, 12-month, and 24-month reverse cliquets respectively. Tables 3.3 and 3.4
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Table 3.1: Advantages of Trading a Cliquet (GBM) for 6, 12 and 24 Months

Maturity Cap Spread Ask Cliquet Ask Spread Bid Cliquet Bid Buy Sell

6 months

0.05 0.1188 0.1089 0.0830 0.0914 0.0827 0.1015

0.10 0.1621 0.1460 0.1069 0.1199 0.0993 0.1210

0.15 0.1720 0.1537 0.1107 0.1249 0.1064 0.1283

12 months

0.05 0.2364 0.2112 0.1651 0.1863 0.1066 0.1283

0.10 0.3220 0.2814 0.2122 0.2447 0.1261 0.1530

0.15 0.3419 0.2964 0.2201 0.2555 0.1332 0.1604

24 months

0.05 0.4704 0.4107 0.3286 0.3762 0.1269 0.1450

0.10 0.6425 0.5483 0.4237 0.4960 0.1467 0.1708

0.15 0.6833 0.5772 0.4403 0.5199 0.1553 0.1809
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Table 3.2: Advantages of Trading a Cliquet (VG) for 6, 12 and 24 Months

Maturity Cap Spread Ask Cliquet Ask Spread Bid Cliquet Bid Buy Sell

6 months

0.05 0.1296 0.1223 0.1014 0.1075 0.0567 0.0602

0.10 0.1458 0.1349 0.1089 0.1175 0.0749 0.0792

0.15 0.1495 0.1375 0.1097 0.1188 0.0801 0.0837

12 months

0.05 0.2580 0.2404 0.2020 0.2157 0.0681 0.0679

0.10 0.2883 0.2619 0.2153 0.2355 0.0918 0.0939

0.15 0.2978 0.2686 0.2188 0.2407 0.0983 0.1001

24 months

0.05 0.5138 0.4732 0.4017 0.4299 0.0791 0.0701

0.10 0.5753 0.5141 0.4291 0.4724 0.1065 0.1010

0.15 0.5943 0.5263 0.4368 0.4845 0.1145 0.1092
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present a comparison of the bid and ask prices of the reverse cliquets, and their

corresponding series of put spreads along with bonds under GBM and VG processes

with the same inputs as Tables 3.1 and 3.2. Positive selling advantages and buying

advantages are observed. It is also observed that when N increases, i.e., more put

spreads are added into the series, greater trading advantages of reverse cliquets.

Similar as butterfly spreads, this observation suggests that the more options in the

combination, the more trading benefits there are.

3.4.3 Spread Option

A spread option is written on two underlying assets S1 and S2 with correlation

ρ, |ρ| ≤ 1. The terminal payoff of a spread option with the strike price K is

SO = (S1 − S2 −K)+.

We define a new contingent claim based on this spread option as a sum of a series

of spread options at time ti, i = 1, .., n.

SSO =
n∑
i=1

(S1 − S2 −K)+
i . (3.10)

We can model these two assets as two correlated Geometric Brownian motions:

dS1 = S1µ1dt+ S1σ1dW1, (3.11)

dS2 = S2µ2dt+ S2σ2dW2, (3.12)

with dW1dW2 = ρdt.
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Table 3.3: Advantages of Trading a Reverse Cliquet (GBM) for 6, 12 and 24 Months

Maturity Floor Spread Ask Cliquet Ask Spread Bid Cliquet Bid Buy Sell

6 months

−0.15 0.1402 0.1267 0.0825 0.0997 0.0966 0.2089

−0.10 0.1435 0.1308 0.0898 0.1056 0.0884 0.1755

−0.05 0.1643 0.1557 0.1284 0.1384 0.0522 0.0775

12 months

−0.15 0.2779 0.2441 0.1620 0.2053 0.1219 0.2677

−0.10 0.2842 0.2524 0.1771 0.2168 0.1119 0.2244

−0.05 0.3269 0.3054 0.2554 0.2808 0.0657 0.0996

24 months

−0.15 0.5506 0.4750 0.3211 0.4216 0.1374 0.3128

−0.10 0.5595 0.4886 0.3460 0.4383 0.1268 0.2670

−0.05 0.6441 0.5962 0.5016 0.5615 0.0743 0.1195
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Table 3.4: Advantages of Trading a Reverse Cliquet (VG) for 6, 12 and 24 Months

Maturity Floor Spread Ask Cliquet Ask Spread Bid Cliquet Bid Buy Sell

6 months

−0.15 0.1775 0.1752 0.1204 0.1242 0.0133 0.0320

−0.10 0.1891 0.1873 0.1447 0.1476 0.0096 0.0200

−0.05 0.2101 0.2090 0.1841 0.1858 0.0053 0.0093

12 months

−0.15 0.3543 0.3493 0.2410 0.2502 0.0140 0.0384

−0.10 0.3754 0.3715 0.2866 0.2937 0.0105 0.0250

−0.05 0.4177 0.4152 0.3656 0.3700 0.0060 0.0120

24 months

−0.15 0.6993 0.6901 0.4734 0.4954 0.0131 0.0464

−0.10 0.7438 0.7365 0.5676 0.5849 0.0098 0.0304

−0.05 0.8278 0.8232 0.7247 0.7352 0.0055 0.0144
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Monte Carlo simulation is used to estimate the trading advantages of this

product with 50000 paths. The input variables are:

S0
1 = S0

2 = 100;K = 5; dt = 1/12; r = 0;σS1 = 0.2;σS2 = 0.3;λ = 0.25,

where σ1 and σ2 are the volatility of the assets S1 and S2 respectively. ρ is the

correlation of S1 and S2. Tables 3.5 to 3.11 present the packaging benefits of spread

options with the different values of correlation of the two underlying assets. It is

observed that trading benefits increase as maturity increases, and more trading ben-

efits exist for high positive correlations. These tables suggest that trading a spread

option with zero correlation of the two underlying assets always has more packaging

benefits than trading a spread option with negatively correlated underlying assets,

and fewer packaging benefits than trading a spread option with positive correlated

underlying assets. We also observed that both bid and ask prices of spread options

increase as the correlation decreases. Thus, spread options with negative correlation

have higher bid and ask prices than those with positive correlation. If the correla-

tion of the two underlying assets is negative, the price difference of the two assets

increases due to the opposing directions of price movements. Hence, the bid and

ask prices increase. The larger bid and ask prices of spread options with negatively

correlated assets lead to fewer trading benefits.
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Table 3.5: Advantages of Trading a Spread Option with Noncorrelated Assets (Bi-

variate Normal): Correlation=0

Month Single Ask (total) SSO Ask Single Bid (total) SSO Bid Buy Sell

12 142.5178 134.1395 44.7080 48.8576 0.0588 0.0928

18 240.9112 225.8787 73.3895 80.6015 0.0624 0.0983

24 338.0898 315.4484 99.5793 110.0911 0.0670 0.1056

30 445.1717 414.8676 126.9418 140.7310 0.0681 0.1086

36 554.2107 515.2695 154.6618 172.0905 0.0703 0.1127

42 671.9222 623.7329 182.3374 203.4292 0.0717 0.1157

48 788.7780 729.8538 209.2120 234.4510 0.0747 0.1206
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Table 3.6: Advantages of Trading a Spread Option with Correlated Assets (Bivariate

Normal): Correlation=0.25

Month Single Ask (total) SSO Ask Single Bid (total) SSO Bid Buy Sell

12 119.8049 112.6716 37.0259 40.4892 0.0595 0.0935

18 200.0891 187.2567 59.6595 65.7123 0.0641 0.1015

24 280.0613 261.2442 80.3394 88.9611 0.0672 0.1073

30 363.2141 337.4860 100.9580 112.4162 0.0708 0.1135

36 444.1037 411.0764 119.7758 134.1526 0.0744 0.1200

42 537.0000 495.9116 141.0950 158.4099 0.0765 0.1227

48 616.8355 568.9686 157.2352 177.0667 0.0776 0.1261
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Table 3.7: Advantages of Trading a Spread Option with Correlated Assets (Bivariate

Normal): Correlation=0.5

Month Single Ask (total) SSO Ask Single Bid (total) SSO Bid Buy Sell

12 91.6796 85.9647 27.6183 30.3449 0.0623 0.0987

18 150.3519 140.2693 43.4716 48.0700 0.0671 0.1058

24 209.8583 195.1046 58.0112 64.5516 0.0703 0.1127

30 266.0811 246.2673 70.6313 79.1337 0.0745 0.1204

36 321.4271 296.2481 81.7520 92.1343 0.0783 0.1270

42 377.7897 347.4772 92.5071 104.6503 0.0802 0.1313

48 431.9216 395.6475 102.4219 116.4940 0.0840 0.1374
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Table 3.8: Advantages of Trading a Spread Option with Correlated Assets (Bivariate

