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Centre for Media and Economic Psychology (P) Richard Wahlund
Centre for Consumer Marketing (CCM) Magnus Söderlund
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To my parents, Arminda e José,

for their example

The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say.

The Road goes ever on and on
Out from the door where it began.
Now far ahead the Road has gone,
Let others follow it who can!
Let them a journey new begin,
But I at last with weary feet
Will turn towards the lighted inn,
My evening-rest and sleep to meet.

J.R.R. Tolkien in “The Lord of the Rings”
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This thesis consists of four research chapters in the area of financial econometrics
on topics of the modelling of financial market volatility and the econometrics of ultra-
high-frequency data. The aim of the thesis is to develop new econometric methods
for modelling and hypothesis testing in these areas. A brief introduction to those
research areas and a short description of the specific topics in the chapters follows.
For a more detailed overview of the contents of the chapters, the reader is referred to
the introductions of the individual chapters.

When making investment decisions, volatility is commonly regarded by market
investors as a measure of risk. Modelling volatility is therefore essential in many
financial areas such as portfolio diversification, risk management, and derivative asset
pricing. The models can be then used for forecasting volatility of stock prices, strike
prices or interest rates. The success of the volatility model will depend on how well it
predicts and captures the characteristics of financial data. Financial market volatility
is also of great importance in financial regulation, monetary policy and economic
activity. The central role of risk (or volatility) in financial decision making and the
ample evidence that the measures of risk exhibit stochastic behaviour through time
have stimulated the development of many sophisticated tools in the field of time series
econometrics.

The Autoregressive Conditional Heteroskedastic class of models introduced by
Engle (1982)1 was designed to parameterize time-varying volatility. The Generalized
ARCH (GARCH) process defined by Bollerslev (1986) specifies present volatility as a
function of past volatilities in addition of past squared returns. The GARCH model
is able to capture the temporal dependence in financial time series by allowing the
investors to update their risk expectations when new information becomes available
on the market. Moreover, the GARCH model also successfully accommodates some
special features of financial data such as volatility clustering and excess kurtosis. Since
its introduction, richer parameterizations and numerous extensions to the GARCH
model have been suggested to increase the flexibility of the original model.

A vast literature focusing on the implications of the assumption of parameter con-
stancy in the GARCH model has been developed in recent years. The occurrence of
social, polical or economic events during a long time span may make the structure
of volatility to change over time, making the series to become nonstationary. For
this reason, as Mikosch and Stărică (2004) documented, the assumption of station-
arity (or parameter constancy) may not be very appropriate when the series to be
modelled is sufficiently long. In applications it is often found that the sum of the
estimated GARCH parameters (excluding the intercept) is close to unity. This so-
called ‘integrated GARCH effect’ may be well explained by occasional level shifts in
the intercept of the GARCH model; Diebold (1986) and Lamoureux and Lastrapes
(1990). This means that the high persistence (or the observed long-memory) in stock
market volatility may not be an inherent feature of the financial data but it can be
explained by neglected structural breaks in the variance process.

1Robert F. Engle was awarded in 2003 the Sveriges Riksbank Prize in Economic Sciences in
Memory of Alfred Nobel “for methods of analyzing economic time series with time-varying volatility
(ARCH)”.
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Some modelling proposals have been suggested to accommodate deterministic
changes in the volatility. One possibility is to use Markov-switching GARCH-type
processes for modelling sudden breaks in the volatility at specific points in time.
Alternatively, one may consider that volatility is parameterized by a ’smoothly’ non-
stationary process. One of such models is the spline-GARCH of Engle and Gon-
zalo Rangel (2008) in which volatility is multiplicatively decomposed into stationary
and nonstationary components. More specifically, the nonstationary component is
modelled using an exponential spline, and the stationary component is described as
a GARCH process.

The chapter “Modelling Conditional and Unconditional Heteroskedasticity with
Smoothly Time-Varying Structure”2 introduces a new model, the time-varying GARCH
(TV-GARCH) model, in which volatility has a smooth time-varying structure of either
additive or multiplicative type. To characterize smooth changes in the (un)conditional
variance we assume that the parameters vary smoothly over time according to the
logistic transition function. As a result, the parameterizations provide very flexi-
ble representations of volatility, and they can describe many types of nonstationary
behaviour. These parametric alternatives are particularly useful in applications for
modelling long financial data where the non-constancy of parameters becomes an is-
sue. Testing parameter constancy is therefore an important tool for checking the
adequacy of the model. For this reason, we provide a modelling framework relying on
statistical inference to specify the parametric structure of the TV-GARCH models.
We first test the standard GARCH model against these time-varying alternatives and,
in case of the rejection of the null hypothesis, determine the structure of the time-
varying component is from the data. This is done by testing a sequence of hypotheses
by Lagrange multiplier tests presented in the chapter. Misspecification tests are also
provided for evaluating the adequacy of the estimated model.

Finite-sample properties of the test statistics and sequential testing are examined
by simulation. The Monte Carlo experiments suggest that these procedures have
reasonable good properties already in samples of moderate size. The model building
strategy is illustrated with an application to the daily S&P 500 index and the spot
SPD/USD exchange rate returns. The results show that the tests strongly reject
the hypothesis of parameter constancy against the time-varying GARCH alternatives
for the two return series. Moreover, our findings suggest that the long-memory type
behaviour of the sample autocorrelation functions of the absolute or squared returns
can also be explained by deterministic changes in the unconditional variance.

In some applications, the time series used for fitting a GARCH model covers
decades of economic activity. For such long series, one may inevitably expect periods
of turbulence such as recessions and, possibly, deterministic shifts. In those cases,
the assumption of constant unconditional variance of the GARCH model turns out
to be too restrictive. Shifts in the unconditional variance then affect the estimation
towards an IGARCH model as documented in Lamoureux and Lastrapes (1990).

2This is a joint work with Timo Teräsvirta.
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Consequently, modelling deterministic changes in the second unconditional moment
of the returns is important when the time series covers a long period.

The chapter “Modelling Changes in the Unconditional Variance of Long Stock
Return Series”3 addresses the issue of modelling deterministic changes in the uncon-
ditional variance over a long return series. For this purpose, we assume that volatility
is modelled by a multiplicative decomposition of both conditional and unconditional
variance. More specifically, the conditional variance component is parameterized by
a GARCH-type model and it describes the short-run dynamics. The unconditional
variance component is assumed to be vary slowly over time and it is modelled using a
linear combination of logistic transition functions. The structure of the time-varying
component is specified using a testing sequence which is similar to the one within
the TV-GARCH framework. In order to facilitate the specification, the long series is
splitted into non-overlapping subperiods, and parameter estimation in this modelling
framework requires special care. The modelling strategy is illustrated with an appli-
cation to the daily returns of the Dow Jones Industrial Average (DJIA) index from
1920 until 2003. The empirical results sustain the hypothesis that the assumption
of constancy of the unconditional variance is not adequate over long return series
and indicate that deterministic changes in the unconditional variance may be associ-
ated with macroeconomic factors. The observed long-memory property observed in
the original series is weakened when the deterministic changes in the unconditional
variance are incorporated into the model.

Many financial considerations do not only rely on the behaviour of an individual
asset. Instead, standard tools applied by financial analysts typically use informa-
tion about the covariances or correlations between asset returns. This has moti-
vated the modelling of volatility using multivariate financial time series rather than
modelling individual returns separately. However, the growing literature on multi-
variate GARCH models has so far paid little attention on modelling multivariate
financial data with nonstationary volatilities. Recently, Hafner and Linton (2008)
proposed a semiparametric generalization of the spline-GARCH model of Engle and
Gonzalo Rangel (2008) in which the parametric component is a first-order BEKK
model. The authors suggested an estimation procedure for the parametric and non-
parametric components and established semiparametric efficiency of their estimators.

In the chapter “Conditional Correlation Models of Autoregressive Conditional
Heteroskedasticity with Nonstationary GARCH Equations”4 we propose an extension
of the univariate multiplicative TV-GARCH model to the multivariate Conditional
Correlation GARCH (CC-GARCH) framework. The variance equations are parame-
terized such that they combine the long-run and the short-run dynamic behaviour of
the volatilities. In this framework, the long-run behaviour is described by the individ-
ual unconditional variances, and it is allowed to vary smoothly over time according
to the logistic transition function. Our model differs from the semiparametric model
of Hafner and Linton (2008) in the sense that a data-based modelling technique is

3This is a joint work with Timo Teräsvirta.
4This is a joint work with Timo Teräsvirta.
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used for specifying the deterministic time-varying component. It may be of interest to
investigate how careful specification of the individual variances affects the correlation
structure of several CC-GARCH models. The effects of modelling the nonstationary
variance component are examined empirically using pairs of seven daily stock return
series from the S&P 500 index. According to the results, the nature and magnitude
of the effects on the correlation estimates depend on the correlation structure matrix
of the model. The fit of the CC-GARCH models to the data is remarkably improved
through taking nonstationarity in variances into account. Another advantage of this
framework is that we are able to generalize the news impact surfaces of Kroner and
Ng (1998) such that they can vary over time. The so-called time-varying news impact
surfaces are now able to distinguish between responses at different levels of turbulence
in the market as well as at different correlation levels.

With the increasing availability of intraday databases, new methods in time series
econometrics are needed to investigate the recorded information of these more de-
tailed and complex datasets. The available information usually contains the precise
time (“time-stamp”) at which the order in the stock market has been executed and
other associated characteristics with the trade. Transaction data containing recorded
financial events at the highest frequency possible are defined as ultra-high-frequency
data. An inherent feature of such data is that the events are irregularly spaced.
Standard tools of time series econometrics are thus inadequate for such time series
as they are based on regularly spaced data. This has contributed to the birth of a
new branch of financial econometrics where the so-called high-frequency models have
been introduced to account the irregular spacing of the data.

The pioneering work on this area was originated with the class of Autoregressive
Conditional Duration (ACD) models of Engle and Russell (1998) and Engle (2000).
The focus in this work was on modelling the time elapsed between two market events
(or duration). Duration data share some of the stylized facts present in financial data
such as duration clustering, high persistence and, among others, fat tails. Another
documented feature of the data is their systematic pattern over the day as trading
activity tends to be more active near the opening and closing of the market than
in the midday. In the chapter “A Smooth Transition Approach to Modelling Diur-
nal Variation in Models of Autoregressive Conditional Duration”5 we propose a new
parameterization for describing the diurnal component. This is done by allowing
the durations to change smoothly over the day according to the logistic transition
function. For the purpose, we provide a modelling framework for specifying the pa-
rameteric structure of the systematic pattern over the trading day. An application to
the IBM trade durations suggests that the diurnal pattern may not always have the
shape proposed earlier: short durations early and late in the day and lower activity
in the middle. For this reason, one should proceed with care when specifying the
diurnal component. The estimation of the ACD model should be then preceded by a
specification search to determine the structure of the diurnal variation.

5This is a joint work with Timo Teräsvirta.
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Modelling Conditional and Unconditional

Heteroskedasticity with Smoothly Time-Varying

Structure 1

Abstract

In this paper, we propose two parametric alternatives to the standard GARCH model.
They allow the conditional variance to have a smooth time-varying structure of either
additive or multiplicative type. The suggested parameterizations describe both non-
linearity and structural change in the conditional and unconditional variances where
the transition between regimes over time is smooth. A modelling strategy for these
new time-varying parameter GARCH models is developed. It relies on a sequence of
Lagrange multiplier tests, and the adequacy of the estimated models is investigated
by Lagrange multiplier type misspecification tests. Finite-sample properties of these
procedures and tests are examined by simulation. An empirical application to daily
stock returns and another one to daily exchange rate returns illustrate the function-
ing and properties of our modelling strategy in practice. The results show that the
long memory type behaviour of the sample autocorrelation functions of the absolute
returns can also be explained by deterministic changes in the unconditional variance.

1This paper is a joint work with Timo Teräsvirta.
Acknowledgements: This research has been supported by the Danish National Research Foun-

dation. Material from this paper has been presented at the International Symposium on Econometric
Theory and Applications, Xiamen, April 2006; 5th Annual International Conference ‘Forecasting Fi-
nancial Markets and Economic Decision-making’, Lodz, May 2006; 13th International Conference
on ‘Forecasting Financial Markets’, Marseille, May-June 2006; 26th International Symposium on
Forecasting, Santander, June 2006; Workshop ’Volatility day’, Stockholm, November 2006; Nordic
Econometric Meeting, Tartu, May 2007; Symposium on ”Long Memory”, Aarhus, June-July 2007;
LACEA-LAMES, Bogotá, October 2007; and at the seminars at Banca d’Italia, Rome, European
University Institute, Florence, Humboldt University, Berlin, University of Minho, Braga, Stockholm
School of Economics, Leonard N. Stern School of Business at New York University, and University of
Vilnius. We would like to thank the participants at these occasions for their comments, and Stefan
Lundbergh, Mika Meitz, Anders Rahbek and Esther Ruiz for useful discussions and suggestions. The
responsibility for any errors and shortcomings in this article remains ours.
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2.1 Introduction

The modelling of time-varying volatility of financial returns has been a flourishing field
of research for a quarter of a century following the introduction of the Autoregressive
Conditional Heteroskedasticity (ARCH) model by Engle (1982) and the Generalized
ARCH (GARCH) model developed by Bollerslev (1986). The increasing popularity
of the class of GARCH models has been mainly due to their ability to describe the
dynamic structure of volatility clustering of stock return series, specifically over short
periods of time. However, one may expect that economic or political events or changes
in institutions cause the structure of volatility to change over time. This means that
the assumption of stationarity may be inappropriate under the evidence of structural
changes in financial return series. Recently, Mikosch and Stărică (2004) argued that
stylized facts in financial return series such as the long-range dependence and the
‘integrated GARCH effect’ can be well explained by unaccounted structural breaks
in the unconditional variance (see also Lamoureux and Lastrapes (1990)). Diebold
(1986) was the first to suggest that occasional level shifts in the intercept of the
GARCH model can bias the estimation towards an integrated GARCH model.

Another line of research has focussed on explaining nonstationary behaviour of
volatility by long-memory models, such as the Fractionally Integrated GARCH (FI-
GARCH) model by Baillie, Bollerslev, and Mikkelsen (1996). The FIGARCH model
is not the only way of handling the ‘integrated GARCH effect’ in return series. Baillie
and Morana (2007) generalized the FIGARCH model by allowing a deterministically
changing intercept. Hamilton and Susmel (1994) and Cai (1994) suggested a Markov-
switching ARCH model for the purpose, and their model has later been generalized
by others. One may also assume that the GARCH process contains sudden determin-
istic switches and try and detect them; see Berkes, Gombay, Horváth, and Kokoszka
(2004) who proposed a method of sequential switch or change-point detection.

Yet another way of dealing with high persistence would be to explicitly assume that
the volatility process is ’smoothly’ nonstationary and model it accordingly. Dahlhaus
and Subba Rao (2006) introduced a time-varying ARCH process for modelling nonsta-
tionary volatility. Their tvARCH model is asymptotically locally stationary at every
point of observation but it is globally nonstationary because of time-varying param-
eters. Engle and Gonzalo Rangel (2008) assumed that the variance of the process of
interest can be decomposed into two components, a stationary and a nonstationary
one. The nonstationary component is described by using splines, and the stationary
component follows a GARCH process. The parameters of the latter are estimated
conditionally on the spline component.

In this paper, we introduce two nonstationary GARCH models for situations in
which volatility appears to be nonstationary. First, we propose an additive time-
varying parameter model, in which a directly time-dependent component is added
to the GARCH specification. In the second alternative, the variance is multiplica-
tively decomposed into the stationary and nonstationary component as in Engle and
Gonzalo Rangel (2008). These two alternatives are quite flexible representations of
volatility and can describe many types of nonstationary behaviour. We emphasize
the role of model building in this approach. The standard GARCH model is first
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tested against these time-varying alternatives. If the null hypothesis is rejected, the
structure of the time-varying component of the model is determined using the data.
This is done by testing a sequence of hypotheses, and these tests are presented in the
paper. After parameter estimation, the model is evaluated by misspecification tests,
following the ideas in Eitrheim and Teräsvirta (1996) and Lundbergh and Teräsvirta
(2002).

The outline of this paper is as follows. In Section 2.2 we present the new Time-
Varying (TV-) GARCH model and discuss some of its properties. In Section 2.3
we derive LM parameter constancy tests against an additive and a multiplicative
alternative. In Section 2.4 we present a modelling strategy for both specifications.
Details regarding the estimation are discussed in Section 2.5, and diagnostic tests
for the TV-GARCH model are given in Section 2.6. Section 2.7 contains simulation
results on the empirical performance of the tests and the specification strategy. In
Section 2.8 we apply our modelling cycle to both stock and exchange rate returns.
Finally, Section 2.9 contains concluding remarks.

2.2 The model

Let the model for an asset or index return yt be

yt = µt + εt

where {εt} is an innovation sequence with the conditional mean E(εt|Ft−1) = 0 and a
potentially time-varying conditional variance E(ε2t |Ft−1) = σ2

t , and Ft−1 is the sigma-
field generated by the available information until t−1. We assume that E(yt|Ft−1) = 0,
because our focus will be on the conditional variance σ2

t . More precisely, define

εt = ζtσt (2.1)

where {ζt} is a sequence of independent standard normal variables. Furthermore,
assume that σ2

t is a time-varying representation measurable with respect to Ft−1

with either an additive structure

σ2
t = ht + gt (2.2)

or a multiplicative one
σ2
t = htgt. (2.3)

The function ht is a component describing conditional heteroskedasticity in the ob-
served process yt, whereas gt introduces nonstationarity. Thus, we assume that ht
follows the standard GARCH(p, q) model of Bollerslev (1986):

ht = α0 +
q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j . (2.4)

Then the GARCH(p, q) model is nested in (2.2) when gt ≡ 0 and in (2.3) when
gt ≡ 1. More generally, when (2.3) holds, ε2t−i is replaced by ε2t−i/gt−i, i = 1, . . . , q,
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in (2.4). Both parameterizations (2.2) and (2.3) define a time-varying parameter
GARCH model.

In order to characterize smooth changes in the conditional variance we assume
that the parameters in (2.4) vary smoothly over time. This is done by defining the
function gt in (2.2) as follows:

gt = (α∗0 +
q∑
i=1

α∗i ε
2
t−i +

p∑
j=1

β∗j ht−j)G(t∗; γ, c), (2.5)

where G(t∗; γ, c) is the so-called transition function which is a continuous and non-
negative function bounded between zero and one. Furthermore, t∗ = t/T, where T
is the number of observations. A suitable choice for G(t∗; γ, c) is the general logistic
smooth transition function defined as follows:

G(t∗; γ, c) =

(
1 + exp

{
−γ

K∏
k=1

(t∗ − ck)

})−1

, γ > 0, c1 ≤ c2 ≤ . . . ≤ cK . (2.6)

This transition function is such that the parameters of the GARCH model (2.1)-(2.2)
fluctuate smoothly over time between (αi, βj) and (αi+α∗i , βj+β

∗
j ), i = 0, 1, . . . , q, j =

1, . . . , p. The slope parameter γ controls the degree of smoothness of the transition
function. When γ −→∞, the switch from one set of parameters to another in (2.2) is
abrupt, that is, the process contains structural breaks at c1, c2, . . . , cK . The order K ∈
Z+ determines the shape of the transition function. Typical choices for the transition
function in practice are K = 1 and K = 2. These are illustrated in Figure 2.1 for a set
of values for γ, c1, and c2.One can observe that large values of γ increase the velocity of
transition from 0 to 1 as a function of t∗. When γ −→∞, a smooth parameter change
approaches a structural break because then the process switches instantaneously over
time from one regime to another. The TV-GARCH model with K = 1 is suitable for
describing return processes whose volatility dynamics are different before and after the
smooth structural change. When K = 2, the parameters first change and eventually
move back to their original values.

More generally, one can define an extended version of the additive TV-GARCH
model allowing for more than one transition function. A multiple TV-GARCH model
can be obtained by adding r transition functions as follows

gt =
r∑
l=1

(α0l +
q∑
i=1

αilε
2
t−i +

p∑
j=1

βjlht−j)Gl(t∗; γl, cl) (2.7)

where Gl(t∗; γl, cl), l = 1, . . . , r, are logistic functions as in (2.6) with smoothness
parameter γl and a threshold parameter vector cl. The parameters in (2.4) and (2.7)
satisfy the restrictions αi+

∑j
l=1 αil > 0, i = 0, . . . , q;∀j = 1, . . . , r and βi+

∑j
l=1 βil ≥

0, i = 1, . . . , p;∀j = 1, . . . , r. These conditions are sufficient to guarantee strictly
positive conditional variances.

The model (2.2), (2.4) and (2.7) is an additive TV-GARCH model whose intercept,
ARCH and GARCH parameters are time-varying. This implies that the model is
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Figure 2.1 Plots of the logistic transition function (2.6) for: (a) K = 1 with location
parameter c1 = 0.5; and (b) K = 2 with location parameters c1 = 0.2 and c2 = 0.7
for γ = 5, 10, 50, and 100 where the lowest value of γ corresponds to the smoothest
function.

capable of accommodating systematic changes both in the “baseline volatility” (or
unconditional variance) and in the amplitude of volatility clusters. Such changes
cannot be explained by a constant parameter GARCH model.

Function (2.7) with r > 1 is extremely flexible and probably makes the model
difficult to estimate in practice. A more applicable but still flexible model is obtained
by only letting the “baseline volatility” or the intercept to change smoothly over time.
This leads to the following definition for gt:

gt =
r∑
l=1

α0lGl(t∗; γl, cl). (2.8)

It may be mentioned that Baillie and Morana (2007) recently proposed a GARCH
model which also has a deterministically time-varying intercept. It is modelled using
the flexible functional form of Gallant (1984) based on the Fourier decomposition.
Their model differs from our time-varying intercept model in the sense that it is in
other respects a FIGARCH model, and the authors called it the Adaptive FIGARCH
model.

In the GARCH(p, q) model, the unconditional variance of the returns is constant
over time, that is, E(ε2t ) = α0/(1 −

∑q
i=1 αi −

∑p
j=1 βj) if and only if

∑q
i=1 αi +∑p

j=1 βj < 1. However, this assumption is not consistent with the behaviour of the
volatilities of the stock market returns if the dynamic behaviour of volatility changes
in the long run. The additive TV-GARCH model with a time-varying intercept is
capable of generating changes in the dynamics of the unconditional variance over
time. The model ( 2.2), (2.4) and (2.8) can be seen as a GARCH(p, q) model with
a stochastic time-varying intercept fluctuating smoothly over time between α0 and
α0 +

∑r
l=1 α0lGl(t∗; γl, cl). Therefore, it can generate smooth changes over time in

the “baseline volatility”. Hence, such parameterization can explain the systematic
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movements of the conditional variance as in the GARCH model but relaxing the
assumption of constancy of the unconditional volatility.

Consider again the model (2.2), (2.4) and (2.7) and assume that α0l = α0δl, αil =
αiδl, i = 1, . . . , q;βjl = βjδl, j = 1, . . . , p. Furthermore, assume δl > 0, l = 1, . . . , r, if
the transition function Gl(t∗; γl, cl) is increasing over time. For the case Gl(t∗; γl, cl) is
a decreasing function assume

∑r
l=1 δl < 1 for l = 1, . . . , r. Imposing these restrictions

on (2.7) and rewriting (2.2) yields

σ2
t = ht(1 +

r∑
l=1

δlGl(t∗; γl, cl)). (2.9)

Setting gt = 1 +
∑r
l=1 δlGl(t

∗; γl, cl) in (2.9) gives the multiplicative representation
(2.3). It is thus seen to be a special case of the additive TV-GARCH model (2.2), (2.4)
and (2.7). The multiplicative model has a straightforward interpretation. Writing it
in terms of (2.1) as

φt = εt/g
1/2
t = ζtht

1/2 (2.10)

it is seen that φt has a constant unconditional variance Eht and, moreover, that φt
has a standard stationary GARCH(p, q) representation ht. Turning (2.10) around,
one obtains that ψt = εt/h

1/2
t , t = 1, . . . , T, form a sequence of independent but

not identically distributed observations, as the unconditional variance of ψt changes
smoothly as a function of time.

We consider properties of both time-varying GARCH specifications by generat-
ing 1000 replications with Gaussian errors each with 5000 observations. Figure 2.2
illustrates the relation of the average excess kurtosis of the two models given the
persistence and the time-varying constants α01 and δ1. The degree of persistence,
measured by the sum α1 +β1, varies between 0.90 and 0.99. The range of parameters
α01 and δ1 varies between 0 and 0.1 while α0 = 0.01. Interestingly, simply by assum-
ing normality the proposed models are capable of generating higher kurtosis than the
standard GARCH model. Larger values of the time-varying constants generate larger
values of the excess kurtosis for both time-varying parameterizations. A high degree
of persistence is also able to reproduce heavy-tailed marginal distributions that are
often observed in financial return series.

The level of persistence generated by the TV-GARCH models is another prop-
erty of interest. Figure 2.3 depicts the first 100 autocorrelations of absolute returns
of two simulated TV-GARCH processes. The autocorrelations for the additive and
multiplicative form are plotted in Figure 2.3(a) and Figure 2.3(b), respectively. The
sample length in both cases is 5000 observations. The artificial series are generated
with α0 = 0.01, α1 = 0.05, α01 = 0.03, δ1 = 0.04, γ1 = 10 and c1 = 0.50. The dotted
horizontal lines represent the 95% confidence bounds corresponding to the ACF of an
iid Gaussian process. A visual inspection of Figure 2.3 shows that both time-varying
specifications can generate long-range dependence looking behaviour.

The dependence structure of each model is also illustrated by the empirical dis-
tribution of the GPH estimates of the long-memory parameter d; see Geweke and
Porter-Hudak (1983). The results obtained by using absolute values of the returns
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Figure 2.2 Plots of the excess kurtosis, persistence and the constants α01 and δ1
for: (a) an additive TV-GARCH model with a time-varying constant; and (b) a
multiplicative TV-GARCH model.
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Figure 2.3 Sample autocorrelation functions of absolute returns with the 95% con-
fidence bounds for: (a) an additive TV-GARCH model with a time-varying constant;
and (b) a multiplicative TV-GARCH model.
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Figure 2.4 Histograms of the GPH long memory parameter estimates for: (a) a
GARCH model; (b) an additive TV-GARCH model with a time-varying constant;
and (c) a multiplicative TV-GARCH model. The artificial series are generated with
α0 = 0.01, α1 = 0.05, β1 = 0.90, α01 = 0.03, δ1 = 0.04, γ1 = 10 and c1 = 0.50 for a
sample of 5000 observations based on 1000 replications.

are displayed in Figure 2.4. The standard GARCH model is known to have a short
memory in the sense that the theoretical autocorrelation function decays to zero at
an exponential rate. The exponential decay turns out to be too fast if one wants
to adequately describe the high persistence observed in financial data. This may be
seen from Figure 2.4(a). If the data are generated by the standard GARCH model,
the estimates of the long memory parameter are rather close to zero. However, when
the intercept of the GARCH model changes smoothly over time, the degree of the
long-memory dependence in the data increases. This is seen from the fact that the
empirical distribution for the GPH estimates in Figure 2.4(b) has shifted to the right.
As Figure 2.4(c) shows, this effect is even more evident for the TV-GARCH with a
multiplicative time-varying structure as more than one half of the probability mass
of the empirical distribution of the long-memory parameter is located in the nonsta-
tionary area, d > 0.5.
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2.3 Testing parameter constancy

2.3.1 Testing against an additive alternative

Against the background discussed above, testing parameter constancy is an important
tool for checking the adequacy of a GARCH model. If one rejects parameter constancy
against a GARCH model with time-varying parameters one may conclude that the
structure of the dynamics of volatility is changing over time. Other interpretations
cannot be excluded, however, because a rejection of a null hypothesis does not imply
that the alternative hypothesis is true. In this section, we propose two parameter
constancy tests that allow the parameters to change smoothly over time under the
alternative. The first one tests parameter constancy of the GARCH model against
an additive TV-GARCH specification. This idea has previously been considered by
Lundbergh and Teräsvirta (2002). The second one is a test of constant unconditional
variance against the alternative that the variance changes smoothly over time.

We shall first look at the additive alternative where the nonstationary component
gt is defined in (2.5). In order to derive the test statistic rewrite the model as

εt = ζtht
1/2, εt|Ft−1 ∼ N(0, ht)

ht = α0 +
q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j

+ (α01 +
q∑
i=1

αi1ε
2
t−i +

p∑
j=1

βj1ht−j)G(t∗; γ, c) (2.11)

where, for simplicity, r = 1 and Ft−1 is the information set containing all informa-
tion until t − 1. The null hypothesis of parameter constancy corresponds to testing
H0 : γ = 0 against H1 : γ > 0 in (2.11). Under the null hypothesis, gt ≡ 1/2. One
can see that model (2.11) is only identified under the alternative. In particular, when
γ = 0, the parameters αi1, i = 0, . . . , q, and βj1, j = 1, . . . , p, as well as c are not
identified. This makes the standard asymptotic inference invalid as the test statistics
have a nonstandard asymptotic null distribution. This identification problem was
first considered in Davies (1977) and more recently, among others, in Hansen (1996).

In this paper, we circumvent the identification problem following Luukkonen,
Saikkonen, and Teräsvirta (1988). Thus we replace the transition function by its
first-order Taylor approximation around γ = 0. Without losing generality, we replace
G(t∗; γ, c) by G̃(t∗; γ, c) = G(t∗; γ, c)−1/2 for notational convenience. From Taylor’s
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theorem one obtains

G̃(t∗; γ, c) = G̃(t∗; 0, c) +
∂G̃(t∗; 0, c)

∂γ
γ +R(t∗; γ, c)

=
1
4
γ

K∏
k=1

(t∗ − ck) +R(t∗; γ, c)

=
K∑
k=0

γc̃k(t∗)k +R(t∗; γ, c) (2.12)

where R(t∗; γ, c) is the remainder term. Replacing G(t∗; γ, c) in (2.11) by (2.12) and
rearranging terms gives

ht = α∗0 +
q∑
i=1

α∗i ε
2
t−i +

p∑
j=1

β∗j ht−j

+
K∑
k=1

(ωk(t∗)k +
q∑
i=1

ϕik(t∗)kε2t−i +
p∑
j=1

λjk(t∗)kht−j) +R∗1 (2.13)

where α∗s = αs+γαs1c̃0, s = 0, . . . , q, β∗j = βj+γβj1c̃0, j = 1, . . . , p, ωk = γα01c̃k, ϕik =
γαi1c̃k, i = 1, . . . , q, and λjk = γβj1c̃k, k = 1, . . . ,K. The parameters c̃k, k = 0, . . . ,K,
are functions of the original location parameters ck. In particular, c̃0 = 1

4

∏K
k=1 ck and

c̃K = 1
4 . Under H0, the remainder R∗1 ≡ 0, so it does not affect the asymptotic null

distribution of the test statistic. Using the reparameterization (2.13) it follows that
the null hypothesis of parameter constancy becomes

H′0 : ωk = ϕik = λjk = 0, k = 1, . . . ,K, i = 1, . . . , q, j = 1, . . . , p. (2.14)

This hypothesis can be tested by a standard LM test. One can also test constancy of
a subset of parameters. For example, it may be assumed that αi1 = 0, i = 1, . . . , q,
and βj1 = 0, j = 1, . . . , p, which means that only the intercept is time-varying under
the alternative. In this case the null hypothesis reduces to H′0 : ωk = 0, k = 1, . . . ,K.

In Theorem 1 we present the LM-type statistic for testing parameter constancy
against the additive TV-GARCH specification. Under the null hypothesis, the “hats”
indicate maximum likelihood estimators and ĥ0

t denotes the conditional variance at
time t estimated under H0.

Theorem 1 Consider the model (2.13) and let θ1 = (α∗0, α
∗
1, . . . , α

∗
q , β
∗
1 , . . . , β

∗
p)′

and θ2 = (ω′,ϕ′i,λ
′
j)
′ where ω = (ω1, . . . , ωK)′,ϕi = (ϕi1, . . . , ϕiK)′ and λj =

(λj1, . . . , λjK)′ for i = 1, . . . , q and j = 1, . . . , p. In addition, denote zt = (1, ε2t−1, . . . ,
ε2t−q, ht−1, . . . , ht−p)′,Z1t = [t∗kε2t−i](k = 1, . . . ,K, i = 1, . . . , q) and Z2t = [t∗kht−j ]
(k = 1, . . . ,K, j = 1, . . . , p). Furthermore, assume that the maximum likelihood esti-
mator of θ1 is asymptotically normal. Under H0 : θ2 = 0, the LM type statistic

ξLM =
1
2

T∑
t=1

ûtx̂′2t


T∑
t=1

x̂2tx̂′2t −
T∑
t=1

x̂2tx̂′1t

(
T∑
t=1

x̂1tx̂′1t

)−1 T∑
t=1

x̂1tx̂′2t


−1

T∑
t=1

ûtx̂2t

(2.15)
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is asymptotically χ2-distributed with dim(θ2) degrees of freedom, where ût = ε̂2t/ĥ
0
t−1,

x̂1t =
1

ĥ0
t

∂ĥt
∂θ1

∣∣∣∣∣
H0

= (ĥ0
t )
−1(ẑt +

p∑
j=1

β̂∗j
∂ĥt−j
∂θ1

∣∣∣∣∣
H0

) (2.16)

and

x̂2t =
1

ĥ0
t

∂ĥt
∂θ2

∣∣∣∣∣
H0

= (ĥ0
t )
−1((t∗, . . . , t∗K , (vec Z1t)′, (vec Z2t)′)′ +

p∑
j=1

β̂∗j
∂ĥt−j
∂θ2

∣∣∣∣∣
H0

)

(2.17)
Proof. See Appendix A.

In practice, the test of Theorem 1 may be carried out in a straightforward way
using an auxiliary least squares regression. Thus:

1. Estimate consistently the parameters of the conditional variance under the null
hypothesis, and compute ût = ε̂2t/ĥ

0
t − 1, t = 1, . . . , T, and the residual sum of

squares, SSR0 =
∑T
t=1 û

2
t .

2. Regress ût on x̂′1t and x̂′2t, t = 1, . . . , T, and compute the sum of the squared
residuals, SSR1.

3. Compute the χ2 test statistic as

ξLM =
T (SSR0 − SSR1)

SSR0
.

As a computational detail, note that ∂ĥt/∂θ1|H0 and ∂ĥt/∂θ2|H0 in (2.16) and
(2.17) are obtained recursively in connection with the parameter estimation, where
it is assumed that ∂ĥt/∂θ1|H0 = 0 and ∂ĥt/∂θ2|H0 = 0 for t = 0,−1, . . .. We shall
call our LM test statistic LMK , where K indicates the order of the polynomial in the
exponent of the transition function and the tests carried out by means of an auxiliary
regression are called LM-type tests.

