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ABSTRACT 

It has been recognized that mechanical and optical properties of tissues can be the 

indicators to identify and characterize breast tumors. The objective of this study is to 

develop new mechanical and optical modalities for qualification of the elastic and optical 

properties of normal and cancerous breast tissues.  

First, a mammography-based elastography (called elasto-mammography) is 

proposed to generate the elastogram of breast tissues based on conventional X-ray 

mammography. The displacement information is extracted from mammography 

projections before and after breast compression. With the incorporation of the 

displacement measurements, an elastography reconstruction algorithm is specially 

developed to estimate the elastic moduli of heterogeneous breast tissues. Case studies 

with numerical breast phantoms are conducted to demonstrate the capability of the 

proposed elasto-mammogrpahy. It is shown that the proposed methodology is stable and 

robust for characterization of the elastic moduli of breast tissues from the projective 

displacement measurement.  

Second, a nonlinear elastogrpahy is proposed to extend breast material model to 

nonlinear cases. A three-dimensional (3D) model is developed for heterogeneous breast 

tissues extracting from real images including fatty tissue, glandular tissue, and tumors. 

An exponential-form of nonlinear material model is applied. Based on the finite-

deformation constitutive law, discretized nonlinear equations are solved for displacement, 

strain, and stress fields in breast tissues with given tumors under external compression at 

breast boundaries. We develop a 3D inverse-problem algorithm to reconstruct the 

material parameters for nonlinear elastic constitutive relation of breast phantoms with 

tumors. For the first time, a nonlinear adjoint gradient method is introduced to improve 

the numerical efficiency and enhance the stability of elastogrpahy reconstruction.   
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Third, encouraged by the success of linear elasto-mammography and nonlinear 

elastography, a nonlinear elasto-mammography method is proposed. Mammography 

projections are taken before and after breast compression and displacement information is 

extracted for reconstruction of nonlinear breast tissue properties. Numerical phantom 

study is conducted and results show the proposed nonlinear elasto-mammography is 

potential to identify and characterize breast tumors in clinic.       

Finally, we switch from mechanical to optical method for breast cancer imaging. 

We develop a finite-element-based algorithm to solve the inverse problem of frequent-

domain diffusion equation. With the analytical form of gradients, the adjoint method is 

expanded to complex domain for the reconstruction of optical parameters in diffuse 

optical tomography. Specific numerical simulation is carried out and compared with 

phantom experiment. The results show that the adjoint-based algorithm is efficient and 

robust for reconstructing the optical parameters.  
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ABSTRACT 

It has been recognized that mechanical and optical properties of tissues can be the 

indicators to identify and characterize breast tumors. The objective of this study is to 

develop new mechanical and optical modalities for qualification of the elastic and optical 

properties of normal and cancerous breast tissues.  

First, a mammography-based elastography (called elasto-mammography) is 

proposed to generate the elastogram of breast tissues based on conventional X-ray 

mammography. The displacement information is extracted from mammography 

projections before and after breast compression. With the incorporation of the 

displacement measurements, an elastography reconstruction algorithm is specially 

developed to estimate the elastic moduli of heterogeneous breast tissues. Case studies 

with numerical breast phantoms are conducted to demonstrate the capability of the 

proposed elasto-mammogrpahy. It is shown that the proposed methodology is stable and 

robust for characterization of the elastic moduli of breast tissues from the projective 

displacement measurement.  

Second, a nonlinear elastogrpahy is proposed to extend breast material model to 

nonlinear cases. A three-dimensional (3D) model is developed for heterogeneous breast 

tissues extracting from real images including fatty tissue, glandular tissue, and tumors. 

An exponential-form of nonlinear material model is applied. Based on the finite-

deformation constitutive law, discretized nonlinear equations are solved for displacement, 

strain, and stress fields in breast tissues with given tumors under external compression at 

breast boundaries. We develop a 3D inverse-problem algorithm to reconstruct the 

material parameters for nonlinear elastic constitutive relation of breast phantoms with 

tumors. For the first time, a nonlinear adjoint gradient method is introduced to improve 

the numerical efficiency and enhance the stability of elastogrpahy reconstruction.   
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Third, encouraged by the success of linear elasto-mammography and nonlinear 

elastography, a nonlinear elasto-mammography method is proposed. Mammography 

projections are taken before and after breast compression and displacement information is 

extracted for reconstruction of nonlinear breast tissue properties. Numerical phantom 

study is conducted and results show the proposed nonlinear elasto-mammography is 

potential to identify and characterize breast tumors in clinic.       

Finally, we switch from mechanical to optical method for breast cancer imaging. 

We develop a finite-element-based algorithm to solve the inverse problem of frequent-

domain diffusion equation. With the analytical form of gradients, the adjoint method is 

expanded to complex domain for the reconstruction of optical parameters in diffuse 

optical tomography. Specific numerical simulation is carried out and compared with 

phantom experiment. The results show that the adjoint-based algorithm is efficient and 

robust for reconstructing the optical parameters.  
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 CHAPTER 1 INTRODUCTION 

1.1 Background 

Breast cancer is one of major threats to public health in the world. Approximately 

10% of women will develop breast cancer during the course of their lives in USA and 

Europe. In the USA, there are approximately 2.6 million people living with breast cancer 

(NIH-NCI, 2004). American Cancer Society estimated that there were 184,450 new 

breast cancer cases in US in 2008, and 194,280 in 2009, which is about 27% of all new 

cancer cases for women. And deaths of breast cancer were estimated 40,480 in 2008 and 

40,170 in 2009, which is about 15% of all deaths of cancers (American Cancer Society, 

2008, 2009). The specific causes of breast cancer are yet unknown. Therefore the early 

detection of the breast tumor is the key to successful treatment.  

Currently, X-ray mammography is the primary method for early detection and 

characterization of breast tumors (Muller, 1999; Nass et al., 2001). Mammography is a 

specific type of imaging that uses a low-dose X-ray system for the examination of 

breasts. According to the reports of US Food and Drug Administration, mammography 

can find 85 to 90 percent of breast cancers in women over 50, and can detect a lump up to 

two years before it can be sensed by manual palpation.  

While it is more effective in detecting tumors as age increases and the breast 

becomes fatty, mammography fails to detect small cancers (less than 8 mm) in dense 

breasts. On the other hand, mammography is not quite specific in terms of tumor 

benignity and malignancy. Approximate 80% of suspicious masses referred by 

mammography for surgical breast biopsy are in fact not malignant (Bone et al., 1997; 

Giger et al., 2000; Kornguth et al., 2001; Plewes et al., 2000). The number of unnecessary 

benign biopsies that are performed annually approaches 1 million. Using an average 

reimbursement for an open breast biopsy of $2400 (Burkhardt and Sunshine, 1999), the 

financial cost of benign breast tumors to healthcare system is on the order of $2 billion 
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annually (Thitaikumar et al., 2008). Meanwhile, these false-positive mammograms may 

create patients’ anxiety, distress and intrusive thoughts.                            

A number of techniques are currently being explored to solve these problems 

associated with mammography. Elastography and optical tomography are two of them. 

1.2 Elastography 

It has been well recognized that tissue stiffness plays an important role for 

diagnosis of breast cancers, as tumors are stiffer than the surrounding breast tissues 

(Sarvazyan et al., 1995; Wellman et al., 1999), and malignant tumors are much stiffer 

than benign ones (Skovoroda, 1995). 

Therefore elastic properties are good indicator of histological diagnosis, in other 

words, in vivo identification of elastic modulus of normal and abnormal tissues should 

improve the accuracy of cancer diagnosis.  

Elastography is proposed as a method to imaging tissue elastic modulus in 

quantitative manner. The general basis of elastography is to induce motion within the 

tissue by mechanical stimulation. Conventional medical imaging modalities measure the 

spatial deformation in tissue, by which elastic properties distribution is reconstructed. 

Based on the imaging modalities used, two major kinds of elastography are ultrasound 

elastography (USE) and magnetic resonance elastography (MRE). 

Developed in the 1990s by Ophir’s group (Ophir et al., 1991 & 1999; Garra et al., 

1997; Righetti et al., 2002) at University of Texas Medical School, USE is the first 

modulus-imaging modality. They computed the lap between the pre- and post-

compression radio frequency ultrasound signals to estimate the axial tissue displacement 

and associated axial strain under quasi-static loading. If certain tissue regions have 

different stiffness than others, the level of strain in those regions will generally be higher 

or lower than those in the surrounding material. Recently a few researches were carried 

out to develop 3D ultrasound elastography (Lindop et al, 2006; Treece et al., 2008; 



 

 

3 

 

Richards et al., 2009). In contrast with quasi-static compression, other researchers (e.g., 

Alam et al., 1994; Gao et al., 1997; Fatemi et al., 1998 & 2002; Doyley et al. 2001; 

Hiltawsky et al., 2001) applied low-frequency vibration. Besides the numerical 

simulation, recent years some researchers have carried out clinical experiments based on 

ultrasound elastography (Barcoff et al., 2003; Regner et al., 2006; Barr, 2006; Itoh et al., 

2006; Zhu et al., 2008) 

While providing new information to detect pathological tumors, USE suffers from 

stiffness range limitations imposed by the minimum resolvable wavelength. In addition, 

the computed image is restricted by the angular resolution of the transducer and its ability 

to separate signals from artifacts and noise. Most of USE elastograms are referred to as 

the strain imaging which may not always provide useful information on locations and 

characterizations of the heterogeneous lesions. For example, the phenomenon called 

“butterfly wings” (Ophir et al., 1999) is frequently observed in USE strain elastograms, 

which can be misleading with respect to tumor detection.  

Magnetic resonance elastography (MRE), the second-generation elastography 

modality, was developed by several research groups including Ehman and co-workers 

(Muthupillai et al., 1995; McKnight et al., 2002) at Mayo Clinic, Plewes et al. (2000 and 

2002) and Samani et al. (2001, 2004, and 2007) at University of Toronto, Sinkus et al. 

(2000) in Germany, and Van Houten et al. (1999, 2001, and 2003) at Dartmouth College.  

MRE provides higher resolution imaging and is capable of producing sufficient 3-

D spatial and contrast resolution. MRE is, however, significantly more costly as a result 

of the MR imaging procedure, and hence is not generally applicable for all patients. 

Further, MRE tumor detection may encounter a penetration problem when applied to 

breast cancer diagnosis in vivo. The penetration depth of shear waves within organic 

tissue is limited to only a few centimeters. Due to a large frequency-dependent 

attenuation, only low-frequency waves of about 50-100 Hz are feasible. This limits the 

spatial resolution and the achievable detestability of small lesions.  
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Moreover, from a mathematical point of view, the current USE and MRE 

algorithm are all based on infinitesimal-strain linear elastic deformation theory, and only 

very few have considered anisotropic tissue properties. The large deformation, nonlinear 

and anisotropic behaviors of breast tissues (such as glandular tissue) and tumors have not 

yet been taken into consideration. Therefore, outcomes of USE and MRE are in fact not 

sufficiently accurate for diagnostic purpose.   

Motivated by the important of detecting breast tumors and the current limitations 

of mammography and elastography modalities, we have developed the nonlinear elasto-

mammography that utilizes the novel nonlinearly elastic breast model combined with 

mammography visualizations. The nonlinear elasto-mamography can quantitatively 

detect breast tumors in their early stage and provides high contrast resolution of modulus 

elastograms without additional cost. A comparison of US elastography (USE), MR 

elastography (MRE) and nonlinear elasto-mammography is given in Table 1-1. 

 

 

 

Table 1-1 Comparison among three types of elastographic imaging modalities 

 USE MRE Elasto-mammography 

Modality Base Ultrasound MR Imaging Mammography 

Compression Static/dynamics Static/dynamic Static 

Deformation Linear, small Linear, small Nonlinear, large 

Elastograms Strain Modulus Modulus 

Tissue Anisotropy Most isotropic Most isotropic Anisotropy 

Resolution Low High High 

Cost Medium Expensive Low 
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There are three steps to develop nonlinear elasto-mammography. First, we have 

developed a linear elasto-mammography method which generates the elastograms of 

breast tissue by combining the conventional low-dose X-ray mammography with 

elastography framework (Wang et al., 2006). Instead of using ultrasound and magnetic 

resonance like in previous elastography, the displacement information is extracted from 

mammography projections before and after breast compression. Incorporating the 

displacement measurement, an elastography reconstruction algorithm is specifically 

developed to estimate the elastic moduli of heterogeneous breast tissue. Case studies with 

numerical breast phantoms show that the displacement measurement obtained from 

mammography is sufficient to identify the material parameters of breast tissues and 

tumors. More details about this linear elasto-mammography are introduced in Chapter 3.   

The second step is to develop elastography method for reconstruction of nonlinear 

breast tissue properties. As mentioned before, current elastography (USE and MRE) 

reconstruction framework is based on the assumption of linear elasticity theory. It is 

shown, however, that the deformation of most biological soft tissue is not linear elastic 

(Wellman, 1999; Khaled, 2007). Consideration of nonlinear model is essential for 

elastography in clinical application. So in this thesis, an elastography model for nonlinear 

breast tissue is developed and for the first time, a nonlinear adjoint gradient method is 

introduced. The nonlinear adjoint gradient method significantly improves the numerical 

efficiency and enhances the stability of elastography reconstructions. In fact, without this 

method, nonlinear biomedical elastography can only be discussed in concept 

(Pathmanathan et al., 2004 & 2007) or applied on simple objects using super computer 

power (Kauer, 2001). Oberai et al., (2003) adopted an adjoint method and proposed a 

numerical scheme for reconstructing the non-uniform shear modulus field for 

incompressible isotropic materials using one component of displacement field. Liu et al. 

(2005) applied this method for anisotropic materials. The advantage of adjoint method is 

to solve two adjoint displacements during each of iteration, instead of the whole stiffness 
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matrix, that increases the numerical efficiency significantly. In this work the elastic 

parameters are estimated by optimally minimizing the difference between the computed 

forces and experimental measurements. A nonlinear adjoint method is derived to 

calculate the gradient of the objective function. Simulations are conducted on a three-

dimensional heterogeneous breast phantom extracting from real imaging including fatty 

tissue, glandular tissue and tumors. The results demonstrate that the method is efficient 

and stable to detect tumors in nonlinear biological tissue by reconstruction of complex 

breast tissue properties. More details about the elastography method for reconstruction of 

nonlinear breast tissue properties are introduced in Chapter 4.     

Finally, encouraged by the accomplishment of linear elasto-mammography and 

nonlinear elastography, a nonlinear elasto-mammography method is developed to 

reconstruct nonlinear breast tissue properties. It utilizes the novel nonlinear elastic breast 

model combined with mammography visualizations. Like linear elasto-mammography, 

the displacement information is extracted from mammography projections before and 

after breast compression. The elastic parameters are estimated by optimally minimizing 

the difference between the computed displacements and experimental measurements. The 

nonlinear adjoint method, developed in nonlinear elastography, is applied to calculate the 

gradient of the objective function. It is shown that nonlinear elasto-mammography is 

stable and robust for characterization of the elastic modulus of breast tissues and tumors 

from the projective displacement measurement. More details are introduced in Chapter 5.   

1.3 Diffuse Optical Tomography 

Besides elastic properties differences between normal tissues and tumors, it is 

known that optical properties of tissue also change related with physiological change. 

Diffuse Optical Tomography (DOT) emerged as a tool to identify and characterize breast 

tumors by imaging optical properties.  
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“Diffuse optical tomography is a medical imaging modality in which tissue is 

illuminated by near-infrared light from an array of sources, the multiply-scattered light 

which emerges is observed with an array of detectors, and then a model of the 

propagation is used to infer the localized optical properties of the illuminated tissue” 

(Boas et al., 2001).   

The DOT work can be divided as forward and inverse problem. Forward problem 

can be stated as: given a distribution of light sources on the boundary of a tissue, and a 

distribution of tissue optical parameters, find the resulting measurements on boundary. 

Inverse problem can be stated as: given distributions of light source and measurements on 

boundary, derive the tissue optical parameters distribution within the tissue. 

For the forward problem, a model should be established to describe the light 

propagations in tissue. Unlike the radiation in CT, which generally travels in straight 

lines through the body, infrared light is strongly scattered by tissue (Schweiger, 2003). 

Arridge (1993) presented a diffusion equation to reflect that light propagations highly 

diffusively in biological tissues. Some researchers (Arridge et al., 1992; Boas, 1996; Feng 

et al., 1995) developed analytical solutions, like Greens function solutions, of the 

diffusion equation. However these models are far too simplistic to model propagation of 

light through complex tissue. Then statistical modeling techniques based on Monte Carlo 

method is develop to track individual photons (Boas et al., 2002; Okada and Delpy, 2003; 

Hayasshi et al., 2003). This method offers great flexibility in modeling complex 

geometries and parameter distributions and the individual photon histories can be 

derived, but it requires very lengthy computational time (Arridge, 1997). Arridge (1995, 

1999, and 2000) introduced a numerical technique based on finite element method (FEM) 

to solve the diffusion equation. The advantage of the FEM approach is its flexibility to 

handle complex geometries and its fast speed, which make this numerical technique 

widely used in DOT. In this thesis, the FEM approach is applied to develop a new 

algorithm to derive optical properties of breast tissues.  
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For the inverse problem, the optical properties are reconstructed from the surface 

measurements of transmitted light intensities. Since the inverse problem is non-unique, 

ill-posed underdetermined, the major challenge in DOT is to develop efficient and stable 

algorithm to solve the inverse problem.  

Boas (1994), O’Leary (1995), Chang (1995), and Gaudette (2000) developed a 

linear algorithm to provide an approximate solution to nonlinear inverse problem. 

However, this method is limited in use since it can only account for small changes in 

optical properties. If the real values are far from initial guess, the linear algorithm fails to 

search the real values.  

To solve problems related to linear algorithm, nonlinear image reconstruction 

algorithm is developed (Klose et al., 1999; Saquib et al., 1997; Arridge et al., 1998; 

Hielscher et al., 1999; Roy et al., 1999). Like in elastography, an objective function is 

established to compare calculated and measured data. Starting with an initial guesses, the 

optical parameters are updated to minimize the objective functions. The challenge 

remains to find efficient ways of updating the initial guesses such that the differences 

between calculated and measured data become smaller and the value of the objective 

function decreases. An increasing interest is using gradient-based iterative image 

reconstruction algorithm (Hielscher et al., 2000). In the gradient approach the image 

reconstruction problem is interpreted as a nonlinear optimization problem, in which the 

gradient of optical parameters is applied to minimize the objective function. However, 

because the large number of measurements and the presence of noise, the commonly used 

gradient method is time-consuming and causes low spatial resolution. Developing a 

stable and efficient reconstruction algorithm is still essential in DOT (Arridge et al., 

2008).   

As we have successfully developed nonlinear adjoint method to provide gradient 

of the objective function in nonlinear elasto-mammography, we have expanded this 

method to diffuse optical tomography. We have developed a finite-element-based 
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algorithm to solve the inverse problem of frequent-domain diffusion equation. The 

nonlinear adjoint method is expanded to complex domains for the reconstruction of 

optical parameters. Numerical simulation is carried out and compared with phantom 

experiments. The results show our adjoint-based algorithm is efficient and robust for 

reconstructing the optical properties.       

1.4 Scope of the Thesis 

The major objective of this thesis is to develop new mechanical and optical 

methods for breast cancer imaging, which include new-generation nonlinear elasto-

mammography and diffusion optical tomography.  

In Chapter 2 we have introduced the background of breast tumors and reviewed 

previous research about mammography, elastography and diffusion optical tomography,  

In Chapter 3, we have developed a linear elasto-mammography method which 

generates the elastograms of breast tissue by combining the conventional X-ray 

mammography and elastography. The 3-D breast phantoms containing one and two 

tumors are established. Displacement measured from deformed and undeformed 

mammography projections are applied as input data to reconstruct the isotropic material 

parameters for normal breast tissues and tumors. Our numerical simulations demonstrate 

that unique and accurate results can be obtained using information extracted form only 

two sets of projections. The effect of displacement noise, geometry mismatch, and 

material contrast ratio are investigated. The results show that our method is stable and 

robust.     

In Chapter 4, we developed elastography method for reconstruction of nonlinear 

breast tissue properties. A 3-D model is developed for heterogeneous breast tissues 

extracting from real images including fatty tissue, glandular tissue, and tumors. An 

exponential-form of nonlinear material model is applied. Based on the large-deformation 

constitutive law, discretized nonlinear equations are solved for displacement, strain, and 
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stress fields in breast tissues with given tumors under external compression at breast 

boundaries. We develop a 3-D inverse-problem algorithm to reconstruct the material 

parameters for nonlinear elastic constitutive relation of breast phantoms with tumors. The 

nonlinear adjoint gradient method is introduced to improve the numerical efficiency and 

enhance the stability of elastography reconstruction.     

Encouraged by the success of linear elasto-mammography and nonlinear 

elastography, a nonlinear elasto-mammography method was developed to reconstruct 

nonlinear breast tissue properties in Chapter 5. A 3-D model is used for heterogeneous 

breast tissues extracting from real images including fatty tissue, glandular tissue, and 

tumors. Mammography projections are taken in before and after breast compression and 

displacement information is extracted by comparing the projections. The nonlinear 

adjoint method is applied to calculate the gradient of the objective function which is 

based on the difference between the computed displacements and experimental measures. 

The effect of displacement noise and iterative steps are investigated. It is shown that new-

generation nonlinear elasto-mammography is stable and efficient for characterization of 

the elastic modulus of breast tissues and tumors from the projective displacement 

measurements.   

In Chapter 6, we switch from mechanical to optical methods for breast cancer 

imaging. We develop a finite-element algorithm based on adjoint method to solve the 

inverse problem of frequent-domain diffusion equation for soft tissues. With the 

analytical form of gradients, the adjoint method is expanded to complex domain for the 

reconstruction of optical parameters in diffuse optical tomography. Specific numerical 

simulation is carried out and compared with phantom experiment. The results show that 

the adjoint-based algorithm is efficient and robust for reconstructing the optical 

parameters.  

Chapter 7 provides the conclusions from our current research work and some 

recommendations for future work.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Breast Cancer 

Cancer is a major threat to public health in the world. Cancer occurs when cells in 

a part of the body begin to grow out of control. Normal cells divide and grow in an 

orderly fashion, but cancer cells do not. They continue to grow and crowd out normal 

cells. Usually, the multiplying cancer cells form a lump called a tumor. Not all tumors are 

cancerous. Tumors that are not cancerous are called benign tumors. Cells from benign 

tumors do not spread to other parts of the body, while cancerous tumors, called malignant 

tumors, can break away from the original, primary tumor and travel through the blood 

stream to other parts of the body (Figure 2-1). 

 

 

 

Figure 2-1 Normal and tumor cells 

 

 

 

Breast cancer is a malignant tumor that starts from cells of the breast. Breast 

cancer is one of the most common cancers in western. Approximately 10% of women 
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will develop breast cancer during the course of their lives in USA and Europe. In the 

USA, there are approximately 2.6 million people living with breast cancer (NIH-NCI, 

2004). American Cancer Society estimated that there were 184,450 new breast cancer 

cases in US in 2008, and 194,280 in 2009, which is about 27% of all new cancer cases for 

women. And deaths of breast cancer were estimated 40,480 in 2008 and 40,170 in 2009, 

which is about 15% of all deaths of cancers (American Cancer Society, 2008, 2009).  

The specific causes of breast cancer are yet unknown. Some research has shown 

the early detection of the breast tumor is the key to successful treatment. For example, a 

20-year follow of 2468 breast cancer cases from the Swedish Two-County has been done 

by Tabár and Dean (2003). After 20 years since operation, more than 90% women with 

tumor size less than 10 mm survive, but survival of the women with tumor larger than 50 

mm is less than 20% (Figure 2-2). These data clearly show that detecting breast cancer in 

the smaller size is a substantial improvement in outcome.    

2.2 Mammography 

Currently, X-ray mammography is the primary method for early detection and 

characterization of breast tumors (Muller, 1999; Nass et al., 2001; Fletcher and Elmore, 

2003). Mammography is a specific type of imaging that uses a low-dose X-ray system for 

the examination of breasts. A mammography exam, called a mammogram, is used to aid 

in the early detection and diagnosis of breast diseases in women. An X-ray, the oldest and 

most frequently used form of medical imaging, is a noninvasive medical test that helps 

physicians diagnose and treat medical conditions. Imaging with X-rays involves exposing 

a part of the body to a small dose of ionizing radiation to produce pictures of the inside of 

the body. According to the reports of US Food and Drug Administration, mammography 

can find 85 to 90 percent of breast cancers in women over 50, and can detect a lump up to 

two years before it can be sensed by manual palpation. Figure 2-3 is a typical 

mammography imaging, by which a tumor could be seen easily. 
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Figure 2-2 Results of a 20-year follow-up of 2468 breast cancer cases from the Swedish 
Two-County  

Source: Tabár, L., and Dean, P.B., 2003, “Mammography and breast cancer: the new 
era”, International Journal of Gynecology & Obstetrics, 82 (3), 319-326. 

 

While it is more effective in detecting tumors as age increases and the breast 

becomes fatty, mammography fails to detect small cancers (less than 8 mm) in dense 

breasts. On the other hand, mammography is not quite specific in terms of tumor 

benignity and malignancy. Approximate 80% of suspicious masses referred by 

mammography for surgical breast biopsy are in fact not malignant (Bone et al., 1997; 

Giger et al., 2000; Kornguth et al., 2001; Plewes et al. 2000). The number of unnecessary 

benign biopsies that are performed annually approaches 1 million. Using an average 

reimbursement for an open breast biopsy of $2400 (Burkhardt and Sunshine, 1999), the 

financial cost of benign breast tumors to healthcare system is on the order of $2 billion 
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annually (Thitaikumar et al., 2008). Meanwhile, these false-positive mammograms may 

create patients’ anxiety, distress and intrusive thoughts.                            

A number of techniques are currently being explored to overcome these 

difficulties associated with mammography. Elastography and diffusion optical 

tomography are two of them. The methods of elastography and diffusion optical 

tomography are reviewed in Section 2.3 and 2.4.  

 

 

 

 

Figure 2-3 A typical mammography imaging, a tumor could be seen easily 

Source: Kornguth, P.J., Bentley, R.C., 2001, “Mammography-pathologic correlation: Part 
I. Benign breast lesions”, Journal of women’s imaging, 3(1), 29-37. 

 



 

 

15 

 

2.3 Elastography 

2.3.1 Introduction 

Elastography is a method to imaging of the elastic properties of tissues to provide 

useful clinical information (Gao et al., 1996).  