Normal): Correlation=0.75

Month Single Ask (total) SSO Ask Single Bid (total) SSO Bid Buy Sell

12 58.6739 54.8134 16.9472 18.7200 0.0658 0.1046

18 90.7384 84.2287 24.6520 27.5013 0.0717 0.1156

24 118.8682 109.6483 30.3452 34.2015 0.0776 0.1271

30 146.6139 134.5385 35.7869 40.5911 0.0824 0.1342

36 169.1055 154.3117 38.9596 44.5563 0.0875 0.1437

42 191.0698 173.3989 42.2058 48.6210 0.0925 0.1520

48 211.9959 191.5644 45.1373 52.3158 0.0964 0.1590
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Table 3.9: Advantages of Trading a Spread Option with Correlated Assets (Bivariate

Normal): Correlation=-0.25

Month Single Ask (total) SSO Ask Single Bid (total) SSO Bid Buy Sell

12 164.8799 155.4877 52.5434 57.2241 0.0570 0.0891

18 276.6713 259.6211 85.6166 93.8790 0.0616 0.0965

24 401.0235 375.5856 120.9701 133.1596 0.0634 0.1008

30 531.1714 496.7154 155.9655 172.1217 0.0649 0.1036

36 661.4954 617.1012 189.7731 210.2832 0.0671 0.1081

42 792.7057 737.7024 222.6291 247.2371 0.0694 0.1105

48 928.5326 861.8479 255.0222 284.4667 0.0718 0.1155
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Table 3.10: Advantages of Trading a Spread Option with Correlated Assets (Bivari-

ate Normal): Correlation=-0.5

Month Single Ask (total) SSO Ask Single Bid (total) SSO Bid Buy Sell

12 182.2616 171.9338 58.4074 63.5708 0.0567 0.0884

18 311.9491 293.1819 97.9628 107.1739 0.0602 0.0940

24 448.1054 420.3243 136.5484 150.0317 0.0620 0.0987

30 597.9071 560.0548 179.1627 197.1597 0.0633 0.1005

36 759.7603 710.4188 223.6783 246.9020 0.0649 0.1038

42 906.6096 845.1462 261.7655 289.9662 0.0678 0.1077

48 1056.2 983.3750 297.0474 329.9895 0.0690 0.1109
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Table 3.11: Advantages of Trading a Spread Option with Correlated Assets (Bivari-

ate Normal): Correlation=-0.75

Month Single Ask (total) SSO Ask Single Bid (total) SSO Bid Buy Sell

12 201.0389 189.6973 65.3216 71.0573 0.0564 0.0878

18 340.5055 320.2519 107.9157 118.0108 0.0595 0.0935

24 497.3702 466.8745 154.5985 169.5686 0.0613 0.0968

30 668.3898 626.8636 204.1623 224.1170 0.0621 0.0977

36 828.6765 775.7913 247.3565 272.6291 0.0638 0.1022

42 1002.1 936.7430 292.5809 323.1550 0.0652 0.1045

48 1176.5 1098.2 337.9832 374.2433 0.0666 0.1073
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3.5 Summary

We investigated the trading advantages of structured products based on the

two-price market theory. Numerical tests of bull spreads, bear spreads, butterfly

spreads, and straddles used along with mathematical proofs clearly illustrate the

package advantages of structured products. Buying these spreads is always cheaper

than trading their components separately, and selling these spreads is always more

expensive than trading their components separately. We also studied the impact of

market skewness in trading bull and bear spreads. Numerical tests on the VGSSD

model suggest that for bull spreads more trading benefits exist in right-skewed mar-

kets and more left-skewed markets. When the market skewness changes from nega-

tive to positive, the trading benefits increase. On the other hand, for bear spreads,

more trading benefits exist in left-skewed markets and extreme right-skewed mar-

kets. When the market skewness changes from negative to positive, trading benefits

reduce first and then increase after a critical point. At the same stress level, a

butterfly spread has more trading advantages than a bull call spread or a bear put

spread. This suggests that more packaging benefits exist if there are more options

are in the combination.

Numerical results obtained for cliquet and reverse cliquet options reach the

same conclusion as option spreads; trading these products rather than their com-

ponents could bring more benefits to investors. These trading advantages indicate

the bid-ask spreads of these structured products are less than their corresponding

components or lower transaction costs. Asymmetry is observed for selling and buy-
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ing advantages from numerical results. Moreover, the longer the maturities of the

cliquets and reverse cliquets, the greater the trading advantages for investors. These

discoveries suggest that the level of trading advantages increases with the combina-

tion complexity of structured products. If more components with non-zero terminal

cash flow are added into structured products, more benefits exist for trading these

products. It was also observed that if the interval of the terminal cash flow of a

single component in the structured product is larger, more trading benefits exist. If

the terminal cash flow of the structured product is monotonic, like a risk reversal,

there is no benefit to trading it in the conic two-price markets.

We observed that the correlation of underlying assets plays a crucial role in

terms of packaging benefits in trading spread options. As correlation increases from

negative to positive, bid and ask prices of spread options reduce, but trading benefits

increase. If the prices of the two underlying assets move in the same direction, the

spread option prices decrease. If the prices of the two underlying assets move in

the opposite directions, the spread option prices increase. Greater spread option

prices with negatively correlated assets leads to fewer trading benefits. As the total

number of spread options increases, the trading benefits of a series of spread options

also increase.
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Chapter 4

Option Implied Liquidity

4.1 Introduction

”In business, economics or investment, market liquidity is an asset’s ability to

be sold without causing a significant movement in the price and with minimum loss of

value. Money, or cash in hand, is the most liquid asset, and can be used immediately

to perform economic actions like buying, selling, or paying debt, meeting immediate

wants and needs,” as defined in [53]. Thus, liquidity risk arises from situations

when a party wants to trade an asset but can not find a counterparty to trade with.

On the other hand, if an asset is easily bought or sold on the market, the asset

is said to be liquid. As we know, bid and ask prices are defined by the market

makers’ perspective. Like grocers [43], bid-ask spreads reflect investors’ demand

rather than market makers’. Usually, bid-ask spreads can be used as an indicator of

liquidity. Highly liquid assets have small spreads, whereas illiquid assets have large

spreads. As discussed in [28], two important assumptions in classical option pricing

theory are that markets are frictionless and competitive. Frictionless markets have

no transaction costs, no taxes, and no bid-ask spreads. In competitive markets, the

trading size of securities has no impact on price. It is believed that the violation of

the two assumptions in real markets leads to the existence of liquidity risk. Some

works that investigated liquidity risk using option pricing theory are discussed in
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[28]. Observations show that bid-ask spreads evolve in a market with no variation

in liquidity, but change nonlinearly with maturity and volatility. Hence, bid-ask

spreads are not a perfect measure for liquidity. Corcuera J. M., et.al [23] introduced

the concept of the implied liquidity parameter by using the two-price market model

based on the conic finance theory. A nonlinear distorted expectation with one

parameter, called the ’implied liquidity parameter,’ is involved for pricing. The

smaller the implied liquidity parameter, the more liquid the security and the lower

the bid-ask spread. The Geometric Brownian motion was used to model the risk-

neutral process of log returns. Their observation on the implied liquidity parameters

of the at-the-money options of the S&P500 and Dow Jones Index demonstrates that

vanilla options with high strike prices always have high implied liquidity parameters;

in other words, low liquidity. Their historical study showed a significant drying up

of liquidity in the weeks following the bankruptcy of Lehman Brothers. Derivatives

on liquidity was also proposed as a hedging instrument in the future.

Here, we follow their work and continue to model the liquidity parameter im-

plied by market option prices as a nonlinear function of strike prices and maturities

with sophisticated risk-neutral price models. This could be a way to investigate the

detailed structure of the liquidity parameter over the option surface. Moreover, the

liquidity parameters are not just estimated for the at-the-money options, but over

the option surface across different maturities and strike prices.
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4.2 Nonlinear Least Square

In order to investigate the implied liquidity parameter, option calibration is

an obvious choice and the first step. We assume the market is not a hedged one. In

incomplete markets, options are not redundant. Thus, the available option prices

could be an important source for model parameters and market information. The

calibrated model parameters can be used for pricing exotic options and hedging.