It should also be mentioned that a robust version of the test statistics (2.15)
can be derived when ζt are not identically distributed. One can construct a robust
version using the procedure by Wooldridge (1990,1991). This test can be carried out
as follows:

1. Estimate by quasi maximum likelihood the conditional variance under H0, com-
pute ε̂2t/ĥ

0
t − 1, x̂′1t and x̂′2t, t = 1, . . . , T.

2. Regress x̂2t on x̂1t, and compute the (dimθ2×1) residual vectors rt, t = 1, . . . , T.

3. Regress 1 on
(
ε̂2t/ĥ

0
t − 1

)
rt and compute the residual sum of squares SSR0 from

this regression. Under the null hypothesis, the test statistic ξLMR
= T − SSR0

has an asymptotic χ2 distribution with dimθ2 degrees of freedom.
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One may extend Theorem 1 to the case where the model has been estimated with
r − 1 transition functions and one wants to test r − 1 against r transitions. For that
purpose, consider the model

εt = ζtht
1/2, εt|Ft−1 ∼ N(0, ht)

ht = (θ0 +
r−1∑
l=1

θ1lGl(t∗; γl, cl))′zt + θ′1rG̃r(t
∗; γr, cr)zt (2.18)

where θ0 = (α0, α1, . . . , αq, β1, . . . , βp)′,θ1l = (α0l, α1l, . . . , αql, β1l, . . . , βpl)′, l = 1, . . . ,
r − 1, r, and zt = (1, ε2t−1, . . . , ε

2
t−q, ht−1, . . . , ht−p)′. The null hypothesis is then

H0 : γr = 0. Again, model (2.18) is not identified under the null hypothesis. To cir-
cumvent the problem we proceed as before and expand the logistic functionGr(t∗; γr, cr)
into a first-order Taylor approximation around γr = 0. After rearranging terms we
have

ht = (η +
r−1∑
l=1

θ1lGl(t∗; γl, cl))′zt +
K∑
k=1

µ′k(t∗)kzt +R∗2 (2.19)

where η = θ0 + γrθ1r c̃0,µk = γrθ1r c̃k, k = 1, . . . ,K. The test statistic is based on
the following corollary of Theorem 1.

Corollary 2 Consider the model (2.19) and let θ1 = (η′,θ′1l, γl, c
′
l)
′ and θ2 = (µ′1, . . . ,

µ′K)′. In addition, denote zt = (1, ε2t−1, . . . , ε
2
t−q, ht−1, . . . , ht−p)′,Z1t = [t∗kε2t−i](k =

1, . . . ,K, i = 1, . . . , q),Z2t = [t∗kht−j ](k = 1, . . . ,K, j = 1, . . . , p) and Gl(t∗) ≡
Gl(t∗; γl, cl). Assume that the maximum likelihood estimator of (θ′0,θ

′
11, . . . ,θ

′
1,r−1, γ1,

. . . , γr−1, c′1, . . . , c
′
r−1)′ is asymptotically normal. Under H0 : θ2 = 0, the LM type

statistic (2.15) with ût = ε̂2t/ĥ
0
t − 1,

x̂1t =
1

ĥ0
t

∂ĥt
∂θ1

∣∣∣∣∣
H0

= (ĥ0
t )
−1(ẑt +

r−1∑
l=1

ẑtĜl(t∗) +
r−1∑
l=1

θ̂
′
1lẑt

∂Ĝl(t∗)
∂θ1

+
p∑
j=1

(β̂j +
r−1∑
l=1

β̂∗jlĜl(t
∗))

∂ĥt−j
∂θ1

∣∣∣∣∣
H0

)

and

x̂2t =
1

ĥ0
t

∂ĥt
∂θ2

∣∣∣∣∣
H0

= (ĥ0
t )
−1((t∗, . . . , t∗K , (vecZ1t)′, (vecZ2t)

′)′ +
p∑
j=1

(β̂j +
r−1∑
l=1

β̂∗jlĜl(t
∗))

∂ĥt−j
∂θ2

∣∣∣∣∣
H0

)

has an asymptotic χ2−distribution with dim(θ2) degrees of freedom.

Remark 3 The assumption of asymptotic normality in this corollary remains unver-
ified. The existing asymptotic theory of nonlinear GARCH models does not cover the
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case where the transition function is a function of time. Besides, Meitz and Saikko-
nen (in press) who have worked out asymptotic theory for smooth transition GARCH
models, have only obtained results on ergodicity and stationarity. Asymptotic normal-
ity of maximum likelihood estimators has not even been proven for ’standard’ smooth
transition GARCH models in which the transition variable is a stochastic variable.
For these reasons, showing asymptotic normality of θ1 in (2.19) is beyond the scope
of this paper. Two things should be emphasized in this context. First, sequential
testing to find r is just a model selection device analogous to model selection crite-
ria such as AIC or BIC. The p-values of the tests are simply indicators helping the
modeller to choose the number of transitions. Second, our simulation results do not
contradict the assumption that the asymptotic null distribution of the test statistic is
a χ2-distribution.

2.3.2 Testing against a multiplicative alternative

In order to consider the problem of testing parameter constancy in the unconditional
variance assume that the error term is parameterized as

εt = ζtht
1/2

where ht is a GARCH(p, q) model as in (2.4) and ζt is a time-varying random variable
satisfying

ζt = ztg
1/2
t

such that {zt} is a sequence of independent standard normal variables and gt =
1 +

∑r
l=1 δlGl(t

∗; γl, cl). This formulation allows the unconditional variance of ζt and
thus εt to change smoothly over time. As already mentioned, {ζt} is a sequence of
independent variables. The null hypothesis of constant unconditional variance is then
H0 : δl = 0, l = 1, . . . , r. For the purpose of deriving the test statistic consider r = 1
and rewrite the model as follows:

εt = zt(htgt)1/2, εt|Ft−1 ∼ N(0, htgt)

htgt = (α0 +
q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j)(1 + δ1G̃(t∗; γ, c)). (2.20)

The null hypothesis of constant unconditional variance equals H0 : γ = 0 against
H1 : γ > 0. In testing this hypothesis we encounter the same identification problem
as the one present in testing parameter constancy against an additive TV-GARCH
process. Even here, our solution consists of approximating the transition function
with a Taylor expansion around γ = 0. Proceeding as before, we reparameterize
equation (2.20) as follows:

htgt = (α0 +
q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j)(δ̃0 +
K∑
k=1

ωk(t∗)k +R∗3) (2.21)
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where δ̃0 = 1 + γδ1c̃0 and ωk = γδ1c̃k, k = 1, . . . ,K. Under the null hypothesis, the
remainder R∗3 ≡ 0 and does not affect the distribution theory. The null hypothesis of
parameter constancy for the multiplicative structure becomes

H′0 : ωk = 0, k = 1, . . . ,K.

The following corollary of Theorem 1 defines the LM-type test statistic for testing
parameter constancy in the unconditional variance. The notation ĝ0

t denotes the
estimated gt evaluated under H0.

Corollary 4 Consider the model (2.21) and let θ1 = (α0, α1, . . . , αq, β1, . . . , βp)′ and
θ2 = (ω1, . . . , ωK)′. In addition, denote zt = (1, ε2t−1, . . . , ε

2
t−q, ht−1, . . . , ht−p)′ and

gt = 1 + δ1G(t∗; γ, c). Under H0 : θ2 = 0, the LM type statistic (2.15) with ût =
ε̂2t/ĥ

0
t − 1,

x̂1t =
1

ĥ0
t

∂ĥt
∂θ1

∣∣∣∣∣
H0

= (ĥ0
t )
−1(ẑt +

p∑
j=1

β̂∗j
∂ĥt−j
∂θ1

∣∣∣∣∣
H0

)

and

x̂2t =
1
ĝ0
t

∂ĝt
∂θ2

∣∣∣∣
H0

= (t∗, t∗2, . . . , t∗K)′

has an asymptotic χ2−distribution with dim(θ2) degrees of freedom.

Once the TV-GARCH model with a single transition has been estimated we may
want to investigate the possibility of remaining parameter nonconstancy in the un-
conditional variance. This is important from the model specification point of view.
Thus, similarly to the additive structure, the previous corollary may be extended to
the case where we want to test r = 1 against r ≥ 2. To derive the test, consider the
model

εt = zt(htgt)1/2, εt|Ft−1 ∼ N(0, htgt)

htgt = (α0 +
q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j)(1 +
∑2

l=1
δlGl(t∗; γl, cl)). (2.22)

The null hypothesis is H0 : γ2 = 0. Again, model (2.22) is only identified under
the alternative. The solution to the identification problem consists of replacing the
transition function G2(t∗; γ2, c2) by a Taylor approximation around γ2 = 0. After a
reparameterization, the resulting model is

htgt = (α0 +
q∑
i=1

αiε
2
t−i+

p∑
j=1

βjht−j)(δ̃0 + δ1G1(t∗; γ1, c1) +
K∑
k=1

ωk(t∗)k +R∗4) (2.23)

where δ̃0 = 1 + γ2δ2c̃0 and ωk = γ2δ2c̃k, k = 1, . . . ,K. Under the null, the remainder
R∗4 ≡ 0.

The next corollary to Theorem 1 gives the test statistic.
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Corollary 5 Consider the model (2.23) and let θ1 = (α0, α1, . . . , αq, β1, . . . , βp, δ1, γ1,
c′1)′ and θ2 = (ω1, . . . , ωK)′. In addition, denote zt = (1, ε2t−1, . . . , ε

2
t−q, ht−1, . . . , ht−p)′

and gt = 1 +
∑2
l=1 δlGl(t

∗; γl, cl). Under H0 : θ2 = 0, the LM type statistic (2.15)
with ût = ε̂2t/ĥ

0
t ĝ

0
t − 1,

x̂1t =
1

ĥ0
t

∂ĥt
∂θ1

∣∣∣∣∣
H0

= (ĥ0
t )
−1(ẑtĝ0

t + ĥ0
t

∂ĝ0
t

∂θ1
+

p∑
j=1

β̂j ĝ
0
t

∂ĥt−j
∂θ1

∣∣∣∣∣
H0

)

and

x̂2t =
1
ĝ0
t

∂ĝt
∂θ2

∣∣∣∣
H0

= (ĝ0
t )−1(t∗, t∗2, . . . , t∗K)′

has an asymptotic χ2−distribution with dim(θ2) degrees of freedom.

Remark 6 The previous remark is valid even here.

A special case of this test, in which ht ≡ α0, will be used in the specification of
multiplicative TV-GARCH models in Subsection 2.4.2.

2.4 Model specification

We propose a model-building cycle for TV-GARCH models identical to the specific-to-
general strategy for nonlinear models recommended by Granger (1993) or Teräsvirta
(1998), among others. The idea is to begin with a parsimonious model and proceed
to more complicated ones until the evaluation techniques indicate that an adequate
model has been obtained. Adapting this approach to the present situation means de-
termining the number of smooth transitions sequentially by LM-type tests discussed
in Section 2.3. These tests can be used to build a GARCH model with time-varying
parameters using either the additional or the multiplicative structure. We start off
with a restricted specification and gradually increase the number of transition func-
tions as long as the hypothesis of parameter constancy is rejected. The final model is
estimated after the first non-rejection of the null hypothesis and evaluated through a
sequence of misspecification tests.

2.4.1 Specification of additive TV-GARCH models

In order to describe the specification procedure for TV-GARCH models with an addi-
tional time-varying structure, we consider the function gt defined in (2.7) such that all
parameters are changing smoothly over time. However, the strategy may also be ap-
plied to a more restrictive functions such as gt in (2.8). The time-varying conditional
variance equals

ht = α0 +
q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j +
r∑
l=1

(α0l +
q∑
i=1

αilε
2
t−i +

p∑
j=1

βjlht−j)Gl(t∗; γl, cl),

(2.24)
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where the transition function Gl(t∗; γl, cl) is defined in (2.6).
Our specification procedure for building additive TV-GARCH models contains the

following stages:

1. Check for the presence of conditional heteroskedasticity by testing the null hy-
pothesis of no ARCH against high-order ARCH. When the order of the ARCH
process is sufficiently high, the standard LM test has adequate power against
GARCH. If the null hypothesis is rejected, model the conditional variance by a
GARCH(1,1) model. Evaluate the estimated GARCH(1,1) model by misspeci-
fication tests and, if necessary, expand it to a higher-order model. The squared
standardized errors of the selected GARCH model should be free of serial cor-
relation. Neglected autocorrelation may bias tests of parameter constancy.

2. Test the final GARCH model against the alternative of smoothly changing pa-
rameters over time using the LM-type statistic described in Theorem 1. If
parameter constancy is rejected at a predetermined significance level α, esti-
mate the TV-GARCH model (2.24) with a single transition function. If the null
hypothesis of parameter constancy in (2.14) is rejected, the problem of choosing
the order of the polynomial of the transition function arises. For the specifica-
tion of K, we propose a model selection rule based on a sequence of nested tests
as in Teräsvirta (1994) and Lin and Teräsvirta (1994). Assume K = 3 to ensure
a parameterization sufficiently flexible for G(t∗; γ, c). If parameter constancy is
rejected, test the following sequence of hypotheses:

H03 : ω3 = 0, ϕi3 = 0, λj3 = 0,
H02 : ω2 = 0, ϕi2 = 0, λj2 = 0 | ω3 = 0, ϕi3 = 0, λj3 = 0,
H01 : ω1 = 0, ϕi1 = 0, λj1 = 0 | ω2 = ω3 = 0, ϕi2 = ϕi3 = 0, λj2 = λj3 = 0,

where i = 1, . . . , q, j = 1, . . . , p, in (2.13), by means of LM-type tests. The
results of this test sequence may be used as follows. If H01 and H03 are rejected
more strongly, measured by p-values, than H02, then either K = 1 or K = 3.
If testing H02 yields the strongest rejection, the choice is K = 2. Furthermore,
if only H01 is rejected at the appropriate significance level or is rejected clearly
more strongly than the other two null hypotheses, then the modeller should
choose K = 1. Visual inspection of the return series is also helpful in making
a decision about K. The rules or suggestions based on p-values are based on
expressions of the parameters ωk, ϕik and λjk in the auxiliary regression as
functions of the original parameters at different values of K. The test sequence
is analogous to that proposed in Teräsvirta (1994) for specifying the type of the
smooth transition autoregressive model, where the choice is between K = 1 and
K = 2.

3. Test the TV-GARCH model with one transition function against the TV-GARCH
model with two transition functions at the significance level ατ, 0 < τ < 1. The
significance level is decreased giving a preference for parsimonious models. The
overall significance level of the sequence of tests may be approximated by the
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Bonferroni upper bound. The user can choose the value for τ. In our simu-
lations we set τ = 1/2. If the null hypothesis is rejected, specify K for the
next transition and estimate the TV-GARCH model (2.12) with two transition
functions.

4. Proceed sequentially by testing the TV-GARCH model with r − 1 transition
functions against the TV-GARCH model with r transitions at the significance
level ατ r−1 until the first non-rejection of the null hypothesis. Evaluate the
selected model by misspecification tests and once it passes them accept it as the
final model. In the opposite case, modify the specification of the model or try
another family of models.

2.4.2 Specification of multiplicative TV-GARCH models

The specific-to-general approach for specifying TV-GARCH models with a multiplica-
tive time-varying component consists in first modelling the unconditional variance as
follows:

1. Use the LM-type statistic developed in Section 2.3.2 to test the null hypothesis
of constant variance against a time-varying unconditional variance with a single
transition function at the significance level α. First, assume ht = α0 and test
H10 : gt ≡ 1 against H11 : gt = 1 + δ1G1(t∗; γ1, c1). In case of a rejection, test
H20 : gt = 1 + δ1G1(t∗; γ1, c1) against H21 : gt = 1 +

∑2
l=1 δlGl(t

∗; γl, cl) at
the significance level ατ, 0 < τ < 1. Continue until the first non-rejection of
the null hypothesis. The significance level is reduced at each step of the testing
procedure and converging to zero for reasons previously mentioned.

2. After specifying gt, test the null hypothesis of no conditional heteroskedasticity
in {ζt}. If it is rejected, model the conditional variance ht of the standardized
variable εt/g

1/2
t in the standard fashion, such that

ht = α∗0 +
q∑
i=1

αi

(
ε2t−i
gt−i

)
+

p∑
j=1

βjht−j . (2.25)

3. The estimated model is evaluated by means of LM-type diagnostic tests pro-
posed in Subsection 2.6.1. If the model passes all the misspecification tests,
tentatively accept it. Otherwise, modify it or consider another family of volatil-
ity models.

2.5 Estimation of the TV-GARCH model

Suppose that εt is generated by a GARCH model with a time-varying structure de-
scribed in Section 2.2. Let ht = ht(θ1) and gt = gt(θ2) where θ1 = (α0, α1, . . . , αq, β1,
. . . , βp)′ and θ2 = (δ′,α′1, . . . ,α

′
r,β
′
1, . . . ,β

′
r, γ1, . . . , γr, c′1, . . . , c

′
r)
′ with δ = (δ1, . . . ,
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δr)′,αi = (α1i, . . . , αqi)′ and βi = (β1i, . . . , βpi)′, i = 1, . . . , r. For the additive pa-
rameterization, δ = 0 and for the multiplicative one, αi = 0 and βi = 0. The
quasi maximum likelihood (QML) estimator θ̂ = (θ̂

′
1,θ̂
′
2)′ is obtained maximizing∑T

t=1 `t(θ) with respect to θ where the log-likelihood for observation t equals

`t(θ) = −1
2

ln 2π − 1
2

ln{ht(θ1) + gt(θ2)} − 1
2

ε2t
ht(θ1) + gt(θ2)

(2.26)

for the additive TV-GARCH model or

`t(θ) = −1
2

ln 2π − 1
2
{lnht(θ1) + ln gt(θ2)} − 1

2
ε2t

ht(θ1)gt(θ2)
(2.27)

for the multiplicative TV-GARCH model.
The asymptotic properties of the QML estimators for the GARCH(p, q) process

have been studied, among others, by Ling and Li (1997). They showed that the
QML estimators are consistent and asymptotic normal provided that Eε4t <∞. Ling
and McAleer (2003) established consistency for the global maximum of QML estima-
tors under the condition Eε2t < ∞. Berkes, Horváth, and Kokoszka (2003) obtained
consistency of the QML estimators assuming Eε2t < ∞ and asymptotic normality
by assuming Eε4t < ∞. These results have in common the assumption that the pro-
cess yt is stationary and ergodic such that the laws of large numbers apply. More
recently, Jensen and Rahbek (2004) relaxed this assumption and allowed the param-
eters to lie in the region where the process is nonstationary. They showed that for
the GARCH(1,1) case, under a finite conditional variance for ζ2

t , consistency and
asymptotic normality still hold independently of whether the process yt is stationary
or not. As already mentioned, asymptotic normality for the parameter estimators of
the TV-GARCH models has not yet been proven.

Three remarks are in order regarding numerical aspects of the estimation of TV-
GARCH models. The first one concerns the accuracy of the slope estimates when the
true parameters γl are very large. In order to achieve an accurate estimate for a large
γl, the number of observations of the transition variable in the neighbourhood of cl
must be very large. This is due to the fact that even large changes in γl only have
an effect on the transition function in a small neighbourhood of cl. But then, for the
same reason for large γl it is sufficient to obtain an estimate that is large; whether
or not it is very accurate is not of utmost importance. Note that if γ̂l is large, an
“insignificant” γ̂l is an indication of a large γl, not of γl ≡ 0. Besides, because of the
identification problem the t-ratio does not have its standard asymptotic distribution
when γl ≡ 0. A more serious problem is that large estimates for the smoothness
parameter γl may lead to numerical problems when carrying out parameter constancy
tests. A simple solution, suggested in Eitrheim and Teräsvirta (1996), is to omit those
elements of the score that are partial derivatives with respect to the parameters in
the transition function. This can be done without significantly affecting the value of
the test statistic.

The second comment has to do with the computation of the derivatives of the
log-likelihood function. Many of the existing optimization algorithms require the
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computation of at least the first and, in some cases, also the second derivatives of
the log-likelihood function. It is common practice to use numerical derivates that are
relatively fast to compute and reliable, and the derivation of exact analytic deriva-
tives is avoided. Fiorentini, Calzolari, and Panattoni (1996), however, encourage the
employment of analytic derivatives, because that leads to fewer iterations than opti-
mization with numerical derivatives. Furthermore, the use of analytic derivatives also
improves the accuracy of the estimates of the standard errors of the parameter esti-
mates. Consequently, we use analytic first derivatives in all the computations, both
in calculating values of the test statistics and in estimating TV-GARCH models.

The third remark is related to the manner in which the parameter estimates are
obtained. The parameters in the additive TV-GARCH model are estimated simulta-
neously by full conditional maximum likelihood. In this context, care is required in
the estimation. Since the log-likelihood (2.27) may contain several local maxima, it
is advisable to initiate the estimation from different sets of starting-values before set-
tling for the final parameter estimates. Numerical problems in the estimation of the
multiplicative TV-GARCH model can be alleviated by concentrating the likelihood
iteratively. This considerably reduces the dimensionality problem and is computation-
ally much easier than maximizing the log-likelihood with respect to all parameters
simultaneously. The estimation of the TV-GARCH model with multiplicative struc-
ture can be simplified since the log-likelihood can be decomposed into two separate
sets of parameters: the GARCH and the time-varying parameter vectors. The esti-
mation is divided into two steps which are then repeated one after the other. The
iterations start by first estimating θ2, assuming ht to be a positive constant, for in-
stance ht = σ̂2 = T−1

∑T
t=1 ε

2
t , and continue by estimating θ1, given the estimates

of θ2. The estimate of θ1 will then be used for re-estimating θ2, and so on. The
iterative two-stage estimation procedure is terminated when a local maximum of the
log-likelihood has been reached.

2.6 Misspecification testing of TV-GARCH models

The final step of the modelling strategy consists of evaluating the adequacy of the
estimated TV-GARCH model by means of a sequence of misspecification tests. We
shall assume that the true process of either the additive or the multiplicative time-
varying variance is misspecified. The general idea is to construct an augmented version
of the TV-GARCH model by introducing a new component ft = f(vt;θ3) into the
original model. This component is a function that is at least twice continuously
differentiable with respect to the elements of θ3, vector of additional parameters.
The vector vt is a vector of omitted random variables, and its definition varies from
one test to the next.

2.6.1 Misspecification tests for the multiplicative model

The misspecification tests considered here may be divided into three categories. The
first two correspond to additive and the third one to multiplicative misspecification.
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Let ht = ht(θ1) and gt = gt(θ2), such that the parameter vectors θi, i = 1, 2,
represent the parameters belonging to ht = α0 +

∑q
i=1 αiε

2
t−i +

∑p
j=1 βjht−j and

gt = 1 +
∑r
l=1 δlGl(t

∗; γl, cl). Under H0 : θ3 = 0, the augmented model reduces to
the multiplicative TV-GARCH model.

Additive misspecification - case 1

The first category of tests assumes that, under the alternative hypothesis, the original
TV-GARCH model may be extended by assuming

εt = ζt(ht + ft)1/2g
1/2
t . (2.28)

Under the null hypothesis, ft ≡ 0, which is equivalent to θ3 = 0. If gt ≡ 1, the test
collapses into the additive misspecification test in Lundbergh and Teräsvirta (2002).
At least three types of alternative hypotheses can be considered within this family of
tests. The test of the GARCH(p, q) component against higher-order alternatives as
well as the test against a smooth transition GARCH (ST-GARCH) and, furthermore,
the test against an asymmetric component (GJR-GARCH) belong to the additive
class (2.28).

The log-likelihood function for observation t of model (2.28) is

`t = −1
2

ln 2π − 1
2
{ln(ht + ft) + ln gt} −

ε2t
2(ht + ft)gt

. (2.29)

When the estimated multiplicative TV-GARCH model is tested against the different
types of alternatives, the first component of the score corresponding to θ1 and θ2,
evaluated under H0, is equal to

∂`t
∂θ

∣∣∣∣
H0

=
1
2

(
ε2t
htgt

− 1
)

x1t

where x1t =
(

1
ht

∂ht

∂θ′1
, 1
gt

∂gt

∂θ′2

)′
and the parameter vector θ is partitioned as θ =

(θ′1,θ
′
2)′. The estimated quantities for ∂ht

∂θ1
|H0 and ∂gt

∂θ2
|H0 are defined as

∂ĥt
∂θ1

∣∣∣∣∣
H0

= ẑt +
p∑
j=1

β̂j
∂ĥt−j
∂θ1

∣∣∣∣∣
H0

(2.30)

∂ĝt
∂θ2

∣∣∣∣
H0

=
r∑
l=1

Gl(t∗; γ̂l, ĉl) +
r∑
l=1

δ̂l
∂Gl(t∗; γ̂l, ĉl)

∂θ2
. (2.31)

The differences show up in the partial derivatives of (2.29) with respect to θ3. It
follows that the additional block of the score for observation t due to θ3 has the form

∂`t
∂θ3

=
1
2

(
ε2t

(ht + ft)gt
− 1
)

1
ht

∂ft
∂θ3



Modelling Conditional and Unconditional Heteroskedasticity 31

so that, under H0,
∂`t
∂θ3

∣∣∣∣
H0

=
1
2

(
ε2t
htgt

− 1
)

1
ht

∂ft
∂θ3

∣∣∣∣
H0

where ∂ft

∂θ3
= vt. The resulting LM test may be easily performed using an auxiliary

regression as in Section 2.3. In terms of previous notation, we have

x̂1t =

(
1

ĥ0
t

∂ĥt

∂θ′1

∣∣∣∣∣
H0

,
1
ĝ0
t

∂ĝt

∂θ′2

∣∣∣∣
H0

)′
(2.32)

x̂2t =
1

ĥ0
t

∂f̂t
∂θ3

∣∣∣∣∣
H0

=
v̂t
ĥ0
t

(2.33)

where ∂ĥt

∂θ1
|H0 and ∂ĝt

∂θ2
|H0 are as in (2.30) and (2.31), respectively. We shall now

concentrate our attention on tests against higher-order alternatives and a smooth
transition GARCH model.

Testing the GARCH(p, q) component against higher-order alternatives

An evident source of misspecification is to select too low an order in the GARCH(p, q)
component. A similar testing procedure to the one proposed by Bollerslev (1986) for
testing a GARCH(p, q) model against higher-order alternatives is presented. Under
the alternative GARCH(p, q + r), the additional component equals

ft =
q+r∑
i=q+1

αiε
2
t−i (2.34)

or

ft =
p+r∑
j=p+1

βjht−j (2.35)

if we take the GARCH(p+ r, q) as alternative. The identification problem discussed
in Bollerslev (1986) prevents us from considering the alternative GARCH(p + r, q +
s), r, s > 0. Under the null hypothesis H0 : θ3 = 0, i.e. αq+1 = ... = αq+r = 0 for the
former case and βp+1 = ... = βp+r = 0 for the latter case, the models reduce to the
GARCH(p, q) model.

Corollary 7 defines the test statistic for testing αq+1 = .... = αq+r = 0. A
similar result holds for testing βp+1 = .... = βp+r = 0 in (2.35) and can be stated by
replacing θ3 = (αq+1, ...., αq+r)′ and v̂t = (ε2t−(q+1), . . . , ε

2
t−(q+r))

′ in Corollary 7 by
θ3 = (βp+1, ...., βp+r)′ and v̂t = (ht−(p+1), . . . , ht−(p+r))′.

Corollary 7 Consider the model (2.28) where {ζt} is a sequence of independent stan-
dard normal variables. Let θ1 = (α0, α1, . . . , αq, β1, . . . , βp)′ and θ2 = (δ′, γ1, . . . , γr,
c1, . . . , cr)′ with δ = (δ1, . . . , δr)′. Furthermore, ft is defined by (2.34) such that
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θ3 = (αq+1, . . . , αq+r)′ and v̂t = (ε2t−(q+1), . . . , ε
2
t−(q+r))

′. Assume that the maxi-
mum likelihood estimators of the parameters of (2.28) are asymptotically normal when
H0 : θ3 = 0 is valid. Thus, under this null hypothesis, the LM statistic (2.15), with
ût = ε̂2t/ĥ

0
t ĝ

0
t−1, x̂1t as in (2.32) and x̂2t as in (2.33) is asymptotically χ2−distributed

with r degrees of freedom.

Remark 8 Note that the result stated in Corollary 7 depend on an assumption of
asymptotic normality which so far remains unproven. Asymptotic normality has,
however, been proven in the special case θ2 = 0 when the null model (2.28) is a
standard GARCH(p,q) model. A similar remark will hold for Corollaries 9, 10, 11
and 12.

Testing the GARCH(p, q) component against a nonlinear specification

It is possible that responses of volatility in financial series to negative and positive
shocks are not symmetric around zero (or some other value). The GARCH literature
offers a variety of parameterizations for describing asymmetric effects of shocks on the
conditional variance. The ST-GARCH model, discussed in Hagerud (1997), González-
Rivera (1998) and Anderson, Nam, and Vahid (1999), is one of them. Symmetry of the
estimated TV-GARCH can be tested against asymmetry or, more generally, against
nonlinearity, using these models as alternatives. To this end, let

ft =
q∑
i=1

(α∗1i + α∗2iε
2
t−i)G(εt−i; γ, c) (2.36)

where G(εt−i; γ, c) is the transition function given in (2.6) with εt−i as the transi-
tion variable. With the purpose of simplifying the derivation of the test we replace
G(εt−i; γ, c) by G̃(εt−i; γ, c) = G(εt−i; γ, c)− 1/2. The null hypothesis of linearity is
H0 : γ = 0 under which G(εt−i; γ, c) ≡ 1/2. However, the remaining parameters in
(2.36) are not identified under the null hypothesis. Again the identification problem
may be circumvented using a Taylor series approximation of the transition function
around γ = 0. After rearranging terms, one obtains

ht + ft = α∗0 +
q∑
i=1

α∗i ε
2
t−i +

p∑
j=1

βjht−j +
q∑
i=1

K∑
k=1

($ikε
k
t−i + πikε

k+2
t−i ) +R∗5 (2.37)

where α∗0 = α0 +
∑q
i=1 γα

∗
1ic̃0, α

∗
i = αi + γα∗2ic̃0, $ik = γα∗1ic̃k and πik = γα∗2ic̃k. The

component given in (2.36) can be rewritten as

ft =
q∑
i=1

K∑
k=1

($ikε
k
t−i + πikε

k+2
t−i ) +R∗5 (2.38)

When the null hypothesis holds, the remainder R∗5 vanishes, and so does not affect
the distributional properties of the test. Using this notation, the hypothesis of no
additional nonlinear structure becomes H′0 : $ik = πik = 0,i = 1, . . . , q, k = 1, . . . ,K.
The next corollary gives the test statistic.
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Corollary 9 Consider the model (2.28) where {ζt} is a sequence of independent stan-
dard normal variables. Let θ1 = (α0, α1, . . . , αq, β1, . . . , βp)′ and θ2 = (δ′, γ1, . . . , γr,
c1, . . . , cr)′ with δ = (δ1, . . . , δr)′. Furthermore, ft is defined by (2.38) such that
θ3 = ($′i, π

′
i)
′, where $i = ($i1, . . . , $iK)′ and πi = (πi1, . . . , πiK)′, i = 1, . . . , q. In

addition, let v̂t = (v̂′1,t, . . . , v̂
′
K+2,t)

′ with vit = (εit−1, . . . , ε
i
t−q)

′, i = 1, . . . ,K+2. As-
sume that the maximum likelihood estimators of the parameters of (2.28) are asymp-
totically normal when H0 : θ3 = 0 is valid. Thus, under this null hypothesis, the
LM statistic (2.15), with ût = ε̂2t/ĥ

0
t ĝ

0
t − 1, x̂1t as in (2.32) and x̂2t as in (2.33) is

asymptotically χ2−distributed with dim(θ3) degrees of freedom.

Additive misspecification - case 2

We shall now consider the case in which the true model has the following form:

εt = ζth
1/2
t (gt + ft)1/2. (2.39)

Under the null hypothesis, ft ≡ 0, which is again equivalent to θ3 = 0. The model
again reduces to (2.1) and (2.3). The log-likelihood for the observation t equals

`t = −1
2

ln 2π − 1
2
{lnht + ln(gt + ft)} −

ε2t
2ht(gt + ft)

.

The block of the score containing the first partial derivatives with respect to θ3 is

∂`t
∂θ3

=
1
2

(
ε2t

ht(gt + ft)
− 1
)

1
gt

∂ft
∂θ3

which, under H0, is equal to

∂`t
∂θ3

∣∣∣∣
H0

=
1
2

(
ε2t
htgt

− 1
)

1
gt

∂ft
∂θ3

∣∣∣∣
H0

.

For this alternative, the quantity x̂1t is defined as in (2.32) and

x̂2t =
1
ĝ0
t

∂f̂t
∂θ3

∣∣∣∣∣
H0

=
v̂t
ĝ0
t

. (2.40)

Testing the hypothesis of no additional transitions

Once the TV-GARCH model has been estimated, one may use this set-up, for
example, to re-check the need for another transition function in gt. Taking the mul-
tiplicative TV-GARCH model with r + s transitions as the alternative, it follows
that

ft =
r+s∑
l=r+1

δlGl(t∗; γl, cl) (2.41)
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The hypothesis of no additional transitions is H0 : γr+1 = ... = γr+s = 0. Under this
hypothesis, the parameters (δl, c′l)

′ are not identified. To circumvent this problem, we
replace the transition function Gl(t∗; γl, cl) by its first-order Taylor expansion around
γl = 0, l = r + 1, . . . , r + s. After merging terms, we obtain

gt + ft = 1 +
r∑
l=1

δlGl(t∗; γl, cl) +
r+s∑
l=r+1

δl(γlc̃0 +
K∑
k=1

γlc̃k(t∗)k) +R∗6

= δ∗l +
r∑
l=1

δlGl(t∗; γl, cl) +
r+s∑
l=r+1

K∑
k=1

ψlk(t∗)k +R∗6 (2.42)

where δ∗l = 1 +
∑r+s
l=r+1 γlδlc̃0 and ψlk = γlδlc̃k, l = r+ 1, . . . , r+ s, k = 1, . . . ,K. It is

convenient to reparameterize (2.41) as follows:

ft =
r+s∑
l=r+1

K∑
k=1

ψlk(t∗)k +R∗6 (2.43)

Under the null hypothesis, the remainder R∗6 vanishes. It seems that the coefficients
ψlk, l = r + 1, . . . , s, for a fixed k, are not identified because they are all related to
the same variable (t∗)k. They have to be merged, which leads to

ft =
K∑
k=1

ψ∗k(t∗)k +R∗6.

