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ABSTRACT 

The primary goal of this research was to show that artificial neural network (ANN) models 

could be developed to perform rapid and accurate predictions of jointed plain concrete 

pavement system (JPCP) parameters which will enable pavement engineers to incorporate 

the state-of-the-art finite element (FE) solutions into routine practical design. The 

ISLAB2000 finite element program has been used as an advanced structural model for 

solving the responses of the concrete pavement systems and generating a large knowledge 

database.  

 

Totally, fifty-six ANN-based backcalculation and forward calculation models were 

developed as part of this research for the analysis of JPCP systems under traffic and 

temperature loading combinations to predict the concrete pavement parameters and critical 

pavement responses. In this research, BCM stands for the ANN-based backcalculation model 

and FCM stands for the ANN-based forward calculation model. BCM-EPCC, BCM-kS, BCM-

TELTD, FCM-RRS, and FCM-σMAX models were developed for the prediction of elastic 

modulus of Portland cement concrete (PCC) layer (EPCC), coefficient of subgrade reaction 

(kS) of the pavement foundation, total effective linear temperature difference (TELTD) 

between top and bottom of the PCC layer, radius of relative stiffness (RRS) of the pavement 

system, and maximum tensile stresses at the bottom of the Portland cement concrete layer 

(σMAX), respectively. These ANN-based models gave average errors less than 1 % for 

synthetic database. In order to develop more robust networks that can tolerate the noisy or 

inaccurate pavement deflection patterns collected from the Falling Weight Deflectometer 

(FWD) field tests, several network architectures were also trained with varying levels of 

noise in them. 

 

One of the most important advantages of the presented ANN approach is that the use of the 

ANN-based models resulted in a drastic reduction in computation time. Rapid prediction 

ability of the ANN-based models (capable of analyzing 100,000 FWD deflection profiles in 

one second) provides a tremendous advantage to the pavement engineers by allowing them to 



 xv

nondestructively assess the condition of the transportation infrastructure in real time while 

the FWD testing takes place in the field. In the developed approach, there is also no need a 

seed moduli or iteration process of the solution in order to predict the JPCP system 

parameters. The prediction of temperature difference (TELTD) in PCC layer which causes 

the slab curling and warping in concrete pavements is another tremendous advantage of the 

developed approach over the other methods since no other method does not take into account 

this parameter in the analyses. Finally, it can be concluded that ANN-based analysis models 

can provide pavement engineers and designers with state-of-the-art solutions, without the 

need for a high degree of expertise in the input and output of the problem, to rapidly analyze 

a large number of concrete pavement deflection basins needed for project specific and 

network level pavement testing and evaluation. 
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CHAPTER 1. GENERAL INTRODUCTION 

INTRODUCTION 

Concrete pavements are constructed of Portland cement concrete. The first concrete 

pavement was built in Bellofontaine, Ohio in 1893 and the second concrete pavement was 

constructed in Detroit, Michigan in 1908 (Fitch 1996). Concrete pavements are placed either 

directly on the prepared subgrade or on a single layer of granular or stabilized material. 

Closely spaced contraction joints are constructed in jointed plain concrete pavements and 

dowels or aggregate interlocks may be used for load transfer across the joints. Joint spacing 

between 15 to 30 ft have been used depending on the type of aggregate, climate, and prior 

experience. Due to the amount of transportation infrastructure, rehabilitation is one of the 

most important issues in pavement management. 

 

Evaluating the structural condition of existing, in-service pavements is a part of the routine 

maintenance and rehabilitation activities undertaken by most Department of Transportations 

(DOTs). In the field, the pavement deflection profiles (or basins) gathered from the 

nondestructive falling weight deflectometer test data are typically used to evaluate pavement 

structural conditions. The deflection-testing program is being conducted periodically to 

obtain the load-response characteristics of the pavement structure and subgrade. This kind of 

evaluation requires the use of backcalculation and forward calculation type structural 

analysis to determine pavement layer stiffness and critical pavement responses and is used to 

estimate pavement remaining life. 

 

Falling weight deflectometer testing have become the main nondestructive testing (NDT) 

techniques to structurally evaluate the in-service highway pavements over the last twenty 

years. Falling weight deflectometer testing is often preferred over destructive testing methods 

because FWD testing is faster than destructive tests and do not entail the removal of 

pavement materials. In addition, the testing apparatus is easily transportable. Pavement 

properties are backcalculated from the observed dynamic response of the pavement surface 
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to an impulse load (the falling weight). The FWD can either be mounted in a vehicle or on a 

trailer and is equipped with a weight and several velocity transducer sensors. To perform a 

test, the vehicle is stopped and the loading plate (weight) is positioned over the desired 

location.  The sensors are then lowered to the pavement surface and the weight is dropped. 

The advantage of an impact load response measuring device over a steady state deflection 

measuring device is that it is quicker, the impact load can be easily varied and it more 

accurately simulates the transient loading of traffic. Sensors located at specific radial 

distances monitor the deflection history. The deflections measured at radial distances away 

from load form the deflection basin. In order to calculate the pavement structural capacity 

correctly the deflection basins should be measured and analyzed accurately.  

 

To evaluate the structural condition of in-service pavements and to characterize the layer 

properties as inputs into available numerical or analytical programs, backcalculation of 

pavement layer properties and forward calculation of critical pavement responses are very 

useful tools. Most backcalculation procedures estimate pavement properties by matching 

measured and calculated pavement surface deflection basins. On the other hand, there is no 

need this step in the developed ANN-based approach in this research. Although there are 

numerous methods for evaluating the structural capacity of pavements from deflection basin 

data, there is no standard or universally accepted procedure that presently exists (PCS/Law 

Engineering 1993).  

 

The time spent on analyzing the deflection data composes the most of the work required to 

interpret the results. Can the routine in-service pavement evaluation be more rapid and 

accurate in the field during the FWD testing? The purpose of this research is to investigate 

the pavement layer properties and critical pavement responses in-depth under traffic and 

environmental loading conditions more rapidly to provide practical techniques to pavement 

engineers for analyzing the jointed Portland cement concrete pavements in project specific 

and network level project testing and evaluations.  

The comparison / validation of the developed ANN-based model predictions with the actual 

results is unfortunately a challenging problem. It is not easy to compare the ANN-based 
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model predictions with the actual results even though some laboratory or in-situ test results 

are available for the JPCP system parameters predicted. For example, one of the JPCP 

system parameters that is backcalculated in the presented research is coefficient of subgrade 

reaction (kS). In order to measure the kS value in the field, static plate loading tests are 

conducted on top of the subgrade before the pavement is constructed. The kS value is 

affected from the environmental conditions significantly due to the freeze-thaw effects. 

Therefore, subgrade stiffness is a not constant value and changes with the season due to the 

climatic conditions throughout the year. As a result, there should be a FWD test and plate 

loading test conducted at the same time and location on the same pavement section to 

compare the developed ANN-based model predictions and field test results. Most probably, 

the seasonal and climatic environmental conditions are not the same for the times that plate 

loading test and FWD test are conducted, and there might be several years between these two 

tests. Therefore, it is not possible every time to compare these two different values.  

 

Another JPCP system parameter is elastic moduli of the PCC layer (EPCC). In order to 

validate the proposed models, several PCC cores might be taken from the same concrete 

slabs that FWD test is conducted. Very different elastic moduli values might be measured 

even in the laboratory tests for a same pavement section. In addition, it should be also noted 

that elastic modulus from the laboratory tests is a parameter solely related to the material 

property.  However, the backcalculated EPCC value is no more a unique property for material 

and it becomes a parameter depends not only on material property but also on the structural 

model and boundary conditions employed in the backcalculation (Guo and Marsey 2001).  

 

The other two JPCP system parameters that are predicted in this research are radius of 

relative stiffness (RRS) and maximum tensile stress at the bottom of the PCC layer. These 

two parameters can not be measured in the field or in the laboratory but they can be 

calculated by other parameters. The radius of relative stiffness value is a fictitious parameter 

which is a function of elastic modulus of PCC layer, thickness of the PCC layer, coefficient 

of subgrade reaction and Poisson’s ratio (RRS = [(EPCC.hPCC
3)/(12.kS. (1-ν2)]0.25). Also, stress 

values can not be measured in the field; they are calculated from the measured strain values. 
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Therefore, the comparison of these two pavement parameters with actual field or laboratory 

test results is not possible.  

 

The parameter whose validation is the most difficult is the equivalent effect of total amount 

of curling and warping in terms of temperature difference between the top and bottom of the 

concrete slabs (TELTD) in JPCP systems. In order to validate this parameter, several 

measurements should be taken on the same pavement section in several days since five 

different parameters contribute to the total amount of curling and warping in concrete slabs. 

Transient temperature gradient, transient moisture gradient, permanent built-in temperature 

gradient, permanent drying shrinkage, and permanent creep values should be measured and 

FWD test should be conducted in both mid-slab (center) and corner of the concrete slab to 

compare the actual field results with the ANN-based model predictions. Unfortunately, there 

is not an available method today that can measure these five curling and warping parameters 

separately. Since there were not such data available, the ANN-based model predictions were 

compared with the Crovetti’s (2002) data (FWD tests and transient temperature gradient 

measurements available) and typical ranges for TELTD parameter.  

 

Due to the all of these reasons, the backcalculated and forward calculated concrete pavement 

parameters were compared with the available methods, techniques and softwares already 

validated over the years such as statistical regression analysis, closed-form solutions, 

ISLAB2000, DIPLOMAT, KENSLABS finite element programs, EverCALC 5.0, BAKFAA, 

EverFE 2.24 pavement backcalculation programs, and typical ranges for each JPCP 

parameter. 
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THESIS OBJECTIVES 

In order to evaluate the jointed plain concrete pavements, it is essential to have a good 

understanding of the behavior of the PCC pavements under loading from a structural 

perspective. The combined effect of the traffic and environmental loading conditions should 

be taken into account together in the evaluation process which is a very complicated non-

linear problem. The existing methods are not adequate to solve this complex problem 

properly. The research presented in this dissertation therefore mainly focuses on the 

development and performance of ANN-based models based on ISLAB2000 solutions for the 

analysis of jointed plain concrete pavements under different traffic and temperature loadings. 

One of the major objectives of this research is to develop a rapid and accurate technique to 

backcalculate the pavement layer and foundation properties and forward calculate the critical 

pavement responses from the FWD deflection basin data by using the advantages of the 

artificial neural networks which can capture the very complex relationships between the 

dependant and independent input variables. 

 

It is also well known that environmental conditions have a huge influence on the in-service 

pavement conditions and on the remaining life of pavements. For example, slab curling and 

warping in concrete pavements due to temperature and moisture differentials throughout the 

thickness of a slab affect the nondestructive testing results which are conducted to measure 

the pavement surface deflections. These erroneous measurements may divert the pavement 

engineers to inaccurate predictions of pavement and foundation properties and critical 

pavement responses. That’s why curling and warping effects should be taken into account in 

the evaluation process of concrete pavements. A second objective of this research is to 

predict the equivalent effect of total amount of curling and warping in terms of temperature 

difference between the top and bottom of the concrete slab in JPCP systems. Such an 

approach that takes into accounts both the traffic and environmental loading is invaluable 

since there is not an existing method which analyzes these effects together in JPCP systems.
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PROBLEM DESCRIPTION 

There are more than 3,000,000 miles rural highways and more than 900,000 miles urban 

highways in United States according to Federal Highway Administration (FHWA) statistics. 

Due to the amount of transportation infrastructure, rehabilitation is one of the most important 

issues in pavement management. To facilitate managing this demanding task and to 

efficiently allocate resources, US Department of Transportation pavement evaluation 

engineers and technicians are relying more and more on nondestructive testing techniques to 

asses the structural integrity of the existing highways and to provide the data base needed for 

improving design and construction techniques of new generation of pavements and pavement 

overlays.  

 

The falling weight deflectometer tests are commonly used to assess the structural integrity of 

highway/airport pavements in a nondestructive manner. There are many advantages to using 

FWD tests, in lieu of, or supplement traditional destructive tests for pavement structural 

evaluation. Most important, is the capability to quickly gather data at several locations while 

keeping a runway, taxiway, or apron operational during these 2-minute to 3-minute tests. 

Without FWD, structural data must be obtained from numerous cores, borings, and 

excavation pits on an existing highway/airport pavement. This can be very disruptive to 

highway/airport operations. FWD tests are economical to perform and data can be collected 

at up to 250 locations per day using a single FWD machine. The FWD equipment measures 

pavement surface deflections from an applied dynamic load that simulates a moving wheel. 

The deflection data that are collected with the FWD equipment can provide both qualitative 

and quantitative data about the overall condition of a pavement system at the time of testing.  

 

To evaluate the structural condition of in-service concrete pavements and to characterize the 

layer properties as inputs into available numerical or analytical programs, backcalculation of 

pavement properties and forward calculation of critical pavement responses from FWD test 

data is a useful tool. Such a methodology will enable pavement engineers to easily and 

quickly incorporate the needed sophistication in structural analysis, such as from finite 

element modeling with proper characterization of pavement layers, into routine practical 
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mechanistic-based analysis and design. The number and thickness of the pavement layers, 

and the strength and behavioral characteristics of the pavement materials are the structural 

design variables. Pavement layer stiffness parameters at the time of testing of the in-service 

pavements are used to decide what type of rehabilitation and maintenance should be 

performed on the pavement and critical pavement responses are used to estimate the 

pavement remaining life. Furthermore, the adequacy of maintenance during its service life 

and the quality of construction workmanship affect the performance of pavement systems 

under service conditions. 

RESEARCH APPROACH 

Today, a variety of finite element programs are available for the analysis and design of 

pavement systems. The two main categories of FE programs are those: (1) programs 

specifically designed for the analysis of pavement systems, and (2) general-purpose 

programs. Finite element programs which can incorporate the environmental effects in the 

analysis allow the user to analyze pavement systems subjected to various traffic and 

temperature loading combinations. The ISLAB2000 finite element program (Tabatabaie and 

Barenberg 1978; Khazanovich 1994; Khazanovich et al. 2000) has been chosen as an 

advanced structural model for solving the responses of the concrete pavement systems and 

generating a large knowledge database to provide a better understanding of the deflection 

response of concrete pavements subjected to traffic and temperature loadings. ISLAB2000 

has been extensively tested and validated over the years by comparing its predictions with 

available theoretical solutions and results from experimental studies.  

 

ISLAB2000 finite element runs were generated by modeling slab-on-grade concrete 

pavement systems in order to train the ANN-based models. A single slab layer resting on a 

Winkler foundation was analyzed in all cases. 4-noded 12 DOF thin plate element and 2-

noded spring element were employed in the ISLAB2000 analyses for PCC layer and 

subgrade, respectively (see Figure 1.1). 
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  (a) Plate element                (b) Spring element 

Figure 1.1. Finite elements employed in ISLAB2000 analysis 
 

Concrete pavements analyzed in the backcalculation of elastic modulus of PCC layer (EPCC), 

coefficient of subgrade reaction (kS) and forward calculation of radius of relative stiffness 

(RRS) and maximum tensile stress at the bottom of the PCC layer (σMAX) were represented 

by a six-slab assembly, each slab having dimensions of 20 ft by 20 ft. On the other hand, 

concrete pavements analyzed in the backcalculation of total effective linear temperature 

difference (TELTD) models were represented by a six-slab assembly, each slab having 

dimensions of 15 ft by 15 ft. 

 

The ISLAB2000 solutions were compared with the Westergaards’s closed-form solutions 

and DIPLOMAT and KENSLABS finite element program solutions for thirty-six different 

pavement configurations by varying EPCC, hPCC, and kS. A very good agreement was obtained 

from different finite element programs solutions for thirty-six different pavement 

configurations. Among these programs, ISLAB2000 finite element program was chosen as 

the main structural analysis program since ISLAB2000 is the main structural model in the 

new Mechanistic-Empirical Pavement Design Guide (MEPDG). The finite element model 

solutions could not be compared with the actual pavement deflection measurements since 

there were not any available actual elastic modulus for PCC layer, coefficient of subgrade 

reaction and FWD test results for a specific pavement test section available in this research.  
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In the second part of the research, backpropagation type artificial neural network models 

were trained with the ISLAB2000 solution knowledge database to develop models that can 

predict the pavement layer properties and critical pavement responses. The developed ANN-

based models have proved to be very effective in analyzing jointed plain Portland cement 

concrete pavements and provided an opportunity for pavement engineers to incorporate 

current sophisticated methodology into practical pavement testing and evaluation. The 

adoption and use of ANN modeling techniques in the recently released Mechanistic-

Empirical Pavement Design Guide (NCHRP project 1-37A: Development of the 2002 Guide 

for the Design of New and Rehabilitated Pavement Structures: Phase II) has especially 

placed the emphasis on the successful use of artificial neural networks in geomechanical and 

pavement systems. 

RESEARCH SCOPE 

Developed ANN-based backcalculation and forward calculation analysis models can provide 

pavement engineers and designers with state-of-the-art solutions, without the need for a high 

degree of expertise in the input and output of the problem, to rapidly analyze a large number 

of concrete pavement deflection basins needed for project specific and network level 

pavement testing and evaluation. 

 

This research study is devoted mainly to the development of evaluation procedures 

applicable to existing jointed plain Portland cement concrete pavements with slabs of 

variable thickness, elastic moduli, foundation properties, and temperature difference between 

the top and bottom of the slab. A brief information about the artificial neural networks was 

also given in the research. A more comprehensive description and analysis of ANNs is 

beyond the scope of this research. In addition, a sensitivity study was conducted to determine 

the most appreciate architecture for predicting the concrete pavement parameters and also 

developed ANN-model predictions were compared with the other available method results 

and theoretical solutions. 
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THESIS ORGANIZATION  

 

CHAPTER ONE:  Statement of thesis objectives, description of the problem, description 

of research approach, and description of research scope. 

 

CHAPTER TWO: Artificial neural networks. 

 

CHAPTER THREE: Sensitivy study for finite slab sizes, dimensional analysis. 

 

CHAPTER FOUR: First journal paper: Use of artificial neural networks in transportation 

infrastructure systems: 1987 – 2007. 

 

CHAPTER FIVE: Second journal paper: Use of neural networks to develop robust 

backcalculation and forward calculation models for concrete pavement 

systems. 

 

CHAPTER SIX: Third journal paper: Backcalculation of total effective linear 

temperature difference (TELTD) in jointed plain concrete pavement 

systems. 

 

CHAPTER SEVEN: Rehabilitation design applications. 

 

CHAPTER EIGHT: Summary and conclusions on evaluations of jointed plain concrete 

pavement systems and recommendations for further research. 
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CHAPTER 2.   ARTIFICIAL NEURAL NETWORKS  

BACKGROUND ON ARTIFICIAL NEURAL NETWORKS  

Over the past two decades, there has been an increased interest in the use of artificial neural 

networks (ANNs) in civil engineering fields such as structural engineering, environmental 

and water resources engineering, traffic engineering, geotechnical engineering as well as 

pavement engineering. ANNs represent a class of robust, non-linear models applicable for 

solving a wide variety of problems. ANNs have been found to be very useful tools for 

solving pavement engineering problems, which deal with highly nonlinear functional 

approximations.  

 

Pavement engineering covers a wide area which includes both highway and airport 

pavements and involves disciplines including pavement analysis and design, pavement 

evaluation, pavement performance prediction, and pavement maintenance, rehabilitation, and 

management issues.  

 

Artificial neural networks are information processing computational tools in which highly 

interconnected processing neurons work in harmony to analyze and solve complex problems 

in a nontraditional manner. This power of the ANNs, emulating the biological nervous 

system, lies in the tremendous number of interconnections between the neurons or processing 

elements as they provide notable advantages in learning and generalizing from examples, 

producing meaningful and cost effective solutions to various problems even when input data 

contain errors or are incomplete, adapting solutions over time to compensate for changing 

circumstances and processing information quite rapidly and often in real time.  

 

Figure 2.1 displays a typical structure of ANNs that consists of a number of neurons that are 

usually arranged in layers: an input layer, hidden layers, and an output layer. One of the most 

important issues in the development of an ANN model is the architecture. Determination of 

the input and output variables, number of hidden layers, and number of hidden neurons in 
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each hidden layers is crucial in the development part of the ANN models.  The architecture 

of the ANN models has significant effects on the success of the developed models. Usually, a 

neural network with too few hidden neurons is unable to learn sufficiently from the training 

data set, whereas a neural network with too many hidden neurons will allow the network to 

memorize the training set instead of generalizing the acquired knowledge for unseen patterns 

(Lawrence and Fredricson 1993). Haykin (1994) recommends using two hidden layers. 

 

Backpropagation ANNs are very powerful and versatile networks that can be taught a 

mapping from one data space to another using a representative set of patterns/examples to be 

learned. The term “backpropagation network” actually refers to a multi-layered, feed-forward 

neural network trained using an error backpropagation algorithm. The learning process 

performed by this algorithm is called “backpropagation learning” which is mainly an “error 

minimization technique” (Haykin, 1999; Hecht-Nielsen, 1990; Rumelhart, et al., 1986). In 

the development of backpropagation ANN models, the connection weights and node biases 

are initially selected at random. 

 

 

Figure 2.1. Schematic view of typical ANN architecture 
 

Inputs from the mapping examples are propagated forward through each layer of the network 

to emerge as outputs.  The errors between those outputs and the correct answers are then 
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propagated backwards through the network and the connection weights and node biases are 

individually adjusted to reduce the error. After many examples (training patterns) are 

propagated through the network many times, the mapping function is learned with some 

specified error tolerance.  This is called supervised learning because the network has 

adjusted functional mapping using the correct answers.  Backpropagation ANNs excel at data 

modeling with their superior function approximation (Haykin, 1999). 

 

A neuron is an information-processing unit that is fundamental to the operation of a neural 

network. A neural network consists of many neurons which each one is an independent 

processing element. Each neuron has its own inputs and output. A typical neuron is shown in 

figure below. 

 

 

 

Figure 2.2. An artificial neuron 
 (http://www.warwick.ac.uk/atc/tig/whatwedo/projects/PBN/neuralnetworks.php) 
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Figure 2.3. Activation transfer functions: (a) Log-Sigmoid, (b) Tan-Sigmoid, (c) Linear 
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ARTIFICIAL NEURAL NETWORK PROGRAM: BACKPROP 3.5 

The artificial neural network used in this research is Backprop (BP) 3.5 Fortran code written 

by Roger W. Meier. This program trains a standard backpropagation-style artificial neural 

network using the Generalized Delta Rule with a momentum term added with gradient 

descent learning algorithm. The hidden neurons have a sigmoidal activation function and the 

output neurons use either sigmoidal or linear activation. The training data set can be 

presented to the network sequentially or randomly. The remaining testing data set are used to 

monitor training progress. Every 10 passes (might be changed by the user) through the data 

set, the target and computed outputs of the testing data set are output to a "results" file, the 

mean-squared errors for the training and testing data set are output to a "progress" file, and 

the current values of the interconnection weights are output to a "weights" file.  All of the 

files are sequential ASCII files. The progress file grows with each additional output record. 

The results and weights files are simply overwritten each time they are accessed. This keeps 

them from growing too large. This program allows networks to be trained incrementally. If 

an existing training weights file is located, it will be used as the starting point for additional 

network training (Meier BP 3.5 Fortran code). 

 

The network training inputs in BP 3.5: 

o Number of training data set, 

o Number of testing data set, 

o Number of iterations (epochs), 

o Frequency of training progress printouts, 

o Training data set, randomly or sequentially? 

o Normalization of target data? 

o Linear or sigmoidal activation function in output neurons? 

o + / - range of initial random numbers? 

o Initial random number stream? 

o Learning rate? 

o Momentum factor? 
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The network architecture inputs in BP 3.5: 

o Number of layers in hidden layers, 

o Number of neurons in input layer, 

o Number of neurons in hidden layers, 

o Number of neurons in output layer. 

 

Limitations of the BP 3.5 compared to MATLAB ANN toolbox: 

o Maximum 2 hidden layers in BP 3.5, 

o  May be more than one hidden layer in MATLAB. 

o Only one learning algorithm in BP 3.5, 

o  Traingd, traingda, traingdx, trainrp, traincgf, traincgp, trainscg, trainoss, 

trainbfg, trainlm etc.  in MATLAB.  

o Only one activation function in hidden neurons in BP 3.5 (Logsig), 

o  Logsig, Tansig, Purelin in MATLAB. 

o Only two activation function in output neurons in BP 3.5 (Logsig and Purelin), 

o  Logsig, Tansig, Purelin in MATLAB. 

o Constant learning rate in BP 3.5,  

o  May be variable in MATLAB. 

o There is not a Graphical User Interface (GUI) in BP 3.5, 

o  There is a GUI in MATLAB ANN Toolbox. 

 

Additional MATLAB ANN Toolbox training parameters: 

o Minimum performance gradient, 

o Ratio to increase learning rate, 

o Ratio to decrease learning rate, 

o Increment to weight change, 

o Decrement to weight change, 

o Initial weight change, 

o Maximum weight change, 

o Maximum time to train in seconds. 
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The Comparison of Backprop 3.5 and MATLAB ANN Toolbox Trainings 

In order to investigate the effect of different learning algorithms, the same elastic modulus of 

PCC layer (EPCC) data set was trained with different learning algorithms by using MATLAB 

ANN Toolbox. The default values were used for the training suggested by MATLAB. As 

seen from the training and testing progress curves for this specific data set, the trends in the 

curves are very sensitive to the learning algorithms used in the training.  

 

In addition to this data set, also another kS dataset was trained again with different learning 

algorithms in MATLAB ANN Toolbox. Similarly, different training and testing progress 

curves was obtained from that data set, as well. For all trainings 5-20-1 (D0, D12, D24, D36, 

and hPCC) and 6-20-1 (D0, D12, D24, D36, D48, and D60) ANN architectures were used in the 

analyses for EPCC and kS models, respectively. 250 and 50 patterns were used for the training 

and testing data set, respectively, for both EPCC and kS models.  

