

ABSTRACT

Title of Document: SOLVING TWO-LEVEL OPTIMIZATION

PROBLEMS WITH APPLICATIONS TO

ROBUST DESIGN AND ENERGY MARKETS

 Sauleh Ahmad Siddiqui

Doctor of Philosophy, 2011

Directed By: Steven A. Gabriel, Associate Professor

Department of Civil and Environmental

Engineering

Shapour Azarm, Professor

Department of Mechanical Engineering

This dissertation provides efficient techniques to solve two-level optimization

problems. Three specific types of problems are considered. The first problem is

robust optimization, which has direct applications to engineering design.

Traditionally robust optimization problems have been solved using an inner-outer

structure, which can be computationally expensive. This dissertation provides a

method to decompose and solve this two-level structure using a modified Benders

decomposition. This gradient-based technique is applicable to robust optimization

problems with quasiconvex constraints and provides approximate solutions to

problems with nonlinear constraints. The second types of two-level problems

considered are mathematical and equilibrium programs with equilibrium constraints.

Their two-level structure is simplified using Schur‟s decomposition and reformulation

schemes for absolute value functions. The resulting formulations are applicable to

game theory problems in operations research and economics. The third type of two-

level problem studied is discretely-constrained mixed linear complementarity

problems. These are first formulated into a two-level mathematical program with

equilibrium constraints and then solved using the aforementioned technique for

mathematical and equilibrium programs with equilibrium constraints. The techniques

for all three problems help simplify the two-level structure into one level, which helps

gain numerical and application insights. The computational effort for solving these

problems is greatly reduced using the techniques in this dissertation. Finally, a host of

numerical examples are presented to verify the approaches. Diverse applications to

economics, operations research, and engineering design motivate the relevance of the

novel methods developed in this dissertation.

SOLVING TWO-LEVEL OPTIMIZATION PROBLEMS WITH APPLICATIONS

TO ROBUST DESIGN AND ENERGY MARKETS

By

Sauleh Ahmad Siddiqui

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2011

Advisory Committee:

Associate Professor Steven A. Gabriel, Co-Advisor/Chair

Professor Shapour Azarm, Co-Advisor

Associate Professor Radu V. Balan

Professor Dianne P. O‟Leary

Professor Lars J. Olson, Dean‟s Representative

© Copyright by

Sauleh Ahmad Siddiqui

2011

 ii

Acknowledgements

First and foremost, I would like to thank my advisers Dr. Steven A. Gabriel and Dr.

Shapour Azarm for all their help and support. Their perpetual encouragement,

abundant patience, and careful guidance made this work possible. My time at this

university was made memorable because of them, and I am proud to look back and

realize how much I have learned from them.

 I would also like to thank my committee members for agreeing to advise me

on this work: Dr. Radu V. Balan, for overlooking the mathematical aspects in both

my preliminary oral exam and dissertation; Dr. Dianne P. O‟Leary, whose survival

manual for graduate study in the computer and mathematical sciences provided

valuable advice; and Dr. Lars J. Olson for graciously agreeing to serve as the Dean‟s

representative. I am grateful that they have taken time out from their busy schedules

to provide insight.

 I also want to acknowledge funding received from the Office of Naval

Research and the Norwegian Research Council. The work presented in this

dissertation was supported in part by the Office of Naval Research Contract

N000140810384. The LinkS project funded by Norwegian Research Council via the

Norwegian University of Science and Technology and SINTEF (UMD Award

number 013768-001) also supported part of the work in this dissertation. Such

support does not constitute an endorsement by the funding agency of the opinions

expressed in this dissertation.

 iii

Table of Contents

ACKNOWLEDGEMENTS ... ii
TABLE OF CONTENTS .. iii
LIST OF TABLES ... vi
LIST OF FIGURES .. vii
NOMENCLATURE AND ABBREVIATIONS .. viii

CHAPTER 1: INTRODUCTION .. 1
1.1. MOTIVATION AND OBJECTIVE .. 1
1.2. RESEARCH COMPONENTS... 3

1.2.1. Solving Robust Optimization Problems.. 3
1.2.2. Solving Mathematical Programs and Equilibrium Problems with

Equilibrium Constraints .. 4
1.2.3. Solving Discretely-Constrained Mixed-Integer Linear Complementarity

Problems ... 4
1.3. ORGANIZATION OF DISSERTATION ... 5

CHAPTER 2: DEFINITIONS AND LITERATURE REVIEW 7
2.1. INTRODUCTION ... 7
2.2. DEFINITIONS AND TERMINOLOGIES.. 7

2.2.1. Robust Optimization ... 9
2.2.2. Mathematical and Equilibrium Programs with Equilibrium Constraints . 12

2.2.3 Discretely-Constrained Mixed Linear Complementarity Problems 16

2.3. OVERVIEW OF PREVIOUS WORK .. 19

2.3.1 Robust Optimization .. 19
2.3.3 Mathematical and Equilibrium Programs with Equilibrium Constraints .. 23

2.3.4. Discretely-Constrained Mixed Linear Complementarity Problems 24
2.4. PRELIMINARIES ... 27

2.4.1. Benders Decomposition .. 27

2.4.2. Disjunctive Constraints ... 30
2.4.3. Approximating Nonlinear Functions using SOS Type 1 and Type 2

Variables ... 31

CHAPTER 3: SOLVING ROBUST OPTIMIZATION PROBLEMS USING A

MODIFIED BENDERS METHOD .. 36
3.1. INTRODUCTION ... 36
3.2. INTERVAL UNCERTAINTY .. 37

3.3 MODIFIED BENDERS DECOMPOSITION .. 54
3.3.1. Formulation of Approach: Solving Robust Linear Programs 54
3.3.2. Formulation of Approach: Solving Robust Optimization Problems with

Quasiconvex Constraints .. 59
3.3.3. Formulation of Approach: Solving Robust Optimization Problems with

Nonlinear Constraints ... 63
3.4. NUMERICAL RESULTS ... 69

3.4.1. Numerical Example (Example 1) to Show Methodology Step-by-Step ... 70
3.4.2. Numerical Results ... 74

 iv

3.5. ENGINEERING DESIGN AND OTHER APPLICATIONS 76

3.5.1. Fleury‟s Weight Minimization .. 76
3.5.2. Design of a Welded Beam .. 77
3.5.3. Heat Exchanger Design... 81

3.5.4. Building Energy Intensive Infrastructure .. 87
3.6. SUMMARY ... 90

CHAPTER 4: SOLVING MATHEMATICAL PROGRAMS AND

EQUILIBRIUM PROGRAMS WITH EQUILIBRIUM CONSTRAINTS 91
4.1. INTRODUCTION ... 91

4.2. SOLVING MATHEMATICAL PROGRAMS WITH EQUILIBRIUM

CONSTRAINTS ... 92
4.2.1. Changing the Formulation of the Lower-Level Problem 92
4.2.2. Approximating The Absolute Value Function Using Special Ordered Sets

of Type 1 Variables ... 95
4.2.3. Approximating Absolute Value Function Using a Penalty Method 97

4.2.4. Algorithm 1 to Solve Mathematical Programs with Equilibrium

Constraints .. 100

4.2.5. Numerical Results ... 101
4.3. SOLVING EQUILIBRIUM PROGRAMS WITH EQUILIBRIUM

CONSTRAINTS ... 112

4.3.1. Extending Algorithm 4.1 to Equilibrium Programs with Equilibrium

Constraints .. 112

4.3.2. Algorithm 4.2 to Solve Equilibrium Problems with Equilibrium

Constraints (Heuristic) .. 114
4.3.3. Numerical Results for Equilibrium Programs with Equilibrium Constraints

... 115

4.4. THE NORTH AMERICAN GAS MODEL .. 120
4.4.1. Introduction ... 120
4.4.2. Shale Gas in the United States .. 122

4.4.3. Scenario Results .. 126
4.5. SUMMARY ... 134

CHAPTER 5: SOLVING DISCRETELY-CONSTRAINED MIXED LINEAR

COMPLEMENTARITY PROBLEMS ... 135

5.1. INTRODUCTION ... 135
5.2. DISCRETELY-CONSTRAINED MIXED LINEAR COMPLEMENTARITY

PROBLEMS ... 137
5.2.1 Epsilon-Integrality ... 137

5.2.2. Sigma-Complementarity ... 139
5.2.3. Complementarity, Integrality Trade-off.. 140
5.2.4. Formulation to Solve Discretely-Constrained Mixed Linear

Complementary problems ... 142
5.3. DISCRETELY-CONSTRAINED NASH-COURNOT GAMES 144

5.3.1. Formulation of a DC-Nash game by Gabriel et al. (2011b) 145
5.3.2. First Numerical Example .. 153
5.3.3. Results for First Numerical Example .. 157
5.3.4. Numerical Example Relevant to Production Systems 160

 v

5.4. DISCRETELY-CONSTRAINED NETWORK PROBLEMS 163

5.4.1. First Network Example ... 164
5.4.2. Second Network Example ... 169

5.5. SUMMARY ... 179

CHAPTER 6: CONCLUSIONS ... 181
6.1. CONCLUDING REMARKS ... 181

6.1.1. Robust Optimization ... 181
6.1.2. MPECs and EPECs ... 183
6.1.3. Discretely-Constrained Mixed Linear Complementarity Problems 184

6.2. MAIN CONTRIBUTIONS .. 185
6.3. FUTURE RESEARCH .. 187

6.3.1. Multiobjective Mixed-Integer Robust Optimization 187
6.3.2. Solving Nonlinear MPECs and EPECs... 188

6.3.3. Solving Large-Scale Mixed-Integer Complementary Problems 189
APPENDICES ... 190

APPENDIX A: ROBUST OPTIMIZATION TEST PROBLEMS 190
APPENDIX B: DISCUSSION ON FUNCTION CALLS 198

BIBLIOGRAPHY ... 201

 vi

List of Tables

Table 2.1: Definition of Terms for Robust Optimization

Table 2.2: Definition of Terms for Benders Decomposition

Table 3.1: Analysis of function calls for one iteration

Table 3.2: Solution Steps for Modified Benders Approach

Table 3.3: Detailed Solution for Simple Problem

Table 3.4: Description of Test Problems

Table 3.5: Results for Fleury‟s Weight Minimization Like Problem

Table 3.6: Results of Welded Beam Example

Table 3.7: Design Variables and Parameters with Uncertainty

Table 3.8: Results for Heat Exchanger Design

Table 3.9: Number of Iterations and CPU Time to Solve Problems

Table 3.10: Results for Increasing Uncertainty in t2

Table 4.1: Definition of terms for simple example

Table 4.2: Different Datasets to Compare (4.13), (4.15), and (4.16)

Table 4.3: Different Cases to Compare Solutions to (25)

Table 4.4: Results for Dataset 1

Table 4.5: Results for Dataset 2

Table 4.6: Results for Dataset 3

Table 4.7: Results for Dataset 1

Table 4.8: Results for Dataset 2

Table 4.9: Results for Dataset 3

Table 4.10: World Gas Model Nodes: Coverage of States and Shale Basins

Table 4.11: Prices in $/MMBTU in 2025

Table 5.1: Bimatrix Nash-Cournot Game, Profits(q1/q2)

Table 5.2: Nash-Cournot Game, Profits(q1/q2), (Only Adjustments a=9, ρ₂ = 3)

Table 5.3: Description of Formulation Variations

Table 5.4: Summary of Results (a = 9, b = 1, β₁= β₂ = 1,ρ₁ = 1, ρ₂ = 3)

Table 5.5: Summary of Results (a = 9, b = 1, β₁= β₂ = 1,ρ₁ = 1, ρ₂ = 3)

Table 5.6: Summary of Results (Example Relevant to Production Systems)

Table 5.7: Summary of Results (Example Relevant to Production Systems)

Table 5.8: Parameter Values Used in First Network Example

Table 5.9: Description of Formulation Variations

Table 5.10: Solution to Power Market Example

Table 5.11: Dataset Used in Second Network Example

Table 5.12: Description of Formulation Variations for Second Network Example

Table 5.13: Results for Second Network Problem (Integer Variables)

Table 5.14: Results for Second Network Problem (Other Variables)

 vii

List of Figures

Figure 1.1: Organization of Dissertation

Figure 2.1: The Structure of a Two-Level Problem

Figure 2.2: Representation of a Robust Optimization Problem

Figure 2.3: Representation of an MPEC

Figure 2.4: Representation of an EPEC

Figure 2.5: Representation of a DC-MLCP

Figure 2.6: Approximating a Nonlinear Function Using SOS Type 1 Variable

Figure 2.7: Approximation of Nonlinear Functions using SOS Type 2 Variables

Figure 3.1: Comparison of the Feasible Region with the Robust Feasible Region

Figure 3.2: The Robust Benders Cuts to Estimate the Maximum Endpoint of αu

Figure 3.3: Checking Feasibility by Interval-Optimal Points for Constraints

Figure 3.4: Adding a modified (Robust) Benders Cut

Figure 3.5: Design of a Welded Beam (Gunawan & Azarm, 2004)

Figure 3.6: Heat Exchanger Schematic

Figure 4.1: Computational Time for Solving Problem

Figure 4.2: A Marginal Cost Structure for Shale Gas (Skagen, 2010)

Figure 4.3: A Marginal Cost Structure for Shale Gas

Figure 4.4: Overall Production in 2025 as Predicted by the Model

Figure 4.5: Producer Profit in 2025 as Predicted by the Model

Figure 4.6: Shale Producers in 2025 as Predicted by the Model

Figure 4.7: Consumption in 2025 as Predicted by the Model

Figure 5.1: The Tradeoff Between Complementary and Integrality

Figure 5.2: Computational Time for First Numerical Example

Figure 5.3: Computational Time for Example Relevant to Production Systems

Figure 5.4: Diagram of First Network Example

Figure 5.5: Representation of Second Network Example

 viii

Nomenclature and Abbreviations

BCM Billion Cubic Meters

DC-MLCP Discretely-Constrained Mixed Linear Complementary Problems

DC-Nash Discretely-Constrained Nash Game

EPEC Equilibrium Program with Equilibrium Constraints

f Objective Function (Unless stated otherwise)

g Inequality Constraint Function (Unless stated otherwise)

KKT Karush-Kuhn-Tucker Conditions

LBF Pound Force

LP Linear Program

MCF Million Cubic Feet

MIP Mixed Integer Program

MILP Mixed Integer Linear Program

MMBTU One million British Thermal Units; measurement of heat energy

MPEC Mathematical Programs with Equilibrium Constraints

NCP Nonlinear Complementary Problem

 The real numbers

SOS Special Ordered Set

x Decision Variable

WGM World Gas Model

Z The Integers

1

Chapter 1: Introduction

1.1. Motivation and Objective

Mathematical modeling of problems arising in engineering and economics often

requires formulations where optimal decisions need to be made at two different

levels. These levels can be distinguished by time, space, decision choices, or even

sets of players. An optimal decision at each level, we assume, can be obtained using

an optimization problem.

 Consider some of many types of decisions made by the computer processor

manufacturer Intel. First while making the processor, manufacturing errors and

uncertainty can lead to their “best” design being infeasible. If not infeasible, the

design might not be the best choice under uncertainty. This decision needs to be made

accounting for the uncertainty or errors that can develop after manufacturing the

product. Second, while deciding the price (or quantity) of the processor, Intel would

have to take into account what its competitors are doing and if the government has

made any regulations regarding taxation or distribution. Setting a price, thus, not only

depends on Intel‟s own costs but the strategy of other actors at a different level than

Intel. Finally, Intel needs to decide the number of processors to ship to specific

locations. Even considering a simplified version of the market makes this a complex

problem as network dynamics, transportation costs, and local demand all weigh into

the decision. But, more importantly, the processors can only be transported in positive

integer number quantities, as opposed to fractional quantities.

2

 All the problems classified above fall under the umbrella of two-level

problems. The first decision, regarding uncertainty, requires the initial proposed

design of the chip to be such that the presence of uncertainty does not cause the

design to be infeasible and/or suboptimal. The decision is thus made to ensure

feasibility of design constraints as well as minimum variation in a design‟s

performance under uncertainty. Such a problem will be described in this dissertation

as a Robust Optimization problem.

 The second type of problem about making a profit-maximizing decision with

other players present in a non-cooperative competitive environment is known as a

Stackelberg Game in economics and falls under the broad heading of Mathematical

Programs with Equilibrium Constraints or MPECs. These problems have a wide

variety of applications, and in their general form can encompass robust optimization

problems as well. A special class of MPECs with certain mathematical properties will

be considered in this dissertation along with their extension to Equilibrium Programs

with Equilibrium Constraints or EPECs.

 The third problem is about solving non-cooperative games as well, except the

decision at the second level is to make sure that the choice made is integer rather than

continuous. This is more of a computational issue, but nevertheless the techniques to

solve such problems have important applications. These problems fall into the class

of Discretely-Constrained Mixed Linear Complementarity Problems or (DC-MLCPs).

 The two levels are a common feature to all these problems, and the biggest

challenge to overcome this two-level structure is computational time. A nested

structure causes a large increase in computational effort with an increase in variables

3

and/or decision space (Bialas & Karwan, 1982). The focus of this dissertation is on

developing decomposition based solution techniques that reduce computational effort

significantly for these three types of problems. These new techniques will then be

implemented on a variety of examples from engineering and energy markets.

1.2. Research Components

1.2.1. Solving Robust Optimization Problems

The goal of robust optimization problems is to find an optimal solution that is

minimally sensitive to uncertain factors. Uncertain factors can include inputs to the

problem such as parameters, decision variables, or both. Given any combination of

possible uncertain factors, a solution is said to be robust if it is feasible and the

variation in its objective function value is acceptable within a given user-specified

range. Previous approaches for general nonlinear robust optimization problems under

interval uncertainty involve nested optimization and are not computationally

tractable. The overall objective in this dissertation is to develop an original and

efficient robust optimization method that is scalable and does not contain nested

optimization. The proposed method is applied to a variety of numerical and

engineering examples to test its applicability. Current results show that the approach

is able to numerically obtain a locally optimal robust solution to problems with

quasiconvex constraints (≤ type) and an approximate locally optimal robust solution

to general nonlinear optimization problems. A portion of this research component has

been presented in (Siddiqui et al., 2011a) and (Siddiqui et al., 2011c).

4

1.2.2. Solving Mathematical Programs and Equilibrium Problems with

Equilibrium Constraints

This dissertation presents an original method for solving mathematical programs and

equilibrium problems with equilibrium constraints (MPECs and EPECs). Schur‟s

decomposition followed by two separate methods of approximating absolute-value

functions are presented and used to solve large-scale MPECs. The advantage of this

method over traditional methods for solving MPECs is that computational time is

much lower, which is corroborated by numerical examples. An extension to solve

EPECs is also presented, along with a small numerical example. Finally, an

application of the method to an MPEC representing the United States natural gas

market is given. A portion of this research component has been presented in

(Siddiqui & Gabriel, 2011b) and (Gabriel et al., 2011c).

1.2.3. Solving Discretely-Constrained Mixed-Integer Linear

Complementarity Problems

This research thrust presents an original modification to a recent approach for solving

discretely-constrained, mixed linear complementarity problems (DC-MLCPs). Such

formulations include a variety of interesting and realistic models of which discretely-

constrained Nash games and network equilibrium problems are considered. A

methodology is provided to solve Nash-Cournot energy production games allowing

some variables to be discrete. Normally, these games can be stated as mixed

complementarity problems but only permit continuous variables in order to make use

of each producer's Karush-Kuhn-Tucker conditions. The proposed approach allows

for more realistic modeling and a compromise between integrality and

5

complementarity to avoid infeasible situations. A mixed-integer, linear program

formulation is used to solve the DC-MLCP in which both complementarity as well as

integrality are allowed to be relaxed. A portion of this research component has been

presented in (Gabriel et al., 2011a) and (Gabriel et al., 2011b).

1.3. Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides

background and a thorough literature review for the three proposed research

components. Chapter 3 provides the proposed solution methodology for robust

optimization problems. The chapter also provides several engineering applications as

well as numerical examples. The chapter is concluded by an example of an

application to a carbon emissions related problem. Chapter 4 provides details on the

algorithm used to solve MPECs and EPECs as well as computational issues. The

chapter also provides numerical examples to corroborate these approaches, as well as

an application to the North American natural gas market. Chapter 5 provides the

proposed solution technique for discretely-constrained mixed linear complementary

problems with examples of discretely-constrained Nash games and energy networks.

Chapter 6 provides conclusions and directions for future research. Figure 1.1 displays

the organization of this dissertation. Note that the dashed line shows that a technique

developed in Chapter 4 will be used in Chapter 5.

6

Chapter 1:

Introduction

Chapter 4:

MPECs and

EPECs

Chapter 2:

Background

Chapter 5:

DC-MLCPs

Chapter 3:

Robust

Optimization

Chapter 6:

Conclusions

Figure 1.1: Organization of Dissertation

7

Chapter 2: Definitions and Literature Review

2.1. Introduction

This chapter will provide the necessary background for two-level optimization

problems including definitions, terminologies, and a thorough literature review. This

chapter will initially give mathematical definitions of two-level problems, and explain

how robust optimization, MPECs and EPECs, and DC-MLCPs can all be cast as two-

level problems.

 While two-level problems can be shown to have a general formulation, each

of the three different types considered in this dissertation need different treatment to

come up with the most efficient solution. Although solving all three efficiently will

involve the use of decomposition techniques, many other alternatives exist in the

literature which will also be discussed. Finally, some preliminary mathematical ideas

and traditional algorithms will also be introduced.

 This chapter first goes through the definition and terminologies used in this

dissertation. In particular, the next section defines each of the three two-level

problems considered along with other definitions. A literature review is provided next

followed by two preliminary topics.

2.2. Definitions and Terminologies

In general, the two-level optimization problems considered in this dissertation can be

expressed as the following

8

)(

),(s.t.

),(min

ul

lu

lu

xSx

xx

xxf



 (2.1)

where the continuous variables unux  , lnlx  are, respectively, the vector of

upper-level, lower-level variables,),(lu xxf is the upper level objective function
1
,





is the joint feasible region between these sets of variables and)(uxS is the solution

set of the lower-level problem that can be an optimization problem, a nonlinear

complementarity problem (NCP) (Cottle et al., 2009), or a variational inequality

problem (VI) (Faccinei & Pang, 2003). Figure 2.1 shows a diagrammatic

representation of a two-level problem where the nested structure is revealed.

minimize f(xu,xl)

(Upper-Level Problem)

Consider xu and calculate xl

(Lower-Level Problem)

xuxl

),(lu

fixed xx

Figure 2.1: The Structure of a Two-Level Problem

1
 Note that when solving EPECs, several such two-level problems will be solved.

9

2.2.1. Robust Optimization

Table 2.1 describes the terminology used for robust optimization.

Table 2.1: Definition of Terms for Robust Optimization

Symbol Interpretation

x Vector of decision variables

f Objective function to be minimized

)ˆ,(xxg j Constraint functions of the form “≤ 0”

x Maximum deviations of uncertain variables from nominal

values

x̂ Deviations from nominal values of uncertain variables

and parameters, respectively:  xxx  ,ˆ

0f User-specified tolerance for acceptable variation in

objective function under uncertainty

 The goal in robust optimization is to optimize the objective function with

respect to uncertain decision variables x, satisfying all constraints and ensuring the

objective function variation is kept within an acceptable range 0f , while accounting

for uncertainty in decision variables. Specifically, this dissertation considers robust

optimization problems of the form
2
:

2
 Note that equality constraints are considered to be formulated as two inequality constraints in

formulation (2.2). Alternatively one can explore the approach for robust optimization with equality

constraints (Rangavajhala et al., 2007) but that has not been explored in this dissertation.

10

],[ˆ

ˆ,

,..,10)ˆ,(

1
)0,()ˆ,(

..

)ˆ,(min

0

xxx

RxRx

Jjxxg

f

xfxxf

ts

xxf

unn

j

x












 (2.2)

where f and g are continuously differentiable in both x and x̂ . Figure 2.2

diagrammatically shows the structure of a robust optimization problem.

Check Constraint Violation

under Uncertainty

(Constraints Violated under Uncertainty?)

minimize f(x)

(Objective Function)

xx̂

)ˆ,(xx fixed

Figure 2.2: Representation of a Robust Optimization Problem

In the next few paragraphs, terms used in this dissertation are defined.

Definition 2.1: Quasiconvex Function: A function)ˆ,(xxg is said to be quasiconvex

in  xxx  ,ˆ if for all  xxx  ,ˆ ,  ),(),,(max)ˆ,(xxgxxgxxg  for all x

(Bazaraa et al., 1993).

11

Definition 2.2: Objective robustness: For a candidate point x
c
 objective robustness

holds if inequality

1
)0,()ˆ,(

0






f

xfxxf cc

 (2.3)

 is satisfied for all  xxx  ,ˆ .

 Thus, this inequality ensures that the maximum objective function variation

stays below a certain predetermined maximal amount 0f when presented with

deviations in uncertain variables and parameters.

Definition 2.3: Feasibility robustness: For a candidate solution x
c
 if

 Jjxxg c

j ,...,10)ˆ,( (2.4)

is satisfied for all  xxx  ,ˆ then feasibility robustness holds.

 Note that equation (2.3) is just another constraint, so it can be easily

incorporated into inequality (2.4) when stating a general formulation that only

includes feasibility robustness. From this point on, inequality (2.3) will not be stated

separately in any formulation but will be assumed to be incorporated in inequality

(2.4). For a more detailed description on objective robustness, please refer to (Li et

al., 2006).

Definition 2.4: Robust point: A robust point is both objectively and feasibly robust.

12

Definition 2.5: Locally optimal robust: For a robust optimization problem, a locally

optimal robust solution x*, is a robust point such that there exists a neighboring set U

of robust solutions for which x* is optimal (Uxxfxf ),(*)().

It is essential that the neighboring set be made up of only robust points

otherwise the term is ill-defined. There is also a global counterpart as defined below.

Definition 2.6: Globally optimal robust: For a robust optimization problem, a

globally optimal robust solution x*, is a robust point such that x* is optimal

(xxfxf ),(*)() in the feasible region.

2.2.2. Mathematical and Equilibrium Programs with Equilibrium

Constraints

In general, a mathematical program with equilibrium constraints is given by
3

)(

),(s.t.

),(min

xSy

yx

yxf



 (2.5)

where the continuous variables



xnx ,



y 
ny are, respectively, the vector of

upper-level, lower-level variables,



f (x,y) is the upper-level single-objective

3
 Without loss of generality, we assume that the variables x and y are nonnegative, which is

incorporated in the decision space Ω.

13

function,



 is the joint feasible region between these sets of variables and



S(x) is the

solution set of the lower-level problem that can be an optimization problem, a

nonlinear complementarity problem (NCP), or variational inequality problem (Luo et

al., 1996).

 One focus of this dissertation is when S(x) is a solution to a nonlinear

complementarity problem. Having a function
nng : , a nonlinear

complementarity problem is to find a vector



zn such that:

0)(

0)(

0







zgz

zg

z

T

 (2.6)

If S(x) is the solution set of an NCP, (2.5) can be rewritten as

0),(

0),(

0

),(s.t.

),(min









yxgy

yxg

y

yx

yxf

T

 (2.7)

where yyx
nnn

yxg :),(is a vector-valued function.

 Similarly, an EPEC is defined as a game between N players at the top level

where each top-level player solves an optimization problem of the form (2.7). Hence,

an EPEC with a common lower-level for each of the N upper-level players typical of

Stackelberg leaders in energy production with the rest of the market represented by

the lower-level problem is given by

14

0),(

0),(

0

),(s.t.

,...,1),(min











yxgy

yxg

y

yx

Njyxf

T

j

 (2.8)

Figure 2.3 shows the diagrammatic representation
4
 for an MPEC and Figure 2.4

shows the diagrammatic representation for an EPEC.

4
 Nash-Cournot in this diagram implies that an individual player solves their own optimization problem

with other players‟ decisions being fixed.

15

maximize Profit(x,y)

(Decides the value of x)

Nash-Cournot

(xfixed, y)
(Take x fixed and solve for y)

xy

Figure 2.3: Representation of an MPEC

Nash-Cournot

(x, yfixed)
(Decides the value of x)

Nash-Cournot

(xfixed, y)
(Observe x and solve for y)

xy

Figure 2.4: Representation of an EPEC

16

2.2.3 Discretely-Constrained Mixed Linear Complementarity Problems

It is not immediately obvious why the problem considered in this subsection is a two-

level problem. The problem in its original form is not, but it needs to be converted

into a two-level form for the particular solution technique (Gabriel et al., 2011a;

Gabriel et al., 2011b) to be applicable. In general, a discretely-constrained mixed

linear complementarity problem is given as follows: given the vector Tqqq),(21

and matrix 









2221

1211

AA

AA
A , find 21),(21

nnTzzz  such that
5

 

 

   

    2222

1111

22

2

1

22212

1

2

1

12111

,,,

,,,

free ,0

00

DdZzCcz

DdZzCcz

zz
z

z
AAq

z
z

z
AAq

dc

dc





























 (2.9)

 The indices for zi, i = 1, 2 are partitioned into continuous-valued (denoted by

the set Ci) and discrete-valued variables (denoted by the set Di), i.e.,

     2,1,,  izzz
TT

Di

T

Cii
ii

 with the continuous variables shown first without loss of

generality. From here on, unless otherwise indicated, the discrete sets,

 ND ,...,1,01  and  212 ,...,1,0,1,..., NND  will be assumed with N, N1, N2,

nonnegative integers.

5
 Here the superscript T denotes the transpose function. The symbol  denotes complementary which

means that the product of the two terms must be zero.

17

 Finding a solution to this DC-MLCP can be thought of as a two-level

problem, even though (2.9) formulates it in one level. The upper level minimizes

deviations from an integer solution and complementary, i.e., ensures that as close as

possible to an integer solution is obtained while satisfying complementary conditions

with a minimum deviation as well, while the lower level solves a complementary

problem assuming some deviation from integers has been fixed at the upper level.

Figure 2.5 shows the diagrammatic representation of a discretely-constrained mixed

linear complementary problem, while the following formulation describes the two-

level formulation. Note that the first two inequality constraints and the first equality

constraint (the first three constraints) form a complementary problem. Hence, the

two-level structure
6
 is apparent in the following formulation. Chapter 5 will describe

in detail how this two-level formulation is obtained.

6
 Compare (2.10) to (2.1). The upper-level variables are ε and ζ, i.e.,














ux and the first three lines

in (2.10) define the upper-level problem. The lower level variables z, have










2

1

z

z
x l and are part of

the solution set of the discretely-constrained complementary problem given by the last four lines of

(2.10).

18

 

 

 

   

 

     

      22222

11111

22

2

1

22212

1

2

1

12111

1

21

2

1

,,,

,,,

free ,0

0

,

,

..

