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This thesis consists of four research papers. The main focus is on building mul-
tivariate Generalised Autoregressive Conditional Heteroskedastic (GARCH) models
with explicit modelling of conditional correlations. The general formulation of the
model is as follows. Assume an N -dimensional vector of stochastic process such that

εt = Dtzt (1.1)

where Dt is a diagonal matrix with elements h
1/2
i,t , i = 1, . . . , N , the terms in the

sequence of the stochastic vectors {zt} = [z1,t, . . . , zN,t]
′ are independently distributed

with E[zt|Ft−1] = 0 and E[z′tzt|Ft−1] = Pt where Ft is the information set up to and
including time t, and Pt ∈ Ft−1. Then we have E[εt|Ft−1] = 0 and E[εtε

′
t|Ft−1] =

DtPtDt = Ht. The elements of matrix Ht are defined as follows

[Ht]ij =

{
hi,t i = j,

h
1/2
i,t h

1/2
j,t ρij,t i �= j.

(1.2)

The equations (1.1) and (1.2) constitute a multivariate GARCH model with explicit
modelling of conditional correlations. We shall call this class of multivariate GARCH
models the family of the Conditional Correlation (CC-) GARCH models. In these
models, Ht and Pt are the time-varying conditional covariance matrix and the time-
varying positive definite conditional correlation matrix of the process εt, respectively.

The most attractive feature of the family of the CC-GARCH models is that the
definitions of Ht and Pt make it possible to define separate parametric structures
for the conditional variances and the conditional correlations. The basic framework
of the CC-GARCH model was introduced by Bollerslev (1990) with the assumptions
that Pt ≡ P, that is, the conditional correlations are constant over time and that
each diagonal element of Ht follows the standard univariate GARCH(p, q) model
of Bollerslev (1986). Following this Constant CC- (CCC-) GARCH representation,
much attention has been paid on building more flexible models for describing the
dynamics of the conditional correlations. Examples include the Dynamic Conditional
Correlation (DCC-) GARCH of Engle (2002), the Varying Correlation GARCH of
Tse and Tsui (2002), the Smooth Transition Conditional Correlation (STCC-) and
Double STCC (DSTCC-) GARCH of Silvennoinen and Teräsvirta (2005, 2009a) and
the generalised DCC-GARCH of Hafner and Franses (2009), to name a few.

Modelling the conditional variances and the conditional correlations separately
leads to gains in flexibility. But then, one has to deal with model building issues
on both the conditional variance and the conditional correlation components. As
Silvennoinen and Teräsvirta (2009b) pointed out, however, compared to the efforts
made on modelling the correlations less work has been done on modelling of the con-
ditional variance component in the CC-GARCH models. The few exceptions include
Jeantheau (1998), Ling and McAleer (2003) and He and Teräsvirta (2004)1. They all

1Another extension was recently proposed by McAleer, Hoti, and Chan (2009). Their model,
a Vector ARMA-Asymmetric GARCH model, specifies the conditional variance component as a
multivariate extension of the univariate GJR-GARCH model of Glosten, Jagannathan, and Runkle
(1993).
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consider the following vector formulation of the conditional variance component:

ht = a0 +

q∑
i=1

Aiε
(2)
t−i +

p∑
j=1

Bjht−j (1.3)

where ht = [h1,t, . . . , hN,t]
′, ε(2)t = [ε21,t, . . . , ε

2
N,t]

′, a0 is an (N×1) vector of constants,
and Ai and Bj are (N ×N) matrices with elements such that hk,t, k = 1, . . . , N , in
ht are positive for all t.

The equation (1.3) is a multivariate counterpart of the univariate GARCH(p, q)
representation. This equation differs from the univariate GARCH(p, q) model in that
it allows for interaction effects or causality in conditional variance through off-diagonal
elements of Ai and Bj . Therefore, a conditional variance hk,t of the kth variable in
the system is not only a function of (εk,t−i, hk,t−j) but also of (εl,t−i, hl,t−j), l �= k. He
and Teräsvirta (2004) showed that the CCC-GARCH model with (1.3) can describe
a richer autocorrelation structure of the squared observation than does the standard
CCC-GARCH model. They called this specification an Extended CCC (ECCC-)
GARCH model.

Nevertheless, many of papers in the existing literature merely use a variant of
univariate GARCH models in characterising the conditional variances. Despite the
fact that a number of different specifications are possible for the univariate models,
incorporating interaction effects or causality in conditional variances into the model
is not possible. Consequently, this thesis mainly focuses on issues of building the
CC-GARCH models with the conditional variance of the form (1.3). In the following
three chapters, misspecification testing and parameter restrictions in these models are
discussed. In the final chapter, a computer package for building major variants of the
CC-GARCH models is presented. A brief summary of each of these chapters follows
next.

Chapter 2, entitled “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model,”2 proposes a misspecification test for modelling of the
conditional variance part of the ECCC-GARCH model. The test proposed in this
chapter is to test of the nullity of the off-diagonal elements of the matrices Ai and Bj

in (1.3). If the null hypothesis that the off-diagonal elements are all zero is true, then
each conditional variance in (1.3) may be described by the standard GARCH(p, q)
model. Since the standard CCC-GARCH(p, q) model is numerically much easier to
estimate than the alternative, the test is constructed on the Lagrange Multiplier (LM)
or the score principle that only requires the estimation of the null model.

Finite sample properties of the test are investigated in the bivariate case through
Monte Carlo experiments. The results show that the test is well behaved (the empir-
ical size of the test is reasonably close toe nominal one) when the sample size reaches
2000. Although the test is derived under the assumption of the constant conditional

2This chapter is a joint work with Timo Teräsvirta. An abridged version was published in Econo-
metrics Journal as Nakatani and Teräsvirta (2009): Copyright (2009) The Authors, Royal Economic
Society and Wiley. Materials are used in this thesis with permission from John Wiley and Sons.
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correlation, the simulation experiments suggest that the test is also applicable to
building CC-GARCH models with changing conditional correlations.

Chapter 3, entitled “An Alternative Test for Causality in Variance in the Con-
ditional Correlation GARCH Models,” provides yet another misspecification test for
modelling of the conditional variance component of the CCC-GARCH model. One of
the properties of the CC-GARCH model is its method of estimation. A CC-GARCH
model is often estimated as follows. First decompose the log-likelihood function into
two parts, of which the first part is a function of the parameters in the conditional
variance component, whereas the second one includes, given the estimates of the pa-
rameters in the first part, the parameters associated with the conditional correlation
component. Then carry out the optimisation in two steps: first maximise the GARCH
component, and then, conditionally on the GARCH parameters, the conditional cor-
relations.

The estimator obtained in these two steps is a two-stage quasi-maximum likelihood
estimator (2SQMLE). In the case of the ECCC-GARCH model, conditions for the
asymptotic normality of the entire estimator vector were established by Ling and
McAleer (2003). Their results, combined with the existing formulae with respect
to 2SQMLE, lead to the asymptotic normality of the first stage estimators. Taking
advantage of this asymptotic result, the test considered in Chapter 3 is formulated
using the LM principle, which, as already pointed out, requires only the estimation of
univariate GARCH models. It is also shown that the test statistic may be computed
by using an auxiliary regression. A robust version of the new test is available through
another auxiliary regression. All of this amounts to a substantial simplification in
computations compared with the test proposed in Chapter 2.

Finite sample properties of the test are examined in up to five-dimensional models
by simulation, and its performance is compared with the test in Chapter 2 and a sim-
ilar test proposed by Hafner and Herwartz (2006). The test of Hafner and Herwartz
(2006) was derived in the bivariate framework and is generalised to higher dimensions
accordingly. It is shown that, under both normality and under leptokurtotic innova-
tions, as well as under changing conditional correlations, the new test has reasonable
size and power properties.

When modelling the conditional variance, it is necessary to keep a sequence of
conditional covariances positive almost surely for any time horizon. For the stan-
dard univariate GARCH(p, q) model of Bollerslev (1986), Nelson and Cao (1992) and
Tsai and Chan (2008) worked out necessary and sufficient conditions for the condi-
tional variances to be positive almost surely. In multivariate models, the positivity
of the conditional variance is replaced by the positive definiteness of the conditional
covariance matrix. Yet, as pointed out by He and Teräsvirta (2002), it is not sim-
ple to establish such conditions for the parameters in (1.3). As a result, the past
literature assumed a trivial sufficient condition that all the parameters in (1.3) were
non-negative. In Chapter 4, “Positivity Constraints on the Conditional Variances in
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the Family of Conditional Correlation GARCH Models,”3 it is demonstrated that un-
der certain conditions some of the parameters of the model can take negative values
while the conditional covariance matrix remains positive definite almost surely. It
is also shown that even in the simplest vector GARCH(1, 1) representation, that is
p = q = 1 in (1.3), the relevant parameter space can contain negative values for some
parameters, which was not possible in the univariate model. This finding makes it
possible to incorporate negative volatility spillovers into the CC-GARCH framework4.
The usefulness of this extension is illustrated by estimating a bivariate extended CCC-
GARCH model with negative volatility spillovers with a pair of daily Japanese stock
returns.

As is clear from above, many new GARCH models and misspecification testing
procedures have been recently proposed in the literature. When it comes to applying
these models or tests, however, there do not seem to exist many options for the users
to choose from other than creating their own computer programmes. This is especially
the case when one wants to apply a multivariate GARCH model.

The last chapter, “ccgarch: An R Package for Building Multivariate GARCH
Models with Conditional Correlations,” provides a workable environment for building
CC-GARCH models. The package is open source, freely available on the Internet,
and designed for use in the open source statistical environment R (R Development
Core Team, 2009). It can estimate (E)CCC- and (E)DCC-GARCH models as well as
simulate data from (E)CCC-, (E)DCC- and (E)STCC-GARCH data generating pro-
cesses with multivariate normal or Student’s t innovations. In addition, the package
is equipped with the necessary functions for conducting diagnostic tests such as those
to be discussed in Chapter 3 of this thesis.

A detailed derivation of the ECCC-GARCH model and the relevant statistical
tests will follow next.

3This chapter is a joint work with Timo Teräsvirta. It was published in Finance Research Letters
as Nakatani and Teräsvirta (2008), and is contained in this thesis under the Authors’ rights granted
by Elsevier.

4Conrad and Karanasos (2009) recently considered similar but more general conditions for the
positive definiteness of the conditional covariances of the CC-GARCH model.
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Testing for Volatility Interactions in the Constant
Conditional Correlation GARCH Model1†

Abstract

In this paper we propose a Lagrange multiplier (LM) test for volatility interactions
among markets or assets. The null hypothesis is the Constant Conditional Correlation
(CCC) GARCH model of Bollerslev (1990) in which volatility of an asset is described
only through lagged squared innovations and volatility of its own. The alternative
hypothesis is an extension of that model in which volatility is modelled as a linear
combination not only of its own lagged squared innovations and volatility but also
of those in the other equations while keeping the conditional correlation structure
constant. This configuration enables us to test for volatility transmissions among
variables in the model. We derive an LM test of the null hypothesis. Monte Carlo
experiments show that the proposed test has satisfactory finite sample properties.
The size distortions become negligible when the sample size reaches 2500. The test
is applied to pairs of foreign exchange returns and individual stock returns. Results
indicate that there seem to be volatility interactions in the pairs considered, and that
significant interaction effects typically result from the lagged squared innovations of
the other variables.
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2.1 Introduction

During the last few decades, considerable attention has been paid to the conditional
second moments of financial time series. Models of generalised autoregressive con-
ditional heteroskedasticity (GARCH), either univariate or multivariate, have become
standard tools for studying such series. In financial econometrics, the analysis of
interdependence in volatility is important for portfolio risk managements on the one
hand, and is necessary for research on the degree of market integration on the other.
A large number of researchers have found ample evidence that the conditional vari-
ances of financial time series are interacting. Such empirical studies include Hamao,
Masulis, and Ng (1990), Baillie and Bollerslev (1990), Cheung and Ng (1996), Hong
(2001) and Cifarelli and Paladino (2005) among others. For surveys of multivariate
GARCH models, see Bauwens, Laurent, and Rombouts (2006) and Silvennoinen and
Teräsvirta (2009b).

The Extended Constant Conditional Correlation (ECCC-) GARCH model that
Jeantheau (1998) introduced, offers a platform for modelling volatility interactions
between markets or assets. The model nests the Constant Conditional Correlation
(CCC-) GARCH model by Bollerslev (1990). This extension of the CCC-GARCH
model allows the interaction in the form of both lagged squared observations and
lagged conditional variances from the other equations of the system. The CCC-
GARCH model only allows contemporaneous dependence through conditional corre-
lations, which is not sufficient for volatility interaction.

Since the ECCC-GARCH model nests the CCC-GARCH one, a natural idea would
be to test for volatility interactions in the ECCC-GARCH framework. In fact, Wong
and Li (1997) and Wong, Li, and Ling (2000) employed the ECCC-GARCH model for
describing volatility interactions between the daily Standard and Poor 500 index and
the Sydney All Ordinaries index returns, and among three major foreign exchange
rates, albeit without first testing the hypothesis of no interactions. In order to save
computational efforts, a test of this hypothesis should merely involve estimating the
CCC-GARCH model. Estimating the ECCC-GARCH model would become an issue
only when the null hypothesis were rejected. Consequently, the aim of this paper is
to construct such a test using the score or Lagrange multiplier (LM) principle and to
investigate its finite-sample properties.

