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This dissertation provides efficient techniques to solve two-level optimization 

problems. Three specific types of problems are considered. The first problem is 

robust optimization, which has direct applications to engineering design. 

Traditionally robust optimization problems have been solved using an inner-outer 

structure, which can be computationally expensive. This dissertation provides a 

method to decompose and solve this two-level structure using a modified Benders 

decomposition. This gradient-based technique is applicable to robust optimization 

problems with quasiconvex constraints and provides approximate solutions to 

problems with nonlinear constraints. The second types of two-level problems 

considered are mathematical and equilibrium programs with equilibrium constraints. 

Their two-level structure is simplified using Schur‟s decomposition and reformulation 



  

schemes for absolute value functions. The resulting formulations are applicable to 

game theory problems in operations research and economics. The third type of two-

level problem studied is discretely-constrained mixed linear complementarity 

problems. These are first formulated into a two-level mathematical program with 

equilibrium constraints and then solved using the aforementioned technique for 

mathematical and equilibrium programs with equilibrium constraints. The techniques 

for all three problems help simplify the two-level structure into one level, which helps 

gain numerical and application insights. The computational effort for solving these 

problems is greatly reduced using the techniques in this dissertation. Finally, a host of 

numerical examples are presented to verify the approaches. Diverse applications to 

economics, operations research, and engineering design motivate the relevance of the 

novel methods developed in this dissertation. 
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Chapter 1: Introduction 

1.1. Motivation and Objective 

Mathematical modeling of problems arising in engineering and economics often 

requires formulations where optimal decisions need to be made at two different 

levels. These levels can be distinguished by time, space, decision choices, or even 

sets of players.  An optimal decision at each level, we assume, can be obtained using 

an optimization problem. 

 Consider some of many types of decisions made by the computer processor 

manufacturer Intel. First while making the processor, manufacturing errors and 

uncertainty can lead to their “best” design being infeasible. If not infeasible, the 

design might not be the best choice under uncertainty. This decision needs to be made 

accounting for the uncertainty or errors that can develop after manufacturing the 

product. Second, while deciding the price (or quantity) of the processor, Intel would 

have to take into account what its competitors are doing and if the government has 

made any regulations regarding taxation or distribution. Setting a price, thus, not only 

depends on Intel‟s own costs but the strategy of other actors at a different level than 

Intel. Finally, Intel needs to decide the number of processors to ship to specific 

locations. Even considering a simplified version of the market makes this a complex 

problem as network dynamics, transportation costs, and local demand all weigh into 

the decision. But, more importantly, the processors can only be transported in positive 

integer number quantities, as opposed to fractional quantities. 
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 All the problems classified above fall under the umbrella of two-level 

problems. The first decision, regarding uncertainty, requires the initial proposed 

design of the chip to be such that the presence of uncertainty does not cause the 

design to be infeasible and/or suboptimal. The decision is thus made to ensure 

feasibility of design constraints as well as minimum variation in a design‟s 

performance under uncertainty. Such a problem will be described in this dissertation 

as a Robust Optimization problem.  

 The second type of problem about making a profit-maximizing decision with 

other players present in a non-cooperative competitive environment is known as a 

Stackelberg Game in economics and falls under the broad heading of Mathematical 

Programs with Equilibrium Constraints or MPECs. These problems have a wide 

variety of applications, and in their general form can encompass robust optimization 

problems as well. A special class of MPECs with certain mathematical properties will 

be considered in this dissertation along with their extension to Equilibrium Programs 

with Equilibrium Constraints or EPECs.  

 The third problem is about solving non-cooperative games as well, except the 

decision at the second level is to make sure that the choice made is integer rather than 

continuous. This is more of a computational issue, but nevertheless the techniques to 

solve such problems have important applications.  These problems fall into the class 

of Discretely-Constrained Mixed Linear Complementarity Problems or (DC-MLCPs).          

 The two levels are a common feature to all these problems, and the biggest 

challenge to overcome this two-level structure is computational time. A nested 

structure causes a large increase in computational effort with an increase in variables 
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and/or decision space  (Bialas & Karwan, 1982).  The focus of this dissertation is on 

developing decomposition based solution techniques that reduce computational effort 

significantly for these three types of problems. These new techniques will then be 

implemented on a variety of examples from engineering and energy markets. 

1.2. Research Components 

1.2.1. Solving Robust Optimization Problems 

The goal of robust optimization problems is to find an optimal solution that is 

minimally sensitive to uncertain factors. Uncertain factors can include inputs to the 

problem such as parameters, decision variables, or both. Given any combination of 

possible uncertain factors, a solution is said to be robust if it is feasible and the 

variation in its objective function value is acceptable within a given user-specified 

range. Previous approaches for general nonlinear robust optimization problems under 

interval uncertainty involve nested optimization and are not computationally 

tractable. The overall objective in this dissertation is to develop an original and 

efficient robust optimization method that is scalable and does not contain nested 

optimization.  The proposed method is applied to a variety of numerical and 

engineering examples to test its applicability. Current results show that the approach 

is able to numerically obtain a locally optimal robust solution to problems with 

quasiconvex constraints (≤ type) and an approximate locally optimal robust solution 

to general nonlinear optimization problems. A portion of this research component has 

been presented in (Siddiqui et al., 2011a) and (Siddiqui et al., 2011c). 
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1.2.2. Solving Mathematical Programs and Equilibrium Problems with 

Equilibrium Constraints 

This dissertation presents an original method for solving mathematical programs and 

equilibrium problems with equilibrium constraints (MPECs and EPECs). Schur‟s 

decomposition followed by two separate methods of approximating absolute-value 

functions are presented and used to solve large-scale MPECs. The advantage of this 

method over traditional methods for solving MPECs is that computational time is 

much lower, which is corroborated by numerical examples. An extension to solve 

EPECs is also presented, along with a small numerical example. Finally, an 

application of the method to an MPEC representing the United States natural gas 

market is given. A portion of this research component has been presented in  

(Siddiqui & Gabriel, 2011b) and  (Gabriel et al., 2011c). 

1.2.3. Solving Discretely-Constrained Mixed-Integer Linear 

Complementarity Problems 

This research thrust presents an original modification to a recent approach for solving 

discretely-constrained, mixed linear complementarity problems (DC-MLCPs). Such 

formulations include a variety of interesting and realistic models of which discretely-

constrained Nash games and network equilibrium problems are considered. A 

methodology is provided to solve Nash-Cournot energy production games allowing 

some variables to be discrete. Normally, these games can be stated as mixed 

complementarity problems but only permit continuous variables in order to make use 

of each producer's Karush-Kuhn-Tucker conditions. The proposed approach allows 

for more realistic modeling and a compromise between integrality and 
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complementarity to avoid infeasible situations. A mixed-integer, linear program 

formulation is used to solve the DC-MLCP in which both complementarity as well as 

integrality are allowed to be relaxed. A portion of this research component has been 

presented in (Gabriel et al., 2011a) and (Gabriel et al., 2011b). 

1.3. Organization of Dissertation 

The remainder of this dissertation is organized as follows. Chapter 2 provides 

background and a thorough literature review for the three proposed research 

components. Chapter 3 provides the proposed solution methodology for robust 

optimization problems. The chapter also provides several engineering applications as 

well as numerical examples. The chapter is concluded by an example of an 

application to a carbon emissions related problem. Chapter 4 provides details on the 

algorithm used to solve MPECs and EPECs as well as computational issues. The 

chapter also provides numerical examples to corroborate these approaches, as well as 

an application to the North American natural gas market. Chapter 5 provides the 

proposed solution technique for discretely-constrained mixed linear complementary 

problems with examples of discretely-constrained Nash games and energy networks. 

Chapter 6 provides conclusions and directions for future research.  Figure 1.1 displays 

the organization of this dissertation. Note that the dashed line shows that a technique 

developed in Chapter 4 will be used in Chapter 5. 
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Chapter 2: Definitions and Literature Review  

2.1. Introduction 

This chapter will provide the necessary background for two-level optimization 

problems including definitions, terminologies, and a thorough literature review. This 

chapter will initially give mathematical definitions of two-level problems, and explain 

how robust optimization, MPECs and EPECs, and DC-MLCPs can all be cast as two-

level problems. 

 While two-level problems can be shown to have a general formulation, each 

of the three different types considered in this dissertation need different treatment to 

come up with the most efficient solution. Although solving all three efficiently will 

involve the use of decomposition techniques, many other alternatives exist in the 

literature which will also be discussed. Finally, some preliminary mathematical ideas 

and traditional algorithms will also be introduced. 

 This chapter first goes through the definition and terminologies used in this 

dissertation. In particular, the next section defines each of the three two-level 

problems considered along with other definitions. A literature review is provided next 

followed by two preliminary topics.  

2.2. Definitions and Terminologies 

In general, the two-level optimization problems considered in this dissertation can be 

expressed as the following 
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)(

),( s.t.

),(min

ul

lu

lu

xSx

xx

xxf



                                                                    (2.1) 

where the continuous variables unux  , lnlx  are, respectively, the vector of 

upper-level, lower-level variables, ),( lu xxf is the upper level objective function
1
, 



 

is the joint feasible region between these sets of variables and )( uxS  is the solution 

set of the lower-level problem that can be an optimization problem, a nonlinear 

complementarity problem (NCP) (Cottle et al., 2009), or a variational inequality 

problem (VI)  (Faccinei & Pang, 2003).  Figure 2.1 shows a diagrammatic 

representation of a two-level problem where the nested structure is revealed. 

minimize f(xu,xl)

(Upper-Level Problem)

Consider xu and calculate xl

(Lower-Level Problem)

xuxl

),( lu

fixed xx

 

Figure 2.1: The Structure of a Two-Level Problem 

 

                                                 

 
1
 Note that when solving EPECs, several such two-level problems will be solved. 
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2.2.1. Robust Optimization  

Table 2.1 describes the terminology used for robust optimization. 

Table 2.1: Definition of Terms for Robust Optimization 

Symbol Interpretation 

x Vector of decision variables 

f Objective function to be minimized 

)ˆ,( xxg j  Constraint functions of the form “≤ 0” 

x  Maximum deviations of uncertain variables from nominal 

values 

x̂  Deviations from nominal values of uncertain variables 

and parameters, respectively:  xxx  ,ˆ  

0f  User-specified tolerance for acceptable variation in 

objective function under uncertainty 

 

 The goal in robust optimization is to optimize the objective function with 

respect to uncertain decision variables x, satisfying all constraints and ensuring the 

objective function variation is kept within an acceptable range 0f , while accounting 

for uncertainty in decision variables. Specifically, this dissertation considers robust 

optimization problems of the form
2
:  

                                                 

 
2
 Note that equality constraints are considered to be formulated as two inequality constraints in 

formulation (2.2). Alternatively one can explore the approach for robust optimization with equality 

constraints (Rangavajhala et al., 2007) but that has not been explored in this dissertation. 
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0

xxx
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Jjxxg

f

xfxxf

ts

xxf

unn

j

x












                                                       (2.2) 

where f and g are continuously differentiable in both x and x̂ . Figure 2.2 

diagrammatically shows the structure of a robust optimization problem.  

Check Constraint Violation 

under Uncertainty

(Constraints Violated under Uncertainty?)

minimize f(x)

(Objective Function)

xx̂

)ˆ,( xx fixed

 

Figure 2.2: Representation of a Robust Optimization Problem 

 

In the next few paragraphs, terms used in this dissertation are defined. 

 

Definition 2.1: Quasiconvex Function: A function )ˆ,( xxg  is said to be quasiconvex 

in  xxx  ,ˆ if for all  xxx  ,ˆ ,  ),(),,(max)ˆ,( xxgxxgxxg    for all x  

(Bazaraa et al., 1993). 
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Definition 2.2: Objective robustness: For a candidate point x
c
 objective robustness 

holds if inequality 

1
)0,()ˆ,(

0






f

xfxxf cc

                                                         (2.3) 

 is satisfied for all  xxx  ,ˆ .  

  

 Thus, this inequality ensures that the maximum objective function variation 

stays below a certain predetermined maximal amount 0f when presented with 

deviations in uncertain variables and parameters. 

 

Definition 2.3: Feasibility robustness: For a candidate solution x
c
 if  

                       Jjxxg c

j ,...,10)ˆ,(                                                        (2.4) 

is satisfied for all  xxx  ,ˆ  then feasibility robustness holds.  

  

 Note that equation (2.3) is just another constraint, so it can be easily 

incorporated into inequality (2.4) when stating a general formulation that only 

includes feasibility robustness. From this point on, inequality (2.3) will not be stated 

separately in any formulation but will be assumed to be incorporated in inequality 

(2.4). For a more detailed description on objective robustness, please refer to (Li et 

al., 2006).  

 

Definition 2.4: Robust point: A robust point is both objectively and feasibly robust. 
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Definition 2.5: Locally optimal robust: For a robust optimization problem, a locally 

optimal robust solution x*, is a robust point such that there exists a neighboring set U 

of robust solutions for which x* is optimal ( Uxxfxf  ),(*)( ).  

 

It is essential that the neighboring set be made up of only robust points 

otherwise the term is ill-defined. There is also a global counterpart as defined below. 

 

Definition 2.6: Globally optimal robust: For a robust optimization problem, a 

globally optimal robust solution x*, is a robust point such that x* is optimal 

( xxfxf  ),(*)( ) in the feasible region. 

 

2.2.2. Mathematical and Equilibrium Programs with Equilibrium 

Constraints 

In general, a mathematical program with equilibrium constraints is given by 
3
 

                                )(

),( s.t.

),(min

xSy

yx

yxf



                                                                        (2.5) 

where the continuous variables 



xnx , 



y 
ny are, respectively, the vector of 

upper-level, lower-level variables, 



f (x,y) is the upper-level single-objective 

                                                 

 
3
 Without loss of generality, we assume that the variables x and y are nonnegative, which is 

incorporated in the decision space Ω.  
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function, 



 is the joint feasible region between these sets of variables and 



S(x) is the 

solution set of the lower-level problem that can be an optimization problem, a 

nonlinear complementarity problem (NCP), or variational inequality problem  (Luo et 

al., 1996).  

 One focus of this dissertation is when S(x) is a solution to a nonlinear 

complementarity problem.  Having a function
nng : , a nonlinear 

complementarity problem is to find a vector 



zn  such that: 

0)(

0)(

0







zgz

zg

z

T

                                                                           (2.6) 

If S(x) is the solution set of an NCP, (2.5) can be rewritten as 

0),(

0),(

0

),( s.t.

),(min









yxgy

yxg

y

yx

yxf

T

                                                                       (2.7) 

where yyx
nnn

yxg :),(  is a vector-valued function. 

 Similarly, an EPEC is defined as a game between N players at the top level 

where each top-level player solves an optimization problem of the form (2.7). Hence, 

an EPEC with a common lower-level for each of the N upper-level players typical of 

Stackelberg leaders in energy production with the rest of the market represented by 

the lower-level problem is given by 
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0),(

0),(

0

),( s.t.

,...,1),(min











yxgy

yxg

y

yx

Njyxf

T

j

                                            (2.8) 

Figure 2.3 shows the diagrammatic representation
4
 for an MPEC and Figure 2.4 

shows the diagrammatic representation for an EPEC.  

                                                 

 
4
 Nash-Cournot in this diagram implies that an individual player solves their own optimization problem 

with other players‟ decisions being fixed. 
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maximize Profit(x,y)

(Decides the value of x)

Nash-Cournot

(xfixed, y)
(Take x fixed and solve for y)

xy

 

Figure 2.3: Representation of an MPEC 

Nash-Cournot

(x, yfixed)
(Decides the value of x)

Nash-Cournot

(xfixed, y)
(Observe x and solve for y)

xy

  

Figure 2.4: Representation of an EPEC 
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2.2.3 Discretely-Constrained Mixed Linear Complementarity Problems 

It is not immediately obvious why the problem considered in this subsection is a two-

level problem. The problem in its original form is not, but it needs to be converted 

into a two-level form for the particular solution technique  (Gabriel et al., 2011a; 

Gabriel et al., 2011b) to be applicable. In general, a discretely-constrained mixed 

linear complementarity problem is given as follows: given the vector Tqqq ),( 21  

and matrix 









2221

1211

AA

AA
A , find 21),( 21

nnTzzz   such that 
5
 

 

 

   

    2222

1111

22

2

1

22212

1

2

1

12111

,,,

,,,

free ,0

00

DdZzCcz

DdZzCcz

zz
z

z
AAq

z
z

z
AAq

dc

dc





























                                   (2.9) 

 The indices for zi, i = 1, 2 are partitioned into continuous-valued (denoted by 

the set Ci) and discrete-valued variables (denoted by the set Di), i.e., 

     2,1,,  izzz
TT

Di

T

Cii
ii

 with the continuous variables shown first without loss of 

generality. From here on, unless otherwise indicated, the discrete sets, 

 ND ,...,1,01   and  212 ,...,1,0,1,..., NND   will be assumed with N, N1, N2, 

nonnegative integers.  

                                                 

 
5
 Here the superscript T denotes the transpose function. The symbol  denotes complementary which 

means that the product of the two terms must be zero. 
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 Finding a solution to this DC-MLCP can be thought of as a two-level 

problem, even though (2.9) formulates it in one level. The upper level minimizes 

deviations from an integer solution and complementary, i.e., ensures that as close as 

possible to an integer solution is obtained while satisfying complementary conditions 

with a minimum deviation as well, while the lower level solves a complementary 

problem assuming some deviation from integers has been fixed at the upper level. 

Figure 2.5 shows the diagrammatic representation of a discretely-constrained mixed 

linear complementary problem, while the following formulation describes the two-

level formulation. Note that the first two inequality constraints and the first equality 

constraint (the first three constraints) form a complementary problem. Hence, the 

two-level structure
6
 is apparent in the following formulation. Chapter 5 will describe 

in detail how this two-level formulation is obtained. 

                                                 

 
6
 Compare (2.10) to (2.1). The upper-level variables are ε and ζ, i.e., 














ux  and the first three lines 

in (2.10) define the upper-level problem. The lower level variables z, have 










2

1

z

z
x l  and are part of 

the solution set of the discretely-constrained complementary problem given by the last four lines of 

(2.10).  
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 

 

 

   

 
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AAq
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DDd

ts

ddc

ddc

c

d

d

TT











































































                    (2.10) 
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minimize f (ε,ζ,z)

(Minimize deviations ε,ζ)

Complementary 

Problem

(εfixed , ζfixed ,  z)
(Observe ε,ζ and solve for z)

ε,ζz

 

Figure 2.5: Representation of a Discretely-Constrained Mixed Linear 

Complementary Problem 

 

 

2.3. Overview of Previous Work 

2.3.1 Robust Optimization 

This dissertation‟s approach for solving robust optimization problems (hereafter 

referred to as the modified Benders method), which will be described in Chapter 3, 

will now be compared to previous methods. A comprehensive review of the literature 

was conducted and the main distinctions between the proposed modified Benders 

method and previous works are presented as follows.  

 The robust optimization problems in the proposed modified Benders method 

also involve nonlinear (for example, Welded Beam and Heat Exchanger, which both 
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involved nonconvex constraint functions) constraint functions
7

.  This is more general 

than only considering linear constraint functions in the problem as reported in the 

literature (e.g., Balling et al., 1986; Ben-Tal & Nemirovski, 2002; Bertsimas & Sim, 

2006; Soyster, 1973) or quadratic (e.g., Li et al., 2011) as well as other versions 

involving convex programs (e.g., Ganzerli & Pantelides, 1999) or linearization to 

solve the problem (e.g., Balling et al., 1986). The modified Benders method is able to 

obtain exact locally optimal robust solutions to problems with quasiconvex 

constraints as well as non-convex quadratic programs, which no one method in the 

reported literature is able to achieve. Other approaches also consider distributions for 

uncertainty (e.g., Lee et al., 2009; Lagaros & Papadrakakis, 2007) while the approach 

of this dissertation looks at a worst-case analysis for interval uncertainty
8
 without any 

explicit probability distribution or a nested optimization structure. Moreover, the 

modified Benders method is able to handle large uncertainties which earlier methods 

                                                 

 
7
 In some cases, although not considered in this dissertation, a slightly stricter condition with convexity 

in the lower-level of the Benders decomposition method is needed. However, we did not encounter this 

in any of our test problems. A workaround to this problem is available in (Gabriel et al., 2010). This 

involves sampling the domain of the objective function of the lower-level optimization problem to 

determine the convex portions of this function. This numerical approximation scheme can be applied to 

the modified Benders method to determine convexity of the objective function of the lower-level 

optimization problem. 

8
 Note that this dissertation considers robust optimization problems with interval uncertainty, while 

there is a substantive amount of literature considering other types of uncertainty. Refer to (Bertsimas & 

Sim, 2006; (Ben-Tal et al., 2009). 
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(e.g., Balling et al., 1986; Soyster, 1973; Ganzerli & Pantelides, 1999) were not able 

to tackle.  

 The proposed approach preserves the computational tractability, theoretically 

and practically, of the deterministic (i.e., nominal) problems. By contrast, under 

interval uncertainty, the computational effort for previous methods (e.g., Gunawan & 

Azarm, 2004; Li et al., 2006) to obtain robust solutions is much higher than their 

deterministic counterparts. However, results from a variety of numerical experiments 

show that the computational effort of solving the robust optimization problems is not 

much greater than that of their deterministic counterparts for the modified Benders 

method. Moreover, the modified Benders method is scalable, in that by numerical 

tests, the number of function calls per iteration increases at most linearly (numerical 

result) with an increase in the number of variables, uncertainty variables, and 

constraints.  

 Since this dissertation‟s approach is based on gradient-based methods, a 

globally optimal robust solution can never be guaranteed for the complete class of 

continuous, non-convex problems. However, this dissertation uses the idea of a 

locally optimal robust solution, and shows that this approach can obtain a locally 

optimal robust solution for nonlinear robust optimization problems. 

 In addition to the uncertainty in the data of the problems (i.e., the parameters), 

interval uncertainty is considered in the decision variables corresponding to 

manufacturing tolerances, implementation errors, etc. where optimized values cannot 

be achieved exactly, which is very common in practical engineering applications. For 

the current robust optimization formulations in the literature (e.g., Ben-Tal & 
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Nemirovski, 2008; Lu et al., 2010; Qiu & Wang, 2010; Zhu & Ting, 2001), 

considering uncertainty in the decision variables may considerably change those 

formulations or increase the complexity of the problem. The approach in this 

dissertation, however, keeps the same formulation and obtains locally optimal robust 

solutions to these problems with not much greater computational effort than the 

deterministic problem. 

 There has been an abundance of literature modifying Benders decomposition 

method (Benders, 1962) to solve various types of optimization problems. However, to 

my knowledge, there have not been any modifications to Benders method that solve 

nonlinear robust optimization problems with interval uncertainty although Benders-

based robust optimization problems have been considered in other contexts. For 

example, (Velarde & Laguna, 2004) provided a Benders-based heuristic to solve the 

international source allocation problem. In this problem, a subset of international 

suppliers needs to be selected to meet local demand. The uncertainty is in the demand 

function parameters and exchange rates.  However, their approach did not consider 

uncertainty in variables. For their approach to work, they needed to include control 

variables, which change depending on the uncertainty scenario to provide an easier 

route to solution. The approach in this dissertation does not require the introduction of 

such variables. Also, their methodology can‟t be extended to general nonlinear robust 

optimization problems. Saito and Murota  (Saito & Murota, 2007) described a method 

to apply Benders decomposition to solve linear, mixed-integer, robust optimization 

problems with ellipsoidal uncertainty. However, this approach only works for linear 

problems. Finally, Montemanni (Montemanni, 2006) applied a Benders algorithm to a 
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specific robust spanning tree problem, while Ng et al.  (Ng et al., 2010) applied it to a 

specific semiconductor allocation problem that had uncertainty.  Again, both 

approaches are not applicable to continuous, nonlinear robust optimization problems 

with interval uncertainty and have not modified Benders decomposition in the way 

this dissertation does.  

 There are related topics to robust optimization such as anti-optimization (e.g.,  

(Qiu & Wang, 2010) and reliability-based design optimization (e.g., Zou & 

Mahadevan, 2006) that run into the same problems as described above of not being 

computationally tractable or only working for a certain simple type of problems. For 

example, Youn and Xi (Youn & Xi, 2009) modified a double loop problem (like 

robust optimization) into a single loop so that it becomes computationally easier. This 

work involves using an eigenvector dimension reduction method, and probability 

distributions, which may not be applicable to general nonlinear robust optimization 

problems.  Also, neither of these papers has techniques that include interval 

uncertainty in parameters, in decision variables, along with being computationally 

efficient. The modified Benders method of this dissertation is not only directly 

relevant to robust optimization, but it handles the specific two-level structure of 

robust optimization in a less computationally intensive way. 

2.3.3 Mathematical and Equilibrium Programs with Equilibrium 

Constraints 

Finding optimal points for mathematical programs with equilibrium constraints 

(MPECs) involves solving a two-level optimization where the lower level is an 

equilibrium problem. In particular, having a complementarity problem (Cottle et al., 
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2009) as the lower level implies that the complementarity constraint is a non-convex 

bilinear multiplicative term.  

 Many techniques exist to solve MPECs (Luo et al., 1996) but a popular way 

such MPECs have been solved is by using a disjunctive-constraints technique 

(Fortuny-Amat & McCarl, 1981). However, the two biggest drawbacks of disjunctive 

constraints are that the method is computationally expensive for large models (Luo et 

al., 1996) and that selecting a particular constant in the method is often troublesome 

(Gabriel & Leuthold, 2010). The solution can be extremely sensitive to the selection 

of this constant, and be far from the true answer if not selected correctly. Other 

methods (Steffensen & Ulbrich, 2010) and (Uderzo, 2010) also exist but have not 

been shown to work for large-scale models.  