The breast is a many layered, inhomogeneous structure composed of many 

different kinds of tissue. The two predominant types of tissue within the breast are fat 

tissue and glandular tissue which support lactation (Wellman et al., 1999).  It is widely 

known that there is difference of elastic modulus (stiffness) among normal breast tissues 

and tumors. More than 90% of breast cancers arise in the cells lining the ductal systems 

of the breast and are correspondingly called ductal carcinomas (Kopans 1998, Giger et 

al., 2000). Tumors confined to the ducts themselves are designated ductal carcinomas in 

situ (DCIS), which are the initial stage of malignant tumors. Pathological changes of 

these DCIS are known to be correlated with changes in tissue stiffness, resulting in 

extremely hard modulus. Studies suggest a 15-fold increase in the Young’s modulus of 

breast cancer compared with normal breast tissue while benign tumors are only a 5-fold 

stiffer than normal tissue. Therefore, the tissue stiffness plays an important role for 

diagnosis of breast cancers, as tumors are stiffer than the surrounding breast tissues and 

malignant tumors are much stiffer than benign ones (Sarvazyan, 1995; Skovoroda, 1995).  

Here we introduce an experiment about the difference of breast tissue stiffness. 

Wellman et al. (1999) measured stiffness of different breast tissues in compression.  The 

tissue samples tested were obtained during surgery and were tested immediately after 

removal from the body. Eight breast tissues (Fat, Gland, Phyllodes tumors, Papilloma, 

Lobular Carcinoma, Fibroadenoma, Infiltrating Ductal Carcinoma, Ductal Carcinoma in 

Situ) were tests, where Papilloma, Lobular Carcinoma and Fibroadenoma are benign 

tumors and Phyllodes tumor, Infiltrating Ductal Carcinom and Ductal Carcinoma in Situ 

are malignant tumors.  
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The results are shown in Table 2-1 and Table 2-2. The conclusion can be made 

that there is a significant correlation between tissue histology and stiffness. The stiffness 

ratio of fat to infiltrating ductal cancer is 10:1 at 1% strain and approximately 80:1 at 

15% strain. And it is proved that there is a significant difference in the stiffness between 

cancerous and benign breast tissues. Infiltrating Ductal Cancer is more than 10 times as 

stiff as normal fat tissue at 1% strain, and more than 70 times as stiff at 15% strain. While 

Papilloma is about 5 times as stiff as normal fat tissue at 1% strain and about 30 times as 

stiff as 15% strain.  

Therefore elastic properties are good indicator of histological diagnosis, in other 

words, in vivo identification of elastic moduli of normal and abnormal tissues should 

improve the accuracy of cancer diagnosis.  

Elastography is proposed as a method to imaging tissue elastic modulus in 

quantitative manner. The general basis of elastography is to induce motion within the 

tissue under investigation by either an external or internal mechanical stimulation. 

Conventional medical imaging modalities are then used to measure the spatial 

deformation, from which the elastic properties can subsequently be reconstructed. The 

major medical imaging modalities in elastography are ultrasound and magnetic resonance 

(MR) techniques. 

2.3.2 Ultrasound Elastography (USE) 

Ultrasound elastography was first developed in the 1990s by Ophir’s group 

(Ophir et al., 1991 & 1999; Garra et al., 1997; Righetti et al., 2002). Ultrasound 

elastography is an imaging modality that is able to map the local strains that a tissue 

experiences due to the application of the compression. An ultrasound transducer is used 

to apply a small axial compression to tissue. Sonograms obtained without and with 

compression are correlated to determine the displacement at each location, thereby 

revealing the longitudinal strain distribution. The local strain is a relative measure of 
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elasticity since it depends on the magnitude of compression and on the elastic modulus of 

the materials. If certain tissue regions have different stiffness than others, the level of 

strain in those regions will generally be higher or lower than those in the surrounding 

material. The calculation requires an estimate of local stress distribution, which in turn 

depends on the spatial composition of the object and knowledge of the applied stress 

distribution. 

 

 

 

Table 2-1 Average elastic modulus and the standard deviation of the modulus for each of 
eight different types of breast tissues tested 

Tissue 
Type 

Elastic 
Modulus 
in Strain 
0.01 

SD Elastic 
Modulus 
in Strain 
0.05 

SD Elastic 
Modulus 
in Strain 
0.10 

SD Elastic 
Modulus 
in Strain 
0.15 

SD 

Fat 4.8 2.5 6.6 7 10.4 7.9 17.4 8.4 

Gland 17.5 8.6 33 12.0 88.1 66.7 271.8 167.7 

Phyllodes 
Tumor 

56.6 0.0 90.8 8.6 164.3 0.0 297.7 0.0 

Papilloma 22.2 5.8 54.4 19.7 169.7 80.6 537.8 209.1 

Lobular 
Carcinoma 

34.7 0.0 78.9 0.0 221.8 0.0 628.4 0.0 

Fibradenom 45.5 20.1 100.5 39.6 288.4 110.9 889.2 205 

Infiltratina 
Ductal 
Carcinoma 

47.1 19.8 115.7 42.9 384.5 126.9 1366.5 348.2 

Ductal 
Carcinoma 
in Situ 

71.2 0.0 188.7 0.0 638.7 0.0 2162.1 0.0 

Source: Wellman, P., 1999, “Tactile imaging”, Ph.D. dissertation, Harvard University, 
Cambridge, Mass, USA.   
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Table 2-2 The ratio of elastic modulus of each tissue to fat at 4 different strain levels 

 Ratio to Fat at 

Tissue Type Strain= 0.01 Strain= 0.05 Strain= 0.10 Strain= 0.15 

Gland 4 5 8 16 

Phyllodes Tumor 12 14 16 17 

Papilloma 5 8 16 31 

Lobular Carcinoma 7 12 21 36 

Fibroadenoma 9 15 28 51 

Infiltrating Ductal 
Carcinoma 

10 18 37 79 

Ductal Carcinoma in Situ 15 29 61 124 

Source: Wellman, P., 1999, “Tactile imaging”, Ph.D. dissertation, Harvard University, 
Cambridge, Mass, USA.   
 

 

 

Ophir et al. (1991) compressed the soft tissue by the transducer and measured the 

displacement along the direction of compression. The strain profile along the transducer 

axis is computed. By assuming the stresses applied by the compressing device, the strain 

profile is converted to an elastic modulus profile. Then, Ophir et al. (1999) present the 

basic stiffness measurements, and describe four types of elastograms, including axial 

strain, lateral strain, modulus and Poisson’s ratio elastograms. A review of such work is 

given by Ophir et al. (2002). Figure 2-4 shows the in vivo elastogram of an invasive 

ductal carcinoma. The lesion is clearly visible as a dark area on the elastogram. While 

these studies use 2D ultrasound imaging, a few researches were carried out to develop 3D 

ultrasound elastography (Lindop et al, 2006; Treece et al., 2008; Richards et al., 2009)   
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Figure 2-4 The sonogram (a) and elastogram (b) of an invasive ductal carcinoma in vivo 
at 5 MHz. The lesion is clearly visible as a dark (hard) area on the elastogram  

Source: Ophir, J., Alam, S.K., Garra, B., Kallel, F., Konogagou, E., Krouskop, I., 
Varghese, I., 1999, “Elastography: Ultrasonic estimation and imaging of the elastic 
properties of tissues”, Proc. Instn. Mech. Engr. Part H, 213, 203-233. 

 

In contrast with quasi-static compression, other researchers (e.g., Alam et al., 

1994; Gao et al., 1997; Fatemi et al., 1998 & 2002; Doyley et al., 2001; Hiltawsky et al., 

2001) applied low-frequency vibration as mechanical stimulation.  

Recently, beside strain field and elastic modulus, additional features are studies 

aiming to improve the tumor classification. Thitaikumar et al. (2008) reported the 

research about bonding at an inclusion boundary using axial-shear strain elastography. It 

is known that malignant tumors are generally more firmly bonded to their surroundings 

than are benign tumors (Konogagou et al., 2000). By investigating the relationship 

between the bonding at an inclusion-background boundary and the distribution of axial-
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shear strain patterns around an inclusion boundary, Thitaikumar et al. (2009) provided a 

new feature for tumor classifications.  

Recent years some clinical experiments were also carried out based on ultrasound 

elastography (Barcoff et al., 2003; Regner et al., 2006; Barr, 2006; Itoh et al., 2006; Zhu 

et al., 2008). For example, Barcoff et al. (2003) used 60 Hz shear waves to stimulate the 

soft phantom and performed shear wave imaging by ultrasound. Local shear Young’s 

modulus is reconstructed by shear wave field. Then in vivo experiments were first 

conducted on 11 women who had palpable breast lesions. The result is that, among 11 

examined patients, 6 of them presented a clear visible tumor in reconstructed elasticity 

imaging, percentage of successful diagnosis reach 55%. A reason for failing of detection 

some of tumors is a penetration problem. The penetration depth of shear waves within 

organic tissue is only a few centimeters, which limit the application for tumors deeply 

located.  

While providing new information to detect pathological tumors, USE suffers from 

low resolution imposed by the minimum resolvable wavelength. In addition, most of USE 

elastogram are referred to as the strain imaging which may not always provide useful 

information on locations and characterizations of heterogeneous lesions (Plews et al., 

2000). For example, the phenomenon called “butterfly wings” (Ophir et al., 1999) is 

frequently observed in USE strain elastograms, which can be misleading with respect to 

tumor detection.  

2.3.3 Magnetic Resonance Elastography (MRE) 

Magnetic resonance elastography was developed by Ehman and co-workers 

(Muthupillai et al., 1995; McKnight et al., 2002), Plewes et al. (2000), Samani et al. 

(2001),  Sinkus et al., (2000), and Van Houten et al., (1999, 2001) as new-generation 

elastography modality. 
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The general basis of MRE is to induce motion within the tissue by mechanical 

stimulation, measure the resulting deformation using MRI techniques, and finally, 

calculate elasticity modulus distribution using an inversion technique. Like in USE, the 

choice of mechanical stimulation used for elastography generally falls into two 

categories: harmonic and quasistatic.  

Harmonic deformation perturbs tissues at frequencies of 50-100 Hz, generating 

longitudinal or shear waves throughout the tissue. Modulus is estimated from 

measurements of wavelength (Manduca et al., 1996 and 2001) or velocity (Bishop et al., 

1998). For example, Manduca et al. (2001) directly visualize and quantitatively measure 

propagating acoustic strain waves in tissue subjected to harmonic mechanical excitation. 

In a tissue-like phantom experiment, propagating mechanical waves are applied and a 

phase-contrast MRI technique is used to provide spatially map and measure displacement 

patterns corresponding to harmonic shear waves. Figure 2-5 (a) shows the image of 

displacement due to acoustic strain wave propagation in a tissue-simulating phantom. 

Then the elastic field is reconstructed based on an assumption that the material is 

isotropic, homogeneous and incompressible. Figure 2-5 (b) shows the reconstructed 

elastogram and the object is clearly depicted. Figure 2-6 shows the result of an 

experiment on a patient with known breast tumor. The elastogram indicates that the shear 

stiffness of the tumor is substantially higher than surrounding tissues.  

Alternatively, quasistatic elastography uses very low deformation frequencies of 

0–1 Hz to reconstruct elastic field. The tissue is in an approximate state of static stress 

and displacements could be measured (Plewes et al., 2000; Samani et al., 2001). The key 

point in this quasistatic elastography is how to reconstruct elastic modulus distribution by 

displacement measurements. Three methods have been developed, including strain 

imaging, direct linear method and iterated inversion method. 
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Figure 2-5. The image of displacement and reconstructed elastogram for an object with 

diameter comparable to wavelength. 

Source: Manduca, A., Oliphant, T.E., Dresner, M.A., Mahoweald, J.L., Kruse, S.A., 
Amromin, E., Felmlee, J.P., Greenleaf, J.F., Ehman, RL., 2001, “Magnetic resonance 
elastography: Non-invasive mapping of tissue elasticity”, Medical Image Analysis, 5, 
237-254. 

Note: (a) Shear waves propagating in a phantom with an embedded 1.5 cm diameter 
cylinder of stiffer gel. Shear waves at 300 Hz were applied at the top margin of the gel 
block, with transverse motion oriented orthogonal to the plane of the image. (b) The 
elastogram based on local frequency estimation reconstruction algorithm clearly depicts 
the objects, even though it is relatively small in comparison to the wavelength.  
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Figure 2-6. MR elastogram of the breast of a patient with a 4 cm diameter, biopsy-proven 
breast cancer.  

Source: Manduca, A., Oliphant, T.E., Dresner, M.A., Mahoweald, J.L., Kruse, S.A., 
Amromin, E., Felmlee, J.P., Greenleaf, J.F., Ehman, RL., 2001, “Magnetic resonance 
elastography: Non-invasive mapping of tissue elasticity”, Medical Image Analysis, 5, 
237-254. 

Note: The image was obtained with shear waves at 100 Hz, applied to the skin of the 
medial and lateral aspects of the breast. The field of view is approximately 16 cm and the 
section thickness is 5 mm. The MR elastogram indicates that the shear stiffness of the 
tumor in the posterolateral aspect of the breast (arrowhead) is substantially higher than 
that of normal fibroglandular and adipose tissue in the breast.  
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Strain imaging method is based on an assumption that the stress field is 

approximately constant over the local region of the lesion of concern. So the tissue 

modulus would be related to strain measurement (Ponnekanti et al., 1995; Kallel and 

Bertrand 1996; Skovoroda et al., 1994). The strain field is measured as an approximate of 

modulus distribution. 

Strain imaging provides a simple approximate of modulus, but in situation where 

more accurate quantitative measures of tissue elasticity are required, a calculation method 

must be performed. Under static loading, the deformation of tissues is governed by 

equations of equilibrium, strain-displacement, and a material constitutive law. If we 

assume that the deformation is linear and material is isotropic elastic, we can derive the 

governing equation, known as Navier equation:    
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where λ  and µ  are the Lame constants and u  is the displacement vector field. On the 

right hand side, γ  and ρ  are the material viscous damping constants and density 

respectively. In the case of quasi-static elastography, γ  and ρ  vanish. 

In the direct linear method for quasistatic elastography, Equation (2.1) is 

discretized with modulus as the unknown and may be solved with standard linear 

algorithms (Hansen, 1998). This requires boundary conditions in terms of the unknown 

elastic modulus, but it is sufficient to assume a constant boundary modulus to achieve a 

relative modulus reconstruction. Skovoroda et al. (1995) were the first to describe a direct 

linear inversion of Equation (2.1) in 2-D plane strain geometry.    

In order to handle 3-D complex models and get results less sensitive to noise, an 

iterated inversion method has been developed by Bishop et al. (1998), Plewes et al. 

(2000) and Samani et al. (2001). In this method, the nonuniform stress distribution 

throughout the tissue is used to reconstruct the elasticity modulus from measured 

displacements. An initial guess of modulus is given, and then strain distribution could be 
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obtained based on measured displacements. After stress calculation, the procedure is 

followed by modulus updating. Iterative continues until modulus convergent (Figure 2-7).  

Based on this iterative method, a modulus reconstruction for breast cancer 

assessment is carried out by Samani et al. (2001). A FE model of breast is established and 

a typical sagittal image of the breast is shown in Figure 2-8 (a) where regions of adipose 

tissue (bright) and fibroglandular tissue (dark) are easily resolved with high SNR (signal-

to-noise ratio). FE mesh illustrated in Figure 2-8 (b) and (c) was created. Figure 2-8 (d) 

show a compression on model. It is assumed that geometry of normal and suspicious 

tissues is available from a contrast-enhanced magnetic resonance image and the modulus 

is constant throughout each tissue volume. Reconstruction results are shown in Figure 2-

9. The results indicate that reconstruction error does not exceed 12%. It is indicated that 

this iterative method is efficient to reconstruct elastic modulus in 3-D complex model. 

Recently, some efforts are made to improve iterative reconstruction algorithm.  

Kwon et al. (2009) designed a shear modulus decomposition algorithm to reduce the 

degree of noise amplification in the reconstructed shear modulus images without the 

assumption of local homogeneity. Kolipaka et al. (2009) developed and tested 

mathematical inversion algorithms capable of resolving shear stiffness in bounded media 

in stead of a uniform, infinite medium. 

From above summary, MRE provides higher resolution imaging and is capable of 

producing sufficient 3-D spatial and contrast resolution. However MRE tumor detection 

may encounter a penetration problem when applied to breast cancer diagnosis in vivo. 

The penetration depth of shear waves within organic tissue is only a few centimeters, 

which limit the application of MRE for tumors deeply located. Meanwhile magnetic 

resonance is too expensive to be applicable for all patients. 
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Figure 2-7. Flow chart of the iterative method for reconstructing elastic modulus.  

Source: Plewes, D.B., Bishop, J., Samani, A., Sciarrentta, J., 2000, “Visualization and 
quantification of breast cancer biomechanical properties with magnetic resonance 
elastography”, Phys. Med. Biol., 45, 1591-1610.  
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Figure 2-8 Finite element model of the breast.  

Source: Plewes, D.B., Bishop, J., Samani, A., Sciarrentta, J., 2000, “Visualization and 
quantification of breast cancer biomechanical properties with magnetic resonance 
elastography”, Phys. Med. Biol., 45, 1591-1610.  

Note: (a) Magnitude image of a central slice through the breast. (b) FE mesh 
corresponding to the slice shown in (a) where the tumor shown in the circle is added. (c) 
FE mesh of the breast. (d) FE contact problem model for compression simulation. 
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Figure 2-9 Modulus reconstruction results.  

Source: Plewes, D.B., Bishop, J., Samani, A., Sciarrentta, J., 2000, “Visualization and 
quantification of breast cancer biomechanical properties with magnetic resonance 
elastography”, Phys. Med. Biol., 45, 1591-1610.  

Note: (a) and (b) Convergence of /
fib fat

E E  and /
tum fat

E E  of the breast to the true values 
(dashed lines) for SNRs (signal-to-noise ratio) of 30 and 10 where 

fat
E , 

fib
E  and 

tum
E  are 

the Young’s modulus of fat, fibroglandular tissue, and tumor, respectively. (c) Measured 
strain in the phantom’s middle slice. (d) Convergence of /

fib fat
E E  and /

tum fat
E E  where 

fat
E , 

fib
E  and 

tum
E  are the Young’s modulus of the outer layer, middle layer, and the 

inclusion, respectively. The reconstruction results indicate that reconstruction error for 
both the middle layer and the inclusion does not exceed 12%. 
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In summary, the general idea of elastography is to induce motion within the tissue 

by mechanical stimulation, measure the resulting deformation using suitable imaging 

techniques, and finally, calculate elasticity modulus distribution using an inversion 

technique. By reviewing the elastography methods, it is shown that three major 

challenges: imaging techniques, deformation theory and inversion techniques, are 

essential for elastogrpahy in clinical application.  

(1) Imaging techniques: an imaging technique should be selected to measure 

deformation in elastography. Currently ultrasound and magnetic resonance are widely 

used. But ultrasound has a low resolution, magnetic resonance suffers penetration 

problem and is too expensive for the general population. In this thesis, we develop new-

generation elasto-mammography, in which traditional X-ray is used to measure 

displacements. More details are introduced in chapter 3 and 5.  

(2) Deformation theory: both USE and MRE are based on infinitesimal-strain linear 

elastic deformation theory, and only very few have considered anisotropic tissue 

properties. The large deformation, nonlinear and anisotropic behaviors of breast tissues 

and tumor have yet to be taken into consideration. In this thesis, we develop new 

algorithm to simulate the large deformation, nonlinear and anisotropic behaviors of breast 

tissues. More details are introduced in chapter 4 and 5. 

(3) Inversion techniques: once displacements are measured, an inversion technique is 

applied to reconstruct elastic properties. Strain imaging, direct linear and iterated 

inversion methods have been develop in current USE and MRE, but an efficient and 

robust algorithm is still a challenge for elstogrpahy in clinical application. In this thesis 

an adjoint gradient method is introduced to improve the numerical efficiency and enhance 

the stability of elastography reconstruction. More details are introduced in chapter 3~5.      
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2.4 Diffuse Optical Tomography (DOT) 

2.4.1 Introduction 

Because the mammography is not quite specific in terms of tumor benignity and 

malignancy, elastography has been developed to detect breast tumors by recognizing 

elastic stiffness differences between normal soft tissues and tumors in breast. Two kinds 

of elastography, ultrasound elastography (USE) and magnetic resonance elastography 

(MRE) have been introduced in Section 2.3. 

Besides of elastic properties differences between normal tissues and tumors, it is 

known that optical properties of tissue also play important role in clinical diagnostic. All 

healthy tissues need an adequate blood supply, delivering sufficient oxygen. Red blood 

cells deliver oxygen to tissues by attaching to oxygen in the lungs and becoming oxy-

haemoglobin. At the tissue, the oxygen dissociates to leave deoxy-haemoglobin. The 

relative concentrations of oxy- and deoxy- haemoglobin in the blood tells us how well 

oxygenated the blood is. If malignant tumors exist in breast tissue, they are often 

associated with anomalous vasculature and different oxygenation to the surrounding 

tissue. Meanwhile it is found that the optical properties of oxy- and deoxy- haemoglobin 

are different (Hillman, 2002; Leff et al., 2007). The absorptions of oxy- and deoxy- 

haemoglobin are shown in Figure 2-10. In addition, malignant and benign tumors have 

distinctive optical characteristics, which are summarized in Table 2-3. Therefore, optical 

properties could be a good indicator to identify and characterize the breast tumors. 

Diffuse optical tomography (DOT) emerged as a tool to image optical properties related 

with physiological change.  

“Diffuse optical tomography (DOT) is an medical imaging modality in which 

tissue is illuminated by near-infrared light from an array of sources, the multiply-

scattered light which emerges is observed with an array of detectors, and then a model of 
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the propagation is used to infer the localized optical properties of the illuminated tissue” 

(Boas et al., 2001).   

   In mammography and elastography, X-ray and MRI are usually used to measure 

breast tissue internal structure. But X-ray is potentially harmful to patients and MRI 

requires a large and expensive instrument with considerable maintenance costs. DOT 

overcomes these drawbacks. DOT operates at wavelengths at the red end of the visible 

spectrum and in the near- infrared range, around 650 to 900 nanometers. This spectral 

range is called a window of transparency because it lets light propagate relatively deeply 

into the tissue before being absorbed. 

 

 

 

 

Figure 2-10 The absorption spectra of oxy- and deoxy-haemoglobin in the near infrared 
wavelength range  

Source: Hillman, E.M.C., 2002, “Experimental and theoretical investigations of near 
infrared tomographic imaging methods and clinical applications”, Ph.D. thesis, 
University College London.  
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Table 2-3. Different malignant and benign breast tumors and their potential optically 
detectable features  

Condition Type Shape Likely to manifest as 

Cyst Benign Round and 
smooth 

Low scatter 

Blood filled cyst Possibly 
malignant 

Round and 
smooth 

High/characteristic absorption, 
possibly low scatter 

Fibroadenoma Benign Round, 
mobile 

High scatter, possibly high 
absorption, normal 
vasculature(common in younger 
women) 

Fibrocystic/ 

Fibroglandular changes 

Benign Boundaries 
not discrete 

High scatter (common in older 
women) 

Dormant Tumour Malignant Small, within 
ducts or 
lobes 

Possibly necrotic (de-oxygenated) 
core 

Growing tumour Malignant Boundaries 
not discrete 

Increased vasculature (hence 
increased absorption, scatter and 
anomalous oxygenation), may also 
have necrotic core 

Source: Hillman, E.M.C., 2002, “Experimental and theoretical investigations of near 
infrared tomographic imaging methods and clinical applications”, Ph.D. thesis, 
University College London. 
 

 

 

The idea of DOT is to reconstruct the optical properties of tissues to detect 

possible physiological change. A big challenge in DOT is, unlike the radiation in CT, 

which generally travels in straight lines through the body, infrared light is strongly 

scattered by tissue (Schweiger, 2003). In Figure 2-11, (a) illustrates how photons may 

travel in tissue, (b) shows a simulation of relative probability of photon paths. The source 

and detector are on the top of the block, and the various images show vertical slices at a 

sequence of horizontal displacements from the line connecting the source-detector pair. 

Figure 2-12 gives a comparison of CT and DOT imaging, (a) shows a schematic view of 
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the straight-line projections encountered in CT imaging, and (b) shows a photon density 

field calculated for a scattering medium with an embedded rectangular object. Therefore, 

the first challenge in DOT is to develop appropriate models to describe the photon 

transportation in biological tissue. 

2.4.2 Models of Photon Transport in Tissue 

Although in principle Maxwell’s equations can be solved for complex system 

with spatially varying permittivity, in practice most models are based on a particle 

interpretation of light (Arridge et al., 1997). The most widely applied equation in optical 

imaging is the radiative transfer equation (RTE) (Chandrasekhar, 1950; Ishimaru, 1978). 
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which describes the change of the radiance ),ˆ,( tsrφ  at position r  in direction ŝ  in time  

t . The parameters 
a

µ  and 
s

µ  are the absorption and scattering coefficients respectively, 

c is the velocity of light in the medium, and the function )ˆ,ˆ( ss ′Θ  is the scattering phase 

function characterizing the intensity of a wave incident in direction s′ˆ  scattered in 

direction ŝ . 

In biological tissues light propagations highly diffusively, the RTE could be 

simplified to a diffusion equation (Arridge, 1999; Gibson et al., 2005) 
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Equation (2.3) is in time-domain, the corresponding frequency-domain form is: 
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Figure 2-11 Photons travel in tissues.  

Source: Boas, D.A., Brooks, D.H., Miller, E.L., DiMarzio, C.A., Gaudette, R.J., Guan, 
Zhang, 2001, “Imaging the body with diffuse optical tomography”, IEEE Signal 

Processing Magazine, 18(6), 57-75. 

Note: (a) visualizes paths of photons through tissue, and (b) shows how probability of 
photon travel is distributed in a 3-D volume computational model with source and 
detector on the top. Source and detector are separated by 5 cm, each image shows a 
vertical slice, and distances shown are displacement of vertical slice from the line 
connecting the source/detector pair. 
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Figure 2-12 Diffuse light transports  

Source: Schweiger, M., Gibson, A., Arridge, A.R., 2003, “Computational aspects of 
diffuse optical tomography”, Computing in Science & Engineering, 5(6), 33-41. 

Note: (a) A schematic view CT-like projections along straight lines, where included 
object cast “shadows” on the opposite detector array. (b) Photon density wave from a 
single source propagating through a diffuse medium with an embedded object. Detectors 
places around the source maximize data information  
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2.4.3 Forward Problem 

The DOT work can be divided as forward and inverse problem. Forward problem 

can be stated as: given a distribution of light sources on the boundary of a tissue, and a 

distribution of tissue optical parameters, find the resulting measurement on boundary. 

