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In Chapter 1, a natural semiparametric model for case control study data is

discussed, and the asymptotic properties of two simple methods of estimation are

explored. The probability element of the model can be factored into a known pos-

itive function h(x,θ) involving the finite dimensional structural parameter θ, an

infinite dimensional nuisance parameter in the form of the probability element dP

of a distribution, and a normalizing constant, i.e., dPθ(x) = C(θ)h(x,θ)dP (x). In

the setup of interest, a sample of size n is available from a population with distribu-

tion Pθ. A second, independent sample of size m is available from a population with

distribution P . The methods of estimation involve replacing P with its empirical

version P̂m based on the second sample, and constructing semiparametric analogs

of the maximum likelihood estimator and the method of moments estimator. The

simplicity of these semiparametric estimators permits analysis of their asymptotic

distribution even when n and m grow at different rates, yielding very natural and

interpretable asymptotic results. In the case where n = o(m), the analog of the



Maximum Likelihood Estimator is asymptotically efficient.

Chapter 2 explores a related parametric asymptotic statistics problem. Sup-

pose a sample (Y1, . . . , Ym) is available from a population with density fY (y;λ), and

an independent sample (X1, . . . , Xn) is available from a population with density

fX(x;λ, ψ). Here λ is regarded as a nuisance parameter and ψ is the structural

parameter, where λ and ψ are scalars. One approach to estimation of ψ would be

to compute the maximum likelihood estimator based on both samples, resulting in

an estimator denoted as ψ̂
(1)

m,n. A second approach would be to first find the max-

imum likelihood estimator of λ from the sample (Y1, . . . , Ym), namely λ̂m, and to

then treat λ̂m as the true parameter. That is, one treats (X1, . . . , Xn) as if the sam-

ple comes from fX(x; λ̂m, ψ), and then computes the maximum likelihood estimator

of ψ, where we denote the resulting estimator as ψ̂
(2)

m,n. Chapter 2 compares the

asymptotic behavior of ψ̂
(1)

m,n and ψ̂
(2)

m,n under different assumptions about the rate

of growth of m relative to n.

Chapter 3 is about small area estimation, comparing an existing empirical

Bayes method with a new empirical Bayes method for confidence interval construc-

tion for small area proportions based on data collected under stratified random sam-

pling. Consider interval estimation of m small area proportions Pi (i = 1, · · · ,m)

where we assume a stratified random sampling design with equal number of ob-

servations n in each stratum, and where the domains of interest are the strata.

In survey analysis, a commonly used 95% confidence interval for Pi is given by



P̂EB
i ± 1.96

√
msei, where P̂EB

i and msei are an empirical Bayes estimator of Pi and

an associated second-order unbiased mean squared error estimator (i = 1, · · · ,m).

The underlying model is pi|Pi ∼ N (Pi, ψi), Pi ∼ N (µ,A), where pi is the usual

sample proportion for domain i (i = 1, . . . ,m); ψi are known sampling variances; µ

and A are unknown hyperparameters. The well-documented problems of the normal

approximation to the binomial raise questions about the accuracy of these intervals

when the domain sample sizes are small or when the true domain proportions are

close to 0 or 1. We argue that a more reasonable model in this setting is to assume

that the sampled stratum counts have binomial distributions and that the prior dis-

tribution of the true stratum proportions follows a beta distribution. We propose a

new empirical Bayes confidence interval based on this model, and examine related

simulation results.
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Chapter 1

Asymptotic Properties of the Empirical Method of Moments and the

Empirical Maximum Likelihood Estimator in Kernel Families

1.1 Introduction

In this chapter we study the asymptotic properties of semiparametric esti-

mators based on a sample from a distribution belonging to a kernel family with

an unknown generator, and on an independent sample from the generator popula-

tion. Besides being of theoretical interest, the situation arises in case-control studies.

Kernel families {Pθ,θ ∈ Θ} of distributions on (X ,A) are defined as given by

a probability element

dPθ(x) = C(θ)h(x;θ)dP (x).

where P is a probability distribution on a measurable space (X ,A) called the gen-

erator, θ is the parameter of interest, and h(x,θ) is a positive function called the

kernel. For a given kernel h(x,θ) a probability measure P with
∫
h(x,θ)dP < ∞

generates a kernel family. The definition was inspired by the Natural Exponential

Families (NEFs), given by the probability element:

dF (x;θ) = eθ
Tx−ψ(θ)dF (x),θ ∈ Θ.

In the latter expression x is a vector of the same dimension as θ and F can be any
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distribution function with a well-defined moment generating function.

The data are in the form of two independent samples, (X1, . . . , Xn) of size n from a

population Pθ from the kernel family, and (Y1, . . . , Ym) of size m from a population

P from the generator.

In case-control studies, this setting can arise as follows: the control population

can be modeled as having a generator distribution, and the case population as having

a distribution from the corresponding kernel family with a particular kernel function.

In the case where θ is a scalar and the kernel family is a natural exponential

family, θ > 0 means that the observed characteristic in the case group is stochas-

tically bigger than the observed characteristic in the control group since a natural

exponential family is a family with a monotone likelihood ratio.

The idea behind semiparametric methods can be illustrated by the quote by

Tukey: “It is better to be approximately right than exactly wrong." The advantage

of the methods described in this chapter, and of other semiparametric methods, is

that it is not necessary to specify the particular parametric distribution that is the

basis of the model. When the kernel family of interest is the natural exponential

family, for instance, the class includes many of the most commonly used family of

distributions in practice–the Poisson family, the binomial family, the negative bino-

mial family, the normal family with known variance, the gamma family with known
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shape parameter, and the multinomial family. Under the semiparametric approach

we will discuss, it is not necessary to specify a distribution for the underlying model–

the generator is assumed to be unknown. One must specify only the kernel function

that defines the class of families.

More formally, the term semiparametric model is typically used to refer to a model

containing a finite dimensional parameter of interest, in this case θ, and an infinite

dimensional nuisance parameter, in this case the generator P .

The question arises as to what the information bound is on θ in a semi-

parametric model. For estimators based a sample (X1, . . . , Xn), Stein (1956) [68]

proposed a method of obtaining such a lower bound. This is based on the observa-

tion that the Fisher information for estimating θ in a semiparametric problem is no

greater than the Fisher information for estimating θ in any parametric submodel.

Thus, by finding the "least favorable" submodel, a bound can be obtained on the

asymptotic covariance of θ in the semiparametric model. This approach has been

further developed by Levit (1974) [43], Koshevnik and Levit (1976) [38], Lindsay

(1980) [43], Pfanzagl (1982) [54], and Begun et al. (1983) [4], among others, and

is discussed in more detail in Bickel et al. (1993) [6] and in Van der Vaart (2000) [70].

For the model we discuss here, an expression for the information bound for θ

when m = cn(1 + o(1)) is given in Gilbert (2000) [23].
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An important theorem in asymptotic statistics, both in parametric and non-

parametric models, is the Hájek-Le Cam Convolution Theorem. We will state a

version in the parametric case when there is a sample (X1, . . . , Xn):

Convolution Theorem. Assume that the experiment (Pθ : θ ∈ Θ) is differentiable

in quadratic mean at the point θ with nonsingular Fisher information matrix Iθ.

Let ψ be differentiable at θ. Let Tn be an at θ regular estimator sequence in the

experiments (P n
θ : θ ∈ Θ) with limit distribution Lθ. Then there exists a probability

measure Mθ such that

Lθ = N
(
0, ψ′(θ)I−1θ ψ′(θ)T

)
∗Mθ.

In particular, if Lθ has covariance matrix Σθ, then the matrix Σθ −ψ′(θ)I−1θ ψ′(θ)T

is nonnegative definite.

Proof. See Van der Vaart (2000), p. 115.

For a definition of differentiable in quadratic mean, see Van der Vaart (2000),

p.93, and a definition of an at θ regular estimator sequence is given in page 115.

An analogous result applies to semiparametric models based on one sample.

For details, see Van der Vaart (2000), p. 366.

A specific example of how the kernel family model applies to case control

studies can be found by specifying a logistic regression model for case control data,

as follows: Suppose y is a binary response, and x a covariate. For instance, y could
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be the presence of a disease and x could be an environmental or genetic characteristic

believed to be related to the incidence of the disease. The logistic regression model is

frequently used to analyze relationships between diseases and environmental/genetic

factors (Qin(1998) [56]). The logistic model is

P (Y = 1|X) =
exp{α∗ + XTβ}

1 + exp{α∗ + XTβ}
.

The marginal density of X, f(x), is not specified.

Under the case-control study sampling scheme, the data consist of two inde-

pendent samples of the observed values of x of sizes m and n from the subsets of the

population with Y = 0 and Y = 1, respectively. The parameter β is of particular

interest because it elucidates the relationship between Y and X. When β = 0 it

implies that the covariate X does not influence Y .

Denote the sample from the control group (Y = 0) as (X1, . . . ,Xm) with marginal

density f0(x), and denote the sample from the case group (Y = 1) as (Xm+1, . . . ,Xn+m),

with marginal density f1(x). Let π be the marginal probability of Y = 1, that is,

π = P (Y = 1) =

∫
P (Y = 1|x)f(x)dx

The probability π cannot be computed from this integral because f is not known,

but it can be noted that π is a function of f and the parameters. By Bayes’ rule we

have

f1(x) =
1

π

exp{α∗ + xTβ}
1 + exp{α∗ + xTβ}

f(x)

5



and

f0(x) =
1

1− π
1

1 + exp{α∗ + xTβ}
f(x)

Thus

f1(x)

f0(x)
=

1− π
π

exp{α∗ + xTβ} = exp{α + xTβ}.

Equivalently,

f1(x) = exp{α + xTβ}f0(x).

In our kernel family setup, θ = β, C(θ) = exp{α}, and h(x,θ) = exp{xTθ}. Notice

that α must be a function of β and f ; this follows immediately since f0 and f1 must

integrate to 1.

In the proposed methods of estimation, the normalizing constant C(θ) plays

an important role in estimation, as will be seen in Section 2.

The logistic regression is one example of how a kernel family model might

be appropriate in a case control study, but the analysis can be extended to other

models. Suppose one assumes the model

P (Z = 1|x) = g(θ,x)

where g is a known function. Then it is easy to see, again by Bayes’ theorem, that

f1(x) =
1

π
g(θ,x)f(x)

6



and

f0(x) =
1

1− π
(1− g(θ,x))f(x).

Thus

f1(x)

f0(x)
=

1− π
π

g(θ,x)

1− g(θ,x)
.

Again, π must be a function of θ so we have the kernel family model

f1(x) = C(θ)
g(θ,x)

1− g(θ,x)
f0(x)

Therefore, specifying P (Y = 1|X) imposes a kernel function.

Returning to the general kernel family setup, let us discuss two new sim-

ple methods of estimation of the parameter θ. To find the Empirical Maximum

Likelihood Estimator (EMLE) and the Empirical Method of Moments Estimator

(EMME), P is replaced by its empirical version based on the sample (Y1, . . . , Ym).

An alternative term for the EMLE could be the Maximum Likelihood Estimator

via Empirical Generator (MLEEG), since the term Maximum Empirical Likelihood

(MELE) is already available in the literature and thus confusion could ensue over

the two very different estimators. For the purpose of this dissertation, we will use

the shorter term, EMLE, for simplicity.

The empirical distribution function is defined as

F̂m(y) =
m∑
i=1

I(Yi ≤ y)

where I(A) denotes the indicator of an event A.
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The empirical distribution function is a classical nonparametric estimator of an

unknown distribution function F based on a sample, in this case (Y1, . . . , Ym). Equal

masses are placed on each of the observations y1, . . . , ym. For any fixed y, mF̂m(y)

has a binomial distribution Bi(F (y),m), so that F̂m(y) is an unbiased estimator of

F (y), and, moreover F̂m(y) is
√
m consistent for F (y). A stronger asymptotic result

is the classical theorem by Glivenko and Cantelli that proves uniform convergence

of F̂m(y) to F (y), that is,

sup
y
|F̂m(y)− F (y)| a.s.→ 0.

The estimators that result from replacing the generator F by F̂m have inter-

esting asymptotic properties.

Although our definition of kernel families was inspired by the Natural Expo-

nential Families, the same model has appeared in the literature in the context of

selection bias models (Gilbert et al., 1999) [22], (Gilbert, 2000) [23], and an equiv-

alent model was studied in the literature by the label of density ratio models. Qin

(1998), for instance, specifically uses the density ratio model for case control studies.

In these papers, semiparametric likelihood ideas are used to derive estimators for θ.

Density ratio models have been used in several applications, particularly in

the setting where two or more samples are available. A density ratio model when

there are two samples available, one with probability element dQ and the second
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with probability element dP is of the form

dQ

dP
= g(x,θ)

where the function g is regarded as known. This is essentially the same as the kernel

family model with g(x,θ)=C(θ)h(x,θ).

Multi-sample density ratio examples found in the literature typically handle

estimation using empirical likelihood ideas pioneered by Owen (1988[48], 1990[49],

1991 [50]). These methods have been studied, applied, and extended by many in-

cluding Qin and Zhang (1997) [60], Qin and Lawless (1994) [58], Qin (1998) [56],

Qin (2000) [59], DiCiccio, Hall, and Romano (1989) [14], Cheng and Chu (2004) [12],

Keziou and Aubin (2007) [35], Kedem, et al. (2009) [34], Qin et al. (2002), [59],

Zhou et al. (2002) [72], among others, and appear to do well in many applications.

Empirical likelihood, and its many extensions by Qin and others, comprise a

series of interesting nonparametric and semiparametric methods that yields estima-

tors of parameters of interest, whether finite dimensional or infinite dimensional.

These methods permit inference when aspects of the model are specified without

specifying a fully parametric model. Empirical likelihood essentially involves writing

the likelihood function in terms of the unknown probability elements pi = dF (xi)

of the observed data points with respect to a distribution F , subject to appropriate

constraints. The main idea is that the distribution function F can be approximated

by a discrete distribution concentrated on the observed data values.
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Given a sample (X1, . . . , Xn), absent any information on the distribution of

the population, we can write the empirical likelihood function as

L(F ) = Πn
i=1pi

with constraints
n∑
i=1

pi = 1, pi > 0.

In this case, it is easy to see that the empirical likelihood is maximized by the cu-

mulative distribution function Fn. If we are interested in estimating T (F ), where T

is a real functional of the distribution, we can estimate it by T (Fn). For instance,

the mean µ can be expressed as
∫
xdF (x) so that the Non Parametric Maximum

Likelihood Estimator (NPMLE) of µ is
∫
xdFn(x) = X̄n.

Alternatively, if the true µ were known the constraint
∑
xipi = µ could be

used to come up with an improved estimate of F .

Moreover, suppose that the observations are of the form (X, Y ) and µx, the

true value of the mean X, is known and one is interested in estimating the mean of

Y , µy. This arises in survey sampling. The information about µx could be added as

a constraint, and an additional constraint could be added of the form
∑
Yipi = µy.

One could maximize over pi and then over µy to produce an estimator µ̃y of µy,

usually referred to as the Maximum Empirical Likelihood Estimator (MELE). The

asymptotic variance of µ̃y is at least as small as that of Ȳn, with equality holding if
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an only if Y is uncorrelated with X (Owen, 2001 [51]).

Qin (1998) [56] specifically extends these semiparametric likelihood ideas to

two-sample problems under a density ratio model for case control studies. Namely,

Qin’s model is

f1(x) = g(x,θ)f0(x),

where f1(x) is the marginal density of the case group and f0(x) is the marginal

density of the control group. The data are two independent samples (X1, . . . , Xn0)

from the control group and (Xn0+1, . . . , Xn) from the case group, where n0 +n1 = n.

The log likelihood is expressed as

l =
n∑
i=1

log(pi) +
n∑

i=n0+1

log g(xi,θ)

subject to the constraints

n∑
i=1

pi = 1,
n∑
i=1

pi(g(xi,θ)− 1) = 0, pi > 0.

The first two constraints make f0 and f1 proper probability distributions. The

optimization problem is solved through Lagrange multipliers, where the Lagrange

multiplier λ can be estimated from the data by treating it as an ordinary parameter.

The approach is first to obtain the optimal pi while holding all other parameters

constant. The estimates for pi are then substituted in the likelihood, which becomes

a function of the data, λ, and θ.

Qin (1998) studies the asymptotic properties of the estimators of θ and λ,

focusing only on the case where n0 = cn1(1 + o(1)), or, equivalently, where n0/n→
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ρ0 > 0 and n1/n→ ρ1 > 0. Although this is not proved in Qin (1998), it follows

from Gilbert (2000) that Qin’s estimator for θ is efficient when n0 = cn1(1 + o(1)),

because it is actually equivalent to that proposed in Gilbert (2000) under the setup

of Qin (1998), where there are two samples. Gilbert proves efficiency of the estima-

tor when n0 = cn1(1 + o(1)).

Gilbert (2000) has the following setup. The model comprises three compo-

nents: a probability measure G, a set of nonnegative (measurable) stratum weight

functions w1, . . . , ws, and selection probabilities λi, i = 1, . . . , s, with
∑s

i=1 λi = 1.

The data are assumed to be a sample Xk = (Ik, Yk), k = 1, . . . , n. The random vari-

able I ∈ {1, . . . , s} denotes the stratum, selected with probability λi. Let g = dG
dµ

for some measure µ dominating G. The density of X is given by

p(x,θ, G) = p(i, y,θ, G) = λi
wi(y,θ)

Wi(θ, G)
g(y)

where Wi(θ, G) is the ith normalizing function given by

Wi(θ, G) =

∫
Y

wi(u,θ)dG(µ),

assumed to be positive and finite for all θ ∈ Θ.

Conditional on I = i the probability measure Fi of Y under this model satisfies

Fi(A,θ, G) = W−1
i (θ, G)

∫
A

wi(u,θ)dG(u), i = 1, . . . , s.

If s = 2, and if one of the weight functions is constant, this model is equivalent to
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the kernel family model.

Returning to the general setup analyzed in Gilbert (2000), a previous paper,

Gilbert et al. (1999) [22] provides an expression for the likelihood of the data and a

procedure to maximize the likelihood over (θ, G), assuming one of the weight func-

tions is constant, under some assumptions. The maximization is over θ and over all

distributions concentrated at the observed sample points. Gilbert (2000) provides

the large sample properties of this maximum likelihood estimator, and in particu-

lar, the author shows that the estimator for (θ, G) is asymptotically efficient under

several assumptions including the condition that λni = ni/n→ λi > 0, i = 1, . . . , s,

where ni is the ith sample size and n =
∑s

i=1 ni. Thus, the estimator of θ is

asymptotically efficient when m = cn(1 + o(1)), c > 0, using our notation. The

method we propose is simpler and allows for analysis in cases where n = o(m) and

m = o(n). The expression provided for the information bound in Gilbert (2000) is

very complicated and extremely hard to compare to the expressions for the asymp-

totic covariances of the EMME and EMLE, although it is expected that the former

two are not efficient when m = cn(1 + o(1)).

To our knowledge, no asymptotic theory is available for estimators based on

semiparametric density ratio models/biased sampling models with weights depend-

ing on θ when n0 = o(n1) or n1 = o(n0).

As stated by Qin, there are some specific examples of h(x, θ) that are of partic-
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ular interest in applications. For instance, Qin (1998) [56] studies the multiplicative-

intercept risk model:

g(x,θ) = eα+φ(x,β).

The quantity eα is the normalizing constant, but because it is “unknown,"

α is treated as a separate parameter in Qin (1998). Under our approach, because

eα = C(θ) where θ = β, the multiplicative-intercept risk model is not a special case,

but rather an equivalent expression of the kernel family. In the literature, specific

forms of φ have been found to be useful in particular applications. Examples are

Storer, Wacholder and Breslow (1983) [69], which focuses on some epidemiological

studies, and Kay and Little (1987)[33], who analyzed a dataset on age of menarche

in girls from Warsaw. The density ratio model has also been used to model mete-

orological data by Fokianos et al. (2001) [20] and on testicular germ cell data by

Kedem et al. (2009), among many others.

Keziou and Aubin (2007) [35] build on Qin (2008) by constructing a test

statistic for hypothesis testing. They study the asymptotic properties of both the

estimate θ̂ and the test statistics both under the null hypothesis H0 : θ = 0, and

the alternative hypotheses, once again assuming m = cn(1 + o(1)), c > 0. Cheng

and Chu (2004) [12] also study two sample density ratio models, but they focus on

density estimation using the kernel density estimates suggested by Jones (1991) [27].
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In this chapter the asymptotic properties of the EMME and EMLE of θ are

explored. Section 1.2 explores the properties of the EMLE as it applies to the special

case of natural exponential families. The estimating equations for the EMME in this

case are identical to those of the EMLE, so that there is no need to consider this

case separately. Section 1.3 generalizes the results related to the EMLE and EMME

to kernel families, where the two estimators are not equivalent. The asymptotic

distribution of the EMME and EMLE are compared, pointing out a special rela-

tionship between the two. Section 1.4 discusses the m-sample density ratio model,

and Section 1.5 discusses future research.

1.2 Natural Exponential Families

The distribution of the random vector X is said to belong to a natural expo-

nential family (NEF) with a generator F if the probability element of X has the form

dF (x;θ) = exp{θTx− ψ(θ)}dF (x),θ ∈ Θ (1.1)

where Θ is an open subset of Rp, ψ : Rp → R, and X ∈ Rp. Implicitly we assume

that the generator has an exponential moment (i.e., that its moment generating

function exists). The set of θ for which this holds for a given generator is called the

natural parameter space. We assume that θ0, the true value of θ, is in the interior of

the natural parameter space, and moreover that 0 ∈ Int(Θ) so that F (x,0) = F (x).
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The assumption that the moment generating function exists on a set with a

nonempty interior containing zero also implies that the moment generating function

of F is analytic and that all the moments of F exist. This allows for the computation

of moments by differentiating the moment generating function and evaluating it at

zero. For a discussion of this result in the multivariate case see Bickel and Doksum

(2001) [5], p.105. A proof in the univariate case can be found in Billingsley (1995) [7]

p. 278. Brown (1986) [8] also showed that in the interior of the natural parameter

space, all the moments of Fθ exist. Integration can be exchanged with differentiation

in the following expression:

∂

∂θ

∫
eθ

TxdF (x) (1.2)

where the operator ∂
∂θ

applied to a function f(θ, x, y, . . . ) denotes the vector of

partial derivatives ∂
∂θi
f(θ, x, y, . . . ), that is,

∂

∂θ
f(θ, x, y, . . . ) =


∂
∂θ1
f(θ, x, y, . . . )

...

∂
∂θp
f(θ, x, y, . . . )

 .

Expression (1.2) can be written as

∂

∂θ

∫
eθ

TxdF (x) =

∫
∂

∂θ
eθ

TxdF (x) =

∫
xeθ

TxdF (x). (1.3)

Alternatively, (1.2) can be expressed as

∂

∂θ
(eψ(θ)) =

∂

∂θ
ψ(θ)eψ(θ). (1.4)

Combining (1.3) and (1.4) we get the following relation:
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E(X) = ψ′(θ) =
∂

∂θ
ψ(θ). (1.5)

If F is known, so is ψ(θ) and the MLE of θ from a sample (X1, . . . ,Xn) is the

solution of the system of equations

X̄n = ψ′(θ) (1.6)

where both X̄n and ψ′(θ) have dimension p× 1.