The existing misspecification tests of the CCC-GARCH model are designed for
testing the constancy of correlations. Tse (2000) and Bera and Kim (2002) formed
tests of the assumption of constant conditional correlations against an unspecified al-
ternative. Berben and Jansen (2005) and Silvennoinen and Teräsvirta (2005, 2009a)
provided LM tests of the CCC-GARCH model against parametric alternatives with
time-varying correlations that are variants of the Smooth Transition Conditional Cor-
relation (STCC-) GARCH model. Misspecification of the GARCH structure of this
model has received less attention in the literature, and the contribution of this paper
will lie in that direction.

The paper is organised as follows. In Section 2.2 the ECCC-GARCH model is
defined and its stationarity conditions are mentioned. Section 2.3 contains the first
and second partial derivatives of the log-likelihood function of the ECCC-GARCH



Testing for Volatility Interactions 13

model as well as the asymptotic properties of the quasi maximum likelihood estimator
of its parameter vector. The LM test is derived in Section 2.4, and its structure is
illustrated by a bivariate example in Section 2.5. Finite sample properties of the test
are studied by Monte Carlo simulations in Section 2.6. In Section 2.7 the proposed
test is applied to pairs of daily foreign exchange returns and daily stock returns.
Section 2.8 concludes.

2.2 The extended constant conditional correlation
GARCH model

2.2.1 Definition

Following Jeantheau (1998) and He and Teräsvirta (2004), consider the following
vector stochastic process:

yt = μ+ εt (2.1)

εt = Dtzt (2.2)

where yt is a stochastic (N × 1) vector, μ is an (N × 1) intercept vector and Dt =

diag(h
1/2
1,t , . . . , h

1/2
N,t) is a diagonal matrix of conditional standard deviations of εt. The

above formulation is a special case of the vector ARMA-GARCH model in Ling and
McAleer (2003). The sequence {zt} with the stochastic vector zt = [z1,t, . . . , zN,t]

′,
is a sequence of independent and identically distributed variables with mean 0 and
time-invariant positive definite covariance matrix P = [ρij ] with ones on the main
diagonal. With these assumptions,

E[εt|Ft−1] = 0 and E[εtε
′
t|Ft−1] = Ht =

{
hi,t i = j

h
1/2
i,t h

1/2
j,t ρij i �= j

where Ft is the information set up to and including time t, and Ht = DtPDt.
Matrices Ht and P are the conditional covariance matrix and the constant conditional
correlation matrix of the process {εt}, respectively.

The vector GARCH(p, q) process of εt is defined as follows:

ht = [h1,t, . . . , hN,t]
′ = a0 +

q∑
i=1

Aiε
(2)
t−i +

p∑
j=1

Bjht−j (2.3)

where ε
(2)
t = (ε21,t, . . . , ε

2
N,t)

′, a0 is an (N × 1) vector, and Ai and Bj are (N × N)
matrices with elements such that hi,t in ht are positive for all t. The superscript
within the parentheses in a vector or a matrix denotes an elementwise exponent. A
sufficient condition for ht to have positive elements for all t is that all elements in
a0 are positive and all elements in Ai and Bj for each i and j are nonnegative3.

3Nakatani and Teräsvirta (2008) show that off-diagonal elements in Bj can assume negative
values while positive definiteness of Ht is retained. This extension does not affect the asymptotic
distribution of the test statistic in Section 2.4 because off-diagonal elements are all zero under the
null hypothesis. Therefore, we maintain the simple sufficient condition throughout this chapter.
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This guarantees that, together with the positive definiteness of P, the conditional
variance matrix Ht is positive definite almost surely for all t. Necessary and sufficient
conditions for the positive definiteness of Ht in the general (p, q) case were recently
worked out in Nakatani and Teräsvirta (2008) and Conrad and Karanasos (2009).

Equations (2.1), (2.2) and (2.3) jointly define the N -dimensional Extended CCC
(ECCC)-GARCH(p, q) model. Note that if both Ai and Bj are diagonal for all i
and j, the ECCC-GARCH(p, q) model collapses into the CCC-GARCH(p, q) model
of Bollerslev (1990). If, furthermore, Bj = 0, j = 1, . . . , p, the model is the CCC-
ARCH(q) model of Cecchetti, Cumby, and Figlewski (1988). Wong and Li (1997)
applied the ECCC-ARCH(1) model to the S&P 500 and Sydney’s All Ordinaries
index returns. Wong, Li, and Ling (2000) considered the first-order ECCC-GARCH
model with the restriction that B1 be diagonal, and applied it to the Hang Seng index
and the S&P 500 index.

For simplicity and given the fact that the first-order models describe many het-
eroskedastic time series well in a vast majority of empirical applications, we restrict
our discussion to the case of p = q = 1 unless otherwise stated. Excluding μ, there
are, in the ECCC-GARCH(1, 1) model, N(5N + 1)/2 parameters to be estimated, of
which N(2N + 1) parameters appear in ht and the remaining N(N − 1)/2 in P.

2.2.2 Stationarity of the ECCC-GARCH process

In the context of vector GARCH processes with constant conditional correlations, a
sufficient condition for weak and strict stationarity of an ECCC-GARCH(p, q) process
with a constant conditional mean was established in Jeantheau (1998). Ling and
McAleer (2003) found a more general condition that allows the process to have an
ARMA structure in a conditional mean. He and Teräsvirta (2004) derived a sufficient
condition for the ECCC-GARCH(2, 2) process defined by (2.2) and (2.3) to be weakly
and strictly stationary. This was done in a fashion different from Jeantheau (1998)
and Ling and McAleer (2003). The technique of He and Teräsvirta (2004) can be
used for deriving conditions for the existence of the fourth-order moments of this
process and its special cases as well as the autocorrelation function of the squared
observations.

A sufficient condition for weak and strict stationarity of an ECCC-GARCH(1, 1)
model with normal errors is immediate from Theorem 1 of He and Teräsvirta (2004).
Define a sequence of i.i.d. stochastic matrices {Ct} such that

Ct = A1Z
2
t +B1 (2.4)

where Zt = diag(z1,t, . . . , zN,t). The ECCC-GARCH(1,1) process is weakly and
strictly stationary if

λ(ΓC) < 1 (2.5)

where ΓC = E[Ct] and λ(Γ) is the spectral radius, or the modulus of the largest
eigenvalue, of Γ. If N = 1, the inequality (2.5) collapses into the condition for the
univariate GARCH(1, 1) process with unit variance to be weakly stationary.
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2.3 Likelihood function and asymptotic properties

2.3.1 The log-likelihood function

The aim of this paper is to construct a test for testing the hypothesis that A1 and
B1 are diagonal matrices in the model (2.1), (2.2) and (2.3) with p = q = 1. For
this we need the (quasi) log-likelihood function of the model and its first two partial
derivatives. Without loss of generality, we can assume μ = 0. Let then θ′ = [ω′,ρ′]
where ω contains the parameters in ht and ρ = vecl(P). Operator vecl stacks the
lower off-diagonal elements of a symmetric (N×N) matrix into an N(N−1)/2 vector.
The quasi log-likelihood function for observation t is given by

�t(θ) = −N

2
ln(2π)− 1

2
ln |DtPDt| − 1

2
ε′tD

−1
t P−1D−1

t εt

= −N

2
ln(2π)− ln |Dt| − 1

2
ln |P| − 1

2
ε′tH

−1
t εt. (2.6)

The quasi maximum likelihood estimator (QMLE) θ̂ equals

θ̂ = argmax
θ

T∑
t=1

�t(θ). (2.7)

The following assumptions are made to ensure the asymptotic normality of the QMLE
θ̂ in (2.7), see Ling and McAleer (2003):

Assumption 2.1 The spectral radius λ(P) has a positive lower bound over the pa-
rameter space Θ that is a compact subspace of the Euclidean space such that all true
parameters lie in interior of Θ. In addition, each element of a0 has positive lower
and upper bounds over Θ.

Assumption 2.2 All the roots of det(IN −∑q
i=1 Aix

i −∑p
j=1 Bjx

j) lie outside the
unit circle where IN denotes the identity matrix of order N . Furthermore, IN −∑p

j=1 BjL
j and

∑q
i=1 AiL

i are left coprime where L is the lag operator.

Assumption 2.3 The identifiability conditions discussed in Jeantheau (1998) are
satisfied.

Assumption 2.4 E|ε6i,t| < ∞, i = 1, . . . , N.

2.3.2 The score and the Hessian of the log-likelihood function

We next define the first and second partial derivatives of (2.6). Let St(θ) = ∂�t(θ)/∂θ

be the score vector for observation t, and let S̄(θ) = (1/T )
∑T

t=1 St(θ) = (1/T )S(θ)

be the average score. We use the notation St(θ̂) for the score evaluated at θ = θ̂.
The population information matrix is given by the expectation of the outer product

of the score evaluated at the true parameter θ0, that is,

I(θ0) =
1

T
E[S(θ0)S(θ0)

′] = E[St(θ0)St(θ0)
′]. (2.8)
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Using the similar notation, the Hessian of the log-likelihood function evaluated at θ0

equals

H(θ0) =

T∑
t=1

Ht(θ0) =

T∑
t=1

∂2�t(θ)

∂θ∂θ′

∣∣∣∣∣
θ=θ0

. (2.9)

We further define the negative of the expected Hessian evaluated at θ0 by

J (θ0) = − 1

T
E[H(θ0)] = −E[Ht(θ0)]. (2.10)

The next two lemmas give expressions for St(θ) and J (θ), namely, the first and
second order partial derivatives of (2.6) with respect to the parameters of interest.

Lemma 2.5 (the score vector) The score vector for observation t of (2.6) has the
following form

St(θ) =

[
∂�t(θ)
∂ω

∂�t(θ)
∂ρ

]
= −1

2

[∇Dt vec
(
2D−1

t − ztz
′
tP
−1D−1

t −D−1
t P−1ztz

′
t

)
∇P vec

(
P−1 −P−1ztz

′
tP
−1
) ]

(2.11)

where

∇Dt =
∂ vec(Dt)

′

∂ω
and ∇P =

∂ vec(P)′

∂ρ
.

Proof. See Appendix 2.A.1.

Lemma 2.6 (the negative of the expected Hessian) The negative of the expected
Hessian for observation t has the form

J (θ) = −E[Ht(θ)] = −E

[
∂2�t(θ)
∂ω∂ω′

∂2�t(θ)
∂ρ′∂ω

∂2�t(θ)
∂ω′∂ρ

∂2�t(θ)
∂ρ∂ρ′

]

=
1

2

⎡⎢⎢⎢⎢⎢⎣
∇Dt

{
2(D−1

t ⊗D−1
t )

+H−1
t ⊗P+P⊗H−1

t

}
∇D′t

∇Dt

(
D−1

t P−1 ⊗ IN

+IN ⊗D−1
t P−1

)
∇P′

∇P
(
P−1D−1

t ⊗ IN

+IN ⊗P−1D−1
t

)
∇D′t

∇P
(
P−1 ⊗P−1

)
∇P′

⎤⎥⎥⎥⎥⎥⎦ . (2.12)

where ⊗ denotes the Kronecker product of two matrices.

Proof. See Appendix 2.A.2.
Expressions (2.11) and (2.12) are rather general in that the conditional variances

in Dt are not specified in detail. For this reason a number of different specifications
are possible for ht. Eklund and Teräsvirta (2007) derived similar formulas for partial
derivatives of the log-likelihood function of a vector autoregressive model with time-
varying covariances. Their aim was to test constancy of the error covariance matrix
of a vector autoregressive model.



Testing for Volatility Interactions 17

2.3.3 Asymptotic behaviour of the quasi maximum likelihood
estimator

The consistency and the asymptotic normality of the QMLE θ̂ were established by
Ling and McAleer (2003) for a class of vector ARMA-GARCH models with constant
conditional correlations. Since our ECCC-GARCH model defined by (1) through (3)
falls into this class, we can make use of their results.

To begin with, it follows from their Lemma 5.2 that, under Assumptions 1 through
3 and the existence of the fourth-order moment of {εt},

√
T S̄(θ0) =

1√
T
S(θ0)

D−→ N(0, I(θ0)). (2.13)

The asymptotic normality of the score (2.13) serves as the basis for constructing the
LM test which will be developed later.

The consistency and the asymptotic normality of the QMLE are proved in Theo-
rems 4.1 and 5.1 of Ling and McAleer (2003). The consistency requires Assumptions
1 through 3 whereas the asymptotic normality additionally involves Assumption 4.
The latter results in

√
T (θ̂ − θ0)

D−→ N(0, J−1(θ0)I(θ0)J−1(θ0)). (2.14)

If we further assume that zt ∼ N(0, P), (2.6) is an exact log-likelihood function, so
that I(θ0) = −J (θ0) holds. It then follows that

√
T (θ̂ − θ0)

D−→ N(0, I−1(θ0)). (2.15)

In either case, Lemmas 5.5 and 5.6 of Ling and McAleer (2003) show that I(θ0) and
J (θ0) can be consistently estimated by

I(θ̂) = 1

T

T∑
t=1

St(θ̂)St(θ̂)
′ (2.16)

and by

J (θ̂) = − 1

T

T∑
t=1

Ht(θ̂), (2.17)

respectively.