Inverse problems can be stated as: given distributions of light sources and measurements 

on boundary, derive the tissue optical parameters distribution within the tissue.  First we 

review the techniques to solve forward problem. 

2.4.3.1 Analytical Modeling Techniques 

Green’s function is a method for modeling the diffusion equation analytically. 

The Green’s function is the solution when the source is a spatial and temporal δ - 

function, from which solutions for extended sources can be derived by convolution. But 

this method only is available for simple homogeneous objects (Arridge et al., 1992) or 

media which include a single spherical perturbation (Boas et al., 1994). This analytical 

modeling technique is hard to apply on clinical complex geometries. 

2.4.3.2 Statistical Modeling Techniques  

Statistical modeling techniques model individual photon trajectories in tissues.  

Monte Carlo method is the commonly used statistical technique in diffuse optical 

tomography (Boas et al., 2002; Okada and Delpy, 2003; Hayasshi et al., 2003). Monte 

Carlo method focuses on individual photons that are simulated as they undergo scattering 

and absorption events governed by local values of optical parameters. Photons are 

followed until absorbed or escape the surface, thus contributing to a measurement. This 

method offers great flexibility in modeling complex geometries and parameter 

distributions and the individual photon histories can be derived, but it requires very 

lengthy computation times (Arridge et al., 1997).  
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Another statistical method is random walk theory, in which photon transport is 

modeled as a series of steps on a discrete cubic lattice. The time steps may be discrete or 

continuous. Random walk theory is particularly suited to modeling time-domain 

measurements (Weiss et al., 1998; Chernomordik et al., 2000, 2002a & 2002b; Dagdug et 

al., 2003)    

2.4.3.3 Numerical Modeling Technique  

Numerical technique based on finite element method (FEM), a numerical method 

for solution of partial differential equations in complex geometries, is the most widely 

used one in DOT. This method was first introduced by Aridge et al. (1993) and was 

explained in detail by Arridge and Schweiger (1995), Arridge (1999, 2000). The finite 

element method requires that the tissue is divided into a finite element mesh. According 

to the boundary conditions, the forward problem is reduced to finite size matrix algebra. 

Recall the time-domain diffusion equation (2.3), a solution Φ  of Equation (2.3), if it 

exists, is also a solution of  

0

1
( )( ( ) ) ( , ) ( ) ( , )

x a
r D r r t d r q r t d

c t
µ

∂
Ψ ∇ ⋅ ∇ − + Φ Ω = − Ψ Ω

∂∫ ∫                    (2.5) 

where Ψ  is a function satisfying the same boundary conditions as Φ .  

Equation (2.5) is called weak form of Equation (2.3). By deriving Φ  and Ψ  into 

finite elements and integration by parts, Equation (2.5) is derived as: 
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For the time-independent case, Equation (2.6) is simplified as  

[ ( ) ( )]
x a

K D C Qµ β+ Φ = +                                                           (2.7) 

For forward problem, ( ) ( )
x a

K D C µ+  and β+Q  are known, Φ  can be solved by matrix 

algebra. 

2.4.4 Inverse Problem 

The key point in DOT is solving the inverse problem, in which the distributions of 

light sources and measurements on boundary are given and the image of tissue optical 

parameters are reconstructed. Since the inverse problem is non-unique, ill-posed 

underdetermined, developing fast and robust reconstruction methods is the main 

challenge in making DOT a viable tool for clinical diagnostics.  

2.4.4.1 Linear Image Reconstruction 

Inverse problem can be expressed as  

)(1
yFx

−=                                                                 (2.8) 

where x  is internal optical properties distribution, y  is given measurements on 

boundary. It is a non-linear problem but it can be linearized if the actual optical properties 

x  are close to an initial estimate 0x  and the measured data y  are close to the simulated 

measurements 0y . A Taylor series of Equation (2.8) about 0x  is 

⋯+−′′+−′+= 2

00000 ))(())(( xxxFxxxFyy                             (2.9) 

If  x  is close to 0x  and y  is close to 0y , Equation (2.9) is simplified as  

xJy ∆∆ =                                                              (2.10) 

where 00 , xxxyyy −=−= ∆∆ , F ′   is represented as matrix J . 

The most common techniques to solve Equation (2.9) are truncated singular value 

decomposition, Tikhonov regularization and the algebraic reconstruction technique (Boas 
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et al., 1994; O’Leary et al., 1995; Chang et al., 1995; Gaudette et al., 2000; Selb et al., 

2007). The Moore-Penrose inverse 1 1( )T T
J J JJ

− −=  offer a more efficient inversion if J  

is underdetermined. The linear inverse problem can be expressed as a    

yJxIJJ
TT ∆=∆+ )( λ                                                (2.11) 

where I  is the identity matrix and λ  is a regularization parameter. J  itself is calculated 

from the forward model.    

2.4.4.2 Non-linear Image Reconstruction 

The linear image reconstruction provides an approximate solution to nonlinear 

inverse problem, but it is based on the assumption that actual optical properties are close 

to an initial estimation. If the inverse problem is to reconstruct absolute values that are far 

away from initial guesses, which is commonly the case in breast imaging (Dehghani et 

al., 2003), non-linear image reconstruction has been applied.  

To solve the non-linear problem, an objective function Ψ is defined 

22
)( ΠαΨ +−= xfy                                                       (2.12) 

which represents the difference between the measured data y  and forward model 

calculated data )(xf . The goal of inverse problem is to find x  which minimize the 

objective function Ψ . Because the problem is ill-posed, it must be regularized, α  is a 

regularization parameter, and Π  presents prior information. Usually an initial guess of 

x  is given and iterative process is conducted to update x  until a satisfied Ψ  is obtained 

(Figure 2-13). The iterative process can be made either by a Newton method such as the 

Levenberg-Marqardt algorithm (Schweiger et al., 1993 & 2005) or by a gradient method 

such as conjugate gradients (Arridge and Schweiger, 1998; Arridge et al., 1999). 

This iterative method is first proposed by Schweiger (1993), since then a great 

effort have been done in develop fast, efficient, and stable methods for reconstruction. 

Schweiger et al. (1995) discussed the boundary and source condition. Jiang et al. (1996, 
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1998) solved 2-D inverse problems based on numerical simulations and phantom 

experiments, and solved an inverse problem with multi-target. Schweiger (2003), Dierkes 

(2005) and Dehghani (2004) established 3D breast models and reconstructed optical 

properties by the iterative nonlinear reconstruction procedure.   

 

 

 

 

Figure 2-13 Schematic flow of iterative nonlinear reconstruction procedure  

Source: Schweiger, M., Gibson, A., Arridge, A.R., 2003, “Computational aspects of 
diffuse optical tomography”, Computing in Science & Engineering, 5(6), 33-41. 
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2.4.5 Recent Advances in Diffuse Optical Imaging 

2.4.5.1 Use of Prior Information 

Because the inverse problem in DOT is a non-unique, ill-posed underdetermined 

problem, methods in Section 2.4.4.2 have shortcomings: unstable, time-consuming, low 

spatial resolution, requiring a lot of measurement data (Gibson et al., 2005). So in recent 

years, researchers use prior information to improve the image reconstruction. 

Niziachristos et al. (2000 & 2002), Schweiger et al. (2003), Brooksby et al. (2003 & 

2005), Dehghani et al. (2009) used an MR image of a breast to provide the location of a 

tumor as a priori. Due to this approach, the spatial resolution of the optical image 

effectively becomes that of the MR image.  

The prior information is applied in two levels: “hard priors” and “soft priors” 

(Brookksby, 2005). “Hard priors” are seeking parameter reduction. The target domain is 

divided into n  regions and the homogeneous optical property is assumed in each region. 

Due to the small number of unknowns, the inverse problem is highly over-determined 

and therefore computationally fast and robust to noise in the data. Pogue and Paulsen 

(1998) described the use of high resolution MRI to improve simulated optical property 

reconstruction of a rat cranium. By accurately defining a region where heterogeneity is 

expected, they limit image property evolution to only those node locations.   

“Soft priors” are seeking to improve regularization in iteration process. Li et al. 

(2003) use structural knowledge of the breast to define two discrete regions which they 

regularize differently in order to optimize NIR image contrasts. Figure 2-14 shows the 

results by implementing soft priors (Brooksby et al., 2005). The internal structure of a 

gelatin phantom is provided by MRI as a priori. The reconstructed images of the 

absorption and reduced scattering coefficients are improved by the use of the prior 

information.  
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In this thesis we have applied iterative nonlinear procedure to reconstruct optical 

properties and internal structure of breast is known by mammography as a prior to 

improve the reconstructed images.    

Beside MRI, it is natural to consider combining optical imaging with X-ray 

mammography which could provide anatomical information to improve spatial 

resolution. Some preliminary results are obtained by Li et al. (2003) and Zhang et al. 

(2005).  

Finally, there have been some attempts to combine optical imaging with 

ultrasound, either at the data acquisition stage by photoacoustics (Xu and Wang, 2006) or 

by modulating the light (Wang et al., 1995), or at the image reconstruction stage by using 

ultrasound to improve spatial localization (e.g. Zhu et al., 2008).  

2.4.5.2 Effect of Pressure  

In optical tomography systems the human breast is usually compressed by flat 

glass plates or encircled by an array of fiber bundles. Pressure is applied to the exterior of 

the tissue, causing significant deformation in many cases (Ntziachristos et al., 2000). 

Pressure-induced changes in tissue properties have been observed in both in vitro (Chan 

et al., 1996; Changguan et al., 1998) and in vivo (Jiang et al., 2003; Cheng et al., 2003; 

Carp et al., 2006 & 2008; Boverman et al., 2007; Wang et al., 2008) biological tissue 

models. For example, clinical experiments by Jiang et al. (2003) are done in a group of 

five normal women aged 41-71 years. The result is shown in Figure 2-15, where the open 

symbols are phantom data and the filled symbols are human data; the circles represent 

measurements during closing of the array (increasing pressure) and the triangles 

represents measurements acquired during reopening of the array (decreasing pressure). It 

is shown that although little change occurred in phantom, pressure have significant 

impact on absorption and scattering coefficients on human tissue. Absorption coefficient 

decreases from 0.0056 to 0.0043 mm
-1

 when pressure increased gradually from zero to 
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1100 Pa and then increases gradually to 0.0063 mm
-1 

as the pressure decreased back to 0 

Pa. The scattering coefficient increased gradually from 1.0 to 1.7 mm
-1

 as the pressure 

increased and decreased gradually back to 1.0 mm
-1

 when pressure decreased to baseline.  

This change could be explained that blood and water concentrations in breast 

tissue are variable when pressure applied. Thus the optical properties changes as applied 

pressure changes. So it indicates that pressure-induced changes must be considered when 

optical properties are estimated in human tissues.  

 

 

 

 

 



 

 

44 

 

 

 

 

Figure 2-14 Use of prior information.  

Source: Brooksby B., 2005, “Combining near infrared tomography and magnetic 
resonance imaging to improve breast tissue chromophore and scattering assessment”, 
Ph.D. Thesis, Dartmouth College, Hanover, New Hampshire  

Note: (a) Phtography of a gelatin phantom and a variety of inclusions (small gelatin 
spheres and a cylinder with different optical properties); (b) MRI showing a cross section 
of the cylindrical phantom, visible in the MRI are three types of gel; and (c) finite 
elemnet mesh segmented according to the MRI intensity. The optical fiber 
source/detectors marked around the circumference are specified with millimeter 
accuracy. (d) Reconstructed images of the absorption and reduced scatterting coefficient 
for this phantom. The top pair of images shows the true distribution, the second pair 
shows the reconstructions that do not use a prior information, the third pair shows 
reconstruction in which two layers were assumed from the MRI (i.e., the inclusion was 
ignored), and the bottom pair shows reconstructions in which the full MRI is used.   
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Figure 2-15. Typical absorption coefficient (a) and scattering coefficient (b) changes with 
applied pressure from a human subject and elastic phantom.  

Source: Jiang, S.D., Pogue, B.W., Paulsen, K.D., 2003, “In vivo near-infrared spectral 
detection of pressure-induced changes in breast tissue”, Optics letters, 28 (14), 1212-
1214. 

Note: In both (a) and (b) the open symbol are phantom data and the filled symbols are 
human data. The circles represent measurements during increasing pressure, and the 
triangles represent measurements during decreasing pressure.  
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CHAPTER 3 LINEAR ELASTO-MAMMOGRAPHY 

3.1 Introduction 

Breast cancer is one of the major threats to public health in the world. Currently, 

X-ray mammography is the primary method for early detection and characterization of 

breast cancers, but it is not quite specific in terms of tumor benignity and malignancy. 

Although elastography has been developed to solve the problems associated with 

mammography, the application of elastography is limited by low penetration depth, high 

cost and low resolution.   

The objective of this chapter is to develop a new imaging modality, called elasto-

mammography, for quantification of the elastic modulus of normal and cancerous breast 

tissues. Instead of using ultrasound and magnetic resonance like in previous elastography, 

elasto-mammography method generates the elastograms of breast tissue by combining the 

conventional low-dose X-ray mammography with elastography framework. The 

displacement information is extracted from mammography projections before and after 

breast compression. Incorporating the displacement measurement, an elastography 

reconstruction algorithm is specifically developed to estimate the elastic modulus of 

heterogeneous breast tissue. Specifically, by adopting certain anatomically well-

motivated assumptions, the geometry of tumors is estimated from the mammography 

projections, as well as the displacements at key points 

This chapter is organized as follows: In Section 3.2, we present the optimization-

based algorithm for elastography reconstructions. In Section 3.3 we further present 

elasto-mammography simulations using numerical breast phantoms containing tumors in 

Then we investigate the influences of various errors with the measurements, including 

noise with displacements, geometric mismatch, and elastic contrast ratios in Section 3.4. 

Conclusions are drawn in the last section. 
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3.2 Methodology of Elastography Reconstruction 

3.2.1 Governing Equations and Finite Element Method 

Under static loading, the deformation of tissues is governed by equations of 

equilibrium, strain-displacement, and a material constitutive law. The equilibrium 

equation is: 
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where 
i

u  is a component of the displacement vector 1 2 3( , , )u u u=u  in Cartesian 

coordinates ),,( 321 xxx=x . In this chapter, we focus on isotropic and linear elastic 

material (The case about anisotropic and nonlinear elastic material is given in Chapter 4: 

Nonlinear Elastography). Material constitutive law relates the strains and stresses as 

follows: 
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where E  and ν  represent Young’s modulus and Poisson’s ratio and 
ij

δ  is the Kronecker 

delta. E  and ν  are related to Lamé parameters λ  and µ : 

(1 )(1 2 )

Eν
λ

ν ν
=

+ −
                                                        (3.4) 

2(1 )

E
µ

ν
=

+
                                                                (3.5) 

If Lamé parameters and external loading are known, we could calculate 

displacements and subsequently strains and stresses by governing equations (3.1)~(3.3). 
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It is called forward problem. Inversely, if the external loading and displacements are 

measured, the distributions of Lamé parameters λ  and µ  could be reconstructed. It is 

called inverse problem. The goal of elastography is to solve the inverse problem, that is, 

the external loadings and displacements are given, the distributions of elastic parameters 

are reconstructed.    

Since there is no analytic solutions for equation (3.1)~(3.3), particularly in 3-D 

case with complex geometries, we use finite element method (FEM) in this study. FEM is 

a numerical technique which gives approximate solutions to differential equations. It is 

especially powerful when dealing with boundary conditions defined over complex 

geometries that are common in practical applications. In this method, the domain is first 

discretized into a number of simpler domains called elements. An approximate solution is 

assumed over an element in terms of solutions at selected points called nodes through 

interpolation. Using an approximation, the governing equations yield a small set of linear 

equations for each element called the element stiffness equation. The elements’ stiffness 

equations are calculated and then assembled to form a linear system of equations called 

the global stiffness equation (Zienkiewicz et al., 2000; Bhatti, 2005)   

   =Ku F                                                               (3.6)  

where K , global stiffness matrix , is real, symmetric and quasi-positive definite, and  

depends only on the Lamé parameters λ  and µ , u  is unknown displacement vector and 

F  is force vector.  

3.2.2 Objective Function 

Typical clinical mammography applies compression on the breast so that the 

maximum amount of tissues can be imaged and examined from different view angles. 

Under a compression, information about the displacements can be measured from 

projective images. If the elastic modulus distribution is given, displacements can also be 

calculated by Equation (3.6). The objective of elastography problem is to optimally find 
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the elastic modulus distribution that minimizes the difference between the measured 

displacements in the biomedical medium of interest and the calculated displacements that 

depends on the elastic modulus distribution.      

Denoting the measured displacement field in the biomedical medium of interest 

( Ω ) as ( )U x , and the calculated displacement field associated with the trial distribution 

of Lamé parameters ( )λ x  and ( )µ x  as ( )u x , the elasto-mammography seeks Lamé 

parameters such that the following objective functional ( ) ( )( ),λ µΦ x x  is optimally 

minimized: 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ), dVλ µ
Ω

Φ = − ⋅ ⋅ −∫x x u x U x χ x u x U x             (3.7) 

where the second-order tensor χ  simply takes diagonal matrix form, i.e., 

( )( ) ( )ij i
ij

δ ω=χ x x  (i, j = 1, 2, 3). The weight function ( )i
ω x  equals zero if the i-th 

displacement component is not measured at point x. To include the surface displacement 

as measurement, ( )i
ω x  is considered as a generalized function on the boundary of Ω . 

 The elasto-mammography reconstruction follows an iterative optimization 

procedure, as schematically shown in Figure 3-1. The initial estimate for distribution of 

Lamé parameters ( , )λ µ  is given. Displacements can be calculated by Equation (3.6) and 

objective function is obtained by comparing measured and calculated displacements. 

Then Lamé parameters are updated for next iteration until a satisfied objective function is 

obtained.    

3.2.3 Adjoint Method 

The iterative optimization procedure usually requests user-supplied gradient. The 

previous elastography studies used direct or approximate finite-different method (Smani 

et al., 2001; Han et al., 1993) for the gradient calculation. The computation expense of 

these methods increases proportionally with the number of material parameters. Recently 

an adjoint method was introduced to compute the gradient analytically (Tardieu et al., 
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2000; Oberai et al., 2003; Liu et al., 2005 & 2006). Oberai et al. (2003) adopted the 

adjoint method and proposed a numerical scheme for reconstructing the nonuniform 

shear modulus field for incompressible isotropic material using one component of 

displacement field. Liu et al. (2006) applied this method for anisotropic materials. In this 

thesis we applied this method for proposed linear elasto-mammography. The basic 

algorithm is recalled for linear isotropic material in this chapter and we expand it to 

nonlinear material in next chapter.   

Stiffness equation (3.6) can be rearranged, without affecting the solution, as  

11 12 1 1

12 22 2 2

T

K K u F

K K u F

     
=    

     
                                                     (3.8) 

where 2u  corresponds to the prescribed displacements on the boundary 
u

∂Ω , i.e. 2u U= , 

and 1F  the given nodal forces. 1u  and 2F  stand for the unknown nodal displacements and 

forces. Note that measurement of displacements U  should only taken on the nodes where 

the displacements are not prescribed. That is, U  is only measured on the nodes 

associated with 1u .  

The objective function (3.7) then becomes: 

( ) ( )( ) ( ) ( ),
T

x x u U Χ u Uλ µΦ = − −                                        (3.9) 

in which the matrix Χ  corresponds to the weight function ( )χ x , and has the same 

dimension as the stiffness matrix K , but is diagonal, and 
ii

X  equals to zero when the i-th 

component in u  is not measured.  

We defined the adjoint displacements w  as: 

1 1

2

{ }
0

w w
w

w

   
= =   

  
                                                   (3.10) 

in which vector 1w  has the same dimension as 1u , and 2 0w =  is because of the 

prescribed boundary condition 0w =  on 
u

∂Ω . The weak form of stiffness equation (3.6) 

could be expressed as 
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( ) 0T
w Ku F− =                                                       (3.11)   

for arbitrary choice of 1w .  We introduce equation (3.11) into objective function (3.9) and 

obtain a Lagrangian: 

( ) ( )( ) ( ) ( ), , , ( )
T T

L x x u w u U Χ u U w Ku Fλ µ = − − + −              (3.12) 

It can be shown that ( ) ( )( ) ( ) ( )( ), , , ,   x x L x x u wλ µ λ µΦ =  and Lδ δΦ =  when 

Equation (3.11) is satisfied for arbitrary 1w . The variation Lδ  can be expressed as 

( ) ( ) ( )T
L uX u U u U X u w Ku K uδ δ δ δ δ= − + − + +                 (3.13) 

      2( ) ( )T T
L u U X u w Ku K uδ δ δ δ= − + +                                   (3.14) 

                                 (2( ) )T T T
L u U X w K u w Kuδ δ δ= − + +                                    (3.15) 

Let 2( ) 0T T
u U X w K− + = , Equation (3.15) becomes: 

T
L u Kwδ δ=                                                                         (3.16) 

So we have  

T
u Kwδ δΦ =                                                                        (3.17)  

where Kδ  is due to the change of Lamé parameters λ  and µ , displacement vector u  is 

associate with current value of Lamé parameters λ  and µ  and is solved from finite 

element equation (3.8). The adjoint displacement vector w  is resulted from the difference 

between the calculated and measured displacement, i.e. it satisfied 

2 ( )Kw X u U= − −                                                               (3.18) 

Above formulas focus for one measurement, but typical clinical mammography 

applies M ( 2M ≥ ) individual compressions on the breast so that the maximum amount 

of tissues can be imaged and examined from different view angles. The displacement and 

force quantities with the i -th experiment are denoted with superscript “
( )i

”. Denoting for 

the i -th loading the measured displacement vector as ( )i
U , and the calculated 

displacement vector as ( )i
u . The objective function (3.9) and gradient (3.17) become: 
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 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1

,
M

T
i i i i i

i

x x u U Χ u Uλ µ
=

Φ = − −∑                       (3.19) 

( ) ( )

1

( )
M

i T i

i

u Kwδ δ
=

Φ =∑                                                                   (3.20)  

where ( )i
u  and ( )i

w  satisfy   

( ) ( ) ( ) ( )

11 12 1 1

( ) ( ) ( ) ( )

12 22 2 2

i i i i

i T i i i

K K u F

K K u F

     
=    

     
                                                     (3.21) 

and 

( ) ( ) ( )

( ) ( ) ( )11 12 1

( ) ( ) ( )

12 22 2

2 ( )

i i i

i i i

i T i i

K K w
X u U

K K w

   
= − −  

   
                                  (3.22) 

In the proposed elasto-mammography technique, anatomic structures of the 

normal breast tissue and tumor are pre-scanned. Therefore the breast can be modeled as a 

piece-wise homogeneous medium, with uniform Lamé parameters tissue tissue( , )λ µ  for 

normal breast tissue region and uniform parameters tumor tumor( , )λ µ  for the tumor region. 

Consequently, there are four gradients to be calculated: 

( ) ( )

1

( )
M

i T i

itissue tissue

K
u w

λ λ=

∂Φ ∂
=

∂ ∂
∑                                                   (3.23) 

( ) ( )

1

( )
M

i T i

itissue tissue

K
u w

µ µ=

∂Φ ∂
=

∂ ∂
∑                                                  (3.24) 

( ) ( )

1

( )
M

i T i

itumor tumor

K
u w

λ λ=

∂Φ ∂
=

∂ ∂
∑                                                 (3.25) 

( ) ( )

1

( )
M

i T i

itumor tumor

K
u w

µ µ=

∂Φ ∂
=

∂ ∂
∑                                                (3.26) 

Favorable feature of the adjoint method is the minimum consumption for 

calculating the gradients. The adjoint method is to solve adjoint displacements w  during 

each of iteration in Equation (3.18), instead of the whole stiffness matrix K  that 

increases the numerical efficiency significantly. By comparing Equation (3.8) and (3.18), 
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it can be shown that the real displacements u  and the adjoint displacements w  share the 

same stiffness matrix K  and its Cholesky factorization for the finite element computation 

(Press et al., 1996). Because computation for stiffness matrix K  and its Cholesky 

factorization takes most of the time consumed in the finite element method, solving 

Equation (3.18) for adjoint displacement w  and further calculating δΦ  (Equation (3.17)) 

are expected to add a small fraction of time in addition to the solution for displacement 

u , which is anyway required in an optimization-based numerical scheme for an inverse 

problem. Oberai et al. (2004) compared three different iterative methods: (1) A gradient-

based method where the adjoint approach is used to calculate the gradient; (2) A gradient-

based method where the straightforward approach is used to calculate the gradient and (3) 

the Gauss-Newton method (Doyley et al., 2000). The results are shown in Table 3-1. The 

results show that “leading-order costs for the gradient-based method with the adjoint 

approach are smaller than the other two methods”. In this chapter we recall the adjoint 

method for linear material and we will expend it to nonlinear material and finite-strain 

deformation in chapter 4.  

 

 

 

Table 3-1 Estimate of leading-order computational costs per iteration for various iterative 
method, where N  is the number of unknown material parameters  

 Gaussian elimination                     
(two dimension) 

Gaussian elimination                     
(three dimension) 

Gradient-based (adjoint approach) 
2( )O N  

7 /3( )O N  

Gradient-based (straightforward approach) 
5/ 2( )O N  

8/3( )O N  

Gauss-Newton 
3( )O N  

3( )O N  

Source: Oberai, A.A., Gokhale, N.H., Doyley, M.M., Bamver, J.C., 2004, “Evaluation of 
the adjoint equation based algorithm for elasticity imaging”, Physics in Medicine and 

Biology, 49(13), 2955-2974 
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3.2.4 Optimization-based Reconstruction Procedure 

 The reconstruction frame involved data acquisition, material modeling, and 

reconstruction of material parameters, shown with the flowchart in Figure 3-1. The data 

acquisition includes establishing finite-element model for breast, measuring 

displacements by mammography projections. Material modeling includes initial 

estimation for distribution of Lamé parameters λ  and µ . The reconstruction procedure is 

optimization-based, making use of a limited-memory BFGS (L-BFGS) optimization 

subroutine (Liu et al., 1989), for which user-supplied gradients are required. When 

solving displacement u  with finite-element method, the factorization of stiffness matrix 

K  is stored at each time step, and is used for the adjoint displacement w . Once initial 

guesses of distribution of Lamé parameters λ  and µ  is given, displacements are 

calculated in forward problem. The calculated and measured displacements are used to 

form objective function (3.19). Gradients are obtained by calculating adjoint 

displacement w  and Lamé parameters are updated. New iteration is repeated until a 

satisfied objective function is obtained.  