 

In order to investigate the effects of learning rate (LR), momentum factor (MF), and also 

initial random weight and bias numbers, several sensitivity studies were conducted by using 

both Backprop 3.5 and MATLAB ANN Toolbox using the same EPCC and kS data sets. The 

average absolute error values, R2 values, training data set mean-squared-error (MSE) values, 

and testing data set MSE values were compared for each developed ANN model. The results 

of these sensitivity analyses showed that the success of the ANN model is highly related with 

the ANN architecture parameters (learning rate, momentum factor, etc.). The initial random 

weight and bias numbers also affect the training and testing progress curves and 

consequently average absolute error value. 
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Figure 2.4.Training and testing progress curves for EPCC data set with Traingd algorithm 

 

 
Figure 2.5.Training and testing progress curves for EPCC data set with Traingdx algorithm 
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Figure 2.6.Training and testing progress curves for EPCC data set with Traingda algorithm 

 

 
Figure 2.7.Training and testing progress curves for EPCC data set with Trainrp algorithm 
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Figure 2.8.Training and testing progress curves for EPCC data set with Traingdm algorithm 

 

 
Figure 2.9.Training and testing progress curves for EPCC data set with Trainscg algorithm 
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Sensitivity study for learning rate and momentum factor (EPCC data set): 
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Figure 2.10.Training and testing progress curves for EPCC with BP 3.5 (LR=0.1, MF=0.9) 

 

Figure 2.11. Training and testing progress curves for EPCC with MATLAB (LR=0.1, MF=0.9) 

Table 2.1. Comparison of the results for EPCC (LR=0.1, MF=0.9) 

Learning Rate = 0.1          Momentum Factor = 0.9 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 11.9 39.1 
R2 = 0.91 0.51 

TRN - MSE = 5.7 x 10-3 29.3 x 10-3 
TST - MSE = 4.7 x 10-3 27.6 x 10-3 
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Figure 2.12.Training and testing progress curves for EPCC with BP 3.5 (LR=0.3, MF=0.7) 

 
Figure 2.13. Training and testing progress curves for EPCC with MATLAB (LR=0.3, MF=0.7) 

Table 2.2. Comparison of the results for EPCC (LR=0.3, MF=0.7) 

Learning Rate = 0.3          Momentum Factor = 0.7 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 13.4 26.5 
R2 = 0.90 0.70 

TRN - MSE = 6.6 x 10-3 16.1 x 10-3 
TST - MSE = 6.0 x 10-3 16.2 x 10-3 
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Figure 2.14.Training and testing progress curves for EPCC with BP 3.5 (LR=0.5, MF=0.5) 

 
Figure 2.15. Training and testing progress curves for EPCC with MATLAB (LR=0.5, MF=0.5) 

Table 2.3. Comparison of the results for EPCC (LR=0.5, MF=0.5) 

Learning Rate = 0.5          Momentum Factor = 0.5 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 13.1 21.4 
R2 = 0.88 0.77 

TRN - MSE = 6.4 x 10-3 12.3 x 10-3 
TST - MSE = 5.9 x 10-3 12.8 x 10-3 

 



 25

Sensitivity study for initial random numbers for weights and node biases (EPCC data set): 
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Figure 2.16.Training and testing progress curves for EPCC with BP 3.5 (Random # 1) 

 
Figure 2.17. Training and testing progress curves for EPCC with MATLAB (Random # 1) 

Table 2.4. Comparison of the results for EPCC (Random # 1) 

Initial random connection numbers: # 1 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 14.4 29.9 
R2 = 0.90 0.65 

TRN - MSE = 6.3 x 10-3 21.6 x 10-3 
TST - MSE = 6.2 x 10-3 20.2 x 10-3 
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Figure 2.18.Training and testing progress curves for EPCC with BP 3.5 (Random # 2) 

 
Figure 2.19. Training and testing progress curves for EPCC with MATLAB (Random # 2) 

Table 2.5. Comparison of the results for EPCC (Random # 2) 

Initial random connection numbers: # 2 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 13.5 27.5 
R2 = 0.90 0.69 

TRN - MSE = 6.8 x 10-3 18.6 x 10-3 
TST - MSE = 5.4 x 10-3 16.9 x 10-3 
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Figure 2.20.Training and testing progress curves for EPCC with BP 3.5 (Random # 3) 

 

Figure 2.21. Training and testing progress curves for EPCC with MATLAB (Random # 3) 

Table 2.6. Comparison of the results for EPCC (Random # 3) 

Initial random connection numbers: # 3 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 12.7 31.4 
R2 = 0.91 0.61 

TRN - MSE = 6.2 x 10-3 23.1 x 10-3 
TST - MSE = 5.3 x 10-3 22.4 x 10-3 
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Figure 2.22.Training and testing progress curves for kS data set with Traingd algorithm 

 

 
Figure 2.23.Training and testing progress curves for kS data set with Traingda algorithm 
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Figure 2.24.Training and testing progress curves for kS data set with Traingdm algorithm 

 

 
Figure 2.25.Training and testing progress curves for kS data set with Traingdx algorithm 
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Figure 2.26.Training and testing progress curves for kS data set with Trainrp algorithm 

 

 
Figure 2.27.Training and testing progress curves for kS data set with Trainscg algorithm 
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Sensitivity study for learning rate and momentum factor (kS data set): 
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Figure 2.28.Training and testing progress curves for kS with BP 3.5 (LR=0.1, MF=0.9) 

 
Figure 2.29. Training and testing progress curves for kS with MATLAB (LR=0.1, MF=0.9) 

Table 2.7. Comparison of the results for kS (LR=0.1, MF=0.9) 

Learning Rate = 0.1          Momentum Factor = 0.9 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 21.1 30.1 
R2 = 0.89 0.81 

TRN - MSE = 4.8 x 10-3 7.9 x 10-3 
TST - MSE = 7.5 x 10-3 11.7 x 10-3 
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Figure 2.30.Training and testing progress curves for kS with BP 3.5 (LR=0.3, MF=0.7) 

 
Figure 2.31. Training and testing progress curves for kS with MATLAB (LR=0.3, MF=0.7) 

Table 2.8. Comparison of the results for kS (LR=0.3, MF=0.7) 

Learning Rate = 0.3          Momentum Factor = 0.7 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 22.9 21.5 
R2 = 0.87 0.87 

TRN - MSE = 5.0 x 10-3 5.3 x 10-3 
TST - MSE = 9.2 x 10-3 8.3 x 10-3 
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Figure 2.32.Training and testing progress curves for kS with BP 3.5 (LR=0.5, MF=0.5) 

 
Figure 2.33. Training and testing progress curves for kS with MATLAB (LR=0.5, MF=0.5) 

Table 2.9. Comparison of the results for kS (LR=0.5, MF=0.5) 

Learning Rate = 0.5          Momentum Factor = 0.5 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 20.7 21.4 
R2 = 0.88 0.84 

TRN - MSE = 5.3 x 10-3 6.2 x 10-3 
TST - MSE = 8.0 x 10-3 8.7 x 10-3 
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Sensitivity study for initial random numbers for weights and node biases (kS data set): 
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Figure 2.34.Training and testing progress curves for kS with BP 3.5 (Random # 1) 

 
Figure 2.35. Training and testing progress curves for kS with MATLAB (Random # 1) 

Table 2.10. Comparison of the results for kS (Random # 1) 

Initial random connection numbers: # 1 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 27.2 28.2 
R2 = 0.92 0.79 

TRN - MSE = 7.3 x 10-3 9.13 x 10-3 
TST - MSE = 7.1 x 10-3 12.7 x 10-3 
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Figure 2.36.Training and testing progress curves for kS with BP 3.5 (Random # 2) 

 
Figure 2.37. Training and testing progress curves for kS with MATLAB (Random # 1) 

Table 2.11. Comparison of the results for kS (Random # 1) 

Initial random connection numbers: # 2 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 24.5 28.7 
R2 = 0.87 0.82 

TRN - MSE = 5.3 x 10-3 7.8 x 10-3 
TST - MSE = 8.3 x 10-3 10.1 x 10-3 
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Figure 2.38.Training and testing progress curves for kS with BP 3.5 (Random # 3) 

 
Figure 2.39. Training and testing progress curves for kS with MATLAB (Random # 3) 

Table 2.12. Comparison of the results for kS (Random # 3) 

Initial random connection numbers: # 3 
  Backprop 3.5 MATLAB - ANN 

AAE (%) = 27.2 27.7 
R2 = 0.92 0.79 

TRN - MSE = 7.3 x 10-3 7.8 x 10-3 
TST - MSE = 7.1 x 10-3 11.9 x 10-3 
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CHAPTER 3.   ANALYSIS OF FINITE-SIZED CONCRETE PAVEMENTS 

SENSITIVITY STUDY FOR FINITE SLAB SIZES 

In order to investigate the effect of slab sizes on the pavement surface deflection basins, a 

sensitivity study was conducted in ISLAB200 finite element program with three different 

size six-slab assembly configuration, 12ft x 12ft, 16ft x 16ft, and 20ft x 20ft. One hundred 

different pavement structures were created by varying EPCC (3 to 12 million psi), hPCC (6 to 

15 in.), and kS (100 to 700 psi/in.). Deflection basins were extracted for the mid-slab 

locations for 100 different pavement configurations and D0 and D60 deflections were 

compared to each other for three slab sizes. D0 and D60 deflections show very good 

agreement for three different slab sizes. The differences between D60 deflections for different 

slab sizes were slightly higher than the D0 deflections since D60 deflections are closer to the 

slab joints than D0 deflections.  

 

Crovetti (1994) proposed to use some adjustment factors that can be applied to pavement 

surface deflections and radius of relative stiffness values based on the length and width of the 

concrete slabs.  The method that Crovetti proposed can be summarized as below: 

 

o Estimate radius of relative stiffness of the pavement-foundation system, RRSest 

o Calculate   L / RRSest       L = (Length.Width)0.5 

o Calculate adjustment factors for deflections (AFD) and radius of relative stiffness 

(AFRRS) 

o Dadjusted = Dmeasured x AFD  

o RRSadjusted = RRSestimated x AFRRS  

o Backcalculate EPCC and kS by using Dadjusted and RRSadjusted 
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Figure 3.1. Comparisons of the D0 and D60 deflections for 16ft x 16ft vs. 12ft x 12ft 



 40

D0 (mils) Deflection Comparison

0

5

10

15

20

0 5 10 15 20

12 ft x 12 ft slab

20
 ft

 x
 2

0 
ft

 sl
ab

y = 0.9277x 
R2 = 0.9986

 

D60 (mils) Deflection Comparison

0

5

10

15

20

0 5 10 15 20

12 ft x 12 ft slab

20
 ft

 x
 2

0 
ft

 sl
ab

y = 0.9814x 
R2 = 0.9870

 
Figure 3.2. Comparisons of the D0 and D60 deflections for 20ft x 20ft vs. 12ft x 12ft 
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Figure 3.3. Comparisons of the D0 and D60 deflections for 16ft x 16ft vs. 20ft x 20ft 
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DIMENSIONAL ANALYSIS 

There are two significant concrete pavement parameters that govern the shape and maximum 

amount of the deflections and behavior of the concrete slabs, coefficient of subgrade 

reaction, kS, and radius of relative stiffness, RRS. The variation of maximum deflections in 

mid-slab with varying subgrade stiffness and radius of relative stiffness was shown in figure 

below. This figure shows that there is only one unique deflection basin for a specific 

combination of kS and RRS. 

 
Figure 3.4. The variation of maximum deflections with coeeficient of subgrade reaction and 

radius of relative stiffness. 

 

Based on reviewing the previous studies on the dimensional analysis to evaluate pavement 

systems (Ioannides and Salsilli-Murua 1989; Ioannides et al 1989; Ioannides 1990), the 

following dimensionless parameters were identified as applicable. They were essentially 

determined to be controlling parameters for a constant Poisson’s ratio of 0.15 and unit weight 

of 0.087 lbs/in3. A more general and rigorous examination of the nondimensional response 

would involve both unit weight and Poisson’s ratio, but unfortunately it is not feasible at this 

time (Ioannides and Salsilli-Murua 1989). 
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where; 

D = slab deflection [L], 

W = slab width [L], 

L = slab length [L], 

h = slab thickness [L], 

a = radius of the applied load [L], 

P = applied load [L], 
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AGG = aggregate interlock factor [FL-2], 

kS = coefficient of subgrade reaction [FL-3], 

RRS = radius of relative stiffness [L], 

EPCC = elastic modulus of the PCC layer [FL-2], 

σMAX = critical tensile stress at the bottom of the PCC layer [FL-2], 

TELTD = total effective linear temperature difference [T], 

α = coefficient of thermal expansion [L.L-1.T-1]. 

 

Note that primary dimension for force is represented by [F], length is represented by [L], and 

temperature is represented by [T]. 

 

The ANN-based model input parameters can be rearranged as shown below. In this research, 

this method was not applied because the coefficient of subgrade reaction of the pavement 

foundation and radius of relative stiffness of pavement-foundation system  should be known 

earlier in order to convert the dimensional parameters to nondimensional parameters, but 

these parameters are actually the outputs of the developed models in this research. Therefore, 

dimensional analysis was not applied in this research. 
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CHAPTER 4.   USE OF ARTIFICIAL NEURAL NETWORKS IN 
TRANSPORTATION INFRASTRUCTURE SYSTEMS: 1987-2007  
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ABSTRACT 

The use of artificial neural networks (ANNs) has increased tremendously in several areas of 

engineering over the last two decades. This paper reviews a significant number of research 

publications which specifically deals with applications of ANNs in pavement engineering, 

transportation infrastructure systems between 1987 and 2007. These studies have been 

briefly summarized in this paper in six different categorizations: (1) predictions of pavement 

performance and pavement condition, (2) pavement management and maintenance strategies, 

(3) pavement distress forecasting, (4) structural evaluation of pavement systems, (5) image 

analysis and classification, and (6) pavement material modeling. This paper provides an 

overview of the state of the practice in using ANNs for solving diverse pavement engineering 

problems often in real time.  

 

Key Words: Artificial Neural Network, Pavement Engineering, Pavement Performance and 

Condition, Pavement Management and Maintenance, Pavement Analysis and Design, Image 

Analysis and Classification, Pavement Material Modeling. 

INTRODUCTION 

Over the past two decades, there has been an increased interest in the use of artificial neural 

networks (ANNs) in civil engineering fields such as structural engineering, environmental 

and water resources engineering, traffic engineering, geotechnical engineering as well as 

pavement engineering. ANNs represent a class of robust, non-linear models applicable for 

solving a wide variety of problems. ANNs have been found to be very useful tools for 
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solving pavement engineering problems, which deal with highly nonlinear functional 

approximations.  

 

Pavement engineering covers a wide area which includes both highway and airport 

pavements and involves disciplines including pavement analysis and design, pavement 

evaluation, pavement performance prediction, and pavement maintenance, rehabilitation, and 

management issues. The ANN-related studies reviewed in this paper focus on three pavement 

types of flexible, rigid, and composite pavements.    

 

Neural networks are information processing computational tools in which highly 

interconnected processing neurons work in harmony to analyze and solve complex problems 

in a nontraditional manner. This power of the ANNs, emulating the biological nervous 

system, lies in the tremendous number of interconnections between the neurons or processing 

elements as they provide notable advantages in learning and generalizing from examples, 

producing meaningful and cost effective solutions to various problems even when input data 

contain errors or are incomplete, adapting solutions over time to compensate for changing 

circumstances and processing information quite rapidly and often in real time.  

 

The adoption and use of ANN modeling techniques in the recently released Mechanistic-

Empirical Pavement Design Guide (NCHRP project 1-37A: Development of the 2002 Guide 

for the Design of New and Rehabilitated Pavement Structures: Phase II) has especially 

placed the emphasis on the successful use of neural nets in geomechanical and pavement 

systems.  Yet, many practitioners still have a lack of understanding and even skepticism 

towards the use of ANNs and other computational intelligence tools.  These obstacles can be 

overcome by providing the engineering practitioners with a better understanding through 

necessary background information and documentation of successful ANN applications in 

pavement and transportation infrastructure systems engineering.   

  

This paper presents an overview of artificial neural network techniques and applications used 

in pavement engineering between 1987 and 2007 classified in six major categories: (1) 



 47

predictions of pavement performance and pavement condition, (2) pavement management 

and maintenance strategies, (3) pavement distress forecasting, (4) structural evaluation of 

pavement systems, (5) image analysis and classification, and (6) pavement material 

modeling. Although similar articles focusing on the use of ANNs in civil and transportation 

engineering applications have been published previously (Dougherity 1995, Transportation 

Research Circular 1999, Adeli 2001, Sundin and Braban-Ledoux 2001), these publications 

did not specifically concentrate on pavement, transportation infrastructure engineering. The 

aim of this paper is to fill the gap in this area and present an up to date comprehensive review 

on the use of artificial neural networks in pavement and transportation infrastructure systems 

engineering area. 

OVERVIEW OF ARTIFICIAL NEURAL NETWORKS 

Imitating the biological nervous system, artificial neural networks are information processing 

computational tools capable of solving nonlinear relations in a specific problem. Similar to 

the human brain, ANNs have the flexibility to learn from examples by means of massively 

interconnected processing units, namely neurons. Neural network architectures, arranged in 

layers, involve synaptic connections amid neurons which receive signals and transmit them 

to the other neurons via activation functions. Each connection has its own connection weight 

and learning is the process of adjusting the connection weights between neurons to minimize 

the error between the predicted and given values. In the learning process, node biases are 

also adjusted in addition to the connection weights. Since interconnected neurons have the 

flexibility to adjust the weights, neural networks have powerful capacities in analyzing 

complex problems.  ANNs, inspired by the neuronal architecture and operation of the human 

brain, contribute to our understanding of several complex, non-linear pavement engineering 

problems with various pavement materials and pavement foundation variables. Figure 4.1 

displays a typical structure of ANNs that consists of a number of neurons that are usually 

arranged in layers: an input layer, hidden layers, and an output layer.  

There are several different types of artificial neural networks such as back-propagation 

neural networks (BPNN), radial basis function networks (RBFNN), probabilistic neural 



 48

networks (PNN), and generalized regression neural networks (GRNN). Computing abilities 

of neural networks have been proven in the fields of prediction and estimation, pattern 

recognition, and optimization (Adeli and Hung 1995; Golden 1996; Mehrotra et al. 1997; 

Adeli and Park 1998; Haykin 1999). The best-known example of a neural network training 

algorithm is back-propagation (Rumelhart et al. 1986; Haykin 1994; Fausett 1994; Patterson 

1996) which is based on a gradient-descent optimization technique. The back-propagation 

neural networks have been described in many sources (Hegazy et al. 1994; Adeli and Hung 

1995; Mehrotra et al. 1997; Topping and Bahreininejad 1997; Haykin 1999). A more 

comprehensive description of ANNs is beyond the scope of this paper. 

 

 
Figure 4.1. A general schematic view of the artificial neural networks 

Advantages and Limitations of Artificial Neural Networks 

ANNs provide an analytical alternative to conventional techniques which are often limited by 

strict assumptions of normality, linearity, variable independence, etc. Because an ANN can 

capture many kinds of relationships, it allows the user to quickly and relatively easily model 

a phenomenon which otherwise may have been very difficult. Neural networks offer a 

number of advantages, including requiring less formal statistical training, ability to implicitly 

detect complex nonlinear relationships between dependent and independent variables, ability 



 49

to detect all possible interactions between predictor variables, and the availability of multiple 

training algorithms.  

 

Despite their good performance in many situations, ANNs suffer from a number of 

shortcomings. For example, artificial neural networks cannot explain results. In problems 

where explaining rules may be critical, neural networks are not the tool of choice. They are 

the tool of choice when acting on the results is more important than understanding them. 

Even though neural networks cannot produce explicit rules, sensitivity analysis does enable 

them to explain which inputs are more important than others. This analysis can be performed 

inside the network, by using the errors generated from back propagation, or it can be 

performed externally by poking the network with specific inputs. Secondly, ANNs usually 

converge on some solution for any given training set. Unfortunately, there is no guarantee 

that this solution provides the best model (global minimum) of the data. Therefore, the test 

set must be utilized to determine when a model provides good enough performance to be 

used on unknown data. In conclusion, even there are some limitations of ANNs, the 

advantages of neural networks appear to outweigh these limitations.  

CATEGORY 1: PREDICTION OF PAVEMENT PERFORMANCE AND 
PAVEMENT CONDITION  

This section summarizes a large number of research publications related to the use of ANNs 

in pavement performance and pavement condition predictions. Performance and condition of 

the pavements are generally presented by an index such as the international roughness index 

(IRI), pavement condition rating (PCR) and visual condition index (VCI). Artificial neural 

networks have been found to be very powerful and versatile computational tools for 

determining and predicting the condition and performance of the existing pavement systems.  

 

Attoh-Okine (1994) used back-propagation type ANNs to develop a pavement roughness 

progression model. To generate synthetic pavement roughness data, an empirical simulation 

model was utilized in this study. Then, the neural network model was trained with the 

simulated training data which included several factors affecting pavement roughness such as 
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pavement structural deformation, incremental traffic loadings, extent of cracking and 

thickness of surface layer, incremental variation of rut depth, surface defects such as 

patching and potholes, and environmental and other non-traffic-related variables such as age 

of the pavement structure. In addition, the results obtained from the neural network trainings 

were compared with the actual results. According to the findings, when the pavement 

condition database considered was large enough, the ANN prediction results were found to 

be more satisfactory. However, since the simulated data set was used in the study, it was 

concluded that the model might not perform well with other data sets as for the simulated 

data set.  

 

An ANN system for the condition rating of rigid pavements was developed and implemented 

by Eldin and Senouci (1995a). Oregon State DOT condition rating scheme based on the 

cracking and rutting indices was used for the ANN development. A backpropagation neural 

network with one hidden layer was used in this study. Fifteen inputs corresponding to 15 

distresses used in the study were rutting, lane joint, shoulder joint, transverse cracking (low, 

medium, and high severity), longitudinal cracking (low, medium, and high severity), 

patching (low, medium, and high severity), and punchout (low, medium, and high severity). 

The output of the model was condition index ranging between 0.1 and 0.5. The proposed 

ANN model showed good generalization capability and unlike the Oregon State DOT 

condition rating model, the ANN model also showed a good fault-tolerance capability. When 

noise was introduced to the model, the network was still able to accurately identify the 

condition ratings. The developed ANN system was proposed to be incorporated as a module 

into the pavement management system (PMS) of the Oregon DOT.  

 

Eldin and Senouci (1995b) also developed another neural network system for the 

determination of condition rating for rigid pavements. In this study, the backpropagation 

algorithm was applied to model the condition rating scheme adopted by the Oregon State 

DOT. The pavement condition rating was computed based on the ODOT`s cracking and 

rutting indices. The neural network model had 22 input nodes which were rutting, transverse 

joint, lane joint, shoulder joint, transverse crack (low, medium, and high severity), severity of 
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the longitudinal cracks (low, medium, and high), severity of the corner cracks (low, medium, 

and high), severity of the corner breaking (low, medium, and high), patch severity (low, 

medium, and high), and punchout severity  (low, medium, and high). The output layer 

consisted of the pavement condition index. A hypothesis test was also conducted to verify 

the fault-tolerance and generalization properties of the developed system. The authors 

concluded that the ANN model showed a good fault-tolerance and generalization capability.  

 

In another study, Eldin and Senouci (1995c) presented a feed-forward ANN used for the 

condition rating of flexible pavements. The purpose of this study was to prepare an ANN 

model that could give outputs similar to the ODOT`s model. The pavement condition rating 

model was based on cracking and rutting indices, alligator cracks, transverse cracks, block 

cracks, patching, bleeding, and rutting distresses. The performance of the ANN model was 

investigated by introducing different levels of noise and the performance of the ANN model 

were compared with the expert opinions and the results of ODOT`s model. Results reported 

by ODOT indicated that the neural network outperformed the ODOT`s model in estimating 

the condition ratings. 

 

An ANN model was presented as an alternative to regression models for predicting skid 

resistance on flexible pavements containing no overlays for assessing future rehabilitation 

needs by Owusu-Ababio (1995). Connecticut DOT pavement performance study results were 

used in the study. Four input variables that are pavement age, location, accumulated average 

annual daily traffic, and posted speed limit and one output variable that is skid number were 

used in the analyses. The results of the ANN model and regression models were compared. 

The R2 values of ANN model were consistently higher than regression models as shown in 

Table 4.1. 

 

Wang (1995) investigated the feasibility of using a specially designed and programmable 

neural net chip, Ni1000, in a PC to conduct pavement surface processing. A total of 6 crack 

types on AC surface were proposed to be identified: 1) fatigue cracking, 2) block cracking, 

3) edge cracking, 4) wheel/non-wheel path longitudinal cracking, 5) reflective cracking, and 
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6) transverse cracking. Based on the feasibility study, Wang concluded that the neural net 

chip was capable of providing real-time processing for pavement surface distress survey. 

Table 4.1. Comparison of NN and MLR (Multiple Linear Regression) models  
(Owusu-Ababio 1995) 

Data Set Type Model Type R2 value 
NN 0.87 Training Data Set MLR 0.63 
NN 0.89 Testing Data Set MLR 0.71 

 

Artificial neural networks were used to predict the area of indexed cracks in flexible 

pavements based on modified structural number, incremental traffic loadings, and 

environmental mechanisms (Attoh-Okine 1996). Annual equivalent standard axle load per 

year, age of pavement since the last resurfacing activity, ravel area, potholing, rut depth, 

patching, environmental factors, and thickness were the input variables to predict the 

cracking index which was the output of the proposed model. According to the results of the 

analyses, the author concluded that the neural network approach in flexible pavements was 

accurate enough in predicting cracking index giving information about the performance and 

condition of the pavement. In addition, it was emphasized that the adaptive neural network 

approach can be used as a sensitivity analysis tool to identify the most significant variables 

needed to predict cracking index.  

 

Banan and Hjelmstad (1996) demonstrated a study to re-examine the American Association 

of State Highway Officials (AASHO) road test data using the Monte Carlo hierarchical 

adaptive random partitioning (MC-HARP) neural network model developed by the authors. 

The input variables in the neural network model were the surface, base, and subbase 

thicknesses (D1, D2, and D3), the axle load (L), and the logarithm of accumulated single-axle 

load applications (log W). The output variable was the present serviceability index (PSI). 

Two MC-HARP neural networks with linear and AASHO subdomain approximations were 

built. The network exhibited the trends of decrease of PSI with increasing W and increase of 

PSI with increasing thicknesses or decreasing axle load. Based on the analysis, the authors 
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concluded that a local approximation like an MC-HARP neural network can model the 

pavement performance data for the entire input domain better than a global approximation 

like the AASHO formula. 

 

To model the performance of non-overlaid thick asphalt pavements having a thickness of 

more than 152.4 mm (6 in.), Owusu-Ababio (1998) presented an ANN study. The database 

used for this study was developed through a survey of the Wisconsin DOT district offices 

and selected city governments. The pavement condition was represented by the pavement 

distress index (PDI) which ranged from 0 to 100. In this range, 0 represented the best 

condition while 100 represented the worst condition. The input parameters utilized in this 

study were the pavement surface thickness, pavement age, traffic level (ESAL, Equivalent 

18-kip single axle load, per day), base thickness, and roadbed condition. To compare the 

performance of the ANN model with traditional statistical tools, multiple linear regression 

(MLR) models were also developed. According to this comparison, the ANN model 

outperformed the MLR model in terms of the standard error and the coefficient of multiple 

determination (R2) value.  

 

In another study, Owusu-Ababio (1998) investigated the effect of the neural network 

architecture on flexible pavement cracking prediction. Backpropagation neural network 

(BPNN) algorithms consisting of one, two, and three hidden layers were used in the analyses 

in which the Connecticut DOT database was used to investigate and compare the pavement 

cracking prediction performance. Pavement surface thickness, pavement surface age, and 

equivalent single axle load (ESAL) were used as input parameters, and total cracking 

(ft/100ft) was used as the pavement condition indicator which was the only output variable 

ofthe proposed model. The author concluded that one hidden layer BPNN may be sufficient 

in achieving satisfactory results for successfully predicting the cracking in flexible 

pavements. 

 

Van der Gryp et al. (1998) introduced a one-hidden layer feed-forward neural network model 

to estimate the overall pavement condition based on the visual condition index (VCI) that 
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ranges from 0 to 10, where 0 indicates the worst surface condition (severe cracking, corner 

breaking, rutting, pumping, etc.), and 10 indicates excellent pavement surface condition 

where no distresses exist. Although VCI is a well-defined analytical criterion, it contains 

some weighting factors whose values are determined according to the subjective appreciation 

of an expert panel based on the importance of one distress type compared with the other. The 

analysis was based on the severity and extent of various types of distresses including failure, 

surface cracks, longitudinal cracks, transverse cracks, patching, potholes, bleeding, and 

pumping. The reported simulations made it difficult to conclude on the effectiveness of the 

ANN. 