2.3.4 The fourth-order moment condition

As we saw in the previous subsection, the existence of the fourth- and the sixth-
order moments of {εt} is necessary in developing the asymptotic theory for the quasi
maximum likelihood estimator of the ECCC-GARCH model. However, finding these
conditions, in particular those for the sixth-order moment, seems an involved task.



18 Chapter 2

It seems that the only available results are in Ling and McAleer (2003) and He and
Teräsvirta (2004). Their results are general in the sense that the distribution of zt
need not be normal.

To introduce notation, let a = (a1, . . . , aN )′ be an (N × 1) vector and define
the (N × N) diagonal matrix diagv(a) = diag(a1, . . . , aN ). Operator diagv creates
the (N ×N) diagonal matrix from an (N × 1) vector. Then under the assumption of
normality we have from Corollary 2 in He and Teräsvirta (2004) the following sufficient

condition for the existence of the unconditional fourth-moment matrix E[ε
(2)
t ε

(2)′
t ] of

{εt} generated by an ECCC-GARCH(p, q) process:

Lemma 2.7 Assume that (2.5) holds, and that zt ∼ N(0, P). Then E[ε
(2)
t ε

(2)′
t ] exists

if
λ(ΓC⊗C) < 1 (2.18)

where

ΓC⊗C = E[Ct ⊗Ct]

= (A1 +B1)⊗ (A1 +B1) + 2(A1 ⊗A1) diagv(vec(P)� vec(P)) (2.19)

where � denotes the Hadamard (elementwise) product of two matrices or vectors.
Proof. See Appendix 2.A.3.

2.4 Test for volatility interactions

Assuming p = q = 1, we now construct an LM test for volatility interactions with the
hypothesis

H0 : A1 and B1 in (2.3) are diagonal matrices

against the alternative

H1: either A1 or B1 or both are non-diagonal matrices.

We denote the test statistic LMECCC . The null hypothesis defines a CCC-GARCH(1, 1)
model, and the alternative is an ECCC-GARCH(1, 1) model. The test may best be
viewed as a test of no volatility interaction among the variables in the model, while
conditional correlations between them are allowed.

Let θ̃ = [ω̃′, ρ̃′]′ be the ML estimator of θ under the null. Since ρ is a vector of

nuisance parameters, the average score evaluated at θ̃ equals

S̄(θ̃) =
1

T

T∑
t=1

[
∂�t(θ)
∂ω

∣∣
θ=˜θ

∂�t(θ)
∂ρ

∣∣
θ=˜θ

]
=

[
S̄ω(θ̃)
0M

]
(2.20)

where 0M denotes an (M×1) null vector withM = N(N−1)/2. S̄ω(ω̃) has (2N2+N)
elements, of which the ones corresponding to the other nuisance parameters a0 and
the diagonal elements in A1 and B1, are equal to zero. To keep the notation tractable,
we leave these 3N zero elements in S̄ω(θ̃) and do not define a separate block for them.
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As already mentioned, the information matrix can be consistently estimated ei-
ther by (2.16) or (2.17). Due to the fact that the score under the null (2.20) has zero
elements, we only require the relevant part of the inverse of the information matrix to
derive the LMECCC statistic. Applying the formula for the inverse of a partitioned ma-
trix to (2.17), the inverse of the relevant block equals J−1

11 (θ̃) = (J̃11 − J̃12J̃
−1
22 J̃

′
12)
−1

where

J (θ̃) =

[
J̃11 J̃12

J̃′12 J̃22

]
. (2.21)

In (2.21), J̃11 and J̃22 correspond to the second partial derivatives with respect only

to ω and to ρ, respectively, and J̃12 contains the cross derivatives, all evaluated at
θ = θ̃. The partitioning in (2.21) corresponds to the one in (2.12).

We are now able to state the main result:

Theorem 2.8 (the LM test statistic) Let Assumptions 1–3 hold and assume that
the fourth-order moment matrix of {εt} exists. Then, the LM test statistic of testing
H0, given by the quadratic form

LMECCC = T S̄′(θ̃)J−1(θ̃)S̄(θ̃)

= T S̄′ω(θ̃)J−1
11 (θ̃)S̄ω(θ̃) (2.22)

has an asymptotic χ2 distribution with 2N(N − 1) degrees of freedom when the null
hypothesis is valid.

2.5 Bivariate illustration of the test statistic

Definition (2.22) of the LMECCC statistic is quite general and therefore not very
illuminating. Because of this, we shall illustrate the structure of the statistic by a
bivariate example. First we set up the model, then apply Theorem 2.8 to obtain the
LMECCC statistic for the bivariate model.

2.5.1 The bivariate ECCC-GARCH(1, 1) model and the partial
derivatives of the conditional variance equations

The bivariate ECCC-GARCH(1, 1) model has its conditional variance equation (2.3)
of the form

ht =

[
h1,t

h2,t

]
= a0 +A1ε

(2)
t−1 +B1ht−1

=

[
a10
a20

]
+

[
a11 a12
a21 a22

] [
ε21,t−1

ε22,t−1

]
+

[
b11 b12
b21 b22

] [
h1,t−1

h2,t−1

]
=

[
a10 + a11ε

2
1,t−1 + a12ε

2
2,t−1 + b11h1,t−1 + b12h2,t−1

a20 + a21ε
2
1,t−1 + a22ε

2
2,t−1 + b21h1,t−1 + b22h2,t−1

]
. (2.23)
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To compute the LMECCC statistic, we require the partial derivatives of (2.23) with
respect to parameters therein. Let ω = [ω′1,ω

′
2]
′ where ω1 = [a10 a11 a12 b11 b12]

′ and
ω2 = [a20 a21 a22 b21 b22]

′, and let vt = [1 ε21,t ε
2
2,t h1,t h2,t]

′. The partial derivatives of
h1,t with respect to ω1 and ω2 are

∂h1,t

∂ω1
= vt−1 + b11

∂h1,t−1

∂ω1
+ b12

∂h2,t−1

∂ω1
(2.24)

and

∂h1,t

∂ω2
= b11

∂h1,t−1

∂ω2
+ b12

∂h2,t−1

∂ω2
. (2.25)

The partial derivatives of h2,t with respect to ω1 and ω2 have a similar representation.
Under the null hypothesis, A1 and B1 are jointly diagonal, i.e.,

H0 : ω1 = [a10 a11 0 b11 0]′ and ω2 = [a20 0 a22 0 b22]
′. (2.26)

Evaluating both (2.24) and (2.25) at ω1 = ω̃1 and ω2 = ω̃2, the ML estimator under
H0, yields

∂h̃1,t

∂ω1
= ṽt−1 + b̃11

∂h̃1,t−1

∂ω1
and

∂h̃1,t

∂ω2
= 0. (2.27)

Similarly,

∂h̃2,t

∂ω1
= 0 and

∂h̃2,t

∂ω2
= ṽt−1 + b̃22

∂h̃2,t−1

∂ω2
. (2.28)

Non-zero elements in (2.27) and (2.28) are

∂h̃i,t

∂aij
= ε̃2j,t−1 + b̃ii

∂h̃i,t−1

∂aij
and

∂h̃i,t

∂bij
= h̃j,t−1 + b̃ii

∂h̃i,t−1

∂bij
.

For these recursions to be tractable, initial values are needed. Therefore, we set ε̃
(2)
0 =

h̃0 = (1/T )
∑T

t=1 ε̃
(2)
t , and ∂h̃i,0/∂ωj = 0, i, j = 1, 2, following the suggestion by

Fiorentini, Calzolari, and Panattoni (1996). The recursions of the non-zero elements
in (2.27) and (2.28) then proceed as

∂h̃i,1

∂aij
= ε̃2j,0,

∂h̃i,1

∂bij
= h̃j,0 for t = 1, (2.29)

and

∂h̃i,t

∂aij
= ε̃2j,t−1 + b̃iiε̃

2
j,t−2,

∂h̃i,t

∂bij
= h̃j,t−1 + b̃iih̃j,t−2 for t > 1 (2.30)

where b̃ii, ε̃
2
j,t−1 and h̃j,t−1 in (2.30) are estimated from the null model.
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2.5.2 Components of the test statistic

We shall now provide analytical expressions for the components of LMECCC in a
bivariate framework and begin by for S̄(θ) and J (θ). To simplify notation, set kij,t =

h−1
i,t ∂hi,t/∂ωj and k̃ij,t = h̃−1

i,t ∂h̃i,t/∂ωj , i, j = 1, 2. Then we have the following
corollaries regarding the score and the relevant part of the Hessian.

Corollary 2.9 In the bivariate case, the average score has the form

S̄(θ) =

⎡⎣ S̄ω1(θ)
S̄ω2

(θ)
S̄ρ(ρ)

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎣
− 1

2T

∑[
k11,t{1− 1

(1−ρ2)z1,t(z1,t − ρz2,t)}+ k21,t{1− 1
(1−ρ2)z2,t(z2,t − ρz1,t)}

]
− 1

2T

∑[
k12,t{1− 1

(1−ρ2)z1,t(z1,t − ρz2,t)}+ k22,t{1− 1
(1−ρ2)z2,t(z2,t − ρz1,t)}

]
ρ

(1−ρ2) − ρ
T (1−ρ2)2

∑
(z21,t + z22,t) +

(1+ρ2)
T (1−ρ2)2

∑
z1,tz2,t

⎤⎥⎥⎥⎥⎥⎦
(2.31)

where
∑

denotes the summation from t = 1 to T . Under H0, S̄ρ(ρ̃) = 0 so that

S̄(θ̃) =

⎡⎣ S̄ω1
(θ̃)

S̄ω2
(θ̃)
0

⎤⎦ = − 1

2T

⎡⎢⎣
∑

k̃11,t{1− 1
(1−ρ̃2) z̃1,t(z̃1,t − ρ̃z̃2,t)}∑

k̃22,t{1− 1
(1−ρ̃2) z̃1,t(z̃2,t − ρ̃z̃1,t)}

0

⎤⎥⎦ . (2.32)

Remark 2.10 In (2.32), only its third, fifth, seventh and ninth elements do not equal
zero. These non-zero elements correspond to the zero restriction in (2.26). Accounting
explicitly for this would complicate the notation and is therefore not done here.

Corollary 2.11 The relevant upper left block of J−1(θ) equals J−1
11 (θ) = (J11 −

J12J
−1
22 J

′
12)
−1 where

J11 =

[
2−ρ2

4T (1−ρ2)

∑
k11,tk

′
11,t − ρ2

4T (1−ρ2)

∑
k11,tk

′
22,t

− ρ2

4T (1−ρ2)

∑
k22,tk

′
11,t

2−ρ2

4T (1−ρ2)

∑
k22,tk

′
22,t

]
(2.33)

J12 =

[
− ρ

2T (1−ρ2)

∑
k11,t

− ρ
2T (1−ρ2)

∑
k22,t

]
(2.34)

and

J22 =
1 + ρ2

(1− ρ2)2
. (2.35)
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Consequently,

J11(θ) =
1

4T

⎡⎢⎢⎢⎢⎢⎣
2−ρ2

(1−ρ2)

(∑
k11,tk

′
11,t

)
− ρ

T (1+ρ2) (
∑

k11,t)
(∑

k′11,t
) − ρ2

(1−ρ2)

(∑
k11,tk

′
22,t

)
− ρ

T (1+ρ2) (
∑

k11,t)
(∑

k′11,t
)

− ρ2

(1−ρ2)

(∑
k22,tk

′
11,t

)
− ρ

T (1+ρ2) (
∑

k22,t)
(∑

k′11,t
) 2−ρ2

(1−ρ2)

(∑
k22,tk

′
22,t

)
− ρ

T (1+ρ2) (
∑

k22,t)
(∑

k′22,t
)

⎤⎥⎥⎥⎥⎥⎦ .
(2.36)

Finally, replacing the true parameters and relevant terms with the ML estimators
under the null, namely θ with θ̃, zt with z̃t, and kij,t with k̃ij,t, i, j = 1, 2, gives
the LMECCC statistic (2.22). The statistic in the bivariate case has an asymptotic
χ2 distribution with four degrees of freedom when the null hypothesis is valid. In
practice, we are able to compute the test statistic numerically through the relevant
expressions.

2.6 Simulation experiments of the LMECCC test statis-
tic

In this section we conduct simulation experiments in a bivariate case to see how the
proposed test behaves in finite samples. In both size and power simulations, we use
the sample sizes T = 1000, 2500, 5000 and 10000 for each data generating process
(DGP). Additional experiments are carried out to see how the test performs when we
remove the assumption of constant conditional correlation. To minimise initial effects,
the first 500 observations generated are discarded. The number of replications equals
5000. The empirical rejection frequencies are compared with the nominal significance
levels 5% and 10%. All numerical calculations are carried out in the free statistical
environment R 2.3.1 (R Development Core Team, 2005) with the author’s own source
codes4.

2.6.1 Size simulations

The size simulations are carried out for five different CCC-GARCH data generating
processes (DGPs) whose parameter values can be found in Table 2.1. We set the
intercept term in the conditional variance equation equal to a = [0.1 0.2]′. The
DGPs have the following dynamic properties. DGP 1 has moderate persistence in
volatility (aii + bii = 0.9) with low correlation (ρ = 0.3) in zt. The parameter
values for A1 and B1 are common to both DGPs 2 and 3 with very high persistence
(aii+bii = 0.99, 0.95 for i = 1, 2). DGP 2 has high correlation (ρ = 0.9) whereas DGP
3 has low correlation (ρ = 0.3). DGPs 4 and 5 have low persistence in volatility with
high and low correlations, respectively. The parameter values satisfy the stationarity
condition (2.5) and the fourth-order moment condition (2.18).