In other words, the test statistic is the same, independent of whether we would be
testing against including Gr+1 or including Gr+1, . . . , Gr+s, s ≥ 2. Compare this with
Corollary 5, which is a special case. In fact, Corollary 5 contains another example of
a misspecification test of the multiplicative model in which the misspecification is of
the type ht(gt + ft).

Multiplicative misspecification

Under multiplicative misspecification, the parametric alternative to the TV-GARCH
model is formulated as

εt = ζt(htgtft)1/2. (2.44)

In this framework, H0 : ft ≡ 1, which is equivalent to θ3 = 0. Under the null
hypothesis, the model reduces to the multiplicative TV-GARCH model. For this
specification, the log-likelihood function for observation t may be written

`t = −1
2

ln 2π − 1
2

(lnht + ln gt + ln ft)−
ε2t

2htgtft
.

The additional block of the score has the form

∂`t
∂θ3

=
1
2

(
ε2t

htgtft
− 1
)
∂ft
∂θ3
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which, under H0, reduces to

∂`t
∂θ3

∣∣∣∣
H0

=
1
2

(
ε2t
htgt

− 1
)
∂ft
∂θ3

∣∣∣∣
H0

.

Taking (2.44) as the alternative, the vector x̂1t is given in (2.32) and

x̂2t =
∂f̂t
∂θ3

∣∣∣∣∣
H0

= v̂t. (2.45)

This category includes general misspecification tests of adequacy of the estimated
specification. After the estimation of the TV-GARCH model, one may want to
check whether the estimated standardized errors still contain some structure. In the
GARCH context, Lundbergh and Teräsvirta (2002) proposed a Lagrange multiplier
statistic for testing the hypothesis of no remaining ARCH which is asymptotically
equivalent to the portmanteau statistic introduced by Li and Mak (1994). A similar
test statistic can be obtained for the multiplicative TV-GARCH model.

Testing the hypothesis of no remaining ARCH

An important misspecification test for the multiplicative TV-GARCH specification
is the so-called ’ARCH-in-GARCH’ test. The original model

εt = ζth
1/2
t g

1/2
t , ζt ∼ nid(0, 1)

is extended by assuming that, under the alternative, ζt = ξtf
1/2
t , where ξt ∼ nid(0, 1),

and

ft = 1 +
s∑
j=1

φjζ
2
t−j . (2.46)

The hypothesis of interest is H0 : φ1 = ... = φs = 0 and ∂f̂t

∂θ3
|H0 = (ζ̂2

1 , . . . , ζ̂
2
s )′. Some

special cases may be mentioned. If gt ≡ 1, the test collapses into the test of ’no
ARCH-in-GARCH’ in Lundbergh and Teräsvirta (2002). If ht ≡ 1 as well, the test
coincides with the Engle’s test of no ARCH. Setting only ht ≡ 1, it reduces to the
test of no ARCH in εt/ĝ

1/2
t . The test is presented in the next corollary.

Corollary 10 Consider the model (2.44) where {ζt} is a sequence of independent
standard normal variables. Let θ1 = (α0, α1, . . . , αq, β1, . . . , βp)′ and θ2 = (δ′, γ1, . . . ,
γr, c1, . . . , cr)′ with δ = (δ1, . . . , δr)′. Furthermore, ft is defined by (2.46) such that
θ3 = (φ1, . . . , φs)′ and v̂t = (ζ̂2

1 , . . . , ζ̂
2
s )′. Assume that the maximum likelihood estima-

tors of the parameters of (2.44) are asymptotically normal when H0 : θ3 = 0 is valid.
Thus, under this null hypothesis, the LM statistic (2.15), with ût = ε̂2t/ĥ

0
t ĝ

0
t − 1, x̂1t

as in (2.32) and x̂2t = v̂t is asymptotically χ2−distributed with s degrees of freedom.
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2.6.2 Misspecification tests for the additive model

In this section we shall consider the additive TV-GARCH model and assume that
it is either additively or multiplicatively misspecified. The former possibility may
include, for example, tests against remaining nonlinearity and additional transitions,
whereas the test of the adequacy of the estimated model belongs to the latter one.
To this end, let ht = ht(θ1) and gt = gt(θ2), such that θi, i = 1, 2, represent the
parameters belonging to ht = α0 +

∑q
i=1 αiε

2
t−i +

∑p
j=1 βjht−j and gt =

∑r
l=1(α0l +∑q

i=1 αilε
2
t−i +

∑p
j=1 βjlht−j)Gl(t

∗; γl, cl). Under the null hypothesis of no misspeci-
fication, the extended model reduces to the additive TV-GARCH parameterization.

Additive misspecification

In order to define the set of alternative models for this class, consider a general
alternative written as

εt = ζt(ht + gt + ft)1/2. (2.47)

Under the null hypothesis, ft ≡ 0. If gt ≡ 0, the test coincides to the additive test
developed in Lundbergh and Teräsvirta (2002). In the case of the additive param-
eterization, the diagnostic tests mentioned in Subsections 2.6.1 and 2.6.1 belong to
the class (2.47). Such tests can be easily adapted into the present context, where the
quantities ût, x̂it, i = 1, 2, and v̂t have to be modified accordingly. We shall therefore
be concerned with a general alternative hypothesis rather than describing individual
situations.

The log-likelihood function for observation t is

`t = −1
2

ln 2π − 1
2
{ln(ht + gt + ft)} −

ε2t
2(ht + gt + ft)

and the vector of the first partial derivatives with respect to θ = (θ′1,θ
′
2)′ under H0

equals
∂`t
∂θ

∣∣∣∣
H0

=
1
2

(
ε2t

ht + gt
− 1
)

x1t

where x1t =
(

1
ht+gt

∂ht

∂θ′1
, 1
ht+gt

∂gt

∂θ′2

)′
. The appropriate estimates of ∂ht

∂θ1
|H0 and ∂gt

∂θ2
|H0

are

∂ĥt
∂θ1

∣∣∣∣∣
H0

= ẑt +
p∑
j=1

β̂j
∂ĥt−j
∂θ1

∣∣∣∣∣
H0

(2.48)

∂ĝt
∂θ2

∣∣∣∣
H0

=
r∑
l=1

ẑtĜl(t∗) +
r∑
l=1

θ̂
′
2lẑt

∂Ĝl(t∗)
∂θ2

+
p∑
j=1

r∑
l=1

β̂jlĜl(t∗)
∂ĝt−j
∂θ2

∣∣∣∣
H0

(2.49)

where zt = (1, ε2t−1, . . . , ε
2
t−q, ht−1, . . . , ht−p)′,θ2l = (α0l, α1l, . . . , αql, β1l, . . . , βpl)′, l =

1, . . . , r, and Gl(t∗) ≡ Gl(t∗; γl, cl). The additional block of the score for observation
t, under H0, equals

∂`t
∂θ3

∣∣∣∣
H0

=
1
2

(
ε2t

ht + gt
− 1
)

1
ht + gt

∂ft
∂θ3

∣∣∣∣
H0
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where ∂ft

∂θ3
= vt. To define the LM statistic, set

x̂1t =

(
1

ĥ0
t + ĝ0

t

∂ĥt

∂θ′1

∣∣∣∣∣
H0

,
1

ĥ0
t + ĝ0

t

∂ĝt

∂θ′2

∣∣∣∣
H0

)′
(2.50)

x̂2t =
1

ĥ0
t + ĝ0

t

∂f̂t
∂θ3

∣∣∣∣∣
H0

=
v̂t

ĥ0
t + ĝ0

t

(2.51)

where ∂ĥt

∂θ1
|H0 and ∂ĝt

∂θ2
|H0 are given in (2.48) and (2.49), respectively. These results

apply to the test against remaining nonlinearity. The test will be presented in the
following corollary.

Corollary 11 Consider the model (2.47) where {ζt} is a sequence of independent
standard normal variables. Let θ1 = (α0, α1, . . . , αq, β1, . . . , βp)′,θ2 = (δ′, γ1, . . . , γr,
c1, . . . , cr)′ with δ = (δ1, . . . , δr)′ and θ3 = ($′i, π

′
i)
′, where $i = ($i1, . . . , $iK)′

and πi = (πi1, . . . , πiK)′, i = 1, . . . , q. Assume that the maximum likelihood estima-
tors of the parameters of (2.47) are asymptotically normal when H0 : θ3 = 0 is
valid. Thus, under this null hypothesis, the LM statistic (2.15), with ût = ε̂2t/(ĥ

0
t +

ĝ0
t ) − 1, x̂1t as in (2.50) and x̂2t as in (2.51) with v̂t = (v̂′1,t, . . . , v̂

′
K+2,t)

′ where
vit = (εit−1, . . . , ε

i
t−q)

′, i = 1, . . . ,K+2, is asymptotically χ2−distributed with dim(θ3)
degrees of freedom.

Multiplicative misspecification

Consider the following extended TV-GARCH model

εt = ζt(ht + gt)1/2f
1/2
t . (2.52)

Under the null hypothesis, ft ≡ 1. This category entails the test for assessing the
adequacy of the functional form of the estimated model. This test was already dis-
cussed when the TV-GARCH model was in the multiplicative form and the same
considerations apply here.

The log-likelihood function for a single observation on (2.52) is

`t = −1
2

ln 2π − 1
2
{ln(ht + gt) + ln ft)} −

ε2t
2(ht + gt)ft

and the relevant block of the score due to θ3, under H0, has the form

∂`t
∂θ3

∣∣∣∣
H0

=
1
2

(
ε2t

ht + gt
− 1
)
∂ft
∂θ3

∣∣∣∣
H0

.

The hypothesis of interest is that the squared standardized error sequence is iid.
Under the alternative, ft is defined in (2.46). In this framework, the vector x̂1t is
given as in (2.50) and x̂2t = ∂f̂t

∂θ3
|H0 = v̂t. The following Corollary defines the test

statistic.
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Corollary 12 Consider the model (2.52) where {ζt} is a sequence of independent
standard normal variables. Let θ1 = (α0, α1, . . . , αq, β1, . . . , βp)′ and θ2 = (δ′, γ1, . . . ,
γr, c1, . . . , cr)′ with δ = (δ1, . . . , δr)′. Furthermore, ft is defined by (2.46) such that
θ3 = (φ1, . . . , φs)′ and v̂t = (ζ̂2

1 , . . . , ζ̂
2
s )′. Assume that the maximum likelihood estima-

tors of the parameters of (2.52) are asymptotically normal when H0 : θ3 = 0 is valid.
Thus, under this null hypothesis, the LM statistic (2.15), with ût = ε̂2t/(ĥ

0
t+ĝ

0
t )−1, x̂1t

as in (2.50) and x̂2t = v̂t is asymptotically χ2−distributed with s degrees of freedom.

2.7 Simulation study

2.7.1 Monte Carlo design

In this section, we conduct a small simulation experiment to evaluate the finite-
sample properties of the proposed parameter constancy tests. These are the tests
against an additive and a multiplicative TV-GARCH specifications. Specifically, we
shall investigate the size and power properties of the LM-type tests involved in the
modelling strategies as well as the success rate of the specification procedures. Sample
lengths of 1000, 2500 and 5000 observations have been used in all simulations. For
each design, the total number of replications equals 2000. To avoid the initialization
effects, the first 1000 observations have been discarded before generating the actual
series. All the computations have been carried out using Ox, version 3.30 (see Doornik
(2002)). The behaviour of the test statistics is examined for several data generating
processes (DGP’s) that can be nested in the following TV-GARCH specification:

yt = εt, εt|Ft−1 ∼ N(0, ht)
ht = α0 + α1ε

2
t−1 + β1ht−1 + (α01 + α11ε

2
t−1 + β11ht−1)G1(t∗; γ1, c1). (2.53)

The data generating processes are as following:

DGP (i):
ht = 0.10 + α1ε

2
t−1 + β1ht−1

α1 = {0.05, 0.09, 0.10} and β1 = {0.80, 0.85, 0.90}

DGP (ii):
ht = 0.10 + α01G1(t∗; γ1, c1) + 0.10ε2t−1 + 0.80ht−1

α01 = {0.10, 0.30}

DGP (iii):
ht = 0.10 + (0.10 + α11G1(t∗; γ1, c1))ε2t−1 + 0.80ht−1

α11 = {0.05, 0.09}
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DGP (iv):
ht = (0.10 + α01G1(t∗; γ1, c1)) + (0.10 + α11G1(t∗; γ1, c1))ε2t−1 + 0.80ht−1

α01 = {0.10, 0.30} and α11 = {0.05, 0.09}

DGP (v):
ht = 0.10 + 0.10ε2t−1 + (0.80 + β11G1(t∗; γ1, c1))ht−1

β11 = {0.05, 0.09}

DGP (vi):
ht = 0.10 + α01G1(t∗; γ1, c1) + 0.10ε2t−1 + (0.80 + β11G1(t∗; γ1, c1))ht−1

α01 = {0.10, 0.30} and β11 = {0.05, 0.09}

DGP (vii):
ht = (0.10 + 0.10ε2t−1 + 0.85ht−1)(1 + δ1G1(t∗; γ1, c1))
δ1 = {0.05, 0.08}

The first six designs concern the additive TV-GARCH model, whereas the re-
maining one relates to the multiplicative model. In all these seven experiments, the
midpoint of the change in volatility is at c1 = 0.5, whereas the slope parameter γ1

varies in the interval γ1 = {5, 10}. Following the suggestion in Bollerslev (1986), re-
cursive computation of ht is initialized by using the estimated unconditional variance
for the pre-sample values t ≤ 0.

2.7.2 Finite sample properties

In this section we shall look at the small-sample properties of the modelling strategy
for the TV-GARCH model. We first report results on the size and power properties
of our parameter constancy tests. Then we turn to the specification of TV-GARCH
models.

Size and power simulations

The size and the power results of the tests are presented in graphs following the
recommendation by Davidson and MacKinnon (1998). Both the ordinary and the
robustified versions of each test are computed using auxiliary regressions. Results of
the size simulations appear in the form of p-value discrepancy plots in Figure 2.5. In
these graphs, the difference between the empirical size and the nominal size is plotted
against the nominal size. The upper panel of Figure 2.5 presents the results for the
size simulations for the test against an additive alternative, whereas the bottom panel
shows the empirical size results of the test against a multiplicative alternative. For
each test we calculate the actual rejection frequencies for the three sample sizes at the
following nominal levels: 0.1%, 0.3%, 0.5%, 0.7%, 0.9%, 1%, ...., 10%. The series are
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Figure 2.5 Size discrepancy plots of the additive (upper panel) and multiplicative
(lower panel) parameter constancy tests. Both the ordinary (left) and the robust
(right) versions of the tests are plotted.

generated from the GARCH model given by the DGP (i) where α0 = 0.10, α1 = 0.10
and β1 = 0.85.

Both tests are somewhat size-distorted at the sample size T = 1000, but the results
become more accurate as the sample size increases. For sample sizes typically used
for modelling volatility clustering, such as T = 2500 and T = 5000, the tests are
reasonably well-sized. Furthermore, the size distortions in the robust version of the
tests do not differ too much from those in the non-robust test. Our main conclusion
is that both the non-robust and robust versions of the test statistics are rather good
approximations to the finite-sample distributions for T ≥ 2500. Employing a robust
test even when the errors are normal does not seem to lead to a large loss of power.

Although there exist several parameter constancy tests in the GARCH literature,
none of them can be considered a direct benchmark for our parameter constancy tests.
Because of this, in Figure 2.6 we only report power results for our tests. In these
graphs the rejection frequencies are plotted against the nominal significance levels
0.1%, 0.3%, 0.5%, 0.7%, 0.9%, 1%, . . ., 10%. Instead of the size-adjusted power-size
curves suggested by Davidson and MacKinnon (1998), we simply report power curves
as the tests have good size properties.

The power results in Figure 2.6 have been obtained by generating artificial data
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Figure 2.6 Power curves of the additive (upper panel) and multiplicative (lower
panel) parameter constancy tests. Both the ordinary (left) and robust (right) versions
of the tests are plotted.

from the DGP (ii) where the coefficient α01 = 0.10, the slope parameter γ1 = 5 and
the location parameter c1 = 0.5. The rejection frequencies of the additive LM test
statistics shown in the top panel are moderate when T = 1000 and increase with the
sample size. The pattern of the power results for the robustified version of the test is
very similar to the non-robust one.

Rejection frequencies for the LM-type test against a multiplicative alternative are
shown in the lower panel of Figure 2.6. The results refer to power simulations when
the data generating process is a multiplicative TV-GARCH model (DGP vii). The
coefficient δ1 = 0.05 and γ1 = 5 as before. As expected, the rejection frequencies are
an increasing function of the sample size and of the parameter δ1 (as well as of the
parameter α01 in the additive case). Moreover, the LM-type test statistic turns out
to be very powerful even for short time series. Again, the behaviour of the robust
version of the test in the power simulations is quite similar to that of the non-robust
version.

Simulating the model selection strategy

In this section we consider the performance of the specific-to-general specification
strategy for TV-GARCH models with an additive time-varying structure. This is done
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by studying the selection frequencies of various models. The specification procedure
has been discussed in Section 2.4.1. A total of 2000 replications are carried out for each
DGP and all three sample sizes. The first 1000 observations of each generated series
are discarded to avoid the initialization effects. Throughout, we set α = 0.05 for both
the LM1 and LM3 versions of the test. The maximum number of transitions considered
equals two. Furthermore, τ = 1/2, which means that we halve the significance level
of the test at each stage of the sequence.

Results for DGP (i) are reported in Table 2.1 (see Appendix B). The frequencies of
the correct number of transitions are shown in boldface. The column labelled ‘choice’
refers to the number of transition functions selected. In general, the statistic LM1

has better size properties than LM3. However, in most cases, the test based on the
third-order Taylor expansion also has an empirical size very close to the nominal size
except when the sum α1 + β1 is close to one and the sample size is less than 2500
observations.

Results for series generated from a model with a single transition function can be
found in Table 2.2. We report separately an additive time-varying structure in each
parameter of the GARCH model when c1 = 0.50. This corresponds to the DGP’s
(ii), (iii) and (v). For all the cases, the parameters of the linear GARCH are α0 =
0.10, α1 = 0.10 and β1 = 0.80. Clearly, the constant-parameter GARCH model is
chosen too often for parameterizations with smoothest changes and shortest series.
For large sample sizes, the selection frequencies of the true model become quite high
even for very smooth changes. Again, the LM1-test has higher power than LM3. As
expected, the correct model is selected more frequently for high than for low values of
α01, α11 or β11. Moreover, the correct model is selected slightly more often when the
change only occurs either in the constant α0 or in the GARCH parameter β1 than
when it does in the ARCH parameter α1.

The model selection frequencies when the series are generated from DGP (iv) are
given in Table 2.3. The correct model is chosen more frequently when the change in
α01 and α11 becomes large. It also becomes easier to identify a single transition when
the slope parameter γ increases. Again, the results concern the case when the change
occurs in the middle of the sample. Finally, Table 2.4 contains the frequencies of the
selected models for the DGP (vi). In this case, the power of our procedure turns out
to be very similar to that shown in Table 2.3. This may be explained by the fact
that either changes in α01 and α11 or the ones in α01 and β11 simultaneously change
the amplitude of clusters as well as the unconditional variance. We also carried out
simulations for the DGP (vii) which are not reported in the paper. The results are
almost identical to what is reported for the additive TV-GARCH model. Overall, the
sequential procedure seems to work relatively well for all combinations of parameters
considered and for sample sizes T ≥ 1000.

2.8 Applications

In this section we shall present two empirical examples involving two financial time
series, a stock index and an exchange rate return series. The former is the Standard
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Figure 2.7 Daily returns of the S&P 500 composite index from January 2, 1990
until December 31, 1999 (2531 observations).

and Poor 500 composite index (S&P 500) and the latter the spot exchange rate of
the Singapore dollar versus the U.S. dollar (SPD/USD). Both series are observed at
a daily frequency and transformed into the continuously compounded rates of return.

2.8.1 Stock index returns

The daily S&P 500 return series was provided by the Yahoo-Quotes database. The
sample extends from January 2, 1990, to December 31, 1999, which amounts to 2531
observations. The series is plotted in Figure 2.7. It contains periods of large volatility
both in the beginning and at the end of the sample period, whereas the average
volatility in the middle of the sample is somewhat lower than in both ends.

Summary statistics for the series can be found in the second column of Table 2.5.
It is seen that there is both negative skewness and excess kurtosis in the series.
Normality of the marginal distribution of the S&P 500 returns is strongly rejected.
Robust skewness and kurtosis estimates (see Kim and White (2004) and Teräsvirta
and Zhao (2007)) are also provided. The robust skewness measure is positive but very
close to zero, which suggests that the asymmetry of the empirical distribution of the
returns is due to a small number of outliers. The robust centred kurtosis that has
value zero for the normal distribution indicates some excess kurtosis but much less
than the conventional measure. This is in line with the robust skewness estimate. As
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expected, the null hypothesis of no ARCH is strongly rejected.
We first estimate a standard GARCH(1,1) model to this series. In order to save

space, the results are not shown here. Results of the parameter constancy test against
an additive time-varying structure are reported in Table 2.7. The test of parameter
constancy against an additive TV-GARCH model, when several parameters are as-
sumed to change under the alternative, rejects the null hypothesis. The tests against
alternatives in which some parameters remain constant, suggest that the the intercept
may be the main source of nonconstancy.

Instead of specifying and estimating an additive TV-GARCH model with a time-
varying intercept, we test the iid hypothesis of our stochastic sequence {εt} against
deterministic change. This is Step 1 in the specification of multiplicative TV-GARCH
models outlined in Subsection 2.4.2. The results can be found in Table 2.8. The
null hypothesis is rejected very strongly as the p-value of the test equals 3 × 10−23.
The test sequence for specifying the structure of the deterministic function gt points
towards K = 2. Fitting the TV-GARCH model with a single transition function and
K = 2 to the series and testing for another transition still leads to rejecting the null
hypothesis. The p-value, however, is now considerably larger, equalling 0.0028, and
the specification test sequence now clearly suggests K = 1. Accepting this outcome,
fitting the corresponding TV-GARCH model to the series and testing for yet another
transition yields the p-value 0.0623. If the null hypothesis is tested directly against a
standard logistic transition function, the p-value equals 0.0197. Given the relatively
large number of observations, this is not a small value, and the model with two
transitions is tentatively accepted as the final model.

In this model, the estimate of gt has the following form:

ĝt = {1 + 1.7041
(0.4265)

G1(t∗; γ̂1, ĉ1) + 1.7335
(0.5455)

G2(t∗; γ̂2, ĉ2)} (2.54)

with
G1(t∗; γ̂1, ĉ1) = (1 + exp{−100

(−)
(t∗ − 0.1643

(0.0100)
)(t∗ − 0.6950

(0.0831)
)})−1 (2.55)

and
G2(t∗; γ̂2, ĉ2) = (1 + exp{−100

(−)
(t∗ − 0.8534

(0.0043)
)})−1. (2.56)

The graph of the deterministic component ĝt is depicted in Figure 2.9. The two
transitions are clearly visible and illustrate how volatility first decreases and then
increases over time. A GARCH model is fitted to the standardized residuals εt/ĝ

1/2
t ,

and the estimated model is subjected to misspecification tests described in Subsection
2.6.1. Table 2.9 contains the test results. The hypothesis of ’no ARCH in GARCH’
is not rejected for any lag length considered. As may be expected, the hypothesis of
no additional transitions is not rejected either. There is, however, some indication of
nonlinearity in the conditional variance as the GARCH(1,1) component is strongly
rejected against a STGARCH(1,1) one for K = 1. In order to remedy this problem,
we specify a GJR-GARCH(1,1) model for ht.

The parameter estimates of the GJR-GARCH model can be found in Table 2.6. It
is seen that the persistence factor equals α̂1 + β̂1 + γ̂1/2 = 0.993, so that the estimated
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model is practically an integrated GJR-GARCH model. For illustration, Table 2.6
also contains the parameter estimates at the point where the parameters in ht have
been estimated for the first time. It is seen that there is already a large change
in the value of the log-likelihood compared to the maximum found for the GJR-
GARCH(1,1) model. The persistence, however, has not yet decreased very much.
Figure 2.10 contains the autocorrelations of |εt| (Panel (a)) and those of |εt|/ĝ1/2

t

after a single iteration (Panel (b)). It is seen that the increase in the log-likelihood
is mainly due to a decrease in the general level of the autocorrelations. At the same
time, the autocorrelations retain the ’long-memory property’, the very slow decay as
a function of the lag, that is obvious in the autocorrelations of |εt|.

The log-likelihood considerably increases with further iterations, and the final
persistence indicator has the remarkably low value α̂1 + β̂1 + γ̂1/2 = 0.918. A clear
trade-off is observed here. When it is assumed that the process is stationary there is
only one level (unconditional variance) to which the conditional variance converges
when it is assumed that zt = 0 for t > t0. This convergence then takes a very long
time (α̂1 + β̂1 + γ̂1/2 = 0.993 is very close to unity). In the TV-GJR-GARCH model
this level is time-varying, and the rate of convergence to a particular level can thus
be much more rapid than it is in the standard GJR-GARCH model. Panel (c) of
Figure 2.10 now shows that the autocorrelations of |εt|/ĝ1/2

t have decreased even
further, and only few of them exceed two standard deviations of |εt| under the iid
normality assumption, marked by the straight line in the figure. A major part of the
variation in the daily S&P 500 return series can thus be attributed to the slow-moving
component gt, and surprisingly little remains to be explained by the traditional GJR-
GARCH component.

Table 2.10 contains the misspecification test results for this model. Even if the
GJR-GARCH model is a rather crude representation of asymmetry compared to the
smooth transition GARCH specification, it manages to capture most of the asym-
metry. The p-value of the test of no additional nonlinearity, when applied to the
TV-GJR-GARCH model, equals 0.024, which is much larger than 1× 10−10 obtained
when the test was applied to the estimated TV-GARCH(1,1) model. Applying the
1% significance level, the other misspecification tests do not reject the model either,
and the TV-GJR-GARCH model is thus accepted to be our final model.

Figure 2.11 that contains the estimated conditional standard deviations h1/2
t of

{εt} for the GJR-GARCH(1,1) model and the ones of {εt/ĝ1/2
t } illustrates the sit-

uation as well. For the GJR-GARCH model, see Panel (a), the graph looks rather
’nonstationary’. Some nonstationarity remains after a single iteration, as the autocor-
relations of {εt/ĝ1/2

t } in Panel (b) also demonstrate. From the graph in Panel (c) (the
final model) it is seen that volatility is still changing over time, but there no longer
seem to be persistent level changes. They have been absorbed by the deterministic
component.

Column 4 in Table 2.5 contains the skewness and kurtosis estimates for εt/ĝ
1/2
t .

The negative skewness remains but, as can be expected from the other results, the
excess kurtosis of the final εt/ĝ

1/2
t series is considerably less (2.8) than the original

number (5.3). This is another illustration of the fact that volatility to be modelled by
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ht in the TV-GJR-GARCH model is much smaller than it is in the GJR-GARCH(1,1)
model without the nonstationary component. Even the robust kurtosis estimate in
Table 2.5 shows some decrease, but because its nonrobust value was already small,
the decrease has remained rather modest.

In Figure 2.12, the estimated news impact curve of the standard GJR-GARCH(1,1)
model is compared with corresponding curves of the TV-GJR-GARCH(1,1) model.
The news impact curve of the TV-GJR-GARCH model is time-varying because it de-
pends on gt−1. The news impact curve of the GJR-GARCH model is time-invariant,
and from the figure it is seen how the curve can vary over time in the TV-GJR-
GARCH model. This curve is completely flat for εt−1 > 0 because α1 = 0 in the
model. Its estimate was originally slightly negative but statistically insignificant, and
the model was re-estimated after restricting α1 to zero. The curves based on the
TV-GJR-GARCH model clearly show the obvious fact that when there is plenty of
turbulence in the market, the news impact of a particular negative shock is smaller
than it is when calm prevails. In the latter case, even a minor piece of ’bad news’
(a negative shock) can be ’news’, whereas in the former case, even a relatively large
negative shock can have a rather small news component. This distinction cannot
be made in the standard GJR-GARCH model. According to our TV-GJR-GARCH
model, ’good news’ (positive shocks) have no impact on volatility in this application.

2.8.2 Exchange rate data

The data of this section consist of daily returns of the spot SPD/USD exchange rate
provided by the Federal Reserve Bank of New York. The time series is shown in
Figure 2.8. It covers the period from May 1, 1997 until July 11, 2005, yielding a total
of 2060 observations. At first sight, it appears that one can distinguish two different
regimes in the series. A period of high volatility occurs during the East Asian financial
crisis due to the significant depreciation of the Singapore dollar relative to the U.S.
dollar. After the crisis, the volatility of the currency returns descends to a low level.

Descriptive statistics for the SPD/USD exchange rate returns are reported in
Table 2.5. There is plenty of excess kurtosis, and the estimated skewness is strongly
negative. These values are due to a limited number of large negative returns early
in the series during the so-called Asian crisis. Naturally, the marginal distribution of
the returns is far from normal. The robust measure of skewness indicates that there
is in fact little skewness and the robust centred kurtosis is substantially smaller than
its standard measure. The hypothesis of no ARCH is strongly rejected, as can be
expected. The GARCH(1,1) model fitted to this exchange rate return series again
shows high persistence of volatility. The estimate of α1 is larger and that of β1 smaller
than in the S&P 500 model, which is a consequence of the fact that the kurtosis is
larger in the exchange rate series than it is in the S&P 500 returns.

Parameter constancy of the GARCH(1,1) model is rejected against an additive TV-
GARCH model. These test results are presented in Table 2.7. In this case, however,
the rejection is not due to the intercept but rather to the other two parameters.
As in the previous application, we shall not fit any additive TV-GARCH models
to our return series but choose to work with the multiplicative model. The test of
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Figure 2.8 Daily returns of the Singapore Dollar versus US dollar exchange rate
from May 1, 1997 until July 11, 2005 (2060 observations).

constant unconditional variance against a time-varying one has the p-value equal to
1 × 10−20. Table 2.8 contains the outcomes of the sequence of specification tests.
The results indicate that one should choose K = 1, that is, have a monotonically
increasing transition function. A multiplicative TV-GARCH model with a single
transition appears adequate in the sense that the test for another transition has
p = 0.14. The diagnostic tests of this model in Table 2.9 do not reject the model.
There is no remaining ARCH in the standardized errors, no evidence of higher-order
structure in the GARCH component, and nothing suggests the existence of additional
transitions. Finally, the linearity test against the smooth transition GARCH does
not indicate remaining nonlinearity. Judging from these statistics, the model seems
to be adequately specified. It is thus tentatively accepted as our final model for the
SPD/USD daily return series.

The final estimates for the function gt are as follows:

ĝt = {1− 0.7890
(0.0074)

G1(t∗; γ̂1, ĉ1)}, (2.57)

where
G1(t∗; γ̂1, ĉ1) = (1 + exp{−100

(−)
(t∗ − 0.2101

(0.0014)
)})−1 (2.58)

The graph of the transition function can be found in Figure 2.13. Figure 2.8 already
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shows that the volatility is high in the beginning and settles down to a lower level
after about 500 observations (two years). From Table 2.5 it is seen that the excess
kurtosis has decreased substantially from its value for {εt} and, furthermore, that
the skewness has been reduced from −0.9 to less than −0.3. This large reduction
can be ascribed to the fact that the original skewness was due to a couple of very
large negative returns during the Asian crisis. Their significance has subsequently
been reduced in {εt/ĝ1/2

t } where the conditional heteroskedasticity component has
been standardized by the underlying nonstationary volatility component. Besides,
according to the robust estimates the skewness has not been affected, which is in line
with this conclusion as well.

The parameter estimates of the model appear in Table 2.6. It can be seen that
even for the exchange rate series, the first iteration already has a large effect on the
value of the log-likelihood. Figure 2.14 shows that at that stage, the autocorrelations
of |εt|/ĝ1/2

t are considerably lower than those of |εt|, although their decay as a function
of the lag length is still slow. The final estimates indicate more persistence than there
is in the S&P 500 case, but the decrease is still large compared to the GARCH(1,1)
model. The decay rate of the autocorrelations of |εt|/ĝ1/2

t in Figure 2.14 is quite rapid
and looks more or less exponential. The first-order autocorrelation that was about
0.304 for |εt| equals 0.121 for |εt|/ĝ1/2

t . The graph of the conditional variance ht in
Panel (a) of Figure 2.15 clearly shows the period of high volatility, which is the cause
of the high persistence suggested by the GARCH(1,1) model. Panel (c) shows that in
the final model this high-volatility period is explained by the deterministic component
gt, and that the graph of ht does not show signs of nonstationarity. This is precisely
what one would expect after a look at the parameter estimates in Table 2.6.

Figure 2.16 contains the estimated news impact curves of the traditional GARCH(1,1)
model and the ones of the TV-GARCH(1,1) model for three regimes. It is seen that
symmetry in the response of volatility to news is preserved in the latter model. This is
obviously because of certain ’symmetry’ of the exchange rates: good news for the US
dollar may be bad news for the SPD, and vice versa. An additional result, similarly
to the previous application, is the ability of the time-varying news impact curves to
distinguish different reaction levels of volatility to news in calm and turbulent times.
In general, the impact of news on volatility tends to be high in expansions and low in
recessions.

2.9 Concluding remarks

In this paper we introduce two new nonstationary GARCH models whose parame-
ters are allowed to have a smoothly time-varying structure. Time-variation of the
(un)conditional variance is incorporated in the model either in an additive or a mul-
tiplicative form. This approach is appealing since most daily financial return series
cover a long time period and non-constancy of parameters in models describing them
therefore appears quite likely. We also develop a modelling strategy for our TV-
GARCH specifications. In order to determine the appropriate number of transitions
we propose a procedure consisting of a sequence of Lagrange multiplier tests. The
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test statistics can be robustified against deviations from the iid assumption. Our
simulation experiments suggest that the parameter constancy tests have reasonable
good properties already in samples of moderate size. The modelling strategy appears
to work quite well for the data-generating processes that we simulate.

We put our TV-GARCH models to test by applying the modelling strategy to
daily stock index and exchange rate returns. We find that parameter constancy
against an additive and a multiplicative structure is strongly rejected for both return
series. Fitting a traditional GARCH model to these series yields results that are
quite different from the ones obtained by our approach and suggest the presence of
long memory in volatility. Our results show that the long-memory type behaviour of
the sample autocorrelation functions of the absolute returns may also be induced by
changes in the unconditional variance. Once the model accounts for the time-variation
in the baseline volatility or unconditional variance, the evidence for long memory is
considerably weakened or even vanishes altogether.