11min

DdZzCcz

DdZzCcz

zz
z

z
AAq

z
z

z
AAq

Cc

DDd

ts

ddc

ddc

c

d

d

TT











































































 (2.10)

19

minimize f (ε,ζ,z)

(Minimize deviations ε,ζ)

Complementary

Problem

(εfixed , ζfixed , z)
(Observe ε,ζ and solve for z)

ε,ζz

Figure 2.5: Representation of a Discretely-Constrained Mixed Linear

Complementary Problem

2.3. Overview of Previous Work

2.3.1 Robust Optimization

This dissertation‟s approach for solving robust optimization problems (hereafter

referred to as the modified Benders method), which will be described in Chapter 3,

will now be compared to previous methods. A comprehensive review of the literature

was conducted and the main distinctions between the proposed modified Benders

method and previous works are presented as follows.

 The robust optimization problems in the proposed modified Benders method

also involve nonlinear (for example, Welded Beam and Heat Exchanger, which both

20

involved nonconvex constraint functions) constraint functions
7

. This is more general

than only considering linear constraint functions in the problem as reported in the

literature (e.g., Balling et al., 1986; Ben-Tal & Nemirovski, 2002; Bertsimas & Sim,

2006; Soyster, 1973) or quadratic (e.g., Li et al., 2011) as well as other versions

involving convex programs (e.g., Ganzerli & Pantelides, 1999) or linearization to

solve the problem (e.g., Balling et al., 1986). The modified Benders method is able to

obtain exact locally optimal robust solutions to problems with quasiconvex

constraints as well as non-convex quadratic programs, which no one method in the

reported literature is able to achieve. Other approaches also consider distributions for

uncertainty (e.g., Lee et al., 2009; Lagaros & Papadrakakis, 2007) while the approach

of this dissertation looks at a worst-case analysis for interval uncertainty
8
 without any

explicit probability distribution or a nested optimization structure. Moreover, the

modified Benders method is able to handle large uncertainties which earlier methods

7
 In some cases, although not considered in this dissertation, a slightly stricter condition with convexity

in the lower-level of the Benders decomposition method is needed. However, we did not encounter this

in any of our test problems. A workaround to this problem is available in (Gabriel et al., 2010). This

involves sampling the domain of the objective function of the lower-level optimization problem to

determine the convex portions of this function. This numerical approximation scheme can be applied to

the modified Benders method to determine convexity of the objective function of the lower-level

optimization problem.

8
 Note that this dissertation considers robust optimization problems with interval uncertainty, while

there is a substantive amount of literature considering other types of uncertainty. Refer to (Bertsimas &

Sim, 2006; (Ben-Tal et al., 2009).

21

(e.g., Balling et al., 1986; Soyster, 1973; Ganzerli & Pantelides, 1999) were not able

to tackle.

 The proposed approach preserves the computational tractability, theoretically

and practically, of the deterministic (i.e., nominal) problems. By contrast, under

interval uncertainty, the computational effort for previous methods (e.g., Gunawan &

Azarm, 2004; Li et al., 2006) to obtain robust solutions is much higher than their

deterministic counterparts. However, results from a variety of numerical experiments

show that the computational effort of solving the robust optimization problems is not

much greater than that of their deterministic counterparts for the modified Benders

method. Moreover, the modified Benders method is scalable, in that by numerical

tests, the number of function calls per iteration increases at most linearly (numerical

result) with an increase in the number of variables, uncertainty variables, and

constraints.

 Since this dissertation‟s approach is based on gradient-based methods, a

globally optimal robust solution can never be guaranteed for the complete class of

continuous, non-convex problems. However, this dissertation uses the idea of a

locally optimal robust solution, and shows that this approach can obtain a locally

optimal robust solution for nonlinear robust optimization problems.

 In addition to the uncertainty in the data of the problems (i.e., the parameters),

interval uncertainty is considered in the decision variables corresponding to

manufacturing tolerances, implementation errors, etc. where optimized values cannot

be achieved exactly, which is very common in practical engineering applications. For

the current robust optimization formulations in the literature (e.g., Ben-Tal &

22

Nemirovski, 2008; Lu et al., 2010; Qiu & Wang, 2010; Zhu & Ting, 2001),

considering uncertainty in the decision variables may considerably change those

formulations or increase the complexity of the problem. The approach in this

dissertation, however, keeps the same formulation and obtains locally optimal robust

solutions to these problems with not much greater computational effort than the

deterministic problem.

 There has been an abundance of literature modifying Benders decomposition

method (Benders, 1962) to solve various types of optimization problems. However, to

my knowledge, there have not been any modifications to Benders method that solve

nonlinear robust optimization problems with interval uncertainty although Benders-

based robust optimization problems have been considered in other contexts. For

example, (Velarde & Laguna, 2004) provided a Benders-based heuristic to solve the

international source allocation problem. In this problem, a subset of international

suppliers needs to be selected to meet local demand. The uncertainty is in the demand

function parameters and exchange rates. However, their approach did not consider

uncertainty in variables. For their approach to work, they needed to include control

variables, which change depending on the uncertainty scenario to provide an easier

route to solution. The approach in this dissertation does not require the introduction of

such variables. Also, their methodology can‟t be extended to general nonlinear robust

optimization problems. Saito and Murota (Saito & Murota, 2007) described a method

to apply Benders decomposition to solve linear, mixed-integer, robust optimization

problems with ellipsoidal uncertainty. However, this approach only works for linear

problems. Finally, Montemanni (Montemanni, 2006) applied a Benders algorithm to a

23

specific robust spanning tree problem, while Ng et al. (Ng et al., 2010) applied it to a

specific semiconductor allocation problem that had uncertainty. Again, both

approaches are not applicable to continuous, nonlinear robust optimization problems

with interval uncertainty and have not modified Benders decomposition in the way

this dissertation does.

 There are related topics to robust optimization such as anti-optimization (e.g.,

(Qiu & Wang, 2010) and reliability-based design optimization (e.g., Zou &

Mahadevan, 2006) that run into the same problems as described above of not being

computationally tractable or only working for a certain simple type of problems. For

example, Youn and Xi (Youn & Xi, 2009) modified a double loop problem (like

robust optimization) into a single loop so that it becomes computationally easier. This

work involves using an eigenvector dimension reduction method, and probability

distributions, which may not be applicable to general nonlinear robust optimization

problems. Also, neither of these papers has techniques that include interval

uncertainty in parameters, in decision variables, along with being computationally

efficient. The modified Benders method of this dissertation is not only directly

relevant to robust optimization, but it handles the specific two-level structure of

robust optimization in a less computationally intensive way.

2.3.3 Mathematical and Equilibrium Programs with Equilibrium

Constraints

Finding optimal points for mathematical programs with equilibrium constraints

(MPECs) involves solving a two-level optimization where the lower level is an

equilibrium problem. In particular, having a complementarity problem (Cottle et al.,

24

2009) as the lower level implies that the complementarity constraint is a non-convex

bilinear multiplicative term.

 Many techniques exist to solve MPECs (Luo et al., 1996) but a popular way

such MPECs have been solved is by using a disjunctive-constraints technique

(Fortuny-Amat & McCarl, 1981). However, the two biggest drawbacks of disjunctive

constraints are that the method is computationally expensive for large models (Luo et

al., 1996) and that selecting a particular constant in the method is often troublesome

(Gabriel & Leuthold, 2010). The solution can be extremely sensitive to the selection

of this constant, and be far from the true answer if not selected correctly. Other

methods (Steffensen & Ulbrich, 2010) and (Uderzo, 2010) also exist but have not

been shown to work for large-scale models.

 This dissertation presents a new method for solving MPECs, based on

handling the bilinear, non-convex term using Schur‟s Decomposition and Special

Ordered Sets of Type 1 (SOS Type 1) variables (Gabriel et al., 2006), along with a

reformulation technique for absolute value terms. This method is applied to solve a

small Stackelberg game with the number of players allowed to vary and an MPEC for

the U.S. natural gas market to validate the proposed approach. A proposed extension

along with a simple example to solve equilibrium programs with equilibrium

constraints (EPECs) is also provided.

2.3.4. Discretely-Constrained Mixed Linear Complementarity Problems

As discussed before, complementary problems have had several applications in the

literature, including solving Nash-Cournot games and network problems. Both Nash-

Cournot games and network problems can be converted to mixed complementary

25

problems by taking the Karush-Kuhn-Tucker (KKT) (Bazaraa et al., 1993) conditions

to each player‟s optimization problem and combining them (Cottle et al., 2009).

 A lot of applications of both these problems relate to energy markets. For

example, Bard (1983,1988) developed algorithms for linear and convex two-level

programming problems with applications to energy. Continuing, Bard and Moore

(Bard & Moore, 1990) introduced a branch and bound algorithm for two-level

problems resulting from complementary problems. Karlof and Wang (Karlof &

Wang, 1996) applied a two-level approach to solving a flow shop scheduling

problem, while (Labbéb et al., 1998) applied it to a model of taxation and highway

pricing. Moore and Bard (Moore & Bard, 1990) and Wen and Huang (Wen & Huang,

1996) provided methods to solve mixed-integer two-level problems, but these

methods are not applicable for solving DC-MLCPs.

 More recently (Bard et al., 2000), (Fuller, 2010), (Fuller, 2008), (Gabriel &

Leuthold, 2010), (Gabriel et al., 2010), (Hu et al., 2009), (Marcotte et al., 2001),

(O'Neill et al., 2005), and (Scaparra & Church, 2008) have had applications of game

theory problems to energy but none has considered complementary problems which

are discretely constrained.

 In some cases, solutions to discretely-constrained complementary problems do

not exist. This is because satisfying integrality and complementary conditions

together can prove to be more difficult than satisfying integrality and complementary

conditions individually. However, solutions to the original optimization problem

whose KKT conditions were used to formulate the complementary problem might

still exist.

26

 (Gabriel et al., 2011a), (Gabriel et al., 2011b) provide ways around this, and

provide a relaxation technique that is able to solve DC-MLCPs. The distinguishing

features of the proposed technique in both these papers with respect to other

procedures reported in the technical literature (e.g., (Galiana et al., 2003), (Hogan &

Ring, 2003), (Bjørndal & Jörnsten, 2008) are two-fold. First, the initial Nash-Cournot

game or network problem is not manipulated to achieve prices that support market

outcomes. Instead, optimality conditions of the original problem, with integrality and

complementary conditions relaxed, are formulated and incorporated into a relaxation

problem that allows realizing the tradeoff of integrality vs. complementarity. Second,

instead of using a two-step procedure as in the literature, the technique in (Gabriel et

al., 2011a) is single-step formulation of a two-level problem, and does not require

altering the original problem by fixing integer variables to their optimal values to

formulate a continuous problem. Hence this dissertation will concentrate on the work

from the two papers (Gabriel et al., 2011a), (Gabriel et al., 2011b).

 In both papers, (Gabriel et al., 2011a), (Gabriel et al., 2011b), however,

disjunctive constraints (Fortuny-Amat & McCarl, 1981) are used to solve the

resulting two-level problem. In this dissertation, a method developed in Chapter 4

will be used to solve these problems instead of disjunctive constraints. This is the

main contribution in this dissertation, in that the method of Chapter 4 solves the DC-

MLPCs much quicker than the disjunctive constraints method, and does not require

the selection of a specific constant for disjunctive constraints.

27

2.4. Preliminaries

2.4.1. Benders Decomposition

This section describes standard Benders decomposition as a modified version will be

used in Chapter 3. Table 2.2 describes the terminology used for explaining Benders

decomposition.

Table 2.2: Definition of Terms for Benders Decomposition

Symbol Interpretation

vc Complicating vector of variables to explain standard Benders

decomposition

vu Uncomplicating vector of variables to explain standard

Benders decomposition

c(vc) Constraints of complicating variable

d(vc,vu) Constraints of uncomplicating and complicating Variables

 Benders decomposition is used to efficiently solve linear and nonlinear

programs (Conejo et al., 2006) and decomposes the original set of variables into both

complicating and uncomplicating ones. Normally, integer variables are defined as

complicating variables as fixing their values allows the problem to have a structure

that provides an easy solution (assuming the rest of the problem is relatively easy to

solve). However, in general, the complicating variables need not be integer and can

be real-valued which, if fixed, render a simple or decomposable problem. Using

notation provided above, Benders decomposition seeks to solve an optimization

problem of the following form:

28

qmn

uc

pn

c

mn

uc

m

u

n

c

uc

c

uc
vv

vvd

vc

vvf

v

Uv

where

vvd

vc

ts

vvf
uc



















:),(

:)(

:),(

0),(

0)(

..

),(min
,

 (2.10)

 To solve this problem, the Benders decomposition technique fixes values of

cv (which are part of a set U that can be integers or other subsets of
n) and solves

the problem after first decomposing into a master problem and sub-problem (Conejo

et al., 2006). To explain these notions of master and sub-problem, first define an

auxiliary function α(vc) as follows which expresses the objective function of the

original problem as a function solely of the complicating variables.

0),(

..

),(min)(





uc

uc
v

c

vvd

ts

vvfv
u



 (2.11)

Using the definition of α(vc), the original problem (2.10) can be expressed as follows.

0)(

..

)(min

c

c
v

vc

ts

v
c



 (2.12)

 Iteratively, a subproblem (2.13) is solved to approximate α(vc) from above by

fixing values of the complicating variables)(
fixed

cc vv  and obtaining the dual

variables λ to these constraints as shown in (2.13).

29

0),(

):(

..

),(min





uc

fixed

cc

uc
v

vvd

dualvv

ts

vvf
u


 (2.13)

 Then, the solution to the above problem,  sol

uv and the dual variables  sol

are used to construct “Benders cuts” in the master problem to approximate the

function
9
 α(vc) from below. Note that these cuts are iteratively added at each step

until convergence. For simplicity, only one cut is shown here.

 )(),(

0)(

..

min
,

fixed

cc

Tsolsol

u

fixed

c

c

v

vvvvf

vc

ts

c










 (2.14)

 Since the master problem (2.14) has a larger feasible region, it provides a

lower bound (zlo) while the more restricted subproblem (2.13) provides an upper

bound (zup) for the solution objective function value. These problems are solved

iteratively until (zup – zlo)/(zlo) is less than some tolerance. As long as the function

α(vc) is convex, Benders decomposition converges to an optimal solution (Conejo et

al., 2006).

9
 A sufficient condition for convergence is that the objective function in formulation (2.11) needs to be

convex. However, the modification this paper presents, from the experimental results, does not need

this convexity as the Benders cuts are modified. For more information, please refer to (Conejo et al.,

2006) and (Gabriel et al., 2010).

30

2.4.2. Disjunctive Constraints

From (2.7), the set of solutions to

 0),(yxgyT (2.15)

is nonconvex and can be computationally challenging to find even if),(yxg is linear.

 One way is to use disjunctive constraints (Fortuny-Amat & McCarl, 1981). A

large constant K is introduced, which can be difficult to select and cause

computational issues (Gabriel & Leuthold, 2010), as well as a vector of binary

variables r. Then, (2.8) is rewritten as

 

constant large a is

uesbinary val of vector a is 10

),(0

)1(0

),(s.t.

),(min











K

,r

where

Kryxg

rKy

yx

yxf

yn

 (2.16)

 For large enough K, the solution set to (2.16) is equivalent to that of (2.7). The

binary vectors and large K force componentwise, at least one of y or g to be 0.

However, choosing K too small can cause errors in problem formulation (Gabriel &

Leuthold, 2010) while choosing K too large can cause the condition number of the

optimization problem (Renegar, 1995), (Renegar, 1994) to be high and result in

numerical errors. One of the main aims of this section is to get around this problem

by using decomposition and approximation techniques.

31

2.4.3. Approximating Nonlinear Functions using SOS Type 1 and Type 2

Variables

Note that disjunctive constraints are used to state disjunctive (either/or) logic

statements. Hence, Chapter 4 will provide a different way to state such logic

statements mathematically. For this, a reformulation of the absolute value function

will be required, for which special ordered sets will be used.

Definition 2.7: A Special Ordered Set of Type One (SOS1 or SOS Type 1) is

defined to be a set of non-negative variables for which at most one member from

the set may be non-zero in a feasible solution. There are no other restrictions on the

elements of the set, and they can be ordered in any way.

 Among the uses for SOS1 variables, one popular one is to approximate

functions. For example, consider a nonlinear function g(x) over a closed interval

],[highlow xxx on the positive real line. Given a partition of n points of the

interval  
highnlowi xxxxxxx  ,...,,, 321 , a new SOS Type 1 set of n variables

 n

iiv
1
 can be introduced to approximate this nonlinear function. Then, g(x) can be

expressed as

32

  Variables 1 SOS are

1

)()(

1

1

1

1

n

ii

n

i

i

n

i

ii

n

i

ii

v

v

xvx

where

xgvxg





















 (2.17)

Figure 2.6 shows this nonlinear function being approximated by SOS Type 1

variables.

x
x3 xn x2 x1

g(x)

g(x1)
g(x2)

g(x3)

g(xn)

Figure 2.6: Approximating a Nonlinear Function Using SOS Type 1 Variable

33

 Similarly, a piecewise approximation can also be developed using SOS Type

2 variables.

Definition 2.8: A Special Ordered Set of type Two (SOS 2 or SOS Type 2) is a set

of nonnegative consecutive variables in which not more than two adjacent

members may be non-zero in a feasible solution. No other restrictions are placed

on the set.

 Again, consider a nonlinear function g(x) over a closed interval

],[highlow xxx on the real line. Given a partition of n points of the

interval  
highnlowi xxxxxxx  ,...,,, 321 , a new SOS Type 2 set of n variables

 n

iiu
1
 can be introduced to approximate this nonlinear function. Then, g(x) can be

expressed as

  Variables 2 SOS are

1

)()(

1

1

1

1

n

ii

n

i

i

n

i

ii

n

i

ii

u

u

xux

where

xguxg





















 (2.18)

Figure 2.7 shows this nonlinear function being approximated by SOS Type 2

variables. The red line shows the piecewise linear approximation of the function.

34

x
x3 xn x2 x1

g(x)

g(x1)
g(x2)

g(x3)

g(xn)

Figure 2.7: Approximation of Nonlinear Functions using SOS Type 2

Variables

 The downside of SOS Type 2 variables is, of course, that it requires much

more computational power than if SOS Type 1 variables were used. In Chapter 4,

however, an absolute value function will be used. Hence, setting g(x) = |x|. For this

purpose, only a set of two SOS Type 1 variables is required to reformulate this over

the entire range. This is described by the following formulation.

Variables 1 Type SOS are ,

)(











vv

vvx

where

vvxg

 (2.19)

35

 Since these variables encompass the whole range, no restriction on the sum

being 1 is required. Moreover, this formulation will be used in Chapter 4 to solve

MPECs.

36

Chapter 3: Solving Robust Optimization Problems Using a

Modified Benders Method

3.1. Introduction

Engineering optimization problems often involve uncontrollable variations or

uncertainties in factors like decision variables and/or parameters. Optimal solutions

that might be deterministically feasible often end up being infeasible for a given

realization of uncertain factors. Additionally, even small levels of variations can

cause large degradations in the objective function value. Manufacturing errors,

measurement problems, and uncertainty in environmental conditions are examples of

sources for these variations.

 Uncertainty can be handled with or without a probability distribution.

Optimization problems that involve probability distributions are referred to as

stochastic optimization problems. These are more suited for situations where

accounting for worst-case uncertainty might result in foregoing performance.

Optimization problems in this chapter are more suited for situations where any

violation of constraints under uncertainty could result in the solution being unsuitable.

Hence, a worst-case analysis needs to be appropriate for problems considered in this

chapter.

 In this section, an approach for robust optimization, e.g., (Ben-Tal et al.,

2009), for linear, quadratic, convex, and non-convex programs is developed by

applying a worst-case analysis using a decomposition method. No probability

37

distribution is presumed
10

, but only intervals with a nominal point (user- or problem-

defined) are used to represent the uncertainty in decision variables and/or parameters.

The problem structure in this dissertation reflects a real-world design situation, e.g.,

when information about uncertain factors during the early stages of a design process

is often limited.

 The two-level structure is apparent in robust optimization problems. The

upper-level of a robust optimization problem is a decision based on a fixed level of

uncertainty. The lower-level checks the feasibility of an optimal solution obtained

from the upper-level. This chapter provides a way to decompose this two-level

structure using Benders decomposition to solve the robust optimization problem. A

portion of the material in this chapter has been presented previously, see (Siddiqui et

al., 2011a) and (Siddiqui et al., 2011c).

3.2. Interval Uncertainty

A simple example will be presented first to motivate this method. Consider the

optimization problem

10

 The statement that no probability distribution being presumed is to ensure the fact that probability

does not come into play in any part of the discussed formulation. For instance, a uniform distribution

over the whole interval of uncertainty can be assumed. However, the solution technique for robust

optimization would involve solving the problem while ensuring there is a zero probability of constraint

violation, thus taking probability out of the question. Therefore, it is informative to presume no

probability distribution.

38

103

512

8

..

2)(min

213

212

211

21









xxg

xxg

xxg

ts

xxxf

 (3.1)

A version of this problem with uncertainty looks like

  6,...,11.0,1.0ˆ

10)ˆ3()ˆ1(

5)ˆ1()ˆ2(

8)ˆ1()ˆ1(

..

2)(min

26153

24132

22111

21











ix

where

xxxxg

xxxxg

xxxxg

ts

xxxf

i

 (3.2)

 Note that parameter uncertainty has been introduced in the constraints of the

problem. Realize also that, for example, if 1.0ˆˆ
21  xx in the first constraint of (3.2),

then if x1 and x2 satisfy the following inequality

8)1.01()1.01(21  xx (3.3)

then x1 and x2 also satisfy

  2,11.0,1.0ˆ

8)ˆ1()ˆ1(2211





ix

xxxx

i

 (3.4)

 Hence, this “trick” can be applied to all parameters and we can get an

optimization problem which will give us a robust solution. This approach will also

define a robust feasible region which is the subset of the feasible region that only

contains points feasible under worst case uncertainty as shown above. Figure 3.1

shows a comparison of the original feasible region (3.1) and the resulting robust

feasible region (3.5), and the constraint functions of following equation (3.5) define

the robust feasible region.

39

10)1.03()1.01(

5)1.01()1.02(

8)1.01()1.01(

..

2)(min

213

212

211

21









xxg

xxg

xxg

ts

xxxf

 (3.5)

40

Figure 3.1: Comparison of the Feasible Region (Black) with the Robust Feasible

Region (Red)
11

 Since this is a linear program, a solution will be one of the corner points of the

feasible region. The solution to the deterministic problem (3.1) is x1 = 1, x2 = 7, f(x) =

-15. The solution to the robust problem (3.2) can be found by looking at the corner

points of the robust feasible region which gives x1 = 1, x2 = 69/11 (approximately

6.27), f(x) = -149/11 (approximately -13.54). Clearly, finding this robust feasible

region greatly simplifies the robust optimization problem. The motivation behind the

modified Benders method was to find this feasible region and then solve the easier

optimization problem (3.5).

11

 Both the feasible region and the robust feasible region are the regions enclosed by the respective

black and red lines.

41

 Recall that the formulation from Chapter 2 for robust optimization problems

(with objective robustness included in the constraints) is given by

],[ˆ

ˆ,

,...,10)ˆ,(

..

)(min

xxx

RxRx

Jjxxg

ts

xf

unn

j

x





 (3.6)

 The end goal of this chapter is to solve problem (3.6). The method used is a

modification of Benders decomposition to be described later. As described in Section

2.4.1, Benders decomposition decomposes an optimization problem into a master

problem and a subproblem, with the variables being divided into complicating and

uncomplicating ones. In (3.6), x are the uncomplicating variables and x̂ are the

complicating ones. As in Benders decomposition, an auxiliary function of x̂ will be

defined. A set of theoretical results will then be proven about the complicating

variables x̂ and the auxiliary function. The first set of theoretical results will show

that an application of standard Benders decomposition to (3.6) when the objective and

constraint functions are linear will yield a globally optimal robust solution (Algorithm

3.1). Then, an assumption on the quasiconvexity of the constraint functions)ˆ,(xxg j

will be made to simplify the application of a modified Benders decomposition. This

modified Benders decomposition with modified Benders cuts will then be applied to

solve (3.6) when the constraint functions)ˆ,(xxg j are quasiconvex (heuristic

Algorithm 3.2). Finally, a third heuristic is also presented which can be used to solve

(3.6) when the constraint functions)ˆ,(xxg j are nonlinear (not necessarily

quasiconvex).

42

 To prove the theoretical results in this chapter, certain assumptions have to be

made about optimization problem (3.6). In Section 2.2.1, assumptions on the

functions f and gj being continuous were stated. While the new Assumptions 3.1 and

3.2 may be relaxed for numerical application of the algorithms presented later, the

theoretical results depend on them. The following are these assumptions and they

have to do with the existence of solutions.

Assumption 3.1: The constraints gj in (3.6), for any fixed value of uncertainty x̂ ,

form a convex, compact, nonempty feasible region over x.

Assumption 3.2: A globally optimal robust solution to (3.6) always exists.

 Assumption 3.1 ensures that continuous functions gj, j = 1,…, J are over a

nonempty compact set so they obtain their maximum within this set via the

Weierstrass Theorem (Royden, 1988). The convexity of the feasible region is

included to ensure that a gradient-based algorithm can be applied successfully.

Assumption 3.2 is stronger, and assumes that a solution exists to the robust

optimization problem, while Assumption 3.1 does not take into account the

],[ˆ xxx  clause in (3.6). Existence of solutions to robust optimization problems

are difficult to prove. The presence of uncertainty means that with large enough

values of |Δx|, there may not be even a feasible solution to the robust optimization

problem, let alone a globally optimal robust solution. However, for example, problem

(3.2) has an optimal robust solution. The algorithms in this chapter can be used with

43

solvers which could detect if an optimization problem did not have a feasible

solution.

 The goal is to obtain values of x such that the formulation (3.6) gives an

optimal solution to x regardless of the values of x̂ . Since this chapter only considers

the worst-case analysis, the method aims to get the “worst” values of x̂ for this

problem (3.6). These are called “interval-optimal” values, as defined next.

Definition 3.1: Interval-optimal: An interval-optimal value for a particular

candidate solution x
c
 and a constraint function gj (for one j = 1,…, J) is defined as a

point  xxxc  ,ˆ such that)ˆ,()ˆ,(cc

j

c

j xxgxxg  for all realizations of

 xxx  ,ˆ . The point  xxxc  ,ˆ is a particular value of the x̂ such that the

constraint attains its maximum value at that particular value of uncertainty.

 An interval-optimal point can be thought of as the value of uncertainty x̂ that

maximizes the value of gj over all other realizations of uncertainty for a fixed value of

x. The next definition takes this further.

Definition 3.2: Globally Interval-optimal: A globally interval-optimal value for a

particular candidate solution x
c
 and set of constraint functions gj; j = 1,…, J; is

defined as a point  xxxc  ,ˆ such that)ˆ,(max)ˆ,(cc

j
j

c

j xxgxxg  for all

realizations of  xxx  ,ˆ . The point  xxxc  ,ˆ is a particular value of the

x̂ such that the constraints attain their global maximum value at that particular value

of uncertainty.

44

 Note that any globally interval-optimal point is interval-optimal for at least

one of the constraint functions gj, j = 1,…, J. From example (3.2), for the constraint

g1 and the candidate solution 









2

1

x

x
xc x1 = 1, x2 = 69/11 the associated interval-

optimal value of x̂ is 1.0ˆ ix , i = 1,…, 6. This also happens to be the associated

globally interval-optimal value of x̂ for the solution x1 = 1, x2 = 69/11 and the set of

constraints g1, g2, g3.

 The following lemma makes the connection between a robust point and its

globally interval-optimal point. In equation (3.5), the globally interval-optimal values

of the uncertainty elements helped determine the robust solution. Lemma 3.1 further

strengthens this connection between a robust point and a globally interval-optimal

point.

Lemma 3.1: A candidate solution (x
c
) for problem (3.6) is a robust point if and

only if its globally interval-optimal point

],[ˆ xxxc 

is such that

0)ˆ,(max cc

j
j

xxg .

Proof: If (x
c
) is a robust point (Definition 2.4), then it must be true that

0)ˆ,(max xxg c

j
j

 for all realizations of  xxx  ,ˆ . Hence, this implies that for

the associated globally interval-optimal point)ˆ(cx , 0)ˆ,(max cc

j
j

xxg as

45

 xxxc  ,ˆ . For the other side of the if and only if argument, suppose the

associated globally interval-optimal point has 0)ˆ,(max cc

j
j

xxg . Then by the

definition of globally interval-optimal, 0)ˆ,(max xxg c

j
j

 for all realizations of

 xxx  ,ˆ which implies that (x
c
) is a robust point.■

 The next step is to relate Definition 3.2 to Benders decomposition as

explained in Section 2.4.1. The robust optimization problem (3.6) will be solved

using a modification of Benders decomposition. In this modification, the uncertainty

variables x̂ will be the complicating variables. Since there is a need for an auxiliary

function as in equation (2.11), define the following function
12

un

n

j

x
u

Rxwhere

Rx

Jjxxg

ts

xfx









ˆ

,...,10)ˆ,(

..

)(min)ˆ(

 (3.7)

 Before proceeding, it is important to define one more term and make an

assumption. The next definition is a slightly different one than Definitions 3.1 and

3.2, but is related to our motivation for finding interval-optimal points using a

modified Benders decomposition.

12

 By Assumption 3.2, a solution to (3.7) always exists. This is because the optimization problem (3.7)

is a relaxed version of the optimization problem (3.6).

46

Definition 3.3: Worst-Case Uncertainty: A worst-case uncertainty value

 xxxwc  ,ˆ for optimization problem (3.6) is such that when wcxx ˆˆ  is fixed in

(3.6), the solution of (3.8) below yields a globally optimal-robust solution.

wc

nn

j

x

xx

RxRx

Jjxxg

ts

xxf

u

ˆˆ

ˆ,

,...,10)ˆ,(

..

)ˆ,(min





 (3.8)

 Note that a worst-case uncertainty value differs from an interval-optimal or

globally interval-optimal value of uncertainty in that a worst-case uncertainty value

does not have an associated predetermined variable x (but it is associated with a

globally optimal robust solution after solving (3.8)) and is for the entire optimization

problem. But it is trivial to note that a worst-case uncertainty value of x̂ is a globally

interval-optimal point of uncertainty for some globally optimal robust solution. The

next assumption is required for the theoretical background of the modified Benders

decomposition presented in this chapter.

Assumption 3.3: A worst-case uncertainty value exists for robust optimization

problem (3.6) and is a globally interval-optimal point for a globally optimal robust

solution x*.

 Note that Assumption 3.3 ensures that finding worst-case uncertainty values

enables us to find a globally optimal robust solution. Problem (3.2) was an example

47

of a robust optimization problem where 1.0ˆ ix , i = 1,…, 6 was figured out to be the

worst-case uncertainty value.

