
ABSTRACT

Title of dissertation: THREE DIMENSIONAL EDGE DETECTION
USING WAVELET AND SHEARLET ANALYSIS

David A. Schug, Doctor of Philosophy, 2012

Dissertation directed by: Professor Dianne P. O’Leary
Dr. Glenn R. Easley

Applied Mathematics and Scientific and
Statistical Computing Program

Edge detection determines the boundary of objects in an image. A sequence

of images records a 2D representation of a scene changing over time, giving 3D data.

New 3D edge detectors, particularly ones we developed using shearlets and hybrid

shearlet-Canny algorithms, identify edges of complicated objects much more reliably

than standard approaches, especially under high noise conditions. We also use

edge information to track the position and velocity of objects using an optimization

algorithm.

THREE DIMENSIONAL EDGE DETECTION
USING WAVELET AND SHEARLET ANALYSIS

by

David Albert Schug

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor Dianne P. O’Leary, Co-Advisor
Dr. Glenn R. Easley, Co-Advisor
Professor John J. Benedetto
Professor William S. Levine
Professor David W. Jacobs

c© Copyright by
David Albert Schug

2012

Acknowledgments

I owe my gratitude to all the those who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First, I’d like to thank my co-advisor, Professor Dianne O’Leary for giving

me an invaluable opportunity to work on challenging and extremely interesting

projects over the years. It has been a pleasure to work with and learn from such an

extraordinary individual.

I would also like to thank my co-advisor, Dr. Glenn Easley. Without his

extraordinary theoretical ideas and computational expertise, this thesis would have

been a distant dream.

Thanks are due to Professor John Benedetto, Professor David Jacobs, and

Professor William Levine for agreeing to serve on my thesis committee and for

sparing their invaluable time reviewing the manuscript.

I would like to acknowledge financial support from the Patuxent River Naval

Air Station, in particular the Photogrammetrics group for all the projects discussed

herein.

I owe my sincere gratitude to my wife who has stood by me and supported me

through my career.

Lastly, deepest thanks go to the Lord Jesus Christ, Glory to God!

ii

Table of Contents

List of Figures iv

1 The Edge Detection Problem 1
1.1 Introduction . 1

2 Two Dimensional Edge Detection 4
2.1 Introduction . 4
2.2 Basic Methods . 6

2.2.1 Sobel Edge Detection . 9
2.2.2 Canny Edge Detection . 10
2.2.3 Wavelet Edge Detection . 12
2.2.4 Shearlet Edge Detection . 16

2.3 Conclusions . 26

3 Three Dimensional Edge Detection 28
3.1 Introduction . 28
3.2 Edge Detection Characteristics of Wavelets and Shearlets 30
3.3 Edge Detection Algorithms . 38

3.3.1 3D Canny Edge Detection . 39
3.3.2 3D Wavelet and Shearlet Edge Detection 41
3.3.3 Hybrid 3D Edge Detectors . 53

3.4 Experimental Results . 54
3.4.1 Spherical Harmonic . 54

3.5 Conclusions . 63

4 Tracking Objects Using Three Dimensional Edge Detection 66
4.1 Introduction . 66
4.2 Problem Definition and Test Data . 68
4.3 Tracking Algorithm . 72
4.4 Experimental Results . 77
4.5 Conclusions . 85

5 Summary and Future Work 90
5.1 Conclusion . 90
5.2 Future Work . 91

Bibliography 93

iii

List of Figures

2.1 Image I of solid disk (left) and its edge image IE (right). 5
2.2 Derivative of the Gaussian using σ = 2 7
2.3 Sinusoidal signal (left) and convolution (2.7) at σ = 0.01 (middle)

and σ = 2 (right). 7
2.4 True derivative of the sinusoidal signal (left) and convolution approx-

imation (right) using σ = std(sin(x)) = 0.6909 8
2.5 Frequency support of some representative shearlet analyzing func-

tions ψ̂ast. 19

3.1 The support of a 3D shearlet ϕ̂as1s2x in the frequency domain with
a = 1/4 and s1 = s2 = 0 (left) and a = 1/16, s1 = 0.5, and s2 = 0.7
(right). 36

3.2 The horizontal partition for 3D shearlet filter. 46
3.3 The x-y partition along the t-axis for 3D shearlet filter. 47
3.4 The y-t partition along the x-axis for 3D shearlet filter. 48
3.5 The level 1 partition for 3D shearlet filter along t-axis. 49
3.6 Spherical harmonic truth data . 54
3.7 Noisy spherical harmonic for 2D (left) and 3D (right) algorithms. . . 57
3.8 Positive identification of edges (top) false positives (middle) and false

negatives(bottom) for 2D and 3D Canny, wavelet, and shearlet algo-
rithms. 58

3.9 The performance of Canny using different smoothing levels, 2D (left)
and 3D (right) on spherical harmonic. Average over 100 trials. 59

3.10 Slice spherical harmonics with noise for 2D (left) and 3D (right) for
Canny (row 1), wavelet (row 2), and shearlet (row 3) routines. 60

3.11 Disk spiraling without noise . 61
3.12 Results of disk spiraling surface detected for 2D (left) and 3D (right)

for wavelet (row 1) and shearlet (row 2) algorithms without noise
added to data. 62

3.13 Results of disk spiraling surface detected for 2D (left) and 3D (right)
for wavelet (row 1) and shearlet (row 2) algorithms with noise added
to data. 63

3.14 Slice from disk spiraling without noise for Canny 3D. 64
3.15 Slices from a disk spiraling without noise for Wavelet 2D x-y slice (left), Canny

3D over time (middle) and the sum of Wavelet 2D and Canny 3D (right). 64
3.16 Slice from disk spiraling without noise for Wavelet 3D. 65

4.1 Images of track objects taken by cameras on an airplane 66
4.2 Four frames from the spiraling ball movie. 69
4.3 Patch containing the disk (left) is inserted into a frame of the movie

(right). 69
4.4 Patch containing a bow-tie (left), a rotated bow-tie (middle), and a

shaded bow-tie (right). 70

iv

4.5 Four frames from a bow-tie movie with spiraling movement, rotation,
and illumination changes. 71

4.6 Results for spiraling ball with noise. 76
4.7 Results for spiraling bow-tie with noise. 79
4.8 Results for the spiraling shaded ball with noise 81
4.9 Results for the spiraling shaded bow-tie with noise. 82
4.10 Results for spiraling rotating bow-tie with noise. 83
4.11 Rotation angle errors for spiraling rotating bow-tie with noise. 84
4.12 Results for spiraling rotating shaded bow-tie with noise. 87
4.13 Rotation angle errors for spiraling rotating shaded bow-tie with noise. 88
4.14 Maximum (left) and mean (right) errors in centers (top), velocity

angles (middle), and rotation angles (bottom) for hybrid algorithm
on a rotating spiraling bow-tie with noise. 89

v

Chapter 1

The Edge Detection Problem

1.1 Introduction

The edge detection problem is about discerning differences between objects

in images. This problem is not new but it is very important and not completely

well defined. Humans use our eyes to capture visual information and then pass that

information to our minds to make sense of it. We open our eyes and clearly see

differences between important objects and other background and clutter in a scene.

As humans we can visually interpret many things but there are open questions

about how we do it. The exact science and mathematics of how to process and

organize image data is not clear. However applying mathematics to represent images

intensities and compute the differences is a step in the right direction. At the

heart of edge detection is the necessity to first compute the differences in image

intensities. When the edge differences are combined we actually see the boundary

of a silhouette of the three dimensional object being observed. The boundary could

be curved or straight but in any case there is an implied direction for each edge

pixel. If we consider a group of edge pixels as a batch, the direction can remain

constant or change rapidly as our eye follows the boundary from pixel to pixel. The

instantaneous snapshot gives us the outline of the object but what came before

or after is somewhat of a mystery. Traditionally the two dimensional image itself

1

has been the focus of edge detection algorithms. This may be due to the fact

that if we can’t see features in two dimensions how can we visualize a complicated

structured surface in three dimensions? Capturing image sequences and processing

the volumetric data will provide more information for edge analysis. This work

reviews the background of two dimensional edge detection and develops and applies

three dimensional edge analysis.

Chapter 2 reviews basic two dimensional (2D) edge detection methods includ-

ing Sobel, Canny, wavelet, and shearlet. For each method the necessary mathemat-

ical model is defined and integrated into its respective algorithm. The methods

are also compared. Chapter 3 extends the traditional 2D edge detection approaches

into three dimensions. The 3D edge detection methods developed include the 3D

Canny, 3D wavelet, and the new 3D shearlet. The 3D methods are tested using

a noisy spherical harmonic solid and a noisy solid spiraling disk. Also two hybrid

methods are developed and implemented. The first hybrid method uses the 2D

wavelet to process an image slice and then applies the Canny method along the

time dimension. The second hybrid method is similar except it processes the image

slice with a 2D shearlet edge detector. Chapter 4 describes the integration of 2D

and 3D edge detection into a tracking application. The tracking algorithm is defined

and tested using different shapes, noise levels, and illumination effects.

My research contributions are summarized by the following.

• Implement my own versions of 3D Canny and 3D Wavelet edge detectors.

• Design and implement new 3D Shearlet edge detectors and hybrid Canny-

2

wavelet and Canny-shearlet edge detectors.

• Develop test cases with corresponding metrics and analysis comparing 2D and

3D methods.

• Design and implement new tracking algorithms that use 2D and 3D Canny,

wavelet, shearlet, and hybrid edge detectors.

• Develop test cases and provide corresponding analysis of tracking capabilities.

• Use 3D edge detection to compute object velocity.

3

Chapter 2

Two Dimensional Edge Detection

2.1 Introduction

Edge detection is the process of distinguishing the boundaries of different

objects in an image. For two dimensional (2D) edge detection the input data is

a single image. The image data is generated by a given intensity function

I : R2 → R (2.1)

that assigns scalar valued intensities to discrete locations in the plane. The measured

image I is an m × n array of samples of the intensity function I at evenly spaced

grid points P = [1 : m]× [1 : n]. Each sample in the image is called a pixel or picture

element consisting of an image intensity at a particular location in the plane. Given

a threshold h > 0 the output of the edge detection process includes a set of points

PE and an image IE defined by

IE(i, j) =

1 if (i, j) ∈ PE, i = 1, . . . ,m and j = 1, . . . , n

0 otherwise

(2.2)

where

PE = {p ∈ P : |∇I(p)| ≥ h, } . (2.3)

The image I of a white ball on a black background is the disk on the left in Figure 2.1

and the corresponding edge image IE is on the right.

4

Figure 2.1: Image I of solid disk (left) and its edge image IE (right).

The gradient ∇I(p) measures the change in the magnitude of image intensity

from one pixel to another. However the gradient also reveals the direction of the in-

tensity change. Therefore, it is important to consider both magnitude and direction

when identifying an edge. In addition, we need to choose the threshold h so that

the gradient identifies the true edge.

The process of finding edges is more complicated than it first appears. First,

we need to approximate |∇I|, since we only have discrete samples of I. Second,

if the original object is simple, intensities are uniform on the interior of an object

and dramatically different from the intensity of the background, as is the case with

the white disk. However, if noise is added to the image, then the edges of the disk

are much harder to detect. The differences in intensity might be too small to rise

above the threshold. One solution to this problem is to smooth the image before

edge detection to eliminate the effects of the noise. This will tend to make the

interior more uniform and improve detection. A drawback of smoothing is that the

true edges will be averaged with background pixels that have different magnitudes,

blurring the true edge. Also, smoothing can distort true edges, especially for those

edges that are close together, have high curvature, or change direction rapidly at a

5

corner point. The direction of noise gradients will often be different from true edges

so a common practice is to search in different directions and suppress those gradient

changes that are in completely different directions than the current edge direction.

This chapter will review several 2D edge detectors including Sobel, Canny, mul-

tiscale using wavelet, and multiscale combined with multidirectional using shearlet

transforms. The different 2D methods will be compared with respect to their ability

to address the complications of edge detection.

2.2 Basic Methods

The most fundamental operation when implementing edge detection is the

estimation of the image gradient. There are two common approaches to find the

gradient: convolution of the image with the second derivative of a 2D Gaussian

function or with the Sobel central differencing operator. It is important to note

that both approaches estimate horizontal and vertical directional derivatives, and

other directions are not taken into account.

Consider a one-dimensional example with a sinusoidal function

f(x) = sin(x). (2.4)

For the first approach, define the standard Gaussian function

gσ(x) = exp (−(x2)/(2 ∗ σ2)), (2.5)

where σ is the standard deviation for the normal distribution of the x values about

6

the mean x̄ = 0. Compute the derivative

dgσ,x(x) = − 1

σ2
x exp (−(x2)/(2 ∗ σ2)). (2.6)

The derivative of a Gaussian function is seen in Figure 2.2. The gradient of f is

Figure 2.2: Derivative of the Gaussian using σ = 2

then estimated by the convolution

∇f ∼= f ∗ dgσ,x. (2.7)

Two results are displayed in Figure 2.3. Clearly, different choices of σ result in

Figure 2.3: Sinusoidal signal (left) and convolution (2.7) at σ = 0.01 (middle) and

σ = 2 (right).

different approximate derivatives. The derivative of sin(x) should be cos(x). Since

the average value of sin(x) is zero, we can choose σ = std(sin(x)) = 0.6909 to be

7

the standard deviation of the sine function. The result is much closer to the true

derivative of cos(x) as seen in Figure 2.4. The convolution should be normalized to

Figure 2.4: True derivative of the sinusoidal signal (left) and convolution approxi-

mation (right) using σ = std(sin(x)) = 0.6909

one, but the frequency and wavelength of both signals is a closer match to that of

the true cosine.