An extension to multivariate GARCH models appears possible. The so-called
Constant Conditional Correlation (CCC-) GARCH model by Bollerslev (1990) and
its extensions typically make use of a standard GARCH(1,1) specification for condi-
tional variances. These GARCH equations could be generalized to account for time-
variation in parameters. An interesting question to investigate with our TV-GARCH
specifications is how such a generalization would affect estimates of time-varying cor-
relations in a situation in which there are changes in the unconditional variance of
the return series. This and other extensions to multivariate models will be left for
future work.
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Appendix A: Proof of Theorem 1

Proof of Theorem 1. Assuming the independent innovations to be normally
distributed, it follows that for model (2.11), the conditional log-likelihood function is
given by

LT (θ) = −T
2

ln 2π − 1
2

T∑
t=1

lnht −
1
2

T∑
t=1

ε2t
ht
.

Let θ be a parameter vector partitioned as θ = (θ′1,θ
′
2)′. The null hypothesis is

θ2 = 0. The corresponding partition of the average score vector q(T )(θ) is q(T )(θ) =
(q1(T )(θ1)′,q2(T )(θ2)′)′. Let h0

t denote the conditional variance under the null hy-
pothesis and let the true parameter vector under H0 be θ0 = (θ0′

1 ,0
′)′. The Lagrange

multiplier statistic is defined as follows:

ξLM = Tq(T )(θ̂)′I(θ̂)−1q(T )(θ̂)

where T is the sample size, θ̂ = (θ̂
′
1,0
′)′ is the constrained maximum likelihood esti-

mator of θ,

q(T )(θ̂) = (0′,q2(T )(0)′)′ = (0′,
1
T

T∑
t=1

∂`t(θ)
∂θ′2

|H0)′

is the average score vector and I(θ̂) the information matrix, both evaluated at θ = θ̂.
In this case, the partial derivatives with respect to θ have the form
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∂θ
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1
2
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ε2t
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− 1
)
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ht
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where ĥ0
t and x̂t = (x̂′1t, x̂

′
2t)
′ denote h0

t and xt, respectively, evaluated at θ = θ̂
. Under normality, the population information matrix equals the negative expected
value of the average Hessian matrix:

I(θ) = −E

[
1
T
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t=1
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∂θ∂θ′

]
.

The Hessian of the log-likelihood equals
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so the information matrix becomes

I(θ) =
1

2T

T∑
t=1

E

[
ε2t
h3
t

∂ht
∂θ

∂ht

∂θ′

]
=

1
2T

T∑
t=1

Extx′t.

As the maximum likelihood estimator θ̂ is consistent for θ0,

I(θ̂) =
1

2T

T∑
t=1

x̂tx̂′t

is consistent for I(θ). Then the Lagrange multiplier type test statistic for testing
parameter constancy has the standard form:

ξLM =
1
2

T∑
t=1

ûtx̂′t

(
T∑
t=1

x̂tx̂′t

)−1 T∑
t=1

x̂tût

=
1
2

T∑
t=1

ûtx̂′2t


T∑
t=1

x̂2tx̂′2t −
T∑
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x̂2tx̂′1t

(
T∑
t=1

x̂1tx̂′1t

)−1 T∑
t=1

x̂1tx̂′2t


−1

T∑
t=1

x̂2tût.

where ût = ε2t/ĥ
0
t −1. Under H0 and standard regularity conditions, the statistic ξLM

has an asymptotic χ2-distribution with dim (θ2) degrees of freedom.
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Appendix B: Tables and Figures

Table 2.1 Model selection frequencies based on the additive sequential procedure

Number of T = 1000 T = 2500 T = 5000
α1 β1 transitions LM1 LM3 LM1 LM3 LM1 LM3

DGP (i): GARCH model with α0 = 0.10

0.10 0.80 r = 0 95.45 94.15 95.00 95.35 95.50 94.35
r = 1 3.36 4.10 3.90 3.05 3.30 3.90
r ≥ 2 1.20 1.75 1.10 1.60 1.20 1.75

0.10 0.85 r = 0 94.70 91.90 94.30 94.10 95.10 93.70
r = 1 3.65 5.20 4.60 3.90 3.40 4.45
r ≥ 2 1.65 2.90 1.05 2.00 1.50 1.85

0.05 0.90 r = 0 94.45 90.45 94.20 93.75 94.40 93.25
r = 1 4.00 6.35 4.50 4.20 4.00 4.40
r ≥ 2 1.55 3.20 1.30 2.05 1.60 2.35

0.09 0.90 r = 0 90.45 76.95 92.80 88.10 94.30 90.85
r = 1 8.20 14.10 4.95 7.10 4.10 5.50
r ≥ 2 1.35 8.95 2.25 4.80 1.60 3.65

Notes: Selection frequencies in percentage of the standard LM parameter constancy test
based on 2000 replications. The initial nominal significance level equals 5%. The columns
‘LM1’ and ‘LM3’ correspond to the test procedure based on the first-order and third-order
Taylor expansions, respectively.
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Table 2.2 Model selection frequencies based on the additive sequential procedure

Number of T = 1000 T = 2500 T = 5000
Parameters transitions LM1 LM3 LM1 LM3 LM1 LM3

DGP (ii): Change only in the constant
α01=0.10 γ1=5 r = 0 64.75 72.65 31.75 50.55 6.70 19.25

r = 1 33.25 24.00 65.80 46.95 91.45 78.10
r ≥ 2 2.00 3.35 2.45 2.50 1.85 3.65

γ1=10 r = 0 46.50 58.10 9.45 21.90 0.20 1.20
r = 1 51.35 37.35 88.35 75.75 97.45 96.65
r ≥ 2 2.15 4.55 2.20 2.35 2.35 2.15

α01=0.30 γ1=5 r = 0 17.90 33.55 0.25 2.85 0.00 0.00
r = 1 78.35 60.90 97.15 93.75 97.35 96.75
r ≥ 2 3.75 5.55 2.60 3.40 2.65 3.25

γ1=10 r = 0 5.75 11.15 0.00 0.00 0.00 0.00
r = 1 90.45 82.00 98.05 96.70 97.15 96.25
r ≥ 2 3.80 6.85 1.95 3.30 2.85 3.75

DGP (iii): Change only in the ARCH component
α11=0.05 γ1=5 r = 0 80.25 84.55 55.80 69.65 22.65 41.30

r = 1 18.70 13.40 42.70 28.95 75.15 56.45
r ≥ 2 1.05 2.05 1.50 1.40 2.20 2.25

γ1=10 r = 0 68.10 76.35 29.05 47.00 3.65 10.80
r = 1 30.20 21.60 68.85 51.00 93.55 86.95
r ≥ 2 1.70 2.05 2.10 2.00 2.80 2.25

α11=0.09 γ1=5 r = 0 50.30 62.05 7.75 22.20 0.00 1.10
r = 1 46.95 34.40 89.20 74.95 96.35 95.80
r ≥ 2 2.75 3.55 3.05 2.85 3.65 3.10

γ1=10 r = 0 27.80 38.65 0.95 3.05 0.00 0.00
r = 1 68.95 56.90 95.70 94.70 96.85 96.80
r ≥ 2 3.35 4.45 3.35 2.25 3.15 3.20

DGP (v): Change only in the GARCH component
β11=0.05 γ1=5 r = 0 68.40 76.50 30.60 50.80 5.00 14.90

r = 1 30.00 21.10 67.40 47.05 93.30 83.05
r ≥ 2 1.60 2.40 2.00 2.15 1.70 2.05

γ1=10 r = 0 50.15 62.30 8.35 21.20 0.10 0.70
r = 1 47.90 34.90 89.55 76.50 97.35 97.25
r ≥ 2 1.95 2.80 2.30 2.30 2.55 2.05

β11=0.09 γ1=5 r = 0 18.75 30.10 0.00 1.80 0.00 0.00
r = 1 77.75 64.90 95.95 94.85 96.35 96.65
r ≥ 2 3.50 5.00 4.05 3.35 3.65 3.35

γ1=10 r = 0 9.80 11.25 0.00 0.00 0.00 0.00
r = 1 85.90 81.70 96.60 96.20 97.05 96.00
r ≥ 2 4.30 7.05 3.40 3.80 1.95 4.00

Notes: Selection frequencies in percentage of the standard LM parameter constancy test based
on 2000 replications. The initial nominal significance level equals 5%. The columns ‘LM1’ and
‘LM3’ correspond to the test procedure based on the first-order and third-order Taylor expansions,
respectively.
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Table 2.3 Model selection frequencies based on the additive sequential procedure

Number of T = 1000 T = 2500 T = 5000
α01 α11 γ1 transitions LM1 LM3 LM1 LM3 LM1 LM3

DGP (iv): Change in the intercept and ARCH component

0.10 0.05 5 r = 0 24.55 41.40 0.75 3.80 0.00 0.00
r = 1 72.75 55.05 96.70 93.85 97.65 97.50
r ≥ 2 2.70 3.55 2.55 2.35 2.35 2.50

10 r = 0 7.80 17.05 0.00 0.05 0.00 0.00
r = 1 88.80 79.45 97.80 97.65 97.35 97.40
r ≥ 2 3.40 3.50 2.20 2.30 2.65 2.60

0.10 0.09 5 r = 0 11.80 25.50 0.00 0.80 0.00 0.00
r = 1 84.35 69.45 96.90 95.85 96.35 96.20
r ≥ 2 3.85 5.05 3.10 3.35 3.65 3.80

10 r = 0 3.25 7.45 0.00 0.00 0.00 0.00
r = 1 91.95 87.25 96.90 96.90 96.40 97.10
r ≥ 2 4.80 5.30 3.10 3.10 3.60 2.90

0.30 0.05 5 r = 0 2.30 8.80 0.00 0.00 0.00 0.00
r = 1 93.20 86.35 97.35 97.40 97.05 96.90
r ≥ 2 4.50 4.85 2.65 2.60 2.95 3.10

10 r = 0 0.95 0.90 0.00 0.00 0.00 0.00
r = 1 94.95 93.65 96.95 97.15 97.15 97.20
r ≥ 2 4.10 5.45 3.05 0.50 2.85 2.80

0.30 0.09 5 r = 0 1.65 5.80 0.00 0.00 0.00 0.00
r = 1 92.40 86.65 96.60 96.25 96.60 96.60
r ≥ 2 5.95 7.55 3.40 3.75 3.40 3.40

10 r = 0 0.55 0.45 0.00 0.00 0.00 0.00
r = 1 92.40 91.30 96.05 95.50 95.80 95.70
r ≥ 2 7.05 8.25 3.95 4.50 4.20 4.30

Notes: Selection frequencies in percentage of the standard LM parameter constancy test based
on 2000 replications. The initial nominal significance level equals 5%. The columns ‘LM1’ and
‘LM3’ correspond to the test procedure based on the first-order and third-order Taylor expansions,
respectively.
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Table 2.4 Model selection frequencies based on the additive sequential procedure

Number of T = 1000 T = 2500 T = 5000
α01 β11 γ1 transitions LM1 LM3 LM1 LM3 LM1 LM3

DGP (vi): Change in the intercept and GARCH component

0.10 0.05 5 r = 0 12.45 27.20 0.00 0.70 0.00 0.00
r = 1 84.85 69.55 97.30 96.60 97.60 97.25
r ≥ 2 2.70 3.25 2.70 2.70 2.40 2.75

10 r = 0 4.50 8.45 0.00 0.00 0.00 0.00
r = 1 92.50 87.85 97.75 97.50 97.05 97.30
r ≥ 2 3.00 3.70 2.25 2.50 2.95 2.70

0.10 0.09 5 r = 0 2.95 7.45 0.00 0.00 0.00 0.00
r = 1 91.70 86.35 95.65 95.55 96.50 96.50
r ≥ 2 5.35 6.20 4.35 4.45 3.50 3.50

10 r = 0 3.20 1.55 0.00 0.00 0.00 0.00
r = 1 90.90 89.85 95.40 93.90 96.15 95.15
r ≥ 2 5.90 8.60 4.60 6.10 3.85 4.85

0.30 0.05 5 r = 0 1.25 4.35 0.00 0.00 0.00 0.00
r = 1 94.65 90.00 96.70 96.50 97.25 97.15
r ≥ 2 4.10 5.65 3.30 3.50 2.75 2.85

10 r = 0 1.15 0.55 0.00 0.00 0.00 0.00
r = 1 95.05 95.00 96.80 96.20 97.20 96.50
r ≥ 2 3.80 4.45 3.20 3.80 2.80 3.50

0.30 0.09 5 r = 0 0.60 1.70 0.00 0.00 0.00 0.00
r = 1 91.70 89.10 95.35 94.15 96.10 95.95
r ≥ 2 7.70 9.20 4.65 5.85 3.90 4.05

10 r = 0 1.25 0.20 0.00 0.00 0.00 0.00
r = 1 91.60 88.00 94.60 91.35 94.30 92.70
r ≥ 2 7.15 11.80 5.40 8.65 5.70 7.30

Notes: Selection frequencies in percentage of the standard LM parameter constancy test based
on 2000 replications. The initial nominal significance level equals 5%. The columns ‘LM1’ and
‘LM3’ correspond to the test procedure based on the first-order and third-order Taylor expansions,
respectively.
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Table 2.5 Descriptive statistics and diagnostics for the daily returns

S&P 500 returns SPD/USD returns

εt εt/ĝ
1/2
t εt/(ĥtĝt)1/2 εt εt/ĝ

1/2
t εt/(ĥtĝt)1/2

Minimum −7.1127 −4.3309 −6.3139 −4.1444 −1.9042 −6.0724

Maximum 4.9887 3.0374 4.0498 2.7618 1.4231 4.0671

Skewness −0.3678 −0.3361 −0.3898 −0.9045 −0.2839 −0.2424

Robust SK 0.0325 0.0318 0.0229 −0.0045 −0.0165 −0.0217

Ex.kurtosis 5.2867 2.7996 2.1736 14.593 3.2055 2.1941

Robust KR 0.2541 0.1737 0.1503 0.1662 0.1120 0.1030

Std. dev. 0.8912 0.6120 0.9980 0.4150 0.2887 0.9971

Mean 0.0538 0.0407 0.0621 0.0077 0.0035 0.0142

LJB 3004.5
(0.0000)

874.21
(0.0000)

562.31
(0.0000)

18558.6
(0.0000)

909.62
(0.0000)

433.4
(0.0000)

ARCH(4) 154.19
(3×10−32)

55.34
(3×10−11)

4.056
(0.3478)

339.69
(3×10−72)

108.07
(2×10−22)

5.111
(0.2761)

T 2531 2531 2531 2060 2060 2060

Notes: LJB denotes the Lomnicki-Jarque-Bera test. ARCH(4) is the fourth-order ARCH LM test
statistic described in Engle (1982). Robust SK denotes the robust measure for skewness based on
quantiles proposed by Bowley (see Kim and White (2004)) and the robust KR denotes the robust
centred coefficient for kurtosis proposed by Moors (see Kim and White (2004)). The numbers in
parentheses are p-values.
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Figure 2.9 Graph of the final estimated function gt for the S&P 500 returns model
as a smooth function of the rescaled time variable t∗ as given in (2.54)-(2.56)
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Figure 2.10 Sample autocorrelations of absolute log returns of the S&P 500 and
the standardized variable |εt|/ĝ1/2

tS&P500
for the first and the final iterations with the

95% confidence bounds.
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Figure 2.11 Conditional standard deviation of the GJR-GARCH(1,1) model for the
S&P 500 returns and the standardized variable εt/ĝ

1/2
tS&P500

for the first and the final
iterations.
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Figure 2.12 News impact curves of the GJR-GARCH(1,1) (solid line in boldface)
and the TV-GJR-GARCH(1,1) models for several regimes. The time-varying news
impact curves are plotted for the lower regime, i.e. G1(t∗) = G2(t∗) = 0 (dotted line),
for an intermediate regime, i.e. G1(t∗) = 1 and G2(t∗) = 0 (dashed line) and for the
higher regime, i.e. G1(t∗) = G2(t∗) = 1 (solid line).
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Figure 2.13 Graph of the final estimated function gt for the SPD/USD returns
model as a smooth function of the rescaled time variable t∗ as given in (2.57)-(2.58).
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Figure 2.14 Sample autocorrelations of absolute log returns of the SPD/USD and
for the standardized variable |εt|/ĝ1/2

tSP D/USD
for the first and the final iterations with

the 95% confidence bounds.
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Figure 2.15 Conditional standard deviation of the GARCH(1,1) model for the
SPD/USD returns and for the standardized variable εt/ĝ

1/2
tSP D/USD

for the first and
the final iterations.
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Figure 2.16 News impact curves of the GARCH(1,1) (solid line in boldface) and the
TV-GARCH(1,1) models for several regimes. The time-varying news impact curves
are plotted for the lower regime, i.e. G1(t∗) = 0 (dotted line), for an intermediate
regime, i.e. G1(t∗) = 0.5 (dashed line) and for the higher regime, i.e. G1(t∗) = 1
(solid line)
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Modelling Changes in the Unconditional Variance of

Long Stock Return Series1

Abstract

In this paper we develop a testing and modelling procedure for describing the long-
term movements over very long return series. For the purpose, we assume that volatil-
ity is multiplicatively decomposed into a conditional and an unconditional component
as in Amado and Teräsvirta (2008). The latter component is modelled by incorpo-
rating smooth changes so that the unconditional variance is allowed to evolve slowly
over time. Statistical inference is used for specifying the parameterization of the
time-varying component by applying a sequence of Lagrange multiplier tests. The
model building procedure is illustrated with an application to the daily returns of
the DJIA index covering a period of eighty three years of financial market history.
Two major conclusions are as follows. First, the LM tests strongly reject the as-
sumption of constancy of the unconditional variance. Second, the results show that
the long-memory property in volatility may be explained by ignored changes in the
unconditional variance of the long series.

1This paper is a joint work with Timo Teräsvirta.
Acknowledgements: The first author would like to acknowledge financial support from the

Louis Fraenckels Stipendiefond. Part of this research was done while the first author was visiting
CREATES, University of Aarhus, whose kind hospitality is gratefully acknowledged. The Center
for Research in Econometric Analysis of Time Series, CREATES, is funded by the Danish National
Research Foundation. The responsibility for any errors and shortcomings in this paper remains ours.
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3.1 Introduction

The observation that deterministic shifts in long return series can generate long-
memory behaviour has received much attention in recent years. Most of the work in
this topic is related with the study of the behaviour of standard statistical tools and
model misspecification under nonstationarity. Early studies include Diebold (1986)
and Lamoureux and Lastrapes (1990) who suggested that occasional level shifts in
the intercept of the first-order GARCH model can bias the estimation towards an
integrated GARCH model. More recently, Mikosch and Stărică (2004) argued that
the so-called ‘integrated GARCH effect’ is caused by the nonstationary behaviour of
very long return series. They show how the long-range dependence in volatility and
the IGARCH effect may be explained by neglected deterministic changes in the un-
conditional variance of the stochastic process. Moreover, Granger and Hyung (2004)
claimed that occasional breaks in a long time series of absolute stock returns can also
explain the observed slow decay of the autocorrelation functions of absolute returns
in long return series.

It is well documented that shocks to the conditional variance of the standard
GARCH model of Bollerslev (1986) decay at an exponential rate. This has motivated
the development of more flexible models to describe the observed dependence structure
in financial market volatility. One of these models is the Fractionally Integrated
GARCH model of Baillie, Bollerslev, and Mikkelsen (1996) which belongs to the
class of long-memory models. In these processes, shocks to the conditional variance
decay at a slow hyperbolic rate which is more strongly supported by financial data
than the GARCH model. A generalization of the FIGARCH model was recently
proposed by Baillie and Morana (2007) in which they allow the intercept to change
deterministically according to the flexible functional form of Gallant (1984).

The question of explicitly modelling nonstationarity in stock market volatility
has, however, received somewhat less attention. There have been some attempts to
incorporate nonstationarity directly into the model. Stărică and Granger (2005) intro-
duced a nonstationary approach in which the returns are modelled as nonstationary
sequence of independent random variables with time-varying unconditional variance
but their model does not allow for volatility clustering. More recently, Engle and
Gonzalo Rangel (2008) proposed modelling the volatility process by a multiplicative
decomposition into a nonstationary and a stationary component. The nonstationary
component (or the unconditional variance) is described by an exponential spline, and
the stationary component (or the short-run dynamics of volatility) follows a first-order
GARCH process.

This paper addresses the issue of modelling deterministic changes in the uncon-
ditional variance of long return series. It is assumed that volatility is modelled by
decomposing the variance into a conditional and an unconditional component as in
Amado and Teräsvirta (2008). The conditional variance follows a GARCH process,
and describes the short-run dynamics of volatility. The nonstationary component
of volatility describes the long-volatility dynamics, and it is represented by a linear
combination of logistic transition functions. Statistical inference is used for specifying
the parametric structure of the time-varying component by applying a sequence of
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Lagrange multiplier tests. Our modelling strategy is applied to describe the long-run
properties of the long daily Dow Jones Industrial Average (DJIA) return series from
1920 to 2003. One may expect that the longer the observation period, the more likely
the occurrence of structural changes or shifts in the second unconditional moment
of returns. The test results strongly support the time-variation of the unconditional
variance in the period under study. The estimation results indicate that the strongest
deterministic changes in the unconditional variance are associated with the largest
economic recessions. This in turn suggests that the unconditional variance behaviour
may be related to the evolution of the deterministic conditions in the economy. Our
findings also suggest that the observed long-memory property in volatility may well
be due to deterministic changes in the unconditional variance of the return series.

The paper is organized as follows. The TV-GARCH model and the modelling
strategy are presented in Section 3.2. Details regarding the estimation of the model
are discussed in Section 3.3. Section 3.4 contains the application. In Section 3.5 we
show by a small Monte Carlo simulation how ignored deterministic changes in the
unconditional variance affect the estimation of a misspecified model. Finally, Section
3.6 concludes.

3.2 A model for the long-term volatility component

3.2.1 The time-varying GARCH framework

In this paper the tool for modelling an asset return series over a long period is
a GARCH-type model in which the unconditional variance is assumed to evolve
smoothly over time. To motivate the introduction of our model we shall begin by
focusing on the long-run properties of the GJR-GARCH(p, q) model of Glosten, Ja-
gannathan, and Runkle (1993). Let Ft−1 be the information set containing the his-
torical information of the series of interest available at time t− 1 and write the asset
returns {yt} as

yt = E(yt|Ft−1) + εt (3.1)

εt = ζth
1/2
t (3.2)

where {ζt} is a sequence of independent standard normal variables. Under this as-
sumption the conditional distribution of the innovation sequence {εt} is εt|Ft−1 ∼
N(0, ht). For simplicity, the conditional mean of the asset returns is set equal to zero,
i.e. E(yt|Ft−1) = 0. The component ht describes the dynamics of the conditional
variance of the asset returns. To allow positive and negative shocks to have an asym-
metric effect on the stock market volatility we choose the GJR-GARCH(p, q) model
for ht. It has the form

ht = ω +
q∑
i=1

αiε
2
t−i +

q∑
i=1

κiε
2
t−iIt−i(εt−i < 0) +

p∑
j=1

βjht−j . (3.3)

where the set of conditions for positivity and stationarity are imposed and It−i(εt−i <
0) is an indicator function that equals 1 when εt−i < 0, i = 1, . . . , q, and 0 otherwise.
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Re-writing the dynamic structure of (3.3) in terms of the unconditional variance σ2

one obtains

ht = σ2+
q∑
i=1

αi(ε2t−i−σ2)+
q∑
i=1

κi
(
ε2t−iIt−i (εt−i < 0)− σ2

)
+

p∑
j=1

βj(ht−j−σ2) (3.4)

where σ2 ≡ E(ε2t ) = ω/(1 −
∑q
i=1 αi −

∑q
i=1 κi/2 −

∑p
j=1 βj). When the persistence

rate
∑q
i=1 αi +

∑q
i=1 κi/2 +

∑p
j=1 βj < 1 then the conditional variance mean reverts

to σ2 at the geometric rate
∑q
i=1 αi +

∑q
i=1 κi/2 +

∑p
j=1 βj .

The assumption that the volatility process reverts to a constant level is very re-
strictive especially when modelling asset returns over long periods. In order to account
for changes in the long-run volatility we shall consider a more flexible specification
in which the unconditional variance σ2 can be time-varying. We incorporate smooth
changes in the unconditional variance of returns so that the variance evolves slowly
over time. The variance is thus modelled using a multiplicative decomposition of the
variance as follows:

εt = ζth
1/2
t g

1/2
t , εt|Ft−1 ∼ N(0, htgt). (3.5)

In equation (3.5) the short-run (or the stationary) component ht is modelled as the
GJR-GARCH process as in (3.3) with the exception that ε∗t = εt/g

1/2
t :

ht = ω +
q∑
i=1

αiε
∗2
t−i +

q∑
i=1

κiε
∗2
t−iIt−i(ε

∗
t−i < 0) +

p∑
j=1

βjht−j . (3.6)

The long-run (or the nonstationary) component gt is a slowly time-varying trend that
functions as a proxy for all factors that affect the unconditional variance. More specif-
ically, we follow Amado and Teräsvirta (2008) and let the time-varying unconditional
variance component be a linear combination of logistic transition functions:

gt = δ0 +
r∑
l=1

δlGl(t/T ; γl, cl) (3.7)

where δl, l = 0, . . . , r, are parameters. Furthermore, Gl(t/T ; γl, cl), l = 1, . . . , r, are
generalized logistic transition functions:

Gl(t/T ; γl, cl) =

1 + exp

−γl
k∏
j=1

(t/T − clj)


−1

(3.8)

satisfying the identification restrictions γl > 0, l = 0, . . . , r, and cl1 ≤ cl2 ≤ . . . ≤ clk.
The transition functions Gl(t/T ; γl, cl) allow the unconditional variance to change
smoothly as a function of the calendar time t/T. The parameters, clj and γl, determine
the location and the speed of the transition between different regimes. Equations
(3.5)−(3.8) define the time-varying GARCH (TV-GARCH) model. The unconditional
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variance in this model is time-varying and equals Et(ε2t ) =E(ζ2
t htgt) = gtEht. This

approach of introducing nonstationarity in the long run volatility component has been
discussed in detail by Amado and Teräsvirta (2008).

Some special cases of the TV-GARCH model are of interest. Under δ1 = . . . =
δr = 0, the unconditional variance Et(ε2t ) becomes constant. When r = 1 and k = 1, gt
increases (decreases) monotonically over time from δ0 to δ0 + δ1 when δ1 > 0(δ1 < 0),
with the location centred at t = c1T. The slope parameter γ1 in (3.8) controls the
degree of smoothness of the transition: the larger γ1, the faster the transition is
between the extreme regimes. When γ1 → ∞, gt collapses into a step function. For
small values of γ1, the transition between regimes is approximately linear around
c1. When δl 6= 0, for values r > 1 and k > 1, (3.7)−(3.8) form a very flexible
parameterization capable of describing nonmonotonic deterministic changes in the
unconditional variance.

3.2.2 Model specification

Since the nonlinear model in (3.5)−(3.8) is our most general parameterization, a
systematic modelling strategy is required when a TV-GARCH model is fitted to the
data. The strategy for building TV-GARCH models is based on statistical inference
and it consists of the specification, estimation and evaluation of the model. At the
specification stage, one first specifies the structure of gt and, once that has been done,
models the dynamics of the short-run component ht. In practice, the parametric
structure of the unconditional variance component has to be determined from the
data, which involves two sets of decision problems. First, the number of transitions r
in (3.7) has to be determined. Second, when r ≥ 1, the integer k for each transition
function has to be selected. This specification procedure is sequential and based on
statistical inference. We shall apply the procedure of Amado and Teräsvirta (2008)
for selecting r and k.

An important feature of the modelling strategy in this paper is that, since we
are modelling very long return series, we shall divide the observation period into a
number of subperiods. To introduce notation, let r be the total number of tran-
sitions in the whole period and ri, i = 1, . . . , N, be the number of transitions in
the subperiod i, so r =

∑N
i=1 ri. Define hit as the conditional variance and git =

1 +
∑ri

l=1 δilGil(t/T ; γl, cl), i = 1, . . . , N, for each subperiod.
The sequence of LM tests for specifying a TV-GARCH model is as follows:

1. Split the original time series into N non-overlapping subsamples. To facilitate
specification the splits should preferably be located in tranquil periods.

2. For each i = 1, . . . , N, specify git under the assumption that the conditional
variance is constant, i.e. hit ≡ ωi > 0. This is done as follows. First, test the
hypothesis of constant unconditional variance H01 : γi1 = 0 against H11 : γi1 > 0
in

git = ω−1
i {1 + δi1Gi1 (t/T ; γi1, ci1)} = ω−1

i + δ∗i1Gi1(t/T ; γi1, ci1) (3.9)
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where δ∗i1 = ω−1
i δi1, at the significance level α(1). Under the null hypothesis, the

function contains unidentified nuisance parameters δi1 and ci1. To circumvent
this identification problem we follow Luukkonen, Saikkonen, and Teräsvirta
(1988) and approximate Gi1(t/T ; γi1, ci1) by its third-order Taylor expansion
around γi1 = 0. After reparameterizing, we obtain

git = ω∗i +
3∑
j=1

φij(t/T )j +R3(t/T ; γi1, ci1) (3.10)

where φij = γi1δ̃
∗
ij , i = 1, . . . , N, and R3(t/T ; γi1, ci1) is the remainder. Further-

more, R3(t/T ; γi1, ci1) ≡ 0 under H01, so the remainder of the Taylor expansion
does not affect the asymptotic distribution theory. The null hypothesis of con-
stant unconditional variance becomes H

′

01 : φi1 = φi2 = φi3 = 0. Under H
′

01, the
standard LM statistic has an asymptotic χ2−distribution with three degrees of
freedom. See Amado and Teräsvirta (2008) for details on how to compute the
test statistic.

3. If H
′

01 is rejected, for each subperiod select the order k ≤ 3 in the exponent
of Gi1(t/T ; γi1, ci1) using a short sequence of tests within (3.10); for details
see Amado and Teräsvirta (2008). Next, estimate git with a single transition
function and test H02 : git = ω−1

i +δ∗i1Gi1(t/T ; γi1, ci1) against H12 : git = ω−1
i +∑2

l=1 δ
∗
ilGil(t/T ; γil, cil) at the significance level α(2) = τα(1), where τ ∈ (0, 1).

The significance level is reduced at each stage by a factor τ in order to favour
parsimony. In our application we set τ = 0.5. Test the hypothesis of no second
transition H02 : γi2 = 0 in

git = ω−1
i + δ∗i1Gi1(t/T ; γi1, ci1) + δ∗i2Gi2(t/T ; γi2, ci2) (3.11)

Again, model (3.11) is not identified under the null hypothesis. To circumvent
the problem we proceed as before and express the logistic functionGi2(t/T ; γi2, ci2)
by a third-order Taylor approximation around γi2 = 0. After rearranging terms
we have

git = ω∗i + δ∗i1Gi1(t/T ; γi1, ci1) +
3∑
j=1

ϕij(t/T )j +R∗3(t/T ; γi2, ci2) (3.12)

where ϕij = γi2δ̃
∗
ij , i = 1, . . . , N, and R∗3(t/T ; γi2, ci2) is the remainder. The

new null hypothesis based on this approximation is H
′

02 : ϕi1 = ϕi2 = ϕi3 = 0.
Again, this hypothesis can be tested using a LM test. If the null hypothesis is
rejected, specify k for the second transition and estimate git with two transition
functions.

4. More generally, when git has been estimated with ri−1 transition functions one
tests for another transition in git using the significance level α(ri) = τα(ri−1).
Testing continues until the first non-rejection of the null hypothesis.
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In summary, we begin the model specification problem by first modelling the un-
conditional variance assuming that the conditional variances remain constant. After
specifying and estimating gt, the hypothesis of no conditional heteroskedasticity is
tested in {ε∗t }. If the null hypothesis of no ARCH is rejected, the conditional variance
component ht is modelled as in (3.6) with p = q = 1. At the evaluation stage the
adequacy of the estimated model is tested by means of LM-type misspecification tests
(see Amado and Teräsvirta (2008) for further details).

3.3 Estimation of parameters

After the number of transitions and their type in (3.7) have been determined, the
parameters of the TV-GARCH model are estimated by quasi-maximum likelihood
(QML). For this purpose, let θ = (θ′1,θ

′
2)′ be the parameter vector of the model.

Let ht ≡ ht(θ1,θ2) and gt ≡ gt(θ2) where θ1 = (ω, α1, . . . , αq, κ1, . . . , κq, β1, . . . , βp)′

and θ2 = (δ′, γ1, . . . , γr, c′1, . . . , c
′
r)
′ with δ = (δ0, δ1, . . . , δr)′. The model defined in

(3.5)−(3.8) can be now rewritten as follows:

εt = ζt {ht (θ1,θ2) gt (θ2)}1/2 . (3.13)

Assuming that {ζt} is a sequence of independent standard normal variables, the log-
likelihood function for observation t equals

`t(θ) = −(1/2) ln 2π− (1/2){lnht(θ1,θ2)+ln gt(θ2)}− (1/2)
ε2t

ht(θ1,θ2)gt(θ2)
(3.14)

The unconditional and the conditional variance components are estimated separately
using maximization by parts. The iterative algorithm proceeds as follows:

Step 1: Maximize

LUT (θ2) =
T∑
t=1

`Ut (θ2) = −(1/2)
T∑
t=1

{ln gt(θ2) + ε̃2t/gt(θ2)}

with respect to θ2, assuming ε̃t = εt, that is, setting ht(θ1,θ2) ≡ 1. Let the

estimator of θ2 be θ̂
(1)

2 . Making use of θ̂
(1)

2 , maximize

LVT (θ1, θ̂
(1)

2 ) =
T∑
t=1

`Vt (θ1, θ̂
(1)

2 ) = −(1/2)
T∑
t=1

{
lnht(θ1, θ̂

(1)

2 ) + ε∗2t /ht(θ1, θ̂
(1)

2 )
}

with respect to θ1, where ε∗t = εt/{gt(θ̂
(1)

2 )}1/2. Denote the estimator as θ̂
(1)

2 .