 As an example, linear programs satisfy Assumption 3.3. In general, a linear

constraint function gj can be written as Cxdxcxxg
ux n

i

ii

n

i

iij  
 11

ˆ)ˆ,(where C is a

real number. Here, as in example (3.2), if there is a variable x such that

0)(
11

 


Cxdxcxg
ux n

i

ii

n

i

iij , then it is also true that

0ˆ)ˆ,(
11

 


Cxdxcxxg
ux n

i

ii

n

i

iij for all  xxx  ,ˆ . Therefore, the interval-

optimal value of ix̂ can be calculated to be ix if di is positive and ix if di is

negative. From this argument, for all the gj constraints a globally interval-optimal

value can be calculated and so can a worst-case uncertainty value. For more

information on problems that satisfy Assumption 3.3, please refer to (Ben-Tal et al.,

2009).

 The following lemma shows a property of the new auxiliary function (3.7)

which connects a globally optimal robust point to its globally interval-optimal point.

This will later be used in modifying Benders decomposition to obtain solutions to

robust optimization problems.

 Recall that for problem (3.2), the globally optimal robust point was x1 = 1, x2

= 69/11 and its associated globally interval-optimal point (and the worst-case

uncertainty value) was 1.0ˆ ix , i = 1,…, 6. Note that for example (3.2),

11/149)1.0(u , which happens to be the function value of the globally optimal

48

robust solution to example (3.2). This is no coincidence as shown by the following

lemma.

Lemma 3.2: Under Assumptions 3.1-3.3, let x* be a globally optimal robust

solution (Definition 2.6) to (3.6) and *x̂ an associated globally interval-optimal

point. If (i))ˆ(*)ˆ(xx uu   for all realizations of  xxx  ,ˆ , then

(ii) *)(*)ˆ(xfxu  .

Proof: Since x* is a globally optimal robust point, it is automatically a robust point

(Definition 2.6) so by Lemma 3.1, 0)ˆ*,(max xxg j
j

 for all realizations of

 xxx  ,ˆ . Note that the value *)ˆ(xu was calculated by minimizing f(x) while

fixing *ˆˆ xx  in (3.7). Since x* is in the feasible region for (3.7) and by Assumption

3.2, a solution always exists to (3.7), *)(*)ˆ(xfxu  . The next step will show with

the help of a contradiction argument that *)(*)ˆ(xfxu  .

 Suppose that *)(*)ˆ(xfxu  . By the statement of this lemma,

)ˆ(*)ˆ(xx uu   for all  xxx  ,ˆ . Using (3.7) by fixing *ˆˆ xx  , let 'x

(dependent on *x̂) be a solution to the minimization problem in (3.7) such that

)'(*)ˆ(xfxu  . Then (i) implies)ˆ()'(xxf u for all  xxx  ,ˆ . By our

contradictory assumption, this also implies)ˆ()'(*)ˆ(*)(xxfxxf uu   which

simplifies to)ˆ(*)(xxf u for all  xxx  ,ˆ . Note that the condition

)ˆ(*)(xxf u for all  xxx  ,ˆ violates Assumption 3.3. By Assumption 3.3,

there exists a worst-case uncertainty value, i.e., there exists a  xxxwc  ,ˆ such

49

that)ˆ(*)(wc

u xxf  . But this would imply)ˆ()ˆ(xx u

wc

u   for all  xxx  ,ˆ

which is a contradiction. Hence, this contradiction shows that *)(*)ˆ(xfxu  .

Combining the two inequalities *)(*)ˆ(xfxu  and *)(*)ˆ(xfxu  gives

)()ˆ(xfxu  .■

 The next two theorems form the basis of the modified Benders method to be

introduced later in this chapter. The first shows a particular characteristic of a worst-

case value of uncertainty. The second shows that a particular characteristic of an

uncertainty variable value can be used to find a globally optimal robust solution. The

modified Benders method of this chapter will aim to find this value.

Theorem 3.1: Under Assumptions 3.1-3.3, let the worst-case value of uncertainty

for (3.6) be
wcx̂ . Then,)ˆ()ˆ(xx u

wc

u   for all realizations of  .,ˆ xxx 

Proof: Let x* be a globally optimal robust solution to (3.6). Then, by Definition 3.3,

*)()ˆ(xfxwc

u  . Problem (3.6) has the same objective function as (3.7) but the

feasible region of (3.6) is a subset of the feasible region of (3.7). Therefore, for any

fixed x̂)ˆ(*)(xxf u . Therefore,)ˆ()ˆ(xx u

wc

u   for all realizations of

 .,ˆ xxx  ■

Theorem 3.2: Under Assumptions 3.1-3.3, suppose there exists a unique

uncertainty value
cx̂ for which)ˆ()ˆ(xx u

c

u   for all realizations of

50

 xxx  ,ˆ . Then, a solution to optimization problem (3.9) will be a globally

optimal robust solution to problem (3.6).

unn

c

j

x

RxRx

xx

Jjxxg

ts

xf







ˆ,

ˆˆ

,...,10)ˆ,(

..

)(min

 (3.9)

Proof: Let x
c
 be a solution to (3.9). Note that)()ˆ(cc

u xfx  by (3.7). By

Assumption 3.3, there exists a worst-case uncertainty value wcx̂ such that

*)()ˆ(xfxwc

u  , where *x is a globally optimal robust solution. Since *x is a

solution to (3.6), it is also feasible to (3.9) as the feasible region for (3.6) is a subset

of the feasible region for (3.9). Hence, *)()(xfxf c  , which implies

)ˆ()ˆ(wcc

u xx   . But according to the statement of this theorem,)ˆ()ˆ(xx u

c

u   for

all realizations of  xxx  ,ˆ . Hence, wcc xx ˆˆ  because this theorem also states

that this value of cx̂ is unique. Therefore, wcc xx ˆˆ  . By Definition 3.3, (3.9) gives a

globally optimal robust solution. ■

 The purpose of Theorem 3.2 is that if the following optimization problem
13

(3.10) has a unique solution, that solution can be used to find the solution to (3.6).

13

 Note that the function)ˆ(xu is not known in closed form but will be later be approximated using a

variation on Benders cuts.

51

 
un

u
x

Rx

xxx

ts

x





ˆ

,ˆ

..

)ˆ(max
ˆ


 (3.10)

 Theorem 3.2 also shows that finding globally interval-optimal points can help

us obtain a globally optimal robust solution. For quasiconvex constraint functions, we

know that the globally interval-optimal values will lie on one of the endpoints of the

vector interval
14

  xx  , , which follows directly from the definition of

quasiconvexity provided in Chapter 2 and is taken advantage of in the following

Corollary 3.1. Note that there are un
2 such endpoints, where nu is the dimension of the

vector x and also the dimension of the endpoints. For purposes of notation, let the

endpoints of the vector interval be denoted by (V)1, (V)2, (V)3, …,
unV

2
)(. Each

endpoint vector (V)k , k = 1,…, un
2 is defined such that each of its elements (Vi)k is

either Δxi or –Δxi, i.e.,    iiki xxV  , for i = 1,…, nu. The idea that the

maximum of the constraint functions lies on one of the endpoints of the vector

interval can be used to ascertain that any globally interval-optimal point (and thus,

worst-case uncertainty value) will also lie on one of the endpoints of the vector

interval.

Corollary 3.1: If the constraint functions gj , j = 1,…, J are quasiconvex in (3.6),

then solving (3.11) is equivalent to solving (3.6) and solving (3.12) is equivalent to

14

 This vector interval  xx  , is of nu dimensions. So the endpoints of this vector interval are

actually all the corner points of an nu-dimensional rectangle.

52

solving (3.7). Additionally, the maximum value of)ˆ(xu is achieved at one of the

endpoints   
un

kkV
2

1
.

  
un

u

kk

nn

j

x

Vx

RxRx

Jjxxg

ts

xf

2

1
ˆ

ˆ,

,...,10)ˆ,(

..

)(min






 (3.11)

  
un

kk

n

j

x
u

Vxwhere

Rx

Jjxxg

ts

xfx

2

1
ˆ

,...,10)ˆ,(

..

)(min)ˆ(










 (3.12)

Proof: The aim of this theorem is to show that if gj, for all j = 1,…, J is quasiconvex

in x̂ , then   
un

kkVx
2

1
ˆ


 can replace the condition],[ˆ xxx  in (3.6). Note that

 ),(),,(max)))(1()(,()ˆ,(ijijiijij xxgxxgxxxgxxg   for all

]1,0[ and a real-valued  iii xxx  ,ˆ . For any x, if

0)ˆ,(xxg j ,],[ˆ xxx  , then 0)ˆ,(xxg j ,   
un

kkVx
2

1
ˆ


 because

  ],[
2

1
xxV

un

kk 


. Moreover, for any x if 0)ˆ,(xxg j ,   
un

kkVx
2

1
ˆ


 , then

0)ˆ,(xxg j ,],[ˆ xxx  because gj is quasiconvex in x̂ . Hence,

0)ˆ,(xxg j ,   
un

kkVx
2

1
ˆ


 , if and only if 0)ˆ,(xxg j ,],[ˆ xxx  . Therefore,

  
un

kkVx
2

1
ˆ


 can replace the condition],[ˆ xxx  in (3.6) whenever gj, for all j

53

= 1,…, J is quasiconvex in x̂ . Therefore, solving (3.11) is the same as solving (3.6)

and solving (3.7) is the same as solving (3.12).

 Note that a value of x̂ that maximizes the constraint gj for a fixed value of x

in the expression
 

 )ˆ,(max
,ˆ

xxg j
xxx un



 is an interval-optimal value. Moreover, a value of

x̂ that maximizes the expression
 

 










)ˆ,(maxmax
,ˆ

xxg j
xxxj un

 is a globally interval-

optimal value of x̂ . Hence, the globally interval-optimal values of x̂ lie on the

endpoints   
un

kkV
2

1
. In particular, by Assumption 3.3, a worst-case value of

uncertainty wcx̂ for problem (3.11) exists and is a globally interval-optimal value.

Hence, wcx̂ also lies on one of the endpoints. By Theorem 3.1,)ˆ()ˆ(xx u

wc

u   for

all realizations of  xxx  ,ˆ , which is the maximum value of)ˆ(xu . Hence, the

maximum value of)ˆ(xu is achieved at one of the endpoints.■

 The next section provides a modified Benders decomposition method to solve

robust linear programs. Note that so far we have proven facts about the auxiliary

function)ˆ(xu . Standard Benders decomposition approximates this function using

standard Benders cuts. With the support of theoretical results, the first algorithm in

the next chapter will apply standard Benders decomposition to obtain a solution to

(3.6). Two further heuristic algorithms are provided to solve (3.6) when the constraint

functions are quasiconvex and nonlinear, respectively.

54

3.3 Modified Benders Decomposition

3.3.1. Formulation of Approach: Solving Robust Linear Programs

The strategy will be to find optimal values for variables x and interval-optimal values

for x̂ . One can think of this as attempting to check the robustness of a candidate

solution by partitioning the uncertainty interval and checking feasibility at each point.

Clearly, if all constraints are feasible when fixed with the interval-optimal values for

uncertainty elements, then the candidate solution is robust.

 Standard Benders decomposition is advantageous when the problem structure

dictates that fixing certain variables will lead to a simpler problem to solve. The idea

behind Benders decomposition is to fix a set of complicating variables and solve a

resulting simpler subproblem while iterating between it and solving a master problem

that computes values for the complicating variables. The robust optimization problem

(3.6) also has a simple structure when certain variables are fixed. Fixing x̂ results in

an optimization problem much simpler to solve than a robust optimization problem.

 The Benders cuts added in (2.14) serve to approximate the function α

described in (2.11). Since the objective function in (3.7) is being maximized by

equation (3.10), for the successful application of Benders decomposition, the function

)ˆ(xu needs to be concave.

Theorem 3.3: For linear objective and constraint functions in (3.6), the function

)ˆ(xu is concave.

55

Proof: This is a well-known result from linear programming theory (Murty, 1983).

The function)ˆ(xu is piecewise-linear, continuous, and concave. ■

 Because Theorem 3.2 requires a unique maximum value of x̂ to guarantee a

solution, the following lemma gives conditions under which this is possible for linear

robust optimization problems. Before proceeding, the definition of a slope between

two points is needed.

Definition 3.4: Slope: The slope of the function RRy un

u :)( between two vectors

uu nn
RyRy  21 , is defined as the vector un

R where
12

12)()(

ii

i
yy

yy







 for each

element i = 1,…, nu.

Lemma 3.3: Let)ˆ(xu be a piecewise linear, continuous, concave function over

],[xx  . Then)ˆ(xu achieves its maximum at a point],[ˆ xxxwc  . Now

suppose this maximum is achieved at one of the endpoint vectors   
un

kkV
2

1
 and

suppose the slope between wcx̂ and any other vector],[ˆ xxx  is nonzero

(every element of the slope between the two points is nonzero). Then)ˆ(xu has a

unique maximum.

Proof: Since)ˆ(xu is a continuous function over a nonempty compact set, the vector

interval],[xx  , by the Weierstrass theorem (Royden, 1988))ˆ(xu achieves its

maximum at a vector in],[xx  .

56

Let the maximum of)ˆ(xu be achieved at   
un

kk

wc Vx
2

1
ˆ


 , which is one of the

endpoints . We want to show that this point is unique. This proof will follow a

contradiction argument. Suppose there exists another distinct point wcxx ˆ'ˆ  such that

)'ˆ()ˆ(xx u

wc

u   and)ˆ()'ˆ(xx uu   for all],[ˆ xxx  . Since)ˆ(xu has nonzero

slope between wcx̂ and any other point in],[xx  , there exists a point mx̂ such that

wcmm xxxx ˆˆ,'ˆˆ  which is a strict convex combination of wcx̂ and 'x̂ such that

)ˆ()ˆ(wc

u

m

u xx   . Hence, there exists a)1,0( such that 'ˆ)1(ˆˆ xxx wcm   .

Since)ˆ(xu is concave,)'ˆ()1()ˆ()ˆ(xxx wcm   which implies

)ˆ()ˆ(wcm xx   because)'ˆ()ˆ(xx u

wc

u   . But we had assumed that

)ˆ()ˆ(wc

u

m

u xx   so it must be that)ˆ()ˆ(wcm xx   . This is a contradiction as it

violates the statement in the theorem that a maximum is achieved at one of the

endpoints. Therefore, the assumption)'ˆ()ˆ(xx u

wc

u   ends up concluding a

contradictory result and)ˆ(xu has a unique maximum. ■

 The use of wcx̂ as the notation for the point where)ˆ(xu achieves its

maximum was not coincidental. It is used to relate the result of Lemma 3.3 to

Theorem 3.1 and Corollary 3.1. Note that there exist other functions than linear that

are both concave and achieve their maximum at an endpoint of their interval domain.

Examples are log(y) over [1,100], -y
2
 over [0,1], etc. The following is Algorithm 3.1

for solving robust optimization problems with linear objective and constraint

functions.

57

Algorithm 3.1 (Standard Benders Method):

Step 0: Set iteration counter (it) to 0. Pick a small positive constant for tolerance (tol).

Step 1: Set iteration counter (it) to it = it + 1. The original master problem will be:

max

ˆ,

ˆ

..

max

uu

u
x

xxx

ts

u









 (3.13)

The bounds on
u are user-defined

15
 depending on the problem. Solving the above

problem gives it

uu   and it

fixedxx ˆˆ  .

Step 2: Fix the values of the complicating variables x̂ , and then solve the following

subproblem as in the standard Benders decomposition method.

)(ˆˆ

,...,10)ˆ,(

..

)(min

dualxx

where

Jjxxg

ts

xfw

itit

fixed

j

x







 (3.14)

15

 Further suggestions are available to achieve this upper bound in (Conejo et al., 2006). For Algorithm

3.1, a good value of the upper bound can be achieved by maximizing (as opposed to minimizing) the

objective function in (3.6) over the entire space of decision and uncertainty variables. This is a definite

upper bound to u as u is an auxiliary function to (3.6), given Assumption (3.2) holds.

58

Step 3: Check for convergence. Set wzsub  and it

umasz  . If the difference

  tolzzz submassub  / then stop.

Step 4: Add a Benders cut to the master problem (3.13).

Step 1 (returned): Solve the following master problem after adding the Benders cut

max

ˆ,

))ˆ()ˆ(()ˆ,(

ˆ

..

max

uu

Tit

sol

Tit

sol

it

sol

it

solu

u
x

xxxxf

xxx

ts

u












 (3.15)

Return to Step 2 and proceed in this manner until convergence is met.

Theorem 3.4: If at the final iteration 0it

sol for every element of it

sol ,

Algorithm 3.1 converges to a globally optimal robust solution x* of (3.6) and

worst-case uncertainty value *x̂ in a finite number of steps.

Proof: By the theory of Benders decomposition for linear programs (Benders, 1962),

Algorithm 3.1 converges to a maximum value for u in a finite number of steps. The

algorithm also provides x* and *x̂ such that *)(*)ˆ(xfxu  . If at the final iteration

0it

sol for each element, then the function u approximated by the Benders cuts

does not have zero slope between *x̂ and any other point in],[xx  . Moreover, by

59

Lemma 3.3, u has a unique maximum point at *x̂ . By Theorem 3.2, *x̂ is a worst-

case uncertainty value, and fixing that value in (3.9) gives a globally optimal robust

solution to (3.6).■

 Note that if at the final iteration a cut is added where 0sol

it , then Algorithm

3.1 need not necessarily converge to a globally optimal robust solution because

Theorem 3.2 requires this maximum point to be unique. If 0sol

it at the final

iteration, then there can be several points that maximize u , not all necessarily a

worst-case uncertainty value. Algorithm 3.1 could then converge to a point that was

not a robust point. In that case, the use of heuristic Algorithm 3.3 is needed.

3.3.2. Formulation of Approach: Solving Robust Optimization Problems

with Quasiconvex Constraints

For convergence of the Benders decomposition algorithm, the function αu needs to be

concave. There is a larger class of functions than simply linear programs for which

these conditions are valid. Indeed, for many engineering applications as well as

numerical examples, local concavity of αu can be sufficient (Conejo et al., 2006).

 However, due to the worst-case analysis performed, αu is quasiconvex as

given by Corollary 3.1. Unfortunately standard Benders cuts cannot be used to

approximate quasiconvex functions (Conejo et al., 2006). The reason is that optimal

solutions may be omitted when cuts are added. Our advantage in a robust

optimization setting with quasiconvex constraints as in problem (3.11) is that we only

need good approximations to the functions at the endpoints. Approximations of the

60

function αu are not needed in between the endpoints, as the function attains its

maximum at the endpoints. Figure 3.2 shows the idea behind these new cuts. The

very top horizontal cut (labeled as “Cut 0”) is an upper bound set for αu as would

normally occur in Benders decomposition. The numbers next to the cuts show the

order of the cuts made in the iterative process. At iteration it a new modified Benders

cut added to the master problem looks like the following.

))ˆ()ˆ((
)ˆ()ˆ(

)ˆ,()ˆ,(
)ˆ,(

1

11 Tsol

it

T

Tsol

it

Tsol

it

sol

it

solsol

it

sol

sol

it

sol

itu xx
xx

xxfxxf
xxf itit 








 (3.16)

This cut is one way to approximate the function around the endpoints and see which

value of u at the endpoints is larger as shown in Figure 3.2.

Cut 0

Cut 4

(Convergence,

Final Cut)

Cut 1
Cut 2

Cut 3

)ˆ(x

u

)(x

)(x

Figure 3.2: The Robust Benders Cuts
16

 to Estimate the Maximum Endpoint of αu

16

 The dashed line denotes the quasiconvex function u that is supposed to be approximated.

61

The following Algorithm 3.2 describes the method for quasiconvex constraints.

Algorithm 3.2 differs from Algorithm 3.1 in that the modified Benders cuts described

above are used.

Algorithm 3.2 (Heuristic Algorithm for Robust Optimization Problems with

Quasiconvex Constraint Functions):

Step 0: Set iteration counter (it) to 0. Pick a small positive constant for tolerance (tol).

Step 1: Set iteration counter (it) to it = it + 1. The original master problem will be:

xx

xxx

ts

uu

uu

u
xu







ˆ,point Starting

ˆ

..

max

max

max

ˆ,








 (3.17)

The bounds on
u are user-defined depending on the problem. A good value is an

optimal objective function value for the non-robust nominal problem. Solving the

above problem gives it

uu   and it

fixedxx ˆˆ  .

Step 2: Fix the values of the complicating variables x̂ , and then solve the following

subproblem as in the standard Benders decomposition method.

62

it

fixed

j

x
x

xx

where

Jjxxg

ts

xfw

ˆˆ

,...,10)ˆ,(

..

)(min







 (3.18)

Step 3: Check for convergence. Set wzsub  and it

umasz  . If the difference

  tolzzz submassub  / then stop.

 Step 4: Add a modified Benders cut to the master problem. If this is any iteration

greater than one, do not add an additional cut but just update the previous cut. To

problem (3.17), add the modified Benders cut (3.16).

Step 1 (returned): Solve the following master problem after adding the modified

Benders cuts
17

max

1

1

ˆ,

))ˆ()ˆ((
)ˆ()ˆ(

)ˆ,()ˆ,(
)ˆ,(

ˆ

..

max

1

uu

Tsol

it

T

Tsol

it

Tsol

it

sol

it

solsol

it

sol

sol

it

sol

itu

u
x

xx
xx

xxfxxf
xxf

xxx

ts

itit

u






















(3.19)

Return to Step 2 and proceed in this manner until convergence is met.

17

 Note, for the first iteration take
sol

itx 1
ˆ

 equal to the value of x .

63

3.3.3. Formulation of Approach: Solving Robust Optimization Problems

with Nonlinear Constraints

To extend the modified Benders decomposition method to general nonlinear

constraints, the strategy will be to partition uncertainty intervals for uncertainty

variables and attempt to find the interval-optimal points. Essentially, one can think of

this as attempting to check the robustness of a candidate solution by partitioning the

uncertainty interval by points and checking feasibility at each point. Clearly, if all

constraints are feasible when fixed with the interval-optimal values for uncertainty

elements, then the candidate solution is robust. Partitions can be selected depending

on which type of constraint functions have uncertainty. In particular, quasiconvex

constraint functions are simplest to consider.

 Hence, under uncertainty in x, the maximum value of the function g lies on

one of the endpoints of uncertainty when g is quasiconvex. So finding the interval-

optimal point for quasiconvex constraint functions under uncertainty entails checking

one of the two endpoints of uncertainty.

 However, for nonlinear, not necessarily quasiconvex constraint functions, the

interval-optimal values need not lie on the endpoints. For this, the constraint functions

in the uncertainty interval range need to be checked at intermediary points to find the

interval-optimal points. Figure 3.3 shows how checking further points helps. For

quasiconvex constraint functions, Figure 3.3(a), only the endpoints need to be

checked. For general nonlinear constraints, however, problems might be encountered

if enough points within the uncertainty interval are not checked. This is shown in

64

Figure 3.3(b) where the method fails if enough points are not selected. Since

quadratic constraints are symmetric, for concave quadratic constraints in particular

(that are not quasiconvex) checking three points (endpoints plus central point of

uncertainty interval, where 0ˆ x) is enough to guarantee a robust solution (in general

true for all symmetric concave constraints), Figure 3.3(c). Selecting more points,

Figure 3.3(d), solves this problem. Points maybe selected according to the accuracy

desired for a locally optimal robust solution.

 Checking additional points
18

 entails adding additional constraints that have

different uncertainty variables  kkk xxx  ,ˆ , k = 1,…,K, with uncertainty ranges

that are subsets of the original uncertainty ranges, i.e.    xxxx kk  ,, for all

k = 1,…,K. In particular, the modified Benders method considers a uniform

distribution of these points to be checked with /kx x k  

, k = 1,…,K. To check for

center points, the constraints with Jjxg j ,..,1,0)0,( need to be added. Note that

this constraint is just the constraint gj without any consideration for uncertainty. Since

0 is directly in the middle of the uncertainty interval, the constraint

Jjxg j ,..,1,0)0,( is simply the constraint with no uncertainty.

18

 Usually the number of additional points to be checked depends on the type of constraint functions as

well as the accuracy desired. A good baseline for nonlinear constraint functions is to uniformly

partition the uncertainty interval into enough additional points so that the distance between any two

points is less than or equal to a preset tolerance for the problem. More points signify more accuracy.

65

-Δx1

 -Δxk +Δx1 +Δxk -Δx

+Δx

-Δx1

 -Δxk +Δx1 -ΔxK +Δxk +ΔxK
-Δx

+Δx

Constraint violated

under uncertainty

(a)

(d)

(c)

(b)

Figure 3.3: Checking Feasibility by Interval-Optimal Points for Constraints: (a)

Quasiconvex: Successful Check by Endpoints; (b) Non-convex: Failed Check due

to Insufficient Number of Points; (c) Symmetric Concave: Successful Check by

Middle Point and Endpoints; (d) Non-convex: Successful Check by Sufficient

Number of Intermediary Points

So, the formulation changes from (3.11) by adding further sample points (2K

sample points).

 

  Kkxxx

xxx

RxRx

JjKkxxg

Jjxg

Jjxxg

ts

xf

u

u

n

kkk

n

n

kj

j

j

x

,...,1,ˆ

,ˆ

ˆ,

,...,1,,...,10)ˆ,(

,...,10)0,(

,...,10)ˆ,(

..

)(min













 (3.20)

)ˆ,(xxg)ˆ,(xxg

)ˆ,(xxg)ˆ,(xxg

(c)

(b)

66

Here, kx , k = 1,…, K are the different sample points for the uncertainty interval as

described by the black dots in Figure 3.3. Note that xxk 0 . The uncertainty

elements (with a superscript ^) only take on two values (per element of vector) each.

Since all the extra constraints from (3.20) when compared to (3.11) can be

incorporated into the constraints in (3.11), from now on the rest of this chapter will

assume that (3.11) has had a thorough sample of points such that within each interval

of uncertainty, the constraint functions are quasiconvex.

 To speed up computation of the proposed approach, gradient-based

optimization algorithms (Bazaraa et al., 1993) are used as opposed to population-

based optimization ones (such as Genetic Algorithms or Simulated Annealing)

(Davis, 1987). In particular, the nonlinear solvers CONOPT in GAMS (GAMS, 2010)

which are gradient-based were used for all test problems except the last one on heat

exchanger design. Since the code for the heat exchanger design problem was already

available and coded in MATLAB, fmincon (MATLAB, 2008) was used for that

particular problem.

 The following describes the modified Benders decomposition algorithm where

the constraint functions are quasiconvex within each interval of uncertainty.

Algorithm 3.3 (Heuristic Algorithm for Robust Optimization Problems with

Nonlinear Constraint Functions):

Step 0: Proceed exactly as Algorithm 3.2 for problem (3.20)

67

Step 1: If at any iteration, 0
)ˆ()ˆ(

)ˆ,()ˆ,(

1

11 








Tsol

it

Tsol

it

sol

it

solsol

it

sol

xx

xxfxxf
itit , add more

19
 sample points in

(3.20) by making a uniform partition. Return to Step 0.

 Note that, theoretically, convergence is not guaranteed in Algorithm 3.3. But

the numerical results suggest that Algorithm 3.3 is applicable to a wide variety of

problems. Now some computational costs based on numerical evidence will be

provided. Consider a single-objective, robust optimization problem with V variables,

J constraints, P parameters, and N uncertainty variables. One function call
20

 is defined

as any instance where the solver calls an objective function, constraint, or other value

or assignment in the optimization problem. Table 3.1 gives the maximum number of

function calls possible through one iteration of the modified Benders method. This

analysis is only based on numerical evidence that the method finds a locally optimal

robust solution through Algorithm 3.3.

19

 In practice, double the number of points as was done for the numerical examples in this dissertation.

20
 Due to difference in software, the GAMS method of function calls was used. Therefore, function

calls for both deterministic and robust cases are provided so the reader can compare solutions.

Computational times have also been provided. For a discussion on function calls, please refer to

Appendix B.

68

Table 3.1: Analysis of function calls for one iteration

Operation Number of

Assignments

Function Calls

Objective Function 1 1

Iteration Counter 1 1

Constraints J+1

(Extra 1 for obj. robust)

N(J+1)

Fixing Uncertainty

at Lower Level

N N

Slope of Modified

Benders Cut

N N(J+1)

Sample Points for Nonlinear 2K 2KN + 4KN-2N

Total Maximum Expected - 2 + N + JN + 6KN

 For most of the numerical problems in this chapter, K is at most 10. Hence,

the number of binary variables introduced to the formulation is NJK. Note that this is

the maximum theoretically possible function calls and actual function calls (as shown

by examples) are much less. For example, in the heat exchanger problem (Section

3.5.3), N = 8, J = 17, K = 10 and 6 iterations were used to solve the problem so the

maximum expected number of function calls is 6(2 + 8 + (17)(8) + 6(10)(8)) = 3,756.

According to the results, it took only 984 to solve this particular problem.

69

3.4. Numerical Results

The following numerical and engineering examples serve to demonstrate applicability

of the algorithm, compare the proposed algorithm to a previous algorithm from the

literature, and show the different types of problems that can be solved. The first

example is a simple quadratic program to show the algorithm steps in detail. The next

three examples then increase the complexity (number of variables, nonlinearity) of

this quadratic program and show how the number of function calls changes. The next

two examples are similar linear programs except that Example 6 has been shown to

need a significantly higher number of function calls to solve for the locally robust

optimal solution than Example 5 (Li et al., 2011). Examples 7 and 8 are robust

optimization problems with quasiconvex constraints which the modified Benders

method is shown to solve exactly. The next four problems are scalable versions of an

engineering example with quasiconvex constraints. These examples show that the

modified Benders method is scalable and can be applied to large problems without a

drastic increase in function calls. The final two examples are from engineering design

and are nonlinear (non-convex) programs. Of the two engineering examples, the first

one (Welded Beam Design) considers objective robustness and the second (Heat

Exchanger Design) considers feasibility robustness. All optimization problems

correspond to minimizing a single objective function with a set of constraints.

Problems labeled as “self” have been designed by the author to use as test problems

(Siddiqui et al., 2011a); detailed formulations as well as further characteristics of the

solution are in Appendix A. Solutions were checked by a simple uniform

discretization of the uncertainty range (each point separated by 0.01) to see if any of

70

the constraints were violated under uncertainty. Tolerance (tol) was set to 0.00001

for all examples.

3.4.1. Numerical Example (Example 1) to Show Methodology Step-by-

Step

A simple numerical example is presented to show how Benders algorithm is modified

to obtain robust solutions using heuristic Algorithm 3.2. In the following robust

problem, uncertainty is only in the constraint (without loss of generality).

    

 xxx

where

x

x

xxx

ts

xx
x











,ˆ

0

0

0)ˆ1(

..