Consider a two dimensional Gaussian function

gσ(x, y) = exp (−(x2 + y2)/(2 ∗ σ2)), (2.8)

with distribution standard deviation σ. The gradient of a function f : [0, 1]2 → [0, 1]

consists of the partial derivative of f with respect to both coordinates x and y:

dgσ,x ,
∂gσ,x
∂x

= −x
σ

exp (−(x2 + y2)/(2 ∗ σ2)), (2.9)

dgσ,y ,
∂gσ,y
∂y

= −y
σ

exp (−(x2 + y2)/(2 ∗ σ2)). (2.10)

For a given image I the horizontal image derivative can be estimated through con-

volution with dgσ,x:

∇Iσ,x = I ∗ dgσ,x. (2.11)

8

The vertical image derivative can be estimated similarly:

∇Iσ,y = I ∗ dgσ,y. (2.12)

The magnitude of the gradient is then estimated by

|∇I| =
√
∇Iσ,x2 +∇Iσ,y2, (2.13)

and the direction is

θgσ = arctan (∇Iσ,y/∇Iσ,x). (2.14)

2.2.1 Sobel Edge Detection

The second approach to estimating the gradient uses the Sobel operator [5].

The Sobel horizontal derivative filter is given by

Gx =

−1 0 +1

−2 0 +2

−1 0 +1

 , (2.15)

and the vertical derivative filter is

Gy =

−1 −2 −1

0 0 0

+1 +2 +1

 . (2.16)

For a given image I the horizontal image derivative is estimated through convolution

∇Ix = I ∗Gx, (2.17)

and the vertical image derivative estimate is

∇Iy = I ∗Gy. (2.18)

9

The two quantities of interest for the gradient are magnitude and direction defined

by (2.13) and (2.14). The Gaussian or Sobel edge detection method then finds the

edge image IE (2.2). The threshold h must be chosen carefully to minimize the loss

of true edge information. The threshold h can be set from image statistics about

the given image

h = s ∗mean(|∇I|), (2.19)

where s is a scale factor chosen to accept a fraction of the mean intensity change in

the image.

2.2.2 Canny Edge Detection

The 2D Canny edge detection algorithm [3] is an improvement over Sobel

because it takes into account both image intensity magnitude and direction infor-

mation from the image gradient. The version we discuss is implemented in Matlab’s

edge function. The first step is to apply a smoothing operation to mitigate the effect

of noise:

Is = I ∗ gσ, (2.20)

where gσ is defined in equation (2.8). This is also accomplished by discrete convo-

lution with

S =

1 2 1

2 4 2

1 2 1

 . (2.21)

Note that the goal of smoothing is to remove high frequency information and simplify

the edge detection process. The smoothing averages the intensities of interior regions

10

so that the magnitudes are more uniform, setting them apart from the boundary.

The variance σ2 must be chosen carefully so as not to lose true edge information.

Unfortunately, the boundaries of image objects are blurred by smoothing and ob-

scure the actual location of the true edges. This problem occurs for images with

high levels of noise where brightness or shade makes object intensity and background

intensities about the same.

After smoothing, the 2D gradient is estimated using equations (2.11) and

(2.12). The magnitude is then computed with (2.13) and normalized by the max-

imum intensity value in the gradient image. This is essentially very similar to the

Sobel method up to this point.

The Canny algorithm improves upon the Sobel algorithm because Canny 2D

accounts for directional information with a method called nonmaximal suppression.

For nonmaximal suppression, each gradient magnitude is set to zero if it is not

greater than at least one of its neighboring pairs of gradient magnitudes. Since

the unit pixel is square, there are only four possible pairs, oriented by the compass

directions N-S, E-W, NE-SW, NW-SE, to check. This means that only local infor-

mation is considered for edge decision criteria. Only neighboring pixels that touch

are considered for suppression. That may not account for nearby pixels that don’t

touch but still could be considered part of an edge. This would be the case for thick

edges that are two or more pixels wide. To help overcome this problem nonmaximal

suppression is combined with thresholding.

The Canny 2D algorithm improves the standard single thresholding approach

by using a more sophisticated thresholding technique called hysteresis to determine

11

the true edge intensity magnitudes. Hysteresis uses two different thresholds tlow and

thigh to help distinguish true edge intensity magnitudes that are just above or even

below the intensity of the noise. A pixel is identified as a strong edge pixel if its

intensity gradient magnitude is greater than thigh. A pixel is also marked as part of

an edge if it is connected to a strong edge and its gradient magnitude is larger than

tlow and larger than the magnitude of each of its two neighbors in at least one of

the compass directions (N-S, E-W,NE-SW, NW-SE). The procedure is summarized

for a single image in Algorithm 1.

Algorithm 1 The 2D Canny algorithm.
Input: I , σ

Output: Estimate of |∇I|

Smooth by forming Is = I ∗ gσ.

Compute horizontal derivative ∇Ix = Is ∗ dgσ,x.

Compute vertical derivative ∇Iy = Is ∗ dgσ,y.

Compute gradient magnitude |∇I| =
√
∇Ix2 +∇Iy2.

Perform nonmaximal suppression of gradient magnitudes.

Perform hysteresis thresholding.

2.2.3 Wavelet Edge Detection

The 2D wavelet edge detector [9] is a multi-scale method designed to address

the single-scale smoothing limitations associated with the 2D Canny algorithm de-

scribed above. The wavelet transform [18] partitions an image according to the

frequency of image intensity changes. There will be an image for every different

12

scale where the transform is defined. The function ψ = ∇g is a wavelet known as

the first derivative Gaussian wavelet. Then each image I ∈ L2(R2) for a fixed scale

a satisfies:

I(x) =

∫
R2

WψaI(a,y)ψa(x− y) dy, (2.22)

where ψa(x) = a−1 ψ(a−1x), and WψaI(a,x) is the wavelet transform of I, defined

by

WψaI(a,x) =

∫
I(y)ψa(x− y) dy = I ∗ ψa(x). (2.23)

The wavelet transform is useful because it provides a space-scale partitioning of the

image I. The image I ∈ L2(R2) is mapped into the coefficients WψaI(a,y) which

depend on the location y ∈ R2 and the scaling variable a > 0. It is also important to

note that the wavelet transform of I is proportional to the gradient of the smoothed

image

∇(I ∗ ga) = I ∗ ∇ga(x) = I ∗ ψa(x) =WψaI(a,x), (2.24)

so that a particular scale a matches the computation in Canny. The maxima of the

magnitude of the gradient of the smoothed image Ia correspond exactly to the max-

ima of the magnitude of the wavelet transform WψaI(a,x). Therefore the wavelet

transform provides a natural mathematical framework for the multiscale analysis

of edges [9, 10]. In particular, the multiscale wavelet representation sidesteps the

problem of finding the appropriate standard deviation σ so that techniques based

on it will improve those of the Canny algorithm defined above. Furthermore, there

are very efficient numerical implementations of the wavelet transform [8].

Our implementation of the 2D wavelet edge detector first computes the hori-

13

zontal image derivative

∇Ix = I ∗Gx (2.25)

and the vertical image derivative

∇Iy = I ∗Gy. (2.26)

Next, for each scale ai, i = 1, . . . , n, we use matrix S in equation (2.21) to repeatly

smooth the previous horizontal and vertical components:

Gn
x = Gn−1

x ∗ S, Gn
y = Gn−1

y ∗ S. (2.27)

This acts as a discretization of the wavelet dilation as the scale a changes. A weight

is computed by

pn =
max (Gn−1

x)

max (Gn
x)

(2.28)

to scale these approximate dilations to guarantee that the maximum of the wavelet

components does not change. The weight pn is applied to compute the horizontal

smoothed image derivative

∇I(n)
x = ∇I(n−1)

x ∗ pnS (2.29)

and the vertical smoothed image derivative

∇I(n)
y = ∇I(n−1)

y ∗ pnS. (2.30)

After each smoothing we store the dilated derivative Gn
x to compute pn for the next

scale. Finally a cumulative horizontal image derivative that re-enforces edges is

given as

(
∇I(n)

x

)
i

=

(
∇I(n−1)

x

)
i

if |∇I(n−1)
x |i ≤ |∇I(n)

x |i(
∇I(n)

x

)
i

otherwise .

(2.31)

14

The cumulative vertical image derivative as

(
∇I(n)

y

)
i

=

(
∇I(n−1)

y

)
i

if |∇I(n−1)
y |i ≤ |∇I(n)

y |i(
∇I(n)

y

)
i

otherwise .

(2.32)

This step accumulates the contribution from each scaling into the image gra-

dient. The last step is to compute the image gradient magnitude by summing the

squares of the horizontal and vertical cumulative image derivatives:

|∇I|2 = ∇Ix2 +∇Iy2. (2.33)

The 2D wavelet algorithm is summarized in Algorithm 2.

Edge detection is complicated by the presence of noise and by edges that are

close together, cross each other, or exhibit high curvature [20]. Difficulties with the

wavelet approach are summarized by:

• Difficulty in distinguishing close edges. The isotropic Gaussian smoothing

causes distinct edges that are close together to be blurred into a single curve.

• Poor angular accuracy. Sharp changes in curvature or crossing curves lead to

an inaccurate detection of the edge direction. This affects the detection of

corners and junctions.

To address these difficulties one has to deal with the anisotropic nature of the edge

lines and curves. For example, in [13, 16, 4] it has been proposed to replace the

scalable collection of isotropic Gaussian filters g(x, y), σ > 0 in (2.8) with a family

of steerable and scalable anisotropic Gaussian filters

Ga1,a2,θ(x1, x2) = a
−1/2
1 a

−1/2
2 RθG(a−1

1 x1, a
−1
2 x2),

15

where a1, a2 > 0 and Rθ is the rotation matrix for angle θ. Unfortunately, the

design and implementation of such filters is computationally involved. In addition,

the justification for this approach is essentially intuitive and there is no proper

theoretical model to indicate how to “optimize” this family of filters to best capture

edges.

Image analysis that only considers gradient magnitude information is at a

disadvantage because it does not account for any directional information for true

edge decision criteria. Using gradient directional information is a critical step in

improving edge detection capability. Unfortunately the wavelet is isotropic and

does not account for intensity changes in different directions. In the next section we

introduce a new directional transform.

2.2.4 Shearlet Edge Detection

In this section, we explain how an anisotropic and multiscale-based transform,

known as the shearlet transform, can be used to detect and characterize edges. The

shearlet characterization of image edges is more complete because the transform

not only accounts for different scales of intensity changes, but also for the direction

of the edge at each scale for a particular location in the image plane. The Canny

method accounts for directional information by using nonmaximal suppression and

hysteresis filtering, but only at a single scale, by considering neighboring pixels. The

shearlet transform performs a convolution over a window of pixels with a multi-

scale, multi-directional operator. The scale, direction, and size of the window helps

16

Algorithm 2 The 2D wavelet algorithm.
Input: Source image I

Output: Estimate of |∇I|

Compute basic horizontal derivative ∇Ix = I ∗Gx.

Compute basic vertical derivative ∇Iy = I ∗Gy.

for i = 1→ n do

Smooth current cumulative gradient operator.

Determine gradient scaling constant.

Smooth horizontal derivative scaled by gradient scaling factor.

Smooth vertical derivative scaled by gradient scaling factor.

Update smoothed gradient operator.

Accumulate horizontal derivative coefficients.

Accumulate vertical derivative coefficients.

end for

Compute gradient magnitude |∇I| =
√
∇Ix2 +∇Iy2.

to capture edge information that doesn’t touch a particular pixel but is still part of

the true edge.

The shearlet operator, defined below, generates a partition of the frequency

plane consisting of angular dependent regions. The number of directions is adaptive

and can be set to match the complexity of the edge directional information in the

image. Images whose edge directions change rapidly or in more complicated ways

would require more shearlet directions while simple edge directions require fewer.

It is necessary to first understand how the shearlet transform reveals image intensity

17

and directional information and then describe how the transform can be integrated

into an edge detection system [19].

More specifically the shearlet transform is defined as the mapping

SHψf(a, s, t) = 〈f, ψast〉, a > 0, s ∈ R, t ∈ R2,

where ψast(x) = | detMas|−
1
2ψ(M−1

as (x− t)) and Mas =
(a s

0
√
a

)
. Each matrix Mas

can be factored as BsAa, where Bs =
(

1 −s
0 1

)
is a shear matrix and Aa =

(
a 0

0
√
a

)
is

an anisotropic dilation matrix. The frequency support of ψast(t) is given by a pair of

trapezoids determined by the scale a and shear s. These trapezoids are symmetric

with respect to the origin and oriented along a line of slope s. Figure 2.5 provides

an illustration for various values of a and s.

The analyzing function ψ needs to be chosen appropriately in order for the

transform to be invertible. In particular, for a point in the frequency domain

ξ = (ξ1, ξ2) ∈ R2, ξ1 6= 0, let the Fourier transform of ψ be given by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(ξ2
ξ1

),

where ψ1 ∈ L2(R) satisfies the Calderòn condition

∫ ∞
0

|ψ̂(aξ)|2 da
a

= 1 for a.e. ξ ∈ R2,

and ‖ψ2‖L2 =
(∫

R2(ψ2(x))2 dx
) 1

2 = 1. Then, for each f ∈ L2(R2), we have:

f(x) =

∫
R2

∫ ∞
−∞

∫ ∞
0

〈f, ψast〉ψast(x)
da

a3
ds dt.

The magnitudes in this representation have different behavior at edges than

at smooth regions of the image. Knowing how the magnitudes at the edges will

18

@
@R

(a, s) = (1
32
, 1)

@
@@R

(a, s) = (1
4 , 0)

6

(a, s) = (1
32
, 0)

ξ1

ξ2

Figure 2.5: Frequency support of some representative shearlet analyzing functions

ψ̂ast.

mathematically change in this representation with respect to scale a and shear s, a

method for detecting edges and their orientation was given in [7]. This precise math-

ematical framework enables us to explicitly represent both large and small changes

in both intensity magnitude and direction. The result is an improved capability to

successfully detect subtle intensity differences and more complicated object shapes,

especially when objects are moving rapidly. We avoid the problem of choosing the

orientation of steering Gaussian filters [13] for wavelets or of using nonmaximal sup-

pression at a single scale as in the Canny edge detector. The solution is to use a

collection of directional filters that partitions the entire frequency space at different

19

scales rather than partitioning the spatial domain. This method has also proven to

be very robust in correctly distinguishing edges over noise since the noise does not

change with respect to scale in the same way.