3.3. Numerical Simulations 

In this section, simulations are performed with numerical breast phantoms to 

identify the elastic parameters for normal tissue and tumor(s). The three-dimensional (3-

D) breast phantoms contain one and two tumors, respectively. To simulate 

mammography compression, two types of loadings are applied, respectively, on the 

phantoms from different loading angles. Surface forces and part of the boundary 

displacements are extracted from the forward computation results, in compliance with the 

capability of projective imaging, and are used as input for the reconstruction. The 

measured displacements are used to established objective function (3.19). In the 

following text, unit is “cm” for length and displacements, “kPa” for elastic moduli, and 

“kN” for nodal forces.   
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Figure 3-1 Overall flowchart for elasto-mammography reconstruction of Lamé 
parameters λ  and µ  of breast tissues.  
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3.3.1 Forward Computations 

Let us first consider a 3-D phantom consisting of a half-spherical matrix with an 

embedded spherical inclusion (Figure 3-2 (a)). The soft matrix, 10 cm in diameter and 

center at (x, y, z)=(0, 0, 0), imitates normal breast tissue. The hard inclusion, 1.5 cm in 

diameter and center at (2, 1.75, 2.25), simulates a tumor. The second phantom (Figure 3-2 

(b)) is similar, but has one more tumor of the same size and at (-1.8, 0, 2). We denote 

these phantoms as “Phantom I” and “Phantom II”, respectively. The phantoms are 

discretized with standard 3-D tetrahedral elements. Phantom I consists of 1114 nodes and 

6070 elements (2805 elements are in the inclusion), while Phantom II consists of 1657 

nodes and 9340 elements (3969 elements are in the inclusions).  

The materials are assumed isotropic. The Lamé parameters ( λ , µ ) are (25, 7.5) 

for the soft breast tissue and (125, 25) for the tumor. The Young’s modulus E  and the 

Poisson ratio ν  are related to Lamé parameters via 

( )3 2
E

µ λ µ

λ µ

+
=

+
                                                          (3.27) 

( )2

λ
ν

λ µ
=

+
                                                               (3.28) 

Hence, ( ),E ν  are (20.77, 0.39) for soft tissue and (70.83, 0.42) for tumor. Note that the 

tumor is assumed approximately 3.5 times as stiff as the surrounding tissue. In general, a 

tumor is much stiffer than the surrounding normal tissues. However, the ratio between the 

stiffness of cancerous and normal breast tissues found in the literature shows variations 

from a few times to a few ten times (Wellman, 1999). Skovoroda et al. (1995) recognized 

that this is partially due to the nonlinearity effect in which the apparent stiffness increases 

with the strain applied. Effects of the contrast ratio on elasto-mammography are 

discussed in Section 3.4.3. 
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(a) Phantom I with one tumor 

 

 

 

 

 

 

(b) Phantom II with two tumors. 

Figure 3-2 Three-dimensional phantoms mimicking the normal breast tissue and 
embedded tumor(s).  

Note: Finite-element mesh is shown on the external surface. Phantom I consists of 1114 
nodes and 6070 elements, while Phantom II consists of 1657 nodes and 9340 elements.   
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(a) Phantom II under loading 1 with 3-D view 

 

 

 

 

 

 

(b)  Phantom II under loading 1 with x-y plane view to show direction 1 

Figure 3-3 Loading 1, compression nodal force applied on the surface. Shown with 
Phantom II  
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(a) Phantom II under loading 2 with 3-D view 

 

 

 

 

 

 

 

 

 

 

(b)  Phantom II under loading 2 with x-y plane view to show direction 2 

Figure 3-4 Loading 2, compression nodal force applied on the surface. Shown with 
Phantom II  
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In the simulations, the displacements are zero on the base surface where 0z = .  

Two compression loadings are applied on the upper surface of breast phantoms, 

respectively.  For Loading 1, nodal force of 0.005 kN is applied on some of the surface 

nodes, as Figure 3-3 plotted with Phantom II. Loading 2 applies nodal force 

004.0==
yx

FF  kN on the other set of surface nodes, as shown in Figure 3-4.  Note 

that the loading directions are different by 4π . For convenience, we denote the direction 

with Loading 1 as “direction 1”, and that with Loading 2 as “direction 2”. 

3.3.2 Data Acquisition 

Given the Lamé parameters for normal breast tissue and tumor(s), the 

deformations in response to the external loadings 1 and 2 are obtained by solving 

Equation (3.8). First of all, the external surface of a breast at undeformed state can be 

reconstructed from images taken with a 3-D camera (e.g., Page et al. 2005). Then, for 

each external loading, two mammography projections are made in the compression 

direction; i.e., one projection with undeformed state, and another with deformed 

configuration. The shape and location of the tumor(s) can further be estimated from the 

undeformed projections along different orientations. It is recognized that real tumors may 

be irregular in shape and be difficult to reconstruct accurately with limited number of 

projections. As a first-order approximation, we assume that tumors are spherical initially, 

and deform into ellipsoids. The initial size and center of tumors are readily estimated 

with two undeformed projections made in different directions. For instance, directions 1 

and 2 in the present simulation, as plotted with Figure 3-5 (a) and Figure 3-6 (a) for 

Phantom II. Note that Phantom I can be considered as Phantom II with absence of the 

tumor initially at (-1.8, 0, 2). 

We extract displacement information from projection of deformed configurations.  

Based on the micromechanics theory for deformation of an inclusion in a large medium 

(Eshelby, 1957), it is reasonable to estimate that an initially spherical tumor deforms into 
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an ellipsoid. Because of the relatively simple uniaxial compression loadings applied in 

mammography, it is further approximated that vertexes of an object in an undeformed 

projection remain vertexes in the corresponding projection after compression 

deformation. For example, in Figure 3-5 (b) for Loading 1, point A  is the top vertex of 

tissue in undeformed projection. It moves to vertex A′  after deformation. Points B~I are 

vertexes of the tumors in undeformed projection in direction 1. They move to vertexes 

B′~ I′ , respectively. Thus, by measuring the vertex locations in projections before and 

after deformation, their displacement information can be obtained. For example, 

displacement components 
x

u  and 
z

u  in Loading 1 for vertexes A ~ I  are extracted from 

the projections as in Figure 3-5. Acquisition of displacement information with Loading 2 

makes use of projections Figure 3-6 (a) and (b), and follows the same procedure. It is 

noted that the two tumors partly overlap in the projections in direction 2, and vertexes C  

and G are in shadow. For such a case, the vertex displacements are still attainable, 

according to the grey density information in the projections with lose of some accuracy.  

The collected displacement data are denoted as (1)
U  and (2)

U  for elasto-mammography 

reconstruction. 

Accurate displacement measurement with high spatial resolution will benefit 

elastography reconstruction in general. However, pinpoint tracking of large number of 

material points in an object is still a challenge in medical imaging (Hajnal et al., 2001), in 

particular for simple mammography projections that lack natural landmarks. Therefore, 

we propose elasto-mammography that only makes use of displacements of a few special 

points extracted directly from projections. As described above, the points include top 

vertex on the upper breast surface ( A  in Figure 3-5 (b)) and vertexes of the tumors in 

projections (B~I). Displacements measured at other points, for instance on the external 

surface with a 3-D camera, should enhance the efficiency and accuracy of elasto-

mammography. 
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Figure 3-5 Mammography projections with Phantom II under loading 1.   

Note: Projections are made in direction 1. (a) Undeformed projection; (b) Deformed 
projection overlaps on undeformed projection. In the projections, vertexes A ~ I  in 
undeformed projection move to A′~ I′  in deformed projection, respectively. 
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Figure 3-6 Mammography projections with Phantom II under loading 2.   

Note: Projections are made along direction 2.  (a) Undeformed projection; (b) Deformed 
projection overlaps on undeformed projection. In the projections, vertexes A ~ I  in 
undeformed projection move to A′~ I′  in deformed projection, respectively. 
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3.3.3 Inverse Problem 

With the described data acquisition method, displacements at some key points are 

extracted from deformed and undeformed projections with the two compression loadings, 

and are used as measurements (1)
U  and (2)

U  for elasto-mammography reconstruction.  

Compression nodal forces applied on the surface are also known with the loadings.  

Given initial estimate, the Lamé parameters for tissue and tumor are reconstructed 

following our optimization procedure (Figure 3-1). 

Ideal case is considered first; i.e., the displacements, geometry and compression 

nodal forces are exactly measured, and are used as input for reconstruction. Rows “Ideal 

I” and “Ideal II” of Table 3-1 give the reconstruction results with Phantom I and Phantom 

II, respectively. All parameters are accurately identified, with the largest error of about 

0.18%±  (for λ  of tumor). Reconstructions using different initial estimates have been 

conducted. Very similar convergent profiles are found for the parameters, and highly 

accurate results are obtained. This indicates efficiency and uniqueness of the proposed 

elasto-mammography using projective measurements. 

Although all parameter reach real values ultimately, the convergent speeds are 

quite different. Convergent loci of the Lamé parameters ( λ , µ ) are plotted with Figure 3-

7. The loci for Phantom I (Figure 3-7(a)) and Phantom II (Figure 3-7 (b)) are very 

similar. It is observed that ( λ , µ ) of the tissue approach the real value rapidly. After 

about 20 iteration steps, their relative errors are well within the range of 5% . Then they 

experience some minor adjustment. In contrast, Lamé parameters of the tumor converge 

slower, in particular for λ , which starts to fall to the real value after about 40 steps.  

After about 50 steps, it reaches the real value. 

The slower convergent speed of Lamé parameters of the tumor, in particular for 

λ , is explained by the roles they play in the deformation due to the applied loadings, as 

discussed in Liu et al. (2005). In general, parameters with the most significant influence 
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on the deformation are also those that are most accurately and easily identified. The 

influence of a parameter depends on size and location of the material region it belongs to, 

as well as characteristics of the deformation. For the present simulations, λ  and µ  of the 

tissue are dominant, while those of tumor are much less influential, due to the small size 

and deep location of the tumor(s). Slower convergence of λ  for tumor indicates that the 

present loadings do not introduce enough volumetric strain in the tumor. The loading 

should be close to tumors in order to make tumors have larger deformation. A well-

designed loading that provide more stress-strain information will improve the convergent 

speed of Lamé parameters of the tumor.        

 

Table 3-2 Initial estimate and reconstructed results for linear elasto-mammography 

 Tissue Tumor 

 λ  µ  E  ν  λ  µ  E  ν  

Real 25 7.5 20.77 0.39 125 25 70.83 0.42 

Estimate 11 194.5 399.44 0.03 333 33.5 97.71 0.45 

Reconstruction Results 

Ideal I 24.99
9 

7.5 20.77 0.39 124.81
7 

25.00 70.82 0.42 

Ideal II 25.01
2 

7.5 20.76 0.39 125.21 25.03 70.95 0.42 

Noise I 25.15
5 

7.50 20.76 0.39 106.75 25.06 70.40 0.41 

Noise II 26.04
8 

7.50 20.82 0.39 146.80 22.38 64.18 0.43 

Mismatch 

I 

24.97
2 

7.50 20.78 0.38 129.39 24.90 70.93 0.42 

Mismatch 

II 

25.04
2 

7.49 20.70 0.39 155.27 26.94 78.83 0.46 
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(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3-7 Convergent loci of elasto-mammography reconstruction for Lamé parameters 
( λ , µ ) of normal breast tissue and tumor, normalized with the exact values 
correspondingly.  

Note: No measurement error is considered. (a) Phantom I with one tumor; (b) Phantom II 
with two tumors. 
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3.4 Discussion 

3.4.1 Effect of Noise 

The above elasto-mammography reconstructions are conducted using ideal inputs. 

In practice, several factors will affect the performance of elasto-mammography, the most 

common one among which is the noise with displacement measurement. To investigate 

the capability of the proposed elasto-mammography modality and algorithm to handle 

imperfect real data due to inevitable measurement errors, we conduct reconstruction 

using noisy input; i.e., each component of (1)
U  and (2)

U  is added with a randomly 

selected relative error in ( 5%,5%)− . 

The results are shown as “Noise I” (for Phantom I) and “Noise II” (for Phantom 

II) at Table 3-1 and the convergent loci are plotted with Figure 3-8. The overall 

convergent loci are very similar to the “ideal” cases. Lamé parameters ( λ , µ ) of the 

tissue need about 20 steps to approach closely to the real values, while those of the tumor 

needs about 50 steps for convergence. The tissue parameters are very accurately 

identified, with the largest relative error of 4%  for λ  of Phantom II, and errors are 

within 1%±  for the others. The Lamé parameters ( λ , µ ) for tumors, however, are not as 

robust, with relative errors of ( 14.6%− , 0.22% ) and (17.4% , 15.5%− ) for Phantom I and 

Phantom II, respectively. In spite of these reconstruction errors, it is still positive that the 

elasto-mammography results are accurate enough for diagnosis of tumors, noting the 

significant differences of stiffness between normal tissue, benign and malignant tumors 

(Sarvazyan et al., 1995; Wellman et al., 1999; Skovoroda et al., 1995). The better 

robustness of the tissue parameters is also explained by the strong roles they play in the 

deformation, as we have discussed in section 3.3.3. Furthermore, as suggested by Liu et 

al. (2005), multiple sets of well-designed loadings should help to bring out the influences 

of all the material parameters, and thus suppress the effects of noise. 
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(b) 

Figure 3-8 Convergent loci of elasto-mammography reconstruction for Lamé parameters 
( λ , µ ) of normal breast tissue and tumor, normalized with the real values 
correspondingly. Noise is considered.   

Note: (a) Phantom I with one tumor; (b) Phantom II with two tumors. 
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3.4.2 Effect of Geometry Mismatch 

Another concern for elasto-mammography is the geometric depiction of the 

tumor. As described in the section of data acquisition, we use a simple sphere to 

approximate a real tumor, and estimate its size and location from two undeformed 

mammography projections. This inevitably introduces geometric mismatch for practical 

elasto-mammography. To investigate the effect of geometry mismatch, the two phantoms 

are re-designed by replacing the spherical tumors with cubic tumors. Note that the edge 

length of the cube is 53  cm. Forward simulations are conducted under the same 

Loading 1 and Loading 2 with the new phantoms. Then, mammography projections are 

made of the new undeformed and deformed configurations. To extract geometric and 

displacement data from the projections, we still used spherical approach. As 

schematically shown in Figure 3-9, a cubic tumor is approximated with a spherical one, 

whose size and location are determined by the two undeformed projections in direction 1 

and direction 2. Then, the estimated spherical tumors are used for elasto-mammography 

reconstruction of the material parameters. The results are shown as “Mismatch I” (for 

Phantom I) and “Mismatch II” (for Phantom II) in Table 3-1. Convergent loci are found 

to be similar to the previous cases, and are not shown. 

The tissue parameters again show excellent robustness. The geometric mismatch 

introduces relative errors less than 0.17% . Due to the relatively small size of the 

tumor(s), their Lamé parameters ( λ , µ ) are more sensitive to geometric mismatch, with 

relative errors ( 3.52% , 0.40% ) for Phantom I and ( 24.2% , 7.78% ) for Phantom II. In 

comparison to the displacement noise, the geometry mismatch seems to have slightly less 

overall influence on the reconstruction results. However, this point is based on the current 

phantoms, and needs further investigation.  
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(b) 

Figure 3-9. Geometry mismatch.  

Note: A sphere is used to approximate a real cubic tumor. Size and location of the sphere 
are determined from projections of the cubic tumor in direction 1 (a) and direction 2 (b). 
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3.4.3 Effect of Contrast Ratio 

The material stiffness is a key feature that distinguishes benign from malignant 

tumors (Wellman et al., 1999; Skovoroda et al., 1995; Ophir et al., 1991). Contrast ratio, 

defined as the ratio of Young’s modulus of tumor to normal breast tissue, covers a wide 

range. For benign tumors, contract ration typically varies from 2.0 to about 5.0. For 

malignant tumors, it is considerably higher. The numerical experiments (Liu et al., 2005) 

indicate that accuracy of elastography reconstruction depends not only on type of loading 

and measurement accuracy, but also on the contrast ratio. For case that the tumor is very 

hard, the material parameters may be identified qualitatively, but not quantitatively. 

To investigate the effect of contrast ratio, we conducted elasto-mammography 

reconstructions with soft and hard phantoms, whose Lamé parameters ( λ , µ ) are set to 

create contrast ratio (CR) of 1.5 and 8.0, respectively. Table 3-2 gives the real Lamé 

parameters and reconstruction results. Comparing with the previous case with CR about 

3.5 (Table 3-1, “Ideal I” and “Ideal II”), results for the soft phantoms (CR=1.5) are even 

more accurate, in particular for λ  of the tumor. For the hard phantoms (CR=8.0), the 

tissue parameters are also exact; however, λ  of tumor carries relative errors of about 

13%  for both phantoms, which is considerably larger than the soft cases with CR=3.5 

and 1.5. The reason is that deformation of a relatively softer tumor is larger than a hard 

one, and thus is more sensitive to small variation of its material parameters. Also as 

discussed above, λ  of the tumor seems to have the least influence on the specific 

deformations considered in the simulations. On the other hand, it is convincing that the 

proposed elasto-mammography is efficient to reveal the contrast ratio, and tell whether a 

tumor is malignant or benign. In general, a tumor is suspected of malignancy when the 

contrast ratio is higher than 6. In the present simulations, when the “real” contrast ratio is 

8.0, the elasto-mammography reconstruction yields 8.11, which is fully acceptable for the 

diagnostic purpose. 
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Table 3-3 Elasto-mammography simulation using phantoms with different stiffness 
contract ratio  

 Tissue Tumor 

 λ  µ  E  ν  λ  µ  E  ν  

Contrast Ratio=1.5 

Real 25 7.5 20.77 0.39 54.98 11.00 31.15 0.42 

Phantom I 25 7.5 20.77 0.39 54.98 11.00 31.15 0.42 

Phantom II 24.93 7.5 20.77 0.38 55.71 11.03 31.15 0.42 

Contrast Ratio=8.0 

Real 25 7.5 20.77 0.39 293.22 58.64 166.15 0.42 

Phantom I 24.99 7.5 20.77 0.39 332.56 58.68 167.23 0.43 

Phantom II 24.99 7.5 20.76 0.39 331.42 59.12 168.42 0.42 

 

 

 

3.4.4 Uniqueness and Multiple Measurements 

A general mathematical proof for uniqueness results of elastography have not 

reported. Some researches have shown that the uniqueness of the solution depends on the 

boundary conditions. For instance, it is known that, for plane strain problems with 

prescribed displacement boundary conditions, a single measured displacement field is not 

sufficient to ensure uniqueness (Barbone et al., 2002 & 2004). In plane stress, on the 

other hand, a single displacement field is sufficient to determine the shear modulus in an 

incompressible material.  

For clinical application, Barbone et al., (2004) demonstrated the feasibility of 

using multiple displacement fields to reduce the likelihood of nonuniqueness for 2-D 

isotropic elastography. Then Liu et al. (2005) discussed the multiple sets of 

measurements in 3-D anisotropic media. The tumor and normal breast tissue were 

assumed as general anisotropic materials, and four sets of loadings were applied on a 
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breast phantom to bring out all the elastic parameters. Their isotropic simulation 

suggested that displacements measured from a single loading are adequate for unique 

identification of the Lamé parameters ( λ , µ ) of tissue and tumor. However, their 

measurement includes displacement on the entire external surface and the tissue-tumor 

interface of a breast, requiring more complex imaging equipment. In our proposed elasto-

mammography, displacement measurement is obtained only on a few vertexes from 

simple mammography projections. A tradeoff is that two or more sets of compression 

loadings may be needed to obtain adequate information.  

The key point from using multiple sets of measurements is to bring more 

deformation modes simultaneously into consideration. The loadings should be close to 

tumors in order to make tumors have larger deformation. It is shown in Figure 3-7 and 3-

8 that the convergent speed of Lamé parameters of the tumor is slower than these of the 

normal tissue. Well-designed loadings that provide more stress-strain information will 

improve the convergent speed of Lamé parameters of the tumor.        

Mathematical proof for uniqueness results of elasto-mammography using 

projection measurements is yet under further investigation. Our simulations always yield 

the same material parameters (within the numerical processing errors), regardless of the 

initial estimate. With ideal measurements, the resulting parameters exactly match the real 

values specified for the models. When displacement noise and geometry mismatch are 

taken into consideration, the resulting parameters have reconstruction errors, however, 

reconstructed parameters are close enough to their real values for application purpose. In 

summary, the proposed elasto-mammography method is numerically stable and robust, 

relatively simple to perform, and thus has great potential for clinical applications. 

3.5. Conclusions 

A new imaging modality framework, called elasto-mammography, is proposed to 

generate the elastograms of breast tissue based on conventional X-ray mammography. 
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Displacement and geometry measured from mammography projections before and after 

breast compressions are applied as input data to reconstruct the isotropic material 

parameters for normal breast tissue and tumor. Case studies with numerical breast 

phantoms are conducted to demonstrate the capability of the proposed elasto-

mammography. Effects of noise with measurement, geometric mismatch, and elastic 

contrast ratio are evaluated in the numerical simulations. It is shown that the proposed 

methodology is stable and robust for characterization of the elastic moduli of breast 

tissues from the projective displacement measurement.  
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CHAPTER 4 NONLINEAR ELASTOGRAPHY  

4.1 Introduction 

Current elastography reconstruction frameworks are based on infinitesimal-strain 

linear elastic deformation theory, and only very few have considered large deformation, 

nonlinear and anisotropic behaviors of breast tissues and tumor. It is shown, however, 

that the deformation of most biological soft tissues is not linear elastic (Wellman et al., 

1999). Developing a nonlinear model is essential for elastography in clinical applications.   

In this chapter, an elastography method for reconstruction of nonlinear breast 

tissue properties is developed. In Section 4.2, we present an algorithm based on finite-

strain deformation theory, instead of infinitesimal-strain theory. The iterative Newton 

method is applied to solve unknown displacements and forces. In order to find elastic 

modulus distribution that minimizes the objective function based on measured and 

calculated forces, the adjoint gradient method is employed to provide user-supplied 

gradients in nonlinear elastography. In last chapter, the adjoint method is introduced in 

linear elasto-mammography. Here we first develop a nonlinear adjoint method that 

significantly improves the numerical efficiency and enhance the stability of elastography 

reconstruction. Numerical simulation is described in Section 4.3 including establishing a 

three-dimensional (3-D) heterogeneous finite element method (FEM) breast phantom and 

applying exponential-form nonlinear material model. Four types of compressive loadings 

are applied in the forward problem. The iterative reconstruction based on force 

measurements on surface is also detailed. In Section 4.4, the result of the inverse problem 

is obtained and the effect of noise is investigated. A user-defined penalty function is 

introduced to reduce the impact of noise on reconstruction. Conclusions are drawn in the 

last section. 
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4.2 Methodology of Nonlinear Elastography  

4.2.1 Finite-Strain Deformation Equations 

We use continuum description for the breast tissues (Gurtin 1981). Let 0Ω  be a 

biological object. From the displacement tensor ( )u X  based on Lagragian coordinate 

system X , the deformation gradient is  

= + ∂ ∂F I u X                                                                  (4.1) 

and the Green strain is  

( ) 2T= ⋅ −E F F I                                                             (4.2) 

where “ ⋅ ” denotes the contraction operation between two tensors.   

The breast tissues are assumed hyperelastic so that the second Piola-Kirchhoff 

stress is  

( );W= ∂ ∂S E p E                                                           (4.3) 

where W  is the strain energy and p  denotes material parameters in the model. We use 

“;” to separate material parameters from deformation variables (Fung, 1993).  

The governing equation and boundary conditions for u  are 

( ) ( )( )

( ) ( ) ( )( )

( ) ( )

0

0

0

,

,

T

T

∇ ⋅ ⋅ + = ∈Ω



⋅ ⋅ = ∈Γ


= ∈Γ

t

u

S F b X u X 0 X

N X S F t X u X X

u X u X X

                    (4.4) 

The boundary of 0Ω  consists of 0Γt , with N  the outer normal, on which external force t  

is applied, and 0Γu  where displacement u  is prescribed. Here, we consider general 

problems that the body force b  and surface force t  are deformation dependent.  

Following the standard finite element method (Belytschko et al., 2000; Oden, 1972; 

Bhatti, 2005), the displacement u  is discretized as nodal displacement vector 

1 2{ } { , }
T

u u u= , where 2u  corresponds to u  prescribed on 0
Γu , and 1u  is to be solved from 

nonlinear equations: 
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( )

( )

( )in out

1 1 2 1 1 2

in out

2 1 2 2

, ; , 0

0, ;

f u u f u u

f u u f

        
− =     

      

p

p
.                                 (4.5) 

The internal nodal force in
f  corresponds to stress S ; i.e., it changes with 1u  and material 

parameters p , as 2u  is given. The external nodal force out
f1  is due to the prescribed 

surface force t  on 0
tΓ  and body force b  in 0Ω . It varies with the displacement in large 

deformation. The nodal force out

2
f  is the unknown constraint force on 0

Γu .  

A classic Quasi-Newton method (Press et al., 1996) is employed to solve 

Equation (4.5) for 1u . Let ( )

1

n
u  be the trial solution of the unknown 1u  at the n-th iterative 

step. An improved solution ( 1) ( )

1 1 1

n n
u u uδ+ = +  can be obtained at the next step, in which 

1
uδ  is the solution of linear equations:  

( ) ( ) ( )

1 1 1 2 1 1 2( , ) ( , ; )n out n in n

eff
K u f u u f u uδ = − p                                (4.6) 

where  

( ) ( )

( )
1 1

1 1

1
n

in out

n

eff

u u

f f

K
u

=

∂ −
=

∂
                                                    (4.7) 

The iteration is put into effect until the residue 
1 1

out in
f f−  is smaller than the preset 

criterion.  

4.2.2 Objective Function 

Experimental measurements for elastography include displacement and force. We 

consider that the biological object 0Ω  is discretized into FE mesh, and the measurements 

are discretized consistently into nodal displacement and nodal force. We catalog the 

measurements as the following:  

(i) If the displacement at a node is known (prescribed or measured after 

deformation), it will be included into 2u  which is considered “prescribed” in Equation 

(4.5). The corresponding nodal force (known or unknown) will be in the constraint force, 

denoted as 
2

M
F . Note that 

2

M
F  corresponds to out

2
f  in Equation (4.5).   
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(ii) All the other nodal displacements will be in 1u  and the corresponding nodal 

force will be in out

1
f . For category (ii), out

1
f  must be considered “prescribed” to fulfill the 

requirement of the well-poseness of a solid-mechanics problem.  