6.06.0min

2

1

21

2

2

2

1

 (3.21)

The robust solution to this problem (verified as unique algebraically) is

45.0,45.0 21  xx with the globally interval-optimal value 1.0ˆ x . Since the

constraint functions are linear, hence quasiconvex within the uncertainty interval,

reformulate as in (3.11) to have uncertainty variables only have endpoint values.

    

 xxx

where

x

x

xxx

ts

xx
x











,ˆ

0

0

0)ˆ1(

..

6.06.0min

2

1

21

2

2

2

1

 (3.22)

 Proceed according to the modified Benders method described in Section 3.3.2.

71

Step 1: The master problem is the following:

1000

1ˆ0

max
ˆ,










x

x

 (3.23)

The upper bound on  is chosen to be large enough to not interfere with given the

form of (3.22). Solving the above problem gives 1000 and x̂ = -0.1. Here

    

 1.0,1.0ˆ

0

0

0)ˆ1(

..

6.06.0min

2

1

21

2

2

2

1











x

x

x

xxx

ts

xx
x



 (3.24)

Step 2: Fix x̂ and then solve the following subproblem:

    

1.0ˆ

0

0

0)ˆ1(

..

6.06.0min

2

1

21

2

2

2

1











x

x

x

xxx

ts

xxw
x

 (3.25)

This gives: .55.0,55.0 21  xx

Step 3: Check for convergence with 995.999005.01000  lowup zz where

    22
6.055.06.055.0 lowz and upz . Since this is not good enough for

72

convergence when compared with the preselected tolerance, a modified (robust)

Benders cut is added.

Step 4: Add the following robust Benders cut.

 



))1.0(ˆ(

)1.0(1.0

005.01000
005.0 x

(3.26)

Step 1 (returned): Solve the following master problem after adding the robust Benders

cut:

















))1.0(ˆ(
)1.0(1.0

005.01000
005.0

1000

1.0ˆ1.0

..

min
ˆ

x

x

ts

x

 (3.27)

Solving the above problem gives 1000 and x̂ = 0.1. Then go back to Step 2 and

solve the subproblem with x̂ = 0.1 fixed. A new modified Benders cut will now be

added.

 The following graph (Figure 3.4) shows what happens when this cut is added.

The standard Benders decomposition method would have taken a cut that would have

forced x̂ = -0.1 and that would have given the constraint with the dashed line.

However, the robust Benders cut generates the cut signified by the dotted line, which

is in fact the constraint that forms the border of the robust feasible region.

73

Figure 3.4: Adding a modified (Robust) Benders Cut

The algorithm proceeds in this manner until convergence. Table 3.2 summarizes these

results.

Table 3.2: Solution Steps for Modified Benders Approach

Iteration x̂ x1 x2 zlow zup

1 -0.1 0.55 0.55 0.005 1000

2 0.1 0.45 0.45 0.045 1000

3 0.1 0.45 0.45 0.045 0.045

74

This simple problem was solved in three iterations. The final row corresponds

to the globally-optimal robust solution, which can be verified algebraically to be

globally robust optimal. The details are shown in the following table (Table 3.3).

Table 3.3: Detailed Solution for Simple Problem

Information Nominal Solution Robust Solution

x1 0.5 0.45

x2 0.5 0.45

f (x) 0.02 0.045

Function Calls 5 11

3.4.2. Numerical Results

Table 3.4 describes the results obtained from the numerical test problems. The first

two examples have only uncertainty in the parameters while the rest have uncertainty

in the parameters and the decision variables.

The same test problems were solved using Li et al.‟s (Li et al., 2006) method

for robust optimization and the results are displayed in Table 3.4. Not only does Li et

al.‟s (Li et al., 2006) method use a lot of function calls, but often the robust function

value is higher than the modified Benders value. Once the number of function calls

exceeded 10
9
, the run was stopped. These solutions have not been reported in Table

3.4 as well as in the rest of the chapter as they were infeasible in the solver (which

can imply that the problem was too computationally intensive for the solver).

75

Table 3.4: Description of Test Problems

Source Determ.

Optimal

Function

Value

Robust

Optimal

Function

Value

Li et al.

(2006)

Function

Value

of

Function

Calls

(Determ.)

of

Function

Calls

(Robust)

Li et al.

(2006)

Function

Calls

Example 1

(Self)

0.02 0.045 0.045 5 11 540

Example 2

(Self)

9.02 9.145 9.268 7 19 2,592

Example 3

(Self)

9.02 9.145 9.268 7 21 2,808

Example 4

(Self)

9.77 9.885 9.920 7 21

2,916

Example 5

(Self)

-23.00 -21.50 -20.75 5 17 7,856

Example 6

(Self)

-31.21 -29.79 -28.36 5 17 11,099

Hock 100

(Hock,

1980)

680.6 692.4 - 7 19 >10
9

Hock 106

(Hock,

1980)

7049 7219 - 5 17 >10
9

76

3.5. Engineering Design and Other Applications

3.5.1. Fleury’s Weight Minimization

This is a modified example from the literature (Groenwold & Etman, 2010) so that

interval uncertainty is present in all the decision variables. This example supports the

approach for feasibility robustness as well as corroborates the fact that the modified

Benders method is able to tackle problems with large number of variables and

constraints without being computationally expensive. For N variables, the problem is

as follows:

 1.0,1.0ˆ

,...,2,1ˆ
1

09.0
ˆ

11

ˆ

1

 0
ˆ

11

ˆ

1

..

)(min

2

2

195.0
2

95.0

1

195.0
2

95.0

1

1































i

ii

N

Ni ii

N

i ii

N

Ni ii

N

i ii

N

i

i
x

x

NiNxx
N

N
xxNxx

N
xxNxx

ts

xxf

 (3.28)

 The modified Benders method solved this problem with the results shown in

Table 3.5 for N = 10
2
, 10

3
, 10

4
, and 10

5
. Note that the number of function calls

increases linearly with the complexity of the problem. N represents the number of

variables in the problem and all of them have uncertainty. Again, this example was

compared to (Li et al., 2006) as shown in Table 3.5. However, the results for (Li et

al., 2006) are not reported as the problem was stopped after a certain number of

function calls given in Table 3.5. Here, Li et al.‟s (Li et al., 2006) method could,

conceptually, solve this problem but would have taken a lot of computation time.

77

However, the modified Benders method solved all cases and produced only a linear

increase in computational effort.

Table 3.5: Results for Fleury’s Weight Minimization Like Problem

Number of Variables N = 10
2

N = 10
3
 N = 10

4
 N = 10

5

Tolerance 10
-6

10
-8

 10
-10

 10
-12

x1 to x0.95N (Determ.) 1 1 1 1

x1 to x0.95N (Robust) 1.1556 1.1556 1.1556 1.1556

x0.95N+1 to xN (Determ.) 10
-2

 10
-3

 10
-4

 10
-5

x0.95N+1 to xN (Robust) 0.1+10
-2

 0.1+10
-3

 0.1+10
-4

 0.1+10
-5

Function Value (Determ.) 95.00005 950.0005 9500.005 95000.05

Function Value (Robust) 110.2820 1102.820 11028.20 110282.0

Function Calls (Determ.) 506 2.0 × 10
3
 2.0 × 10

4
 2.0 × 10

5

Function Calls (Robust) 744 2.3 × 10
4
 1.9 × 10

5
 1.9 × 10

6

Fn. Calls (Li et al., 2006) >10
9 >10

9 >10
12 >10

12

3.5.2. Design of a Welded Beam

This example is a well-known welded beam problem from (Ragsdell & Phillips,

1976). In this problem, a beam A is to be welded to a rigid support member B. The

beam has a rectangular cross-section and is to be made out of steel. The beam is

designed to support a force F = 6000 LBF acting at the tip of the beam, and there are

constraints on the shear stress, normal stress, deflection, and buckling load on the

beam. The problem has four continuous design variables, and they are: thickness of

the weld (h), length of the weld (l), thickness of the beam (t), and width of the beam

78

(b). All variables are in inches. The objective of the problem is to minimize the total

cost f(x) of making such an assembly. For complete formulation of the robust

optimization problem including specific values of the parameters, please refer to

(Gunawan & Azarm, 2004). Figure 3.5 shows the structure of the beam.

Figure 3.5: Design of a Welded Beam (Gunawan & Azarm, 2004)

The following is the formulation for the welded beam as outlined in (Gunawan &

Azarm, 2004). The objective function is given by

)()1(min 4

2

3cost lLtbclhcf  (3.29)

The constraints and other equations are described below.

79

where

c3 = cost of weld material ($0.1047/inch
3
)

c4 = cost of weld material ($0.0481/inch
3
)

η = maximum shear stress in weld (psi)

ηd = allowable shear stress in weld (13,600 psi)

ζ = maximum normal stress in beam (psi)

ζd = allowable normal stress in beam (30,000 psi)

δ = deflection at beam end (inch)

Pc = allowable buckling load (LBF)

L = Length of unwelded beam (14 inch)

G = 12 × 10
6
 psi

E = 30 × 10
6
 psi

The following equations are used to calculate the above variables.

22)''(cos'''2)'( 
 (3.30)

   

 

  25 . 0 , 0 ~

1547 . 0 , 0547 . 0 ~
0 . 2 1 . 0 0 . 2 1 . 0

0 . 2 1 . 0 0 . 2 1 . 0

0 1
125 . 0

0 1

0 1 0 1
25 . 0

0 1 0 1

3 . 0) () 1 (~ 2 . 0) () ~ 1 (

5

3

2 5

4 3

2 1

4
2

3 5 4
2

3





   

   

     

     

     

        

c

c

b t

l h

h
g

b

h
g

P

F
g g

g g

l L tb c l h c l c l L tb c l h c

c

d d











80

;
2

cos;'';
2

'
R

l

J

MR

hl

F
 

 (3.31)

22

24
;

2







 











thl
R

l
LFM

 (3.32)

































 


22

212
707.02

thl
hlJ

 (3.33)

bEt

FL

bt

FL
3

3

2

4
;

6
 

 (3.34)

































 EI

L

t

L

EI
Pc

2
1

013.4
2

 (3.35)

32

3

1
;

12

1
GtbtbI  

 (3.36)

 The solution from the modified Benders method is different from (Gunawan

& Azarm, 2004). First, the modified Benders method‟s nominal solution is closer to

an actual solution from an earlier paper by (Ragsdell & Phillips, 1976) who provided

an optimal objective function value of f = 2.38 while (Gunawan & Azarm, 2004)

provided f = 2.39. Second, the robust solution is also lower in function value but still

feasible. The robust solution is also feasible for all realizations of uncertainty, hence

it is better than (Gunawan & Azarm, 2004) reported solution.

 This example highlights the strength of the modified Benders method over

previous methods. Gunawan and Azarm‟s (Gunawan & Azarm, 2004) method

involves a backward mapping approach, which is known to omit solutions. The

modified Benders method, while giving a better solution (lower in function value), is

also computationally less expensive. The solution from the modified Benders method

81

was checked for robustness using a genetic algorithm. The solution is displayed in

Table 3.6.

Table 3.6: Results of Welded Beam Example

Info Gunawan and

Azarm (2004)

Nominal Sol.

Modified

Benders

Nominal Sol.

Gunawan and

Azarm (2004)

Robust Sol.

Modified

Benders Robust

Sol.

h 0.241 0.2444 0.246 0.2392

l 6.158 6.2186 5.461 5.6753

t 8.5 8.2915 9.138 9.1225

b 0.243 0.2444 0.248 0.2392

f(x) 2.39 2.3807 2.48 2.4236

Function

Calls

N/A 8 250 38

3.5.3. Heat Exchanger Design

The energy balance on a heat exchanger can be written as

)()()()(1221 cccphhhpm TTmcTTmcTUAFQ  (3.37)

Several equations govern the above heat transfer. The above equation (3.37) will be

used as an objective function that is to be maximized, as well as constraints that

restrict the structure, in particular constraints on the pressure drop on the tube side

(tp) and shell side (sp). Subscript 1 denotes the fluid entering while subscript 2

denotes it leaving; c denotes the cold fluid and h the hot fluid. In this example, cold

82

water is in the tubes and hot water is on the shell side and the problem has been set up

in a counterflow arrangement for a 124 tubes and two-pass heat exchanger. The

following lists the important variables and parameters considered in this design.

Symbol Units Description Value

cp J/(kg K) Specific heat at constant pressure Variable

d0 m Tube outside diameter Variable

f Tube flow friction factor Variable

fs Friction factor shell side Variable

h0 W/(m
2
 K) Heat-transfer coefficient outside tube Variable

hi W/(m
2
 K) Heat-transfer coefficient inside tube Variable

k W/(m K) Thermal conductivity of fluids Variable

Δps Pa Shell-side pressure drop Variable

Δpt Pa Tube-side pressure drop Variable

ut M/s Mean axial velocity of fluid in tube Variable

A0 m
2

Tube outside surface area per pass Variable

Ai m
2
 Tube inside surface Variable

As m
2
 Cross-flow area at or near shell centerline Variable

At m
2
 Total cross-sectional area of tubes per pass Variable

B m Baffle spacing 0.5

C m Clearance between adjacent tubes Variable

CL Tube layout constant 1 (for 90
0
)

CTP Tube count calculation constant 0.90

De m Equivalent diameter of shell Variable

F LMTD correction factor Variable

L m Tube length Variable

Nb Number of Baffles (Integer = B/L) 4

NT Number of Tubes 124

Np Number of Tube passes 2

PP W Pumping power of fluid in tubes Variable

Pr Prandtl Number Variable

Q W Heat-transfer rate Variable

Rfo (m
2
 K)/W Fouling resistance on outside of tube 0.00015

Rfi (m
2
 K)/W Fouling resistance on inside of tube 0.00015

Reb Reynolds number at Tb Variable

Res Shell-side Reynolds number at Tb Variable

ΔTm K LMTD Variable

Th2 K Outlet temperature of hot fluid Variable

Tc2 K Outlet temperature of cold fluid 315

Tb K Bulk temperature Variable

Tw K Wall temperature Variable

U W/(m
2
 K) Average overall heat transfer coefficient based on A Variable

θs Viscosity correction factor Variable

μ kg/(s m) Dynamic Viscosity Variable

μb kg/(s m) Dynamic Viscosity at Tb Variable

μw kg/(s m) Dynamic Viscosity at Tw Variable

ρ kg/m
3

Density Variable

83

The following equations are the ones coded into MATLAB and are selected from the

whole formulation to provide further insight. For the complete formulation and all

equations used, please refer to (Magrab et al., 2004).

  
)(

)(
1212 cc

sp

tp

hh TT
cm

cm
TT 




 (3.38)

3

0

m

t
t

TUF

mf
Cp





 (3.39)

2

)1(
2

2

ses

sbss
s

DA

DNmf
p







 (3.40)

 

)(

0

12

mT

cctp

TFNd

TTcm
L









 (3.41)

 

2

)(
2

0

12

0

ttTi

cctpp

ANdd

TTcN
C




 (3.42)

4

2

P

Ti
t

N

Nd
A


 (3.43)

Table 3.7 lists the design variables and parameters with uncertainty.

84

Table 3.7: Design Variables and Parameters with Uncertainty

Symbol Unit Description Uncertainty

di m Tube inside diameter (Variable) di ± 0.001

mt kg/s Tube-side mass flow rate (Variable) mt ± 1

ms kg/s Shell-side mass flow rate (Variable) ms ± 1

Ds m Shell inside diameter (Variable) Ds ± 0.01

PT m Pitch size (Variable) PT ± 0.01

Th1 K Inlet temperature of hot fluid 65 ± 1

Tc1 K Inlet temperature of cold fluid 18 ± 1

ktube W/(m K) Thermal conductivity of tubes 60 ± 1

Figure 3.6: Heat Exchanger Schematic (Magrab et al., 2004)

The optimization problem is the following:

Th

2

(mcp)h

Th

1

Ds

L

B

Baffle

Tc1

Tc2

85

1.0ˆ0001.0

1.0ˆ002.0

2ˆ001.0

16ˆ13

10ˆ7

40

0

60

50000

35000

..

max

2























ii

TT

ss

ss

tt

STP

h

t

s

dd

PP

DD

mm

mm

L

C

AAN

T

p

p

ts

Q

 (3.44)

The following table shows the results.

Table 3.8: Results for Heat Exchanger Design

Variables Nominal Solution Robust Solution

Q 1006.77 906.09

di 0.0160 0.0149

mt 10 9

ms 14 14

Ds 0.3900 0.3900

PT 0.0240 0.0311

Function Calls 49 984

 The thing to note about this example is that with less than an average of 1%

uncertainty, the objective function value decreases by almost 10%. Hence, in the

design of any model, it is important to consider the uncertainty in the problem, which

86

can lead to different designs as well. This problem was also tried with Li et al.‟s

(2006) method however after 10
9
 function calls without convergence, the approach

was stopped.

 For completeness, Table 3.9 displays actual computational time for each test

problem as well.

Table 3.9: Number of Iterations and CPU Time to Solve Problems

Test

Problem

Number of

Iterations

CPU (2.0 GHz, 4GB RAM)

Time (s)

Example 1 3 0.560

Example 2 3 0.787

Example 3 3 1.654

Example 4 3 1.435

Example 5 3 3.821

Example 6 3 3.494

Hock 100 4 30.552

Hock 106 4 25.645

Fleury (N=10
2
) 6 9.328

Fleury (N=10
3
) 9 324.532

Fleury (N=10
4
) 12 886.321

Fleury (N=10
5
) 15 2123.453

Welded Beam 4 1.606

Heat Exchanger 6 45.234

87

3.5.4. Building Energy Intensive Infrastructure

This example takes a problem of a decision maker to decide whether to build energy

intensive infrastructure at intensity H when there is uncertainty in future carbon tax

and retrofit cost. This example is a modified version of the formulation from the

paper (Strand et al., 2011). Investments in large, long-lasting, energy-intensive

infrastructure that use fossil fuels increase longer-term energy use and greenhouse gas

emissions, unless the plant is shut down early or undergoes costly retrofit later. These

investments will depend on expectations of retrofit costs and future energy costs,

including energy cost increases from tighter controls on carbon emissions.

 Consider a decision maker in a world with two periods. Infrastructure

investment is made at the start of period 1, and can be “retrofitted” at the start of

period 2.

As long as it is operated and not retrofitted, a given infrastructure gives rise

to a given energy consumption per unit of time, determined at the time of initial

investment. Energy supply costs and environmental/climate-related costs are

uncertain at the time of establishment in period 1, but are revealed at the start of

period 2. Assume both periods have the same length, and there is no discounting

within the periods. The problem of a decision maker is given by

HtHUHrHt

HH

ts

HrHtHUHtHU
H

12

max

21
,

)()1(

0

10

..

))1()(()(max
















 (3.45)

 Here, U(H) is the utility of the decision maker when selecting an energy

investment intensity H. The costs (carbon tax, for example) in the first period for this

88

energy are t1 and in the second period are t2. The ratio α is the amount of energy

investment that is retrofitted, and r is the cost of that retrofit. In (3.45), the decision

maker aims to maximize utility in the two periods (without any discounting).

 As in (Strand et al., 2011), the uncertainty is present in the values of t2 and r.

The last constraint in the above formulation makes sure that the cost for retrofitting

and paying carbon tax in the second period is below the excess utility achieved in the

first period. For the numerical study, the following parameters were chosen.

 U(H) = 8H – H
2

 H
max

 = 4

 t1 = 1

  222 4,4 ttt 

  5.6,5.5r

 Note that in this first case, we have assumed that t2 has uncertainty of

magnitude Δ t2 while uncertainty in retrofit cost r is given as above. The goal is to see

what happens as this uncertainty range is increased. The robust optimization problem

to solve is

 
 5.6,5.5~

4,4
~

)(~)1(
~
0

10

..

))1()(()(max

222

12

max

21
,













r

ttt

HtHUHrHt

HH

ts

HrHtHUHtHU
H








 (3.46)

89

The modified Benders method is applied to solve this problem. Table 3.10 shows

what happens to energy intensity H and selection of retrofit vs. not retrofit as Δt2

increases.

Table 3.10: Results for Increasing Uncertainty in t2

Value of Δt2 Energy Intensity (H) Retrofit? (Value of α)

0 3 No (α = 0)

1 2 No (α = 0)

2 1 No (α = 0)

3 0.5 Yes (α = 1)

4 0.5 Yes (α = 1)

 Note that with increasing uncertainty, the decision maker chooses less energy

intensive infrastructure. This is at odds with the probability-based analysis done in

(Strand et al., 2011). Since (Strand et al., 2011) assumed probability distributions for

t2 and r, an increase in uncertainty meant a good chance that t2 would offer a low tax

in the future as well. Hence, an increase in uncertainty brought an increase in energy

intensive investment. One of the main reasons this answer is different is that robust

optimization considers a worst-case analysis. Hence, with increasing uncertainty, the

extremely risk-averse robust optimizer chooses a progressively safer option, to avoid

any chance of not being able to afford retrofit or tax in the future. Hence, robust

optimization gives us an alternative way to analyze this problem.

90

3.6. Summary

This chapter presents an efficient robust optimization approach to solve problems that

have parameters and/or decision variables with interval uncertainty. The proposed

modified Benders method obtains robust optimal solutions to linear programming,

quadratic programming, convex and non-convex programming problems. The

approach is computationally tractable and is tested with 14 numerical and engineering

examples with the most general being nonlinear (non-convex) objective function and

nonlinear (non-convex) constraint robust optimization problems. The modified

Benders method provides an approximate locally optimal robust solution to general

nonlinear robust optimization problems, with a way to improve this approximation if

desired.

 The test examples show the strength of this method when compared to two

previous approaches. Not only is the method computationally efficient, but also

obtains better solutions when compared to these previous methods. The method is

scalable, that is, number of function calls increases at most linearly with an increase

in number of variables for the problems tested.

91

Chapter 4: Solving Mathematical Programs and

Equilibrium Programs with Equilibrium Constraints

4.1. Introduction

This chapter describes a new algorithm to solve mathematical programs and

equilibrium programs with equilibrium constraints. Numerical examples are provided

in each case, along with a test of computational time with disjunctive constraints. An

application of the method to a large-scale North American gas market model is also

provided.

 The motivation behind developing an algorithm for MPECs was to find an

alternative to traditional techniques, in particular disjunctive constraints. This was

necessitated by the need to solve large-scale MPECs representing natural gas markets.

A North American gas model was developed from the larger World Gas Model

(Gabriel et al., 2011c). Various techniques
21

 were employed to solve this North

American gas model, but the only successful one was the application of Algorithm

4.1 presented later in this chapter.

 Hence, for this research thrust, the application drove the theory. In this

chapter, the current state of the theory is presented. As these ideas are still being

21

 The fine tuning of solvers was needed to be able to solve the North American gas model. In

particular, the SBB solver (GAMS, 2010) was used in conjunction with CONOPT (GAMS, 2010). The

iteration limits for the first search of SBB needed to be increased. For particular sections of the branch

and bound tree, a breadth-first approach was employed.

92

developed, there is great room for further development, including the EPEC solution

techniques.

 The chapter starts with a general theory of the new MPEC and EPEC

technique followed by examples. Finally, an application of the technique is presented

for the North American gas market model. A portion of this chapter has been

presented in (Siddiqui & Gabriel, 2011b) and (Gabriel et al., 2011c).

4.2. Solving Mathematical Programs with Equilibrium Constraints

4.2.1. Changing the Formulation of the Lower-Level Problem

Recall that approximating

0),(yxgyT (4.1)

was one of the hurdles in solving MPECs. If g is a linear term, approximating the left-

hand side of (4.1) often involves specialized techniques, one of which happens to be

Schur‟s decomposition followed with an approximation by linear functions (Gabriel

et al., 2006). Moreover, results in this dissertation corroborate this fact by using the

same idea for a vector-valued linear function g if linear constraints are included. First,

using Schur‟s decomposition, vectors u and v (dependent on x and y) are used to

rewrite the original MPEC (2.7) as

93

2

),(

2

),(

0

0),(

0

),(s.t.

),(min

yxgy
v

yxgy
u

vvuu

yxg

y

yx

yxf

TT















 (4.2)

Now, the optimization problem does not contain any bilinear terms. In fact

0 vvuu TT (4.3)

can be readily approximated using SOS type 2 (Beale, 1975)
22

 variables to create a

piecewise-linear function. However, realizing that the complementarity conditions

force 0y and 0),(yxg , shows that only the positive square root of u
2
 will give a

feasible solution to the problem. Hence, (4.2) can be reformulated as (4.4) below

2

),(

2

),(

0

0),(

0

),(s.t.

),(min

yxgy
v

yxgy
u

vu

yxg

y

yx

yxf















 (4.4)

The next theorem shows that the solution sets to (2.5), (2.16), and (4.4) are the same.

22

 Special ordered sets of type 2 (SOS type 2) variables are defined as a set of positive variables of

which at most two can be non-zero, and if two are non-zero then they need to be next to each other.

94

Theorem 4.1. Let the solution set to formulation (2.5) be given by S1, the solution

set to formulation (2.16) be given by S2 and the solution set to formulation (4.4)

be given by S3. Then, given a large enough value
23

 of K, S1 = S2 = S3.

Proof. Realize that all three formulations (2.5), (2.16), and (4.4) have the same

objective function. Hence, it is sufficient to show that all three formulations have the

same feasible region. Hence, assume that S1, S2, S3 represent the feasible regions of

formulation (2.5), (2.16), and (4.4), respectively. We will show these feasible regions

are equivalent by showing 1321 SSSS  . The subscript i will denote vector

element computation.

 Pick a point 1

11),(Syx  . We want to show that there exists a value of r such

that 2

11),(Syx  . Then, for all i, either 01 iy , or 0),(11 yxgi or both. Suppose

01 iy . Then, in formulation (2.16), let ri = 1, which implies 01 iy in formulation

(2.16) as well. If 0),(11 yxgi , then choose ri = 0, which implies 0),(11 yxgi in

formulation (2.16) as well. If both are zero, choose ri = 1 (or ri = 0), which will ensure

that 01 iy and that 0),(11 yxgi is within the feasible region of (2.16). Since K is

chosen to be large enough, these arguments imply that the solution set to (2.5) is

contained in the solution set to (2.16), i.e., 21 SS  .

 Next, pick   yn
Sryx 1,0),,(2

222  which is a solution to (2.16). Consider any

vector element i. Suppose that 02 ir . This implies 0),(22 yxgi , which implies

23

 So that Disjunctive Constraints provides the same solution set as (2.16).

95

2

2
2 i
i

y
u  and

2

2
2 i
i

y
v  . Hence, this implies 022  ii vu , and in particular 022  ii vu .

On the other hand, 12 ir implies 02 iy ,
2

),(22
2 yxg

u i
i  , and

2

),(22
2 yxg

v i
i  .

Hence, this case also implies that 022  ii vu . Therefore, 3

22),(Syx  and 32 SS  .

 Now pick any solution 3

33),(Syx  . For this solution 033  ii vu for each i.

Hence, this implies     0
2

323  ii vu and, in particular     0
2323
 ii vu . Then, the

following argument shows that 13 SS  .

   

       

.0),(

0
4

)),((),(2

4

)),((),(2

0

333

2333332323333323

2323















yxgy

yxgyxgyyyxgyxgyy

vu

ii

iiiiiiii

ii

Hence, S1, S2, and S3 are subsets of each other so they are equivalent.■

4.2.2. Approximating The Absolute Value Function Using Special

Ordered Sets of Type 1 Variables

The previous proof shows that using the absolute value function can be a substitute

for using disjunctive constraints. However, the absolute value function is also a

nonlinear function which can provide computational difficulty to optimization solvers

(Steffensen & Ulbrich, 2010). Hence, a reformulation is required.

96

 The absolute value can be reformulated as in (4.5) using Special ordered sets

of type 1 (SOS1) variables (Beale & Tomlin, 1970). SOS1 variables are defined as

sets of non-negative variables of which at most one can be non-zero.

 variables1 SOS are , where

2

),(
)(

2

),(

0)(

0),(

0

),(s.t.

),(min





















vv

yxgy
vv

yxgy
u

vvu

yxg

y

yx

yxf

 (4.5)

Lemma 4.1. Let S4 be the solution set to (4.5). The solution sets to formulation

(4.5) and formulation (4.4), S4 and S3 respectively, are equivalent. That is, S4 =

S3.

Proof. Again, since the objective functions for both formulations are the same, it is

sufficient to show that both formulations have the same feasible region. Hence,

assume that S4 and S3 represent the feasible regions of formulation (4.5) and (4.4),

respectively. Set vvv   . Then, for all i, either   0

iv , or   0

iv or both

because    ii vv  , is a set of SOS1 variables where at most one can be nonzero. This

implies that vvv  
 (componentwise absolute value). Hence, we can substitute v

in for  vv in formulation (9) and v for   vv in formulation (4.5) to get

formulation (4.4). The substitution the other way works as well, hence S4 = S3. ■

97

4.2.3. Approximating Absolute Value Function Using a Penalty Method

The SOS1 approach at times can numerically fail for more complex problems, as

SOS1 variables also require binary variables to be formulated within the solver

(GAMS, 2010). For example, the North American Gas model could not be solved

using the SOS1 formulation and instead required a better starting point as described

in Section 4.4. The North American Gas model was eventually solved using

Algorithm 4.1 described in Section 4.2.4. Several other alternatives were explored to

approximate this absolute value function. In particular, Steffensen and Ulbrich

(Steffensen & Ulbrich, 2010) provide a smooth function approximation to the

absolute value function. However, their methodology did not work when applied to

the example (U.S. version of the World Gas Model (Gabriel et al., 2011c)) in this

chapter. An alternative way to approximate the absolute value function is the penalty

method (Bazaraa et al., 1993), which works well for finding solutions to MPECs.

 variablesnegative-non are , where

2

),(
)(

2

),(

0)(

0),(

0

),(s.t.

)(),(min
1



























vv

yxgy
vv

yxgy
u

vvu

yxg

y

yx

vvLyxf
yn

i

iii

 (4.6)

Theorem 4.2. Assume that the Karush-Kuhn-Tucker conditions are both

necessary and sufficient for the optimization problem (4.6). If formulation (4.5)

98

has a solution, then for any Li > 0 and for each i, at most one of (v
+
)i and (v

-
)i is

nonzero in formulation (4.6).