Option model calibration is defined as seeking the optimized risk-neutral model Q

with parameters θ, which could best approximate the market option prices across

different strike prices and maturities.

The most popular approach to calibrate option models is to minimize the sum

of the quadratic pricing error [1] [6], i.e.,:

J(θ) =
N∑
i=1

(
C(Ti, Ki)− Ĉ(Ti, Ki)

)2

, (4.1)

where C(Ti, Ki) is the market option price at maturity Ti and strike price Ki, Ĉ is

the modeled option price with model parameters θ at Ti and strike price Ki. For the

case in this section, the objective function is the sum of the quadratic error of ask

and bid prices of call and put options. Hence, the estimated parameters θ∗ which

are the best approximation of market option prices are given by:

θ∗ = argmin

N∑
i=1

(
C(Ti, Ki)− Ĉ(Ti, Ki)

)2

.

As we know, all the call and put options could be separated into three groups: the

in-the-money (ITM) option where the strike price is less than the spot price, the

at-the-money (ATM) option where the strike price is equal to the spot price, and
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the out-of-the-money (OTM) option where the strike price is larger than the spot

price. First, we use the OTM call and put options to study the implied liquidity

parameters and model the implied liquidity parameters as quadratic functions of

moneyness and linear functions of maturity as described in the following.

Let x = ln(S/K) be moneyness, and t be maturity. We first assume,

λ = λ0 + ax+ bx2 + ct. (4.2)

In order to investigate the relationship between moneyness and maturities, we

assume,

λ = λ0 + ax+ bx2 + ct+ dxt. (4.3)

The stress level λ is used in the distorted function MINMAXVAR which is described

in Chapter 2,

Ψλ(u) = 1− (1− u
1

1+λ )1+λ.

VGSSD, introduced in Chapter 1 with characteristic function Equation 1.3, is used

as the risk-neutral process of log stock prices. Along with the distorted function,

the two equations model the bid and ask option prices under a specified risk-neutral

process of VGSSD and a specified stress level λ. Hence, we have eight parameters

to be estimated using nonlinear least squares: four parameters in VGSSD, θ, ν,

σ,γ, and four parameters in stress levels, λ0, a, b and c. Tables 4.1 to 4.3 present

the numerical results for S&P500 index options (SPX) every quarter from 2007

to 2010. Standard errors are measured by the square root of the inverse Hessian

matrix of the objective function. Tables 4.5 to 4.7 present the results for NASDAQ
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100 index options (NDX) and Tables 4.9 to 4.11 present the results for Dow Jones

index options (DJX). Tables 4.13 to 4.21 present the estimated and analysis results

for index options using Equation (4.3) for modeling λ. Three terms used in the fit

statistics are defined as follows.

Let N be the total number of option prices used in the calibration. APE which

denotes the average absolute error as a percentage of the mean price is defined as:

APE =
1

PricesMean

N∑
i=1

|PriceMarket − PriceModel|
N

.

AAE which denotes the average absolute error is defined as :

AAE =
N∑
i=1

|PriceMarket − PriceModel|
N

.

RMSE which denotes the root mean square error is defined as:

RMSE =

√√√√ N∑
i=1

(PriceMarket − PriceModel)2

N
.

Usually, one with APE lower than 5% is considered a good calibration.

When the moneyess x in Equation (4.2) is zero, the stress level λ which is

the stress level for the ATM options is the value of λ0. The results from Tables

4.1, 4.5, and 4.9 suggest that, significant high stress levels of SPX, NDX and DJX

are estimated on September 30, 2008 and December 31, 2008. This observation

reaches the same agreement as [23] that a serious liquidity risk exists in the credit

crisis in 2008. When the moneyess x is equal to − a
2b

, the stress level λ reaches

its minimum. From the three tables, we found that the values of a are mostly

negative and the values of b are mostly positive, hence, OTM put options always

have the minimum value of stress levels across the option surface. The strike prices
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with minimum value of λ and the spot prices are presented in Tables 4.1, 4.5, and

4.9. It indicates that put options with minimum stress levels are most liquid on

the option surface, and investors use these options to protect themselves if market

is going down. It is observed that the value of c is always close to zero. Given

parameter identification results, there is no linear relationship between stress levels

and maturities. However, nonlinear relationship between these two might exists.

Figure 4.1 presents the VGSSD modeled ask and bid option prices as well as the

market option prices of SPX on December 31, 2008. Figure 4.2 depicts the variation

of stress level λ on the option surface. The relatively steeper slope for the OTM put

options suggests that the market for OTM put options is more illiquid than that for

OTM call options. The limited downside gain for put options discourages investors

to trade these options.

4.3 Model Estimation Analysis

The process of model calibration is an inverse problem of option pricing. Un-

fortunately, this inverse problem is ill-posed. In the Black-Scholes-Merton model,

the only estimated parameter is volatility σ. In more complex models, like jump-

diffusion models, stochastic volatility models are developed, the problem of param-

eter identification becomes more difficult. Different ways to calibrate models have

been developed, such as the Hermite approximation of likelihood [2] and weighted

non-parametric approximation [22]. Due to the non-convex objective function in

Equation 4.1, the global minimum may not be reached. Problems then arise to
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question the quality of the calibration results. The most serious concerning is the

parameter identification problem. It is possible that many other sets of parame-

ters in this model could experience the same minimized pricing error. In this case,

the minimum has a flat region which causes the objective function to have a low

sensitivity with respect to the model parameters. This problem is not just due to

the lack of option prices data; rather, the amount of option price data is less than

the number of model parameters that needs to be estimated. Cont and Tankov [22]

presented examples of this situation. Besides the uniqueness problem, another issue

is that since the objective function is non-convex, the local minimum could always

be reached; however, are these local minimums are the true solution we are looking

for? Which model parameters dominate the minimization results? To answer these

questions, a sensitivity analysis of estimated model parameters is crucial in order to

examine the quality of the estimation results and recognize the significance of these

parameters in the minimization.

The approach to identify estimated parameters in [32] is to compute the av-

erage value of the first order derivative of the absolute pricing error with respect to

each model parameter, ∣∣∣∣∂ 1
2
(wi − wmi )2

∂θk

∣∣∣∣ ,
wi is market price, wmi is model price and then take the average value across all

options. The higher the value, the more the parameter is identified.

Tables 4.4, 4.8 and 4.12 present the eight parameter identification results for

SPX, NDX and DJX respectively. σ, θ, λ0 and c are more identified than the rest
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of eight parameters. Figure 4.3 depicts the identification for each parameter on

different strike prices and four maturities 0.4712, 0.9699, 1.4685 and 1.9671. As we

observe, θ and c are mostly identified by the longest put options, σ, ν, λ0, a and b are

mostly identified by the longest OTM call and put options, γ is mostly identified

by the longest OTM options and the shortest ATM options. Tables 4.13 to 4.21

present the estimated night parameters for SPX, NDX and DJX. The observation

on parameter identification suggests that parameter d is not well identified.
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Table 4.1: SPX OTM Calibrated Parameters : λ has four parameters.

Date σ ν θ γ λ0 a b c min (x) min (K) Spot

20070328 0.1188 0.9666 -0.1039 0.5609 0.0163 -0.0015 0.3278 -0.0038 0.0023 1413.99 1417.23

20070627 0.1303 0.9212 -0.1146 0.5583 0.0089 -0.0015 0.1044 -0.0013 0.0072 1495.56 1506.34

20070927 0.1433 0.8376 -0.1500 0.5701 0.0110 -0.0104 0.2203 0.0006 0.0236 1495.65 1531.38

20071226 0.1798 1.0336 -0.1624 0.5547 0.0069 -0.0039 0.0772 -0.0003 0.0253 1460.30 1497.66

20080327 0.2044 1.1125 -0.2084 0.5403 0.0054 -0.0109 0.0701 0.0008 0.0777 1226.59 1325.76

20080627 0.1824 0.6914 -0.2225 0.5322 0.0092 -0.0132 0.1342 -0.0012 0.0492 1217.03 1278.38

20080930 0.2042 0.4489 -0.3314 0.4390 0.0208 -0.0138 0.1803 -0.0070 0.0383 1121.01 1164.74

20081231 0.2967 0.8677 -0.3751 0.5234 0.0295 -0.0082 0.0139 -0.0088 0.2950 672.52 903.25

20090331 0.3111 0.6339 -0.3950 0.4683 0.0155 -0.0060 0.0785 -0.0038 0.0382 767.95 797.87

20090630 0.2213 0.8144 -0.2596 0.5695 0.0131 -0.0226 0.1117 0.0021 0.1012 830.87 919.32

20090930 0.2173 0.8495 -0.2270 0.5890 0.0090 -0.0077 0.0471 0.0011 0.0817 974.11 1057.08

20091229 0.1969 0.9642 -0.1908 0.5938 0.0110 -0.0082 0.0449 -0.0006 0.0913 1027.92 1126.20

20100331 0.1760 1.1091 -0.1549 0.6175 0.0150 -0.0008 0.0017 -0.0031 0.2353 924.24 1169.43

20100630 0.2480 1.4532 -0.2669 0.5705 0.0083 -0.0189 0.0719 0.0033 0.1314 903.77 1030.71
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Table 4.2: SPX OTM Calibration Fit Statistics : λ has four parameters.