 

To estimate the pavement condition rating (PCR) index, George et al. (1998) developed an 

ANN model. A PCR index value of 0 indicates worst condition and 100 represents the best 

condition. The entire data set used in this study was extracted from the Mississippi DOT 

database which included three different families of pavements: flexible, jointed plain 

concrete and composite pavements. The ANN results were compared with the results of the 

classic regression and Bayesian regression models. Based on the results of the analysis, the 

ANN outperformed the other two models in terms of higher correlation coefficient. 

 

In another study, Attoh-Okine (1999) used real pavement condition and traffic data to 

investigate the effect of learning rate and momentum term (in backpropagation algorithm 

neural network) on flexible pavement performance prediction. In this study, rutting, faulting, 

transverse cracking, block cracking, and equivalent axle loads were used as input variables to 

predict the international roughness index (IRI). Kansas DOT pavement condition data (1993) 

was used to investigate the effect of learning rate and momentum term on backpropagation 

algorithm. Based on the analysis results, the author suggested that a learning rate (η) of 

around 0.2 to 0.5 and a momentum (α) factor of around 0.4 to 0.5 seem to provide the 

appropriate combination for the pavement performance prediction. Figure 4.2 depicts the 

predicted versus the given IRI values for the model with a learning rate of 0.3 and a 

momentum factor of 0.5. 
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Shekharan (2000) demonstrated the use of ANNs for prediction of pavement conditions for 

five different types of pavements: original flexible, overlaid flexible, composite, jointed 

plain, and continuously reinforced concrete pavements (CRCP). Pavement condition rating 

(PCR), a composite index derived by combining the distresses and roughness measurements 

and formulated for Mississippi DOT, was utilized in this study to represent the pavement 

condition. Pavement structure, pavement history represented by pavement age in years, 

traffic volume by cumulative equivalent 18-kip single axle loads (ESALs) were the input 

parameters used in the neural network approach in which a genetic adaptive neural network 

training (GANNT) algorithm was employed. Based on the findings, the neural network 

results were compared with the regression model results and it was concluded that ANNs 

gave better results than the regression models owing to the mapping ability of ANNs. It was 

also indicated in the study that artificial neural networks could take into account any 

functional form of equation. 

 

 
Figure 4.2. Plot of the computed vs. actual roughness (Attoh-Okine 1999) 

 

The use of the ANN self-organizing maps for the grouping of pavement condition variables 

in developing pavement performance models to evaluate pavement conditions on the basis of 
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pavement distresses was introduced by Attoh-Okine (2001). The variables (distresses) 

considered in this study were average annual daily traffic (AADT), the load converted into 

standard equivalent single-axle load (ESAL) taken annually, age of pavement since 

resurfacing, alligator cracking, wide cracking (cracking 3 mm or more wide in the 

pavement), index cracking, raveling, potholing, rut depth, patching, thickness, and 

environmental factors including information regarding to wet, freeze, thaw, and dry 

conditions of the local subsoil. Two types of grouping were conducted in the study. The first 

grouping was “the variable grouping” used to group the distresses based on the severity of 

roughness later being used to develop the performance model. The second grouping was “the 

data grouping” used in the determination of the coefficients of the roughness equation. Based 

on the results of the analyses, self-organized maps were proven to be an effective technique 

to group pavement condition variables. It was also stated in this study that these grouped 

variables and data may be later utilized to develop the pavement performance equation for 

prediction and evaluation purposes.  

 

Lin et al. (2003) presented the results of the analyses of the relationship between the IRI and 

pavement distresses. The authors used a 14-6-6-1 backpropagation type ANN architecture. 

The input variables used in the network were road level, rutting on the left wheel path, 

rutting on the right wheel path, alligator cracking, cracking, digging/patching, mild potholes, 

severe potholes, patching, bleeding, corrugation, stripping, mild man-holes, and severe man-

holes. The output layer consisted of only one variable, international roughness index (IRI). 

Hundred records of training data and 25 records of testing data were used in the ANN model. 

The correlation coefficients for the training data set and the testing data set were 0.84 and 

0.94, respectively. The authors concluded that it was successful network architecture in 

predicting the IRI from the above mentioned 14 variables. Severe potholes, digging/patching, 

and rutting had been found to be the most important input parameters in sensitivity analyses.  

 

In order to estimate the load related shallow crack depths and surface-initiated fatigue cracks 

in asphalt pavements based on crack-surface geometry and pavement and traffic 

characteristics, Mei et al. (2004) developed an ANN model. The variables used in model 
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development were annual average daily traffic, truck percentage, age, number of lanes, crack 

depth (d), crack width (w), slope one (S1), slope two (S2), and actual crack depth (D, 

output).Based on the analysis results given in Figure 4.3, the authors concluded that the 

complex relationship between depths, surface geometrical properties of cracks and other 

pavement and traffic parameters was modeled successfully by ANN model. 

 
Figure 4.3. (a) Crack opening geometry (b) Goodness of fit for the testing data set  

(Mei et al. 2004) 
 

In another study, Choi et al. (2004) trained a backpropagation neural network algorithm to 

predict the performance of flexible pavement systems using the Long Term Pavement 

Performance (LTPP) database. The objective of this study was to develop a pavement 

performance model for prediction of roughness and to apply a sensitivity analysis to identify 

the relative significance of the material and construction variables on pavement performance. 

The total asphalt layer thickness, F200 (the percent fines passing the no. 200 sieve), the 

asphalt content, the structural number (SN) and CESAL (the cumulative equivalent single 

axle loading) variables were utilized as input variables and IRI was used as output variable in 

the proposed model. The authors concluded that the proposed neural network model could be 

effectively used to develop the pavement prediction model required for performance-related 

specification (PRS) implementation by quantifying the complex and nonlinear relationship 

between the selected material and construction variables. 

Discussion: Prediction of Pavement Performance and Pavement Condition 

Summarized research publications show that artificial neural networks can be successfully 

utilized as alternative methods to the traditional methods to predict the pavement 
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performance and current pavement condition. Most of the studies in this section used 

backpropagation algorithms with one or two hidden layers in the ANN architecture. The 

validation of the proposed models was generally made with the statistical methods, expert 

opinions, and actual results. One shortcoming of some proposed models is that there are too 

many input parameters in some models which make them inapplicable. The usefulness of the 

models can be increased significantly as the number of the input parameters used in the 

proposed models is kept as few as possible. 

CATEGORY 2:PAVEMENT MANAGEMENT AND MAINTENANCE STRATEGIES 

In the field of pavement engineering, pavement management and maintenance issues must be 

considered very seriously in the selection of an economical treatment for rehabilitation of a 

deteriorated pavement section. To preserve or improve pavement condition, there are many 

maintenance and rehabilitation treatments that have to be chosen carefully due to financial 

problems. Therefore, the engineering judgment and experience on deciding the maintenance 

and repair actions have significant importance. There are several articles summarized in this 

section in which the artificial neural networks were utilized as a computational tool to decide 

which maintenance and rehabilitation actions should be performed on deteriorated pavement 

sections. 

 

Hayek et al. (1987) compared two different techniques, rule-based system and artificial 

neural networks, for selecting and recommending routing and sealing (R&S) treatments. 

There were about 40 different variables and factors such as width of cracks, crack type, 

pavement serviceability, pavement structure and age, raveling, flushing, and rutting 

influencing the R&S decisions. ANNs were regarded as alternative solutions that required 

substantially less time and effort for development. The output of the ANN model was a data 

set ranging between 0 and 10; 10 being the highest desirability of the R&S treatment, 

whereas 0 meant that there was no need for any R&S treatment. Even though ANN 

technology was seen as a powerful and efficient alternative technique to the rule-based 
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system, the authors concluded that actually more benefits can be obtained by combining both 

technologies. 

 

The feasibility of using ANNs for priority assessment of highway pavement maintenance 

needs was investigated by Fwa and Chan (1991). Ability of backpropagation neural networks 

was tested separately with three different priority-setting schemes: Linear relations, non-

linear relations, and an assessment by a pavement engineer. The results of the neural network 

approach were compared with the aggregated condition index approach. Fwa and Chan 

(1991) concluded that the use of neural networks had several significant advantages over the 

aggregated condition index. 

 

In another study, Taha et al. (1995) developed a model that was a combination of genetic 

algorithm and backpropagation neural network for selecting the optimal maintenance 

strategy for flexible pavements. The factors affecting the maintenance strategy selection were 

identified as distress type, severity of distress, density of distress, riding comfort index 

(RCI), traffic volume, climate, and crack type. The different pavement maintenance 

strategies available were “do nothing”, “crack seal coating”, “route and seal”, “cold-mix 

patching”, “hot-mix patching”, “hot-mix recycled patching”, and “reconstruction”. Taha et 

al. (1995) indicated that the ANN performances can be improved by applying genetic 

algorithms. 

 

A neural network study which is a part of an automatic procedure for preliminary screening 

and identifying roadway sections for pavement preservation at the Arizona DOT (ADOT) 

was presented by Flintsch et al. (1996). Maintenance needs in the pavement sections were 

identified according to the cracking and roughness severity over the past three years’ rutting, 

patching, skid resistance, structural number, flushing, maintenance costs, daily traffic 

volumes, and rate index. To determine whether the maintenance was needed or not for a 

given road section, the output layer of the ANN consisted of one neuron representing the 

decision. The pavement section was recommended for maintenance if the output value was 

larger than 0.5 and the section was not recommended for maintenance if the output value was 
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less than 0.5. The database was extracted from the several projects in ADOT from 1990 to 

1996. According to the results of the analysis, the ANN learned 100 percent of the training 

data set and 76 percent of the testing data set. 

 

Artificial neural networks and knowledge-based expert systems for choosing proper 

rehabilitation schemes of deteriorated pavement sections were combined by Goh (1997). The 

knowledge-based expert system gave the list of the recommended repair schemes and the 

associated costs of the repair schemes. On the other hand, a feed forward ANN fed the 

knowledge-based expert system with the list of the recommended repair schemes. The input 

layer contained six input parameters such as the type and the extent of distress and the 

classification of the road type and output layer had nine different possibilities: “50-mm 

asphalt overlay”, “25-mm asphalt overlay”, “25-mm asphalt and partial reconstruction”, “50-

mm asphalt and partial reconstruction”, “clean and refill cracks”, “patch”, “reseal”, “full 

reconstruction”, and “do nothing”. The effectiveness of the ANN was not clearly 

demonstrated in this study. 

 

Alsugair and Al-Qudrah (1998) reported results from an artificial neural network study 

which focused on determining the appropriate maintenance and repair (M&R) actions. The 

pavement condition data used in this study were obtained from the comprehensive visual 

inspection data from Riyadh road network in Saudi Arabia. In order to collect data on the 

surface distresses and the corresponding severity levels and quantities, the Pavement 

Condition Index (PCI) procedure was used in this study. Five M&R actions were recognized: 

“thin overlay”, “thick overlay”, “strengthening and overlay”, “localized maintenance” (crack 

seal, skin patch, partial depth-patch, full depth-patch, pothole filling, apply heat and roll 

sand, apply surface seal emulsion, apply rejuvenation, apply aggregate seal coat), and “do 

nothing”. In conclusion, the study showed that the ANN model was able to achieve high 

reliability rates. The network architectures presented in the study for implementation are 

shown in Table 4.2. 
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Table 4.2. Selected architectures for networks (Alsugair and Al-Qudrah 1998) 

Layer's Node 
Network PCI Rating 

Reliabilit
y Level 

(%) Input Hidden Output 

1 PCI ≤ 70 100.0 12 28 5 
2 70 ≤ PCI ≤ 85 96.2 12 22 5 
3 PCI > 85 91.3 12 34 5 

 

A genetic adaptive neural network training (GANNT) algorithm with single hidden layer to 

predict the optimum maintenance strategy based on realistic (noisy) data for the 

rehabilitation of a deteriorated pavement section was used by Abdelrahim and George 

(2000). In the proposed model, the input vector represented the factors affecting the 

maintenance strategy selection while the output vector represented the appropriate 

maintenance strategy. The different maintenance strategies considered for flexible pavements 

in this study were “do nothing”, “surface seal coat”, “crack seal + 1 inch overlay”, “milling + 

1.5 inch overlay”, “2 inches overlay (with full depth patching of cracked area)”, and 

“reconstruction”. Based on the study findings, it was concluded that neural networks provide 

an efficient and optimum solution for such complex problems with the added advantage of 

faster implementation and easier updating than other traditional techniques. 

 

Finally, Bosurgi and Trifiro (2005) defined a procedure to make use of the available 

economic resources in the best way possible for resurfacing interventions on flexible 

pavements by using artificial neural networks and genetic algorithms. In this study, neural 

networks were utilized to define both a Sideway Force Coefficient prediction model and an 

accident prediction model. In the second part of the proposed model, authors used genetic 

algorithm using the results of the neural networks designed in order to resolve the 

optimization problem. Authors concluded that the procedure represents an efficient approach 

to obtain one of optimal solutions in a very big space of possible solutions in sufficiently 

short periods of time.  
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Discussion: Pavement Management and Maintenance Strategies 

Due to the nature of the problem, it is not very easy everytime to reach an optimum 

management and maintenance decision for a specific pavement section since there might be 

more than one reasonable solution. The applicability of the solution is strongly related with 

the financial opportunities and an erroneous approach might cause millions of dollars to be 

spent unnecessarily. An optimum solution requires substantially less time and effort; 

therefore, the pavement management and maintenance strategies should be determined very 

carefully.  

Generally, the outcomes of the developed ANN models in this section are not a single output 

as in the previous section. ANN models were developed to select the one of the several 

possible solutions which is generally an expert opinion or pavement engineer decision for a 

specific problem. Therefore, mostly it is not possible to compare the ANN model results with 

other techniques every time in this section. The success of the developed ANN models is 

generally checked by the success rate of the testing data set. What seems from the ANN 

studies for the pavement maintenance and rehabilitation treatments is that the combination of 

the ANN approach with other approaches such as genetic algorithms and knowledge-based 

expert systems improves the success rate of the developed models significantly.  

CATEGORY 3: PAVEMENT DISTRESS FORECASTING 

Several ANN models that can predict the current condition of the pavement sections were 

developed. Having an artificial neural network model that can accurately forecast the 

condition of a pavement system at some future time is also invaluable and cost effective. In 

this section, papers relating to the use of ANNs for forecasting the pavement condition in 

future time are summarized. 

 

To develop models for forecasting the infrastructure condition of the pavement sections, 

Schwartz (1993) developed an artificial neural network. The future condition was forecasted 

as a function of time, current and historical condition, loading, inventory materials, and other 
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data elements. Finally, the neural network and non-linear regression forecasting techniques 

were evaluated in terms of their abilities to predict the simulated future PCI as a function of 

the appropriate predictor variables. The authors concluded that the major advantage of using 

ANNs over current forecasting models at that time is that there was no need to specify the 

form of the non-linearity in advance.  

 

In order to predict roughness distress level probability at some future time for flexible 

pavements, Huang and Moore (1997) used ANN models. The pavement structural 

characteristics, traffic, and climatic conditions were included in the historical pavement 

condition data and in the specific project-levels of the database. A backpropagation neural 

network with one hidden layer was employed in the study. Based on the analysis, the ANN 

models were found to be generally much better predictors of the roughness distress level 

probability than the traditional multiple regressions developed for comparison purposes in 

this study. 

 

Roberts and Attoh-Okine (1998) compared two artificial neural networks using pavement 

performance predictions.  The results of two different ANN types, dot product ANN (using 

backpropagation algorithm) and quadratic function ANN, were compared by using the same 

data taken from the Kansas DOT database. The quadratic function ANN was a generalized 

adaptive feed-forward neural network that combined supervised and self-organizing learning. 

Both the dot product ANN model and quadratic function ANN model were trained to predict 

the IRI for three types of asphalt pavements: composite, full-depth bituminous, and partial-

design bituminous. Rutting code, fatigue cracking codes, transverse cracking codes, block 

cracking code, equivalent axle loads were used as input variables and international roughness 

index was selected as output variable. Based on estimated future pavement deterioration, 

future IRIs can be predicted with the proposed ANN models. The ANN models 

overpredicted the values of IRIs below 125 while underpredicting the values of IRIs above 

125 (Figure 4.4). The authors concluded that the quadratic function ANN model performed 

better than the dot product ANN model. 
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La Torre et al. (1998) applied a multilayer perceptron (MLP) neural network model to 

predict the IRI of flexible pavement sections for four years into the future. The input 

variables used in the analysis were asphalt concrete layer thickness, the asphalt concrete 

backcalculated elastic modulus value, the unbound-layer thickness, the unbound-layer 

backcalculated elastic modulus value, the annual number of days with a temperature higher 

than 90 oF, the freeze index, the annual precipitation level, the average annual equivalent 

axle loads, and the age of the pavement at the first IRI observation. The corresponding IRI 

value was selected as the output variable that contains four neurons which represents the 

predicted IRI values for the following first, second, third, and fourth years. The long-term 

predictions were also addressed in the paper. Results indicated that even though the overall 

short and long-term performances on the training set looked promising, the model needed to 

be further investigated on the validation set. 

 
Figure 4.4. International roughness index (IRI) (in/mi) prediction values using ANN models 

(Roberts and Attoh-Okine 1996) 
 

The progression of rut depths in road pavements was predicted by neural networks (Sundin 

1998). The input variables were selected as the type of the pavement for the upper layer, the 

previous value of the rut depth, the previous change in rut depth, climate condition, 
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maintenance information such as the type of the last pavement action, the number of years 

since last maintenance action, and traffic value. It was concluded that the application of 

ANNs improved the quality of the predictions when ANNs were compared with those of 

multiple regression models. 

 

Lu et al. (1999) and Lou et al. (2001) developed artificial neural network models to forecast 

the pavement crack condition by using the database composed of the Florida DOT (FDOT) 

pavement conditions. Seven input parameters were used in proposed models. CI(t-2), CI(t-1), 

CI(t), which were the crack indices (CI) in year t-2, t-1 and t, respectively, flexible type of 

pavement indicator (1 if flexible, 0 otherwise), rigid type of pavement indicator (if 1 is rigid, 

0 otherwise), pavement cycle, and pavement age were used as inputs of the proposed model. 

The following year`s crack index [CI(t+1)] was predicted as the output of the neural network 

model. The results of the ANN model were also compared with the results of the Auto-

Regression (AR) model. When the root mean square error (RMSE), average error and R2 

values were compared, it was concluded that the neural network model is an effective tool 

for pavement maintenance planning.  

 

Yang et al. (2003) summarized the results of a research study carried out to implement an 

overall pavement condition prediction methodology using artificial neural networks. Three 

individual ANN models trained and tested using the Florida DOT (FDOT) pavement 

condition database were developed to predict the crack rating, the ride rating, and the rut 

rating. Results of the combination of the individual models suggested that the developed 

ANN models had the capability to satisfactorily forecast the overall pavement condition 

index up to a future period of five years. Table 4.3 summarizes the goodness of fit for each 

model in terms of R2.  

 

Dynamic artificial neural networks based on backpropagation algorithm to develop a time-

dependent roughness prediction model for newly constructed Kansas jointed plain concrete 

pavements (JPCP) was used by Najjar and Felker (2003). The data were obtained from the 

Kansas pavement condition database. The international roughness index (IRI) value used in 
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this study represented only the right wheel path IRI. The futuristic [i.e., year (n+1)] 

roughness IRI value [i.e., IRI (n+1)] was determined from a number of previously determined 

input parameters that were PCC slab thickness, drainable base, non-drainable base, concrete 

unit weight, cement factor, non-treated subgrade, lime treated subgrade, subgrade 

modification, percentage of natural subgrade soil material passing No. 4 sieve, percentage of 

natural subgrade soil material passing No. 200 sieve, plasticity index of natural subgrade soil 

material, cumulative yearly equivalent single axle load, average number of freeze-thaw 

cycles per year, cumulative total number of days below 32 oF/year, cumulative total number 

of days above 32 oF/year, cumulative number of wet days/year, initial right wheel path IRI 

values, age of pavement, and IRI value at age (n) year, i.e., (IRI)n. According to the results, 

R2 value decreased as extrapolation time increased. Therefore, the authors suggested that it 

was imperative that such a model had to be annually updated on newly acquired data. 

 
Table 4.3. R2 comparisons of ANN model and AR (Auto-Regressive) model  

(Yang et al. 2003) 

Goodness of Fit (R2) Years and  
Forecast Models  Flexible 

Pavements 
Rigid 

Pavements 
ANN 0.88 0.79 1 year AR 0.58 0.39 
ANN 0.76 0.55 2 year AR 0.29 0.2 
ANN 0.59 0.52 3 year AR -0.22 -0.15 
ANN 0.48 0.4 4 year AR -0.49 -0.28 
ANN 0.38 0.2 5 year AR -0.74 -0.14 

Discussion: Pavement Distress Forecasting 

Pavement condition prediction models play a crucial role in Pavement Management Systems 

(PMS) since these models simulates the deterioration process of pavement condition and 

forecast the pavement condition over time. The prediction of the forecasting models 

determines the actions of PMS. Therefore, the databases which ANN models were trained 

should be very comprehensive and be updated frequently when new data is available. ANN 



 67

model predictions were mostly compared with the multiple regression models developed for 

the comparison purposes. As can be seen from the summarized papers, general conclusion is 

that ANN models are better predictors than the traditional multiple regression models. 

Another advantage of the ANN models is that there is no need to specify the form of the non-

linearity in advance.  

CATEGORY 4: STRUCTURAL EVALUATION OF PAVEMENT SYSTEMS 

Several studies utilizing ANN for predicting the elastic moduli, layer thicknesses, coefficient 

of subgrade reaction, shear wave velocities of the layers, and pavement surface deflections 

that are crucial structural parameters in the analysis and design of the pavements are 

summarized in this section. 

 

In order to interpret the ground penetrating radar (GPR) thickness profile output without any 

destructive coring, Attoh-Okine (1993) used a feed-forward neural network model with a 

four layer backpropagation algorithm. GPR is a nondestructive technique that has the 

potential to survey pavement thickness and structure while operating at highway speed. In 

this study, three output nodes were used to identify the three different types of surface-base 

interface: composite pavements, partial-designed pavements, and full-designed pavements. 

Based on the analysis, the author concluded that the combination of radar output and ANN 

had the potential to automate nondestructive evaluation of structural conditions of 

pavements.  

 

Meier and Rix (1994) developed an approach to backcalculate of pavement layer moduli 

from falling weight deflectometer (FWD) deflection basins by using artificial neural 

networks. Two backpropagation neural network models were trained to backcalculate 

pavement moduli for three-layered flexible pavement profiles by using synthetic deflection 

basins with a wide variety of layer moduli and thicknesses. The first model was trained with 

success using synthetic basins with no random noise added and the second model was trained 

using deflection basins with random noise to simulate measurement errors. Even though the 
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network trained and tested with noisy data exhibited much more scatter in the results, that 

network did a reasonably good job of predicting moduli. The authors developed a neural 

network model which operated 1,500 to 2,200 times faster than the conventional algorithmic 

programs used at that time. This study was a static analysis of pavement response. The 

authors also trained a different model (Meier and Rix 1995) to backcalculate pavement layer 

moduli from synthetic deflection basins calculated by using a dynamic analysis of pavement 

response based on Green functions. Similarly, this ANN model gave successful predictions 

in real time. 

 

Williams and Gucunski (1995) developed backpropagation and general regression neural 

network models to predict the elastic moduli and layer thicknesses of pavements from the 

Spectral-Analysis-of-Surface-Waves (SASW) test results. The SASW test is a seismic 

technique for the in-situ evaluation of pavements and soil systems. Three, four, and five layer 

backpropagation models with jump connections were trained in the study. All neural network 

models produced reasonably similar results to the actual outputs. The authors concluded that 

backpropagation neural networks can provide a useful technique for the analysis of 

dispersion curves obtained from SASW tests. 

 

In another study, Heiler et al. (1995) tackled the problem of automatic detection of asphalt 

thickness and depth to reinforcement in composite pavements using neural networks. The 

authors stated that GPR interpretation had been done manually in the past by trained 

engineers and technicians with the aid of standard signal processing techniques. This method 

of collection produced vast quantities of data, and the interpretation required a great amount 

of time. Recently, parallel processing in the form of artificial neural networks had been 

applied to the interpretation of GPR condition assessment data from highways. This paper 

introduced general strategy for using ANNs for the interpretation of GPR data. Results of 

applying this strategy to bridge deck condition assessment data were also given. 

 

Artificial neural networks were trained to perform an inversion procedure for SASW testing 

of asphalt concrete (AC) pavements (Gucunski and Krstic 1996). The training of the 
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networks was completed by the dispersion curves for individual receiver spacings. Two 

different models were developed. The first model approach was on the basis of the average 

dispersion curve and the second model was based on the individual receiver spacing 

dispersion curve approach. The results of the comparison of those two models showed that 

both models have capability of predicting the shear wave velocities and thicknesses of all the 

layers with high accuracy, except the thickness of the subbase, d3. In order to reduce this 

problem, the authors suggested to use the individual receiver spacing model, VS2 / VS1 < 1  

(VS1: shear wave velocity of the AC surface layer; VS2: shear wave velocity of the 

bituminous stabilized base course layer), and the average dispersion curve model for higher 

ratios. 

 

The use of the artificial neural networks for assessing the deflection and stress load transfer 

efficiencies of concrete pavement joints and for backcalculating joint parameters was 

investigated by Ioannides et al. (1996). The database was generated using numerical 

integration of Westergaard-type integrals to train the ANNs for joint evaluation. In this 

study, the ANN model was a multilayer, feed-forward network consisting of 2 hidden layers 

in addition to the input and output layers. The input layer consisted of the values of the ε / l 

and LTEδ ratios, and the output layer consisted of the LTEδ and the logarithm of the 

dimensionless joint stiffness, f. The predictive values of LTEδ by ANN and statistical 

regression tool results were compared and it was observed that the ANN predictions were 

better than those obtained from the statistical regression algorithms. The authors also 

indicated that the dimensional analysis reduced the number of variables used in the ANN 

model permitting real-time determination during testing. 

 

Meier et al. (1997) augmented the WESDEF (Van Cauwelaert et al. 1989) backcalculation 

program (minimizes the difference between a calculated basin and the measured basin by 

adjusting the modulus of the various layers through a series of iterations) by four artificial 

neural networks trained to compute pavement surface deflections as a function of pavement 

layer moduli for a wide range of three-layered flexible pavements. The authors noted that 
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WESDEF can backcalculate pavement layer moduli 42 times faster with success than it did 

before with the addition of the neural networks. 

 

An ANN-based backcalculation procedure was developed for asphalt concrete over Portland 

cement concrete (PCC) overlays (3-layers) as composite pavement systems and implemented 

into a computer program called DIPLOBACK (Khazanovich and Roesler 1997). The 

pavement layer thicknesses and deflection profiles were given to the model as input variables 

to predict the elastic modulus of the AC (EAC) and PCC (EPCC) layers, and coefficient of 

subgrade reaction (kS). Theoretical deflection basins were generated by DIPLOMAT 

(Khazanovich and Ioannides 1995) program (which solves AC overlays over PCC as elastic 

layers over a dense liquid subgrade) to create an ANN-based procedure to backcalculate EAC, 

EPCC, and kS. The results of backcalculation were compared with the actual elastic parameters 

of the theoretical deflection basins and good agreement was observed. In addition, the results 

of the backcalculation using field test data were compared with the results obtained by using 

WESDEF. Based on the comparison, similar trends were observed for elastic parameters of 

all three pavement layers. 