Proof. We will show this by contradiction. Suppose that there exists a Li > 0 such that

a solution to (4.6) gives an index i where both   0

iv and   0

iv . Let the

following be the slightly altered form of (4.6) considered where the Lagrange

multipliers are included in parentheses and {(x, y) s.t. C(x, y) < 0} defines the set of

constraints that define Ω.

 variablesnegative-non are , where

)(0
2

),(
)(

)(0
2

),(
)(

)(0),(

)(0

)(0),(

)(),(min

5

4

3

2

1

1





























vv

yxgy
vv

yxgy
vv

yxg

y

yxC

vvLyxf
yn

i

iii











 (4.7)

 Then, taking the first-order Karush-Kuhn-Tucker conditions (Bazaraa et al.,

1993), respectively, for  iv and  iv gives     054 
iiiL  and

    054 
iiiL  since both   0

iv and   0

iv . Together these two

conditions imply   05 
i

 and  
iiL 4 . This implies that the Lagrangian (Λ) can

equivalently be expressed as

99

 

.
2

),(
)()(

2

),(
)()()),(()(

)()(),()()()(),(

543

214

,1








 








 














yxgy
vv

yxgy
vvyxg

yyxCvvvvLyxf

TTT

TT

iii

n

ijj

jjj

y





 Realizing that 4 now appears in two terms, we can factor this out and realize

that the following optimization problem will give the same solution as formulation

(4.7) above.

 variablesnegative-non are , where

)(0
2

),(
)(

)(0
2

),(

)(0
2

),(
)(

)(0),(

)(0

)(0),(

)(),(min

5

4

4

3

2

1

,1








































 

vv

yxgy
vv

yxgy

yxgy
vv

yxg

y

yxC

vvLyxf

i
ii

ij

ijij

ijij

n

ijj

jjj

y













 (4.8)

But since Li > 0, this implies   04 
i

 and since the above formulation satisfies

necessary and sufficient
24

 conditions for the Karush-Kuhn-Tucker conditions,

formulation (4.8) indicates that 0
2

),(


 yxgy ii . Since both y and g are constrained

24

 Necessary conditions are needed to go from formulation (4.7) to the Karush-Kuhn-Tucker conditions

and sufficient conditions to go from Karush-Kuhn-Tucker conditions of (4.7) to optimization

formulation (4.8). Also, it can be argued that the constraint associated with  
i4 need not be an

equality constraint. Hence, we include the fact that   04 
i

 to ensure that we get equality for the

associated constraint.

100

to be nonzero, this implies that     0 

ii vv for the index i in (4.7). This is a

contradiction. Hence, for all Li > 0, the formulation (4.6) gives a solution where for

each i, at most one of (v
+
)i and (v

-
)i is nonzero.■

 From this point on, L = max{Li} will be the constant for each variation of

(4.6). The value of the constant L should be chosen to be small enough so it does not

interfere with the solution. It is not known at this time if there always exists a value of

L for which an exact solution is achieved but numerical results suggest there are

multiple values of L for which a solution to the MPEC can be obtained. By Theorem

4.2 for all positive L, (4.6) provides a solution that is always a feasible solution to

(4.5) but not necessarily optimal for large values of L. Therefore, L can be chosen to

be machine epsilon
25

. Numerical results validate that as L approaches zero, the

optimal objective function value of (4.6) approaches the optimal objective function

value of (2.5). At times, solvers will fail to solve MPECs by finding an infeasible

solution where there exists an i, for which both of (v
+
)i and (v

-
)i are nonzero. An

alternative to this is provided by the following (heuristic) Algorithm 1.

4.2.4. Algorithm 4.1 to Solve Mathematical Programs with Equilibrium

Constraints

Step 0: Pick a tolerance t.

25

 Machine epsilon is defined as the smallest positive number specific to the computer, in this case 10
-

17
.

101

Step 1: Solve the problem using the penalty method formulation (4.6) with L

 =t.

Step 2: Check for any pairs of variables v
+
 and v

-
 that are both non-zero. If

 yes, go to Step 3. If not, skip to Step 6.

Step 3: Reformulate those particular variables as SOS1 variables as in

 formulation (4.5).

 Step 4: Solve the problem again using the solution from Step 1 as an initial

 starting point.

 Step 5: Go to Step 2.

Step 6: Check solution by changing value of L in formulation. Decrease L

 until value for objective function stays the same. Then stop.

4.2.5. Numerical Results

Consider the following sample MPEC where three firms compete to sell natural gas

in the market. Assume linear demand and a quadratic cost function. This MPEC is

modeled as a Stackelberg game (Gibbons, 1996), where the firms choose quantities to

produce. In this context, a Stackelberg game is relevant under the assumption that a

102

shale gas producing firm can exert market power in the North American natural gas

market. This assumption can be interpreted in various ways. One way is that other

players wait for the shale producing firm to make its production decision before

deciding on their own production values. Another interpretation is that the shale

producing firm can influence market dynamics so that the other players become

reactionary. The Stackelberg leader, “Shale Firm,” has market power and gets to

move first while the other two firms are followers.

103

Table 4.1: Definition of terms for simple example

Parameters Shale Firm Firm 1 Firm 2

Intercept and Slope of Linear Demand a,b a,b a,b

Marginal cost C c1 c2

Positive Constants Used to Replace

Complementarities by Disjunctive Constraints

N/A K1 K2

Variables Shale Firm Firm 1 Firm 2

Quantity Natural Gas Sold
26

 Q q1 q2

Binary Variables Used to Replace

Complementarities by Disjunctive Constraints

N/A r1 r2

Outputs Shale Firm Firm 1 Firm 2

Market Price
27

 P P P

Profits ProfitShale Profit1 Profit2

 Shale Firm solves a constrained maximization problem where it maximizes its

own profits. This is the upper-level problem:

   CQQQqqba
Q




21
0

max (4.9)

26

 These quantities are constrained to be nonnegative.

27
 We assume a linear demand with P = a – b(q1 + q2 + Q).

104

 The firms i = 1,2 at the lower-level solves the following problem where they

take quantity Q as given and try to maximize profits while in Nash-Cournot

competition with the other Stackelberg follower firm j.

   iiiji
q

qcqQqqba
i


0

max (4.10)

 This lower-level Nash-Cournot game can be expressed as a (linear)

complementarity problem

given as follows:

020

020

2122

1211





qbQbqbqca

qbQbqbqca
 (4.11)

 To solve the problem using disjunctive constraints, the KKT conditions are

added to the constraint set in (4.9) to form one overall problem. By having

sufficiently large positive constants K1 and K2, the complementarity problem (4.11) is

reformulated as follows:

)1(0

20

)1(0

20

222

22122

111

11211

rKq

rKbQbqbqca

rKq

rKbQbqbqca









 (4.12)

where r1 are r2 are binary variables. Let K1 = K2 be the maximum of the x-intercept, y-

intercept of the demand function, and the capacity restrictions, i.e. K1 = K2 = max

{a/b, a}. This provided a lower bound on K1 and K2 so that there isn‟t a computational

error (Gabriel & Leuthold, 2010).

 Finally, replacing the original complementarity problem with the disjunctive

constraints and combining with the upper-level problem, the following mixed-integer

nonlinear program formulation is expressed in disjunctive form:

105

   

 1,0,

)1(0

20

)1(0

20

max

21

222

22122

111

11211

21
,, 21













rr

rKq

rKbQbqbqca

rKq

rKbQbqbqca

CQQQqqba
qqQ

 (4.13)

 The goal is to use (4.13) as a benchmark for comparison to the proposed

method. Using (4.9) to (4.11), the MPEC under consideration is reformulated to

demonstrate the SOS1 and penalty methods.

0

0

0

0

2

2

22

11

2

1

1222

2111













qz

qz

z

z

bQbqbqcaz

bQbqbqcaz

 (4.14)

 Now, for i = 1, 2, iiii vuqz  where
2

ii
i

zq
u


 and

2

ii
i

zq
v


 by Schur‟s

decomposition. So the eventual formulation using SOS type 1 variables is:

106

   

 variables1 typeSOS are , where

0)(

 0)(

2

2

(4.15)
2

2

0

0

2

2

max

222

111

22
22

22
2

11
11

11
1

2

1

1222

2111

21
,, 21





































ii

qqQ

vv

vvu

vvu

zq
vv

zq
u

zq
vv

zq
u

z

z

bQbqbqcaz

bQbqbqcaz

CQQQqqba

Similarly, the formulation for the penalty method is given by

107

  

 variablesnegative-non are , where

0)(

 0)(

2

2

(4.16)
2

2

0

0

2

2

)(max

222

111

22
22

22
2

11
11

11
1

2

1

1222

2111

2

1

21
,, 21















































 

ii

i

ii
qqQ

vv

vvu

vvu

zq
vv

zq
u

zq
vv

zq
u

z

z

bQbqbqcaz

bQbqbqcaz

vvLCQQQqqba

 The computational objective was to compare the results for the methods of

disjunctive constraints (4.13), SOS1 variables (4.15) and the penalty method (4.16).

This was accomplished using GAMS (GAMS, 2010) with CONOPT being used as

the nonlinear solver and SBB the mixed integer nonlinear solver.

 The capacity constraints for production quantities are omitted for this first

example, i.e., maximum production is only limited by rising costs. The following

Table 4.2 shows the datasets used:

108

Table 4.2: Different Datasets to Compare (4.13), (4.15), and (4.16)

Dataset Parameters Dataset 1 Dataset 2 Dataset 3

a 13 13 13

b 1 0.1 0.1

c1 = c2 = C 1 1 2

 For the disjunctive constraints formulation (4.16), K1 = K2 = max {b/a , a} =

13 consistent with (Gabriel & Leuthold, 2010) for all the datasets while for the

penalty method approximation (4.16), two different values of L were chosen to show

how a lower value of L gives a better answer as shown below in Table 4.3.

Table 4.3: Different Cases to Compare Solutions to (4.16)

 Case 1 Case 2

Value of L 0.0001 1

 The following Tables 4.4-4.6 report the results. The true answer
28

 can be

easily verified algebraically as unique and is shown in the third column of the tables.

Note that disjunctive constraints obtained the correct answer for Dataset 1, implying

that a correct value of K was chosen.

28

 It is simple algebra to show that this is the unique solution since there are no constraints and all

objective functions are quadratic.

109

Table 4.4: Results for Dataset 1

Results Disj Cons True

Answer

SOS Case1 Case 2

q1 = q2 2.000 2.000 2.000 2.000 1.833

Q 6.000 6.000 6.000 6.000 6.500

Price 3.000 3.000 3.000 3.000 2.833

Profit shale 12.000 12.000 12.000 12.000 11.917

Profit 1=2 4.000 4.000 4.000 4.000 3.361

Table 4.5: Results for Dataset 2

Results Disj Cons True

Answer

SOS Case1 Case 2

q1 = q2 13.000 20.000 20.000 20.000 18.333

Q 81.000 60.000 60.000 60.000 65.000

Price 2.300 3.000 3.000 3.000 2.833

Profit shale 105.300 120.000 120.000 120.000 119.167

Profit 1=2 16.900 40.000 40.000 40.000 33.611

110

Table 4.6: Results for Dataset 3

Results Disj Cons True

Answer

SOS Case1 Case 2

q1 = q2 13.000 18.333 18.333 18.333 16.667

Q 71.000 55.000 55.000 55.000 60.000

Price 3.300 3.833 3.833 3.833 3.667

Profit shale 92.300 100.833 100.833 100.833 100.00

Profit 1=2 16.900 33.611 33.611 33.611 27.778

 If the methodology to choose K as outlined in the literature (Gabriel &

Leuthold, 2010) is used, disjunctive constraints do not provide the solutions in

datasets 2 and 3
29

. These results point out a big weakness with disjunctive constraints

that the solution can be very far from the true answer and the given solution can be

extremely sensitive to the value of K if appropriate problem specific values are not

selected.

 Choosing the correct K can make the disjunctive constraint method (4.13)

accurate. Choosing a correct L makes (4.16) accurate as well. The next set of

numerical results were done with Dataset 3 with K =10000 and
30

 L = 10
-16

 where

these values were reached after numerical and algebraic verification of the test

problem. The test problem was changed so that now instead of two players at the

29

 The method in (Gabriel & Leuthold, 2010) gives a correct value of K whenever maximum

production (capacity constraints for production) is included in the problem formulation. Our goal was

to give a very simple counterexample where the disjunctive constraints approach didn‟t work.

30
 This is machine-ε.

111

lower level, there were M players with similar costs and parameters. The number of

players was increased to test the computation time taken for disjunctive constraints

(4.13), SOS1 (4.15), and the penalty method (4.16). The results are shown in the

following Figure 4.1. All methods were able to obtain the correct solutions.

Figure 4.1: Computational Time for Solving Problem

 Clearly, the disjunctive constraint method becomes extremely computationally

expensive when number of players is increased. Note that the graphs for the penalty

and SOS1 methods are overlapping.

112

4.3. Solving Equilibrium Programs with Equilibrium Constraints

4.3.1. Extending Algorithm 4.1 to Equilibrium Programs with

Equilibrium Constraints

Note that a variation of the above formulation (4.6) can also be used to solve EPECs.

An EPEC is defined as a game between N players at the top level where each top-

level player solves an optimization problem of the form of an MPEC. Hence, an

EPEC with a common lower-level for each of the N upper-level players typical of

Stackelberg leaders in energy production with the rest of the market represented by

the lower-level problem is given by

0),(

0),(

)17.4(0

),(s.t.

,...,1),(min











yxgy

yxg

y

yx

Njyxf

T

j

 The formulation (4.17) with  0),(|),( yxCyx can be rewritten as

 variablesnegative-non are , where

)(0
2

),(
)(

)(0
2

),(
)(

)18.4()(0),(

)(0

)(0),(

,...,1)(),(min

5

4

3

2

1

1



























 

vv

yxgy
vv

yxgy
vv

yxg

y

yxC

NjvvLyxf
yn

i

iij











 By Theorem 4.2, choosing a positive L will ensure that the SOS1 constraints

hold for each pair v
+

, v
-
 for each individual top-level player‟s optimization problem

113

and choosing a small enough L will ensure that the correct solution is achieved.

Formulation (4.18) can then be solved as a Nash game among N players, and can be

formulated as a complementarity problem by taking the Karush-Kuhn-Tucker

conditions as in (4.19).

)(0
2

),(
)(

)(0
2

),(
)(

0),(0

0),(0

)19.4(,...,1,,...,1

00

00

0)),(1(
2

)),(1(
2

),(),(),(0

0),(
2

),(
2

),(),(),(0

5

4

3

1

54

54

54
31

54
31

free
yxgy

vv

free
yxgy

vv

yxg

yxC

Njni

vvvLv

vvvLv

yyxgyxgyxgyxCyxf

xyxgyxgyxgyxCyxf

y

iiii

iiii

yyyyjy

xxxxjx



















































 Note that as described in detail in (Ehrenmann, 2004), (4.19) is not a square

system. The reason for this is that the same set of lower-level variables are shared

among all top-level players in the component MPECs of the EPEC. Hence, solutions

to (4.19) cannot be computed using solvers in GAMS. Many workarounds are

available for this (e.g. penalization methods (Ehrenmann, 2004)), and for the case of

the specific EPEC considered in this chapter, we introduce a “balancing agent.” All

lower-level variables and constraints that are common to all top-level player

optimization problems are treated as separate variables for each top-level player. For

example, the variables y above will be treated as separate variables yj for each of the

top-level player MPECs. Then, (4.19) combined with the Karush-Kuhn-Tucker

114

conditions
31

 of (4.20) below will be a square system. The balancing agent solves the

following problem

 1,...,1

0,

)20.4()(0

min

1

1

1
,





















Nj

bb

bbyy

bb

jj

jjjjj

N

j

jj
bb jj



 A loose interpretation of the economic role of the balancing agent is the

following. Without such an agent, Stackelberg leader j communicates with only the

jth partition of the lower-level market, represented by yj. The balancing agent tries at

minimal cost to couple the partitions into one integrated market, which is more

realistic. The Karush-Kuhn-Tucker conditions of the above problem can then be

added to (4.19) to ensure that the values of values of yj are the same. The following

algorithm shows a method, then, to solve EPECs.

4.3.2. Algorithm 4.2 to Solve Equilibrium Problems with Equilibrium

Constraints (Heuristic)

(Solving EPECs Using (4.19) and Karush-Kuhn-Tucker conditions of (4.20))

Step 0: Pick a tolerance t.

31

 Since (4.20) is a linear program, the Karush-Kuhn-Tucker conditions are both necessary and

sufficient.

115

Step 1: Solve the problem using the formulation (4.19) with L =t and the KKT

conditions to (4.20).

Step 2: Check solution by changing value of L in formulation. Decrease L until

value for objective function stays the same. Check with setting L =

machine-ε. Then stop.

4.3.3. Numerical Results for Equilibrium Programs with Equilibrium

Constraints

A corresponding EPEC where two players are at the top-level can also be formulated

and solved by extending the MPEC method above. The formulation for the bottom

level remains the same, and for the upper level, there are now two producers who

determine quantities Q1 and Q2 whose objective functions are given as

    2,12121  jQCQQQqqba jjj (4.21)

 Using the same datasets, let
32

 C1 = C2 = C. Then, the EPEC can be formulated

as

32

 This also works with other data, which was verified numerically as well.

116

  

 variablesnegative-non are , where

)(0
2

)2(

)(0
2

)2(

(4.22))(0
2

)2(

)(0
2

)2(

)(02

)(02

2,1)(max

6
211222

22

5
211222

22

4
212111

11

3
212111

11

221122

121211

2

1

2121
,, 21
















































 

ii

i

iijjj
qqQ

vv

bQbQbqbqcaq
vv

bQbQbqbqcaq
vv

bQbQbqbqcaq
vv

bQbQbqbqcaq
vv

bQbQbqbqca

bQbQbqbqca

jvvLQCQQQqqba
j













 The constraints in (4.22) are the KKT conditions of the lower-level problem

that have been reformulated as in (4.6). As described in Section 4.3.1, this problem

can be expressed and solved as a complementarity problem using Algorithm 4.2 and

adding a balancing agent:

117

 2,1,2,1

0,

) (0

010

010

)(0
2

)2(

)(0
2

)2(

)(0
2

)2(

)(0
2

)2(

)23.4(020

020

00

00

0
222

21

2

21
20

0
222

21

2

21
20

0
2222

0

3,,

,6

21,1,22,2

,2,2

,5

21,1,22,2

,2,2

,4

21,2,11,1

,1,1

,3

21,2,11,1

,1,1

,221,1,22

,121,2,11

,,22,12

,,22,12

,2,4,3,6,5,2,1

,1,6,5,4,3,2,1

,6,5,4,3

2121














































 

















 








 









 

















 








 






























ij

bb

 freebbqq

b

b

free
bQbQbqbqcaq

vv

free
bQbQbqbqcaq

vv

free
bQbQbqbqcaq

vv

free
bQbQbqbqcaq

vv

bQbQbqbqca

bQbQbqbqca

vL

vL

q
bbbb

bbbQ

q
bbbb

bbbQ

Q
bbbb

bQbQbQbqbqCa

jj

jjjjiji

jj

jj

j

jjj

jj

j

jjj

jj

j

jjj

jj

j

jjj

jj

jjj

jjj

jijiji

jijiji

jjjjjjjj

jjjjjjjj

j

jjjj

jj





























 The following tables (4.7-4.9) give the solutions under different datasets and

cases
33

. Simple algebra can show that there exists a solution, and hence a true answer

is also given in the table.

33

 Many different cases with different costs were also solved successfully, but only the ones

corresponding to the previous MPEC example are presented. Please refer to Section 4.2.5.

118

Table 4.7: Results for Dataset 1

Results A Solution Case 1 Case 2 L = machine-ε

q1 = q2 1.333 1.333 1.111 1.333

Q1 = Q2 4.000 4.000 4.333 4.000

Price 2.333 2.333 2.111 2.333

Profit Top 5.333 5.333 4.815 5.333

Profit

Bottom

1.778 1.778 1.235 1.778

119

Table 4.8: Results for Dataset 2

Results A Solution Case 1 Case 2 L = machine-ε

q1 = q2 13.333 13.333 11.111 13.333

Q1 = Q2 40.000 40.000 43.333 40.000

Price 2.333 2.333 2.111 2.333

Profit Top
34

 53.333 53.333 48.148 53.333

Profit Bottom 17.778 17.778 12.346 17.778

Table 4.9: Results for Dataset 3

Results A Solution Case 1 Case 2 L = machine-ε

q1 = q2 12.222 12.222 10.000 12.222

Q1 = Q2 36.667 36.667 40.000 36.667

Price 3.222 3.222 3.000 3.222

Profit Top 44.815 44.815 40.000 44.815

Profit Bottom 14.938 14.938 10.000 14.938

 Again, in all three datasets, the Case 2 choice of L could not give an optimal

solution, i.e., Nash equilibria at the top and bottom. Hence, all these datasets required

a very small choice of L. Choosing L = machine-ε is a good option. Note that the

EPEC has an extra player when compared to the MPEC; hence profits for all firms

are lower in the EPEC study. Moreover, prices are also lower in the EPEC case, as

34

 Due to the deliberate selection of similar data, the profits for both top-level players are the same.

Hence, only one player‟s profit is reported as the second player‟s profits are the same.

120

expected with an extra Stackelberg leader with same marginal cost in the EPEC.

These results can be seen when comparing Tables (4.4-4.6) with Tables (4.7-4.9).

4.4. The North American Gas Model

4.4.1. Introduction

The advent of rising oil prices along with attitudes about decreasing greenhouse gas

emissions in multiple sectors has lead to an interest in natural gas production for the

future. The role of unconventional gas
35

, in particular, has greatly increased due to

engineering advances such as hydraulic fracturing and horizontal drilling (NPC,

2007). The projected role of shale gas in particular, especially in the United States but

also elsewhere (Skagen, 2010) has lately been a major force in the increasing

prominence of unconventional gas. In 2008, Cambridge Energy Research Associates

indicated that this unconventional gas production could help delay by a decade the

United States‟ need for substantial LNG imports (Economist, 2008). More recently,

others gauge the U.S. shale gas impact in even more dramatic terms with estimates of

up to 100 years of reserves.
36

 Indeed, the Potential Gas Committee has concluded

that the U.S. proved reserves of gas increased from 2006 to 2008 by a huge 35.4%

from 1532.0 trillion cubic feet to 2074.1 (PGC, 2010). Others such as the petroleum

35

 Unconventional gas is defined as gas from tight sands, coalbed methane, and shale gas, and covers

more low-permeability reservoirs that produce mostly natural gas (no associated hydrocarbon liquids)

(NPC, 2007).

36
 Keith O. Rattie, CEO of Questar, a natural gas and pipeline company, cited in “Awash in Fossil

Fuels,” George F. Will, The Washington Post, November 22, 2009.

121

engineer Art Berman are more cautious about the ultimate supply due to the

economics of producing shale gas (low gas prices in the U.S. recently) (Cohen, 2009)

or steeper decline rates for shale wells (Steffy, 2009). Shale gas in the U.S. will be

modeled using the World Gas Model (Gabriel et al., 2011c), restricted to North

American nodes.

 The World Gas Model
37

 (WGM) is a long-term, game theoretic model of

global gas markets with representation of Cournot market power originally based on a

North American version of the mode (Gabriel et al., 2005a), (Gabriel et al., 2005b)

and eventually extended to a global version (Egging et al., 2009) for which the most

recent version is (Gabriel et al., 2011c). For the United States, the forecasts presented

in the Annual Energy Outlook (April 2009 ARRA version) were used for the current

study. For the rest of North America, the World Energy Outlook (IEA, 2008) was

used. The WGM was then extensively calibrated to match these multiple sources for

all countries/aggregated countries and years considered (2005, 2010, 2015, 2020,

2025, 2030).
38

 The most interesting change due to the presence of shale gas occurs in census

region 7 (WGM node 7) where Haynesville and Barnett plays are present. This node

37

 National Science Foundation (DMS, Award #0106880), Principal Investigator ,S.A. Gabriel,

“Computational Methods for Equilibrium Problems with Micro-Level Data,” 09/01/2001-08/31/2005

and National Science Foundation (DMS, Award #0408943), Principal Investigator, S.A. Gabriel,

“Methods and Models for Stochastic Energy Market Equilibria, “08/01/2004-07/31/2008.

38
 See (Gabriel et al., 2011c) for details on the countries and regions included as well as other relevant

geographic or nodal information.

122

is used as a test example for the new MPEC solution technique. The formulation

proposed is that the producer of shale at node 7 will be the first mover in the

Stackelberg game (Gibbons, 1996). The entire lower level will be the World Gas

Model restricted to North American nodes including other shale nodes. This

formulation assumes that the shale producer at node 7 has market power over all other

players. While there is some arbitrariness about this assumption, i.e. it might give the

shale producer at node 7 too much market power, it nevertheless is an interesting

market formulation to study because there is a chance for this scenario to play out in

the future. Furthermore, this formulation can be used for bounding purposes when

considering a wide variety of market dynamics. Other MPEC formulations might

consider a trader, producer, or even the government at the upper-level.

4.4.2. Shale Gas in the United States

 The shale gas data were provided by the U.S. Department of Energy in the

Annual Energy Outlook (2010) with shale gas production and Lower 48 onshore

natural gas production datasets.
39

 As compared to the version of the model from

(Gabriel et al., 2011c), the World Gas Model was modified to contain three

production nodes for each census region of the United States: conventional gas, shale

gas, and non-shale unconventional gas.

 A „Golombek‟ production cost function (Golombek & Gjelsvik, 1995)

  (4.28) ln)(
2

1
)(2








 


Q

qQ
qQqqqC 

39

 For a table relating the WGM nodes to the shale plays in the US, please refer to the Appendix.

123

was used for which the marginal supply cost curve is:

   (4.29) .ln' 






 


Q

qQ
qqC 

 Here, Q is the production capacity, 0  is the minimum per unit cost, β > 0

is the per unit linearly increasing cost term, and 0  is a term that induces high

marginal costs when production is close to full capacity.

 Skagen (Skagen, 2010) indicates that recent research has led to predicting a

lower value of α for the cost function of shale gas when compared to conventional

gas. Figure 4.2 shows that shale gas is now understood to have a lower price of

extraction in the beginning.

Prior Perception

Conventional Gas

Gas ResourcesGas Resources

G
as

 P
ri

ce
s

G
as

 P
ri

ce
s

Conventional GasUnconventional Gas (Shale)

Unconventional Gas (Shale)

New Understanding

Figure 4.2: A Marginal Cost Structure for Shale Gas (Skagen, 2010)

 Alternatively, others believe that initial positive results from shale gas

extraction wells might not be sustainable in the long run (Cohen, 2009). In particular,

geologist Art Berman claims that decline rates will be much higher than expected,

124

and while shale appears to be a good resource right now, steep decline rates mean that

higher extraction will lead to higher costs quickly (Cohen, 2009).

 In the modification of the WGM, the shale gas cost curve has α (the y-

intercept of the marginal cost curve) lower and β (the slope of the marginal cost

curve) higher than for conventional gas. The current debate about shale gas has been

incorporated. While the lower initial cost of extraction is consistent with Skagen‟s

observation, a higher marginal cost increase and higher marginal costs at higher

quantities is consistent with Berman‟s claim that decline rates of shale wells will be

higher. Hence, shale gas has a lower initial cost of extraction than conventional gas

but a higher rate of increase for marginal cost. It is important to note that this

marginal cost curve for shale gas is by no means the final word but just one

perspective developed for our modeling needs.

 The other initial condition placed is that total production costs should be the

same, so the integral of the marginal cost curve should be the same for both functions

(conventional and shale gas). This will ensure a positive production of both types of

gas, which can be calibrated to real data. A comparison is provided with two other

cases with higher total costs for shale production. Another reason why the total costs

would be equal in the reference case is that producers drilling in the same region

would encounter similar terrain, similar taxes, similar hurdles etc. Hence, α was

reduced by 20% of the value of conventional gas based on Skagen (2010) and β was

increased by an amount so that the integral of the marginal cost curve remains the

same. An explanation of this is shown in Figure 4.3 below. Note that the values of γ

are kept the same for shale and conventional gas, so Figure 4.3 only shows the linear

125

portion of the marginal cost curve. The production cost data for conventional and

unconventional (non-shale) gas was obtained as described in (Gabriel et al., 2011c).

M
ar

g
in

al
 C

o
st

Quantity of Gas Produced

Shale Gas

Marginal Cost

curve has

steeper slope

Shale Gas Marginal

Cost curve has 20%

lower intercept

Shale Gas Marginal Cost curve slope is

obtained by setting the total area under the

curves (total cost) equal to each other.

Conventional Gas Marginal Cost Curve

Shale Gas Marginal Cost Curve

A Marginal Cost Curve for Shale Gas Production

Figure 4.3: A Marginal Cost Structure for Shale Gas

 The following table provides the coverage of states and shale basins in the

world gas model.

126

Table 4.10: World Gas Model Nodes: Coverage of States and Shale Basins

Shale Basin

Name
States

WGM

Nodes

Mancos Utah US_8

Hilliard-

Baxter
Mancos

Wyoming Colorado US_8

Niobrara Colorado Nebraska Kansas
US_4,

US_8

Cody Montana US_8

Mowry Wyoming US_8

Gammon Montana
North
Dakota

South
Dakota

US_4,
US_8

Excello-

Mulky
Kansas Oklahoma

US_4,

US_7

New Albany Illinois Indiana Kentucky
US_3,

US_6

Antrim Michigan Indiana Ohio US_3

Utica New York US_2

Marcellus New York Pennsylvania Ohio
West
Virginia

Maryland Virginia Tennessee

US_2,

US_3,
US_5,

US_6

Devonian Ohio Kentucky
West

Virginia
Virginia Tennessee Alabama Georgia

US_3,

US_5,
US_6

Chattanooga Kentucky Virginia Tennessee Alabama Georgia
US_5,

US_6

Conasauga Alabama Georgia
US_5,
US_6

Floyd-Neal Mississippi Alabama US_6

Fayetteville Arkansas US_7

Hayneville/

Bossier
Louisiana Texas US_7

Woodford/

Caney
Oklahoma US_7

Barnett Texas US_7

Pearsall Texas US_7

Woodford Oklahoma Texas US_7

Barnett and

Woodford
New Mexico Texas

US_7,

US_8

Bend Texas US_7

Pierre New Mexico Colorado US_8

Lewis New Mexico Colorado US_8

Hermosa Utah US_8

4.4.3. Scenario Results

This section describes numerical examples to solve the WGM (North American nodes

only) using the new MPEC approach outlined above. The point is to demonstrate that

127

even on large MPECs, this Algorithm 4.1 works well. Five different cases were run,

which are described below. The results from these cases are consistent with economic

theory, and are presented in graphical form.

 Computational results show that a solution exists for the lower-level

complementarity problem (which includes the shale producer at node 7). This means

that a feasible solution for the MPEC exists as well, as the lower-level

complementary problem contains both the complementary restrictions as well as

constraints for the upper-level player of the MPEC. The method of disjunctive

constraints did not provide a feasible solution for this problem with the solvers SBB

and CONOPT (GAMS, 2010).

 The WGM restricted to the North American nodes has 30 producers, of which

seven are for shale gas and seven for unconventional gas production in the United

States. The rest produce conventional gas. There are a total of 15 production nodes, of

which nine correspond to the census regions for the lower-48 states. There are also

three traders (one each for United States, Canada, and Mexico, the three countries in

the model), along with eight periods from 2005-2040 (the last two five-year periods

are not reported to avoid end-of-horizon bias), and two seasons (high and low

demand) in each period. The decision variables are operating levels (production,

storage injection, etc.) as well as investment levels (pipeline, liquefaction capacity,

etc.). Prices are set to 2005 US$. The whole complementarity model has about 9456

variables and takes 243.2 seconds to solve on a 2.0 GHz processor with 2 GB

memory.