To implement the discrete shearlet transform for ξ = (ξ1, ξ2) ∈ R̂2, scale a < 1,

and shear |s| ≤ 1, use the conjugate of the Fourier transform of the analyzing

function ψ to define window functions

ŵ(0)
a,s(ξ) = a−

1
4 ψ̂2

(
a−

1
2

(
ξ2

ξ1

− s
))

χD0(ξ), (2.34)

ŵ(1)
a,s(ξ) = a−

1
4 ψ̂2

(
a−

1
2

(
ξ1

ξ2

− s
))

χD1(ξ), (2.35)

where D0 =
{

(ξ1, ξ2) ∈ R̂2 :
∣∣∣ ξ2ξ1 ≤ 1

∣∣∣}, D1 =
{

(ξ1, ξ2) ∈ R̂2 :
∣∣∣ ξ1ξ2 ≤ 1

∣∣∣}. For a < 1,

|s| ≤ 1, t ∈ R2, in two dimensions d = 0, 1, the Fourier transform of the shearlets

can be expressed as

ψ̂
(d)
a,s,t(ξ) = aV (d)(aξ)ŵ

(d)
a,s(ξ)e−2πiξt, (2.36)

where V (0)(ξ1, ξ2) = ψ̂1(ξ1), V (1)(ξ1, ξ2) = ψ̂1(ξ2). The shearlet transform of I ∈

L2(R2) is:

SH(d)
ψ I(a, s, t) = a

∫
R2

Î(ξ)V (d)(aξ)(aξ)ŵ(d)
a,s(ξ)e2πiξt dξ, (2.37)

where d = 0, 1 correspond to the horizontal and vertical directions respectively.

Therefore from (2.37) we have

SH(d)
ψ I(a, s, t) = v(d)

a I ∗ w(d)
a,s(t), (2.38)

where

v(d)
a I(t) =

∫
R2

aÎ(ξ)V (d)(aξ)e2πiξt dξ. (2.39)

20

To develop a transform useful for edge detection we choose the functions ψ̂1

to be odd and ψ̂2 to be even. For m,n ∈ N an m× n image can be considered as a

set of samples I[n1, n2] : n1, n2 = 0, . . . ,m− 1. Therefore by identifying the domain

with Z2
N we may view l2(Z2

N) as the discrete analog of L2(R2). The inner product

of the images of I1 and I2 is defined to be

〈I1, I2〉 =
m−1∑
n1=0

n−1∑
n2=0

I1[n1, n2]I2[n1, n2]. (2.40)

For m/2 ≤ k1, k2 < n/2, the 2D discrete Fourier transform (DFT) Î[k1, k2] is given

by

Î[k1, k2] =
1

m

m−1∑
n1=0

n−1∑
n2=0

I[n1, n2]e−2πi(
n1
m
k1+

n2
n
k2) . (2.41)

For notational purposes [., .] denotes arrays for indices and (., .) denotes function

evaluations. The numbers Î[k1, k2] are samples from the trigonometric polynomial

Î(ξ1, ξ2) =
∑m−1

n1=0

∑n−1
n2=0I[n1, n2]e−2πi(n1m ξ1+

n2
n
ξ2). To implement the window func-

tions w
(d)
a,s , we compute the DFT on a grid consisting of lines across the origin at

various slopes called the pseudo-polar grid and then apply a band-pass filter with

respect to this grid. Define the pseudo-polar coordinates (ζ1, ζ2) ∈ R2 by

(ζ1, ζ2) = (ξ1,
ξ2

ξ1

) if (ξ1, ξ2) ∈ D0, (2.42)

(ζ1, ζ2) = (ξ2,
ξ1

ξ2

) if (ξ1, ξ2) ∈ D1. (2.43)

Using this change of coordinates we get

˜̂
v

(d)
a f(ζ1, ζ2) = v̂(d)

a f(ξ1, ξ2), (2.44)

˜̂w(d)(a−1/2(ζ2 − s)) = ŵ(d)
a,s(ξ1, ξ2). (2.45)

21

The different directional components are obtained by translating the window func-

tion ˜̂w(d). At the scale a = 2−2j, j ≥ 0, let v
(d)
j I[n1, n2] be the discrete samples of a

function v
(d)

2−2jI(x1, x2) with Fourier transform v̂
(d)
a I(ξ1, ξ2). Also the discrete samples˜̂

v
(d)
j I[k1, k2] =

˜̂
v

(d)

2−2jI(k1, k2) are the values of the DFT of v
(d)
a on the pseudo-polar

grid by direct extraction using the Fast Fourier Transform (FFT). To discretize the

window function use w̃(d) where

1∑
d=0

2j−1∑
l=2j

˜̂w(d)[2jk2 − l] = 1, (2.46)

and the shearing variable is discretized as sj,l = 2−jl. Let Φp be a mapping func-

tion from the Cartesian grid to the pseudo polar grid. Then the discrete shearlet

transform can be written in the discrete frequency domain as

Φ−1
p

(˜̂
v

(d)
j I[k1, k2]

)
Φ−1
p

(
δ̂p[k1, k2]˜̂w(d)[2jk2 − l]

)
, (2.47)

where δ̂p is the discrete Fourier transform of the dirac delta function δp in the pseudo

polar grid. Therefore, the discrete shearlet transform can be implemented as

SH(d)I[j, l, k1, k2] = v
(d)
j I ∗ w(d)

j,l [k1, k2], (2.48)

where

ŵ
(d)
j,l [k1, k2] = Φ−1

p

(
δ̂p[k1, k2]˜̂w(d)[2jk2 − l]

)
. (2.49)

To compute the discrete shearlet transform, let Hj and Gj be the low-pass and

high-pass filters of a wavelet transform with 2j−1 zeros inserted between consecutive

coefficients of both filters. Given 1-D filters H and G define I ∗ (H,G) to be the

separable convolution of the rows and columns of I with H and G. The filter G is the

22

wavelet filter corresponding to ψ̂1. The function ψ̂1 must be odd and H represents

the coarse scale. The window functions ŵ(d) are related to the functions ψ̂2 which

are even. The ψ̂2 functions are implemented using a Meyer-type filter [8]. The

Meyer wavelet is frequency band-limited with a Fourier transform that is smooth.

Because it is smooth it has a much faster asymptotic decay rate over time. The 2D

shearlet transform is summarized in Algorithm 4.

Algorithm 3 The 2D discrete shearlet algorithm.

Input: I ∈ l2(Z2
N).

Output: Discrete shearlet transform SH(d)I[j, l,k] = v
(d)
j I ∗w(d)

j,l [k]

S0I = I.

for j = 1 → n do

Separable convolution for rows and columns of SjI = Sj−1I ∗ [Hj, Hj], j ≥ 1.

for direction d = 0, 1 do

The discrete shearlet transform is SH(d)I[j, l,k] = v
(d)
j I ∗ w(d)

j,l [k]

where j ≥ 0, −2j ≤ l ≤ 2j − 1, k ∈ Z2 and

v
(0)
j I = SjI ∗ [Gj, δ],

v
(1)
j I = SjI ∗ [δ,Gj].

end for

end for

To implement the 2D shearlet edge detection algorithm first compute the hori-

zontal and vertical image derivatives as in equations (2.25) and (2.26) for the wavelet.

This approximates the components v
(d)
j . The directional windows w

(d)
j,` are con-

structed as follows: The first step is to generate the x and y vectors containing

23

the polar coordinates to extract radial slices. Then for each direction compute the

Meyer window of bandpass filters w of length N × L where N is the window size

and L is the number of directions. Next reassemble each radial slice into a matrix of

filters for each direction. The shearlet filters are computed off-line before processing

begins. To begin processing, at each scale use (2.27) and (2.28) to compute the nth

scaling weight pn. Apply (2.29) and (2.30) to give the horizontal ∇Ix and vertical

∇Iy dilated image derivatives by smoothing with S. After each smoothing store the

dilated Gn
x to compute pn for the next scale. To compute the horizontal shearlet

directional image derivatives two ancillary quantities are necessary: the shearlet di-

rectional filter convolved with the basic image gradient without smoothing and the

image gradient after smoothing. For each scale a and slope direction s, we use the

shearlet directional filter to compute the basic horizontal shearlet image derivative

∇Ix,s = ∇Ix ∗ wa,s. (2.50)

Similarly, the basic vertical shearlet image derivative is

∇Iy,s = ∇Iy ∗ wa,s. (2.51)

The resultant shearlet coefficients serve as a reference to later accumulate the edge

locations at the current dilation and above. The horizontal shearlet coefficients are

∇I(n)
x,s = ∇I(n)

x ∗ wa,s (2.52)

and the vertical shearlet coefficients are

∇I(n)
y,s = ∇I(n)

y ∗ wa,s. (2.53)

24

For each direction s, we retain those horizontal smoothed/scaled shearlet coefficients

that are larger than the previous scaled horizontal shearlet coefficients

∇I(n)
xd

= ∇I(n)
x,s . ∗ (

∣∣∇I(n)
x,s

∣∣ ≥ ∣∣∇I(n−1)
x,s

∣∣) (2.54)

and the vertical smoothed shearlet coefficients that are larger than the previous

scaled vertical shearlet coefficients

∇I(n)
yd

= ∇I(n)
y,s . ∗ (

∣∣∇I(n)
y,s

∣∣ ≥ ∣∣∇I(n−1)
y,s

∣∣). (2.55)

Add the larger horizontal shearlet coefficients to the cumulative horizontal shearlet

directional coefficient sum

∇I(n)
xc = ∇I(n−1)

xc +∇I(n)
xd
, (2.56)

and also add the larger vertical shearlet coefficients to the cumulative vertical shear-

let directional coefficient sum

∇I(n)
yc = ∇I(n−1)

yc +∇I(n)
yd
. (2.57)

After accumulating coefficients in each direction, add cumulative horizontal

shearlet coefficients to the previous shearlet coefficients for the current scale estimate

∇I(n)
x = ∇I(n−1)

x . ∗ (
∣∣∇I(n−1)

x

∣∣ ≤ |∇Ixc |) +∇I(n)
xc (2.58)

and the cumulative vertical shearlet coefficients to the previous set of coefficients

for the current scale

∇I(n)
y = ∇I(n−1)

y . ∗ (
∣∣∇I(n−1)

y

∣∣ ≤ |∇Iyc|) +∇I(n)
yc . (2.59)

25

The last step is to compute the image gradient magnitude by summing the squares

of the horizontal and vertical cumulative image derivatives (shearlet coefficients)

|∇I|2 = ∇Ix2 +∇Iy2. (2.60)

The 2D shearlet based edge detection procedure for a single image is summarized

in Algorithm 4.

2.3 Conclusions

We have presented a series of increasingly complicated 2D edge detection meth-

ods including Canny, wavelet, and shearlet. The Canny method mitigates noise by

first smoothing the image to eliminate high frequency information. Canny also uses

edge directional information to suppress gradient magnitudes that are non-maximal.

The wavelet extends the ability to smooth at different scales and detect different

bandwidths of intensity magnitudes using dilated waveforms. The shearlet trans-

form extends the directional capability of edge detection through convolution with

shearlet filters that form a finer partition of the frequency space to include more

directions than the other methods. When object shapes and motions are simple

then all the edge detectors perform about the same. However when edges run close

together or noise increases the more complicated methods outperform simpler meth-

ods. None of these methods measure the magnitude or direction of edge changes

from one image to the next, but these changes do indeed exist. The next chapter

will extend the edge detection problem into the third dimension, time.

26

Algorithm 4 The 2D shearlet edge detection algorithm.
Input: Source image I

Output: Estimate of |∇I|

Compute basic horizontal derivative ∇Ix = I ∗Gx.

Compute basic vertical derivative ∇Iy = I ∗Gy.

Compute the shearlet filters.

for scale s = 1→ ns do

Smooth current cumulative gradient operator.

Determine gradient scaling constant.

Smooth horizontal image derivative scaled by gradient scaling factor.

Smooth vertical image derivative scaled by gradient scaling factor.

Update smoothed gradient operator.

for direction d = 1→ nd do

Compute shearing direction with smoothed horizontal derivative.

Compute shearing direction with smoothed vertical derivative.

end for

Accumulate horizontal derivative coefficients.

Accumulate vertical derivative coefficients.

end for

Compute gradient magnitude |∇I| =
√
∇Ix2 +∇Iy2.

27

Chapter 3

Three Dimensional Edge Detection

3.1 Introduction

Traditional edge detection is performed with a single image. Edge detection

in two dimensions highlights the boundaries of image features while setting the

interior region to zero. The product of this process is an outline or silhouette of

the outstanding image features. Two dimensional edge magnitude and direction

shows local information about the orientation boundary for the current image only.

However, for many applications there is a sequence of images available to capture

information about an event. Therefore three dimensional (3D) edge detectors can

operate on an entire movie consisting of a fixed number of image frames processed as

a batch. What is new about 3D edge detection is the fact that two dimensional edge

boundaries are linked together to form a hollow edge surface structure, revealing a

three dimensional surface representing the trajectory of the edge image over time.

Each x-y slice of the edge surface is still the image of the edges of the observed

object at some time, but it is based on the nearby image neighbors from the block

of images. Therefore more information is provided for each edge pixel because each

edge surface pixel consists of an intensity and a three dimensional vector normal

to the edge surface. Pixels inside the surface are set to zero, similar to the 2D case.