 

Kim and Kim (1998) presented a study related to the prediction of layer moduli from falling 

weight deflectometer (FWD) tests and surface wave measurements. Based on the 

observations and investigations in this study, a new modulus prediction algorithm was 

developed and presented. Hankel transforms were used in this study as a forward model. On 

the other hand, neural networks were used for the inverse process. This method was applied 

to the evaluation of two pavement sites in North Carolina and it was concluded that the 

analysis procedure developed in this study was more sensitive to upper layer conditions and 

resulted in less variable sub-surface layer moduli. 

 

The capability of ANN models to compute lateral and longitudinal tensile stresses as well as 

deflections at the bottom of jointed concrete airfield pavements as a function of type, level, 

and location of the applied gear load, slab thickness, slab modulus, subgrade support, 

pavement temperature gradient, and the load transfer efficiencies of the joints was illustrated 
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by Ceylan et al. (1998, 1999a, 2000) and Ceylan (2002). The training sets were developed 

for prescribed gear and temperature loads using the ILLI-SLAB (Tabatabaie 1977) finite 

element program. The findings of these studies proved that ANN models could be 

successfully trained to capture the complex multi-dimensional mapping of a large-scale finite 

element pavement analysis problem in their connection weights and node biases.  

 

Ceylan et al. (1999b) and Ceylan (2004) trained artificial neural networks to predict stresses 

and deflections in jointed concrete airfield pavements serving the Boeing B-777 aircraft. The 

results of the ILLI-SLAB  finite element program were used to train the ANN models 

producing stress and deflections with average errors less than 0.5 % of those obtained 

directly from the finite element analyses. The prediction capability of the ANN models 

appeared to be accurate when predicting the maximum stresses and deflections, slab 

thicknesses, subgrade supports, and the joint load transfer efficiencies matched exactly on the 

piecewise continuous functional relations obtained from the training of the models. Figure 

4.5 shows the prediction ability of the 7-60-60-12 network at 10,000 learning cycles for the 

simultaneous aircraft and temperature gradient loading cases. The authors concluded that 

trained neural network models will eventually enable pavement engineers to easily 

incorporate current sophisticated state-of-the-art technology into routine practical analysis 

and design. 

 

In order to estimate the elastic modulus of the asphalt concrete layer and the thickness in 

flexible pavements, Saltan et al. (2002) developed an ANN model. Seven different deflection 

values obtained from the FWD tests were used as input variables in the ANN model. The 

authors utilized the asphalt concrete elastic modulus and thickness of asphalt mixture as 

output variables in the backpropagation type ANN model. Base on the analysis results, 

Saltan et al. (2002) concluded that the ANNs can be used for backcalculation of the thickness 

of layers with great improvement and accuracy. 

 

Ceylan and Guclu (2004a) demonstrated the use of ANNs as pavement analysis and design 

tools by analyzing concrete airfield pavements under the following three loading cases: (1) 
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Airbus A380-800 new generation aircraft (NGA) gear loading only, (2) climatic loading 

only, and most importantly, (3) simultaneous aircraft gear and climatic loading. For the three 

different loading cases, the ANN model predicted maximum bending stresses and deflections 

with an overall average absolute error of less than 2.1 %. The authors concluded that ANNs 

are capable of successfully predicting the critical responses of a large scale nonlinear finite 

element model and such ANN models provide invaluable help to pavement engineers for 

studying the effects of heavy loading new generation aircraft. 

 

In another study, Ceylan et al. (2004b) also investigated the use of the ANN-based structural 

models for rapid analysis of flexible pavements with unbound aggregate layers. The ANN 

models successfully predicted the layer moduli and critical pavement responses computed by 

the ILLI-PAVE finite element solutions and were much superior to the liner-elastic-layered 

forward and backcalculation analyses due to the non-linear material characterization 

employed. Figure 4.6 depicts the prediction ability of the 6-60-60-2 network that was 

designed to predict the elastic modulus of the AC layer and the resilient modulus of the 

subgrade layer using only four pavement surface deflections, and two layer thicknesses: 

asphalt concrete and granular base layer thicknesses. The authors concluded that such ANN 

structural analysis tools can provide pavement engineers and designers with sophisticated 

finite element solutions, without the need for a high degree of expertise in the input and 

output of the problem, to rapidly analyze a large number of pavement deflection basins 

needed for routine pavement evaluation. 
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Figure 4.5. Accuracy of the 7-60-60-12 network for predicting the critical pavement 

responses under the simultaneous aircraft and temperature loading (Ceylan et al. 1999) 
 

Ceylan et al. (2005a) also showed that ANN models could be developed to perform rapid and 

accurate predictions of flexible pavement layer moduli and critical pavement responses 

(stresses, strains, and deflections) from FWD deflection basins for a number of pavement 

input parameters considered in analysis and design. The virgin and the noise-introduced 

(robust) ANN models successfully predicted the pavement layer moduli and critical 

pavement responses obtained from the ILLI-PAVE finite element solutions and were much 

more superior to the linear-elastic-layered backcalculation analyses. Noise introduced ANN 

models have been found to be more robust compared to the models trained with the virgin 

training data.  Such ANN models provide more realistic predictions of pavement layer 



 74

moduli and critical pavement responses because of their ability to tolerate the inaccuracies in 

the pavement deflection basins and the layer thicknesses due to poor construction practices. 
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Figure 4.6. Prediction performance of the 6-60-60-2 BCM-1 network for 10,000 learning 

cycles (Ceylan et al. 2004) 
 

Seven ANN-based backcalculation and forward calculation models using some 26,000 

nonlinear ILLI-PAVE finite element (FE) solutions for the full depth and conventional 

flexible pavements were developed (Ceylan et al. 2005b). In the study, six conventional 

flexible pavement sections were selected to further evaluate the performances of the ANN 

backcalculation models. ANN models predicted the layer moduli and critical pavement 

responses computed by the ILLI-PAVE FE solutions and were much superior to the linear-

elastic-layered forward and backcalculation analyses. 

 

ANN-based backcalculation and forward calculation pavement structural models were 

developed in another study (Ceylan et al. 2005c) for full-depth flexible pavements using the 

ILLI-PAVE finite element solutions with non-linear, stress-dependent subgrade soil 

properties. The comparison of the ANN model predictions and ILLI-PAVE based algorithm 

results are shown in Figure 4.7. The authors concluded that that ANNs are capable of 

mapping complex relationships, such as those studied in complex finite element analyses, 
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between the input parameters and the output variables for non-linear, stress-dependent 

systems. ANN models can rapidly (50,000 analyses in less than a second) output the required 

solutions in analyzing a large number of pavement deflection basins needed for routine 

pavement evaluation. The rapid prediction ability of the ANN backcalculation models makes 

them perfect evaluation tools for analyzing the FWD deflection data, and thus assessing the 

condition of the pavement sections, in real time for both project specific and network level 

FWD testing. 

 

In another work (Rakesh et al. 2006), ANN models were developed for computing surface 

deflections using elastic moduli and thicknesses of pavement layers as inputs. The ANN 

models have been used in BACKGA (developed by the Indian Institute of Technology) for 

forward calculation of surface deflections to combine the computational efficiency of ANNs 

with the robustness of the genetic algorithms. The authors stated that the performance of the 

resulting model, BACKGA-ANN, has been evaluated and found to be satisfactory. 

 
Figure 4.7. Comparison of the ILLI-PAVE based algorithms and ANN predictions  

(Ceylan et al. 2005) 
 

Finally, Goktepe et al. (2006) analyzed the role of learning algorithm and ANN architecture 

in ANN-based backcalculation of flexible pavements. In this study, 284 different ANN 

models were developed using synthetic training and testing databases obtained by layered 
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elastic theory. Results indicated that both the learning algorithm and network architecture 

play important roles in the performance of the ANN-based backcalculation process to reach 

realistic results.  

Discussion: Structural Evaluation of Pavement Systems 

Artificial neural networks are applied in effective ways in the area of structural evaluation of 

pavement systems. The successfully developed models can be incorporated into the routine 

project specific and network level testing easily. Most of the ANN models summarized in 

this section were trained with the synthetic data as well as field test data such as FWD, GPR, 

and SASW. The reliability of ANN-based models can be increased when more actual field / 

lab data is used for the training process instead of synthetic databases. Another issue is the 

validation of the proposed ANN models. Getting a field or lab data, result, or interpretation 

for a specific problem is not always possible. For some problems, generally accepted 

correlations, algorithms, software programs are used in the practice. Therefore, most ANN-

based models developed for the structural evaluation of pavement systems are validated by 

comparing with other techniques instead of actual field or lab results.  

CATEGORY 5: IMAGE ANALYSIS / CLASSIFICATION 

Quantification of pavement crack data is one of the most important criteria in determining 

optimum pavement maintenance strategies. Over the years, a significant amount of effort has 

been spent on developing methods to objectively evaluate the condition of pavements. A 

different pavement crack detection approach was investigated in this section. Basically, 

digital pavement images were utilized to classify the cracks by using the artificial neural 

networks. Some of the papers using this technique have been summarized in this section. 

 

Kaseko et al. (1991, 1992, 1993a) proposed a purely image-processing-oriented methodology 

for crack identification and classification. The pavement images used in these studies were 

collected by the ROADRECON instrumentation vehicle acquiring the images for the US 

Strategic Highway Research Program (SHRP). Images extracted from the entire database 

were digitized to 512 x 464 pixel digital images with an 8-bit gray scale. In order to segment 
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and classify the images, the backpropagation algorithm was used in the neural network 

analysis. Images were classified into four different categories according to the nature of 

cracks which are “transverse”, “longitudinal”, “alligator”, and “block cracking”. The authors 

concluded that ANN-classifiers had a significant advantage in real-time applications with 

high computation rates required in pattern-recognition problems. 

 

In a similar study, Kaseko et al. (1993b) used mean, standard deviation of gray scale level 

histogram of the image and a co-occurrence parameter as input variables. The threshold 

value was assumed as the output of the ANN model. The ANN approach and regression 

approach were compared in the study and as a result the ANN approach performed 

considerably better than the regression approach. The authors stated that the effect of co-

occurrence parameter or noise reduction was significant in the analysis.  

 

In another study, the neural network classifiers and traditional classifiers were compared by 

Kaseko et al. (1994). Three different models were investigated: Bayesian classifier, k-

nearest-neighbor classifier, and MLP neural networks. The overall objective of this study 

was to develop an ANN-based methodology for processing video images for automated 

detection, classification, and quantification of cracking on pavement surfaces. Each selected 

sub-image was classified into one of the five classes that were “no cracking”, “transverse”, 

“longitudinal”, “diagonal”, and “combination cracking”. In conclusion, the authors 

demonstrated that ANN classifiers had a significant advantage in real-time applications with 

high computation rates.  

 

Nallamothu and Wang (1996) studied the classification of pavement distresses using the 

radial basis function neural networks. Pavement distresses were classified as “transverse 

cracks”, “longitudinal cracks”, “raveling”, and “no crack”. Each feature vector consisted of 

an image that represented a distress of compressed size 24 x 9 pixels. According to the 

results, 85 percent success rate was obtained in the test set used in this study. 
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Cheng et al. (2001) presented an approach to pavement cracking detection based on neural 

networks and CVPRIP (computer vision, pattern recognition, and image processing) 

techniques. This approach is based on the assumption that the crack pixels in pavement 

images are darker than their surroundings and crack pixels can be separated from the 

background using the threshold approach. Mean and standard deviation values were used as 

features and these statistical values were employed to train the neural network model 

selecting the thresholds and then the images would become binary images (crack pixels and 

background) after thresholding. Finally, Hough transformation was used to detect and 

classify all cracks in parallel. Figure 4.8 shows the original image (a), images after applying 

the desire threshold values (b), and images after applying the outputs of the neural network 

(c). It can be seen that Figure 4.8(b) and Figure 4.8(c) are very similar. The authors 

concluded that the cracks were correctly and effectively detected by the proposed method 

which would be useful for pavement management. 

 

    
                       (a)              (b)              (c) 

Figure 4.8. (a) The original image with alligator crack. (b) The result using the desired 
threshold. (c) The result using the neural network computed threshold (Cheng et al.2001) 

 

In another study, Lee and Lee (2004) developed an integrated ANN-based crack imaging 

system to classify crack types of digital pavement images. Three different types of neural 

networks were used in the analyses: image-based neural network (INN), histogram-based 

neural network (HNN), and proximity-based neural network (PNN). Various crack types 

based on the subimages (crack tiles) rather than crack pixels in digital pavement images were 

classified by using these three neural networks. From the FHWA guidelines, 300 artificial 

images were generated. Actual pavement pictures taken from pavements as well as the 
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computer-generated data were used in order to validate the system. The outputs of the 

proposed model were “alligator crack”, “block crack”, “longitudinal crack”, “transverse 

crack”, and “no crack”. Based on the analysis, the authors concluded that the proximity-

based neural networks produced the results with very high success rate. As shown in Table 

4.4, all neural networks achieved a high accuracy of 95% or higher for the training sets and 

relatively low accuracy of 70% or higher for the testing sets. 

Table 4.4. Three types of neural networks and their performances (Lee and Lee 2004) 
 Training Data Testing Data 
Neural network Artificial Data (300) Artificial Data(150) Actual Images(124) 
 # of data Accuracy # of data Accuracy # of data Accuracy 
Image-based NN 291 97.0% 114 76.0% 87 70.2% 
Histogram-based NN 297 99.0% 137 91.3% 93 75.0% 
Proximity-based NN 287 95.7% 140 93.3% 778 95.2% 

Discussion: Image Analysis / Classification 

Real-time applications in pavement engineering are very important in terms of pavement 

management in order to speed up the process. Reliable crack detection approaches were 

developed by using artificial neural networks. The processing of the digital pavement surface 

images by artificial neural networks prevent is an advance technique which decrease the 

analysis time significantly. In addition, the visual quantifications of the pavement conditions 

rated by the pavement engineers are not always very objective and might change from 

someone to another. The time spent on the evaluation of the pavement condition is also 

another important issue. With these ANN-based image analysis methods, pavement condition 

evaluation can be standardized with real-time applications. 

CATEGORY 6: PAVEMENT MATERIAL MODELING  

The accurate and effective modeling of pavement materials is critical to the prediction of the 

pavement performance. Soil properties and behavior is an area that has attracted many 

researchers to modeling pavement materials using ANNs. Also, constitutive models 

describing the relationships between stresses and strains of materials are crucial elements in 

the design and analysis of engineering systems. This section summarizes the studies that 
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discuss the use of artificial neural networks as an alternative method for pavement material 

modeling. 

 

The behavior of concrete in the state of plane stress under monotonic biaxial loading and 

compressive uniaxial cycle loading was modeled with a backpropagation neural network 

(Ghaboussi et al. 1991). The training data set of the proposed ANN model was obtained from 

the experimental results containing the relevant information about the material behavior. 

Therefore, the trained neural network would contain sufficient information about the material 

behavior to qualify as a material model. The results of proportional stress paths were utilized 

in the neural network model and the trained network was expected to simulate the test results 

for other proportional and non-proportional stress paths. The authors stated that the degree of 

accuracy in this generalization depended on how comprehensive the training set was. Two 

examples of material modeling, ANN model representing the biaxial behavior of plain 

concrete and the ANN model on uniaxial cyclic tests on plain concrete, were presented in the 

paper. Stresses and strains were used as inputs and output for both models and stress paths 

were predicted by ANN models. Then, the results obtained form the neural network models 

were compared with the experiment results, analytical model results, and mathematical 

material model results. The authors concluded that the ANN predictions were quite 

reasonable.  

 

Eldin and Senouci (1994) examined some engineering properties of rubberized concrete and 

developed a neural network model to predict the rubberized concrete`s compressive and 

tensile strengths. The input variables that may affect the strength of rubberized concrete were 

selected as the rubber type (shape), size, percentage, and concrete age (curing time). In 

addition, the output parameters were identified as the compressive and tensile strengths of 

rubberized concrete specimens as a fraction of that of plain concrete. On the basis of 

experimental tests and neural network analyses, one of the most important conclusions was 

that the reduction of up to 85% of compressive strength and up to 50% of splitting-tensile 

strength resulted when coarse aggregate was replaced by rubber. 
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Tutumluer and Meier (1996) attempted at training an artificial neural network constitutive 

model for computing the resilient modulus of aggregates as a function of the stress state and 

various physical properties. The authors attempted to model the resilient modulus of 

aggregates because pavements were subjected to repeated wheel loads, it had been customary 

to use resilient modulus (MR) to characterize the elastic stiffness of the pavement materials 

rather than Young’s modulus. The neural networks used in this research were conventional 

multilayer, feed-forward neural networks trained by error backpropagation algorithm. The 

coefficient of uniformity (Cu), the average aggregate size (D50), the dry unit weight (γd), the 

fines content (F200, percent passing No. 200 sieve), the deviator stress (σd), and the confining 

pressure (σ3) were chosen as input variables to predict the resilient modulus of the soil which 

was the output parameter of the proposed ANN model. Figure 4.9(a) compared the computed 

and target outputs for the entire independent test set. On the basis of the results, it appeared 

that the neural network was successfully trained to compute resilient modulus. On the other 

hand, as shown in Figure 4.9(b) the neural network model produced poor agreement with the 

experimental results in the check made with the material not included in the original data set 

to predict the resilient moduli. Therefore, Tutumluer and Meier (1996) concluded that the 

appearance of success was only skin deep. 

 

Penumadu and Jean-Lou (1997) presented an approach of modeling the soil behavior within 

a unified environment based on the artificial neural networks introduced for representing the 

behavior of sand and clay type soil. Current stress (σ`1i, ui) and strain (ε1i) states, confining 

pressure (σ`3C), initial relative density (Dr), previous stress history (OCR), and coefficient of 

uniformity (Cu) variables were used as inputs and σ`1i+1 and ui+1 were used as outputs for the 

ANN-based sand model. Initial shear stress (τi), initial strain (εi), current strain (ε), and strain 

increments (∆εi) were used as inputs and ∆τi  and τi+1  variables were used as output 

parameters of two ANN-based clay models. Based on the analysis, the authors concluded that 

a well trained neural network model for a specified soil type and stress path can be combined 

along with the finite element method  for solving complex boundary value problems. 
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Figure 4.9. (a) Accuracy of trained 6-5-5-1 network (b) Neural network accuracy on an 

unfamiliar material (Tutumluer and Meier 1996) 
 

Nested adaptive neural networks were introduced and a new type of neural network was 

developed by Ghaboussi and Sidarta (1998). The authors applied this neural network in 

modeling of the constitutive behavior of  drained and undrained behavior of sand in triaxial 

tests. The authors utilized the strains as input variables and the stresses as outputs in the 

proposed ANN model. The authors concluded that these types of neural networks were 

capable of learning the drained and undrained behavior of sand for a range of initial void 

ratios and confining pressures. Sidarta and Ghaboussi (1998) also developed another method 

that was applied to a series of triaxial compression tests with end friction on sand. 

 

The anisotropic aggregate behavior from repeated load triaxial tests utilizing the neural 

network modeling was investigated by Tutumluer and Seyhan (1998). Two triaxial stresses 

(confining pressure and applied deviator stress), measured vertical deformation, and two 

aggregate properties (compacted dry density and crushed particle percentage) were used as 

input variables in the trained feed-forward backpropagation type neural network. The output 

variables were the horizontal and shear moduli for which the actual (target) values were 

derived and computed from test results. The ANN models predicted the horizontal and shear 

moduli with mean errors less than 3% when compared to those computed using experimental 
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stresses and strains. The authors concluded that in the absence of lateral deformation data, 

such successful applications of ANNs were encouraged for determining anisotropic 

aggregate response and improving anisotropic modeling / characterization of granular 

materials. Tutumluer and Seyhan also stated that this kind of advancement was currently 

needed for example on designing flexible pavements with substantially thick granular base 

layers. The ANN model predictions for the horizontal and shear moduli were compared with 

the target values in Figure 4.10(a) and Figure 4.10(b), respectively. 

 

 
Figure 4.10. Accuracy of the (a) 5-4-1 Horizontal modulus network (b) 5-4-1 Shear modulus 

network (Tutumluer and Seyhan 1998) 
 

The recurrent neural network (RNN) that is a dynamic neural system appearing effective in 

the input-output modeling of complex non-linear behavior of cohesionless soils was utilized 

by Zaman and Zhu (1998). The database was obtained from a series of triaxial compression 

shear tests performed on dune sand including unloading and reloading stages. Eight sets of 

data from triaxial compression shear tests at different effective confining stresses were 

employed in ANN modeling, four of which were used as training data, and the other four sets 

were used as testing data. The deviator stress (σdi), increment of deviator stress (∆σdi),  major 

principle stress (σ1i), increment of major principle stress (∆σ1i), previous axial strain (ε1i), 
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volumetric strain (εvi) and relative density (Dr) were used as input variables in the ANN 

model and current axial strain (ε1i+1), and volumetric strain (εvi+1) were used as the outputs of 

the proposed model. Neural network model predictions were compared to a three invariant–

dependent CAP model (a stress-strain constitutive model). The authors concluded that stress-

strain behavior including unloading and reloading stages predicted by the ANN model agreed 

well with the measured values. The results also illustrated that ANN model was efficient in 

simulating non-linear behavior of cohesionless soil. 

 

Basheer (2000) investigated the simulation of hysteresis stress-strain )( εσ −  response of 

geomaterials under repeated reversal loading with the time-delay artificial neural networks 

(TDANNs), highly non-linear mapping tools. Basheer designed a nonlinear recursive 

simulator containing the developed TDANNs in order to enable forecasting of complete 

εσ −  curves from the knowledge of only the initial εσ −  condition of the tested material. 

The author extracted the training data from a set of experimentally-obtained εσ −  curves for 

the geomaterial. Stress and strain values shown in Figure 4.11(a) were used as input and 

output variables in the ANN model. Based on the results of the analyses, the author 

concluded that TDANNs were found to be viable tools for modeling the hysteresis behavior 

in loading reversal environmental and could be used to simulate such behavior with high 

accuracy for an unlimited number of cycles within and beyond the training data domain.  

 

In a similar study, Basheer (2002) discussed the several techniques that may be used as 

frameworks for developing neural network based models for approximating hysteresis data. 

As shown in Figure 4.11(b) the input layer consisted of eight neurons, namely, (1) 

compaction conditions (ω  and γ ), (2) three-element stage label vector (virgin loading, 

unloading, and reloading), (3) current states of strain and stress, and the output layer 

consisted of one neuron: the futuristic strain for which the stress was to be predicted. The 

author concluded that the designed networks demonstrated high ability in simulating the real 

behavior of soil in all stages of loading in the neighborhood of the hysteresis and away from 

it. 
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Figure 4.11. (a) Neural network architecture of the ANN-based simulator (b) Schematic of 

constitutive ANN-based model for the cyclic behavior of soil (Basheer 2000) 
 

Ceylan et al. (2005d) developed ANN-based advanced aggregate rutting models and 

compared their performance using laboratory test data. The primary goal was to properly 

characterize the loading stress path dependent permanent deformation behavior from 

advanced repeated load triaxial tests that can simulate in the laboratory the varying stress 

states under actual moving wheel load conditions. Due to the complex loading regimes 

followed in the laboratory tests and the full-scale NAPTF (National Airport Pavement Test 

Facility) testing, the ANN rutting models that altogether considered as inputs the static and 

dynamic components of the applied stresses and the loading stress path slope produced the 

greatest accuracy. The authors concluded that such advanced neural network models can 

better describe the aggregate rutting behavior under actual field loading conditions. 

Discussion: Pavement Material Modeling  

Several researchers attempted to model the complex non-linear behavior of pavement 

materials using artificial neural networks. Pavement structure materials, especially soils are 

highly non-linear materials, and each type of soil shows a different behavior under different 

loading and environmental conditions. In the studies under this topic, ANN models were 

generally trained with experiment results. There are always some boundary conditions and 

assumptions on these experiments. Certain conditions that these experiments were conducted 

should be taken into account in the ANN analysis. Therefore, the limitations of the developed 
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ANN models (material type, loading and environmental conditions) should be clarified very 

clearly. It is much easier to validate the developed ANN-based models with new experiment 

results since the outputs of the ANN models summarized in this section are generally directly 

material properties.  

DISCUSSION 

This paper reviews a significant number of research publications which specifically deals 

with applications of ANNs in pavement engineering, transportation infrastructure systems 

between 1987 and 2007. These studies have been briefly summarized in this paper in six 

different categorizations: (1) predictions of pavement performance and pavement condition, 

(2) pavement management and maintenance strategies, (3) pavement distress forecasting, (4) 

structural evaluation of pavement systems, (5) image analysis and classification, and (6) 

pavement material modeling.  

 

Among these categories, a main focus might be given on the structural evaluation of 

pavement systems since evaluating the structural condition of existing, in-service pavements 

is a part of the routine maintenance and rehabilitation activities undertaken by most state 

Department of Transportations. Several studies utilizing ANN methodology for predicting 

the elastic moduli, layer thickness, coefficient of subgrade reaction, shear wave velocities of 

pavement layers, and pavement surface deflections that are crucial structural parameters in 

the analysis and design of the pavements are summarized under this section. As the studies 

under “Structural evaluation of pavement systems” section are analyzed, it is seen that most 

of the proposed ANN-based models are developed for flexible (asphalt) pavement sections. 

In addition, developed ANN-based models use too many input parameters sometimes which 

is not very practical in the real life applications. Therefore, additional special interest should 

be given to the concrete pavements with as few practical parameters as possible in order to 

overcome these shortcomings. Bayrak (2007) studied the jointed Portland cement concrete 

pavement systems in his Ph.D. dissertation to analyze the concrete pavement parameters 

using the backpropagation type ANN-based models in order to fill the gap in this area. This 
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dissertation documented the research efforts related to the development of ANN-based 

concrete pavement backcalculation and forward calculation techniques which are not studied 

earlier. Based on the results of this research, elastic modulus of PCC slab, coefficient of 

subgrade reaction of pavement foundation system, radius of relative stiffness of the pavement 

system, maximum tensile stress at the bottom of the PCC layer, and total effective linear 

temperature difference between top and bottom of the PCC layer can be successfully 

predicted with very low average absolute error values from FWD deflection basins. One of 

the most important advantages of the developed ANN models in Bayrak’s dissertation (2007) 

is the practicality and ease of use of the proposed models. The required input parameters 

needed for this study are falling weight deflectometer deflection basins and pavement layer 

thicknesses. In the developed approach, there is also no need a seed moduli or iteration 

process of the solution in order to predict the JPCP system parameters.  

 

It is also well known that environmental conditions have a huge influence on the in-service 

pavement conditions and on the remaining life of pavements. For example, slab curling and 

warping in concrete pavements due to temperature and moisture differentials throughout the 

thickness of a slab affect the nondestructive testing results which are conducted to measure 

the pavement surface deflections. These erroneous measurements may divert the pavement 

engineers to inaccurate predictions of pavement and foundation properties and critical 

pavement responses. That’s why curling and warping effects should be taken into account in 

the evaluation process of concrete pavements. Therefore, the equivalent effect of total 

amount of curling and warping in terms of temperature difference between the top and 

bottom of the concrete slabs in JPCP systems was also analyzed in Bayrak’s dissertation 

(2007). Such an approach that takes into accounts both the traffic and environmental loading 

is invaluable since there is not an existing method which analyzes these effects together in 

JPCP systems. However, the validation of the proposed ANN-based models is a challenging 

problem since there is not an available method that can measure every single component of 

the total curling and warping in JPCP systems. The predictions of the proposed models 

should be used carefully and typical ranges should be taken into account in the analyses. 