 This dissertation presents a new method for solving MPECs, based on 

handling the bilinear, non-convex term using Schur‟s Decomposition and Special 

Ordered Sets of Type 1 (SOS Type 1) variables (Gabriel et al., 2006), along with a 

reformulation technique for absolute value terms. This method is applied to solve a 

small Stackelberg game with the number of players allowed to vary and an MPEC for 

the U.S. natural gas market to validate the proposed approach. A proposed extension 

along with a simple example to solve equilibrium programs with equilibrium 

constraints (EPECs) is also provided.  

2.3.4. Discretely-Constrained Mixed Linear Complementarity Problems 

As discussed before, complementary problems have had several applications in the 

literature, including solving Nash-Cournot games and network problems. Both Nash-

Cournot games and network problems can be converted to mixed complementary 
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problems by taking the Karush-Kuhn-Tucker (KKT) (Bazaraa et al., 1993) conditions 

to each player‟s optimization problem and combining them (Cottle et al., 2009). 

 A lot of applications of both these problems relate to energy markets. For 

example, Bard (1983,1988) developed algorithms for linear and convex two-level 

programming problems with applications to energy. Continuing, Bard and Moore  

(Bard & Moore, 1990) introduced a branch and bound algorithm for two-level 

problems resulting from complementary problems. Karlof and Wang (Karlof & 

Wang, 1996) applied a two-level approach to solving a flow shop scheduling 

problem, while (Labbéb et al., 1998) applied it to a model of taxation and highway 

pricing. Moore and Bard (Moore & Bard, 1990) and Wen and Huang (Wen & Huang, 

1996) provided methods to solve mixed-integer two-level problems, but these 

methods are not applicable for solving DC-MLCPs.  

 More recently  (Bard et al., 2000), (Fuller, 2010), (Fuller, 2008), (Gabriel & 

Leuthold, 2010), (Gabriel et al., 2010), (Hu et al., 2009), (Marcotte et al., 2001), 

(O'Neill et al., 2005), and (Scaparra & Church, 2008) have had applications of game 

theory problems to energy but none has considered complementary problems which 

are discretely constrained. 

 In some cases, solutions to discretely-constrained complementary problems do 

not exist. This is because satisfying integrality and complementary conditions 

together can prove to be more difficult than satisfying integrality and complementary 

conditions individually. However, solutions to the original optimization problem 

whose KKT conditions were used to formulate the complementary problem might 

still exist.  
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 (Gabriel et al., 2011a), (Gabriel et al., 2011b) provide ways around this, and 

provide a relaxation technique that is able to solve DC-MLCPs.    The distinguishing 

features of the proposed technique in both these papers with respect to other 

procedures reported in the technical literature (e.g., (Galiana et al., 2003), (Hogan & 

Ring, 2003), (Bjørndal & Jörnsten, 2008) are two-fold. First, the initial Nash-Cournot 

game or network problem is not manipulated to achieve prices that support market 

outcomes. Instead, optimality conditions of the original problem, with integrality and 

complementary conditions relaxed, are formulated and incorporated into a relaxation 

problem that allows realizing the tradeoff of integrality vs. complementarity. Second, 

instead of using a two-step procedure as in the literature, the technique in (Gabriel et 

al., 2011a) is single-step formulation of a two-level problem, and does not require 

altering the original problem by fixing integer variables to their optimal values to 

formulate a continuous problem. Hence this dissertation will concentrate on the work 

from the two papers (Gabriel et al., 2011a), (Gabriel et al., 2011b). 

 In both papers, (Gabriel et al., 2011a), (Gabriel et al., 2011b), however, 

disjunctive constraints (Fortuny-Amat & McCarl, 1981) are used to solve the 

resulting two-level problem. In this dissertation, a method developed in Chapter 4 

will be used to solve these problems instead of disjunctive constraints. This is the 

main contribution in this dissertation, in that the method of Chapter 4 solves the DC-

MLPCs much quicker than the disjunctive constraints method, and does not require 

the selection of a specific constant for disjunctive constraints. 
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2.4. Preliminaries 

2.4.1. Benders Decomposition 

This section describes standard Benders decomposition as a modified version will be 

used in Chapter 3. Table 2.2 describes the terminology used for explaining Benders 

decomposition. 

 

Table 2.2: Definition of Terms for Benders Decomposition 

Symbol Interpretation 

vc Complicating vector of variables to explain standard Benders 

decomposition 

vu Uncomplicating vector of variables to explain standard 

Benders decomposition 

c(vc) Constraints of complicating variable 

d(vc,vu) Constraints of uncomplicating and complicating Variables 

 

 Benders decomposition is used to efficiently solve linear and nonlinear 

programs (Conejo et al., 2006) and decomposes the original set of variables into both 

complicating and uncomplicating ones. Normally, integer variables are defined as 

complicating variables as fixing their values allows the problem to have a structure 

that provides an easy solution (assuming the rest of the problem is relatively easy to 

solve).  However, in general, the complicating variables need not be integer and can 

be real-valued which, if fixed, render a simple or decomposable problem. Using 

notation provided above, Benders decomposition seeks to solve an optimization 

problem of the following form:   
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                                                         (2.10) 

 To solve this problem, the Benders decomposition technique fixes values of 

cv  (which are part of a set U that can be integers or other subsets of
n ) and solves 

the problem after first decomposing into a master problem and sub-problem (Conejo 

et al., 2006). To explain these notions of master and sub-problem, first define an 

auxiliary function α(vc) as follows which  expresses the objective function of the 

original problem as a function solely of the complicating variables. 

                              

0),(

..

),(min)(





uc

uc
v

c

vvd

ts

vvfv
u



                                                          (2.11) 

Using the definition of α(vc), the original problem (2.10) can be expressed as follows.  

                       

0)(

..

)(min

c

c
v

vc

ts

v
c



                                                                           (2.12) 

 Iteratively, a subproblem (2.13) is solved to approximate α(vc) from above by 

fixing values of the complicating variables )(
fixed

cc vv    and obtaining the dual 

variables λ to these constraints as shown in (2.13). 
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 Then, the solution to the above problem,  sol

uv  and the dual variables  sol  

are used to construct “Benders cuts” in the master problem to approximate the 

function
9
 α(vc) from below. Note that these cuts are iteratively added at each step 

until convergence. For simplicity, only one cut is shown here. 
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vvvvf
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


                                 (2.14) 

 Since the master problem (2.14) has a larger feasible region, it provides a 

lower bound (zlo) while the more restricted subproblem (2.13) provides an upper 

bound (zup) for the solution objective function value. These problems are solved 

iteratively until (zup – zlo)/( zlo) is less than some tolerance. As long as the function 

α(vc) is convex, Benders decomposition converges to an optimal solution (Conejo et 

al., 2006). 

                                                 

 
9
 A sufficient condition for convergence is that the objective function in formulation (2.11) needs to be 

convex. However, the modification this paper presents, from the experimental results, does not need 

this convexity as the Benders cuts are modified. For more information, please refer to (Conejo et al., 

2006) and (Gabriel et al., 2010). 
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2.4.2. Disjunctive Constraints 

From (2.7), the set of solutions to  

                        0),( yxgyT                                                                       (2.15) 

is nonconvex and can be computationally challenging to find even if ),( yxg  is linear. 

 One way is to use disjunctive constraints (Fortuny-Amat & McCarl, 1981). A 

large constant K is introduced, which can be difficult to select and cause 

computational issues (Gabriel & Leuthold, 2010), as well as a vector of binary 

variables r. Then, (2.8) is rewritten as  

 

constant large a is  

uesbinary val of vector a is  10

),(0

)1(0

),( s.t.

),(min











K

,r

where

Kryxg

rKy

yx

yxf

yn

                                (2.16) 

 For large enough K, the solution set to (2.16) is equivalent to that of (2.7). The 

binary vectors and large K force componentwise, at least one of y or g to be 0. 

However, choosing K too small can cause errors in problem formulation (Gabriel & 

Leuthold, 2010) while choosing K too large can cause the condition number of the 

optimization problem (Renegar, 1995), (Renegar, 1994) to be high and result in 

numerical errors. One of the main aims of this section is to get around this problem 

by using decomposition and approximation techniques. 
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2.4.3. Approximating Nonlinear Functions using SOS Type 1 and Type 2 

Variables 

Note that disjunctive constraints are used to state disjunctive (either/or) logic 

statements. Hence, Chapter 4 will provide a different way to state such logic 

statements mathematically. For this, a reformulation of the absolute value function 

will be required, for which special ordered sets will be used.  

 

Definition 2.7: A Special Ordered Set of Type One (SOS1 or SOS Type 1) is 

defined to be a set of non-negative variables for which at most one member from 

the set may be non-zero in a feasible solution. There are no other restrictions on the 

elements of the set, and they can be ordered in any way.  

 

 Among the uses for SOS1 variables, one popular one is to approximate 

functions. For example, consider a nonlinear function g(x) over a closed interval 

],[ highlow xxx  on the positive real line. Given a partition of n points of the 

interval  
highnlowi xxxxxxx  ,...,,, 321 , a new SOS Type 1 set of n variables 

 n

iiv
1
 can be introduced to approximate this nonlinear function. Then, g(x) can be 

expressed as  
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  Variables 1 SOS are 

1

)()(

1

1

1

1

n

ii

n

i

i

n

i

ii

n

i

ii

v

v

xvx

where

xgvxg





















                                                 (2.17) 

Figure 2.6 shows this nonlinear function being approximated by SOS Type 1 

variables. 
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Figure 2.6: Approximating a Nonlinear Function Using SOS Type 1 Variable 
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 Similarly, a piecewise approximation can also be developed using SOS Type 

2 variables. 

 

Definition 2.8: A Special Ordered Set of type Two (SOS 2 or SOS Type 2) is a set 

of nonnegative consecutive variables in which not more than two adjacent 

members may be non-zero in a feasible solution. No other restrictions are placed 

on the set.  

 

 Again, consider a nonlinear function g(x) over a closed interval 

],[ highlow xxx  on the real line. Given a partition of n points of the 

interval  
highnlowi xxxxxxx  ,...,,, 321 , a new SOS Type 2 set of n variables 

 n

iiu
1
 can be introduced to approximate this nonlinear function. Then, g(x) can be 

expressed as  

  Variables 2 SOS are 

1

)()(

1

1

1

1

n

ii

n

i

i

n

i

ii

n

i

ii

u

u

xux

where

xguxg





















                                                (2.18) 

Figure 2.7 shows this nonlinear function being approximated by SOS Type 2 

variables. The red line shows the piecewise linear approximation of the function. 
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Figure 2.7: Approximation of Nonlinear Functions using SOS Type 2 

Variables 

 

 The downside of SOS Type 2 variables is, of course, that it requires much 

more computational power than if SOS Type 1 variables were used. In Chapter 4, 

however, an absolute value function will be used. Hence, setting g(x) = |x|. For this 

purpose, only a set of two SOS Type 1 variables is required to reformulate this over 

the entire range. This is described by the following formulation. 

Variables 1 Type SOS are ,

)(











vv

vvx

where

vvxg

                                         (2.19) 
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 Since these variables encompass the whole range, no restriction on the sum 

being 1 is required. Moreover, this formulation will be used in Chapter 4 to solve 

MPECs. 
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Chapter 3: Solving Robust Optimization Problems Using a 

Modified Benders Method  

3.1. Introduction 

Engineering optimization problems often involve uncontrollable variations or 

uncertainties in factors like decision variables and/or parameters. Optimal solutions 

that might be deterministically feasible often end up being infeasible for a given 

realization of uncertain factors. Additionally, even small levels of variations can 

cause large degradations in the objective function value. Manufacturing errors, 

measurement problems, and uncertainty in environmental conditions are examples of 

sources for these variations.   

 Uncertainty can be handled with or without a probability distribution. 

Optimization problems that involve probability distributions are referred to as 

stochastic optimization problems. These are more suited for situations where 

accounting for worst-case uncertainty might result in foregoing performance. 

Optimization problems in this chapter are more suited for situations where any 

violation of constraints under uncertainty could result in the solution being unsuitable. 

Hence, a worst-case analysis needs to be appropriate for problems considered in this 

chapter.  

 In this section, an approach for robust optimization, e.g., (Ben-Tal et al., 

2009), for linear, quadratic, convex, and non-convex programs is developed by 

applying a worst-case analysis using a decomposition method. No probability 
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distribution is presumed
10

, but only intervals with a nominal point (user- or problem-

defined) are used to represent the uncertainty in decision variables and/or parameters. 

The problem structure in this dissertation reflects a real-world design situation, e.g., 

when information about uncertain factors during the early stages of a design process 

is often limited.   

 The two-level structure is apparent in robust optimization problems. The 

upper-level of a robust optimization problem is a decision based on a fixed level of 

uncertainty. The lower-level checks the feasibility of an optimal solution obtained 

from the upper-level. This chapter provides a way to decompose this two-level 

structure using Benders decomposition to solve the robust optimization problem. A 

portion of the material in this chapter has been presented previously, see (Siddiqui et 

al., 2011a) and (Siddiqui et al., 2011c). 

3.2. Interval Uncertainty 

A simple example will be presented first to motivate this method. Consider the 

optimization problem 

                                                 

 
10

 The statement that no probability distribution being presumed is to ensure the fact that probability 

does not come into play in any part of the discussed formulation. For instance, a uniform distribution 

over the whole interval of uncertainty can be assumed. However, the solution technique for robust 

optimization would involve solving the problem while ensuring there is a zero probability of constraint 

violation, thus taking probability out of the question. Therefore, it is informative to presume no 

probability distribution. 
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103

512

8

..

2)(min 

213

212

211

21









xxg

xxg

xxg

ts

xxxf

                                                         (3.1) 

A version of this problem with uncertainty looks like 

  6,...,11.0,1.0ˆ

10)ˆ3()ˆ1(

5)ˆ1()ˆ2(

8)ˆ1()ˆ1(

..

2)(min 

26153

24132

22111

21











ix

where

xxxxg

xxxxg

xxxxg

ts

xxxf

i

                                (3.2) 

 Note that parameter uncertainty has been introduced in the constraints of the 

problem. Realize also that, for example, if 1.0ˆˆ
21  xx  in the first constraint of (3.2), 

then if x1 and x2 satisfy the following inequality 

8)1.01()1.01( 21  xx                                                     (3.3) 

then x1 and x2  also satisfy 

  2,11.0,1.0ˆ

8)ˆ1()ˆ1( 2211





ix

xxxx

i

                                                 (3.4) 

 Hence, this “trick” can be applied to all parameters and we can get an 

optimization problem which will give us a robust solution. This approach will also 

define a robust feasible region which is the subset of the feasible region that only 

contains points feasible under worst case uncertainty as shown above. Figure 3.1 

shows a comparison of the original feasible region (3.1) and the resulting robust 

feasible region (3.5), and the constraint functions of following equation (3.5) define 

the robust feasible region. 
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                              (3.5) 
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Figure 3.1: Comparison of the Feasible Region (Black) with the Robust Feasible 

Region (Red)
11

 

 Since this is a linear program, a solution will be one of the corner points of the 

feasible region. The solution to the deterministic problem (3.1) is x1 = 1, x2 = 7, f(x) = 

-15. The solution to the robust problem (3.2) can be found by looking at the corner 

points of the robust feasible region which gives x1 = 1, x2 = 69/11 (approximately 

6.27), f(x) = -149/11 (approximately -13.54). Clearly, finding this robust feasible 

region greatly simplifies the robust optimization problem. The motivation behind the 

modified Benders method was to find this feasible region and then solve the easier 

optimization problem (3.5).  

                                                 

 
11

 Both the feasible region and the robust feasible region are the regions enclosed by the respective 

black and red lines. 
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 Recall that the formulation from Chapter 2 for robust optimization problems 

(with objective robustness included in the constraints) is given by 

],[ˆ

ˆ,

,...,10)ˆ,(

..

)(min

xxx

RxRx

Jjxxg

ts

xf

unn

j

x





                                                         (3.6) 

 The end goal of this chapter is to solve problem (3.6). The method used is a 

modification of Benders decomposition to be described later. As described in Section 

2.4.1, Benders decomposition decomposes an optimization problem into a master 

problem and a subproblem, with the variables being divided into complicating and 

uncomplicating ones. In (3.6), x are the uncomplicating variables and x̂  are the 

complicating ones. As in Benders decomposition, an auxiliary function of x̂  will be 

defined. A set of theoretical results will then be proven about the complicating 

variables x̂  and the auxiliary function.  The first set of theoretical results will show 

that an application of standard Benders decomposition to (3.6) when the objective and 

constraint functions are linear will yield a globally optimal robust solution (Algorithm 

3.1). Then, an assumption on the quasiconvexity of the constraint functions )ˆ,( xxg j  

will be made to simplify the application of a modified Benders decomposition. This 

modified Benders decomposition with modified Benders cuts will then be applied to 

solve (3.6) when the constraint functions )ˆ,( xxg j  are quasiconvex (heuristic 

Algorithm 3.2). Finally, a third heuristic is also presented which can be used to solve 

(3.6) when the constraint functions )ˆ,( xxg j  are nonlinear (not necessarily 

quasiconvex).     
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 To prove the theoretical results in this chapter, certain assumptions have to be 

made about optimization problem (3.6). In Section 2.2.1, assumptions on the 

functions f and gj being continuous were stated. While the new Assumptions 3.1 and 

3.2 may be relaxed for numerical application of the algorithms presented later, the 

theoretical results depend on them. The following are these assumptions and they 

have to do with the existence of solutions. 

 

Assumption 3.1: The constraints gj in (3.6), for any fixed value of uncertainty x̂ , 

form a convex, compact, nonempty feasible region over x.  

 

Assumption 3.2: A globally optimal robust solution to (3.6) always exists.  

 

 Assumption 3.1 ensures that continuous functions gj, j = 1,…, J are over a 

nonempty compact set so they obtain their maximum within this set via the 

Weierstrass Theorem (Royden, 1988). The convexity of the feasible region is 

included to ensure that a gradient-based algorithm can be applied successfully. 

Assumption 3.2 is stronger, and assumes that a solution exists to the robust 

optimization problem, while Assumption 3.1 does not take into account the 

],[ˆ xxx   clause in (3.6). Existence of solutions to robust optimization problems 

are difficult to prove. The presence of uncertainty means that with large enough 

values of |Δx|, there may not be even a feasible solution to the robust optimization 

problem, let alone a globally optimal robust solution. However, for example, problem 

(3.2) has an optimal robust solution. The algorithms in this chapter can be used with 
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solvers which could detect if an optimization problem did not have a feasible 

solution.  

   The goal is to obtain values of x such that the formulation (3.6) gives an 

optimal solution to x regardless of the values of x̂ . Since this chapter only considers 

the worst-case analysis, the method aims to get the “worst” values of x̂  for this 

problem (3.6). These are called “interval-optimal” values, as defined next.  

 

Definition 3.1:  Interval-optimal:  An interval-optimal value for a particular 

candidate solution x
c
 and a constraint function gj (for one j = 1,…, J) is defined as a 

point  xxxc  ,ˆ  such that )ˆ,()ˆ,( cc

j

c

j xxgxxg   for all realizations of 

 xxx  ,ˆ . The point  xxxc  ,ˆ  is a particular value of the x̂  such that the 

constraint attains its maximum value at that particular value of uncertainty.    

 

 An interval-optimal point can be thought of as the value of uncertainty x̂  that 

maximizes the value of gj over all other realizations of uncertainty for a fixed value of 

x. The next definition takes this further. 

 

Definition 3.2: Globally Interval-optimal:  A globally interval-optimal value for a 

particular candidate solution x
c
 and set of constraint functions gj; j = 1,…, J; is 

defined as a point  xxxc  ,ˆ  such that )ˆ,(max)ˆ,( cc

j
j

c

j xxgxxg   for all 

realizations of  xxx  ,ˆ . The point  xxxc  ,ˆ  is a particular value of the 

x̂  such that the constraints attain their global maximum value at that particular value 

of uncertainty.  
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 Note that any globally interval-optimal point is interval-optimal for at least 

one of the constraint functions gj, j = 1,…, J. From example (3.2), for the constraint 

g1 and the candidate solution 









2

1

x

x
xc  x1 = 1, x2 = 69/11 the associated interval-

optimal value of x̂  is 1.0ˆ ix , i = 1,…, 6. This also happens to be the associated 

globally interval-optimal value of x̂  for the solution x1 = 1, x2 = 69/11  and the set of 

constraints g1, g2,  g3. 

 The following lemma makes the connection between a robust point and its 

globally interval-optimal point. In equation (3.5), the globally interval-optimal values 

of the uncertainty elements helped determine the robust solution. Lemma 3.1 further 

strengthens this connection between a robust point and a globally interval-optimal 

point.      

  

Lemma 3.1: A candidate solution (x
c
) for problem (3.6) is a robust point if and 

only if its globally interval-optimal point  

],[ˆ xxxc   

is such that 

0)ˆ,(max cc

j
j

xxg . 

Proof: If (x
c
) is a robust point (Definition 2.4), then it must be true that 

0)ˆ,(max xxg c

j
j

 for all realizations of  xxx  ,ˆ . Hence, this implies that for 

the associated globally interval-optimal point )ˆ( cx , 0)ˆ,(max cc

j
j

xxg  as 
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 xxxc  ,ˆ . For the other side of the if and only if argument, suppose the 

associated globally interval-optimal point has 0)ˆ,(max cc

j
j

xxg . Then by the 

definition of globally interval-optimal, 0)ˆ,(max xxg c

j
j

 for all realizations of 

 xxx  ,ˆ  which implies that (x
c
) is a robust point.■     

 

 The next step is to relate Definition 3.2 to Benders decomposition as 

explained in Section 2.4.1. The robust optimization problem (3.6) will be solved 

using a modification of Benders decomposition. In this modification, the uncertainty 

variables x̂  will be the complicating variables. Since there is a need for an auxiliary 

function as in equation (2.11), define the following function
12

 

un

n

j

x
u

Rxwhere

Rx

Jjxxg

ts

xfx









ˆ

,...,10)ˆ,(

..

)(min)ˆ(

                                                        (3.7) 

 Before proceeding, it is important to define one more term and make an 

assumption. The next definition is a slightly different one than Definitions 3.1 and 

3.2, but is related to our motivation for finding interval-optimal points using a 

modified Benders decomposition. 

 

                                                 

 
12

 By Assumption 3.2, a solution to (3.7) always exists. This is because the optimization problem (3.7) 

is a relaxed version of the optimization problem (3.6). 
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Definition 3.3: Worst-Case Uncertainty: A worst-case uncertainty value 

 xxxwc  ,ˆ  for optimization problem (3.6) is such that when wcxx ˆˆ  is fixed in 

(3.6), the solution of (3.8) below yields a globally optimal-robust solution.  

wc

nn

j

x

xx

RxRx

Jjxxg

ts

xxf

u

ˆˆ

ˆ,

,...,10)ˆ,(

..

)ˆ,(min





                                                         (3.8) 

 Note that a worst-case uncertainty value differs from an interval-optimal or 

globally interval-optimal value of uncertainty in that a worst-case uncertainty value 

does not have an associated predetermined variable x (but it is associated with a 

globally optimal robust solution after solving (3.8)) and is for the entire optimization 

problem. But it is trivial to note that a worst-case uncertainty value of x̂  is a globally 

interval-optimal point of uncertainty for some globally optimal robust solution. The 

next assumption is required for the theoretical background of the modified Benders 

decomposition presented in this chapter.  

 

Assumption 3.3: A worst-case uncertainty value exists for robust optimization 

problem (3.6) and is a globally interval-optimal point for a globally optimal robust 

solution x*. 

 

 Note that Assumption 3.3 ensures that finding worst-case uncertainty values 

enables us to find a globally optimal robust solution. Problem (3.2) was an example 
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of a robust optimization problem where 1.0ˆ ix , i = 1,…, 6 was figured out to be the 

worst-case uncertainty value.  

 As an example, linear programs satisfy Assumption 3.3. In general, a linear 

constraint function gj can be written as Cxdxcxxg
ux n

i

ii

n

i

iij  
 11

ˆ)ˆ,( where C is a 

real number. Here, as in example (3.2), if there is a variable x such that 

0)(
11

 


Cxdxcxg
ux n

i

ii

n

i

iij , then it is also true that  

0ˆ)ˆ,(
11

 


Cxdxcxxg
ux n

i

ii

n

i

iij  for all  xxx  ,ˆ . Therefore, the interval-

optimal value of ix̂ can be calculated to be ix if di is positive and ix  if di is 

negative. From this argument, for all the gj constraints a globally interval-optimal 

value can be calculated and so can a worst-case uncertainty value. For more 

information on problems that satisfy Assumption 3.3, please refer to (Ben-Tal et al., 

2009). 

 The following lemma shows a property of the new auxiliary function (3.7) 

which connects a globally optimal robust point to its globally interval-optimal point. 

This will later be used in modifying Benders decomposition to obtain solutions to 

robust optimization problems.  

 Recall that for problem (3.2), the globally optimal robust point was x1 = 1, x2 

= 69/11 and its associated globally interval-optimal point (and the worst-case 

uncertainty value) was 1.0ˆ ix , i = 1,…, 6. Note that for example (3.2), 

11/149)1.0( u , which happens to be the function value of the globally optimal 
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robust solution to example (3.2). This is no coincidence as shown by the following 

lemma. 