This system of equations is identical to that obtained by the method of mo-

ments for natural exponential families, since the mean of the natural exponential

family is ψ′(θ) .

The asymptotic behavior of the MLE θ̂n (and equivalently of the method

of moments estimator θ̃n) of θ based on one sample (X1, . . . ,Xn) from a natural

exponential family with a known generator is given by

√
n(θ̂n − θ)

d→ Np(0, {ψ′′(θ)}−1) (1.7)

where ψ′′(θ) is the matrix of second partial derivatives of ψ(θ), i.e.,

ψ′′(θ) =


∂2

∂θ21
ψ(θ) . . . ∂2

∂θ1∂θp
ψ(θ)

...
...

...

∂2

∂θp∂θ1
ψ(θ) . . . ∂2

∂θ2p
ψ(θ)
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The asymptotic result (1.7) is governed by the standard theory of estimating

equations.

Implicitly it is assumed that ψ′′(θ) is positive definite, so that its inverse is

well-defined. This holds for any F that is nondegenerate. We will make the same

assumption in the semiparametric analysis in the rest of this section. Note that θ̂n

is asymptotically efficient.

For the natural exponential family,

ψ′′(θ) = IX(θ) = Covθ(X). (1.8)

The first relation follows immediately by differentiating the log likelihood and the

second one can be shown using the cumulant generating function.

1.2.1 Empirical Maximum Likelihood for Natural Exponential Families

Suppose a sample (X1, . . . ,Xn) is available from a multivariate natural expo-

nential family of dimension p. What happens if F is unknown but an independent

sample (Y1, . . . ,Ym) is available from its distribution?

The sample (Y1,Y2, . . . ,Ym) allows us to construct the empirical distribution

function F̂m(y).
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The empirical natural exponential family distribution can be constructed by

replacing F by F̂m(y) from the sample (Y1, . . . ,Ym). Its probability element is

dF̂m(x;θ) = exp{θTx− ψ̂m(θ)}dF̂m(x). (1.9)

where

exp{ψ̂m(θ)} =
1

m

m∑
i=1

exp{θTYi}. (1.10)

This normalizing constant makes this a proper distribution, that is, it ensures that∫
exp{θTx− ψ̂m(θ)}dF̂m(x) = 1.

The Strong Law of Large Numbers implies that ψ̂m(θ) is close to ψ(θ) for large

m; that is,

ψ̂m(θ)
a.s.→ ψ(θ) (1.11)

as m→∞.

This follows from applying the SLLN to eψ̂m(θ), so that

eψ̂m(θ) a.s.→ eψ(θ) (1.12)

as m→∞ since

E(eθ
TYi) = eψ(θ). (1.13)

Notice that F̂m(x;θ) is concentrated at the same points as F̂m(x). The distri-

bution F̂m(x,θ) puts the masses

eY
T
1 θ∑m

i=1 e
YT

1 θ
, . . . ,

eY
T
mθ∑m

i=1 e
YT
i θ
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at points Y1, . . . ,Ym, respectively.

For a continuous F (x), with Pθ probability one none of the X’s and Y’s will

match. Although this may seem counterintuitive, we recall that supy |F̂m(y) −

F (y)| a.s.→ 0 as m→∞ and eψ̂m(θ) a.s.→ eψ(θ), so that the empirical NEF family prob-

ability element should be a good approximation to the true NEF family probability

element provided m is large. The empirical NEF allows us to construct estimating

equations analogous to those of the maximum likelihood estimator and the method

of moments without the need to fully specify the parametric family.

To provide an expression for the empirical maximum likelihood system of equa-

tions, we compute ∂
∂θ
ψ̂m(θ), the derivative vector of ψ̂m(θ). Using (1.10), this ex-

pression has components

∂

∂θk
ψ̂m(θ) =

∑m
i=1 Yike

θTYi∑m
i=1 e

θTYi
, k = 1, . . . , p,

where Yik denotes the kth component of observation Yi. Thus the empirical ML

system of equations is

X̄n,k =

∑m
i=1 Yike

θTYi∑m
i=1 e

θTYi
, k = 1, . . . , p

where X̄n,k is the mean of the kth components of X1, . . . ,Xn, or equivalently,

X̄n =

∑m
i=1 Yie

θTYi∑m
i=1 e

θTYi
. (1.14)

The following theorem explores the consistency and existence of the EMLE for an

NEF. This is simply a special case of Theorem 3, but we include it here to illustrate
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the details of the argument for the special case of the NEFs.

Theorem 1. With probability tending to one as m,n → ∞ there exists a statistic

θ̂m,n that is a solution to the empirical maximum likelihood systems of equations and

is a consistent estimator of θ.

Proof. Let θ0 denote the true parameter vector for θ, i.e., X1, . . . ,Xn is a sample

from F (x;θ0) and Y1, . . . ,Yn is a sample from F (x; 0)

We will use Lemma 3, which will be stated and proved in section 1.3.

Consider the mapping

Gm,n(θ, X̄n,Y1, . . . ,Ym) = X̄n −
∑m

i=1 e
θTYiYi/m∑m

i=1 e
θTYi/m

. (1.15)

We will prove that conditions (i),(ii), and (iii) of Lemma 3 hold. To show (i), note

that

Gm,n(θ0) = X̄n −
∑m

i=1 e
θT0 YiYi/m∑m

i=1 e
θT0 Yi/m

a.s.→ ψ′(θ0)−
ψ′(θ0)e

ψ(θ0)

eψ(θ0)
= 0, (1.16)

so that

Gm,n(θ0, X̄n,Y1, . . . ,Ym)
a.s→ 0 (1.17)

We will now show that assumption (ii) of Lemma 3 holds; that is,

∂

∂θ
Gm,n(θ0, X̄n,Y1, . . . ,Ym)

a.s.→ −ψ′′(θ0). (1.18)

The p× p matrix of partial derivatives of Gm,n(θ, X̄n,Y1, . . . ,Ym) with respect to

the vector θ, ∂/∂θGm,n(θ) is given by entries

∂

∂θj
Gm,n,k = −

∑m
i=1 YijYike

θTYi∑m
i=1 e

θTYi
+

∑m
i=1 Yije

θTYi
∑m

i=1 Yike
θTYi

(
∑m

i=1 e
θTYi)2

(1.19)
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j, k = 1, . . . , p.

From this expression it follows that as m,n→∞

∂

∂θ
Gm,n(θ0, X̄n,Y1, . . . ,Ym)

a.s.→ −ψ′′(θ0). (1.20)

The limiting matrix in (1.20) is negative definite. Relation (1.20) follows by applying

the SLLN to each term in the expression (1.19) for the component functions. Note

that using (1.8) it follows that

E(eθ
TYiYikYij) =

∫
eθ

TyiyikyijdF (yi) = [{ψ′′(θ)}jk +
∂

∂θk
ψ(θ)

∂

∂θj
ψ(θ)]eψ(θ).

To show that assumption (iii) in Lemma 3 holds, we note that ∂2

∂θ2
Gm,n(θ) will in-

volve terms∑m
i=1 e

θTYi ,
∑m

i=1 e
θTYiYij,

∑m
i=1 e

θTYiYijYik, and
∑m

i=1 e
θTYiYijYikYil.

The summands are continuous and are thus bounded by integrable functions in-

dependent of θ on a closed ball about θ0, i.e. by eη
T
1 Yi , eηT2 YiYij, eη

T
3 YiYijYik and

eη
T
4 YiYijYikYil where the ηi i = 1, . . . , 4 refer to the maximizers of each function on

the said closed ball. This implies assumption (iii) of Lemma 3 holds by the LLN.

We should note that the results stated here are asymptotic, and that the ex-

istence and uniqueness of θ̂m,n for any fixed m and n and any given realization

of X1, . . . ,Xn and Y1, . . . ,Ym is not guaranteed. However, for a continuous dis-

tribution existence implies uniqueness. This follows from the fact that ∂2

∂θ2
ψ̂(θ) is

the covariance matrix of F̂m(x,θ). For a discrete distribution, it is possible some
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observations to be tied, and the covariance matrix of the empirical kernel family

distribution can be degenerate. For a continuous distribution, this occurs with

probability 0 so that uniqueness follows by the inverse function theorem from the

fact that ∂2

∂θ2
ψ̂(θ) is positive definite for all θ.

The following lemma will help establish the asymptotic distribution of the

properly normalized EMLE.

Lemma 1. Let

Gm,n(θ) = X̄n

∑m
i=1 e

θTYi

m
−
∑m

i=1 e
θTYiYi

m
.

(i) If m = cn(1 + o(1)), c > 0,

√
nGm,n(θ)

d→ Np(0, [ψ
′′(θ)]e2ψ(θ) + c−1A)

(ii) If m = o(n),

√
mGm,n(θ)

d→ Np(0,A)

(iii) If n = o(m),

√
nGm,n(θ)

d→ Np(0, e
2ψ(θ)[ψ′′(θ)])

where

A = A(θ) = eψ(2θ)([ψ′′(2θ)] + [ψ′(2θ)][ψ′(2θ)]T − [ψ′(2θ)][ψ′(θ)]T

−[ψ′(θ)][ψ′(2θ)]T + [ψ′(θ)][ψ′(θ)]T ).
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Proof.

Gm,n(θ) = (X̄n

∑m
i=1 exp{θTYi}

m
−
∑m

i=1 exp{θTYi}Yi

m
)

= (X̄n −ψ′(θ))

∑m
i=1 exp{θTYi}

m
−
∑m

i=1 exp{θTYi}(Yi −ψ′(θ))

m
.

(1.21)

To prove (i) multiply (1.21) by
√
n:

√
nGm,n(θ) =

√
n(X̄n−ψ′(θ))

∑m
i=1 exp{θTYi}

m
−
√
n

∑m
i=1 exp{θTYi}(Yi −ψ′(θ))

m
.

(1.22)

By the Central Limit Theorem (CLT), provided n→∞,

√
n(X̄n −ψ′(θ))

d→ Np(0,ψ
′′(θ)). (1.23)

By (1.12) if m→∞

1

m

m∑
i=1

exp{θTYi}
a.s.→ exp{ψ(θ)}.

Thus

√
n(X̄n −ψ′(θ))

∑m
i=1 exp{θTYi}

m

d→ Np(0,ψ
′′(θ)e2ψ(θ)). (1.24)

Because m/n→ c, we replace n with m/c in the second term of the right hand side

of (1.22). The CLT applies to

∑m
i=1 exp{θTYi}(Yi −ψ′(θ))√

cm
.

Note that E(exp{θTY}(Y −ψ′(θ))) = 0.

The asymptotic covariance matrix is

E[((Yi −ψ′(θ)) exp{θTYi})((Yi −ψ′(θ)) exp{θTYi})T ]

= E[(YiY
T
i −Yiψ

′(θ)T −ψ′(θ)YT
i + ψ′(θ)ψ′(θ)T ) exp{2θTYi}]
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Using (1.8) the following relations hold:

E(YiY
T
i exp{2θTYi}) = eψ(2θ)

∫
yiy

T
i exp{2θTyi}e−ψ(2θ)dF (yi)

= eψ(2θ)(ψ′′(2θ) +ψ′(2θ)ψ′(2θ)T ).

By (1.13) it follows that

E(ψ′(θ)ψ′(θ)
T

exp{2θTYi}) = ψ′(θ)ψ′(θ)
T
E(exp{2θTYi}) = ψ′(θ)ψ′(θ)T eψ(2θ).

Likewise,

E(Yiψ
′(θ)T exp{2θTYi}) = ψ′(2θ)ψ′(θ)

T
eψ(2θ)

and

E(ψ′(θ)YT
i exp{2θTYi}) = ψ′(θ)ψ′(2θ)T eψ(2θ).

If follows that ∑m
i=1 e

θTYi(Yi −ψ′(θ))√
m

d→ N (0,A). (1.25)

Combining (1.24) and (1.25), (i) follows.

To prove (ii), we write:

√
mGm,n(θ) =

√
m

n

√
n(X̄n−ψ′(θ))

∑m
i=1 e

θTYi

m
− 1√

m

m∑
i=1

eθ
TYi(Yi−ψ′(θ)) (1.26)

The first term in (1.26) converges in probability to zero so that the asymptotic dis-

tribution is determined entirely by the second term. Thus (ii) follows from (1.25).

To prove (iii), we multiply (1.21) by
√
n to obtain

√
nG(θ) =

√
n(X̄n −ψ′(θ))

∑m
i=1 e

θTYi

m
−
√
n

m

1√
m

m∑
i=1

eθ
TYi(Yi −ψ′(θ)) (1.27)
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Note that since n = o(m) the second term converges in probability to zero, so that

the asymptotic distribution is determined by the first term. Thus (iii) follows from

(1.25).

We will now explore the asymptotic distribution of the properly normalized

EMLE, as well as the impact of the assumption on the rate of growth of m relative

to n.

Lemma 2. Let (T1,n, . . . , Ts,n) be a sequence of random vectors converging in dis-

tribution to (T1, . . . , Ts) and suppose that for each fixed j and k Aj,k,n is a sequence

of random variables converging in probability to constants Aj,k for which the matrix

A = {A}j,k is nonsingular. Let B = {B}j,k = A−1. Then, if the distribution of

(T1, . . . , Ts) has a density with respect to Lebesgue measure over Es, where Es is

s-dimensional Euclidean space, the solutions (Y1,n, . . . , Ys,n) of

s∑
k=1

Aj,k,nYk,n = Tj,n, j = 1, . . . , s

converge in probability to the solutions of

s∑
k=1

Aj,kYk = Tj, j = 1, . . . , s

given by

Yj =
s∑

k=1

Bj,kTk.

Proof. See Lehmann and Casella (1998), Lemma 5.2.

Theorem 2. Let m,n→∞.

(i) If m = cn(1 + o(1)), and c > 0,

√
n(θ̂m,n − θ)

d→ Np(0,ψ
′′(θ)−1 +

1

c
A).
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(ii) If m = o(n),

√
m(θ̂m,n − θ)

d→ Np (0,A) .

(iii) If n = o(m),

√
n(θ̂m,n − θ)

d→ Np

(
0,ψ′′(θ)−1

)
.

where

A = A(θ) = eψ(2θ)−2ψ(θ)ψ′′(θ)−1

×[ψ′′(2θ) +ψ′(2θ)ψ′(2θ)T −ψ′(2θ)ψ′(θ)T −ψ′(θ)ψ′(2θ)T +ψ′(θ)ψ′(θ)T ]ψ′′(θ)−1

Proof. Let θ0 denote the true parameter vector for θ. That is, X1, . . . ,Xn is a

sample from F (x;θ0) and Y1, . . . ,Yn is a sample from F (x; 0). For the mapping

Gm,n(θ) as defined in the previous lemma, expand each component function of

Gm,n,j(θ) about θ0 and plug in θ̂m,n to obtain equations

Gm,n,j(θ̂m,n) = 0 = Gm,n,j(θ0) +

p∑
k=1

(θ̂m,n,k − θ0,k)
∂

∂θk
Gm,n,j(θ0)

+
1

2

p∑
k=1

p∑
l=1

(θ̂m,n,k − θ0,k)(θ̂m,n,l − θ0,l)
∂2

∂θk∂θl
Gm,n,j(θ∗)

j = 1, . . . , p,

where θ∗ is a point in the line segment connecting θ0 and θ̂m,n. We then rewrite

the equality as

p∑
k=1

(θ̂m,n,k − θ0,k)

[
∂

∂θk
Gm,n,j(θ0) +

1

2

p∑
l=1

(θ̂m,n,l − θ0,l)
∂2

∂θk∂θl
Gm,n,j(θ∗)

]

= −Gm,n,j(θ0).

(1.28)
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For part (i), multiply the equation above by
√
n and obtain

p∑
k=1

√
n(θ̂m,n,k − θ0,k)

[
∂

∂θk
Gm,n,j(θ0) +

1

2

p∑
l=1

(θ̂m,n,l − θ0,l)
∂2

∂θk∂θl
Gm,n,j(θ∗)

]

= −
√
nGm,n,j(θ0).

Let Aj,k,m,n = ∂
∂θk
Gm,n,j(θ0) + 1

2

∑p
l=1(θ̂m,n,l − θ0,l)

∂2

∂θk∂θl
Gm,n,j(θ∗)

Ym,n,k =
√
n(θ̂m,n,k − θ0,k) and Tm,n,j = −

√
nGm,n,j(θ0).

The asymptotic distribution Tn under each of the three asymptotic settings

was obtained in Lemma 1. We now need to establish the behavior of Aj,k,n.

The matrix ∂
∂θ

Gm,n(θ) is given by entries

∂

∂θj
Gm,n,k = X̄n,k

∑m
i=1 e

θTYiYij
m

−
∑m

i=1 e
θTYiYikYij
m

, j, k = 1, . . . , p. (1.29)

From this expression it follows that as m,n→∞

∂

∂θ
Gm,n(θ0, X̄n,Y1, . . . ,Ym)

a.s.→ −ψ′′(θ0)eψ(θ0). (1.30)

Thus, the first term in Aj,k,n converges almost surely to −eψ(θ){ψ′′(θ)}kj provided

m,n → ∞. As for the second term, we have established consistency of θ̂m,n, so all

we need to show is that ∂2

∂θk∂θl
Gm,n,j(θ∗) is bounded in probability for each j, k =

1, . . . , p. ∣∣∣∣ ∂2

∂θk∂θl
Gm,n,j(θ)

∣∣∣∣ = |X̄n,k

∑m
i=1 e

θTYiYijYil
m

−
∑m

i=1 e
θTYiYikYijYil
m

|

Note that on a closed ball Bθ0 around θ0 the functions of θ, eθTYiYijYil and

eθ
TYiYikYijYil, being continuous in θ, must have a maximizer and are thus dom-

inated by the functions eηT1 YiYijYil and eη
T
2 YiYikYijYil where η1 and η2 are the re-
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spective maximizers. The Pθ0 probability of the event {θ̂m,n ∈ Bθ0} tends to one.

On this event ∣∣∣∣∣X̄n,k

∑m
i=1 e

θ∗TYiYijYil
m

−
∑m

i=1 e
θ∗TYiYikYijYil
m

∣∣∣∣∣
≤

∣∣∣∣∣X̄n,k

∑m
i=1 e

θ∗TYiYijYil
m

∣∣∣∣∣+

∣∣∣∣∣
∑m

i=1 e
θ∗TYiYikYijYil
m

∣∣∣∣∣
≤

∣∣∣∣∣X̄n,k

∑m
i=1 e

ηT1 YiYijYil
m

∣∣∣∣∣+

∣∣∣∣∣
∑m

i=1 e
ηT2 YiYikYijYil
m

∣∣∣∣∣

The SLLN guarantees the convergence of these sums provided that the expected

values of the summands are finite. Thus this term is bounded in probability provided

that |E(eθ
TYiYijYil)| <∞ and |E(eθ

TYiYikYijYil)| <∞ for all θ in a neighborhood

of θ0. We have already established the finiteness of these quantities on the interior

of the parameter space. Applying Lemma 2, the result follows.

To prove part (ii), we multiply (1.28) by
√
m to obtain

p∑
k=1

√
m(θ̂m,n,k − θ0,k)[

∂

∂θk
Gm,n,j(θ0) +

1

2

p∑
l=1

(θ̂m,n,l − θ0,l)
∂2

∂θk∂θl
Gm,n,j(θ∗)]

= −
√
mGm,n,j(θ0)

The rest of the arguments are identical to those of part (i) using part (ii) of Lemma

1. Similarly, part (iii) uses the the same arguments as part (i), where now we use

part (iii) of Lemma 1.

Theorem 2 has interesting implications. When m is very large relative to n,

the asymptotic distribution of θ̂m,n is the same as that of the MLE based on the

sample (X1, . . . ,Xn) when the generator is known. When m and n are of the same
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order, the asymptotic covariance matrix is equal to ψ′′(θ) plus an additional term

which depends on c. Note that the additional term must be positive semidefinite

because it was obtained as E(zzT ) for a nonzero random vector z. This positive

semidefinite term is the price of having to estimate the generator. When m grows

at a slower rate than n, the asymptotic distribution is determined by m; that is, the

normalizing factor is
√
m.
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1.3 Kernel Families

The analysis performed in Section 1.2 for the NEFs can be applied to a broader

class of families. Suppose P is a probability distribution on a measurable space

(X ,A) and θ ∈ Θ, where Θ ∈ Rp, and contains an open subset with the true

parameter in the interior. Consider a positive function h such that

∫
h(x;θ)dP (x) <∞,θ ∈ Θ. (1.31)

The distribution P is generates a family parameterized by θ with

dPθ(x) = C(θ)h(x;θ)dP (x) (1.32)

where the normalizing constant, C(θ) is given by

C(θ) =

(∫
h(x;θ)dP (x)

)−1
. (1.33)

We’ll call the function h the kernel, and the distribution P the generator of (1.32).

We assume that the model is identifiable. Conditions for identifiability are given in

Gilbert et al. (1999).

The score of a random element X with probability element (1.32) JX is given

by

J(x,θ) =
C′(θ)

C(θ)
+

∂
∂θ
h(x,θ)

h(x,θ)
. (1.34)

Here, ∂
∂θ
h(x,θ) is the vector of partial derivatives of h with respect to the compo-

nents of θ and C ′(θ) is defined analogously.
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We assume that differentiation and integration can be interchanged in the following

expression: ∫
∂

∂θ
h(x,θ)dP (x). (1.35)

This implies E(JX) = 0 for a random element X. Note that the expression (1.35)

is equal to

C(θ)−1
∫ ∂

∂θ
h(x,θ)

h(x,θ)
h(x,θ)C(θ)dP (x) = C(θ)−1Eθ(

∂
∂θ
h(X,θ)

h(X,θ)
)

where here X denotes a random element from the kernel family population Pθ

and where we write the subscript θ to emphasize that the expectation is taken

with respect to the probability distribution Pθ. On the other hand, interchanging

integration and differentiation in (1.35), gives∫
∂

∂θ
h(x,θ)dP (x) =

∂

∂θ

∫
h(x,θ)dP (x) =

∂

∂θ
{C(θ)−1} = −C′(θ)

C(θ)2
.

Combining these relations gives

Eθ

(
∂
∂θ
h(X,θ)

h(X,θ)

)
= −C′(θ)

C(θ)
(1.36)

which implies that Eθ(JX) = 0.