The surface normal points toward the future location of the edge. Another new

28

and interesting consequence of 3D edge detection is better depth perception when

observing objects whose motion is parallel to the line of sight. If the observer line

of sight and motion become parallel, it is nearly impossible with 2D edge detection

to detect that the object moved. For example , when the motion of a ball is directly

lined up with the observer’s line of sight the image sequence will be a collection

of disks in the center of the image. No perceptible motion can be inferred from an

image sequence from this viewpoint using 2D edge detection. However, if we process

the block of images with 3D edge detection the derivative in the time direction

records changes, and we know the object moved. In this case the object will change

scale and edge slices will get larger if the object is moving towards the camera and

smaller if it is moving away. The result is a cylindrical surface membrane that

expands or contracts depending on the motion of the object with respect to the

camera. This is significant information needed to estimate the motion along the line

of sight. Note that no extra cameras are needed to detect the motion from another

viewpoint normal to the motion of the object in such cases. The application of three

dimensional edge detection to tracking will be studied further in Chapter 4.

Previous work in the area of 3D edge detection goes back to Monga and Deriche

[12] , who extended the 2D Canny operator to three dimensions. They implemented

3D separable Gaussian masks computing the image derivative and smoothing for

each orthogonal direction x, y, and t. This was one of the first extensions of the

Canny method into 3D. Their method was applied to magnetic resonance and echo-

graphic volumetric data. Monga and Benayoun [11] extended the state of the art

mathematically by using partial derivatives to treat the 3D image as a hypersurface

29

or three dimensional manifold in R4. They computed the curvatures at designated

edge points using the partial derivatives of the image. In particular, surface char-

acteristics such as maximum curvature and ridge lines were investigated using the

second partial derivative known as the Laplacian of the image. The detectors based

on the Laplacian provided edge localization and magnitude but did not provide

directional information. Brejl and Sonka [1] suggested a directional 3D edge detec-

tor designed for anisotropic image data. The 3D wavelet has been used to detect

cerebral vessels by Weiping and Hauzhong [17] in magnetic resonance angiogram

(MRA).

The material in this chapter closely follows [14]. Section 3.2 presents data

and background needed to implement and use different three dimensional edge de-

tectors. Section 3.3 discusses the details of different edge detection approaches.

Finally section 3.4 defines several different experiments, presents the results from

different edge detection methods, and compares their respective advantages and dis-

advantages. Matlab implementations of these algorithms are available at http://

www.cs.umd.edu/users/oleary/software.

3.2 Edge Detection Characteristics of Wavelets and Shearlets

The desire to locate perceptible changes in image intensities or edges cor-

responds with the ongoing need to detect and estimate features in images. The

fundamental component data for this problem is a single image frame. We assume a

camera records frames at a particular frame rate f in units of [frames/sec.] over the

30

time period T seconds. The result of this observation is a discrete image sequence

Ĩ = {I0, I1, . . . , I`} . (3.1)

Edge detection applications include imagery collected from medical sensors,

surveillance video, and many others. Automating the extraction of image features

and detecting small but important jumps in intensity has proven difficult with many

problems yet to be resolved. Real world data often provides illumination changes,

occlusions, complicated clutter, and noise that challenges the robustness of the latest

technology. Even under ideal conditions, edge features are blurred or lost for edges

that run close together. To mitigate the effects of noise, the image should first

be smoothed with a low-pass averaging filter or a Gaussian filter to remove higher

frequency image variations that are unlikely to be present in the true image. However

it is important not to remove too much high frequency information that belongs

to the actual image feature itself. The smoothing is accomplished by choosing a

particular standard deviation σ for a Gaussian filter gσ and convolving it with

image I to generate a smoothed image

Iσ = I ∗ gσ. (3.2)

The difficulty in this step is choosing the correct image specific standard deviation.

There is a delicate balance between removing unnecessary noise and possibly losing

information. Loss of information can take place at a particular location when the

magnitude of the image gradient drops below the set thresholds even though the

pixel truly belongs to the structure of the image feature. Additive Gaussian noise

further complicates the task. The noise by nature adds a constant distribution

31

of intensities to the image that tends to make the intensity magnitudes have less

contrast from one pixel to the next. Also lighting could change from one frame to

the next revealing a small gradient magnitude that is part of the image feature. The

degree of smoothing would have to be changed to preserve the true edge feature.

The previous standard deviation setting could cause the true edge to be lost when

averaging the pixel values in that particular location even if noise is low. Therefore

it is no surprise that the differences would tend to drop below constant thresholds

and disappear.

Two-dimensional wavelet and shearlet approaches have proven effective in iso-

lating edges at different scales. The 3D wavelet transform has been applied to

medical images by Weiping and Hauzhong [17]. However, to the best of our knowl-

edge, 3D shearlets have never been used for edge detection, so we now develop these

ideas first for 2D and then for 3D.

The 2D continuous wavelet transform of image I is given by

WϕI(M, τ) = 〈dgI, ϕM,τ 〉, (3.3)

where M is a 2 × 2 invertible matrix. A common matrix to use is M equal to the

2× 2 identity matrix and a > 0. The analysis functions

ϕM,τ (e) = | detM|−
1
2ϕ(M−1(e− τ)) τ ∈ R2 (3.4)

are well localized waveforms that can decompose images I ∈ L2(R2) so that

I =

∫
R2

〈I, ϕM,τ 〉ϕM,τ dτ . (3.5)

32

By analyzing the the magnitudes of 〈I, ϕM,τ 〉 as a function of scale a, edges can

be detected. Unfortunately, the wavelet approach does not isolate any directional

information. The wavelet transform is isotropic since the dilation factor is the same

in all coordinate directions. Therefore, the wavelet has poor angular accuracy for

edges that cross or have sharp curvature. Multi-directional shearlet analysis, on the

other hand, has demonstrated better success at isolating edges whose orientations

change in complicated ways. Given the analyzing function

ϕa,s,τ (e) = | detM|−
1
2ϕ(M−1

a,s(e− τ)), (3.6)

where Mas =
(
a −
√
as

0
√
a

)
, a ∈ R+, s ∈ R, and τ ∈ R2, the 2D continuous shearlet

transform is defined as

SHϕ : I → SHϕI(a, s, τ) = 〈I, ϕa,s,τ 〉 . (3.7)

The matrix Mas performs both the shearing and anisotropic dilation. Likewise,

these directional waveforms decompose images in L2(R2) so that

I =

∫
R2

∫ ∞
−∞

∫ ∞
0

〈I, ϕMas,τ 〉ϕMas,τ
da

a3
ds dτ . (3.8)

These analyzing functions can represent scale, location and orientation of important

image features such as edges. The edges can be precisely characterized from the

asymptotic decay of SHϕI(a, s, τ). Given the collection of edge locations P, these

characteristics outlined in [6] are:

• If τ /∈ P, then SHϕI(a, s, τ) decays rapidly as a→ 0 for each s ∈ R. By rapid

decay, we mean for any N ∈ N there is a CN > 0 such that |SHϕI(a, s, τ)| ≤

CaN as a→ 0.

33

• If τ ∈ P and E is smooth near τ , then |SHϕI(a, s, τ)| decays rapidly as

a→ 0 for each s ∈ R unless s = s0 is the normal orientation to P at τ where

SHϕI(a, s, τ) ∼ a
3
4 , as a→ 0.

• If τ is a corner point of P and s = s0, and s = s1 are normal orientations

to the P at τ , then |SHϕI(a, s0, τ)|, |SHϕI(a, s1, τ)| ∼ a
3
4 as a → 0. For all

other orientations the asymptotic decay of |SHϕI(a, s, τ)| is faster.

Up to this point, attention has been focused on one image at a time without re-

gard for the possibility of processing an image sequence as a whole. Our intent is

to demonstrate the advantage of processing a block of data collectively instead of

sequentially on a frame-by-frame basis. Extending wavelet edge detection to 3D

data gives extra information that will likely help mitigate noise and improve iden-

tification. The multi-scale, multi-directional aspect of the 3D shearlet transform

tracks edge information better than the 3D wavelet transform because of its added

directional selectivity.

To understand the directional selectivity, one should realize that the 3D shear-

let transform partitions the spatial frequency domain into a number of subdomains

shaped like hyper-trapezoids as shown in Figure 3.1. Specifically, 3D shearlets are

constructed by first restricting the subspace of L2(R3) to be L2(C(1))∨ = {f ∈

L2(R3) : suppf̂ ⊂ C(1)}, where C(1) is the horizontal cone in the frequency plane:

C(1) = {(η1, η2, η3) ∈ R3 : |η1| ≥ 2,

∣∣∣∣η2

η1

∣∣∣∣ ≤ 1 and

∣∣∣∣η3

η1

∣∣∣∣ ≤ 1}. (3.9)

34

We consider the shearlet group

Λ(1) =

{
(Mas1s2,x) : 0 ≤ a ≤ 1

4
,−3

2
≤ s1 ≤

3

2
,−3

2
≤ s2 ≤

3

2
,x ∈ R2

}
, (3.10)

where Mas1s2 =

(
a −a1/2s1 −a−1/2s2
0 a1/2 0
0 0 a1/2

)
. Then the following (see proposition 2.1 from

[6]) defines the conditions on the function ϕ(1) to generate a continuous shear-

let transform on L2(C(1))∨ where the shearlet analyzing function is ϕ
(1)
as1s2x(y) =

| detMas1s2|−
1
2ϕ(1)(M−1

as1s2
(y−x)). For η = (η1, η2, η3) ∈ R3, η1 6= 0, let the function

ϕ be such that

ϕ̂(1)(η) = ϕ̂(1)(η1, η2, η3) = ϕ̂1(η1)ϕ̂2

(
η2

η1

)
ϕ̂2

(
η3

η1

)
. (3.11)

If ϕ1 ∈ L2(R) satisfies the Calderòn condition

∫ ∞
0

|ϕ̂1(aη)|2 da
a

= 1 for a.e. η ∈ R3 (3.12)

with supp ϕ̂1 ⊂
[
−2,−1

2

]
∪
[

1
2
, 2
]

and ‖ϕ2‖L2 = 1 with supp ϕ̂2 ⊂
[
−
√

2
4
,
√

2
4

]
, then

f(u) =

∫
R3

∫ 3
2

− 3
2

∫ 3
2

− 3
2

∫ 1
4

0

〈f, ϕ(1)
as1s2x

〉ϕ(1)
as1s2x

(u)
da

a4
ds1 ds2 dx (3.13)

for all f ∈ L2(C(1)).

In the frequency domain a shearlet ϕ
(1)
as1s2x is defined by

ϕ̂(1)
as1s2x

(η1, η2, η3) = aϕ̂1(aη1)ϕ̂2(a−
1
2 (
η2

η1

− s1))ϕ̂2(a−
1
2 (
η3

η1

− s2))e−2πiηx. (3.14)

Therefore, the functions ϕ̂
(1)
as1s2x have support in the sets:

{(η1, η2, η3) | η1 ∈
[
−2

a
,− 1

2a

]
∪
[

1

2a
,

2

a

]
,

∣∣∣∣η2

η1

− s1

∣∣∣∣ ≤ √2

4
a

1
2 ,

∣∣∣∣η3

η1

− s2

∣∣∣∣ ≤ √2

4
a

1
2}.

(3.15)

35

The frequency support is a pair of hyper-trapezoids that are symmetric with respect

to the origin with orientation determined by slope parameters s1 and s2 and that

become elongated as a→ 0 as indicated in Figure 3.1. This construction is further

extended to cover the entire space L2(R3) by forming similar components valid on

complementary cone regions for the generating functions ϕ(2) and ϕ(3) (see [6] for

more details). The superscript is then dropped and the notation ϕ is simply used

to denote the combined generating functions.

−10
−5

0
5

10

−2

−1

0

1

2
−1.5

−1

−0.5

0

0.5

1

1.5

xy

t

−40
−20

0
20

40

−20

−10

0

10

20
−30

−20

−10

0

10

20

30

xy

t

Figure 3.1: The support of a 3D shearlet ϕ̂as1s2x in the frequency domain with

a = 1/4 and s1 = s2 = 0 (left) and a = 1/16, s1 = 0.5, and s2 = 0.7 (right).

To characterize singularities (edge point locations), consider the example of

the 3D Heaviside function H(y1, y2, y3) = 1{y1>0}(y1, y2, y3) where 1Y denotes the

characteristic function of the set Y . It is then known that the following are true for

SHϕH(a, s1, s2,x) = 〈H,ϕas1s2x〉 [6]:

• If point x = (x1, x2, x3), with x1 6= 0, then

36

lim
a→0+

a−NSHϕH(a, s1, s2,x) = 0 for all N > 0.

• If s1 6= 0 or s2 6= 0, then

lim
a→0+

a−NSHϕH(a, s1, s2,x) = 0 for all N > 0.

• If x1 = s1 = s2 = 0, then

lim
a→0+

a−1SHϕH(a, s̄1, s̄2,x) 6= 0.

This means the continuous shearlet transform of H has rapid asymptotic decay as

a→ 0, unless point x is on the plane, then y1 = 0 and slopes s1, s2 correspond to the

normal direction to the plane; For planes with arbitrary orientation whose normal

vector is given as (sinφ cos θ, sinφ sin θ, cosφ), the continuous shearlet transform

will have rapid decay, except for x on the plane and (s1, s2) satisfying s1 = tan θ,

s2 = cotφ sec θ.

In general, let Ω be a region in R3 with boundary denoted by ∂Ω. We assume

its boundary is smooth and has positive Gaussian curvature at every point. If

B = 1Ω, then we know [6]:

• If x /∈ ∂Ω, then

lim
a→0+

a−NSHϕB(a, s1, s2, s2,x) = 0 for all N > 0.

• If x ∈ ∂Ω and (s1, s2) does not correspond to the normal direction of ∂Ω at

x, then

lim
a→0+

a−NSHϕB(a, s1, s2, s2,x) = 0 for all N > 0.