 

Lemma 3.2: Under Assumptions 3.1-3.3, let x* be a globally optimal robust 

solution (Definition 2.6) to (3.6) and *x̂  an associated globally interval-optimal 

point. If (i) )ˆ(*)ˆ( xx uu    for all realizations of  xxx  ,ˆ  , then 

(ii) *)(*)ˆ( xfxu  . 

Proof: Since x* is a globally optimal robust point, it is automatically a robust point 

(Definition 2.6) so by Lemma 3.1, 0)ˆ*,(max xxg j
j

 for all realizations of 

 xxx  ,ˆ . Note that the value *)ˆ(xu  was calculated by minimizing f(x) while 

fixing *ˆˆ xx   in (3.7).  Since x* is in the feasible region for (3.7) and by Assumption 

3.2, a solution always exists to (3.7), *)(*)ˆ( xfxu  . The next step will show with 

the help of a contradiction argument that *)(*)ˆ( xfxu  .  

 Suppose that *)(*)ˆ( xfxu  .  By the statement of this lemma, 

)ˆ(*)ˆ( xx uu    for all  xxx  ,ˆ . Using (3.7) by fixing *ˆˆ xx  , let 'x  

(dependent on *x̂ )  be a solution to the minimization problem in (3.7) such that 

)'(*)ˆ( xfxu  . Then (i) implies )ˆ()'( xxf u  for all  xxx  ,ˆ . By our 

contradictory assumption, this also implies )ˆ()'(*)ˆ(*)( xxfxxf uu    which 

simplifies to )ˆ(*)( xxf u  for all  xxx  ,ˆ . Note that the condition 

)ˆ(*)( xxf u  for all  xxx  ,ˆ  violates Assumption 3.3. By Assumption 3.3, 

there exists a worst-case uncertainty value, i.e., there exists a  xxxwc  ,ˆ  such 
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that )ˆ(*)( wc

u xxf  . But this would imply )ˆ()ˆ( xx u

wc

u    for all  xxx  ,ˆ  

which is a contradiction. Hence, this contradiction shows that     *)(*)ˆ( xfxu  . 

Combining the two inequalities *)(*)ˆ( xfxu   and *)(*)ˆ( xfxu   gives 

*)(*)ˆ( xfxu  .■   

  

 The next two theorems form the basis of the modified Benders method to be 

introduced later in this chapter. The first shows a particular characteristic of a worst-

case value of uncertainty. The second shows that a particular characteristic of an 

uncertainty variable value can be used to find a globally optimal robust solution.  The 

modified Benders method of this chapter will aim to find this value. 

 

Theorem 3.1: Under Assumptions 3.1-3.3, let the worst-case value of uncertainty 

for (3.6) be 
wcx̂ . Then, )ˆ()ˆ( xx u

wc

u    for all realizations of  .,ˆ xxx    

Proof: Let x* be a globally optimal robust solution to (3.6). Then, by Definition 3.3,  

*)()ˆ( xfxwc

u  . Problem (3.6) has the same objective function as (3.7) but the 

feasible region of (3.6) is a subset of the feasible region of (3.7). Therefore, for any 

fixed x̂  )ˆ(*)( xxf u . Therefore, )ˆ()ˆ( xx u

wc

u    for all realizations of 

 .,ˆ xxx  ■   

 

Theorem 3.2: Under Assumptions 3.1-3.3, suppose there exists a unique 

uncertainty value 
cx̂  for which )ˆ()ˆ( xx u

c

u    for all realizations of 
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 xxx  ,ˆ . Then, a solution to optimization problem (3.9) will be a globally 

optimal robust solution to problem (3.6). 

unn

c

j

x

RxRx

xx

Jjxxg

ts

xf







ˆ,

ˆˆ

,...,10)ˆ,(

..

)(min

                                                       (3.9) 

Proof: Let x
c
 be a solution to (3.9). Note that )()ˆ( cc

u xfx   by (3.7). By 

Assumption 3.3, there exists a worst-case uncertainty value wcx̂  such that 

*)()ˆ( xfxwc

u  , where *x  is a globally optimal robust solution.  Since *x  is a 

solution to (3.6), it is also feasible to (3.9) as the feasible region for (3.6) is a subset 

of the feasible region for (3.9). Hence, *)()( xfxf c  , which implies 

)ˆ()ˆ( wcc

u xx   . But according to the statement of this theorem,  )ˆ()ˆ( xx u

c

u    for 

all realizations of  xxx  ,ˆ . Hence, wcc xx ˆˆ   because this theorem also states 

that this value of cx̂  is unique. Therefore, wcc xx ˆˆ  . By Definition 3.3, (3.9) gives a 

globally optimal robust solution.  ■           

  

 The purpose of Theorem 3.2 is that if the following optimization problem 
13

 

(3.10) has a unique solution, that solution can be used to find the solution to (3.6). 

                                                 

 
13

 Note that the function )ˆ(xu  is not known in closed form but will be later be approximated using a 

variation on Benders cuts. 
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 
un

u
x

Rx

xxx

ts

x





ˆ

,ˆ

..

)ˆ(max
ˆ


                                                                     (3.10) 

 Theorem 3.2 also shows that finding globally interval-optimal points can help 

us obtain a globally optimal robust solution. For quasiconvex constraint functions, we 

know that the globally interval-optimal values will lie on one of the endpoints of the 

vector interval
14

  xx  , , which follows directly from the definition of 

quasiconvexity provided in Chapter 2 and is taken advantage of in the following 

Corollary 3.1. Note that there are un
2 such endpoints, where nu is the dimension of the 

vector x  and also the dimension of the endpoints. For purposes of notation, let the 

endpoints of the vector interval be denoted by (V)1, (V)2, (V)3, …, 
unV

2
)( . Each 

endpoint vector (V)k , k = 1,…, un
2  is defined such that each of its elements (Vi)k is 

either Δxi or –Δxi, i.e.,    iiki xxV  ,  for i = 1,…, nu.   The idea that the 

maximum of the constraint functions lies on one of the endpoints of the vector 

interval can be used to ascertain that any globally interval-optimal point (and thus, 

worst-case uncertainty value) will also lie on one of the endpoints of the vector 

interval. 

 

Corollary 3.1: If the constraint functions gj , j = 1,…, J are quasiconvex in (3.6), 

then solving (3.11) is equivalent to solving (3.6) and solving (3.12) is equivalent to 

                                                 

 
14

 This vector interval  xx  ,  is of nu dimensions. So the endpoints of this vector interval are 

actually all the corner points of an nu-dimensional rectangle. 
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solving (3.7). Additionally, the maximum value of )ˆ(xu  is achieved at one of the 

endpoints   
un

kkV
2

1
. 

  
un

u

kk

nn

j

x

Vx

RxRx

Jjxxg

ts

xf

2

1
ˆ

ˆ,

,...,10)ˆ,(

..

)(min






                                                        (3.11) 

  
un

kk

n

j

x
u

Vxwhere

Rx

Jjxxg

ts

xfx

2

1
ˆ

,...,10)ˆ,(

..

)(min)ˆ(










                                                       (3.12) 

Proof: The aim of this theorem is to show that if gj, for all j = 1,…, J is quasiconvex 

in x̂ , then   
un

kkVx
2

1
ˆ


  can replace the condition ],[ˆ xxx   in (3.6). Note that  

 ),(),,(max)))(1()(,()ˆ,( ijijiijij xxgxxgxxxgxxg    for all 

]1,0[  and a real-valued  iii xxx  ,ˆ .  For any x, if 

0)ˆ,( xxg j , ],[ˆ xxx  , then 0)ˆ,( xxg j ,   
un

kkVx
2

1
ˆ


  because 

   ],[
2

1
xxV

un

kk 


. Moreover, for any x if 0)ˆ,( xxg j ,   
un

kkVx
2

1
ˆ


 , then 

0)ˆ,( xxg j , ],[ˆ xxx   because gj is quasiconvex in x̂ . Hence, 

0)ˆ,( xxg j ,   
un

kkVx
2

1
ˆ


 , if and only if 0)ˆ,( xxg j , ],[ˆ xxx  . Therefore, 

  
un

kkVx
2

1
ˆ


  can replace the condition ],[ˆ xxx   in (3.6) whenever gj, for all j 
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= 1,…, J is quasiconvex in x̂ .  Therefore, solving (3.11) is the same as solving (3.6) 

and solving (3.7) is the same as solving (3.12). 

 Note that a value of x̂  that maximizes the constraint gj for a fixed value of x 

in the expression
 

 )ˆ,(max
,ˆ

xxg j
xxx un



 is an interval-optimal value. Moreover, a value of 

x̂  that maximizes the expression 
 

 










)ˆ,(maxmax
,ˆ

xxg j
xxxj un

 is a globally interval-

optimal value of x̂ . Hence, the globally interval-optimal values of x̂  lie on the 

endpoints   
un

kkV
2

1
. In particular, by Assumption 3.3, a worst-case value of 

uncertainty wcx̂  for problem (3.11) exists and is a globally interval-optimal value. 

Hence, wcx̂  also lies on one of the endpoints. By Theorem 3.1, )ˆ()ˆ( xx u

wc

u    for 

all realizations of  xxx  ,ˆ , which is the maximum value of )ˆ(xu . Hence, the 

maximum value of )ˆ(xu  is achieved at one of the endpoints.■           

 

 The next section provides a modified Benders decomposition method to solve 

robust linear programs. Note that so far we have proven facts about the auxiliary 

function )ˆ(xu . Standard Benders decomposition approximates this function using 

standard Benders cuts. With the support of theoretical results, the first algorithm in 

the next chapter will apply standard Benders decomposition to obtain a solution to 

(3.6). Two further heuristic algorithms are provided to solve (3.6) when the constraint 

functions are quasiconvex and nonlinear, respectively.  



 

 

 

54 

 

3.3 Modified Benders Decomposition 

3.3.1. Formulation of Approach: Solving Robust Linear Programs 

The strategy will be to find optimal values for variables x and interval-optimal values 

for x̂ . One can think of this as attempting to check the robustness of a candidate 

solution by partitioning the uncertainty interval and checking feasibility at each point. 

Clearly, if all constraints are feasible when fixed with the interval-optimal values for 

uncertainty elements, then the candidate solution is robust.  

 Standard Benders decomposition is advantageous when the problem structure 

dictates that fixing certain variables will lead to a simpler problem to solve. The idea 

behind Benders decomposition is to fix a set of complicating variables and solve a 

resulting simpler subproblem while iterating between it and solving a master problem 

that computes values for the complicating variables. The robust optimization problem 

(3.6) also has a simple structure when certain variables are fixed. Fixing x̂  results in 

an optimization problem much simpler to solve than a robust optimization problem. 

     The Benders cuts added in (2.14) serve to approximate the function α 

described in (2.11). Since the objective function in (3.7) is being maximized by 

equation (3.10), for the successful application of Benders decomposition, the function 

)ˆ(xu  needs to be concave.  

 

Theorem 3.3: For linear objective and constraint functions in (3.6), the function 

)ˆ(xu  is concave. 
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Proof: This is a well-known result from linear programming theory (Murty, 1983). 

The function )ˆ(xu  is piecewise-linear, continuous, and concave. ■ 

  

 Because Theorem 3.2 requires a unique maximum value of x̂  to guarantee a 

solution, the following lemma gives conditions under which this is possible for linear 

robust optimization problems. Before proceeding, the definition of a slope between 

two points is needed. 

 

Definition 3.4: Slope: The slope of the function RRy un

u :)(  between two vectors 

uu nn
RyRy  21 ,  is defined as the vector un

R  where 
12

12 )()(

ii

i
yy

yy







  for each 

element i = 1,…, nu. 

 

Lemma 3.3: Let )ˆ(xu  be a piecewise linear, continuous, concave function over 

],[ xx  . Then )ˆ(xu  achieves its maximum at a point ],[ˆ xxxwc  . Now 

suppose this maximum is achieved at one of the endpoint vectors   
un

kkV
2

1
 and 

suppose the slope between wcx̂  and any other vector ],[ˆ xxx  is nonzero 

(every element of the slope between the two points is nonzero). Then )ˆ(xu  has a 

unique maximum. 

Proof: Since )ˆ(xu  is a continuous function over a nonempty compact set, the vector 

interval ],[ xx  , by the Weierstrass theorem (Royden, 1988) )ˆ(xu  achieves its 

maximum at a vector in ],[ xx  .   
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Let the maximum of )ˆ(xu  be achieved at   
un

kk

wc Vx
2

1
ˆ


 , which is one of the 

endpoints . We want to show that this point is unique. This proof will follow a 

contradiction argument. Suppose there exists another distinct point wcxx ˆ'ˆ   such that 

)'ˆ()ˆ( xx u

wc

u    and )ˆ()'ˆ( xx uu    for all ],[ˆ xxx  . Since )ˆ(xu  has nonzero 

slope between wcx̂  and any other point in ],[ xx  , there exists a point mx̂   such that 

wcmm xxxx ˆˆ,'ˆˆ   which is a strict convex combination of wcx̂  and  'x̂  such that 

)ˆ()ˆ( wc

u

m

u xx   . Hence, there exists a )1,0( such that 'ˆ)1(ˆˆ xxx wcm   . 

Since )ˆ(xu  is concave, )'ˆ()1()ˆ()ˆ( xxx wcm    which implies 

)ˆ()ˆ( wcm xx    because )'ˆ()ˆ( xx u

wc

u   . But we had assumed that 

)ˆ()ˆ( wc

u

m

u xx    so it must be that )ˆ()ˆ( wcm xx   . This is a contradiction as it 

violates the statement in the theorem that a maximum is achieved at one of the 

endpoints. Therefore, the assumption )'ˆ()ˆ( xx u

wc

u    ends up concluding a 

contradictory result and )ˆ(xu  has a unique maximum. ■ 

  

 The use of wcx̂  as the notation for the point where )ˆ(xu  achieves its 

maximum was not coincidental. It is used to relate the result of Lemma 3.3 to 

Theorem 3.1 and Corollary 3.1.   Note that there exist other functions than linear that 

are both concave and achieve their maximum at an endpoint of their interval domain. 

Examples are log(y) over [1,100], -y
2
 over [0,1], etc.  The following is Algorithm 3.1 

for solving robust optimization problems with linear objective and constraint 

functions.  
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Algorithm 3.1 (Standard Benders Method): 

 

Step 0: Set iteration counter (it) to 0. Pick a small positive constant for tolerance (tol). 

 

Step 1: Set iteration counter (it) to it = it + 1. The original master problem will be: 

max

ˆ,

ˆ

..

max

uu

u
x

xxx

ts

u









                                                                    (3.13) 

The bounds on 
u  are user-defined

15
 depending on the problem. Solving the above 

problem gives it

uu    and it

fixedxx ˆˆ  . 

 

Step 2: Fix the values of the complicating variables x̂ , and then solve the following 

subproblem as in the standard Benders decomposition method. 

                         

)(ˆˆ

,...,10)ˆ,(

..

)(min

dualxx

where

Jjxxg

ts

xfw

itit

fixed

j

x







                                                 (3.14) 

                                                 

 
15

 Further suggestions are available to achieve this upper bound in (Conejo et al., 2006). For Algorithm 

3.1, a good value of the upper bound can be achieved by maximizing (as opposed to minimizing) the 

objective function in (3.6) over the entire space of decision and uncertainty variables. This is a definite 

upper bound to u  as u  is an auxiliary function to (3.6), given Assumption (3.2) holds. 
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Step 3: Check for convergence. Set wzsub   and it

umasz  . If the difference 

  tolzzz submassub  /  then stop.  

 

Step 4: Add a Benders cut to the master problem (3.13).   

                                            

Step 1 (returned): Solve the following master problem after adding the Benders cut 

max

ˆ,

))ˆ()ˆ(()ˆ,(

ˆ

..

max

uu

Tit

sol

Tit

sol

it

sol

it

solu

u
x

xxxxf

xxx

ts

u












                             (3.15) 

                        

Return to Step 2 and proceed in this manner until convergence is met.  

 

Theorem 3.4: If at the final iteration 0it

sol  for every element of it

sol , 

Algorithm 3.1 converges to a globally optimal robust solution x* of (3.6) and 

worst-case uncertainty value *x̂  in a finite number of steps. 

Proof: By the theory of Benders decomposition for linear programs (Benders, 1962), 

Algorithm 3.1 converges to a maximum value for u  in a finite number of steps. The 

algorithm also provides x* and *x̂  such that *)(*)ˆ( xfxu  . If at the final iteration 

0it

sol  for each element, then the function u  approximated by the Benders cuts 

does not have zero slope between *x̂  and any other point in ],[ xx  . Moreover, by 
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Lemma 3.3, u  has a unique maximum point at *x̂ . By Theorem 3.2, *x̂  is a worst-

case uncertainty value, and fixing that value in (3.9) gives a globally optimal robust 

solution to (3.6).■ 

 

 Note that if at the final iteration a cut is added where  0sol

it , then Algorithm 

3.1 need not necessarily converge to a globally optimal robust solution because 

Theorem 3.2 requires this maximum point to be unique. If 0sol

it  at the final 

iteration, then there can be several points that maximize u , not all necessarily a 

worst-case uncertainty value. Algorithm 3.1 could then converge to a point that was 

not a robust point. In that case, the use of heuristic Algorithm 3.3 is needed. 

3.3.2. Formulation of Approach: Solving Robust Optimization Problems 

with Quasiconvex Constraints 

For convergence of the Benders decomposition algorithm, the function αu needs to be 

concave. There is a larger class of functions than simply linear programs for which 

these conditions are valid. Indeed, for many engineering applications as well as 

numerical examples, local concavity of αu can be sufficient (Conejo et al., 2006).  

 However, due to the worst-case analysis performed, αu is quasiconvex as 

given by Corollary 3.1. Unfortunately standard Benders cuts cannot be used to 

approximate quasiconvex functions (Conejo et al., 2006). The reason is that optimal 

solutions may be omitted when cuts are added. Our advantage in a robust 

optimization setting with quasiconvex constraints as in problem (3.11) is that we only 

need good approximations to the functions at the endpoints. Approximations of the 
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function αu are not needed in between the endpoints, as the function attains its 

maximum at the endpoints. Figure 3.2 shows the idea behind these new cuts. The 

very top horizontal cut (labeled as “Cut 0”) is an upper bound set for αu as would 

normally occur in Benders decomposition. The numbers next to the cuts show the 

order of the cuts made in the iterative process.  At iteration it a new modified Benders 

cut added to the master problem looks like the following. 

))ˆ()ˆ((
)ˆ()ˆ(

)ˆ,()ˆ,(
)ˆ,(

1

11 Tsol

it

T

Tsol

it

Tsol

it

sol

it

solsol

it

sol

sol

it

sol

itu xx
xx

xxfxxf
xxf itit 








               (3.16) 

This cut is one way to approximate the function around the endpoints and see which 

value of u  at the endpoints is larger as shown in Figure 3.2. 

 

Cut 0 

Cut 4 

(Convergence, 

Final Cut) 

Cut 1 
Cut 2 

Cut 3 

)ˆ(x  

u  

)( x  

 

)( x  

 
 

Figure 3.2: The Robust Benders Cuts
16

 to Estimate the Maximum Endpoint of αu 

 

                                                 

 
16

 The dashed line denotes the quasiconvex function u  that is supposed to be approximated. 
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The following Algorithm 3.2 describes the method for quasiconvex constraints. 

Algorithm 3.2 differs from Algorithm 3.1 in that the modified Benders cuts described 

above are used.  

 

Algorithm 3.2 (Heuristic Algorithm for Robust Optimization Problems with 

Quasiconvex Constraint Functions): 

 

Step 0: Set iteration counter (it) to 0. Pick a small positive constant for tolerance (tol). 

 

Step 1: Set iteration counter (it) to it = it + 1. The original master problem will be: 

xx

xxx

ts

uu

uu

u
xu







ˆ,point Starting

ˆ

..

max

max

max

ˆ,








                                  (3.17) 

The bounds on 
u  are user-defined depending on the problem. A good value is an 

optimal objective function value for the non-robust nominal problem. Solving the 

above problem gives it

uu    and it

fixedxx ˆˆ  . 

 

Step 2: Fix the values of the complicating variables x̂ , and then solve the following 

subproblem as in the standard Benders decomposition method. 
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it

fixed

j

x
x

xx

where

Jjxxg

ts

xfw

ˆˆ

,...,10)ˆ,(

..

)(min







                                                 (3.18) 

 

Step 3: Check for convergence. Set wzsub   and it

umasz  . If the difference 

  tolzzz submassub  /  then stop.  

 

 Step 4: Add a modified Benders cut to the master problem. If this is any iteration 

greater than one, do not add an additional cut but just update the previous cut.  To 

problem (3.17), add the modified Benders cut (3.16).   

                                            

Step 1 (returned): Solve the following master problem after adding the modified 

Benders cuts
17
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1

1

ˆ,

))ˆ()ˆ((
)ˆ()ˆ(

)ˆ,()ˆ,(
)ˆ,(

ˆ

..

max

1

uu

Tsol

it

T

Tsol

it

Tsol

it

sol

it

solsol

it

sol

sol

it
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itu
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xx
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xxfxxf
xxf

xxx
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u
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


















(3.19) 

                        

Return to Step 2 and proceed in this manner until convergence is met.  

                                                 

 
17

 Note, for the first iteration take 
sol

itx 1
ˆ

  equal to the value of x . 
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3.3.3. Formulation of Approach: Solving Robust Optimization Problems 

with Nonlinear Constraints 

To extend the modified Benders decomposition method to general nonlinear 

constraints, the strategy will be to partition uncertainty intervals for uncertainty 

variables and attempt to find the interval-optimal points. Essentially, one can think of 

this as attempting to check the robustness of a candidate solution by partitioning the 

uncertainty interval by points and checking feasibility at each point. Clearly, if all 

constraints are feasible when fixed with the interval-optimal values for uncertainty 

elements, then the candidate solution is robust. Partitions can be selected depending 

on which type of constraint functions have uncertainty. In particular, quasiconvex 

constraint functions are simplest to consider.  

 Hence, under uncertainty in x, the maximum value of the function g lies on 

one of the endpoints of uncertainty when g is quasiconvex. So finding the interval-

optimal point for quasiconvex constraint functions under uncertainty entails checking 

one of the two endpoints of uncertainty.  

 However, for nonlinear, not necessarily quasiconvex constraint functions, the 

interval-optimal values need not lie on the endpoints. For this, the constraint functions 

in the uncertainty interval range need to be checked at intermediary points to find the 

interval-optimal points.  Figure 3.3 shows how checking further points helps. For 

quasiconvex constraint functions, Figure 3.3(a), only the endpoints need to be 

checked. For general nonlinear constraints, however, problems might be encountered 

if enough points within the uncertainty interval are not checked. This is shown in 
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Figure 3.3(b) where the method fails if enough points are not selected. Since 

quadratic constraints are symmetric, for concave quadratic constraints in particular 

(that are not quasiconvex) checking three points (endpoints plus central point of 

uncertainty interval, where 0ˆ x ) is enough to guarantee a robust solution (in general 

true for all symmetric concave constraints), Figure 3.3(c).  Selecting more points, 

Figure 3.3(d), solves this problem. Points maybe selected according to the accuracy 

desired for a locally optimal robust solution.   

 Checking additional points
18

 entails adding additional constraints that have 

different uncertainty variables  kkk xxx  ,ˆ , k = 1,…,K, with uncertainty ranges 

that are subsets of the original uncertainty ranges, i.e.    xxxx kk  ,,  for all 

k = 1,…,K. In particular, the modified Benders method considers a uniform 

distribution of these points to be checked with /kx x k  
 
, k = 1,…,K. To check for 

center points, the constraints with  Jjxg j ,..,1,0)0,(   need to be added. Note that 

this constraint is just the constraint gj without any consideration for uncertainty. Since 

0 is directly in the middle of the uncertainty interval, the constraint 

Jjxg j ,..,1,0)0,(   is simply the constraint with no uncertainty. 

                                                 

 
18

 Usually the number of additional points to be checked depends on the type of constraint functions as 

well as the accuracy desired. A good baseline for nonlinear constraint functions is to uniformly 

partition the uncertainty interval into enough additional points so that the distance between any two 

points is less than or equal to a preset tolerance for the problem. More points signify more accuracy. 
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Constraint violated 

under uncertainty 
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(d) 

(c) 
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Figure 3.3: Checking Feasibility by Interval-Optimal Points for Constraints: (a) 

Quasiconvex: Successful Check by Endpoints; (b) Non-convex: Failed Check due 

to Insufficient Number of Points; (c) Symmetric Concave: Successful Check by 

Middle Point and Endpoints; (d) Non-convex: Successful Check by Sufficient 

Number of Intermediary Points 
 

So, the formulation changes from (3.11) by adding further sample points (2K 

sample points). 
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                                 (3.20) 

)ˆ,( xxg  )ˆ,( xxg  

)ˆ,( xxg  )ˆ,( xxg  
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(b) 
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Here, kx , k = 1,…, K are the different sample points for the uncertainty interval as 

described by the black dots in Figure 3.3. Note that xxk 0 . The uncertainty 

elements (with a superscript ^) only take on two values (per element of vector) each. 

Since all the extra constraints from (3.20) when compared to (3.11) can be 

incorporated into the constraints in (3.11), from now on the rest of this chapter will 

assume that (3.11) has had a thorough sample of points such that within each interval 

of uncertainty, the constraint functions are quasiconvex.  

 To speed up computation of the proposed approach, gradient-based 

optimization algorithms (Bazaraa et al., 1993) are used as opposed to population-

based optimization ones (such as Genetic Algorithms or Simulated Annealing) 

(Davis, 1987). In particular, the nonlinear solvers CONOPT in GAMS (GAMS, 2010) 

which are gradient-based were used for all test problems except the last one on heat 

exchanger design. Since the code for the heat exchanger design problem was already 

available and coded in MATLAB, fmincon (MATLAB, 2008) was used for that 

particular problem. 