Also, more realistic ANN-based models can be developed by using actual field data in the 
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training set of the ANN-based models instead of computer simulations. Bayrak (2007) 

concluded that trained neural network models will eventually enable pavement engineers to 

easily incorporate current sophisticated state-of-the-art technology into routine practical 

analysis and design.  

SUMMARY AND CONCLUSIONS 

Artificial neural network models are useful complements to more-traditional numerical and 

statistical methods such as regression. Once fully trained or developed, ANNs provide 

engineers with sophisticated, real time analysis and prediction tools with no complex 

analysis input requirements, such as those of finite element numerical solution techniques, 

and no large computer resources needed. They do not provide a priori function such as one 

generated by regression analysis, yet, they are not meant to be black boxes for practitioners 

either. ANNs commonly outperform their traditional modeling counterparts in solving 

complex engineering problems.  

 

Artificial neural network modeling has shown great promise as a useful and nontraditional 

computing tool for analyzing too complex, non-linear problems inherent to pavement 

engineering. ANNs have the potential to investigate, properly model and, as a result, better 

understand some of the complex pavement engineering mechanisms that have not been well 

understood and formulated yet. This is especially possible with the vastly powerful and non-

linear interconnections provided in the network architecture that enables an ANN to even 

model very sophisticated finite element method numerical solutions as the state-of-the-art 

pavement structural analysis results. As an example, the recent Mechanistic-Empirical 

Pavement Design Guide utilizes an ANN model to analyze rigid concrete pavements and 

solve for concrete pavement critical responses under environmental and traffic loading 

conditions. 

 

Several successful ANN applications were reviewed in this paper for solving various 

pavement engineering problems in the areas of prediction of pavement performance and 
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condition, pavement management and maintenance strategies, pavement distress forecasting, 

pavement structural evaluations, image analysis and classification, and pavement material 

modeling. Most of the studies reviewed utilized the backpropagation type neural network 

models. Backpropagation ANNs are indeed very powerful and versatile networks that can be 

taught a mapping from one data space to another using a representative set of 

pattern/examples to be learned. ANN models were also noted to be able to rapidly present the 

required solutions by analyzing the pavement data in real time. This aspect becomes 

especially important in data collection and processing in real time for pavement condition 

and performance studies.  

 

Use of artificial neural networks in infrastructure systems in pavement engineering has 

significantly increased in the past ten years. Moreover, there is still considerable work to be 

done in the area of infrastructural analysis in which ANNs could be used.  A further issue 

that needs to be given some attention in the future development of ANNs is to include 

treatment of uncertainties associated with pavement engineering parameters. Also, more 

ANN-based model validations are needed with the actual laboratory and field test results and 

more ANN-based model interpretations should be done by field expert where the available 

data is very scarce. Lastly, more and larger comprehensive datasets are needed to build the 

models, especially for the problems where the data used to develop the ANN model is very 

limited. Some ANN models should be re-trained when additional data becomes available. 

Additionally, more comprehensive studies should be performed to see the differences 

between the results of different approaches on the same problem.  

 

The use of ANNs in pavement engineering should be further pursued to make it more 

widespread and common among both researchers and practitioners in the field of pavement 

engineering. The practical use of artificial neural networks in transportation engineering is 

still not very common due to the lack of understanding and current skepticism even though 

ANNs have already proved to outperform traditional modeling techniques in solving various 

complex engineering problems. Transportation Research Circular (1999) stated that most of 

the reported ANN-based studies have not been implemented in practice since practicing 
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engineers are still doubtful of their use. In order to overcome these obstacles, Transportation 

Research Circular recommends that practicing engineers should be provided with sources of 

necessary background information and involved in specifically-oriented ANN workshops and 

tutorials.  

 

Over the past ten years, pavement analysis and design methodologies have evolved from 

empirical to mechanistic-empirical and ANNs offer significant benefits in this context. 

Mechanistic-empirical design procedures will be based on structural analyses of pavements 

throughout their design life and ANNs can be used to predict the input parameters required in 

the mechanistic-empirical design. In addition, ANNs can also be modeled to provide the 

connection between the critical pavement responses and pavement performance during the 

design life. 

 

Overall, despite the limitations of ANNs, they have a number of significant benefits that 

make them a powerful and practical tool for solving many problems in the field of pavement 

engineering. 
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ABBREVIATIONS / NOTATIONS  

The following are the abbreviations and symbols used in this paper: 

 

Abbrevations: 

AADT  = average annual daily traffic; 
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AASHO = American Association of State Highway Officials; 

AC  = asphalt concrete; 

ANN  = artificial neural network; 

AR  = auto-regression; 

BPNN  = back-propagation neural network; 

CESAL = cumulative ESAL (equivalent single axle load, 18-kip); 

CRCP  = continuously reinforced concrete pavement; 

CVPRIP = computer vision, pattern recognition, and image processing; 

DOT  = department of transportation; 

ESAL  = equivalent single axle load (18-kip); 

FE  = finite element; 

FHWA  = Federal Highway Administration; 

FWD  = falling weight deflectometer; 

GANNT = genetic adaptive neural network training; 

GPS  = general pavement studies; 

GRNN  = generalized regression neural network; 

HNN  = histogram-based neural network; 

INN  = image-based neural network; 

IRI  = international roughness index; 

JPCP  = jointed plain concrete pavement; 

LTE  = joint load transfer efficiency; 

LTPP  = long term pavement performance; 

M&C  = material and construction; 

M&R  = maintenance and repair; 

MC-HARP = Monte Carlo Hierarchical Adaptive Random Partitioning; 

MLP  = multilayer perceptron; 

MLR  = multiple linear regression; 

NAPTF  = National Airport Pavement Test Facility; 

NGA  = new generation aircraft; 

OCR  = overconsolidation ratio; 
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PCC  = Portland cement concrete; 

PCI  = pavement condition index; 

PCR  = pavement condition rating; 

PMS  = pavement management system; 

PNN  = probabilistic neural network; 

PSI  = present serviceability index; 

R&S  = routing and sealing; 

RBF  = radial basis function; 

RCI  = riding condition index; 

RMSE  = root mean square error; 

RNN  = recurrent neural network; 

SASW  = spectral analysis of surface waves; 

SHRP  = strategic highway research program; 

SN  = structural number; 

SPS  = specific pavement studies; 

TDANN = time-delay artificial neural networks; 

UAB  = unbound aggregate base; and 

VCI   = visual condition index. 

 

Notations: 

Cu  = coefficient of uniformity; 

EAC  = young’s modulus of elasticity of asphalt concrete layer; 

EPCC  = young’s modulus of elasticity of Portland cement concrete layer; 

ε1  = axial strain; 

εv  = volumetric strain; 

F200  = percent passing no. 200 sieve; 

D0  = deflection at center of loading plate (mils); 

D8  = deflection at 8 in. from the center of the FWD loading plate (mils); 

D12  = deflection at 12 in. from the center of the FWD loading plate (mils); 

D18  = deflection at 18 in. from the center of the FWD loading plate (mils); 
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D24  = deflection at 24 in. from the center of the FWD loading plate (mils); 

D36  = deflection at 36 in. from the center of the FWD loading plate (mils); 

D48  = deflection at 48 in. from the center of the FWD loading plate (mils); 

D60  = deflection at 60 in. from the center of the FWD loading plate (mils); 

Dr  = relative density; 

D50  = average aggregate size; 

k  = modulus of subgrade reaction; 

MR   = resilient modulus; 

γd  = dry unit weight; 

S  = slope; 

σ1  = major principle stress; 

σ3  = confining pressure; 

σd  = deviator stress; 

∆σd  = increment of deviator stress; 

∆σ1  = increment of major principle stress; 

R2  = coefficient of multiple determination; 

τ  = shear stress; 

∆τ  = increment of shear stress; 

u  = pore pressure;  

V  = shear wave velocity; and 

w  = crack width. 
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CHAPTER 5.  USE OF NEURAL NETWORKS TO DEVELOP ROBUST 
BACKCALCULATION AND FORWARD CALCULATION MODELS FOR 

CONCRETE PAVEMENT SYSTEMS 

 

A paper to be submitted to The Journal of Transportation Engineering (ASCE) 

 

Mustafa Birkan Bayrak and Halil Ceylan 

 

ABSTRACT: 

This paper presents a study to develop artificial neural network (ANN)-based 

backcalculation  and forward calculation models for predicting the concrete pavement 

parameters, i.e., the elastic modulus of Portland cement concrete (PCC) slab (EPCC), the 

coefficient of subgrade reaction (kS) of the pavement foundation, the radius of relative 

stiffness (RRS) of the pavement system, and the maximum tensile stresses at the bottom of 

the Portland cement concrete layer (σMAX) from falling weight deflectometer (FWD) 

deflection basin data and the thickness of the concrete pavement structure. The ISLAB2000 

finite element (FE) program, extensively tested and validated for over 20 years, has been 

used as an advanced structural model for solving the responses of the concrete pavement 

systems and generating a large knowledge database. The trained ANN-based models were 

capable of predicting the concrete pavement parameters and critical pavement responses with 

very low average absolute error (AAE) values. In order to develop more robust networks that 

can tolerate the noisy or inaccurate pavement deflection patterns collected from the FWD 

field tests, several network architectures were trained with varying levels of noise in them. 

Applied noise levels in deflection basins ranged from ± 2% to ± 10% to train the robust ANN 

models that can account for the variations in deflection measurements due to poor testing 

practices. ANN-based model predictions were also compared with the other methods. A 

sensitivity study was conducted to determine the most suitable ANN architecture for this 

specific problem. In addition, another sensitivity study was conducted to verify the 

significance of the layer thicknesses and the effect of bonding between the PCC and the base 

layer in the backcalculation procedure. Finally, the results of this study demonstrated that the 



 

 

106

developed ANN-based models can successfully predict the concrete pavement parameters 

and critical pavement responses with high accuracy.  

 

Key Words: Artificial Neural Networks, Falling Weight Deflectometer, Finite Element 

Analysis, Concrete Pavements, Pavement Layer Backcalculation and Forward Calculation. 

INTRODUCTION 

Falling weight deflectometer (FWD) and heavy weight deflectometer (HWD) testing have 

become the main nondestructive testing (NDT) techniques to structurally evaluate the in-

service pavements over the last twenty years. Falling weight deflectometer testing is often 

preferred over destructive testing methods because FWD testing is faster than destructive 

tests and do not entail the removal of pavement materials. In addition, the testing apparatus is 

easily transportable. Pavement properties are “backcalculated” from the observed dynamic 

response of the pavement surface to an impulse load (the falling weight). To evaluate the 

structural condition of in-service pavements and to characterize the layer properties as inputs 

into available numerical or analytical programs, backcalculation of pavement layer properties 

is a very useful tool. Most backcalculation procedures estimate pavement properties by 

matching measured and calculated pavement surface deflection basins.  

 

There are many advantages to using FWD tests, in lieu of, or supplement traditional 

destructive tests for pavement structural evaluation. Most important, is the capability to 

quickly gather data at several locations while keeping a runway, taxiway, or apron 

operational during these 2-minute to 3-minute tests, provided the testing is performed in 

close coordination with the Air Traffic Control. Without FWD/HWD testing, structural data 

must be obtained from numerous cores, borings, and excavation pits on existing 

highway/airport pavements. This can be very disruptive to highway/airport operations. FWD 

tests are economical to perform and data can be collected at up to 250 locations per day. The 

FWD/HWD equipment measures pavement surface deflections from an applied dynamic load 

that simulates a moving wheel (FAA 2004).  
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Backcalculated pavement layer parameters play a crucial role in pavement management 

systems in project specific and network level pavement testing and evaluation for 

Department of Transportations (DOTs) to make decisions on overall maintenance and budget 

plans. The primary focus of this study is to rapidly analyze large number of pavement 

deflection basins needed for routine pavement evaluation for both project specific and 

network level FWD testing. The backcalculated pavement parameters for the jointed plain 

Portland cement concrete pavement (JPCP) systems in this study are elastic modulus of the 

PCC slab, and coefficient of subgrade reaction of the pavement foundation. In addition to 

these concrete pavement parameters, radius of relative stiffness and maximum tensile stress 

at the bottom of the PCC layer were also forward calculated by developed ANN-based 

models since there is a strong relationship between critical pavement responses and the 

pavement performance. 

 

Over the years, researchers have developed several different methodologies for 

backcalculation of concrete pavement layer moduli from FWD measurements, including the 

AREA method for concrete pavements (Ioannides et al. 1989; Ioannides 1990; Barenberg 

and Petros 2006), ILLI-BACK (Ioannides 1994), graphical solution using ILLI-SLAB 

(Foxworthy and Darter 1989), use of regression analysis to solve AREA method for concrete 

pavements (Hall 1992; Hall et al. 1996), use of best fit algorithm to find radius of relative 

stiffness (Hall et al. 1996; Smith et al. 1996), and many others. FWD deflection basins and 

PCC slab thickness are the only information needed for predicting the concrete pavement 

parameters with developed ANN-based models. There is no need for the provision of seed 

moduli in the developed approach. The use of the ANN models also results in a drastic 

reduction in computation time compared to other methodologies.  

FINITE ELEMENT PROGRAMS FOR CONCRETE PAVEMENTS 

Today, a variety of finite element (FE) programs are available for the analysis and design of 

pavement systems. The two main categories of FE programs are those: (1) programs 
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specifically designed for the analysis of pavement systems, and (2) general-purpose 

programs. Finite element programs such as ABAQUS, ANSYS, and DYNA3D are powerful 

general-purpose programs with three-dimensional non-linear dynamic analysis capabilities. 

In several research studies, these programs have successfully been used for pavement 

analysis. A number of FE models built using these programs have been reported in the 

literature (Mallela and George 1994; Darter et al. 1995; Kennedy 1998). On the other hand, 

considerable computational resources and time needed for analyzing a structural system are 

among the limitations of the general-purpose FE programs.  

 

There are also FE-based programs developed specifically for analysis of concrete pavement 

systems such as ISLAB2000 (Tabatabaie and Barenberg 1978; Khazanovich 1994; 

Khazanovich et al. 2000), DIPLOMAT (Khazanovich and Ioannides 1995), KENSLABS 

(Huang 1985), WESLIQID (Chou 1981), J-SLAB (Tayabji and Colley 1983), FEACONS-IV 

(Tia et al. 1988), KOLA (Kok 1990), and EverFE (Davids et al. 1998). Most of these 

programs can analyze multi-wheel loading of one- or two-layered medium thick plates 

resting on a Winkler foundation or elastic solid (ISLAB2000, KENSLABS, WESLIQID). 

EverFE can analyze multi-layered pavement systems using a 3D-continuum brick element 

for the Portland cement concrete (PCC) and base layers. ISLAB2000 contains many 

advanced features that distinguish it from other pavement programs that are based on the 

plate theory.  

 

In addition to the FE programs, Westergaard (1926) solutions (plate theory) for PCC 

pavements are also used to analyze the concrete pavements. ANN trainings are also used to 

interpret results from databases of deflection profiles to estimate pavement properties 

(Ceylan 2004; Ceylan et al. 2004; Ceylan et al. 2005). Although there are different FE 

programs and other approaches to analyze the concrete pavements, all methods do not 

produce exactly the same results. In order to better understand the results produced by 

different programs, a sensitivity analysis was performed as part of this study. 
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Comparison of Finite Element Models and Closed-Form Solutions 

A sensitivity study was performed to analyze the differences in the slab-center deflections 

(D0, the maximum FWD deflection) obtained from ISLAB2000, DIPLOMAT, KENSLABS 

and Westergaard solutions. ISLAB2000 is a FE modeling program designed specifically for 

analyzing concrete pavements. In large part, it is an extension and improvement of the ILLI-

SLAB (Foxworthy and Darter 1989) and ILSL2 (Khazanovich 1994) programs. ISLAB2000 

is a significant improvement over it’s predecessors for the analysis of concrete pavement 

systems, enabling users to analyze a wide range of problems.  

 

ISLAB2000 allows the user to define an “unlimited” number of nodes, pavement layers, and 

wheel loads. It also includes an improved void analysis model. DIPLOMAT was developed 

by Khazanovich and Ioannides (1995), which is an extension of elastic layer and plate 

theories. Several programs have been developed based on Burmister elastic layer solutions, 

but only DIPLOMAT can model pavement layers as plates, springs and/or elastic layers 

together. On the other hand, one disadvantage of DIPLOMAT and other elastic layer 

programs (ELPs) is that joints cannot be modeled because layers are assumed infinite in the 

horizontal direction. The KENSLABS computer program is based on the FE method, in 

which slabs are divided into rectangular FE with a large number of nodes. KENSLABS can 

be applied to a maximum of 6 slabs, 7 joints, and 420 nodes. Both wheel loads and subgrade 

reactions are applied to the slab as vertical concentrated forces at the nodes.  

 

In this study, plate theory was used in the analyses and the pavement foundation is assumed 

as dense-liquid foundation (as Winkler-spring method). Different configurations of EPCC, 

hPCC, and kS were defined and the D0 deflections obtained from ISLAB2000, DIPLOMAT, 

and KENSLABS FE programs and Westergaard solutions were compared with each other 

(see Figure 5.1). The deflection profiles obtained from ISLAB2000, DIPLOMAT, and 

KENSLABS FE models for two pavement configurations were also presented in Figure 5.2. 
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Figure 5.1. Comparison of ISLAB2000, DIPLOMAT, and KENSLABS finite element model 
solutions with Westergaard theoretical solutions 

 

As can be seen from Figures 5.1 and 5.2, a good match was obtained for results from 

different models.  Finally, a solution database using the ISLAB2000 FE model was created 

since the ISLAB2000 is convenient due to the ease of modeling and flexibility in the analysis 

compared to other methods. ISLAB2000 can also analyze partially bonded layers, the effects 

of non-linear temperature distribution throughout the constructed layers, the mismatched 

joints and cracks and the effect of voids under the slab. On the other hand, there might be 

various reasons of the observed differences in the deflection profiles obtained from different 

methods. These reasons can be listed as follows. 

 

o ISLAB2000 and KENSLABS use finite slabs in the analysis (slab sizes, 

joints, and load transfer efficiencies must be identified in the programs) but 

DIPLOMAT and Westergaard solutions do not take into account the slab size, joints 

and load transfer efficiencies.  

o ISLAB2000 and KENSLABS use a rectangular or square loading area. On the 

other hand, DIPLOMAT and Westergaard solutions consider circular loading area. 
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Figure 5.2. Comparison of ISLAB2000, DIPLOMAT, and KENSLAB finite element model 

solutions for different pavement configurations 
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GENERATING ISLAB2000 FINITE ELEMENT SOLUTION DATABASE 

ISLAB2000 (Khazanovich et al. 2000) runs were generated by modeling slab-on-grade 

concrete pavement systems in order to train the ANN-based models. A single slab layer 

resting on a Winkler foundation was analyzed in all cases. Concrete pavements analyzed in 

this study were represented by a six-slab assembly, each slab having dimensions of 20 ft by 

20 ft (see Figure 5.3). A standard ISLAB2000 FE mesh (10,004 elements with 10,209 nodes) 

was constructed for the slab to maintain the same level of accuracy in the results from all 

analyses. A general view of the ISLAB2000 FE solution used in the study is shown in Figure 

5.4.  

 
Figure 5.3. ISLAB2000 finite element model meshing for the six-slab JPCP assembly 

 
The ISLAB2000 solutions database was generated by varying the elastic modulus of PCC 

slab, coefficient of subgrade reaction, and thickness of the PCC layer (hPCC) over a range of 

values representative of realistic variations in the field. The ranges used in the ISLAB2000 

analyses are shown in Table 5.1. Poisson’s ratio, slab width, slab length, PCC slab unit 

weight, and coefficient of thermal expansion  were set equal to 0.15, 20 ft, 20 ft, 0.087 lb/in3,  
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5.5x10-6 1/oF, respectively. The total number of ISLAB2000 runs conducted in this study was 

51,539. For each training, the ISLAB2000 solution database was first portioned to create a 

training set and an independent testing set of 2,000 patterns to check the prediction 

performance of the trained ANN-based models.  

Table 5.1. Ranges of the input parameters used in the ISLAB2000 database generation 

Pavement slab inputs Min. Value Max. Value 
EPCC, ksi  1,000 15,000 
hPCC, in. 6 25 
Pavement foundation inputs Min. Value Max. Value 
kS,  psi/in. 50 1,000 

 
 

Figure 5.4. A general view of the deflections and stresses at the bottom of the PCC slab 
under 9-kip loading in six-slab assembly 

 

The ranges of the pavement surface deflections calculated by ISLAB2000 are given in Table 

5.2. All pavement surface deflection values were normalized between the maximum value of 

the D0 (36.26 mils) and the minimum value of D60 (0 mils). According to LeCun (1993), each 
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input variable should be preprocessed so that its mean value, averaged over the entire 

training set, is close to zero.  Thus, inputs were normalized between +2 and -2.  In a similar 

way, outputs were normalized between 0.1 and 0.9 because of the effective ranges of the 

sigmoid activation function considered in the backpropagation type ANN trainings.  

Table 5.2. Pavement surface deflections range (inputs of the ANN-based models) 

 
D0 

(mils) 
D8 

(mils) 
D12 

(mils) 
D18 

(mils) 
D24 

(mils) 
D36 

(mils) 
D48 

(mils) 
D60 

(mils) 
Min. Value 0.29 0.29 0.28 0.27 0.27 0.25 0.22 0.00 
Max. Value 36.26 33.95 31.69 27.82 23.78 16.26 10.25 6.84 

 

The dense liquid (DL) model, proposed by Winkler (1864), was used to characterize the 

subgrade behavior in this study. Accurate modeling of subgrade support for pavement 

systems is not a simple task since many soil types exhibit non-linear, stress dependent elasto-

plastic behavior especially under the moving heavy wheel loads. Nevertheless, experience in 

concrete pavements analysis and design has shown that subgrade layer may be modeled as 

linear elastic because of the lower levels of vertical stresses acting on concrete pavement 

foundations. A plate on a dense liquid foundation is the most widely adopted mechanistic 

idealization for analysis of concrete pavements (NCHRP, 2003). Dense liquid foundation is 

implemented in several FE models, such as ISLAB2000, DIPLOMAT, KENSLABS, 

WESLIQID, J-SLAB, and FEACONS III (Tia et al., 1987). Consideration of the critical load 

transfer phenomena, occurring at the PCC slab joints, and the concomitant development of 

major distress types, such as faulting, pumping and corner breaking are the significant 

advantages of this approach. The DL foundation is the simplest foundation model and 

requires only one parameter, the coefficient of subgrade reaction, kS, which is the 

proportionality constant between the applied pressure and the load plate deflection. Subgrade 

deformations are local in character, that is, they develop only beneath the load plate. 

Furthermore, their behavior is considered linear-elastic and deformations are recoverable 

upon  removal of load (Tia et al. 1987). 
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SENSITIVITY STUDY FOR ACHIEVING OPTIMUM ANN ARCHITECTURE  

The selection of ANN architecture is not a straightforward decision-making process. Most of 

the time is spent to determine the appropriate architecture for a particular problem. 

Therefore, a sensitivity study was conducted to determine the most suitable architecture for 

the backcalculation of the concrete pavement parameters. For this purpose, different 

architectures were tried in order to obtain the minimum Average Absolute Error (AAE) value 

which is an indication of the success of the developed ANN-based models. The number of 

hidden layers, the number of neurons in each hidden layer, learning rate, and momentum 

factor were varied and the AAE values were compared. The results of the sensitivity study in 

determining the optimum architecture are presented in Figure 5.5. Based on the results of this 

sensitivity study and previous studies (Ceylan et al. 2005; Bayrak et al. 2006; Bayrak and 

Ceylan 2006), networks with two hidden layers with 60 neurons in each hidden layer were 

exclusively chosen for all models trained in this study. In addition, the learning rate and 

momentum factor values which are the internal ANN architecture parameters were chosen as 

0.2 and 0.6, respectively.   

 

Similar to the traditional regression methods, the output variables in ANN architecture are 

the dependent variables, which are defined according to the problem under study. Also, 

variables that appear in the input layer are independent variables. In order to show the 

individual effect of each deflection (ANN model inputs) on the concrete pavement 

parameters (ANN model outputs), multivariate correlation analyses were conducted and R2 

values obtained from these statistical analyses are presented in Figure 5.6. As seen from the 

results, the correlation between the pavement surface deflections and EPCC, RRS, and σmax is 

much higher for the deflections close to the loading point (D0, D12) than the outer deflections 

(D48, D60). On the other hand, the opposite is true for the kS which is highly correlated with 

the outer deflections (D48, D60). In addition, as the number of sensors increases, the mean 

value of elastic modulus of PCC slab increases and the mean value of coefficient of subgrade 

reaction decreases (Rufino et al. 2002). D0 and D12 deflections are relatively more sensitive 

to changes in the elastic modulus of PCC slab, compared to D48 and D60 deflections.  
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Figure 5.5.  Sensitivity study results for ANN architecture parameters 
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On the other hand, D48 and D60 deflections are much more sensitive to the changes in the 

subgrade support (kS).  In order to be able to compare the backcalculated and forward 

calculated concrete pavement parameters, four-, six-, seven-, and eight-deflection ANN-

based models were developed in this study. The results are presented in the following 

sections. 
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Figure 5.6. Correlations between deflections and concrete pavement parameters 

ANN-BASED PAVEMENT LAYER BACKCALCULATION AND FORWARD 
CALCULATION MODELS 

Artificial neural network methodology was chosen as the backcalculation and forward 

calculation method in this study. There are several different types of ANN such as 

backpropagation neural networks (BPNN), radial basis function networks (RBFNN), 

probabilistic neural networks (PNN), and generalized regression neural networks (GRNN), to 

name a few.  Computing abilities of ANNs have been proven in the fields of prediction and 

estimation, pattern recognition, and optimization (Adeli and Hung 1995; Golden 1996; 

Mehrotra 1997; Adeli and Park 1998; Haykin 1999). The best-known example of a neural 

network training algorithm is backpropagation (Rumelhart et al. 1986; Fausett 1994; 

Patterson 1996; Haykin 1999) which is based on a gradient-descent optimization technique. 

The backpropagation neural networks are described in many sources (Hegazy 1994; Adeli 

and Hung 1995; Mehrotra 1997; Topping and Bahreininejad 1997; Haykin 1999). A 

comprehensive description of ANNs is beyond the scope of this paper. The adoption and use 

of ANN modeling techniques in the recently released Mechanistic-Empirical Pavement 

Design Guide (NCHRP project 1-37A: Development of the 2002 Guide for the Design of 
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New and Rehabilitated Pavement Structures: Phase II) has especially placed the emphasis on 

the successful use of neural networks in geomechanical and pavement systems. 