For elastography problem, the obtained 2u  and out

1
f  are known in Equation (4.5), 

and the constraint force 
2

M
F  is considered as “measurement”. For given material 

parameter p , the unknown displacement 1u  and constraint force out

2
f  (which depends on 

p ) will be solved from Equation (4.5). Elastography procedure thus searches for p  so 

that the overall difference between measured 
2

M
F  and computed out

2
f  is minimum, that 

is, minimize objective function   

2 2 2 2( ) ( ) ( )
out M T out M

f F f FΦ = − −p Λ                                         (4.8) 

where the diagonal weight matrix 1 2( , , , , )
j

diag a a a= ⋯ ⋯Λ . The component 1
j

a =  when 

the j-th component of 
2

M
F  is measured or 0

j
a =  otherwise. The present algorithm is 

mathematically equivalent to one in Chapter 3 for linear elasto-mammography where the 

displacement is used as “measurement”. For breast tissue whose tangent stiffness 

significantly increases with strain, this “force version” shows better numerical efficiency.  

4.2.3 Nonlinear Adjoint Method 

Efficient and robust optimization-based elastography schemes request user-

supplied gradient ∂Φ ∂p . The previous elastography studies used direct or approximate 

finite-difference method for the gradient calculation (Smani et al., 2001; Han et al., 

1993). The computational expense of these methods increases proportionally with the 

number of material parameters, and becomes unaffordable for problems involving finite-

strain deformation. Recently an adjoint method was introduced to compute the gradient 

analytically (Tardieu et al., 2000; Oberai et al., 2003; Liu et al., 2005 & 2006). In Chapter 

3 we recalled this method for linear elasto-mammography. Here we first develop 

nonlinear adjoint method for finite-strain deformation.  
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The goal of the adjoint method is to calculate the gradient ∂Φ ∂p  efficiently. We 

introduce the constraint Equation (4.5) into the objective function Equation (4.8), and 

obtain a Lagrangian: 









−

−









+−Λ−=
outin

outin
T

MoutTMout

ff

ff

w

w
FfFfuL

22

11

2

1

22221 )(()(),(
δδ

δδ
p             (4.9) 

where 
1

w  and 
2

w  are arbitrary virtual displacements. It is noted that variables 1u  and p  

are no longer coupled. It is also noted that LΦ =  and LδΦδ =  under the constraint 

Equation (4.5). Since the equality constraint Equation (4.5) is satisfied with 1u , the 

variation Lδ  can be expressed as 

( )( )( ) ( )2 2 2 2 1 1 1 2 22
T

out M T out T in out T in
L f F w f w f f w f= − Λ − + − +δ δ δ δ δ      (4.10) 

It can be simplified by setting the arbitrary virtual displacement 2w  as 

( )2 2 22 out M
w f F= Λ −                                                           (4.11) 

so that  

( )1 1 1 2 2

T in out T in
L w f f w fδ δ δ δ= − +                                      (4.12) 

Consider that 1u  and p  are independent in L  and that the external force term 

1

out
f  should not explicitly depend on the material parameter p  and 2 0u∆ = , Equation 

(4.12) becomes  

p
pp
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  (4.13) 

If we choose 1w  as the solution of  

0
)(

1

2

2

1

11

1 =
∂

∂
+

∂

−∂

u

f
w

u

ff
w

in

T

outin

T

                                             (4.14) 

only one term remains, i.e., 

1 2
1 2

in in

T Tf f
L w wδ δ

 ∂ ∂
= + 

∂ ∂ 
p

p p
                                                (4.15) 



 

 

80 

 

Since LδΦδ = , the gradient is readily obtained as: 

in

1 1

in
2 2

T

w f

w f

 ∂ ∂ ∂Φ  
=    

∂ ∂ ∂    

p

p p
                                                        (4.16) 

where the adjoint displacements 1w  and 2w  are solved from linear equations   

2 2 22 ( )
out M

w f F= Λ −                                                             (4.17) 

2

1

2

1)( w
u

f
wK

T
in

T

eff 








∂

∂
−=                                                     (4.18) 

where 111 )( uffK
outin

eff
∂−∂=  is defined in Equation (4.7).  

The most significant features of the adjoint method are its analytical formulation, 

high accuracy, and computational efficiency (Liu et al., 2006). By introducing the adjoint 

method, it seems that more equations and variables ( 1w  and 2w ) need to be solved. But 

the solution of Equation (4.17) and (4.18) is straightforward and computational cost is 

minimized because 
eff

K  has been computed and factorized when solving for the 

displacement 1u  as in Equation (4.6). Furthermore, it only needs to solve linear Equation 

(4.17) and (4.18) regardless of the number of unknown parameters in p . More details are 

discussed in Section 4.4.3. 

4.2.4 Optimization-based Reconstruction Procedure 

 The reconstruction frame involved data acquisition, material modeling, and 

reconstruction of material parameters, shown with the flowchart in Figure 4-1. The data 

acquisition includes establishing finite element model for breast, measuring 

displacements and forces. It is well known that the mechanical behavior of biological soft 

tissue is nonlinear. In this chapter we apply hyperelastic model to represent the stress-

strain relation of breast tissue and tumor. We denotes the material parameters 

{ , , }λ µ γ=p . More details are given in Section 4.3.1. The reconstruction procedure is 

optimization-based, making use of a limited-memory BFGS (L-BFGS) optimization 
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subroutine (Liu et al., 1989), for which user-supplied gradients are required. Once initial 

guesses of distribution of material parameters { , , }λ µ γ  are given, displacements and 

forces are calculated in forward problem. The calculated and measured forces are used to 

form objective function (4.8). Gradients are obtained by calculating adjoint displacement 

w  and material parameters are updated. The iteration is put into effect until the objective 

function is smaller than the preset criterion.   

 

 

 

Figure 4-1 Overall flowchart for reconstruction of material parameters λ , µ  and γ  in 

nonlinear elastography. 
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4.3 Numerical Simulations 

This section presents phantom simulations to identify the nonlinear elastic 

properties of the fatty, glandular and cancerous tissues in a breast. First of all, a 3-D 

breast FEM phantom attracting from the real data is introduced. Then Fung’s model 

(Fung, 1993) is applied to describe the deformation of breast tissues. With the applied 

loading, the forward-problem computation is performed. Furthermore, boundary forces 

are extracted from the forward computation results and are used as input for 

reconstruction for nonlinear breast tissue properties.  

4.3.1 Breast Phantom 

To perform numerical simulations, a 3-D numerical heterogeneous breast 

phantom extracting from real CT images, containing fatty tissue, glandular tissue and a 

tumor is established (Figure 4-2). Boundaries of these regions are described with sets of 

splines. The phantom is discretized with standard 3-D tetrahedral elements, consisting of 

1835 nodes and 8115 elements, in which 2958 elements are in fatty tissue, 5081 elements 

are in glandular tissue and 76 elements are in the tumor (Figure 4-3). 

In previous elastography research, in order to simplify the model, it is usually 

assumed that breast tissue is linear elastic. However, it is well known that most of 

biological soft tissues exhibit a nonlinear mechanical response (Fung, 1993). While tissue 

models based on linear elasticity have been broadly used, they are reliable only where 

tissue deformation is limited to small strain values of less than 5% (O’Hagan, 2008). For 

most clinical application for mammography or elastography, breast tissue undergoes 

large deformation. In this chapter we apply a nonlinear model to simulate the deformation 

of breast tissues and tumors.    

Hyperelastic models have commonly been applied to describe the finite strain 

deformation and highly nonlinear mechanical properties of biological soft tissue (Zulliger 

et al., 2004). Among them is the classical work of Fung and his coworkers (Fung, 1993). 
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In this work, I employed a Y.C. Fung-type isotropic constitutive model for the breast 

tissues and tumor, whose strain energy function reads  

2( ; ) (exp 1) (exp[ ( : ) / 2 : ] 1)W Qγ γ λ µ= − = + −E p E I E E                    (4.19) 

where 2( ) ( : ) / 2 :Q λ µ= +E E I E E , E  is the Green strain, and },,{ γµλ=p  denotes the 

material parameters. The second Piola-Kirchhoff stress S  can thus be derived as:  

                    exp [ ( : ) 2 ]W Qγ λ µ= ∂ ∂ = +S E E I I E                                   (4.20) 

Specifically, in uniaxial tension/compression, the relation between the axial strain 

E  and axial stress S  is simplified as:  

2

exp
2

E
S E

κ
γ κ

 
=  

 
                                               (4.21) 

where (3 2 ) /( )κ µ λ µ λ µ= + + , and γ  (with the unit of stress, kPa), λ  (dimensionless), 

and µ  (dimensionless) are material parameters. 

Equation (4.21) is the exponentially nonlinear model that can be applied for breast 

tissues. Three parameters γ ,  λ  and µ  can be determined by the experiment (Samani 

2004). Wellman (1999) developed a technique to measure the nonlinear elastic 

parameters of breast tissues using force-displacement data of thin slice tissue undergoing 

indentation experiment. The tissue samples tested were obtained during surgery and were 

tested immediately after removal from the body. Six breast tissues (fatty tissue, glandular 

tissue, lobular carcinoma, fibroadenoma, infiltrating ductal carcinoma, and ductal 

carcinoma in situ) were tested in uniaxial tension. The stress-strain data were fitting with 

Equation (4.21) and the results are plotted in Figure 4-4, where lobular carcinoma and 

fibroadenoma are benign tumors; infiltrating ductal carcinoma, ductal carcinoma in situ 

are malignant tumors. It is shown that the mechanical properties between normal soft 

breast tissue and tumors are quite different. Tumors are stiffer than the surrounding breast 

tissues and malignant tumors are much stiffer than benign ones. 
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In the following example study, the material parameters of ‘ductal carcinoma in 

situ’ (Wellman, 1999) are assigned to the tumor, as 80
d

λ = , 35
d

µ = , 1.5
d

γ =  ( λ  and 

µ  are dimensionless, γ  is in kPa). The parameters for fatty tissue are 35
f

λ = , 

12.5
f

µ = , 0.4
f

γ = , and for glandular tissue are 50
g

λ = , 25
g

µ = , 0.25
g

γ = .          

 

 

 

 

 

Figure 4-2 A 3-D heterogeneous breast phantom extracted from real CT images, 
containing fatty tissue, glandular tissue and a tumor. 
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Figure 4-3 FE model for nonlinear elastography.  

Note: The phantom is discretized with standard 3D tetrahedral elements, consisting of 
1583 nodes and 8115 elements. 
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Figure 4-4 Nonlinear stress-strain curves for six breast tissues: fatty tissue, glandular 

tissue, lobular carcinoma, fibroadenoma, infiltrating ductal carcinoma, and ductal 

carcinoma in situ. 

Source: Wellman, P., 1999, “Tactile imaging”, Ph.D. dissertation, Harvard University, 
Cambridge, Mass, USA.   

Note: Lobular carcinoma and fibroadenoma are benign tumors; infiltrating ductal 
carcinoma, ductal carcinoma in situ are malignant tumors. Curves are fitted to the 
experimental data in Wellman (1999) and Equation (4.21). 

 

0

50

100

150

0 0.05 0.1 0.15

N
o

rm
in

al
 T

e
n
si

le
 S

tr
es

s 
(k

P
a)

Norminal Tensile Strain

Ductal Carcinoma

in Situ (DCiS)

Infiltrating Ductal

Carcinoma (IDC)

Fibroadenoma

(Fibro)

Lobular Carcinoma

(Lobular)

Glandular

Tissue

Fat Tissue



 

 

87 

 

4.3.2 Forward Problem 

After the breast phantom and material model are established, a forward problem is 

solved in which material parameters and external loadings are given and deformation is 

solved. Displacements are zero on the base of phantom. Tilted compression by paddles is 

applied on upper surface (Figure 4-5). The paddle close to tumor gives compression and 

another paddle is fixed during loading. Four types of compression loading with different 

angles are applied. As shown in Figure 3-6, blue lines represent paddle locations before 

loading, green lines represent those after loadings. Figure 4-7 shows the comparison of 

paddle locations in four loadings. Note that the right paddle is fixed for all loadings. 

The reason that four sets of loadings are applied in forward problem is to provide 

more information to reconstruct material parameters. Most of inverse problem in 

elasticity is non-uniqueness. Previous research, for example Liu et al., (2005), has 

demonstrated that one set of measurements of displacements and forces may not provide 

sufficient information for the reconstruction of modulus distribution. So we apply 

multiple sets of loadings to provide more information for reconstruction of material 

parameters.     

Given material parameters and loadings, the displacements and forces can be 

calculated based on Equation (4.5). The surface forces are be used as input to reconstruct 

material parameters in the inverse problem. In fact, surface displacement and force are 

equivalent as input to solve inverse problem. Most of previously research applied 

displacements in linear elastography. In Chapter 3 linear elasto-mammography, 

displacements measured from mammography projections are used to reconstruct elastic 

parameters. In this nonlinear elastography study, it is found the reconstruction is more 

sensitive to force than displacement. Therefore surface force is measured and compared 

with calculated force to reconstruct material parameters. 
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Figure 4-5 Titled compression is given on breast surface by two paddles.  

Note: The one close to tumor gives displacement loading on breast phantom and another 
is fixed during loading. The reason to move the paddle close to tumor is to provide more 
deformation information related with tumor.  
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(a) 

 

 

 

(b) 

Figure 4-6 Four types of compression loading by paddles.  

Note: Blue lines represent paddle locations before loadings, green lines represent after 
loadings.  The right paddle is fixed for all loadings. 
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(c) 

 

 

 

(d) 

Figure 4-6 Continued  
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Figure 4-7 Comparison of paddle locations in four loadings.  

Note: The right paddle is fixed for all loadings. 
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4.3.3 Inverse Problem 

Reconstruction for nonlinear elastic moduli in 3-D breast phantom take input 

extracted from the deformation in response to loading modes A~D described in Figure 4-

6. In each loading, the forces on surface nodes are measured as input. Then initial guesses 

for material parameters are given. In this study, the same initial guesses are applied to 

three materials: 0 20λ = , 0 10µ = , 0 1γ =  (kPa). Therefore, the surface force can be 

calculated based on initial guesses of material parameters. The difference between 

calculated and measured force is used to form the objective function (Equation 4.8). 

Following the iterative optimization procedures (Figure 4-1), gradients of the objective 

function are calculated (Equation 4.16) and material parameters are updated. The 

iteration is put into effect until the objective function is smaller than the preset criterion.   

For three materials, elastic parameters are: 35
f

λ = , 12.5
f

µ = , 0.4
f

γ =  for fatty 

tissue; 50
g

λ = , 25
g

µ = , 0.25
g

γ =  for glandular tissue, and 80
d

λ = , 35
d

µ = , 1.5
d

γ =  

for ductal carcinoma in situ. Table 4-1 shows the initial estimate and reconstructed results 

for nonlinear elastogrpahy. The results in the first part are based on the ideal input and 

the same material parameters are yield, regardless of the initial estimate. It is 

demonstrated that the reconstructed results are very close to the real values. For 

parameters of fatty and glandular tissue, the error is less than 0.1%. For parameters of 

tumor, the error is larger than one of fatty and glandular tissue. For example, the real and 

reconstructed value of 
d

λ  is 80 and 81.53, with a 1.92% error. It could be explained by 

the roles of they play in the deformation due to the applied loadings. In general, 

parameters with the most significant influence on the deformation are also those that are 

most accurately and easily identified. The influence of a parameter depends on size and 

location of the material region it belongs to, as well as characteristics of the deformation. 

For the present simulations, material parameters of the tissue are dominant, while those 

of tumor are much less influential, due to the small size and deep location of the tumor(s). 
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The loadings should be close to tumors in order to make tumors have larger deformation. 

In forward problem the paddles close to tumor give displacement loading on breast 

phantom and another is fixed during loading. The reason to move the paddle close to 

tumor is to provide more deformation information related with tumor. A similar situation 

occurs in linear elastography reconstruction discussed in Section 3.3.3.   

 

 

 

Table 4-1 Initial estimate and reconstructed results for nonlinear elastogrpahy  

 Fatty Glandular Tumor 

 
f

λ  
f

µ  
f

γ  
g

λ  
g

µ  
g

γ  
d

λ  
d

µ  
d

γ  

Real 35 12.5 0.4 50 25 0.25 80 35 1.5 

Guess 20 10 1 20 10 1 20 10 1 

Ideal Input 

Recon 35.00 12.50 0.40 50.05 25.00 0.25 81.53 34.94 1.50 

5% Noise, Without Regularization 

Recon 22.28 8.42 1.51 56.20 21.54 0.25 0.01 41.56 2.00 

5% Noise, With Exponential Form Regularization 

Recon 37.56 12.48 0.46 50.00 25.00 0.24 80.00 39.15 1.50 

Note: The results in the first part are based on ideal input, the ones in the second part are 
based on input with 5% noise and regularization is not used. The third part is based on 
input with 5% noise and regularization is applied to reduce the impact of noise. ( λ  and 
µ  are dimensionless, γ  is in kPa) 
 

 

 

4.4 Results and Discussion 

4.4.1 Effect of Noise 

The above results are based on ideal input. However, noise cannot be avoidable in 

experiments. To investigate the capability of the nonlinear elastography algorithm to 
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handle imperfect real date due to inevitable measurement errors, we conduct 

reconstruction using noisy input; i.e., each component of measured forces is added with a 

randomly selected relative error in (-5%,5%). The results are shown in the Table 4-1, 

second part “5% noise, without regularization”. It is obvious that the reconstructed 

parameters are far away from the real values. The algorithm fails to reconstruct material 

parameters of nonlinear material model. 

A possible reason is that, while the goal is to find real material parameters that 

minimize the objective function, a global minimum is not well defined with noise. In 

another words, real material parameters may not give a global minimum of the objective 

function with noise. Several similar parameters around real ones may give some local 

minimums. Our algorithm may reach one of them but fail to find real one because they all 

give local minimums. A typical way to solve this problem is to add a penalty term which 

provides additional constraint on the solution space. The penalty term may push the 

solution into the right area of the solution space and minimize the resulting objective. A 

new objective function is therefore proposed as 

F χ= Φ + Π                                                             (4.22) 

where Φ  is the original objective function (4.8) which represents the difference between 

measured and calculated values. In addition, χ  is the regularization factor and Π  is the 

penalty term.  

Specific forms of penalty term have been designed for different problems 

(Hielscher et al., 2001). In this study, an exponential form of penalty term is applied as:   

2

1

Π (1 exp( ( ) ))
K

k k

k

aξ
=

= − − −∑                                   (4.23) 

where 9K =  is the total number of material parameters, and 
k

ξ  and 
k

a  are the 

reconstructed and true elastic parameters, respectively. If the true material parameters are 

unknown, we can estimate 
k

a  as close as possible. This is reasonable since several 
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experiments have provided the nonlinear elastic parameter for breast tissues (Van Houten 

et al., 2003; Samani et al., 2007).  

The results are shown in Table 4-1, the third part “5% Noise, With Exponential 

Form Regularization”. It is demonstrated that the regularization method significantly 

improves the reconstruction data. Most of parameters are close enough to the true values. 

The largest error occurs for γ  in fatty tissue from 0.4 to 0.46, approximately 15%. By 

adding the penalty term, the reconstructed values are pulled from the values that make 

local minimum of object function into the range close to true values. It is noted that the 

regularization factor χ  varies in different scenarios. For example, if we have higher 

confidence of experiment-data accuracy, χ  could be smaller. On the contrary, if a high-

level noise is expected, we could set 
k

a  closer to the true value and make χ  larger so 

that penalty term has a larger weight in Equation (4.22). For this study, the elastic 

parameters in fatty and glandular tissues are stable, comparing with the ones in tumors 

(Figure 4-4). Therefore, larger regularization factors are used for fatty and glandular 

tissues while smaller χ   can be applied for tumors.  

In Chapter 3 linear elasto-mammography we investigated the effect of noise in 

Section 3.4.1. The tissue parameters are very accurately identified, with the largest 

relative error of 4%. The material parameters for tumor have larger error, about 15%. 

But, in spite of these reconstruction errors, it is still positive that the elasto-

mammography results are accurate enough for diagnosis of tumors, noting the significant 

differences of stiffness between normal tissue, benign and malignant tumors. But for 

nonlinear elastography, the reconstructed results with 5% noise are far away from real 

values. For example, reconstructed 
d

λ  for tumor is 0.01 while the real value is 80. We 

have to use regularization to push it to real value. One of reasons probably is deformation 

information about tumor. It is demonstrated that it is more difficult to identify material 

parameters for tumor since it is much less influential on the deformation due to the small 

size and deep location of tumors. In linear elasto-mammography the deformation 
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information of tumor is obtained by mammography projections. The information is used 

to improve the accuracy of reconstruction for tumors. In nonlinear elastography, only 

deformation information on surface is measured. So it becomes more difficult to 

reconstruct parameters for tumors.       

4.4.2 Linear v.s. Nonlinear 

Since elastography emerged as a new technology to imaging tissue elastic 

modulus in a quantitative manner for detection of breast tumors in 1990s, most 

approaches assume that the tissue can be modeled as a linear isotropic elastic solid 

undergoing infinitesimal-strain deformation, and only very few have considered large 

deformation, nonlinear and anisotropic behaviors of breast tissues and tumor.  

It is shown, however, that the deformation of most biological soft tissues is not 

linear elastic. Krouskop et al. (1998) and Wellman et al. (1999) measured the tissue 

stiffness changes due to the nonlinear stress-strain relationship in tissue. The experiment 

shows that fatty tissues are generally characterized by a linear relationship, and normal 

glandular tissue and fibrous tissue, as well as ductal and intraductal tumors, exhibit 

nonlinear characteristics, which means the elastic moduli of these tissues vary with strain. 

That is, if it is assumed that elastic moduli of tissues are constant and large compression, 

the results of elastography may cause a misdiagnosis. Therefore Varghese et al. (2000) 

simulated ultrasound elastograms to analyze the effects of nonlinear behavior of breast 

tissues on the diagnostic value of ultrasound breast elastograms. The results show that 

there was a significant effect in the contrast of the elastograms due to nonlinearity. The 

assumption of a linear stress-strain relationship and use of larger applied compressions 

may lead to misdiagnosis by converting a stiff tumor to a soft one or reducing the contrast 

between the tumor and its surrounding tissue.   

On the other hand, the degree of nonlinearity in the stress-strain relationship of 

breast tissue, as well as linear elastic properties, may be an indicator of the undergoing 
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histology. In the experiment by Wellman (1999), elastic moduli at various train levels 

were measured and it is found that malignant and benign breast tumors have significant 

differences in the rate of increase of stiffness with strain. Krouskop et al. (1998) found 

malignant tumors are much stiffer at a higher strain level as compared to fat or normal 

glandular tissue.   

Therefore it is necessary to develop a nonlinear elastography for clinical 

application. A nonlinear model that could be used to describe the large deformation of 

biological tissues should included two items. First, for most soft tissues, the elastic 

modulus increases as a function of strain. This effect is often referred to as “material 

nonlinearity”. Second, a more complete description of the equilibrium equation, 

including nonlinear strain-displacement relation, must be used for large deformations. 

This effect is often referred to as “geometric nonlinearity” (Skovoroda et al., 1999).  

While there is large collection of work in linear elasticity imaging, there have 

been few attempts at imaging the nonlinear properties of tissue. Skovoroda et al. (1999) 

presented a method to reconstruct the elastic modulus of soft tissue based on ultrasonic 

displacement and strain images for large deformation, however they assumed linear 

stress-strain behavior, that is, the material nonlinearity was not considered. Erkamp et al. 

(2004) evaluated nonlinear elastic parameters of tissue using force-displacement data, 

however they assumed homogeneous material properties and the algorithm is applied on 

a simple cylindrical phantom. Gokhale et al. (2008) discussed and solved an inverse 

problem in nonlinear elasticity imaging. They considered the geometric and material 

nonlinearity of the tissue by assuming a hyperelastic model for the soft tissue. But they 

assumed homogeneous material properties and numerical simulation was carried on a 2-

D simple rectangle phantom.      

In this chapter, we developed a new nonlinear elatography which consider the 

geometric and material nonlinearity, and first present the nonlinear adjoint method to 

solve inverse problem. In Section 4.2, we present an algorithm based on finite strain 
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deformation, that is, geometric nonlinearity. The iterative Newton method is applied to 

solve unknown displacements and forces. In order to find elastic modulus distribution 

that minimizes the objective function based on measured and calculated forces, the 

adjoint gradient method is employed to provide user-supplied gradients. Here we first 

developed a nonlinear adjoint method that significantly improves the numerical 

efficiency and enhance the stability of elastography reconstruction. In Section 4.3 

numerical simulation, we apply a hyperelastic model to describe the large deformation of 

breast tissue and tumors (material nonlinearity), and establish a 3-D numerical 

heterogeneous breast phantom extracting from real CT images. Therefore we have 

considered the geometric and material nonlinearity in this study and developed stable and 

efficient algorithm for elastography. The results are encouraging for further clinical 

applications.    

4.4.3 Nonlinear Adjoint Methods 

Elastography includes forward and inverse problem. In forward problem, material 

parameters and loadings are given to calculate the deformation; while in inverse problem, 

external loadings and deformation are known to reconstruct material parameters. Most 

researchers established certain objective function and minimize it with a proposed 

iterative algorithm. The challenge is how to calculate the gradient of objective function 

efficiently and accurately. A straightforward calculation of gradients requires solving 

stiffness matrix in each of iteration, which takes most of the time consumed in the finite 

element method.  

Recently the adjoint method has been employed to analytically calculate the 

gradient. Oberai et al. (2003) adopted the adjoint method and proposed a numerical 

scheme for reconstructing the non-uniform shear modulus field for incompressible 

isotropic materials using one component of displacement field. Liu et al. (2005) applied 
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this method for anisotropic materials. In Chapter 3 we apply the ajoint method to 

reconstruct material parameters in proposed linear elasto-mammography.     

But above applications are all for infinitesimal-strain deformation theory, only 

very few have considered large deformation. It is shown, however, that the deformation 

of most biological soft tissues is not linear elastic (Wellman et al., 1999). In this study, 

we have developed the adjoint method for nonlinear elastography in Section 4.2.3.  

The advantage of adjoint method is to solve two adjoint displacements during 

each of iteration ( 1w  and 2w  at Equation. (4.17) and (4.18)), instead of the whole 

stiffness matrix, that increases the numerical efficiency significantly. By introducing the 

adjoint method, it seems that more equations and variables ( 1w  and 2w ) need to be 

solved. But the solution of Equation (4.17) and (4.18) is straightforward and 

computational cost is minimized because stiffness matrix has been computed and 

factorized when solving forward problem.  