The matrix of Fisher information, defined as IX(θ) = E(JXJTX) is

Eθ

(
(
C′(θ)

C(θ)
+

∂
∂θ
h(X,θ)

h(X,θ)
)(

C′(θ)

C(θ)
+

∂
∂θ
h(X,θ)

h(X,θ)
)T

)

=
C′(θ)

C(θ)

C′(θ)

C(θ)

T

+
C′(θ)

C(θ)
Eθ

(
∂
∂θ
h(X,θ)

h(X,θ)

)T

+ Eθ

(
∂
∂θ
h(X,θ)

h(X,θ)

)
C′(θ)

C(θ)

T

+ Eθ

( ∂
∂θ
h(X,θ)

h(X,θ)

)(
∂
∂θ
h(X,θ)

h(X,θ)

)T
 .
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Using (1.36) we obtain:

IX(θ) = Eθ(
∂
∂θ
h(X,θ) ∂

∂θ
h(X,θ)T

h(X,θ)2
)− C′(θ)C′(θ)T

C(θ)2
. (1.37)

In this chapter, we assume IX(θ) is positive definite, IX(θ) > 0.

When the generator is known, since the kernel is always assumed to be known,

(1.32) defines a parametric family. The consistency and asymptotic distributions of

the maximum likelihood estimator θ̂n and the method of moments estimator θ̃n are

well known under regularity conditions when we have a sample (X1, . . . ,Xn) from

a parametric family where the dimension of θ is fixed. When F is known we have

that under regularity conditions

√
n(θ̂n − θ)

d→ Np(0, IX(θ)−1) (1.38)

and

√
n(θ̃n − θ)

d→ Np

[
0,

(
∂

∂θ
µX(θ)−1

)
ΣX(θ)

(
∂

∂θ
µX(θ)−1

)T]
(1.39)

where µX(θ) and ΣX(θ) represent the mean vector and covariance matrix of obser-

vations Xi.

The asymptotic relations (1.38) and (1.39) follow from the asymptotic theory of

estimating equations (see, for instance, Van der Vaart (2000) [70]). In (1.39) it is

implicitly assumed that the dimension of the Xi is the same as the dimension of θ,

and that the square matrix ∂
∂θ
µX(θ) is nonsingular so that its inverse is well-defined.

These assumptions will be made throughout the rest of Chapter 1. Note that θ̂n is
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asymptotically efficient.

We will provide an expression for ∂
∂θ
µX(θ) which will be used subsequently.

We assume the exchange of differentiation and integration is valid in the expres-

sion ∂
∂θ

∫
xh(x,θ)dP (x). This yields an expression for the components of matrix

∂
∂θ
µX(θ0):

∂

∂θk
{µX(θ)}j =

∫
xj

∂

∂θk
h(x,θ)C(θ)dP (x) +

∫
xjh(x,θ0)

∂

∂θk
C(θ)dP (x)

= E(
Xj

∂
∂θk
h(X,θ)

h(X,θ)
) + {µX(θ)}j

∂
∂θk
C(θ)

C(θ)
.

Thus,

∂

∂θk
{µX(θ)}j = Eθ(

Xj
∂
∂θk
h(X,θ)

h(X,θ)
) + {µX(θ)}j

∂
∂θk
C(θ)

C(θ)
. (1.40)

1.3.1 Empirical Maximum Likelihood for Kernel Families

Suppose the data are independent samples (Y1, . . . , Ym) from a population P

and (X1, . . . , Xn) from a population Pθ from the corresponding kernel family.

The empirical kernel family can be constructed as given by the probability

element

dP̂m(x;θ) = Ĉm(θ)h(x,θ)dP̂m(x) (1.41)

where P̂m(x) is the empirical distribution of (Y1, . . . , Ym), and the normalizing con-

stant is

Ĉm(θ) =

(
1

m

m∑
i=1

h(yi,θ)

)−1
(1.42)
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It follows that as m→∞,

Ĉm(θ)
a.s.→ C(θ).

The empirical maximum likelihood estimator (EMLE) is defined as

θ̂m,n = arg max
θ

[
(Ĉm(θ))n

n∏
i=1

h(xi,θ)

]
. (1.43)

Taking the log of the quantity in brackets in (1.43) gives

l(θ) = n log Ĉm(θ) +
n∑
i=1

log h(xi,θ)

and taking the derivative with respect to the vector parameter θ gives the vector

equation

∂

∂θ
l(θ) = −n

∑m
i=1

∂
∂θ
h(yi,θ)∑m

i=1 h(yi,θ)
+

n∑
i=1

∂
∂θ
h(xi,θ)

h(xi,θ)
. (1.44)

The empirical maximum likelihood system of p equations is found by setting this

expression equal to 0.

Note that an equivalent expression is

1

m

m∑
i=1

∂

∂θ
h(yi,θ)− 1

nm

m∑
i=1

h(yi,θ)
n∑
i=1

∂
∂θ
h(xi,θ)

h(xi,θ)
= 0. (1.45)

It is easy to see that (1.45) is an unbiased estimating function.

The following Lemma will be used to establish consistency of the EMLE.
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Lemma 3. Let θ0 denote the true parameter.

Let gm,n(x1, . . . , xn, y1, . . . , ym,θ) be a function that is thrice differentiable with re-

spect to θ in a neighborhood of θ0 for all m,n.

Let Gm,n(x1, . . . , xn, y1, . . . , ym,θ) = ∂
∂θ
gm,n(y1, . . . , xn, y1, . . . , ym,θ).

Suppose that as m,n→∞

(i) Gm,n(X1, . . . , Xn, Y1, . . . , Ym,θ0)
p→ 0.

(ii) ∂
∂θ

Gm,n(X1, . . . , Xn, Y1, . . . , Ym,θ0)
p→ A where A is negative definite.

(iii) There exist functions Mm,n,j,k,l(x1, . . . , xn, y1, . . . , ym) such that

∣∣∣∣ ∂2

∂θk∂θl
Gm,n,j(x1, . . . , xn, y1, . . . , ym,θ)

∣∣∣∣ ≤Mm,n,j,k,l(x1, . . . , xn, y1, . . . , ym)

for all m,n, j, k, l and for all θ in a neighborhood of θ0 where as m,n → ∞,

Mm,n,j,k,l(X1, . . . , Xn, Y1, . . . , Ym)
p→ mj,k,l.

Then with probability tending to 1 as m,n → ∞ there exists a solution of θ̂m,n =

θ̂m,n(X1, . . . , Xn, Y1, . . . , Ym) of Gm,n(θ) = 0 such that θ̂m,n is a consistent estimator

of θ0.

Proof. Let Qa be a sphere of radius a. We will show that for any a sufficiently small,

the probability tends to 1 that

gm,n(θ) < gm,n(θ0)

at all points θ on the surface of Qa, so that gm,n(θ) has a local maximum in the

interior of Qa. At a local maximum Gm,n(θ) = 0, so that with probability tending

to one there is a solution θ̂m,n which is consistent.

To show that with probability tending to one gm,n(θ) < gm,n(θ0) at all points θ on
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the surface of Qa for any a sufficiently small, we expand gm,n(θ) at θ0:

gm,n(θ)− gm,n(θ0) =
∑
j

Gj(θ0)(θj − θ0,j) +
1

2

∑
j,k

∂

∂θk
Gj(θ0)(θj − θ0,j)(θk − θ0,k)

+
1

6

∑
j,k,l

(θj − θ0,j)(θk − θ0,k)(θl − θ0,l)γj,k,l,m,nMm,n,j,k,l

= S1 + S2 + S3

where by assumption (iii), |γj,k,l,m,n| ≤ 1 with probability tending to one.

Note that the dependence of γj,k,l,m,n = γj,k,l,m,n(X1, . . . , Xm, Y1, . . . , Ym) and

Mj,k,l,m,n = Mj,k,l,m,n(X1, . . . , Xm, Y1, . . . , Ym) on the data are suppressed in the last

equation for simplicity of exposition.

We will show that maxθ(S1 + S2 + S3) < 0 for all θ in the surface of Qa for

all a sufficiently small with probability tending to 1.

Let’s consider S1. By assumption (i) it follows that with probability tending

to one for any given a, |Gm,n,j(θ0)| < a2 and hence |S1| < pa3.

For S3 we have that by assumption (iii) with probability tending to one |S3| < ba3

where b = p3

3

∑
j,k,lmj,k,l for all points on Qa.

We will express 2S2 as follows:

2S2 =
∑
j,k

[Aj,k](θj − θ0,j)(θk − θ0,k) +
∑
j,k

[
∂

∂θk
Gj(θ0)− Aj,k

]
(θj − θ0,j)(θk − θ0,k).

For the second term, it follows from assumption (ii) that its absolute value is less
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than p2a3 with probability tending to one. The first term is a negative definite

quadratic form, which, by an orthogonal transformation, can be reduced to
∑

p λiξ
2
i

with
∑p

i=1 ξ
2
i = a2. Let λ(1) denote the smallest λi, and note that it must be

negative. Then
∑p

i=1 λiξ
2
i ≤ λ(1)

∑p
i=1 ξ

2
i = λ(1)a

2. From this it follows that there

exists constants c > 0 and a0 > 0 such that for a < ao

S2 < −ca2.

Combining these inequalities we obtain that with probability tending to one max(S1+

S2 + S3) < −ca2 + (b + s)a3, and the right hand side of the inequality is negative

for any a that satisfies a < c
b+s

.

Remark: Although condition (iii) may seem artificial, it is satisfied by as-

suming very simple and natural conditions on h(x,θ). The conditions to satisfy

assumption (iii) of Lemma 3 are satisfied, for instance, for the NEF’s, as was illus-

trated in Section 1.2.

Theorem 3. Under regularity conditions, with probability tending to one as m,n→

∞ there exists a statistic θ̂m,n which is a solution to the empirical maximum likeli-

hood systems of equations and is a consistent estimator of θ.

Proof. Let θ0 be the true value of θ. We will use Lemma 3.

Consider the mapping given by

Gm,n =
1

n

n∑
i=1

∂
∂θ
h(xi,θ)

h(xi,θ)
−
∑m

i=1
∂
∂θ
h(yi,θ)/m∑m

i=1 h(yi,θ)/m
(1.46)

We will show that:

Gm,n(θ0, Y1, . . . , Ym, X1, . . . , Xn)
p→ 0 (1.47)
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and

∂

∂θ
Gm,n(θ0, Y1, . . . , Ym, X1, . . . , Xn)

p→ −IX(θ0). (1.48)

We will also explore the conditions under which condition (iii) of Lemma 3 hold.

Relation (1.47) follows from the SLLN. That is,

Gm,n(θ0, Y1, . . . , Ym, X1, . . . , Xn)
p→[∫ ∂

∂θ
h(x,θ0)

h(x,θ0)
h(x,θ0)C(θ0)dP (x)

]
−
∫

∂

∂θ
h(x,θ0)dP (x)C(θ0) = 0

To prove (1.48), note that the jth component function of Gm,n is given by:

Gm,n,j(θ0) =
1

n

n∑
i=1

∂
∂θj
h(xi,θ)

h(xi,θ)
−
∑m

i=1
∂
∂θj
h(yi,θ)∑m

i=1 h(yi,θ)
.

Differentiating with respect to θk and evaluating at θ0 gives:

∂

∂θk
Gm,n,j(θ0) =

1

n

n∑
i=1

(

∂2

∂θj∂θk
h(Xi,θ0)h(Xi,θ0)− ∂

∂θj
h(Xi,θ0)

∂
∂θk
h(Xi,θ0)

h(Xi,θ0)2
)

−
∑m

i=1
∂2

∂θj∂θk
h(Yi,θ0)

∑m
i=1 h(Yi,θ0)−

∑m
i=1

∂
∂θj
h(Yi,θ0)

∑m
i=1

∂
∂θk
h(Yi,θ0)

[
∑m

i=1 h(Yi,θ0)]2

a.s.→ Eθ0(

∂2

∂θj∂θk
h(X,θ0)

h(x,θ0)
)− Eθ0(

∂
∂θj
h(X,θ0)

∂
∂θk
h(X,θ0)

h(X,θ0)2
)

− E
[

∂2

∂θj∂θk
h(Y,θ0)

]
C(θ0) +

[
E

(
∂

∂θj
h(Yi,θ0)

)
E

(
∂

∂θk
h(Yi,θ0)

)]
C(θ0)

2.

The first and the third terms in the limit cancel since

Eθ0(

∂2

∂θj∂θk
h(X,θ0)

h(X,θ0)
) =

∫ ∂2

∂θj∂θk
h(x,θ0)

h(x,θ0)
h(x,θ0)C(θ0)dP (x)

= E

[
∂2

∂θj∂θk
h(Y,θ0)

]
C(θ0).
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The last term in the limit can be simplified. Note that

E

[
∂

∂θk
h(Y,θ0)

]
=

∫
∂

∂θk
h(y,θ0)dP (y)

=
∂

∂θk

∫
h(y,θ0)dP (y) =

∂

∂θk
{C(θ0)

−1} = −
∂
∂θk
C(θ0)

C(θ0)2

Thus

∂

∂θk
Gm,n,j

p→ −Eθ0(
∂
∂θj
h(X,θ0)

∂
∂θk
h(X,θ0)

h(X,θ0)2
) + C(θ0)

−2 ∂

∂θj
C(θ0)

∂

∂θk
C(θ0)

= −{IX(θ0)}j,k

where the last equality follows from (1.37), so that

∂

∂θ
Gm,n(θ0, X1, . . . , Xn, Y1, . . . , Ym)

p→ −IX(θ0).

We assume that all expected values involved in the use of the LLN in the expressions

above are finite.

The matrix IX(θ0) is positive definite by assumption. Thus, condition (ii) in Lemma

3 is satisfied.

Condition (iii) follows by imposing some dominability conditions, which will be

summarized shortly.

Remark: For an alternative proof of consistency of the EMLE, see Appendix

at the end of this chapter.

We will now list the regularity conditions that were involved in the preceding Theo-

rem. In some of the theorems that follow, the regularity conditions are of a similar

flavor, so we will not list them in order to avoid too many extensive list of conditions.
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Regularity Conditions of Theorem 3.

• The matrix IX(θ0) is positive definite.

• The following expected values are finite:

E

(
∂

∂θ
h(Y,θ0)

)
, E

(
∂2

∂θ2
h(Y,θ0)

)
, E

(
[ ∂
∂θ
h(Y,θ0)][

∂
∂θ
h(Y,θ0)]

T

h(Y,θ0)

)
.

These conditions allow for the use of the LLN where needed.

• There exists functions Mj,k,l(x), Nj,k,l(x), and Lj,k,l(x) such that for all θ in a

neighborhood of θ0:

|
∂3

∂θj∂θk∂θl
h(x,θ)

h(x,θ)
| < Mj,k,l(x), |

∂2

∂θj∂θk
h(x,θ) ∂

∂θl
h(x,θ)

h(x,θ)2
| < Nj,k,l(x),

|
∂
∂θj
h(x,θ) ∂

∂θk
h(x,θ) ∂

∂θl
h(x,θ)

h(x,θ)3
| < Lj,k,l(x),

with Eθ0(Mj,k,l(X)) <∞, Eθ0(Nj,k,l(X)) <∞, and Eθ0(Lj,k,l(X)) <∞,

j, k, l = 1, . . . , p.

• There exists functions Rj(y), Qj,k(y), Sj,k,l(y) and Hj(y) such that for all θ in

a neighborhood of θ0

| ∂
∂θj

h(y,θ)| < Rj(y), | ∂2

∂θj∂θk
h(y,θ)| < Qj,k(y),

| ∂3

∂θj∂θk∂θl
h(y,θ)| < Sj,k,l(y), |h(x,θ)

∂

∂θj
h(y,θ)| < Hj(y),

with E(Rj(Y )) <∞, E(Qj,k(Y )) <∞, E(Sj,k,l(Y )) <∞ and E(Hj(Y )) <∞,

j, k, l = 1, . . . , p.
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The last two bullets ensure that condition (iii) of Lemma 3 is met. Obviously, it is

implicitly assumed that h is thrice differentiable.

We will now explore the asymptotic distribution of the properly normalized

EMLE. We will first determine the distribution of Gm,n(θ, Y1, . . . , Ym, X1, . . . , Xn).

Lemma 4. Consider the mapping

Gm,n(θ, Y1, . . . , Ym, X1, . . . , Xn) =

∑n
i=1

∂
∂θ
h(Xi,θ)

h(Xi,θ)

n

∑m
i=1 h(Yi,θ)

m
−
∑m

i=1
∂
∂θ
h(Yi,θ)

m

Suppose m,n→∞. Under regularity conditions,

(i) If m = cn(1 + o(1)), c > 0,

√
nGm,n(θ, Y1, . . . , Ym, X1, . . . , Xn)

d→ Np

[
0, IX(θ)C(θ)−2 +

1

c

∫
h(x,θ)2J(x;θ)J(x;θ)TdP (x)

]
.

(ii) If m = o(n), ,

√
mGm,n(θ, Y1, . . . , Ym, X1, . . . , Xn)

d→ Np

[
0,

∫
h(x,θ)2J(x;θ)J(x;θ)TdP (x)

]
.

(iii) If n = o(m)

√
nGm,n(θ, Y1, . . . , Ym, X1, . . . , Xn)

d→ Np(0, C(θ)−2IX(θ)).

Proof.

Gm,n(θ, Y1, . . . , Ym, X1, . . . , Xn)

=

∑n
i=1

∂
∂θ
h(Xi,θ)

h(Xi,θ)

n

∑m
i=1 h(Yi,θ)

m
−
∑m

i=1
∂
∂θ
h(Yi,θ)

m

= (
n∑
i=1

∂
∂θ
h(Xi,θ)

h(Xi,θ)

n
+

C′(θ)

C(θ)
)

∑m
i=1 h(Yi,θ)

m
−

m∑
i=1

(

∂
∂θ
h(Yi,θ) + h(Yi,θ)C

′(θ)
C(θ)

m
)

(1.49)

42



For part (i), we multiply equation (1.49) by
√
n and substitute n = m/c in the

second term to obtain

√
nGm,n =

√
n

[
1

n

n∑
i=1

∂
∂θ
h(Xi,θ)

h(Xi,θ)
+

C′(θ)

C(θ)

] ∑m
i=1 h(Yi,θ)

m

− 1√
m
√
c

m∑
i=1

(
∂

∂θ
h(Yi,θ) + h(Yi,θ)

C′(θ)

C(θ)
).

(1.50)

By (1.34)

√
n

 n∑
i=1

∂
∂θ
h(Xi,θ)

h(Xi,θ)

n
+

C′(θ)

C(θ)

 d→ Np(0, IX(θ)). (1.51)

By the SLLN ∑m
i=1 h(Yi,θ)

m

a.s.→ C(θ)−1. (1.52)

The last term of (1.50), namely

− 1√
m
√
c

m∑
i=1

[
∂

∂θ
h(Yi,θ) + h(Yi,θ)

C′(θ)

C(θ)

]
, (1.53)

is asymptotically normal. Note by (1.33) and by the interchange of integration and

differentiation in (1.35),

E(
∂

∂θ
h(Y,θ)) +

1

C(θ)
E(h(Y,θ))C′(θ0) = −C′(θ)

C(θ)2
+

C′(θ)

C(θ)2
= 0.
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The asymptotic covariance matrix of (1.53) is given by the constant c times

E

{[
∂

∂θ
h(Y,θ) +

h(Y,θ)

C(θ)
C′(θ)

] [
∂

∂θ
h(Y,θ) +

h(Y,θ)

C(θ)
C′(θ)

]T}

=

∫ {
∂

∂θ
h(y,θ)

[
∂

∂θ
h(y,θ)

]T
+
h(y,θ)

C(θ)
C′(θ)

[
∂

∂θ
h(y,θ)

]T}
dP (y)

+

∫ {
h(y,θ)

C(θ)

[
∂

∂θ
h(y,θ)

]
C′(θ)T +

[
h(y,θ)

C(θ)

]2
C′(θ)C′(θ)T

}
dP (y)

=

∫
h(y,θ)2

{
1

h(y,θ)2

[
∂

∂θ
h(y,θ)

]
∂

∂θ
h(y,θ)T +

C′(θ) ∂
∂θ
h(y,θ)T

h(y,θ)C(θ)

}
dP (y)

+

∫
h(y,θ)2

{
1

C(θ)h(y,θ)

[
∂

∂θ
h(y,θ)

]
C′(θ)T + (

1

C(θ)
)2C′(θ)C′(θ)T

}
dP (y)

=

∫
h(y,θ)2(

C′(θ)

C(θ)
+

∂
∂θ
h(y,θ)

h(y,θ)
)(

C′(θ)

C(θ)
+

∂
∂θ
h(y,θ)

h(y,θ)
)TdP (y)

=

∫
h(y,θ)2J(y;θ)J(y;θ)TdP (y).

The asymptotic distribution of (1.53) is then given by:

1√
m
√
c

m∑
i=1

(
∂

∂θ
h(Yi,θ)+h(Yi,θ)

C′(θ)

C(θ)
)

d→ NP (0,
1

c

∫
h(y,θ)2J(x;θ)J(x;θ)TdP (x)).

(1.54)

Combining (1.51), (1.52), and (1.54) gives (i).

To prove part (ii) express (1.49) as

√
mGm,n(θ, Y1, . . . , Ym, X1, . . . , Xn)

=

√
m√
n

√
n

[
1

n

n∑
i=1

∂
∂θ
h(Xi,θ)

h(Xi,θ)
+

C′(θ)

C(θ)

] ∑m
i=1 h(Yi,θ)

m

− 1√
m

m∑
i=1

[
∂

∂θ
h(Yi,θ) + h(Yi,θ)

C′(θ)

C(θ)

]
and notice that the first term converges in probability to zero so that the asymptotic

distribution is determined by the second term. Its asymptotic distribution was

already derived, yielding (ii).
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For part (iii) we write:

√
nGm,n(θ, Y1, . . . , Ym, X1, . . . , Xn) =

√
n(

n∑
i=1

∂
∂θ
h(Xi,θ)

h(Xi,θ)

n
+

C′(θ)

C(θ)
)

∑m
i=1 h(Yi,θ)

m

−
√
n√
m

1√
m

m∑
i=1

(
∂

∂θ
h(Yi,θ) + h(Yi,θ)

C′(θ)

C(θ)
)

and notice the second term converges in probability to zero, so that the asymptotic

distribution of
√
mGm,n is determined by the first term when n = o(m).

We are now ready to state the asymptotic distribution of the normalized EMLE

for kernel families.

Theorem 4. Suppose m,n→∞.

(i) If m = cn(1 + o(1)), c > 0,

√
n(θ̂m,n − θ)

d→ Np

[
0, IX(θ)−1 + C(θ)2

1

c
IX(θ)−1

∫
h(x,θ)2J(x;θ)J(x;θ)TdP (x)IX(θ)−1

]
.

(ii) If m = o(n),

√
m(θ̂m,n − θ)

d→ Np(0, C(θ)2IX(θ)−1
∫
h(x,θ)2J(x;θ)J(x;θ)TdP (x)IX(θ)−1).

(iii) If n = o(m),

√
n(θ̂m,n − θ)

d→ Np(0, IX(θ)−1).