 The following describes the modified Benders decomposition algorithm where 

the constraint functions are quasiconvex within each interval of uncertainty. 

 

Algorithm 3.3 (Heuristic Algorithm for Robust Optimization Problems with 

Nonlinear Constraint Functions): 

 

Step 0: Proceed exactly as Algorithm 3.2 for problem (3.20) 
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Step 1: If at any iteration, 0
)ˆ()ˆ(

)ˆ,()ˆ,(

1

11 








Tsol

it

Tsol

it

sol

it

solsol

it

sol

xx

xxfxxf
itit , add more

19
 sample points in  

(3.20) by making a uniform partition. Return to Step 0. 

 

 Note that, theoretically, convergence is not guaranteed in Algorithm 3.3. But 

the numerical results suggest that Algorithm 3.3 is applicable to a wide variety of 

problems.  Now some computational costs based on numerical evidence will be 

provided. Consider a single-objective, robust optimization problem with V variables, 

J constraints, P parameters, and N uncertainty variables. One function call
20

 is defined 

as any instance where the solver calls an objective function, constraint, or other value 

or assignment in the optimization problem. Table 3.1 gives the maximum number of 

function calls possible through one iteration of the modified Benders method. This 

analysis is only based on numerical evidence that the method finds a locally optimal 

robust solution through Algorithm 3.3. 

   

  

                                                 

 
19

 In practice, double the number of points as was done for the numerical examples in this dissertation. 

20
 Due to difference in software, the GAMS method of function calls was used. Therefore, function 

calls for both deterministic and robust cases are provided so the reader can compare solutions. 

Computational times have also been provided. For a discussion on function calls, please refer to 

Appendix B. 
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Table 3.1: Analysis of function calls for one iteration 

Operation Number of  

Assignments 

Function Calls 

Objective Function 1 1 

Iteration Counter 1 1 

Constraints J+1  

(Extra 1 for obj. robust) 

N(J+1) 

Fixing Uncertainty  

at Lower Level 

N N 

Slope of Modified  

Benders Cut 

N N(J+1) 

Sample Points for Nonlinear  2K 2KN + 4KN-2N 

Total Maximum Expected - 2 + N + JN + 6KN 

 

 For most of the numerical problems in this chapter, K is at most 10. Hence, 

the number of binary variables introduced to the formulation is NJK. Note that this is 

the maximum theoretically possible function calls and actual function calls (as shown 

by examples) are much less. For example, in the heat exchanger problem (Section 

3.5.3), N = 8, J = 17, K = 10 and 6 iterations were used to solve the problem so the 

maximum expected number of function calls is 6(2 + 8 + (17)(8) + 6(10)(8)) = 3,756. 

According to the results, it took only 984 to solve this particular problem. 
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3.4. Numerical Results 

The following numerical and engineering examples serve to demonstrate applicability 

of the algorithm, compare the proposed algorithm to a previous algorithm from the 

literature, and show the different types of problems that can be solved. The first 

example is a simple quadratic program to show the algorithm steps in detail. The next 

three examples then increase the complexity (number of variables, nonlinearity) of 

this quadratic program and show how the number of function calls changes. The next 

two examples are similar linear programs except that Example 6 has been shown to 

need a significantly higher number of function calls to solve for the locally robust 

optimal solution than Example 5 (Li et al., 2011). Examples 7 and 8 are robust 

optimization problems with quasiconvex constraints which the modified Benders 

method is shown to solve exactly. The next four problems are scalable versions of an 

engineering example with quasiconvex constraints. These examples show that the 

modified Benders method is scalable and can be applied to large problems without a 

drastic increase in function calls. The final two examples are from engineering design 

and are nonlinear (non-convex) programs. Of the two engineering examples, the first 

one (Welded Beam Design) considers objective robustness and the second (Heat 

Exchanger Design) considers feasibility robustness.  All optimization problems 

correspond to minimizing a single objective function with a set of constraints. 

Problems labeled as “self” have been designed by the author to use as test problems 

(Siddiqui et al., 2011a); detailed formulations as well as further characteristics of the 

solution are in Appendix A. Solutions were checked by a simple uniform 

discretization of the uncertainty range (each point separated by 0.01) to see if any of 
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the constraints were violated under uncertainty.  Tolerance (tol) was set to 0.00001 

for all examples. 

3.4.1. Numerical Example (Example 1) to Show Methodology Step-by-

Step 

A simple numerical example is presented to show how Benders algorithm is modified 

to obtain robust solutions using heuristic Algorithm 3.2. In the following robust 

problem, uncertainty is only in the constraint (without loss of generality). 
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                                               (3.21) 

The robust solution to this problem (verified as unique algebraically) is 

45.0,45.0 21  xx with the globally interval-optimal value 1.0ˆ x . Since the 

constraint functions are linear, hence quasiconvex within the uncertainty interval, 

reformulate as in (3.11) to have uncertainty variables only have endpoint values. 
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 Proceed according to the modified Benders method described in Section 3.3.2.  
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Step 1: The master problem is the following: 

                  

1000

1ˆ0
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ˆ,
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
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x

x

                                                                             (3.23) 

The upper bound on   is chosen to be large enough to not interfere with given the 

form of (3.22). Solving the above problem gives 1000  and x̂  = -0.1.  Here 
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                                        (3.24) 

 

Step 2: Fix x̂  and then solve the following subproblem:  
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                                       (3.25)

 

This gives: .55.0,55.0 21  xx  

 

Step 3: Check for convergence with 995.999005.01000  lowup zz  where 

    22
6.055.06.055.0 lowz  and upz . Since this is not good enough for 
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convergence when compared with the preselected tolerance, a modified (robust) 

Benders cut is added.  

 

Step 4: Add the following robust Benders cut. 

   



 ))1.0(ˆ(

)1.0(1.0

005.01000
005.0 x

                                
(3.26) 

 

Step 1 (returned): Solve the following master problem after adding the robust Benders 

cut: 
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                                (3.27)

 

Solving the above problem gives 1000  and x̂  = 0.1.  Then go back to Step 2 and 

solve the subproblem with x̂  = 0.1 fixed. A new modified Benders cut will now be 

added. 

 

 The following graph (Figure 3.4) shows what happens when this cut is added. 

The standard Benders decomposition method would have taken a cut that would have 

forced x̂  = -0.1 and that would have given the constraint with the dashed line. 

However, the robust Benders cut generates the cut signified by the dotted line, which 

is in fact the constraint that forms the border of the robust feasible region.  
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Figure 3.4: Adding a modified (Robust) Benders Cut 

 

 

The algorithm proceeds in this manner until convergence. Table 3.2 summarizes these 

results. 

 

Table 3.2: Solution Steps for Modified Benders Approach 

Iteration x̂   x1 x2 zlow zup 

1 -0.1 0.55 0.55 0.005 1000 

2 0.1 0.45 0.45 0.045 1000 

3 0.1 0.45 0.45 0.045 0.045 
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This simple problem was solved in three iterations. The final row corresponds 

to the globally-optimal robust solution, which can be verified algebraically to be 

globally robust optimal. The details are shown in the following table (Table 3.3). 

 

Table 3.3: Detailed Solution for Simple Problem 

Information Nominal Solution Robust Solution 

x1 0.5 0.45 

x2 0.5 0.45 

f (x) 0.02 0.045 

Function Calls 5 11 

 

 

3.4.2. Numerical Results 

Table 3.4 describes the results obtained from the numerical test problems. The first 

two examples have only uncertainty in the parameters while the rest have uncertainty 

in the parameters and the decision variables.  

The same test problems were solved using Li et al.‟s (Li et al., 2006) method 

for robust optimization and the results are displayed in Table 3.4. Not only does Li et 

al.‟s (Li et al., 2006) method use a lot of function calls, but often the robust function 

value is higher than the modified Benders value. Once the number of function calls 

exceeded 10
9
, the run was stopped. These solutions have not been reported in Table 

3.4 as well as in the rest of the chapter as they were infeasible in the solver (which 

can imply that the problem was too computationally intensive for the solver).  
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Table 3.4: Description of Test Problems 

Source Determ. 

Optimal 

Function 

Value 

Robust 

Optimal 

Function 

Value 

Li et al. 

(2006) 

Function 

Value 

# of 

Function 

Calls 

(Determ.) 

# of 

Function 

Calls 

(Robust) 

Li et al. 

(2006) 

Function 

Calls 

Example 1 

(Self) 

0.02 0.045 0.045 5 11 540 

Example 2 

(Self) 

9.02 9.145 9.268 7 19 2,592 

Example 3 

(Self) 

9.02 9.145 9.268 7 21 2,808 

Example 4 

(Self) 

9.77 9.885 9.920 7 21 

 

2,916 

Example 5 

(Self) 

-23.00 -21.50 -20.75 5 17 7,856 

Example 6 

(Self) 

-31.21 -29.79 -28.36 5 17 11,099 

Hock 100 

(Hock, 

1980) 

680.6 692.4 - 7 19 >10
9 

Hock 106 

(Hock, 

1980) 

7049 7219 - 5 17 >10
9
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3.5. Engineering Design and Other Applications 

3.5.1. Fleury’s Weight Minimization 

This is a modified example from the literature (Groenwold & Etman, 2010) so that 

interval uncertainty is present in all the decision variables. This example supports the 

approach for feasibility robustness as well as corroborates the fact that the modified 

Benders method is able to tackle problems with large number of variables and 

constraints without being computationally expensive. For N variables, the problem is 

as follows: 
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 The modified Benders method solved this problem with the results shown in 

Table 3.5 for N = 10
2
, 10

3
, 10

4
, and 10

5
. Note that the number of function calls 

increases linearly with the complexity of the problem. N represents the number of 

variables in the problem and all of them have uncertainty. Again, this example was 

compared to (Li et al., 2006) as shown in Table 3.5. However, the results for (Li et 

al., 2006) are not reported as the problem was stopped after a certain number of 

function calls given in Table 3.5. Here, Li et al.‟s (Li et al., 2006) method could, 

conceptually, solve this problem but would have taken a lot of computation time. 
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However, the modified Benders method solved all cases and produced only a linear 

increase in computational effort.  

Table 3.5: Results for Fleury’s Weight Minimization Like Problem 

Number of Variables N = 10
2 

N = 10
3
 N = 10

4
 N = 10

5
 

Tolerance 10
-6 

10
-8

 10
-10

 10
-12

 

x1 to x0.95N (Determ.) 1 1 1 1 

x1 to x0.95N (Robust) 1.1556 1.1556 1.1556 1.1556 

x0.95N+1 to xN (Determ.) 10
-2

 10
-3

 10
-4

 10
-5

 

x0.95N+1 to xN (Robust) 0.1+10
-2

 0.1+10
-3

 0.1+10
-4

 0.1+10
-5

 

Function Value (Determ.) 95.00005 950.0005 9500.005 95000.05 

Function Value (Robust) 110.2820 1102.820 11028.20 110282.0 

Function Calls (Determ.) 506 2.0 × 10
3
 2.0 × 10

4
 2.0 × 10

5
 

Function Calls (Robust) 744 2.3 × 10
4
 1.9 × 10

5
 1.9 × 10

6
 

Fn. Calls (Li et al., 2006) >10
9 >10

9 >10
12 >10

12 

 

 

3.5.2. Design of a Welded Beam 

This example is a well-known welded beam problem from (Ragsdell & Phillips, 

1976).  In this problem, a beam A is to be welded to a rigid support member B. The 

beam has a rectangular cross-section and is to be made out of steel. The beam is 

designed to support a force F = 6000 LBF acting at the tip of the beam, and there are 

constraints on the shear stress, normal stress, deflection, and buckling load on the 

beam. The problem has four continuous design variables, and they are: thickness of 

the weld (h), length of the weld (l), thickness of the beam (t), and width of the beam 
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(b). All variables are in inches. The objective of the problem is to minimize the total 

cost f(x) of making such an assembly.  For complete formulation of the robust 

optimization problem including specific values of the parameters, please refer to 

(Gunawan & Azarm, 2004). Figure 3.5 shows the structure of the beam. 

 

Figure 3.5: Design of a Welded Beam (Gunawan & Azarm, 2004) 

The following is the formulation for the welded beam as outlined in (Gunawan & 

Azarm, 2004). The objective function is given by 

)()1(min 4

2

3cost lLtbclhcf                                         (3.29) 

The constraints and other equations are described below. 
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where  

c3 = cost of weld material ($0.1047/inch
3
) 

c4 = cost of weld material ($0.0481/inch
3
) 

η = maximum shear stress in weld (psi) 

ηd = allowable shear stress in weld (13,600 psi) 

ζ = maximum normal stress in beam (psi) 

ζd = allowable normal stress in beam (30,000 psi) 

δ = deflection at beam end (inch) 

Pc = allowable buckling load (LBF) 

L = Length of unwelded beam (14 inch) 

G = 12 × 10
6
 psi 

E = 30 × 10
6
 psi 

The following equations are used to calculate the above variables. 
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 The solution from the modified Benders method is different from (Gunawan 

& Azarm, 2004). First, the modified Benders method‟s nominal solution is closer to 

an actual solution from an earlier paper by (Ragsdell & Phillips, 1976) who provided 

an optimal objective function value  of  f = 2.38 while (Gunawan & Azarm, 2004) 

provided  f = 2.39. Second, the robust solution is also lower in function value but still 

feasible. The robust solution is also feasible for all realizations of uncertainty, hence 

it is better than (Gunawan & Azarm, 2004) reported solution.  

 This example highlights the strength of the modified Benders method over 

previous methods. Gunawan and Azarm‟s (Gunawan & Azarm, 2004) method 

involves a backward mapping approach, which is known to omit solutions. The 

modified Benders method, while giving a better solution (lower in function value), is 

also computationally less expensive. The solution from the modified Benders method 
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was checked for robustness using a genetic algorithm. The solution is displayed in 

Table 3.6. 

Table 3.6: Results of Welded Beam Example 

Info Gunawan and 

Azarm (2004) 

Nominal Sol. 

Modified 

Benders 

Nominal Sol. 

Gunawan and 

Azarm (2004) 

Robust Sol. 

Modified 

Benders Robust 

Sol. 

h 0.241 0.2444 0.246 0.2392 

l 6.158 6.2186 5.461 5.6753 

t 8.5 8.2915 9.138 9.1225 

b 0.243 0.2444 0.248 0.2392 

f(x) 2.39 2.3807 2.48 2.4236 

Function 

Calls 

N/A 8 250 38 

 

3.5.3. Heat Exchanger Design 

The energy balance on a heat exchanger can be written as 

)()()()( 1221 cccphhhpm TTmcTTmcTUAFQ               (3.37) 

Several equations govern the above heat transfer. The above equation (3.37) will be 

used as an objective function that is to be maximized, as well as constraints that 

restrict the structure, in particular constraints on the pressure drop on the tube side 

( tp ) and shell side ( sp ). Subscript 1 denotes the fluid entering while subscript 2 

denotes it leaving; c denotes the cold fluid and h the hot fluid. In this example, cold 
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water is in the tubes and hot water is on the shell side and the problem has been set up 

in a counterflow arrangement for a 124 tubes and two-pass heat exchanger. The 

following lists the important variables and parameters considered in this design. 

 
Symbol Units Description Value 

cp J/(kg K) Specific heat at constant pressure Variable 

d0 m Tube outside diameter Variable 

f  Tube flow friction factor Variable 

fs  Friction factor shell side Variable 

h0 W/(m
2
 K) Heat-transfer coefficient outside tube Variable 

hi W/(m
2
 K) Heat-transfer coefficient inside tube Variable 

k W/(m K) Thermal conductivity of fluids Variable 

Δps Pa Shell-side pressure drop Variable 

Δpt Pa Tube-side pressure drop Variable 

ut M/s Mean axial velocity of fluid in tube  Variable 

A0 m
2 

Tube outside surface area per pass Variable 

Ai m
2
 Tube inside surface  Variable 

As m
2
 Cross-flow area at or near shell centerline Variable 

At m
2
 Total cross-sectional area of tubes per pass Variable 

B m Baffle spacing 0.5 

C m Clearance between adjacent tubes Variable 

CL  Tube layout constant 1 (for 90
0
) 

CTP  Tube count calculation constant 0.90 

De m Equivalent diameter of shell Variable 

F  LMTD correction factor  Variable 

L m Tube length Variable 

Nb  Number of Baffles (Integer = B/L) 4 

NT  Number of Tubes 124 

Np  Number of Tube passes 2 

PP W Pumping power of fluid in tubes Variable 

Pr  Prandtl Number Variable 

Q W Heat-transfer rate Variable 

Rfo (m
2
 K)/W Fouling resistance on outside of tube 0.00015 

Rfi (m
2
 K)/W Fouling resistance on inside of tube 0.00015 

Reb  Reynolds number at Tb Variable 

Res  Shell-side Reynolds number at Tb Variable 

ΔTm K LMTD Variable 

Th2 K Outlet temperature of hot fluid Variable 

Tc2 K Outlet temperature of cold fluid 315 

Tb K Bulk temperature Variable 

Tw K Wall temperature Variable 

U W/(m
2
 K) Average overall heat transfer coefficient based on A Variable 

θs  Viscosity correction factor Variable 

μ kg/(s m) Dynamic Viscosity Variable 

μb kg/(s m) Dynamic Viscosity at Tb Variable 

μw kg/(s m) Dynamic Viscosity at Tw Variable 

ρ kg/m
3 

Density Variable 
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The following equations are the ones coded into MATLAB and are selected from the 

whole formulation to provide further insight. For the complete formulation and all 

equations used, please refer to (Magrab et al., 2004). 
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Table 3.7 lists the design variables and parameters with uncertainty.   
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Table 3.7: Design Variables and Parameters with Uncertainty 

Symbol Unit Description Uncertainty 

di m Tube inside diameter (Variable) di  ±  0.001 

mt kg/s Tube-side mass flow rate (Variable) mt  ±  1 

ms kg/s Shell-side mass flow rate (Variable) ms  ± 1 

Ds m Shell inside diameter (Variable) Ds  ±  0.01 

PT m Pitch size (Variable) PT  ±  0.01 

Th1 K Inlet temperature of hot fluid 65 ±  1 

Tc1 K Inlet temperature of cold fluid 18 ±  1 

ktube W/(m K) Thermal conductivity of tubes 60 ±  1 

 

 
Figure 3.6: Heat Exchanger Schematic (Magrab et al., 2004) 

   

The optimization problem is the following: 
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The following table shows the results. 

 

Table 3.8: Results for Heat Exchanger Design 

Variables Nominal Solution Robust Solution 

Q 1006.77 906.09 

di 0.0160 0.0149 

mt 10 9 

ms 14 14 

Ds 0.3900 0.3900 

PT 0.0240 0.0311 

Function Calls 49 984 

 

 The thing to note about this example is that with less than an average of 1% 

uncertainty, the objective function value decreases by almost 10%. Hence, in the 

design of any model, it is important to consider the uncertainty in the problem, which 
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can lead to different designs as well. This problem was also tried with Li et al.‟s 

(2006) method however after 10
9
 function calls without convergence, the approach 

was stopped. 

 For completeness, Table 3.9 displays actual computational time for each test 

problem as well. 

Table 3.9: Number of Iterations and CPU Time to Solve Problems 

Test  

Problem 

Number of  

Iterations 

CPU (2.0 GHz, 4GB RAM)  

Time (s) 

Example 1 3 0.560 

Example 2 3 0.787 

Example 3 3 1.654 

Example 4 3 1.435 

Example 5 3 3.821 

Example 6 3 3.494 

Hock 100 4 30.552 

Hock 106 4 25.645 

Fleury (N=10
2
) 6 9.328 

Fleury (N=10
3
)  9 324.532 

Fleury (N=10
4
) 12 886.321 

Fleury (N=10
5
) 15 2123.453 

Welded Beam 4 1.606 

Heat Exchanger 6 45.234 
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3.5.4. Building Energy Intensive Infrastructure 

This example takes a problem of a decision maker to decide whether to build energy 

intensive infrastructure at intensity H when there is uncertainty in future carbon tax 

and retrofit cost. This example is a modified version of the formulation from the 

paper (Strand et al., 2011). Investments in large, long-lasting, energy-intensive 

infrastructure that use fossil fuels increase longer-term energy use and greenhouse gas 

emissions, unless the plant is shut down early or undergoes costly retrofit later. These 

investments will depend on expectations of retrofit costs and future energy costs, 

including energy cost increases from tighter controls on carbon emissions.  

 Consider a decision maker in a world with two periods. Infrastructure 

investment is made at the start of period 1, and can be “retrofitted” at the start of 

period 2.
 
As long as it is operated and not retrofitted, a given infrastructure gives rise 

to a given energy consumption per unit of time, determined at the time of initial 

investment. Energy supply costs and environmental/climate-related costs are 

uncertain at the time of establishment in period 1, but are revealed at the start of 

period 2. Assume both periods have the same length, and there is no discounting 

within the periods. The problem of a decision maker is given by 

HtHUHrHt

HH

ts

HrHtHUHtHU
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21
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                 (3.45) 

 Here, U(H) is the utility of the decision maker when selecting an energy 

investment intensity H. The costs (carbon tax, for example) in the first period for this 
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energy are t1 and in the second period are t2. The ratio α is the amount of energy 

investment that is retrofitted, and r is the cost of that retrofit. In (3.45), the decision 

maker aims to maximize utility in the two periods (without any discounting). 

 As in (Strand et al., 2011), the uncertainty is present in the values of t2 and r. 

The last constraint in the above formulation makes sure that the cost for retrofitting 

and paying carbon tax in the second period is below the excess utility achieved in the 

first period. For the numerical study, the following parameters were chosen. 

 U(H) = 8H – H
2
 

 H
max

 = 4 

 t1 = 1 

  222 4,4 ttt   

  5.6,5.5r  

 Note that in this first case, we have assumed that t2 has uncertainty of 

magnitude Δ t2 while uncertainty in retrofit cost r is given as above. The goal is to see 

what happens as this uncertainty range is increased. The robust optimization problem 

to solve is 

 
 5.6,5.5~
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The modified Benders method is applied to solve this problem. Table 3.10 shows 

what happens to energy intensity H and selection of retrofit vs. not retrofit as Δt2 

increases. 

Table 3.10: Results for Increasing Uncertainty in t2 

Value of Δt2 Energy Intensity (H) Retrofit? (Value of α) 

0 3 No (α = 0) 

1 2 No (α = 0) 

2 1 No (α = 0) 

3 0.5 Yes (α = 1) 

4 0.5 Yes (α = 1) 

 

 Note that with increasing uncertainty, the decision maker chooses less energy 

intensive infrastructure. This is at odds with the probability-based analysis done in 

(Strand et al., 2011). Since (Strand et al., 2011) assumed probability distributions for 

t2 and r, an increase in uncertainty meant a good chance that t2 would offer a low tax 

in the future as well. Hence, an increase in uncertainty brought an increase in energy 

intensive investment. One of the main reasons this answer is different is that robust 

optimization considers a worst-case analysis. Hence, with increasing uncertainty, the 

extremely risk-averse robust optimizer chooses a progressively safer option, to avoid 

any chance of not being able to afford retrofit or tax in the future. Hence, robust 

optimization gives us an alternative way to analyze this problem. 
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3.6. Summary 

This chapter presents an efficient robust optimization approach to solve problems that 

have parameters and/or decision variables with interval uncertainty. The proposed 

modified Benders method obtains robust optimal solutions to linear programming, 

quadratic programming, convex and non-convex programming problems. The 

approach is computationally tractable and is tested with 14 numerical and engineering 

examples with the most general being nonlinear (non-convex) objective function and 

nonlinear (non-convex) constraint robust optimization problems. The modified 

Benders method provides an approximate locally optimal robust solution to general 

nonlinear robust optimization problems, with a way to improve this approximation if 

desired.  

 The test examples show the strength of this method when compared to two 

previous approaches. Not only is the method computationally efficient, but also 

obtains better solutions when compared to these previous methods. The method is 

scalable, that is, number of function calls increases at most linearly with an increase 

in number of variables for the problems tested. 
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Chapter 4: Solving Mathematical Programs and 

Equilibrium Programs with Equilibrium Constraints 

4.1. Introduction 

This chapter describes a new algorithm to solve mathematical programs and 

equilibrium programs with equilibrium constraints. Numerical examples are provided 

in each case, along with a test of computational time with disjunctive constraints. An 

application of the method to a large-scale North American gas market model is also 

provided.  

 The motivation behind developing an algorithm for MPECs was to find an 

alternative to traditional techniques, in particular disjunctive constraints. This was 

necessitated by the need to solve large-scale MPECs representing natural gas markets. 

A North American gas model was developed from the larger World Gas Model  

(Gabriel et al., 2011c). Various techniques
21

 were employed to solve this North 

American gas model, but the only successful one was the application of Algorithm 

4.1 presented later in this chapter.  

 Hence, for this research thrust, the application drove the theory. In this 

chapter, the current state of the theory is presented. As these ideas are still being 

                                                 

 
21

 The fine tuning of solvers was needed to be able to solve the North American gas model. In 

particular, the SBB solver (GAMS, 2010) was used in conjunction with CONOPT (GAMS, 2010). The 

iteration limits for the first search of SBB needed to be increased. For particular sections of the branch 

and bound tree, a breadth-first approach was employed.  
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developed, there is great room for further development, including the EPEC solution 

techniques. 

 The chapter starts with a general theory of the new MPEC and EPEC 

technique followed by examples. Finally, an application of the technique is presented 

for the North American gas market model. A portion of this chapter has been 

presented in (Siddiqui & Gabriel, 2011b) and (Gabriel et al., 2011c). 