128

 The MPEC version of the WGM restricted to North America was formulated

with the shale gas producer in census region 7 as the top-level player. Census region 7

contains both the Barnett and Haynesville shale plays, two of the most important ones

in the United States
40

. The MPEC version was solved using Algorithm 4.1. The

algorithm solved the problem in approximately three hours on the same computer

described above, though the time was different for each case.

 The following five cases were considered, with the first (Base Case) modeled

as a complementarity problem and the rest as MPECs for purposes of comparison:

1) Base: The Base Case for the WGM restricted to North America formulated as

a complementarity problem and calibrated according to the Annual Energy

Outlook (April 2009 ARRA version) and the World Energy Outlook (IEA,

2008).

2) MPEC: The MPEC version of the Base Case. The shale producer in census

region 7 was placed at the upper level and all other players at the lower level.

3) MoreShale: A higher production of shale gas was considered by increasing

the daily capacity available, with a 10% increase for 2015, 2020; a 15%

increase for 2025, 2030; and a 20% increase for 2035, 2040. These numbers

are approximations of increases given by the Annual Energy Outlook between

the 2008 and 2009 reports‟ predictions. While the 2010 reports did not show

such an increase, for our purposes this case was developed to show what

might happen if a similar increase took place after 2015. This case is modeled

as an MPEC.

40

 Refer to www.eia.gov for more information.

http://www.eia.gov/

129

4) ShaleTax: All shale-producing firms are taxed $0.39/MCF (39 cents for every

thousand cubic feet of natural gas produced) from 2015 to 2040. This is in line

with the tax proposed for Pennsylvania shale production in the Marcellus

shale play, which was later overturned (Barnes, 2010). No other value for a

shale tax has so far been found from any legislature. This case is modeled as

an MPEC.

5) AllTax: All natural gas is taxed at $0.39/MCF from 2015 to 2040. This case

will help see if the shale players, especially the one in census region 7, have

any comparative advantage when everyone is taxed. Modeled as an MPEC.

 The results are presented below. The MPEC case produces lower average

prices (e.g., $6.74/MMBTU vs. $6.94/MMBTU in 2025) and higher total production

(e.g., 844.2 BCM vs. 830.2 BCM in 2025) and consumption (Gibbons, 1996) when

compared to the Base Case for all years. Moreover, as expected, the MoreShale case

showed an overall increase in shale production when compared to the Base Case (e.g.,

111.5 BCM vs. 89.4 BCM in 2025) and for the shale producer in census region 7,

proved to be the most profitable. The profits at node 7 increase by more than three

times in 2025 when compared to the Base Case. This shows the advantage of being

the Stackelberg leader and allowing collection of more profits and also serves as a

cautionary numerical result for market regulators and other interested parties.

 The MoreShale case shows that it will be advantageous for producers as well

as consumers (with prices dropping in nodes with large amounts of shale). However,

the fact that total production doesn‟t change much with the invoking of the tax (shale

or otherwise) shows that it will not be detrimental to the producers. This is

130

corroborated by looking at producer profits as well, where the imposition of tax

barely changes total profit. Since Node 8 has a relatively abundant supply of

conventional, unconventional, and shale gas, it can change production around

depending on the demands. Hence, nodes 8 and 9 remain relatively unchanged with

the imposition of tax. Moreover, the production for shale producers is as expected,

and the imposition of tax does less to harm any production, and overall profits remain

relatively stable. Also, this might be a policy argument for saying that the tax will

barely harm producers, but produce revenue for the state.

0

50

100

150

200

250

300

350

ALASKA CANADA MEXICO US_1and2 US_3and4 US_5and6 US_7 US_8and9

Production in BCM Overall In 2025

Base

MPEC

MoreShale

ShaleTax

AllTax

Figure 4.4: Overall Production in 2025 as Predicted by the Model

41

41

 US_1and2, for example, gives data for US census regions 1 and 2 combined.

131

0

50000

100000

150000

200000

250000

N_US2 N_US3 N_US4 N_US5 N_US6 N_US7 N_US8

Producer Profit in Millions $ in 2025

Base

MPEC

MoreShale

ShaleTax

AllTax

Figure 4.5: Producer Profit in 2025 as Predicted by the Model

 42

0

20

40

60

80

100

120

P_U2S P_U3S P_U4S P_U5S P_U6S P_U7S P_U8S

Shale Production in BCM In 2025

Base

MPEC

MoreShale

ShaleTax

AllTax

Figure 4.6: Shale Producers in 2025 as Predicted by the Model

 43

42

 N_US3, for example, gives profit at the node for US census region 3.

43
 P_U5S, for example, gives the production at US node 5 for shale gas.

132

 Data for consumption and prices (Figure 4.7 and Table 4.11, respectively),

however, show that the producers will pass most of the tax onto the consumers. This

also shows the strength of the World Gas Model, by predicting which areas will show

a change in prices. Nodes 5, and 6, will take on the burden of the tax with prices

going slightly up ($7.14/MMBTU vs. 7.07 $/MMBTU) and consumption relatively

unchanged when compared to the MPEC case. Nodes 1 and 2 contain a majority of

the Marcellus shale play; hence prices there go up with the imposition of a tax on

shale gas. Moreover, US nodes 7 and 8 have high production, and it‟s profitable for

these producers to sell at a lower price in their own market and at a higher price to the

other nodes. However, imposing a tax on US Node 7 increases prices at that particular

node in 2025 when compared to the MPEC case. Since the shale producer at node 7 is

the Stackelberg leader, in this case it can derive more profits by passing the tax onto

its own consumption node. Note that the prices under the two tax cases at node 7

(4.94 $/MMBTU and 5.13 $/MMBTU in the ShaleTax and AllTax case, respectively)

are still lower than the price for the Base Case (5.72 $/MMBTU, when the shale

producer at node 7 is not a Stackelberg player).

133

0

20

40

60

80

100

120

140

160

180

ALASKA CANADA MEXICO US_1and2 US_3and4 US_5and6 US_7 US_8and9

Consumption in BCM Overall In 2025

Base

MPEC

MoreShale

ShaleTax

AllTax

Figure 4.7: Consumption in 2025 as Predicted by the Model

 Table 4.11: Average Prices in $/MMBTU in 2025

Region Base MPEC MoreShale ShaleTax AllTax

Alaska 6.17 6.17 6.17 6.17 6.17

Canada 6.94 6.69 6.02 6.50 6.34

Mexico 6.66 6.65 5.63 6.70 6.92

US Nodes 1 & 2 8.85 8.91 8.59 8.98 8.88

US Nodes 3 & 4 7.48 7.52 7.02 7.48 7.37

US Nodes 5 & 6 7.36 7.07 6.76 7.14 7.14

US Node 7 5.72 4.88 4.59 4.94 5.13

US Nodes 8 & 9 6.31 6.03 5.65 6.01 5.88

134

4.5. Summary

This chapter provides a novel way to solve mathematical programs with equilibrium

constraints. The new method has been shown to be computationally tractable, and

able to solve MPECs where the lower level is a complementarity problem. An

extension to solve EPECs is also presented.

 The method was first applied to numerical examples for MPECs. It

outperformed the method of disjunctive constraints in two ways. First, the selection of

the constant L for Algorithm 4.1 did not prove as difficult as the selection of the

constant K in disjunctive constraints. Second, with numerical tests the method proved

to be computationally quicker than the method of disjunctive constraints. The method

was also shown to be able to solve a numerical example of an EPEC, but extensive

numerical and theoretical results will be part of future work.

 The method was applied to an example of a shale gas producer in the US

natural gas market acting as a dominant player. The results show that in the case of a

Stackelberg structure, the profits of the producer are not negatively affected with the

current proposals for taxes. However, with this structure the producers are able to

pass the tax onto the consumer, as profits do not decrease with the implementation of

tax but prices do go up. Moreover, if more resources are present, the producer is able

to take advantage of them. While in actuality the Stackelberg player might not have

such an advantage, this setup helps show how under this scenario, producers can

manipulate the market to make decent decisions.

135

Chapter 5: Solving Discretely-Constrained Mixed Linear

Complementarity Problems

5.1. Introduction

This chapter provides solution techniques for DC-MLCPs. In particular, this chapter

will consider discretely-constrained Nash games (DC-Nash), where some of the

decision variables are constrained to be integer-valued. These games have been

formulated as complementary problems (Cottle et al., 2009) in the literature.

However, the discretely-constrained versions have often been needed to be solved

using inspection; for example, a bimatrix game table (Gibbons, 1996) which has

finite, discrete choices to choose from.

 When solving DC-MLCPs, it is important to realize that a particular instance

might not have integer solutions. A compromise would be to get solutions that are as

close to integer as possible. While this chapter does not provide theoretical arguments

for the near-integer solutions, the numerical results presented corroborate that the new

technique helps achieve integer solutions where appropriate. The method presented in

this chapter is shown to be better than the method of (Gabriel et al., 2011a), (Gabriel

et al., 2011b) in computational effort and because the method in this dissertation does

not require the selection of a constant while the method in (Gabriel et al., 2011a),

(Gabriel et al., 2011b) requires the selection of a specified constant.

 First, a description of the two relaxation conditions will be given. Then, a

general formulation to solve these problems will be provided, based on the work of

136

(Gabriel et al., 2011a), (Gabriel et al., 2011b). Finally, the methods from Chapter 4

will be applied to solve this resulting two-level problem formulation for numerical

examples that are DC-Nash games and discretely-constrained network problems.

 A portion of this chapter has been presented in (Gabriel et al., 2011a),

(Gabriel et al., 2011b). However, a new way to solve these problems is presented in

this dissertation which was not used in the aforementioned papers. Both papers

(Gabriel et al., 2011a), (Gabriel et al., 2011b) used disjunctive constraints to solve the

DC-MLCPs, but this dissertation uses the technique of SOS Type 1 variables

explained in Chapter 4. The examples taken from (Gabriel et al., 2011a), (Gabriel et

al., 2011b) are exactly the same as in the papers but the solution technique is

different. An extra example with computational time is provided to further support

the use of Chapter 4 techniques as opposed to disjunctive constraints which was not

discussed in the two papers (Gabriel et al., 2011a), (Gabriel et al., 2011b). Hence, all

the examples in this chapter were solved by the solution technique developed in

Chapter 4, which was original work that is part of this dissertation. But the problem

formulation presented in this chapter and the theory behind the formulation was

developed in two papers (Gabriel et al., 2011a), (Gabriel et al., 2011b) and cannot be

regarded as original work. The solution technique of Chapter 4, however, proves to be

computationally superior for the examples presented.

137

5.2. Discretely-Constrained Mixed Linear Complementarity Problems

Recall from Chapter 2 that a general, discretely-constrained mixed linear

complementarity problem is given the vector Tqqq),(21 and matrix











2221

1211

AA

AA
A , find 21),(21

nnTzzz  such that

 

 

   

    2222

1111

22

2

1

22212

1

2

1

12111

,,,

,,,

free ,0

00

DdZzCcz

DdZzCcz

zz
z

z
AAq

z
z

z
AAq

dc

dc





























 (5.1)

 From this formulation, if  
d

z1 and  
d

z2 were continuous variables, the

problem would simplify to a linear complementary problem. Since they are not, one

obvious solution is to relax them to be continuous variables, and then solve the

problem hoping for an (approximate) integer solution. However, close inspection

shows that the complementary conditions also can be relaxed, giving another option

for an approximate solution. The next two subsections show how this is done and

follows the initial problem description from (Gabriel et al., 2011a), (Gabriel et al.,

2011b).

5.2.1 Epsilon-Integrality

Consider the conditions   11 , DdZz
d

  and   22 , DdZz
d

  from (5.1). Assume

these conditions are to be relaxed to make this problem easier. Without loss of

generality, consider   11 , DdZz
d

  as the arguments for   22 , DdZz
d

  are

138

similar. Then, consider a small deviation NiDrri ,...,1,0,, 11  through which this

discrete variable is relaxed. Given any feasible set M, the problem becomes to

minimize this deviation from integrality while still being in this feasible set. This is

formulated by (5.2) below

 

 

Variables 1 Type SOS are where

,...,1,0,

1

)1()1(

min

1

1

1

0

1

1111

0

1

1

ri

r

N

i

ri

ririrri

N

i Dr

ri

w

NiDr

Mz

w

wNizwN















 





 (5.2)

 In (5.2), the integer value i is selected that is closest to a continuous value in

M. Note, however, that the objective function contains a nonlinear function. This

absolute value function can be decomposed into its positive part and negative part so

that the objective function is no longer nonlinear as in (5.3).

   

 

   

 

Variables 1 Type SOS are where

,...,1,0,

1

)1()1(

min

1

1

1

0

1

111

1111

0

11

1

ri

r

N

i

ri

ririri

ririrri

N

i Dr

riri

w

NiDr

Mz

w

wNizwN





















 









 (5.3)

 This is one way to relax the DC-MLCP. From now on, this will be referred to

as ε-integrality. This relaxation, along with another one described next, will be used

to help solve DC-MLCPs.

139

5.2.2. Sigma-Complementarity

From (5.1), consider the complementary condition

  00 1

2

1

12111 







 z

z

z
AAq (5.4)

This condition is equivalent to (5.5) below.

 

  0

0

0

1

2

1

12111

1

2

1

12111





































z
z

z
AAq

z

z

z
AAq

T

 (5.5)

 The goal is to relax the last line equality condition in (5.5). To obtain a

solution that is approximate, the last equality need not equal zero but can be very

close to zero. In fact, a deviation similar to the one for integrality can be developed

here. Consider the deviational vector ζ such that the relaxed complementary problem

is formulated below
44

.

 

    0

0

0

1

2

1

12111

1

2

1

12111






































 z
z

z
AAq

z

z

z
AAq

T

 (5.6)

44

 Note that different ζ‟s could be used in the last equation in (5.6) as

    0211

2

1

12111 






















  z

z

z
AAq

T

.

 However, this relaxation provides a same solution as the one given in (5.6) because as only one of the

factors needs to be 0 for the product to be zero.

140

 Again, the problem becomes to minimize this deviation from complementary

whilst still being in this feasible set. This is formulated by (5.7) below

 

   

0

0

0

0

1min

1

2

1

12111

1

2

1

12111














































z
z

z
AAq

z

z

z
AAq

T

T

 (5.7)

 The nonlinear equality condition (a product) can be handled the same way the

product was handled in Chapter 4. Hence, reformulated to be solved with SOS Type 1

variables, (5.7) becomes

 

   

   

 variables1 SOS are , where

2
)(

(5.8)
2

0)(

0

0

1min

1

2

1

12111

1

2

1

12111

1

2

1

12111











































































vv

z
z

z
AAq

vv

z
z

z
AAq

u

vvu

z

z

z
AAq

T







5.2.3. Complementarity, Integrality Trade-off

One of the advantages that relaxing both complementary and integrality gives is that

we can figure out the tradeoff of relaxing one versus the other. In practice, different

solutions can be achieved depending on which of the two (or both) is relaxed. Figure

141

5.1 shows the idea behind this tradeoff. This can be thought of as the Pareto frontier

of a multiobjective programming problem (Cohon, 1978).

ε-integrality

ζ-complementarity

Tradeoff Curve

(Pareto Frontier)

for Integrality vs.

Complementary

If the region above

the tradeoff curve

contains 0 then an

exact integer and

complementary

solution is present.

Figure 5.1: The Tradeoff Between Complementary and Integrality

 Although the whole Pareto frontier might not have a smooth convex shape as

shown in the figure, it is motivation enough to study different variations. Moreover, a

point on the tradeoff does not necessarily need to correspond to an integer solution to

the DC-MLCP. In the future sections, at least the endpoints of the tradeoff curve (the

intersections of the curve with the axes) will be calculated to give an indication of the

extent of the Pareto frontier.

142

5.2.4. Formulation to Solve Discretely-Constrained Mixed Linear

Complementary problems

The following formulation is from (Gabriel et al., 2011a) for solving DC-MLCPs

except the techniques from Chapter 4 have been used instead of disjunctive

constraints
45

.

45

 In the following formulation (5.8),  
i1riw are SOS1 variables implies that ,...312111 ,, rrr www are

SOS1 variables.

143

         

 

   

   

 

 

   

   

 

 

   

   

  Variables 1 Type SOS are where

,...,1,0,1,...,,

1

0,

)1()1(

Variables 1 Type SOS are where

,...,1,0,

1

0,

)1()1(

(5.8) variables1 SOS are , where

0

2

11

)(

2

11

0)(

0

0

1min

i2

12

2

22

222

222221

i1

1

0

1

11

111

1111

2

1

22212

1

2

1

12111

1

2

1

12111

1

2

1

12111

222

0

111

2

1

2

1 21

ri

N

Ni

ri

riri

ririri

ririrri

ri

N

i

ri

riri

ririri

ririrri

TT

TT

T
N

Ni Dr

riri

N

i Dr

riri

w

NNiDr

w

wNizwN

w

NiDr

w

wNizwN

vv

z

z
AAq

z
z

z
AAq

vv

z
z

z
AAq

u

vvu

z

z

z
AAq



































































































































 



















 



 





















144

 Here, 21, are predetermined weights attached to ε-integrality and ζ-

complementarity, respectively. These weights can be used to determine the tradeoff

decision between ε-integrality and ζ-complementarity.

5.3. Discretely-Constrained Nash-Cournot Games

One way to solve Nash-Cournot games is to first convert them to complementary

problems. This requires that the objective and constraint functions be differentiable

and that the KKT conditions can be formulated. When some of the variables are

integer-valued (e.g., binary yes/no, integer production), the KKT conditions are not

valid because the functions are no longer continuous. This section shows an approach

by (Gabriel et al., 2011b) that provides a compromise between complementarity and

integrality. This is done by first relaxing the discretely-constrained variables to their

continuous analogs and taking KKT conditions for this relaxed problem. Gabriel et al.

(Gabriel et al., 2011b) converted these KKT conditions to disjunctive-constraints

form (Fortuny-Amat & McCarl, 1981) and solved them along with the original

integer restrictions re-inserted in a mixed-integer, linear program (MILP). The integer

conditions were then further relaxed, but targeted using penalty terms in the objective

function. This MILP by (Gabriel et al., 2011b) relaxes both complementarity and

integrality but tries to find minimum deviations for both and as such is an example of

bi-objective problem (Cohon, 1978). This section will follow the same methodology

except the technique of SOS type 1 variables from Chapter 4 will be used instead of

disjunctive constraints.

 The advantage of the technique presented in this chapter over the formulation

with disjunctive constraints is that a large constant, which is essential for the

145

formulation outlined in (Gabriel et al., 2011b), does not need to be selected. Instead

SOS Type 1 variables are used as in Chapter 4. This method is also shown to be

computationally quicker than the method of disjunctive constraints, and numerical

evidence is provided later in this chapter. Note that for all numerical tests presented in

this dissertation, the solutions were the same as in (Gabriel et al., 2011a), (Gabriel et

al., 2011b).

 The next sections provide a formulation based on the one presented in section

5.2. Then, numerical results for two different discretely-constrained Nash games are

presented. The first one has discrete restrictions on the production quantities while the

second one has discrete startup/shutdown variables.

5.3.1. Formulation of a DC-Nash game by Gabriel et al. (2011b)

For the DC-Nash game, assume there are several Cournot power producers that

maximize their profit simultaneously by choosing their optimal production quantities.

Their objective function (profit) depends on the production of the competitors

through the market demand curve (relationship between the total production and the

market price) as well as their own marginal cost. Players p = 1,...,P seek optimal

values for their decision vectors PpXx pp ,...,1,ˆ  by minimizing their cost

functions (or negative profit functions)),(pp xf  such that

pppppppp Xxxxfxxf  ),ˆ,()ˆ,ˆ((5.9)

 Here pnpx  represents the variables under player p‟s control with x
-p

 the

remaining variables for other players. Also, px̂ means an equilibrium value to x
p

 and

pnpp ZCX  where

146

 p

p

qp

pp

kp

pp

j

pp SqxEkxhIjxgxC  ,0;,...,1,0)(;,...,1,0)(| (5.10)

and pn
Z is the set of nonnegative, integer-valued variables , i.e.,

 
pp

p

r SnrZx \,...,1,   . Here Sp represents those indices for x
p
 that relate to

continuous variables. A continuous relaxation would then be to replace X
p
 by C

p
, i.e.,

find px̂ , p = 1,…, P such that

pppppppp Cxxxfxxf  ),ˆ,()ˆ,ˆ((5.11)

or equivalently find px̂ that solves

p

p

q

pp

pp

k

pp

j

ppp

x

Sq

x

EkIj

xh

xg

ts

xxf
p













0

,...,1,,...,1

0)(

0)(

..

)ˆ,(min

 (5.12)

For the Karush-Kuhn-Tucker (KKT) conditions of (5.12) to be equivalent to solving

that optimization problem, the assumption that the functions),(pp xf  are convex

and a constraint qualification (see (Bazaraa et al., 1993) for generalization of these

assumptions that will also lead to KKT conditions being sufficient for optimality)

holds (e.g.)(),(pp

k

pp

j xhxg linear) is needed. The KKT conditions for player p's

relaxed problem (5.12) are to find ppp Ep

k

Ip

j

npx   ,, such that

147

p

p

k

pp

k

p

p

j

pp

j

p

Ek

p

k

pp

k

Ij

p

j

pp

j

ppp

x

Ek

xh

Ij

xg

xxhxgxxf
pp

p

,...,1

free),(0

,...,1

0)(0

0)()(),(0









 










 (5.13)

Gabriel et al. (2011b) showed that the solution to (5.13) with the discrete restrictions

inserted back is the same as the solution to (5.9).

 To be able to end up with a linear, mixed-integer program the payoff function

pTp

p

p

pp

pp
T

p

p

ppp xc
x

x

NN

NN

x

x
xxf)(

2

1
),(

32

21 












































 is restricted to be quadratic and

the constraint functions to be linear. The KKT conditions are

 

 
p

ppTp

k

pp

k

p

ppTp

j

pp

j

p

Ek

p

k

pp

k

Ij

p

j

pp

j

ppp

x

Ek

xexh

Ij

xdxg

xxhxgxxf
pp

p

,...,1

0)(

,...,1

0)(

0)()(),(0









 










 (5.14)

 Gabriel et al. (2011b) reformulate the continuous relaxation of the original

problem (5.9) by using the complementarity problem form of the Nash problem

suitably relaxed as in (5.13). These KKT conditions are equivalent to a set of

disjunctive constraints of the form:

148

 

  p

p

pp

p

Ip

np

p

p

k

pp

k

p

p

j

ppp

j

p

j

ppp

j

ppp

pp

Ek

p

k

pp

k

Ij

p

j

pp

j

ppp

x

u

u

Ek

xh

Ij

uKx

uKxg

uKx

uKxhxgxxf

1,0

1,0

,...,1

free),(0

,...,1

)1()(0

)(0

)1(0

)()(),(0

2

1

,22

,22

11

11

















 










 (5.15)

for suitably large values of pK1 and pK2 that can be computed as described in (Gabriel

et al., 2011b).

 An alternative method is to use SOS Type 1 variables as described in Chapter

4, which will be used here so the suitably large values of pK1 and pK2 do not need to

be computed. This is described below

149

   

   

   

   

   

p

p

k

pp

k

p

p

j

p

j

p

j

pp

j

pp

jp

j

p

j

pp

j

pp

jp

j

pp

j

pp

j

pp

ppp

p

Ek

p

k

pp

k

Ij

p

j

pp

j

ppp

x

pp

p

Ek

p

k

pp

k

Ij

p

j

pp

j

ppp

x

p

p

Ek

p

k

pp

k

Ij

p

j

pp

j

ppp

x

Ek

xh

Ij

vvu

xxg
vv

xxg
u

x

xg

vv

vvu

xxhxgxxf

vv

xxhxgxxf

u

x

xhxgxxf

pp

p

pp

p

pp

p

,...,1

free),(0

,...,1

0

2

)()(

2

)()(

)(0

)(0

 variables1 SOS are where

0

2

)()(),(

2

)()(),(

0

)()(),(0

,2,2,2

,2,2

,2

11

111

11

1













































































 (5.16)

 Using the quadratic form of f
p

and the linear forms of g
p
 and h

p
 from above,

results in the following linear, mixed-integer (with SOS1 variables, that are defined

using integers) program with arbitrary objective function  


P

p

pTp xz
1

 and the integer

restrictions added back:

150

 

   

   

   
   

   

   

  

  

   
  

   

   

 

  pp

p

r

p

p

k

ppTp

k

p

p

j

p

j

p

j

p

j

p

j

pp

j

ppTp

jp

j

p

j

pp

j

ppTp

jp

j

pp

j

ppTp

j

pp

ppp

p

Ek

p

k

p

k

Ij

p

j

p

j

ppTpppTpp

pp

p

Ek

p

k

p

k

Ij

p

j

p

j

ppTpppTpp

p

p

Ek

p

k

p

k

Ij

p

j

p

j

ppTpppTpp

P

p

pTp

x

SnrZx

Ek

xe

Ij

vv

vvu

xxd
vv

xxd
u

x

xd

vv

vvu

xedcxNNxNN

vv

xedcxNNxNN

u

x

edcxNNxNN

Ppts

xz

pp

pp

pp

p

\,...,1,

,...,1

free ,0

,...,1

 variables1 SOS are , where

0

2

)(

2

)(

)(0

0

 variables1 SOS are , where

0

2

2

1

2

1

2

2

1

2

1

0

2

1

2

1
0

,...,1 allfor ..

min

,2,2

,2,2,2

,2,2

,2

11

111

1111

11

1111

1

1111

1

























































































(5.17)

 Note that the above problem requires integral restrictions and complementary

restrictions to hold at the same time, and may prove to be infeasible (Gabriel et al.,

2011b). This is the crucial conversion to a two-level problem. In (5.17), the upper-

level has an objective function that is arbitrary. Hence, (5.17) is essentially still a one-

151

level problem, with only the Nash-Cournot game at the bottom level reformulated

with SOS1 constraints being equivalent to solving a complementary problem.

 The one-level complementary problem can be infeasible, so it needs to be

relaxed. The relaxations introduced are the Epsilon-Integrality (Section 5.2.1) and

Sigma-Complementary (Section 5.2.2) for the problem to be feasible. Minimizing

these deviations can be put in the objective function, making this one-level problem a

two-level problem. The lower-level solves a relaxed DC-Nash game while the upper-

level minimizes the deviations from complementary and integrality. To ensure that

the above reformulation does not have a conflict between complementarity and

integrality
46

, the following relaxed version of the problem is employed.

46

 We assume the relaxed continuous version of the problem is feasible.

152

     
 

  

   

   

   
   

   

   

  

  

   
    

   

   

 

 
0,

\,...,1,

,...,1

free ,0

,...,1

 variables1 SOS are , where

0

2

)(

2

)(

)(0

0

 variables1 SOS are , where

0

2

)(
2

1

2

1

2

2

1

2

1

0

2

1

2

1
0

,...,1 allfor ..

1min

21

,2,2

,2,2,2

22

,2,2

22

,2

11

111

111111

11

111111

1

1111

212

1 0 ,...,1

111































































































  









 

pp

pp

p

r

p

p

k

ppTp

k

p

p

j

p

j

p

j

p

j

p

j

ppp

j

pppTp

jp

j

p

j

ppp

j

pppTp

jp

j

pp

j

ppTp

j

pp

ppp

ppp

Ek

p

k

p

k

Ij

p

j

p

j

ppTpppTpp

pp

ppp

Ek

p

k

p

k

Ij

p

j

p

j

ppTpppTpp

p

p

Ek

p

k

p

k

Ij

p

j

p

j

ppTpppTpp

ppT
P

p

N

i nr

p

ri

p

ri

SnrZx

Ek

xe

Ij

vv

vvu

xxd
vv

xxd
u

x

xd

vv

vvu

xedcxNNxNN

vv

xedcxNNxNN

u

x

edcxNNxNN

Ppts

pp

pp

pp

p





















(5.18)

where the restrictions on the relaxation variables are the same as in (5.8) and given by

(5.19)

153

   

       
     

 
  Variables SOS1 are where

,...,1,0,,...,1

1

0,

)1()1(

i1

0

1

11

111

111

ri

p

N

i

ri

p

ri

p

ri

p

ri

p

ri

p

ri

ri

p

rir

p

ri

w

Ninr

w

wNixwN
























 (5.19)

 In the above formulation (5.18)-(5.19), the  p

ri1 are used to target the

specified integer values (ε-integrality) and pp

21 , are used to relax complementarity

(ζ-complementarity), both of which are minimized in the objective function

weighting the two objective function parts with positive weights ω₁ and ω₂. Thus,

minimizing these deviations helps find an optimal integer solution, as described in

(Gabriel et al., 2011a).

5.3.2. First Numerical Example

This section presents the results of numerical examples for solving discretely-

constrained Nash-Cournot games from the theory outlined in the previous subsection.

The first example constrains the production quantities to be integer while the second

example has continuous production quantities but binary startup/shutdown variables.

In both examples, seven variations are considered. These variations go through

different relaxation techniques and combinations of formulations to be described

later. The problems selected can be shown to have unique solutions by simple

algebra.

 The results show that formulation (5.18)-(5.19) provides solutions to the

original discretely-constrained problems. The variations also show that, as stated

154

before, (5.17) can lead to an infeasible solution. Moreover, relaxing complementarity

in (5.18)-(5.19) but keeping integer restrictions also leads to a discrete feasible

solution. Both numerical examples show that relaxing complementarity is essential to

obtaining discrete solutions. Enforcing discrete restrictions, even by integer

relaxation, does not help obtain the integer solutions and relaxation of complementary

conditions is necessary. A combination of both, as presented in (5.18)-(5.19) helps

obtain the required solutions in both cases.

 For ease of presentation and comparison but with no loss of generality,

consider a Nash-Cournot game with two players (p = 1, 2). Given an inverse demand

curve Price = a - b(Quantity), each player chooses Zqp to maximize their profit

function

 pppppp qqqPriceProfit   2 (5.20)

where the term in parentheses denotes cost as a function of quantity selected i.e., qp.

The formulation of the game is the same as discussed in the previous subsection.

 For the first example, let a = 6, b = 1, β₁ = β₂=1, and ρ₁=ρ₂=1, as well as adding

capacity constraints for both players of the form

maxqqp  (5.21)

where qmax = 4. Since only integer-valued production qp is allowed, a bimatrix payoff

table (assuming maximizing payoff) as shown below in Table 5.1 is employed to

solve (5.9).