Proof. Let θ0 be the true parameter. Using the mapping Gm,n(θ) as defined in the

previous lemma, we expand each component function Gm,n,j(θ) about θ0 and plug

45



in θ̂m,n to obtain equations

Gm,n,j(θ̂) = 0

= Gm,n,j(θ0) +

p∑
k=1

(θ̂m,n,k − θ0,k)
∂

∂θk
Gm,n,j(θ0)

+
1

2

p∑
k=1

p∑
l=1

(θ̂m,n,k − θ0,k)(θ̂m,n,l − θ0,l)
∂2

∂θk∂θl
Gj(θ∗),

(1.55)

j = 1, . . . , p,

where θ∗ is a point in the line segment connecting θ̂m,n and θ0.

These equations can be expressed as

p∑
k=1

(θ̂m,n,k − θ0,k)[
∂

∂θk
Gm,n,j(θ0) +

1

2

p∑
l=1

(θ̂m,n,l − θ0,l)
∂2

∂θk∂θm,n,l
Gm,n,j(θ∗)]

= −Gm,n,j(θ0)

(1.56)

for j = 1, . . . , p.

Again, we use Lemma 2. We must consider the behavior of

Aj,k,n,m =
∂

∂θk
Gm,n,j(θ0) +

1

2

p∑
l=1

(θ̂m,n,l − θ0,l)
∂2

∂θk∂θl
Gm,n,j(θ∗).

Recall that the jth component function Gm,n is given by:

Gm,n,j(θ0) =
1

n

n∑
i=1

∂
∂θj
h(Xi,θ0)

h(Xi,θ0)

∑m
i=1 h(Yi,θ0)

m
−
∑m

i=1
∂
∂θj
h(Yi,θ0)

m
.
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Differentiating with respect to θk and evaluating at θ0 gives:

∂

∂θk
Gm,n,j(θ0) =[

1

n

n∑
i=1

(

∂
∂θj
kh(Xi,θ0)h(Xi,θ0)− ∂

∂θj
h(Xi,θ0)

∂
∂θk
h(Xi,θ0)

h(Xi,θ0)2
)

] ∑m
i=1 h(Yi,θ0)

m

+

(∑m
i=1

∂
∂θk
h(Yi,θ0)

m

)∑n
i=1

∂
∂θj

h(Xi,θ0)

h(Xi,θ0)

n
−
∑m

i=1
∂
∂θj
kh(Yi,θ0)

m

a.s.→

[
Eθ0(

∂
∂θj
kh(X,θ0)

h(x,θ0)
)− Eθ0(

∂
∂θj
h(X,θ0)

∂
∂θk
h(X,θ0)

h(X,θ0)2
)

]
C(θ0)

−1

+ E(
∂

∂θk
h(Y,θ0))Eθ0(

∂
∂θj
h(X,θ0)

h(X,θ0)
)− E(

∂2

∂θj∂θk
h(Y,θ0)).

The first and the last terms in the limit cancel since

Eθ0(
∂2

∂θj∂θk
h(X,θ0)

h(X,θ0)
) =

∫ ∂2

∂θj∂θk
h(x,θ0)

h(x,θ0)
h(x,θ0)C(θ0)dP (x)

= E(
∂2

∂θj∂θk
h(Y,θ0))C(θ0).

The third term in the limit can be simplified. Note that

E(
∂

∂θk
h(Y,θ0)) =

∫
∂

∂θk
h(y,θ0)dP (y)

= C(θ0)
−1
∫ ∂

∂θk
h(y,θ0)

h(y,θ0)
h(y,θ0)C(θ0)dP (y)

= C(θ0)
−1Eθ0(

∂
∂θk
h(X,θ0)

h(X,θ0)
).

Moreover, by (1.36)

Eθ0(

∂
∂θj
h(X,θ0)

h(X,θ0)
) = −

∂
∂θj
C(θ0)

C(θ0)

so that the third term in the limit can be expressed as

C(θ0)
−1

∂
∂θj
C(θ0)

C(θ0)

∂
∂θk
C(θ0)

C(θ0)
.
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Thus

∂

∂θk
Gm,n,j(θ0)

a.s.→ −Eθ0(
∂
∂θj
h(X,θ0)

∂
∂θk
h(X,θ0)

h(X,θ0)2
)C(θ0)

−1 + C(θ0)
−3 ∂

∂θj
C(θ0)

∂

∂θk
C(θ0)

= −C(θ0)
−1{IX(θ0)}jk

where the last equality follows from (1.37), so that

∂

∂θ
Gm,n(θ0, X1, . . . , Xn, Y1, . . . , Ym)

a.s.→ −C(θ0)
−1IX(θ0).

We now show that the second term in Aj,k,n,m converges in probability to 0. Be-

cause we have already shown the consistency of θ̂m,n, we just need to show that

∂2

∂θk∂θl
Gm,n,j(θ∗) is bounded in probability. As previously discussed, this follows by

imposing some conditions on h.

The rest of the argument is the same as that of Theorem 2, using Lemma 2

and Lemma 4.
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1.3.2 Empirical Method of Moments Estimator for Kernel Families

Again, we assume that the sample (Y1, . . . ,Ym) is from the population P and

that the sample (X1, . . . ,Xn) is from the kernel family population Pθ, where Xi,

Yi, ∈ Rp, θ ∈ Θ ⊂ Rp, and where the two samples are independent, and the true

parameter value is in the interior of the parameter space. As in the method of mo-

ments for parametric models, we assume that the observations are random vectors

of the same dimension as that of θ, that µX(θ) exists, and that the square matrix

∂
∂θ
µX(θ) is nonsingular so that its inverse is well-defined.

As in Section (1.3.1), the probability element associated with the sample

(X1, . . . ,Xn) is

dPθ(x) = C(θ)h(x;θ)dP (x) (1.57)

and the probability element associated with the sample (Y1, . . . ,Ym) is dP (x). We

construct the empirical kernel family which has the probability element:

dP̂ (x;θ) = Ĉm(θ)h(x,θ)dP̂m(x) (1.58)

where P̂m(x) is the empirical distribution based on the sample from P , and the

normalizing constant is

Ĉm(θ) =

(
1

m

m∑
i=1

h(yi,θ)

)−1
. (1.59)

Since the empirical kernel family distribution puts the masses h(yi,θ)/
∑
h(yi,θ)
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at the points yi for i = 1, . . . ,m,

∫
xdP̂m(x;θ) =

∑m
i=1 yih(yi,θ)∑m
i=1 h(yi,θ)

.

Thus the semiparametric analog of the method of moments system of estimating

equations is

X̄n =

∑m
i=1 Yih(Yi,θ)∑m
i=1 h(Yi,θ)

. (1.60)

Note that the expected value of the left hand side is equal to µX(θ), so that this

system is unbiased.

We will call the solution of this system of equations the Empirical Method of

Moments Estimator (EMME), denoted by θ̃m,n.

We will now give a simple proof that shows that, under regularity conditions,

the EMME is consistent when θ is a scalar. In this case, the EMME equation can

be expressed as

Gm,n(X1, . . . , Xn, Y1, . . . , Ym, θ) = X̄n

∑m
i=1 h(Yi, θ)

m
−
∑m

i=1 Yih(Yi, θ)

m
. (1.61)

Theorem 5. Suppose θ is a scalar. Let θ0 be the true parameter value and assume

E(Y h(Y, θ)) < ∞ and µ′(θ) 6= 0 in a neighborhood of θ0. Suppose h is continuous.

As m,n→∞, with probability tending to one there exists a zero of (1.61), denoted

as θ̃m,n, which is a consistent estimator of θ0.
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Proof. Notice that

Gm,n(θ0+ε)
d→ µ(θ0)C(θ+ε)−1−µ(θ0+ε)C(θ0+ε)−1 = C(θ0+ε)−1(µ(θ0)−µ(θ0+ε))

(1.62)

Gm,n(θ0−ε)
d→ µ(θ0)C(θ0−ε)−1−µ(θ0−ε)C(θ−ε)−1 = C(θ0−ε)−1(µ(θ0)−µ(θ0+ε))

(1.63)

Since µ′(θ) 6= 0 on an open interval containing θ0, it follows that the limits in

(1.62) and (1.63) are of opposite signs since C(θ) is strictly positive for all θ. By

continuity of Gm,n(θ) it follows that with probability tending to one there is a zero

θ̃m,n of Gm,n(θ) which is consistent.

We will now prove consistency when θ is a vector for a special case: namely,

when

h(x,θ) =
s∑

k=1

(Wk(θ)ψk(x)). (1.64)

In this case the EMME equation is

X̄n =

∑m
i=1 Yi

∑s
k=1(Wk(θ)ψk(Yi))∑m

i=1

∑s
k=1(Wk(θ)ψk(Yi))

.

Theorem 6 follows from Theorem 7, but we include it to illustrate how the

implicit function theorem can be applied in this special case.

Theorem 6. Suppose h is of the form (1.64). Then under regularity conditions,

with probability tending to one as m,n→∞ there exists a statistic θ̃m,n which is a

solution to the empirical method of moments system of equations and is a consistent

estimator of θ.
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Proof. Let θ0 be the true parameter value. Consider the function

Gm,n(X̄n,Y1, . . . ,Yn,θ)

=
X̄n

∑m
i=1

∑s
k=1(Wk(θ)ψk(Yi))

m
−
∑m

i=1 Yi

∑s
k=1(Wk(θ)ψk(Yi))

m
.

= X̄n
1

m

s∑
k=1

Wk(θ)
m∑
i=1

ψk(Yi)−
1

m

s∑
k=1

Wk(θ)
m∑
i=1

ηk(Yi)

(1.65)

where ηk(y) = yψk(y).

Consider the functional

G(X̄n, ψ̄m,1, . . . , ψ̄m,s, η̄m,1, . . . , η̄m,s,θ) = X̄n

s∑
k=1

Wk(θ)ψ̄m,k −
s∑

k=1

Wk(θ)η̄m,k

(1.66)

where

ψ̄m,k =
1

m

m∑
i=1

ψk(Yi) (1.67)

η̄m,k =
1

m

m∑
i=1

ηkYi) =
1

m

m∑
i=1

Yiψk(Yi) (1.68)

Clearly (1.65) and (1.66) are equivalent.

Consider the point X̄n = µX(θ0), ψ̄m,k = Eθ0(ψm,k), k = 1, . . . , s, η̄m,k = Eθ0(ηm,k),

k = 1, . . . , s, θ = θ0. Note that

G(µX(θ0), Eθ0(ψm,1), . . . , Eθ0(ψm,s), Eθ0(ηm,1), . . . , Eθ0(ηm,s),θ0) = 0 (1.69)

since Eθ0(G(X̄n, ψ̄m,1, . . . , ψ̄m,s, η̄m,1, . . . , η̄m,s,θ0)) = 0. Moreover, it can be shown

using (1.40) that

∂

∂θ
G(µX(θ0), Eθ0(ψm,1), . . . , Eθ0(ψm,s), Eθ0(ηm,1), . . . , Eθ0(ηm,s),θ0) = − ∂

∂θ
µX(θ0).

(1.70)
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Also, h is continuously differentiable and ∂
∂θ
µX(θ0) is nonsingular by assumption.

Thus we can apply the implicit function theorem at the aforementioned point. There

exists a statistic θ̃m,n that is a zero of (1.65) whenever

||X̄n − µX(θ0)|| < r, ||η̄m,k − Eθ0(ηk)|| < r, ||ψ̄m,k − Eθ0(ψk)|| < r, ||θ − θ0|| < r

Since, under regularity conditions, X̄n
p→ µX(θ0), η̄m,k

p→ Eθ0(ηk), and ψ̄m,n
p→

Eθ0(ψk), this implies that the Pθ0 probability tends to one that a statistic θ̃m,n

which is a solution to the EMME system of equation exists and satisfies

||θ̃m,n − θ0|| < ε.

Remark: For a general h, the result should also follow from the implicit

function theorem, but there are many technical difficulties to prove it. However, we

will now prove the result through a different approach.

Theorem 7. Let θ0 be the true parameter value. Suppose that

(i) h(x,θ) is continuously differentiable in a neighborhood of θ0.

(ii) Eθ0(Yh(Y,θ0)) <∞.

(iii) Eθ0
[
∂
∂θ
h(Y,θ0)

]
<∞, Eθ0

[
Y ∂

∂θ
h(Y,θ0)

]
<∞.

(iv) µ′(θ0) is nonsingular.

Then with Pθ0 probability tending to one there exists a solution θ̃m,n to the EMME

system of equations that is consistent for θ0 as m,n→∞

Proof. Recall that the EMLE system of equations is

X̄n =

∑m
i=1 Yih(Yi,θ)∑m
i=1 h(Yi,θ)

. (1.71)
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Let Gm(Y1, . . . ,Ym,θ) =
∑m

i=1 Yih(Yi,θ)/
∑m

i=1 h(Yi,θ)

so that

∂

∂θ
Gm(Y1, . . . ,Ym,θ) =

∑m
i=1 Yi

∂
∂θ
h(Yi,θ)∑m

i=1 h(Yi,θ)
−
∑m

i=1 Yih(Yi,θ)
∑m

i=1
∂
∂θ
h(Yi,θ)

(
∑m

i=1 h(Yi,θ))2
.

Note that the for any fixed X1, . . . ,Xn,Y1, . . . ,Ym, the statistic θ̃m,n, if it exists,

is given by:

θ̃m,n = G−1m (Y1, . . . ,Ym, X̄n).

The LLN implies, by assumption (ii), that

X̄n
p→ µ(θ0) (1.72)

as n→∞ and assumptions (ii) and (1.31) imply

Gm(Y1, . . . ,Ym,θ0)
p→ µ(θ0) (1.73)

as m→∞.

Moreover, (1.40) and assumptions (ii)-(iii) imply, after some computation, that

∂

∂θ
Gm(Y1, . . . ,Ym,θ0)

p→ µ′(θ0) (1.74)

as m→∞.

Since µ′(θ0) is nonsingular, with probability tending to one, ∂
∂θ

Gm(Y1, . . . ,Ym,θ0)

is nonsingular. Moreover, with probability tending to one, for any δ > 0

||Xn −Gm(Y1, . . . ,Ym,θ0)|| < δ.

Note that Gm(Y1, . . . ,Ym,θ) is continuously differentiable in a neighborhood

of θ0 for all m and n by assumption (i). Choose δ such that, by virtue of the inverse
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function theorem, Gm(Y1, . . . ,Ym,θ) is one to one and onto on a neighborhood

of θ0 and G−1m (Y1, . . . ,Ym, a) exists and is continuous in its last argument in a

neighborhood of Gm(θ0) including X̄n. Moreover let δ be such that for any ε > 0,

by continuity of G−1m (Y1, . . . ,Ym, a),

||G−1m (Y1, . . . ,Ym, X̄n)−G−1m (Y1, . . . ,Ym,Gm(Y1, . . . ,Ym,θ0))|| < ε.

i.e.,

||θ̃m,n − θ0|| < ε.

We will now explore the asymptotic distribution of θ̃m,n.

Lemma 5. Let

Gm,n(X̄n,Y1, . . . ,Yn,θ) = X̄n

∑m
i=1 h(Yi,θ)

m
−
∑m

i=1 Yih(Yi,θ)

m
.

Suppose m,n→∞. Under regularity conditions,

(i) If m = cn(1 + o(1)), c > 0,

√
nGm,n(X̄n,Y1, . . . ,Yn,θ)

d→ Np

[
0,

ΣX(θ)

C(θ)2
+

1

c

∫
h(x,θ)2(x− µX(θ))(x− µX(θ))TdP (x)

]
.

(ii) If m = o(n),

√
mGm,n(X̄n,Y1, . . . ,Yn,θ)

d→ Np

[
0,

∫
h(x,θ)2(x− µX(θ))(x− µX(θ))TdP (x))

]
.

(iii) If n = o(m),

√
nGm,n(X̄n,Y1, . . . ,Yn,θ)

d→ Np

[
0,

ΣX(θ)

C(θ)2

]
.
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Proof.

Gm,n(X̄n,Y1, . . . ,Yn,θ)

= X̄n

∑m
i=1 h(Yi,θ)

m
−
∑m

i=1 Yih(Yi,θ)

m

= (X̄n − µX(θ))

∑m
i=1 h(Yi,θ)

m
−

m∑
i=1

(Yih(Yi,θ)− µX(θ)h(Yi,θ))

m

(1.75)

For part (i) we multiply both sides of (1.75) by
√
n and replace n with m/c in the

second term on the right hand side to obtain

√
nGm,n(X̄n,Y1, . . . ,Yn,θ)

=
√
n(X̄n − µX(θ))

∑m
i=1 h(Yi,θ)

m
− 1√

c

m∑
i=1

(Yih(Yi,θ)− µX(θ)h(Yi,θ))√
m

.

(1.76)

Clearly,

√
n(X̄n − µX(θ))

∑m
i=1 h(Yi,θ)

m

d→ Np
[
0,

1

C(θ)2
ΣX(θ)

]
(1.77)

by the CLT and LLN and Slutsky’s Theorem.

It’s easy to check that the second term in (1.76) has mean 0 since

E(Yh(Y,θ)) = C(θ)−1Eθ(X) = Eh(Y,θ)µX(θ).

The CLT implies that this term has an asymptotically normal distribution with

mean 0 and with an asymptotic covariance matrix given by:

E[Yh(Y,θ)− µX(θ)h(Y,θ)][Yh(Y,θ)− µX(θ)h(Y,θ)]T

= E[h(Y,θ0)
2(Y − µX(θ))(Y − µX(θ))T ]

=

∫
h(x,θ)2(x− µX(θ))(x− µX(θ))TdP (x)
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Thus,
m∑
i=1

(Yih(Yi,θ)− µX(θ)h(Yi,θ))√
m

d→ Np(0,
∫
h(x,θ)2(x− µX(θ))(x− µX(θ))TdP (x)).

(1.78)

Part (i) follows from (1.77) and (1.78).

For part (ii) we write

√
mGm,n(X̄n,Y1, . . . ,Yn,θ)

=

√
m√
n

√
n(X̄n − µX(θ))

∑m
i=1 h(Yi,θ)

m
−

m∑
i=1

(Yih(Yi,θ)− µX(θ)h(Yi,θ))√
m

and notice that the first term in the right hand side converges in probability to 0

so that the result follows by (1.78).

For part (iii) we write

√
nGm,n(X̄n,Y1, . . . ,Yn,θ)

=
√
n(X̄n − µX(θ))

∑m
i=1 h(Yi,θ)

m
−
√
n√
m

m∑
i=1

(Yih(Yi,θ)− µX(θ)h(Yi,θ))√
m

and notice that the second term in the right hand side converges in probability to

0, so that the result follows by (1.77).

Theorem 8. Let m,n→∞. Under regularity conditions,

(i) If m = cn(1 + o(1)), c > 0,

√
n(θ̃m,n − θ)

d→ Np

[
0,

∂

∂θ
µX(θ)−1ΣX(θ)(

∂

∂θ
µX(θ)−1)T + c−1A

]

(ii) If m = o(n),

√
m(θ̃m,n − θ)

d→ Np(0,A)
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(iii) If n = o(m),

√
n(θ̃m,n − θ)

d→ Np(0,
∂

∂θ
µX(θ)−1(

∂

∂θ
µX(θ)−1)T )

where

A = C(θ)2
(

(
∂

∂θ
µX(θ))−1

)[∫
h(x,θ)2(x− µX(θ))(x− µX(θ))TdP (x)

](
(
∂

∂θ
µX(θ))−1

)T
Proof. Let θ0 be the true parameter value. Again, we expand Gm,n(θ) about θ0

and plug in θ̃m,n to obtain equations

Gm,n,j(θ̃m,n) = 0 = Gm,n,j(θ0) +

p∑
k=1

(θ̃k − θ0,k)
∂

∂θk
Gm,n,j(θ)

+
1

2

p∑
k=1

p∑
l=1

(θ̃k − θ0,k)(θ̃l − θ0,l)
∂2

∂θk∂θl
Gm,n,j(θ∗),

j = 1, . . . , p.

This is equivalent to

p∑
k=1

(θ̃k − θk)[
∂

∂θk
Gm,n,j(θ0) +

1

2

p∑
l=1

(θ̂l − θ0,l)
∂2

∂θk∂θl
Gm,n,j(θ∗)] = −Gm,n,j(θ0)

Again, we use Lemma 2. We must consider the behavior of

Aj,k,m,n =
∂

∂θk
Gm,n,j(θ0) +

1

2

p∑
l=1

(θ̃l − θ0,l)
∂2

∂θk∂θl
Gm,n,j(θ∗)

As previously shown,

∂

∂θ
Gm,n(θ0)

p→ −C(θ0)
−1 ∂

∂θ
µX(θ0)

We now show that the rest converges in probability to 0.
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The function ∂2

∂θk∂θl
Gm,n,j(θ) can be expressed as

∂2

∂θk∂θl
Gm,n(X̄n,Y1, . . . ,Yn,θ)j

=
X̄n,j

∑m
i=1

∂2

∂θk∂θl
h(Yi,θ)−

∑m
i=1 Yij

∂2

∂θk∂θl
h(Yi,θ)

m
.

(1.79)

Note that under the assumptions that | ∂2

∂θk∂θl
h(y,θ)| < Mk,l(y) and |yj ∂2

∂θk∂θl
h(y,θ)| <

Nj,k,l(y) for all θ in a neighborhood of θ0, with EMk,l(Y) <∞ and E(Nj,k,l(Y)) <

∞, for j, k, l = 1, . . . , p, (1.79) is bounded in probability by the Law of Large Num-

bers. By consistency of θ̃m,n the second term of Aj,k,n converges in probability to

0.

1.3.3 Relationship Between the Asymptotic Distribution of the EMLE

and EMME

There is an interesting relationship between the asymptotic covariance of the

EMME and the EMLE. Let’s consider the case where m = cn(1 + o(1)), c > 0. By

Theorem 4, we have that under regularity conditions the EMLE has the following

asymptotic distribution:

√
n(θ̂m,n − θ)

d→ Np

[
0, IX(θ)−1 + C(θ)2

1

c
IX(θ)−1

{∫
h(x,θ)2J(x;θ)J(x;θ)TdP (x)

}
IX(θ)−1

]
.

(1.80)

By Theorem 8, under regularity conditions the EMME satisfies the following rela-

tion:

√
n(θ̃m,n − θ)

d→ Np(0, (
∂

∂θ
µX(θ))−1(ΣX(θ)(

∂

∂θ
µX(θ))−1)T +

1

c
A)
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where

A = C(θ)2(
∂

∂θ
µX(θ))−1

∫
h(x,θ)2(x−µX(θ))(x−µX(θ))TdP (x)((

∂

∂θ
µX(θ))−1)T .

(1.81)

Let Ĵ(X,θ) be the linear score and ÎX(θ) be the linear version of the Fisher in-

formation matrix. For a random element X, ĴX is the projection of the score JX

onto the linear space spanned by X. The linear version of the Fisher information is

defined analogously to the Fisher information with the score JX replaced by ĴX .