 

Backpropagation type artificial neural network models were trained in this study with the 

results from the ISLAB2000 finite element program and were used as backcalculation tools 

for predicting the elastic modulus of the PCC slab, and coefficient of subgrade reaction, and 

as forward calculation tools for predicting the radius of relative stiffness, and maximum 

tensile stresses at the bottom of the PCC layer. A network with two hidden layers was 

exclusively chosen for all models trained in this study. Satisfactory results were obtained in 

the sensitivity study with this type of networks due to their ability to better facilitate the 

nonlinear functional mapping. The detailed information of the developed models is shown in 

Table 5.3. The comparison of the ISLAB2000 solutions and developed ANN-based model 

predictions for EPCC, kS, RRS, and σMAX were shown in Figure 5.7 to Figure 5.10, 

respectively. 

 

In the current study, basically four different ANN-based models have been developed which 

are BCM-EPCC, BCM-kS (for backcalculation), FCM-RRS, and FCM-σMAX (for forward 

calculation) models. Falling weight deflectometer deflections [D0(0 in.), D8(8 inches), D12(12 

inches), D18(18 inches), D24(24 inches), D36(36 inches), D48(48 inches), and D60(60 inches)] 

and PCC slab thickness (hPCC) were used as input variables in the developed ANN-based 

models. ANN models with different architectures (4-, 6-, 7-, and 8-deflection models) have 

been developed for backcalculation and forward calculation of concrete pavement parameters 

and critical pavement responses (see Table 5.3). 
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Table 5.3. Architectures and AAE values of the ANN-based models 

ANN  Input  ANN  AAE 
Models Parameters Architecture (%) 

BCM-EPCC-(4) D0, D12, D24, D36 + hPCC 5-60-60-1  0.34 
BCM-EPCC-(6) D0, D12, D24, D36, D48, D60 + hPCC 7-60-60-1  0.32 
BCM-EPCC-(7) D0, D8, D12, D18, D24, D36, D60 + hPCC 8-60-60-1  0.29 
BCM-EPCC-(8) D0, D8, D12, D18, D24, D36, D48, D60 + hPCC 9-60-60-1  0.30 
BCM-kS-(4) D0, D12, D24, D36  4-60-60-1  0.28 
BCM-kS-(6) D0, D12, D24, D36, D48, D60  6-60-60-1  0.22 
BCM-kS-(7) D0, D8, D12, D18, D24, D36, D60  7-60-60-1  0.19 
BCM-kS-(8) D0, D8, D12, D18, D24, D36, D48, D60  8-60-60-1  0.22 
FCM-RRS-(4) D0, D12, D24, D36 + hPCC 5-60-60-1  0.14 
FCM-RRS-(6) D0, D12, D24, D36, D48, D60 + hPCC 7-60-60-1  0.14 
FCM-RRS-(7) D0, D8, D12, D18, D24, D36, D60 + hPCC 8-60-60-1  0.23 
FCM-RRS-(8) D0, D8, D12, D18, D24, D36, D48, D60 + hPCC 9-60-60-1  0.14 
FCM-σMAX-(4) D0, D12, D24, D36 + hPCC 5-60-60-1  0.82 
FCM-σMAX-(6) D0, D12, D24, D36, D48, D60 + hPCC 7-60-60-1  0.75 
FCM-σMAX-(7) D0, D8, D12, D18, D24, D36, D60 + hPCC 8-60-60-1  0.72 
FCM-σMAX-(8) D0, D8, D12, D18, D24, D36, D48, D60 + hPCC 9-60-60-1  0.70 

Noise-Introduced Backcalculation Models 

In addition to the training and testing sets prepared for the zero-noise BCM-EPCC and BCM-

kS models, more ANN training sets were generated by introducing 4% (+2%), 10% (±5%)  

and 20% (±10%) noise to the FWD deflection basin data. The purpose of introducing noisy 

patterns in the training sets was to develop more robust networks that can tolerate the noisy 

or inaccurate deflection patterns collected from the FWD deflection basins. Noise 

introduction was as follows: ISLAB2000 solution databases were first partitioned to create 

training set patterns and an independent testing set of 2,000 patterns to check the 

performance of the trained ANN-based models. Uniformly distributed random numbers 

ranging from 0 to 4% (±2%) and 10% (±5%) for low-noise levels and ranging from 0 to 20% 

(±10%) for high-noise patterns were generated each time to create noisy training patterns. 

After adding randomly selected noise values only to the pavement surface deflections of D0, 

D8, D12, D18, D24, D48, and D60, new training data sets were developed for each noisy training 

set.  By repeating the noise introduction procedure, four more training data sets were formed 

for each backcalculation model. Including the original training set with no noise in it, a total 
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of 195,130 for EPCC and 247,695 for kS patterns were used to train the noise-introduced 

ANN-based backcalculation models. The architectures of the noise-introduced ANN-based 

backcalculation models were given in Table 5.4. As can be seen from the results, AAE 

values increase when high levels of noise are introduced to the deflection data as expected. 

Table 5.4. Architectures and AAE values of the noise-introduced ANN-based models 

ANN  Input  ANN  AAE 
Models Parameters Architecture (%) 

BCM-EPCC-(4) (+2%) D0, D12, D24, D36 + hPCC 5-60-60-1  2.57 
BCM-EPCC-(4) (+5%) D0, D12, D24, D36 + hPCC 5-60-60-1  5.96 
BCM-EPCC-(4) (+10%) D0, D12, D24, D36 + hPCC 5-60-60-1  11.61 
BCM-EPCC-(6) (+2%) D0, D12, D24, D36, D48, D60 + hPCC 7-60-60-1  1.11 
BCM-EPCC-(6) (+5%) D0, D12, D24, D36, D48, D60 + hPCC 7-60-60-1  2.59 
BCM-EPCC-(6) (+10%) D0, D12, D24, D36, D48, D60 + hPCC 7-60-60-1  5.22 
BCM-EPCC-(7) (+2%) D0, D8, D12, D18, D24, D36, D60 + hPCC 8-60-60-1  1.04 
BCM-EPCC-(7) (+5%) D0, D8, D12, D18, D24, D36, D60 + hPCC 8-60-60-1  2.37 
BCM-EPCC-(7) (+10%) D0, D8, D12, D18, D24, D36, D60 + hPCC 8-60-60-1  4.54 
BCM-EPCC-(8) (+2%) D0, D8, D12, D18, D24, D36, D48, D60 + hPCC 9-60-60-1  1.42 
BCM-EPCC-(8) (+5%) D0, D8, D12, D18, D24, D36, D48, D60 + hPCC 9-60-60-1  1.75 
BCM-EPCC-(8) (+10%) D0, D8, D12, D18, D24, D36, D48, D60 + hPCC 9-60-60-1  3.33 
BCM-kS-(4) (+2%) D0, D12, D24, D36  4-60-60-1  1.65 
BCM-kS-(4) (+5%) D0, D12, D24, D36  4-60-60-1  4.23 
BCM-kS-(4) (+10%) D0, D12, D24, D36  4-60-60-1  7.51 
BCM-kS-(6) (+2%) D0, D12, D24, D36, D48, D60  6-60-60-1  1.46 
BCM-kS-(6) (+5%) D0, D12, D24, D36, D48, D60  6-60-60-1  2.69 
BCM-kS-(6) (+10%) D0, D12, D24, D36, D48, D60  6-60-60-1  3.60 
BCM-kS-(7) (+2%) D0, D8, D12, D18, D24, D36, D60  7-60-60-1  1.21 
BCM-kS-(7) (+5%) D0, D8, D12, D18, D24, D36, D60  7-60-60-1  1.74 
BCM-kS-(7) (+10%) D0, D8, D12, D18, D24, D36, D60  7-60-60-1  2.71 
BCM-kS-(8) (+2%) D0, D8, D12, D18, D24, D36, D48, D60  8-60-60-1  1.17 
BCM-kS-(8) (+5%) D0, D8, D12, D18, D24, D36, D48, D60  8-60-60-1  1.58 
BCM-kS-(8) (+10%) D0, D8, D12, D18, D24, D36, D48, D60  8-60-60-1  2.23 
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Figure 5.7. Prediction performance of ANN-based models for backcalculating  

the elastic modulus of PCC slab, EPCC 
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Figure 5.8. Prediction performance of ANN-based models for backcalculating 

 the coefficient of subgrade reaction, ks 
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Figure 5.9. Prediction performance of ANN-based models for forward calculating 

the radius of relative stiffness, RRS  
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Figure 5.10. Prediction performance of ANN-based models for forward calculating the 

maximum tensile stress at the bottom of the PCC layer, σMAX  

THE SIGNIFICANCE OF LAYER BONDING AND THICKNESS IN THE 
PAVEMENT LAYER BACKCALCULATION 

Two of the important issues in the backcalculation of the concrete pavement parameters are 

the degree of bonding between layers and thickness of the PCC and base layers. To simplify 
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the ANN-based backcalculation methodology developed in this study, only one thickness 

value (effective PCC thickness) was considered in the analysis. The effective thickness of the 

pavement structure is directly related to the bonding conditions between the PCC layer and 

the base layer. Since it is difficult to construct a long pavement section with a uniform 

thickness value, it is assumed, during the backcalculation of the pavement parameters, that 

pavement thickness is uniform for a given section and it’s the value taken from the project 

files. To determine the effective thickness of a two-layer pavement section for bonded, 

unbonded, and partially bonded cases, the equations given below are considered (Ioannides 

et al., 1992). 

 

Effective thickness for fully bonded PCC layers was computed using the following 

equations: 
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Effective thickness for unbonded PCC layers was computed using the following equations: 
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Effective thickness for partially bonded PCC layers was computed using the following 

equations: 
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where as; 

 he-b   =  Effective thickness of the fully bonded PCC layers 

 he-u   =  Effective thickness of the unbonded PCC layers 

 he-p   =  Effective thickness of the partially bonded PCC layers 
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 E1 or E2  =  Elastic modulus for layer 1 or 2 

 h1 or h2  =  Thickness for layer 1 or 2 

 xna  =  Neutral axis distance from top of layer 

 x             =  Degree of bonding which ranges between 0 and 1 

The effect of the layer thickness in the EPCC predictions 

The predicted layer moduli are very sensitive to the pavement layer thickness. Even a small 

change in the assumed PCC layer thickness causes considerable differences in the 

backcalculated elastic moduli of the PCC layer. To demonstrate the effect of the PCC 

thickness on the backcalculated EPCC values, field FWD data was used (see Figure 5.11).  

The effect of pavement layer bonding in the EPCC  predictions 

In order to investigate the sensitivity of the layer bonding between the pavement layers, 

again actual FWD data was used. The variation of the backcalculated EPCC values with 

different degree of layer bonding for the concrete pavement section is presented in Figure 

5.12. As seen in Figure 5.12, a change in the degree of layer bonding between the pavement 

layers affects the backcalculated EPCC values significantly. Finally, results from this 

sensitivity analysis show the significance of the layer thickness and degree of bonding in the 

EPCC backcalculation procedure. Since the exact thickness of the PCC layer and the degree of 

bonding between the PCC and base layers are not exactly known, more scatter is expected in 

the predictions. In addition, the time of the FWD testing is also crucial in the EPCC 

backcalculation due to curling and warping problems in concrete pavements. The results of 

previous studies indicate that the variations in temperature between two separate FWD tests 

affect primarily the elastic modulus of the slab (Ioannides et al. 1989). Due to the slab 

curling, temperature difference across the depth of the concrete pavement in the test sections 

is another major reason of the scatter in EPCC predictions (Bayrak et al. 2006). Therefore, the 

main reasons of the scatter in the predictions are basicly the curling and warping issues, the 

bonding degree between the PCC and base layers, and uncertainities in the thickness of the 

PCC layer. Also, the time of the year (spring, fall etc.) that FWD test is conducted also 

affects the backcalculated kS due to the freeze and thaw effects in the pavement foundation. 
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To improve the EPCC backcalculation, nondestructive evaluation techniques (NDT) such as 

Ground Penetrating Radar (GPR) readings or cores (destructive technique) can be taken 

along the test sections to determine the exact thickness of the layers at the FWD test points. 

Also, the time of the FWD tests due to curling and warping issues and the shape of the PCC 

slab should exactly be taken into account in the interpretations of the analyses of the concrete 

pavements for both EPCC and kS predictions. 
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Figure 5.11. Effect of layer thickness on EPCC backcalculation 
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Figure 5.12. Effect of degree of layer bonding on EPCC backcalculation 
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The closed-form equations used in this sensitivity analysis were obtained from a statistical 

study with the ISLAB2000 solution database used in this paper. There is a unique 

relationship between AREA and radius of relative stiffness (Ioannides 1989). AREA is a 

parameter that has been used to analyzed concrete pavement parameters and can be 

calculated for a given number and configuration of deflection sensors. Radius of relative 

stiffness (RRS) can be calculated from the AREA-RRS equations. AREA value was 

calculated from 4 deflections (D0, D12, D24, and D36) and 6 deflections (D0, D12, D24, D36, 

D48, and D60) as shown in Equations 5.6 and 5.7 below. Load (P), radius of load plate (a), and 

Poisson’s ratio (µ) were set to 9,000-lbs, 5.9 inches, and 0.15, respectively. The equations 

used in the numerical backcalculation of the concrete pavement parameters are summarized 

below:  
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RRS4(in.) = (-128.9885)+(5.4082*AREA4)+(1.0224*(AREA4-30.8637)2)+ 

(0.1919*(AREA4-30.8637)3)+(0.0146*(AREA4-30.8637)4)                             (5.8) 

 

RRS6(in.)  = (-49.1500)+(1.9800*AREA6)+(0.1147*(AREA6-44.3008)2)+  

(0.0075*(AREA6-44.3008)3)+(0.0002*(AREA6-44.3008)4)                                (5.9) 
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COMPARISON OF THE ANN-BASED MODEL PREDICTIONS WITH RESULTS 
FROM OTHER METHODS   

ANN-based models predictions were compared with the closed-form solutions, pavement 

layer backcalculation software results (EverCalc 5.0 and BAKFAA) and finite element 

program solutions (ISLAB2000 and EverFE 2.24) using the National Airport Pavement Test 

Facility (NAPTF) FWD data. The FWD tests were conducted on the NAPTF’s LRS, MRS, 

and HRS sections. Each NAPTF test section is identified using a three-character code, where 

the first character indicates the subgrade strength (L for low, M for medium, and H for high), 

the second character indicates the test pavement type (F for flexible and R for rigid-

concrete), and third character signifies whether the base material is conventional (C) or 

stabilized (S). The three concrete pavement sections are designated as follows: (a) LRS – 

concrete pavement with stabilized base over low-strength subgrade, (b) MRS – concrete 

pavement with stabilized base over medium-strength subgrade, and (c) HRS – concrete 

pavement with stabilized base over high-strength subgrade. A representative FWD deflection 

profile from each test section was selected (see Figure 5.13) to compare the backcalculated 

and forward calculated concrete pavement parameters from different methodologies. All 

FWD deflection basins were normalized to 9-kip in order to compare the results.  

 

The comparison of the EPCC, kS, and RRS predictions obtained from four different 

methodologies are presented in Figure 5.13. As the results of the comparison shows, the 

predictions obtained from different methods are close to each other although there are small 

differences due to the nature of the using different methods. ANN-based predictions seem 

generally more conservative based on solutions using other approaches. ANN-based model 

predictions for σMAX were also compared with the closed-form solutions, ISLAB2000 and 

EverFE 2.24 FE program solutions for different pavement configurations (see Figure 5.14). 

A very good match was also obtained with the other program solutions for σMAX predictions. 

Please note that the slab-edge loading results were used for the σMAX analyses since the 

maximum (critical) tensile stress at the bottom of the PCC layer occurs in the slab edge.  It is 

a very big advantage to be able to predict the pavement properties and critical pavement 

responses from FWD deflection basins in real time during the field testing without need to 
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any sophisticated input requirements. There is also no need to a seed moduli or any iteration 

which most pavement layer backcalculation programs require. In addition, as the speed of the 

ANN-based models (only 1 second) to backcalculate and forward calculate the concrete 

pavement parameters and critical pavement responses is also taken into account, it can be 

easily concluded that ANN approach overcomes this complex problem in an accurate, fast, 

easy and acceptable manner.   
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Figure 5.13. Comparison of the EPCC, kS, and RRS predictions.  

APPLICATION TO ACTUAL FIELD FWD DATA 

The proposed ANN-based models were also utilized to backcalculate and forward calculate 

the concrete pavement parameters and pavement responses using the actual FWD field tests 

conducted by Iowa Department of Transportation in Iowa-Allamakee (US-18) and Iowa-

Wright (I-35) counties. The elastic modulus of the PCC slab, the coefficient of subgrade 

reaction, radius of relative stiffness, and maximum tensile stress at the bottom of the PCC 

layer predictions obtained from the proposed ANN-based models were shown in Figure 5.10 

for these two FWD data sets. The standard deviation values obtained from these analyses are 



 

 

131

very low and the predictions seem very consistent. All FWD test data was normalized to 9-

kip in order to compare the results. PCC slab thicknesses were taken from the corresponding 

milepost documents. Very uniform predictions were obtained for kS, RRS, and σMAX values 

in both FWD data sets. Instead of slab-edge deflection data, slab center FWD test results 

were used for the prediction of maximum tensile stresses at the bottom of the PCC layer by 

developing ANN models that uses slab center deflection data since only the slab center FWD 

test results were available in this particular example.  Please also note that FWD deflection 

basins seemed to be very erroneous (D24 > D0 etc.) were filtered from the analyzed database.  
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Figure 5.14. Comparison of the σMAX predictions. 

Noise-introduced model predictions for EPCC and kS were also presented in Figure 5.16 to 

Figure 5.19 for both FWD data sets. Even though all the predictions are very close to each 
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other, generally noise-introduced model predictions were slightly higher for EPCC and slightly 

lower for kS compared to the zero-noise model predictions. 
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Figure 5.15. ANN-based model predictions from actual FWD deflection basin data for 

concrete pavement properties and responses  
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Figure 5.16. Zero-noise and noise-introduced model predictions for EPCC (Allamakee 

County) 
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Figure 5.17. Zero-noise and noise-introduced model predictions for kS (Allamakee County) 
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Figure 5.18. Zero-noise and noise-introduced model predictions for EPCC (Wright County) 
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Figure 5.19. Zero-noise and noise-introduced model predictions for kS (Wright County) 
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DISCUSSION OF RESULTS  

A total of 40 ANN-based backcalculation and forward calculation models were developed in 

this study which can predict the elastic modulus of the PCC slab (EPCC), coefficient of 

subgrade reaction (kS), radius of relative stiffness (RRS), and maximum tensile stresses at the 

bottom of the PCC layer (σMAX) of concrete pavement systems from the FWD deflection 

basin data and PCC slab thickness.   

The developed ANN-based models gave very low average absolute error values for all zero-

noise models (< % 0.82) for synthetic database. On the other hand, the case is not like that 

when the actual FWD data is utilized in the developed models. There might be always some 

variability in the slab thicknesses in the field due to the poor construction which will directly 

affect the backcalculated pavement parameters. In addition, there might be some noise in the 

collected data, might be errors in data collection process due to FWD machine sensor 

calibration, and might be some operator mistakes. Therefore, actual FWD deflections which 

are the basic inputs of the backcalculation models are not always as perfect as synthetic data. 

Thus, noise-introduced ANN models were developed as well for the backcalculation models. 

As a matter of fact, meaningless FWD deflection data should be filtered and extracted from 

the data analysis.  

A sensitivity study was conducted to determine the most appreciate architecture for the 

backcalculation of the concrete pavement parameters. Based on the results of this study, 

ANN networks with two hidden layers with 60 neurons in each hidden layer were 

exclusively chosen for all models trained in this study. 

The predictions of the developed ANN-based models were compared with the closed-form 

solutions, pavement layer backcalculation softwares (EverCalc 5.0, and BAKFAA) and FE 

program solutions (ISLAB2000 and EverFE 2.24). Actual FWD deflection basins were 

selected from three different test sites from National Airport Pavement Test Facility data for 

the comparison study. The predictions of different methods for this specific data were 

presented. Even though there are some differences in the predictions obtained from different 

methodologies; the results seem very similar to each other but the real time prediction 
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capability (< 1 sec.) and the ease of the usage of the ANN-based models (no seed moduli, no 

itearation, etc.) make them very powerful tools over the other methods.  

Also, two different sets of field FWD deflection basin data were utilized to backcalculate the 

elastic modulus of the PCC slab, coefficient of subgrade reaction, and to forward calculate 

the radius of relative stiffness, and tensile stresses at the bottom of the PCC layer in two 

pavement test sections. EPCC, kS, RRS, and σMAX predictions for IA-Allamakee and IA-

Wright counties concrete pavement test sections were presented. Consistent results were 

obtained from the developed ANN-based models by using the field FWD deflection basins. It 

should be noted that kS values might show considerable seasonal changes throughout the 

year, and the time of the FWD testing used for backcalculation should be taken into account 

in the design level. All FWD testings used in this case study were conducted in May, 2006.   

The backcalculated coefficient of subgrade reaction is independent of the assumed PCC slab 

thickness values but even a small change in the assumed PCC slab thickness causes critical 

differences in the backcalculated elastic moduli of the PCC slab (Ioannides 1989). Therefore, 

the thickness of the PCC slab was not used as an input parameter in the developed BCM-kS 

backcalculation models. On the other hand, the thickness of the PCC slab playing a crucial 

role in the EPCC backcalculation is one of the most important parameters in the BCM-EPCC 

prediction models. Generally, slab thickness exhibits considerable variability in the field and 

this has a large impact on the backcalculated PCC slab properties. Consequently, a given 

error in the estimate of the thickness of the PCC slab will have significant effects on the 

backcalculated slab modulus. A sensitivity study was conducted in the study to show the 

significance of the layer thickness and layer bonding on the backcalculated layer moduli. 

In addition, the time of the day for the FWD testing is also crucial in the EPCC 

backcalculation due to curling and warping problems in concrete pavements. The results of 

the previous studies indicate that the variations in temperature between two separate FWD 

tests on the same pavement section affect primarily the elastic modulus of the slab (Ioannides 

et al. 1989). Basically, more scatter is expected in EPCC predictions due to the curling and 
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warping issues, possible variations in PCC slab thickness, and the uncertainties in bonding 

degree between the PCC and base layers. 

The backcalculated and forward calculated concrete pavement properties and critical 

pavement responses are significantly affected from the number of the FWD sensors. As the 

number of sensors increases, the mean value of elastic modulus of PCC slab increases and 

the mean value of coefficient of subgrade reaction decreases (Rufino et al. 2002). D0 and D12 

deflections are relatively more sensitive to changes in the elastic modulus of PCC slab, 

compared to D48 and D60 deflections. On the other hand, D48 and D60 deflections are much 

more sensitive to the changes in the subgrade support (kS). Therefore, BCM-EPCC-(4) model 

(Inputs: D0, D12, D24, D36, and hPCC) is proposed for the elastic modulus of PCC slab 

predictions, and BCM-kS-(6) model (Inputs: D0, D12, D24, D36, D48, and D60) is proposed for 

the coefficient of subgrade reaction predictions. FCM-RRS-(4) model (Inputs: D0, D12, D24, 

D36, and hPCC) and FCM-σMAX-(4) model (Inputs: D0, D12, D24, D36, and hPCC) are also 

proposed for the radius of relative stiffness, and maximum tensile stresses at the bottom of 

the PCC layer predictions, respectively.  

CONCLUSIONS 

ANN-based backcalculation and forward calculation models developed in this study 

successfully predicted the elastic modulus of Portland cement concrete layer (EPCC), the 

coefficient of subgrade reaction (kS), the radius of relative stiffness (RRS), and the maximum 

tensile stresses at the bottom of the PCC layer (σMAX) from FWD deflection data in a rapid 

and accurate manner. Several network architectures were trained with varying levels of noise 

in them in order to develop more robust networks that can tolerate the noisy or inaccurate 

pavement deflection patterns collected from the FWD field tests. In addition, a sensitivity 

study was conducted for the ANN model architecture. The prediction capabilities of the 

ANN-based models developed in this study were compared with the pavement layer 

backcalculation software results (EverCalc 5.0 and BAKFAA), finite element program 

solutions (ISLAB2000 and EverFE 2.24) and closed-form equations. A good agreement was 
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satisfied on this comparison study.  The significance of the layer thickness and layer bonding 

was also presented in a sensitivity study. The use of the ANN-based models also resulted in a 

drastic reduction in computation time. Finally, it can be concluded that the developed ANN-

based models can be utilized to backcalculate the EPCC, and kS, and to forward calculate the 

RRS and σMAX with very low average absolute error values (<0.82 % for the synthetic 

deflection basins).   
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CHAPTER 6.   BACKCALCULATION OF TOTAL EFFECTIVE LINEAR 
TEMPERATURE DIFFERENCE (TELTD) IN JOINTED PLAIN CONCRETE 

PAVEMENT SYSTEMS 

A paper to be submitted to The Journal of Transportation Engineering (ASCE) 

 

Mustafa Birkan Bayrak and Halil Ceylan 

 

ABSTRACT 

Falling Weight Deflectometer (FWD) tests are often conducted on concrete pavements to 

assess the in-situ structural capacity of pavement systems. The pavement surface deflections 

are affected from the curling resulting from the differential expansion and contraction 

between the top and bottom of the concrete slabs. Generally, most of the backcalculation 

programs do not take into account the curling effects in the backcalculation of structural 

capacity of pavement systems and the first step for this goal should be to predict the total 

effective linear temperature difference (TELTD). The objective of this investigation is to 

develop a rapid methodology for backcalculating the TELTD in jointed plain concrete 

pavements (JPCP) from the FWD deflection basins and the thickness of the concrete 

pavement layer. With additional tests in the field, it is also possible to estimate the effective 

built-in temperature difference (EBITD) which is an important component of any 

mechanistic-empirical design procedure for jointed plain concrete pavements. The results of 

this study demonstrated that the developed ANN-based models can successfully predict the 

total effective linear temperature difference of in-service pavements in an efficient and cost-

effective way without any need for embedded instrumentations in concrete pavements. 

Therefore, such ANN-based backcalculation models can be used for large number of 

concrete slabs in a relatively short period of time for estimating the TELTD that can be used 

for adjustments for the in-situ structural capacity of JPCP systems. 

 

Key Words: Artificial Neural Networks, Falling Weight Deflectometer, Finite Element 

Analysis, Concrete Pavements, Curling, Total Effective Linear Temperature Difference, 

Pavement Layer Backcalculation, Nondestructive Testing and Evaluation. 
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INTRODUCTION 

Daily and seasonal variations in weather conditions and fixed built-in effects in concrete 

layer cause the concrete slabs to curl up or down at joints and around the perimeter. Curling 

in concrete slabs is a combination of five nonlinear components which are temperature 

gradient, built-in temperature gradient, moisture gradient, differential drying shrinkage, and 

creep (Rao and Roesler 2005a). The total effective linear temperature difference (TELTD) is 

represented as the total amount of curling in a slab due to the combination of these five 

factors. Also, effective built-in temperature difference (EBITD) is represented as the 

difference between the TELTD and the temperature difference between top and bottom of a 

concrete slab (∆TTG). The relationship between these two definitions was shown in Equation 

6.1. 

 TELTD = ∆TTG + EBITD                            (6.1) 

The concrete slabs tend to curl up when the slab surface is cooler and drier than base [see 

Figure 6.1(a)], and tend to curl down when the slab surface is at a higher temperature and 

moisture than base [see Figure 6.1(b)]. Rao and Roesler (2005b) indicated that temperature 

difference in a typical slab can vary from a night-time value of 14 0F to 23 0F to a day-time 

value of 59 0F to 77 0F depending on the climatic conditions, slab geometry, material 

properties of the slab and base, subgrade moisture content, etc. Rao and Roesler (2005b) also 

stated that EBITD can be in a range of -22 0F to 23 0F, or even greater.  