A comparison between adjoint method and traditional Gauss-Newton method for 

gradients calculation could make it clear. In traditional Gauss-Newton method, for each 

unknown parameter 
i

P , we should calculate forward problem twice, for 
i

P  and 
i i

P P+ ∆  , 

then the gradient could be obtained by /
i

P∆Φ ∆ , where ∆Φ  is the change of objective 

function due to 
i

P∆ . If there are 
p

N  unknown parameters, we apply 
l

N  external loadings 

and the reconstruction iteration process takes 
i

N  steps. The total computation cost is 

2
total p l i

N N N N= × × ×  forward problem solver. In this study, unknown parameters 

9
p

N = , external loadings 4
l

N =  and iteration 500
i

N ≈ ,  2 9 4 500 36,000
total

N = × × × =  

forward problem solver. If the adjoint method is applied, for each iterative step, we solve 

forward problem once regardless of the number of unknown parameters. That is, 

1 1 4 500 2,000
total l i

N N N′ = × × = × × = , the computation cost is saved more than 90%.       

Oberai et al. (2004) compared three different iterative methods: (1) A gradient-

based method where the adjoint approach is used to calculate the gradient; (2) A gradient-

based method where the straightforward approach is used to calculate the gradient and (3) 
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the Gauss-Newton method. The results show that “leading-order costs for the gradient-

based method with the adjoint approach are smaller than the other two methods”. In fact, 

without the adjoint method, nonlinear elastography can only be discussed in concepts 

(Pathmanathan et al., 2004) or applied on simple objects using supercomputing power 

(Kauer et al., 2004).  

In this study we perform numerical simulations on a 3-D numerical heterogeneous 

breast phantom extracting from real CT images, containing fatty tissue, glandular tissue 

and a tumor. Deformation of breast tissue is simulated with an exponential hyperelastic 

model. The material parameters are reconstructed accurately by adopting nonlinear 

elastogrpahy algorithm and adjoint method. The results are encouraging for further 

clinical applications.  

4.4.4 Multiple Sets of Measurements 

The key point for using multiple sets of measurements is to bring more 

deformation modes simultaneously into consideration. The loadings should be close to 

tumors in order to make tumors have larger deformation. In Figure 4-6, four sets of 

loadings close to tumors are designed to obtain more deformation for reconstruction. This 

explanation serves as a guideline for design of loadings in clinical applications. 

Reduction of the number of required loadings will increase the clinical efficiency and 

benefit the patients. In other words, loadings with the richest stress-strain information are 

most desired. The design of feasible loadings is important for success in clinical 

application of nonlinear elastography.            

4.5 Conclusions 

Elastography is developed as a quantitative approach to imaging elastic properties 

of tissues to detect suspicious tumors. In this chapter the nonlinear elastography method 

is introduced for reconstruction of complex breast tissue properties. The elastic 

parameters are estimated by optimally minimizing the difference between the computed 
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forces and experimental measures. A reconstruction algorithm based on finite-strain 

deformation is developed and the nonlinear adjoint method is derived to calculate the 

gradient of the objective function, which significantly enhances the numerical efficiency 

and stability. Simulations are conducted on a three-dimensional heterogeneous breast 

phantom extracting from real imaging including fatty tissue, glandular tissue, and tumors. 

An exponential-form of nonlinear material model is applied. The effect of noise is taken 

into account. Results demonstrate that the proposed nonlinear method open the door 

toward nonlinear elastography and provides guidelines for future development and 

clinical application in breast cancer study.    
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CHAPTER 5 NONLINEAR ELASTO-MAMMOGRAPHY  

5.1 Introduction 

Motivated by the important of detecting breast tumors and the current limitations 

of mammography and elastography modalities, we have developed a nonlinear elasto-

mammography method that takes into consideration of the finite-strain nonlinear 

properties of breast tissues, in combination with mammography visualizations. In 

development of nonlinear elasto-mammography, we have experienced two stages as the 

follows.  

First, a linear elasto-mammography method was developed to generate the 

elastograms of breast tissues by combining the conventional low-dose X-ray 

mammography with elastography framework (introduced in Chapter 3). Instead of using 

ultrasound or magnetic resonance as in the previous elastography, linear elasto-

mammography uses displacement information extracted from mammography projections 

before and after breast compression. Incorporating the displacement measurement, an 

elastography reconstruction algorithm was specifically developed to estimate the elastic 

moduli of heterogeneous breast tissues. Case studies with numerical breast phantoms 

showed that the displacement measurement obtained from mammography is sufficient to 

identify the material parameters of breast tissues and tumors within the framework of 

linear elasticity. 

Then, a nonlinear elastography method was proposed in Chapter 4.  Most of the 

current elastography (USE or MRE) reconstruction frameworks are based on the 

assumption of linear elasticity theory. However, the deformation of biological soft tissues 

cannot be described by linear elastic (Wellman, 1999; Khaled, 2007). Instead, continuum 

mechanics description with finite-strain nonlinearity is needed. Thus, the consideration of 

nonlinearity is essential for elastography in clinical application. For the first time, we 

developed nonlinear elastography method to identify the mechanical properties of soft 
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breast tissues and tumor, for which a nonlinear adjoint gradient method was introduced to 

improve the computational efficiency and enhance the stability in elastography 

reconstruction. The exemplar study demonstrated that the complex nonlinear mechanics 

of soft breast tissues and tumors can be quantified from displacement measurements for 

the purpose of detection and evaluation of the tumors. 

Based on the accomplishment of linear elasto-mammography and nonlinear 

elastography, the objective of this chapter is to propose a novel nonlinear elasto-

mammography method. In Section 5.2, we present the mathematics derivation for elasto-

mammography, where a nonlinear adjoint gradient method is modified to consider the 

projective displacement measurements. In Section 5.3 numerical simulations are 

described. A 3-D heterogeneous FEM breast phantom is established and Fung's-type 

nonlinear constitutive model is applied. The material parameters are identified from 

mammography displacement. Two types of mammography compressive loadings are 

applied, and the displacements at key points on the tissue interface are extracted from 

mammography projections before and after deformation. The iterative reconstruction is 

also detailed. In Section 5.4, the results are presented and the effect of noise is 

investigated. 

5.2 Methodology of Nonlinear Elastography  

We first recall the finite-strain deformation equations described in Chapter 4 and 

the objective function. Then a global projection matrix is derived for mammography 

projection. The nonlinear adjoint method is applied to obtain gradients of the objective 

function and finally optimization-based reconstruction procedure is described in Section 

5.2.5.  

5.2.1 Finite-Strain Deformation Equations 

We first recall the finite-strain deformation equation described in Chapter 4 as:  
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The internal nodal force in
f  corresponds to stress S ; i.e., it changes with 

1
u  and 

material parameters p , as 2u  is prescribed. The external nodal force 1

out
f  is due to the 

prescribed surface force t  on 0Γt  and body force b  in 0Ω . It changes with the 

displacement in large deformation. The nodal force out

2f  is the unknown constraint force 

on 0
Γu .   

A classic Quasi-Newton method (Press et al., 1996) is employed to solve 

Equation (5.1) for 1u . Let ( )

1

n
u  be the trial solution of the unknown 1u  at the n-th iterative 

step. An improved solution ( 1) ( )

1 1 1

n n
u u uδ+ = +  can be obtained at the next step, in which 

1uδ  is the solution of linear equations:  

( ) ( ) ( )

11 1 1 1 1 2 1 1 2( ) ( , ; ) ( , )
eff n in n out n

K u u f u u f u uδ = −p                               (5.2) 

where the matrices are calculated at ( )

1

n
u  as  

                                 )( 111111

outineff
KKK −= , 
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1
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u

f
K

in

in

∂

∂
= , 

1

1

11
u

f
K

out

out

∂

∂
=                           (5.3)  

5.2.2 Objective Function 

Experimental measurements for elastography include displacement and force. We 

consider that the biological object 0Ω  is discretized into FE mesh, and the measurements 

are discretized consistently into nodal displacement and nodal force. We catalog the 

measurements as the following:  

(i) If the force a node is known (prescribed or measured after deformation), it will 

be included into 1

out
f  which is considered “prescribed” in Equation (5.1). The 

corresponding nodal displacement will be in the constraint displacement, denoted as 1

M
U . 

Note that 1

M
U  corresponds to 1u  in Equation (5.1).  
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(ii) All the other nodal displacements will be in 2u  and the corresponding nodal 

force will be in out

2f . For category (ii), 2u  must be considered “prescribed” to fulfill the 

requirement of the well-poseness of a solid-mechanics problem.  

For elastography problem, displacement are also measured at some of the nodes 

associated with 1u , and are denoted as 1

M
U . Given material parameter p , the unknown 

displacement 1u  and constraint force out

2f  (which depends on p ) will be solved from 

Equation (5.1). The Elastography method thus searches for p  so that the overall 

difference between measured 1

M
U  and computed 1u  is minimum, that is, minimize 

objective function   

1 1 1 1( ) ( ) ( )
M T M

u U u UΦ = − −p X                                         (5.4) 

where the diagonal weight matrix 1 2( , , , , )
j

X diag a a a= ⋯ ⋯ . The component 1
j

a =  

when the j-th component of 1

M
U  is measured or 0

j
a =  otherwise. The present algorithm 

is mathematically equivalent to ones in Chapter 4 for nonlinear elastography where the 

force is used as “measurement”. For elasto-mammography, displacements could be taken 

from X-ray projections before and after deformation. So we change the objective function 

from “force version” in Chapter 4 to this “displacement version”.   

In mammography, however, the measurement of displacement is limited by the 

projection; i.e., only the two components perpendicular to the projection direction are 

obtainable. Correspondingly, the computed displacement 1u  should be 'projected' to in the 

same direction as in mammography, and then compared with the mammography 

measurement 1
M

U . The projection can be represented by a linear translation of 1u , as 

1uR , where R  is the global projection matrix. Let 1u′  be the projected displacement, that 

is, 1 1u u′ = R . The objective function for nonlinear elasto-mammography then reads  

1 1 1 1( ) ( ) ( )
M T M

u U u U′ ′Φ = − −p X                                            (5.5) 

This is noted that Equation (5.5) and Equation (3.9) have the similar form. If the 

computed displacement 1u  and measurement 1

M
U  are in different direction, we can 
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translate 1u  to 1u′  by global projection matrix R . If computed displacement 1u  and 

measurement 1

M
U  are in the same direction, R  becomes an identity matrix, Equation 

(5.5) becomes to Equation (3.9).                                                                                                                           

5.2.3 Global Projection Matrix 

 In objective function (5.5), the global projection matrix R  is used to translate 

displacement 1u  to a mammography projection. This section aims to derive the global 

projection matrix R . 

To be consistent with computational geometry, we call the projection coordinates 

as eye coordinates. As illustrated in Figure 5-1, the global coordinates are [ , , ]X Y Z  and 

eye coordinates are [ , , ]x y z . Their direction vectors are [ , , ]
T

X Y Z
=E e e e  and 

[ , , ]T

x y z
′ ′ ′ ′=E e e e , respectively. The eye coordinates rotate from global coordinates by 

three angles: Z-Axis tilt angle ψ , twist angle about eye/original ray α , and rotation angle 

about Z-Axis θ . We first need to establish the relation between E  and ′E , that is to find 

a rotation matrix [ ]Q  such that [ ]Q′ =E E . 

When all the angles are zero, the eye view is from the top of 
Z

e , that is 

( )

( )

0,0,0

0,0,0

1 0 0

0 1 0

0 0 1

x x

y y

z z

′    
    ′ ′= =    
    −′     

e e

E e e

e e

                                                 (5.6) 

We have three steps to rotate (0,0,0)
′E  to ( , , )θ ψ α′E . 

Step 1: Rotate around ( )0,0,0z
′e  by angle θ  and (0,0,0)

′E  becomes ( ),0,0θ
′E  

( )

( ) ( )

,0,0

,0,0 0,0,0

cos sin 0

sin cos 0

0 0 1

x x

y y

z z

θ

θ

θ θ

θ θ

′ ′    
    ′ ′ ′= = −    
    ′ ′    

e e

E e e

e e

                              (5.7) 

Step 2: Rotate around ( ),0,0y θ
′e  by angle ψ  and ( ),0,0θ

′E  becomes ( ), ,0θ ψ
′E  
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( )

( ) ( )

, ,0

, ,0 ,0,0

cos 0 sin

0 1 0

sin 0 cos

x x

y y

z z

θ ψ

θ ψ θ

ψ ψ

ψ ψ

′ ′   − 
    ′ ′ ′= =    
    ′ ′    

e e

E e e

e e

                           (5.8) 

Step 3: Rotate around ( ), ,0z θ ψ
′e  by angle α  and  ( ), ,0θ ψ

′E  becomes ( ), ,θ ψ α
′E  

( )

( ) ( )

, ,

, , , ,0

cos sin 0

sin cos 0

0 0 1

x x

y y

z z

θ ψ α

θ ψ α θ ψ

α α

α α

′ ′    
    ′ ′ ′= = −    
    ′ ′    

e e

E e e

e e

                     (5.9) 

Combine the above 3 steps, we finally get: 

( )

3 2 1 0

, ,

3

cos sin 0 cos 0 sin cos sin 0 1 0 0

sin cos 0 0 1 0 sin cos 0 0 1 0

0 0 1 sin 0 cos 0 0 1 0 0 1

x x

y y

z z

Q Q Q Q

Q

θ ψ α

α α ψ ψ θ θ

α α θ θ

ψ ψ

′   −       
          ′ = − −          
          −′           

=

e e

e e

e e
��������������������������������

[ ]

[ ]2 1 0

x x

y y

Q

z z

Q Q Q Q

   
   

⋅ ⋅ ⋅ =   
   
   

e e

e e

e e
�������

        (5.10) 

where the rotation matrix is 

[ ]
cos cos cos sin sin cos sin cos cos sin cos sin

cos cos sin cos sin cos cos cos sin sin sin sin

cos sin sin sin cos

Q

α θ ψ α θ θ α α ψ θ α ψ

θ ψ α α θ α θ ψ α θ α ψ

θ ψ θ ψ ψ

⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ 
 

= − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅ 
 ⋅ ⋅ − 

(5.11) 

Now, consider a displacement vector u  of a point from undeformed position to 

deformed position. It is { , , }
X Y Z

u v w= ⋅u E  in the global coordinates, and 

{ , , }
x y z

u v w ′= ⋅u E  in the eye coordinate, in which  

[ ]
x X

y Y

Zz

u u

v Q v

ww

   
   

=   
  
  

                                                               (5.12) 

In mammography projection, the displacement component in 
z
′e  direction, 

z
w , is not 

obtainable, and only 
x

u  and 
y

v  are measured. Therefore, (5.12) reduces to 
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[ ]

[ ]

cos cos cos sin sin cos sin cos cos sin cos sin

cos cos sin cos sin cos cos cos sin sin sin sin

X

x

Y

y

Z
Q

X

Y

Z

u
u

v
v

w

u

Q v

w

α θ ψ α θ θ α α ψ θ α ψ

θ ψ α α θ α θ ψ α θ α ψ

′

 
  ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅   

=     − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅    
 


′=



�����������������������������������




 
 


                       (5.13) 

Finally, the FE solution of displacement field 1u , when projected, becomes 1uR  where 

R  is the assemble of [ ]Q′  according to the FE discretization and assembling methods. 

5.2.4 Nonlinear Adjoint Method 

Efficient and robust optimization-based elastography schemes request user-

supplied gradients of the objective function ∂Φ ∂p . Direct calculation of the gradients 

∂Φ ∂p  involved in the minimization-based parametric identification is difficult, because 

1u  is an implicated function of p . An adjoint method will be derived here for efficient 

and analytical calculation of the gradients. To release the implicit coupling between 1u  

and p , we introduce the constraint Equation (5.1) into the objective function Equation 

(5.5), and obtain a Lagrangian: 

1 1 1
1 1 1 1

2 2 2

( ) ( )

T in out

M T M

in out

w f f
L u U u U

w f f

 −   
= − − +    

−    
R X R                                  (5.14) 

where 1w  and 2w  are arbitrary virtual displacements.  

In this Lagrangian, 1u  and p  are no longer coupled. It is noted that LΦ =  and 

LδΦδ =  for arbitrary 1w  and 2w  under the constraint Equation (5.1). The variation Lδ  

can be expressed as 

2 2
1 1 1 1 11 1 11 2 2 1

1 1

1 2 2
1 2 2

2( ) ( ) ( )
in out

M T T in T out T T

in in out

T T T

f f
L u U u w K w K w w u

u u

f f f
w w w

δ δ δ

δ δ δ

∂ ∂
= − + − + −

∂ ∂

∂ ∂ ∂
+ + −

∂ ∂ ∂

R X R

p p p
p p p

    (5.15)
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Figure 5-1 Illustration of global coordinate and eye coordinate.  

Note: An object in global coordinate is projected in eye coordinate. The relation between 
direction vectors are dependent on ψ , α  and θ .  
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for which the equality constraint Equation (5.1) has been applied. Note that the 

prescribed external force 1

out
f  is independent of p . Equation (5.15) can be further 

simplified by letting the arbitrary virtual displacement 2 0w = , as: 

1
1 1 1 11 1 11 1 1{2( ) }

in

M T T in T out T f
L u U w K w K u wδ δ δ

∂
= − + − +

∂
R XR p

p
        (5.16) 

If we select a 1w  to let 1 1 1 11 1 11 1{2( ) } 0M T T in T out
u U w K w K uδ− + − =R XR  for arbitrary 1uδ , we 

can get   

                              11 11 1 1( ) 2 ( )in out T M
K K w u U− = − −R X R                                              (5.17) 

1 111 2 ( )
eff T M

K w u U= − −R X R                                                         (5.18) 

We obtain the simplest form of Lδ , as: 

1 1 2
1 1 2

in in in

T T Tf f f
L w w wδ δ δ

 ∂ ∂ ∂
= = + 

∂ ∂ ∂ 
p p

p p p
    ( 2 0w = )              (5.19) 

Consider that LδΦδ = for arbitrary 1w  and 2w , we have the gradients of the objective 

function 









∂∂

∂∂









=
∂

Φ∂

p

p

p in

in
T

f

f

w

w

2

1

2

1
                                                             (5.20) 

where the virtual adjoint displacements 1w  and 2w  are solved from linear equations 

11 11 1 1 1 111

2

( ) 2 ( )

0

effin out T M
K K w K w u U

w

 − = = − −


=

R X R
                           (5.21) 

with the tangent stiffness matrix 11

eff
K  defined in (5.3).   

By introducing the adjoint method, it seems that more equations (5.21) and 

variables ( 1w  and 2w ) are involved. But the solution of Equation (5.21) is straightforward 

and the computational cost is minimal, because 11

eff
K  has been computed and factorized 

when solving for the displacement 1u  as in Equation (5.2) and (5.3).  

The gradients ∂Φ ∂p  can also be calculated directly as  
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1
1 12( )M T u

u U
∂∂Φ

= −
∂ ∂

R XR
p p

.                                                        (5.22) 

in which 1 /u∂ ∂p  can be computed numerically using finite-different method: 

1 1 1( ) ( )u u uδ

δ

∂ + −
≈

∂

p p p

p p
     (δp  is a small increase of p )           (5.23) 

or analytically by solving linear equations: 

1 1
11

in

eff u f
K

∂ ∂
= −

∂ ∂p p
                                                                          (5.24) 

For finite-strain nonlinear problem, the finite-different method is unaffordable due to the 

high computational expense to solve Equation (5.1) for 1u . Solving Equation (5.24) is 

straightforward and is much less expensive for 11

eff
K  has been computed and factorized. 

However, Equation (5.24) needs to be solved for every material parameters involved; for 

example, in the exemplar simulations in this work, it needs to be solved nine times 

because each material has three parameters. In comparison, the proposed adjoint method 

Equations (5.20) and (5.21) require only one solution for 1w , regardless of the number of 

material parameters involved. 

5.2.5 Optimization-based Reconstruction Procedure 

 The reconstruction procedure is illustrated in Figure 5-2. We first establish a 

numerical model of the breast tissue and external loadings are applied. In order to 

measure displacement, we compare the mammography projections before and after the 

deformation. Then initial guess of distribution for material parameters ( , , )λ µ γ  is given. 

It is well known that the mechanical behavior of biological soft tissue is nonlinear. In 

Chapter 4 we apply hyperelastic model to represent the stress-strain relation of breast 

tissue and tumor and the material parameters are denoted as },,{ γµλ=p . In this chapter 

we applied the same material model. 

Given the external loadings and material parameters, the displacement filed 1u  is 

solved from Equation (5.1), and is projected to 1uR   according to the mammography 

M
a
m

m
o
g
ra

p
h
y
M

a
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direction. The difference between prediction 1uR   and measurement M
U1  are evaluated 

by the objective function (5.5). The adjoint field w  is calculated by Equation (5.21) and 

gradients p∂Φ∂ /  are obtained by Equation (5.20). The material parameters could be 

updated by limited-memory BFGS (L-BFGS) optimization subroutine (Liu et al., 1989). 

The iteration continues until a minimization is reached.  

 

 

 

Figure 5-2 Overall flowchart for reconstruction of material parameters λ , µ  and γ  of 
breast tissues in nonlinear elasto-mammography. 
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5.3 Numerical Simulations 

5.3.1 Breast Phantom and Forward Problem 

This section presents phantom simulations to identify the nonlinear elastic 

properties of the fatty, glandular and cancerous tissues in a breast. In chapter 4 nonlinear 

elastography, we have established a 3-D breast FEM phantom attracting from the real 

data (Figure 4-2 and 4-3) and we developed the Fung’s model to describe the nonlinear 

deformation of breast tissues (Figure 4-4). In this chapter the same FEM phantom and 

material model are applied for nonlinear elasto-mammography.  

In the following exemplar study, the material parameters of 'ductal carcinoma in 

situ' (Wellman, 1999) are assigned to the tumor, as 80
d

λ = , 35
d

µ = , 1.5
d

γ =  ( λ  and 

µ  are dimensionless, γ  is in kPa). The parameters for fatty tissue are 35
f

λ = , 

12.5
f

µ = , 0.4
f

γ = , and those for glandular tissue are 50
g

λ = , 25
g

µ = , 0.25
g

γ = .  

Meanwhile four types of loadings are designed for nonlinear elastography in last 

chapter (Figure 4-6). The base of the breast phantom is fixed. Two paddles are used to 

apply displacement on the upper surface of the breast. The paddle close to tumor applies 

tilted compression, and another paddle is fixed to restrict the breast. In this chapter 

nonlinear elasto-mammography, we apply only two compression loadings on the breast 

phantom. The two loadings are denoted as compression 1 and 2 and shown at Figure 4-6 

(a) and (c).  

5.3.2 Acquisition Projection Data 

Deformation of the breast can be seen in Figure 5-4 under mammography 

compression 1. To mimic the displacement obtainable from mammography, we will 

extract the displacement components in the projection plane at some discrete material 

points, and denoted them as 1

M
U . We selected three mammography projection directions. 

With each direction, one projection is made at undeformed state, and one is made at 

deformed configuration. Then the displacement components on the projection plane are 



 

 

114 

 

extracted on a set of landmarks in the tissues by comparing their position in undeformed 

and deformed projections. The landmarks include the top vertex on the upper breast 

surface (point A in Figure 5-5), four vertexes of the tumor surface (points B~E in Figure 

5-5), and ten material points on the fat-glandular interface (points A~J in Figure 5-6). It is 

noted that the surfaces of tumor and glandular tissue are not smooth; i.e., there are plenty 

of landmarks that can be used to track the deformation.  

To explain the procedure, we use mammography compression 1 as example. 

Figure 5-3 shows the mammography projection before deformation. The boundary of the 

fatty tissue, glandular tissue and a tumor can be seen in the projection. Figure 5-4 shows 

mammography projection taken in the same direction with compression 1 applied on the 

breast. Then displacement components on the projection plane can be extracted by 

comparing the undeformed and deformed projections. More specifically, the undeformed 

and deformed projections of fatty tissue and the tumor are registered and shown together 

for the comparison in Figure 5-5. The top vertex of fatty tissue, point A, moves to vertex 

A’ after deformation. Points B~E are vertexes of the tumor in undeformed projection, and 

they move to vertexes B’~E’ after deformation. On the fat-glandular surface, we select 

additional ten landmarks that move from A~J to A’~J’, respectively (Figure 5-6). Thus, 

by measuring the vector from a point to its deformed position, for example A →A’, the 

projective displacement components are obtained, and recorded as 1

M
U .  

In addition, we make assumption that there is no slip between the paddles and 

breast surface during mammography compression. Therefore, the displacement of the 

material points directly compressed by the paddles are considered known (Figure 4-6) 

and are added to the measurement 1

M
U . 

In summary, we have obtained the following displacement measurements from 

mammography compression:  

(i) The top vertex on the upper breast surface and four vertexes of the tumor;  

(ii) Ten nodes on the fat-glandular interface;   
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(iii) Material points directly compressed by the paddles.  

These displacement measurements are denoted as 1

M
U  and are used to identify the 

material parameters of the tissues. 

 

 

 

 

 

 

 

 

 

Figure 5-3 Mammography projections for 3-D heterogeneous breast phantom before 
deformation. Fatty tissue, glandualr tissue and a tumor are shown.  
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Figure 5-4 Mammography projections for 3-D heterogeneous breast phantom after 
deformation.  
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Figure 5-5 Deformed projections overlaps on undeformed projection (only fatty tissue 
and the tumor are shown).  

Note: In the projections, vertexes A~E in underformed projection move to A’~E’ in 
deformed projection, respectively. By comparing mammography projections before and 
after deformation, displacements of vertexes can be measured.  
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Figure 5-6 Deformed projections overlaps on udeformed projection (only glandular tissue 
is shown).  

Note: In the projections, ten nodes A~J on the surface of glandualr tisue in underformed 
projection move to A’~J’ in deformed projection, respectively. By comparing 
mammography projections before and after deformation, displacements of the nodes can 
be measured.  
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5.3.3 Inverse problem 

Having obtained measurement 1

M
U  from mammography compression, the inverse 

problem will be conducted to identify the material parameters 

},,,,,,,,{
dddgggfff

γµλγµλγµλ=p  of the fatty tissue, glandular tissue and tumor 

(ductal carcinoma in situ), with use of an iterative optimization procedure (Figure 5-2).  

The initial guesses of the parameters are 0 20λ = , 0 10µ = , 0 1γ =  ( λ  and µ  are 

dimensionless, γ  is in kPa) of all materials. With a trial p , the displacement field 1u  is 

solved from the FE equation (5.1), and is projected to 1uR  according to the 

mammography direction. The global projection matrix R  is calculated from Equation 

(5.11). The difference between prediction 1uR  and measurement 1

M
U  are evaluated by 

the objective function ( )Φ p  (Equation 5.5). The gradients ∂Φ ∂p  are computed with the 

proposed nonlinear adjoint method. Then, a modified trial p  will be obtained according 

to the present Φ  and ∂Φ ∂p  by using L-BFGS minimization subroutine (Figure 5-2). 

The iteration continues until a minimization is reached, which corresponds to identified 

material parameters.  