The asymptotic distribution of the EMME can be expressed as

√
n(θ̃m,n − θ)

d→ Np

[
0, ÎX(θ)−1 + C(θ)2

1

c
ÎX(θ)

−1
{∫

h(x,θ)2Ĵ(x;θ)Ĵ(x;θ)TdP (x)

}
ÎX(θ)−1

]
.

(1.82)

The asymptotic distribution of the EMME (1.82) is the same as that of the EMLE

(1.80) with IX replaced with ÎX and J replaced with Ĵ.

The second terms in the asymptotic covariance matrices of (1.80) and (1.81)

are positive semidefinite, and represent the price paid for having to estimate the gen-

erator. It is unclear from the covariance expressions whether the EMME or EMLE

is superior.

In both (1.80) and (1.82), the second term vanishes as c → ∞, which cor-

responds n = o(m). In this case, the asymptotic distributions are equivalent to

those of the estimators that would have been obtained by applying maximum likeli-
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hood and the method of moments on the sample (X1, . . . , Xn) if the generator were

known. When n = o(m), the EMLE is efficient.

When m = o(n), both the EMLE and EMME have a rate of convergence of

1/
√
m instead of 1/

√
n.
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1.4 The Case of m-Sample Density Ratio Models

Several papers deal with semiparametric estimation for density ratio models

when there are several samples, where the model is of the form

fi = g(x, θi)fm, i = 1, . . . ,m− 1 (1.83)

where the fi are unknown densities with available associated samples and the θi

are vectors of parameters of finite dimension (See, for instance, Fokianos 2004 [19],

Kedem et al. (2009) [34], among others). The distribution fm is usually called the

reference distribution. Fokianos (2004) extends the asymptotic normality results of

Qin (1998) to the model (1.83). Denoting the size of sample i as ni, for i = 1, . . . ,m,

and n =
∑m

i=1 ni, he proves that if ni/n → ρi, under some conditions, the estima-

tors of θ = (θ1, . . . , θm−1)
T and λ=(λ1, . . . , λm−1)

T are asymptotically normal with

a normalizing factor of
√
n. As in Qin’s case, for the asymptotic variance to be well

defined it is necessary for ρi > 0.

As pointed out by Fokianos, the sample corresponding to fm is arbitrarily cho-

sen. A property that characterizes the multinomial logit models, usually described

as independence of irrelevant alternatives, is that the choice of fm does not affect

inferential results since the difference of the slopes remains constant. For other

models, the choice of reference measure affects inference, an undesirable property.

In the simple calculations that follow, we will show that, using empirical likelihood,

it is not necessary to choose a sample which corresponds to the reference measure.
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In fact if we have m samples, we can formulate the model as

fi = gi(x, θi)f0, i = 1, . . . ,m (1.84)

where there is no need to have a sample from f0. This removes the subjective choice

of which sample to ascribe as the reference measure. We will illustrate this in the

case where m = 2, for simplicity, and show that the resulting method also results in

estimators that are asymptotically normal in the case where

n1/n→ ρ1, n2/n→ ρ2, n1 + n2 = n. (1.85)

Suppose X1, . . . , Xn1 ∼ f1(x, θ1) = g1(x, θ1)f(x) and Xn1+1, . . . , Xn ∼ f2(x, θ2) =

g2(x, θ2)f(x).

For simplicity we assume all parameters are scalars. Following Qin’s approach

we can let pi = dF (xi) and express the empirical log likelihood as

l(X,θ) =
n∑
i=1

log pi +

n1∑
i=1

log g1(xi, θ1) +
n∑

i=n1+1

log g2(xi, θ2) (1.86)

Subject to the constraints

n∑
i=1

pi = 1,
n∑
i=1

(g1(xi, θ1)− 1)pi = 0,
n∑
i=1

(g2(xi, θ2)− 1)pi = 0, 0 ≤ pi ≤ 1.

(1.87)

By Lagrange multipliers, it is straightforward to show that for given θ1, θ2

pi =
1

n

1

1 + λ1(g1(xi, θ1)− 1) + λ2(g2(xi, θ2)− 1)
(1.88)

where λ1, λ2 are given by the equations

−
n∑
i=1

(g1(xi, θ1)− 1)

1 + λ1(g1(xi, θ1)− 1) + λ2(g2(xi, θ2)− 1)
= 0, (1.89)
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−
n∑
i=1

(g2(xi, θ2)− 1)

1 + λ1(g1(xi, θ1)− 1) + λ2(g2(xi, θ2)− 1)
= 0. (1.90)

Thus the log likelihood can be expressed as a function of θ = (θ1, θ2) and

λ = (λ1, λ2):

l(θ,λ) = −
n∑
i=1

log[1 + λ1(g1(xi, θ1)− 1) + λ2(g2(xi, θ2)− 1)

+

n1∑
i=1

log g1(xi, θ1) +
n∑

i=n1+1

log g2(xi, θ2).

(1.91)

Let ψT
0 = (ρT ,θ0). Under regularity conditions the vector ψ̂

T
= (λ̂

T
, θ̂

T
)

of maximizers of l(θ,λ) is asymptotically normal with a normalizing constant
√
n,

where λ̂0
p→ ρ1, λ̂1

p→ ρ2, and θ̂ p→ θ0. The proof follows a standard Taylor

expansion argument.

Theorem 9. Under regularity conditions

√
n(ψ̂ −ψ)

d→ N4(0,V)

where V = S−1WS−1, and S and W will be stated subsequently.

Proof. The system of estimating equations, comprising the partial derivatives of l

is given by:

Gn1,n2 =



− 1
n

∑n
i=1

(g1(xi,θ1)−1)
1+λ1(g1(xi,θ1)−1)+λ2(g2(xi,θ2)−1)

− 1
n

∑n
i=1

(g2(xi,θ2)−1)
1+λ1(g1(xi,θ1)−1)+λ2(g2(xi,θ2)−1)

− 1
n

∑n
i=1 λ1

∂
∂θ1

g1(xi,θ1)

1+λ1(g1(xi,θ1)−1)+λ2(g2(xi,θ2)−1) + 1
n

∑n1

i=1
∂
∂θ1

log g1(xi, θ1)

− 1
n

∑n
i=1 λ2

∂
∂θ2

g2(xi,θ2)

1+λ2(g1(xi,θ1)−1)+λ2(g2(xi,θ2)−1) + 1
n

∑n
i=n1+1

∂
∂θ2

log g2(xi, θ2)


(1.92)
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Gn1,n2|ψ=ψ0
=



− 1
n

∑n
i=1

(g1(xi,θ0,1)−1)
ρ1(g1(xi,θ0,1))+ρ2(g2(xi,θ0,2))

− 1
n

∑n
i=1

(g2(xi,θ0,2)−1)
ρ1(g1(xi,θ0,1))+ρ2(g2(xi,θ0,2))

− 1
n

∑n
i=1 ρ1

∂
∂θ1

g1(xi,θ0,1)

ρ1(g1(xi,θ0,1))+ρ2(g2(xi,θ0,2))
+ 1

n

∑n1

i=1
∂
∂θ1

log g1(xi, θ0,1)

− 1
n

∑n
i=1 ρ2

∂
∂θ2

g2(xi,θ0,2)

ρ1(g1(xi,θ0,1))+ρ2(g2(xi,θ0,2))
+ 1

n

∑n
i=1

∂
∂θ2

log g2(xi, θ0,2)


.

(1.93)

Note that for any function V (x), we have that

1

n

n∑
i=1

V (xi) =
n1

n

1

n1

n1∑
i=1

V (xi) +
n2

n

1

n2

n2∑
i=1

V (xi)
p→ EF [(ρ1g1 + ρ2g2)V ]. (1.94)

From this, and from the properties of the Fisher score, it follows, under regularity

conditions

Gn1,n2|ψ=ψ0

p→ 0 (1.95)

Consistency follows from the Lemma 3 under regularity conditions.

The proof of asymptotic normality follows a standard Taylor expansion argument,

using Lemma 2. Through a Taylor expansion of component function Gn1,n2 ,j we

have:

√
nGm,n,j(ψ)

= −

{
4∑

k=1

√
n(ψ̂mk − ψk)[

∂

∂ψk
Gm,n,j(ψ) +

1

2

4∑
l=1

(ψ̂ml − ψl)
∂2

∂ψk∂ψl
Gm,n,j(ψ∗)]

}
(1.96)

The CLT applies to
√
nGn1,n2|ψ=ψ0

by splitting each vector entry into sums of

i.i.d. random variables:
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1√
n
∂
∂ψ
l|ψ0 =

−
√
n1√
n

1√
n1

∑n1

i=1
(g1−1)

ρ1g1+ρ2g2
−
√
n2√
n

1√
n2

∑n
i=n1+1

(g1−1)
ρ1g1+ρ2g2

−
√
n1√
n

1√
n1

∑n1

i=1
(g2−1)

ρ1g1+ρ2g2
−
√
n2√
n

1√
n2

∑n
i=n1+1

(g2−1)
ρ1g1+ρ2g2

−
√
n1√
n

1√
n1

∑n1

i=1 ρ1
∂
∂θ1

g1

ρ1g1+ρ2g2
−
√
n2√
n

1√
n2

∑n
i=n1+1 ρ1

∂
∂θ1

g1

ρ1g1+ρ2g2
+
√
n1√
n

1√
n1

∑n1

i=1
∂
∂θ1

log g1

−
√
n1√
n

1√
n1

∑n1

i=1 ρ2
∂
∂θ2

g2

ρ1g1+ρ2g2
−
√
n2√
n

1√
n2

∑n
i=n1+1 ρ2

∂
∂θ2

g2

ρ1g1+ρ2g2
+
√
n2√
n

1√
n2

∑n
i=n1+1

∂
∂θ2

log g2


.

(1.97)

The vector is asymptotically normal, with a 4 × 4 asymptotic covariance matrix

Σ = W(θ0), which will be given below. Also, ∂
∂ψ

Gn1,n2|ψ=ψ
p→ S(θ0), where S(θ)

will be given below. Thus, the result follows from Lemma 2 in Chapter 1 under the

regularity conditions that imply that all the second partial derivatives of Gn1,n2(ψ),

∂2

∂ψ2 Gn1,n2(ψ) are bounded in probability in a neighborhood of ψ0. It is easy to see

that regularity conditions can be imposed to ensure this.

In what follows, we will provide expressions for S(θ0) and W(θ0). This will

show that, under regularity conditions, S(θ0) is invertible, and that the asymptotic

covariance Σ = W(θ0) of the random vector given in (1.97) is well defined, so that

the result follows. We will drop the subscript 0 for θ0 for simplicity of exposition.

The calculation of W(θ0), is straight forward. Its entries are given by:

W1,1 = ρ1varF 1(
(g1(x, θ1)− 1)

ρ1(g1(xi, θ1)) + ρ2(g2(x, θ2))
)+ρ2varF 2(

(g1(x, θ1)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
)
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W2,2 = ρ1varF 1(
(g2(x, θ1)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
) + ρ2varF 2(

(g2(xi, θ1)− 1)

ρ1(g1(xi, θ1)) + ρ2(g2(xi))
)

W3,3 = ρ31varF 1(
∂
∂θ1
g1(x, θ2)

ρ1(g1(xi, θ1)) + ρ2(g2(x, θ2))
)+ρ2ρ

2
1varF2(

∂
∂θ1
g1(x, θ2)

ρ1(g1(x, θ1)) + ρ2(g2(xi))
)

+ρ1I
F1
θ1θ1

W4,4 = ρ1ρ
2
2varF 1(

∂
∂θ2
g2(x, θ2)

ρ1(g1(x, θ1)) + ρ2(g2(xi))
) + ρ32varF2(

∂
∂θ2
g2(x, θ2)

ρ1(g1(xi, θ1)) + ρ2(g2(xi))
)

+ρ2I
F2
θ2θ2

W1,2 = W2,1 = ρ1covF1(
(g1(x, θ1)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
,

(g2(x, θ2)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
)+

ρ2covF2(
(g1(x, θ1)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
,

(g2(x, θ2)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
)

W1,3 = W3,1 =

ρ1covF1(
(g1(x, θ1)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
, ρ1

∂
∂θ1
g1(x, θ2)

ρ1(g1(xi, θ1)) + ρ2(g2(x, θ2))
− ∂

∂θ1
log g1(xi, θ1))

+ρ2covF2(
(g1(x, θ1)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
, ρ1

∂
∂θ1
g1(xi, θ1)

ρ1(g1(xi, θ1)) + ρ2(g2(xi))
)

W2,3 = W3,2 =

ρ1covF1(
(g2(x, θ2)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
, ρ1

∂
∂θ1
g1(x, θ1)

ρ1(g1(xi, θ1)) + ρ2(g2(x, θ2))
− ∂

∂θ1
log g1(xi, θ1))

+ρ2covF2(
(g2(x, θ2)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
, ρ1

∂
∂θ1
g1(x, θ1)

ρ1(g1(xi, θ1)) + ρ2(g2(x, θ2))
)

W2,4 = W4,2 = ρ1covF1(
(g2(x, θ2)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
, ρ2

∂
∂θ2
g2(x, θ2)

ρ1(g1(xi, θ1)) + ρ2(g2(x, θ2))
)

+ρ2covF2(
(g2(x, θ2)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
, ρ2

∂
∂θ2
g2(x, θ2)

ρ1(g1(xi, θ1)) + ρ2(g2(xi))
− ∂

∂θ2
log g2(x, θ2))

W1,4 = W4,1 = ρ1covF1(
(g1(x, θ1)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
, ρ2

∂
∂θ2
g2(x, θ2)

ρ1(g1(xi, θ1)) + ρ2(g2(x, θ2))
)

+ρ2covF2(
(g1(x, θ1)− 1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
, ρ2

∂
∂θ2
g2(x, θ2)

ρ1(g1(xi, θ1))− ρ2(g2(xi))
− ∂

∂θ2
log g2(x, θ2))
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W3,4 = W4,3

= ρ1covF1(ρ1

∂
∂θ1
g1(x, θ1)

ρ1(g1(x, θ1))− ρ2(g2(x, θ2))
− ∂

∂θ1
log g1(x, θ1), ρ2

∂
∂θ2
g2(x, θ2)

ρ1(g1(xi, θ1)) + ρ2(g2(x, θ2))
)

+ρ2covF2(ρ1

∂
∂θ1
g1(x, θ1)

ρ1(g1(x, θ1)) + ρ2(g2(x, θ2))
, ρ2

∂
∂θ2
g2(x, θ2)

ρ1(g1(xi, θ1)) + ρ2(g2(x, θ2))
− ∂

∂θ2
log g2(x, θ2))

We now provide expressions for S(θ). Each term in this 4 × 4 matrix can be

easily found by using the relation

1

n

n∑
k=1

V (θ, xk)
p→ EF [(ρ1g1 + ρ2g2)V ],

namely,

∂2l

∂θ2i
= −λi

n∑
k=1

∂2

∂θ2i
gi(xk, θi)

1 + λ1(g1(xk, θ1)− 1) + λ2(g2(xk, θ2)− 1)

+ λ2i

n∑
k=1

( ∂
∂θi
gi(xk, θi))

2

(1 + λ1(g1(xk, θ1)− 1) + λ2(g2(xk, θ2)− 1))2

+
∑
k∈Si

∂2

∂θ2i
log gi(xk, θi)

where Si is the set of indexes in sample i.

1

n

∂2l

∂θ2i
|ψ=ψ0

= − 1

n
ρi

n∑
k=1

∂2

∂θ2i
gi(xk, θi)

ρ1g1(xk, θ1) + ρ2(g2(xk, θ2))

+
1

n
ρ2i

n∑
k=1

( ∂
∂θi
gi(xk, θi))

2

(ρ1g1(xk, θ1) + ρ2(g2(xk, θ2)))2

+
1

n

∑
k∈Si

∂2

∂θ2i
log gi(xk, θi)

p→ −ρiEF (
∂2

∂θ2i
gi(x, θi))

+ρ2iEF
( ∂
∂θi
gi(x, θi))

2

(ρ1g1(x, θ1) + ρ2(g2(x, θ2)))
− ρiIFiθiθi ,
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i = 1, 2.

1

n

∂2l

∂θi∂θj
|ψ=ψ0

=

1

n
ρ1ρ2

n∑
k=1

∂
∂θi
gi(x, θi)

∂
∂θj
gi(x, θi)

(ρ1g1(xk, θ1) + ρ2(g2(xk, θ2)))2

p→ ρ1ρ2EF (

∂
∂θi
gi(x, θi)

∂
∂θj
gi(x, θi)

(ρ1g1(xk, θ1) + ρ2(g2(xk, θ2)))
), i 6= j

1

n

∂2l

∂λiλj
|ψ=ψ0

=

1

n

n∑
k=1

(gi(xk, θi)− 1)(gj(xk, θj)− 1)

(ρ1(g1(xk, θ1)) + ρ2(g2(xk)))2

d→ EF (
(gi(x, θi)− 1)(gj(x, θj)− 1)

(ρ1(g1(x, θ1)) + ρ2(g2(x)))
), i, j = 1, 2

Likewise,

1

n

∂2l

∂θiλj
|ψ=ψ0

=

= − 1

n

n∑
k=1

∂
∂θi
gj(xk, θi)

(ρ1(g1(x, θ1)) + ρ2(g2(x)))
+

1

n
ρi

n∑
k=1

(gj(xk, θj)− 1) ∂
∂θi
gi(xk, θi)

(ρ1(g1(x, θ1)) + ρ2(g2(x)))2

p→ ρiEF (
(gj(xk, θj)− 1) ∂

∂θi
gi(xk, θi)

(ρ1(g1(x, θ1)) + ρ2(g2(x)))
), i, j = 1, 2.

It follows that under regularity conditions,

√
n(ψ̃ −ψ)

d→ N (0, V ) (1.98)

where V = S(θ0)
−1W(θ0)S(θ0)

−1, and W(θ0) and S(θ0) are as specified in the

preceding pages.
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A more general setup would be the model

fi(x) = gi(θ, x)f0(x), i = 1, ...,m, (1.99)

where θ is a vector of dimension p and samples of size ni are available from dis-

tributions fi(x),i = 1, . . . ,m, with
∑m

i=1 ni = n and ni/n → ρi > 0. No sample is

available from f0.

Sufficient conditions for identifiability of this model can be found in Gilbert et

al. (1999)[22].

Defining g(θ, x) as the mapping with component functions gi, and defining the

vector λT = (λ2, . . . , λm) it is easy to see that we can obtain the following expression

for the probability element pi = dF0(xi):

pi =
1

n

1

1 + λT (g(xi,θ)− 1)
(1.100)

and the log likelihood

l(λ,θ) = −
n∑
i=1

log[1 + λT (g(xi,θ)− 1)] +
m∑
k=1

∑
i∈Sk

log gi(xi,θ). (1.101)

Here Sk represents the set of indexes corresponding to the sample k for k = 1, . . . ,m.

This model has the advantage that there is no need to have a reference sample and

is also more general than the model expressed in Fokianos (2004) in that it allows

the known weight functions gi(xi,θ) to vary, whereas Fokianos considers weights of

the form g(xi, θi). This expression for the likelihood can the be differentiated with

respect to θ and λ to obtain estimators for the two parameters. The extension of
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the asymptotic results to this more general case is straightforward, but will not be

pursued here.

1.5 Future Research

A question of interest is to ascertain the asymptotic properties of the estimator

defined in Qin (1998) when m = o(n) and n = o(m). Also, analytical comparison of

the asymptotic covariance matrix of the EMLE, EMME with the former estimator,

although difficult, would be of interest, and moreover, a comparison with the infor-

mation bounds provided in Gilbert (2000) [22] would be revealing in the case where

m = cn(1 + o(1)), but this is also a very difficult task due to the complexity of the

information bounds provided in Gilbert (2000). It is expected that the EMLE and

the EMME will not meet those information bounds. Simulation studies comparing

the performance of the aforementioned estimators would shed some light on how the

methods perform in finite samples.

The extension of the EMLE to the s-sample case should be straightforward,

and its asymptotic properties should be analogous to those in the two-sample case.

Specifically, suppose s samples are available where sample i has probability element

dFi(x,θ) = C(θ)hi(x,θ)dF (x), i = 1, . . . , s, and a sample is available from the

generator, where all samples are independent. One may use the same approach as

in the two-sample case to compute the EMLE.
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A question of theoretical interest is to study the EMLE and EMME when

the sample from the generator is (Y1, . . . , Ym) but the researcher instead collects a

sample from (Y ∗1 , . . . , Y
∗
m) which is treated as the true generator sample, where the

degree of misspecification is small. That is, suppose the true distribution is not F

but rather F ∗ = F (x, ηm), where ηm → 0 as m → ∞. One may study the asymp-

totic properties of the resulting estimators under various assumptions of the rate of

convergence of ηm → 0.
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1.6 Appendix: An Alternative Proof of Consistency of the EMLE.

Theorem 10. Let θ0 be the true parameter value. Suppose that

(i) h(x,θ) is continuously differentiable in a neighborhood of θ0.

(ii) IX(θ0) is nonsingular.

(iv) E( ∂
∂θ
h(Y,θ0)) <∞

(v) The expected values are finite of each of the i.i.d averages comprising

∂
∂θ

Gm,n(θ0, Y1, . . . , Ym, X1, . . . , Xn).

Then as m,n→∞, with Pθ0 probability tending to one there exists a solution to the

EMLE system of estimating equations, θ̂m,n, which is a consistent estimator of θ0.

Proof. Consider the mapping

Gm,n =
n∑
i=1

∂
∂θ
h(Xi,θ)

h(Xi,θ)
/n−

∑m
i=1

∂
∂θ
h(Yi,θ)/m∑m

i=1 h(Yi,θ)/m
(1.102)

Notice that, for any fixed X1, . . . , Xn, Y1, . . . , Ym, if θ̂m,n exists, it is given by

θ̂m,n = G−1m,n(0, Y1, . . . , Ym, X1, . . . , Xn).

Note that as m,n→∞,

Gm,n(θ0, Y1, . . . , Ym, X1, . . . , Xn)
p→ 0 (1.103)

∂

∂θ
Gm,n(θ0, Y1, . . . , Ym, X1, . . . , Xn)

p→ −IX(θ0). (1.104)

Since IX(θ0) is nonsingular, with Pθ0 probability tending to one,

∂
∂θ

Gm,n(θ0, Y1, . . . , Ym, X1, . . . , Xn) is nonsingular. Moreover, with Pθ0 probability
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tending to one, for any δ > 0

||Gm,n(θ0, Y1, . . . , Ym, X1, . . . , Xn)|| < δ.

Note that Gm,n(θ, Y1, . . . , Ym, X1, . . . , Xn) is continuously differentiable in a neigh-

borhood of θ0 for all m,n by assumption (i). Choose δ such that by virtue of the

inverse function theorem, Gm,n(θ, Y1, . . . , Ym, X1, . . . , Xn) is one to one and onto in

a neighborhood of θ0, G−1m,n(a, Y1, . . . , Ym, X1, . . . , Xn) exists and is continuous for

a in a neighborhood of Gm,n(θ0, Y1, . . . , Ym, X1, . . . , Xn) including 0, and such that

for ε > 0, by continuity of G−1m,n(a, Y1, . . . , Ym, X1, . . . , Xn),

||G−1m,n(0, Y1, . . . , Ym, X1, . . . , Xn)−G−1m,n(Gm,n(θ0), Y1, . . . , Ym, X1, . . . , Xn)|| < ε.