4.2. Solving Mathematical Programs with Equilibrium Constraints  

4.2.1. Changing the Formulation of the Lower-Level Problem 

Recall that approximating 

0),( yxgyT                                                                         (4.1) 

was one of the hurdles in solving MPECs. If g is a linear term, approximating the left-

hand side of (4.1) often involves specialized techniques, one of which happens to be 

Schur‟s decomposition followed with an approximation by linear functions (Gabriel 

et al., 2006). Moreover, results in this dissertation corroborate this fact by using the 

same idea for a vector-valued linear function g if linear constraints are included. First, 

using Schur‟s decomposition, vectors u and v (dependent on x and y) are used to 

rewrite the original MPEC (2.7) as 
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Now, the optimization problem does not contain any bilinear terms. In fact 

0 vvuu TT                                                                         (4.3) 

can be readily approximated using SOS type 2 (Beale, 1975)
22

 variables to create a 

piecewise-linear function. However, realizing that the complementarity conditions 

force 0y  and 0),( yxg , shows that only the positive square root of u
2
 will give a 

feasible solution to the problem. Hence, (4.2) can be reformulated as (4.4) below 
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The next theorem shows that the solution sets to (2.5), (2.16), and (4.4) are the same. 

 

                                                 

 
22

 Special ordered sets of type 2 (SOS type 2) variables are defined as a set of positive variables of 

which at most two can be non-zero, and if two are non-zero then they need to be next to each other. 
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Theorem 4.1. Let the solution set to formulation (2.5) be given by S1, the solution 

set to formulation (2.16) be given by S2 and the solution set to formulation (4.4) 

be given by S3. Then, given a large enough value
23

 of K, S1 = S2 = S3. 

Proof. Realize that all three formulations (2.5), (2.16), and (4.4) have the same 

objective function. Hence, it is sufficient to show that all three formulations have the 

same feasible region. Hence, assume that S1, S2, S3 represent the feasible regions of 

formulation (2.5), (2.16), and (4.4), respectively. We will show these feasible regions 

are equivalent by showing 1321 SSSS  . The subscript i will denote vector 

element computation.  

 Pick a point 1

11 ),( Syx  . We want to show that there exists a value of r such 

that 2

11 ),( Syx  . Then, for all i, either 01 iy , or 0),( 11 yxgi  or both. Suppose 

01 iy . Then, in formulation (2.16), let ri = 1, which implies 01 iy  in formulation 

(2.16) as well. If 0),( 11 yxgi , then choose ri = 0, which implies 0),( 11 yxgi in 

formulation (2.16) as well. If both are zero, choose ri = 1 (or ri = 0), which will ensure 

that 01 iy and that 0),( 11 yxgi is within the feasible region of (2.16). Since K is 

chosen to be large enough, these arguments imply that the solution set to (2.5) is 

contained in the solution set to (2.16), i.e., 21 SS  .  

 Next, pick   yn
Sryx 1,0),,( 2

222  which is a solution to (2.16). Consider any 

vector element i. Suppose that 02 ir . This implies 0),( 22 yxgi , which implies 

                                                 

 
23

 So that Disjunctive Constraints provides the same solution set as (2.16). 
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2
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y
v  . Hence, this implies 022  ii vu , and in particular 022  ii vu . 
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2
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Hence, this case also implies that 022  ii vu . Therefore, 3

22 ),( Syx   and 32 SS  . 

 Now pick any solution 3

33 ),( Syx  . For this solution 033  ii vu for each i. 

Hence, this implies     0
2

323  ii vu  and, in particular     0
2323
 ii vu . Then, the 

following argument shows that 13 SS  . 
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Hence, S1, S2, and S3 are subsets of each other so they are equivalent.■ 

 

4.2.2. Approximating The Absolute Value Function Using Special 

Ordered Sets of Type 1 Variables 

The previous proof shows that using the absolute value function can be a substitute 

for using disjunctive constraints. However, the absolute value function is also a 

nonlinear function which can provide computational difficulty to optimization solvers 

(Steffensen & Ulbrich, 2010). Hence, a reformulation is required. 
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 The absolute value can be reformulated as in (4.5) using Special ordered sets 

of type 1 (SOS1) variables (Beale & Tomlin, 1970). SOS1 variables are defined as 

sets of non-negative variables of which at most one can be non-zero.  
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Lemma 4.1. Let S4 be the solution set to (4.5). The solution sets to formulation 

(4.5) and formulation (4.4), S4 and S3 respectively, are equivalent. That is, S4 = 

S3. 

Proof. Again, since the objective functions for both formulations are the same, it is 

sufficient to show that both formulations have the same feasible region. Hence, 

assume that S4 and S3 represent the feasible regions of formulation (4.5) and (4.4), 

respectively. Set vvv   . Then, for all i, either   0

iv , or   0

iv  or both 

because    ii vv  ,  is a set of SOS1 variables where at most one can be nonzero. This 

implies that vvv  
 (componentwise absolute value). Hence, we can substitute v 

in for  vv  in formulation (9) and v   for   vv  in formulation (4.5) to get 

formulation (4.4). The substitution the other way works as well, hence S4 = S3. ■ 
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4.2.3. Approximating Absolute Value Function Using a Penalty Method 

The SOS1 approach at times can numerically fail for more complex problems, as 

SOS1 variables also require binary variables to be formulated within the solver 

(GAMS, 2010). For example, the North American Gas model could not be solved 

using the SOS1 formulation and instead required a better starting point as described 

in Section 4.4. The North American Gas model was eventually solved using 

Algorithm 4.1 described in Section 4.2.4. Several other alternatives were explored to 

approximate this absolute value function. In particular, Steffensen and Ulbrich 

(Steffensen & Ulbrich, 2010) provide a smooth function approximation to the 

absolute value function. However, their methodology did not work when applied to 

the example (U.S. version of the World Gas Model (Gabriel et al., 2011c)) in this 

chapter. An alternative way to approximate the absolute value function is the penalty 

method (Bazaraa et al., 1993), which works well for finding solutions to MPECs.   
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Theorem 4.2. Assume that the Karush-Kuhn-Tucker conditions are both 

necessary and sufficient for the optimization problem (4.6). If formulation (4.5) 
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has a solution, then for any Li > 0 and for each i, at most one of (v
+
)i and (v

-
)i is 

nonzero in formulation (4.6).  

 

Proof. We will show this by contradiction. Suppose that there exists a Li > 0 such that 

a solution to (4.6) gives an index i where both   0

iv   and   0

iv . Let the 

following be the slightly altered form of (4.6) considered where the Lagrange 

multipliers are included in parentheses and {(x, y) s.t. C(x, y) < 0} defines the set of 

constraints that define Ω.  
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 Then, taking the first-order Karush-Kuhn-Tucker conditions (Bazaraa et al., 

1993), respectively, for  iv  and  iv  gives     054 
iiiL   and 

    054 
iiiL   since both   0

iv   and   0

iv . Together these two 

conditions imply   05 
i

  and  
iiL 4 . This implies that the Lagrangian (Λ) can 

equivalently be expressed as 



 

 

 

99 

 

 

.
2

),(
)()(

2

),(
)()()),(()(

)()(),()()()(),(

543

214

,1








 








 














yxgy
vv

yxgy
vvyxg

yyxCvvvvLyxf

TTT

TT

iii

n

ijj

jjj

y





 

 Realizing that 4  now appears in two terms, we can factor this out and realize 

that the following optimization problem will give the same solution as formulation 

(4.7) above.  
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                          (4.8) 

But since Li > 0, this implies   04 
i

  and since the above formulation satisfies 

necessary and sufficient
24

 conditions for the Karush-Kuhn-Tucker conditions, 

formulation (4.8) indicates that 0
2

),(


 yxgy ii . Since both y and g are constrained 

                                                 

 
24

 Necessary conditions are needed to go from formulation (4.7) to the Karush-Kuhn-Tucker conditions 

and sufficient conditions to go from Karush-Kuhn-Tucker conditions of (4.7) to optimization 

formulation (4.8). Also, it can be argued that the constraint associated with  
i4  need not be an 

equality constraint. Hence, we include the fact that   04 
i

  to ensure that we get equality for the 

associated constraint. 



 

 

 

100 

 

to be nonzero, this implies that     0 

ii vv  for the index i in (4.7). This is a 

contradiction. Hence, for all Li > 0, the formulation (4.6) gives a solution where for 

each i, at most one of (v
+
)i and (v

-
)i is nonzero.■ 

  

 From this point on, L = max{Li} will be the constant for each variation of 

(4.6). The value of the constant L should be chosen to be small enough so it does not 

interfere with the solution. It is not known at this time if there always exists a value of 

L for which an exact solution is achieved but numerical results suggest there are 

multiple values of L for which a solution to the MPEC can be obtained. By Theorem 

4.2 for all positive L, (4.6) provides a solution that is always a feasible solution to 

(4.5) but not necessarily optimal for large values of L. Therefore, L can be chosen to 

be machine epsilon
25

. Numerical results validate that as L approaches zero, the 

optimal objective function value of (4.6) approaches the optimal objective function 

value of (2.5). At times, solvers will fail to solve MPECs by finding an infeasible 

solution where there exists an i, for which both of (v
+
)i and (v

-
)i are nonzero. An 

alternative to this is provided by the following (heuristic) Algorithm 1.  

4.2.4. Algorithm 4.1 to Solve Mathematical Programs with Equilibrium 

Constraints 

 

Step 0: Pick a tolerance t. 

                                                 

 
25

 Machine epsilon is defined as the smallest positive number specific to the computer, in this case 10
-

17
.  
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Step 1: Solve the problem using the penalty method formulation (4.6) with L 

 =t. 

 

Step 2: Check for any pairs of variables v
+
 and v

-
 that are both non-zero. If 

 yes, go to Step 3.  If not, skip to Step 6. 

 

Step 3: Reformulate those particular variables as SOS1 variables as in 

 formulation (4.5). 

 

 Step 4: Solve the problem again using the solution from Step 1 as an initial 

  starting point. 

 

 Step 5: Go to Step 2. 

 

Step 6: Check solution by changing value of L in formulation. Decrease L  

 until value for objective function stays the same. Then stop. 

 

4.2.5. Numerical Results 

Consider the following sample MPEC where three firms compete to sell natural gas 

in the market. Assume linear demand and a quadratic cost function. This MPEC is 

modeled as a Stackelberg game (Gibbons, 1996), where the firms choose quantities to 

produce. In this context, a Stackelberg game is relevant under the assumption that a 
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shale gas producing firm can exert market power in the North American natural gas 

market. This assumption can be interpreted in various ways. One way is that other 

players wait for the shale producing firm to make its production decision before 

deciding on their own production values. Another interpretation is that the shale 

producing firm can influence market dynamics so that the other players become 

reactionary. The Stackelberg leader, “Shale Firm,” has market power and gets to 

move first while the other two firms are followers.  
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Table 4.1: Definition of terms for simple example 

Parameters Shale Firm Firm 1 Firm 2 

Intercept and Slope of Linear Demand a,b a,b a,b 

Marginal cost C c1 c2 

Positive Constants Used to Replace 

Complementarities by Disjunctive Constraints 

N/A K1 K2 

 

Variables Shale Firm Firm 1 Firm 2 

Quantity Natural Gas Sold
26

 Q q1 q2 

Binary Variables  Used to Replace 

Complementarities by Disjunctive Constraints 

N/A r1 r2 

 

Outputs Shale Firm Firm 1 Firm 2 

Market Price
27

 P P P 

Profits ProfitShale Profit1 Profit2 

  

 Shale Firm solves a constrained maximization problem where it maximizes its 

own profits. This is the upper-level problem: 

   CQQQqqba
Q




21
0

max                                                 (4.9) 

 

                                                 

 
26

 These quantities are constrained to be nonnegative.  

27
 We assume a linear demand with P = a – b(q1 + q2 + Q). 
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 The firms i = 1,2 at the lower-level solves the following  problem where they 

take quantity Q as given and try to maximize profits while in Nash-Cournot 

competition with  the other Stackelberg follower firm j. 

   iiiji
q

qcqQqqba
i


0

max                                     (4.10)          

 This lower-level Nash-Cournot game can be expressed as a (linear) 

complementarity problem
 
given as follows: 

020
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2122

1211
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

qbQbqbqca

qbQbqbqca
                          (4.11) 

 To solve the problem using disjunctive constraints, the KKT conditions are 

added to the constraint set in (4.9) to form one overall problem. By having 

sufficiently large positive constants K1 and K2, the complementarity problem (4.11) is 

reformulated as follows: 

)1(0

20

)1(0

20

222

22122
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rKq

rKbQbqbqca

rKq

rKbQbqbqca









                           (4.12) 

where r1 are r2 are binary variables. Let K1 = K2 be the maximum of the x-intercept, y-

intercept of the demand function, and the capacity restrictions, i.e. K1 = K2 = max 

{a/b, a}. This provided a lower bound on K1 and K2 so that there isn‟t a computational 

error (Gabriel & Leuthold, 2010). 

 Finally, replacing the original complementarity problem with the disjunctive 

constraints and combining with the upper-level problem, the following mixed-integer 

nonlinear program formulation is expressed in disjunctive form: 
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   

 1,0,

)1(0
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qqQ

                             (4.13) 

 The goal is to use (4.13) as a benchmark for comparison to the proposed 

method. Using (4.9) to (4.11), the MPEC under consideration is reformulated to 

demonstrate the SOS1 and penalty methods. 
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 Now, for i = 1, 2, iiii vuqz  where 
2

ii
i

zq
u


 and 

2

ii
i

zq
v


 by Schur‟s 

decomposition. So the eventual formulation using SOS type 1 variables is: 
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Similarly, the formulation for the penalty method is given by  
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  

 variablesnegative-non are , where
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 The computational objective was to compare the results for the methods of 

disjunctive constraints (4.13), SOS1 variables (4.15) and the penalty method (4.16). 

This was accomplished using GAMS (GAMS, 2010) with CONOPT being used as 

the nonlinear solver and SBB the mixed integer nonlinear solver.  

 The capacity constraints for production quantities are omitted for this first 

example, i.e., maximum production is only limited by rising costs. The following 

Table 4.2 shows the datasets used: 
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Table 4.2: Different Datasets to Compare (4.13), (4.15), and (4.16) 

Dataset Parameters Dataset 1 Dataset 2 Dataset 3 

a 13 13 13 

b 1 0.1 0.1 

c1 = c2 = C 1 1 2 

 

 For the disjunctive constraints formulation (4.16), K1 = K2 = max {b/a , a} = 

13 consistent with (Gabriel & Leuthold, 2010) for all the datasets while for the 

penalty method approximation (4.16), two different values of L were chosen to show 

how a lower value of L gives a better answer as shown below in Table 4.3. 

 

Table 4.3: Different Cases to Compare Solutions to (4.16) 

 Case 1 Case 2 

Value of L 0.0001 1 

 

 The following Tables 4.4-4.6 report the results. The true answer
28

 can be 

easily verified algebraically as unique and is shown in the third column of the tables. 

Note that disjunctive constraints obtained the correct answer for Dataset 1, implying 

that a correct value of K was chosen. 

 

                                                 

 
28

 It is simple algebra to show that this is the unique solution since there are no constraints and all 

objective functions are quadratic. 
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Table 4.4: Results for Dataset 1 

Results Disj Cons True 

Answer 

SOS Case1 Case 2 

q1 = q2 2.000 2.000 2.000 2.000 1.833 

Q 6.000 6.000 6.000 6.000 6.500 

Price 3.000 3.000 3.000 3.000 2.833 

Profit shale 12.000 12.000 12.000 12.000 11.917 

Profit 1=2 4.000 4.000 4.000 4.000 3.361 

 

Table 4.5: Results for Dataset 2 

Results Disj Cons True 

Answer 

SOS Case1 Case 2 

q1 = q2 13.000 20.000 20.000 20.000 18.333 

Q 81.000 60.000 60.000 60.000 65.000 

Price 2.300 3.000 3.000 3.000 2.833 

Profit shale 105.300 120.000 120.000 120.000 119.167 

Profit 1=2 16.900 40.000 40.000 40.000 33.611 
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Table 4.6: Results for Dataset 3 

Results Disj Cons True 

Answer 

SOS Case1 Case 2 

q1 = q2 13.000 18.333 18.333 18.333 16.667 

Q 71.000 55.000 55.000 55.000 60.000 

Price 3.300 3.833 3.833 3.833 3.667 

Profit shale 92.300 100.833 100.833 100.833 100.00 

Profit 1=2 16.900 33.611 33.611 33.611 27.778 

 

 If the methodology to choose K as outlined in the literature (Gabriel & 

Leuthold, 2010) is used, disjunctive constraints do not provide the solutions in 

datasets 2 and 3
29

. These results point out a big weakness with disjunctive constraints 

that the solution can be very far from the true answer and the given solution can be 

extremely sensitive to the value of K if appropriate problem specific values are not 

selected. 

 Choosing the correct K can make the disjunctive constraint method (4.13) 

accurate. Choosing a correct L makes (4.16) accurate as well. The next set of 

numerical results were done with Dataset 3 with K =10000 and
30

 L = 10
-16

  where 

these values were reached after numerical and algebraic verification of the test 

problem. The test problem was changed so that now instead of two players at the 

                                                 

 
29

 The method in (Gabriel & Leuthold, 2010) gives a correct value of K whenever maximum 

production (capacity constraints for production) is included in the problem formulation. Our goal was 

to give a very simple counterexample where the disjunctive constraints approach didn‟t work. 

30
 This is machine-ε. 
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lower level, there were M players with similar costs and parameters. The number of 

players was increased to test the computation time taken for disjunctive constraints 

(4.13), SOS1 (4.15), and the penalty method (4.16). The results are shown in the 

following Figure 4.1. All methods were able to obtain the correct solutions. 

 

 

Figure 4.1: Computational Time for Solving Problem 

 

 Clearly, the disjunctive constraint method becomes extremely computationally 

expensive when number of players is increased. Note that the graphs for the penalty 

and SOS1 methods are overlapping. 
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4.3. Solving Equilibrium Programs with Equilibrium Constraints 

4.3.1. Extending Algorithm 4.1 to Equilibrium Programs with 

Equilibrium Constraints 

Note that a variation of the above formulation (4.6) can also be used to solve EPECs. 

An EPEC is defined as a game between N players at the top level where each top-

level player solves an optimization problem of the form of an MPEC. Hence, an 

EPEC with a common lower-level for each of the N upper-level players typical of 

Stackelberg leaders in energy production with the rest of the market represented by 

the lower-level problem is given by 
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 The formulation (4.17) with  0),(|),(  yxCyx  can be rewritten as  
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 By Theorem 4.2, choosing a positive L will ensure that the SOS1 constraints 

hold for each pair v
+

, v
-
 for each individual top-level player‟s optimization problem 
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and choosing a small enough L will ensure that the correct solution is achieved. 

Formulation (4.18) can then be solved as a Nash game among N players, and can be 

formulated as a complementarity problem by taking the Karush-Kuhn-Tucker 

conditions as in (4.19). 
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 Note that as described in detail in (Ehrenmann, 2004), (4.19) is not a square 

system. The reason for this is that the same set of lower-level variables are shared 

among all top-level players in the component MPECs of the EPEC. Hence, solutions 

to (4.19) cannot be computed using solvers in GAMS. Many workarounds are 

available for this (e.g. penalization methods (Ehrenmann, 2004)), and for the case of 

the specific EPEC considered in this chapter, we introduce a “balancing agent.” All 

lower-level variables and constraints that are common to all top-level player 

optimization problems are treated as separate variables for each top-level player. For 

example, the variables y above will be treated as separate variables yj for each of the 

top-level player MPECs. Then, (4.19) combined with the Karush-Kuhn-Tucker 
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conditions
31

 of (4.20) below will be a square system. The balancing agent solves the 

following problem 
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 A loose interpretation of the economic role of the balancing agent is the 

following. Without such an agent, Stackelberg leader j communicates with only the 

jth partition of the lower-level market, represented by yj. The balancing agent tries at 

minimal cost to couple the partitions into one integrated market, which is more 

realistic. The Karush-Kuhn-Tucker conditions of the above problem can then be 

added to (4.19) to ensure that the values of values of yj are the same. The following 

algorithm shows a method, then, to solve EPECs.  

4.3.2. Algorithm 4.2 to Solve Equilibrium Problems with Equilibrium 

Constraints (Heuristic)  

(Solving EPECs Using (4.19) and Karush-Kuhn-Tucker conditions of (4.20)) 

 

Step 0: Pick a tolerance t. 

 

                                                 

 
31

 Since (4.20) is a linear program, the Karush-Kuhn-Tucker conditions are both necessary and 

sufficient. 



 

 

 

115 

 

Step 1: Solve the problem using the formulation (4.19) with L =t and the KKT 

conditions to (4.20). 

 

Step 2: Check solution by changing value of L in formulation. Decrease L until 

value for  objective function stays the same. Check with setting L = 

machine-ε. Then stop. 

 

4.3.3. Numerical Results for Equilibrium Programs with Equilibrium 

Constraints 

A corresponding EPEC where two players are at the top-level can also be formulated 

and solved by extending the MPEC method above. The formulation for the bottom 

level remains the same, and for the upper level, there are now two producers who 

determine quantities Q1 and Q2 whose objective functions are given as 

    2,12121  jQCQQQqqba jjj                                               (4.21) 

 Using the same datasets, let
32

 C1 = C2 = C. Then, the EPEC can be formulated 

as 

                                                 

 
32

 This also works with other data, which was verified numerically as well. 
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 The constraints in (4.22) are the KKT conditions of the lower-level problem 

that have been reformulated as in (4.6). As described in Section 4.3.1, this problem 

can be expressed and solved as a complementarity problem using Algorithm 4.2 and 

adding a balancing agent:  
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 The following tables (4.7-4.9) give the solutions under different datasets and 

cases
33

. Simple algebra can show that there exists a solution, and hence a true answer 

is also given in the table. 

 

                                                 

 
33

 Many different cases with different costs were also solved successfully, but only the ones 

corresponding to the previous MPEC example are presented. Please refer to Section 4.2.5. 
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Table 4.7: Results for Dataset 1 

Results A Solution Case 1 Case 2 L = machine-ε 

q1 = q2 1.333 1.333 1.111 1.333 

Q1 = Q2 4.000 4.000 4.333 4.000 

Price 2.333 2.333 2.111 2.333 

Profit Top 5.333 5.333 4.815 5.333 

Profit 

Bottom 

1.778 1.778 1.235 1.778 
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Table 4.8: Results for Dataset 2 

Results A Solution Case 1 Case 2 L = machine-ε 

q1 = q2 13.333 13.333 11.111 13.333 

Q1 = Q2 40.000 40.000 43.333 40.000 

Price 2.333 2.333 2.111 2.333 

Profit Top
34

 53.333 53.333 48.148 53.333 

Profit Bottom 17.778 17.778 12.346 17.778 

 

Table 4.9: Results for Dataset 3 

Results A Solution Case 1 Case 2 L = machine-ε 

q1 = q2 12.222 12.222 10.000 12.222 

Q1 = Q2 36.667 36.667 40.000 36.667 

Price 3.222 3.222 3.000 3.222 

Profit Top 44.815 44.815 40.000 44.815 

Profit Bottom 14.938 14.938 10.000 14.938 

 

 Again, in all three datasets, the Case 2 choice of L could not give an optimal 

solution, i.e., Nash equilibria at the top and bottom. Hence, all these datasets required 

a very small choice of L. Choosing L = machine-ε is a good option. Note that the 

EPEC has an extra player when compared to the MPEC; hence profits for all firms 

are lower in the EPEC study. Moreover, prices are also lower in the EPEC case, as 

                                                 

 
34

 Due to the deliberate selection of similar data, the profits for both top-level players are the same. 

Hence, only one player‟s profit is reported as the second player‟s profits are the same.  
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expected with an extra Stackelberg leader with same marginal cost in the EPEC.  

These results can be seen when comparing Tables (4.4-4.6) with Tables (4.7-4.9). 

4.4. The North American Gas Model 

4.4.1. Introduction 

The advent of rising oil prices along with attitudes about decreasing greenhouse gas 

emissions in multiple sectors has lead to an interest in natural gas production for the 

future. The role of unconventional gas
35

, in particular, has greatly increased due to 

engineering advances such as hydraulic fracturing and horizontal drilling (NPC, 

2007). The projected role of shale gas in particular, especially in the United States but 

also elsewhere (Skagen, 2010) has lately been a major force in the increasing 

prominence of unconventional gas. In 2008, Cambridge Energy Research Associates 

indicated that this unconventional gas production could help delay by a decade the 

United States‟ need for substantial LNG imports (Economist, 2008). More recently, 

others gauge the U.S. shale gas impact in even more dramatic terms with estimates of 

up to 100 years of reserves. 
36

 Indeed, the Potential Gas Committee has concluded 

that the U.S. proved reserves of gas increased from 2006 to 2008 by a huge 35.4% 

from 1532.0 trillion cubic feet to 2074.1 (PGC, 2010). Others such as the petroleum 

                                                 

 
35

 Unconventional gas is defined as gas from tight sands, coalbed methane, and shale gas, and covers 

more low-permeability reservoirs that produce mostly natural gas (no associated hydrocarbon liquids) 

(NPC, 2007). 

36
 Keith O. Rattie, CEO of Questar, a natural gas and pipeline company, cited in “Awash in Fossil 

Fuels,” George F. Will, The Washington Post, November 22, 2009. 
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engineer Art Berman are more cautious about the ultimate supply due to the 

economics of producing shale gas (low gas prices in the U.S. recently) (Cohen, 2009) 

or steeper decline rates for shale wells (Steffy, 2009). Shale gas in the U.S. will be 

modeled using the World Gas Model (Gabriel et al., 2011c), restricted to North 

American nodes.  