5.4 Results and Discussion 

5.4.1 Ideal Input 

For three materials, elastic parameters are: 35=
f

λ , 5.12=
f

µ , 4.0=
f

γ  for 

fatty tissue; 50=
g

λ , 25=
g

µ , 25.0=
g

γ  for glandular tissue, and 80=
d

λ , 35=
d

µ , 

5.1=
d

γ  for ductal carcinoma in situ. Table 5-1 shows the initial estimate and 

reconstructed results. The results in the first part are based on the ideal input. It is 

demonstrated that the reconstructed results are very close to the real values. The 

maximum error is only 0.3% ( γ  for tumor). Reconstructions using different initial 

estimations have been conducted and highly accurate results are obtained. This indicates 
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efficiency and uniqueness of the proposed elasto-mammography for nonlinear breast 

tissue properties.   

Convergent loci of the elastic parameters ( γµλ ,, ) is plotted in Figure 5-7.  It is 

observed that elastic parameters of fatty tissue and glandular tissue approach the real 

values rapidly. After about 50 iteration steps, their relative errors are well within the 

range of 5%. Then they experience some minor adjustment. In contrast, elastic 

parameters of the tumor converge slower. They start to fall to the real values after 300 

steps. After 350 steps all parameters are accurately identified. Reconstructions using 

different initial estimates have been conducted and very similar convergent profiles are 

found for the parameters.  

The slower convergent speed of elastic parameters of the tumor is explained by 

the roles they play in the deformation due to the applied loadings, as discussed by Liu et 

al. (2005). In general, parameters with the most significant influence on the deformation 

are also those that are most accurately and easily identified. The influence of a parameter 

depends on size and location of the material region it belongs to, as well as characteristics 

of the deformation. For the present simulations, elastic parameters of fatty tissue and 

glandular tissue are dominant, while those of tumor are much less influential, due to the 

small size and deep location of the tumor. So parameters of fatty tissue and glandular 

tissue are more accurately and easily identified than those of the tumor (Figure 5-7). 

Therefore it is crucial for successful reconstruction of elastic breast tissue properties to 

get sufficient information related with the tumor directly. In this study of nonlinear 

elasto-mammography, displacements of key points on the tumor are extracted from 

mammography projections, which increase the accuracy and efficiency to reconstruct the 

elastic parameters, especially for the tumor.    
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Table 5-1 Initial estimate and reconstructed results for nonlinear elasto-mammography.  

 Fatty Glandular Tumor 

 
f

λ  
f

µ  
f

γ  
g

λ  
g

µ  
g

γ  
d

λ  
d

µ  
d

γ  

Real 35 12.5 0.4 50 25 0.25 80 35 1.5 

Guess 20 10 1 20 10 1 20 10 1 

Ideal Input 

Recon 35.00 12.50 0.40 50.00 25.00 0.25 79.83 34.93 1.51 

5% Noise (I) 

Recon 32.95 11.76 0.44 51.82 26.15 0.23 77.12 31.10 1.69 

5% Noise (II) 

Recon 34.82 12.35 0.41 51.62 26.10 0.23 66.14 29.57 1.88 

5% Noise (III) 

Recon 35.90 12.69 0.39 49.67 25.08 0.25 83.75 37.27 1.40 

10% Noise (I) 

Recon 35.14 12.68 0.40 48.87 24.40 0.26 107.59 35.56 1.41 

10% Noise (II) 

Recon 31.88 11.69 0.46 52.17 25.39 0.24 90.29 31.01 1.69 

10% Noise (III) 

Recon 36.75 12.89 0.37 48.30 24.54 0.26 107.20 48.89 0.92 

Note: The results in the first part are based on ideal input, the second part with 5% noise, 
and the third part with 10% noise. 
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Figure 5-7 Convergent loci of nonlinear elasto-mammography reconstruction for elastic 
parameters ( γµλ ,, ) of fatty tissue, glandular tissue and tumor, normalized with the exact 
values correspondingly.  
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5.4.2 Multiple Sets of Measurements 

Because of the nonuniqueness nature of most inverse problems in elasticity, it is 

important for reconstruction of elastic field of breast tissue to provide sufficient 

information to reduce the likelihood of nonuniqueness. For 2-D isotropic elastography, 

Barbone and Bamber (2002) have shown that one set of measurements for the 

displacements and forces, especially those taken only on the boundaries, may not provide 

sufficient information to the reconstruction of modulus distribution. Barbone and 

Gokhale (2004) further demonstrated the feasibility of using multiple displacement fields.  

Liu et al. (2005) discussed the multiple sets of measurements in 3-D anisotropic media.  

In our previous study of nonlinear elastography (Wang et al., 2009), four independent 

titled compression loadings are designed and stable material parameters could be 

reconstructed. In this study we applied only two sets of loadings and stable material 

parameters are reconstructed due to different initial guesses. In another word, it is 

demonstrated that two sets of loadings can provide sufficient information for 

reconstruction of elastic field. Reduction of the number of required loadings will increase 

the clinical efficiency and benefit the patients.  

The reason of the reduction of the number of required loadings is that more 

information about the deformation of the tumors is extracted from the mammography 

projections. As discussed in Section 5.4.1, it is crucial for successful reconstruction of 

elastic breast tissue properties to get sufficient information related with the tumor directly 

since the tumor has less influence on the deformation on boundary. In nonlinear 

elastography we have to increase the number of required loadings to make sure that 

information is sufficient because all information is obtained on the boundary, without 

direct information about the tumor. The increase of the number of loadings will cause 

clinical difficulty and is inconvenient for patients. In this study of nonlinear elast-

mammography, displacements of key points on the tumor are extracted from 
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mammography projections, which increase the accuracy and efficiency to reconstruct the 

elastic parameters, especially those for the tumor. The results have shown that two sets of 

loadings can provide sufficient information for reconstruction in nonlinear elasto-

mammography. The application of mammography not only decreases the cost, comparing 

with traditional elastography where ultrasound or MR is normally used, but also reduces 

the number of required loadings which increases the clinical efficiency and benefits the 

patients.  

5.4.3 Iteration Steps 

The nonlinear elasto-mammography reconstruction follows an iterative 

optimization procedure, as schematically shown in Figure 5-2. First the initial guesses for 

material parameters are given. The displacements can be calculated based on the initial 

guesses.  The difference between calculated and measured displacements is used to set up 

the objective function (5.5). Following the iterative optimization procedures, gradients of 

the objective function are calculated and material parameters are updated to approach the 

optimal values. The iterative optimization procedure is controlled by user-defined 

criteria. In this study we give a more strict criteria and it takes 592 steps to reach the real 

nonlinear material parameters. The strain-stress curves of updated material parameters for 

the tumor in the 1
st
, 100

th
, 200

th
, 300

th
 and 592

nd
 iterative steps are plotted in Figure 5-8. 

It is observed that the reconstructed values approach the real ones rapidly in first 300 

iterative steps. After that, the reconstructed curve fits the real one very well and 

experiences some minor adjustment.   

In clinical practice a more tolerable criteria may be applied to control iterative 

optimization procedure to save computational source. It has been recognized that tissue 

stiffness plays an important role for diagnosis of breast cancers, as tumors are stiffer than 

that surrounding breast tissues, and malignant tumors are much stiffer than benign ones 

(Wellman, 1999). In another word, the stiffness ratio of fatty tissue to tumor, instead of 
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real values, could be used to identify the character of tumor. In Figure 5-8, the lowest 

curve is for fatty tissue and it is observed that, starting from the 100
th

 iterative step, 

stiffness ratio of fatty tissue to tumor increase rapidly. More tolerable criteria may be 

designed so that iterative procedure could be stopped when the ratio of fatty tissue to 

tumor is accurate enough to determine the character of the tumor. It will make this 

nonlinear elasto-mammography modality more feasible in clinical view.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8 Nonlinear stress-strain curves for the tumor in different iteration steps. The 
lowest curve is for fatty tissue.  
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5.4.4 Adjoint Method 

In the study of nonlinear elastography we introduced for the first time a nonlinear 

adjoint gradient method that significantly improves the numerical efficiency and 

enhances the stability of elastography reconstructions (Wang et al., 2009). In this chapter 

we further developed the adjoint method for nonlinear elasto-mammography. In fact a big 

challenge of solving inverse problem is how to calculate the gradient of objective 

function efficiently and accurately. A straightforward calculation of gradients requires 

solving stiffness matrix in each of iteration, which takes most of the time consumed in the 

finite element method. Therefore the adjoint method is developed to analytically calculate 

the gradients. The advantage of adjoint method is to solve adjoint displacement, w ,  

during each of iteration, instead of the whole stiffness matrix, that increases the 

numerical efficiency significantly. More details have been discussed in Section 4.4.3. 

5.4.5 Input with Noise 

The above elasto-mammography reconstructions are conducted using ideal inputs.  

However, noise can not be avoided in experiments. To investigate the capability of the 

proposed nonlinear elasto-mammography modality and algorithm to handle imperfect 

real data due to inevitable measurement errors, we conduct reconstruction using noisy 

input, that is, each measured displacement is added with a randomly selected relative 

error 5% or 10%.  

The results are shown as Noise 5% (I)~(III) and Noise 10% (I)~(III) in Table 5-1 

and the strain-stress curves of material parameters for the tumor are plotted in Figure 5-9. 

It is observed that curves with noisy input have similar shape to the ones with ideal input. 

It is not surprised that curves with 10% noise, especially 10% noise (III), have relative 

larger error than ones with 5% noise. In order to get robust results, we need to make 

effort to decrease the noise in displacement measurements. It is also noticed that all 

curves for tumor is far away from the curve of fatty tissue (the lowest curve in Figure 5-
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9), in spite of these reconstruction errors. It demonstrates that the nonlinear elasto-

mammography results are accurate enough for diagnosis of tumors, noting the significant 

differences of stiffness between normal tissue, benign and malignant tumors.           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9 Nonlinear stress-strain curves for the tumor with 5% and 10% noise. The 
lowest curve is for fatty tissue.  

 

In last chapter nonlinear elastography, the algorithm fails to reconstruct material 

parameters with 5% noisy input. A regularization method is applied to provide additional 

constraint. In this study, the reconstruction is successful with 5% or 10% noisy input. The 

possible reason is, as mentioned in Section 5.4.1 and 5.4.2, that direct information about 
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deformation of tumor is extract from mammography projections, which make it robust 

and efficient to reconstruct the elastic parameters, especially for the tumor.   

5.5 Conclusions 

This study presents a nonlinear elasto-mammography method that combines 

elastography and mammography for the purpose of diagnosis of breast tumor by 

identification of the material parameters of breast tissues and tumor.  

A 3-D model is developed for heterogeneous breast tissues extracting from real 

images including fatty tissue, glandular tissue, and tumors and an exponential-form of 

nonlinear material model is applied. The displacement information is extract from 

mammography projections before and after breast compression. A 3-D inverse-problem 

algorithm is developed to reconstruct nonlinear material parameters. The adjoint gradient 

method is introduced to improve the numerical efficiency and enhance the stability of 

reconstruction. Results demonstrate that the proposed methodology is stable and robust 

for characterization of the elastic moduli of nonlinear breast tissue from the projective 

displacement measurement.  
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CHAPTER 6 DIFFUSE OPTICAL TOMOGRAPHY  

6.1 Introduction 

Elastogrpahy have been developed to detect breast tumors by recognizing that the 

tissue stiffness plays an important role for diagnosis of breast cancers, as tumors are 

stiffer than the surrounding breast tissues (Sarvazya et al., 1995; Wellman et al., 1999), 

and malignant tumors are much stiffer than benign ones (Skovoroda et al., 1995). In 

Chapter 3-5, we have developed the elasto-mammogrpahy method for reconstruction of 

nonlinear breast tissue properties.  

In addition to elastic properties differences between normal tissues and tumors, it 

is known that optical properties of tissue also play important role in clinical diagnostic. 

Diffuse optical tomography (DOT) emerged as a tool to image optical properties related 

with physiological change. “Diffuse optical tomography is an medical imaging modality 

in which tissue is illuminated by near-infrared light from an array of sources, the 

multiply-scattered light which emerges is observed with an array of detectors, and then a 

model of the propagation is used to infer the localized optical properties of the 

illuminated tissue” (Boas et al., 2001).   

The DOT work can be divided as forward and inverse problem. Forward problem 

can be stated as: given a distribution of light sources on the boundary of a tissue, and a 

distribution of tissue optical parameters, find the resulting measurements on boundary. 

Inverse problem can be stated as: given distributions of light source and measurements on 

boundary, derive the tissue optical parameters distribution within the tissue. 

As we have successfully developed nonlinear adjoint method to provide gradient 

of the objective function in elasto-mammography, we have expanded this method to 

diffuse optical tomography. We have developed a finite-element-based algorithm to solve 

the inverse problem of frequent-domain diffusion equation. The nonlinear adjoint method 

is expanded to complex domains for the reconstruction of optical parameters. Numerical 
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simulation is carried out and compared with phantom experiments. The results show our 

adjoint-based algorithm is efficient and robust for reconstructing the optical properties.       

The work is organized as follows. In Section 6.2, a finite element optimization-

based algorithm is derived to solve the inverse problem of diffusion equation in 

frequency domain. First the diffuse equation and its finite element form is introduced. 

Then the objective function is established and adjoint method in the complex domain is 

developed to provide gradient efficiently. Finally optimization-based reconstruction is 

explained. In Section 6.3 a phantom experiment is described and our numerical model is 

given in Section 6.4, followed by our results, discussion and conclusions in Section 6.5. 

6.2 Methodology   

6.2.1 Diffuse Equation 

Photon transportation in tissue may be modeled in one of two basic ways: an 

essentially discrete model of individual photon interactions, such as Monte Carlo, or a 

continuous model based on a differential equation approximation. The most widely 

applied differential equation in optical imaging is the radiative transfer equation (RTE) 

(Chandrasekhar, 1950; Ishimaru, 1978). 

1

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( )) ( , , ) ( , ) ( , , ) ( , , )

na s s
s

s r s t f s s r s t ds q r s t
c t

µ µ φ µ φ
−

∂
′ ′+ ⋅∇ + + = +

∂ ∫          (6.1) 

which describes the change of the radiance ),ˆ,( tsrφ  at position r  in direction ŝ  in time  

t . The parameters 
a

µ  and 
s

µ  are the absorption and scattering coefficients respectively, 

c is the velocity of light in the medium, and the function ˆ ˆ( , )f s s′  is the scattering phase 

function characterizing the intensity of a wave incident in direction s′ˆ  scattered in 

direction ŝ . 

In biological tissues with highly diffusive light propagations, the RTE can be 

simplified to a diffusion equation (Arridge, 1999; Gibson et al., 2005) 
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0

1 ( , )
[ ( ) ( , )] ( , ) ( , )

x a

r t
D r r t r t q r t

c t
µ

∂Φ
−∇ ⋅ ∇Φ + Φ + =

∂
                             (6.2) 

where the photon density 
1

ˆ ˆ( , ) ( , , )
n

S

r t r s t dsφ
−

′Φ = ∫ , diffusion coefficient 1/(3( ))
x a s

D µ µ′= + , 

reduced scattering coefficient (1 )
s s

fµ µ′ = − , and 0 ( , )q r t  is source function.  

While in time-domain, the frequency domain form of Equation (6.2) can be 

obtained by performing the Fourier transform in time ( / t iω∂ ∂ → ): 

 0[ ( ) ( , )] ( , ) ( , ) ( , )
x a

i
D r r r r q r

c

ω
ω µ ω ω ω−∇ ⋅ ∇Φ + Φ + Φ =                          (6.3) 

In this study we will apply this frequency-domain form in the model. 

The solution of Equation (6.2) and (6.3) requires the specification of appropriate 

boundary condition. A Robin Boundary Condition (RBC) is given by Schweigher et al. 

(1995)  

ˆ2 n 0
x

D AΦ + ⋅∇Φ =                                                         (6.4) 

where )1/()1( γγ −+=A  and  γ  is the parameter governing the internal reflection at the 

boundary. A  could be derived from Fresnel’s law as  

3

0

2

2 /(1 ) 1 cos

1 cos

c

c

R
A

θ

θ

− − +
=

−
                                            (6.5) 

where arcsin(1/ )
c

nθ =  is the critical angel, and 2 2

0 ( 1) /( 1)R n n= − + . n  is the refractive 

index and setting 1n =  means no internal reflection.    

 A finite element method (FEM) is used to calculate solutions of the diffusion 

equation (6.3) and boundary condition (6.4). FEM is a numerical technique which gives 

approximate solutions to differential equations. It is especially powerful when dealing 

with boundary conditions defined over complex geometries that are common in practical 

applications. In this method, the domain is first discretized into a number of simpler 

domains called elements. An approximate solution is assumed over an element in terms 

of solutions at selected points called nodes through interpolation, that is, ( , )r ωΦ  at each 

point r  within an element is given by a linear interpolation of nodal value 
j

Φ , 
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( , ) ( ) ( )
j j

r rω ω ψΦ = Φ∑                                                       (6.6)   

where 
j

ψ  are linear nodal shape functions with support over all elements which have the 

node 
j

N  as a vertex, and ( )
j i ij

rψ δ= , where 
i

r   is the position of node 
i

N .  

 The weak form of diffusion equation (6.3) using the Galerkin approach is given as 

0( )[ ( ) ] ( , ) ( ) ( , )
j x a j

i
r D r r d r q r d

c

ω
ψ µ ω ψ ω

Ω Ω
−∇ ⋅ ∇ + + Φ Ω = Ω∫ ∫                               (6.7) 

for each node j . Integration by parts and substitution of Equation (6.6) leads to 

[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]
j i i j x i i a j i i

i
r r r D r r r r r d

c

ω
ψ ψ ω ψ ψ ω µ ψ ψ ω

Ω
Φ + ∇ ⋅ ∇ Φ + Φ Ω∫  

0

1
( ) ( , ) ( ) ( , ) ( )

j j
r q r d r r d

c
ψ ω ψ ω

Ω ∂Ω
= Ω − Γ ∂Ω∫ ∫                                                 (6.8) 

Combined with boundary condition (6.4), we could get  

    [ ( ) ( ) ] ( , ) ( , )
x a

i
D r r

c

ω
µ ω ω+ + + =P Q M B SΦΦΦΦ                                                    (6.9) 

where 

( ) ( ) ( )
ij x i j

P D r r r dψ ψ
Ω

= ∇ ∇ Ω∫  

( ) ( ) ( )
ij a i j

Q r r r dµ ψ ψ
Ω

= Ω∫  

( ) ( )
ij i j

M r r dψ ψ
Ω

= Ω∫  

1
( ) ( ) ( )

2
ij i j

B r r dψ ψ
γ ∂Ω

= ∂Ω∫  

0( ) ( , ) ( )
i i

S r q r dψ ω
∂Ω

= ∂Ω∫  

ψ  is linear nodal shape function. 

Equation (6.9) can be rewritten as   

( , ) ( , ) ( , )
x a

D r rµ ω ω=K SΦΦΦΦ                                                  (6.10)                                    

where ( , ) ( ) ( )
x a x a

i
D D

c

ω
µ µ= + + +K P Q M B .   
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In Equation (6.10), ( , )
x a

D µK  and ( , )r ωΦΦΦΦ  are complex matrix, we can rewrite 

them as ][][][
IR

KiKK +=  and }{}{}{
IR

i φφφ += , so Equation (6.10) becomes 

                                 




=+

=−

0}]{[}]{[

}{}]{[}]{[

RIIR

IIRR

KK

SKK

φφ

φφ
                                                (6.11) 

where “R” represents real part and “I” imaginary part.  

6.2.2 Objective Function 

In diffuse optical tomography near infrared (NIR) light is applied on a biological 

tissue and the photon density could be measured on boundary. Meanwhile if optical 

parameters are estimated, the photon density on boundary could be calculated by 

Equation (6.10). The objective of diffuse optical tomography is to optimally find the 

optical parameters that minimize the difference between the measured and calculated 

photon density.  

Denoting the measured photon density on boundary as { }mφ , and calculated 

photon density associate with estimated distribution of optical parameters as { }φ , the 

diffuse optical tomography seeks optical parameters ( , )
a s

µ µ′  such that  the following 

objective ( , )
a s

G µ µ′  is optimally minimized: 

           ),(),(),(
saIsaRsa

GGG µµµµµµ ′+′=′       

          = { } { }( ) [ ]{ } { }( ) { } { }( ) [ ]{ } { }( )m

III

T
m

II

m

RRR

T
m

RR
XX φφφφφφφφ −−+−−     (6.12)                        

where matrix [ ]
R

X  and [ ]
I

X  have the same dimensions with matrix [ ]
R

K  and [ ]
I

K , but 

are diagonal, and 
ii

X  equals to zero when the i-th component of in { }φ  is not measured.   

 The DOT reconstruction follows an iterative optimization procedure, as 

schematically shown in Figure 6-1. The initial estimation for distribution of optical 

parameters ( , )
a s

µ µ′  is given. Light intensity φ  can be calculated by Equation (6.11) and 

objective function is obtained by comparing measured and calculated light intensities. 
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Then optical parameters are updated for next iteration until a satisfied objective function 

is obtained.    

6.2.3 Adjoint Method 

The iterative optimization procedure usually request user-supplied gradient. The 

previous diffuse optical tomography studies used direct or approximate finite-different 

method for the gradient calculation. The computation expense of these methods increases 

proportionally with the number of material parameters. Recently an adjoint method was 

introduced to compute the gradient analytically (Tardieu et al, 2000; Oberai et al., 2003; 

Liu et al., 2005 & 2006). Oberai et al. (2003) adopted the adjoint method and proposed a 

numerical scheme for reconstructing the nonuniform shear modulus field for 

incompressible isotropic material using one component of displacement field. Liu et al. 

(2006) applied this method for anisotropic materials. In Chapter 3 we apply the adjoint 

method for linear elasto-mammograhy. In Chapter 4 and 5 we develop new nonlinear 

adjoint method to reconstruct nonlinear elastic parameter in nonlinear elastography and 

elasto-mammography. In this chapter we expand the adjoint method from elastography to 

diffuse optical tomography to provide efficient gradient calculation for reconstruction of 

optical parameters.   

The goal of the adjoint method is to calculate the gradient /
a

µ∂Φ ∂  and /
s

µ′∂Φ ∂   

efficiently. We define the adjoint field { }w  as 

{ } { } { }
R I

w w i w= +                                                                  (6.13) 

where { }w  has the same dimension as { }φ ,  “R” represents real part and “I” imaginary 

part. The weak form of Equation (6.11)  





=+−

=−−

0})]{[}]{([}{

0}){}]{[}]{([}{

RIIR

T

I

IIRR

T

R

KKw

SKKw

φφ

φφ
                              (6.14) 

for arbitrary choice of { }w . We introduce Equation (6.14) into objective function (6.12) 

and obtain a Lagrangian: 
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( , ,{ },{ })

({ } { }) [ ]({ } { }) ({ } { }) [ ]({ } { })

{ } ([ ]{ } [ ]{ } { }) { } ([ ]{ } [ ]{ })

a s

m T m m T m

R R R R R I I I I I

T T

R R R I I I R I I R

L w

X X

w K K S w K K

µ µ φ

φ φ φ φ φ φ φ φ

φ φ φ φ

′ =

− − + − −

+ − − − +

     (6.15) 

It is shown that }){},{,,(),( wLG
sasa

φµµµµ ′=′  and LG δδ =  as Equation (6.14) is 

satisfied for arbitrary }{w . Then Lδ  can be written as 

})]{[}]{([}{})]{[}]{([}{

}]){[}{][}{][}){}({2(

}]){[}{][}{][}){}({2(

RIIR

T

IIIRR

T

R

IR

T

II

T

RI

Tm

II

RI

T

IR

T

RR

Tm

RR

KKwKKw

KwKwX

KwKwXL

φδφδφδφδ

δφφφ

δφφφδ

+−−+

−−−+

−+−=

       (6.16)          

In order to compute }{w , let  

0][}{][}{][}){}({2 =−+−
I

T

IR

T

RR

Tm

RR
KwKwXφφ                            (6.17) 

and 

0][}{][}{][}){}({2 =−−−
R

T

II

T

RI

Tm

II
KwKwXφφ ,                            (6.18) 

Equation (6.17) and (6.18) can then be rewritten as   

}){}]({[2}]{[}]{[
m

RRRIIRR
XwKwK φφ −−=−                                      (6.19) 

and 

}){}]({[2}]{[}]{[
m

IIIRIIR
XwKwK φφ −=+                                         (6.20) 

Combining Equation (6.19) and (6.20), we can obtain 

}){}]({[2}){}]({[2}){}])({[]([
m

III

m

RRRIRIR
XiXwiwKiK φφφφ −+−−=++     (6.21) 

}){}]({[2}){}]({[2}]{[
m

III

m

RRR
XiXwK φφφφ −+−−=                      (6.22) 

It is noted that the matrix ][K  is as the same as that in Equation (6.11). Therefore, 

}{w  can be solved by Equation (6.22) with the same method. Correspondingly,  

{ } ([ ]{ } [ ]{ }) { } ([ ]{ } [ ]{ })T T

R R R I I I R I I R
G w K K w K Kδ δ φ δ φ δ φ δ φ= − − +   (6.23) 

Since 
I

K  is independent with 
a

µ  and 
s

µ ′ , 0=
I

Kδ , Gδ  further becomes as follows: 

}]{[}{}]{[}{
IR

T

IRR

T

R
KwKwG φδφδδ −= .                                            (6.24) 

In this study, we have optical parameters { , }
a s

µ µ′ , the gradient could be calculated by  
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{ } { } { } { }

{ } { } { } { }

T TR R

R R I I

a a a

T TR R

R R I I

s s s

K KG
w w

K KG
w w

φ φ
µ µ µ

φ φ
µ µ µ

    ∂ ∂∂
= −    

∂ ∂ ∂    


   ∂ ∂∂
= −    ′ ′ ′∂ ∂ ∂   

                                     (6.25) 

where the adjoint field { }w  could be obtained in Equation (6.22). 

It is noted that }{φ  and }{w  share the same Cholesky factorization (Belytschko et 

al., 2000) for ][K , thus the computational expense for solving }{w  in Equation (6.22) is 

minimal once }{φ  is solved in Equation (6.11). At the same time, once adjoint field }{w  

is calculated, gradients for different parameters are calculated by Equation (6.25), which 

shares the same adjoint field. The feature makes the adjoint method not impacted by the 

number of unknown parameters significantly.  