4R is freely available at http://www.r-project.org for various operating systems. In producing
source codes, we used C routines from GNU Scientific Library (GSL) ver. 1.8.
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The actual rejection frequencies are reported in Panel (a) of Table 2.2 for the
nominal 5% level and for the nominal 10% level in Panel (b), respectively. As may be
expected, the rejection frequencies are approaching the nominal significance levels as
the number of observations increases. There are size distortions, however, in DGPs
1 through 3 when T ≤ 5000. In DGPs 4 and 5, the actual sizes are close to the
nominal size already when T = 1000, which is a modest number in many GARCH
applications.

The size properties of the test suggest that at least a couple of thousands ob-
servations are required for empirical analyses. This requirement does not appear an
obstacle for implementing the test since these amounts of observations are readily
available in financial time series. However, our results are only valid for bivariate
models, and longer series may be needed for higher-dimensional processes.

2.6.2 Power simulations

The DGPs for the power simulations are listed in Table 2.3. The weak stationarity
and the fourth-order moment conditions are satisfied for all DGPs. DGP 6 has high
persistence in volatility (aii + bii = 0.99, 0.93 for i = 1, 2) and a moderate correlation
coefficient (ρ = 0.7). In DGP 7, one of the off-diagonal coefficients has a large value
(b21 = 0.02) with high persistence as in DGP6. DGP 8 has a design similar to DGP
7 but the off-diagonal elements have a small value (aij = bij = 0.001). DGPs 9
and 10 have a rather unusual structure in the sense that both DGPs have moderate
persistence and large values for all off-diagonal elements.

The results are summarised in Table 2.4. It can be seen that the power of the
test is low for DGPs 6 and 8 for all T . This is expected, however, because the true
parameters under test are close to zero. Despite that, small changes in the value of
a21 and b21 may already bring an increase in the power of the test. In all other cases,
the power reaches a reasonable level as T increases. In DGPs 7 the power is already
high for T = 1000, and the same is true for DGP 9 when T = 2500. DGP 10 with
less variable conditional variances constitutes an exception: the power is not yet high
for T = 5000. Obtaining higher power for ECCC-GARCH processes such as DGP 10
requires a sample of 10000 observations, which corresponds to a daily time series of
about 40 years of data. It should be noted, however, that observed time series are
typically quite different from realisations generated by such DGPs.

2.6.3 The test under changing conditional correlations

We conduct size and power simulations under changing conditional correlations using
the DCC- and the STCC-GARCH models and their extended versions (abbreviated
by the EDCC- and ESTCC-GARCH, respectively). The definitions of the DGPs
can be found in Table 2.5. For the EDCC- and the ESTCC-GARCH processes, the
simulated design is such that both processes have the same parameter matrices in the
conditional variance equation as the DGP7. In the STCC and the ESTCC processes,
the exogenous transition variable st is driven by a GARCH(1, 1) process following
Silvennoinen and Teräsvirta (2005).
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The actual rejection frequencies based on the 5% and 10% levels of significance can
be found in Table 2.6. The size of the test is distorted when the data are generated
by the DCC-GARCH process, but the degree of distortion is not a monotonically
increasing function of T . It is also worth emphasising that when the DGP is an
STCC-GARCH model, the size of the test converges towards the nominal level when
T increases. Overall, the results suggest that the power of the test does lie in the
non-zero off-diagonal elements of the parameter matrices, and that non-constancy
of the conditional correlation matrix only has a minor role to play in rejecting the
null hypothesis. Therefore, the test seems reasonably applicable to the models with
changing conditional correlations.

2.7 Applications to daily return series

2.7.1 Data

In this section, the LMECCC statistic is applied to pairs of foreign exchange rates as
well as stock prices. Before fitting GARCH models, the level series are first trans-
formed to the continuously compounded rate of returns by 100 ln(pt/pt−1), whereafter
the sample means of returns are subtracted from the series.

The considerations include daily foreign exchange rates and stock price series. The
exchange rates are daily noon buying rates in New York of the Japanese yen (JPY)
and the Swiss franc (CHF) against the U.S. dollars certified by the Federal Reserve
Bank of New York5. The foreign exchange rate series extend from 2 January 1975 to
2 December 2005, with the total of 7766 observations in each series. Fig. 2.1 depicts
the level and the mean-subtracted continuously compounded return series for the
two exchange rates. The stock prices are the daily closing prices of General Motors
(GM) and IBM traded at the New York Stock Exchange, and of two Japanese leading
electronic firms, NEC and Hitachi, traded at the Tokyo Stock Exchange. The sample
stretches from 2 January 1962 to 28 February 2006 with 11116 observations for the
U.S. stock data, and from 4 January 1983 to 1 March 2006 with 5914 observations for
the Japanese data6. The levels and the demeaned continuously compounded returns
are plotted in Figs. 2.2 and 2.3.

Descriptive statistics for all return series can be found in Table 2.7. As is typical
for many financial time series, one can see strong excess kurtosis (KR) and non-zero
skewness (SK). The Japanese stock returns are positively skewed, whereas the U.S.
stocks and the foreign exchange returns contain negative skewness. The Lomnicki-
Jarque-Bera (LJB) test of normality suggests non-normality of the return series. The
McLeod-Li (1983) test indicates that higher-order dependence is present in the return
series. As mentioned in Section 2.3.3, one can still obtain the quasi-maximum like-
lihood estimates of the parameters even when the data do not follow a multivariate
normal distribution. An alternative method is to use a leptokurtic distribution such

5The data are downloadable from Economic Research and Data section at the internet page of
the Board of Governors of the Federal Reserve System (http://www.federalreserve.gov/).

6The data are downloaded from Yahoo! Finance and Yahoo! Japan Finance for the U.S. and
Japanese data, respectively.



Testing for Volatility Interactions 25

as a multivariate Student’s t density to take into account the non-normality of the
data, see for example Kawakatsu (2006). However, the outlier-robust versions of the
skewness (Rob.SK) and the excess kurtosis (Rob.KR) measures described in Kim and
White (2004) yield different results. In particular, the robust excess kurtosis values
are much smaller than the non-robust ones. These outcomes strongly suggest that
large values of the standard measures of skewness and kurtosis and, consequently,
those of the LJB normality statistic, are caused by a small number of outliers. Apart
from them, the marginal distributions of the returns do not appreciably deviate from
the normal distribution.

2.7.2 Results of CCC/ECCC-GARCH estimation

Given the fact that the robust skewness and kurtosis measures do not contain much
evidence against normality of the return distributions, we assume that zt ∼ N(0,P)
in the applications. This assumption is supported by the descriptive statistics of the
standardised residuals reported in Table 2.8. According to the conventional mea-
sures of skewness and kurtosis, the standardised residuals are skewed and have fat
tails. In contrast, the robustified statistics, Rob.SK and Rob.KR, do not suggest
non-normality.

Estimation of parameters is carried out with the nonlinear optimisation function
“optim” in R 2.3.1. We use the BFGS algorithm for the optimisation. Convergence
is typically achieved after a few hundred iterations. During iterations, only the pos-
itivity constraints on a0, A1 and B1 are imposed to alleviate numerical difficulties
in parameter restrictions. The weak stationarity and the fourth-order moment con-
ditions are checked ex post. All the estimation results are summarised in Panels A,
B and C of Table 2.9. Within each panel, the upper half contains the results of
the CCC-GARCH model, whereas the lower half has to do with the ECCC-GARCH
model

Foreign exchange returns

The estimation results of the CCC-GARCH(1, 1) and the ECCC-GARCH(1, 1) model
fitted to the foreign exchange series appear in Panel A of Table 2.9. Values of the
LMECCC statistic are reported in the third column from the right. In Panel A (the
pair of JPY and CHF returns) the test statistic has the p-value 3× 10−6, so the null
hypothesis of no interaction is rejected at any conventional significance level. The
estimates of the ECCC-GARCH(1, 1) model conform to this outcome. It is seen from

Panel A that both â12 = 0.0038 and b̂21 = 0.0080 deviate significantly from zero at
conventional levels of significance. This means that the lagged volatility in JPY has a
positive effect on the current day’s volatility in CHF, and that the squared innovation
of CHF of day t− 1 has a positive influence on the volatility of JPY at day t.

Although in both cases a statistically significant spillover exists, the magnitude of
the contributions of one currency to the other is small. Accordingly, the estimates of
the conditional variance from the two models are similar to each other (see Fig. 2.4),
and the same is true for the estimates of the conditional correlation coefficients.
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Furthermore, both models satisfy the conditions for the stationarity and the existence
of the unconditional fourth moments.

Stock returns

The estimation results of the models applied to the pair of the U.S. and another pair
of Japanese stock returns can be found in Panels B and C of Table 2.9. The values of
the LMECCC statistics are large enough to reject the null hypothesis of no volatility
interaction for both pairs of returns. None of the estimated off-diagonal elements in B̂1

is statistically significant, whereas both off-diagonal estimates in Â1 are significant in
the equation for the two U.S. stocks, and â12 = 0.0132 is significant in the one for the
Japanese pair of returns. Interestingly, the magnitude of the significant off-diagonal
elements in Â1 is not much less than that of the diagonal elements. By comparison,
it is much larger than in the exchange rate examples. The dynamic behaviour of
volatility in stock returns is affected by the lagged squared innovation but not by
the lagged conditional variance of the other asset. The estimate of the conditional
correlation coefficient is positive and significant for both pairs of returns.

The diagonal elements of B̂1 are smaller in magnitude in the ECCC-GARCH
model than in the CCC-GARCH one. This may be a consequence of the nonzero
off-diagonal elements of Â1 in the ECCC-GARCH model. However, even here the
changes in parameter estimates have left the estimated conditional variances and
correlations unaffected. The graphs of the estimated conditional variances in Figs. 2.5
and 2.6 are similar for the extended and the standard CCC-GARCH model. Finally,
the estimated stock return models satisfy the conditions for the stationarity and the
existence of the fourth moments.

2.8 Concluding remarks

In this paper we propose an LM test for detecting the presence of volatility interactions
or transmission in the context of the CCC-GARCH model. Simulation experiments
indicate that the test statistic has favourable finite sample properties. Its empirical
size is typically close to the nominal one for time series with over a couple of thousands
observations. The test also has reasonable power, although, as usual, counterexamples
can be found through some extreme parameterisations. According to the power simu-
lations under changing conditional correlations, the null of no interaction in volatility
is not often rejected when DGPs have no volatility interaction. This indicates that
the test is reasonably robust against time-varying conditional correlations.

All three pairs of daily return series analysed in the paper seem to have volatility
interactions. In the exchange rate example, the interactions appear through the lagged
conditional variance, whereas in the two ECCC-GARCH models for pairs of stock
returns the lagged squared innovations form the channel for interactions. Although
the interaction effects found are small, they are detected by the tests. It may thus
not be a good idea to exclude such interactions a priori, which makes our test useful.
Since it also works reasonably well in the case of time-varying conditional correlations,
the test is a practical tool in modelling volatility in multivariate financial time series.
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The test is derived assuming constant conditional correlations, which is not always
a realistic restriction. Although the test seems applicable to to the models with
changing conditional correlations, it is of interest to extend the current test to cover
the CC-GARCH models with time-varying conditional correlations. Such extensions,
however, are left for future research.
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2.A Mathematical derivations and proofs

Throughout this appendix, vector and matrix derivatives, and some properties of
special matrices are intensively used. These results can be found in Lütkepohl (1996)
and Magnus and Neudecker (1998). See also Eklund and Teräsvirta (2007).

2.A.1 Proof of Lemma 2.5

Since θ′ = [ω′,ρ′], the partial derivative of the log-likelihood function for observation
t with respect to θ is partitioned into

∂�t(θ)

∂θ
=

[
∂�t(θ)
∂ω

∂�t(θ)
∂ρ

]
. (2.37)

The upper block in (2.37) has N(2N +1) entries while the lower one has N(N − 1)/2
elements.

For the upper block in (2.37), we can use the chain rules of vector derivatives to
have
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By similar manipulations for the lower block in (2.37), we obtain

∂�t(θ)
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The equations (2.38) and (2.39) constitute (2.11). �
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2.A.2 Proof of Lemma 2.6

The second partial derivative of the log-likelihood function for observation t with
respect to θ, or the Hessian, can be partitioned in the following way:

∂2�t(θ)

∂θ′∂θ
=

[
∂2�t(θ)
∂ω′∂ω

∂2�t(θ)
∂ρ′∂ω
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∂2�t(θ)
∂ρ′∂ρ

]
. (2.40)

In the subsequent sections, we supply blockwise derivations of the Hessian (2.40).
The final results (2.12) is attained by taking the conditional expectations of derived
blocks with the relations E[ztz

′
t] = P and Ht = DtPDt.

The upper left block of the Hessian

The upper left block of (2.40) is given by
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t P−1D−1
t εtε

′
tD
−1
t

))
. (2.41)

The first term in (2.41) is decomposed to

∂

∂ω′

(
∂ vec(Dt)

′

∂ω
vec
(
D−1

t

))
= −∂ vec(Dt)

′

∂ω

(
D−1

t ⊗D−1
t

) ∂ vec(Dt)

∂ω′
+
[
vec
(
D−1

t

)′ ⊗ Ik

] ∂2 vec(Dt)
′

∂ω′∂ω
.