155

Table 5.1: Bimatrix Nash-Cournot Game, Profits(q1/q2)

 0 1 2 3 4

0 (0,0) (0,3) (0,2) (0,-3) (0,-12)

1 (3,0) (2,2) (1,0) (0,-6) (-1,-16)

2 (2,0) (0,1) (-2,-2) (-4,-9) (-6,-20)

3 (-3,0) (-6,0) (-9,-4) (-12,-12) (-15,-24)

4 (-12,0) (-16,-1) (-20,-6) (-24,-15) (-28,-28)

 Clearly q1 = q2 = 1 is the unique Nash equilibrium in pure strategies. Another

way to solve Nash-Cournot games is by simultaneously solving the problems

   

0

)(

..

)(max

max

2

21







p

pp

ppppp
q

q

dualqq

ts

qqqqqba
p





 (5.22)

for p = 1, 2. Since the slope of the inverse demand function b > 0 and βp > 0, the

KKT conditions are both necessary and sufficient for solving these problems. These

conditions are to find q₁,q₂,λ₁,λ₂ that solve the following linear complementary

problem (LCP):

00

0)()(20

max 

 

pp

pppppp

qq

qabqbq




 (5.23)

for each p = 1, 2. However, the KKT conditions are only valid if qp, p = 1, 2 are

continuous-valued. Thus, the resulting LCP needs to avoid discrete restrictions on the

qp variables. In this particular example, solving the above LCP after assuming

pq results in the integer solution q₁ = 1, q₂ = 1 with Price = 4.

156

 However, changing some of the data to a = 9 and ρ₂ = 3 results in a non-

integer solution of q₁ = 1.733, q₂ = 1.067, and Price = 6.2. But the new bimatrix

payoff table for the original discrete version of this game with these new data (Table

5.2), shown below, gives a unique discrete solution of q₁ = 2, q₂ = 1 with Price = 6.

Table 5.2: Nash-Cournot Game, Profits(q1/q2), (Only Adjustments a=9, ρ₂ = 3)

 0 1 2 3 4

0 (0,0) (0,4) (0,4) (0,0) (0,-8)

1 (6,0) (5,3) (4,2) (3,-3) (2,-12)

2 (8,0) (6,2) (4,0) (2,-6) (0,-16)

3 (6,0) (3,1) (0,-2) (-3,-9) (-6,-20)

4 (0,0) (-4,0) (-8,-4) (-12,-12) (-16,-24)

 This example shows what can happen if the relaxed LCP does not provide

integer-valued answers. Next, more numerical tests are described with the new data a

= 9, b = 1, β₁ = β₂ = 1, ρ₁ = 1, and ρ₂ = 3.

 The first variation is to solve the continuous version of the LCP (i.e., without

any integer restrictions) relating to (5.9) ("MLCP"). Solving the original version of

the problem with the integer restrictions relating to (5.9) is variation 2 ("Bimatrix")

and is solved by examining the bimatrix payoff table. In the remaining variations to

be described, there are two ways of forcing integrality of the solutions. First, the

problem can be integer-constrained through the solver (variations 3 and 4) with

157

variation 3 being (5.17) and variation 4 also relaxing complementarity (ζ-

complementary) in (5.17).

 Second, in variation 5, complementarity can be relaxed without constraining

the problem to have integer solutions, hence "continuous variables" for the problem

description. Hence, we should not expect integer solutions. Finally, in variations 6

and 7, integers can be targeted using the ε deviational variables (5.18)-(5.19) (ε-

integrality). In variation 6, no relaxation for complementarity is allowed. Variation

7 allows relaxation for both complementarity and integrality (ζ-complementary and ε-

integrality). Table 5.3 describes the various possible formulations considered.

Table 5.3: Description of Formulation Variations

Variation ζ-Complementary ε-Integrality Problem Description

1 No No MLCP

2 No No Bimatrix

3 No No Integer variables

4 Yes No Integer variables

5 Yes No Continuous variables

6 No Yes Continuous variables

7 Yes Yes Continuous variables

5.3.3. Results for First Numerical Example

Tables 5.4 and 5.5 below give the results for this first numerical example.

158

Table 5.4: Summary of Results (a = 9, b = 1, β₁= β₂ = 1,ρ₁ = 1, ρ₂ = 3)

Variation Solution (q₁,q₂) Price Profits (P1, P2)

1 (1.733,1.067) 6.2 (6.01, 2.28)

2 (2,1) 6 (6,2)

3 Infeasible Infeasible Infeasible

4 (2,1) 6 (6,2)

5 (1.733,1.067) 6.2 (6.01, 2.28)

6 (1.733,1.067) 6.2 (6.01, 2.28)

7 (2,1) 6 (6,2)

Table 5.5: Summary of Results (a = 9, b = 1, β₁= β₂ = 1,ρ₁ = 1, ρ₂ = 3)

Variation Sum ε Sum ζ

1 n/a n/a

2 n/a n/a

3 n/a n/a

4 n/a 0.2

5 n/a 0

6 0.334 n/a

7 0 0.2

 Table 5.4 shows that a solution to the integer-constrained Nash game is to

have q₁ = 2, q₂ = 1 with a resulting price of 6 (variation 2). When the integer

restrictions are removed, the solution is then q₁ = 1.733, q₂ = 1.067 with the new

159

price of 6.2 (variation 1). Solving the mixed integer programming (MIP) version of

the problem but forcing exact complementarity and integrality results in an infeasible

solution (variation 3) as would be expected. Interestingly, the original integer

solution to the Nash problem can be obtained with the MIP approach as long as

complementarity is relaxed (variation 4) or when integers are targeted using ε's

(without enforcing integrality) along with the complementarity relaxation (variation

7).

 It is interesting to note that variation 7 is a validation of the earlier discussion

for obtaining integer solutions to DC-Nash. From the perspective of accuracy in

attaining the original production values and price, the MIP approach is correct in this

instance and thus provides an alternative, viable method for solving such problems. It

is interesting to note the difference in results between variations 4 and 5. The former

achieves the correct integer solution but directly forces the variables in GAMS to be

integer-valued. The latter allows relaxation of complementarity but does not give

integer solutions as expected. Furthermore, variation 6 also does not get the correct

integer solution even though the using the ε deviational variables were included.

 To compare computational time, the formulation of the numerical example

above was expanded where the number of players P was increased but the marginal

cost for half the players was set the same as player 1 and the other half the same as

player 2 from the above example for variation 7. The following Figure 5.2 shows this

result with an increase in the number of players for the method of this dissertation

compared to the method by (Gabriel et al., 2011b). Again, the method of disjunctive

160

constraints is computationally slower for this example when compared to the SOS1

method.

0

5000

10000

15000

20000

25000

30000

400 500 600 700 800 900 1000 1500

Ti
m

e
 in

 S
e

co
n

d
s

Number of Players

Computational Time to Solve for Number of Players (First
Numerical Example DC-Nash Game)

SOS 1 (Method of Chapter 4)

DisjCons (Gabriel et al., 2011b)

Figure 5.2: Computational Time for First Numerical Example

5.3.4. Numerical Example Relevant to Production Systems

In many applications, the quantities qp are actually positive real numbers but there are

also constraints of the form

maxmin qsqqs ppp  (5.24)

where sp is a binary variable that is 1 when the player p chooses to produce and 0

when player p chooses to not produce. Here the binary variable sp might for example

relate to the on/off status for a power generation unit. If on, then the minimum and

maximum production quantities are in force. If off, then both the upper and lower

bounds are equal to zero.

 The original capacity constraint is replaced by the one above and the resulting

Nash-Cournot game is then solved with a = 9, b = 1, β₁ = β₂ = 1, ρ₁ = 1, ρ₂ = 3, qmin =

161

1.5, and qmax = 4. The binary variables sp are the ones targeted when complementarity

and integrality are relaxed but still allowing for continuous generation variables. The

following tables summarize the results.

Table 5.6: Summary of Results (Example Relevant to Production Systems)

Variation Solution (q₁,q₂) Binary(s1, s2) Profits (P1, P2)

1 (1.733,1.067) (0.347,0.213) (6.01, 2.28)

2 (1.625,1.5) (1,1) (5.28, 2.06)

3 (1.625,1.5) (1,1) (5.28, 2.06)

4 (1.625,1.5) (1,1) (5.28, 2.06)

5 (1.733,1.067) (0.347,0.711) (6.01, 2.28)

6 (1.625,1.5) (1,1) (5.28, 2.06)

7 (1.625,1.5) (1,1) (5.28, 2.06)

162

Table 5.7: Summary of Results (Example Relevant to Production Systems)

Variation Price Sum ε Sum ζ

1 6.2 n/a n/a

2 5.875 n/a n/a

3 5.875 n/a n/a

4 5.875 n/a 0

5 6.2 n/a 0

6 5.875 0 n/a

7 5.875 0 0

 The solutions to this example are very different from the previous one.

Variation 2 shows the true solution when the variables sp, p = 1, 2 are forced to be

binary. Namely, player 2 produces at the minimum level of 1.5 but player 1 chooses

a value of 1.625, in between the minimum and maximum. The continuous relaxation

(variation 1) achieves higher profits for both players as would be expected due to less

restrictive constraints but does not end up with binary values for the sp variables.

Interestingly, all other variations on relaxation are able to achieve the correct

production quantities (qp) and binary production indicators (sp) except for variation 5

when only complementarity is relaxed. For this particular problem, forcing

integrality is key (through one of the two aforementioned methods) as variations 3, 4,

6, and 7 all give the correct binary solution for sp, p = 1, 2.

 Similar to the previous example, the number of players was increased so that

half the players had the data for player 1 and the other half for player 2. The

163

following Figure 5.3 shows this result with an increase in the number of players for

the method of this dissertation compared to the method by (Gabriel et al., 2011b),

both for variation 7. Again, the method of disjunctive constraints is computationally

slower for this example when compared to the SOS1 method. However, this time the

advantage of SOS1 is not as strong as for the first numerical example in the previous

section. A reason for this can be that since the decision variables are binary,

formulating as SOS1 might not have that much of an advantage. This contrasts with

the first example where the decision variables were integer.

0

200

400

600

800

1000

1200

400 500 600 700 800 900 1000 1500

Ti
m

e
 in

 S
e

co
n

d
s

Number of Players

Computational Time to Solve for Number of Players (Example
Relevant to Production Systems)

SOS 1 (Method of Chapter 4)

DisjCons (Gabriel et al., 2011b)

Figure 5.3: Computational Time for Example Relevant to Production Systems

5.4. Discretely-Constrained Network Problems

This section considers discretely-constrained network problems. Note that these

problems can be cast as DC-Nash games as well (Cottle et al., 2009). However, it is

164

instructive to look at these network examples separately as well, as extra intuition can

be gained from considering transmission lines. The first example is a continuation

form the previous section, with two producers. The second example has four

producers over two nodes.

5.4.1. First Network Example

Consider a power market with two producers supplying to one demand node as

shown in Figure 5.4. Producers 1 and 2 choose to produce quantities q₁ and q₂

respectively, and supply it to meet inelastic demand d, while there are transmission

lines (with flow variables q₁₂, q₁₃, q₂₃) between the three nodes. There is a marginal

utility of demand cd and marginal costs c₁ and c₂ for producers 1 and 2, respectively.

There is also a market operator who maximizes its own profits by buying from the

producers and selling to the consumers.

165

Figure 5.4: Diagram of First Network Example

 The producer p (p = 1, 2) solves the following optimization problem

 

)(0

..

min

max

max pp

pnpp
q

dualqq

ts

qqc
p









 (5.25)

q12

q13 q2

3

d

q

1

q

2

Producer 1

Node 1

Producer

Node 2

Node 2

Demand

Node 3

166

where λn is the (endogenous) price at node n. Note that the producer p is active at

node n = p.

 The market operator solves the following optimization problem (with

pq introduced to have a square system). The equality constraints set the power flow

(q₁₃ for example, signifies flow from node 1 to node 3) equal to the power produced

and the inequality constraints give a bound on the maximum amount of flow allowed.

Flow can be towards the opposite direction as well which is signified by a negative

number (i.e., if q₁₃ is negative, then the flow is from node 3 to node 1), so the

inequalities contain a maximum negative flow as well.

 

22

11

max

23

min

23

max

2323

min

23

max

13

min

13

max

1313

min

13

max

12

min

12

max

1212

min

12

32313

221223

111213

2211
,,,,

),(

),(

),(

)(0

)(0

)(0

..

min
12231321

qq

qq

qqq

qqq

qqq

qqd

qqq

qqq

ts

dcqcqc d
qqqdqq































 (5.26)

 The above optimization problems can be combined to form an MCP, which

gives a solution to the game. Our goal here is to see if we restricted the quantities

produced and flows to be integer-valued, if we can come up with an equilibrium

solution. The following Table 5.8 gives the values of the parameters used for solving

this network problem.

167

Table 5.8: Parameter Values Used in First Network Example

max

1q max

2q max

12q max

13q max

23q c1 c2 cd

18 20.5 12 15 15 2 1 5

 Hence, producer 2 has a lower marginal cost so will attempt to supply more

units of q₂. We use the same process as in the previous section and formulate the

problem according the variations in Table 5.9. Note that we are not considering the

bimatrix game for this example, so there is no variation 2. Table 5.10 shows the

results for the example under different variations.

Table 5.9: Description of Formulation Variations

Variation ζ-Complementary ε-Integrality Problem Description

1 No No MLCP

3 No No Integer variables

4 Yes No Integer variables

5 Yes No Continuous variables

6 No Yes Continuous variables

7 Yes Yes Continuous variables

168

Table 5.10: Solution to Power Market Example

Variations 1 3 4 5 6 7

q₁ 9.5 Infeasible 10 9.5 9.5 10

q₂ 20.5 Infeasible 20 20.5 20.5 20

q₁₂ -5.5 Infeasible -5 -5.5 -5.5 -5

q₁₃ 15 Infeasible 15 15 15 15

q₂₃ 15 Infeasible 15 15 15 15

λ₁ 2 Infeasible 2 2 2 2

λ₂ 2 Infeasible 2 2 2 2

λ₃ 5 Infeasible 5 5 5 5

d 30 Infeasible 30 30 30 30

Sum ε n/a n/a n/a n/a 1 0

Sum ζ n/a n/a 0.5 0 n/a 0.5

 Note that again, variation 7 gives an integer solution. Comparison to variation

4 is critical, as both of them give the same solution. However, variation 7 provides

integer solutions but does not explicitly enforce integrality, while variation 4 requires

imposing integer restrictions to get to the answer. Variation 3 proves to be infeasible,

while variations 5 and 6 show that only including σ-complementarity or only

including ε-integrality is not sufficient to achieve an integer solution for all the

variables that are constrained as such. Note that prices at each node (λ₁, λ₂, λ₃) stay

the same at each node, regardless of the variation. However, variation 3 did not

169

provide any solution, so not only does variation 7 provide an integer solution; it does

so without imposing integer restrictions and also delivering reasonable prices.

5.4.2. Second Network Example

The next example is from (Gabriel et al., 2011a) and depicts an equilibrium in an

energy network (e.g., natural gas, electricity) where production, consumption, and

transmission of the energy product are analyzed.

 Four energy price-taking producers (A, B, C, D) are modeled with the first two

located at node 1 and the latter two at node 2. The production levels are denoted as

p

nq where node n ∈ {1, 2} and producer p ∈ {A, B, C, D}. Similarly, the sales levels

are denoted as p

ns . Lastly, at node 1, the two producers A and B have the additional

option of sending energy to node 2 and BA ff 1212 , represents the associated amounts of

flow. (Note that the producers at node 2 are not allowed to ship their product to node

1.)

 Both producers A and B at node 1 have structurally a similar optimization

problem shown below just for producer A. For node 2, the producers have an

optimization that is almost the same as at node 1 with the exception that no flow

variables (nor related terms) are included.

    

0

0

0

)(

)(

..

max

12

1

1

11211

111

1212121112211
,, 1211













A

A

A

AAAA

AAA

AREGAAAA

fqs

f

q

s

fqs

qq

ts

fqcfs
AAA







 (5.27)

170

 where

 πn is the producer price at node n ∈ {1, 2}

  AA qc 11 is the (marginal) production cost function assumed to be linear, i.e.,

  0, 11111  AAAAA qqc  .

 REG

12 represents the nonnegative, regulated tariff for using the network from

node 1 to node 2; REG

12 is a fixed parameter.

 η₁₂ is the congestion tariff for using the network from node 1 to node 2 and a

variable from another part of the equilibrium model

 Aq1 is the maximum production quantity
47

 Each producer is maximizing their profit (5.27) by choosing appropriate

nonnegative levels of production, sales and flow variables subject to not exceeding

production limits, and consistency between sales, production, and flow (5.27). The

KKT conditions for each of the producers' problems are both necessary and sufficient

(Bazaraa et al., 1993) given the functions chosen and these conditions for each of the

producers (producer A at node 1, producer B at node 1, producer C at node 2,

producer D at node 2) are as follows:

47

 All maximum values for primal variables denoted by an overbar are assumed to be positive as are

cost coefficients
A

1 ,
B

1 ,
C

2 ,
D

2 .

171

 

free ,

00

00

00

00

11211

111

12112122

1111

111

AAAA

AAA

AAREG

AAAA

AA

fqs

qq

f

q

s





















 (5.28)

 

free ,

00

00

00

00

11211

111

12112122

1111

111

BBBB

BBB

BBREG

BBBB

BB

fqs

qq

f

q

s





















 (5.29)

free ,

00

00

00

222

222

2222

222

CCC

CCC

CCCC

CC

qs

qq

q

s

















 (5.30)

free ,

00

00

00

222

222

2222

222

DDD

DDD

DDDD

DD

qs

qq

q

s

















 (5.31)

 In addition to the KKT conditions for the four producer problems, there are

market-clearing conditions that force supply to equal demand:

 
  free),(0

free),(0

222121222

11111





Dffss

Dss

BACC

BA




 (5.32)

 Note that the terms in square brackets are the net supply at each node

(assuming no losses) and Dn(πn), n = 1, 2 are the nodal demand as a function of the

price πn. While the producers depicted above operate using the network, there is

additional a transportation system operator (TSO) who manages the congestion and

172

flows. The TSO's linear program is as follows (where other objectives are also

possible):

 

0

)(

..

)(max

12

121212

12121212
12







g

gg

ts

gcg TSOREG

g





 (5.33)

 Here, the TSO controls the variable g₁₂ which is the flow from node 1 to node

2,)(12gcTSO is a network operations cost function (assumed linear i.e.,

0,)(1212  TSOTSOTSO ggc ) and g₁₂ is the capacity of the link between nodes 1 and

2. The KKT conditions for this problem are both necessary and sufficient and since it

is a linear program and these conditions are the following:

00

00

121212

12121212









gg

gTSOREG

 (5.34)

 The last part of the equilibrium problem is the market-clearing conditions that

balance the flow controlled by the network operator and thus by producers A and B:

  free ,0 12121212 BA ffg  (5.35)

 The LCP for this energy network problem is thus the KKT conditions of the

producers: (5.28), (5.29), (5.30), (5.31), the nodal market-clearing conditions (5.32),

the KKT conditions of the TSO (5.34) and the market-clearing conditions of the

transportation market (5.35). Figure 5.5 below shows a diagrammatic representation

of this network.

173

Figure 5.5: Representation of Second Network Example

 In this problem, As1 , Bs1 , Cs2 , Ds2 , Aq1 , Bq1 , Cq2 , Dq2 are the variables that are

integer-constrained in variations 3 and 4. The goal is to find a solution which has

these variables as integers. Note that there are multiple integer solutions. The values

for the input parameters as well as the six variations that were tested are shown in

Table 5.11 below.

Node 1 Node 2

Producer A

Producer B

Producer C

Producer D

Transmission System Operator

174

Table 5.11: Dataset Used in Second Network Example

Parameter Value

REG

12 0.5

A

1 10

B

1 12

C

2 15

D

2 18

a₁ 20

b₁ 1

a₂ 40

b₂ 2

Aq1 10

Bq1 10

Cq2 4.5

Dq2 5

g₁₂ 15

γ
TSO

1

 Table 5.12 reports the different variations considered. Again, using SOS Type

1 variables from Chapter 4, this DC-MLCP can be converted to a two-level problem

and then solved. Note the variations are similar to the previous network example.

175

Table 5.12: Description of Formulation Variations for Second Network Example

Variation ζ-Complementary ε-Integrality Problem Description

1 No No MLCP

3 No No Integer variables

4 Yes No Integer variables

5 Yes No Continuous variables

6 No Yes Continuous variables

7 Yes Yes Continuous variables

 As in the DC-Nash example, several numerical variations were done to see the

change in solutions. Variation 1 was a mixed-complementary problem (MCP) without

imposing integer restrictions. Variation 3 involved converting the MCP to a

formulation with disjunctive constraints but restricting the variables of production and

sales to be integer. The rest of the variations then go through the different

combinations as in the DC-Nash example.

 First, variations 4 and 7 give an integer solution. However, due to the presence

of multiple equilibria, these solutions need not be unique as in the DC-NASH game.

Multiple starting points were chosen, and, according to the numerical tests, the

reported solution had the highest objective function value (along with some other

equilibria not reported) when a feasible integer solution was desired. Hence,

variations 4 and 7 can be used to obtain optimal, integer solutions that are feasible.

Note that variation 6 targets integers through ε-complementarity, while variation 4

actually restricts solutions to integer values.

176

 Similar to the previous example, variation 1 yielded a non-integer but optimal

and feasible solution while variation 3 was infeasible. Again, this shows that ζ-

complementarity is essential to obtain a feasible integer solution (as in variations 4

and 7). However, only ζ-complementarity is not enough to obtain integer solutions

(variation 5) nor is only ε-complementarity (variation 6).

 The extra advantage of using variations 4 and 7 is that values of dual variables

can be obtained and interpreted. It is interesting to note that the dual variables change

from the continuous to the integer case, which is what was expected. However, it also

shows the differences in solutions with relaxation of integer variables to solve a

problem and how it leads to solutions that can be very different from the market

dynamics of an integer constrained problem. Tables 5.13 and 5.14 below display the

results obtained from this network example.

177

Table 5.13: Results for Second Network Problem (Integer Variables)

Variations 1 3 4 5 6 7

As1 7.440 Infeasible 8.000 8.000 8.000 8.000

Bs1 0.560 Infeasible 0 0 0 0

Cs2 4.500 Infeasible 4.000 4.500 4.500 4.000

Ds2 0 Infeasible 0 0 0 0

Aq1 10.000 Infeasible 10.000 10.000 10.000 10.000

Bq1 3.000 Infeasible 3.000 3.000 3.000 3.000

Cq2 4.500 Infeasible 4.000 4.500 4.500 4.000

Dq2 0 Infeasible 0 0 0 0

Sum σ n/a n/a 0.5 0 n/a 0.5

Sum ε n/a n/a n/a n/a 1.000 0

178

Table 5.14: Results for Second Network Problem (Other Variables)

Variations 1 3 4 5 6 7

Af12 2.560 Infeasible 2.000 2.000 2.000 2.000

Bf12 2.440 Infeasible 3.000 3.000 3.000 3.000

A

1 2.000 Infeasible 2.000 2.000 2.000 2.000

B

1 0 Infeasible 0 0 0 0

C

2 0.250 Infeasible 0.500 0.250 0.250 0.500

D

2 0 Infeasible 0 0 0 0

g₁₂ 5.000 Infeasible 5.000 5.000 5.000 5.000

ε₁₂ 2.250 Infeasible 2.500 2.250 2.250 2.500

A

1 12.000 Infeasible 12.000 12.000 12.000 12.000

B

1 12.000 Infeasible 12.000 12.000 12.000 12.000

C

2 15.250 Infeasible 15.500 15.250 15.250 15.500

D

2 17.581 Infeasible 18.000 18.000 18.000 18.000

π₁ 12.000 Infeasible 12.000 12.000 12.000 12.000

π₂ 15.250 Infeasible 15.500 15.250 15.250 15.500

η₁₂ 2.750 Infeasible 3.000 2.750 2.750 3.000

179

5.5. Summary

This chapter improves a methodology to solve discretely-constrained Nash games

formulated as mixed complementarity problems. The discrete restrictions can lead to

infeasible solutions, so a relaxation is needed. Along with providing both a

complementary and integrality relaxation, this chapter uses the technique from

Chapter 4 to solve the resulting DC-MLCP.

 The two-level formulation proposed in this chapter gives a new way to look at

an otherwise one-level problem. First, this formulation shows that there are actually

two different sets of optimization problems hidden in this one-level problem. One set

of minimization problems aims to minimize deviations from complementary and

integrality. The other set of complementary problems aims to solve either a Nash-

Cournot game or a network problem (as the two examples discussed in this chapter;

there can be other applications). In this way, the two-level approach tackles the

problem from a different perspective. This perspective, coupled with the solution

technique from Chapter 4, ends up performing better than the single-stage method of

(Gabriel et al., 2011a), (Gabriel et al., 2011b).

 From the theoretical analysis carried out and the examples considered, several

conclusions can be drawn. First, relaxing both integrality and complementarity in the

lower-level problem while using the upper-level to minimize deviations enables the

selection of an integer, equilibrium solution. Second, the method of SOS Type 1

variables from Chapter 4 proves to be computationally quicker than the method of

disjunctive constraints for two of the numerical examples illustrated in this chapter.

Third, different variations of relaxation, as shown by Variations 1 through 7 for each

180

example, can lead to different solutions. It also helps analyze the importance of the

technique to practical examples.

181

Chapter 6: Conclusions

This chapter provides a summary of the work done in the dissertation. The

dissertation went through three different types of two-level problems, and provided

novel solution techniques for each of them. Several applications of these techniques

were provided to show the nuances of each method. This chapter will start off with

concluding remarks about each two-level problem studied. Then, the main

contributions of this dissertation will be listed. Finally, some proposals for future

work as an extension of the work provided in this dissertation will be presented.

6.1. Concluding Remarks

6.1.1. Robust Optimization

Numerous robust optimization techniques exist in the literature, but the goal of this

dissertation was to develop a technique which is numerically more efficient than

previous techniques. Chapter 3 presented a method based on Benders decomposition,

which was shown to be numerically more efficient when compared to a previous

method (Li et al., 2006).

 The modified Benders method was also shown to be computationally

tractable, in that empirically the increase in the number of function calls was at most

linear with an increase in variables. Diverse numerical examples were provided to

show the applicability of the method to different types of problems.

 Previous methods exist, which could easily solve linear and quadratic robust

optimization problems efficiently. But many engineering design problems, as also

182

stated in this dissertation, involve nonlinear constraints and objective functions. The

modified Benders method was shown to be able to tackle these problems, and a

sampling technique was provided so the user could choose the level of accuracy

desired. In particular, the engineering design examples showed how the selection of

an optimal design can vary with the presence of uncertainty. Moreover, the examples

also showed how the presence of uncertainty degrades objective function

performance.

 A final example showed the importance of studying uncertainty to

environmental market strategies. The future of a carbon tax and retrofitting

technology is uncertain, and this uncertainty in future events can have important

implications on decisions made today. As shown in the example, the uncertainty of a

tax discourages energy intensive infrastructure for today, when the decision maker is

extremely risk averse. Worries of a larger tax in the future encourages infrastructure

to not be as energy intensive under a worst-case scenario.

 The approach presented in this dissertation is designed for robust optimization

problems with a goal to decrease computational time. One drawback of this approach

is that there is no built-in verification that the solution is actually robust for nonlinear

robust optimization problems. Other methods (Gunawan & Azarm, 2004), (Li et al.,

2006) have optimization problems that verify the solution is robust within the

approach. Secondly, this approach requires explicit objective and constraint functions

to be able to work. Simulation or “black box” type problems will not be solved using

the approach presented in this dissertation. Moreover, this dissertation only provides

numerical evidence that the modified Benders method works for robust optimization

183

problems with quasiconvex constraints. A mathematical proof would improve the

validity of the method and is an option for future work. Another area of improvement

is a better sampling technique than the one presented for nonlinear constraint

functions. Improvements in sampling and theory might eventually lead to a solution

technique for general nonlinear robust optimization problems.

6.1.2. MPECs and EPECs

Chapter 4 describes a new solution technique for MPECs and EPECs, which was

developed to solve large-scale problems such as the North American gas model

MPEC. The new technique was developed to be more computationally efficient than

previous techniques for solving these problems. A lot of times optimization solvers

return a solution as infeasible if they are unable to find one for complex problems.

The aim was to develop a simple enough technique that could be applied to a wide

variety of problems.

 The two algorithms presented in Chapter 4 were shown to solve large MPECs

with much less computational effort when compared to disjunctive constraints and

also be applicable to complex problems (e.g., the North American gas model) where

traditional methods had failed. The methods were restricted to be used in problems

where the KKT conditions were necessary and sufficient, which decreases the

applicability of various functional forms but still lends itself to different examples.

 The focus of the examples was on different types of Stackelberg games and

Nash-Cournot games with a modified structure. The theme of the examples was

energy and natural gas production, outlined by the North American gas model.

184

 Various scenarios for shale gas in the United States were developed using the

North American gas model. The scenarios studied what would happen under a tax for

shale production, a tax on all natural gas production, and the presence of more shale

than predicted. One of the main conclusions was that in the presence of a tax, the

producers pass the tax onto the consumers. Moreover, the top-level firm always

makes the majority of the profits by manipulating the market. The reality of the

market situation probably lies somewhere in between that of a Stackelberg game and

a Nash-Cournot game, but being able to study this formulation was instructive.

6.1.3. Discretely-Constrained Mixed Linear Complementarity Problems

The technique presented in Chapter 5 was a new way to solve and think about

discretely-constrained mixed linear complementary problems. The technique

provided a way to solve a relaxed version of the problem in one stage, thus converting

a two-level problem into one level. This conversion into one stage was initially

achieved using disjunctive constraints, but this meant the solution would depend on a

large constant. This dissertation used the techniques presented in Chapter 4 to not

have to use disjunctive constraints when finding solutions to DC-MLCPs.

 The first set of numerical examples studied discretely-constrained Nash-

Cournot games. While the continuous versions of these games have been extensively

studied, imposing discrete restrictions might lead to infeasibility. Hence, relaxing the

integer restrictions as well as the complementary conditions, while targeting specific

integer values, provided a solution to these games. The computational effort was also

abated using SOS Type 1 variables as opposed to disjunctive constraints. In all

examples, the payoffs for the players in the continuous relaxation were higher than

185

with the integer restrictions. Two different variations were provided to be able to

obtain integer solutions to DC-Nash games.

 The second set of numerical examples studied discretely-constrained network

problems. Network problems can also be expressed as complementary problems, and

adding the discrete restrictions would yield the same problems of infeasibility as the

discretely-constrained Nash games. Again, different variations were studied to see

which one yielded an integer solution. Two variations, the same ones that worked for

the discretely-constrained Nash games, worked for these network problems as well.

Dual variables are often used in network problems to obtain shadow prices, and this

technique helped obtaining these prices. However, the applicability of these prices is

still a matter of debate as the complementary and integrality relaxations also factor

into these prices.