Then

||θ̂m,n − θ0|| < ε.
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Chapter 2

A Related Two-Sample Parametric Problem

2.1 Introduction

A shortcoming of the EMLE and EMME is that the infinite dimensional nui-

sance parameter, the generator, is estimated from the sample (Y1, . . . , Ym) alone,

whereas information about the generator is provided by both samples. The method

described in Qin (1998) [56], on the other hand, estimates the generator using the

data from both samples. Although direct comparison of the resulting asymptotic

covariances is challenging in the semiparametric case, the issue raises an interesting

analogous parametric problem.

Suppose a sample (Y1, . . . , Ym) is available from a population with density

fY (y;λ), and an independent sample (X1, . . . , Xn) is available from a population

with density fX(x, λ;ψ). Here λ is regarded as a nuisance parameter and ψ is the

structural parameter. For simplicity we deal with the case where λ and ψ are scalars.

One approach to estimation of ψ would be to compute the maximum likelihood

estimator based on both samples (Method 1). A second approach would be to first

find the maximum likelihood estimator of λ from the sample (Y1, . . . , Ym), namely

λ̂m, and then to treat λ̂m as the true parameter. That is, one treats (X1, . . . , Xn) as
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if the sample comes from fX(x; λ̂m, ψ), and then computes the maximum likelihood

of ψ (Method 2). Method 2 resembles the EMLE approach in the semiparametric

case, where the generator (the infinite dimensional nuisance parameter) is replaced

by an estimator that is treated as if it were the true distribution.

Intuitively, Method 2 should result in inferior estimation for ψ (as well as

λ) due to the fact that it does not use the information provided by the second

sample when estimating λ. On the other hand, it has the advantage of reducing

the dimension of the system of equations (in this case, from 2 dimensions to 1

dimension). It is interesting to explore the asymptotic distributions of both methods.

The results are rather natural. It should be noted that in the case where m =

cn(1 + o(1)), Method 1 is efficient, so that Method 2 cannot outperform Method 1

in estimating ψ in terms of first-order asymptotics (see for instance, Lehmann and

Casella (1998) [40], Theorem 7.1).

For convenience, let

Jyiλ =
∂

∂λ
log fy(yi, λ)

Jyiλ is the Fisher score for λ from observation yi. Let Iyλ = E(Jyλ)2 be the Fisher

information on λ from one observation yi from the first sample. Likewise

Jxiψ =
∂

∂ψ
log fx(xi, λ, ψ)

Jxiλ =
∂

∂λ
log fx(xi, λ, ψ)

Jxiψψ =
∂2

∂ψ2
log fx(xi, λ, ψ)

Jxiλλ =
∂2

∂λ2
log fx(xi, λ, ψ)

76



Jxiψλ = Jxiλψ =
∂2

∂ψ∂λ
log fx(xi, λ, ψ)

Jxiψλλ =
∂3

∂ψ∂λ2
log fx(xi, λ, ψ)

Jxiλλλ =
∂3

∂λ∂λ∂λ
log fx(xi, λ, ψ)

Other derivatives of the scores based on the samples from fx and fy are denoted

analogously. Then Ixψψ = E(Jxiψ )2 = −E(Jxiψψ) and Ixλψ Ixλλ, and Ixψλ are defined

analogously in obvious ways.

2.2 Asymptotic Properties of Estimator from Method 1

Let the estimators resulting from method 1 be denoted as λ̂(1)m,n and ψ̂(1)
m,n, and

let θ = (ψ, λ) and θ̂
(1)

m,n = (ψ̂
(1)
m,n, λ̂

(1)
m,n) The likelihood is given by

L(X,Y, ψ, λ) = Πm
i=1fy(yi, λ)Πn

i=1fx(xi, λ, ψ).

The log likelihood is given by

l(ψ, λ) =
m∑
i=1

log fy(yi, λ) +
n∑
i=1

log fx(xi, λ, ψ). (2.1)

Thus, the estimating equations are given by

∂l

∂ψ
=

n∑
i=1

∂

∂ψ
log fx(xi, λ, ψ) =

n∑
i=1

Jxiψ = 0, (2.2)

∂l

∂λ
=

m∑
i=1

∂

∂λ
log fy(yi, λ) +

n∑
i=1

∂

∂λ
log fx(xi, λ, ψ) =

m∑
i=1

Jyiλ +
n∑
i=1

Jxiλ = 0. (2.3)

We also compute the Jacobian of l, which will be needed both to prove consistency

and to find the asymptotic covariance of ψ̂(1)
m,n. Its entries are:

∂2l

∂ψ2
=

n∑
i=1

∂2

∂ψ2
log fx(xi, λ), (2.4)
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∂2l

∂λ2
=

m∑
i=1

∂2

∂λ2
log fy(yi, λ) +

n∑
i=1

∂2

∂λ2
log fx(xi, λ, ψ), (2.5)

∂2l

∂λ∂ψ
=

n∑
i=1

∂2

∂λ∂ψ
log fx(xi, λ, ψ). (2.6)

Thus the Jacobian of l is


∑n

i=1 J
xi
ψψ

∑n
i=1 J

xi
ψλ∑n

i=1 J
xi
ψλ

∑n
i=1 J

yi
λλ +

∑m
i=1 J

xi
λλ

 . (2.7)

Consider the following mapping and corresponding partial derivative matrix:

Gm,n =

 1
n

∑n
i=1 J

xi
ψ

m
n

1
m

∑m
i=1 J

yi
λ + 1

n

∑n
i=1 J

xi
λ

 , (2.8)

∂

∂θ
Gm,n =

 1
n

∑n
i=1 J

xi
ψψ

1
n

∑n
i=1 J

xi
ψλ

1
n

∑n
i=1 J

xi
ψλ

m
n

1
m

∑m
i=1 J

yi
λλ + 1

n

∑m
i=1 J

xi
λλ

 . (2.9)

It is clear that if m = cn(1 + o(1)), Gm,n(θ0)
p→ 0 and that

∂

∂θ
Gm,n(θ0)

p→

−Ixψψ −Ixψλ

−Ixψλ −cI
y
λ − Ixλλ

 . (2.10)
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Under some regularity conditions, it follows from Lemma 3 that θ̂
(1)

m,n is a

consistent estimator of θ. Note that the argument is valid whenm = cn(1+o(1)), c >

0, and when m = o(n) so that m/n → 0 which implies c = 0. To prove that

consistency holds for when n = o(m), the same argument does not hold because

m/n → ∞. In such a case, we need to consider a slightly different system of

equations whose solution is also θ̂
(1)

m,n, namely

G∗m,n =

 1
n

∑n
i=1 J

xi
ψ

1
m

∑m
i=1 J

yi
λ + n

m
1
n

∑n
i=1 J

xi
λ

 . (2.11)

Note that G∗m,n(θ0)
p→ 0. Moreover, its derivative matrix is given by

∂

∂θ
G∗m,n =

 1
n

∑n
i=1 J

xi
ψψ

1
n

∑n
i=1 J

xi
ψλ

n
m

1
n

∑n
i=1 J

xi
ψλ

1
m

∑m
i=1 J

yi
λλ + n

m
1
n

∑n
i=1 J

xi
λλ

 , (2.12)

so that as n,m→∞,

∂

∂θ
G∗m,n(θ0)

p→

−Ixψψ −Ixψλ
0 −Iyλ

 . (2.13)

This matrix is negative definite provided IxψψI
y
λ > 0. By Lemma 3, under some

conditions, this proves consistency of θ̂
(1)

m,n when n = o(m). Thus it follows that

θ̂
(1)

m,n is consistent provided m,n→∞ regardless of the rate of growth of m relative

to n
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We will now explore the asymptotic distribution of θ̂
(1)

m,n under each of the three

settings.

Theorem 11. Let m,n → ∞. Suppose m = cn(1 + o(1)), c > 0. Under some

regularity conditions

√
n(θ̂

(1)

m,n − θ)
d→ N(0, I(c,θ)−1)

where I(c,θ) is given by Ixψψ Ixψλ

Ixψλ cIyλ + Ixλλ

.
Proof. Let θ0 be the true value. Consider the Taylor expansion of each component

function Gm,n,j at θ0:

0 = Gm,n,j(θ̂m,n)

= Gm,n,j(θ0) +
2∑

k=1

(θ̂
(1)
m,n,k − θ0,k)

∂

∂θk
Gm,n,j(θ0)

+
1

2

2∑
k=1

2∑
l=1

(θ̂
(1)
m,n,k − θ0,k)(θ̂

(1)
m,n,l − θ0,l)

∂2

∂θkθl
Gm,n,j(θ

∗)

where θ∗ is a point on the line segment connecting θ0 and θ̂
(1)

m,n. Rearranging, we

obtain

√
nGm,n,j(θ0)

= −
2∑

k=1

√
n(θ̂

(1)
m,n,k − θ0,k)[

∂

∂θk
Gm,n,j(θ0) +

1

2

2∑
l=1

(θ̂
(1)
m,n,l − θ0,l)

∂2

∂θkθl
Gm,n,j(θ

∗)].

(2.14)

Again we use Lemma 2. We already found the asymptotic distribution of ∂
∂θ
Gm,n(θ0).

We must now find the distribution of
√
nGm,n(θ0), which can be expressed as:
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√
nGm,n =

 1√
n

∑n
i=1 J

xi
ψ

√
m√
n

1√
m

∑m
i=1 J

yi
λ + 1√

n

∑n
i=1 J

xi
λ

 . (2.15)

Clearly the following asymptotic result follows:

√
nGm,n(θ0)

d→ N2(0, I(c,θ0)). (2.16)

Referring back to Lemma 2, we must consider

Aj,k,m,n =
∂

∂θk
Gm,n,j(θ0) +

1

2

2∑
l=1

(θ̂
(1)
l − θl)(

∂2

∂θkθl
)Gm,n,j(θ

∗). (2.17)

We have already found that first term converges in probability to {I(c,θ0)}{j,k}.

The second term converges in probability to 0 if ∂2

∂θkθl
Gm,n,j(θ

∗) are bounded

in probability for all j, k, l, which holds under the assumption that all the second

partial derivatives with respect to θ of the functions Jxψ, Jxλ , and J
y
λ are dominated

by integrable functions not depending on θ in a neighborhood of θ0.

Corollary 12. Suppose m,n → ∞ such that m = cn(1 + o(1)). Then under regu-

larity conditions

√
n(ψ̂(1)

m,n − ψ)
d→ N

[
0,

cIyλ + Ixλλ
Ixψψ(cIyλ + Ixλλ)− (Ixψλ)

2

]

Proof. Take the appropriate entry of the inverse of the asymptotic variance in The-

orem 11.

81



Corollary 13. Suppose m,n→∞ such that m = o(n). Then

√
n(ψ̂(1)

m,n − ψ)
d→ N (0, (Îψ|λ)

−1)

where Îxψ|λ is the efficient information of ψ in the presence of λ given by the expres-

sion

Îxψ|λ = Ixψψ − Ixψλ(Ixλλ)−1Ixλψ.

Proof. Let c→ 0. Notice that this is equivalent to m/n→ 0.

There is an interesting interpretation to Corollary 13: When the sample from

fy(y, λ) is very small relative to the sample from fx(x, θ, λ), the asymptotic behav-

ior of the resulting estimator ψ̂(1)
m,n is the same as that of the MLE from the sample

from fx(x, θ, λ) alone, where λ is an unknown nuisance parameter. That is, the

asymptotic distribution of ψ̂(1)
m,n is the same as if the sample from fy(y, λ) were not

available and maximum likelihood were used in the sample from fx(x, λ, ψ).

Method 1 is asymptotically efficiency under regularity conditions when m =

cn(1+o(1)), c > 0, as noted in the introduction. Thus ψ̂m,n must have an asymptotic

covariance at least as small as of that of the MLE ψ̂n from the sample (X1, . . . , Xn)

alone. The following corollary provides a direct proof based on the derived asymp-

totic variances.

Corollary 14. Denote the asymptotic variance of ψ̂(1)
m,n when m = cn(1 + o(1)),

c > 0, as σ2
1. Assume Iyλ > 0, Ix is nonsingular, and Ixψλ 6= 0.

Then σ2
1 < Îxψ|λ.
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Proof. If

σ2
1 =

cIyλ + Ixλλ
Ixψψ(cIyλ + Ixλλ)− (Ixψλ)

2
<

1

Ixψψ − Ixψλ(Ixλλ)−1Ixλψ
,

then equivalently,

Ixψψ(cIyλ + Ixλλ)− (Ixψλ)
2

cIyλ + Ixλλ
> Ixψψ − Ixψλ(Ixλλ)−1Ixλψ,

(Ixψλ)
2

cIyλ + Ixλλ
< Ixψλ(I

x
λλ)
−1Ixλψ,

cIyλ + Ixλλ > Ixλλ,

cIyλ > 0.

Since c > 0 and Iyλ > 0 the result follows.

Note that if Ixλψ = 0, it is easy to see that σ2
1 = Îxψ|λ.

Theorem 15. Let n,m→ such that n = o(m). Under regularity conditions,
√
n(ψ̂

(1)
m,n − ψ)

√
m(λ̂

(1)
m,n − λ)

 d→ N

0,

 1
Ixψψ

0

0 1
Iyλ




Proof. Let θ0 be the true parameter. Let

Gm,n,1 =
1

n

n∑
i=1

Jxiψ (2.18)

Gm,n,2 =
1

m

n∑
i=1

Jxiλ +
1

m

m∑
i=1

Jyiλ (2.19)

and Gm,n = (Gm,n,1, Gm,n,2)
T .

A Taylor expansion of each component function about the true θ0 evaluated at θ̂
(1)

m,n
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gives

0 =
√
nGm,n,1(θ0) (2.20)

+
√
n(ψ̂(1)

m,n−ψ0){
∂

∂ψ
Gm,n,1(θ0)+

1

2

∂2

∂ψ2
Gm,n,1(ξ)(ψ̂(1)

m,n−ψ0)+
1

2

∂2

∂ψ∂λ
Gm,n,1(ξ)(λ̂(1)m,n−λ0)}

(2.21)

+
√
m(λ̂(1)m,n−λ0){

√
n√
m

(
∂

∂λ
Gm,n,1(θ0)+

1

2

∂2

∂λ2
Gm,n,1(ξ)(λ̂(1)m,n−λ0)+

1

2

∂2

∂λ∂ψ
Gm,n,1(ξ)(ψ̂(1)

m,n−ψ0))}

(2.22)

0 =
√
mGm,n,2(θ0) (2.23)

+
√
n(ψ̂(1)−ψ0){

√
m√
n

(
∂

∂ψ
Gm,n,2(θ0)+

1

2

∂2

∂ψ2
Gm,n,2(η)(ψ̂(1)

m,n−ψ0)+
1

2

∂2

∂ψ∂λ
Gm,n,2(η)(λ̂(1)m −λ0))}

(2.24)

+
√
m(λ̂(1)m,n−λ0){(

∂

∂λ
Gm,n,2(θ0)+

1

2

∂2

∂λ2
Gm,n,2(η)(λ̂(1)m,n−λ0)+

1

2

∂2

∂λ∂ψ
Gm,n,2(η)(ψ̂(1)

m,n−ψ0))}

(2.25)

where η and ξ are points on the line segment between θ0 and θ̂m,n. Denote the

term in brackets in (2.21) as Am,n, the term in brackets in (2.22) as Bm,n, the term

in brackets in (2.24) as Cm,n, and the term in brackets (2.25) as Dm,n. Note that

we can express the system of equation given by (2.20)-(2.25) as follows:

Am,n Bm,n

Cm,n Dm,n



√
n(ψ̂

(1)
m,n − ψ0)

√
m(λ̂

(1)
m,n − λ0)

 =

 −
√
nGm,n,1

−
√
mGm,n,2

 . (2.26)

We will show that under regularity conditions, Am,n
p→ −Ixψψ, Bm,n

p→ 0,
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Cm,n
p→ 0, Dm,n

p→ −Iyλ, and that
√
nGm,n,1

√
mGm,n,2

 d→ N

0,

cIxψψ 0

0 Iyλ


 .

The result then follows from Lemma 2, Chapter 1.

We note that

Am,n =
∂

∂ψ
Gm,n,1(θ0) +

1

2

∂2

∂ψ2
Gm,n,1(ξ)(ψ̂(1)

m,n − ψ0) +
1

2

∂2

∂ψ∂λ
Gm,n,1(ξ)(λ̂(1)m,n − λ0)

=
1

n

n∑
i=1

Jxiψψ(θ0) +
1

2

1

n

n∑
i=1

Jxiψψψ(ξ)(ψ̂(1)
m,n − ψ0) +

1

2

1

n

n∑
i=1

Jxiψψλ(ξ)(λ̂(1)m,n − λ0)

(2.27)

so that

Am,n
p→ −Ixψψ (2.28)

provided that |Jxψψψ| < Q(x) and |Jxψψλ| < R(x) in a neighborhood of θ0, with

Eθ0(Q(X)) <∞ and Eθ0(R(X)) <∞. Also

Bm,n =

√
n√
m

(
∂

∂λ
Gm,n,1(θ0) +

1

2

∂2

∂λ2
Gm,n,1(ξ)(λ̂(1)m,n − λ0) +

1

2

∂2

∂λ∂ψ
Gm,n,1(ξ)(ψ̂(1)

m,n − ψ0))

=

√
n√
m

(
1

n

n∑
i=1

Jxiλψ(θ0) +
1

2n

n∑
i=1

Jxiψλλ(ξ)(λ̂(1)m,n − λ0) +
1

2n

n∑
i=1

Jxiψψλ(ξ)(ψ̂(1)
m,n − ψ0))

(2.29)

so that

Bm,n
p→ 0. (2.30)

provided |Jxψλλ| < M(x) and |Jxψλλ| < N(x) in a neighborhood of θ0, with Eθ0(M(X)) <

∞ and Eθ0(N(X)) <∞.
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Cm,n

=

√
m√
n

(
∂

∂ψ
Gm,n,2(θ0) +

1

2

∂2

∂ψ2
Gm,n,2(η)(ψ̂(1)

m,n − ψ0) +
1

2

∂2

∂ψ∂λ
Gm,n,2(η)(λ̂(1)m,n − λ0))

=
1√
m
√
n

n∑
i=1

Jxiψλ +
1

2
√
m
√
n

n∑
i=1

Jxiψψλ(η)(ψ̂(1)
m,n − ψ0) +

1

2
√
m
√
n

n∑
i=1

Jxiψλλ(η)(λ̂(1)m,n − λ0)}
.

(2.31)

The first term clearly converges in probability to zero. Under the assumption

that |Jxψψλ| < H(x) and |Jxψλλ| < W (x) in a neighborhood of θ0 with Eθ0(H(X)) <

∞ and Eθ0(W (X)) < ∞, the second and third terms also converge in probability

to 0 due to consistency of θ̂
(1)

m,n. Thus

Cm,n
p→ 0. (2.32)

Dm,n = (
∂

∂λ
Gm,n,2(θ0) +

1

2

∂2

∂λ2
Gm,n,2(η)(λ̂(1)m,n − λ0) +

1

2

∂2

∂λ∂ψ
Gm,n,2(η)(ψ̂(1)

m,n − ψ0))

=
1

m

n∑
i=1

Jxiλλ(θ0) +
1

m

m∑
i=1

Jyiλλ(θ0)

+
1

2

(
1

m

n∑
i=1

Jxiλλλ(η) +
1

m

m∑
i=1

Jyiλλλ(η)(λ̂(1)m,n − λ0) +
1

2

1

m

n∑
i=1

Jxiψλλ(η)(ψ̂(1)
m,n − ψ0)

)
(2.33)

so that

Dm,n
p→ −Iyλ (2.34)

under the conditions that |Jxλλλ| < P (x), |Jxλλλ| < Q(x), |Jxψλλ| < R(x), |Jyλλλ| <

S(Y ) and |Jxψλλ| < T (x) in neighborhoods of θ0, where

Eθ0(P (X)), Eθ0(Q(X)), Eθ0(S(Y )), Eθ0(R(X)), Eθ0(S(Y )), Eθ0(T (X))

are finite, due to the LLN and the consistency of λ̂(1)m,n and ψ̂(1)
m,n.
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Notice also that
√
nGm,n,1

√
mGm,n,2

 =

 1√
n

∑n
i=1 J

xi
ψ

1√
m

∑n
i=1 J

xi
λ + 1√

m

∑m
i=1 J

yi
λ

 d→ N

0,

Ixψψ 0

0 Iyλ


 (2.35)

Using Lemma 2 from Chapter 1, the result follows under some additional regularity

conditions.

2.3 Asymptotic Properties of Estimator from Method 2

We now turn our attention to Method 2, which is perhaps a more naive method

of estimation. We denote the resulting estimator as θ̂
(2)

m,n = (ψ̂
(2)
m,n, λ̂

(2)
m ).

Under the same data setup as before, we compute the MLE of λ, namely λ̂(2)m ,

from the sample (Y1, . . . , Ym) alone. In the sample (X1, . . . , Xn) we treat λ as if it

were known and equal to λ̂(2)m , and then compute the maximum estimator of ψ. This

reduces the dimension of the system of equations to estimate ψ, which when λ and

ψ are scalars becomes a one dimensional equation:

G(2)
m,n(X, λ̂(2)m , ψ) =

1

n

n∑
i=1

∂

∂ψ
log fx(xi, ψ, λ̂

(2)
m ) =

1

n

n∑
i=1

Jxiψ (ψ, λ̂(2)m ) = 0 (2.36)

Under regularity conditions, the asymptotic distribution of λ̂(2)m is given by

√
m(λ̂(2)m − λ)

d→ N
(

0,
1

Iyλ

)
. (2.37)

To prove consistency of ψ̂(2)
m,n, we observe that if we let θ0 be the true parameter,

1

n

n∑
i=1

Jxiψ (ψ0, λ̂
(2)
m ) =

1

n

n∑
i=1

Jxiψ (ψ0, λ0) +
1

n

n∑
i=1

Jxiψλ(ψ0, η)(λ̂(2)m − λ0) (2.38)
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for η strictly between λ0 and λ̂
(2)
m . The first term converges in probability to its mean,

0, when evaluated at the true parameter value θ0. The second term also converges in

probability to 0, assuming λ̂(2)m is consistent and assuming that |Jxψλ(ψ0, λ)| < M(x)

with Eθ0(M(X)) <∞ in a neighborhood of the true λ0.

To check condition (ii) of Lemma 3, we note that

1

n

n∑
i=1

Jxiψψ(ψ0, λ̂
(2)
m ) =

1

n

n∑
i=1

Jxiψψ(ψ0, λ0) +
1

n

n∑
i=1

Jxiψψλ(ψ0, η2)(λ̂
(2)
m − λ). (2.39)

It follows that if |Jxψψλ(ψ0, λ)| < N(x) in a neighborhood of λ0, with Eθ0(N(X)) <

∞, this expression converges in probability to −Ixψψ.