(2.42)

The second term in (2.41) is developed to

∂

∂ω′

(
∂ vec(Dt)

′

∂ω
vec
(
D−1

t εtε
′
tD
−1
t P−1D−1

t

))
=
[
vec
(
D−1

t εtε
′
tD
−1
t P−1D−1

t

)′ ⊗ Ik

] ∂2 vec(Dt)
′

∂ω′∂ω

+
∂ vec(Dt)

′

∂ω

∂ vec
(
D−1

t εtε
′
tD
−1
t P−1D−1

t

)
∂ vec(D−1

t )′
∂ vec(D−1

t )

∂ vec(Dt)′
∂ vec(Dt)

∂ω′

=
[
vec
(
ztz

′
tP
−1D−1

t

)′ ⊗ Ik

] ∂2 vec(Dt)
′

∂ω′∂ω
− ∂ vec(Dt)

′

∂ω

(
D−1

t P−1ztz
′
t ⊗D−1

t

+D−1
t P−1D−1

t ⊗ ztz
′
t +D−1

t ⊗ ztz
′
tP
−1D−1

t

)∂ vec(Dt)

∂ω′
. (2.43)
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By similar operations, the third term in (2.41) is rewritten as

∂

∂ω′

(
∂ vec(Dt)

′

∂ω
vec
(
D−1

t P−1D−1
t εtε

′
tD
−1
t

))
=
[
vec
(
D−1

t P−1ztz
′
t

)′ ⊗ Ik

] ∂2 vec(Dt)
′

∂ω′∂ω
− ∂ vec(Dt)

′

∂ω

(
ztz

′
tP
−1D−1

t ⊗D−1
t

+ ztz
′
t ⊗D−1

t P−1D−1
t +D−1

t ⊗D−1
t P−1ztz

′
t

)∂ vec(Dt)

∂ω′
. (2.44)

Substituting back into (2.41) and rearranging yields

∂

∂ω′

(
∂�t(θ)

∂ω

)
= −
{[

vec
(
D−1

t

)′ ⊗ Ik

]
− 1

2

[
vec
(
ztz

′
tP
−1D−1

t

)′ ⊗ Ik

]
− 1

2

[
vec
(
D−1

t P−1ztz
′
t

)′ ⊗ Ik

]}∂2 vec(Dt)
′

∂ω′∂ω

+
1

2

∂ vec(Dt)
′

∂ω

{
2
(
D−1

t ⊗D−1
t

)− (D−1
t P−1ztz

′
t ⊗D−1

t

+D−1
t P−1D−1

t ⊗ ztz
′
t +D−1

t ⊗ ztz
′
tP
−1D−1

t

)− (ztz′tP−1D−1
t ⊗D−1

t

+ ztz
′
t ⊗D−1

t P−1D−1
t +D−1

t ⊗D−1
t P−1ztz

′
t

)}∂ vec(Dt)

∂ω′
. (2.45)

The lower right block of the Hessian

The lower right block of (2.40) can be written as

∂2�t(θ)

∂ρ′∂ρ
= −1

2

∂

∂ρ′

(
∂ vec(P)′

∂ρ
vec
(
P−1
))

+
1

2

∂

∂ρ′

(
∂ vec(P)′

∂ρ
vec
(
P−1ztz

′
tP
−1
))

.

(2.46)

Noticing that ∂2 vec(P)′/∂ρ′∂ρ = 0, the first term in (2.46) is reduced to

∂

∂ρ′

(
∂ vec(P)′

∂ρ
vec
(
P−1
))

=
∂ vec(P)′

∂ρ

∂ vec
(
P−1
)

∂ vec(P)′
∂ vec(P)

∂ρ′

= −∂ vec(P)′

∂ρ
(P−1 ⊗P−1)

∂ vec(P)

∂ρ′
, (2.47)

and the second term is equal to

∂

∂ρ′

(
∂ vec(P)′

∂ρ
vec
(
P−1ztz

′
tP
−1
))

=
∂ vec(P)′

∂ρ

∂ vec
(
P−1ztz

′
tP
−1
)

∂ vec(P−1)′
∂ vec(P−1)

∂ vec(P)′
∂ vec(P)

∂ρ′

= −∂ vec(P)′

∂ρ
(P−1ztz

′
tP
−1 ⊗P−1 +P−1 ⊗P−1ztz

′
tP
−1)

∂ vec(P)

∂ρ′
. (2.48)



Testing for Volatility Interactions 35

Combining all together produces

∂2�t(θ)

∂ρ′∂ρ
=

1

2

∂ vec(P)′

∂ρ

{
(P−1 ⊗P−1)− (P−1ztz

′
tP
−1 ⊗P−1)

− (P−1 ⊗P−1ztz
′
tP
−1)
}∂ vec(P)

∂ρ′
. (2.49)

The lower left and upper right blocks of the Hessian

Next consider the lower left block that is the cross derivatives. Using the facts that

∂

∂ω′

(
∂ vec(P)′

∂ρ
vec(P−1)

)
= 0 and

∂

∂ω′
vec

(
∂ vec(P)′

∂ρ

)
= 0, (2.50)

we have

∂2�t(θ)

∂ω′∂ρ
=

1

2

∂ vec(P)′

∂ρ

∂(P−1D−1
t εtε

′
tD
−1
t P−1)

∂ vec(D−1
t )′

∂ vec(D−1
t )

∂ vec(Dt)′
∂ vec(Dt)

∂ω′

= −1

2

∂ vec(P)′

∂ρ
(P−1D−1

t εtε
′
t ⊗P−1 +P−1 ⊗P−1D−1

t εtε
′
t)(D

−1
t ⊗D−1

t )

× ∂ vec(Dt)

∂ω′

= −1

2

∂ vec(P)′

∂ρ
(P−1ztz

′
t ⊗P−1D−1

t +P−1D−1
t ⊗P−1ztz

′
t)
∂ vec(Dt)

∂ω′
.

(2.51)

The upper right block of (2.40) is obtained by transposing (2.51), so that

∂2�t(θ)

∂ρ′∂ω
= −1

2

∂ vec(Dt)
′

∂ω
(ztz

′
tP
−1 ⊗D−1

t P−1 +D−1
t P−1 ⊗ ztz

′
tP
−1)

∂ vec(P)

∂ρ′
.

(2.52)

Finally, taking the conditional expectations of (2.41), (2.49), (2.51) and (2.52)
with the relations E[ztz

′
t] = P and Ht = DtPDt, and transposing them yields (2.12).

�

2.A.3 Proof of Lemma 2.7

Since (2.18) is immediate from Corollary 2 in He and Teräsvirta (2004), we verify
that (2.19) holds under the assumption of normality. First note that

E[Ct ⊗Ct] = (A1 ⊗A1)E[Z
2
t ⊗ Z2

t ] + (A1 +B1)⊗ (A1 +B1)−A1 ⊗A1. (2.53)

Assume zt ∼ N(0,P) with P = [ρ1 . . .ρN ] and let M = [Mij ] = Z2
t ⊗ Z2

t where the
blocks Mij are of size N ×N . Then,

Mii = z2i,t diagv(zt � zt)

= z2i,t diag(z
2
1,t, . . . , z

2
N,t), i = 1, . . . , N (2.54)



36 Chapter 2

and Mij = 0, i �= j. Then (see Nabeya, 1951),

Ez2i,tz
2
j,t =

{
3 i = j

1 + 2ρ2ij otherwise.
(2.55)

It thus follows that

EMii = IN + 2diagv(ρi � ρi), i = 1, . . . , N (2.56)

and

E[Z2
t ⊗ Z2

t ] = IN ⊗ IN + 2diagv(vec(P)� vec(P)). (2.57)

Inserting (2.57) into (2.53) yields (2.19). �
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Table 2.1 Data generating processes for size simulations for test of CCC-
GARCH(1,1)

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

ARCH
parameters

[
0.1 0
0 0.2

] [
0.04 0
0 0.05

] [
0.04 0
0 0.05

] [
0.1 0
0 0.2

] [
0.1 0
0 0.2

]

GARCH
parameters

[
0.8 0
0 0.7

] [
0.95 0
0 0.9

] [
0.95 0
0 0.9

] [
0.45 0
0 0.6

] [
0.45 0
0 0.6

]
Correlation 0.30 0.90 0.30 0.90 0.30

λ(ΓC) 0.90 0.99 0.99 0.80 0.80
λ(ΓC⊗C) 0.89 0.98 0.98 0.72 0.72

Notes: The constant term in the conditional variance equation is set to a = [0.10.2]′ for all DGPs.
λ(ΓC) and λ(ΓC⊗C) denote the stationarity and the fourth-order moment conditions,
respectively. See Section 2.2.2 for the definitions.

Table 2.2 Size simulations for test of CCC-GARCH(1,1) model against ECCC-
GARCH(1,1) model

T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5
(a): nominal 5%

1000 0.060 0.107 0.075 0.052 0.057
2500 0.062 0.064 0.073 0.062 0.053
5000 0.055 0.061 0.063 0.056 0.051
10000 0.055 0.063 0.058 0.053 0.057

(b): nominal 10%
1000 0.112 0.170 0.135 0.106 0.100
2500 0.117 0.117 0.133 0.111 0.103
5000 0.102 0.114 0.116 0.104 0.099
10000 0.106 0.124 0.112 0.099 0.105

Note: The number of replications for each simulation is 5000.
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Table 2.3 Data generating processes for power simulations for test of CCC-
GARCH(1,1)

DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

ARCH
parameters

[
0.05 0.001
0.004 0.04

] [
0.09 0.001
0.004 0.04

] [
0.05 0.001
0.001 0.04

] [
0.07 0.01
0.03 0.04

] [
0.25 0.01
0.02 0.1

]

GARCH
parameters

[
0.9 0.004

0.002 0.85

] [
0.9 0.004
0.02 0.89

] [
0.9 0.001
0.001 0.85

] [
0.8 0.04
0.03 0.75

] [
0.35 0.01
0.04 0.2

]
Correlation 0.7 0.95 0.7 0.8 0.3

λ(ΓC) 0.95 0.992 0.95 0.814 0.604
λ(ΓC⊗C) 0.9084 0.9996 0.9076 0.8978 0.4881

Notes: The constant term in the conditional variance equation is set to a = [0.1 0.2]′ for all DGPs. λ(ΓC)
and λ(ΓC⊗C) denote the stationarity and the fourth-order moment conditions, respectively. See
Section 2.2.2 for the definitions.

Table 2.4 Power simulations for test of CCC-GARCH(1,1) model against ECCC-
GARCH(1,1) model

T DGP 6 DGP 7 DGP 8 DGP 9 DGP 10
(a): nominal 5%

1000 0.113 0.820 0.088 0.427 0.182
2500 0.116 0.996 0.083 0.813 0.293
5000 0.143 1.000 0.103 0.982 0.497
10000 0.221 1.000 0.107 1.000 0.783

(b): nominal 10%
1000 0.184 0.883 0.151 0.544 0.266
2500 0.184 0.998 0.134 0.883 0.399
5000 0.219 1.000 0.163 0.992 0.603
10000 0.326 1.000 0.165 1.000 0.850

Note: The number of replications for each simulation is 5000.
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Table 2.5 Data generating processes for simulations under changing conditional
correlations

Constants
DCC and EDCC[

0.02 0.02
]′ STCC and ESTCC[

0.01 0.01
]′

ARCH parameters
DCC EDCC[

0.04 0
0 0.06

] [
0.09 0.001
0.004 0.04

] STCC ESTCC[
0.04 0
0 0.05

] [
0.09 0.001
0.004 0.04

]
GARCH parameters

DCC EDCC[
0.95 0
0 0.93

] [
0.9 0.004
0.02 0.89

] STCC ESTCC[
0.94 0
0 0.92

] [
0.9 0.004
0.02 0.89

]
Other parameters and assumptions

DCC and EDCC STCC and ESTCC

Q = 0.6[
α1 β1

]
=
[
0.05 0.8

]
ρ(1) = 0, ρ(2) = 0.5

st = h
1/2
s,t ut, ut ∼ N(0, 1)

hs,t = 0.02 + 0.04s2t−1 + 0.95hs,t−1

γ = 5, c = 0

Note: For definitions of these models, see Engle and Sheppard (2001), Silvennoinen
and Teräsvirta (2005, 2009b).