Date APE AAE RMSE

20070328 0.0231 0.7580 0.8942

20070627 0.0186 0.5962 0.8589

20070927 0.0199 0.8930 1.1487

20071226 0.0198 1.0462 1.4261

20080327 0.0445 2.4665 3.1536

20080627 0.0168 0.7037 0.8990

20080930 0.0275 1.2777 1.7318

20081231 0.0350 1.4999 1.9483

20090331 0.0193 0.8191 1.0577

20090630 0.0281 0.9188 1.1293

20090930 0.0236 0.8082 0.9677

20091229 0.0237 0.8595 1.1343

20100331 0.0335 0.9443 1.1709

20100630 0.0313 1.3839 1.7867
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Table 4.3: Standard Error: SPX OTM Calibrated Parameters (basis point)

Date σ ν θ γ λ0 a b c

20070328 5 28 6 10 37 49 235 27

20070627 2 18 5 6 10 36 173 7

20070927 6 55 10 14 8 33 138 6

20071226 14 53 21 8 10 19 62 7

20080327 5 7 6 7 5 17 21 4

20080627 9 69 18 10 7 24 96 6

20080930 13 53 33 9 6 17 62 5

20081231 4 21 4 9 6 10 24 4

20090331 8 48 19 9 5 12 32 4

20090630 10 122 23 16 7 17 38 5

20090930 6 81 12 18 11 27 65 8

20100331 1 37 5 3 9 9 69 6

20100630 3 30 3 2 7 17 31 4
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Table 4.4: Parameter Identification: SPX OTM Calibrated Parameters

Date σ ν θ γ λ0 a b c

20070328 186 5 147 14 73 5 1 94

20070627 178 4 118 16 70 6 1 99

20070927 242 12 197 25 128 10 2 162

20071226 307 10 240 48 198 18 4 312

20080327 583 22 539 87 492 41 8 646

20080627 156 10 106 18 96 9 2 108

20080930 3854 106 2487 371 2001 196 35 2279

20081231 226 14 162 61 249 37 11 362

20090331 113 10 59 24 107 16 6 118

20090630 143 8 87 25 96 17 6 141

20090930 140 7 81 18 87 14 5 114

20091229 581 19 404 87 373 38 8 493

20100331 167 6 114 17 86 13 4 110

20100630 4120 137 2925 600 2380 297 74 3432
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Table 4.5: NDX OTM Calibrated Parameters : λ has four parameters.

Date σ ν θ γ λ0 a b c min (x) min (K) Spot

20070328 0.1583 0.6667 -0.1564 0.5394 0.0047 -0.0072 0.0023 0.0003 1.5652 370.12 1770.54

20070627 0.1695 0.7334 -0.1410 0.5936 0.0055 -0.0117 0.0935 -0.0025 0.0626 1815.82 1933.06

20070927 0.1992 1.0007 -0.1325 0.5885 0.0060 -0.0025 0.0947 -0.0025 0.0132 2068.90 2096.39

20071226 0.2264 0.7529 -0.2020 0.5902 0.0195 -0.0089 0.0597 -0.0138 0.0745 1983.45 2136.94

20080327 0.2502 0.8110 -0.2546 0.5557 0.0063 -0.0008 0.0263 0.0015 0.0152 1751.05 1777.89

20080627 0.2360 0.5392 -0.2757 0.5484 0.0043 -0.0025 0.0290 0.0002 0.0431 1777.43 1855.72

20080930 0.2512 0.4736 -0.3389 0.4660 0.0168 -0.0075 0.0598 -0.0015 0.0627 1497.70 1594.63

20081231 0.3363 0.8045 -0.4165 0.5372 0.0083 -0.0005 0.0289 -0.0025 0.0087 1201.21 1211.65

20090331 0.3231 0.5643 -0.4045 0.4866 0.0049 -0.0008 0.0541 0.0054 0.0074 1227.90 1237.01

20090630 0.2533 0.9510 -0.2265 0.5743 0.0072 -0.0090 0.0425 0.0002 0.1059 1328.83 1477.25

20090930 0.2320 0.8624 -0.2314 0.5881 0.0028 -0.0070 0.0378 0.0020 0.0926 1566.97 1718.99

20091229 0.2203 0.9496 -0.1784 0.6140 0.0044 -0.0128 0.0521 0.0001 0.1228 1655.62 1872.02

20100331 0.1950 1.0608 -0.1551 0.6297 0.0052 -0.0075 0.0134 -0.0004 0.2796 1480.30 1958.34

20100630 0.2718 1.1849 -0.2778 0.5468 0.0137 -0.0096 0.0435 -0.0070 0.1103 1557.44 1739.14
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Table 4.6: NDX OTM Calibration Fit Statistics : λ has four parameters.

Date APE AAE RMSE

20070328 0.0136 0.6510 0.7826

20070627 0.0086 0.4288 0.5508

20070927 0.0155 1.0032 1.1600

20071226 0.0275 2.5309 4.0160

20080327 0.0325 2.8418 3.9571

20080627 0.0083 0.7509 0.9709

20080930 0.0119 0.8158 1.0019

20081231 0.0173 1.1005 1.4489

20090331 0.0163 0.9179 1.1568

20090630 0.0191 0.9790 1.2334

20090930 0.0241 1.1683 1.3863

20091229 0.0165 0.9924 1.2715

20100331 0.0177 0.8368 1.1123

20100630 0.0171 1.3479 1.7834
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Table 4.7: Standard Error: NDX OTM Calibrated Parameters (basis point)

Date σ ν θ γ λ0 a b c

20070328 8 83 17 11 7 53 340 5

20070627 8 7 13 45 4 35 175 3

20070927 4 20 6 11 6 20 81 6

20071226 9 54 19 4 3 10 37 2

20080327 4 23 9 5 3 8 33 2

20080627 4 24 10 5 3 9 40 3

20080930 7 39 20 8 5 10 48 5

20081231 5 32 10 5 4 7 26 2

20090331 7 44 20 6 4 8 29 3

20090630 2 131 1 21 2 17 37 1

20090930 4 8 6 13 8 21 58 8

20091229 49 651 99 9 4 21 54 3

20100331 3 21 6 4 6 28 83 5

20100630 9 14 11 3 6 16 44 6
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Table 4.8: Parameter Identification: NDX OTM Calibrated Parameters

Date σ ν θ γ λ0 a b c

20070328 135 8 83 18 64 5 1 47

20070627 3462 176 3299 248 2465 198 31 2519

20070927 355 10 239 23 222 18 3 224

20071226 9646 348 8114 1546 6444 614 100 10292

20080327 584 23 539 87 492 41 9 647

20080627 157 10 107 18 97 9 2 109

20080930 9941 268 6059 618 4828 507 83 4703

20081231 217 14 126 62 246 42 12 364

20090331 180 17 79 39 157 31 10 187

20090630 223 9 117 23 153 23 8 165

20090930 247 13 146 23 157 26 9 141

20091229 310 12 185 51 197 28 9 246

20100331 235 7 150 29 131 16 5 142

20100630 11840 411 8748 976 6720 728 153 6995
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Table 4.9: DJX OTM Calibrated Parameters : λ has four parameters.