 The World Gas Model
37

 (WGM) is a long-term, game theoretic model of 

global gas markets with representation of Cournot market power originally based on a 

North American version of the mode (Gabriel et al., 2005a), (Gabriel et al., 2005b) 

and eventually extended to a global version (Egging et al., 2009) for which the most 

recent version is (Gabriel et al., 2011c).  For the United States, the forecasts presented 

in the Annual Energy Outlook (April 2009 ARRA version) were used for the current 

study. For the rest of North America, the World Energy Outlook (IEA, 2008) was 

used.  The WGM was then extensively calibrated to match these multiple sources for 

all countries/aggregated countries and years considered (2005, 2010, 2015, 2020, 

2025, 2030).
38

  

 The most interesting change due to the presence of shale gas occurs in census 

region 7 (WGM node 7) where Haynesville and Barnett plays are present. This node 

                                                 

 
37

 National Science Foundation (DMS, Award #0106880), Principal Investigator ,S.A. Gabriel, 

“Computational Methods for Equilibrium Problems with Micro-Level Data,” 09/01/2001-08/31/2005 

and National Science Foundation (DMS, Award #0408943), Principal Investigator, S.A. Gabriel, 

“Methods and Models for Stochastic Energy Market Equilibria, “08/01/2004-07/31/2008. 

38
 See  (Gabriel et al., 2011c) for details on the countries and regions included as well as other relevant 

geographic or nodal information. 
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is used as a test example for the new MPEC solution technique. The formulation 

proposed is that the producer of shale at node 7 will be the first mover in the 

Stackelberg game (Gibbons, 1996). The entire lower level will be the World Gas 

Model restricted to North American nodes including other shale nodes. This 

formulation assumes that the shale producer at node 7 has market power over all other 

players. While there is some arbitrariness about this assumption, i.e. it might give the 

shale producer at node 7 too much market power, it nevertheless is an interesting 

market formulation to study because there is a chance for this scenario to play out in 

the future. Furthermore, this formulation can be used for bounding purposes when 

considering a wide variety of market dynamics. Other MPEC formulations might 

consider a trader, producer, or even the government at the upper-level. 

4.4.2. Shale Gas in the United States 

 The shale gas data were provided by the U.S. Department of Energy in the 

Annual Energy Outlook (2010) with shale gas production and Lower 48 onshore 

natural gas production datasets. 
39

  As compared to the version of the model from 

(Gabriel et al., 2011c), the World Gas Model was modified to contain three 

production nodes for each census region of the United States: conventional gas, shale 

gas, and non-shale unconventional gas.  

 A „Golombek‟ production cost function (Golombek & Gjelsvik, 1995)  

  (4.28)                            ln)(
2

1
)( 2


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 For a table relating the WGM nodes to the shale plays in the US, please refer to the Appendix. 
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was used for which the marginal supply cost curve is: 

                               (4.29)                                                    .ln' 






 


Q

qQ
qqC                               

 Here, Q is the production capacity, 0   is the minimum per unit cost, β > 0 

is the per unit linearly increasing cost term, and 0   is a term that induces high 

marginal costs when production is close to full capacity.  

 Skagen (Skagen, 2010) indicates that recent research has led to predicting a 

lower value of α for the cost function of shale gas when compared to conventional 

gas. Figure 4.2 shows that shale gas is now understood to have a lower price of 

extraction in the beginning.  
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Figure 4.2: A Marginal Cost Structure for Shale Gas (Skagen, 2010) 

 

  

 Alternatively, others believe that initial positive results from shale gas 

extraction wells might not be sustainable in the long run (Cohen, 2009). In particular, 

geologist Art Berman claims that decline rates will be much higher than expected, 
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and while shale appears to be a good resource right now, steep decline rates mean that 

higher extraction will lead to higher costs quickly (Cohen, 2009). 

 In the modification of the WGM, the shale gas cost curve has α (the y-

intercept of the marginal cost curve) lower and β (the slope of the marginal cost 

curve) higher than for conventional gas. The current debate about shale gas has been 

incorporated. While the lower initial cost of extraction is consistent with Skagen‟s 

observation, a higher marginal cost increase and higher marginal costs at higher 

quantities is consistent with Berman‟s claim that decline rates of shale wells will be 

higher. Hence, shale gas has a lower initial cost of extraction than conventional gas 

but a higher rate of increase for marginal cost.  It is important to note that this 

marginal cost curve for shale gas is by no means the final word but just one 

perspective developed for our modeling needs. 

 The other initial condition placed is that total production costs should be the 

same, so the integral of the marginal cost curve should be the same for both functions 

(conventional and shale gas).  This will ensure a positive production of both types of 

gas, which can be calibrated to real data. A comparison is provided with two other 

cases with higher total costs for shale production. Another reason why the total costs 

would be equal in the reference case is that producers drilling in the same region 

would encounter similar terrain, similar taxes, similar hurdles etc. Hence, α was 

reduced by 20% of the value of conventional gas based on Skagen (2010) and β was 

increased by an amount so that the integral of the marginal cost curve remains the 

same. An explanation of this is shown in Figure 4.3 below. Note that the values of γ 

are kept the same for shale and conventional gas, so Figure 4.3 only shows the linear 
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portion of the marginal cost curve. The production cost data for conventional and 

unconventional (non-shale) gas was obtained as described in (Gabriel et al., 2011c).  
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Figure 4.3: A Marginal Cost Structure for Shale Gas 

 

 

 The following table provides the coverage of states and shale basins in the 

world gas model. 
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Table 4.10: World Gas Model Nodes: Coverage of States and Shale Basins 

Shale Basin 

Name 
States 

WGM 

Nodes 

Mancos Utah             US_8 

Hilliard-

Baxter 
Mancos 

Wyoming Colorado           US_8 

Niobrara Colorado Nebraska Kansas         
US_4,  

US_8 

Cody Montana             US_8 

Mowry Wyoming             US_8 

Gammon Montana 
North 
Dakota 

South 
Dakota 

        
US_4,  
US_8 

Excello-

Mulky 
Kansas Oklahoma           

US_4,  

US_7 

New Albany Illinois Indiana Kentucky         
US_3,  

US_6 

Antrim Michigan Indiana Ohio         US_3 

Utica New York             US_2 

Marcellus New York Pennsylvania Ohio 
West 
Virginia 

Maryland Virginia  Tennessee 

US_2, 

US_3, 
US_5,  

US_6 

Devonian Ohio Kentucky 
West 

Virginia 
Virginia Tennessee Alabama Georgia 

US_3, 

US_5, 
US_6 

Chattanooga Kentucky Virginia Tennessee Alabama Georgia     
US_5, 

US_6 

Conasauga Alabama Georgia           
US_5, 
US_6 

Floyd-Neal Mississippi Alabama           US_6 

Fayetteville Arkansas             US_7 

Hayneville/ 

Bossier 
Louisiana Texas           US_7 

Woodford/ 

Caney 
Oklahoma             US_7 

Barnett Texas             US_7 

Pearsall Texas             US_7 

Woodford  Oklahoma Texas           US_7 

Barnett and 

Woodford 
New Mexico Texas           

US_7, 

US_8 

Bend Texas             US_7 

Pierre New Mexico Colorado           US_8 

Lewis New Mexico Colorado           US_8 

Hermosa Utah             US_8 

 

4.4.3. Scenario Results 

This section describes numerical examples to solve the WGM (North American nodes 

only) using the new MPEC approach outlined above. The point is to demonstrate that 
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even on large MPECs, this Algorithm 4.1 works well. Five different cases were run, 

which are described below. The results from these cases are consistent with economic 

theory, and are presented in graphical form.  

 Computational results show that a solution exists for the lower-level 

complementarity problem (which includes the shale producer at node 7). This means 

that a feasible solution for the MPEC exists as well, as the lower-level 

complementary problem contains both the complementary restrictions as well as 

constraints for the upper-level player of the MPEC. The method of disjunctive 

constraints did not provide a feasible solution for this problem with the solvers SBB 

and CONOPT (GAMS, 2010). 

 The WGM restricted to the North American nodes has 30 producers, of which 

seven are for shale gas and seven for unconventional gas production in the United 

States. The rest produce conventional gas. There are a total of 15 production nodes, of 

which nine correspond to the census regions for the lower-48 states. There are also 

three traders (one each for United States, Canada, and Mexico, the three countries in 

the model), along with eight periods from 2005-2040 (the last two five-year periods 

are not reported to avoid end-of-horizon bias), and two seasons (high and low 

demand) in each period. The decision variables are operating levels (production, 

storage injection, etc.) as well as investment levels (pipeline, liquefaction capacity, 

etc.). Prices are set to 2005 US$. The whole complementarity model has about 9456 

variables and takes 243.2 seconds to solve on a 2.0 GHz processor with 2 GB 

memory.   
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 The MPEC version of the WGM restricted to North America was formulated 

with the shale gas producer in census region 7 as the top-level player. Census region 7 

contains both the Barnett and Haynesville shale plays, two of the most important ones 

in the United States
40

. The MPEC version was solved using Algorithm 4.1. The 

algorithm solved the problem in approximately three hours on the same computer 

described above, though the time was different for each case. 

 The following five cases were considered, with the first (Base Case) modeled 

as a complementarity problem and the rest as MPECs for purposes of comparison: 

1) Base: The Base Case for the WGM restricted to North America formulated as 

a complementarity problem and calibrated according to the Annual Energy 

Outlook (April 2009 ARRA version) and the World Energy Outlook (IEA, 

2008). 

2) MPEC: The MPEC version of the Base Case. The shale producer in census 

region 7 was placed at the upper level and all other players at the lower level. 

3) MoreShale: A higher production of shale gas was considered by increasing 

the daily capacity available, with a 10% increase for 2015, 2020; a 15% 

increase for 2025, 2030; and a 20% increase for 2035, 2040. These numbers 

are approximations of increases given by the Annual Energy Outlook between 

the 2008 and 2009 reports‟ predictions. While the 2010 reports did not show 

such an increase, for our purposes this case was developed to show what 

might happen if a similar increase took place after 2015. This case is modeled 

as an MPEC. 

                                                 

 
40

 Refer to www.eia.gov for more information.  

http://www.eia.gov/
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4) ShaleTax: All shale-producing firms are taxed $0.39/MCF (39 cents for every 

thousand cubic feet of natural gas produced) from 2015 to 2040. This is in line 

with the tax proposed for Pennsylvania shale production in the Marcellus 

shale play, which was later overturned (Barnes, 2010). No other value for a 

shale tax has so far been found from any legislature. This case is modeled as 

an MPEC. 

5) AllTax: All natural gas is taxed at $0.39/MCF from 2015 to 2040. This case 

will help see if the shale players, especially the one in census region 7, have 

any comparative advantage when everyone is taxed. Modeled as an MPEC. 

 The results are presented below. The MPEC case produces lower average 

prices (e.g., $6.74/MMBTU vs. $6.94/MMBTU in 2025) and higher total production 

(e.g., 844.2 BCM vs. 830.2 BCM in 2025) and consumption (Gibbons, 1996) when 

compared to the Base Case for all years. Moreover, as expected, the MoreShale case 

showed an overall increase in shale production when compared to the Base Case (e.g., 

111.5 BCM vs. 89.4 BCM in 2025) and for the shale producer in census region 7, 

proved to be the most profitable.  The profits at node 7 increase by more than three 

times in 2025 when compared to the Base Case. This shows the advantage of being 

the Stackelberg leader and allowing collection of more profits and also serves as a 

cautionary numerical result for market regulators and other interested parties. 

 The MoreShale case shows that it will be advantageous for producers as well 

as consumers (with prices dropping in nodes with large amounts of shale). However, 

the fact that total production doesn‟t change much with the invoking of the tax (shale 

or otherwise) shows that it will not be detrimental to the producers. This is 
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corroborated by looking at producer profits as well, where the imposition of tax 

barely changes total profit. Since Node 8 has a relatively abundant supply of 

conventional, unconventional, and shale gas, it can change production around 

depending on the demands. Hence, nodes 8 and 9 remain relatively unchanged with 

the imposition of tax. Moreover, the production for shale producers is as expected, 

and the imposition of tax does less to harm any production, and overall profits remain 

relatively stable. Also, this might be a policy argument for saying that the tax will 

barely harm producers, but produce revenue for the state.   
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Figure 4.4: Overall Production in 2025 as Predicted by the Model

41
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 US_1and2, for example, gives data for US census regions 1 and 2 combined. 



 

 

 

131 

 

0

50000

100000

150000

200000

250000

N_US2 N_US3 N_US4 N_US5 N_US6 N_US7 N_US8

Producer Profit in Millions $ in 2025

Base

MPEC

MoreShale

ShaleTax

AllTax

 
Figure 4.5: Producer Profit in 2025 as Predicted by the Model
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Figure 4.6: Shale Producers in 2025 as Predicted by the Model
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 N_US3, for example, gives profit at the node for US census region 3. 

43
 P_U5S, for example, gives the production at US node 5 for shale gas. 
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 Data for consumption and prices (Figure 4.7 and Table 4.11, respectively), 

however, show that the producers will pass most of the tax onto the consumers. This 

also shows the strength of the World Gas Model, by predicting which areas will show 

a change in prices. Nodes 5, and 6, will take on the burden of the tax with prices 

going slightly up ($7.14/MMBTU vs. 7.07 $/MMBTU) and consumption relatively 

unchanged when compared to the MPEC case. Nodes 1 and 2 contain a majority of 

the Marcellus shale play; hence prices there go up with the imposition of a tax on 

shale gas. Moreover, US nodes 7 and 8 have high production, and it‟s profitable for 

these producers to sell at a lower price in their own market and at a higher price to the 

other nodes. However, imposing a tax on US Node 7 increases prices at that particular 

node in 2025 when compared to the MPEC case. Since the shale producer at node 7 is 

the Stackelberg leader, in this case it can derive more profits by passing the tax onto 

its own consumption node.  Note that the prices under the two tax cases at node 7 

(4.94 $/MMBTU and 5.13 $/MMBTU in the ShaleTax and AllTax case, respectively) 

are still lower than the price for the Base Case (5.72 $/MMBTU, when the shale 

producer at node 7 is not a Stackelberg player).  
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Figure 4.7: Consumption in 2025 as Predicted by the Model 

 

 

 Table 4.11: Average Prices in $/MMBTU in 2025 

Region Base MPEC MoreShale ShaleTax AllTax 

Alaska 6.17 6.17 6.17 6.17 6.17 

Canada 6.94 6.69 6.02 6.50 6.34 

Mexico 6.66 6.65 5.63 6.70 6.92 

US Nodes 1 & 2 8.85 8.91 8.59 8.98 8.88 

US Nodes 3 & 4 7.48 7.52 7.02 7.48 7.37 

US Nodes 5 & 6 7.36 7.07 6.76 7.14 7.14 

US Node 7 5.72 4.88 4.59 4.94 5.13 

US Nodes 8 & 9 6.31 6.03 5.65 6.01 5.88 
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4.5. Summary 

This chapter provides a novel way to solve mathematical programs with equilibrium 

constraints. The new method has been shown to be computationally tractable, and 

able to solve MPECs where the lower level is a complementarity problem. An 

extension to solve EPECs is also presented. 

 The method was first applied to numerical examples for MPECs. It 

outperformed the method of disjunctive constraints in two ways. First, the selection of 

the constant L for Algorithm 4.1 did not prove as difficult as the selection of the 

constant K in disjunctive constraints. Second, with numerical tests the method proved 

to be computationally quicker than the method of disjunctive constraints. The method 

was also shown to be able to solve a numerical example of an EPEC, but extensive 

numerical and theoretical results will be part of future work. 

 The method was applied to an example of a shale gas producer in the US 

natural gas market acting as a dominant player. The results show that in the case of a 

Stackelberg structure, the profits of the producer are not negatively affected with the 

current proposals for taxes. However, with this structure the producers are able to 

pass the tax onto the consumer, as profits do not decrease with the implementation of 

tax but prices do go up. Moreover, if more resources are present, the producer is able 

to take advantage of them. While in actuality the Stackelberg player might not have 

such an advantage, this setup helps show how under this scenario, producers can 

manipulate the market to make decent decisions.  
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Chapter 5:  Solving Discretely-Constrained Mixed Linear 

Complementarity Problems 

5.1. Introduction 

This chapter provides solution techniques for DC-MLCPs. In particular, this chapter 

will consider discretely-constrained Nash games (DC-Nash), where some of the 

decision variables are constrained to be integer-valued. These games have been 

formulated as complementary problems (Cottle et al., 2009) in the literature. 

However, the discretely-constrained versions have often been needed to be solved 

using inspection; for example, a bimatrix game table (Gibbons, 1996) which has 

finite, discrete choices to choose from. 

 When solving DC-MLCPs, it is important to realize that a particular instance 

might not have integer solutions. A compromise would be to get solutions that are as 

close to integer as possible. While this chapter does not provide theoretical arguments 

for the near-integer solutions, the numerical results presented corroborate that the new 

technique helps achieve integer solutions where appropriate. The method presented in 

this chapter is shown to be better than the method of (Gabriel et al., 2011a), (Gabriel 

et al., 2011b) in computational effort and because the method in this dissertation does 

not require the selection of a constant while the method in (Gabriel et al., 2011a), 

(Gabriel et al., 2011b) requires the selection of a specified constant. 

 First, a description of the two relaxation conditions will be given. Then, a 

general formulation to solve these problems will be provided, based on the work of 
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(Gabriel et al., 2011a), (Gabriel et al., 2011b). Finally, the methods from Chapter 4 

will be applied to solve this resulting two-level problem formulation for numerical 

examples that are DC-Nash games and discretely-constrained network problems.  

 A portion of this chapter has been presented in (Gabriel et al., 2011a), 

(Gabriel et al., 2011b). However, a new way to solve these problems is presented in 

this dissertation which was not used in the aforementioned papers. Both papers 

(Gabriel et al., 2011a), (Gabriel et al., 2011b) used disjunctive constraints to solve the 

DC-MLCPs, but this dissertation uses the technique of SOS Type 1 variables 

explained in Chapter 4. The examples taken from (Gabriel et al., 2011a), (Gabriel et 

al., 2011b) are exactly the same as in the papers but the solution technique is 

different. An extra example with computational time is provided to further support 

the use of Chapter 4 techniques as opposed to disjunctive constraints which was not 

discussed in the two papers (Gabriel et al., 2011a), (Gabriel et al., 2011b). Hence, all 

the examples in this chapter were solved by the solution technique developed in 

Chapter 4, which was original work that is part of this dissertation. But the problem 

formulation presented in this chapter and the theory behind the formulation was 

developed in two papers (Gabriel et al., 2011a), (Gabriel et al., 2011b) and cannot be 

regarded as original work. The solution technique of Chapter 4, however, proves to be 

computationally superior for the examples presented. 
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5.2. Discretely-Constrained Mixed Linear Complementarity Problems 

Recall from Chapter 2 that a general, discretely-constrained mixed linear 

complementarity problem is given the vector Tqqq ),( 21  and matrix 
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 From this formulation, if  
d

z1  and  
d

z2  were continuous variables, the 

problem would simplify to a linear complementary problem. Since they are not, one 

obvious solution is to relax them to be continuous variables, and then solve the 

problem hoping for an (approximate) integer solution. However, close inspection 

shows that the complementary conditions also can be relaxed, giving another option 

for an approximate solution. The next two subsections show how this is done and 

follows the initial problem description from (Gabriel et al., 2011a), (Gabriel et al., 

2011b). 

5.2.1 Epsilon-Integrality 

Consider the conditions   11 , DdZz
d

   and   22 , DdZz
d

   from (5.1). Assume 

these conditions are to be relaxed to make this problem easier. Without loss of 

generality, consider   11 , DdZz
d

   as the arguments for   22 , DdZz
d

   are 
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similar. Then, consider a small deviation NiDrri ,...,1,0,, 11   through which this 

discrete variable is relaxed. Given any feasible set M, the problem becomes to 

minimize this deviation from integrality while still being in this feasible set. This is 

formulated by (5.2) below 
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                            (5.2) 

 In (5.2), the integer value i is selected that is closest to a continuous value in 

M. Note, however, that the objective function contains a nonlinear function. This 

absolute value function can be decomposed into its positive part and negative part so 

that the objective function is no longer nonlinear as in (5.3). 

   

 

   

 

Variables 1 Type SOS are  where

,...,1,0,

1

)1()1(

min

1

1

1

0

1

111

1111

0

11

1

ri

r

N

i

ri

ririri

ririrri

N

i Dr

riri

w

NiDr

Mz

w

wNizwN





















 









                            (5.3) 

  This is one way to relax the DC-MLCP. From now on, this will be referred to 

as ε-integrality. This relaxation, along with another one described next, will be used 

to help solve DC-MLCPs.  
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5.2.2. Sigma-Complementarity 

From (5.1), consider the complementary condition 

  00 1

2

1

12111 







 z

z

z
AAq                                             (5.4) 

This condition is equivalent to (5.5) below. 
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                                                (5.5) 

 The goal is to relax the last line equality condition in (5.5). To obtain a 

solution that is approximate, the last equality need not equal zero but can be very 

close to zero. In fact, a deviation similar to the one for integrality can be developed 

here. Consider the deviational vector ζ such that the relaxed complementary problem 

is formulated below
44

. 
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44

 Note that different ζ‟s could be used in the last equation in (5.6) as 
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 However, this relaxation provides a same solution as the one given in (5.6) because as only one of the 

factors needs to be 0 for the product to be zero. 
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 Again, the problem becomes to minimize this deviation from complementary 

whilst still being in this feasible set. This is formulated by (5.7) below 
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                                (5.7) 

 The nonlinear equality condition (a product) can be handled the same way the 

product was handled in Chapter 4. Hence, reformulated to be solved with SOS Type 1 

variables, (5.7) becomes 
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5.2.3. Complementarity, Integrality Trade-off 

One of the advantages that relaxing both complementary and integrality gives is that 

we can figure out the tradeoff of relaxing one versus the other. In practice, different 

solutions can be achieved depending on which of the two (or both) is relaxed. Figure 
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5.1 shows the idea behind this tradeoff. This can be thought of as the Pareto frontier 

of a multiobjective programming problem (Cohon, 1978). 

ε-integrality

ζ-complementarity

Tradeoff Curve

(Pareto Frontier)

for Integrality vs. 

Complementary

If the region above 

the tradeoff curve 

contains 0 then an 

exact integer and 

complementary 

solution is present.

 
Figure 5.1: The Tradeoff Between Complementary and Integrality 

 

  

 Although the whole Pareto frontier might not have a smooth convex shape as 

shown in the figure, it is motivation enough to study different variations. Moreover, a 

point on the tradeoff does not necessarily need to correspond to an integer solution to 

the DC-MLCP. In the future sections, at least the endpoints of the tradeoff curve (the 

intersections of the curve with the axes) will be calculated to give an indication of the 

extent of the Pareto frontier. 
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5.2.4. Formulation to Solve Discretely-Constrained Mixed Linear 

Complementary problems 

The following formulation is from (Gabriel et al., 2011a) for solving DC-MLCPs 

except the techniques from Chapter 4 have been used instead of disjunctive 

constraints
45

.  

                                                 

 
45

 In the following formulation (5.8),  
i1riw  are SOS1 variables implies that ,...312111 ,, rrr www  are 

SOS1 variables.  
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 Here, 21, are predetermined weights attached to ε-integrality and ζ-

complementarity, respectively. These weights can be used to determine the tradeoff 

decision between ε-integrality and ζ-complementarity. 

5.3. Discretely-Constrained Nash-Cournot Games 

One way to solve Nash-Cournot games is to first convert them to complementary 

problems. This requires that the objective and constraint functions be differentiable 

and that the KKT conditions can be formulated. When some of the variables are 

integer-valued (e.g., binary yes/no, integer production), the KKT conditions are not 

valid because the functions are no longer continuous. This section shows an approach 

by  (Gabriel et al., 2011b) that provides a compromise between complementarity and 

integrality. This is done by first relaxing the discretely-constrained variables to their 

continuous analogs and taking KKT conditions for this relaxed problem. Gabriel et al.  

(Gabriel et al., 2011b) converted these KKT conditions to disjunctive-constraints 

form (Fortuny-Amat & McCarl, 1981) and solved them along with the original 

integer restrictions re-inserted in a mixed-integer, linear program (MILP). The integer 

conditions were then further relaxed, but targeted using penalty terms in the objective 

function. This MILP by (Gabriel et al., 2011b) relaxes both complementarity and 

integrality but tries to find minimum deviations for both and as such is an example of 

bi-objective problem (Cohon, 1978). This section will follow the same methodology 

except the technique of SOS type 1 variables from Chapter 4 will be used instead of 

disjunctive constraints.  

 The advantage of the technique presented in this chapter over the formulation 

with disjunctive constraints is that a large constant, which is essential for the 
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formulation outlined in (Gabriel et al., 2011b), does not need to be selected. Instead 

SOS Type 1 variables are used as in Chapter 4. This method is also shown to be 

computationally quicker than the method of disjunctive constraints, and numerical 

evidence is provided later in this chapter. Note that for all numerical tests presented in 

this dissertation, the solutions were the same as in (Gabriel et al., 2011a), (Gabriel et 

al., 2011b). 

 The next sections provide a formulation based on the one presented in section 

5.2. Then, numerical results for two different discretely-constrained Nash games are 

presented. The first one has discrete restrictions on the production quantities while the 

second one has discrete startup/shutdown variables. 