Step 2: Maximize

LUT (θ2) =
T∑
t=1

`Ut (θ2) = −(1/2)
T∑
t=1

{ln gt(θ2) + ε̃2t/gt(θ2)}
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with respect to θ2, where ε̃t = εt/{ht(θ̂
(1)

1 , θ̂
(1)

2 )}1/2. Call this estimator θ̂
(2)

2

and maximize

LVT (θ1, θ̂
(2)

2 ) =
T∑
t=1

`Vt (θ1, θ̂
(2)

2 ) = −(1/2)
T∑
t=1

{
lnht(θ1, θ̂

(2)

2 ) + ε∗2t /ht(θ1, θ̂
(2)

2 )
}

with respect to θ1, where ε∗t = εt/{gt(θ̂
(2)

2 )}1/2. This yields θ̂
(2)

1 .

Iterate until convergence.

In the nth iteration, maximization is carried out in the usual way by solving the
score equations:

∂

∂θ2
LUT (θ2) = (1/2)

T∑
t=1

(
ε̃2t

gt(θ2)
− 1
)

1
gt(θ2)

∂gt(θ2)
∂θ2

= 0

for θ2 with ε̃t = εt/{ht(θ̂
(n−1)

1 , θ̂
(n−1)

2 )}1/2, and

∂

∂θ1
LVT (θ1) = (1/2)

T∑
t=1

(
ε∗2t

ht(θ1, θ̂
(n)

2 )
− 1

)
1

ht(θ1, θ̂
(n)

2 )

∂ht(θ1, θ̂
(n)

2 )
∂θ1

= 0

for θ1, where ε∗t = εt/{gt(θ̂
(n)

2 )}1/2. Letting Glt ≡ Gl(t/T ; γl, cl), l = 1, . . . , r, we have

∂gt(θ2)
∂θ2

= (1, G1t, G
(γ)
1t , G

(c)
1t , . . . , Grt, G

(γ)
rt , G

(c)
rt )′

where, for k = 1 in (3.8),

G
(γ)
lt =

∂Glt
∂γl

= δlGlt(1−Glt)(t/T − cl)

G
(c)
lt =

∂Glt
∂cl

= −γlδlGlt(1−Glt)

and for k > 1

G
(γ)
lt =

∂Glt
∂γl

= δlGlt(1−Glt)
∏k

j=1
(t/T − clj)

G
(c)
ilt =

∂Gilt
∂cl

= −γlδlGlt(1−Glt)
∏k

j=1,j 6=l
(t/T − clj)

where clj denotes the jth element in the parameter vector cl, l = 1, . . . , r, and

∂ht(θ1, θ̂
(n)

2 )
∂θ1

= (1, ε∗2t−1, . . . , ε
∗2
t−q, ε

∗2
t−1It−1(ε∗t−1 < 0), . . . , ε∗2t−qIt−q(ε

∗
t−q < 0),

ht−1(θ1, θ̂
(n)

2 ), . . . , ht−p(θ1, θ̂
(n)

2 ))′ +
p∑
j=1

βj
∂ht−j(θ1, θ̂

(n)

2 ))
∂θ1
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This algorithm is computationallly attractive for situations in which direct maxi-
mization of the log-likelihood function is difficult. Under certain regularity conditions,
the resulting estimator coincides with the ML estimator and becomes fully efficient
upon convergence; see Song, Fan, and Kalbfleisch (2005) for details. Throughout this
paper, we assume that certain regularity conditions are satisfied to ensure consistency
and asymptotic normality of the QML estimator. The asymptotic properties of the
estimators of the TV-GARCH model are not yet known. Extending the results to the
nonstationary TV-GARCH model is not straightforward and is beyond the scope of
this paper.

In this work, the long time series requires some modifications to the estimation
algorithm. Because the whole series is divided into non-overlapping subperiods, the
different data segments can have different “baseline” volatility levels. For this reason,
the algorithm iterates from an initial value which is estimated by “chain rule” to
accommodate differences in the volatility levels. This proceeds as follows. First, for
the first subperiod, estimate the parameters of g1t = δ0 +

∑r1
l=1 δ1lG1l(t/T ; γ1l, c1l)

where r1 is the number of transitions for this period. The estimate ĝ1t serves as the
“intercept” in the nonstationary component of the next subperiod. Conditioning on
this value, carry out the estimation of the parameters for the next subperiod. More
generally, for the ith subperiod, estimate git = δ̂

(i−1)
0 +

∑ri

l=1 δilGil(t/T ; γil, cil) by
conditioning on δ̂

(i−1)
0 , where δ̂

(i−1)
0 = δ̂0 +

∑ri−1
l=1 δ̂lGl(t/T ; γ̂l, ĉl) and ri−1 is the

number of transitions in the (i − 1)th subperiod. The estimates γ̂l and ĉl are then
used as fixed values in the next iterations. This means that the estimation algorithm
is carried out without iterating γ̂l and ĉl, and therefore the parameters δl, l = 0, . . . , r,
are estimated conditionally on those estimates.

Another aspect that deserves attention in the estimation of the model is the selec-
tion of starting-values of the time-varying parameters. Since the log-likelihood may
contain several local maxima, it is advisable to initiate the estimation from different
sets of starting-values before settling for the final parameter estimates. In addition,
to improve the accuracy of the estimates of the standard errors, we follow Fiorentini,
Calzolari, and Panattoni (1996) and use analytic first derivatives both in the esti-
mation of the TV-GARCH models and in the computation of the test statistics. All
computations in this paper have been carried out using Ox programming language,
version 3.40 (see Doornik (2002)).

3.4 Application to the Dow Jones Industrial Aver-
age index

3.4.1 Data description

In this section we illustrate the use of the modelling building procedure of the TV-
GARCH model to the daily returns of the Dow Jones Industrial Average (DJIA)
index. The entire sample covers the period between January 2, 1920 and December
31, 2003, yielding 21121 observations. The daily returns are defined as the log dif-
ferences of the closing prices of the index between two consecutive days. The closing
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Table 3.1 Summary statistics of the daily DJIA return series: full sample

Series Min Max Mean S.D. Skew Ex.Kr. Rob.Sk. Rob.Kr.

εt -25.63 14.27 0.022 1.136 -0.659 25.28 -0.006 0.227

εt/ĝ
1/2
t -17.71 6.680 0.018 0.660 -1.185 29.73 -0.006 0.145

Notes: The table contains summary statistics for the DJIA return series. The sample period
starts in January 2, 1920 and ends in December 31, 2003 (21121 observations).

prices of the DJIA index have been obtained from the Wharton Research Data Ser-
vices (WRDS) provided by the Wharton School of the University of Pennsylvania.
Descriptive statistics of the return series can be found in Table 3.1. The coefficients
of skewness and kurtosis seem to indicate that the stock returns εt have a left skewed
and a significantly fat-tailed distribution. To check this conclusion, we also provide
the robust measures of skewness and kurtosis as recommended by Kim and White
(2004) in order to account for outliers. The robust measure for skewness is practically
zero whereas the robust kurtosis measure suggests that there is indeed some excess
kurtosis in the series. Figure 3.1 graphs the daily returns for the DJIA index for the
observation period. The period covers the Great Depression of 1929 and the early
1930’s, the Second World War, the 1973 oil crisis, the stock market crash of October
1987 and the recent dot-com bubble. Because of the long observation period it is
unlikely that the series is stationary.

We divide the 83 years long series into six non-overlapping subperiods each com-
prising at least of 2500 observations. In most cases we report the findings for each
of the six periods and the full sample. Summary statistics of the subperiods can be
found in Table 3.9.

3.4.2 Estimation results

The focus of the empirical analysis lies in the specification of the unconditional vari-
ance using the modelling strategy described in Section 3.2.2. We begin by determining
the number of transitions for each subperiod separately. This is done using the se-
quence of specification tests. The initial significance level of the sequence of tests is
α(1) = 0.01. At each stage of the sequence we halve the significance level of the test,
i.e. τ = 0.5. The tests results are presented in the second column of Table 3.2.

We first test the hypothesis of constant unconditional variance against a smoothly
time-varying unconditional variance with one transition function. The null hypothesis
is rejected for all subperiods with the exception of the subperiod 5 covering the Oc-
tober 1987 crash. The stock market volatility returned to normal levels very quickly
after the crash, which suggests that the unconditional variance remained stable during
that period. These findings are consistent with the hypothesis of Engle and Lee (1999)
that the 1987 crash is more transient than other big shocks. The null hypothesis of
constant unconditional variance is, however, rejected very strongly for the subperiods
1, 2, 4 and 6. The first period contains the Great Depression, the second includes the
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Figure 3.1 The DJIA daily returns from January 2, 1920 until December 31, 2003.
The vertical lines represent the split dates.

Second World War, the fourth one the OPEC oil crisis and the most recent one the
IT bubble. The results indicate that the strongest deterministic changes in the un-
conditional variance are associated with the largest economic recessions in the period
under study.

The sequence of nested tests based on (3.10) to select k in (3.8) are given in the
last three columns of Table 3.2 (see Amado and Teräsvirta (2008) for details). The
strongest rejection is when k = 1 for all four periods. Note that, for the subperiod 1,
the tests H01 and H02 cannot discriminate between k = 1 and k = 2 as the p-values
are very close to each other. We choose k = 2 to minimize the number of transitions to
be specified. Misspecification tests to check the validity of this choice can be carried
out at the model evaluation stage.

We proceed to first estimate a TV-GARCH model with a single transition and
test against a double transition model at α(2) = 0.005. We reject the hypothesis in
three out of the five cases and select k = 1. Fitting the model with two transition
functions for the three subsamples and testing against another transition leads to a
rejection only for the fourth period. The p-value, however, is 0.0021 which is very
close to α(3) = 0.0025. Thus, we tentatively accept the model with two transitions as
the final parameterization for the first, second and fourth subperiods.

The above results imply that eight transition functions in total are needed to
describe the unconditional variance for the whole series. Estimation results for the
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Table 3.2 p-values of sequences of Lagrange multiplier tests for the six subperiods

Subperiods H0 H03 H02 H01

Subsample 1 (02/01/1920 − 31/12/1931)
Single transition 5× 10−44 7× 10−4 3× 10−22 3× 10−24

Double transition 2× 10−8 0.4773 0.0111 2× 10−8

Triple transition 0.2632 0.0574 0.7178 0.6213

Subsample 2 (04/01/1932 − 31/12/1943)
Single transition 5× 10−77 3× 10−19 3× 10−20 2× 10−46

Double transition 2× 10−6 0.0017 0.0242 1× 10−4

Triple transition 0.2818 0.1547 0.3484 0.3388

Subsample 3 (04/01/1944 − 29/12/1961)
Single transition 0.0079 0.0712 0.9654 0.0034
Double transition 0.0792 0.2789 0.2364 0.0402
Triple transition − − − −

Subsample 4 (01/01/1962 − 16/11/1982)
Single transition 1× 10−17 2× 10−4 0.3328 3× 10−16

Double transition 4× 10−5 9× 10−4 0.8199 6× 10−4

Triple transition 0.0021 0.1889 0.0006 0.2988

Subsample 5 (17/11/1982 − 31/12/1993)
Single transition 0.1018 0.8983 0.0173 0.4688
Double transition − − − −

Subsample 6 (03/01/1994 − 31/12/2003)
Single transition 3× 10−18 0.0012 0.0017 8× 10−16

Double transition 0.0315 0.0361 0.0694 0.2817
Triple transition − − − −

Notes: The entries are the p-values of the LM-type tests of constant unconditional variance against a
time-varying GARCH model for each subperiod of the DJIA stock index returns. The test sequence
starts at the significance level α = 0.01 and setting τ = 0.5. The order k in (3.8) is chosen from the
sequence of nested tests based on (3.10). If H 0i is rejected most strongly, measured by the p-value,
of the three hypotheses, one selects k = i. See Amado and Teräsvirta (2008) for further details.
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Table 3.3 Estimation results for the DJIA returns: full sample
Panel (a): parameter estimates of the TV-GJR-GARCH(1,1) model

ht = 0.0285
(0.0052)

+ 0.0236
(0.00386)

ε∗2t−1 + 0.9011
(0.0136)

ht−1 + 0.0913
(0.0166)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −19112.1 α̂1 + β̂1 + κ̂1/2 = 0.9704

gt = 0.82506
(0.0276)

+ 1.1680
(0.1382)

(1 + exp{−52.81
(−)

(t/T − 0.0119
(−)

)(t/T − 0.1047
(−)

)})−1

+6.3472
(0.3886)

(1 + exp{−100
(−)

(t/T − 0.1154
(−)

)})−1

− 6.4953
(0.37118)

(1 + exp{−96.65
(−)

(t/T − 0.1643
(−)

)})−1

−1.2475
(0.0657)

(1 + exp{−70.03
(−)

(t/T − 0.2454
(−)

)})−1

−0.1522
(0.0188)

(1 + exp{−100
(−)

(t/T − 0.3697
(−)

)})−1

+1.7541
(0.1486)

(1 + exp{−67.17
(−)

(t/T − 0.6355
(−)

)})−1

−1.2656
(0.1495)

(1 + exp{−100
(−)

(t/T − 0.6544
(−)

)})−1

+0.6952
(0.0599)

(1 + exp{−100
(−)

(t/T − 0.9216
(−)

)})−1

Panel (b): parameter estimates of the GJR-GARCH(1,1) model

ht = 0.0116
(0.0021)

+ 0.0304
(0.0039)

ε∗2t−1 + 0.9208
(0.0085)

ht−1 + 0.0784
(0.0123)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −27468.5 α̂1 + β̂1 + κ̂1/2 = 0.9903

TV-GARCH model are reported in Table 3.3, Panel (a). The estimation results for
each of the subperiods can be found in Table 3.10 in Appendix B.

The estimation is carried out with the sequential quadratic programming opti-
misation algorithm using analytical derivatives. The numbers in parenthesis below
the parameter estimates are the asymptotic standard error estimates and calculated
using numerical second derivatives. The standard errors of γi and ci, i = 1, . . . , 8,
are not available because the parameters δj , j = 0, . . . , 8, are estimated conditionally
on those parameters. In some subperiods we observe that the transition between the
extreme regimes of volatility is quite rapid. For these cases, the maximum value of γj
is constrained to 100 to avoid convergence problems. This approximation is adequate
because the shape of the transition function does not change much beyond values of
γj larger or equal than 100.

For an idea how the unconditional variance changes over time, the estimated
component g1/2

t is plotted in Figure 3.2 (upper panel). The estimated gt functions
for each subperiod are also shown in Figure 3.8 (Appendix A). It is seen that the
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Figure 3.2 First panel, shows the estimated function g
1/2
t (black curve) and

the conditional standard deviation from the GJR-GARCH(1,1) model (grey curve).
Second panel, shows the estimated conditional standard deviations from the GJR-
GARCH(1,1) model (grey curve) and from the TV-GJR-GARCH(1,1) (black curve)
models.

largest deterministic changes in the unconditional variance occur during the periods
of recession in the economy. In particular, the strongest movement in the long-run
volatility is observed during the Great Depression. This is in agreement with Mikosch
and Stărică (2004) who find that most of the recessions coincide with an increase in
the unconditional variance of the series. In their analysis of the S&P 500 returns,
they identify the 1973 oil crisis as the major change detected in the unconditional
variance, but then they study a time series only covering the period from January 2,
1953, until December 31, 1990.

For comparison, we also report the results of fitting the GJR-GARCH(1,1) model
into the complete series. They can be found in Panel (b) of Table 3.3. The results
for each subperiod appear in Table 3.11 (Appendix B). We find that the subperiods
characterized by the largest changes in the unconditional variance have a stronger
integrated GJR-GARCH effect. The stationary condition for the full sample model
is α̂1 + β̂1 + κ̂1/2 < 1. This model is practically an integrated GJR-GARCH model
as the persistence indicator α̂1 + β̂1 + κ̂1/2 = 0.9903. The autocorrelation functions
of |εt| plotted in Figure 3.3 (upper panel) lead to the same conclusion. The graph
clearly displays the long-memory property: relatively rapid decay at short lags fol-
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Figure 3.3 First panel, shows the sample autocorrelation functions of the absolute
values of the DJIA daily returns. Second panel, shows the sample autocorrelation
functions of the standardized variable |εt| /ĝ1/2

t . The horizontal lines are the corre-
sponding 95% confidence interval under the iid normality assumption.

lowed by positive autocorrelations around a stable level at long lags. On the contrary,
the autocorrelations of |εt| /ĝ1/2

t , plotted in the lower panel of Figure 3.3, decay very
quickly with the lag length and only the first 70 autocorrelation estimates or so are
significantly different from zero judging from the 95% confidence bounds drawn under
the assumption that the errors are normal and independent. The decay rate looks
more or less exponential, and the persistence indicator now equals 0.97. The results
show that modelling the changes in the unconditional variance strongly reduces the
amount of evidence for long-memory. This can also be seen from the Geweke and
Porter-Hudak (1983) (GPH) estimates of the long-memory parameter in Table 3.4.
Of course, the GPH parameter estimates are different for different bandwidths but,
overall, the table indicates that the daily DJIA return series is either nonstationary
(for the bandwidth choices m = T 0.4 and m = T 0.5) or is very close to the nonsta-
tionary region (for m = T 0.6). However, when the movements in the unconditional
variance component are taken into account the GPH estimates have the remarkable
low values of 0.1198, 0.2340 and 0.3050 for these three bandwidths.

A similar conclusion can be reached by looking at the estimated conditional at
the estimated conditional standard deviations from the GJR-GARCH(1,1) model of
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Table 3.4 GPH estimates of the long-memory parameter: full sample

dGPH(m = T 0.4) dGPH(m = T 0.5) dGPH(m = T 0.6)

εt 0.7364
(0.0614)

0.5470
(0.0511)

0.4588
(0.0322)

εt/ĝ
1/2
t 0.1198

(0.1035)
0.2340
(0.0576)

0.3050
(0.0333)

Notes: The numbers in parentheses are the standard errors. The bandwidth
m equals Tα, α ∈ {0.4, 0.5, 0.6} where T is the number of observations.

Table 3.5 Diagnostic tests: p-values of the test of no ARCH in GARCH

Lag order

Model 1 2 3 4 5

GJR-GARCH(1,1) 0.197 0.266 0.448 0.612 0.718
TV-GJR-GARCH(1,1) 0.366 0.360 0.561 0.717 0.835

εt and εt/ĝ
1/2
t . The lower panel of Figure 3.2 displays both series. The (almost)

stationary behaviour of the conditional standard deviation of εt/ĝ
1/2
t (black curve)

contrasts with the nonstationary behaviour of the conditional standard deviation of εt
(grey line). It shows that the conditional variance of εt/ĝ

1/2
t is considerably smaller

than that of εt from the GJR-GARCH(1,1) model. For illustration, we also show
in Figure 3.9 (Appendix A) the estimated conditional standard deviations generated
from both models separately for each subperiod.

The adequacy of the estimated TV-GJR-GARCH(1,1) model is checked using the
diagnostic tests proposed by Amado and Teräsvirta (2008). We perform tests against
remaining ARCH in the standardized residuals, additional transitions in gt, TV-GJR-
GARCH(1,2) and TV-GJR-GARCH(2,1) models, and ST-GJR-GARCH(1,1) model
of order 1. The p-values of the tests are given in Tables 3.5-3.7. For comparison we also
show the test results for the estimated GJR-GARCH(1,1) model. The results indicate
no evidence of remaining ARCH in the standardized residuals, nor can argue in favour
of additional transitions in gt; see Tables 3.5 and 3.6. However, the tests against
TV-GJR-GARCH(1,2) and TV-GJR-GARCH(2,1) reject the null hypothesis at the
5% significance level; see Table 3.7. Moreover, the TV-GJR-GARCH(1,1) model is
strongly rejected against ST-GJR-GARCH(1,1) model. The results suggests that the
TV-GJR-GARCH(1,1) model is an inadequate parameterization, and a higher lag
in the GJR-GARCH component or a nonlinear GARCH model should be employed.
Modelling the short-run dynamics of volatility over a long time series does need more
work. But then, the focus of this paper is on the modelling of changes in the long-run
volatility component and refinements in the modelling of ht are left for further work.
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Table 3.6 Diagnostic tests: p-values of tests of no additional transition in gt

Model LM1 LM2 LM3

GJR-GARCH(1,1) 0.905 4× 10−5 1× 10−4

TV-GJR-GARCH(1,1) 0.092 0.186 0.321

Table 3.7 Diagnostic tests: p-values of tests against models of higher orders and
against a nonlinear structure

Alternative model
Model GJR(1,2) GJR(2,1) ST-GJR (K = 1)

GJR-GARCH(1,1) 0.0094 0.006 1× 10−6

TV-GJR-GARCH(1,1) 0.0086 0.036 3× 10−4

3.5 Monte Carlo experiment

In this section, we further investigate the effects of ignoring deterministic changes
in the unconditional variance on the estimation of two GARCH-type models. This
is done by conducting a small Monte-Carlo experiment. The purpose of the ex-
periment is to illustrate how such shifts may bias the GARCH parameters and the
persistence indicator. We generate data from two models. The first model is a TV-
GARCH(1,1) model, whereas the second one is a TV-GJR-GARCH(1,1) model. The
data-generating process is defined as follows:

εt = ζth
1/2
t g

1/2
t , εt|Ft−1 ∼ N(0, htgt) (3.15)

ht = ω + α1ε
2
t−1 + κ1ε

2
t−1It−1(εt−1 < 0) + β1ht−1 (3.16)

gt = 1 + δ1(1 + exp{−γ1(t/T − c1)})−1 (3.17)

with ω = 0.05, α1 = {0.1, 0.05}, κ1 = {0, 0.05}, β1 = 0.8, δ1 = {0.05, 0.10}, and
c1 = 0.5 in each experiment. The simulations differ according to the pair {α1, κ1}
and to the values of the slope parameter γ1 which varies in the interval γ1 = {10, 50}.
The first 1000 observations of each generated series have been discarded to avoid
initialization effects. For each experiment, the number of replications equals 2000
with a sample size of 5000 observations.

Figure 3.4 contains the estimated density of the estimated GARCH parameters
and the persistence measured by the sum α̂1 + β̂1 when the true model is (3.15)-(3.17)
with {α1, κ1} = {0.1, 0} and γ1 = 10. The figure shows that the probability mass of the
empirical distribution of the parameter ω is shifted to the left and is very close to zero
and that the empirical distribution of the parameter β1 is shifted to the right when
δ1 = 0.05. These results are even more striking for a large change in the unconditional
variance, i.e. for δ1 = 0.1. The empirical distribution of the persistence of volatility
shocks measured by α̂1 + β̂1 is very close to 0.95 when small changes occur in the
unconditional variance. Of course, the probability of α̂1 + β̂1 being very close to one
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increases with the size of the deterministic change. For changes in the unconditional
variance well approximated by a step function, the bias in measuring the persistence
of volatility shocks is particularly severe. The plots of the estimated densities for
γ1 = 50 can be found in Figure 3.5. These findings are in agreement with the well
documented results in the GARCH literature that shifts in the unconditional variance
lead to an upward bias in the persistence of volatility shocks (see e.g. Lamoureux and
Lastrapes (1990)).
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Figure 3.4 Estimated densities of the estimated GARCH(1,1) parameters when
the DGP is a TV-GARCH(1,1) model with a single transition. The observations are
generated by the process εt = ζth

1/2
t g

1/2
t where ht = 0.05 + 0.1ε2t−1 + 0.8ht−1 and

gt = 1 + δ1(1 + exp{−10(t/T − 0.5)})−1. The results are based on 2000 replications
with 5000 observations.

In the second design, data generated from a TV-GJR-GARCH(1,1) model for
{α1, κ1} = {0.05, 0.05} is fitted to a GJR-GARCH(1,1) model. The results are pre-
sented in Figures 3.6-3.7. The findings in the asymmetric model are very similar to the
symmetric case. The empirical distributions of the parameters ω and κ1 are shifted to
the left and that the empirical distributions of the parameters α1 and β1 are shifted
to the right due to changes in the unconditional variance. Again, the probability of
finding the persistence indicator α̂1 + κ̂1/2 + β̂1 very close to one is very large. This
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Figure 3.5 Estimated densities of the estimated GARCH(1,1) parameters when
the DGP is a TV-GARCH(1,1) model with a single transition. The observations are
generated by the process εt = ζth

1/2
t g

1/2
t where ht = 0.05 + 0.1ε2t−1 + 0.8ht−1 and

gt = 1 + δ1(1 + exp{−50(t/T − 0.5)})−1. The results are based on 2000 replications
with 5000 observations.

effect is more remarkable when the changes in the unconditional variance are abrupt.
Moreover, the simulations agree with the results obtained in the application.

It may be of interest to investigate the behaviour of the LM-type tests involved in
the modelling strategy when the data has been generated by a long-memory process.
For this purpose, we study the empirical power properties of the test statistic using
as data-generating process the FIGARCH model of Baillie, Bollerslev, and Mikkelsen
(1996). In particular, the artificial series is generated according to a FIGARCH(1,d,1)
model as follows:

εt = ζth
1/2
t , εt|Ft−1 ∼ N(0, ht)

[1− βL]ht = ω + [1− βL− φL(1− L)d]ε2t

where ω = 0.05, φ = 0.5 and β = 0.7. We use sample sizes of 1000, 2500 and 5000
observations with 2000 replications. The actual rejection frequencies of the test at
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Figure 3.6 Estimated densities of the estimated GJR-GARCH(1,1) parameters when
the DGP is a TV-GJR-GARCH(1,1) model with a single transition. The observa-
tions are generated by the process εt = ζth

1/2
t g

1/2
t where ht = 0.05 + 0.05ε2t−1 +

0.1ε2t−1It−1(εt−1 < 0) + 0.8ht−1 and gt = 1 + δ1(1 + exp{−10(t/T − 0.5)})−1. The
results are based on 2000 replications with 5000 observations.

1% and 5% critical values are reported in Table 3.8. Since we focus on the power
results when the long-memory parameter d is located in the nonstationary region we
use d = 0.5, 0.6, 0.7 and 0.8. The power of the tests is moderate for the LM1−type
test for the sample size of 2500 observations. The LM3−type test is, however, more
powerful than the LM1−test and it has better power properties for the larger sample
size. Interestingly, the power is higher at low values of the long memory parameter d
it is at higher values of this parameter.

3.6 Conclusions

In this paper we develop a testing and modelling procedure for describing the long-
term movements in stock market returns over very long time periods. This is done
by multiplicatively decomposing the variance of a GARCH model into a conditional
and an unconditional component, in which the unconditional variance is allowed to
change smoothly over time. The proposed model is the Time-Varying GARCH model
as in Amado and Teräsvirta (2008). The model building strategy relies on statistical
inference, making use of a sequence of Lagrange-multiplier type specification tests.
Because of the length of the observation period, the time series is divided into non-
overlapping subperiods with the aim of alleviating the model building procedure. One
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Figure 3.7 Estimated densities of the estimated GJR-GARCH(1,1) parameters when
the DGP is a TV-GJR-GARCH(1,1) model with a single transition. The observa-
tions are generated by the process εt = ζth

1/2
t g

1/2
t where ht = 0.05 + 0.05ε2t−1 +

0.1ε2t−1It−1(εt−1 < 0) + 0.8ht−1 and gt = 1 + δ1(1 + exp{−50(t/T − 0.5)})−1. The
results are based on 2000 replications with 5000 observations.

Table 3.8 Actual rejection frequencies of the standard LM test of constant uncon-
ditional variance

d = 0.5 d = 0.6 d = 0.7 d = 0.8
α LM1 LM3 LM1 LM3 LM1 LM3 LM1 LM3

T = 1000 1% 18.20 27.80 19.55 29.75 18.70 28.90 14.80 23.80
5% 33.15 48.35 33.85 50.45 31.90 48.85 27.30 41.95

T = 2500 1% 29.85 49.20 29.60 49.80 25.95 45.40 19.20 35.15
5% 45.25 67.55 44.75 68.40 38.30 62.10 30.40 53.50

T = 5000 1% 37.65 66.30 35.50 64.85 28.95 54.05 20.50 38.00
5% 50.95 78.80 48.15 76.25 42.45 69.65 32.65 56.00

Notes: Monte Carlo results in percentage of the non-robust LM parameter constancy test
based on 2000 replications. The artificial series is generated according to a FIGARCH(1,d,1)
model yt = εt, εt|Ft−1 ∼ N(0, ht) and [1 − βL]ht = ω + [1 − βL − φL(1 − L)d]ε2t . Results
are shown for the LM test at the 1%, 5% and 10% nominal significance levels. The columns
‘LM1’ and ‘LM3’ correspond to the test procedure based on the first-order and third-order
Taylor expansions, respectively.
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advantage of this device is that it provides a modelling framework particularly useful
in applications involving very long time series.

An empirical example applied to the long daily DJIA return series shows how
the technique works in practice. Our results show that the dependence structure of
the series is best explained by deterministic changes in the unconditional variance,
and consequently the hypothesis of constant unconditional variance turns out to be
inappropriate. We also show empirically and with a small Monte Carlo experiment
how unmodelled deterministic changes in the unconditional variance reproduce the
long-memory property in the variance. Based on the diagnostic tests, we claim that
the nonstationary TV-GARCH model should be preferred to the stationary model in
applications using long financial data.

Moreover, the results indicate that the first-order GJR-GARCH model is inad-
equate to describe the short-run dynamics of volatility over long return series, and
another type of nonlinear model should be considered. Further improvements in the
modelling of the conditional variance over long time series are needed, but this prob-
lem is left for further research.
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Figure 3.8 Estimated gt functions for the five subperiods.
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Figure 3.9 Conditional standard deviations of the GJR-GARCH(1,1) and the TV-
GJR-GARCH(1,1) model for the five subperiods.
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Table 3.9 Summary statistics of the subperiod return series
Periods Min Max Mean S.D. Skew Ex.Kr. Rob.Sk. Rob.Kr.

Subsample 1 (02/01/1920 − 31/12/1931): T=3004

εt -14.47 13.86 -0.011 1.486 -0.402 13.97 -0.073 0.173

εt/ĝ
1/2
t -5.669 4.704 0.017 0.876 -0.435 2.899 -0.030 0.118

Subsample 2 (04/01/1932 − 31/12/1943): T=2995

εt -8.778 14.27 0.019 1.652 0.198 7.178 -0.015 0.389

εt/ĝ
1/2
t -4.785 5.824 0.011 0.860 -0.173 3.684 0.008 0.266

Subsample 3 (04/01/1944 − 29/12/1961): T=4511

εt -6.766 4.048 0.037 0.702 -0.869 6.378 0.008 0.145

εt/ĝ
1/2
t -6.766 4.048 0.036 0.660 -0.818 6.054 0.013 0.143

Subsample 4 (01/01/1962 − 16/11/1982): T=5241

εt -5.882 4.952 0.006 0.844 0.251 2.908 -0.015 0.123

εt/ĝ
1/2
t -5.878 4.576 0.005 0.656 0.185 3.822 -0.002 0.068

Subsample 5 (17/11/1982 − 31/12/1993): T=2813

εt -25.63 9.666 0.047 1.087 -4.768 115.57 -0.020 0.187
Subsample 6 (03/01/1994 − 31/12/2003): T=2557

εt -7.455 6.155 0.040 1.111 -0.261 4.131 0.030 0.232

εt/ĝ
1/2
t -5.655 4.262 0.033 0.814 -0.287 3.653 0.040 0.148

Notes: The table contains summary statistics for each of the subperiod series. The sample periods
are indicated in parentheses. The statistic ‘S.D.’ is the standard deviation, ‘Skew’ is the coefficient
of skewness and the statistic ‘Ex.Kr’ is the value of the excess kurtosis. ‘Rob.Sk.’ denotes the
robust measure for skewness and ‘Rob.Kr.’ denotes the robust centred coefficient for kurtosis.
‘Rob.Sk.’ is computed as SK = (Q3 +Q1 − 2Q2)/(Q3 −Q1) where Qi is the i th quartile of the
returns and ‘Rob.Kr.’ is computed as KR = (E7 − E5 + E3 − E1)/(E6 − E2)− 1.23 where Ei is
the i th octile (see Kim and White (2004) for details).
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Table 3.10 Estimation results of the TV-GJR-GARCH(1,1) model: subperiods

Subsample 1

ht = 0.0668
(0.0223)

+ 0.0032
(0.0132)

ε∗2t−1 + 0.8244
(0.0405)

ht−1 + 0.1575
(0.0383)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −3677.8 α̂1 + β̂1 + κ̂1/2 = 0.9063

gt = 0.3738
(0.0128)

+ 0.4779
(0.0627)

(1 + exp{−24.379
(8.3423)

(t∗ − 0.0856
(0.0036)

)(t∗ − 0.7228
(0.0118)

)})−1

+2.3966
(0.2051)

(1 + exp{−100
(−)

(t∗ − 0.8109
(0.0023)

)})−1

Subsample 2

ht = 0.0205
(0.0065)

+ 0.0338
(0.0098)

ε∗2t−1 + 0.8876
(0.0220)

ht−1 + 0.1041
(0.0277)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −3524.3 α̂1 + β̂1 + κ̂1/2 = 0.9735

gt = 1.1331
(0.0585)

− 0.7717
(0.0599)

(1 + exp{−100
(−)

(t∗ − 0.2128
(0.0031)

)})−1

−0.2130
(0.0152)

(1 + exp{−100
(−)

(t∗ − 0.7395
(0.0020)

)})−1

Subsample 3

ht = 0.0423
(0.0255)

+ 0.0007
(0.0109)

ε∗2t−1 + 0.8331
(0.0793)

ht−1 + 0.1348
(0.05278)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −4298.5 α̂1 + β̂1 + κ̂1/2 = 0.9012

gt = 1− 0.2369
(0.0207)

(1 + exp{−100
(−)

(t∗ − 0.3937
(0.0039)

)})−1

Subsample 4

ht = 0.0076
(0.0016)

+ 0.0203
(0.0056)

ε∗2t−1 + 0.9191
(0.0094)

ht−1 + 0.0884
(0.0116)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −4769.2 α̂1 + β̂1 + κ̂1/2 = 0.9836

gt = 1 + 2.4727
(0.2498)

(1 + exp{−14.373
(4.9947)

(t∗ − 0.5568
(0.0059)

)})−1

−1.4488
(0.2590)

(1 + exp{−100
(−)

(t∗ − 0.6775
(0.0040)

)})−1

Subsample 6

ht = 0.0197
(0.0065)

+ 0.9026
(0.0225)

ht−1 + 0.1400
(0.0341)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −2883.1 α̂1 + β̂1 + κ̂1/2 = 0.9726

gt = 1 + 1.0949
(0.0741)

(1 + exp{−8.3780
(9.5905)

(t∗ − 0.2967
(0.0128)

)})−1

Notes: The table contains the parameter estimates from the TV-GJR(1,1) model for
each of the subperiods of the DJIA daily returns from January 2, 1920 until December
31, 2003. The estimated model has the form of the equations (3.5)-(3.8). The numbers
in parentheses are the standard errors.
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Table 3.11 Estimation results of the GJR-GARCH(1,1) model: subperiods

Subsample 1

ht = 0.0467
(0.0110)

+ 0.0230
(0.0093)

ε∗2t−1 + 0.8752
(0.0176)

ht−1 + 0.1399
(0.0255)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −4675.49 α̂1 + β̂1 + κ̂1/2 = 0.9680

Subsample 2

ht = 0.0168
(0.0063)

+ 0.0349
(0.0111)

ε∗2t−1 + 0.9126
(0.0192)

ht−1 + 0.0930
(0.0260)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −4911.1 α̂1 + β̂1 + κ̂1/2 = 0.9940

Subsample 3

ht = 0.0332
(0.0274)

+ 0.0015
(0.0105)

ε∗2t−1 + 0.8732
(0.0881)

ht−1 + 0.1111
(0.0642)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −4542.8 α̂1 + β̂1 + κ̂1/2 = 0.9302

Subsample 4

ht = 0.0045
(0.0012)

+ 0.0252
(0.0055)

ε∗2t−1 + 0.9310
(0.0077)

ht−1 + 0.0814
(0.0110)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −5908.2 α̂1 + β̂1 + κ̂1/2 = 0.9969

Subsample 5

ht = 0.0359
(0.0313)

+ 0.0279
(0.0136)

ε∗2t−1 + 0.8932
(0.0633)

ht−1 + 0.0941
(0.0799)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −3736.4 α̂1 + β̂1 + κ̂1/2 = 0.9681

Subsample 6

ht = 0.0189
(0.0062)

+ 0.0059
(0.0095)

ε∗2t−1 + 0.9169
(0.0177)

ht−1 + 0.1299
(0.0313)

It−1(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −3587.5 α̂1 + β̂1 + κ̂1/2 = 0.9878

Notes: The table contains the parameter estimates from the GJR(1,1) model for each
of the subperiods of the DJIA daily returns from January 2, 1920 until December
31, 2003. The estimated model has the form hit = ωi + αi1ε

2
it−1 + βi1hit−1 +

κi1Iit−1(εit−1)ε2it−1, where Iit(εit) = 1 if εit < 0 (and 0 otherwise) for all i. The
numbers in parentheses are the Bollerslev-Wooldridge robust standard errors.
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Table 3.12 GPH estimates of the long-memory parameter

dGPH(m = T 0.4) dGPH(m = T 0.5) dGPH(m = T 0.6)

Periods εt εt/ĝ
1/2
t εt εt/ĝ

1/2
t εt εt/ĝ

1/2
t

Subsample 1 0.3688
(0.1434)

−0.171
(0.1214)

0.4237
(0.0866)

0.1059
(0.0837)

0.4050
(0.0539)

0.2001
(0.04865)

Subsample 2 0.7285
(0.1199)

0.2173
(0.1918)

0.6442
(0.0889)

0.2924
(0.1035)

0.5240
(0.0651)

0.3725
(0.0683)

Subsample 3 0.2958
(0.1618)

0.2454
(0.1493)

0.3134
(0.0885)

0.2892
(0.0836)

0.2898
(0.0466)

0.2802
(0.0454)

Subsample 4 0.4457
(0.1330)

0.2228
(0.1179)

0.4728
(0.0893)

0.3198
(0.0773)

0.4873
(0.0605)

0.4333
(0.0520)

Subsample 5 0.2996
(0.0974)

0.2996
(0.0974)

0.4420
(0.0819)

0.4420
(0.0819)

0.2902
(0.0446)

0.2902
(0.0446)

Subsample 6 0.4776
(0.1543)

0.3804
(0.1820)

0.4250
(0.0924)

0.3552
(0.0968)

0.4015
(0.0551)

0.3515
(0.0572)

Notes: The numbers in parentheses are the standard errors. The bandwidth m
equals Tα, α ∈ {0.4, 0.5, 0.6} where T is the number of observations.
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Conditional Correlation Models of Autoregressive

Conditional Heteroskedasticity with Nonstationary

GARCH Equations 1

Abstract

In this paper we investigate the effects of careful modelling the long-run dynamics
of the volatilities of stock market returns on the conditional correlation structure.
To this end we allow the individual unconditional variances in Conditional Correla-
tion GARCH models to change smoothly over time by incorporating a nonstationary
component in the variance equations. The modelling technique to determine the
parametric structure of this time-varying component is based on a sequence of speci-
fication Lagrange multiplier-type tests derived in Amado and Teräsvirta (2008). The
variance equations combine the long-run and the short-run dynamic behaviour of the
volatilities. The structure of the conditional correlation matrix is assumed to be ei-
ther time independent or to vary over time. We apply our model to pairs of seven
daily stock returns belonging to the S&P 500 composite index and traded at the New
York Stock Exchange. The results suggest that accounting for deterministic changes
in the unconditional variances considerably improves the fit of the multivariate Con-
ditional Correlation GARCH models to the data. The effect of careful specification of
the variance equations on the estimated correlations is variable: in some cases rather
small, in others more discernible.