Table 2.6 Size and power simulations under changing conditional correlations

Size Power
T DCC STCC EDCC ESTCC

(a): nominal 5%
1000 0.127 0.083 0.979 0.807
2500 0.110 0.063 1.000 0.994
5000 0.118 0.060 1.000 1.000
10000 0.159 0.057 1.000 1.000

(b): nominal 10%
1000 0.212 0.146 0.990 0.865
2500 0.191 0.122 1.000 0.997
5000 0.205 0.110 1.000 1.000
10000 0.259 0.101 1.000 1.000

Note: The numbers represent actual rejection
frequencies in 5000 replications based
on the nominal 5% and 10% levels of
significance.
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Table 2.7 Descriptive statistics for the mean subtracted return series

JPY CHF GM IBM NEC Hitachi
Minimum −5.619 −4.400 −23.653 −26.857 −19.012 −15.466
Maximum 3.569 5.836 16.644 12.327 13.446 11.122
Std.dev 0.656 0.735 1.691 1.636 2.229 2.041
SK −0.488 −0.016 −0.093 −0.320 0.282 0.266
KR 4.349 2.843 8.026 13.054 3.364 2.854
Rob.SK 0.010 −0.011 0.009 0.017 −0.078 −0.081
Rob.KR 0.318 0.224 0.147 0.150 0.080 0.161
LJB 6427.97

[0.000]
2614.75
[0.000]

29846.14
[0.000]

79106.37
[0.000]

2865.89
[0.000]

2075.84
[0.000]

Q2(25) 1338.69
[0.000]

952.21
[0.000]

1499.38
[0.000]

902.19
[0.000]

1174.04
[0.000]

1798.48
[0.000]

T 7765 7765 11115 11115 5913 5913

Notes: SK and KR denote the skewness and the excess kurtosis, respectively. Rob.SK
and Rob.KR are outlier-robust versions of SK and KR described as SK2 and KR2

in Kim and White (2004). LJB is the test of normality by Lomnicki (1961) and
Jarque and Bera (1980). The numbers in square brackets are p-values. Q2(25) is
the McLeod-Li (1983) portmanteau test statistic for serial correlation up to lag 25
in the squared return series.

Table 2.8 Skewness and kurtosis for the standardised residuals

JPY CHF GM IBM NEC Hitachi
SK −0.472 −0.142 −0.065 −0.103 0.287 0.268
KR 3.049 1.487 4.933 4.719 1.749 1.269
Rob.SK −0.017 −0.015 0.009 0.013 −0.055 −0.043
Rob.KR 0.222 0.134 0.086 0.071 0.060 0.069

Notes: SK and KR denote the skewness and the excess kurtosis, respectively.
Rob.SK and Rob.KR are outlier-robust versions of SK and KR described
as SK2 and KR2 in Kim and White (2004). LJB is the test of normality
by Lomnicki (1961) and Jarque and Bera (1980). The numbers in square
brackets are p-values.
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(a) Japanese Yen (JPY) (b) Swiss Franc (CHF)

Figure 2.1 The two foreign exchange rates against U.S. dollars between 2 Jan, 1975
and 2 Dec, 2005: the upper panels depict the level series, and the lower ones are the
mean subtracted return series.
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(a) GM (c) IBM

Figure 2.2 The three U.S. stocks between 2 Jan, 1962 and 28 Feb, 2006: the upper
two panels depict the level series, and the lower ones are the mean subtracted return
series.
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(a) NEC (b) Hitachi

Figure 2.3 The two Japanese stocks between 4 Jan, 1983 and 1 Mar, 2006: the
upper panels depict the level series, and the lower ones are the mean subtracted
return series.
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Figure 2.4 Estimated conditional variances in the CCC-/ECCC-GARCH(1, 1) mod-
els.
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Figure 2.5 Estimated conditional variances in the CCC-/ECCC-GARCH(1, 1) mod-
els.
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Figure 2.6 Estimated conditional variances in the CCC-/ECCC-GARCH(1, 1) mod-
els.
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An Alternative Test for Causality in Variance in the
Conditional Correlation GARCH Models∗

Abstract

In this paper, we propose an alternative Lagrange multiplier test for volatility
interactions or causality in conditional variance in the multivariate GARCH models
with constant conditional correlations. Although a similar test has recently been
suggested by the authors, the test necessitates estimation of the constant conditional
correlation GARCH model. Our new test, on the other hand, can be computed only
through univariate GARCH estimations. In addition, a robust version of the new test
is provided. Finite sample properties of the new test are investigated through Monte
Carlo simulations. The results show that the new test has reasonable size and power
properties under the normally and leptokurtotically distributed innovations as well
as under changing conditional correlations. Usefulness of the new test is illustrated
by empirical examples.
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3.1 Introduction

Since the introduction of a multivariate generalised autoregressive conditional het-
eroskedastic (MGARCH) model by Bollerslev, Engle, and Wooldridge (1988), there
have been efforts to find parsimonious parametric models for the conditional second
moments or conditional covariance matrix of returns of multivariate financial time
series. See survey articles such as Palm (1996), Bauwens, Laurent, and Rombouts
(2006) and Silvennoinen and Teräsvirta (2009b) for details. In particular, attention
has been paid on modelling the conditional covariance and conditional correlation ma-
trices separately since the introduction of the constant conditional correlation (CCC-)
GARCH model of Bollerslev (1990). Nakatani and Teräsvirta (2008b) called the en-
suing family of MGARCH models the conditional correlation (CC-) GARCH models.
Due to the so-called “dimensionality” in the other types of MGARCH models and
the need for assuring positive definiteness of the conditional covariance matrix, the
CC-GARCH models have attracted much interest and generated plenty of research.
In recent years, a number of extensions to the CCC-GARCH model have been pro-
posed. Examples include the dynamic conditional correlation (DCC-) GARCH of
Engle (2002), the varying correlation GARCH of Tse and Tsui (2002), the smooth
transition conditional correlation (STCC-) and double STCC (DSTCC-) GARCH
of Silvennoinen and Teräsvirta (2005, 2009a) and the generalised DCC-GARCH of
Hafner and Franses (2009), to name a few. All of these models try to capture time-
varying nature of the conditional correlations.

As Silvennoinen and Teräsvirta (2009b) pointed out, however, less attention has
been put on modelling of the GARCH equations in the CC-GARCH models. Indeed,
most of the above-mentioned CC-GARCH models merely use a variant of univariate
GARCH models in modelling of the conditional variances. Although a number of
different univariate GARCH specifications exist, incorporating interaction effects or
causality in conditional variances into the univariate model has not been considered.

The extended CCC- (ECCC-) GARCH model introduced by Jeantheau (1998)
provides a framework for modelling causality in conditional variances. The model is
applied, for instance, by Wong and Li (1997), Wong, Li, and Ling (2000), Nakatani
and Teräsvirta (2008b, 2009) for modelling volatility spillovers in the returns of stock
prices and foreign exchange rates. Theoretical properties of the model have also
been investigated. For instance, He and Teräsvirta (2004) considered fourth-moment
structure of the model while Ling and McAleer (2003) established consistency and
asymptotic normality of the quasi maximum estimators of the parameters. Recently,
Nakatani and Teräsvirta (2008b) and Conrad and Karanasos (2009) worked out condi-
tions for negative volatility spillovers effects while keeping the conditional covariance
matrix positive definite almost surely.

As to modelling with the CC-GARCH models, misspecification tests have been
proposed for testing the constancy of conditional correlations. Tse (2000), Bera and
Kim (2002) and Silvennoinen and Teräsvirta (2005) are such examples. Regarding
the volatility component of the CC-GARCH models, a need for developing diagnos-
tic tests was also addressed by Silvennoinen and Teräsvirta (2009b). To the best of
our knowledge, Nakatani and Teräsvirta (2009) is the only effort to consider a mis-
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specification test for the volatility component of the CC-GARCH framework. These
authors derived a Lagrange multiplier (LM) test of the CCC-GARCH model against
the ECCC-GARCH model. Besides the CC-GARCH models, Comte and Lieberman
(2000) dealt with second-order causality or causality in conditional variance by test-
ing the appropriate parameter restrictions in the BEKK-GARCH model. Hafner and
Herwartz (2006) employed the idea of the ‘ARCH in GARCH’ test of Lundbergh
and Teräsvirta (2002) to obtain an LM test of noncausality in conditional variance.
These tests test of particular parameter restrictions to detect causality in conditional
variances. Cheung and Ng (1996), on the other hand, applied the cross-correlation
function and proposed a Portmanteau test for causality in variance of the univariate
GARCH residuals.

The aim of this paper is to propose an alternative test similar to, but simpler
than, the one suggested by Nakatani and Teräsvirta (2009). The similarity is due to
the fact that the new test is constructed in the same spirit as that of Nakatani and
Teräsvirta (2009), whereas the simplicity comes from the property that carrying out
the test only requires estimation of univariate GARCH models.

The rest of the paper is organised as follows. In Section 3.2, the ECCC-GARCH
model is defined and some estimation strategies as well as asymptotic properties of the
maximum likelihood estimator are described. The new test is derived in Section 3.3
and compared with existing ones. Section 3.4 contains simulation experiments with
the purpose of investigating finite sample properties of the test statistic. Usefulness
of the test is illustrated in Section 3.5 through an application. Finally, Section 3.6
concludes.

3.2 The conditional correlation GARCH model

3.2.1 The model specification

Following Nakatani and Teräsvirta (2009), we begin by defining the constant condi-
tional correlation (CCC-) GARCH model such that

yt = μ+ εt (3.1)

εt = Dtzt (3.2)

where yt is a stochastic (N × 1) vector, μ is an (N × 1) intercept vector, Dt =

diag(h
1/2
1,t , . . . , h

1/2
N,t) is a diagonal matrix whose diagonal elements consist of condi-

tional standard deviations of εt. The sequence of the stochastic vector zt is indepen-
dently distributed with E[zt|Ft−1] = 0 and E[z′tzt|Ft−1] = P = [ρij ] where Ft−1 is
the information set up to and including time t− 1. ρij = 1 for i = j so that each zi,t
in zt has unit variance. With this formulation, we have

E[εt|Ft−1] = 0 and E[εtε
′
t|Ft−1] = DtPDt = Ht =

{
hi,t i = j

h
1
2
i,th

1
2
j,tρij i �= j

, (3.3)

and therefore the matrices Ht and P are the time-varying conditional covariance
matrix and the constant conditional correlation matrix of the process εt, respectively.
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In the original CCC-GARCH model of Bollerslev (1990), each hi,t is described by
a univariate GARCH(p, q) model. Later on, Jeantheau (1998) proposed the extended
CCC- (ECCC-) GARCH specification allowing for causality in conditional variances.
He considered a model of the conditional variances as follows:

ht = a0 +

q∑
i=1

Aiε
(2)
t−i +

p∑
j=1

Bjht−j (3.4)

where ε
(2)
t = (ε21,t, . . . , ε

2
N,t)

′, a0 is an (N × 1) vector, and Ai and Bj are (N × N)
matrices with elements such that hi,t in ht are positive for all t. The equation (3.4)
can be seen as a direct augmentation of the univariate GARCH (p, q) model to an
N -dimensional system.

Theoretical characteristics of the ECCC-GARCH model have been studied by
several authors. He and Teräsvirta (2004) investigated moment conditions of the
ECCC-GARCH model and found that the model is capable of describing richer auto-
correlation structure for the squared observations than the CCC-GARCH one. Ling
and McAleer (2003) considered asymptotic properties of the estimators of the ECCC-
GARCH model. Recently, Nakatani and Teräsvirta (2008b) and Conrad and Karana-
sos (2009) worked out that the ECCC-GARCH model can allow for negative spillover
effects in conditional variance while keeping the positive definiteness of the conditional
covariance matrix Ht almost surely for all t.

Compared to the univariate GARCH model, there is the difference that the equa-
tion (3.4) allows for interactions or causality in conditional variance either through
the past squared residuals of the other variables or through the past conditional vari-
ances or both. This interactions or causality in conditional variance is parameterised
by the off-diagonal elements of the parameter matrices Ai and Bj in (3.4).

Assuming Ai and Bj diagonal simply reduces (3.4) to a vector of univariate
GARCH (p, q) equations. Nakatani and Teräsvirta (2009) proposed a Lagrange Mul-
tiplier (LM) test, which they called the LMECCC test, for volatility interactions or
nullity of the off-diagonal elements of Ai and Bj in (3.4) with p = q = 1. Using the
test they found that there are statistically significant spillover effects in the conditional
variance in stock and foreign exchange returns.

In this paper, we propose an alternative test similar to, but simpler than, the
LMECCC test of Nakatani and Teräsvirta (2009). The similarity refers to the fact
that the new test has the same null hypothesis as the LMECCC test, whereas the
simplicity comes from the property that the new test only requires estimation of
univariate GARCH models while the the LMECCC test necessitates estimation of a
CCC-GARCH model.

For simplicity and given the fact that the first-order models describe many het-
eroskedastic time series well in a vast majority of empirical applications, we assume
μ = 0 in (3.1) and restrict our discussion to the case of p = q = 1 in (3.4). In
addition, we restrict the following theoretical derivations on the case of the constant
conditional correlation. The validity of the proposed test under both constant and
dynamic conditional correlations is examined through Monte Carlo simulations.
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3.2.2 Estimation strategies

Let θ′ = [ω′,ρ′] where ω contains the parameters in ht and ρ constant conditional
correlations in P. The quasi log-likelihood function for observation t of the ECCC-
GARCH model is given by

�t(θ) = −N

2
ln(2π)− 1

2
ln |D2

t | −
1

2
ln |P| − 1

2
ε′tH

−1
t εt. (3.5)

The quasi maximum likelihood estimator (QMLE) θ̂ of θ is in principle given by

θ̂ = argmax

T∑
t=1

�t(θ) (3.6)

where T denotes the number of observations. The consistency and asymptotic normal-
ity of θ̂ were worked out by Ling and McAleer (2003) under mild regularity conditions.

There has been a couple of methods proposed for finding θ̂ in the (extended)
CCC-GARCH model. In order to reduce the computational burden, Bollerslev (1990)
recommended the use of a concentrated likelihood function. In this approach, the
conditional correlation matrix P is concentrated out and some other simplifying as-
sumptions are imposed.