Moreover, if |Jxψψψλ(ψ0, λ)| < P (x) on neighborhood of λ0, with Eθ0(P (X)) <

∞, condition (iii) of Lemma 3 is satisfied and it follows that with probability tending

to one there exists a consistent solution ψ̂(2)
m,n of the equation Gm,n(ψ) = 0.

Note that for consistency of θ̂
(2)

m,n to hold, we need n,m → ∞ but we do not

need to make any assumption about the rate of growth of m relative to n. The same

is true for θ̂
(1)

m,n

Theorem 16. Let m,n→∞ such that m = cn(1 + o(1)). Under regularity condi-

tions,

√
n(ψ̂(2)

m,n − ψ)
d→ N

[
0, (Ixψψ)−1 +

1

c

(Ixψλ)
2

(Ixψψ)2Iyλ

]
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.

Proof. Let θ0 be the true value of θ. Then

0 = G(2)
m,n(ψ̂(2)

m,n) = G(2)
m,n(ψ0) +

∂

∂ψ
G(2)
m,n(ψ0)(ψ̂

(2)
m,n − ψ0) +

1

2

∂2

∂ψ2
G(2)
m,n(η)(ψ̂(2)

m,n − ψ0)
2

= G(2)
m,n(ψ0) + (ψ̂(2)

m,n − ψ0)(
∂

∂ψ
G(2)
m,n(ψ0) +

1

2

∂2

∂ψ2
G(2)
m,n(η)(ψ̂(2)

m,n − ψ0))

so that

−
√
n(ψ̂(2)

m,n − ψ0) =

√
nG

(2)
m,n(ψ0)

∂
∂ψ
G

(2)
m,n(ψ0) + 1

2
∂2

∂ψ2G
(2)
m,n(η)(ψ̂

(2)
m,n − ψ0)

, (2.40)

where

G(2)
m,n(ψ) =

1

n

n∑
i=1

Jxiψ (ψ0, λ̂
(2)
m )

=
1

n

n∑
i=1

Jxiψ (ψ0, λ0) +
1

n

n∑
i=1

Jxiψλ(ψ0, λ0)(λ̂
(2)
m − λ) +

1

n

n∑
i=1

Jxiψλλ(ψ0, ξ)(λ̂
(2)
m − λ0)2.

(2.41)

Notice that

√
nG(2)

m,n(ψ0) =
1√
n

n∑
i=1

Jxiψ (ψ0, λ0) +

√
n

m

1

n

n∑
i=1

Jxiψλ(ψ0, λ0)
√
m(λ̂(2)m − λ0)

+
1√
m

√
n

m

1

n

n∑
i=1

Jxiψλλ(ψ0, η)m(λ̂(2)m − λ)2. (2.42)

Note that the first term and the second term converge in distribution to normal

distributions with 0 mean and with variances Ixψψ and c−1(Ixψλ)
2/Iyλ respectively,

and the last term converges in probability to 0 under regularity conditions. Thus,

√
nG(2)

m,n(ψ)
d→ N

[
0, Ixψψ +

1

c

(Ixψλ)
2

Iyλ

]
(2.43)

We have already shown that ∂/∂ψG(2)
m,n

p→ −Ixψψ and clearly the second term in the

denominator converges in probability to 0 under some regularity conditions.
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This follows since

1

2

1

n

n∑
i=1

Jxiψψψ(η, λ̂(2)m )(ψ̂(2)
m,n − ψ0)

=
1

2

1

n

n∑
i=1

Jxiψψψ(η, λ0)(ψ̂
(2)
m,n−ψ0)+

1

2

1

n

n∑
i=1

Jxiψψψλ(η, ξ)(λ̂
(2)
m −λ0)(ψ̂(2)

m,n−ψ0). (2.44)

Thus assuming |Jxψψψ(x, ψ, λ0)| < Q(x) and |Jψψψλ(x, ψ, λ)| < R(x) on neighbor-

hoods of the true ψ0 and θ0, respectively, where Eθ0(Q(X)) <∞ and Eθ0(P (X)) <

∞, (2.44) converges in probability to 0 due to the consistency of θ̂
(2)

m,n.

Corollary 17. Let m,n→∞ such that n = o(m). Under regularity conditions,

√
n(ψ̂(2)

m,n − ψ)
d→ N (0,

1

Ixψψ
).

Proof. This follows by letting c → ∞, and is also easy to see from the proof of

Theorem 14 by letting m/n→ 0

Remark: Theorem 15 and Corollary 17 imply that the asymptotic distribu-

tions of ψ̂(1)
m,n and ψ̂(2)

m,n are the same when n = o(m). When the sample (Y1, . . . , Ym)

is very large, both estimators have asymptotic distributions equivalent to those that

would have been obtained through maximum likelihood from the sample (X1, . . . , Xn)

if λ were known.

Theorem 18. Let m,n→∞ such that m = o(n). Under regularity conditions,

√
m(ψ̂(2)

m,n − ψ)
d→ N

[
0,

(Ixψλ)
2

(Ixψψ)2Iyλ

]

.
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Proof. By a Taylor expansion:

0 =
n∑
i=1

Jxiψ (ψ̂(2)
m,n, λ̂

(2)
m )

=
n∑
i=1

Jxiψ (ψ0, λ̂
(2)
m ) +

n∑
i=1

Jxiψψ(ψ0, λ̂
(2)
m )(ψ̂(2)

m,n − ψ0)

+
1

2

n∑
i=1

Jxiψψψ(ξ, λ̂(2)m )(ψ̂(2)
m,n − ψ0)

2

Thus we have

√
m(ψ̂(2)

m,n− ψ0) =
−
√
m 1

n

∑n
i=1 J

xi
ψ (ψ0, λ̂

(2)
m )

1
n

∑n
i=1 J

xi
ψψ(ψ0, λ̂

(2)
m ) + 1

2
1
n

∑n
i=1 J

xi
ψψψ(ξ, λ̂

(2)
m )(ψ̂

(2)
m,n − ψ0)

. (2.45)

Let’s examine the numerator first. To do so, we perform another Taylor expansion:

√
m

1

n

n∑
i=1

Jxiψ (ψ0, λ̂
(2)
m )

=

√
m√
n

1√
n

n∑
i=1

Jxiψ (, ψ0, λ0) +
1

n

n∑
i=1

Jxiψλ(ψ0, λ0)
√
m(λ̂(2)m − λ0)

+
1

2

1√
m

1

n

n∑
i=1

Jxiλλψ(ψ0, η)m(λ̂(2)m − λ0)2.

(2.46)

Note that the first sum converges in probability to 0, the second term converges

in distribution to N (0, (Ixψλ)
2/Iyλ), and the third term converges in probability to 0

under some assumptions analogous to those given for other Taylor expansions.

Theorem 16, Corollary 17, and Theorem 18 show asymptotic results analogous

to those of the EMLE and EMME. For instance, when n = o(m) the asymptotic dis-

tribution of ψ̂(2)
m,n is the asymptotic distribution of the MLE based on (X1, . . . , Xn)

if λ were fully known, and is thus efficient. When m = cn(1 + o(1)) the asymptotic
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variance of ψ̂(2)
m,n has an additional nonnegative term. When m = o(n) the rate of

convergence is 1/
√
m instead of 1/

√
n.

2.4 Comparison of Method 1 and Method 2

Comparing Method 1 and Method 2 when m = o(n) show that, in large sam-

ples, ψ̂(1) is a better estimator than ψ̂(2) because its rate of convergence is faster.

On the other hand, when n = o(m) our results show that the two estimators have

the same asymptotic distribution. In this case, λ̂(2)m is a very accurate estimator of λ.

In the case where m = cn(1 + o(1)), c > 0, the asymptotic variance of

√
n(ψ̂

(2)
m,n − ψ0), which we will denote as σ2

2, should not be greater than that of

√
n(ψ̂

(1)
m,n − ψ0), denoted as σ2

1, since the former is asymptotically efficient under

regularity conditions, as previously noted. In the following theorem, we compare

the covariances of the two estimators based on direct computation.

Theorem 19. For m = cn(1 + o(1)), c > 0, suppose Ix is nonsingular, Ixλ > 0, and

Ixψλ 6= 0. Then σ2
2 > σ2

1.

Proof. Suppose

σ2
1 =

cIyλ + Ixλλ
Ixψψ(cIyλ + Ixλλ)− (Ixψλ)

2
< (Ixψψ)−1 +

1

c

(Ixψλ)
2

(Ixψψ)2Iyλ
= σ2

2.

92



Then, equivalently,

cIyλ + Ixλλ
(cIyλ + Ixλλ)− (Ixψλ)

2/Ixψψ
< 1 +

1

c

(Ixψλ)
2

(Ixψψ)Iyλ
,

cIyλ + Ixλλ − (Ixψλ)
2/Ixψψ + (Ixψλ)

2/Ixψψ
cIyλ + Ixλλ − (Ixψλ)

2/Ixψψ
< 1 +

1

c

(Ixψλ)
2

(Ixψψ)Iyλ
,

1 +
(Ixψλ)

2/Ixψψ
cIyλ + Ixλλ − (Ixψλ)

2/Ixψψ
< 1 +

1

c

(Ixψλ)
2

(Ixψψ)Iyλ
,

(Ixψλ)
2/Ixψψ

cIyλ + Ixλλ − (Ixψλ)
2/Ixψψ

<
1

c

(Ixψλ)
2

(Ixψψ)Iyλ
,

cIyλ
cIyλ + Ixλλ − (Ixψλ)

2/Ixψψ
< 1,

cIyλ
cIyλ + Îxλ|ψ

< 1,

and finally

Îxλ|ψ > 0.

The latter is true because Ix is nonsingular, so its inverse must be nonsingular.

Remark: These results show that when there are two samples providing in-

formation about a nuisance parameter, for large samples, estimation improves when

using both samples for its estimation. However, note that if Ixψλ = 0, σ2
2 = σ2

1

when m = cn(1 + o(1)), c > 0, and that the two estimators ψ̂(1)
m,n and ψ̂

(2)
m,n are

asymptotically equivalent when n = o(m).
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Chapter 3

Interval Estimation for Small Area Proportions with Small True

Proportions from Stratified Random Sampling Survey Data

3.1 Introduction

In this chapter we study two small area estimation models to construct confi-

dence intervals for domain proportions from data collected from stratified random

sampling surveys.

A commonly used 95% confidence interval for the true proportion Pi of a do-

main i in a survey is P̂EB
i ±1.96

√
msei, where P̂EB

i and msei are an empirical Bayes

estimator of Pi and an associated second-order unbiased mean squared error esti-

mator (i = 1, . . . ,m) (Rao, 2003) [61]. There are different choices of P̂EB
i and msei

in the literature–the specific estimators we will study here are described in Section

3.2. The underlying model for this popular method uses normal approximations:

pi|Pi ∼ N(Pi, ψi), Pi ∼ N(µ,A), where pi is the sample proportion for domain

i based on a sample of size ni; i = 1, . . . ,m; ψi are known smoothed sampling

variances; µ and A are unknown hyperparameters. This interval, which we will call

the Normal-Normal interval, relies on the accuracy of the aforementioned normal

approximations.
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As is well-known to statisticians, the normal approximation to the binomial

can be problematic when the probability of success is in the extremes and the num-

ber of Bernoulli trials is small. Students in elementary statistics classes learn that

the normal approximation to a binomial random variable Y with parameters r

and p, where r is the number of replications and p is the probability of success,

is only reasonable when rp and rq are “large". Brown et al. (2001 [9],2002[10])

showed that problems may ensue even in cases where rp and rq are quite large.

In particular, they showed that the actual coverage of the Wald interval, given by

Y/r± zα/2
√

(Y/r)(1− Y/r)/n, may fall well below the nominal coverage in several

examples. These include cases where p is not close to 0 or 1 and where rp and rq are

greater than 10, a rule of thumb sometimes given in introductory statistics books.

In fact, the actual coverage tends to oscillate both as r increases with p being fixed

and as p varies with r fixed, making the actual coverage for a particular problem

difficult to predict. This phenomenon is due to the discreteness and skewness of the

binomial distribution. The erratic coverage properties of the normal approximation

to the binomial raises questions about the performance of the Normal-Normal CI

when the underlying true proportions are small.

Brown et al. (2000) discuss several other methods of constructing confidence

intervals for proportions, many of which perform better than the Wald interval.

One of note is also based on a normal approximation–the Wilson Interval. Like

the Wald interval, the Wilson interval is derived from an asymptotic pivot. For

95



the Wald interval the pivot is p−p̂√
p̂(1−p̂)/r

and for the Wilson interval the pivot is

p−p̂√
p(1−p)/r

. The Wilson interval also shows oscillation as p and r vary, but it is less

severe than that of the Wald interval. It is one of the two intervals recommended

by Brown et al. for small sample sizes. Although both intervals are based on a nor-

mal approximation to the binomial, it should be noted that the Wald Interval bears

a greater resemblance to Normal-Normal CI, which is of the form P̂EB
i ±1.96

√
msei.

A related paper is Liu and Kott (2009) [42]. Kott and Liu study one-sided

coverage intervals for a proportion based on data collected from simple random sam-

pling and stratified random sampling. In particular, they compare several methods

for confidence interval construction through simulations. They note that the inter-

vals that are effective for two-sided intervals differ than those that are effective for

one-sided intervals. The intervals that are explored in the stratified random sam-

pling case are not based on small area estimation models–the focus is to provide an

interval for the overall proportion based on data collected form stratified random

sampling surveys. For the simple random sampling case, they provide a comparison

of several intervals for n = 30 over 0 ≤ p ≤ 1, providing simulation results for

lower bound estimates. They point out that for n = 20, 60, and 120, the trends are

similar than those of the case n = 30. They are interested in finding methods that

perform well over the range of p in the sense of having a coverage that is closest

to the nominal, and do not focus on finding the method that is best when p is in

the extremes. Using this criteria, among their conclusions is that the Wald interval

is systematically biased, as are the Angular method and the Logit method, which
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are based on normality approximations with variance stabilizing transformations,

although the Logit method’s systematic bias is of lesser degree and of the opposite

direction than that of the Wald Interval. Their preferred intervals for the SRS case

are the Cai and the Kott-Liu intervals, which are modifications to the Wald interval.

We study the coverage properties of the Normal-Normal CI in the setting

where there are are a large number of domains and we are interested in producing

confidence intervals for each of the true domain proportions. We focus primarily in

the case of small areas (i.e., small domain sample sizes) where the true proportion

for each domain is small. Analogous results should hold for small areas where the

true proportions are close to one.

We assume a stratified random sampling design, where a simple random sam-

ple is taken from each domain of interest. Typically, stratified random sampling

designs are used in situations where the strata differ significantly from each other

with respect to the variable of interest. Because we assume all domain proportions

are small, our strata are fairly similar to each other but are sampled separately to

ensure that data is collected from all domains of interest. Thus, the domains are

the strata. Such a situation may arise, for instance, when studying the proportion

of a rare disease in each of several domains.

For simplicity we assume equal stratum sample sizes (i.e., ni = n). Small

area models benefit greatly from the presence of relevant covariates but here we will
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assume that covariates are not available but that we still wish to “borrow strength"

from different domains. For examples in the literature of such an approach, see

Efron and Morris (1975) [16], and Carter and Rolph (1974) [11].

In a stratified random sampling setting with small stratum sample sizes, it

is reasonable to assume the sampled domain counts Yi, given Pi, follow a binomial

distribution. To use normal approximations to the binomial in this case is not war-

ranted due to the small sample sizes.

To apply an empirical Bayes approach, we must specify the distribution of the

true proportions Pi. The beta distribution is a reasonable choice since its support

is (0, 1) and since its shape varies greatly with different choices of its parameters,

allowing some flexibility in the model.

Thus a reasonable model in this setting is:

Yi|Pi ∼ Bin(n, Pi), (3.1)

and

Pi ∼ Beta(a, b) (3.2)

Assumption (3.1) is appropriate due to the assumption that small SRS samples are

taken from each domain.

It will be shown subsequently that assuming a beta prior implies the Pi’s are
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not likely to differ by much since a small prior mean µ implies a small prior variance

σ2 for the beta prior. This feature of the model is consistent with the scenario of

interest, where all domain proportions are small.

In Section 3.2 we give more details on the Normal-Normal CI. In Section 3.3 we

derive an empirical Bayes confidence interval based on the assumed model given by

(3.1) and (3.2), which we call the Binomial-Beta confidence interval. In Section 3.4

we compare through simulation studies the Normal-Normal CI to the Binomial-Beta

CI, under the assumption that the true model is given by (3.1) and (3.2). We find

that in our simulations the Normal-Normal CI does suffer from undercoverage and

performs worse than the Binomial-Beta CI in terms of coverage in cases of interest.

There is also some evidence of the oscillatory behavior of the Normal-Normal CI

coverages both as the prior mean µ changes with n and m held fixed, as m increases

with all other parameters held fixed, and as n increases with everything else held

fixed.

Moreover, although our interest is primarily in small areas, we provide an ex-

ample where there is some undercoverage even for very large n.

The Normal-Normal CI does appear to perform well in terms of coverage when

the prior mean is not close to 0 or 1 and when the domains are large, according to

our simulation results.
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For the Binomial-Beta CI the proposed estimators for the hyperparameters

(a,b) depend on the estimator for a related hyperparameter, δ. The proposed method

of estimation appears to yield an estimator δ̂ that is always in the admissible range–

specifically, δ has the property that 0 < δ < 1, and based on extensive simulations

δ̂ appears to share the same property under the assumed model. The equation used

to estimate δ depends on a constant, C, which is a small positive number. The

best choice of C depends on the true value of the parameters and on n, the domain

sample size. This is a drawback of the model, but in our simulations, we provide

evidence that it is possible to find a C that yields the desired coverages for a range

of small prior means and variances for a given n, so that the method may be of

practical use in the situations of interest.

3.2 Normal-Normal Empirical Bayes CI

This widely used CI rests on the following assumptions:

pi|Pi ∼ N(Pi, ψi), (3.3)

Pi ∼ N(µ,A). (3.4)

The model is a special case of the famous Fay-Herriot Model (Fay and Herriot, 1979)

[17] and is closely related to the Efron-Morris model (Efron and Morris, 1975) [16],

and to the models described in Carter and Rolph (1974) [11]. In particular, the

Normal-Normal model is the balanced domain sample size version of a model which

is chosen to analyze a fire alarm dataset in the former paper. Three other related
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models are also discussed and considered for analysis of the data, including a two

level model using an arcsine variance stabilizing transformation.

Level 1 (3.3) is usually referred to as the sampling model and level 2 (3.4) is

usually referred to the linking model (Jiang and Lahiri, 2006) [25]. The sampling

variabilities ψi are assumed to be known, although they typically need to be esti-

mated. This is a weakness of the Fay-Herriot model–it does not incorporate the

uncertainty due to estimation of ψi.

Returning to the empirical Bayes setup defined by (3.3) and (3.4), we note that

because the Normal distribution is its own conjugate prior, the posterior distribution

of Pi|pi is normal with mean

γipi + (1− γi)µ (3.5)

where

γi =
A

A+ ψi
. (3.6)

The parameter γi is called the shrinkage factor. Note that γi determines weights to

the area-specific estimator and the prior mean µ. An estimator for Pi is given by

γ̂ipi + (1− γ̂i)p̄ (3.7)

where

p̄ =

∑m
i=1 pi
m

, (3.8)

and where an estimator for γi will be given subsequently.
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A two-sided 100(1− α)% empirical Bayes CI is given by:

(P̂EB
i ± zα/2

√
msei) (3.9)

where zα/2 represents the appropriate quantile of the standard normal distribution.

The following estimators are used for A, γi, and the msei:

ψ̂i = ψ̂ = (p̄)(1− p̄)/n. (3.10)

Â = max

{
0, (m− 1)−1

m∑
i=1

(pi − p̄)2 − ψ̂

}
. (3.11)

γ̂i = γ̂ =
Â

ψ̂ + Â
. (3.12)

mseEBi =

√
g1(Â) + g2(Â) + 2g3(Â), (3.13)

where

g1(Â) = γ̂ψ̂, (3.14)

g2(Â) =

(
ψ̂

ψ̂ + Â

)2( m∑
j=1

1

ψ̂ + Â

)−1
=

ψ̂2

m(ψ̂ + Â)
, (3.15)

g3(Â) =

[
(1− γ̂)2

ψ̂ + Â

]
V̂ ar(A) =

2(1− γ̂)2(ψ̂ + Â)

m
. (3.16)

Discussion of formulas (3.11-3.16) can be found in Rao (2001) [62] or Jiang and

Lahiri (2006) [25]. The sum of (3.14) and (3.15) alone, as an estimator of msei,

would be a naive estimator because it would not account for the uncertainty due to

the estimation of A (Rao, 2003) [61]. If one were to use the sum of these two terms

alone the bias would be of order O(1/m). The estimator (3.13) was proposed by
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Prasad and Rao (1990) [53] and has bias of order o(1/m).

The estimator for A given by (3.11) truncates the unbiased estimator (m −

1)−1
∑m

i=1(pi − p̄)2 − ψ̂ whenever it is negative.

Although the sampling variances ψi are not equal, they are all estimated by

the same quantity as illustrated in (3.10). This is because this estimator is more

stable than estimators based on the data from only a single domain. The former

are unreliable due to the small domain sample sizes. This approach is similar to

that discussed in Carter and Rolph (1974) [11], although there the domain sample

sizes are not equal which results in differing estimates for ψi. If covariates were

available, a better approach for estimating the ψi would be possible. For instance,

one may estimate the ψi using the generalized variance function (see Wolter 1985

[71], Chapter 5).

Variants of the Fay-Herriot model are frequently used in surveys, so that the

model defined by (3.4) and (3.5) can be viewed as a benchmark.

Our focus is on two-sided intervals. When dealing with one binomial propor-

tion, the source of the undercoverage problem is twofold: it is due to the discreteness

and to the skewness of the binomial distribution. The former plays a dominant role

in two-sided intervals. In one-sided intervals the error due to skewness can be dom-

inant, so that the best intervals in the one-sided case may differ from those in the
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two-sided case (Brown et al., 2000 [9], 2001 [10]). This phenomenon should carry

over to normality-based small area confidence intervals, but investigation of this

issue is beyond the scope of this chapter.

3.3 Binomial-Beta Empirical Bayes CI

The Binomial-Beta confidence interval is built under the model given by (3.1)

and (3.2); that is Yi|Pi ∼ Bin(n, Pi), and Pi ∼ Beta(a, b). This is regarded as the

“true” model. As previously discussed, the underlying model assumptions are more

reasonable than the normal distribution assumptions, particularly in the cases of

interest where the normal approximation to the binomial is inappropriate.