1This paper is a joint work with Timo Teräsvirta.
Acknowledgements: The first author would like to acknowledge financial support from the

Louis Fraenckels Stipendiefond. Part of this research was done while the first author was visiting
CREATES, University of Aarhus, whose kind hospitality is gratefully acknowledged. The Center
for Research in Econometric Analysis of Time Series, CREATES, is funded by the Danish National
Research Foundation. The responsibility for any errors and shortcomings in this paper remains ours.
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4.1 Introduction

Many financial issues, such as hedging and risk management, portfolio selection and
asset allocation rely on information about the covariances or correlations between the
underlying returns. This has motivated the modelling of volatility using multivariate
financial time series rather than modelling individual returns separately. A number
of multivariate generalized autoregressive conditional heteroskedasticity (GARCH)
models have been proposed, and some of them have become standard tools for financial
analysts. For recent surveys of Multivariate GARCH models see Bauwens, Laurent,
and Rombouts (2006) and Silvennoinen and Teräsvirta (2008).

In the univariate setting, volatility models have been extensively investigated.
Many modelling proposals of univariate financial returns have suggested that non-
stationarities in return series may cause the extreme persistence of shocks observed
through estimated GARCH models. In particular, Mikosch and Stărică (2004) found
that the long-range dependence and the ‘integrated GARCH effect’ can also be ex-
plained by unaccounted structural breaks in the unconditional variance. Previously,
Diebold (1986) and Lamoureux and Lastrapes (1990) have also argued that spurious
long memory may be detected from a time series with structural breaks.

The problem of structural breaks in the conditional variance can be tackled by
introducing nonstationarity in the volatility equations. In the univariate context,
Dahlhaus and Subba Rao (2006) proposed a locally time-varying ARCH process
for modelling nonstationary. Engle and Gonzalo Rangel (2008) and, independently,
Amado and Teräsvirta (2008) proposed an approach in which the volatility is mod-
elled by a multiplicative decomposition of both conditional and unconditional vari-
ance. More specifically, the unconditional variance component is modelled by a slowly
varying function: Engle and Gonzalo Rangel (2008) used an exponential spline for this
purpose. As an alternative, Amado and Teräsvirta (2008) described the nonstationary
component of volatility by a linear combination of logistic transition functions. The
authors proposed a modelling technique for determining the parametric structure of
the time-varying component from the data.

Despite the growing literature on multivariate GARCH models, little attention
has been devoted to modelling multivariate financial data by explicitly allowing for
nonstationarity. Recently, Hafner and Linton (2008) proposed a semiparametric gen-
eralization of the scalar multiplicative model of Engle and Gonzalo Rangel (2008).
Their multivariate GARCH model is a first-order BEKK model with a deterministic
nonstationary component. The authors suggested an estimation procedure for the
parametric and nonparametric components and established semiparametric efficiency
of their estimators.

In this paper, we propose a parametric extension of the univariate multiplicative
GARCH model of Amado and Teräsvirta (2008) to the multivariate case. We investi-
gate the effects of careful modelling of the time-varying unconditional variance on the
correlation structure in Conditional Correlation GARCH (CC-GARCH) models. To
this end, we allow the individual unconditional variances in the multivariate GARCH
models to change smoothly over time by incorporating a nonstationary component
in the variance equations. The empirical analysis consists of fitting bivariate con-
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ditional correlation GARCH models to pairs of daily return series and comparing
the results from models with the time-varying unconditional variance component to
models without such a component. As a by-product, we extend the concept of news
impact surfaces of Kroner and Ng (1998) to the case where both the variances and
conditional correlations are fluctuating over time. These surfaces illustrate how the
impact of news to covariances between asset returns depends both on the state of the
market and the time-varying dependence between the returns.

This paper is organized as follows. In Section 4.2 we describe the Conditional
Correlation GARCH model in which the individual unconditional variances change
smoothly over time. Estimation of parameters of these models is discussed in Section
4.3. Details regarding the modelling strategy are considered in Section 4.4. Section
4.5 contains the empirical results of fitting bivariate CC-GARCH models to 21 pairs of
seven daily stock return series belonging to the S&P 500 composite index. Conclusions
can be found in Section 4.6.

4.2 The model

4.2.1 The general framework

Consider a N × 1 vector of return time series {yt}, t = 1, . . . , T, described by the
following vector process:

yt = E(yt|Ft−1) + εt (4.1)

where Ft−1 is the sigma-algebra generated by the available information up until t−1.
For simplicity, we assume that the conditional expectation of the returns E(yt|Ft−1) =
0. The N−dimensional vector of innovations (or returns) {εt} is defined as

εt = Σ1/2
t ζt (4.2)

where the conditional covariance matrix Σt = [σijt] of εt, given the information
set Ft−1, is a positive-definite N × N matrix. The error vectors ζt form a se-
quence of independent and identically distributed variables with mean zero and a
positive definite correlation matrix Pt. Furthermore, the vector of standardized er-
rors P−1/2

t ζt ∼ iid(0, IN ). Under these assumptions, the error vector εt satisfies the
following moments conditions:

E(εt|Ft−1) = 0

E(εtε′t|Ft−1) = Σt = DtPtD′t (4.3)

where Dt is a diagonal matrix of standard deviations. It is now assumed that Dt con-
sists of a conditionally heteroskedastic component and a deterministic time-dependent
one such that

Dt = StGt (4.4)

where St = diag(h1/2
1t , . . . , h

1/2
Nt ) contains the conditional standard deviations h1/2

it , i =
1, . . . , N, and Gt = diag(g1/2

1t , . . . , g
1/2
Nt ). The elements git, i = 1, . . . , N, are positive-

valued deterministic functions of time, whose structure will be defined in a moment.
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Equations (4.3) and (4.4) jointly define the time-varying covariance matrix

Σt = StGtPtGtSt. (4.5)

It follows that
σijt = ρijt(hitgit)1/2(hjtgjt)1/2, i 6= j (4.6)

and that
σiit = hitgit, i = 1, . . . , N. (4.7)

From (4.7) it follows that hit = σiit/git = E(ε∗itε
∗′
it |Ft−1), where ε∗it = εit/g

1/2
it . When

Gt ≡ IN and the conditional correlation matrix Pt ≡ P, these assumptions define the
Constant Conditional Correlation (CCC-) GARCH model of Bollerslev (1990). More
generally, when Gt ≡ IN and Pt is a time-varying correlation matrix, the model
belongs to the family of Conditional Correlation GARCH models.

The diagonal elements of the matrix Gt are defined as follows:

git = 1 +
r∑
l=1

δilGil(t/T ; γil, cil) (4.8)

with γil > 0, i = 1, . . . , N, l = 1, . . . , r. Each git varies smoothly over time satisfying
the conditions inf

t=1,...,T
git > 0, and δil ≤ Mδ < ∞, l = 1, . . . , r, for i = 1, . . . , N.

The parametric form of (4.8), introduced in Amado and Teräsvirta (2008), allows the
unconditional variance to change smoothly over time according to the transition func-
tion Gil(t/T ; γil, cil). The function Gil(t/T ; γil, cil) is a generalized logistic function,
that is,

Gil(t/T ; γil, cil) =

1 + exp

−γil
k∏
j=1

(t/T − cilj)


−1

, γil > 0, cil1 ≤ ... ≤ cilk.

(4.9)
Function (4.9) is by construction continuous and bounded between zero and one.
The parameters, cilj and γil, determine the location and the speed of the transition
between regimes.

The parametric form of (4.8) with (4.9) is very flexible and capable of describing
smooth deterministic changes in volatility. Under δi1 = ... = δir = 0, i = 1, . . . , N, in
(4.8), the unconditional volatility becomes constant. Assuming either r > 1 or k > 1
or both with δil 6= 0 adds flexibility to the unconditional variance component git. In
the simplest case, r = 1 and k = 1, git increases monotonically over time when δil > 0
and decreases monotonically when δil < 0. The slope parameter γi1 in (4.9) controls
the degree of smoothness of the transition: the larger γi1, the faster the transition is
between the extreme regimes. As γi1 →∞, git approaches a step function. For small
values of γi1, the transition between regimes is very smooth.

In this work we shall account for potentially asymmetric responses of volatility to
positive and negative shocks or returns by modelling the conditional variances by the
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GJR-GARCH process of Glosten, Jagannathan, and Runkle (1993). In the present
context,

hit = ωi +
q∑
j=1

αijε
∗2
i,t−j +

q∑
j=1

κijI(ε∗i,t−j < 0)ε∗2i,t−j +
p∑
j=1

βijhi,t−j , (4.10)

where the indicator function I(A) = 1 when A is valid, otherwise I(A) = 0.

4.2.2 The structure of the conditional correlations

In this work we shall investigate the effects of modelling changes in the unconditional
variances on conditional correlations. The idea is to compare models in which the
nonstationary component is left unmodelled with ones relying on the decomposition
(4.5) with Gt 6= IN . As to modelling the time-variation in the correlation matrix
Pt, several choices exist. As already mentioned, the simplest multivariate correlation
model is the CCC-GARCH model in which Pt ≡ P. With hit specified as in (4.10),
this model will be called the CCC-TVGJR-GARCH model. When git ≡ 1, (4.10)
defines the ith conditional variance of the CCC-GJR-GARCH model.

The CCC-GARCH model has considerable appeal due to its computational sim-
plicity, but in many studies the assumption of constant correlations has been found to
be too restrictive. There are several ways of relaxing this assumption using parametric
representations for the correlations. Engle (2002) introduced the so-called Dynamic
CC-GARCH (DCC-GARCH) model in which the conditional correlations are defined
through GARCH(1,1) type equations. Tse and Tsui (2002) presented a rather similar
model. In the DCC-GARCH model, the coefficient of correlation ρijt is a typical
element of the matrix Pt with the dynamic structure

Pt = {diagQt}−1/2Qt{diagQt}−1/2 (4.11)

where
Qt = (1− θ1 − θ2)Q + θ1ζt−1ζ

′
t−1 + θ2Qt−1 (4.12)

with the scalars θ1 and θ2 satisfying θ1 > 0 and θ2 ≥ 0 such that θ1 + θ2 < 1,Q is
the unconditional correlation matrix of the standardized errors ζit, i = 1, . . . , N, and
ζt = (ζ1t, . . . , ζNt)′. In our case, each ζit = εit/(hitgit)1/2, and this version of the
model will be called the DCC-TVGJR-GARCH model. Accordingly, when git ≡ 1,
the model becomes the DCC-GJR-GARCH model.

Another way of introducing time-varying correlations is to assume that the con-
ditional correlation matrix Pt varies smoothly over time between two extreme states
of correlations P(1) and P(2); see Berben and Jansen (2005) and Silvennoinen and
Teräsvirta (2005, 2007). The correlation matrix is a convex combination of these two
matrices such that:

Pt = {1−G(st; γ, c)}P(1) +G(st; γ, c)P(2) (4.13)
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where P(1) and P(2) are positive definite matrices and P(1) 6= P(2).G(st; γ, c) is a
monotonic function bounded between zero and one, where the stochastic or deter-
ministic transition variable st controls the correlations. More specifically,

G(st; γ, c) = (1 + exp {−γ(st − c)})−1
, γ > 0 (4.14)

where, as in (4.9), the parameter γ determines the smoothness and c the location
of the transition between the two correlation regimes. In this work, st = t∗ = t/T,
and we call the resulting model with (4.10) the Time-Varying CC-TVGJR-GARCH
(TVCC-TVGJR-GARCH) model when the equations for hit are parameterized using
a TVGJR specification. When git ≡ 1, (4.13) reduces to the conditional covariance
of the TVCC-GJR-GARCH model.

4.3 Estimation of parameters

4.3.1 Estimation of DCC-TVGJR-GARCH models

In this section, we assume that ωi = 1, i = 1, . . . , N, in (4.10) and that (4.8) has the
form

git = δi0 +
r∑
l=1

δilGil(t/T ; γil, cil)

where δi0 > 0. This facilitates the notation but does not change the argument. Un-
der the assumption of normality, εt|Ft−1 ∼ N(0,Σt), the conditional log-likelihood
function for observation t is defined as

`t(θ) = −(N/2) ln 2π − (1/2) ln |Σt| − (1/2)ε′tΣ
−1
t εt

= −(N/2) ln(2π)− (1/2) ln |StGtPtGtSt| − (1/2)ε′tS
−1
t G−1

t P−1
t G−1

t S−1
t εt

= −(N/2) ln(2π)− ln |StGt| − (1/2) ln |Pt| − (1/2)ζ′tP
−1
t ζt

= −(N/2) ln(2π)− ln |Gt| − (1/2)ε̃′tG
−2
t ε̃t − ln |St| − (1/2)ε∗′t S−2

t ε
∗
t

+ζ′tζt − (1/2) ln |Pt| − (1/2)ζ′tP
−1
t ζt (4.15)

where θ= (ψ′,ϕ′,φ′)′ is the vector of all parameters of the model, and

ε̃t = S−1
t εt = (ε1t/{h1t(ψ1,ϕ1)}1/2, . . . , εNt/{hNt(ψN ,ϕN )}1/2)′

ε∗t = G−1
t εt = (ε1t/{g1t(ψ1)}1/2, . . . , εNt/{gNt(ψN )}1/2)′

ζt = G−1
t S−1

t εt = (ε1t/{g1t(ψ1)h1t(ψ1,ϕ1)}1/2, . . . , εNt/{gNt(ψN )hNt(ψN ,ϕN )}1/2)′.

Equation (4.15) implies the following decomposition of the log-likelihood function for
observation t :

`t(ψ,ϕ,φ) = `Ut (ψ) + `Vt (ψ,ϕ) + `Ct (ψ,ϕ,φ)

where first, ψ= (ψ′1, . . . ,ψ
′
N )′, and

`Ut (ψ) =
N∑
i=1

`Uit(ψi) (4.16)



Conditional Correlations Models with Nonstationary GARCH Equations 115

withψi = (δi0, δ′i,γ
′
i, c
′
i)
′, δi = (δi1, . . . , δir)′,γi = (γi1, . . . , γir)′, ci = (c′i1, . . . , c

′
ir)
′, i =

1, . . . , N, and
`Uit(ψi) = −(1/2){ln git(ψi) + ε̃2it/git(ψi)}.

Second,

`Vt (ψ,ϕ) =
N∑
i=1

`Vit(ψi,ϕi) (4.17)

where ϕ= (ϕ′1, . . . ,ϕ
′
N )′, and

`Vit(ψi,ϕi) = −(1/2){lnhit(ψi,ϕi) + ε∗2it /hit(ψi,ϕi)}.

with ϕi = (αi1, . . . , αiq, κi1, . . . , κiq, βi1, . . . , βip)′, i = 1, . . . , N. Finally,

`Ct (ψ,ϕ,φ) = −(1/2){ln |Pt(ψ,ϕ,φ)|+ ζ′tP−1
t (ψ,ϕ,φ)ζt − 2ζ′tζt}. (4.18)

The GARCH equations are estimated separately using maximization by parts.
The first iteration consists of the following:

1. Maximize

LUiT (ψ) =
T∑
t=1

`Uit(ψ) = −(1/2)
T∑
t=1

{ln git(ψi) + ε̃2it/git(ψi)}

for each i, i = 1, . . . , N, separately, assuming ε̃it = εit, that is, setting

hit(ψi,ϕi) ≡ 1. The resulting estimators are ψ̂
(1)

i , i = 1, . . . , N.

2. Making use of ψ̂
(1)

i , i = 1, . . . , N, maximize

LViT (ψ̂
(1)

i ,ϕi) =
T∑
t=1

`Vit(ψ̂
(1)

i ,ϕi) = −(1/2)
T∑
t=1

{lnhit(ψ̂
(1)

i ,ϕi)+ε
∗2
it /hit(ψ̂

(1)

i ,ϕi)}

with respect to ϕi assuming ε∗it = εit/g
1/2
it (ψ̂

(1)

i ), for each i, i = 1, . . . , N, sepa-
rately. Call the resulting estimators ϕ̂(1)

i , i = 1, . . . , N.

The second iteration is as follows:

1. Maximize

LUiT (ψ) =
T∑
t=1

`Uit(ψi) = −(1/2)
T∑
t=1

{ln git(ψi) + ε̃2it/git(ψi)}

assuming ε̃it = εit/h
1/2
it (ψ̂

(1)

i , ϕ̂
(1)
i ), for each i, i = 1, . . . , N. Call the resulting

estimators ψ̂
(2)

i .
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2. Maximize

LViT (ψ̂
(2)

i ,ϕi) =
T∑
t=1

`Vit(ψ̂
(2)

i ,ϕi) = −(1/2)
T∑
t=1

{lnhit(ψ̂
(2)

i ,ϕi)+ε
∗2
it /hit(ψ̂

(2)

i ,ϕi)}

with respect toϕi for each i, i = 1, . . . , N, separately, assuming ε∗it = εit/git(ψ̂
(2)

i ).
This yields ϕ̂(2)

i , i = 1, . . . , N.

Iterate until convergence. Call the resulting estimators ψ̂i and ϕ̂i, i = 1, . . . , N,
and set ψ̂ = (ψ̂

′
1, . . . , ψ̂

′
N )′ and ϕ̂ = (ϕ̂′1, . . . , ϕ̂

′
N )′.

Maximization is carried out in the usual fashion by solving the equations

∂

∂ψi
LUiT (ψi) = (1/2)

T∑
t=1

(
ε̃2it

git(ψi)
− 1)

1
git(ψi)

∂git(ψi)
∂ψi

= 0

for ψi and

∂

∂ϕi
LViT (ϕi) = (1/2)

T∑
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(
ε∗2it

hit(ψ̂
(n)

i ,ϕi)
− 1)

1

hit(ψ̂
(n)

i ,ϕi)

∂hit(ψ̂
(n)

i ,ϕi)
∂ϕi

= 0

for ϕi in the nth iteration. Writing Gilt = G(t∗, γil, cil), we have

∂git(ψi)
∂ψi

= (1, Gi1t, G
(γ)
i1t , G

(c)
i1t, . . . , Girt, G

(γ)
irt , G

(c)
irt)
′

where, for k = 1 in (4.9),

G
(γ)
ilt =

∂Gilt
∂γil

= δilGilt(1−Gilt)(t∗ − cil)

G
(c)
ilt =

∂Gilt
∂cilj

= −γilδilGilt(1−Gilt)

where cilj denotes the jth element in the parameter vector cil, l = 1, . . . , r, and

∂hit(ψ̂
(n)

i ,ϕi)
∂ϕi

= (1, ε∗2i,t−1, . . . , ε
∗2
i,t−q, ε

∗2
i,t−1I(ε∗i,t−1 < 0), . . . , ε∗2i,t−qI(ε∗i,t−q < 0),

hi,t−1(ψ̂
(n)

i ,ϕi), . . . , hi,t−p(ψ̂
(n)

i ,ϕi))
′ +

p∑
j=1

βij
∂hi,t−j(ψ̂

(n)

i ,ϕi)
∂ϕi

when the conditional variance hit is defined in (4.10).
After estimating the TVGARCH equations, estimate φ given ψ̂i and ϕ̂i by max-

imizing

LCT (φ) =
T∑
t=1

`Ct (φ) = −(1/2)
T∑
t=1

{ln |Pt(φ)|+ ζ′tP−1
t (φ)ζt − 2ζ′tζt}
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where ζt = (ζ1t, . . . , ζNt)′ with ζit = εit/{hit(ψ̂i, ϕ̂i)git(ψ̂i)}1/2, i = 1, . . . , N, and

∂

∂φ
LCT (φ) = −(1/2)

T∑
t=1

∂vec(Pt)′

∂φ
vec(P−1

t −P−1
t ζtζ

′
tP
−1
t ).

All computations in this paper have been performed using Ox, version 3.40 (see
Doornik (2002)) and a modified version of Matteo Pelagatti’s source code2.

This approach is computationally attractive. Engle and Sheppard (2001) only
estimate the GARCH equations once and show that for Gt = IN , the maximum like-
lihood estimators ϕ̂i, i = 1, . . . , N, (in their framework git(ψi) ≡ 1) are consistent.
The two-step estimator is, however, asymptotically less efficient than the full maxi-
mum likelihood estimator. Further iteration in order to obtain efficient estimators is
possible, see Fan, Pastorello, and Renault (2007) for discussion, but it has not been
undertaken here.

4.3.2 Estimation of TVCC-TVGJR-GARCH models

The maximum likelihood estimation of the parameters of the model TVCC-GJR-
GARCH model can be carried out in three steps as in Silvennoinen and Teräsvirta
(2005, 2007). The log-likelihood function can be decomposed as before. The compo-
nents (4.16) and (4.17) remain the same, whereas (4.18) becomes

`Ct (ψ,ϕ,$) = −(1/2){ln |Pt($)|+ ζ′tP−1
t ($)ζt − 2ζ′tζt}

where the {N(N − 1) + 2} × 1 vector $ = (vecl(P(1))
′,vecl(P(2))

′, γ, c)′. (The vecl
operator stacks the columns below the main diagonal into a vector.) In their scheme,
the parameter vectors ψ and ϕ of the GARCH equations are estimated first, followed
by the conditional correlations in P(1) and P(2), given the transition function param-
eters γ and c in (4.14). Finally, γ and c are estimated given ψ,ϕ,P(1) and P(2). The
next iteration begins by re-estimating ϕ given the previous estimates of P(1),P(2),γ
and c. The only modification required for the estimation of TVCC-TVGJR-GARCH
models compared to Silvennoinen and Teräsvirta (2005) is that for each main iteration
there is an inside loop for iterative estimation (maximization by parts) of ψ and ϕ.
In practice, compared to the two-step estimates, the extra iterations do not change
the estimates very much, but the estimators become fully efficient.

Asymptotic properties of the maximum likelihood estimators of the TVCC-TVGJR-
GARCH model are not yet known. The existing results only cover the CCC-GARCH
model; see Ling and McAleer (2003). Deriving corresponding asymptotic results for
the TVCC-TVGJR-GARCH model is a nontrivial problem and beyond the scope of
the present paper.

2The Ox estimation package is freely available at
http://www.statistica.unimib.it/utenti/p matteo/Ricerca/research.html
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4.4 Modelling with TVGJR-GARCH models

4.4.1 Specifying the unconditional variance component

In applying a model belonging to the family of CC-TVGJR-GARCH models, there are
two specification problems. First, one has to determine p and q in (4.10) and r in (4.8).
Furthermore, if r ≥ 1, one also has to determine k for each transition function (4.9).
Second, one has to test the null of conditional correlations against either the DCC-
or TVCC-GARCH model. We shall concentrate on the first set of issues. It appears
that in applications involving DCC-GARCH models, the null hypothesis of constant
correlations is never tested, and we shall adhere to that practice. In applications of the
STCC-GARCH model, constancy of correlations is typically tested before applying the
larger model, see Silvennoinen and Teräsvirta (2005, 2007). The test can be extended
to the current situation in which the GARCH equations are TVGJR-GARCH ones
instead of plain GJR-GARCH ones. Nevertheless, in this work we assume that the
correlations do vary over time as is done in the context of DCC-GARCH models and
apply the TVCC-GARCH model without a constancy test.

We shall thus concentrate on the first set of specification issues. We choose p =
q = 1 and test for higher orders at the evaluation stage. As to selecting r and k, we
shall follow Amado and Teräsvirta (2008) and briefly review their procedure. The
functions git are specified equation by equation under the assumption hit ≡ αi0 > 0,
which means that the specification is carried out by assuming that the conditional
variances remain constant. For the ith equation, the first hypothesis to be tested is
H01: γi1 = 0 against H11: γi1 > 0 in

git = α−1
i0 {1 + δi1Gi1(t/T ; γi1, ci1)} = α−1

i0 + δ∗i1Gi1(t/T ; γi1, ci1)

where δ∗i1 = α−1
i0 δi1. The standard test statistic has a non-standard asymptotic dis-

tribution because δ∗i1 and ci1 are unidentified nuisance parameters when H01 is true.
This lack of identification may be circumvented by following Luukkonen, Saikkonen,
and Teräsvirta (1988). This means that Gi1(t/T ; γi1, ci1) is replaced by its mth-order
Taylor expansion around γi1 = 0. Choosing m = 3, this yields

git = α∗0 +
3∑
j=1

δ∗∗ij (t/T )j +R3(t/T ; γi1, ci1) (4.19)

where δ∗∗ij = γi1δ̃
∗
ij with δ̃∗ij 6= 0, and R3(t/T ; γi1, ci1) is the remainder. The new null

hypothesis based on this approximation is H′01: δ∗∗i1 = δ∗∗i2 = δ∗∗i3 = 0 in (4.19). In order
to test this null hypothesis, we use the Lagrange multiplier (LM) test. Furthermore,
R3(t/T ; γi1, ci1) ≡ 0 under H01, so the asymptotic distribution theory is not affected
by the remainder. As discussed in Amado and Teräsvirta (2008), the LM-type test
statistic has an asymptotic χ2-distribution with three degrees of freedom when H01

holds.
If the null hypothesis is rejected, the model builder also faces the problem of

selecting the order k ≤ 3 in the exponent of Gil(γil; cil, t/T ). It is solved by carrying
out a short test sequence within (4.19); for details see Amado and Teräsvirta (2008).
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The next step is then to estimate the alternative with the chosen k, add another
transition, and test the hypothesis γi2 = 0 in

git = α−1
0 + δ∗i1Gi1(t/T ; γi1, ci1) + δ∗i2Gi1(t/T ; γi2, ci2)

using the same technique as before. Testing continues until the first non-rejection of
the null hypothesis.

4.4.2 The modelling cycle

After specifying the model, its parameters are estimated and the estimated model
evaluated. In short, building TVGJR-GARCH models for the elements of Dt = StGt

of the CC-GARCH model defined by equations (4.3) and (4.4) proceeds as follows:

1. First assume ht ≡ αi0 and test H01: git ≡ α−1
i0 (constant) against H11: git =

α−1
i0 +δi1Gi1(t/T ; γi1, ci1), for i = 1, . . . , N, at the significance level α(1). In case

of a rejection, select k and test H02: git = α−1
i0 + δ∗i1Gi1(t/T ; γi1, ci1) against

H12: git = α−1
i0 +

∑2
l=1 δ

∗
ilGil(t/T ; γil, cil) at the significance level α(2) = τα(1),

where τ ∈ (0, 1). More generally, α(j) = τα(j−1), j = 2, 3, ... . The significance
level is lowered at each stage for reasons of parsimony. (We choose τ = 1/2 but
note that in our application, the results are quite robust to the choice α(1) and
τ in the sense that a wide range of these parameters yield the same r.) Testing
is continued until the first non-rejection of the null hypothesis.

2. After specifying and estimating git, test for conditional heteroskedasticity in
{ε∗it}. If the null hypothesis of no ARCH is rejected, then model the conditional
variance ht as in (4.10) with p = q = 1. In applications to financial return series
of sufficiently high frequency, the test may be omitted and the TVGJR-GARCH
model for σijt estimated directly using maximization by parts.

3. Evaluate the estimated individual TVGJR-GARCH equations by means of
LM and LM-type diagnostic tests. For relevant misspecification tests for TV-
GARCH models (they are directly applicable to testing TVGJR-GARCH mod-
els), see Amado and Teräsvirta (2008). This includes testing for higher orders
of p and q in (4.10). If the models pass the tests, they will be incorporated
in multivariate CC-GARCH models. If the multivariate model is the TVCC-
GJR-GARCH model, the GARCH equations will be re-estimated as described
in Section 4.3.

We shall now apply the modelling cycle to individual daily return series. As al-
ready indicated, the interest lies in how careful modelling of nonstationarity in return
series affects correlation estimates. This will be investigated by a set of bivariate
CC-GARCH models.
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4.5 Empirical analysis

4.5.1 Data

The effects of modelling the nonstationarity in return series on the conditional corre-
lations are studied with price series of seven stocks of the S&P 500 composite index
traded at the New York Stock Exchange. The time series are available at the web-
site Yahoo! Finance. They consist of daily closing prices of American International
Group Inc. (AIG), American Express (AXP), Boeing Company (BA), Ford Motor
Company (F), Intel Corporation (INTC), JPMorgan Chase & Co. (JPM) and AT&T
Inc. (T). The seven companies belong to different industries that are insurance ser-
vices (AIG), consumer finance (AXP), aerospace and defence (BA), automotive (F),
semiconductors (INTC), banking (JPM) and telecommunications services (T). A bi-
variate analysis of returns of these companies may give some idea of how different the
correlations between firms representing different industries can be. The observation
period starts in October 1, 1993 and ends in September 30, 2003, yielding a total of
2518 observations. All stock prices are converted into continuously compounded rates
of returns, whose values are plotted in Figure 4.1. A common pattern is evident in
the seven return series. There is a less volatile period from the beginning until the
middle of the observation period and a more volatile period starting around 1998 that
continues until the end of the sample. Moreover, as expected, all seven return series
exhibit volatility clustering.

Descriptive statistics for the individual return series can be found in Table 4.1.
Conventional measures for skewness and kurtosis and also their robust counterparts
are provided for all series. The conventional estimates indicate both non-zero skew-
ness and excess kurtosis: both are typically found in financial asset returns. However,
conventional measures of skewness and kurtosis are sensitive to outliers and should
therefore be viewed with caution. Kim and White (2004) suggested to look at robust
estimates of these quantities. The robust measures for skewness are all positive but
very close to zero indicating that the return distributions show very little skewness.
All robust kurtosis measures are positive, which suggests some excess kurtosis (the
kurtosis equals zero for normally distributed returns) but less than what the conven-
tional measures indicate. The estimates are strictly univariate and any correlations
between the series are ignored.