 Another advantage of using the technique outlined in this dissertation was that

a tradeoff between complementary and integrality can be obtained. This was

numerically shown by studying different variations in Chapter 5.

6.2. Main Contributions

This dissertation is focused on solving three specific types of two-level problems.

However, these three types of problems have been chosen to be the ones that best

encompass the class of two-level problems. First, robust optimization is a two-level

problem where the lower-level can be thought of as checking the feasibility of an

upper-level decision. In this way, the lower-level aims to check feasibility, but does

not have an objective or goal for itself. For MPECs and EPECs, the lower-level is

either a cooperative or noncooperative equilibrium may or may not conflict with the

186

upper-level objective. While the lower-level alters the feasible space for the upper-

level problem, the focus is on influencing the objective function of the upper-level

problem. Thus, these two types of two-level problems encompass dealing with

influence of the lower-level on constraints (robust optimization) and objective

function (MPECs) of the upper-level directly, and indirectly the objective function

(robust optimization) and constraints (MPECs) of the upper-level. Finally, the third

type of problem is something which starts off with a one-level structure, but is

converted to two levels to be able to solve more easily.

 The first main contribution of this dissertation is the application of

decomposition techniques to two-level problems, which helps convert them to a

single one-level problem (as in the case of MPECs, EPECs, and DC-MLCPs), or a

series of one-level problems that can be solved iteratively (as in the case of robust

optimization). This use of decomposition techniques provides insight that could not

be achieved through a two-level analysis, for example, the robust feasible region for

robust optimization problems, the absolute value function equality in MPECs and

EPECs, and obtaining shadow prices from DC-MLCPs. These decomposition

techniques are presented in a way to take advantage of the problem structure, and

obtain a solution that can relate to the original problem.

 The second main contribution of this dissertation is to provide methods that

greatly speed up computation time for two-level problems. Robust optimization

problems have been traditionally solved using a nested inner-outer structure which

takes a lot of computational effort. MPECs and EPECs have been solved using

primarily disjunctive constraints which not only involve great computational effort

187

because of the presence of binary variables, but also require the selection of a large

constant which is not immediately obvious. DC-MLCPs have been solved either

successively fixing and relaxing discrete variables or using disjunctive constraints,

both of which are computationally more expensive than the methods provided in this

dissertation. In particular, the method for MPECs can be applied to a host of other

problems to speed up computation wherever a product of two terms resulting in a

nonlinear function is present.

 The third main contribution of this dissertation is applying the theory to an

extremely diverse set of examples. The dissertation contains examples from

environmental markets, energy markets, power systems, structural optimization,

engineering design, networks, and game theory. These same examples can also be

split into academic subjects of operations research, economics, mechanical

engineering, and market design. A host of such examples serves the academic

community well, as it outlines the importance of research into the theory of two-level

problems.

6.3. Future Research

6.3.1. Multiobjective Mixed-Integer Robust Optimization

There are two natural ways to develop the ideas presented for robust optimization.

These ideas arise out of the methods developed in the dissertation, and it is

convenient that this direction is shared by current research as well.

 Many engineering design applications involve multiobjective optimization.

Thus, extending the modified Benders method to be applicable to multiobjective

188

robust optimization problems would be useful. Since the modified Benders method

has already converted the two-level problem into a single-level, combining it with

traditional methods of multiobjective optimization would be natural. For example, if

the robust feasible region is provided, any multiobjective method can be applied.

Hence, each stage of the modified Benders decomposition method can involve

solving a multiobjective problem. Since the modified Benders method is gradient-

based, it would make sense to combine it with another gradient-based method such as

Normal Boundary intersection or one of its variations (Siddiqui et al., 2011d). Each

step of the Normal Boundary intersection method provides one point on the Pareto

frontier. The modified Benders method would be used at each step to come up with

one robust Pareto point, thus generating a robust Pareto frontier.

 The second natural extension has to do with solving mixed-integer robust

optimization problems. Standard Benders decomposition is already applicable to

mixed-integer optimization problems. Thus, a variation can easily be considered

which contains standard Benders cuts and modified Benders cuts to solve a robust

mixed-integer optimization problem. These two ideas can then be combined to solve

a mixed-integer robust optimization problems.

6.3.2. Solving Nonlinear MPECs and EPECs

The methods presented in this dissertation were only applicable to MPECs and

EPECs which comprised of optimization problems where the KKT conditions were

necessary and sufficient. However, to obtain local solutions to nonlinear programs an

approximation scheme can be developed where the lower level problem is locally

approximated. This can be done using SOS Type 2 variables, and the linear

189

interpolation could have the KKT conditions necessary and sufficient within a

specified interval.

 An easier task would be to consider the case where the KKT conditions might

just be necessary (or sufficient) and develop an approximation scheme from there. In

particular, if the product of two terms becomes complicated, other approximation

techniques may be studied.

6.3.3. Solving Large-Scale Mixed-Integer Complementary Problems

The relaxation techniques put into the DC-MLCPs in Chapter 5 were not put to the

test on larger problems. There might be even better ways to approximate the

relaxation of complementarity. For example, a nonlinear function describing the

product might be added as a constraint.

 In many cases, the formulation might yield a simple way to both add

relaxations and approximate the lower-level product at the same time. This can then

be tested on large mixed-integer complementarity problems, solutions to which can

be very useful when studying market or network dynamics problems.

190

Appendices

Appendix A: Robust Optimization Test Problems

For examples 2 to 4: 1.0,1.0,1.0,1,1 `3`2`121  xqqqq .

(Example 2)

    

   

2 2

1 2 3 4

1 1 1 2

2 2 3 4

1 2 3 4

1 1 1 2 2 2

min 0.6 0.6 10

. .

ˆ() 0

ˆ() 0

0, 0, 0, 0

ˆ ˆ: , , ,

x
x x x x

s t

q q x x

q q x x

x x x x

where q q q q q q

     

   

   

       

       

 (A1)

Table A1: Solution to Example 2

Information Nominal

Solution

Robust

Solution

Li et al.‟s (2006)

Solution

x1 0.5 0.45 0.375

x2 0.5 0.45 0.375

x3 1 0.90 0.416

x4 0 0 0.416

f(x) 9.02 9.145 9.268

Function Calls 7 19 2592

191

(Example 3)

    

     

2 2

1 2 3 4

1 1 1 2

2 2 3 4

1 2 3 4

1 1 1 2 2 2 3 3 3 3 3

min 0.6 0.6 10

. .

ˆ() 0

ˆ() 0

0, 0, 0, 0

ˆ ˆ: , , , , ,

x
x x x x

s t

q q x x

q q x x

x x x x

where q q q q q q x x x x x

     

   

   

       

            
 (A2)

Table A2: Solution to Example 3

Information Nominal

Solution

Robust

Solution

Li et al.‟s (2006)

Solution

x1 0.5 0.45 0.375

x2 0.5 0.45 0.375

x3 1 0.10 0.416

x4 0 0.70 0.416

f(x) 9.02 9.145 9.268

Function Calls 7 21 2808

(Example 4)

    

     

2 2

1 2 3 4

1 1 1 2

2 2 3 4

1 2 3 4

1 1 1 2 2 2 3 3 3 3 3

min 0.6 0.6 10

. .

ˆ() 0

ˆ() 0

0, 0, 0, 0

ˆ ˆ, , , , ,

x
x x x x

s t

q q x x

q q x x

x x x x

where q q q q q q x x x x x

    

   

   

       

            

 (A3)

192

Table A3: Solution to Example 4

Information Nominal

Solution

Robust

Solution

Li et al.‟s (2006)

Solution

x1 0.5 0.45 0.40

x2 0.5 0.45 0.40

x3 1 0.90 0.40

x4 0 0 0.40

f(x) 9.77 9.8850 9.92

Function Calls 7 21 2592

(Example 5)

0.1x p   

 

5,4,3,55

2,1,5~5

033~2~2

0132
~~~

..

32532min

54321

54321

54321











ix

ix

xxxxx

xxxxx

ts

xxxxx

i

i

x

                                              (A4)        

            



 

 

 

193 

 

Table A4: Solution to Example 5 

Information Nominal  

Solution 

Robust  

Solution 

Li et al.‟s (2006)  

Solution 

x1 -4.00 -3.40 1.04 

x2 -5.00 -4.90 -4.53 

x3 5.00 5.00 5.00 

x4 -5.00 -5.00 -0.37 

x5 5.00 5.00 5.00 

f(x) -23.00 -21.50 -20.75 

Function Calls 5 17 7856 

 

(Example 6) 

1.0`  px   

                      

 

5,4,3,55

2,1,5~5

0103~2~2

02.15.31.12.2
~~~9.0

..

4.22507.31.2min

54321

54321

54321











ix

ix

xxxxx

xxxxx

ts

xxxxx

i

i

x

 (A5)

194

Table A5: Solution to Example 6

Information Nominal

Solution

Robust

Solution

Li et al.‟s (2006)

Solution

x1 -5.00 -4.90 -4.23

x2 -5.00 -4.90 -4.52

x3 5.00 5.00 5.00

x4 -3.82 -4.27 -3.67

x5 5.00 5.00 5.00

f(x) -31.21 -29.79 -28.36

Function Calls 5 17 11099

(Hock 100)

This is problem 100 modified from (Hock & Schittkowski, 1980). 1.0`  px

    

01152~~3~~4

086~~23196

 010~3~7282

054~3~272
~

1

..

8104710)11(312~510~min

76

2

321

2

2

2

1

7

2

6

2

21

54

2

321

5

2

43

4

2

2

1

7676

4

7

2

6

6

5

2

4

4

3

2

2

2

1











xxxxxxx

xxxx

xxxxx

xxxxx

ts

xxxxxxxxxxx
x

(A6)

195

Table A6: Solution to Hock 100

Information Nominal

Solution

Robust

Solution

Li et al.‟s (2006)

Solution

x1 2.3304 2.2350 -

x2 1.9514 1.8546 -

x3 -0.4775 -0.4749 -

x4 4.3657 4.3533 -

x5 -0.6245 -0.6251 -

x6 1.0381 1.0359 -

x7 1.5942 1.5970 -

f(x) 680.6301 692.3847 -

Function Calls 7 19 >10
9

196

(Hock 106)

1.0`  px

    

8,...,4,100010,10000~1000,10000~1000,10000~100

02500~1250000~
01250~1250~

0333.83333~10033252.833~
0)(01.01

0)(0025.01

0)(0025.01
~

..

)(~~min

321

55383

442572

1461

58

475

64

321

















ixxxx

xxxxx

xxxxxx

xxxx

xx

xxx

xx

ts

xxx

i

x

 (A7)

197

Table A7: Solution to Hock 106

Information Nominal

Solution

Robust

Solution

Li et al.‟s (2006)

Solution

x1 579.32 388.73 -

x2 1359.94 1540.21 -

x3 5110.07 5290.11 -

x4 182.02 150.89 -

x5 295.60 288.40 -

x6 217.98 209.11 -

x7 286.42 262.49 -

x8 395.60 388.40 -

f(x) 7049.33 7219.06 -

Function Calls 5 17 >10
9

198

Appendix B: Discussion on Function Calls

One of the benchmarks of a useful algorithm is that it is uses less computational effort

than other algorithms. One way to measure computational effort of an algorithm is a

comparison of CPU time, i.e., how fast the algorithm can solve certain test problems

when compared to others. However, CPU time can vary with the type of computer

used, other programs running in the background, and other factors that are machine

dependent.

 Measuring the number of function calls is a measure of computational effort

that is machine independent. Moreover, measuring computational efficiency in terms

of function calls can better estimate how the algorithm will perform for different

types of problems (e.g., black box or simulation-based design).

 This dissertation defines function calls as any instances where the solver calls

an objective function, constraint, or other value or assignment in the optimization

problem. This is based on the definition of a statement execution in GAMS, which is

defined as any instance where the solver calls an equation or other value or

assignment in the optimization problem (GAMS, 2010). This definition was chosen in

part because the modified Benders method was programmed and tested in GAMS.

 This definition is also similar to the other definitions of function calls in the

recent literature. The definition by (Hu et al., 2011) is that a “function call refers to

one instance of calculating objective and constraint functions altogether (i.e., one call

to the optimization problem).” The authors (Hu et al., 2011) have used MATLAB to

solve their test problems, and their definition depends on their use of MATLAB

(MATLAB, 2008). MATLAB does not have an internal explicit function call counter

199

like GAMS, but the method of (Hu et al., 2011) entails putting the objective and

constraint functions in one “m-file” and attaching a function call counter within this

file. Note it is not possible to place a similar counter in GAMS because the GAMS

file structure is different than MATLAB. Another definition is offered by (Li et al.,

2011), who define function calls “equal to the number of points that have been

evaluated during one run of the optimizer.” The authors in (Li et al., 2011) used the

solver XPRESS (XPRESS, 2003) for their test problems.

 Since all problems except one (Heat Exchanger Design in Section 3.5.3 was

solved using MATLAB) were solved in GAMS, the following example provides a

basis for comparison for function call counting in GAMS and MATLAB. This is the

nominal version of Fleury‟s weight minimization like problem (Section 3.5.1).

NiNx
N

N
xNx

N
xNx

ts

xxf

i

N

Ni i

N

i i

N

Ni i

N

i i

N

i

i
x

,...,2,1
1

09.0
111

 0
111

..

)(min

2

2

195.0
2

95.0

1

195.0
2

95.0

1

1





















 (B1)

 This problem (B1) was solved using both GAMS and MATLAB. The values

of N were changed to give an idea of computational effort for MATLAB and GAMS

(and two different ways of measuring function calls). Table B1 shows these results.

200

Table B1: Comparing Function Calls Between GAMS and MATLAB

Number of

Variables (N)

Number of

Constraints

GAMS Function

Calls

MATLAB

Function Calls

100 102 506 5493

200 202 607 8210

300 302 913 12252

400 402 1201 17786

500 502 1403 20096

 Clearly, even though we are careful in using the same definition for

MATLAB and GAMS, there is a difference in counting function calls for these

programs. Roughly, the function calls in GAMS are an order of magnitude or two

lower for example (B1). This difference should be kept in mind when looking at the

examples in this dissertation. Just to note, the function calls for the Heat Exchanger

example (Section 3.5.3) were reported using the counting method for MATLAB. The

results on maximum function calls presented in Table 3.1 are also applicable to both

methods of counting since they talk about the maximum possible function calls, and

are based on the definition of function call in this dissertation.

201

Bibliography

1. Balling, R., Free, J., & Parkinson, A. (1986). Consideration of Worst-Case

Manufacturing Tolerances in Design Optimization. Journal of Mechanisms,

Transmissions, Automation in Design , 108, 438-441.

2. Bard, J. (1983). An Efficient Point Algorithm for a Linear Two-Stage

Optimization Problem. Operations Research , 31 (4), 670-684.

3. Bard, J. (1988). Convex Two-Level Optimization. Mathematical Programming ,

40 (1), 15-27.

4. Bard, J., & Moore, J. (1990). A Branch and Bound Algorithm for the Bilevel

Programming Problem. SIAM Journal on Scientific and Statistical Computation ,

11 (2), 281-292.

5. Bard, J., Plummer, J., & Sourie, J. (2000). A Bilevel Programming Approach to

Determining Tax Credits for Biofuel Production. European Journal of

Operational Research , 120, 30-46.

6. Barnes, T. (2010, 9 30). House Passes Shale Gas Production Tax. Retrieved 4 22,

2011, from Pittsburgh Post-Gazette: http://www.post-

gazette.com/pg/10273/1091447-454.stm

7. Bazaraa, M., Sherali, H., & Shetty, C. (1993). Nonlinear Programming: Theory

and Algorithms (2nd Ed). New York, NY: John Wiley & Sons.

8. Beale, E. (1975). Some Uses of Mathematical Programming Systems to Solve

Problems that are Not Linear. Operational Research Quarterly , 26, 609–618.

9. Beale, E., & Tomlin, J. (1970). Special Facilities in a General Mathematical

Programming System for Non-convex Problems using Ordered Sets of. In J.

202

Lawrence, OR 69: Proc. Fifth Int. Conf. Oper. Res. (pp. 447-454). London, U.K.:

Tavistock Publications.

10. Benders, J. (1962). Partitioning Procedures for Solving Mixed-Variables

Programming Problems. Numerische Mathematik , 4, 238-252.

11. Ben-Tal, A., & Nemirovski, A. (2002). Robust Optimization-Methodology and

Applications. Mathematical Programming, Series B , 92, 453-480.

12. Ben-Tal, A., & Nemirovski, A. (2008). Robust Solutions to Conic Quadratic

Problems and Their Applications. Optimization and Engineering , 9, 1-18.

13. Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust Optimization.

Princeton, NJ: Princeton University Press.

14. Bertsimas, D., & Sim, M. (2006). Tractable Approximations to Robust Conic

Optimization Problems. Mathematical Programming, Series B , 107, 5-36.

15. Bialas, W., & Karwan, M. (1982). On Two-Level Optimization. IEEE

Transactions on Automatic Control , AC-27 (1), 211-214.

16. Bjørndal, M., & Jörnsten, K. (2008). Equilibrium Prices Supported by Dual Price

Functions in Markets with Non-Convexities. European Journal of Operational

Research , 190 (3), 768-789.

17. Cohen, D. (2009, 6 25). A Shale Gas Boom? Retrieved 4 22, 2011, from Energy

Bulletin: http://www.energybulletin.net/node/49342

18. Cohon, J. (1978). Multiobjective Programming and Planning. New York, NY:

Academic Press.

203

19. Conejo, A., Castillo, E., Minguez, R., & Garcia-Bertrand, R. (2006).

Decomposition Techniques in Mathematical Programming. New York, NY:

Springer.

20. Cottle, R., Pang, J., & Stone, R. (2009). The Linear Complementarity Problem.

Philadelphia, PA: SIAM.

21. Davis, L. (1987). Genetic Algorithms and Simulated Annealing. Los Angeles, CA:

Morgan Kaufman Publishers.

22. Economist, T. (2008, 1- 4). Liquefied Natural Gas a More Liquid Market. The

Economist .

23. Egging, R., Holz, F., von Hirschhausen, C., & Gabriel, S. (2009). Representing

GASPEC with the World Gas Model. The Energy Journal , 30, 97-118.

24. Ehrenmann, A. (2004). Equilibrium Problems with Equilibrium Constraints and

their Application to Electricity Markets. Cambridge, U.K.: PhD Dissertation at

Fitzwilliam College.

25. Faccinei, F., & Pang, J. (2003). Finite-Dimensional Variational Inequalities and

Complementarity Problems Volumes I and II. New York, NY: Springer.

26. Fortuny-Amat, J., & McCarl, B. (1981). A Representation and Economic

Interpretation of a Two-Level Programming Problem. The Journal of the

Operational Research Society , 32 (9), 783-792.

27. Fuller, D. (2010). Capacity Pricing in Unit Commitment. Working Paper ,

http://www.mansci.uwaterloo.ca/about/webpage.php?id=2&username=dfuller.

204

28. Fuller, D. (2008). Market Equilibrium Models with Continuous and Binary

Variables. Working Paper ,

http://www.mansci.uwaterloo.ca/about/webpage.php?id=2&username=dfuller.

29. Gabriel, S., & Leuthold, F. (2010). Solving Discretely-Constrained MPEC

Problems with Applications in Electric Power Markets. Energy Economics , 32, 3-

14.

30. Gabriel, S., Conejo, A., Ruiz, C., & Siddiqui, S. (2011a). Solving Discretely-

Constrained, Mixed Linear Complementarity Problems with Applications in

Energy. In Review.

31. Gabriel, S., Garcia-Bertrand, R., Sahakij, P., & Conejo, A. (2006). A practical

approach to approximate bilinear functions in mathematical programming

problems by using Schur‟s decomposition and SOS type 2 variables. Journal of

the Operational Research Society , 57, 995–1004.

32. Gabriel, S., Kiet, S., & Zhuang, J. (2005b). A Large-Scale Complementarity

Model of the North American Natural Gas Market. Energy Economics , 27, 799-

818.

33. Gabriel, S., Kiet, S., & Zhuang, J. (2005a). A Mixed Complementarity-Based

Equilibrium Model of Natural Gas Markets. Operations Research , 53 (5), 799-

818.

34. Gabriel, S., Rosendahl, K., Egging, R., Avetisyan, H., & Siddiqui, S. (2011c).

Cartelization in Gas Markets: Studying the Potential for a „Gas OPEC‟. Energy

Economics , doi:10.1016/j.eneco.2011.05.014.

205

35. Gabriel, S., Shim, Y., Conejo, A., de la Torre, S., & Garcia-Bertrand, R. (2010).

A Benders Decomposition Method for Discretely-Constrained Mathematical

Programs with Equilibrium Constraints. Journal of the Operational Research

Society , 61, 1-16.

36. Gabriel, S., Siddiqui, S., Conejo, A., & Ruiz, C. (2011b). Solving Discretely-

Constrained Nash-Cournot Games with Applications to Power Systems. In

Review.

37. Galiana, F., Motto, A., & Bouffard, F. (2003). Reconciling Social Welfare, Agent

Profits, and Consumer Payments in Electricity Pools. IEEE Transactions on

Power Systems , 18, 452-459.

38. GAMS. (2010). General Algebraic Modeling System. GAMS Version 22.9 .

39. Ganzerli, S., & Pantelides, C. (1999). Load and Resistance Convex Models for

Optimum Design. Structural Optimization , 17, 259-268.

40. Gibbons, R. (1996). Game Theory for Applied Economists. Princeton, NJ:

Princeton University Press.

41. Golombek, R., & Gjelsvik, E. (1995). Effects of Liberalizing the Natural Gas

Markets in Western Europe. Energy Journal , 16 (1), 85–111.

42. Groenwold, A., & Etman, L. (2010). On the Conditional Acceptance of Iterates in

SAO Algorithms Based on Convex Separable Approximations. Structural and

Multidisciplinary Optimization , 42, 165-178.

43. Gunawan, S., & Azarm, S. (2004). Non-gradient-based Parameter Sensitivity

Estimation for Single Objective Robust Design Optimization. Journal of

Mechanical Design , 126 (3), 395-402.

206

44. Hock, W., & Schittkowski, K. (1980). Test Examples for Nonlinear Programming

Codes. Springer-Verlag: New York, NY.

45. Hogan, W., & Ring, B. (2003). On Minimum-Uplift Pricing for Electricity

Markets. Working Paper , John F. Kennedy School of Government, Harvard

University.

46. Hu, J., Mitchell, J., Pang, J., Bennett, K., & Kunapuli, G. (2009). On the Global

Solution of Linear Programs with Linear Complementarity Constraints. Working

Paper , http://www.rpi.edu/~mitchj/papers/LPEC_global.pdf.

47. Hu, W., Li, M., Azarm, S., & Almansoori, A. (2011). Multi-Objective Robust

Optimization Under Interval Uncertainty Using Online Approximation and

Constraint Cuts. Journal of Mechanical Design , 133 (6), 061002-1-9.

48. IEA. (2008). World Energy Outlook 2008. Retrieved 8 24, 2011, from

International Energy Agency: http://www.worldenergyoutlook.org/2008.asp

49. Karlof, J., & Wang, W. (1996). Bilevel Programming Applied to the Flow Shop

Scheduling Problem. Computers and Operations Research , 23 (5), 443-451.

50. Labbé, M., Marcotte, P., & Savard, G. (1998). A Bilevel Model of Taxation and

Its Application to Optimal Highway Pricing. Management Science , 44 (12),

1608-1622.

51. Lagaros, N., & Papadrakakis, M. (2007). Robust Seismic Design Optimization of

Steel Structures. Structural and Multidisciplinary Optimization , 33, 457-469.

52. Lee, S., Chen, W., & Kwak, B. (2009). Robust Design with Arbitrary

Distributions Using Gauss-type Quadrature Formula. Structural and

Multidisciplinary Optimization , 39, 227-243.

207

53. Li, M., Azarm, S., & Boyars, A. (2006). A New Deterministic Approach using

Sensitivity Region Measures for Multi-Objective and Feasibility Robust Design

Optimization. Journal of Mechanical Design , 128 (4), 874-883.

54. Li, M., Gabriel, S., Shim, Y., & Azarm, S. (2011). Interval Uncertainty-Based

Robust Optimization for Convex and Non-Convex Quadratic Programs with

Applications in Network Infrastructure Planning. Networks and Spatial

Economics , 11, 159-191.

55. Lu, X., Li, H., & Chen, C. (2010). Variable Sensitivity-Based Deterministic

Robust Design for Nonlinear System. Journal of Mechanical Design , 132,

064502-1.

56. Luo, Z., Pang, J., & Ralph, D. (1996). Mathematical Programs with Equilibrium

Constraints. Cambridge, U.K.: Cambridge University Press.

57. Magrab, E., Azarm, S., Balachandran, B., Duncan, J., Herold, K., & Walsh, G.

(2004). An Engineer's Guide to MATLAB. New York, NY: Prentice Hall.

58. Marcotte, P., Savard, G., & Zhu, D. (2001). A Trust Region Algorithm for

Nonlinear Bilevel Programming. Operations Research Letters , 29, 171-179.

59. MATLAB. (2008). MATLAB and Simulink for Technical Computing.

Mathworks. MATLAB Version 2008b.

60. Montemanni, R. (2006). A Benders Decomposition Approach for the Robust

Spanning Tree Problem with Interval Data. Discrete Optimization , 174, 1479-

1490.

61. Moore, J., & Bard, J. (1990). The Mixed Integer Linear Bilevel Programming

Problem. Operations Research , 38, 911-921.

208

62. Murty, K. (1983). Linear Programming. New York, NY: Wiley.

63. Ng, T., Sun, Y., & Fowler, J. (2010). Semiconductor Lot Allocation Using Robust

Optimization. European Journal of Operational Research , 205, 557-570.

64. NPC. (2007, 7 18). National Petroleum Council. Retrieved 4 22, 2011, from

National Petroleum Council: http://www.npc.org/Study_Topic_Papers/29-TTG-

Unconventional-Gas.pdf

65. O'Neill, R., Sotkiewicz, P., Hobbs, B., Rothkopf, M., & Stewart, W. (2005).

Efficient Market-Clearing Prices in Markets with Nonconvexities. European

Journal of Operational Research , 164 (1), 269-285.

66. PGC. (2010). Potential Gas Committee Reports Increase in Magnitude of U.S.

Natural Gas Resource Base. Retrieved 4 22, 2011, from Potential Gas

Committee: http://www.mines.edu/Potential-Gas-Committee-reports-

unprecedented-increase-in-magnitude-of-U.S.-natural-gas-resource-base

67. Qiu, Z., & Wang, X. (2010). Structural Anti-Optimization with Interval Design

Parameters. Structural and Multidisciplinary Optimization , 41, 397-406.

68. Ragsdell, K., & Phillips, D. (1976). Optimal Design of a Class of Welded

Structures Using Geometric Programming. Journal of Engineering for Industry ,

98 (3), 1021-1025.

69. Rangavajhala, S., Mullur, A., & Messac, A. (2007). The Challenge of Equality

Constraints in Robust Design Optimization: Examination and New Approach.

Structural and Multidisciplinary Optimization , 34 (5), 381-401.

70. Renegar, J. (1995). Incorporating Condition Measures into the Complexity

Theory of Linear Programming. SIAM J. Optim , 5 (3), 506-524.

209

71. Renegar, J. (1994). Some Perturbation Theory for Linear Programming.

Mathematical Programming, Series A , 65 (1), 73-91.

72. Royden, H. (1988). Real Analysis. New York, NY: Prentice Hall.

73. Saito, H., & Murota, K. (2007). Benders Decomposition Approach to Robust

Mixed Integer Programming. Pacific Journal of Optimization , 3 (1), 99-112.

74. Scaparra, M., & Church, R. (2008). A Bilevel Mixed-Integer Program for Critical

Infrastructure Protection Planning. Computers and Operations Research , 35 (6),

1905-1923.

75. Siddiqui, S., & Gabriel, S. (2011b). A New Method for Solving Mathematical

Programs and Equilibrium Problems with Equilibrium Constraints Using Schur‟s

Decomposition and SOS1 Variables with a Natural Gas Market Application.

Networks and Spatial Economics , In Review.

76. Siddiqui, S., Azarm, S., & Gabriel, S. (2011a). A Modified Benders

Decomposition Method for Efficient Robust Optimization under Interval

Uncertainty. Structural and Multidisciplinary Optimization , 44 (2), 259-275.

77. Siddiqui, S., Azarm, S., & Gabriel, S. (2011d). A Modified Normal Boundary

Intersection Method for Efficient Generation of Pareto Frontier. Manuscript .

78. Siddiqui, S., Gabriel, S., & Azarm, S. (2011c). Solving Mixed-Integer Robust

Optimization Problems with Interval Uncertainty Using Benders Decomposition.

Manuscript .

79. Skagen, O. (2010, 1 18). Global Gas Reserves and Resources: Trends,

Discontinuities and Uncertainties. SSB/NAE Workshop . Oslo, Norway.

210

80. Soyster, A. (1973). Convex Programming with Set-Inclusive Constraints and

Applications to Inexact Linear Programming. Operations Research , 21, 1154-

1157.

81. Steffensen, S., & Ulbrich, M. (2010). A New Relaxation Scheme for

Mathematical Programs with Equilibrium Constraints. SIAM Journal of

Optimization , 20 (5), 2504-2539.

82. Steffy, L. (2009). Shale or Sham. Retrieved 7 12, 2011, from Houston Chronicle:

http://www.chron.com/disp/story.mpl/business/steffy/6717948.html

83. Strand, J., Miller, S., & Siddiqui, S. (2011). Infrastructure Investments under

Uncertainty with the Possibility of Retrofit: Theory and Simulations. World Bank

Policy Research Working Paper No. 5516 .

84. Uderzo, A. (2010). Exact penalty functions and calmness for mathematical

programming under nonlinear perturbations. Nonlinear Analysis , 73, 1596-1609.

85. Velarde, J., & Laguna, M. (2004). A Benders-Based Heuristic for the Robust

Capacitated International Sourcing Problem. IIE Transactions , 36, 1125-1133.

86. Wen, U., & Huang, A. (1996). A Simple Tabu Search Method to Solve the

Mixed-Integer Linear Bilevel Programming Problem. European Journal of

Operational Research , 88, 563-571.

87. XPRESS. (2003). Getting Started. XPRESS . Dash Optimization Ltd.

88. Youn, B., & Xi, Z. (2009). Reliability-Based Robust Design Optimization Using

the Eigenvector Dimension Reduction (EDR) Method. Structural and

Multidisciplinary Optimization , 37, 475-492.

211

89. Zhu, J., & Ting, K. (2001). Performance Distribution Analysis and Robust

Design. Journal of Mechanical Design , 123 (1), 11-17.

90. Zou, T., & Mahadevan, S. (2006). A Direct Decoupling Approach for Efficient

Reliability-Based Design Optimization. Structural and Multidisciplinary

Optimization , 31, 190-200.