6.2.4 Optimization-based Reconstruction Procedure 

 The reconstruction frame involved data acquisition, material modeling, and 

reconstruction of material parameters, shown with the flowchart in Figure 6-1. The data 

acquisition includes establishing finite-element model and measuring light intensities. In 

the study of elasto-mammogrpahy, the measured displacements are obtained by 

mammography projections in numerical simulation. In this DOT measured light intensity 

mφ  is obtained by experiment described in next section. Material modeling includes 

initial estimation for distribution of optical parameter { , }
a s

µ µ′ . The reconstruction 

procedure is optimization-based, making use of a limited-memory BFGS (L-BFGS) 

optimization subroutine (Liu et al., 1989), for which user-supplied gradients are required. 

When solving photon density φ  with finite-element method, the factorization of matrix 

K  in Equation (6.11) is stored at each time step, and is used for the adjoint field w . Once 

initial guesses of distribution of optical parameters { , }
a s

µ µ′ are given, light intensities are 

calculated in forward problem. The calculated and measured light intensity, φ  and mφ , 

are used to form objective function (6.12). Gradients are obtained by calculating adjoint 
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field w  and optical parameters are updated. New iteration is repeated until a satisfied 

objective function is obtained.  

 

Figure 6-1 Flow chart of diffuse optical tomography reconstruction of optical coefficients 
{ , }

a s
µ µ′  in frequent domain 

 

6.3 Experiment   

An experiment is made to test DOT reconstruction algorithm developed in last 

section. The experiment is conducted with a frequency-domain DOT system by Prof. 

Gulsen’s group in Center for Functional Onco-Imaging, UC-Irvine (Gulsen et al., 2006).  

They kindly shared the experimental data. Then we set up a numerical model to 

reconstruct the optical parameters based on the experimental data.  
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A 63-mm-diameter solid phantom simulating tissue optical properties was used in 

the experiment. The optical properties of the phantom are -1
0.0132 mm

a
µ =  and 

-1
0.86mm

s
µ ′ =  at 785 nm. A 15-mm hole was drilled into the phantom to simulate 

different embedded objects. The hole was positioned halfway between the center and the 

edge and was filled with a mixture of Intralipid and Indian ink in water to simulate a 

higher absorbance object with -1
0.0264 mm

a
µ =  and -1

0.86mm
s

µ ′ = . Sixty-four 

amplitude and phase data at 785 nm are given and converted to the real and imaginary 

parts to compare with numerical results. The details of the system are given in Gulsen et 

al. (2006).     

6.4 Numerical Simulation   

6.4.1 Finite Element Model 

Based on the phantom and experimental systems described in Section 6.3, we 

established a 2-D finite element model consisting of a 63-mm-diameter circle matrix with 

an embedded inclusion (Figure 6-2). The embedded inclusion is 15-mm diameter and is 

positioned halfway between the center and the edge, that is, the centers of matrix and 

inclusion are (0, 0) and (63/4, 0). The eight solid circles represent the detectors while the 

eight open circles represent the light sources. The sources and detectors are placed 

uniformly on the external surface with 0
45  apart.  

The model discretized with standard 2-D triangle elements has 1761 nodes and 

3264 elements, in which 3146 elements are in matrix and 118 elements are in the 

inclusion. The elements close to surface are refined because intensities on surface are 

collected for reconstruction of the optical parameters. A constant light source is applied 

and the intensities on surface are detected. The difference between calculated and 

measured value is employed to establish the objective function (6.12).  
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Figure 6-2 FE model with 3264 elements and 1761 nodes to simulate the phantom.  

Note: Thick mesh represents inclusion, solid circles represent detectors, and open circles 
represent light sources. 
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It is noted that, although the light sources are placed on the phantom surface, the 

diffusion equation cannot describe the collimated source correctly. A common approach 

to overcome this limitation is to represent a collimated pencil beam by an isotropic point 

source located at a depth 
s

µ ′/1  below the tissue surface (Arridge et al., 1995). This 

produces accurate results at distance from the source larger than the mean free path, but 

breaks down close to the source. Using this approach, the eight light sources are located 

at a depth 1/ 1/ 0.86mm = 1.16mm
s

µ ′ =  below the surface. 

6.4.2 Inverse Problem 

It is introduced in Section 6.1 that the DOT work can be divided as forward and 

inverse problem. Forward problem can be stated as: given a distribution of light sources 

on the boundary of a tissue, and a distribution of tissue optical parameters, find the 

resulting measurements on boundary. Inverse problem can be stated as: given 

distributions of light source and measurements on boundary, derive the tissue optical 

parameters distribution within the tissue.  

 In this study the experiment service as the forward problem solver. The 

distribution of light sources and tissue optical parameters are given, the resulting light 

intensities are measured at detectors, that is, { }mφ  in objective function (6.12).  

Based on the experimental measurement, inverse problem is solved to reconstruct 

the optical parameters. First the initial estimations for distributions of the optical 

parameters for matrix and inclusion are given. Theoretically any numbers could be 

selected as the initial estimations. But the initial estimations that far away from real value 

could increase the iteration time and may not convergent if high noise exist. Based some 

experimental data (i.e. Hillman, 2002) we could select initial estimations close to real 

value. Then light intensity on surface { }φ  could be calculated by Equation (6.11). The 

objective function (6.12) is formed by comparing measured light intensity { }mφ  and 

calculated { }φ . If the objective function is smaller than preset criteria, it means that 
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estimation for the optical parameters are close enough to real ones, the inverse problem 

stop and the estimations are output as reconstructed parameters. If the objective function 

is larger than preset criteria, estimated optical parameter should be updated. The adjoint 

field w  is calculated by Equation (6.22) and gradient is obtained by Equation (6.25). 

Using the updated optical parameters, new iteration is repeated until the objective 

function is less than the preset criteria.          

Our simulations always yield the same optical parameters (within the numerical 

processing errors), regardless of the initial estimate. The real and reconstructed optical 

parameters are listed in Table 6-1. It is demonstrated that parameters for the matrix are 

reconstructed more accurately. Reconstructed value of 
a

µ  for matrix is the same with 

real one. The error of 
s

µ′  for matrix is less than 1%. Comparing with matrix, the 

reconstruction for the inclusion has a relative coarse accuracy. The real value of 
a

µ   is 

0.0264, while the reconstructed value is 0.024 with a 9% error. The real value of 
s

µ′  for 

inclusion is 0.8582, the same with one for matrix, while the reconstructed value is 0.72, 

with a 16% error.   

 

Table 6-1 Real and reconstructed optical parameters. Stable reconstruction are generated, 
regardless of the initial estimation 

 Matrix Inclusion 

 
a

µ  
s

µ ′  
a

µ  
s

µ ′  

Real values 0.0132 0.8582 0.0264 0.8582 

Reconstruction 0.0132 0.8580 0.0240 0.7200 
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The convergent curves of DOT reconstruction for optical parameters { , }
a s

µ µ′  of 

the matrix and inclusion are plotted in Figure 6-3. X-axial is iteration steps, Y-axial is 

reconstruction normalized with the exact values correspondingly. It is demonstrates that 

values for the 
a

µ  and 
s

µ ′  of the matrix approach the measure value rapidly. After 

approximate 30 iterations, the relative errors are within the range of 5%. Then they 

exhibit some minor adjustment. In contrast, coefficients of inclusion converge slower. 

They begin to approach the real values after 45 iterations and reach the real values after 

55 steps, with a maximum error of 16%. 

6.5 Discussion 

6.5.1 Regularization 

In Table 6-1, it is obvious that optical parameters for the matrix are reconstructed 

more accurately. The error for reconstructed parameters for the matrix is less than 1%. 

While 
s

µ′  for inclusion is reconstructed with a 16% error. Moreover, in Figure 6-3, 

optical parameters for the matrix are reconstructed more quickly. After approximate 30 

iterations, the relative errors are within the range of 5%. In contrast, coefficients of 

inclusion begin to approach the real values after 45 iterations and reach the real values 

after 55 steps.  

The slower convergence and coarse accuracy of parameters for the inclusion are 

explained by their influence on the surface measurements. In general, parameters with the 

most significant influence on surface measurements are also those that are most 

accurately and easily identified. The influence of an optical parameter depends on size of 

the region it belongs to. For the present experiment and simulation, optical parameters of 

the tissue are dominant, while those of tumor are much less influential, due to the small 

size of the inclusion. The area ratio of the matrix to inclusion is about 16:1. A change of 

optical parameters for the inclusion will not cause big impact on the surface 

measurements. So it is difficult to identify the optical parameters for the inclusion.  
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Figure 6-3 Convergent curves of DOT reconstruction for optical parameters { , }
a s

µ µ′  of 
the matrix and inclusion.  

Note: X-axial is iteration steps, Y-axial is reconstruction normalized with the exact 
values correspondingly.   
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This situation could also be explained from the point view of objective function. 

The DOT inverse problem is stated as the minimization of objective function related to 

the residual between calculated and measured light intensities on surface. The goal is to 

seek optical parameter distribution to obtain global minimum of the objective function. 

But, in practice, input data is often incomplete and corrupted by noise. A global 

minimum is not well defined with noise. In another words, real optical parameters may 

not give a global minimum of the objective function with noise. Several similar 

parameters around real ones may give some local minimums. For example, the 

reconstructed value of 
s

µ′  for inclusion, 0.72, may give a local minimum, while real 

value, 0.8582, may also give a local minimum. Because optical parameters for inclusion 

do not play an important role on the surface measurements, the two local minimums may 

be very close so that the algorithm does not push reconstructed value 0.72 to real value 

0.8582. 

A typical way to solve this problem is to add a penalty term which provides 

additional constraint on the solution space (Hielscher et al., 2001). In Section 4.4.1 we 

discuss how to use a penalty term to push the solution into the right area of the solution 

space and minimize the resulting objective. Similarly in this DOT inverse problem, a new 

objective function could be proposed as 

F G χ= + Π                                                             (6.26) 

where G  is the original objective function Equation (6.12) which represents the 

difference between measured and calculated values. In addition, χ  is the regularization 

factor and Π  is the penalty term which could use the prior information to push a solution 

to the real value.  

  Specific forms of penalty term have been designed for different problems 

(Hielscher et al., 2001; Brooksby et al., 2003). For example, an exponential form of 

penalty term could be applied as,    
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2

1

Π (1 exp( ( ) ))
K

k k

k

aξ
=

= − − −∑                                  (6.27) 

where 4K =  is the total number of material parameters, and 
k

ξ  and 
k

a  are the 

reconstructed and true optical parameters, respectively. If the true optical parameters are 

unknown, we can estimate 
k

a  as close as possible. This penalty term will push a 

reconstructed value to a real one.  

6.5.2 Prior Knowledge 

Because the inverse problem in DOT is a non-unique, ill-posed underdetermined 

problem, previous DOT studies frequently face the problems of unstable, time-

consuming, low spatial resolution, requiring a lot of measurement data (Gibson et al., 

2005). So in recent years, researchers use prior information to improve the image 

reconstruction. Niziachristos et al. (2000 & 2002), Schweiger et al. (2003), Brooksby et 

al. (2003 & 2005), Dehghani et al. (2009) used an MR image of a breast to provide the 

location of a tumor as a priori. Due to this approach, the spatial resolution of the optical 

image effectively becomes that of the MR image.   

The prior information is applied in two levels: “soft priors” and “hard priors” 

(Brookksby, 2005). “Soft priors” are seeking to improve regularization in iteration 

process. In Equation (6.26) χΠ  is added to the objective function G  as a penalty term to 

push reconstructed value to the real one. Soft priors could be applied to design the 

penalty term (Brooksby et al., 2003). For example, Li et al. (2003) use structural 

knowledge of the breast to define two discrete regions which they regularize differently 

in order to optimize NIR image contrasts.  

“Hard priors” are seeking parameter reduction. Without the prior, we have to 

reconstruct optical parameters in each node, which makes the inverse problem in DOT is 

ill-posed, underdetermined since the number of unknowns is probably larger than the 

number of measurements. If the internal structure is as prior, the target domain could be 

divided into n  regions and the homogeneous optical property is assumed in each region. 
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Due to the small number of unknowns, the inverse problem is highly over-determined 

and therefore computationally fast and robust to noise in the data. Pogue and Paulsen 

(1998) describe the use of high resolution MRI to improve simulated optical property 

reconstruction of a rat cranium. By accurately defining a region where heterogeneity is 

expected, they limited image property evolution to only those node locations.  

In this study we apply hard prior, internal structure of the tissue, to divide domain 

to two regions: matrix and tumor. The location and size of the tumor is known. In each 

region optical property is assumed homogeneous. So the number of unknowns is reduced 

to four, that is, 
a

µ  and 
s

µ′  for matrix and tumor, respectively. The prior information 

could be obtained by MRI or X-ray mammography. Li et al. (2003), Zhang et al. (2005) 

have studied to combine optical imaging with X-ray mammography which provides 

anatomical information to improve spatial resolutions. In the elasto-mammography we 

have located the tumors by X-ray mammography projections. Similar method could 

applied in DOT to divide domain into normal tissue and tumor. This prior makes the ill-

posed, underdetermined DOT inverse problem to be highly over-determined and 

therefore computationally fast and robust to noise in the data. 

6.5.3 Adjoint Method in Complex Domain 

The goal of diffuse equation tomography is to solve the inverse problem, that is, 

given distribution of light source and measurements on boundary, derive the tissue 

optical parameters distribution within the tissue.  

Currently, the most used method to solve the inverse problem is nonlinear image 

reconstruction algorithm (Klose et al., 1999; Saquib et al., 1997; Arridge et al., 1998; 

Hielscher et al., 1999; Roy et al., 1999). Like in elastography, an objective function is 

established to compare calculated and measured light intensities. Starting with an initial 

guesses, the optical parameters are updated to minimize the objective functions. The 

challenge remains to find efficient ways of updating the initial guesses such that the 
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differences between calculated and measured data become smaller and the value of the 

objective function decreases. An increasing interest is using gradient-based iterative 

image reconstruction algorithm (Hielscher et al., 2000). In the gradient approach the 

image reconstruction problem is interpreted as a nonlinear optimization problem, in 

which the gradient of optical parameters is applied to minimize the objective function. 

However, because of the large number of measurements and the presence of noise, the 

commonly used gradient method is time-consuming and causes low spatial resolution. 

Developing a stable and efficient reconstruction algorithm is still essential in DOT 

(Arridge et al., 2008).   

In Chapter 3-5, we have introduced the adjoint method to calculate the gradient 

analytically (Tardieu et al, 2000; Oberai et al., 2003; Liu et al., 2005 & 2006). In Chapter 

3 we employed the adjoint method for the linear elaso-mammography, and we develop 

the nonlinear adjoint method to calculate gradients efficiently for proposed nonlinear 

elasto-mammography in Chapter 4 and 5. The results show that the adjoint method 

significantly enhances the numerical efficiency and stability.  

Encouraged by the success of nonlinear elasto-mammography, we have expanded 

the adjoint method from elastography to diffuse optical tomography. The difference of 

developing adjoint method in between elastography and DOT is that diffuse equation is 

in frequency-domain, so the objective function (6.12) is in complex domain instead of 

real domain. Therefore the adjoint field { }w  is divided into real part { }
R

w  and imaginary 

part { }
I

w . By setting up the weak form of objective function, the adjoint field could be 

solved in Equation (6.22).  

Favorable feature of the adjoint method is the minimum consumption for 

calculating the gradients. The adjoint method is to solve adjoint field w  during each of 

iteration in Equation (6.22), instead of the whole matrix K  that increases the numerical 

efficiency significantly. By comparing Equation (6.11) and (6.22), it can be shown that 

the light intensity φ  and the adjoint field w  share the same matrix K  and its Cholesky 
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factorization for the finite element computation (Press et al., 1996). Because computation 

for matrix K  and its Cholesky factorization takes most of the time consumed in the finite 

element method, solving Equation (6.22) for adjoint field w  and further calculating Gδ   

in Equation (6.24) are expected to add a small fraction of time in addition to the solution 

for light intensity φ , which is anyway required in an optimization-based numerical 

scheme for an inverse problem.  

Furthermore, it only needs to solve linear equation (6.22) regardless of the 

number of unknown optical parameters. In the traditional Gauss-Newton method, for 

each unknown optical parameters, we have to solve forward problem twice to calculate 

gradient. The computational cost increases proportionally with the number of unknown 

parameters. While in adjoint method, once the adjoint field w  is solved, the gradient for 

optical parameter could be calculate by Equation (6.24), no matter the number of 

unknown parameters. More details about the comparison between adjoint method and 

traditional Gauss-Newton method could be found at Section 3.2.3 and 4.4.3. 

6.5.4 Frequent Domain and Wavelength 

In this study a frequency-domain DOT system is used to provide measurements. 

For diffuse equation, time-domain equation (6.2) and frequency-domain equation (6.3) 

are equivalent. In clinical practice, frequency-domain systems are relatively inexpensive, 

easy to develop and to use, and can provide very temporal sampling. Time-domain 

system, on the other hand, tends to use photon counting detectors which are slow but 

highly sensitive and provide additional information about path length. Hence, frequency-

domain systems are well suited to acquiring measurements quickly and at relatively high 

detected intensities (Gibson et al., 2005)  

The choice of wavelengths is another issue in DOT. The ‘NIR window’ used for 

tissue optics is bounded roughly between 650 nm and 850 nm because it lets light 

propagate relatively deeply into the tissue before being absorbed. At lower wavelengths, 
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absorption by haemoglobin limits penetration in tissue, while at higher wavelengths, 

absorption dominates by water. In the experiment described in Section 6.3, four different 

wavelengths are employed: 665 nm, 785 nm, 800 nm and 830 nm. In order to test our 

algorithm, only data in 785 nm is employed to reconstruct the optical parameters in this 

study. Actually, in clinical practice, multi-wavelength measurements may be used to 

evaluate the hemoglobin concentration, oxygen saturation, fat, and water content. The 

choice of wavelengths should be considered to optimize image sensitivity and accuracy. 

Boas et al. (2004) have shown experimentally and theoretically that a pair of wavelengths 

at 660-760 nm and 830 nm provides superior separation between HHb and HbO than the 

more commonly used 780 nm and 830 nm.        

Further some researches have been carried out to investigate the probability of a 

wider range of wavelength in DOT. Pifferi et al., (2003) used four wavelengths (683 nm, 

785 nm, 912 nm and 975 nm) to image the breast, with the wavelengths selected 

empirically to optimize distinction between oxy- and deoxyhemoglobin, water and lipids.  

6.6 Conclusions 

We developed a new finite element algorithm based on adjoint method to solve 

the inverse problem of the frequency-domain DOT diffusion equation. The proposed 

adjoint method provides a new means to compute the gradients of objective function 

analytically. Significant computational saving is realized by utilizing the solution of 

adjoint equation. By comparing measurements derived from phantom experiments to 

numerical simulations, it is found that our algorithm is stable and robust for 

reconstructing the optical parameters. These results are sufficiently encouraging to 

warrant further development and future clinical evaluation of this adjoint method for 

DOT reconstruction.  
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS  

7.1 Conclusions 

Breast cancer is one of major threats to public health in the world. Currently, X-

ray mammography is the primary method for early detection and characterization of 

breast tumors. While it is more effective in detecting tumors as age increases and the 

breast becomes fatty, mammography fails to detect small cancers in dense breasts. 

Moreover, mammography is not quite specific in terms of tumor benignity and 

malignancy.  

It has been recognized that mechanical and optical properties of tissues can be the 

indicators to identify and characterize breast tumors. To overcome the difficulties 

associated with mammography, the objective of this thesis is to develop new mechanical 

and optical modalities for qualification of the elastic and optical properties of normal and 

cancerous breast tissues. 

7.1.1 Elasto-mammography 

We have developed the nonlinear elasto-mammography that utilizes the novel 

nonlinearly elastic breast model combined with mammography visualizations to imaging 

tissue elastic modulus for diagnosis of breast cancers, as tumors are stiffer than the 

surrounding breast tissues and malignant tumors are much stiffer than benign ones. The 

nonlinear elasto-mammography can quantitatively detect breast tumors in their early 

stage and, comparing with ultrasound elastography and magnetic resonance elastography, 

elasto-mammography can provide high resolution with low cost.  

There are three steps to develop nonlinear elasto-mammography. First, we have 

developed a linear elasto-mammography method which generates the elastograms of 

breast tissue by combining the conventional low-dose X-ray mammography with 

elastography framework. The displacement information is extracted from mammography 
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projections before and after breast compression. Incorporating the displacement 

measurement, an optimization-based elastography reconstruction algorithm is specifically 

developed to estimate the elastic modulus of heterogeneous breast tissue. An initial 

guesses of distribution of elastic modulus is given and displacements are calculated in 

forward problem. The calculated and measured displacements are used to form objective 

function. Gradients of the objective function are obtained by the adjoint method and 

elastic parameters are updated. The iteration is repeated until a satisfied objective 

function is obtained. We have conducted numerical simulation with breast phantoms and 

investigate the effects of noise, geometry mismatch and contract ratio. It is demonstrated 

that the displacement measurements obtained from mammography projections is 

sufficient to identify the material parameters of breast tissues and tumors, and the method 

is stable and robust.  

The second step is to develop the nonlinear elastography which extend linear 

material and deformation model to nonlinear cases. Most current elastography 

reconstruction frameworks are based on the assumption of linear elasticity theory. It is 

shown, however, that the deformation of most biological soft tissue is not linear elastic. 

Consideration of nonlinear model is essential for elastography in clinical application.  

In this thesis, we have developed a new elastography model for nonlinear breast 

tissue and, for the first time, a nonlinear adjoint gradient method is introduced. We have 

introduced finite-strain deformation equation and derived the objective function by 

comparing calculated force and measurements. The elastic parameters are estimated by 

optimally minimizing the objective function. A nonlinear adjoint method is derived to 

calculate the gradient of the objective function. The nonlinear adjoint gradient method 

significantly improves the numerical efficiency and enhances the stability of nonlinear 

elastography reconstructions. Simulations are conducted on a three-dimensional 

heterogeneous breast phantom extracting from real imaging including fatty tissue, 

glandular tissue and tumors. We apply an exponential hyperelastic model to simulate the 
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deformation of breast tissue. Four loadings are applied on the breast phantom to provide 

more deformation information. The results demonstrate that the method is efficient and 

stable to detect tumors in nonlinear biological tissue by reconstruction of complex breast 

tissue properties. We have investigated the effect of noise and the regularization method 

is applied to improve the accuracy of reconstruction for tumors. We also discussed the 

importance of designing feasible loadings for success in clinical application of nonlinear 

elastography. 

Encouraged by the accomplishment of linear elasto-mammography and nonlinear 

elastography, a nonlinear elasto-mammography method is developed to reconstruct 

nonlinear breast tissue properties. We utilize the novel nonlinear elastic breast model 

combined with mammography visualizations. As in linear elasto-mammography, the 

displacement information is extracted from mammography projections before and after 

breast compression. The elastic parameters are estimated by optimally minimizing the 

difference between the calculated displacements and experimental measures. The 

nonlinear adjoint method, developed in nonlinear elastography, is applied to calculate the 

gradient of the objective function. It is shown that the nonlinear elasto-mammography is 

stable and robust for characterization of the elastic modulus of breast tissues and tumors 

from the projective displacement measurement. These findings are sufficiently 

encouraging to warrant both further development and clinical evaluation of our proposed 

elasto-mammography.  

7.1.2 Diffusion Optical Tomography 

Besides elastic properties differences between normal tissues and tumors, it is 

known that optical properties of tissue also change related with physiological change. 

Diffuse Optical Tomography (DOT) emerged as a tool to identify and characterize breast 

tumors by imaging optical properties.  



 

 

153 

 

Since the inverse problem is non-unique, ill-posed underdetermined, the major 

challenge in DOT is to develop efficient and stable algorithm to solve the inverse 

problem. As we have successfully developed nonlinear adjoint method to provide 

gradient of the objective function in elasto-mammography, we have expanded this 

method to diffuse optical tomography. We have developed a finite-element-based 

algorithm to solve the inverse problem of frequent-domain diffusion equation. The 

internal structures, that is, locations and sizes of tumors, are known as a prior. We have 

established the objective function by comparing calculated and measured light intensity 

on surface. The nonlinear adjoint method is expanded to complex domains to provide 

gradients of the objective function. A 2-D numerical simulation is carried out and 

compared with phantom experiments. The results show that our adjoint-based algorithm 

is efficient and robust for reconstructing the optical properties.       

7.2 Recommendations for Future Work 

7.2.1 Multi-modalities 

Because the inverse problem in diffuse optical tomography is a non-unique, ill-

posed underdetermined problem, previous diffuse optical tomography studies frequently 

face the problems of unstable, time-consuming, low spatial resolution, requiring a lot of 

measurement data. So in recent years, researches have been carried to apply multi-

modalities, such as combing DOT and MRI. MR image of a breast can provide the 

location of a tumor as a priori. Due to this approach, the spatial resolution of the optical 

image effectively becomes that of the MR image.   

In elasto-mammography we have combined elastogrpahy and traditional X-ray to 

reconstruct elastic properties of breast tissues. It is natural to develop new imaging 

modalities by combing DOT and X-ray mammography. The internal structure of breast 

structure can be obtained as a prior by mammography projections. The advantage of the 



 

 

154 

 

multi-modalities is that the numbers of unknown parameters will be significantly 

decreased and imaging resolution could be improved.  

Moreover, in this study we have applied a 2-D numerical model to verify our 

reconstruction algorithm. We may further develop a 3-D heterogeneous model to test the 

algorithm for clinical application.  

Meanwhile new imaging technologies make it possible to combine MRI or 

ultrasound with our proposed elasto-mammography. In elasto-mammography the images 

are taken by X-ray for the whole breast, but actually the most interested area is the tumor. 

Recently a 3D ultrasound guided breast biopsy system has been developed to obtain more 

accurate imaging of breast lesions (Smith et al., 2001; Fenster et al., 2004; Abbate et al., 

2009; Swinson et al., 2009). In this system, a 3D ultrasound image is acquired of the 

volume of breast tissue, then the interest area could be determined by users and the 

ultrasound transducer is moved to be directly over the target to provide real-time image 

of the target. To combine this new ultrasound technology may improve our proposed 

elasto-mammography modality.        

7.2.2 Effect of Pressure 

In optical tomography systems the human breast is usually compressed by flat 

glass plates or encircled by an array of fiber bundles. Pressure is applied to the exterior of 

the tissue, causing significant deformation in many cases. It is shown that pressure has 

significant impact on absorption and scattering coefficients on human tissue. The optical 

properties change as function of time after the pressure is applied on tissues. So the study 

about pressure-induced change in optical properties may provide functional information 

about tissue composition and elastic response that may be exploited as sensitive measures 

of physiology. Since we have developed new elasto-mammography modality and DOT 

algorithm, in the future, we may combine the elastic and optical methods to develop new-

generation elasto-optical imaging modality for breast cancer imaging.    
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