5.3.1. Formulation of a DC-Nash game by Gabriel et al. (2011b) 

For the DC-Nash game, assume there are several Cournot power producers that 

maximize their profit simultaneously by choosing their optimal production quantities. 

Their objective function (profit) depends on the production of the competitors 

through the market demand curve (relationship between the total production and the 

market price) as well as their own marginal cost. Players p = 1,...,P seek optimal 

values for their decision vectors PpXx pp ,...,1,ˆ  by minimizing their cost 

functions (or negative profit functions) ),( pp xf   such that 

pppppppp Xxxxfxxf   ),ˆ,()ˆ,ˆ(                                                                      (5.9) 

 Here pnpx  represents the variables under player p‟s control with x
-p

 the 

remaining variables for other players. Also, px̂ means an equilibrium value to x
p

 and 

pnpp ZCX   where  
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and pn
Z  is the set of nonnegative, integer-valued variables , i.e.,  

 
pp

p

r SnrZx \,...,1,   . Here Sp represents those indices for x
p
 that relate to 

continuous variables. A continuous relaxation would then be to replace X
p
 by C

p
, i.e., 

find px̂ , p = 1,…, P such that 

pppppppp Cxxxfxxf   ),ˆ,()ˆ,ˆ(                                        (5.11) 

or equivalently find px̂  that solves 
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                                                              (5.12) 

For the Karush-Kuhn-Tucker (KKT) conditions of (5.12) to be equivalent to solving 

that optimization problem, the assumption that the functions ),( pp xf   are convex 

and a constraint qualification (see (Bazaraa et al., 1993) for generalization of these 

assumptions that will also lead to KKT conditions being sufficient for optimality) 

holds (e.g. )(),( pp

k

pp

j xhxg linear) is needed. The KKT conditions for player p's 

relaxed problem (5.12) are to find ppp Ep

k

Ip

j

npx   ,,  such that 
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Gabriel et al. (2011b) showed that the solution to (5.13) with the discrete restrictions 

inserted back is the same as the solution to (5.9). 

 To be able to end up with a linear, mixed-integer program the payoff function 
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 Gabriel et al. (2011b) reformulate the continuous relaxation of the original 

problem (5.9) by using the complementarity problem form of the Nash problem 

suitably relaxed as in (5.13). These KKT conditions are equivalent to a set of 

disjunctive constraints of the form: 
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for suitably large values of pK1 and pK2 that can be computed as described in  (Gabriel 

et al., 2011b). 

 An alternative method is to use SOS Type 1 variables as described in Chapter 

4, which will be used here so the suitably large values of pK1 and pK2  do not need to 

be computed. This is described below 
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 Using the quadratic form of f 
p 

and the linear forms of g 
p
 and h 

p
 from above, 

results in the following linear, mixed-integer (with SOS1 variables, that are defined 

using integers) program with arbitrary objective function  


P

p

pTp xz
1

 and the integer 

restrictions added back: 
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 Note that the above problem requires integral restrictions and complementary 

restrictions to hold at the same time, and may prove to be infeasible (Gabriel et al., 

2011b). This is the crucial conversion to a two-level problem. In (5.17), the upper-

level has an objective function that is arbitrary. Hence, (5.17) is essentially still a one-
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level problem, with only the Nash-Cournot game at the bottom level reformulated 

with SOS1 constraints being equivalent to solving a complementary problem.  

 The one-level complementary problem can be infeasible, so it needs to be 

relaxed. The relaxations introduced are the Epsilon-Integrality (Section 5.2.1) and 

Sigma-Complementary (Section 5.2.2) for the problem to be feasible. Minimizing 

these deviations can be put in the objective function, making this one-level problem a 

two-level problem. The lower-level solves a relaxed DC-Nash game while the upper-

level minimizes the deviations from complementary and integrality. To ensure that 

the above reformulation does not have a conflict between complementarity and 

integrality 
46

, the following relaxed version of the problem is employed. 

                                                 

 
46

 We assume the relaxed continuous version of the problem is feasible. 
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(5.18) 

where the restrictions on the relaxation variables are the same as in (5.8) and given by 

(5.19) 
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 In the above formulation (5.18)-(5.19), the  p

ri1 are used to target the 

specified integer values (ε-integrality) and pp

21 , are used to relax complementarity 

(ζ-complementarity), both of which are minimized in the objective function 

weighting the two objective function parts with positive weights ω₁ and ω₂. Thus, 

minimizing these deviations helps find an optimal integer solution, as described in 

(Gabriel et al., 2011a). 

5.3.2. First Numerical Example 

This section presents the results of numerical examples for solving discretely-

constrained Nash-Cournot games from the theory outlined in the previous subsection. 

The first example constrains the production quantities to be integer while the second 

example has continuous production quantities but binary startup/shutdown variables. 

In both examples, seven variations are considered. These variations go through 

different relaxation techniques and combinations of formulations to be described 

later. The problems selected can be shown to have unique solutions by simple 

algebra. 

 The results show that formulation (5.18)-(5.19) provides solutions to the 

original discretely-constrained problems. The variations also show that, as stated 
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before, (5.17) can lead to an infeasible solution. Moreover, relaxing complementarity 

in (5.18)-(5.19) but keeping integer restrictions also leads to a discrete feasible 

solution. Both numerical examples show that relaxing complementarity is essential to 

obtaining discrete solutions. Enforcing discrete restrictions, even by integer 

relaxation, does not help obtain the integer solutions and relaxation of complementary 

conditions is necessary. A combination of both, as presented in (5.18)-(5.19) helps 

obtain the required solutions in both cases.  

 For ease of presentation and comparison but with no loss of generality, 

consider a Nash-Cournot game with two players (p = 1, 2). Given an inverse demand 

curve Price = a - b(Quantity), each player chooses Zqp to maximize their profit 

function 

 pppppp qqqPriceProfit   2                                   (5.20) 

where the term in parentheses denotes cost as a function of quantity selected i.e., qp. 

The formulation of the game is the same as discussed in the previous subsection. 

    For the first example, let a = 6, b = 1, β₁ = β₂=1, and ρ₁=ρ₂=1, as well as adding 

capacity constraints for both players of the form 

maxqqp                                                                               (5.21) 

where qmax = 4. Since only integer-valued production qp is allowed, a bimatrix payoff 

table (assuming maximizing payoff) as shown below in Table 5.1 is employed to 

solve (5.9). 
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Table 5.1: Bimatrix Nash-Cournot Game, Profits(q1/q2) 

 0 1 2 3 4 

0 (0,0) (0,3) (0,2) (0,-3) (0,-12) 

1 (3,0) (2,2) (1,0) (0,-6) (-1,-16) 

2 (2,0) (0,1) (-2,-2) (-4,-9) (-6,-20) 

3 (-3,0) (-6,0) (-9,-4) (-12,-12) (-15,-24) 

4 (-12,0) (-16,-1) (-20,-6) (-24,-15) (-28,-28) 

 

 Clearly q1 = q2 = 1 is the unique Nash equilibrium in pure strategies. Another 

way to solve Nash-Cournot games is by simultaneously solving the problems 
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for p = 1, 2.  Since the slope of the inverse demand function b > 0 and βp > 0, the 

KKT conditions are both necessary and sufficient for solving these problems.  These 

conditions are to find q₁,q₂,λ₁,λ₂ that solve the following linear complementary 

problem (LCP): 

00

0)()(20

max 
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pp

pppppp

qq

qabqbq




               (5.23) 

for each p = 1, 2. However, the KKT conditions are only valid if qp, p = 1, 2 are 

continuous-valued.  Thus, the resulting LCP needs to avoid discrete restrictions on the 

qp variables.  In this particular example, solving the above LCP after assuming 

pq results in the integer solution q₁ = 1, q₂ = 1 with Price = 4. 
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 However, changing some of the data to a = 9 and ρ₂ = 3 results in a non-

integer solution of q₁ = 1.733, q₂ = 1.067, and Price = 6.2. But the new bimatrix 

payoff table for the original discrete version of this game with these new data (Table 

5.2), shown below, gives a unique discrete solution of q₁ = 2, q₂ = 1 with Price = 6. 

    

Table 5.2: Nash-Cournot Game, Profits(q1/q2), (Only Adjustments a=9, ρ₂ = 3) 

 0 1 2 3 4 

0 (0,0) (0,4) (0,4) (0,0) (0,-8) 

1 (6,0) (5,3) (4,2) (3,-3) (2,-12) 

2 (8,0) (6,2) (4,0) (2,-6) (0,-16) 

3 (6,0) (3,1) (0,-2) (-3,-9) (-6,-20) 

4 (0,0) (-4,0) (-8,-4) (-12,-12) (-16,-24) 

     

 This example shows what can happen if the relaxed LCP does not provide 

integer-valued answers.  Next, more numerical tests are described with the new data a 

= 9, b = 1, β₁ = β₂ = 1, ρ₁ = 1, and ρ₂ = 3. 

 The first variation is to solve the continuous version of the LCP (i.e., without 

any integer restrictions) relating to (5.9) ("MLCP"). Solving the original version of 

the problem with the integer restrictions relating to (5.9) is variation 2 ("Bimatrix") 

and is solved by examining the bimatrix payoff table.  In the remaining variations to 

be described, there are two ways of forcing integrality of the solutions.  First, the 

problem can be integer-constrained through the solver (variations 3 and 4) with 
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variation 3 being (5.17) and variation 4 also relaxing complementarity (ζ-

complementary) in (5.17).  

 Second, in variation 5, complementarity can be relaxed without constraining 

the problem to have integer solutions, hence "continuous variables" for the problem 

description.  Hence, we should not expect integer solutions. Finally, in variations 6 

and 7, integers can be targeted using the ε deviational variables (5.18)-(5.19) (ε-

integrality).     In variation 6, no relaxation for complementarity is allowed.  Variation 

7 allows relaxation for both complementarity and integrality (ζ-complementary and ε-

integrality).   Table 5.3 describes the various possible formulations considered. 

 

Table 5.3: Description of Formulation Variations 

Variation ζ-Complementary ε-Integrality Problem Description 

1 No No MLCP 

2 No No Bimatrix 

3 No No Integer variables 

4 Yes No Integer variables 

5 Yes No Continuous variables 

6 No Yes Continuous variables 

7 Yes Yes Continuous variables 

 

 

5.3.3. Results for First Numerical Example 

Tables 5.4 and 5.5 below give the results for this first numerical example. 
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Table 5.4: Summary of Results (a = 9, b = 1, β₁= β₂ = 1,ρ₁ = 1,  ρ₂ = 3) 

Variation Solution (q₁,q₂) Price Profits (P1, P2) 

1 (1.733,1.067) 6.2 (6.01, 2.28) 

2 (2,1) 6 (6,2) 

3 Infeasible Infeasible Infeasible 

4 (2,1) 6 (6,2) 

5 (1.733,1.067) 6.2 (6.01, 2.28) 

6 (1.733,1.067) 6.2 (6.01, 2.28) 

7 (2,1) 6 (6,2) 

 

Table 5.5: Summary of Results (a = 9, b = 1, β₁= β₂ = 1,ρ₁ = 1,  ρ₂ = 3) 

Variation Sum ε Sum ζ 

1 n/a n/a 

2 n/a n/a 

3 n/a n/a 

4 n/a 0.2 

5 n/a 0 

6 0.334 n/a 

7 0 0.2 

 

 Table 5.4 shows that a solution to the integer-constrained Nash game is to 

have q₁ = 2, q₂ = 1 with a resulting price of 6 (variation 2).  When the integer 

restrictions are removed, the solution is then q₁ = 1.733, q₂ = 1.067 with the new 
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price of 6.2 (variation 1).  Solving the mixed integer programming (MIP) version of 

the problem but forcing exact complementarity and integrality results in an infeasible 

solution (variation 3) as would be expected.  Interestingly, the original integer 

solution to the Nash problem can be obtained with the MIP approach as long as 

complementarity is relaxed (variation 4) or when integers are targeted using ε's 

(without enforcing integrality) along with the complementarity relaxation (variation 

7).   

  It is interesting to note that variation 7 is a validation of the earlier discussion 

for obtaining integer solutions to DC-Nash.  From the perspective of accuracy in 

attaining the original production values and price, the MIP approach is correct in this 

instance and thus provides an alternative, viable method for solving such problems.  It 

is interesting to note the difference in results between variations 4 and 5.  The former 

achieves the correct integer solution but directly forces the variables in GAMS to be 

integer-valued.  The latter allows relaxation of complementarity but does not give 

integer solutions as expected. Furthermore, variation 6 also does not get the correct 

integer solution even though the using the ε deviational variables were included. 

 To compare computational time, the formulation of the numerical example 

above was expanded where the number of players P was increased but the marginal 

cost for half the players was set the same as player 1 and the other half the same as 

player 2 from the above example for variation 7. The following Figure 5.2 shows this 

result with an increase in the number of players for the method of this dissertation 

compared to the method by (Gabriel et al., 2011b). Again, the method of disjunctive 
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constraints is computationally slower for this example when compared to the SOS1 

method. 
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Figure 5.2: Computational Time for First Numerical Example 

5.3.4. Numerical Example Relevant to Production Systems 

In many applications, the quantities qp are actually positive real numbers but there are 

also constraints of the form 

maxmin qsqqs ppp                                                             (5.24) 

where sp is a binary variable that is 1 when the player p chooses to produce and 0 

when player p chooses to not produce. Here the binary variable sp might for example 

relate to the on/off status for a power generation unit. If on, then the minimum and 

maximum production quantities are in force. If off, then both the upper and lower 

bounds are equal to zero.  

 The original capacity constraint is replaced by the one above and the resulting 

Nash-Cournot game is then solved with a = 9, b = 1, β₁ = β₂ = 1, ρ₁ = 1, ρ₂ = 3, qmin = 
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1.5, and qmax = 4. The binary variables sp are the ones targeted when complementarity 

and integrality are relaxed but still allowing for continuous generation variables. The 

following tables summarize the results. 

 

Table 5.6: Summary of Results (Example Relevant to Production Systems) 

Variation Solution (q₁,q₂) Binary(s1, s2) Profits (P1, P2) 

1 (1.733,1.067) (0.347,0.213) (6.01, 2.28) 

2 (1.625,1.5) (1,1) (5.28, 2.06) 

3 (1.625,1.5) (1,1) (5.28, 2.06) 

4 (1.625,1.5) (1,1) (5.28, 2.06) 

5 (1.733,1.067) (0.347,0.711) (6.01, 2.28) 

6 (1.625,1.5) (1,1) (5.28, 2.06) 

7 (1.625,1.5) (1,1) (5.28, 2.06) 
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Table 5.7: Summary of Results (Example Relevant to Production Systems) 

Variation Price Sum ε Sum ζ 

1 6.2 n/a n/a 

2 5.875 n/a n/a 

3 5.875 n/a n/a 

4 5.875 n/a 0 

5 6.2 n/a 0 

6 5.875 0 n/a 

7 5.875 0 0 

 

 The solutions to this example are very different from the previous one. 

Variation 2 shows the true solution when the variables sp, p = 1, 2 are forced to be 

binary.   Namely, player 2 produces at the minimum level of 1.5 but player 1 chooses 

a value of 1.625, in between the minimum and maximum.  The continuous relaxation 

(variation 1) achieves higher profits for both players as would be expected due to less 

restrictive constraints but does not end up with binary values for the sp variables. 

Interestingly, all other variations on relaxation are able to achieve the correct 

production quantities (qp) and binary production indicators (sp) except for variation 5 

when only complementarity is relaxed.  For this particular problem, forcing 

integrality is key (through one of the two aforementioned methods) as variations 3, 4, 

6, and 7 all give the correct binary solution for sp, p = 1, 2. 

 Similar to the previous example, the number of players was increased so that 

half the players had the data for player 1 and the other half for player 2. The 
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following Figure 5.3 shows this result with an increase in the number of players for 

the method of this dissertation compared to the method by (Gabriel et al., 2011b), 

both for variation 7. Again, the method of disjunctive constraints is computationally 

slower for this example when compared to the SOS1 method. However, this time the 

advantage of SOS1 is not as strong as for the first numerical example in the previous 

section. A reason for this can be that since the decision variables are binary, 

formulating as SOS1 might not have that much of an advantage. This contrasts with 

the first example where the decision variables were integer.  
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Figure 5.3: Computational Time for Example Relevant to Production Systems 

 

5.4. Discretely-Constrained Network Problems 

This section considers discretely-constrained network problems. Note that these 

problems can be cast as DC-Nash games as well (Cottle et al., 2009). However, it is 
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instructive to look at these network examples separately as well, as extra intuition can 

be gained from considering transmission lines. The first example is a continuation 

form the previous section, with two producers. The second example has four 

producers over two nodes. 

5.4.1. First Network Example 

Consider a power market with two producers supplying to one demand node as 

shown in Figure 5.4. Producers 1 and 2 choose to produce quantities q₁ and q₂ 

respectively, and supply it to meet inelastic demand d, while there are transmission 

lines (with flow variables q₁₂, q₁₃, q₂₃) between the three nodes. There is a marginal 

utility of demand cd and marginal costs c₁ and c₂ for producers 1 and 2, respectively. 

There is also a market operator who maximizes its own profits by buying from the 

producers and selling to the consumers. 
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Figure 5.4: Diagram of First Network Example 

 

 The producer p (p = 1, 2) solves the following optimization problem 
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where λn is the (endogenous) price at node n. Note that the producer p is active at 

node n = p. 

 The market operator solves the following optimization problem (with 

pq introduced to have a square system). The equality constraints set the power flow 

(q₁₃ for example, signifies flow from node 1 to node 3) equal to the power produced 

and the inequality constraints give a bound on the maximum amount of flow allowed. 

Flow can be towards the opposite direction as well which is signified by a negative 

number (i.e., if q₁₃ is negative, then the flow is from node 3 to node 1), so the 

inequalities contain a maximum negative flow as well. 
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                                       (5.26) 

 The above optimization problems can be combined to form an MCP, which 

gives a solution to the game. Our goal here is to see if we restricted the quantities 

produced and flows to be integer-valued, if we can come up with an equilibrium 

solution. The following Table 5.8 gives the values of the parameters used for solving 

this network problem. 
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Table 5.8: Parameter Values Used in First Network Example 

max

1q  max

2q  max

12q  max

13q  max

23q  c1 c2 cd 

18 20.5 12 15 15 2 1 5 

        

 Hence, producer 2 has a lower marginal cost so will attempt to supply more 

units of q₂. We use the same process as in the previous section and formulate the 

problem according the variations in Table 5.9. Note that we are not considering the 

bimatrix game for this example, so there is no variation 2. Table 5.10 shows the 

results for the example under different variations. 

 

Table 5.9: Description of Formulation Variations 

Variation ζ-Complementary ε-Integrality Problem Description 

1 No No MLCP 

3 No No Integer variables 

4 Yes No Integer variables 

5 Yes No Continuous variables 

6 No Yes Continuous variables 

7 Yes Yes Continuous variables 
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Table 5.10: Solution to Power Market Example 

Variations 1 3 4 5 6 7 

q₁ 9.5 Infeasible 10 9.5 9.5 10 

q₂ 20.5 Infeasible 20 20.5 20.5 20 

q₁₂ -5.5 Infeasible -5 -5.5 -5.5 -5 

q₁₃ 15 Infeasible 15 15 15 15 

q₂₃ 15 Infeasible 15 15 15 15 

λ₁ 2 Infeasible 2 2 2 2 

λ₂ 2 Infeasible 2 2 2 2 

λ₃ 5 Infeasible 5 5 5 5 

d 30 Infeasible 30 30 30 30 

Sum ε n/a n/a n/a n/a 1 0 

Sum ζ n/a n/a 0.5 0 n/a 0.5 

 

 Note that again, variation 7 gives an integer solution. Comparison to variation 

4 is critical, as both of them give the same solution. However, variation 7 provides 

integer solutions but does not explicitly enforce integrality, while variation 4 requires 

imposing integer restrictions to get to the answer. Variation 3 proves to be infeasible, 

while variations 5 and 6 show that only including σ-complementarity or only 

including ε-integrality is not sufficient to achieve an integer solution for all the 

variables that are constrained as such. Note that prices at each node (λ₁, λ₂, λ₃) stay 

the same at each node, regardless of the variation. However, variation 3 did not 
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provide any solution, so not only does variation 7 provide an integer solution; it does 

so without imposing integer restrictions and also delivering reasonable prices. 

5.4.2. Second Network Example 

The next example is from  (Gabriel et al., 2011a) and depicts an equilibrium in an 

energy network (e.g., natural gas, electricity) where production, consumption, and 

transmission of the energy product are analyzed.  

 Four energy price-taking producers (A, B, C, D) are modeled with the first two 

located at node 1 and the latter two at node 2.  The production levels are denoted as 

p

nq  where node n ∈ {1, 2} and producer p ∈ {A, B, C, D}.  Similarly, the sales levels 

are denoted as p

ns .  Lastly, at node 1, the two producers A and B have the additional 

option of sending energy to node 2 and BA ff 1212 ,  represents the associated amounts of 

flow.  (Note that the producers at node 2 are not allowed to ship their product to node 

1.) 

 Both producers A and B at node 1 have structurally a similar optimization 

problem shown below just for producer A.  For node 2, the producers have an 

optimization that is almost the same as at node 1 with the exception that no flow 

variables (nor related terms) are included. 
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    where 

 πn is the producer price at node n ∈ {1, 2} 

  AA qc 11 is the (marginal) production cost function assumed to be linear, i.e., 

  0, 11111  AAAAA qqc  . 

 REG

12 represents the nonnegative, regulated tariff for using the network from 

node 1 to node 2; REG

12 is a fixed parameter. 

 η₁₂ is the congestion tariff for using the network from node 1 to node 2 and a 

variable from another part of the equilibrium model 

 Aq1 is the maximum production quantity
47

 

 Each producer is maximizing their profit (5.27) by choosing appropriate 

nonnegative levels of production, sales and flow variables subject to not exceeding 

production limits, and consistency between sales, production, and flow (5.27).  The 

KKT conditions for each of the producers' problems are both necessary and sufficient 

(Bazaraa et al., 1993) given the functions chosen and these conditions for each of the 

producers (producer A at node 1, producer B at node 1, producer C at node 2, 

producer D at node 2) are as follows: 

                                                 

 
47

 All maximum values for primal variables denoted by an overbar are assumed to be positive as are 

cost coefficients 
A

1 , 
B

1 , 
C

2 , 
D

2 . 
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 In addition to the KKT conditions for the four producer problems, there are 

market-clearing conditions that force supply to equal demand: 

 
  free ),(0

free ),(0
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                                                         (5.32) 

 Note that the terms in square brackets are the net supply at each node 

(assuming no losses) and Dn(πn), n = 1, 2 are the nodal demand as a function of the 

price πn.  While the producers depicted above operate using the network, there is 

additional a transportation system operator (TSO) who manages the congestion and 
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flows.  The TSO's linear program is as follows (where other objectives are also 

possible): 
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 Here, the TSO controls the variable g₁₂ which is the flow from node 1 to node 

2, )( 12gcTSO is a network operations cost function (assumed linear i.e., 

0,)( 1212  TSOTSOTSO ggc  ) and g₁₂ is the capacity of the link between nodes 1 and 

2.  The KKT conditions for this problem are both necessary and sufficient and since it 

is a linear program and these conditions are the following: 
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 The last part of the equilibrium problem is the market-clearing conditions that 

balance the flow controlled by the network operator and thus by producers A and B: 

  free ,0 12121212 BA ffg                                                  (5.35) 

 The LCP for this energy network problem is thus the KKT conditions of the 

producers: (5.28), (5.29), (5.30), (5.31), the nodal market-clearing conditions (5.32), 

the KKT conditions of the TSO (5.34) and the market-clearing conditions of the 

transportation market (5.35).  Figure 5.5 below shows a diagrammatic representation 

of this network. 
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Figure 5.5: Representation of Second Network Example 

 In this problem, As1 , Bs1 , Cs2 , Ds2 , Aq1 , Bq1 , Cq2 , Dq2  are the variables that are 

integer-constrained in variations 3 and 4. The goal is to find a solution which has 

these variables as integers. Note that there are multiple integer solutions. The values 

for the input parameters as well as the six variations that were tested are shown in 

Table 5.11 below. 

Node 1 Node 2 

Producer A 

Producer B 

Producer C 

Producer D 

Transmission System Operator 
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Table 5.11: Dataset Used in Second Network Example 

Parameter Value 

REG

12  0.5 

A

1  10 

B

1  12 

C

2  15 

D

2  18 

a₁ 20 

b₁ 1 

a₂ 40 

b₂ 2 

Aq1  10 

Bq1  10 

Cq2  4.5 

Dq2  5 

g₁₂ 15 

γ
TSO 

1 

 

 Table 5.12 reports the different variations considered. Again, using SOS Type 

1 variables from Chapter 4, this DC-MLCP can be converted to a two-level problem 

and then solved. Note the variations are similar to the previous network example.  
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Table 5.12: Description of Formulation Variations for Second Network Example 

Variation ζ-Complementary ε-Integrality Problem Description 

1 No No MLCP 

3 No No Integer variables 

4 Yes No Integer variables 

5 Yes No Continuous variables 

6 No Yes Continuous variables 

7 Yes Yes Continuous variables 

 

 As in the DC-Nash example, several numerical variations were done to see the 

change in solutions. Variation 1 was a mixed-complementary problem (MCP) without 

imposing integer restrictions. Variation 3 involved converting the MCP to a 

formulation with disjunctive constraints but restricting the variables of production and 

sales to be integer. The rest of the variations then go through the different 

combinations as in the DC-Nash example. 