4.5.2 Modelling the unconditional variances

We shall now construct an adequate parametric model for the unconditional variance
of each of the seven return series as discussed in Section 4.4.1. First we shall test
the hypothesis of constant unconditional variance against a smoothly time-varying
unconditional variance with one transition in git. We choose α(1) = 0.05. The test
results are reported in the second column of Table 4.3. As already mentioned, they are
quite insensitive to this choice of significance level. The null hypothesis is rejected very
strongly for each of the seven return series as the largest p-value equals 3×10−10. The
tests of the last three columns correspond to a sequence of nested tests based on (4.19)
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for choosing k in (4.9). If H0i is rejected most strongly, measured by the p-value, of
the three hypotheses, one selects k = i. For details, see Amado and Teräsvirta (2008).
Table 4.3 shows that k = 1 in (4.9) for all seven series. After fitting the TV-GARCH
model with one transition function and setting k = 1, the estimated model is tested
against a double transition model. The results indicate that the null hypothesis is
rejected at α(2) = 0.025 in three out of the seven return series. For two of these three
price series, k = 1 appears to be the right alternative, whereas for INTC k = 2 is
the appropriate choice. The p-values for testing for another transition for the three
series appear at the bottom of Table 4.3. Now α(3) = 0.0125, but the decision not
to reject the null hypothesis could be made at all conventional significance levels.
Consequently, the TV-GARCH model with two transitions is tentatively selected as
the final model for the AXP, F and INTC.

Table 4.4 contains the final estimates for the functions git from the TVGJR-
GARCH(1,1) models. Plots of the time-varying unconditional variances appear in
Figure 4.2. With the exception of INTC, the volatility has increased around mid-
1997 in most of the series, which coincides with the beginning of the East Asian
financial crisis. The level of volatility has then remained high, except for the AXP
and INTC returns. For these two stocks, the general level of volatility has decreased
towards the end of the observation period. It is interesting to note that the transition
between the extreme volatility regimes is quite rapid for all series. The maximum
value of the slope parameter γ has been set to 100 to save computing time. It should
be noted that the standard error estimates reported in Table 4.4 have been computed
conditionally on γ = 100. Descriptive statistics of the standardized returns ε∗it(or
εit/ĝ

1/2
it ) can be found in 4.2.

For comparison, we have also fitted the stationary GJR-GARCH(1,1) model to our
return series, and the results can be found in Table 4.6. The stationarity condition for
this model is α1+κ1/2+β1 < 1. In all cases the estimated models show high persistence
as α̂1 + κ̂1/2 + β̂1 is very close to one. A look at the sample autocorrelation functions
of |εit| plotted in Figure 4.4 leads to the same conclusion. The autocorrelations decay
at a rate that appears clearly slower than the exponential rate.

Table 4.5 contains the results (other than the ones involving ĝit) from fitting a TV-
GJR-GARCH(1,1) model to the series. The persistence measured by α̂1 + κ̂1/2 + β̂1

is in all seven cases lower than indicated by the GJR-GARCH(1,1) model. In two
occasions, remarkably low values, 0.740 for BA and 0.907 for INTC, are obtained.
For the remaining series the reduction in persistence is smaller but the values are still
distinctly different from the corresponding ones in Table 4.6. The autocorrelations
functions of |ε∗it| shown in Figure 4.6 are in line with these findings. The autocor-
relations decay very quickly with the lag length and only a few first of them exceed
the 95% confidence bounds drawn under the assumption that the errors are normal
and independent. Moreover, the decay rate of the autocorrelogram appears close to
exponential for all seven series. This is what we would expect after the unconditional
variance component has absorbed the long-run movements in the series. These find-
ings justify at an empirical level that the low level of persistence is exclusively due to
the modelling of the changes in the unconditional variance.
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Finally, Figure 4.3 shows the estimated conditional standard deviations obtained
from the GJR-GARCH model. The behaviour of these series looks clearly nonstation-
ary. The ’baseline volatility’ clearly increases around 1998. The observed evidence
of long-memory in Figure 4.4 accords with the behaviour of the series in Figure 4.3.
The conditional standard deviations from the GJR model for ε∗it can be found in
Figure 4.5. These plots, in contrast to the ones in Figure 4.3, do not show signs
of nonstationarity. The deterministic component git is able to handle the changing
baseline volatility, and only volatility clustering is left to be parameterized by ht.

In order to assess the validity of the GJR-GARCH model several LM misspeci-
fication tests were carried out (see Amado and Teräsvirta (2008) for details). The
p-values are reported in Table 4.7. The hypothesis of no transition (git ≡ 1) is strongly
rejected for the seven return series. Thus, even if the modelling had been begun by
first fitting a GJR-GARCH(1,1) model to the data, the need for transitions would
have been discovered at the evaluation stage. With three exceptions, the remaining
diagnostic tests do not show signs of misspecification. The same misspecification tests
applied to the TVGJR-GARCH model can be found in Table 4.8. The model passes
the misspecification tests for the seven return series with a single exception. For F,
it seems that the asymmetry in the effect of shocks is not satisfactorily described
by the GJR-GARCH model as the test against the Smooth Transition GARCH has
the p-value 0.015. This is not, however, a very small p-value, and no action is taken
here. This means that the model is indeed able to capture the time-variation in the
unconditional variance. The main conclusion is that the TVGJR-GARCH model ad-
equately captures the most conspicuous features in our set of daily return series. We
shall therefore retain these models for modelling the conditional correlations.

4.5.3 Effects of modelling the long-run dynamics of volatility
on the conditional correlations

In this section, we shall investigate the effects of modelling nonstationary volatility
equations on the conditional correlations. From equation (4.3) we can expect that
ignoring the nonstationary component Gt may affect the correlation estimates, but
the magnitude of the effect is not known. We consider three bivariate Conditional
Correlation GARCH models, the CCC-, the DCC-, and the TVCC-GJR-GARCH(1,1)
model. They were defined in Section 4.2.2. Two specifications will be estimated for
each model. One is the first-order GJR-GARCH model that corresponds to Gt ≡ I2,
whereas the other one is the TVGJR-GARCH model for which Gt 6= I2 in (4.3). As
already discussed, the TVGJR-GARCH model can also account for slow movements
in volatility, whereas the GJR-GARCH model is designed for only modelling volatility
clustering.

The log-likelihood values of the estimated models for the 21 pairs of return series
are reported in Table 4.9. The maximum values of the log-likelihood function across
models are shown in boldface. Three remarks are in order. First, as may be expected,
the CC-GARCH model with time-varying correlations outperforms the CCC-GARCH
model for all pairs of assets. No formal test has been carried out, but this result
suggests that the conditional correlations are time-varying. Second, the in-sample fit
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of the multivariate models when the univariate GARCH component is specified as
a TVGJR-GARCH(1,1) model is vastly superior to the fit obtained by the standard
GJR-GARCH(1,1) model. Third, the DCC-TVGJR-GARCH and TVCC-TVGJR-
GARCH models provide the best in-sample fit to the bivariate data. Overall, the
TVCC-TVGJR model fits the data best in 16 pairs out of 21.

In order to save space, the results for the estimated correlations for the CCC-GJR
and CCC-TVGJR models are not shown. A general finding is that the values of the
correlations from the CCC-TVGJR-GARCH model remain equal to the ones obtained
from the CCC-GJR-GARCH model. This tells us that while careful modelling of the
GARCH equations alone considerably improves the in-sample fit, the correlations
remain unaffected.

The differences between the estimated conditional correlations obtained from the
DCC-GJR-GARCH model and the DCC-TVGJR-GARCH model for pairs of asset
returns are plotted in Figure 4.7. The effect of careful modelling of the individual
GARCH equations on the estimated correlations is generally rather small. In some
occasions the effect seems to be systematic such that the correlations decrease over
time, but the magnitude of the change remains small. The AIG (insurance) and
AXP (consumer finance) pair constitutes the only exception: the difference reaches
0.13 in the beginning of the observation period and lies around −0.08 at the end. A
rather general conclusion is that in the DCC-GJR-GARCH model, the nonmodelled
nonstationarity in the variances only has a small effect on time-varying correlations.
Thus, if the focus on the analysis is on estimating time-varying correlations and
the model is a DCC-GJR-GARCH model, the simpler GJR-GARCH model for the
conditional variance may be preferred to the more sophisticated TVGJR-GARCH
model. However, the results show that the magnitude of such effect varies across
different stock series and according to the level of the correlations. Pairs in which
at least one asset belongs to the consumer finance, banking and semiconductors with
higher than average estimated correlations display a tendency for greater than average
differences between the estimated correlations from the two models. On the other
hand, pairs where at least one asset belongs to the telecommunication services are
responsible for smallest differences. These pairs of assets also coincide with the ones
that have rather low (but positive) correlations. To summarize, the empirical evidence
suggests that the magnitude of the effect on the estimated correlations implied by the
DCC-GJR-GARCH model when accounting for time-variation in the unconditional
variances is driven by certain stock returns, in particular, those having higher values
for the correlations.

The results are somewhat different when the DCC-GJR-CARCH model is replaced
by the TVCC-GJR-GARCH model. The results from fitting a TVCC-GJR-GARCH
model to all pairs of asset returns appear in Table 4.10. They include the estimated
correlations and the estimates of the parameters for the smooth transition function
(4.14). For the majority of the estimated models the estimate of the slope transition
parameter γ attains its upper bound of 500. For these cases, the transition function
is close to a step function. The estimates of the location parameter c lie in the range
0.7−0.9 with the exception of the pair AXP-JPM. This range roughly corresponds to
the years 2000 − 2002. For all pairs of assets, the estimated conditional correlations
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increase over time. This is in agreement with the rather frequent observation that
correlations between stock returns increase with the degree of market turbulence.
Note, however, that the increase in volatility seen in Figure 4.1 is not immediately
reflected in the correlations that increase later than the volatilities.

The estimated results for the TVCC-TVGJR-GARCH model are shown in Ta-
ble 4.11. A comparison of Tables 4.10 and 4.11 show some differences between the
results from TVCC-GJR-GARCH and TVCC-TVGJR-GARCH models. In a number
of cases, the changes from the low correlation regime to the high correlation one often
becomes smoother than it was estimated in the TVCC-GJR-GARCH model. This
happens in 13 cases out of 21, whereas the opposite occurs only twice. The two sets
of correlations over time are graphed in Figure 4.8. The largest changes in condi-
tional correlations involve the returns of Ford (F). For the pairs AIG-F and AXP-F
the location ĉ of the change in correlations changes to close to the one-third of the
observations, and on the average correlations become smaller. A more modest but
still distinct change in location is also observed for the INTC-F pair. Furthermore,
the change becomes clearly smoother in the JPM-F pair than it is when estimated
from a TVCC-GJR-GARCH model.

In Figures 4.4 and 4.6, we showed the autocorrelations of |εt| and |ε̂∗t | for all seven
return series. Somewhat analogously, we shall compare moving correlations between
εit and εjt on one hand and ε̂∗it and ε̂∗jt on the other. Figure 4.9 contains the pairwise
correlations of the between the former (grey dotted curve) and the latter (black solid
curve) computed over 100 trading days. Modelling the nonstationary component in εt
has a strong effect on the correlations. Typically, the conditional correlations between
ε̂∗it and ε̂∗jt are generally lower towards the end of the sample than the corresponding
correlations between εit and εjt and look ’stationary’ overall. The increase observed
in the latter cannot be seen in the former. It appears that the observed increase over
time in correlations between the raw returns is due to the systematic increased in
volatility towards the end of the period. This increase is left unmodelled in TVCC-
GJR-GARCH models.

4.5.4 Time-varying news impact surfaces

Next, we shall consider the impact of unexpected shocks to the asset returns on the es-
timated covariances. This is done by employing a generalization of the univariate news
impact curve of Engle and Ng (1993) to the multivariate case introduced by Kroner
and Ng (1998). The so-called news impact surface is the plot of the conditional covari-
ance against a pair of lagged shocks, holding the past conditional covariances constant
at their unconditional sample mean levels. The news impact surfaces of the multi-
variate correlation models with the volatility equations modelled as TVGJR-GARCH
models are time-varying because they depend on the component git−1. Therefore,
these will be called as time-varying news impact surfaces. The time-varying news
impact surface for hijt is the three dimensional graph of the function

hijt = f(εit−1, εjt−1, git−1; ht−1)
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where ht−1 is a vector of conditional covariances at time t− 1 defined at their uncon-
ditional sample means. As an example, Figure 4.10 contains the time-varying news
impact surface for the covariance generated by the CCC-TVGJR-GARCH model for
the pair AIG-AXP. The choice of this single pair of assets is merely illustrative, but
the same shapes of the surfaces can be found for other pairs as well. From the figure
we see how the surface can vary over time due to the nonstationary component git−1.
We are able to distinguish different reaction levels of covariance estimates to past
shocks during tranquil and turbulent times. It shows that the response to the news
of a given size on the estimated covariances is clearly stronger during periods of calm
in the market than it is during periods of high turbulence. According to the results,
when calm prevails a minor piece of ‘bad news’ (unexpected negative shock) is rather
big news compared to a big piece of ‘good news’ (unexpected positive shock) during
turbulent periods. This is seen from the asymmetric bowl-shaped impact surface.

Figure 4.11 contains the time-varying news impact surfaces under low and high
volatility from the CCC-TVGJR-GARCH model for the conditional variance of AIG
when there is no shock to AXP. Figure 4.12 contains a similar graph for AXP when
there is no shock to AIG. The asymmetric shape shows that a negative return shock
has a greater impact than a positive return shock of the same size. Furthermore, as is
already obvious from Figure 4.10, a piece of news of a given size has a stronger effect
on the conditional variance when volatility is low than when it is high.

Estimated news impact surfaces from the TVCC-TVGJR-GARCH model, allowing
for time-variation in correlations, are plotted in Figure 4.13. These news impact
surfaces are able to distinguish between responses low and high variance as well as
low and high correlation levels. It is seen from Figure 4.13 that not only the degree
of turbulence in the market but also the level of the correlations affect the impact of
past shocks on the covariances. This means that both factors play an important role
in assessing the effect of shocks on the covariances according to the TVCC-TVGJR-
GARCH model. It is evident from the figure that high covariance estimates are related
to strong correlations and a high degree of turbulence in the market.

4.6 Conclusions

In this paper, we extend the univariate multiplicative TV-GARCH model of Amado
and Teräsvirta (2008) to the CC-GARCH framework. The model allows the indi-
vidual unconditional volatilities to vary smoothly over time according to the logistic
transition function. We also develop a modelling technique for specifying the para-
metric structure of the deterministic time-varying component that involves a sequence
of Lagrange multiplier-type tests. In this respect, our model differs from the semi-
parametric model of Hafner and Linton (2008).

We consider a set of CC-GJR-GARCH models to investigate the effects of non-
stationary variance equations on the conditional correlation matrix. The models are
applied to pairs of seven daily stock returns belonging to the S&P 500 composite
index. We find that in our examples, modelling the time-variation of the uncondi-
tional variances considerably improves the fit of the CC-GJR-GARCH models. The
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results show that multivariate correlation models combining both time-varying corre-
lations and time-varying unconditional variances provide the best in-sample fit. They
also indicate that modelling the nonstationary component in the variance has rela-
tively little effect on correlation estimates when the conditional correlation model is
the DCC-GJR-GARCH model, whereas the results are different for the STCC-GJR-
GARCH model of Silvennoinen and Teräsvirta (2005, 2007). In a number of occasions,
the correlations estimated from this model with time as the sole transition variable
(TVCC-GJR-GARCH) are quite different from what they are when the GJR-GARCH
equations are implicitly assumed stationary. The most conspicuous difference is that
the time-varying correlations estimated from the TVCC-TVGJR-GARCH model are
often smoother than the ones obtained from the TVCC-GJR-GARCH model.

With the TVGJR-GARCH equations we are also able to consider the effect of
the nonstationary variance component on the moving correlations. For many pairs
of returns, the fact that correlations between raw returns increase over time can be
attributed to increasing volatility. This conclusion is based on the observation that
the same moving correlations computed from returns with constant unconditional
variance do not increase over time.

The TVGJR-GARCH approach also gives us the opportunity to generalize the
news impact surfaces introduced by Kroner and Ng (1998) such that they can vary
over time. In the TVCC-TVGJR-GARCH model, the impact of news (shocks) on the
covariances between returns is a function of both time-varying variances and time-
varying correlations. As in the univariate case already considered in Amado and
Teräsvirta (2008), it is seen that the impact of a piece of news of a given size is larger
when the market is calm than when it is when during periods of high volatility. In
the present multivariate case we can also conclude that high conditional correlation
between to returns adds to the impact as compared to the situation in which the
correlation is low. We also reproduce the old result that negative shocks or news have
a stronger effect on volatility than positive news of the same size.

An extension of this methodology to the case in which the conditional correla-
tions are also controlled by a stochastic variable is available through the Double
STCC-GJR-GARCH model. This makes it possible to model for example asymmet-
ric responses of conditional correlations to functions of past returns. This, however,
is a topic left for future research.
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Appendix A: Tables

Table 4.1 Descriptive statistics of the asset returns

Asset Min Max Mean Std.dev. Skew Ex.Kurt Rob.Sk. Rob.Kr.

AIG -9.419 10.44 0.054 1.871 0.192 2.418 0.036 0.107
AXP -14.63 12.02 0.064 2.259 -0.056 2.439 0.046 0.111
BA -19.38 11.01 0.029 2.165 -0.608 7.332 0.005 0.106
F -15.88 14.62 0.016 2.276 0.120 3.879 4× 10−4 0.095
INTC -24.87 18.32 0.072 3.041 -0.395 4.890 0.045 0.010
JPM -19.97 14.86 0.046 2.404 0.117 4.549 -0.006 0.215
T -13.54 10.64 0.013 2.053 -0.066 2.598 0.031 0.161
Notes: The table contains summary statistics for the seven stock returns of the S&P 500 composite
index. The sample period is from October 1, 1993 until September 30, 2003 (2518 observations).
Rob.Sk. denotes the robust measure for skewness based on quantiles proposed by Bowley and the
Rob.Kr. denotes the robust centred coefficient for kurtosis proposed by Moors; see Kim and White
(2004) for details.

Table 4.2 Descriptive statistics of the standardized returns

Asset Min Max Mean Std.dev. Skew Ex.Kurt Rob.Sk. Rob.Kr.

AIG -6.281 6.964 0.045 1.365 0.184 1.494 0.055 0.063
AXP -10.07 8.664 0.062 1.778 0.052 1.689 0.060 0.063
BA -12.33 7.964 0.034 1.568 -0.318 4.874 0.005 0.122
F -9.761 8.605 0.024 1.688 0.141 1.695 0.015 0.097
INTC -12.84 9.385 0.062 1.937 -0.296 2.544 0.073 -0.063
JPM -12.89 10.07 0.047 1.781 0.125 2.748 -0.005 0.166
T -8.132 6.894 0.019 1.446 0.015 1.392 0.024 0.195
Notes: The table contains summary statistics for the standardized returns of the seven stocks of
the S&P 500 composite index. The standardized returns are obtained dividing the raw returns by
the estimate of the function gt. The sample period is from October 1, 1993 until September 30,
2003 (2518 observations). Rob.Sk. denotes the robust measure for skewness based on quantiles
proposed by Bowley and the Rob.Kr. denotes the robust centred coefficient for kurtosis proposed
by Moors; see Kim and White (2004) for details.
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Table 4.3 Sequence of tests of constant unconditional variance against a time-varying
GARCH model with multiplicative structure

Transitions in the
alternative model H0 H03 H02 H01

Single transition
AIG 1× 10−21 0.0120 0.0044 1× 10−20

AXP 6× 10−25 2× 10−10 1× 10−5 3× 10−14

BA 3× 10−10 0.0019 0.0015 1× 10−7

F 1× 10−20 0.0359 0.0491 8× 10−21

INTC 2× 10−20 2× 10−8 0.0627 6× 10−15

JPM 1× 10−19 5× 10−5 0.0513 2× 10−17

T 2× 10−25 8× 10−7 0.3812 3× 10−22

Double transition
AIG 0.1127 0.0418 0.5284 0.2297
AXP 4× 10−4 0.2735 0.0073 0.0016
BA 0.2419 0.2362 0.3391 0.1712
F 0.0084 0.3381 0.3607 0.0016
INTC 3× 10−5 0.8513 1× 10−5 0.0277
JPM 0.1421 0.9199 0.0352 0.3175
T 0.0939 0.0174 0.7878 0.4116

Triple transition
AIG − − − −
AXP 0.2405 0.1536 0.3026 0.2932
BA − − − −
F 0.3205 0.1264 0.8555 0.2869
INTC 0.0433 0.2563 0.0210 0.2170
JPM − − − −
T − − − −

Notes: The entries are the p-values of the LM-type tests of constant unconditional variance
applied to the seven stock returns of the S&P 500 composite index. The appropriate order
k in (4.9) is chosen from the short sequence of hypothesis as follows: If the smallest p-value
of the test corresponds to H02, then choose k = 2. If either H01 or H03 are rejected more
strongly than H02, then select either k = 1 or k = 3. See Amado and Teräsvirta (2008) for
further details.
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Table 4.4 Estimation results for the univariate TV-GJR-GARCH models

Asset δ̂1 γ̂1 ĉ11 δ̂2 γ̂2 ĉ21 ĉ22 r

gt component

AIG 1.2550
(0.0803)

100
(−)

0.3709
(0.0028)

— — — — 1

AXP 1.4280
(0.1218)

100
(−)

0.4815
(0.0025)

-0.8940
(0.1568)

100
(−)

0.8022
(0.0032)

— 2

BA 1.4708
(0.0902)

100
(−)

0.4041
(0.0027)

— — — — 1

F 1.0413
(0.0979)

100
(−)

0.4426
(0.0030)

0.8489
(0.2003)

100
(−)

0.7872
(0.0038)

— 2

INTC 0.2720
(0.0310)

100
(−)

0.1650
(0.0020)

-0.6862
(0.0209)

100
(−)

0.6180
(0.0106)

0.9240
(0.0118)

2

JPM 1.3984
(0.0938)

100
(−)

0.4814
(0.0026)

— — — — 1

T 1.7708
(0.1048)

100
(−)

0.4442
(0.0023)

— — — — 1

Notes: The table contains the parameter estimates of the git component from the
TV-GJR-GARCH(1,1) model for the seven stocks of the S&P 500 composite index,
over the period October 1, 1993 - September 30, 2003. The estimated model has the
form git = 1 +

∑r
l=1 δilGil(t/T ; γil, cil), where Gil(t/T ; γil, cil) is defined in (4.9) for

all i. The numbers in parentheses are the standard errors.
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Table 4.5 Estimation results for the univariate TV-GJR-GARCH models

Asset ω̂ α̂1 κ̂1 β̂1 α̂1 + κ̂1
2 + β̂1

ht component

AIG 0.0472
(0.0164)

0.0273
(0.0105)

0.0514
(0.0162)

0.9235
(0.0163)

0.9765

AXP 0.1777
(0.0488)

0.0222
(0.0118)

0.1183
(0.0261)

0.8675
(0.0242)

0.9488

BA 0.6447
(0.1912)

0.0829
(0.0381)

0.0743
(0.0518)

0.6195
(0.0927)

0.7396

F 0.0849
(0.0423)

− 0.0547
(0.0139)

0.9444
(0.0198)

0.9717

INTC 0.3594
(0.2094)

− 0.1139
(0.0500)

0.8502
(0.0760)

0.9071

JPM 0.1055
(0.0328)

− 0.0905
(0.0220)

0.9241
(0.0177)

0.9693

T 0.0865
(0.0308)

0.0337
(0.0119)

0.0617
(0.0244)

0.8962
(0.0264)

0.9608

Notes: The table contains the parameter estimates of the hit compo-
nent from the TV-GJR-GARCH(1,1) model for the seven stocks of the
S&P 500 composite index, over the period October 1, 1993 - Septem-
ber 30, 2003. The estimated model has the form hit = ωi + αi1ε

∗2
it−1 +

κi1Iit−1(ε∗it−1)ε∗2it−1 + βi1hit−1, where ε∗it = εit/g
1/2
it and Iit(ε

∗
it) = 1 if

ε∗it < 0 (and 0 otherwise) for all i. The numbers in parentheses are the
Bollerslev-Wooldridge robust standard errors.
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Table 4.6 Estimation results for the univariate GJR-GARCH models

Asset ω̂ α̂1 κ̂1 β̂1 α̂1 + κ̂1
2 + β̂1

AIG 0.0396
(0.0145)

0.0312
(0.0105)

0.0535
(0.0163)

0.9325
(0.0133)

0.9905

AXP 0.1083
(0.0328)

0.0282
(0.0114)

0.1124
(0.0276)

0.8997
(0.0186)

0.9842

BA 0.0685
(0.0615)

0.0424
(0.0193)

0.0337
(0.0318)

0.9292
(0.0371)

0.9885

F 0.0402
(0.0191)

0.0160
(0.0095)

0.0415
(0.0152)

0.9564
(0.0118)

0.9932

INTC 0.2339
(0.1233)

0.0286
(0.0186)

0.0879
(0.0439)

0.9049
(0.0344)

0.9774

JPM 0.0562
(0.0208)

0.0099
(0.0071)

0.0790
(0.0222)

0.9431
(0.0127)

0.9925

T 0.0337
(0.0173)

0.0355
(0.0113)

0.0458
(0.0222)

0.9355
(0.0188)

0.9938

Notes: The table contains the parameter estimates from the GJR-
GARCH(1,1) model for the seven stocks of the S&P 500 composite index,
over the period October 1, 1993 - September 30, 2003. The estimated
model has the form hit = ωi+αi1ε

2
it−1+κi1Iit−1(εit−1)ε2it−1+βi1hit−1,

where Iit(εit) = 1 if εit < 0 (and 0 otherwise) for all i. The numbers in
parentheses are the Bollerslev-Wooldridge robust standard errors.
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Table 4.7 Misspecification tests for the GJR-GARCH models

(a) LM test of no ARCH in the standardized residuals

Return AIG AXP BA F INTC JPM T
r = 1 0.133 0.180 0.243 0.018 0.786 0.435 0.215
r = 5 0.568 0.670 0.314 0.170 0.822 0.776 0.700
r = 10 0.253 0.727 0.362 0.302 0.812 0.902 0.766

(b) LM test of GJR-GARCH(1,1) vs. GJR-GARCH(1,2) model

Return AIG AXP BA F INTC JPM T
0.404 0.773 0.001 0.374 0.320 0.308 0.965

(c) LM test of GJR-GARCH(1,1) vs. GJR-GARCH(2,1) model

Return AIG AXP BA F INTC JPM T
0.490 0.607 0.007 0.026 0.049 0.272 0.482

(d) LM type test of no additional transition in the function gt

Return AIG AXP BA F INTC JPM T
0.003 2× 10−4 0.008 0.001 10× 10−5 0.016 0.003

(e) LM type test of no ST-GJR-GARCH model of order 1

Return AIG AXP BA F INTC JPM T
0.795 0.685 0.403 0.007 0.286 0.165 0.626

Notes: The entries are the p-values of the LM-type misspecification tests in Amado
and Teräsvirta (2008). The diagnostic tests are the following: (a) test of no ARCH-
in-GARCH against remaining ARCH of order r in the standardized residuals; (b)
test of a GJR-GARCH(1,1) model against a GJR-GARCH(1,2) model; (c) test
of a GJR-GARCH(1,1) model against a GJR-GARCH(2,1) model; (d) test of no
additional transition against another transition function in gt; (e) test of no remain-
ing nonlinearity against a Smooth Transition GJR-GARCH (ST-GJR-GARCH) of
order k = 1.
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Table 4.8 Misspecification tests for the TV-GJR-GARCH models

(a) LM test of no ARCH in the standardized residuals

Return AIG AXP BA F INTC JPM T
r = 1 0.112 0.077 0.907 0.104 0.993 0.429 0.390
r = 5 0.641 0.429 0.956 0.360 0.881 0.871 0.759
r = 10 0.392 0.570 0.725 0.340 0.557 0.960 0.749

(b) LM test of GJR-GARCH(1,1) vs. GJR-GARCH(1,2) model

Return AIG AXP BA F INTC JPM T
0.579 0.700 0.208 0.411 0.191 0.487 0.819

(c) LM test of GJR-GARCH(1,1) vs. GJR-GARCH(2,1) model

Return AIG AXP BA F INTC JPM T
0.878 0.943 0.741 0.419 0.071 0.702 0.557

(d) LM type test of no additional transition in the function gt

Return AIG AXP BA F INTC JPM T
0.660 0.085 0.128 0.718 0.855 0.587 0.453

(e) LM type test of no ST-GJR-GARCH model of order 1

Return AIG AXP BA F INTC JPM T
0.630 0.265 0.123 0.015 0.442 0.170 0.846

Notes: The entries are the p-values of the LM-type misspecification tests
in Amado and Teräsvirta (2008). The diagnostic tests are the following:
(a) test of no ARCH-in-GARCH against remaining ARCH of order r in
the standardized residuals; (b) test of a GJR-GARCH(1,1) model against
a GJR-GARCH(1,2) model; (c) test of a GJR-GARCH(1,1) model against
a GJR-GARCH(2,1) model; (d) test of no additional transition against an-
other transition function in gt; (e) test of no remaining nonlinearity against
a Smooth Transition GJR-GARCH (ST-GJR-GARCH) of order k = 1.
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Table 4.9 Log-likelihood values from the bivariate normal density for the CC-GJR-
GARCH estimated models

Pairs of CCC DCC TVCC
Assets GJR TV-GJR GJR TV-GJR GJR TV-GJR

AIG−AXP −9965.1 −8834.7 −9937.2 −8798.7 −9934.4 −8801.2

AIG−BA −10176.6 −8805.8 −10166.8 −8795.9 −10162.2 −8789.6

AIG−F −10256.1 −8999.0 −10250.2 −8989.9 −10249.6 −8991.8

AIG−INTC −11007.0 −9366.1 −10991.0 −9348.7 −10991.7 −9345.1

AIG−JPM −10084.6 −8851.0 −10050.6 −8813.2 −10058.6 −8821.3

AIG−T −9947.4 −8556.8 −9941.6 −8552.4 −9938.6 −8547.9

AXP−BA −10658.2 −9461.8 −10623.3 −9430.5 −10623.5 −9429.8

AXP−F −10712.7 −9624.7 −10697.6 −9606.7 −10704.2 −9613.4

AXP−INTC −11459.6 −9988.8 −11432.9 −9961.0 −11428.2 −9953.9

AXP−JPM −10445.9 −9381.6 −10388.2 −9315.7 −10409.4 −9334.6

AXP−T −10466.0 −9248.4 −10454.1 −9233.2 −10447.2 −9228.3

BA−F −10741.8 −9422.1 −10734.3 −9415.0 −10726.1 −9405.5

BA−INTC −11481.5 −9780.2 −11463.6 −9761.9 −11464.2 −9756.7

BA−JPM −10769.5 −9470.4 −10752.4 −9455.9 −10750.1 −9446.8

BA−T −10485.0 −9037.9 −10475.3 −9029.6 −10471.0 −9022.6

F−INTC −11537.5 −9937.9 −11522.4 −9924.7 −11526.9 −9924.5

F−JPM −10786.9 −9593.6 −10768.7 −9576.5 −10771.5 −9572.8

F−T −10578.2 −9237.6 −10575.4 −9233.6 −10569.8 −9226.9

INTC−JPM −11540.4 −9966.7 −11527.4 −9951.2 −11522.7 −9941.8

INTC−T −11314.7 −9594.2 −11306.7 −9585.9 −11298.6 −9575.5

JPM−T −10569.5 −9247.9 −10555.7 −9233.4 −10546.5 −9224.3

Notes: The table contains the log-likelihood values for each of the bivariate CC-GJR-GARCH
model. The conditional variances are modelled as GJR-GARCH(1,1). The GJR column indicates
that the unconditional variances are time-invariant functions. The TV-GJR column indicates that
the unconditional variances vary over time according to function (4.8). The maximized values for
the log-likelihood are shown in boldface.
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Table 4.10 Estimation results for the bivariate TVCC-GJR-GARCH models

Pairs of assets ρ(1) ρ(2) γ c

AIG−AXP 0.4564
(0.0338)

0.7394
(0.0177)

500
(−)

0.88
(0.001)

AIG−BA 0.2193
(0.0379)

0.4907
(0.0454)

15.06
(66.91)

0.85
(0.09)

AIG−F 0.2647
(0.0211)

0.4490
(0.0604)

500
(−)

0.88
(0.001)

AIG−INTC 0.1992
(0.0274)

0.5000
(0.0667)

9.51
(6.05)

0.85
(0.06)

AIG−JPM 0.4422
(0.0216)

0.6948
(0.0244)

500
(−)

0.86
(0.000)

AIG−T 0.2906
(0.0219)

0.4785
(0.0397)

500
(−)

0.85
(0.001)

AXP−BA 0.1839
(0.0272)

0.4954
(0.0305)

139.98
(114.18)

0.71
(0.01)

AXP−F 0.2880
(0.0223)

0.4436
(0.0383)

500
(−)

0.75
(0.000)

AXP−INTC 0.2159
(0.0257)

0.5137
(0.0297)

44.61
(52.01)

0.74
(0.02)

AXP−JPM 0.3842
(0.0330)

0.6241
(0.0163)

500
(−)

0.34
(0.001)

AXP−T 0.2445
(0.0230)

0.5377
(0.0443)

32.43
(21.82)

0.86
(0.02)

BA−F 0.1789
(0.0241)

0.4136
(0.0419)

500
(−)

0.78
(0.002)

BA−INTC 0.1390
(0.0273)

0.3820
(0.0435)

500
(−)

0.75
(0.001)

BA−JPM 0.1984
(0.0250)

0.4445
(0.0426)

500
(−)

0.74
(0.001)

BA−T 0.1488
(0.0214)

0.4217
(0.0420)

33.64
(15.056)

0.85
(0.02)

F−INTC 0.2412
(0.0226)

0.4743
(0.0531)

500
(−)

0.88
(0.001)

F−JPM 0.3200
(0.0331)

0.5888
(0.0554)

15.56
(64.01)

0.87
(0.07)

F−T 0.1657
(0.0237)

0.3572
(0.0429)

500
(−)

0.82
(0.001)

INTC−JPM 0.2701
(0.0265)

0.4962
(0.0428)

500
(−)

0.78
(0.000)

INTC−T 0.1197
(0.0235)

0.3834
(0.0567)

159.43
(105.88)

0.82
(0.02)

JPM−T 0.2396
(0.0222)

0.5473
(0.0401)

500
(−)

0.86
(0.001)

Notes: The table contains the estimation results for each
of the bivariate TVCC-GJR-GARCH model. The condi-
tional variances are modelled as GJR-GARCH(1,1) and the
unconditional variances are time-invariant functions. The
numbers in parentheses are the standard errors.
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Table 4.11 Estimation results for the bivariate TVCC-TVGJR-GARCH models

Pairs of assets ρ(1) ρ(2) γ c
AIG−AXP 0.4504

(0.0175)
0.7459
(0.0224)

500
(−)

0.88
(0.001)

AIG−BA 0.2202
(0.0235)

0.5390
(0.1174)

6.54
(4.09)

0.84
(0.070)

AIG−F 0.1824
(0.0341)

0.3303
(0.0249)

53.85
(51.68)

0.33
(0.036)

AIG−INTC 0.1872
(0.0240)

0.4554
(0.0443)

144.64
(37.18)

0.75
(0.004)

AIG−JPM 0.4355
(0.0218)

0.7052
(0.0236)

109.72
(52.88)

0.86
(0.007)

AIG−T 0.2954
(0.0211)

0.4786
(0.0387)

500
(−)

0.84
(0.001)

AXP−BA 0.1910
(0.0273)

0.5069
(0.0373)

29.57
(21.12)

0.73
(0.025)

AXP−F 0.2033
(0.0392)

0.3852
(0.0256)

15.37
(9.46)

0.37
(0.053)

AXP−INTC 0.2137
(0.0240)

0.5327
(0.0306)

40.15
(19.92)

0.74
(0.011)

AXP−JPM 0.3705
(0.0338)

0.6397
(0.0173)

23.58
(16.22)

0.36
(0.033)

AXP−T 0.2414
(0.0230)

0.5413
(0.0626)

25.43
(29.86)

0.85
(0.032)

BA−F 0.1746
(0.0230)

0.4172
(0.0413)

500
(−)

0.75
(0.001)

BA−INTC 0.1366
(0.0251)

0.4342
(0.0436)

144.19
(38.35)

0.76
(0.005)

BA−JPM 0.1975
(0.0241)

0.4753
(0.0409)

500
(−)

0.74
(0.001)

BA−T 0.1554
(0.0211)

0.7707
(0.2668)

6.62
(2.06)

0.94
(0.043)

F−INTC 0.2258
(0.0234)

0.4369
(0.0373)

500
(−)

0.76
(0.001)

F−JPM 0.3040
(0.0222)

0.7842
(0.5354)

4.56
(4.05)

0.91
(0.174)

F−T 0.1623
(0.0232)

0.3826
(0.0452)

500
(−)

0.82
(0.001)

INTC−JPM 0.2537
(0.0267)

0.5291
(0.0468)

24.54
(11.48)

0.74
(0.019)

INTC−T 0.1183
(0.0228)

0.4100
(0.0559)

500
(−)

0.82
(0.004)

JPM−T 0.2410
(0.0223)

0.5462
(0.0377)

500
(−)

0.84
(0.001)

Notes: The table contains the estimation results for each of the
bivariate TVCC-TVGJR-GARCH model. The conditional vari-
ances are modelled as GJR-GARCH(1,1) and the unconditional
variances vary over time according to function (4.8). The numbers
in parentheses are the standard errors.
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Figure 4.1 The seven stock returns of the S&P 500 composite index from October
1, 1993 until September 30, 2003 (2518 observations).
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Figure 4.2 Estimated gt functions for the seven stock returns of the S&P 500
composite index.
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Figure 4.3 Estimated conditional standard deviations from the GJR(1,1) model for
the seven stock returns of the S&P 500 composite index.
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Figure 4.4 Sample autocorrelation functions of the absolute value for the seven stock
returns of the S&P 500 composite index. The horizontal lines are the corresponding
95% confidence interval under the iid normality assumption.
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Figure 4.5 Estimated conditional standard deviations from the GJR(1,1) model for
the standardized variable εt/ĝ

1/2
t for the seven stock returns of the S&P 500 composite

index.
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Figure 4.6 Sample autocorrelation functions of the absolute value of the standard-
ized variable εt/ĝ

1/2
t for the seven stock returns of the S&P 500 composite index. The

horizontal lines are the corresponding 95% confidence interval under the iid normality
assumption.
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Figure 4.10 Estimated estimated time-varying news impact surfaces for the covari-
ance between the AXP and AIG returns under the CCC-TVGJR-GARCH model in
the (a) lower regime and in the (b) upper regime of volatility.
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Figure 4.11 Estimated time-varying news impact surfaces for the conditional vari-
ance of the AIG returns under the CCC-TVGJR-GARCH model in the (a) lower
regime and (b) upper regime of volatility.
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Figure 4.12 Estimated time-varying news impact surfaces for the conditional vari-
ance of the AXP returns under the CCC-TVGJR-GARCH model in the (a) lower
regime and (b) upper regime of volatility.
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Figure 4.13 Estimated time-varying news impact surfaces for the covariance between
the AXP and AIG returns under the TVCC-TVGJR model in the (a) lower regime
and in the (b) upper regime of volatility.
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A Smooth Transition Approach to Modelling Diurnal

Variation in Models of Autoregressive Conditional

Duration1

Abstract

This paper introduces a new approach for adjusting the diurnal variation in the trade
durations. The model considers that durations are multiplicatively decomposed into
a deterministic time-of-day and a stochastic component. The parametric structure
of the diurnal component allows the duration process to change smoothly over the
time-of-day. In addition, a testing framework consisting of Lagrange multiplier tests
is proposed for specifying the diurnal component. Our methodology is applied to the
IBM transaction durations traded at the New York Stock Exchange.