Date σ ν θ γ λ0 a b c min (x) min (K) Spot

20070328 0.1236 1.1695 -0.0855 0.5687 0.0151 0.0063 0.0594 -0.0025 -0.0530 129.70 123.00

20070627 0.1416 1.1745 -0.0855 0.5682 0.0090 0.0100 0.0049 -0.0001 -1.0204 372.53 134.28

20070927 0.1553 0.9774 -0.1125 0.5801 0.0110 -0.0033 0.1553 -0.0018 0.0106 137.66 139.13

20071226 0.1694 0.9907 -0.1540 0.5562 0.0132 -0.0184 0.1658 -0.0035 0.0555 128.21 135.52

20080327 0.2008 1.1130 -0.1845 0.5370 0.0064 -0.0104 0.0059 0.0011 0.8814 50.96 123.02

20080627 0.1821 0.9178 -0.1809 0.5262 0.0066 -0.0135 0.1297 0.0002 0.0520 107.72 113.47

20080930 0.2148 0.7809 -0.2358 0.4578 0.0136 -0.0378 0.2576 -0.0004 0.0734 100.83 108.51

20081231 0.2827 0.7512 -0.3557 0.5124 0.0104 -0.0181 0.0706 0.0005 0.1282 77.20 87.76

20090331 0.3000 0.6458 -0.3421 0.4555 0.0120 -0.0281 0.0605 -0.0013 0.2322 60.32 76.09

20090630 0.2203 1.0249 -0.2130 0.5771 0.0089 -0.0231 0.0561 0.0001 0.2059 68.75 84.47

20090930 0.2079 0.9110 -0.1961 0.5897 0.0073 -0.0199 0.0539 0.0008 0.1846 80.75 97.12

20091229 0.1843 0.9145 -0.1665 0.6004 0.0077 -0.0220 0.0773 -0.0003 0.1423 91.46 105.45

20100331 0.1670 1.1635 -0.1321 0.6268 0.0089 -0.0356 0.1106 0.0006 0.1609 92.43 108.57

20100630 0.2428 1.4282 -0.2199 0.5522 0.0169 -0.0533 0.1408 0.0033 0.1892 80.89 97.74
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Table 4.10: DJX OTM Calibration Fit Statistics : λ has four parameters.

Date APE AAE RMSE

20070328 0.0299 0.0971 0.1246

20070627 0.0149 0.0628 0.0885

20070927 0.0258 0.1138 0.1449

20071226 0.0124 0.0567 0.0729

20080327 0.0366 0.1969 0.2527

20080627 0.0164 0.0682 0.0853

20080930 0.0347 0.5917 1.1328

20081231 0.0175 0.0934 0.1192

20090331 0.0166 0.0721 0.0941

20090630 0.0163 0.0552 0.0779

20090930 0.0238 0.0879 0.1042

20091229 0.0281 0.0892 0.1099

20100331 0.0229 0.0693 0.0865

20100630 0.0295 0.1198 0.1569
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Table 4.11: Standard Error: DJX OTM Calibrated Parameters (basis point)

Date σ ν θ γ λ0 a b c

20070328 55 110 21 49 79 519 1199 61

20070627 49 125 57 133 34 231 1294 22

20070927 20 195 23 104 59 200 1003 42

20071226 28 242 36 89 64 183 885 51

20080327 67 275 84 23 44 15 325 32

20080627 45 246 62 88 59 253 926 50

20080930 27 150 32 67 46 136 979 36

20081231 173 1588 393 117 40 108 322 25

20090331 14 50 21 14 46 89 280 34

20090630 1 118 23 112 87 227 619 70

20090930 29 297 30 127 85 224 589 61

20091229 52 1 74 1 29 8 962 25

20100331 38 109 47 6 125 394 701 104

20100630 36 117 32 16 75 298 719 57
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Table 4.12: Parameter Identification: DJX OTM Calibrated Parameters

Date σ ν θ γ λ0 a b c

20070328 0.0591 0.2901 2.9102 0.1760 0.8742 0.0635 0.0083 1.1912

20070627 2.2661 0.0329 1.4927 0.2316 0.9947 0.0720 0.0109 1.6287

20070927 3.7582 0.0809 2.3995 0.3207 1.7768 0.1285 0.0188 2.4597

20071226 1.5345 0.0513 1.0744 0.1306 0.8078 0.0803 0.0149 0.9986

20080327 4.9919 0.1500 4.0165 0.6727 3.6679 0.3198 0.0580 5.1023

20080627 1.5004 0.0551 1.0242 0.1501 0.8587 0.0723 0.0113 0.9166

20080930 2.1635 0.1143 1.4198 0.3207 1.5059 0.1661 0.0314 1.9645

20081231 1.6489 0.1187 0.9978 0.4323 1.5567 0.2617 0.0812 2.4894

20090331 1.1832 0.0752 0.5408 0.2031 1.0091 0.1590 0.0475 1.3453

20090630 0.9032 0.0299 0.5662 0.1102 0.5840 0.0668 0.0157 0.6964

20090930 1.6737 0.0674 0.9701 0.1988 1.0305 0.1475 0.0454 1.3770

20091229 1.6991 0.0638 1.0394 0.1907 0.9283 0.1132 0.0300 1.1063

20100331 1.3560 0.0369 0.8577 0.0951 0.6341 0.0796 0.0207 0.7294

20100630 1.8487 0.0719 1.5349 0.2915 1.6122 0.2547 0.0801 2.0017
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Figure 4.1: Market ask and bid option prices are blue circles and model ask and bid

option prices are denoted by red dots. The risk-neutral model is VGSSD and data

are OTM option prices on the SPX on December 31, 2008.
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Figure 4.2: Estimated stress level λ is denoted by blue circles. The risk-neutral

model is VGSSD and data are OTM option prices on the SPX on December 31,

2008.
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Figure 4.3: Parameter identifications are across different maturities and strike price.

The risk-neutral model is VGSSD and data are OTM option prices on the SPX on

December 31, 2008.
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Table 4.13: SPX OTM Calibrated Parameters : λ has five parameters.

Date σ ν θ γ λ0 a b c d

20070328 0.1189 0.9648 -0.1040 0.5614 0.0162 0.0402 0.0235 -0.0027 -0.0004

20070627 0.1303 0.9212 -0.1146 0.5583 0.0089 0.0015 0.1044 -0.0013 0.0000

20070927 0.1449 0.8520 -0.1478 0.5648 0.0097 -0.0177 0.1550 0.0018 -0.0136

20071226 0.1798 1.0336 -0.1624 0.5547 0.0069 -0.0039 0.0772 -0.0003 0.0000

20080327 0.2062 1.1143 -0.2060 0.5420 0.0056 -0.0034 0.0324 0.0010 -0.0027

20080627 0.1823 0.6912 -0.2226 0.5322 0.0091 -0.0101 0.1346 -0.0011 -0.0027

20080930 0.2043 0.4491 -0.3313 0.4390 0.0209 -0.0245 0.1809 -0.0070 0.0083

20081231 0.2967 0.8681 -0.3751 0.5235 0.0299 -0.0208 0.0153 -0.0090 0.0080

20090331 0.3110 0.6335 -0.3952 0.4683 0.0151 0.0007 0.0776 -0.0035 -0.0050

20090630 0.2214 0.8145 -0.2595 0.5696 0.0131 -0.0234 0.1107 0.0021 0.0007

20090930 0.2173 0.8489 -0.2271 0.5890 0.0090 -0.0078 0.0472 0.0011 0.0001

20091229 0.1961 2.0073 -0.1671 0.6279 0.0232 -0.0272 0.0209 -0.0185 0.0166

20100331 0.1756 1.1031 -0.1555 0.6177 0.0160 -0.0291 0.0693 -0.0039 0.0072

20100630 0.2480 1.4532 -0.2669 0.5705 0.0083 -0.0189 0.0719 0.0033 0.0001
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Table 4.14: NDX OTM Calibrated Parameters : λ has five parameters.

Date σ ν θ γ λ0 a b c d

20070328 0.1583 0.6667 -0.1563 0.5394 0.0046 -0.0072 0.0024 0.0003 0.0001

20070627 0.1695 0.7324 -0.1412 0.5935 0.0056 -0.0123 0.0935 -0.0026 0.0016

20070927 0.1989 0.9976 -0.1331 0.5890 0.0060 0.0055 0.0953 -0.0025 -0.0028

20071226 0.2264 0.7513 -0.2021 0.5901 0.0194 0.0182 0.0019 -0.0134 -0.0156

20080327 0.2501 0.8100 -0.2548 0.5557 0.0064 -0.0096 0.0294 0.0015 0.0075

20080627 0.2360 0.5391 -0.2757 0.5484 0.0043 -0.0070 0.0311 0.0002 0.0082

20080930 0.2512 0.4738 -0.3388 0.4661 0.0164 -0.0392 0.0636 -0.0010 0.0309

20081231 0.3352 0.7967 -0.4187 0.5368 0.0085 -0.0103 0.0320 -0.0026 0.0063

20090331 0.3231 0.5644 -0.4045 0.4867 0.0050 -0.0141 0.0567 0.0054 0.0111

20090630 0.2531 0.9492 -0.2267 0.5743 0.0073 -0.0107 0.0427 0.0002 0.0015

20090930 0.2320 0.8624 -0.2314 0.5881 0.0029 -0.0075 0.0375 0.0018 0.0006

20091229 0.2204 0.9508 -0.1782 0.6140 0.0044 -0.0119 0.0519 0.0002 -0.0006

20100331 0.1953 1.0617 -0.1547 0.6280 0.0040 -0.0002 0.0385 0.0003 -0.0080

20100630 0.2717 1.1840 -0.2780 0.5468 0.0141 -0.0191 0.0412 -0.0073 0.0096
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Table 4.15: DJX OTM Calibrated Parameters : λ has five parameters.