 

Generally, concrete slabs are not completely flat under the normal environmental conditions 

due to the curling effects and concrete slab responses are affected from these curling effects 

throughout the day and season. Researchers have been focusing on the temperature and 

moisture gradient effects on concrete slab behavior for a long time (Hatt 1925; Carlson 1938; 

Hveem 1951; Hveem and Tremper 1957). The pavement performance is directly affected 

from the curling behavior of concrete slabs. Therefore, the mechanistic-empirical design 

procedures generally take into account the temperature gradients and EBITD values 

(Zollinger and Barenberg 1989; Darter et al. 2001; Hiller and Roesler 2002). In addition, 

backcalculated concrete slab and subgrade moduli are affected from the time of the day at 
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which deflection testing is done (Ioannides 1989). This effect is most likely due to 

temperature gradients and the resulting slab curling. Therefore, accounting for the effect of 

slab curling is very important for reliable interpretation of deflection data and the first step 

on this goal is to determine the amount of curling in concrete slabs. Then, this curling 

amount can be used as another input parameter in the backcalculation of concrete slab and 

subgrade moduli.  

 
                                           (a)                       (b) 

Figure 6.1.  (a) Typical night-time curling (b) Typical day-time curling 

GENERATING ISLAB2000 FINITE ELEMENT SOLUTION DATABASE 

In order to train the ANN models, ISLAB2000 (Khazanovich et al. 2000) runs were 

generated by modeling slab-on-grade concrete pavement systems. A single slab layer resting 

on a Winkler foundation was analyzed in all cases. Concrete pavements analyzed in this 

study were represented by a six-slab assembly, each slab having dimensions of 15 ft by 15 ft 

(4.5 m by 4.5 m).  

 

To maintain the same level of accuracy in the results from all analyses, a standard 

ISLAB2000 finite element mesh was constructed for the slab. This mesh consisted of 10,004 

elements with 10,209 nodes. The ISLAB2000 solutions database was generated by varying 

the elastic modulus of PCC slab (EPCC), coefficient of subgrade reaction (kS), thickness of 

PCC layer (hPCC), total effective linear temperature difference (TELTD), and load transfer 

efficiency (LTE) over a range of values representative of realistic variations in the field. The 
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ranges used in the analyses are shown in Table 6.1. The input parameters were selected 

randomly between the minimum and maximum values. The Poisson’s ratio (ν), the slab 

width (W), the slab length (L), PCC unit weight (γ), and coefficient of thermal expansion (α) 

were set equal to 0.15, 15 ft (4.5 m), 15 ft (4.5 m) , 0.087 lb/in3( 2,408.15 kg/m3), 5.5x10-6 

1/oF ( 9.9x10-6 1/oC), respectively.  

Table 6.1. Ranges of the input parameters used in the ISLAB2000 database generation 

Pavement System Inputs Minimum Value Maximum Value 
EPCC, (ksi)      2,000 10,000 
kS,  (psi/in)     50 700 
hPCC, (in)        6 20 
TELTD, (oF)  -60 +60 
LTE, (%)        1 99 

 
A general view of the ISLAB2000 FE solution is shown in Figure 6.2(a). As the 

environmental effects are introduced to the pavement system in addition to the typical traffic 

loading, additional deflections and stresses occur in concrete slabs as can be seen from 

Figure 6.2(b).  

PROCEDURE OF THE DEVELOPED APPROACH 

Steps in the preparing the ANN training database: 

 Step 1. Totally 8,734 different pavement and loading configurations were prepared to 

be conducted in ISLAB2000 FE program. ISLAB2000 program input parameters were 

selected randomly between the minimum and maximum values that had been previously 

determined for each parameter. 

 Step 2. ISLAB2000 runs were applied for three different loadings for each pavement 

configurations. 

 Loading 1: 9-kip traffic loading in the center of the slab + Temperature loading, 

 Loading 2: 9-kip traffic loading in the corner of the slab + Temperature loading, 

 Loading 3: Temperature loading only. 

Then, corresponding deflections were extracted from ISLAB2000 solution database. 
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(a)                                                                    (b) 

Figure 6.2. A general view of the ISLAB2000 solutions for deflections and stresses:  
(a) Traffic load only, (b) Traffic load + Temperature 
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 Step 3. In this step, effect of temperature on the pavement surface deflections was 

investigated by comparing ISLAB2000 runs. In the field, concrete slabs are generally curled 

up or down daily because of the fluctuations in the temperature and moisture during the day 

and night in addition to the built-in curling which already exists in the slab. That’s why the 

concrete slabs are not in completely flat condition during the FWD testing. Therefore, FWD 

sensors are positioned in the field on a curled slab, not on a completely flat slab and the 

deflections measured by the FWD sensors are function of the FWD loading and the total 

amount of curling in the slab. When the concrete slabs curl up, some additional voids occur 

under the edges and corners of the slab due to the loss of contact between the pavement layer 

and subgrade and higher FWD deflections are obtained from the field tests conducted in the 

edges and corners of the concrete slabs compared to the flat-slab conditions. On the other 

hand, very similar deflections are obtained in the mid-slab (center) tests since there is not any 

loss of contact between the concrete slab and subgrade even in the curl up condition. In the 

curl down conditions, excessive voids occur under the mid-slab instead of edges and corners. 

This time loss of contact occurs under the center of the slab and it is expected to have 

different deflection basins from the mid-slab FWD tests for curl down condition and flat-slab 

conditions. The Figure 6.3 show all these four conditions for mid-slab and slab corner for 

curl up, curl down, and flat-slab conditions. As expected, different deflection basins are 

obtained in the mid-slab for positive temperature gradient and in the corner for negative 

temperature gradient. On the other hand, same deflection basins are obtained in the mid-slab 

for negative temperature gradient and in the corner for positive temperature gradient for 

curled and flat conditions. 

 Step 4. The total number of the ISLAB2000 runs conducted in this study was 8,734. 

Corresponding deflection basins and loading condition were extracted from the ISLAB2000 

solution database for each pavement configuration (see Figure 6.4). Then, in order to find out 

the deflections due to the 9-kip traffic loading only in a curled slab (temperature-introduced 

slab), “Loading 1 – Loading 3” and “Loading 2 – Loading 3” (as explained in Step 2) 

deflection basins were calculated to create the ANN training database. These adjusted 

deflection basins were used as the input parameters in the ANN trainings in addition to the 

thickness of the PCC layer and the load transfer efficiency across the transverse joint. In the 
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field, all input parameters required for the proposed approach are obtained from the FWD 

tests except the thickness value which can be determined from the project documents, 

mileposts, or from other sources for each pavement section. 
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Figure 6.3. Comparison of deflection basins: (a) Slab center, +100F, (b) Slab center, -100F, 
(c) Slab corner, +100F, and (d) Slab corner, -100F.  
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Figure 6.4. The schematic view of the structural model 

 

Steps in the development of the ANN-based TELTD backcalculation models: 

 Step 5. The next step in the development of ANN-based TELTD backcalculation 

models is the training of the ANN models. For each training, the ISLAB2000 solution 

database was first portioned to create a training set of 8,234 (94%) and an independent 

testing set of 500 (6%) patterns to check the prediction performance of the trained ANN 

models. Backpropagation type ANN architectures with two hidden layers were used for the 

training of the ANN models in this study. A general view of the ANN model can be seen in 

Figure 6.5. 

 

 
Figure 6.5. The schematic view of the ANN-based backcalculation model 
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 Step 6. The FWD surface deflections (D0, D8, D12, D18, D24, D36, D48, and D60) are 

often collected at several different locations, at the drop location (0) and at radial offsets of 

8-in. (203-mm), 12-in. (254-mm), 18-in. (457-mm), 24-in. (610-mm), 36-in. (914-mm), 48-in 

(1219-mm), and 60-in. (1524-mm), and 72-in. (1829-mm). Several ANN-based 

backcalculation models were developed using different FWD sensor configurations. For 

example, there are 4-Deflection (D0, D12, D24, D36), 6-Deflection (D0, D12, D24, D36, D48, 

D60), 7-Deflection (D0, D8, D12, D18, D24, D36, D60), and 8-Deflection (D0, D8, D12, D18, D24, 

D36, D48, D60) ANN-based backcalculation models to predict TELTD. Please note that each 

model uses both center and corner FWD deflection basins as input parameters which means 

4-Deflection model uses actually eight deflection values (four deflections from center and 

four deflections from corner FWD loading). The average absolute error (AAE) values were 

calculated to investigate the prediction capability of each model as tabulated in Table 6.2. 

Figure 6.6 shows the comparison of the ANN-based backcalculation model predictions and 

ISLAB2000 solutions. The training progress curves show also the trend of the decrease of 

the mean squared error (MSE) for each model (see Figure 6.7). 

Table 6.2. Input/output configuration of ANN-based TELTD backcalculation models 

Model Name Inputs Output AAE( oF ) 
TELTD-4DEFL Center 4Defl.+Corner 4Defl.+hPCC+LTE TELTD 1.37 
TELTD-6DEFL Center 6Defl.+Corner 6Defl.+hPCC+LTE TELTD 1.30 
TELTD-7DEFL Center 7Defl.+Corner 7Defl.+hPCC+LTE TELTD 1.53 
TELTD-8DEFL Center 8Defl.+Corner 8Defl.+hPCC+LTE TELTD 1.33 
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Figure 6.6. Prediction performance of the ANN-based models for backcalculating the Total 

Effective Linear Temperature Difference, TELTD 
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Figure 6.7. Training progress curve for the TELTD backcalculation models 
  

 Step 7. In addition to the training and testing sets prepared for backcalculation 

models, more ANN training sets were generated by introducing +2%, ±5%  and ±10% noise 

to the FWD deflection data used in backcalculation models.  The purpose of introducing 

noisy patterns in the training sets was to develop more robust networks that can tolerate the 

noisy or inaccurate deflection patterns collected from the FWD deflection basins. Noise 

introduction to trained ANN models was as follows: ISLAB2000 solution database was first 

partitioned to create training sets of 8,234 training patterns and an independent testing set of 

500 patterns to check the performance of the trained ANN models. Uniformly distributed 

random numbers ranging from -2 to +2% (± 2%), -5 to +5% (± 5%) and -10 to +10%( ± 

10%) were generated each time to create noisy training patterns. After adding randomly 

selected noise values only to the pavement surface deflections of D0, D8, D12, D18, D24, D48, 
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and D60, new training data sets were developed for each noisy training set.  By repeating the 

noise introduction procedure, four more training data sets were formed for each 

backcalculation models.  Including the original training set with no noise in it, a total of 

41,170 patterns were used to train the noise-introduced ANN-based backcalculation models. 

The AAE values of the noise-introduced TELTD backcalculation models were tabulated in 

Table 6.3. 

Table 6.3. Input/output configuration of noise-introduced ANN-based TELTD 
backcalculation models 

Model Name Inputs Output AAE( oF ) 

TELTD-4DEFL-( +2%) Center 4Defl.+Corner 4Defl.+hPCC+LTE TELTD 1.49 
TELTD-4DEFL-( +5%) Center 4Defl.+Corner 4Defl.+hPCC+LTE TELTD 1.91 
TELTD-4DEFL-( +10%) Center 4Defl.+Corner 4Defl.+hPCC+LTE TELTD 2.51 

TELTD-6DEFL-( +2%) Center 6Defl.+Corner 6Defl.+hPCC+LTE TELTD 1.38 
TELTD-6DEFL-( +5%) Center 6Defl.+Corner 6Defl.+hPCC+LTE TELTD 1.56 
TELTD-6DEFL-( +10%) Center 6Defl.+Corner 6Defl.+hPCC+LTE TELTD 1.85 

TELTD-7DEFL-( +2%) Center 7Defl.+Corner 7Defl.+hPCC+LTE TELTD 1.28 
TELTD-7DEFL-( +5%) Center 7Defl.+Corner 7Defl.+hPCC+LTE TELTD 1.38 
TELTD-7DEFL-( +10%) Center 7Defl.+Corner 7Defl.+hPCC+LTE TELTD 1.88 

TELTD-8DEFL-( +2%) Center 8Defl.+Corner 8Defl.+hPCC+LTE TELTD 1.41 
TELTD-8DEFL-( +5%) Center 8Defl.+Corner 8Defl.+hPCC+LTE TELTD 1.45 
TELTD-8DEFL-( +10%) Center 8Defl.+Corner 8Defl.+hPCC+LTE TELTD 1.73 

 
 

Steps in the backcalculation of TELTD with field data: 

 Step 8. In order to be able to use this approach, FWD load must be dropped at three 

different locations in a concrete slab in the field (see Figure 6.8). One FWD loading is 

needed at the center of the slab, one is needed in the corner of the slab, and the last one is 

needed in the mid-transverse joint location in the slab. Load transfer efficiency (LTE) which 

is one of the input parameters of the developed approach can be easily calculated as the ratio 

of unloaded slab deflection to loaded slab deflection as shown in Figure 6.9. Then, the only 

information needed is the thickness of the concrete layer which can be obtained from the 
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project documents. In summary, TELTD in concrete slabs can be backcalculated from FWD 

deflection basins with the developed ANN-based models in a rapid and cost-effective way. 

 
Figure 6.8. FWD loading locations for the proposed approach 

 

 
Figure 6.9. Load transfer efficiency 

COMPARISON WITH THE MULTIPLE LINEAR REGRESSION ANALYSIS 

The comparison of the artificial neural network approach with the multiple linear regression 

(MLR) analysis is summarized for the backcalculation of the total effective linear 

temperature difference parameter in concrete pavements. The same dataset was used for the 

development of the two approaches and a separate dataset was used for the calculations of 

AAE values and comparison of the results. The general schematic views of two approaches 
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and prediction capabilities are shown in Figure 6.10 and Figure 6.11, respectively. The 

complexity in the nature of this challenging problem does not allow a few coefficients to 

solve the entire problem as in regression analysis. As shown from the Figure 6.11, the 

artificial neural networks (AAE = 1.30%) are superior over the multiple linear regression 

analysis (AAE = 10.57%) for this particular problem for the backcalculation of TELTD.  

 
Figure 6.10. (a) Schematic view of MLR approach, (b) Schematic view of ANN approach 
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(a)             (b) 

Figure 6.11. (a) MLR predictions for TELTD, (b) ANN predictions for TELTD  
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APPLICATION OF THE DEVELOPED APPROACH TO THE ACTUAL FWD 
DATA  

To compare the actual field TELTD values with the backcalcualetd TELTD values is a very 

challenging problem. In the field, temperature difference between top and bottom of a 

concrete slab (∆TTG) can be measured with either the installation of some instrumentation 

into the concrete layer during the construction process or some additional methods after the 

construction. Unfortunately, these tests give only ∆TTG but not TELTD for that pavement 

section. In order to measure the EBITD, additional field tests should be conducted hour by 

hour on the same pavement section. Therefore, the measurement of TELTD is a really 

difficult and challenging process. 

 

With the proposed method, once the TELTD is backcalculated, differentiating the ∆TTG and 

EBITD from each other requires also some additional field tests. Therefore, there is very 

limited field study that can be used in the comparison process of the developed models. The 

developed ANN-based backcalculation models have been used to backcalculate the TELTD 

and EBITD by using actual field data collected by the Wisconsin Department of 

Transportation (WisDOT). The FWD data and ∆TTG values used in the analysis were shown 

in Table 6.4 and Figure 6.12 (Crovetti 2002). Maximum deflections normalized to 9,000-lbs 

load were also shown in Figure 6.13. First of all, field study results conducted by the 

WisDOT were used to compare the magnitude of the backcalculated TELTD and measured 

∆TTG (see Figure 6.14) and then, EBITD values were calculated (see Figure 6.15) from the 

backcalculated TELTD and measured ∆TTG. The uniformity of EBITD values of three 

different concrete slabs was investigated in this specific pavement sections. The field tests 

were conducted in both upward (night-time) and downward (day-time) curling regimes in the 

test sections located along US-18/151 in Iowa and Dane Counties.  
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Table 6.4. US-18/151 FWD deflection data and temperature measurements 

Slab  Position Load D0 D12 D24 D36 ∆TTG 
9493(9000) 3.35(3.18) 3.15(2.99) 2.68(2.54) 2.17(2.06) -13 
13667(9000) 4.88(3.21) 4.50(2.96) 3.87(2.55) 3.20(2.11) -13 Center 
19349(9000) 6.92(3.22) 6.37(2.96) 5.45(2.54) 4.48(2.08) -13 
9176(9000) 21.95(21.53) 20.52(20.13)     -13 
13250(9000) 28.85(19.60) 26.96(18.31)     -13 

1 

Corner 
18842(9000) 36.52(17.44) 34.08(16.28)     -13 
9521(9000) 3.18(3.01) 2.92(2.76) 2.47(2.33) 2.08(1.97) -13 
13668(9000) 4.65(3.06) 4.22(2.78) 3.62(2.38) 3.02(1.99) -13 Center 
19409(9000) 6.53(3.03) 6.00(2.78) 5.17(2.40) 4.32(2.00) -13 
9262(9000) 18.93(18.39) 16.13(15.67)     -13 
13365(9000) 24.95(16.80) 22.41(15.09)     -13 

2 

Corner 
18996(9000) 32.08(15.20) 29.7614.10)     -13 
9498(9000) 3.00(2.84) 2.80(2.65) 2.34(2.22) 1.92(1.82) -13 
13677(9000) 4.37(2.88) 3.99(2.63) 3.33(2.19) 2.78(1.83) -13 Center 
19515(9000) 6.25(2.88) 5.72(2.64) 4.87(2.25) 3.99(1.84) -13 
9247(9000) 17.24(16.78) 14.12(13.74)     -13 
13323(9000) 22.79(15.40) 19.09(12.90)     -13 

3 

Corner 
19054(9000) 29.94(14.14) 25.21(11.91)     -13 
9479(9000) 3.58(3.40) 3.31(3.14) 2.84(2.70) 2.37(2.25) 5 
13588(9000) 5.11(3.38) 4.74(3.14) 4.09(2.71) 3.33(2.21) 5 Center 
19409(9000) 7.27(3.37) 6.75(3.13) 5.80(2.69) 4.78(2.22) 5 
9317(9000) 7.02(6.78) 6.75(6.52)     5 
13467(9000) 10.04(6.71) 9.59(6.41)     5 

1 

Corner 
19164(9000) 14.22(6.68) 13.58(6.38)     5 
9416(9000) 3.28(3.14) 3.03(2.90) 2.59(2.48) 2.13(2.04) 5 
13591(9000) 4.67(3.09) 4.34(2.87) 3.72(2.46) 3.05(2.02) 5 Center 
19439(9000) 6.69(3.10) 6.16(2.85) 5.33(2.47) 4.34(2.01) 5 
9356(9000) 7.88(7.58) 7.47(7.19)     5 
13425(9000) 11.13(7.46) 10.55(7.07)     5 

2 

Corner 
19187(9000) 15.77(7.40) 14.78(6.93)     5 
9489(9000) 3.35(3.18) 3.15(2.99) 2.64(2.50) 2.15(2.04) 5 
13624(9000) 4.76(3.14) 4.39(2.90) 3.81(2.52) 3.09(2.04) 5 Center 
19392(9000) 6.81(3.16) 6.28(2.91) 5.40(2.51) 4.46(2.07) 5 
9380(9000) 7.02(6.74) 6.44(6.18)     5 
13503(9000) 10.11(6.74) 9.34(6.23)     5 

3 

Corner 
19250(9000) 14.57(6.81) 13.28(6.21)     5 
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                                   (a)           (b) 
Figure 6.12. (a) Normalized slab center FWD deflection basins, (b) Normalized slab corner 

deflection basins 
 

The test section includes 9-in. concrete slab, 4-in. nonstabilized open-graded base layer, 4-in. 

dense-graded aggregate subbase layer, and select fill of variable depth (Crovetti 2002). The 

EBITD values obtained from two curling regimes (day-time and night-time) were compared 

with each other. Although there are some differences in the EBITD values obtained from day 

and night FWD testings, it seems that this difference is not crucial (see Figure 6.15). Also 

please note that it was assumed that the LTE value was 80 % between the adjacent slabs 

since there was not LTE information available. The backcalculated EBITD values for three 
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concrete slabs are approximately 0.8 0F, 3.1 0F, and 3.2 0F for slab1, slab2, and slab3, 

respectively. As can be seen from Figure 6.14 and 6.15, the backcalculated values give a 

general idea of the magnitudes of the TELTD and EBITD in this specific concrete pavement 

sections.  The normalized FWD deflection values shows that slab1 deflections are always 

higher than the other slab deflections for both center and corner FWD loadings except the 

day-time corner FWD testing. By accepting the other FWD deflection values have no any 

error in them, it was expected to have higher deflection values for slab1 corner for the day-

time testing as well. The reason of the negative EBITD values backcalculated from the day-

time FWD tests for slab1 might be these relatively low deflection values. Another important 

point is that only four center (D0, D12, D24, and D36) and two corner (D0 and D12) FWD 

deflection were used in the analysis since the other deflection values were not available. 

More deflection values (D0 to D60) for both center and corner loadings should be used in the 

backcalculation of TELTD to better map the curling behavior of the concrete slabs. 
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                                   (a)           (b) 

Figure 6.13. (a) Normalized slab center D0 deflections, (b) Normalized slab corner D0 
deflections 
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It should be also taken into account that the EBITD values shown in Figure 6.15 include the 

daily moisture gradient effects. On the other hand, since there was not any available moisture 

gradient measurements during the FWD tests, this parameter could not be taken into account 

in the analysis. Therefore, another reason to the small difference between the backcalculated 

EBITD values from day-time and night-time FWD tests might be these moisture effects. 
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Figure 6.14.  Comparison of the backcalculated TELTD and measured ∆TTG values 
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Figure 6.15. The predicted effective built-in temperature difference 

DISCUSSION 

In summary, total temperature effective linear temperature difference (TELTD) in concrete 

slabs can be successfully backcalculated from FWD deflection basins with the developed 

ANN-based models. It is well-known that the environmental conditions during the FWD 

testing have a significant influence on the deflection basins and consequently final 

backcalculation of the pavement moduli. Temperature differences through the concrete slab 

thickness results in additional slab deformations which affect the deflection basins measured 

during the FWD tests. Therefore, backcalculated moduli of pavement layers based on flat-
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slab condition assumptions by using the FWD data may be unrealistic. Therefore, the 

TELTD can be used as an adjustment parameter in the backcalculation of the concrete 

pavement layer moduli in the future studies. The objective of this study is to develop a rapid 

methodology for predicting the TELTD of concrete pavements in real-time considering the 

influence of environmental effects. 

 

Backcalculating EBITD of in-service pavements with the traditional methods requires 

instrumentation and measurement of individual unloaded slabs’ movements over a 24-hour 

period which is a difficult, time-consuming, and expensive method. In addition, very little 

information can be obtained about the EBITD at the end of this difficult method. To 

backcalculate the EBITD by using this approach is also possible if the actual field 

temperature difference between top and bottom of the concrete layer (∆TTG) is measured in 

the field with some additional methods. Thermocouples can be installed during the 

construction of the concrete layer or holes can be drilled in several slabs and the temperature 

at the bottom of the concrete layer by using oil can be measured. Then, the field temperature 

difference between top and bottom of the concrete layer can easily be calculated since the 

surface temperature of the slab is measured with the temperature sensor on the FWD. Since 

the TELTD is backcalculated with the developed ANN-based models and ∆TTG is measured 

in the field, EBITD which changes to a smaller extent through the life of the pavement can 

be determined by calculating the difference between TELTD and ∆TTG. 

 

As explained previously, the required input parameters to predict the TELTD with the 

developed approach are pavement surface deflection basins obtained from center and corner 

slab FWD loadings, the thickness of the slab, and the load transfer efficiency across the 

transverse joint. It is crucial to use both the center and corner deflection basins together in 

the analysis, because some additional voids might occur under the center of the slab, and 

corner of the slab during the day-time and night-time curling, respectively. Therefore, the 

some excessive deflections might be obtained in the center of the slab during daytime and in 

the corner of the slab during the nighttime. Figure 6.16 summarizes the prediction 

capabilities of the ANN-based TELTD models that use either only center or only corner 
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deflection basins. The AAE value was 1.33 0F in the model that uses both deflection basins. 

In order to map the entire slab behavior anytime, both center and corner deflection basins 

were used in the developed approach. Consequently, the most significant advantages of the 

proposed approach is that FWD tests can be conducted anytime during day and night in this 

approach.  

 

The thickness of the slab is another important factor that affects the total amount of curling in 

concrete pavements since the weight of the concrete slab is proportional to the thickness of 

the slab. As the thickness of the slab increases, the total amount of downward curling in the 

center and upward curling in the corners of the slab decreases. In addition, load transfer 

efficiency also affects the amount of curling especially in the corners of the slab. Therefore, 

in the developed approach, the slab thickness and load transfer efficiency were used as input 

parameters in addition to the deflection basins. 
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Figure 6.16. (a) BCM-TELTD-(8) that uses only center FWD loading data, (b) BCM-
TELTD-(8) that uses only corner FWD loading data 
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CONCLUSIONS 

The use of ANNs as pavement analysis tool was demonstrated in this study by analyzing 

jointed Portland cement concrete pavements. Totally, sixteen ANN-based backcalculation 

models were developed for predicting total effective linear temperature difference using 

solutions from state-of-the-art structural analysis program, ISLAB2000. It was demonstrated 

that ANN-based models are capable of successfully predicting the total effective linear 

temperature difference using the FWD field deflection measurements. Such methodology 

will be an invaluable tool for pavement engineers for evaluating the total amount of curling 

of JPCP systems.  Rapid prediction ability of the ANN models provide a tremendous 

advantage to the pavement engineers by allowing them to nondestructively assess the 

condition of the transportation infrastructure systems in real time while the FWD testing 

takes place in the field. Such a methodology will enable pavement engineers to easily and 

quickly incorporate the needed sophistication in structural analysis, such as from finite 

element modeling with proper characterization of pavement layers, into routine practical 

mechanistic-based analysis and design. Also, it would provide realistic pavement layer 

stiffness properties considering the slab curling behavior in the future studies. Elimination of 

any additional field tests with the integration of ANN-based backcalculation approach can be 

invaluable for the state and federal agencies for rapidly analyzing large number of pavement 

deflection basins needed for routine deflection testing.  
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CHAPTER 7. REHABILITATION DESIGN APPLICATIONS 

 

The predictions obtained from ANN-based models can be used as an input parameter in the 

Mechanistic-Empirical Pavement Design Guide software in the rehabilitation of the PCC 

pavements section. Predicted in-service elastic modulus of the PCC layer and coefficient of 

subgrade reaction values can be used in the PCC overlay section in MEPDG to define the 

existing pavement properties. The effective built-in curling/warping value is another input 

parameter in the Mechanistic-Empirical Pavement Design Guide. In order to analyze the 

effect of the existing pavement properties on the faulting and international roughness index 

(IRI) over the 20 years, a sensitivity study was conducted by varying EPCC, hPCC, kS, and 

effective built-in temperature difference values. Based on the results of such a study by using 

the existing pavement properties predicted by the developed ANN-based models, pavement 

engineers can reach an optimum solution for the rehabilitation of a specific pavement 

section. The values used in this sensitivity study, faulting and IRI plots were presented 

below.  