37

• If x ∈ ∂Ω and (s1, s2) = (s̄1, s̄2) corresponds to the normal direction of ∂Ω at

x, then

lim
a→0+

a−1SHϕB(a, s̄1, s̄2,x) 6= 0.

These background results establish that edge points can be located by analyz-

ing the asymptotic rate of change of the magnitudes of the 3D shearlet coefficients

as a function of scale. This means that the concepts developed in [19] for 2D can

be extended and will be valid for 3D shearlets edge detection algorithms.

3.3 Edge Detection Algorithms

The first thing to consider before defining different three dimensional edge

detectors is the input data that will be processed. With 2D methods, the edge

detector operates on one image at time. Methods include Canny, Wavelet, and

Shearlet based edge detectors. Three dimensional edge detectors will process a

block of images as a batch. To extend the 2D approaches to three dimensions it is

necessary to perform the analysis not only in the horizontal and vertical direction

but also over time for a block of images. This section will present the algorithms

defining the implementation for the 3D Canny, 3D Wavelet, and 3D Shearlet edge

detectors.

38

3.3.1 3D Canny Edge Detection

The Canny edge detection algorithm begins with a smoothing step to reduce

noise. This is accomplished with a 3D Gaussian low pass filter

g3D
σ = exp (−(x2 + y2 + t2)/(2 ∗ σ2)), (3.16)

where σ is the variance of the distribution. For a given image sequence Ĩ the

smoothed image sequence is

Ĩs = Ĩ ∗ g3D
σ . (3.17)

After smoothing to remove high frequency noise comes the important image

gradient computation. The image gradient reveals the differences in intensity be-

tween neighboring pixels and is the foundational operation for edge detection. Our

3D Canny uses a derivative of the Gaussian function. The derivative in the x

direction is

dg3D
σ,x =

∂g3D
σ

∂x
= Cx exp (−(x2 + y2 + t2)/(2 ∗ σ2)), (3.18)

in the y direction is

dg3D
σ,y =

∂g3D
σ

∂y
= Cy exp (−(x2 + y2 + t2)/(2 ∗ σ2)), (3.19)

and in the t direction is

dg3D
σ,t =

∂g3D
σ

∂t
= Ct exp (−(x2 + y2 + t2)/(2 ∗ σ2)) (3.20)

where C = −1/σ2 is a scalar. For a particular partial derivative, the exponential

function will tend to dampen out or enhance the component in that direction accord-

ing to the constant C. The constant C includes the variance σ2 of the distribution

39

of intensities in its denominator. Therefore if we assume that the intensities in our

image have a lot of variability from one pixel to the next, then the magnitudes of

the derivatives will be smaller on average. This is the situation with high levels

of Gaussian noise. Alternatively, if the variance in the image intensities is small,

the magnitude of the gradient will tend to be larger on average. If the variance is

chosen properly then the edges can be detected; otherwise the differences will be

lost. Also the neighboring images in the block before or after may have a different

intensity distribution than the current frame. Choosing the correct variance for edge

detection is a fundamental problem for methods that are based on the derivatives

computed with Gaussian functions.

The next step is to use the gradient components to compute the gradient

magnitude

|∇Ĩ| =
√
∇Ĩ2

x +∇Ĩ2
y +∇Ĩ2

t . (3.21)

The 3D nonmaximal suppression step is then applied to each voxel in the sequence

of the gradient magnitudes. Here a voxel is an element of the edge surface if it is

greater in magnitude than at least one of its 13 neighboring pairs. A version of

this was implemented but became impractical to use during testing because of the

time to run the method. Also to save computational cost the same 2D hysteresis

thresholding method described in Algorithm 1 is applied to each slice of the se-

quence ∇Ĩ to compute the final edge result ĨE. All of the edge detection methods

use the thresholding procedure from Chapter 2. The edge detection procedure is

summarized for one image sequence in Algorithm 5.

40

Algorithm 5 The 3D Canny algorithm.

Input: Raw image sequence Ĩ

Output: Estimate of |∇Ĩ|

Compute smoothed sequence by Ĩs = Ĩs ∗ g3D.

Compute horizontal derivative with ∇Ĩx = Ĩs ∗ dg3D
σ,x.

Compute vertical derivative with ∇Ĩy = Ĩs ∗ dg3D
σ,y.

Compute time derivative with ∇Ĩt = Ĩs ∗ dg3D
σ,t .

Compute the gradient magnitude |∇Ĩ| =
√
∇Ĩ2

x +∇Ĩ2
y +∇Ĩ2

t .

Apply nonmaximal suppression to gradient magnitudes.

Use hysteresis thresholding on each slice.

3.3.2 3D Wavelet and Shearlet Edge Detection

Our use of the 3D wavelet and 3D shearlet transforms for edge detection

builds upon the algorithms developed in [19] . The horizontal, vertical, and time

components of the transform are computed separately and then reassembled in the

end. The first critical step for both the wavelet and shearlet processing is to compute

the 3D gradient components of the image. The 3D gradient filter (3 × 3 × 3) is

analogous to the Sobel filter that weights the central pixel the most. Stacking each

plane of the operator side-by-side reveals the contents for the horizontal derivative

G3D
x =

0 0 0 +1 0 −1 0 0 0

+1 0 −1 +2 0 −2 +1 0 −1

0 0 0 +1 0 −1 0 0 0

 . (3.22)

41

The vertical 3D derivative is

G3D
y =

0 +1 0 +1 +2 +1 0 +1 0

0 0 0 0 0 0 0 0 0

0 −1 0 −1 −2 −1 0 −1 0

 , (3.23)

and the derivative over time is

G3D
t =

0 +1 0 0 0 0 0 −1 0

1 2 1 0 0 0 −1 −2 −1

0 +1 0 0 0 0 0 −1 0

 . (3.24)

Our implementation of the 3D wavelet edge detector first computes the horizontal

image derivative

∇Ĩx = Ĩ ∗G3D
x , (3.25)

and the vertical image derivative

∇Ĩy = Ĩ ∗G3D
y , (3.26)

and the image derivative over time

∇Ĩt = Ĩ ∗G3D
t . (3.27)

The “continuous” scaling is then accomplished by convolving repeatedly a weighted

average filter or mask A =
(

1 2 1
2 4 2
1 2 1

)
extended into the third dimension to give more

emphasis to the central pixels:

G3D
a =

1 1 1 1 2 1 1 1 1

1 2 1 2 4 2 1 2 1

1 1 1 1 2 1 1 1 1

 . (3.28)

42

Thus, we have

Gn,3D
x = Gn−1,3D

x ∗G3D
a . (3.29)

A weight is computed by

pn =
max (Gn−1,3D

x)

max (Gn,3D
x)

(3.30)

to be multiplied by these approximate dilations to guarantee that the maximum of

the wavelet components do not change. In summary, we multiply the smoothing

operator G3D
a by the weight pn to compute the horizontal smoothed/scaled wavelet

coefficients

∇Ĩ(n)
x = ∇Ĩ(n−1)

x ∗ pnG3D
a , (3.31)

the vertical scaled wavelet coefficients

∇Ĩ(n)
y = ∇Ĩ(n−1)

y ∗ pnG3D
a , (3.32)

and scaled wavelet coefficients over time

∇Ĩ(n)
t = ∇Ĩ(n−1)

t ∗ pnG3D
a . (3.33)

After each smoothing, store the dilated Gn,3D
x to compute pn for the next scale.

Finally, a cumulative horizontal component of the image gradient is estimated as

(
∇Ĩ(n)

x

)
i

=

(
∇Ĩ(n−1)

x

)
i

if |∇Ĩ(n−1)
x |i ≤ |∇Ĩ(n)

x |i(
∇Ĩ(n)

x

)
i

otherwise .

(3.34)

The cumulative vertical component is estimated as

(
∇Ĩ(n)

y

)
i

=

(
∇Ĩ(n−1)

y

)
i

if |∇Ĩ(n−1)
y |i ≤ |∇Ĩ(n)

y |i(
∇Ĩ(n)

y

)
i

otherwise .

(3.35)

43

and the cumulative component over time is estimated as

(
∇Ĩ(n)

t

)
i

=

(
∇Ĩ(n−1)

t

)
i

if |∇Ĩ(n−1)
t |i ≤ |∇Ĩ(n)

t |i(
∇Ĩ(n)

t

)
i

otherwise .

(3.36)

This step accumulates the contribution from each scaling into the image gradient.

The last step is to compute the image gradient magnitude by summing the squares

of the horizontal, vertical, and time cumulative components

∣∣∣∇Ĩ∣∣∣2 = ∇Ĩx(n)2
+∇Ĩy(n)2

+∇Ĩt(n)2
. (3.37)

The 3D wavelet based procedure for a single image is summarized in Algorithm 6.

A different scale of the image is processed each time the image is convolved

with the average filter and represents a different amount of smoothing. This is anal-

ogous to the Canny edge detection process of initially smoothing the image with a

Gaussian function at a particular standard deviation. The drawback to the Canny

method is choosing the correct standard deviation, as this can be image-specific.

The 3D wavelet and 3D shearlet based methods, on the other hand, can accumulate

the gradient information present at multiple scales and thus do not suffer from the

same problems as a Canny detector. 3D shearlet directional filtering is accomplished

by creating the appropriate frequency formed hyper-trapezoid filters. These direc-

tional components are specifically constructed by multiplying the 2D constructed

directional components developed in [19] . The hypersphere is partitioned according

to the number of search directions. For md = 16 directions, one instance of a par-

tition is given in Figure 3.2. This filter directed along the vertical y-axis partitions

the x-t plane at a given scale a. It is important to note that the extension of the 2D

44

Algorithm 6 The 3D wavelet algorithm.

Input: Ĩ Raw image sequence

Output: Estimate of |∇Ĩ|

Compute basic horizontal derivative ∇Ĩx with (3.25).

Compute basic vertical derivative ∇Ĩy with (3.26).

Compute basic time derivative ∇Ĩt with (3.27).

for scale s = 1→ ns do

Compute the smooth current dilated gradient operator Gn,3D
x with (3.29).

Determine gradient scaling constant pn using (3.30).

Smooth horizontal component ∇Ĩ(n)
x with (3.31).

Smooth vertical component ∇Ĩ(n)
y with (3.32).

Smooth time component ∇Ĩ(n)
t with (3.33).

Update smoothed gradient operator Gn,3D
x for next scale.

Accumulate horizontal component ∇Ĩ(n)
x with (3.34).

Accumulate vertical component ∇Ĩ(n)
y with (3.35).

Accumulate time component ∇Ĩ(n)
t with (3.36).

end for

Compute the gradient magnitude
∣∣∣∇Ĩ∣∣∣ using (3.37).

45

Figure 3.2: The horizontal partition for 3D shearlet filter.

methods into 3D presents some difficult issues. One of these issues is how to appro-

priately compensate for smoothing that is done in the horizontal, vertical, and time

directions. We could follow the Canny algorithm strategy to isolate the edges by ap-

plying a thresholding step to both the wavelet and shearlet based edge nominations

to further refine these nominations and help separate the edge information from

noise. Next hysteresis thresholding could be applied to both wavelet and shearlet to

further refine the edges and help separate edge information from noise. This process

includes first setting all values above the high threshold T2 to one and setting all

values below the low threshold T1 to zero. Those values between the high and low

threshold are retained only if the pixel is connected to a pixel whose intensity is

greater than the high threshold. This threshold method has proven satisfactory yet

we are still in the process of developing better strategies.

Our implementation of the 3D shearlet edge detection algorithm first computes

46

the horizontal, vertical, and time components of the image gradients the same as

equations (3.25), (3.26), and (3.27) for the wavelet. Before processing the image

gradients, it is necessary to compute the 3D multi-scale, multi-directional shearlet

filter bank. The first step is to generate the 2D horizontal shearlet filters at each scale

according to the description in Chapter 2. The 3D shearlet filter for the t direction

at a particular scale a = 1 partitioning the x-y plane is computed by stacking the 2D

filters on top of each other over the time window size nw = 16. The level one stacking

for the t direction is given in Figure 3.3. Next stack the same y-t filters partition

Figure 3.3: The x-y partition along the t-axis for 3D shearlet filter.

along the x-axis as shown in Figure 3.4. Finally to get one partition at a single scale

a and slope s multiply element-by element to get the shearlet filter w3D
a,s,t at the first

level in the t direction in Figure 3.5. The t oriented 3D shearlet filter partitions the

x-y plane into pairs of cones at a particular scale over a window of size nw . Larger

scale values will result in a finer partition of the space into smaller cones. As the

47

Figure 3.4: The y-t partition along the x-axis for 3D shearlet filter.

scale increases so does the number of directions and the frequency space partition

is refined. This process must be repeated at each scale and slope direction for the

x directed 3D shearlet filter w3D
a,s,x, the y directed shearlet filter w3D

a,s,y, and the t

directed shearlet filter w3D
a,s,t before processing begins. To begin processing, at each

scale use (3.29) and (3.30) to compute the nth scaling weight pn. Apply (3.31),

(3.32), and (3.33) to give the horizontal ∇Ix,a, vertical ∇Iy,a, and ∇It,a dilated

image derivatives by smoothing with G3D,a. After each smoothing store the dilated

gradient Gn
x,a to compute pn for the next scale. To compute the horizontal shearlet

directional image derivatives two ancillary quantities are necessary including the

shearlet convolved with the basic image gradient without smoothing and the image

gradient after smoothing. For each scale a and slope direction s use the 3D horizontal

w3D
a,s,x, vertical w3D

a,s,y, and time w3D
a,s,t directional shearlet filters to compute the basic

48

Figure 3.5: The level 1 partition for 3D shearlet filter along t-axis.

horizontal shearlet coefficients without scaling using

∇Ĩx,s = ∇Ĩx ∗ w3D
a,s,x, (3.38)

the basic vertical shearlet image derivative

∇Ĩy,s = ∇Ĩy ∗ w3D
a,s,y, (3.39)

and the basic time oriented shearlet image derivative

∇Ĩt,s = ∇Ĩt ∗ w3D
a,s,t. (3.40)