For the sake of deriving our Lagrange multiplier test, we consider yet another
strategy, namely the two-stage quasi maximum likelihood (2SQML) estimation of
θ′ = [ω′,ρ′]. For brevity, let Vt = D2

t . To apply the 2SQML technique, the log-
likelihood function (3.5) has to be decomposed into two components such that

�t(ω,ρ) = �v,t(ω) + �c,t(ω,ρ) (3.7)

where

�v,t(ω) = −N

2
ln(2π)− 1

2
ln |Vt| − 1

2
ε′tV

−1
t εt (3.8)

�c,t(ω,ρ) = −1

2
ln |P| − 1

2
z′tP

−1zt +
1

2
z′tzt. (3.9)

By this decomposition, estimation of the parameter θ is carried out in two steps. The
first stage consists of finding

ω̂ = argmax �v(ω) (3.10)

whereas the second one of obtaining, given the first stage estimator ω̂,

ρ̂ = argmax �c(ω̂,ρ). (3.11)

The estimator θ̂
′
= [ω̂′, ρ̂′] is regarded as the two-stage quasi maximum likelihood

estimator (2SQMLE). This decomposition and the estimation strategy are analogous
to the ones suggested for the DCC-GARCH model by Engle (2002).
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Since the consistency and asymptotic normality of the QMLE were established
by Ling and McAleer (2003), the resulting 2SQML estimator is also consistent and
asymptotically normal, albeit not efficient. Therefore, by Theorem 6.11 of White
(1994), we have

√
T (θ̂ − θ0)

d−→ N(0,G−1ΩG′−1) (3.12)

where θ0 is the true parameter,

G =

[
G11 G12

G21 G22

]
= E

[∇2
ω�v 0

∇ωρ�c ∇2
ρ�c

]
(3.13)

Ω =

[
Ω11 Ω12

Ω21 Ω22

]
= E

[∇ω�v∇ω�
′
v ∇ω�v∇ρ�

′
c

∇ρ�c∇ω�
′
v ∇ρ�c∇ρ�

′
c

]
(3.14)

with ∇2
ω�v = ∇2

ω�v(ω0) and so on. ∇ and ∇2 represent the first and second order
partial derivatives with respect to the elements of variables in the subscript. It fol-
lows from White (1999, Corollary 4.24, p. 71) that the asymptotic normality of the
GARCH parameter estimators ω̂ also holds, that is,

√
T (ω̂ − ω0)

d−→ N(0,G−1
11 Ω11G

′−1
11 ). (3.15)

We use this property to derive an LM test for causality in conditional variance in the
next section.

Putting this differently, the first stage objective function (3.8) is the log-likelihood
function with the assumption that zt ∼ N(0, IN ) where IN denotes the N dimensional
identity matrix or, equivalently, εt ∼ N(0,Vt). It is then quite natural that the
asymptotic normality (3.15) holds.

Given the fact that Vt is diagonal, (3.8) is further simplified to

�t(ω) = −1

2

N∑
i=1

(
lnhi,t +

ε2i,t
hi,t

)
. (3.16)

The equation (3.16) is equal to the sum of the N individual log-likelihood functions
of εi,t. When no causality in conditional variance is allowed in the model and hi,t is
specified as a member of univariate GARCH models, typically as a univariate GARCH
(1, 1), maximisation of (3.8) or (3.16) is the same as maximising a univariate GARCH
log-likelihood function of each of N time series and summing them up. Therefore,
computing the test statistic for causality in variance only requires univariate GARCH
estimation. This greatly alleviates the computational burden in applications.

3.3 Tests for causality in conditional variance

3.3.1 Alternative test for causality in conditional variance

The vector GARCH equation (3.4) shows that the off-diagonal elements of the pa-
rameter matrices A1 or B1 characterise causality in conditional variance. Thus, a
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test for causality in conditional variance is a test of parametric restrictions on the
GARCH parameters ω. We state the null and alternative hypothesis as follows:

H0 : A1 and B1 in (3.4) are jointly diagonal

against

H1 : at least one of off-diagonal elements of A1 and B1 is non-zero.

Under the null hypothesis H0, the model is the standard CCC-GARCH(1, 1) model,
whereas the extended CCC-GARCH(1, 1) model results from the alternative hypoth-
esis H1.

As explained in the previous section, the GARCH parameters ω are asymptotically
normal and can be consistently estimated by maximising the first-stage objective
function (3.8) or (3.16), regarded as a quasi-log-likelihood function of εt based on the
assumption that εt ∼ N(0,Vt). It is then straightforward to construct an LM test
for causality in conditional variance. The LM statistic for testing H0 is given by

LM = T s̄′(ω̃)Ī(ω̃)−1s̄(ω̃) (3.17)

where ω̃ denotes the first-stage estimator under the restricted (null) model, s̄(ω̃) =

T−1
∑T

t=1 ∇ω�v,t and Ī(ω̃) = T−1
∑T

t=1 E
[∇ωi�v,t∇′ωi

�v,t
]
are the average score and

information matrix evaluated at ω̃, respectively. It should be mentioned that Ī(ω̃)
is equal to the sample average of Ω11 evaluated at ω̃. Under H0, the test statistic
(3.17) is asymptotically distributed as a χ2 distribution with 2N(N − 1) degrees of
freedom.

Under the assumption that εt ∼ N(0,Vt), the score of (3.8) or (3.16) is given by

∇ω�v,t = −1

2
∇ωVt vec

(
V−1

t −V−1
t εtε

′
tV
−1
t

)
=

1

2

N∑
i=1

(z2i,t − 1)h−1
i,t ∇ωhi,t (3.18)

and the information matrix becomes block diagonal with respect to the parameters
in each univariate GARCH equation. The analytic expression of each block is written
as

E
[∇ωi�v,t∇′ωi

�v,t
]
=

1

2
h−2
i,t ∇ωihi,t∇′ωi

hi,t (3.19)

where ωi, i = 1, . . . , N , denote the parameters in the univariate GARCH equation
for the ith variable, that is, ωi consist of elements in the ith row of A1 and B1.

To work out the analytic expression of (3.17), we rearrange the order of the
elements of ω in such a way that, while suppressing the notation for transpose,
ω = [ωd

1, . . . ,ω
d
N ,ωo

1, . . . ,ω
o
N ] where ωi = [ωd

i ,ω
o
i ] and ωd

i is a 3 × 1 vector con-
taining the univariate GARCH(1, 1) parameters for εi,t and ωo

i is a 2(N − 1) × 1
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vector whose entries correspond to the off-diagonal elements in the ith row of A1 and
B1.

Under H0 we have ωo
i = 0, so that ω̃ = [ω̃d

1, . . . , ω̃
d
N ,0]. With this partitioning

and rearrangement, the LM statistic (3.17) is computed by the relevant parts of s̄(ω̃)
and Ī(ω̃). Due to block-diagonality of the information matrix, the LM statistic (3.17)
can be obtained by

LM =

N∑
i=1

LMi (3.20)

and each LMi is given by

LMi =
1

2

(
T∑

t=1

ũi,tk̃
o′
i,t

)
Īωo

i
(ω̃)−1

(
T∑

t=1

ũi,tk̃
o
i,t

)
(3.21)

where ũi,t = z̃2i,t − 1, k̃o
i,t = h̃−1

i,t ∇̃ωo
i
hi,t, k̃

d
i,t = h̃−1

i,t ∇̃ωd
i
hi,t and

Īωo
i
(ω̃) =

T∑
t=1

k̃o
i,tk̃

o′
i,t −

(
T∑

t=1

k̃o
i,tk̃

d′
i,t

)(
T∑

t=1

k̃d
i,tk̃

d′
i,t

)−1( T∑
t=1

k̃d
i,tk̃

o′
i,t

)
.

Alternatively, the test statistic is conveniently computed by the so-called “TR2” form
through auxiliary regressions. The procedure takes the following steps:

1. Estimate an univariate GARCH(1, 1) model for each εi,t, and compute the con-

ditional variance h̃i,t, ũi,t, k̃
d
i,t and k̃o

i,t for i = 1, . . . , N .

2. Regress ũi,t on k̃d
i,t and k̃o

i,t to obtain LMi = TR2
i for each i where T is the

number of observations and R2
i is the coefficient of determination in this regres-

sion.

3. Under H0, LM =
∑N

i=1 LMi is asymptotically equal to the test statistic in
(3.17).

The partial derivatives ∇ωd
i
hi,t and ∇ωo

i
hi,t are computed recursively. The details

can be found in Nakatani and Teräsvirta (2008a). We shall call this LM test the NT
test.

The NT test relies on the assumption that εt ∼ N(0,Vt). Since the covariance
matrix Vt is diagonal, the possibility of non-zero conditional correlations is ruled out
from the first-stage objective function (3.8). Assuming zero conditional correlations is
not a realistic assumption, and the failure of this assumption may lead to a misspec-
ification of the model. Therefore, it is of importance to have a test that is robust to
such a misspecification. A robust version of the NT test is readily available through
the method suggested by Wooldridge (1990, 1991). The robust version (the robust
NT test) can be computed as follows:
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1. Estimate an univariate GARCH(1, 1) model for each εi,t, and compute the nec-

essary components h̃i,t, ũi,t, k̃
d
i,t and k̃o

i,t for i = 1, . . . , N .

2. Regress k̃o
i,t on k̃d

i,t to have the 2(N−1) vector of residuals s̃i,t in this multivariate
regression.

3. Regress 1 on ũi,ts̃i,t and compute the residual sum of squares SSRi,0.

4. Repeat the above steps and compute LMr,i = T −SSRi,0 for each i = 1, . . . , N .

5. LMr =
∑N

i=1 LMr,i is a robust version of the test (3.17) and is asymptoti-
cally distributed under the null as a χ2 distribution with 2N(N − 1) degrees of
freedom.

3.3.2 Relations to similar tests

In the original GARCH article, Bollerslev (1986) proposed, based on the LM principle,
a misspecification test for the presence of the higher order ARCH or GARCH terms in
the univariate GARCH (p, q) model. In one way or the other, the NT test can be seen
as a generalisation of the Bollerslev’s LM test. Instead of considering higher order
ARCH or GARCH effects, the NT tests examines the influence of cross-terms from
other GARCH equations. In fact, when N = 1, a univariate case, the test statistic
(3.17) is reduced to the Bollerslev’s ξLM test for testing the existence of higher-order
ARCH and/or GARCH components in the univariate GARCH(p, q) model.

A similar test for causality in conditional variance was proposed by Hafner and
Herwartz (2006). They used a framework of the ‘ARCH in GARCH’ test introduced
by Lundbergh and Teräsvirta (2002). Their test (the HH test) is also derived on the
basis of the LM principle, and may also be computed through auxiliary regressions.
They consider the following model:

εi,t = zi,t
√
hi,tgi,t, gi,t = 1 + π′iηj,t, ηj,t = (εj,t−1, hj,t−1)

′ (3.22)

for i, j = 1, . . . , N , i �= j where πi is a (2 × 1) vector of parameters. By construc-
tion, causality in conditional variance in the HH test is incorporated multiplicatively
through the term

√
hi,tgi,t. The null hypothesis of no causality in conditional vari-

ance is πi = 0, so that the HH test is asymptotically χ2 distributed with 2 degrees
of freedom under the null.

According to their setup, the HH test seems a pairwise test for the variables in
the N dimensional system. It is not immediately obvious how one can join the HH
tests to form a more general one. To make performance comparisons of the HH test
with ours, we generalise their formulation by using η−i,t = (ε′−i,t−1,h

′
−i,t−1)

′ in stead
of ηj,t in (3.22), where the subscript −i means that the vector contains all elements
but the ith one. The null hypothesis remains πi = 0, but now it is a 2(N − 1) × 1
vector. The generalised HH test is asymptotically distributed as χ2{2(N − 1)} under
the null. It may still be computed through auxiliary regressions.
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3.4 Simulation experiments

3.4.1 Design of the experiments

In this section we conduct simulation experiments to investigate finite sample prop-
erties of the NT and the robust NT tests in comparison with the HH test and the
LMECCC test. In what follows, the HH test serves as a benchmark. We use the
DCC- and CCC-GARCH models for size simulations and their extended versions for
power simulations. The extended versions have non-diagonal parameter matrices in
the vector GARCH equation (3.4) as data generating processes (DGPs). Note that
asymptotic normality of the maximum likelihood estimators of the parameters of the
(E)DCC- GARCH model has not been proven. Here, as has been explained, we ignore
the correlations, however. In both size and power simulations, we use the sample sizes
T = 1000, 2500, 5000 and 10000 for each DGP. The number of dimensions varies from
N = 2 to 5.

The model parameters a, A, B, P and [α, β] are summarised in Table 3.1. We
use principal submatrices (the N ×N upper-left block) of them for different N . For
the size study, the diagonal entries of A and B are used as model parameters. We
assume that the innovation process zt follows a multivariate t-distribution with four
different degrees of freedom, namely df = 8, 10, 15 and ∞. The last case is equivalent
to assuming that zt follows a multivariate normal distribution. The matrix P has
two roles. First, it serves as a covariance matrix of zt in the (E)CCC-GARCH DGPs.
Second, in the (E)DCC-GARCH DGPs it is a sample correlation matrix of zt which
is denoted as Q in Engle (2002). In this case the dynamic conditional correlation
matrix Pt is constructed through the method suggested by Engle (2002).