1This paper is a joint work with Timo Teräsvirta.
Acknowledgements: This research has been supported by the Danish National Research Foun-
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5.1 Introduction

The automated trading in financial markets and the development in computing power
have made available intraday datasets containing recorded information of the trans-
actions at the exchanges. Because transaction data arrive in irregularly spaced time
intervals, standard econometric methods are no longer applicable. The so-called high-
frequency financial duration models were first introduced by Engle and Russell (1998)
for tackling this inherent feature of the transaction data. These authors developed
the class of Autoregressive Conditional Duration (ACD) models, in which the time
elapsed between two market events (or duration) is the object of modelling. Their
model considers an autoregressive structure on the conditional expected durations
whose dynamics resembles the GARCH process for modelling the conditional vari-
ances.

An important feature of financial durations is the evidence of a strong diurnal
variation over the trading day. Several studies have documented that trading activity
is usually more intensive (shorter durations) near the opening and the closing of
the market, and less intensive (longer durations) around lunchtime. Therefore, prior
to using the ACD model any daily periodicity should be removed from the financial
durations. This observation has been first reported in Engle and Russell (1998) whose
procedure is often used for taking into account the diurnal variation in the durations.
Their approach consists of decomposing the durations into a deterministic component,
that accounts for the diurnal variation, and a stochastic component for modelling the
durations dynamics. A common practice is to parameterize the diurnal component
according to a spline function; see Engle and Russell (1998) and Bauwens and Giot
(2000). Some others methods have been considered in previous studies. McCulloch
and Tsay (2001) suggested a smooth quadratic function, whereas Zhang, Russell, and
Tsay (2001) have estimated the diurnal variation using the super smoother method
of Friedman (1984). As an alternative, Rodriguez-Poo, Veredas, and Espasa (2008)
suggested a joint estimation of the deterministic and stochastic components in which
the diurnal variation is estimated nonparametrically.

In this paper we follow Engle and Russell (1998) and let the durations be multi-
plicatively decomposed into a deterministic and a stochastic component. We propose
a new parameterization for the diurnal component in which the duration process is
allowed to change smoothly over the time-of-day. In addition, we provide a testing
framework for specifying the structure of the diurnal component by a sequence of La-
grange multiplier tests. The empirical results suggest that the diurnal variation may
not always have the inverted U-shaped pattern for the trade durations as documented
in earlier studies. For this reason, one should proceed with care in the modelling of
the time-of-day component.

The outline of the paper is as follows. In Section 5.2 we briefly review the ACD
model. In Section 5.3 we present our method for removing the diurnal variation.
Section 5.4 introduces the testing strategy for specifying the diurnal variation com-
ponent. Section 5.5 contains the application for the IBM trade durations. Section 5.6
concludes.
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5.2 The ACD framework

Let ti be the time (measured in seconds) at which the i−th trade occurs and the du-
ration xi = ti− ti−1 be the time interval between two consecutive transactions occur-
ring at times ti and ti−1. Let Fi−1 be the information set consisting of past durations
available at time ti−1. Following Engle and Russell (1998), the basic assumption of
the ACD model is that the time dependence in the durations be captured by their
conditional expectation such that

xi
E(xi|Fi−1)

≡ εi ∼ i.i.d. D($) (5.1)

where E(xi|Fi−1) = ψi(xi−1, . . . , x1;θψ) is the conditional mean duration on Fi−1,
and D is a general distribution with positive support and parameter vector $. In
the simplest ACD model, the durations are defined in terms of a multiplicative error
term as

xi = ψiεi, (5.2)
ψi = ψi(xi−1, . . . , x1;θψ), (5.3)

and
εi ∼ i.i.d. exp(1) (5.4)

for i = 1, . . . , n. Equations (5.2)-(5.4) define the Exponential ACD model. The ex-
pectation of the duration conditional on Fi−1 is specified as

ψi = ω +
m∑
j=1

αjxi−j +
q∑
j=1

βjψi−j . (5.5)

The condition 1−
∑m
j=1 αj−

∑q
j=1 βj < 1 is necessary and sufficient for the existence

of E(xi). The parameter restrictions ω > 0, αj ≥ 0, j = 1, . . . ,m, and βj ≥ 0, j =
1, . . . , q, are sufficient for the positivity of the conditional durations. For m = q = 1
they are also necessary. Bauwens and Giot (2000) proposed a class of logaritmic
ACD models to ensure positiveness of the conditional durations without parametric
constraints. The autoregressive structure in equation (5.5) allows the model to ac-
count for clustering of durations. Its dynamic structure resembles that of the GARCH
model of Bollerslev (1986): it is a linear autoregressive process of past durations and
conditional expectations. Consequently, many results and properties of the GARCH
literature can be adapted to the ACD context.

The distribution for the errors of the ACD model (5.1)-(5.3) is not limited to the
exponential density as defined in (5.4). Other choices of distribution are possible
such as the Weibull, Burr, or generalized gamma distribution. Gourieroux, Monfort,
and Trognon (1984) showed that the Quasi-Maximum Likelihood (QML) method
produces consistent estimators of a correctly specified conditional mean model if and
only if the QML is based on a distribution belonging to the linear exponential family,
and this holds even when the density is misspecified. For this reason, the QML
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estimators based on the exponential distribution will be consistent regardless the true
error distribution, whereas the QML estimation based on densities not belonging
to the linear exponential family such as the Weibull, Burr, or generalized gamma
distributions will not produce consistent estimators. As an alternative, Drost and
Werker (2004) showed that the QML estimators are consistent based on the standard
gamma distribution. The score function of this log-likelihood, however, is proportional
to the one from the exponential density, and using either one of these two distributions
thus yields identical estimators.

5.3 Adjusting diurnal variation with smooth tran-
sitions

It is well documented in the literature that trading market activity is subjected to
systematic variations over the time of the day. This is mainly because of the insti-
tutional features of the exchanges. Trading activity is usually more intense at the
beginning and at the end of the day than it is around lunchtime. The high trading
activity after the opening of the market occurs because traders want to adjust their
positions to the information accumulated before the opening of the exchange. The
frequency of transactions is also high near the closing of the market as traders want
to close their positions before the trading session ends. This leads to an inverted
U-shaped pattern for the average intertrade durations over the trading day.

In order to account for this diurnal variation, the durations may be multiplica-
tively decomposed into a deterministic and a stochastic component. The deterministic
component describes the intradaily pattern of the durations and the stochastic one
represents the dynamics of the ACD-type model. The deterministic effect may be
removed from the data prior to estimating the ACD model. Engle and Russell (1998)
suggested to ‘diurnally adjust’ the duration series by

x̃i = xi/φ(ti−1;θφ) (5.6)

in which x̃i is the adjusted duration and φ(ti−1;θφ) is the deterministic time-of-day
component. The expected duration equals

E(xi|Fi−1) = φ(ti−1;θφ)ψi(x̃i−1, . . . , x̃1;θψ) (5.7)

The component ψi is interpreted as the expected proportion above or below the normal
duration level at that time of day.

The usual practice is to ‘diurnally adjust’ the duration series by estimating the
average durations using a linear or a cubic spline function conditioned on the time-
of-day and then remove this diurnal component from the original durations. The
diurnal pattern is estimated by averaging the durations over thirty minute intervals,
and using a cubic spline over the course of the day to smooth the durations; see
Bauwens and Giot (2000). The duration series is ‘diurnally adjusted’ by dividing
the original durations by the estimated diurnal component as in (5.6). This is done
separately for each trading day as the time-of-day component may vary according to
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the day of the week. Alternatively, the parameter vectors θψ and θφ may be estimated
jointly by maximum likelihood. However, Engle and Russell (1998) pointed out that
the two-step procedure and the joint estimation by ML yield almost the same results
for large samples.

Alternative ways of parameterizing the time-of-day effect exist. McCulloch and
Tsay (2001) have developed a linear regression method to remove the diurnal pattern
using quadratic time functions and indicator variables. Furthermore, Rodriguez-Poo,
Veredas, and Espasa (2008) suggested a semiparametric approach to the problem
using a simple transformation of the Nadaraya–Watson estimator to remove diurnal
variation from the process.

In this paper we propose to ‘diurnally adjust’ the durations by parameterizing the
diurnal component as follows:

φ(ti−1;θφ) = δ0 +
r∑
l=1

δlGl(ti−1; γl, cl) (5.8)

where Gl(ti−1; γl, cl), l = 1, . . . , r, is a transition function bounded between zero and
one. This implies that the duration process is assumed to change smoothly over
the time-of-day. In this context, the transition variable ti−1 is the intraday time
(measured in seconds from the beginning of the trading day) which is for convenience
rescaled to run from zero to one. The transition function is the logistic function

Gl(ti−1; γl, cl) =

1 + exp

−γl
k∏
j=1

(ti−1 − clj)


−1

, l = 1, . . . , r, (5.9)

satisfying the identification restrictions γl > 0, cl1 ≤ cl2 ≤ ... ≤ clk. The slope param-
eter γl controls the degree of smoothness of the transition function: the larger γl, the
faster the transition is between the extreme regimes. When γl −→∞, (5.9) becomes a
step function, and the process switches instantaneously from one regime to the other
at ti−1 = clj . Typical choices for the transition function in practice are k = 1 and
k = 2. When k = 2 the model can describe the aforementioned situation in which
trading activity is higher in the beginning and then at the end of the session than it
is in the middle of the day. Note that when δ1 = ... = δr = 0 in (5.8) there are no
systematic changes in the durations during the day. In this case, the durations tend
to be uniformly exponentially distributed around their “normal” level. This special
case is included in our model.

5.4 Specification tests for the diurnal component

In our framework, the structure of the diurnal component is determined by a sequence
of specification tests. These are based on statistical inference and they consist on two
specification tests. The first one tests the hypothesis of no diurnal variation against
durations that change smoothly over the time-of-day. The other tests are for testing
whether yet another transition function is required in the definition of the diurnal
component.
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5.4.1 Testing for no diurnal variation

The test of no diurnal variation is an important tool for checking the presence of
systematic changes over the time-of-day. The starting-point is that there is no sys-
tematic change over the time-of-day while the alternative is that durations are varying
smoothly during the day. In order to consider this testing problem let r = 1 in (5.8)
and assume that the conditional duration process ψi = ω, i.e.

xi = ψiφiεi, εi ∼ i.i.d. exp(1) (5.10)
ψiφi = ω{1 + δ1G1(ti−1; γ1, c1)} = ω + δ∗1G1(ti−1; γ1, c1). (5.11)

where ψi ≡ ψi(x̃i−1, . . . , x̃1;θψ), φi ≡ φ(ti−1;θφ) and δ∗1 = ωδ1. The null hypothesis
of no diurnal variation is γ1 = 0 and the alternative γ1 > 0. The testing problem is
nonstandard as δ∗1 and c1 are unidentified nuisance parameters when γ1 = 0. Following
Luukkonen, Saikkonen, and Teräsvirta (1988) we solve the identification problem by
approximating G1(ti−1; γ1, c1) with its third-order Taylor expansion around γ1 = 0 .
After reparameterizing, we obtain

ψiφi = ω +
3∑
k=1

λkt
k
i−1 +R3(ti−1; γ1, c1) (5.12)

where λj = γ1δ̃
∗
j and R3(t/T ; γi1, ci1) is the remainder. Under H0, R3(ti−1; γ1, c1) ≡

0, so the asymptotic theory of the LM test statistic is not affected by this approxi-
mation. The null hypothesis of no diurnal variation becomes H

′

0 : λ1 = λ2 = λ3 = 0.
This hypothesis can be tested by an LM test as follows:

1. Estimate the conditional duration process under the assumption that ψi = ω,
and compute ûi = xi/ω̂ − 1, i = 1, . . . , n, and SSR0 =

∑n
i=1 û

2
i .

2. Regress ûi on x̂′1i = ω̂−1 and x̂′2i = (ti−1, t
2
i−1, t

3
i−1)′, i = 1, . . . , n, and compute

SSR1.

3. Then, under the null hypothesis and the assumption ψi = ω, the test statistic

LM = n(SSR0 − SSR1)/SSR0

has an asymptotic χ2 distribution with three degrees of freedom.

We shall call our LM test statistic LMk, where k indicates the order of the polyno-
mial in the exponent of the transition function. The rejection of the null hypothesis
raises the problem of choosing k. In order to select k, we carry out a short sequence of
nested tests following Teräsvirta (1994) and Lin and Teräsvirta (1994). This is done
as follows. If parameter constancy is rejected at the significance level α(1), test the
following sequence of hypotheses:

H03 : λ3 = 0,
H02 : λ2 = 0 | λ3 = 0,
H01 : λ1 = λ2 = λ3 = 0 | λ2 = λ3 = 0,
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in (5.12), by means of LM-type tests. If H0i is rejected most strongly, measured by
the p-value, of the three hypotheses, one selects k = i. Visual inspection of the series
may sometimes also be helpful choosing k and can be used in parallel with the tests.

5.4.2 Testing the hypothesis of no additional transitions

After estimating the diurnal component with a single transition the next step is to
investigate the possibility of remaining diurnal variation in the durations. In order to
do that, the previous test must be generalized to the case where we test r = 1 against
r ≥ 2 in (5.8). To derive the test, consider the model

xi = ψiφiεi, εi ∼ i.i.d. exp(1) (5.13)
ψiφi = ω + δ∗1G1(ti−1; γ1, c1) + δ∗2G2(ti−1; γ2, c2). (5.14)

The hypothesis of no additional transition is γ2 = 0. Again, the parameters δ∗2 and
c2 are only identified under the alternative. The identification problem is solved as
before, using a Taylor series approximation of G2(ti−1; γ2, c2) around γ2 = 0. After
rearranging terms we have

ψiφi = ω + δ∗1G1(ti−1; γ1, c1) +
3∑
k=1

θkt
k
i−1 +R∗3(ti−1; γ2, c2) (5.15)

Under the null, the remainder R∗3(ti−1; γ2, c2) ≡ 0, so it does not affect the asymptotic
theory. The new null hypothesis becomes H

′

02 : θ1 = θ2 = θ3 = 0. The significance
level is now reduced by a factor τ ∈ (0, 1) in order to favour parsimony: α(2) = τα(1).
In the application, we set τ = 0.5. Assuming ψi = ω, this hypothesis can be tested
using an LM test as before with ui = xi/ψiφi − 1, x′1i = ψ−1

i (φi + ψi
∂φi

∂δ ), ∂φi

∂δ =
(∂φi

∂δ∗1
, ∂φi

∂γ1
, ∂φi

∂c′1
)′, and x′2i = φ−1

i (ti−1, t
2
i−1, t

3
i−1)′, i = 1, . . . , n.

5.5 An application to the IBM trade durations

5.5.1 Data

The time series in this application consist of intertrade durations between transactions
of IBM shares traded at the New York Stock Exchange (NYSE). The original series
were extracted from the Trade and Quote (TAQ) database available from the NYSE,
and the sample period covers the entire month of December 2002. Besides detailed
information about volume, transaction prices, and bid and ask quotes at the time of
the trade, the database contains a time stamp, measured in seconds after midnight
and indicating the time when the transaction occurred.

Prior to using the data, we remove the irregular transactions using the correction
indicator attached to each trade. Trades that occur before 9:30 AM and after 4:00
PM are also excluded. Because the market was partly closed on December 24th, this
day has been removed from the data set. Furthermore, the overnight durations are
ignored as the trades are treated consecutively from day to day. This leaves us with
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Figure 5.1 Plots of the IBM transactions data in December 2002: (a) average
number of transactions in 5-minute time intervals; (b) average durations in 5-minute
time intervals.

20 trading days with a total of 82011 transactions at 76823 unique times. Multiple
transactions within a second are considered as a single trade. Thus the minimum time
between events is one second, whereas the maximum observed duration turns out to
be 142 seconds or 2 minutes and 22 seconds. The average duration between sucessive
events is 6.09 seconds with a standard deviation of 6.22 seconds. Moreover, there is
strong autocorrelation in the durations as the Ljung-Box statistic of serial correlation
up to the 15th order equals Q(15) = 1244 with p-value = 7 × 10−256. For modelling
such dependence, we follow Engle and Russell (1998) and use the linear ACD model.
At this stage, where the focus is on modelling the diurnal variation, we consider the
simplest version of the model. A better alternative such as a nonlinear ACD-type
model would probably be needed to adequately capture the dynamic behaviour of
the durations. Evidence of nonlinearity in the durations has been reported in Zhang,
Russell, and Tsay (2001) and Meitz and Teräsvirta (2006), among others.

Figure 5.1(a) displays the average number of transactions within 5-minute time
intervals over the 20 trading days. Each trading day contains 78 intervals. The
plot exhibits a U-shaped pattern indicating active trading at the opening and the
closing of the market and slower pace around the lunch hour. The average intraday
durations in 5-minute time intervals plotted in Figure 5.1(b) reinforces this feature.
The durations are usually shorter at the beginning and the end of the trading day,
and longer around midday, which yields an inverted U-shaped in the durations. As
the intraday variation is repeated systematically for every trading day, the ACF of
the number of transactions in 5-minute intervals is characterized by the periodicity
shown in Figure 5.2.

Our analysis differs from the usual practice in the sense that we consider every
week in the sample separately. This way we can accommodate possible calendar effects
over the time-of-week. However, a formal test is needed for testing the hypothesis
of no systematic pattern over the days of the week. In case of rejection, the day-
of-the week effect should be explicitly incorporated in the model. This problem is,
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Figure 5.2 Sample autocorrelation function of the number of transactions in 5-
minute time intervals for the IBM stock during the month of December 2002.

however, left for further research. Instead, we shall model the intraday pattern on
complete five-day weeks to account for day-of-the-week effects. This leaves us with
three complete weeks. Summary statistics of the unadjusted durations for December
2002 are presented in Table 5.1. The observed durations of the first week are plotted
in Figure 5.3 (Appendix A). It shows the clustering effect in the durations, i.e. short
(large) durations tend to be followed by durations of the same kind. The strong
diurnal variation for each trading day is clearly visible as well.

5.5.2 Modelling smooth daily periodicities

Prior to modelling the durations the diurnal component should be removed from
the series separately for each day of the sample. This raises the question of how to
proceed. Does the time-of-day always affect the structure of the durations? If this
happens, which adjustment method should be used to remove the intraday pattern?
To find out whether the durations are affected by the time-of-day we shall make use
of the tests suggested in Section 5.4.

The test results of no intraday pattern against smooth diurnal variation are pre-
sented in the second column of Table 5.2. Here, we choose α(1) = 0.01. Intraday
variation clearly seems to be an inherent feature in the durations: the null hypothesis
is rejected very strongly for almost every trading day. The exceptions are December
23 and December 31 in which the test does not reject at 1% significance level, although
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Table 5.1 Summary statistics of the IBM durations

Durations Min Max Mean S.D. Skew. Ex.Kurt.

Week 1(02/12/02 - 06/12/02): T=20811

Raw 1 142 5.618 5.554 3.631 33.26
Adjusted Spline 0.125 21.43 1.000 0.941 3.083 22.10
Adjusted Smooth 0.130 19.01 0.933 0.895 3.069 19.90

Week 2(09/12/02 - 13/12/02): T=19248

Raw 1 81 6.074 6.101 2.893 13.71
Adjusted Spline 0.113 13.19 1.000 0.966 2.768 13.01
Adjusted Smooth 0.116 12.10 0.967 0.949 2.778 12.56

Week 3(16/12/02 - 20/12/02): T=18818

Raw 1 82 6.215 6.220 2.701 11.64
Adjusted Spline 0.0951 12.18 0.999 0.961 2.533 10.07
Adjusted Smooth 0.1226 13.66 0.956 0.949 2.698 11.97

Notes: Summary statistics for transaction duration data in seconds for the IBM
stock traded at NYSE in December 2002.

the p-values still remain below the 5% level. This is explained by the irregular trading
activity of these days due to their proximity to the Christmas Eve and the New Year’s
Day. Note, however, that the test based on the first-order Taylor approximation does
reject the null hypothesis (it is H01) at the 1% level.

The tests of the last three columns correspond to a sequence of nested tests based
on (5.12) for choosing k in (5.9). In this context, k is related with the shape of diurnal
pattern. As mentioned aboved, if H0i is rejected most strongly, measured by the p-
value, of the three hypotheses, one selects k = i. The table shows k = 2 for sixteen
out of nineteen days, whereas for the remaining days k = 1 is the appropriate choice.
As already mentioned, the test of H01 is the test of no diurnal variation based on the
first-order Taylor approximation. It has power against the single logistic transition
k = 1. Because the diurnal variation typically has an inverted U-shape, we fit the
diurnal component φi with a single transition and then test for another transition.
The resulting p-values are presented in Table 5.3. The hypothesis of one transition
against another transition in the diurnal component is still rejected at α(2) = 0.005
for one trading day, but the rejection is much weaker than before. Consequently, the
function φi with two transitions is chosen as the diurnal component for December
16th.

For comparison, tests for October 2002 are also reported in Table 5.4 (Appendix
B). Two outcomes deserve particular attention. First, the null hypothesis of no diurnal
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Table 5.2 p-values of the LM tests of no diurnal variation (December 2002)

Day H0 H03 H02 H01

02/12/2002 3× 10−15 0.0169 3× 10−13 5× 10−4

03/12/2002 9× 10−13 0.2428 8× 10−13 0.0097
04/12/2002 6× 10−15 0.1887 2× 10−7 2× 10−10

05/12/2002 6× 10−22 0.3468 1× 10−17 1× 10−7

06/12/2002 4× 10−7 0.1053 9× 10−5 1× 10−4

09/12/2002 1× 10−11 0.0927 1× 10−12 0.4913
10/12/2002 3× 10−20 0.9704 1× 10−21 0.1005
11/12/2002 1× 10−11 7× 10−4 2× 10−9 0.0095
12/12/2002 3× 10−11 0.0071 2× 10−11 0.8108
13/12/2002 6× 10−5 0.1327 9× 10−6 0.5924
16/12/2002 3× 10−10 1× 10−4 0.0021 1× 10−6

17/12/2002 1× 10−20 2× 10−4 4× 10−19 0.1782
18/12/2002 5× 10−15 0.7886 1× 10−12 1× 10−5

19/12/2002 1× 10−15 0.0038 4× 10−13 1× 10−4

20/12/2002 1× 10−17 0.1157 4× 10−18 0.0340
23/12/2002 0.0164 0.0666 0.0086 0.9627
26/12/2002 4× 10−8 0.6262 5× 10−9 0.1069
27/12/2002 2× 10−13 0.2733 1× 10−9 1× 10−6

31/12/2002 0.0360 0.5900 0.4609 0.0055

Notes: The table contains p-values of the LM tests of no diurnal variation against
smoothly time-varying diurnal pattern in the durations for December 2002. The p-
values shown in boldface indicate the lowest rejection rate.

pattern is not rejected for seven out of 23 trading days. The intraday pattern is thus
considerably less conspicuous in October than in December, which suggests that the
durations may also vary systematically over the year besides the time of day. Second,
when the null hypothesis is rejected, the tests support the usual inverted U-shape of
diurnal variation only in four out of fifteen days. This suggests the diurnal pattern
may not always have the shape proposed earlier: short durations early and late in the
day and lower activity in the middle. For this reason, one should proceed with care
when specifying the diurnal component. The estimation of the ACD model should be
preceded by a specification search to determine the diurnal variation.

For the empirical analysis, durations are ‘diurnally adjusted’ using two different
estimators for the diurnal component. The first estimator is cubic spline of Engle and
Russell (1998), and the second one our smooth transition component. The adjusted
durations are obtained by dividing the raw durations by one of these deterministic
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Table 5.3 p-values of the LM tests of a single transition against a double transition
in the diurnal component

Day H0 H03 H02 H01

04/12/2002 0.0161 0.2310 0.0272 0.0455
16/12/2002 9× 10−5 0.0476 0.0282 4× 10−4

31/12/2002 0.0967 0.4336 0.5983 0.0197
Notes: The table contains p-values of the LM tests of no diurnal variation
against smoothly time-varying diurnal pattern in the durations for Decem-
ber 2002. The p-values shown in boldface indicate the lowest rejection
rate.

diurnal factors. The diurnal components estimated by cubic splines for each day of the
second week of December are shown in Figure 5.4 whereas the ones estimated using
the smooth transition approach can be found in Figure 5.5. The durations change
systematically through the day, and the pattern of trading activity accords to what
has been reported in earlier studies. Durations tend to be shorter at the beginning
and at the end of the day and longer around lunch time. Some summary statistics of
the adjusted durations can be found in Table 5.1.

Table 5.5 presents the estimation results for the two parameterizations of φi. The
parameter estimates are significant in the three weeks. The smooth diurnal compo-
nent has a larger value of α̂1 + β̂1 than the cubic spline method. Similar results were
obtained by Rodriguez-Poo, Veredas, and Espasa (2008) who employed a semipara-
metric model for the diurnal factor. Furthermore, the results indicate that the smooth
transition parameterization attains higher likelihood values, and therefore seems to
fit durations better than the cubic spline approach.

5.6 Conclusions

In this paper we have introduced the smooth transition method for parameterizing
the diurnal variation in the intertrade durations. This is done by multiplicatively
decomposing durations into a deterministic and an stochastic component, in which the
durations are allowed to change smoothly over the time-of-day. A testing framework is
also provided for determining the structure of the diurnal component using a sequence
of specification tests.

Our modelling technique is illustrated with an application to IBM stock transac-
tion data. The test results indicate that the diurnal variation may not always have
the documented inverted U-shaped pattern for the trade durations. In addition, the
results suggest that our method fits durations better than the cubic spline approach.

A possible extension of this framework is to jointly estimate the parametric condi-
tional duration and diurnal variation components. This may be done by maximisation
by parts as in Song, Fan, and Kalbfleisch (2005) in which the resulting estimator coin-
cides with the ML estimator. This consideration is, however, left for future research.
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Figure 5.3 Durations for IBM traded in the first five trading days of December
2002.
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Figure 5.4 Estimated diurnal variation using the cubic spline for the trade durations
of IBM in the second week of December 2002. The scale of the x-axis is time measured
in seconds after midnight.
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Figure 5.5 Estimated diurnal variation using the smooth transition for the trade
durations of IBM in the second week of December 2002. The scale of the x-axis is
time measured in seconds after midnight.
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Table 5.4 p-values of the LM tests of no diurnal variation (October 2002)

Day H0 H03 H02 H01

01/10/2002 9× 10−4 0.6022 2× 10−4 0.1166
02/10/2002 9× 10−4 0.0041 0.1707 0.0109
03/10/2002 6× 10−17 0.0025 7× 10−17 0.8382
04/10/2002 0.3204 0.1032 0.4342 0.6270
07/10/2002 0.4354 0.5866 0.2659 0.2741
08/10/2002 0.0985 0.2842 0.5659 0.0283
09/10/2002 3× 10−4 0.0327 0.5361 2× 10−4

10/10/2002 3× 10−17 3× 10−5 1× 10−5 3× 10−11

11/10/2002 4× 10−8 0.1502 0.0655 2× 10−8

14/10/2002 7× 10−10 6 × 10−7 6× 10−6 0.6683
15/10/2002 0.2632 0.7177 0.3549 0.0833
16/10/2002 0.0797 0.1412 0.9622 0.0319
17/10/2002 9× 10−12 0.3052 0.2504 5 × 10−13

18/10/2002 0.5046 0.7125 0.1597 0.6318
21/10/2002 0.0023 0.0508 0.2786 0.0021

22/10/2002 0.0205 0.6768 0.0517 0.0157

23/10/2002 9× 10−13 0.0932 7 × 10−8 2× 10−7

24/10/2002 9× 10−9 7 × 10−6 2× 10−5 0.2146
25/10/2002 1× 10−7 0.5485 2 × 10−5 4× 10−5

28/10/2002 0.0018 3 × 10−4 0.2108 0.7034
29/10/2002 0.7720 0.7551 0.7723 0.3323
30/10/2002 2× 10−9 0.0193 0.9384 6× 10−10

31/10/2002 2× 10−8 0.6035 0.3705 1× 10−9

Notes: The table contains p-values of the LM tests of no diurnal variation against
a smooth diurnal pattern in the durations for October 2002. The p-values shown in
boldface indicate the lowest rejection rate of the null hypothesis.
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Table 5.5 ACD Estimation results for the Exponential ACD model (robust standard
errors in parentheses)

ω̂ α̂1 β̂1 α̂1 + β̂1 Log-Lik

Week 1: 02/12/02 - 06/12/02

Spline 0.2095
(0.0227)

0.0865
(0.0072)

0.7042
(0.0268)

0.7907 -20673.7

Smooth 0.1111
(0.0237)

0.0843
(0.0100)

0.7969
(0.0341)

0.8812 -19150.2

Week 2: 9/12/02 - 13/12/02

Spline 0.1289
(0.0251)

0.0640
(0.0075)

0.8071
(0.0311)

0.8711 -19128.6

Smooth 0.0553
(0.0141)

0.0560
(0.0078)

0.8868
(0.0216)

0.9429 -18382.0

Week 3: 16/12/02 - 20/12/02

Spline 0.1612
(0.0277)

0.0781
(0.0080)

0.7608
(0.0339)

0.8389 -18669.7

Smooth 0.0308
(0.0100)

0.0551
(0.0094)

0.9129
(0.0195)

0.9679 -17629.3
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ning i fokus. EFI:s Årsbok 2008. EFI/Studentlitteratur.
Kraus, Kalle. Sven eller pengarna? Styrningsdilemman i äldrev̊arden. Forskning i
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Wijkström, Filip, Stefan Einarsson and Ola Larsson. Staten och det civila samhället:
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