Date σ ν θ γ λ0 a b c d

20070328 0.1236 1.1701 -0.0855 0.5687 0.0151 0.0006 0.0573 -0.0026 0.0040

20070627 0.1416 1.1745 -0.0855 0.5682 0.0090 0.0100 0.0049 -0.0001 0.0001

20070927 0.1532 0.9400 -0.1168 0.5797 0.0107 0.0173 0.2081 -0.0018 -0.0143

20071226 -0.1693 0.9904 -0.1541 0.5562 0.0129 -0.0110 0.1663 -0.0034 -0.0058

20080627 0.1819 0.9148 -0.1813 0.5260 0.0068 -0.0224 0.1345 -0.0001 0.0074

20080930 0.2148 0.7808 -0.2358 0.4577 0.0132 -0.0218 0.2510 -0.0001 -0.0116

20081231 0.2827 0.7510 -0.3557 0.5123 0.0101 -0.0125 0.0695 0.0007 -0.0032

20090331 0.2996 0.6435 -0.3429 0.4558 0.0108 -0.0668 0.0036 -0.0002 0.0151

20090630 0.2203 1.0248 -0.2130 0.5771 0.0087 -0.0202 0.0564 0.0002 -0.0023

20090930 0.2078 0.9091 -0.1963 0.5896 0.0073 -0.0194 0.0540 0.0009 -0.0004

20091229 0.1844 0.9160 -0.1663 0.6001 0.0068 -0.0064 0.0760 0.0003 -0.0100

20100331 0.1669 1.1633 -0.1322 0.6267 0.0068 -0.0025 0.1122 0.0023 -0.0269

20100630 0.2425 1.4244 -0.2203 0.5522 0.0155 -0.0360 0.1403 0.0045 -0.0131
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Table 4.16: Standard Error: SPX OTM Calibrated Parameters (basis point)

Date σ ν θ γ λ0 a b c d

20070328 8 19 11 6 5 163 264 3 117

20070627 3 16 2 12 12 131 175 8 81

20070927 4 27 5 12 7 35 144 6 20

20071226 4 4 5 7 2 57 61 1 34

20080327 2 47 3 4 6 55 56 4 38

20080627 5 34 10 11 5 48 77 5 14

20080930 5 20 8 9 8 184 61 6 142

20081231 5 21 7 8 6 33 25 4 20

20090331 7 41 16 9 6 41 32 5 29

20090630 6 31 9 11 10 74 37 6 42

20090930 4 36 6 16 10 6 45 8 21

20091229 3 8 2 3 16 28 42 10 16

20100331 4 24 3 11 14 111 101 10 77

20100630 3 24 2 17 7 51 33 4 29
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Table 4.17: Parameter Identification: SPX OTM Calibrated Parameters

Date σ ν θ γ λ0 a b c d

20070328 205.2418 6.3250 159.4075 15.5778 79.9765 6.2101 1.0777 101.7701 8.3513

20070627 178.9675 4.8110 118.4678 16.2145 70.6964 6.0387 1.0422 99.2049 7.2053

20070927 256.5644 12.2894 203.3730 26.4682 134.4839 10.4442 1.8376 170.9368 13.7571

20071226 307.4613 10.3934 240.4606 48.7591 198.6031 18.2799 4.1495 312.0927 20.6385

20080327 594.4583 22.1259 536.5133 88.0090 498.3922 41.5933 8.5932 655.1632 54.7240

20080627 156.9170 10.0130 106.8282 18.3243 96.7777 9.1847 1.9651 108.8061 10.5723

20090930 270.0099 43.5666 172.8430 40.6260 213.8523 20.6489 4.7864 252.7778 26.2194

20081231 222.1386 14.3352 159.7915 60.2297 246.0308 36.6491 11.2974 356.2985 53.3169

20090331 113.3332 9.9936 58.8509 24.3624 107.4579 16.6339 5.5750 118.7161 20.8895

20090630 141.0717 8.9625 88.5600 25.8318 96.3435 17.9628 6.9282 141.3400 28.3679

20090930 140.1713 6.8779 81.0895 18.2767 87.7269 13.9333 4.7308 113.9669 18.7508

20091229 704.4512 13.9006 950.2111 141.7342 694.5050 67.0872 20.4121 1099.6371 103.0503

20100331 165.0154 5.5206 113.7844 17.0480 85.9354 12.7232 4.2600 109.4973 17.3059

20100630 200.4355 8.9703 180.2153 46.9937 184.0464 35.3432 15.1417 268.9116 55.1771
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Table 4.18: Standard Error: NDX OTM Calibrated Parameters (basis point)

Date σ ν θ γ λ0 a b c d

20070328 5 2 9 15 7 15 321 6 57

20070627 11 94 24 14 9 7 178 8 37

20070927 3 9 5 29 6 65 78 6 59

20071226 3 51 10 4 3 31 37 2 18

20080327 3 27 5 5 3 26 35 2 18

20080627 7 42 18 5 3 30 40 3 25

20080930 7 37 19 8 5 48 48 6 46

20081231 6 52 13 4 2 21 25 1 13

20090331 7 43 19 6 4 25 29 3 18

20090630 3 24 4 10 7 48 38 6 39

20090930 13 65 26 23 10 75 56 10 72

20091229 1 20 4 8 6 52 65 4 31

20100331 3 44 4 5 7 62 78 5 44

20100630 3 10 3 6 8 47 39 7 40
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Table 4.19: Parameter Identification: NDX OTM Calibrated Parameters

Date σ ν θ γ λ0 a b c d

20070328 135.8371 8.0888 83.4436 17.9536 63.6553 5.4906 0.9185 47.4890 3.7061

20070627 118.4098 4.7666 66.6023 6.7086 56.6663 4.8312 0.8314 51.9956 4.1613

20070927 347.0096 9.5023 234.1619 22.6391 217.1890 17.0151 3.3047 218.1626 16.6810

20071226 493.5818 22.1182 293.6767 87.5029 365.9505 35.3962 6.5957 532.8003 51.9430

20080327 1053.5131 47.5076 697.0162 192.2943 965.6037 75.7089 14.0473 1367.9085 98.7027

20080627 255.5974 19.1518 132.4113 34.2705 185.6956 18.1804 3.5096 173.8705 18.5563

20080930 215.2058 20.2482 96.3880 22.3528 145.2425 21.4351 5.1208 132.8863 21.1282

20081231 214.6623 14.0130 126.7379 62.0832 246.1059 42.1926 12.1898 367.1068 63.7246

20090331 179.6940 16.4410 78.8970 38.4454 157.3025 30.6512 10.2641 186.4368 37.9522

20090630 223.3704 9.1507 116.9367 23.2849 152.7600 23.1322 7.8372 165.1577 25.3953

20090930 246.8284 13.3988 146.3080 22.7392 157.6664 26.0867 9.2285 141.4172 25.2006

20091229 310.8207 12.0884 184.5728 51.1397 197.1272 28.6737 8.8124 245.8163 41.1506

20100331 240.0719 7.4541 153.5234 29.8674 134.1906 16.3250 4.5555 148.0186 19.0502

20100630 325.4474 17.2160 263.5969 53.3128 313.8789 44.7941 13.3603 285.7503 45.2782
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Table 4.20: Standard Error: DJX OTM Calibrated Parameters (basis point)

Date σ ν θ γ λ0 a b c d

20070328 25 154 31 89 29 644 2387 2 642

20070627 47 92 73 93 68 596 1369 42 360

20070927 49 273 81 74 62 122 1390 42 59

20071226 19 277 8 86 60 454 874 48 375

20080627 33 74 46 97 60 90 1048 52 64

20080930 21 241 55 67 50 464 644 37 323

20081231 19 184 16 58 42 281 279 26 156

20090331 59 418 147 76 16 130 281 5 62

20090630 36 370 51 0 103 852 663 82 590

20090930 34 62 48 104 98 715 580 69 471

20091229 34 175 92 175 113 945 1339 82 579

20100331 44 127 56 63 140 1130 1337 119 942

20100630 8 95 25 76 69 309 151 59 311
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Table 4.21: Parameter Identification: DJX OTM Calibrated Parameters