 

Table 7.1. The existing and overlay PCC pavement layer properties  

  
Overlay PCC Layer 

Properties 
Existing PCC Layer  

Properties 
Subgrade 
Stiffness 

Case # EPCC (psi) hPCC (psi) EPCC (psi) hPCC (psi) EBITD(oF) kS (psi/in)
1 4,000,000 10 4,000,000 10 -10 200 
2 4,000,000 10 5,000,000 10 -10 200 
3 4,000,000 10 4,000,000 10 -10 500 
4 4,000,000 8 4,000,000 10 -10 200 
5 4,000,000 12 4,000,000 10 -10 200 
6 4,000,000 10 4,000,000 10 +10 200 

IA-Bremer 4,000,000 10 3,000,000 10 -10 120 
IA-Allamakee 4,000,000 10 4,500,000 10 -10 90 
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Table 7.2. MEPDG software results for each pavement configuration 

Case # Faulting Limit (years) IRI limit (years) 
1 8.3 16.5 
2 9.5 17.6 
3 10.4 18.7 
4 8.2 15.6 
5 13.5 22 
6 22 24 

IA-Bremer 5.8 14.7 
IA-Allamakee 7.6 15.1 

 

In faulting prediction plots, there are three different lines: Horizontal red line represents the 

faulting limit, the black line (below) represents the expected faulting, and the blue line 

(above) represents the expected faulting value at 90% reliability. In the same way, there are 

three different lines in the international roughness index plots: Horizontal red line represents 

the international roughness index limit, the black line (below) represents the expected 

international roughness index, and the blue line (above) represents the expected international 

roughness index value at 90% reliability. 

 

As the results of the sensitivity study show, the time needed to reach the faulting limit 

(Faultinglimit = 0.12 in.) and the international roughness index (IRIlimit = 172) limit increases 

with an increase in elastic modulus of PCC layer (EPCC), thickness of PCC layer (hPCC), and 

coefficient of subgrade reaction (kS). In addition, positive permanent curling/warping in 

concrete slabs instead of negative permanent curling/warping helps the pavement stability 

and performance and as a result it increases the pavement remaining life significantly. The 

schematic views of the each pavement section and predicted faulting and international 

roughness index values over the 20 years are given in Figure 7.1 to Figure 7.24.  
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Figure 7.1. Schematic view of the Case-1 pavement structure 
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Figure 7.2. Faulting predictions for Case-1 pavement structure 
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Figure 7.3. International rougness index predictions for Case-1 pavement structure 
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Figure 7.4. Schematic view of the Case-2 pavement structure 
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Figure 7.5. Faulting predictions for Case-2 pavement structure 
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Figure 7.6. International rougness index predictions for Case-2 pavement structure 
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Figure 7.7. Schematic view of the Case-3 pavement structure 
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Figure 7.8. Faulting predictions for Case-3 pavement structure 
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Figure 7.9. International rougness index predictions for Case-3 pavement structure 
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Figure 7.10. Schematic view of the Case-4 pavement structure 
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Figure 7.11. Faulting predictions for Case-4 pavement structure 
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Figure 7.12. International rougness index predictions for Case-4 pavement structure 
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Figure 7.13. Schematic view of the Case-5 pavement structure 
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Figure 7.14. Faulting predictions for Case-5 pavement structure 
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Figure 7.15. International rougness index predictions for Case-5 pavement structure 
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Figure 7.16. Schematic view of the Case-6 pavement structure 
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Figure 7.17. Faulting predictions for Case-6 pavement structure 
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Figure 7.18. International rougness index predictions for Case-6 pavement structure 
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Figure 7.19. Schematic view of the IA-Bremer pavement structure 
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Figure 7.20. Faulting predictions for IA-Bremer pavement structure 
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Figure 7.21. International rougness index predictions for IA-Bremer pavement structure 
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Figure 7.22. Schematic view of the IA-Allamakee pavement structure 
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Figure 7.23. Faulting predictions for IA-Allamakee pavement structure 
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Figure 7.24. International rougness index predictions for IA-Allamakee pavement structure 
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CHAPTER 8. GENERAL CONCLUSIONS 

SUMMARY 

This study is an in-depth and comprehensive investigation of the feasibility of employing 

artificial neural networks (ANNs) in predicting the jointed plain concrete pavement (JPCP) 

system parameters in a rapid and accurate manner from falling weight deflectometer (FWD) 

deflection basins in real-time and consequently incorporation of the state-of-the-art finite 

element solutions into routine practical design. The research therefore mainly focused on the 

development and performance of comprehensive ANN-based models based on the 

ISLAB2000 finite element solutions for the analysis of JPCP systems under different traffic 

and temperature loadings. In order to generate the design pavement parameters and critical 

pavement responses as inputs, results from the ISLAB2000 finite element analyses were used 

for the training ANN-based models.  

 

This research documented the research efforts related to the development of ANN-based 

concrete pavement backcalculation and forward calculation techniques. Based on the results 

of this research, elastic modulus of PCC slab (EPCC), coefficient of subgrade reaction of 

pavement foundation system (kS), radius of relative stiffness of the pavement system (RRS), 

maximum tensile stress at the bottom of the PCC layer (σMAX), and total effective linear 

temperature difference in the PCC layer (TELTD) can be successfully predicted with very 

low average absolute error values from FWD deflection basins. Rapid prediction ability of 

the ANN-based models (capable of analyzing 100,000 FWD deflection profiles in one 

second) provides a tremendous advantage to the pavement engineers by allowing them to 

nondestructively assess the condition of the transportation infrastructure in real time while 

the FWD testing takes place in the field. It is also well known that environmental conditions 

have a huge influence on the in-service pavement conditions and on the remaining life of 

pavements. Therefore, curling and warping of concrete slabs were taken into account in the 

developed approach. 
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Since slab curling and warping in concrete pavements due to temperature and moisture 

differentials throughout the thickness of a slab affect the nondestructive testing results, these 

erroneous measurements may divert the pavement engineers to inaccurate predictions of 

pavement and foundation properties. Therefore, ANN-based models were developed which 

can predict the equivalent effect of total amount of curling and warping in terms of 

temperature difference between the top and bottom of the concrete slab in JPCP systems. 

Therefore, such ANN-based backcalculation models can be used for the analysis of large 

number of concrete slabs in a relatively short period of time for estimating the total amount 

of curling and warping that can be used for adjustments for the in-situ structural capacity and 

remaining life estimations of JPCP systems. 

 

Backcalculated concrete pavement parameters and forward calculated critical pavement 

responses play also a crucial role in pavement management systems (PMS) at the network 

level. Since the developed models can predict the JPCP system parameters and critical 

pavement responses instantly by use of the trained ANN-based models, it is much easier to 

make a decision on overall maintenance and budget plans in routine practical design. For 

example, backcalculated in-service concrete pavement parameters can be used to make a 

final decision on the pavement maintenance and rehabilitation or concrete fatigue life 

predictions (from critical pavement responses) can be made in real-time during the FWD 

testing in the field based on the ANN-based model predictions for critical pavement 

responses.   

 

Finally, it can be concluded that ANN-based analysis models can provide pavement 

engineers and designers with state-of-the-art solutions, without the need for a high degree of 

expertise in the input and output of the problem, to rapidly analyze a large number of 

concrete pavement deflection basins needed for project specific and network level pavement 

testing and evaluation. 
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CONCLUSIONS 

A total of twenty zero-noise and thirty-six noise-introduced ANN-based backcalculation and 

forward calculation models were developed in this study which can predict the elastic 

modulus of the PCC slab (EPCC), coefficient of subgrade reaction of pavement foundation 

(kS), radius of relative stiffness of pavement system (RRS), maximum tensile stress at the 

bottom of the PCC layer (σMAX), and total effective linear temperature difference between 

the top and bottom of the PCC layer (TELTD) from FWD deflection basin data and PCC slab 

thickness. 

 

Several ANN-based backcalculation models were developed that use different FWD sensor 

configurations. For example, there are 4-Deflection (D0, D12, D24, D36), 6-Deflection (D0, 

D12, D24, D36, D48, D60), 7-Deflection (D0, D8, D12, D18, D24, D36, D60), and 8-Deflection (D0, 

D8, D12, D18, D24, D36, D48, D60) ANN-based models developed in this research to predict the 

concrete pavement parameters and critical pavement responses. 

 

A sensitivity study was conducted to determine the most appreciate architecture for the 

backcalculation of the concrete pavement parameters. Based on the results of this study, 

ANN networks with two hidden layers with 60 neurons in each hidden layer were 

exclusively chosen for all models trained in this study. In addition, learning rate and 

momentum factor parameters were chosen as 0.2 and 0.6, respectively. 

 

The developed ANN-based models gave very low average absolute error values for all zero-

noise models (< 1 % ) for synthetic database. On the other hand, the case is not like that 

when the actual FWD data is utilized in the developed models. There might be always some 

variability in the slab thicknesses in the field due to the poor construction which will directly 

affect the backcalculated pavement parameters and responses. In addition, there might be 

some noise in the collected data, might be errors in data collection process due to FWD 

machine sensor calibration, and might be some operator mistakes. Therefore, actual FWD 

deflections which are the basic inputs of the backcalculation models are not always as perfect 
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as synthetic data. Thus, thirty-six noise-introduced ANN-based backcalculation models were 

developed in this research as well. As a matter of fact, meaningless FWD deflection data 

should be filtered and extracted from the data analysis.  

 

The predictions of the developed ANN-based models were compared with the closed-form 

solutions, backcalculation softwares (EverCalc 5.0, and BAKFAA) and finite element 

program solutions (ISLAB2000 and EverFE 2.24). Even though there are some differences in 

the predictions obtained from different methodologies; the results seem very similar to each 

other but the real time prediction capability (< 1 sec.) and the ease of the usage of the ANN-

based models (no seed moduli, no iteration, prediction of total curling and warping amount 

etc.) make them very powerful tools over the other methods.  

 

Elimination of seed layer moduli selection step combined with the integration of ANN-based 

direct backcalculation approach can be invaluable for the state and federal agencies for 

rapidly analyzing large number of pavement deflection basins needed for routine pavement 

evaluation for both project specific and network level FWD testing. 

 

The thickness of the PCC slab playing a crucial role in the EPCC backcalculation is one of the 

most important parameters in the EPCC prediction models. On the other hand, the thickness of 

the PCC slab was not used as an input parameter in the developed ANN-based kS 

backcalculation models since it has not an effect on the backcalculated kS predictions. 

Generally, slab thickness exhibits considerable variability in the field and this has a large 

impact on the backcalculated PCC slab properties. Consequently, the results of the analyses 

showed that a given error in the estimate of the thickness of the PCC slab will have 

significant effects on the backcalculated slab modulus.  

 

In addition, the time of the day for the FWD testing is also crucial in the EPCC 

backcalculation due to curling and warping problems in concrete pavements. The results of 

the previous studies indicate that the variations in temperature between two separate FWD 

tests on the same pavement section affect primarily the elastic modulus of the slab (Ioannides 
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et al. 1989). Basically, more scatter is expected in EPCC predictions due to the curling and 

warping issues, possible variations in PCC slab thickness, and the uncertainties in bonding 

degree between the PCC and base layers. 

 

The limitations of the developed ANN-based backcalculation and forward calculation models 

can be listed as below: 

 

o The developed ANN-based models use only D0, D8, D12, D18, D24, D36, D48, and D60 

deflection values. 

 

o Erroneous deflection basins should be filtered from the data set and realistic FWD 

deflection basins should be used in the analyses. For example, there must be a pattern 

between deflections such as D0>D8>D12>D18>D24>D36>D48>D60. 

 

o There are certain ranges for each backcalculated or forward calculated parameter and 

thickness of PCC layer. If the value of the parameter is out of this range, the 

developed ANN-based models can not predict realistic values. 

Table 8.1 Ranges of the JPCP system parameters used in this research 

Pavement System Inputs Minimum Value Maximum Value 
EPCC, (ksi)      1,000 15,000 
kS,  (psi/in)     50 1,000 
hPCC, (in)        6 25 
RRS, (in) 15 140 
σMAX, (psi) 30 710 
TELTD, (oF)  -60 +60 
Temperature Gradient, (0F/in) -3.0 +3.0 
LTE, (%)        1 99 

 

o If there are two PCC layers in the concrete pavement system instead of one layer, 

these two layers should be transformed into one layer by calculating effective layer 

thickness (Ioannides et al. 1992). 
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RECOMMENDATIONS 

The backcalculated concrete pavement properties and forward calculated critical pavement 

responses are significantly affected from the number of the FWD sensors. As the number of 

sensors increases, the mean value of elastic modulus of PCC slab increases and the mean 

value of coefficient of subgrade reaction decreases (Rufino et al. 2002). D0 and D12 

deflections are relatively more sensitive to changes in the elastic modulus of PCC slab, 

compared to D48 and D60 deflections. On the other hand, D48 and D60 deflections are much 

more sensitive to the changes in the subgrade support (kS). Therefore, BCM-EPCC-(4) model 

(Inputs: D0, D12, D24, D36, and hPCC) is proposed for the elastic modulus of PCC slab 

predictions, and BCM-kS-(6) model (Inputs: D0, D12, D24, D36, D48, and D60) is proposed for 

the coefficient of subgrade reaction predictions. FCM-RRS-(4) (Inputs: D0, D12, D24, D36, 

and hPCC), FCM-σMAX-(4) (Inputs: D0, D12, D24, D36, and hPCC) and BCM-TELTD-(6) 

[Inputs: Center(D0, D12, D24, D36, D48, D60), Corner(D0, D12, D24, D36, D48, D60), hPCC, LTE] 

models are also proposed for the radius of relative stiffness, maximum tensile stresses at the 

bottom of the PCC layer, and total effective linear temperature difference predictions, 

respectively.  

 

To improve the EPCC backcalculation, nondestructive evaluation techniques (NDT) such as 

Ground Penetrating Radar (GPR) readings or cores (destructive technique) can be taken 

along the test sections to determine the exact thickness of the layers at the FWD test points. 

Also, the time of the FWD tests due to curling and warping issues and the shape of the PCC 

slab should exactly be taken into account in the interpretations of the analyses of the concrete 

pavements.  

 

Actual field pavement deflection data obtained from both falling weight deflectometer and 

heavy weight deflectometer tests can be used in the training process of the developed ANN-

based models instead of using finite element solutions. Thus, there is no need to introduce 

noise to the pavement surface deflections by an artificial method.  In order to be able to suse 
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such a database, elastic moduli of the PCC layers and subgrade stiffness should be know for 

those pavement sections.  

 

Temperature differences through the concrete slab thickness results in additional slab 

deformations which affect the deflection basins measured during the FWD tests. Therefore, 

new models/techniques can be developed in the future to predict the pavement moduli that 

use the TELTD as an input adjustment parameter. These model predictions can be compared 

with the actual deflection, temperature, and moisture measurements from newly constructed 

and instrumented concrete pavements since the environmental conditions during the FWD 

testing have a significant influence on the deflection basins and consequently final 

backcalculation of the pavement moduli and estimation of pavement remaining life.  

 

Although advanced approaches to pavement layer backcalculation and forward calculation 

have been developed in this research, the accuracy of results will largely depend on the 

quality and integrity of FWD deflection data collected in the field. Future research efforts 

should focus on developing guidelines for state DOTs that clearly define the FWD testing 

requirements, data analysis approach, and reporting requirements. The guidelines can 

provide state DOTs with an improved specification for acquiring FWD testing and 

backcalculation services as well as provide guidance for state DOTs internal staff conducting 

FWD testing and analysis. Also, the guidelines can provide procedures for standardized 

FWD calibration. 
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APPENDIX A. ANN-BASED BACKCALCULATION MODELS FOR ELASTIC 

MODULUS OF PCC LAYER
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Figure A.1. Prediction performance of the BCM-EPCC-(4) model for backcalculating the PCC 

layer modulus, EPCC  
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Figure A.2. Training progress curve for the BCM-EPCC-(4) model 
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Figure A.3. Prediction performance of the BCM-EPCC-(4) (+2%) model for backcalculating 

the PCC layer modulus, EPCC  

Learning Cycles (Epochs)
0 2x103 4x103 6x103

M
ea

n 
Sq

ua
re

d 
E

rr
or

 (M
SE

)

10-4

10-3

10-2

10-1

Training MSE
Testing MSE

ANN Model: BCM-EPCC-(4) (+2%)

 

Figure A.4. Training progress curve for the BCM-EPCC-(4) (+2%) model 
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Figure A.5. Prediction performance of the BCM-EPCC-(4) (+5%) model for backcalculating 

the PCC layer modulus, EPCC  
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Figure A.6. Training progress curve for the BCM-EPCC-(4) (+5%) model 
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Figure A.7. Prediction performance of the BCM-EPCC-(4) (+10%) model for backcalculating 

the PCC layer modulus, EPCC  
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Figure A.8. Training progress curve for the BCM-EPCC-(4) (+10%) model 
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Figure A.9. Prediction performance of the BCM-EPCC-(6) model for backcalculating the PCC 

layer modulus, EPCC  
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Figure A.10. Training progress curve for the BCM-EPCC-(6) model 
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Figure A.11. Prediction performance of the BCM-EPCC-(6) (+2%) model for backcalculating 

the PCC layer modulus, EPCC  
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Figure A.12. Training progress curve for the BCM-EPCC-(6) (+2%) model 
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Figure A.13. Prediction performance of the BCM-EPCC-(6) (+5%) model for backcalculating 

the PCC layer modulus, EPCC  
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Figure A.14. Training progress curve for the BCM-EPCC-(6) (+5%) model 
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Figure A.15. Prediction performance of the BCM-EPCC-(6) (+10%) model for 

backcalculating the PCC layer modulus, EPCC  
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Figure A.16. Training progress curve for the BCM-EPCC-(6) (+10%) model 
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Figure A.17. Prediction performance of the BCM-EPCC-(7) model for backcalculating the 

PCC layer modulus, EPCC  
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Figure A.18. Training progress curve for the BCM-EPCC-(7) model 
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Figure A.19. Prediction performance of the BCM-EPCC-(7) (+2%) model for backcalculating 

the PCC layer modulus, EPCC  
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Figure A.20. Training progress curve for the BCM-EPCC-(7) (+2%) model 
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Figure A.21. Prediction performance of the BCM-EPCC-(7) (+5%) model for backcalculating 

the PCC layer modulus, EPCC  
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Figure A.22. Training progress curve for the BCM-EPCC-(7) (+5%) model 
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Figure A.23. Prediction performance of the BCM-EPCC-(7) (+10%) model for 
backcalculating the PCC layer modulus, EPCC  
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Figure A.24. Training progress curve for the BCM-EPCC-(7) (+10%) model 
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Figure A.25. Prediction performance of the BCM-EPCC-(8) model for backcalculating the 

PCC layer modulus, EPCC  
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Figure A.26. Training progress curve for the BCM-EPCC-(8) model 
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Figure A.27. Prediction performance of the BCM-EPCC-(8) (+2%) model for backcalculating 

the PCC layer modulus, EPCC  
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Figure A.28. Training progress curve for the BCM-EPCC-(8) (+2%) model 
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Figure A.29. Prediction performance of the BCM-EPCC-(8) (+5%) model for backcalculating 

the PCC layer modulus, EPCC  
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Figure A.30. Training progress curve for the BCM-EPCC-(8) (+5%) model 
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Figure A.31. Prediction performance of the BCM-EPCC-(8) (+10%) model for 

backcalculating the PCC layer modulus, EPCC  
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Figure A.32. Training progress curve for the BCM-EPCC-(8) (+10%) model 
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APPENDIX B. ANN-BASED BACKCALCULATION MODELS FOR COEFFICIENT 

OF SUBGRADE REACTION
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Figure B.1. Prediction performance of the BCM-kS-(4) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.2. Training progress curve for the BCM-kS-(4) model 
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Figure B.3. Prediction performance of the BCM-kS-(4) (+2%) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.4. Training progress curve for the BCM-kS-(4) (+2%) model 
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Figure B.5. Prediction performance of the BCM-kS-(4) (+5%) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.6. Training progress curve for the BCM-kS-(4) (+5%) model 
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Figure B.7. Prediction performance of the BCM-kS-(4) (+10%) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.8. Training progress curve for the BCM-kS-(4) (+10%) model 
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Figure B.9. Prediction performance of the BCM-kS-(6) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.10. Training progress curve for the BCM-kS-(6) model 
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Figure B.11. Prediction performance of the BCM-kS-(6) (+2%) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.12. Training progress curve for the BCM-kS-(6) (+2%) model 
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Figure B.13. Prediction performance of the BCM-kS-(6) (+5%) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.14. Training progress curve for the BCM-kS-(6) (+5%) model 
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Figure B.15. Prediction performance of the BCM-kS-(6) (+10%) model for backcalculating 

the coefficient of subgrade reaction, kS  
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Figure B.16. Training progress curve for the BCM-kS-(6) (+10%) model 
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Figure B.17. Prediction performance of the BCM-kS-(7) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.18. Training progress curve for the BCM-kS-(7) model 
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Figure B.19. Prediction performance of the BCM-kS-(7) (+2%) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.20. Training progress curve for the BCM-kS-(7) (+2%) model 
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Figure B.21. Prediction performance of the BCM-kS-(7) (+5%) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.22. Training progress curve for the BCM-kS-(7) (+5%) model 
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Figure B.23. Prediction performance of the BCM-kS-(7) (+10%) model for backcalculating 

the coefficient of subgrade reaction, kS  
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Figure B.24. Training progress curve for the BCM-kS-(7) (+10%) model 
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Figure B.25. Prediction performance of the BCM-kS-(8) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.26. Training progress curve for the BCM-kS-(8) model 
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Figure B.27. Prediction performance of the BCM-kS-(8) (+2%) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.28. Training progress curve for the BCM-kS-(8) (+2%) model 
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Figure B.29. Prediction performance of the BCM-kS-(8) (+5%) model for backcalculating the 

coefficient of subgrade reaction, kS  
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Figure B.30. Training progress curve for the BCM-kS-(8) (+5%) model 
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Figure B.31. Prediction performance of the BCM-kS-(8) (+10%) model for backcalculating 

the coefficient of subgrade reaction, kS  
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Figure B.32. Training progress curve for the BCM-kS-(8) (+10%) model 
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APPENDIX C. ANN-BASED BACKCALCULATION MODELS FOR TOTAL 

EFFECTIVE LINEAR TEMPERATURE DIFFERENCE
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Figure C.1. Prediction performance of the BCM-TELTD-(4) model for backcalculating the 

total effective linear temperature difference, TELTD  
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Figure C.2. Training progress curve for the BCM-TELTD-(4) model 
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Figure C.3. Prediction performance of the BCM-TELTD-(4) (+2%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.4. Training progress curve for the BCM-TELTD-(4) (+2%) model 
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Figure C.5. Prediction performance of the BCM-TELTD-(4) (+5%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.6. Training progress curve for the BCM-TELTD-(4) (+5%) model 
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Figure C.7. Prediction performance of the BCM-TELTD-(4) (+10%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.8. Training progress curve for the BCM-TELTD-(4) (+10%) model 
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Figure C.9. Prediction performance of the BCM-TELTD-(6) model for backcalculating the 

total effective linear temperature difference, TELTD  
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Figure C.10. Training progress curve for the BCM-TELTD-(6) model 
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Figure C.11. Prediction performance of the BCM-TELTD-(6) (+2%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.12. Training progress curve for the BCM-TELTD-(6) (+2%) model 
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Figure C.13. Prediction performance of the BCM-TELTD-(6) (+5%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.14. Training progress curve for the BCM-TELTD-(6) (+5%) model 
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Figure C.15. Prediction performance of the BCM-TELTD-(6) (+10%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.16. Training progress curve for the BCM-TELTD-(6) (+10%) model 
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Figure C.17. Prediction performance of the BCM-TELTD-(7) model for backcalculating the 

total effective linear temperature difference, TELTD  
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Figure C.18. Training progress curve for the BCM-TELTD-(7) model 
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Figure C.19. Prediction performance of the BCM-TELTD-(7) (+2%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.20. Training progress curve for the BCM-TELTD-(7) (+2%) model 
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Figure C.21. Prediction performance of the BCM-TELTD-(7) (+5%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.22. Training progress curve for the BCM-TELTD-(7) (+5%) model 
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Figure C.23. Prediction performance of the BCM-TELTD-(7) (+10%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.24. Training progress curve for the BCM-TELTD-(7) (+10%) model 
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Figure C.25. Prediction performance of the BCM-TELTD-(8) model for backcalculating the 

total effective linear temperature difference, TELTD  
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Figure C.26. Training progress curve for the BCM-TELTD-(8) model 
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Figure C.27. Prediction performance of the BCM-TELTD-(8) (+2%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.28. Training progress curve for the BCM-TELTD-(8) (+2%) model 
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Figure C.29. Prediction performance of the BCM-TELTD-(8) (+5%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.30. Training progress curve for the BCM-TELTD-(8) (+5%) model 
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Figure C.31. Prediction performance of the BCM-TELTD-(8) (+10%) model for 

backcalculating the total effective linear temperature difference, TELTD  
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Figure C.32. Training progress curve for the BCM-TELTD-(8) (+10%) model 
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APPENDIX D. ANN-BASED FORWARD CALCULATION MODELS FOR RADIUS 

OF RELATIVE STIFFNESS  
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Figure D.1. Prediction performance of the FCM-RRS-(4) model for forward calculating the 

radius of relative stiffness, RRS  
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Figure D.2. Training progress curve for the FCM-RRS-(4) model 
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Figure D.3. Prediction performance of the FCM-RRS-(6) model for forward calculating the 

radius of relative stiffness, RRS  
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Figure D.4. Training progress curve for the FCM-RRS-(6) model 
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Figure D.5. Prediction performance of the FCM-RRS-(7) model for forward calculating the 

radius of relative stiffness, RRS  
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Figure D.6. Training progress curve for the FCM-RRS-(7) model 
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Figure D.7. Prediction performance of the FCM-RRS-(8) model for forward calculating the 

radius of relative stiffness, RRS  
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Figure D.8. Training progress curve for the FCM-RRS-(8) model 
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APPENDIX E. ANN-BASED FORWARD CALCULATION MODELS FOR 

MAXIMUM TENSILE STRESS AT THE BOTTOM OF THE PCC LAYER  
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Figure E.1. Prediction performance of the FCM-σMAX-(4) model for forward calculating the 

maximum tensile stress at the bottom of the PCC layer, σMAX  
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Figure E.2. Training progress curve for the FCM-σMAX -(4) model 
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Figure E.3. Prediction performance of the FCM-σMAX-(6) model for forward calculating the 

maximum tensile stress at the bottom of the PCC layer, σMAX  

Learning Cycles (Epochs)
0 2x103 4x103 6x103 8x103 10x103

M
ea

n 
Sq

ua
re

d 
E

rr
or

 (M
SE

)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Training MSE
Testing MSE

ANN Model: FCM-σMAX-(6)

 

Figure E.4. Training progress curve for the FCM-σMAX -(6) model 
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Figure E.5. Prediction performance of the FCM-σMAX-(7) model for forward calculating the 

maximum tensile stress at the bottom of the PCC layer, σMAX  
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Figure E.6. Training progress curve for the FCM-σMAX -(7) model 
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Figure E.7. Prediction performance of the FCM-σMAX-(8) model for forward calculating the 

maximum tensile stress at the bottom of the PCC layer, σMAX  
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Figure E.8. Training progress curve for the FCM-σMAX -(8) model 
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