Since the beta distribution is a conjugate prior for the binomial, the posterior

distribution Pi|Yi follows a beta distribution. If a and b were known, a credible

interval for Pi would be

Li = B(α/2, yi + a, n− yi + b) (3.17)

Ui = B(1− α/2, yi + a, n− yi + b) (3.18)

Under our proposed method of estimation, to estimate the hyperparameters a

and b we first estimate δ, given by

δ =
1

a+ b+ 1
. (3.19)

The hyperparameter δ specifies a relationship between the prior mean µ and
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the prior variance σ2:

σ2 = µ(1− µ)δ. (3.20)

The hyperparameters µ and σ2 can be expressed in terms of a and b, where

µ =
a

a+ b
, σ2 =

a− 1

a+ b− 2
.

It is easy to see that δ has the property that 0 < δ < 1. Also, note that δ is directly

proportional to the prior variance, so the larger the δ the less confidence it reflects

on the prior distribution, i.e., the less informative the prior.

Under our model, the prior variance must be smaller than the prior mean.

This relationship holds because 0 < δ < 1. Since σ2 = µ(1 − µ)δ it follows that

σ2 < µ(1 − µ) < µ because 0 < µ < 1. A small prior mean implies that the

variability between the proportions for the domains will be small. However, in the

situations that we are interested in, all domains have small true proportions, so a

small variance across domains is reasonable.

We estimate δ through the following equation:

[
1− MSW

p̄(1− p̄)
− δ
]

+
C

δ
= 0 (3.21)

where

MSW =
n

nm−m

m∑
i=1

pi(1− pi).

The above equation can be solved in closed form, and it has two solutions, one which
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is negative and the other one which is:

δ̂ =
K +

√
K2 + 4C

2
(3.22)

where K = 1−MSW/((p̄)(1− p̄)).

When n is fixed and m→∞, as is typically assumed in small area estimation

asymptotic problems due to the fact that typically the domain sample size n is much

smaller than the number of domains m, MSW
p→ µ(1− µ)(1− δ) and thus K p→ δ.

Note that δ̂ is consistent provided C = o(1).

Based on extensive empirical evidence gathered through a large number of

simulations, for small C > 0, δ̂ appears to have the property that it is always in the

desired range (i.e., 0 ≤ δ̂ ≤ 1). A similar technique was used by Gabler et al. (2011)

[21] in the estimation of intra-cluster correlation for the balanced one-way random

effects model.

According to our simulation results, the values of C that give good coverages

depend on the true parameters and on n. However, our simulation studies also sug-

gest that in cases of interest it is possible to find a C that works well for a range of

prior means and variances.

We could also have estimated δ more simply by:

1−MSW/(p̄(1− p̄))
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This corresponds to C = 0. The problem with this method of estimation is that

it frequently yields values for δ that are outside the admissible range, particularly

when µ, n, and m are small. In fact, the frequency with which δ is out of the range

increases when µ approaches 0 (or 1), as n decreases and as m decreases, as is illus-

trated by Figure 3.1, which is based on simulations under the assumed model.

One could arbitrarily set δ̂ to be a particular constant, such as .5, whenever

an inadmissible value is obtained but this method results in undercoverage of the

corresponding confidence intervals, according to our simulations.

Estimators for a and b are derived from the relations between a, b, µ and δ,

as follows:

â = p̄

(
1

δ̂
− 1

)
(3.23)

and

b̂ = (1− p̄)
(

1

δ̂
− 1

)
(3.24)

Care must be exercised to select a C that is appropriate for the cases of interest.

A poor choice of C may result in coverages that are far below the nominal.

3.4 Simulation Results

For each replication, we generated data using the Binomial-Beta model, with

Yi|Pi ∼ Bin(n, Pi) and Pi ∼ Beta(a, b) for a variety of choices of m, n, µ, and σ2,

focusing primarily in small-area examples with small µ and σ2. We computed cover-
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Figure 3.1: Frequency of δ̂ out of range for various parameters: Simulation results

for N = 10, 000 replications. (a) m = 100, n = 10, σ2 = .0099, (b) µ = .01,

σ2 = .0099, n = 10, (c) µ = .01, σ2 = .0099, m = 100. In each case C of (3.21) is

set equal to zero.
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ages (computed as the proportion of replications that capture the true domain pro-

portion) and average lengths for the Binomial-Beta CI and for the Normal-Normal

CI for one domain. The coverages and average lengths for all other domains should

be similar under this model. Each simulation was performed for N replications,

where N is typically 1000 or 10000 depending on the desired accuracy. All our CI’s

have a nominal 95% coverage and are two-sided.
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3.4.1 Robust C for Fixed n and a Range of Small Prior Means and

Variances

Table 3.1 displays the coverage frequency and average lengths for the Binomial-

Beta CI and for the Normal-Normal CI for domain 1.

As was previously mentioned, the optimal value of C for estimating δ depends

on the prior parameters, and in fact when C is inappropriately chosen the coverages

of the Binomial-Beta CI can be quite poor, according to our simulations. However,

Table 3.1 suggests it is possible to choose a C that provides appropriate coverage for

the Binomial-Beta CI for a range of small prior means with small prior variances,

and that the coverage of the Normal-Normal CI can be lacking in such situations.

In many cells in Table 3.1, the Normal-Normal CI falls below 90% coverage,

although the nominal level is 95%. Smaller prior means were not considered for this

size of m and n to eliminate the effect of having a high occurrence of zero counts in

all domain samples, which can bias the results in favor of the Binomial-Beta CI in

terms of coverage since the Binomial-Beta CI gives an interval of [0, 1] in this case

and the Normal-Normal CI gives a CI of [0, 0].

This Table also suggests that the Normal-Normal coverage is oscillatory as one

increases µ.
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The Binomial-Beta CI performs fairly well within this range, although there

is a trend for the coverage to decrease as µ increases. Larger values of µ than those

in this Table are not the primary focus of this paper, but our simulations suggest

that for larger values it will be necessary to increase C to maintain good coverages.

The prior variances in Table 3.1 are all small relative to the prior means. These

were chosen such that for any given cell the inequality σ2 < µ(1−µ) holds. To check

that the Binomial-Beta CI will still perform well when the prior variances are closer

to the mean, we take as an example µ = .04 and we take prior variances that are

a bit larger than those in Table 3.1, starting with σ2 = µ(1 − µ) − ε, where ε is a

small number. The beta-binomial CI still performs reasonably well with the same

choice of C, as shown in Table 3.2.

Table 3.3 illustrates that the appropriate value for C for a given range of hy-

perparameters depends on n. In this Table, we change n from 20 to 5, but all other

parameters are the same as in Table 1, except that the first row of Table 1, with

µ = .002, was omitted to avoid situations with a high proportion of all zero counts.

In this case C = .0001 yields poor results for the Binomial-Beta CI. However, Table

3.4 suggests that by changing the value of C to .001 one can obtain better results.

Table 3.5 shows that C = .001 would have worked well for n = 20 as well.

Caution must be exercised when choosing the value of C as the interval can

perform very poorly with a misspecified C.
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3.4.2 Numerous Small Domains

Table 3.6 illustrates the impact on the coverages as m increases in small area

problems, where n is small, and where µ = .01. Very large values of m are included

to study the behavior of the coverage as m increases and n is fixed. In this situation,

the Normal-Normal CI can exhibit significant undercoverage even when m is large.

The coverage of the Normal-Normal CI as m increases seems to be oscillatory when

holding everything else fixed.

The Binomial-Beta CI performs well throughout Table 3.6 in terms of coverage,

regardless of the value of n. C = .001 worked well in the previously discussed sim-

ulations with similar hyperparameters, and works well here as well.

This Table not only suggests oscillation for the Normal-Normal CI coverage as

m increases and n is held fixed–there is also some evidence that as n increases with

m held fixed the coverage oscillates as well. To investigate this further, Table 3.7

provides a wider range of n, and the results reinforce the oscillatory nature of the

true coverage as n increases, although the oscillations are less pronounced than when

there is a single binomial random variable, most likely because of the large number

of domains and the fact that these intervals “borrow strength” from other domains

when a estimating a domain proportion. Moreover, in Table 3.6 we can once again
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see that the appropriate value for C for the Binomial-Beta CI can depend on n as

well as on the prior parameters. In this example, coverage for the Binomial-Beta CI

seems to decrease as n increases, when everything else is fixed.

3.4.3 Unlucky n?

Brown et al. (2001) [9] show that the Wald-interval for building a confidence

interval for the probability of success based on one binomial(r, p) observation can

have poor coverage even when rp is fairly large. We investigate whether this phe-

nomenon extends to our scenario. We select some of the “unlucky" pairings of (p, r)

from Brown et al. and set our prior mean µ to equal their p and our domain sample

size n to be equal to the corresponding value of r.

Table 3.8 shows the Normal-Normal CI can have undercoverage even when m

and n are both large. The values n = 592 and n = 954 correspond to an example

given Brown et al (2001) [9] to illustrate that the Wald interval can fail to yield the

desired coverages even when rp and rq are large (a value in between these two was

also included). The binomial probability of success in their example is p = .005,

and we set our prior mean accordingly and our prior variance to be very small. Al-

though the undercoverage is slight, it may be surprising due to the large n. Another

interesting observation is that in this Table the Binomial-Beta CI’s average lengths

seem to be smaller than the Normal-Normal average lengths, despite the fact that

the coverages of the latter are inferior. For this particular simulation we increased
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N to 10,000 to increase the accuracy, since the undercoverage is of a lesser magnitude.

3.4.4 When the True Proportion is Not Close to the Extremes

The Normal-Normal CI does not show undercoverage in all cases, and seems

to do well when the prior mean is not close to zero. Table 3.9 is one illustration of

that.

3.5 Discussion

Through simulations, we have provided evidence that in the balanced case

(ni = n) and under our assumed model given by (3.1) and (3.2), the Normal-Normal

CI for estimating the true proportion of a given domain can display significant un-

dercoverage when the mean and variance of the prior distributions of the domains’

true proportions are small. Moreover, in such cases the coverage appears to be os-

cillatory both as µ increases from 0, keeping everything else fixed, as n increases

with all else held constant, and as m increases with all else held constant. We have

shown that the undercoverage can be significant even when the number of sampled

domains is very large. And we provided an example where there is undercoverage

even when n and m are high. In situations where all domain true proportions are

suspected to be small, the Normal-Normal CI should not be trusted.

We have provided a competing confidence interval that can display better cov-
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erage. The Binomial-Beta CI is appropriate when the statistician has some idea

of the magnitude of the true proportions and their variability across domains, in

particular when all domain proportions are known to be small as may occur when

the proportion refers to a rare characteristic in the population, such as a rare dis-

ease. The interval depends on a constant C, but simulation studies suggest that it

is possible to find a C that works well for a range of small prior means and vari-

ances, so that the statistician may be able to apply the Binomial-Beta CI to obtain

better results than those yielded by the Normal-Normal CI provided they know the

true proportions and their variability fall within certain ranges. The optimal C also

depends on n and can be determined through simulations for a given problem. Mis-

specification of C can result in undercoverage. For a particular application where

the Binomial-Beta model is deemed appropriate, the statistician can determine the

value of C based on the expected range where the proportions fall by simulation.

The erratic behavior of the Normal-Normal CI may be due to its reliance

on the normal approximation to the binomial. Practitioners must be aware that

applying these normality-based empirical Bayes confidence intervals in small area

problems where the true proportions and the domain sample sizes are small may

result in undercoverage.

In this chapter, we tackled the simplest case of a much more complex problem–

small area estimation for proportions in complex surveys where the true proportions

are in the extremes and the domain sample sizes are small. The problem is even more
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challenging in the presence of additional complex survey features such as clustering,

weights, varying domain sample sizes, and covariates. Constructing confidence in-

tervals for proportions in complex surveys is very challenging both from a modeling

and a mathematics perspective. Interesting areas for future research are to adapt

the Binomial-Beta model to surveys with more complex designs, and to incorporate

covariates into the model.

3.6 Appendix: Tables
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Table 3.1: Two-sided coverages/average lengths for Binomial-Beta CI (top numbers

in each cell) and Normal-Normal CI (bottom numbers in each cell) for one domain

for N = 1000 replications, m = 200, n = 20, c = .0001, α = 0.05.

µ σ2 0.001 .00001 .00000001

0.002 0.998 / 0.014 0.997 / 0.013 0.993 / 0.013

0.939 / 0.008 0.926 / 0.009 0.927 / 0.0089

0.005 0.987 / 0.024 0.985 / 0.024 0.986 / 0.024

0.904 / 0.017 0.899 / 0.019 0.912 / 0.019

0.01 0.975 / 0.038 0.976 / 0.038 0.971 / 0.038

0.878 / 0.032 0.903 / 0.034 0.887 / 0.034

0.02 0.969 / 0.061 0.951 / 0.062 0.955 / 0.063

0.945 / 0.062 0.927 / 0.063 0.924 / 0.063

0.03 0.957 / 0.083 0.95 / 0.084 0.945 / 0.084

0.935 / 0.088 0.941 / 0.089 0.938 / 0.089

0.04 0.946 / 0.1 0.946 / 0.1 0.946 / 0.1

0.95 / 0.11 0.946 / 0.11 0.94 / 0.11

0.05 0.943 / 0.12 0.952 / 0.12 0.954 / 0.12

0.934 / 0.13 0.94 / 0.13 0.952 / 0.13
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Table 3.2: Two-sided coverages/average lengths for Binomial-Beta CI (top numbers

in each cell) and Normal-Normal CI (bottom numbers in each cell) for one domain

for N = 1000 replications, m = 200, n = 20, c = .0001, α = 0.05.

µ σ2 0.0384 0.01 0.005

0.04 1 / 0.071 0.948 / 0.1 0.947 / 0.1

0.947 / 0.044 0.936 / 0.1 0.945 / 0.11
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Table 3.3: Two-sided coverages/average lengths for Binomial-Beta CI (top numbers

in each cell) and Normal-Normal CI (bottom numbers in each cell) for one domain

for N = 1000 replications, m = 200, n = 5, c = .0001, α = 0.05.

µ σ2 0.001 .00001 .00000001

0.005 0.971 / 0.03 0.973 / 0.028 0.952 / 0.029

0.922 / 0.023 0.919 / 0.023 0.905 / 0.023

0.01 0.913 / 0.039 0.887 / 0.04 0.921 / 0.039

0.909 / 0.04 0.905 / 0.042 0.914 / 0.041

0.02 0.875 / 0.066 0.867 / 0.066 0.863 / 0.067

0.897 / 0.069 0.903 / 0.069 0.903 / 0.069

0.03 0.865 / 0.093 0.865 / 0.097 0.874 / 0.094

0.886 / 0.096 0.871 / 0.1 0.879 / 0.099

0.04 0.853 / 0.12 0.887 / 0.12 0.863 / 0.12

0.867 / 0.12 0.898 / 0.12 0.882 / 0.13

0.05 0.887 / 0.14 0.877 / 0.15 0.889 / 0.15

0.899 / 0.15 0.888 / 0.15 0.903 / 0.15
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Table 3.4: Two-sided coverages/average lengths for Binomial-Beta CI (top numbers

in each cell) and Normal-Normal CI (bottom numbers in each cell) for one domain

for N = 1000 replications, m = 200, n = 5, c = 0.001, α = 0.05.

µ σ2 0.001 .00001 .00000001

0.005 0.996 / 0.039 0.988 / 0.038 0.991 / 0.041

0.943 / 0.023 0.939 / 0.024 0.93 / 0.025

0.01 0.993 / 0.058 0.991 / 0.058 0.983 / 0.057

0.918 / 0.04 0.903 / 0.041 0.913 / 0.041

0.02 0.987 / 0.089 0.977 / 0.09 0.983 / 0.09

0.892 / 0.069 0.91 / 0.072 0.896 / 0.072

0.03 0.969 / 0.12 0.972 / 0.12 0.964 / 0.12

0.895 / 0.098 0.884 / 0.098 0.886 / 0.099

0.04 0.966 / 0.14 0.968 / 0.14 0.968 / 0.14

0.883 / 0.13 0.894 / 0.13 0.888 / 0.12

0.05 0.963 / 0.17 0.963 / 0.17 0.961 / 0.17

0.896 / 0.15 0.901 / 0.15 0.905 / 0.15
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Table 3.5: Two-sided coverages/average lengths for Binomial-Beta CI (top numbers

in each cell) and Normal-Normal CI (bottom numbers in each cell) for one domain

for N = 1000 replications, m = 200, n = 20, c = 0.001, α = 0.05.

µ σ2 0.001 .00001 .00000001

0.002 0.99 / 0.016 0.985 / 0.017 0.988 / 0.015

0.939 / 0.0082 0.919 / 0.0088 0.918 / 0.009

0.005 0.997 / 0.03 0.993 / 0.031 0.985 / 0.03

0.929 / 0.018 0.921 / 0.019 0.904 / 0.019

0.01 0.987 / 0.047 0.989 / 0.047 0.987 / 0.048

0.887 / 0.032 0.895 / 0.035 0.896 / 0.033

0.02 0.974 / 0.071 0.978 / 0.072 0.98 / 0.071

0.924 / 0.062 0.943 / 0.063 0.926 / 0.063

0.03 0.976 / 0.092 0.952 / 0.092 0.976 / 0.093

0.952 / 0.089 0.927 / 0.089 0.944 / 0.089

0.04 0.97 / 0.11 0.967 / 0.11 0.97 / 0.11

0.93 / 0.11 0.945 / 0.11 0.941 / 0.11

0.05 0.964 / 0.13 0.958 / 0.12 0.968 / 0.13

0.944 / 0.13 0.943 / 0.13 0.945 / 0.13
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Table 3.6: Two-sided coverages/average lengths for Binomial-Beta CI (top numbers

in each cell) and Normal-Normal CI (bottom numbers in each cell) for one domain

for N = 1000 replications, µ = 0.01, σ2 = .0001, c = 0.001, α = 0.05.

m n 3 5 10 20

100 0.976 / 0.1 0.979 / 0.061 0.993 / 0.053 0.979 / 0.048

0.901 / 0.055 0.915 / 0.048 0.931 / 0.043 0.918 / 0.036

500 0.992 / 0.059 0.994 / 0.059 0.991 / 0.055 0.994 / 0.047

0.882 / 0.037 0.857 / 0.036 0.85 / 0.033 0.923 / 0.034

1000 0.996 / 0.061 0.996 / 0.059 0.993 / 0.055 0.988 / 0.047

0.776 / 0.033 0.792 / 0.033 0.886 / 0.033 0.95 / 0.034

5000 0.998 / 0.062 0.997 / 0.06 0.995 / 0.054 0.996 / 0.048

0.755 / 0.029 0.875 / 0.033 0.939 / 0.035 0.951 / 0.034

8000 0.994 / 0.062 1 / 0.06 0.996 / 0.056 0.991 / 0.047

0.785 / 0.029 0.892 / 0.032 0.934 / 0.035 0.947 / 0.034

10000 0.994 / 0.062 0.998 / 0.06 0.997 / 0.054 0.986 / 0.046

0.793 / 0.029 0.909 / 0.033 0.954 / 0.035 0.93 / 0.035

122



Table 3.7: Two-sided coverages/average lengths for Binomial-Beta CI (top numbers

in each cell) and Normal-Normal CI (bottom numbers in each cell) for one domain

for N = 1000 replications, µ = 0.01, σ2 = .0001, c = 0.001, α = 0.05.

n m 100 300 500

3 0.983 / 0.11 0.992 / 0.058 0.994 / 0.061

0.905 / 0.053 0.9 / 0.038 0.895 / 0.037

5 0.984 / 0.059 0.997 / 0.058 0.991 / 0.058

0.913 / 0.048 0.914 / 0.039 0.875 / 0.036

10 0.991 / 0.053 0.992 / 0.054 0.996 / 0.054

0.926 / 0.041 0.877 / 0.036 0.859 / 0.034

20 0.985 / 0.046 0.991 / 0.046 0.987 / 0.047

0.919 / 0.036 0.905 / 0.034 0.924 / 0.034

30 0.982 / 0.042 0.98 / 0.042 0.972 / 0.042

0.915 / 0.033 0.915 / 0.033 0.93 / 0.033

40 0.982 / 0.038 0.971 / 0.039 0.983 / 0.038

0.924 / 0.032 0.928 / 0.032 0.948 / 0.032

50 0.963 / 0.035 0.972 / 0.036 0.956 / 0.036

0.925 / 0.031 0.951 / 0.031 0.928 / 0.031

100 0.962 / 0.028 0.958 / 0.028 0.958 / 0.029

0.941 / 0.027 0.949 / 0.027 0.948 / 0.027

500 0.947 / 0.015 0.939 / 0.014 0.954 / 0.015

0.937 / 0.016 0.944 / 0.016 0.936 / 0.016
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Table 3.8: Two-sided coverages/average lengths for Binomial-Beta CI (top numbers

in each cell) and Normal-Normal CI (bottom numbers in each cell) for one domain

for N = 10000 replications, µ = 0.005, σ2 = .00001, c = .00001, α = 0.05.

m n 592 700 954

50 0.953 / 0.009 0.951 / 0.0083 0.952 / 0.0073

0.937 / 0.0098 0.936 / 0.0092 0.94 / 0.0081

100 0.953 / 0.009 0.952 / 0.0084 0.955 / 0.0073

0.936 / 0.0098 0.936 / 0.0092 0.938 / 0.0081

200 0.955 / 0.0089 0.954 / 0.0084 0.955 / 0.0073

0.939 / 0.0098 0.941 / 0.0092 0.94 / 0.0081
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Table 3.9: Two-sided coverages/average lengths for Binomial-Beta CI (top numbers

in each cell) and Normal-Normal CI (bottom numbers in each cell) for one domain

for N = 1000 replications, µ = 0.4, σ2 = 0.03, c = 0.035, α = 0.05.

n m 50 100 1000

3 0.963 / 0.65 0.961 / 0.65 0.967 / 0.66

0.944 / 0.71 0.932 / 0.69 0.939 / 0.67

5 0.955 / 0.56 0.969 / 0.56 0.952 / 0.56

0.967 / 0.65 0.976 / 0.64 0.962 / 0.63

10 0.965 / 0.44 0.952 / 0.44 0.961 / 0.44

0.978 / 0.52 0.966 / 0.52 0.975 / 0.51

20 0.951 / 0.33 0.952 / 0.33 0.95 / 0.33

0.972 / 0.4 0.974 / 0.4 0.974 / 0.39

30 0.953 / 0.28 0.952 / 0.27 0.951 / 0.28

0.972 / 0.33 0.973 / 0.33 0.969 / 0.33

40 0.964 / 0.24 0.947 / 0.24 0.953 / 0.24

0.981 / 0.29 0.968 / 0.29 0.965 / 0.29

50 0.933 / 0.21 0.951 / 0.21 0.943 / 0.22

0.967 / 0.26 0.968 / 0.26 0.97 / 0.26

100 0.947 / 0.16 0.945 / 0.15 0.945 / 0.15

0.966 / 0.19 0.972 / 0.19 0.973 / 0.19

1000 0.944 / 0.05 0.948 / 0.05 0.954 / 0.05

0.968 / 0.06 0.972 / 0.061 0.977 / 0.061
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