Date σ ν θ γ λ0 a b c d

20070328 1.6881 0.0264 1.1778 0.1197 0.6341 0.0405 0.0045 0.8770 0.0557

20070627 2.1909 0.0290 1.3994 0.2210 0.9618 0.0626 0.0083 1.5693 0.1023

20070927 3.6475 0.0896 2.4106 0.3181 1.7405 0.1273 0.0191 2.4069 0.1746

20071226 1.5387 0.0512 1.0769 0.1312 0.8079 0.0806 0.0150 0.9989 0.1007

20080627 1.4971 0.0556 1.0268 0.1499 0.8592 0.0723 0.0113 0.9182 0.0813

20080930 2.1511 0.1145 1.4181 0.3199 1.5035 0.1657 0.0313 1.9622 0.2213

20081231 1.6487 0.1191 0.9969 0.4327 1.5548 0.2625 0.0816 2.4870 0.4373

20090331 1.2427 0.0853 0.5974 0.2119 1.0743 0.1715 0.0507 1.4500 0.2385

20090630 0.9025 0.0299 0.5655 0.1102 0.5832 0.0668 0.0157 0.6955 0.0826

20090930 1.6705 0.0677 0.9699 0.1986 1.0287 0.1479 0.0457 1.3750 0.2063

20091229 1.7017 0.0635 1.0391 0.1912 0.9289 0.1131 0.0300 1.1064 0.1483

20100331 1.3541 0.0367 0.8549 0.0955 0.6309 0.0790 0.0207 0.7261 0.0963

20100630 1.8407 0.0711 1.5325 0.2917 1.6086 0.2537 0.0804 2.0162 0.3448

122



4.4 Summary and Future Work

We followed the work [23] to investigate liquidity risk implied by major index

market bid and ask option prices. The model calibration is based on the two-price

market theory and the VGSSD model is used for the risk-neutral distribution of the

underlying assets. Out-of-the-money put and call options are used for the option

surface calibration. Stress levels, which could be used as an indicator of liquidity

risk, are modeled as a nonlinear function of strike prices and a linear function of

maturities. Results from SPX, NDX and DJX at-the-money options from 2007

to 2010 reveal that markets were more illiquid during the subprime crisis in 2008.

This observation reaches the same argument in [23]. It was also observed that the

minimum stress level of the whole option surface exists at a call option when the

strike price is close to the spot price. The slope of the stress level on the side of

OTM put options is steeper than that of the OTM call options. This suggests that

markets for call options are more liquid than that of put options. In other words,

more investors trade call options than put options. As discussed before, the limited

downside gain for put options discourages investors to trade these options. On the

other hand, the unlimited upside gain for call options encourages investors to trade

these options. We may extend the work to daily calibration in order to monitor the

liquidity risk. This may also be useful for stochastic liquidity trading in the future.
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Appendix A

Proof of Trading Advantages of Option Spreads

Lemma A.1. The bid price of the Bull spread is no less than the bid price of the

call option on the strike K1 minus the ask price of the call option on the strike K2,

i.e.:

K2 −K1 −
∫ K2

K1

Ψ(FS(s))ds ≥
∫ ∞
K1

(1−Ψ(FS(s)))ds−
∫ ∞
K2

Ψ(1− FS(s))ds. (A.1)

Proof. The negative ask price of the call option on the strike K2 can be written as

−
∫ ∞
K2

Ψ(1− FS(s))ds =

∫ ∞
K2

(s−K2)dΨ(1− FS(s)).

Then, the right hand side in the equation (A.1) is:

RHS =

∫ ∞
K1

(1−Ψ(FS(s)))ds+ (s−K2)(Ψ(1− FS(s))− 1)|∞K2
+

∫ ∞
K2

(1−Ψ(1− FS(s)))ds

= ∞−K1 −
∫ ∞
K1

Ψ(FS(s))ds−∞+K2 +

∫ ∞
K2

(1−Ψ(1− FS(s)))ds

= K2 −K1 −
∫ ∞
K1

Ψ(FS(s))ds+

∫ ∞
K2

(1−Ψ(1− FS(s)))ds.

The left hand side which is the bid price of the Bull Spread can be written as:

LHS = K2 −K1 −
∫ K2

K1

Ψ(FS(s))ds

= K2 −K1−
∫ ∞
K1

Ψ(FS(s))ds+

∫ ∞
K2

Ψ(FS(s))ds.

We know Ψ(FS(s)) + Ψ(1 − FS(s)) ≥ 1, thus, Ψ(FS(s)) ≥ 1 − Ψ(1 − FS(s)).

This makes LHS ≥ RHS.
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Lemma A.2. The ask price of the Bull spread is no greater than the ask price of

the call option on the strike K1 minus the bid price of the call option on the strike

K2, i.e.:

∫ K2

K1

Ψ(1− FS(s))ds ≤
∫ ∞
K1

Ψ(1− FS(s))ds−
∫ ∞
K2

(1−Ψ(FS(s)))ds. (A.2)

Proof. The ask price of the Bull Spread can be written as

LHS =

∫ K2

K1

Ψ(1− FS(s))ds

=

∫ ∞
K1

Ψ(1− FS(s))ds−
∫ ∞
K2

Ψ(1− FS(s))ds.

Compare the above equation with the right hand side of the Equation (A.2),

and with 1−Ψ(FS(s)) ≤ Ψ(1− FS(s)), we have:

∫ ∞
K2

(1−Ψ(FS(s)))ds ≤
∫ ∞
K2

Ψ(1− FS(s))ds.

Thus, LHS ≤ RHS.

Lemma A.3. The bid price of the Bear spread is no less than the bid price of the

put option on the strike K2 minus the ask price of the put option on the strike K1,

i.e.:

K2−K1−
∫ K2

K1

Ψ(1−FS(s))ds ≥
∫ K2

0

(1−Ψ(1−FS(s)))ds−
∫ K1

0

Ψ(FS(s))ds. (A.3)

Proof. The bid price of the Bear spread can be written as

K2 −K1 −
∫ K2

K1

Ψ(1− FS(s))ds =

∫ K2

0

(1−Ψ(1− FS(s)))ds−
∫ K1

0

(1−Ψ(1− FS(s)))ds.
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Since 1−Ψ(1− FS(s)) ≤ Ψ(FS(s)), we have :

∫ K1

0

(1−Ψ(1− FS(s)))ds ≤
∫ K1

0

Ψ(FS(s))ds.

Thus, Equation (3) LHS ≥ RHS.

Lemma A.4. The ask price of the Bear spread is no greater than the ask price of

the put option on the strike K2 minus the bid price of the put option on the strike

K1, i.e.:

∫ K2

K1

Ψ(FS(s))ds ≤
∫ K2

0

Ψ(FS(s))ds−
∫ K1

0

(1−Ψ(1− FS(s)))ds. (A.4)

Proof. The ask price of the Bear Spread can be written as

LHS =

∫ K2

0

Ψ(FS(s))ds−
∫ K1

0

Ψ(FS(s))ds.

Compare the above equation with the right hand side of the Equation (A.4),

and with 1−Ψ(1− FS(s)) ≤ Ψ(FS(s)), we have:

∫ K1

0

Ψ(FS(s))ds ≥
∫ K1

0

(1−Ψ(1− FS(s)))ds.

Thus, LHS ≤ RHS.

Lemma A.5. The bid price of a butterfly is no less than the bid price of the put

options on the strikes of K1 and K3 minus the ask price of the two put options on
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the strike of K2, i.e.:

a−
∫ K2

K1

Ψ(FS(s) + 1− FS(2K2 − s))ds ≥
∫ K1

0

(1−Ψ(1− FS(s)))ds+∫ K3

0

(1−Ψ(1− FS(s)))ds−

2

∫ K2

0

Ψ(FS(s))ds. (A.5)

Proof. The bid price of the butterfly can be written as

∫ ∞
−∞

cdΨ(FC(c)) = a−
∫ a

0

Ψ(FC(K1 + c) + 1− FC(K3 − c))dc.

Subadditivity of the concave function Ψ(x) tells:

∫ a

0

Ψ(FC(K1 + c) + 1− FC(K3 − c))dc ≤
∫ a

0

Ψ(FC(K1 + c))dc+∫ a

0

Ψ(1− FC(K3 − c))dc.