The resultant shearlet coefficients serve as a reference later to accumulate the edge

locations at the current dilation and above. The smoothed horizontal shearlet image

derivative is

∇Ĩx,a,s = ∇Ĩx,a ∗ w3D
a,s,x, (3.41)

the smoothed vertical shearlet image derivative is

∇Ĩy,a,s = ∇Ĩy,a ∗ w3D
a,s,y, (3.42)

49

and the smoothed over time shearlet image derivative is

∇Ĩt,a,s = ∇Ĩt,a ∗ w3D
a,s,t. (3.43)

For each direction s determine those horizontal smoothed shearlet coefficients that

are larger than the basic horizontal shearlet coefficients

∇Ĩ(n)
xd

= ∇Ĩ(n)
x,a,s. ∗ (

∣∣∣∇Ĩ(n)
x,a,s

∣∣∣ ≥ ∣∣∣∇Ĩx,s∣∣∣), (3.44)

the vertical smoothed shearlet coefficients that are larger than the basic vertical

shearlet coefficients

∇Ĩ(n)
yd

= ∇Ĩ(n)
y,a,s. ∗ (

∣∣∣∇Ĩ(n)
y,a,s

∣∣∣ ≥ ∣∣∣∇Ĩy,s∣∣∣), (3.45)

and the time smoothed shearlet coefficients that are larger than the basic time

shearlet coefficients

∇Ĩ(n)
td

= ∇Ĩ(n)
t,a,s. ∗ (

∣∣∣∇Ĩ(n)
t,a,s

∣∣∣ ≥ ∣∣∣∇Ĩt,s∣∣∣). (3.46)

Add the larger horizontal shearlets to the cumulative horizontal shearlet directional

sum

∇Ĩ(n)
xc = ∇Ĩ(n−1)

xc +∇Ĩ(n)
xd
, (3.47)

add the larger vertical shearlets to the cumulative vertical shearlet directional sum

∇Ĩ(n)
yc = ∇Ĩ(n−1)

yc +∇Ĩ(n)
yd
, (3.48)

and also add the larger time shearlets to the cumulative time shearlet directional

sum

∇Ĩ(n)
tc = ∇Ĩ(n−1)

tc +∇Ĩ(n)
td
. (3.49)

50

After accumulating coefficients in each direction, add the cumulative horizontal

shearlet to the previous shearlet image derivative for the current scale

∇Ĩ(n)
x = ∇Ĩ(n−1)

x . ∗ (
∣∣∣∇Ĩ(n−1)

x

∣∣∣ ≤ ∣∣∣∇Ĩxc∣∣∣) +∇Ĩ(n)
xc , (3.50)

the cumulative vertical shearlet image derivative for the current scale

∇Ĩ(n)
y = ∇Ĩ(n−1)

y . ∗ (
∣∣∣∇Ĩ(n−1)

y

∣∣∣ ≤ ∣∣∣∇Ĩyc∣∣∣) +∇Ĩ(n)
yc , (3.51)

and the cumulative time shearlet image derivative for the current scale

∇Ĩ(n)
t = ∇Ĩ(n−1)

t . ∗ (
∣∣∣∇Ĩ(n−1)

t

∣∣∣ ≤ ∣∣∣∇Ĩtc∣∣∣) +∇Ĩ(n)
tc . (3.52)

The last step is to compute the image gradient magnitude by summing the squares

∣∣∣∇Ĩ∣∣∣2 = ∇Ĩx(n)2
+∇Ĩy(n)2

+∇Ĩt(n)2
. (3.53)

The 3D shearlet based procedure for an image sequence is summarized in

Algorithm 7.

51

Algorithm 7 The 3D shearlet algorithm.

Input: Ĩ Raw image sequence

Output: Estimate of |∇Ĩ|

Compute horizontal,vertical, and time derivatives with (3.25), (3.26) and (3.27).

Compute shearlet filters before processing.

for n = 1→ ns do

Smooth dilated gradient operator Gn,3D
x with (3.29).

Determine gradient scaling constant pn using (3.30).

Compute ∇Ĩx,a by smoothing horizontal component with (3.31).

Compute ∇Ĩy,a by smoothing vertical component with (3.32).

Compute ∇Ĩt,a by smoothing time component with (3.32).

Update smoothed gradient operator Gn,3D
x for the next scale.

for direction d = 1→ nd do

Compute ∇Ĩx,s, ∇Ĩy,s, and ∇Ĩt,s using (3.38), (3.39),and (3.40).

Compute smoothed ∇Ĩx,a,s, ∇Ĩy,a,s, ∇Ĩt,a,s by (3.41), (3.42), and (3.43).

end for

Accumulate ∇Ĩ(n)
x , ∇Ĩ(n)

y ,and ∇Ĩ(n)
t using (3.50),(3.51), and (3.52).

end for

Compute gradient magnitude
∣∣∣∇Ĩ∣∣∣ with (3.53).

52

3.3.3 Hybrid 3D Edge Detectors

The last two 3D algorithms to define are the hybrid wavelet and hybrid shearlet

edge detectors. These methods use the more complicated 2D methods to process

the image slices and the 3D Canny algorithm to process the image sequence over

time. Our goal is to put more computational effort into the edge image in the x-y

plane and save time by doing Canny 3D over time.

The hybrid 2D-3D wavelet method computes the horizontal 2D wavelet deriva-

tive ∇Ĩ(n)
2D,x and the vertical 2D wavelet derivative ∇Ĩ(n)

2D,y according to equations

(2.25)-(2.32). The time image gradient ∇Ĩ(n)
3D,t is computed by first smoothing the

image sequence with a Gaussian using equation (3.17). Then compute the deriva-

tive of the Gaussian in the time dimension using equation (3.20) like the Canny 3D

algorithm. The final magnitude of the image gradient is

∣∣∣∇Ĩ∣∣∣2 = ∇Ĩ2D
x

2
+∇Ĩ2D

y

2
+∇Ĩ3D

t

2
. (3.54)

The hybrid 2D-3D shearlet method computes the horizontal 2D shearlet deriva-

tive ∇I(n)
2D,x and the vertical 2D shearlet derivative ∇I(n,2D)

y according to the shearlet

equations (2.29) and (2.30). The application of 2D shearlet filters to complete the

computation of the shearlet image gradient components is the same as the 2D algo-

rithm using equations (2.50)-(2.60). The time image gradient ∇Ĩ(n,3D)
t is computed

by first smoothing the image sequence with a 3D Gaussian using equation (3.17).

Then compute the derivative of the 3D Gaussian in the time dimension using equa-

tion (3.20) like the Canny 3D algorithm. The final magnitude of the image gradient

53

is ∣∣∣∇Ĩ∣∣∣2 = ∇Ĩ2D
x

2
+∇Ĩ2D

y

2
+∇Ĩ3D

t

2
. (3.55)

Figure 3.6: Spherical harmonic truth data

3.4 Experimental Results

In this section we compare the results of our 2D and 3D edge detection al-

gorithms. In all experiments, only four scales were processed for wavelets and

shearlet methods, as this proved adequate. Our experiments use synthetic data to

better analyze the performance of the 3D shearlet transform compared to the 3D

wavelet transform using known truth data.

3.4.1 Spherical Harmonic

Our first data set is a 3D image consisting of a solid spherical harmonic shape

located in the center of a cube. The spherical harmonic functions are solutions of

Laplace’s equation

∇2V = 0 (3.56)

54

for spherical coordinates. Our experiments used spherical harmonics of order 2 and

degree 7, shown in Figure 3.6. Here there are 7 symmetrical structures with 2

lobes on each structure. These functions are useful because they describe rotation

invariant structures for 3D surfaces and present good directionally oriented shapes

to test the directional sensitivity of the routines.

The first experiment consists of using the 3D shearlet transform and the 3D

wavelet edge detectors on the solid spherical harmonic, after adding identically dis-

tributed additive white Gaussian noise with a standard deviation σn = 0.2. We

compare our results to those using the 2D edge detection algorithms. The results

are displayed for the 2D and 3D Canny, wavelet, and shearlet edge detectors in

Figure 3.7. At first glance it is apparent that the 3D methods produce a more

complete representation of the surface with less missing information than the 2D

methods. The 3D methods also have fewer spurious noise pixels far away from the

true surface. At the highest noise level the 3D shearlet appears to best match the

truth. The contour plots shown only display points with a resulting magnitude of

0.9 or greater. This presentation has a drawback in not displaying all of the noise

present in the result.

The spherical harmonic truth data is known so it is possible to more precisely

understand how well the methods compare with each other. Gaussian noise with the

standard deviation σ ∈ [0.0, 0.6] was added to the spherical harmonic. We ran the

2D and 3D edge detectors at the different noise levels and collected metrics to better

measure detection performance. The metrics included the number of correctly iden-

tified edge pixels, the number of false positives, and the number of false negatives.

55

Method Positive False Positive False negatives

Canny 2D 1392 4842 4906

Wavelet 2D 1434 3572 4864

Shearlet 2D 2234 3930 4064

Canny 3D 2062 2460 4236

Wavelet 3D 2259 2880 4039

Shearlet 3D 4741 6115 1557

Table 3.1: Edge statistics for 2D and 3D Canny, wavelet and shearlet edge detectors.

The truth contains 6,298 edge pixels. The results for σ = 0.6 are tabulated in Table

3.1.

The 3D methods identify more edge locations than the 2D methods due to the

additional image gradient information over time. The statistics show that at high

noise levels, both 2D and 3D shearlet methods have the largest number of correctly

identified edges. Later we will see that shearlet edges are thicker, with fewer false

positives far away from the truth than both the Canny and wavelet algorithms. To

better see how the 2D and 3D methods compare for the spherical harmonic with

increasing noise see Figure 3.8. The shearlet methods have the least number of false

negative edges. The 2D Canny and 2D wavelet methods perform about the same,

as do the 3D Canny and 3D wavelet methods.

56

Figure 3.7: Noisy spherical harmonic for 2D (left) and 3D (right) algorithms.

57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

std of noise

nu
m

be
r

of
 p

os
iti

ve
 e

dg
es

Number of positive id edges vs. noise for SphericalHarmonic

Canny2Dedge std:0.6
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

std of noise

nu
m

be
r

of
 p

os
iti

ve
 e

dg
es

Number of positive id edges vs. noise for SphericalHarmonic

Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1000

2000

3000

4000

5000

6000

7000

8000

std of noise

nu
m

be
r

of
 fa

ls
e

po
si

tiv
e

ed
ge

s

Number of false positive id edges vs. noise for SphericalHarmonic

Canny2Dedge std:0.6
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1000

2000

3000

4000

5000

6000

7000

8000

std of noise

nu
m

be
r

of
 fa

ls
e

po
si

tiv
e

ed
ge

s

Number of false positive id edges vs. noise for SphericalHarmonic

Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2500

3000

3500

4000

4500

5000

5500

6000

std of noise

nu
m

be
r

of
 fa

ls
e

ne
ga

tiv
es

 e
dg

es

Number of false negatives edges vs. noise for SphericalHarmonic

Canny2Dedge std:0.6
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

std of noise

nu
m

be
r

of
 fa

ls
e

ne
ga

tiv
es

 e
dg

es

Number of false negatives edges vs. noise for SphericalHarmonic

Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

Figure 3.8: Positive identification of edges (top) false positives (middle) and false

negatives(bottom) for 2D and 3D Canny, wavelet, and shearlet algorithms.

58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

std of noise

nu
m

be
r

of
 p

os
iti

ve
 e

dg
es

Number of positive id edges vs. noise for SphericalHarmonic

Canny2Dedge std:0.2
Canny2Dedge std:0.6
Canny2Dedge std:1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
x 10

4

std of noise

nu
m

be
r

of
 p

os
iti

ve
 e

dg
es

Number of positive id edges vs. noise for SphericalHarmonic

Canny3Dedge std:0.2
Canny3Dedge std:0.6
Canny3Dedge std:1

Figure 3.9: The performance of Canny using different smoothing levels, 2D (left)

and 3D (right) on spherical harmonic. Average over 100 trials.

We also investigated the effect of the parameter σc used by the Canny methods

to smooth the image. The results, averaged over 100 trials, are shown in Figure 3.9.

Using a larger smoothing parameter helped.

To see how well the edges from the methods compare, consider three 2D slices

from the spherical harmonic with noise σ = 0.2 in Figure 3.10. In this test, the

results indicate that the 3D edge detection algorithms give a more complete repre-

sentation of the surface in the presence of noise with fewer artifacts than their 2D

counterparts. The shearlet transforms in particular perform better than the wavelet

transforms as the noise level increases at the cusp points of the image slice. The

Canny based edge detection methods have the most difficulty with the spherical

harmonic test with noise. The 3D shearlet has the least number of spurious edge

locations far from the true edge.

59

Noisy Slices Source std = 0.20.

Noisy Slices Canny2Dedge std = 0.2. Noisy Slices Canny3Dedge std = 0.2.

Noisy Slices Wavelet2Dedge std = 0.2. Noisy Slices Wavelet3Dedge std = 0.2.

Noisy Slices Shearlet2Dedge std = 0.2. Noisy Slices Shearlet3Dedge std = 0.2.

Figure 3.10: Slice spherical harmonics with noise for 2D (left) and 3D (right) for

Canny (row 1), wavelet (row 2), and shearlet (row 3) routines.

60

The next experiment involves tracking a solid moving disk of known trajectory

through an image sequence. This solid 2D disk spirals around the origin, with

position

xj = br cos(αj)c, (3.57)

yj = br sin(αj)c, (3.58)

in frame j, where r is the radius of the spiral and α is an angle. A few frames

of the image sequence are shown in Figure 3.11. Both 2D and 3D transforms are

Figure 3.11: Disk spiraling without noise

applied to this sequence of images to detect the edges and the results are displayed

in Figure 3.12. The same spiraling disk with noise is given in Figure 3.13. The

surfaces show again that the 3D algorithms provide better surface representation

than the 2D methods. The 2D wavelet has more missing information than the other

methods. The shearlet methods outperformed the wavelet methods.