 First, variations 4 and 7 give an integer solution. However, due to the presence 

of multiple equilibria, these solutions need not be unique as in the DC-NASH game. 

Multiple starting points were chosen, and, according to the numerical tests, the 

reported solution had the highest objective function value (along with some other 

equilibria not reported) when a feasible integer solution was desired. Hence, 

variations 4 and 7 can be used to obtain optimal, integer solutions that are feasible. 

Note that variation 6 targets integers through ε-complementarity, while variation 4 

actually restricts solutions to integer values. 
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 Similar to the previous example, variation 1 yielded a non-integer but optimal 

and feasible solution while variation 3 was infeasible. Again, this shows that ζ-

complementarity is essential to obtain a feasible integer solution (as in variations 4 

and 7). However, only ζ-complementarity is not enough to obtain integer solutions 

(variation 5) nor is only ε-complementarity (variation 6). 

 The extra advantage of using variations 4 and 7 is that values of dual variables 

can be obtained and interpreted. It is interesting to note that the dual variables change 

from the continuous to the integer case, which is what was expected. However, it also 

shows the differences in solutions with relaxation of integer variables to solve a 

problem and how it leads to solutions that can be very different from the market 

dynamics of an integer constrained problem. Tables 5.13 and 5.14 below display the 

results obtained from this network example. 
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Table 5.13: Results for Second Network Problem (Integer Variables) 

Variations 1 3 4 5 6 7 

As1  7.440 Infeasible 8.000 8.000 8.000 8.000 

Bs1  0.560 Infeasible 0 0 0 0 

Cs2  4.500 Infeasible 4.000 4.500 4.500 4.000 

Ds2  0 Infeasible 0 0 0 0 

Aq1  10.000 Infeasible 10.000 10.000 10.000 10.000 

Bq1  3.000 Infeasible 3.000 3.000 3.000 3.000 

Cq2  4.500 Infeasible 4.000 4.500 4.500 4.000 

Dq2  0 Infeasible 0 0 0 0 

Sum σ n/a n/a 0.5 0 n/a 0.5 

Sum ε n/a n/a n/a n/a 1.000 0 
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Table 5.14: Results for Second Network Problem (Other Variables) 

Variations 1 3 4 5 6 7 

Af12  2.560 Infeasible 2.000 2.000 2.000 2.000 

Bf12  2.440 Infeasible 3.000 3.000 3.000 3.000 

A

1  2.000 Infeasible 2.000 2.000 2.000 2.000 

B

1  0 Infeasible 0 0 0 0 

C

2  0.250 Infeasible 0.500 0.250 0.250 0.500 

D

2  0 Infeasible 0 0 0 0 

g₁₂ 5.000 Infeasible 5.000 5.000 5.000 5.000 

ε₁₂ 2.250 Infeasible 2.500 2.250 2.250 2.500 

A

1  12.000 Infeasible 12.000 12.000 12.000 12.000 

B

1  12.000 Infeasible 12.000 12.000 12.000 12.000 

C

2  15.250 Infeasible 15.500 15.250 15.250 15.500 

D

2  17.581 Infeasible 18.000 18.000 18.000 18.000 

π₁ 12.000 Infeasible 12.000 12.000 12.000 12.000 

π₂ 15.250 Infeasible 15.500 15.250 15.250 15.500 

η₁₂ 2.750 Infeasible 3.000 2.750 2.750 3.000 
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5.5. Summary 

This chapter improves a methodology to solve discretely-constrained Nash games 

formulated as mixed complementarity problems. The discrete restrictions can lead to 

infeasible solutions, so a relaxation is needed. Along with providing both a 

complementary and integrality relaxation, this chapter uses the technique from 

Chapter 4 to solve the resulting DC-MLCP.  

 The two-level formulation proposed in this chapter gives a new way to look at 

an otherwise one-level problem. First, this formulation shows that there are actually 

two different sets of optimization problems hidden in this one-level problem. One set 

of minimization problems aims to minimize deviations from complementary and 

integrality. The other set of complementary problems aims to solve either a Nash-

Cournot game or a network problem (as the two examples discussed in this chapter; 

there can be other applications). In this way, the two-level approach tackles the 

problem from a different perspective. This perspective, coupled with the solution 

technique from Chapter 4, ends up performing better than the single-stage method of  

(Gabriel et al., 2011a), (Gabriel et al., 2011b). 

 From the theoretical analysis carried out and the examples considered, several 

conclusions can be drawn. First, relaxing both integrality and complementarity in the 

lower-level problem while using the upper-level to minimize deviations enables the 

selection of an integer, equilibrium solution. Second, the method of SOS Type 1 

variables from Chapter 4 proves to be computationally quicker than the method of 

disjunctive constraints for two of the numerical examples illustrated in this chapter. 

Third, different variations of relaxation, as shown by Variations 1 through 7 for each 
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example, can lead to different solutions. It also helps analyze the importance of the 

technique to practical examples. 

     



 

 

 

181 

 

Chapter 6:  Conclusions 

This chapter provides a summary of the work done in the dissertation. The 

dissertation went through three different types of two-level problems, and provided 

novel solution techniques for each of them. Several applications of these techniques 

were provided to show the nuances of each method. This chapter will start off with 

concluding remarks about each two-level problem studied. Then, the main 

contributions of this dissertation will be listed. Finally, some proposals for future 

work as an extension of the work provided in this dissertation will be presented. 

6.1. Concluding Remarks 

6.1.1. Robust Optimization 

Numerous robust optimization techniques exist in the literature, but the goal of this 

dissertation was to develop a technique which is numerically more efficient than 

previous techniques. Chapter 3 presented a method based on Benders decomposition, 

which was shown to be numerically more efficient when compared to a previous 

method (Li et al., 2006). 

 The modified Benders method was also shown to be computationally 

tractable, in that empirically the increase in the number of function calls was at most 

linear with an increase in variables. Diverse numerical examples were provided to 

show the applicability of the method to different types of problems. 

 Previous methods exist, which could easily solve linear and quadratic robust 

optimization problems efficiently. But many engineering design problems, as also 
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stated in this dissertation, involve nonlinear constraints and objective functions. The 

modified Benders method was shown to be able to tackle these problems, and a 

sampling technique was provided so the user could choose the level of accuracy 

desired. In particular, the engineering design examples showed how the selection of 

an optimal design can vary with the presence of uncertainty. Moreover, the examples 

also showed how the presence of uncertainty degrades objective function 

performance. 

 A final example showed the importance of studying uncertainty to 

environmental market strategies. The future of a carbon tax and retrofitting 

technology is uncertain, and this uncertainty in future events can have important 

implications on decisions made today. As shown in the example, the uncertainty of a 

tax discourages energy intensive infrastructure for today, when the decision maker is 

extremely risk averse. Worries of a larger tax in the future encourages infrastructure 

to not be as energy intensive under a worst-case scenario. 

 The approach presented in this dissertation is designed for robust optimization 

problems with a goal to decrease computational time. One drawback of this approach 

is that there is no built-in verification that the solution is actually robust for nonlinear 

robust optimization problems. Other methods (Gunawan & Azarm, 2004),  (Li et al., 

2006) have optimization problems that verify the solution is robust within the 

approach. Secondly, this approach requires explicit objective and constraint functions 

to be able to work. Simulation or “black box” type problems will not be solved using 

the approach presented in this dissertation. Moreover, this dissertation only provides 

numerical evidence that the modified Benders method works for robust optimization 
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problems with quasiconvex constraints. A mathematical proof would improve the 

validity of the method and is an option for future work. Another area of improvement 

is a better sampling technique than the one presented for nonlinear constraint 

functions. Improvements in sampling and theory might eventually lead to a solution 

technique for general nonlinear robust optimization problems. 

6.1.2. MPECs and EPECs 

Chapter 4 describes a new solution technique for MPECs and EPECs, which was 

developed to solve large-scale problems such as the North American gas model 

MPEC. The new technique was developed to be more computationally efficient than 

previous techniques for solving these problems. A lot of times optimization solvers 

return a solution as infeasible if they are unable to find one for complex problems. 

The aim was to develop a simple enough technique that could be applied to a wide 

variety of problems. 

 The two algorithms presented in Chapter 4 were shown to solve large MPECs 

with much less computational effort when compared to disjunctive constraints and 

also be applicable to complex problems (e.g., the North American gas model) where 

traditional methods had failed. The methods were restricted to be used in problems 

where the KKT conditions were necessary and sufficient, which decreases the 

applicability of various functional forms but still lends itself to different examples. 

 The focus of the examples was on different types of Stackelberg games and 

Nash-Cournot games with a modified structure. The theme of the examples was 

energy and natural gas production, outlined by the North American gas model. 
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 Various scenarios for shale gas in the United States were developed using the 

North American gas model. The scenarios studied what would happen under a tax for 

shale production, a tax on all natural gas production, and the presence of more shale 

than predicted. One of the main conclusions was that in the presence of a tax, the 

producers pass the tax onto the consumers. Moreover, the top-level firm always 

makes the majority of the profits by manipulating the market. The reality of the 

market situation probably lies somewhere in between that of a Stackelberg game and 

a Nash-Cournot game, but being able to study this formulation was instructive.  

6.1.3. Discretely-Constrained Mixed Linear Complementarity Problems 

The technique presented in Chapter 5 was a new way to solve and think about 

discretely-constrained mixed linear complementary problems. The technique 

provided a way to solve a relaxed version of the problem in one stage, thus converting 

a two-level problem into one level. This conversion into one stage was initially 

achieved using disjunctive constraints, but this meant the solution would depend on a 

large constant. This dissertation used the techniques presented in Chapter 4 to not 

have to use disjunctive constraints when finding solutions to DC-MLCPs. 

 The first set of numerical examples studied discretely-constrained Nash-

Cournot games. While the continuous versions of these games have been extensively 

studied, imposing discrete restrictions might lead to infeasibility. Hence, relaxing the 

integer restrictions as well as the complementary conditions, while targeting specific 

integer values, provided a solution to these games. The computational effort was also 

abated using SOS Type 1 variables as opposed to disjunctive constraints. In all 

examples, the payoffs for the players in the continuous relaxation were higher than 
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with the integer restrictions. Two different variations were provided to be able to 

obtain integer solutions to DC-Nash games. 

 The second set of numerical examples studied discretely-constrained network 

problems. Network problems can also be expressed as complementary problems, and 

adding the discrete restrictions would yield the same problems of infeasibility as the 

discretely-constrained Nash games. Again, different variations were studied to see 

which one yielded an integer solution. Two variations, the same ones that worked for 

the discretely-constrained Nash games, worked for these network problems as well. 

Dual variables are often used in network problems to obtain shadow prices, and this 

technique helped obtaining these prices. However, the applicability of these prices is 

still a matter of debate as the complementary and integrality relaxations also factor 

into these prices. 

 Another advantage of using the technique outlined in this dissertation was that 

a tradeoff between complementary and integrality can be obtained. This was 

numerically shown by studying different variations in Chapter 5.   

6.2. Main Contributions 

This dissertation is focused on solving three specific types of two-level problems. 

However, these three types of problems have been chosen to be the ones that best 

encompass the class of two-level problems. First, robust optimization is a two-level 

problem where the lower-level can be thought of as checking the feasibility of an 

upper-level decision. In this way, the lower-level aims to check feasibility, but does 

not have an objective or goal for itself. For MPECs and EPECs, the lower-level is  

either a cooperative or noncooperative equilibrium may or may not conflict with the 
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upper-level objective. While the lower-level alters the feasible space for the upper-

level problem, the focus is on influencing the objective function of the upper-level 

problem. Thus, these two types of two-level problems encompass dealing with 

influence of the lower-level on constraints (robust optimization) and objective 

function (MPECs) of the upper-level directly, and indirectly the objective function 

(robust optimization) and constraints (MPECs) of the upper-level. Finally, the third 

type of problem is something which starts off with a one-level structure, but is 

converted to two levels to be able to solve more easily.  

 The first main contribution of this dissertation is the application of 

decomposition techniques to two-level problems, which helps convert them to a 

single one-level problem (as in the case of MPECs, EPECs, and DC-MLCPs), or a 

series of one-level problems that can be solved iteratively (as in the case of robust 

optimization). This use of decomposition techniques provides insight that could not 

be achieved through a two-level analysis, for example, the robust feasible region for 

robust optimization problems, the absolute value function equality in MPECs and 

EPECs, and obtaining shadow prices from DC-MLCPs. These decomposition 

techniques are presented in a way to take advantage of the problem structure, and 

obtain a solution that can relate to the original problem. 

 The second main contribution of this dissertation is to provide methods that 

greatly speed up computation time for two-level problems. Robust optimization 

problems have been traditionally solved using a nested inner-outer structure which 

takes a lot of computational effort. MPECs and EPECs have been solved using 

primarily disjunctive constraints which not only involve great computational effort 
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because of the presence of binary variables, but also require the selection of a large 

constant which is not immediately obvious. DC-MLCPs have been solved either 

successively fixing and relaxing discrete variables or using disjunctive constraints, 

both of which are computationally more expensive than the methods provided in this 

dissertation. In particular, the method for MPECs can be applied to a host of other 

problems to speed up computation wherever a product of two terms resulting in a 

nonlinear function is present. 

 The third main contribution of this dissertation is applying the theory to an 

extremely diverse set of examples. The dissertation contains examples from 

environmental markets, energy markets, power systems, structural optimization, 

engineering design, networks, and game theory. These same examples can also be 

split into academic subjects of operations research, economics, mechanical 

engineering, and market design. A host of such examples serves the academic 

community well, as it outlines the importance of research into the theory of two-level 

problems. 

6.3. Future Research 

6.3.1. Multiobjective Mixed-Integer Robust Optimization 

There are two natural ways to develop the ideas presented for robust optimization. 

These ideas arise out of the methods developed in the dissertation, and it is 

convenient that this direction is shared by current research as well. 

 Many engineering design applications involve multiobjective optimization. 

Thus, extending the modified Benders method to be applicable to multiobjective 
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robust optimization problems would be useful. Since the modified Benders method 

has already converted the two-level problem into a single-level, combining it with 

traditional methods of multiobjective optimization would be natural. For example, if 

the robust feasible region is provided, any multiobjective method can be applied. 

Hence, each stage of the modified Benders decomposition method can involve 

solving a multiobjective problem. Since the modified Benders method is gradient-

based, it would make sense to combine it with another gradient-based method such as 

Normal Boundary intersection or one of its variations (Siddiqui et al., 2011d). Each 

step of the Normal Boundary intersection method provides one point on the Pareto 

frontier. The modified Benders method would be used at each step to come up with 

one robust Pareto point, thus generating a robust Pareto frontier. 

 The second natural extension has to do with solving mixed-integer robust 

optimization problems. Standard Benders decomposition is already applicable to 

mixed-integer optimization problems. Thus, a variation can easily be considered 

which contains standard Benders cuts and modified Benders cuts to solve a robust 

mixed-integer optimization problem. These two ideas can then be combined to solve 

a mixed-integer robust optimization problems.  

6.3.2. Solving Nonlinear MPECs and EPECs 

The methods presented in this dissertation were only applicable to MPECs and 

EPECs which comprised of optimization problems where the KKT conditions were 

necessary and sufficient. However, to obtain local solutions to nonlinear programs an 

approximation scheme can be developed where the lower level problem is locally 

approximated. This can be done using SOS Type 2 variables, and the linear 
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interpolation could have the KKT conditions necessary and sufficient within a 

specified interval. 

 An easier task would be to consider the case where the KKT conditions might 

just be necessary (or sufficient) and develop an approximation scheme from there. In 

particular, if the product of two terms becomes complicated, other approximation 

techniques may be studied.  

6.3.3. Solving Large-Scale Mixed-Integer Complementary Problems 

The relaxation techniques put into the DC-MLCPs in Chapter 5 were not put to the 

test on larger problems. There might be even better ways to approximate the 

relaxation of complementarity. For example, a nonlinear function describing the 

product might be added as a constraint.  

 In many cases, the formulation might yield a simple way to both add 

relaxations and approximate the lower-level product at the same time. This can then 

be tested on large mixed-integer complementarity problems, solutions to which can 

be very useful when studying market or network dynamics problems. 
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Appendices 

Appendix A: Robust Optimization Test Problems 

For examples 2 to 4: 1.0,1.0,1.0,1,1 `3`2`121  xqqqq . 

(Example 2) 

                     

    

   

2 2

1 2 3 4

1 1 1 2

2 2 3 4

1 2 3 4

1 1 1 2 2 2

min 0.6 0.6 10

. .

ˆ( ) 0

ˆ( ) 0

0, 0, 0, 0

ˆ ˆ: , , ,

x
x x x x

s t

q q x x

q q x x

x x x x

where q q q q q q

     

   

   

       

       

                               (A1)                              

Table A1: Solution to Example 2 

Information Nominal  

Solution 

Robust  

Solution 

Li et al.‟s (2006)  

Solution 

x1 0.5 0.45 0.375 

x2 0.5 0.45 0.375 

x3 1 0.90 0.416 

x4 0 0 0.416 

f(x) 9.02 9.145 9.268 

Function Calls 7 19 2592 
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(Example 3) 

    

     

2 2

1 2 3 4

1 1 1 2

2 2 3 4

1 2 3 4

1 1 1 2 2 2 3 3 3 3 3

min 0.6 0.6 10

. .

ˆ( ) 0

ˆ( ) 0

0, 0, 0, 0

ˆ ˆ: , , , , ,

x
x x x x

s t

q q x x

q q x x

x x x x

where q q q q q q x x x x x

     

   

   

       

            
     (A2) 

Table A2: Solution to Example 3 

Information Nominal  

Solution 

Robust  

Solution 

Li et al.‟s (2006)  

Solution 

x1 0.5 0.45 0.375 

x2 0.5 0.45 0.375 

x3 1 0.10 0.416 

x4 0 0.70 0.416 

f(x) 9.02 9.145 9.268 

Function Calls 7 21 2808 

 

(Example 4) 

     

    

     

2 2

1 2 3 4

1 1 1 2

2 2 3 4

1 2 3 4

1 1 1 2 2 2 3 3 3 3 3

min 0.6 0.6 10

. .

ˆ( ) 0

ˆ( ) 0

0, 0, 0, 0

ˆ ˆ, , , , ,

x
x x x x

s t

q q x x

q q x x

x x x x

where q q q q q q x x x x x

    

   

   

       

            

          (A3)         
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Table A3: Solution to Example 4 

Information Nominal  

Solution 

Robust  

Solution 

Li et al.‟s (2006)  

Solution 

x1 0.5 0.45 0.40 

x2 0.5 0.45 0.40 

x3 1 0.90 0.40 

x4 0 0 0.40 

f(x) 9.77 9.8850 9.92 

Function Calls 7 21 2592 

 

(Example 5) 

0.1x p        

                    

 

5,4,3,55

2,1,5~5

033~2~2

0132
~~~

..

32532min

54321

54321

54321











ix

ix

xxxxx

xxxxx

ts

xxxxx

i

i

x

                                              (A4)        
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Table A4: Solution to Example 5 

Information Nominal  

Solution 

Robust  

Solution 

Li et al.‟s (2006)  

Solution 

x1 -4.00 -3.40 1.04 

x2 -5.00 -4.90 -4.53 

x3 5.00 5.00 5.00 

x4 -5.00 -5.00 -0.37 

x5 5.00 5.00 5.00 

f(x) -23.00 -21.50 -20.75 

Function Calls 5 17 7856 

 

(Example 6) 

1.0`  px   

                      

 

5,4,3,55

2,1,5~5

0103~2~2

02.15.31.12.2
~~~9.0

..

4.22507.31.2min

54321

54321

54321











ix

ix

xxxxx

xxxxx

ts

xxxxx

i

i

x

                              (A5)             
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Table A5: Solution to Example 6 

Information Nominal  

Solution 

Robust  

Solution 

Li et al.‟s (2006)  

Solution 

x1 -5.00 -4.90 -4.23 

x2 -5.00 -4.90 -4.52 

x3 5.00 5.00 5.00 

x4 -3.82 -4.27 -3.67 

x5 5.00 5.00 5.00 

f(x) -31.21 -29.79 -28.36 

Function Calls 5 17 11099 

 

(Hock 100) 

This is problem 100 modified from (Hock & Schittkowski, 1980). 1.0`  px  

    

01152~~3~~4

086~~23196

  010~3~7282

054~3~272
~

1

..

8104710)11(312~510~min

76

2

321

2

2

2

1

7

2

6

2

21

54

2

321

5

2

43

4

2

2

1

7676

4

7

2

6

6

5

2

4

4

3

2

2

2

1











xxxxxxx

xxxx

xxxxx

xxxxx

ts

xxxxxxxxxxx
x

(A6) 

 



 

 

 

195 

 

Table A6: Solution to Hock 100

 

Information Nominal  

Solution 

Robust  

Solution 

Li et al.‟s (2006)  

Solution 

x1 2.3304 2.2350 - 

x2 1.9514 1.8546 - 

x3 -0.4775 -0.4749 - 

x4 4.3657 4.3533 - 

x5 -0.6245 -0.6251 - 

x6 1.0381 1.0359 - 

x7 1.5942 1.5970 - 

f(x) 680.6301 692.3847 - 

Function Calls 7 19 >10
9 
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(Hock 106)  

1.0`  px             

                                     

    

8,...,4,100010,10000~1000,10000~1000,10000~100

02500~1250000~
01250~1250~

0333.83333~10033252.833~
0)(01.01

0)(0025.01

0)(0025.01
~

..

)(~~min

321

55383

442572

1461

58

475

64

321

















ixxxx

xxxxx

xxxxxx

xxxx

xx

xxx

xx

ts

xxx

i

x

 (A7)      
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Table A7: Solution to Hock 106 

Information Nominal  

Solution 

Robust  

Solution 

Li et al.‟s (2006)  

Solution 

x1 579.32 388.73 - 

x2 1359.94 1540.21 - 

x3 5110.07 5290.11 - 

x4 182.02 150.89 - 

x5 295.60 288.40 - 

x6 217.98 209.11 - 

x7 286.42 262.49 - 

x8 395.60 388.40 - 

f(x) 7049.33 7219.06 - 

Function Calls 5 17 >10
9
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Appendix B: Discussion on Function Calls 

One of the benchmarks of a useful algorithm is that it is uses less computational effort 

than other algorithms. One way to measure computational effort of an algorithm is a 

comparison of CPU time, i.e., how fast the algorithm can solve certain test problems 

when compared to others. However, CPU time can vary with the type of computer 

used, other programs running in the background, and other factors that are machine 

dependent. 

 Measuring the number of function calls is a measure of computational effort 

that is machine independent. Moreover, measuring computational efficiency in terms 

of function calls can better estimate how the algorithm will perform for different 

types of problems (e.g., black box or simulation-based design).  

 This dissertation defines function calls as any instances where the solver calls 

an objective function, constraint, or other value or assignment in the optimization 

problem. This is based on the definition of a statement execution in GAMS, which is 

defined as any instance where the solver calls an equation or other value or 

assignment in the optimization problem (GAMS, 2010). This definition was chosen in 

part because the modified Benders method was programmed and tested in GAMS. 

 This definition is also similar to the other definitions of function calls in the 

recent literature. The definition by (Hu et al., 2011) is that a “function call refers to 

one instance of calculating objective and constraint functions altogether (i.e., one call 

to the optimization problem).” The authors (Hu et al., 2011) have used MATLAB to 

solve their test problems, and their definition depends on their use of MATLAB 

(MATLAB, 2008). MATLAB does not have an internal explicit function call counter 
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like GAMS, but the method of (Hu et al., 2011) entails putting the objective and 

constraint functions in one “m-file” and attaching a function call counter within this 

file. Note it is not possible to place a similar counter in GAMS because the GAMS 

file structure is different than MATLAB. Another definition is offered by (Li et al., 

2011), who define function calls “equal to the number of points that have been 

evaluated during one run of the optimizer.” The authors in (Li et al., 2011) used the 

solver XPRESS (XPRESS, 2003) for their test problems.  

 Since all problems except one (Heat Exchanger Design in Section 3.5.3 was 

solved using MATLAB) were solved in GAMS, the following example provides a 

basis for comparison for function call counting in GAMS and MATLAB. This is the 

nominal version of Fleury‟s weight minimization like problem (Section 3.5.1). 

NiNx
N

N
xNx

N
xNx

ts

xxf

i

N

Ni i

N

i i

N

Ni i

N

i i

N

i

i
x

,...,2,1
1

09.0
111

 0
111

..

)(min

2

2

195.0
2

95.0

1

195.0
2

95.0

1

1





















                                      (B1) 

 This problem (B1) was solved using both GAMS and MATLAB. The values 

of N were changed to give an idea of computational effort for MATLAB and GAMS 

(and two different ways of measuring function calls). Table B1 shows these results. 
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Table B1: Comparing Function Calls Between GAMS and MATLAB 

Number of 

Variables (N) 

Number of 

Constraints 

GAMS Function 

Calls 

MATLAB 

Function Calls 

100 102 506 5493 

200 202 607 8210 

300 302 913 12252 

400 402 1201 17786 

500 502 1403 20096 

     

 Clearly, even though we are careful in using the same definition for 

MATLAB and GAMS, there is a difference in counting function calls for these 

programs. Roughly, the function calls in GAMS are an order of magnitude or two 

lower for example (B1). This difference should be kept in mind when looking at the 

examples in this dissertation. Just to note, the function calls for the Heat Exchanger 

example (Section 3.5.3) were reported using the counting method for MATLAB. The 

results on maximum function calls presented in Table 3.1 are also applicable to both 

methods of counting since they talk about the maximum possible function calls, and 

are based on the definition of function call in this dissertation.  
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