Thus,

a−
∫ K2

K1

Ψ(FS(s) + 1− FS(2K2 − s))ds ≥ a−
∫ a

0

Ψ(FC(K1 + c))dc−∫ a

0

Ψ(1− FC(K3 − c))dc

= a−
∫ K2

K1

Ψ(FS(s))−
∫ K3

K2

Ψ(1− FS(s))ds.

Then the left hand side in Equation (A.6) has:

LHS ≥ a−
∫ K2

0

Ψ(FS(s))ds+

∫ K1

0

Ψ(FS(s))ds−∫ K3

0

Ψ(1− FS(s))ds+

∫ K2

0

Ψ(1− FS(s))ds. (A.6)
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The right hand side in Equation (5) can be rewritten as :

RHS = 2K2 −
∫ K1

0

Ψ(1− FS(s))ds−
∫ K3

0

Ψ(1− FS(s))ds− 2

∫ K2

0

Ψ(FS(s))ds

= a+

∫ K1

0

(1−Ψ(1− FS(s)))ds+

∫ K2

0

(1−Ψ(FS(s)))ds−∫ K3

0

Ψ(1− FS(s))ds−
∫ K2

0

Ψ(FS(s))ds. (A.7)

We know,

Ψ(FS(s)) + Ψ(1− FS(s)) ≥ 1,

Let LHS in Equation (A.5) minus the RHS in Equation (A.5), we have:

LHS −RHS ≥
∫ K1

0

(Ψ(FS(s))− 1 + Ψ(1− FS(s)))ds+∫ K2

0

(Ψ(1− FS(s))ds− 1 + Ψ(FS(s)))ds

≥ 0.

Thus, in Equation (A.5) LHS ≥ RHS.

In order to prove the following lemmas, we first demonstrate an auxiliary

lemma.

Lemma A.6. Let 0 ≤ a ≤ b ≤ 1 and 0 ≤ c ≤ b − a, then Ψ(a) + Ψ(b) ≤

Ψ(a+ c) + Ψ(b− c).

Proof. Let ζ(c) = Ψ(a + c) + Ψ(b − c). Then , we have the first derivative ζ
′
(c) =

Ψ
′
(a+ c) + Ψ

′
(b− c).

When a + c ≤ b − c, i.e., 0 ≤ c ≤ b−a
2

, and Ψ(x) is a concave function, we have

ζ
′
(c) ≥ 0; when a+ c ≥ b− c, i.e., b−a

2
≤ c ≤ b− a, we have ζ

′
(c) ≥ 0.
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Hence, the maximum of ζ(c) when c ∈ [0, b− a] exists when c = b−a
2

and the mini-

mum exists when c = b− a or c = 0. Thus, we have ζ(0) = ζ(b− a) = Ψ(a) + Ψ(b),

which proves the lemma.

Lemma A.7. The ask price of a butterfly spread is no greater than the ask price of

put options on the strikes of K1 and K3 minus the bid price of the two put options

on the strike of K2, i.e.:

∫ K3

K2

Ψ(FS(s)− FS(2K2 − s))ds ≤
∫ K1

0

Ψ(FS(s))ds+

∫ K3

0

Ψ(FS(s))ds−

2

∫ K2

0

(1−Ψ(1− FS(s)))ds. (A.8)

Proof. The above statement could be reduced as:

∫ K

0

(Ψ(FS(s) + FS(2K)− FS(2K2 − s)) + Ψ(1− FS(2K)))ds ≤∫ K

0

(Ψ(FS(s)) + Ψ(1− FS(2K − s)))ds.

Let K be so small that FS(K) < 1 − FS(2K). In this case, when 0 ≤ S ≤ K, we

could set b = 1 − FS(2K − s), a = FS(s), and c = FS(2K) − FS(2K − s). We

have c < b − a = 1 − FS(2K − s) − FS(s) = c + 1 − FS(2K) − FS(s). Apply

the auxiliary lemma, we see that Ψ(a) + Ψ(b) = Ψ(FS(s)) + Ψ(1 − FS(2K − s)) <

Ψ(a+ c) + Ψ(b− c) = Ψ(FS(s) + FS(2K)− FS(2K2 − s)) + Ψ(1− FS(2K)). Hence,

the inequality should take the opposite sign.

As K increases, there might be a P ∗ such that Ψ(FS(s)) < 1−Ψ(FS(2K)) for

0 ≤ S < P ∗ and FS(s) > 1− FS(2K) for P ∗ < S ≤ K. In this case, when 0 ≤ S <

P ∗, we could set b = 1 − FS(2K − s), a = FS(s), and c = FS(2K) − FS(2K − s).
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The argument in the above case then applies and yields the inequality from the

opposite sign. Now if P ∗ < S ≤ K, we could set b = FS(s) +FS(2K)−FS(2K − s),

a = 1− FS(2K), and c = FS(2K)− FS(2K − s). we have c ≤ b− a and apply the

auxiliary lemma to have Ψ(a) + Ψ(b) ≤ Ψ(a+ c) + Ψ(b− c). Therefore, we have

∫ P ∗

0

(Ψ(FS(s) + FS(2K)− FS(2K2 − s)) + Ψ(1− FS(2K)))ds ≤
∫ P ∗

0

(Ψ(FS(s))

+Ψ(1− FS(2K − s)))ds.

∫ K

P ∗
(Ψ(FS(s) + FS(2K)− FS(2K2 − s)) + Ψ(1− FS(2K)))ds ≤

∫ K

P ∗
(Ψ(FS(s))

+Ψ(1− FS(2K − s)))ds.

Therefore whether or not the desired inequality holds depends on the position of P ∗

within the interval [0, K]. When K exceeds a critical value K∗ such that FS(P ∗0 ) =

1− FS(2K∗) and

∫ P ∗

0

(Ψ(FS(s) + FS(2K)− FS(2K2 − s)) + Ψ(1− FS(2K)))ds

−
∫ P ∗

0

(Ψ(FS(s)) + Ψ(1− FS(2K − s)))ds

=

∫ K

P ∗
(Ψ(FS(s) + FS(2K)− FS(2K2 − s)) + Ψ(1− FS(2K)))ds

−
∫ K

P ∗
(Ψ(FS(s)) + Ψ(1− FS(2K − s)))ds,

we are going to have the desired inequality.

As K becomes so large that FS(2K) = 1, we would like to set b = FS(s) +

FS(2K) − FS(2K − s), a = 1 − FS(2K), and c = FS(2K) − FS(2K − s). Then,

c ≤ b−a. Apply the auxiliary lemma again, we have Ψ(a)+Ψ(b) = Ψ(1−FS(2K))+

Ψ(FS(s)+FS(2K)−FS(2K−s)) ≤ Ψ(a+c)+Ψ(b−c) = Ψ(FS(s))+Ψ(1−FS(2K)).
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The desired inequality follows.

Lemma A.8. The ask price of a straddle is no greater than the sum of the ask

prices of put option and call option on the strike of K, i.e.:

∫ ∞
2K

Ψ(1− FS(s))ds+

∫ K

0

Ψ(FS(s) + 1− FS(2K − s))ds ≤∫ K

0

Ψ(FS(s))ds+

∫ ∞
K

Ψ(1− FS(s))ds. (A.9)

Proof. We could reduce the statement in this lemma as the following inequality:

∫ K

0

Ψ(FS(s) + 1− FS(2K − s))ds ≤
∫ K

0

(Ψ(FS(s)) + Ψ(1− FS(2K − s)))ds.

Since function Ψ(x) is subadditive, the inequality is concluded.

Lemma A.9. The bid price of a straddle is no less than the sum of the bid prices

of put option and call option on the strike of K, i.e.:

K +

∫ ∞
2K

(1−Ψ(FS(s)))ds−
∫ 2K

K

Ψ(FS(s)− FS(2K − s))ds ≥∫ K

0

(1−Ψ(1− FS(s)))ds+

∫ ∞
K

(1−Ψ(FS(s)))ds. (A.10)

Proof. We could reduce the statement in the lemma as the following inequality:

∫ K

0

(Ψ(1− FS(s)) + Ψ(FS(2K − s)))ds ≥
∫ K

0

(1 + Ψ(FS(2K − s)− FS(s)))ds.

Now set a = FS(2K − s)− FS(s), b = 1 and c = FS(s), using the auxiliary lemma,

for 0 ≤ S ≤ K, we have:

Ψ(1− FS(s)) + Ψ(FS(2K − s)) ≥ 1 + Ψ(FS(2K − s)− FS(s)).

131



Then we conclude.
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