Consider examining a slice from the 3D Canny detector with no noise given

in Figure 3.14. Note the apparent spreading from the 3D Canny transform. At first

glance, it is not apparent how this bulky edge could provide any useful information at

all for tracking purposes. This is especially difficult if our rigid tracking requirement

is to accurately determine the exact center of an image feature. To make sense of

this problem, consider performing a 2D wavelet followed by a 3D Canny in the time

61

Figure 3.12: Results of disk spiraling surface detected for 2D (left) and 3D (right)

for wavelet (row 1) and shearlet (row 2) algorithms without noise added to data.

direction given in Figure 3.15. This interesting figure provides insight into how the

velocity component is automatically folded into the 3D edge detected result and

helps to explain the directional spreading apparent in all 3D results. Summing the

magnitudes of the image gradients resulted in the thick edge. What appeared to

be an unsatisfactory bulge in the image is actually useful velocity information. The

bright part of the Canny 3D image shows that the disk is moving in the southwest

direction at a magnitude proportional to the thickness of the edge. Another thick

edge accumulated over multiple scales by the 3D wavelet is given in Figure 3.16.

The bright edge on the left and the darker edge on the right indicate that the

disk is moving to the left at a magnitude proportional to the thickness of the edge.

62

Figure 3.13: Results of disk spiraling surface detected for 2D (left) and 3D (right)

for wavelet (row 1) and shearlet (row 2) algorithms with noise added to data.

The additional image velocity magnitude and directional information is not available

from 2D edge detection algorithms and provides incentive to apply 3D edge detection

to tracking in Chapter 4.

3.5 Conclusions

We have demonstrated the value of applying multi-scale and multi-directional

transforms to detect edges in a sequence of images. Clearly extending the tradi-

tional 2D wavelet and shearlet transforms to 3D has provided more information

and improved the detection performance. 3D edge detectors have more positively

identified edges and higher PSNR values than 2D algorithms as noise increases. In

63

Figure 3.14: Slice from disk spiraling without noise for Canny 3D.

Figure 3.15: Slices from a disk spiraling without noise for Wavelet 2D x-y slice (left), Canny

3D over time (middle) and the sum of Wavelet 2D and Canny 3D (right).

particular, the 3D shearlet algorithm is especially effective for more complicated

shapes because it takes edge direction into account. The 3D surface membrane

detected is thicker and will be a more prominent feature compared to 2D results

derived from noisy image sequences. The 3D detectors have thicker edges from the

convolution over time that adds a velocity component to an edge slice. The image

velocity is an attractive feature to use as an extra measurement for future integra-

tion into 3D Bayesian state estimation measurement models that currently only use

edge locations. We anticipate further improvements in performance as we devise

better compensation methods for the directional spread we noted earlier.

64

Figure 3.16: Slice from disk spiraling without noise for Wavelet 3D.

65

Chapter 4

Tracking Objects Using Three Dimensional Edge Detection

4.1 Introduction

One important application of edge detection is segmentation of images to high-

light patches of pixels called image features. This chapter will discuss algorithms to

integrate edge detection into a tracking system for image feature estimation and ex-

plain what is new about the approach. Usually this problem arises when investigat-

ing an event that takes place in three dimensions while cameras record observations

of objects that are moving in the field of view. The two fundamental factors that

drive tracking complexity are complicated object shape and motion. For compli-

cated shapes, multiple points on the object must be selected in order to accurately

fit the geometry and represent motion through space. Each of these points, called

targets, will correspond to an image feature as the object is tracked with a camera.

An example is shown in Figure 4.1.

Wing tip camera Pylon camera Tail camera.

Figure 4.1: Images of track objects taken by cameras on an airplane

66

It is important to have enough targets uniformly distributed over the entire

surface of the object to reliably represent the true structure of the 3D object. For

example, if the object has fins or sharp curves, targets must be placed on the object

closer together to produce good observations.

The three dimensional world also introduces noise, clutter, and illumination

variations. These change the image intensities in complicated ways. Smoothing

the image usually takes care of high frequency noise that is normally distributed

throughout the image. However it is difficult to set the standard deviation of the

filter to smooth noise without eliminating important edge information. Even when

smoothing works for one image, the world can change, and the next image could

require different smoothing. Also, not all noise is uniformly or normally distributed

throughout the image, adding a further complication. What may eliminate noise

in one region of the image may eliminate important information that is part of the

track object in another region of the image. Next, background and dynamic clutter

that mingles with true image edge features is not constant from frame to frame and

must be accounted for to achieve accurate detection. Simple smoothing and image

gradients are not enough to separate out important edge features in these cases.

Edges by definition are defined by both magnitude and direction. Traditional edge

detectors such as Sobel determine the magnitude of image gradients but do not

determine the direction of the edge. More sophisticated algorithms like the Canny

method account for only a few directions and have the same threshold choice prob-

lem. Illumination variations produce edges with gradients that are very difficult

to discern. When most of the pixel intensities are near their average value, the

67

problem is particularly difficult. The changes in intensity from background to the

track object is very small in shade or gets washed in bright spots. Areas of the im-

age feature that fade gradually into the background are hard to detect. Even after

noise is removed the directional edge information has small magnitude and can be

thresholded out for certain directions.

In this chapter we present new 2D and 3D algorithms for tracking objects.

What is new about our 2D tracking system is the use of multi-scale wavelet and

multi-directional shearlet filter banks to get better feature detection in the presence

of noise. What is truly different with our three dimensional tracking is the capability

to process the track object over a fixed time interval to define a new surface detection

method that is more robust to illumination change. Section 4.2 discusses the problem

and the data. Section 4.3 presents our algorithms. Section 4.4 compares the different

methods using metrics that help to evaluate the degree of success for different test

cases. This presentation closely follows that in [15].

4.2 Problem Definition and Test Data

Developing a 2D tracking system using edge detection involves a description of

the input data image sequence and how it relates to the problem to be solved. The

tracking problem definition starts with the observed image sequence that captures

2D information about 3D objects that are in motion in the camera’s field of view.

At the lowest level, each image in the sequence provides a snapshot of a particular

track object that moves from frame to frame. We present two test problems that

68

illustrate some of the difficulties.

Figure 4.2: Four frames from the spiraling ball movie.

Figure 4.3: Patch containing the disk (left) is inserted into a frame of the movie

(right).

For our first test problem, suppose that a 3D ball spirals about a fixed axis

for a period of several seconds. A camera located on that axis records a sequence

of images, with the center of the images also positioned on the axis. Each image

looks like a white disk on a black background, moved via translation. Four frames

from the resulting spiraling ball movie are shown in Figure 4.2. The disk is chosen

to have a diameter equal to an odd number of pixels so that in generating the data

we can center it on the nearest pixel. The movie Î is stored in an m×m× ` array,

with m2 = 1572 pixels per frame and ` = 30 frames. The center (xj, yj) of the disk

69

at time tj, relative to the center of the image, is defined to be

xj = br cos(αj)c, (4.1)

yj = br sin(αj)c, (4.2)

where r is the radius of the disk and αj is the angle defining the position of the

object relative to its position at time 0. We generate the frames of the movie by

inserting a (2r+ 3)× (2r+ 3) patch of pixels containing the disk into a black (zero)

frame of size m ×m, as shown in Figure 4.3. White noise (independent normally

distributed samples for each pixel, with standard deviation σ ∈ [0, 1.5]) is added to

the movie to create a noisy movie of the ball.

Figure 4.4: Patch containing a bow-tie (left), a rotated bow-tie (middle), and a

shaded bow-tie (right).

Our second test problem is generated in a similar way, but uses a bow-tie

patch, shown in Figure 4.4 (left), that spirals about the center of the image sequence

but also rotates about its own center point, as illustrated in Figure 4.4 (middle).

To perform rotation, we use Matlab’s imrotate, which remaps each pixel in the

patch to its rotated position using bilinear interpolation. We also use this example

to investigate changes in illumination. This is accomplished by generating a row

70

Figure 4.5: Four frames from a bow-tie movie with spiraling movement, rotation,

and illumination changes.

vector g of increasing values in the range [0.05, 2] with dimension equal to that of

the patch. The illumination matrix is then defined as

L = gTg. (4.3)

The shaded object is obtained by elementwise multiplication of the patch P by L:

S = P. ∗ L. (4.4)

This is performed after rotation and produces a result like that shown on the right

in Figure 4.4. To study the robustness of our algorithms, we add white noise to the

bow-tie movie, because all of the tracking methods are able to match truth for data

without noise. We will assume that we know the position of the object in the first

frame of the movie. We use our methods to estimate the position of the center of

the ball or bow-tie and, for the bow-tie, its rotation angle, as a function of time. It

is useful (but more difficult) to estimate the velocity of the object, too.

71

4.3 Tracking Algorithm

A tracking algorithm must determine the trajectory of the track object as it

moves from frame to frame. For simplicity, we consider translation first and discuss

object rotation later. We assume that we are trying to determine the movement

of the object between two particular frames, frame i − 1 and frame i. We denote

the displacement as ∆xi in the horizontal direction and ∆yi in the vertical direction

and drop the subscript i when it is clear from context. Our first approach is to

perform an exhaustive search for ∆x and ∆y by considering all possible positions

of the patch and testing to see which trial position best matches the data from the

movie. In practice, velocity bounds can be used to limit the search, and in this

study we only test integer values between −2 and 2, giving 25 possible positions.

For each trial position, we have two sets of data: D(̃I), which is the data from the

original movie Ĩ, and D(̃Ip), where Ĩp is the movie Ĩ with the ith frame replaced by

one with the patch in its trial position. The most obvious choices for the function

D is D(̃I) = Ĩ. In this case we are interested in how the pixel values change when

we replace the ith frame by the patched frame. This approach is quite sensitive

to noise, however, and the preservation of important features, such as edges, is not

guaranteed. We propose, therefore, that D denote the output from one of our edge

detectors, 2D or 3D. In this case we are measuring how much the edges change

between the original movie and the patched movie. We generate the patched frame

in the same way we generate our test examples, by overwriting pixels in the ith

frame by the patch, positioned by ∆x and ∆y relative to its position in the previous

72

frame. To determine the match between the trial position and the observed position,

we use a cost function

f (̃Ip) = ‖D(̃I)−D(̃Ip)‖. (4.5)

A natural choice is the Euclidean norm, but other choices are possible. Rather

than running the edge detector on the complete movie for each trial position of

the patch, we use a small number of frames surrounding Frame i. This reduces

the cost of each trial. If the object is also rotating, then we need to measure the

cost function at various values of ∆x, ∆y, and ∆θ, the change in rotation angle

since the previous frame. In our experiments, we tested values ∆θ = −2,−1, 0, 1, 2

degrees, making a total of 125 possible positions and rotations per frame. Increasing

the possible values of the ∆ quantities quickly raises the expense of the exhaustive

search algorithm. More sophisticated numerical optimization algorithms (steepest

descent, Newton-like methods) can be used, but since our functions are noisy and

highly nonconvex, we did not have much success with them. One advantage of our

admittedly primitive optimization approach is that it is quite easy to parallelize. We

found that our methods worked better if we added noise to the patch, comparable

to that in the image sequence, before inserting it into the ith frame of the movie.

We summarize our tracking method in Algorithm 8 .

From the computed ∆ values, we can compute the magnitude of the planar

velocity of the object at frame i,

|vi| =
√

∆x2
i + ∆y2

i , (4.6)

73

Algorithm 8 The tracking algorithm using edge detection.

Input: Image sequence Ĩ, noise estimate, patch P, and initial patch location.

Output: Estimates of patch position ∆x, ∆y, and ∆θ for each frame.

Add noise to the patch P.

for n = 2→l do

Record ∆xn = ∆yn = ∆θn = 0 as the best guess so far.

for dθ = −2 : 1 : 2 do

Rotate the patch by angle dθ: Pr = imrotate(P, dθ).

Compute shaded patch S = Pr. ∗ L from equation (4.3).

for dx = −2 : 1 : 2 do

for dy = −2 : 1 : 2 do

The current trial center is the patch center at frame n− 1 plus (dx, dy).

Replace frame n of the image sequence Ĩ with a frame containing the

patch S at the trial center, obtaining Ĩp.

if ‖D(̃I)−D(̃Ip)‖ is smaller than all previous values for frame n then

Set ∆xn = dx, ∆yn = dy, and ∆θn = dθ.

end if

end for

end for

end for

Replace the patch P by rotating it by ∆θn.

end for

74

and the direction of the planar velocity,

φi = arctan

(
∆yi
∆xi

)
. (4.7)

The computed direction φi is quite sensitive to errors in the ∆ values.

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for Ball

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for Ball

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for Ball

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for Ball

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for Ball

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for Ball

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for Ball

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for Ball

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

Figure 4.6: Results for spiraling ball with noise.
76

4.4 Experimental Results

Several experiments were conducted to help understand and characterize how

edge detectors will work in the tracking context.

The first uses the spiraling ball movie (see Figure 4.2). In three dimensions

this motion resembles a twisting tube or slinky. The optimization solves for the

track object’s estimated center location and velocity using the inserted artificial

track object with and without edge detection methods. The spiraling ball movie

is processed using the 3D Canny, 3D wavelet, 2D shearlet-Canny combination, and

raw frame-by-frame without edge detection.

The exhaustive search is able to find the exact center and velocity of the

track object for the frame-by-frame method without edge detection when no noise

is present. Therefore a more difficult test is to compare methods by starting with

no noise and gradually increasing the standard deviation σ = [0.1, . . . , 0.6] of the

Gaussian noise until a particular method begins to stray from the truth data. This

allows us to visualize the magnitude of the largest error as a function of increasing

noise.

Our results compare the algorithms with respect to four metrics. The first

metric, center max-error, is computed by finding the maximum over a set of frames

of the one-norm of the difference between the true center and the computed center:

max
n=1,...,`

∥∥xtruen − xcompn

∥∥
1
, (4.8)

where xn is the position of the patch in frame n. We chose ` = 5. The second

77

metric, center mean-error, is

1

`

∑̀
n=1

∥∥xtruen − xcompn

∥∥
1
. (4.9)

The errors in the estimated velocity magnitude of the track object can be inferred

from these quantities. Our third metric, velocity-angle max-error, is the maximum

error in the velocity angle of the track object:

max
n=1,...,`

|θtruen − θcompn |. (4.10)

Similarly, velocity-angle mean-error is

1

`

∑̀
n=1

max |θtruen − θcompn |. (4.11)

Our results for the spiraling ball are shown in Figure 4.6. In this and subse-

quent figures, for clarity, we plot results for the 2D algorithms on the left and the 3D

algorithms on the right. The plots show that for low error (σ ≤ 0.4), all of the 2D

and 3D algorithms perform perfectly. For error levels above that, Canny 2D breaks

first, followed by the 2D wavelet at σ = 0.5. None of the 3D algorithms break track

for this problem.

78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BowTie

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BowTie

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BowTie

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BowTie

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BowTie

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BowTie

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BowTie

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BowTie

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

Figure 4.7: Results for spiraling bow-tie with noise.

79

Our second experiment evaluates how the edge detection algorithms perform

on more complicated objects. Consider a black and white bow-tie target as shown

in Figure 4.4. It has a corner point in the center where the image gradient changes

direction rapidly over a very short distance and the edges run closer together. Our

results for the bow-tie movie are displayed in Figure 4.7. For the bowtie problem

the point of breaking track takes place for Canny 2D at noise standard deviation

σ = 0.4, compared to the 2D wavelet at σ = 0.6. The 2D algorithms have larger

error than the 3D algorithms.

Our third experiment considers a ball that has been shaded gradually from

dark to light along the main diagonal, with results shown in Figure 4.8. Results are

similar.

The fourth experiment considers a bow-tie that has been shaded gradually

from dark to light along the main diagonal. The results are given in Figure 4.9.

For this more complicated shaded bow-tie object, all 3D methods break track but

maintain a center position tracking error of less than 3 pixels. The 2D shearlet

generally has lower error than the 2D wavelet. The 3D shearlet and 3D wavelet

perform slightly better than Canny3D.

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BallShaded

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BallShaded

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BallShaded

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BallShaded

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BallShaded

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BallShaded

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BallShaded

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BallShaded

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

Figure 4.8: Results for the spiraling shaded ball with noise
81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BowTieShaded

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BowTieShaded

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BowTieShaded

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BowTieShaded

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BowTieShaded

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BowTieShaded

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BowTieShaded

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BowTieShaded

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

Figure 4.9: Results for the spiraling shaded bow-tie with noise.

82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

Figure 4.10: Results for spiraling rotating bow-tie with noise.
83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

std of noise

er
ro

r
(d

eg
re

es
)

Rotation−angle max−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

std of noise

er
ro

r
(d

eg
re

es
)

Rotation−angle max−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

std of noise

er
ro

r
(d

eg
re

es
)

Rotation−angle mean−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

std of noise

er
ro

r
(d

eg
re

es
)

Rotation−angle mean−error vs. noise for BowTieRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

Figure 4.11: Rotation angle errors for spiraling rotating bow-tie with noise.

84

The fifth experiment adds rotation about the center of the object for a spiraling

bowtie. The results are given in Figures 4.10 and 4.11. The 3D wavelet and shearlet

algorithms are quite reliable in tracking position and rotation angle of this object.

The sixth experiment considers a bowtie that spirals and rotates and has been

shaded across the diagonal of the object. Results are shown in Figures 4.12 and 4.13.

The 3D methods again track position and rotation angle very well.

The last experiment evaluates the hybrid methods on a bow-tie that has been

rotated and shaded gradually from dark to light along the main diagonal. Results

are given in Figure 4.14. The hybrid algorithms are quite effective at lower cost

than the other 3D algorithms.

4.5 Conclusions

We have presented 2D and 3D tracking algorithms based on edge detection.

All of the methods perform with low error for simple objects in moderate noise.

2D methods are more likely to break track at higher noise levels. All of the 3D

methods stay on track for both position and velocity metrics, even for complicated

shapes. Shading was the first feature that noticably increased the errors for the

3D methods. Angular velocity errors are lower for the shearlet and wavelet than

for the Canny algorithms. The 2D and 3D shearlets are the best performers for

complicated objects. Noisy rotating shaded objects separate the 3D wavelet from

the higher-quality 3D shearlet. When objects are simple, it is not necessary to

use the 3D shearlet. Hybrid methods conserve computational resources by only

85

applying costly shearlet or wavelet transforms in the image planes where motion

or object shape is more complicated. Additional velocity information provided by

image gradients over time stabilizes tracking as noise increases.

Transformations other than translation and rotation could be included in fu-

ture work. Expansions and contractions of the patch would account for movement

toward and away from the camera. We could also allow for roll and yaw of a 3D

target with known shape.

86

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

Figure 4.12: Results for spiraling rotating shaded bow-tie with noise.

87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

std of noise

er
ro

r
(d

eg
re

es
)

Rotation−angle max−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

std of noise

er
ro

r
(d

eg
re

es
)

Rotation−angle max−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

std of noise

er
ro

r
(d

eg
re

es
)

Rotation−angle mean−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
FrameByFrame
Wavelet2Dedge
Shearlet2Dedge

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

std of noise

er
ro

r
(d

eg
re

es
)

Rotation−angle mean−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Canny3Dedge std:0.6
Wavelet3Dedge
Shearlet3Dedge

Figure 4.13: Rotation angle errors for spiraling rotating shaded bow-tie with noise.

88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

std of noise

er
ro

r
(p

ix
el

s)

Center max−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Wavelet2Dedge
Shearlet2Dedge
HybridWaveletCanny3Dedge std:0.6
HybridShearletCanny3Dedge std:0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

std of noise

er
ro

r
(p

ix
el

s)

Center mean−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Wavelet2Dedge
Shearlet2Dedge
HybridWaveletCanny3Dedge std:0.6
HybridShearletCanny3Dedge std:0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle max−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Wavelet2Dedge
Shearlet2Dedge
HybridWaveletCanny3Dedge std:0.6
HybridShearletCanny3Dedge std:0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

std of noise

er
ro

r
(d

eg
re

es
)

Velocity−angle mean−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Wavelet2Dedge
Shearlet2Dedge
HybridWaveletCanny3Dedge std:0.6
HybridShearletCanny3Dedge std:0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

std of noise

er
ro

r
(d

eg
re

es
)

Rotation−angle max−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Wavelet2Dedge
Shearlet2Dedge
HybridWaveletCanny3Dedge std:0.6
HybridShearletCanny3Dedge std:0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

std of noise

er
ro

r
(d

eg
re

es
)

Rotation−angle mean−error vs. noise for BowtieShadedRotated

Canny2Dedge std:0.6
Wavelet2Dedge
Shearlet2Dedge
HybridWaveletCanny3Dedge std:0.6
HybridShearletCanny3Dedge std:0.6

Figure 4.14: Maximum (left) and mean (right) errors in centers (top), velocity angles

(middle), and rotation angles (bottom) for hybrid algorithm on a rotating spiraling

bow-tie with noise.

89

Chapter 5

Summary and Future Work

5.1 Conclusion

This dissertation has presented the background to implement 2D and 3D edge

detectors based on the Canny, wavelet, and shearlet analysis algorithms. In partic-

ular my contribution has been to design and implement 3D wavelet and 3D shearlet

edge detectors. The edge detectors were also successfully integrated into a new

tracking system as a practical application, using synthetic data. The 3D edge de-

tectors provided better localization and velocity accuracy in the presence of noise.

Several different test cases illustrated the performance of the 2D and 3D algorithms.

The 2D algorithms are reliable for simple objects that follow smooth trajectories in

moderate noise, but break down under high levels of noise. All of the 3D methods

perform very well in the midst of high noise levels even for objects with more com-

plicated shape. Shade is a problem that will degrade all of the 3D edge detectors’

performance, but the multi-scale algorithms handle this case better than the Canny

approach. The multi-scale, multi-directional shearlet algorithms are best for track-

ing complicated shapes and trajectories. The added benefit of 3D edge detection is

the additional velocity information that was not previously available from 2D edge

detection methods. The image gradient over time from the 3D algorithms provided

better position and velocity results than the 2D algorithms. Hybrid 2D-3D methods

90

reduce computational cost but retain the benefit of estimating image velocity.

5.2 Future Work

The most important work I would like to pursue in the near future is the inte-

gration of edge detection into a photogrammetric tracking system. When collecting

data for tracking purposes, the best measurements come from cameras with a line of

sight normal to the object’s plane of motion. Sometimes it is not possible to place

the camera at the correct line of sight. Therefore multiple cameras collect images

from different points of view to perform scene analysis. If the track object is moving

quickly, high frame rates and more images are necessary to reconstruct the object’s

trajectory correctly. Long image sequences make automation of tracking a priority.

Noise and illumination further complicate the tracking process. Reliable 3D edge

detection will help to provide faster more robust 2D tracking. Future work includes

these research projects:

• Integrate 2D and 3D edge detectors into a 3D photogrammetric tracking sys-

tem that works with real-world data.

• Use the image velocity information from 3D edge detectors as measurements

to improve the accuracy of 3D Bayesian state estimation techniques that cur-

rently use image position data.

• Prepare an edge detection toolbox.

• Continue testing 3D edge detectors with different problems.

91

• Improve and automate the choice of scales and directions for multi-scale, multi-

directional filter banks.

• Design new multi-scale, multi-directional partitioning of 3D frequency space.

• Refine and automate 3D thresholding and 3D non-maximal suppression.

• Improve the capability of the edge detection based tracking system to track

more complicated targets.

• Add image acceleration to the 2D tracking problem.

• Parallelize the edge detection and tracking process.

• Apply 3D shearlets to denoise and restore volumetric data sets.

92

Bibliography

[1] M. Brejl, and M. Sonka, “Directional 3D Edge Detection in Anisotropic Data:
Detector Design and Performance Assessment”, Computer Vision and Image
Understanding, vol. 77, pp. 84–110, 1999.

[2] J. F. Canny, “A Computational Approach to Edge Detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8(6), 679-698,
1986.

[3] J. F. Canny, “Finding Edges and Lines in Images ,” Master’s Thesis, MIT,
1983.

[4] J. Geusebroek, A. W. M. Smeulders, and J. van de Weijer, “Fast Anisotropic
Gauss Filtering”, IEEE Transactions on Image Processing, vol. 8, pp. 938-943,
2003.

[5] R. C. Gonzalez, and R. E. Woods, Digital Image Processing (Prentice Hall,
Upper Saddle River, 2002).

[6] K. Guo, D. Labate, “Analysis and Detection of Surface Discontinuities Using
the 3D Continuous Shearlet Transform”, Applied and Computational Harmonic
Analysis, vol. 30(2), pp. 231–249, 2010.

[7] D. Labate, and W.-Q. Lim, G. Kutyniok, and G. Weiss, “Sparse multidimen-
sional representation using shearlets”, Wavelets XI , SPIE Proc. vol. 5914,
254–262, SPIE, Bellingham, WA, 2005.

[8] S. A. Mallat, A Wavelet Tour of Signal Processing (Academic, San Diego, 1998).

[9] S. A. Mallat and W. L. Hwang, “Singularity Detection and Processing with
Wavelets”, IEEE Transactions on Information Theory, vol. 38(2), pp. 617-643,
1992.

[10] S. A. Mallat and S. Zhong, “Characterization of Signals from Multiscale Edges”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14(7),
pp. 710-732, 1992.

[11] O. Monga, S. Benayoun, “Using Partial Derivatives of 3D Images to Extract
Typical Surface Features”, INRIA Report research, 1992.

93

[12] O. Monga, R. Deriche,, “3D Edge Detection Using Recursive Filtering: Ap-
plication to Scanner Images”, CVGIP: Image Understanding, San Diego, vol.
53(1), pp. 76-87, January 1991.

[13] P. Perona, “Steerable-scalable Kernels for Edge Detection and Junction Anal-
ysis”, Image and Vision Computing, vol. 10, pp. 663-672, 1992.

[14] D. A. Schug, G. R. Easley, and D. P. O’Leary, “Three-dimensional Shearlet
Edge Analysis”, SPIE: Defense, Security, and Sensing, Orlando, April 25-29,
2011.

[15] D. A. Schug, G. R. Easley, and D. P. O’Leary, “Tracking Objects Using Three
Dimensional Edge Detection”, in preparation, 2012.

[16] J. Weickert, “Foundations and Applications of Non-linear Anisotropic Diffusion
Filtering”, Zeitschrift für Angewandte Mathematik und Mechanik., vol. 76, pp.
283-286, 1996.

[17] Z. Weiping, S. Hauzhong, “Detection of Cerebral Vessels in MRA Using 3D
Steerable Filters”, Engineering in Medicine and Biology 27 Annual Conference,
Shanghai, September 1-4, 2005.

[18] S. Yi, D. Labate, G. R. Easley, and H. Krim, “Edge Detection and Processing
Using Shearlets”, Proceedings IEEE International Conference on Image Pro-
cessing, San Diego, October 12-15, 2008.

[19] S. Yi, D. Labate, G. R. Easley, and H. Krim, “A Shearlet Approach to Edge
Analysis and Detection”, IEEE Transactions on Image Processing, vol. 18(5),
pp. 929–941, 2009.

[20] D. Ziou, S. Tabbone, “Edge Detection Techniques An Overview”, International
Journal of Pattern Recognition and Image Analysis , vol. 8(4), pp. 537–559,
1998.

94