A total of 5000 replications are conducted for each DGP. To minimise initial effects,
the first 1000 generated observations are discarded. All numerical calculations are
implemented in the free statistical environment R 2.10.0 (R Development Core Team,
2009) or later with the ccgarch package (Nakatani, 2010) for modelling multivariate
GARCH models with conditional correlations1.

3.4.2 Size properties

The results of the size simulations are summarised graphically in Figures 3.1 and 3.2
for the CCC-GARCH DGPs and in Figures 3.3 and 3.4 for the DCC-GARCH DGPs,
respectively. In all of these figures, the size discrepancies (the actual size minus the
nominal one) are plotted against the nominal sizes from 0.0001% to 10.0% by 0.001 up
to the 0.01% nominal size and by 0.005 thereafter. The format of the graphs follows
a suggestion by Davidson and MacKinnon (1998).

Figures 3.1 and 3.3 contain the results when zt follows a multivariate t-distribution
with 8 degrees of freedom and a multivariate normal distribution while Figures 3.2
and 3.4 do so for zt following a multivariate t-distribution with 10 and 15 degrees of

1The latest version of the ccgarch package includes commands for computing the NT, robust
NT and HH tests.
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freedom. To gain visibility of the figures, only the results of the robust NT, HH and
LMECCC tests with T = 2500 and 10000 are plotted2.

In most of panels in Figures 3.1 and 3.2, one can observe that the LMECCC test
is severely size-distorted. Except for the bivariate CCC-GARCH case when zt follows
a normal distribution (the right uppermost panel in Figure 3.1), the value of size
discrepancy often exceeds 10% at the 0.001% nominal size and grows thereafter when
N ≥ 3. Due to this large distortion, many of panels in Figures 3.1 and 3.2 do not
contain markers corresponding to the LMECCC test. This consequence implies that
the LMECCC test is effective only when N = 2 and is not suitable for testing of
non-causality in conditional variance in higher dimensional models. In other cases,
the empirical distribution of the test statistic has to be constructed by simulation.
The same interpretation applies to the outcomes of the DCC-GARCH DGPs (Figures
3.3 and 3.4).

Looking at the results of the robust NT and HH tests, the size of both tests is
distorted to some extent, but the actual size approaches to the nominal one as T
becomes larger. Although the benchmark HH test shows in most of the cases better
size properties than the robust NT test, the performance of the latter test seems
acceptable because the level of the discrepancy in the robust NT test is largely less
that 5%. However, when a DGP is t-distributed with N ≥ 4 and T ≤ 2500, size
discrepancy of the robust NT test goes slightly beyond 5% around the 5% nominal
size. The results of the simulations for the DCC-GARCH DGPs do not differ much
from those for the CCC-GARCH case.

Overall, the asymptotic null distribution of the robust NT test statistics is a
good approximation to the unknown finite-sample null distribution for T > 2500 and
N ≥ 2, and for normally- and t-distributed innovations, when the results are compared
to those of the HH test. The constancy of the conditional correlations plays almost
no role in determining the finite-sample performance of the robust NT test: The
LMECCC test has limited effectiveness for testing of non-causality in variance.

3.4.3 Power properties

The actual rejection frequencies (power curves) are plotted against the nominal sig-
nificance levels from 0.001% to 10.0% in Figures 3.5 and 3.6 for the extended CCC-
(ECCC-) GARCH DGPs, while Figures 3.7 and 3.8 contain outcomes for the extended
DCC (EDCC-) GARCH DGPs. As before, only the results of the robust NT, HH and
LMECCC tests with T = 2500 and 10000 are plotted. The assumption for the inno-
vation zt is the same as in the size study. We did not make size-adjustment for the
power curves since the tests of interest, namely, the robust NT and HH tests, have
acceptable size properties. In what follows, the power properties of the LMECCC test
are not considered, because the test is severely size-distorted.

One can see it on each graph of Figures 3.5 through 3.8 that, for fixed N , the
power of both tests is an increasing function of T . For fixed T , the power of both
tests is increasing as N becomes larger. When N ≥ 3, the two tests have good power
in T > 2500.

2Remaining results are available upon request to the author.
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It is interesting to note that, for fixed N and T , the power of both tests increases
when the number of the degrees of freedom of t-distribution decreases. This is most
apparent in Figures 3.5 and 3.7 where comparisons are made between a graph in the
left column and a corresponding one on the right. In other words, the fatter the tails
of an innovation distribution are, the more powerful are both tests.

If we compare panels in Figure 3.5 with those in Figure 3.7, or panels in Figure
3.6 with those in Figure 3.8, it can be seen that assuming dynamic conditional corre-
lations slightly lowers the power of both tests. However, this effect is marginal and is
vanishing as N or T or both become larger. Therefore, assuming dynamic conditional
correlations has little effect in the power of the tests.

3.5 Applications

In this section, we apply the proposed NT test (standard and robust ones) as well as
the benchmark HH test to a tri-variate system of stock returns. The data are down-
loaded from Yahoo!Finance Japan (http://finance.yahoo.co.jp/) for the three leading
milk companies in Japan, namely, Snow Brand (Yukijirushi), Meiji and Morinaga.
The sample period spans from April 1, 1993 to March 25, 2009, giving 3930 obser-
vations for each series. The descriptive statistics of the demeaned return series are
summarised in Table 3.2.

We proceed to applying our proposed test to the return series. If the null hypoth-
esis of no causality is rejected, the ECCC- and EDCC-GARCH models are estimated.
We computed three test statistics, namely the NT, robust NT and HH tests, and
the resulting test statistics and relevant p-values are reported in Table 3.3. Since the
number of dimensions of the system at our hands is three (N = 3), the statistics are
distributed, under the null of no causality in conditional variance, as a χ2 distribu-
tion with 2N(N − 1) = 12 degrees of freedom. The results show that the null of no
causality in variance is rejected by all of the tests with very small p-values.

Given the fact that the null of no causality in conditional variance is rejected, the
system is thought to be better explained by the extended version of the CCC- or DCC-
GARCHmodel. We fit extended ECCC- and EDCC-GARCHmodels to the demeaned
returns, and summarise the estimation results in Table 3.4. In Table 3.4, Panel A
contains the estimates, their robust standard errors and the value of the log-likelihood
function evaluated at the estimates for the ECCC-GARCH model, whereas Panel B
does so for the EDCC-GARCHmodel. In both Panels A and B, λ(ΓC) < 1, so that the
stationarity condition of the GARCH equation (3.4) is satisfied. As for the ECCC-
GARCH model, one can conclude that the estimate â23,ECCC = 0.0360 (0.0015)
is statistically significant at the conventional levels of significance (robust standard
errors in parenthesis). If we assume asymptotic normality of the estimators in the
EDCC-GARCH model, the estimate â23,EDCC = 0.0365 (0.0016) is also significant.
As such, the above-mentioned examples show the empirical usefulness of the proposed
test.
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3.6 Concluding remarks

In this paper, we propose an alternative test, the NT test, for causality in conditional
variance. It is an extension and simplification of the LMECCC test by Nakatani
and Teräsvirta (2009). We consider asymptotic properties of the 2SQML estimator
of the parameters in the ECCC-GARCH model, through which the NT test has
an asymptotic χ2 distribution. Its finite sample properties are investigated through
Monte Carlo experiments and compared with those of the LMECCC test as well as
the HH test by Hafner and Herwartz (2006).

It turns out that the LMECCC test is size-distorted, meaning that it has limited
effectiveness for testing of non-causality in variance. On the other hand, the simula-
tion results revealed that the NT test has good finite sample properties both in size
and power in larger dimensional systems. In addition, size and power of the NT test
was little affected by distributional assumptions. Therefore, we can conclude that the
NT test is robust against fatter tailed distributions and changing conditional correla-
tions. Finally, empirical usefulness of the NT test was illustrated by applying it to a
trivariate stock return series.

As mentioned earlier, procedures for computing test statistics of the NT test
as well as the HH test are included in the package ccgarch (Nakatani, 2010) for
the free statistical environment R. Therefore, the test should be readily available to
everyone and it is hoped that the NT test would be a necessary diagnostic tool as a
misspecification test of the GARCH equation in the CC-GARCH models.
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Table 3.1 Parameter Matrices for Simulation

a = [0.02 0.01 0.03 0.05 0.09]′

A =

⎡⎢⎢⎢⎢⎣
0.0400 0.0020 0.0030 0.0002 0.00005
0.0020 0.0200 0.0040 0.0040 0.00100
0.0010 0.0020 0.0600 0.0030 0.00400
0.0070 0.0024 0.0040 0.0100 0.00300
0.0010 0.0019 0.0040 0.0080 0.07000

⎤⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎣
0.9100 0.0008 0.0008 0.0010 0.00050
0.0002 0.9300 0.0005 0.0020 0.00050
0.0009 0.0070 0.8900 0.0010 0.00040
0.0006 0.0001 0.0006 0.9400 0.00070
0.0006 0.0003 0.0005 0.0001 0.88000

⎤⎥⎥⎥⎥⎦

P =

⎡⎢⎢⎢⎢⎣
1.000
0.489 1.000
0.853 0.289 1.000
0.534 0.323 0.399 1.000
0.105 0.658 0.221 0.368 1.000

⎤⎥⎥⎥⎥⎦
[α β] = [0.05 0.93]

Note: For the size studies, the diagonal entries of A and B
are used.
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Table 3.2 Descriptive statistics of the return series
Snow Brand Meiji Morinaga

T 3930 3930 3930
Mean 0.000 0.000 0.000
Max 27.535 20.140 18.571
Min −24.645 −14.607 −13.307
S.E. 2.407 2.407 1.951

Std. Sk 0.080 0.683 0.424
Rob. Sk −0.072 −0.043 −0.068
Std. Kr 17.130 8.075 7.982
Rob. Kr 0.221 0.217 0.250

Note: S.E. stands for standard errors. Std. Sk and
Std. Kr denote the standard Skewness and the
standard excess Kurtosis, whereas Rob. Sk and
Rob. Kr represent robust Skewness and robust
excess Kurtosis based on quantiles; See Kim
and White (2004) for details.

Table 3.3 Test statistics and associated p-values of the NT and HH tests
NT Robust NT HH

Statistics 33.78 34.01 23.43
p-values 7× 10−4 7× 10−4 0.02

Note: Under the null of no causality in variance, all the test
statistics are distributed as a χ2 distribution with 12
degrees of freedom. The 5% critical value is 21.03.
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Figure 3.1 Results of size simulations of the tests using the CCC-GARCH(1,1)
DGPs with zt ∼ t8(0,P) (left panels) and zt ∼ N(0,P) (right panels) for four
different numbers of dimensions (N). The size discrepancy is plotted against the
nominal size. Markers correspond to Robust NT (◦: T = 2500, +: T = 10000), HH
(�: T = 2500, ×: T = 10000) and LMECCC (�: T = 2500, �: T = 10000).
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Figure 3.2 Results of size simulations of the tests using the CCC-GARCH(1,1)
DGPs with zt ∼ t10(0,P) (left panels) and zt ∼ t15(0,P) (right panels) for four
different numbers of dimensions (N). The size discrepancy is plotted against the
nominal size. Markers correspond to Robust NT (◦: T = 2500, +: T = 10000), HH
(�: T = 2500, ×: T = 10000) and LMECCC (�: T = 2500, �: T = 10000).
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Figure 3.3 Results of size simulations of the tests using the DCC-GARCH(1,1)
DGPs with zt ∼ t8(0,Pt) (left panels) and zt ∼ N(0,Pt) (right panels) for four
different numbers of dimensions (N). The size discrepancy is plotted against the
nominal size. Markers correspond to Robust NT (◦: T = 2500, +: T = 10000), HH
(�: T = 2500, ×: T = 10000) and LMECCC (�: T = 2500, �: T = 10000).
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Figure 3.4 Results of size simulations of the tests using the DCC-GARCH(1,1)
DGPs with zt ∼ t10(0,Pt) (left panels) and zt ∼ t15(0,Pt) (right panels) for four
different numbers of dimensions (N). The size discrepancy is plotted against the
nominal size. Markers correspond to Robust NT (◦: T = 2500, +: T = 10000), HH
(�: T = 2500, ×: T = 10000) and LMECCC (�: T = 2500, �: T = 10000).
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Figure 3.5 Results of power simulations of the test using the ECCC-GARCH(1,1)
DGPs with zt ∼ t8(0,P) (left panels) and zt ∼ N(0,P) (right panels) for four different
numbers of dimensions (N). The actual rejection frequency is plotted against the
nominal size. Markers correspond to Robust NT (◦: T = 2500, +: T = 10000), HH
(�: T = 2500, ×: T = 10000) and LMECCC (�: T = 2500, �: T = 10000).
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Figure 3.6 Results of power simulations of the tests using the ECCC-GARCH(1,1)
DGPs with zt ∼ t10(0,P) (left panels) and zt ∼ t15(0,P) (right panels) for four
different numbers of dimensions (N). The size discrepancy is plotted against the
nominal size. Markers correspond to Robust NT (◦: T = 2500, +: T = 10000), HH
(�: T = 2500, ×: T = 10000) and LMECCC (�: T = 2500, �: T = 10000).
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Figure 3.7 Results of power simulations of the test using the EDCC-GARCH(1,1)
DGPs with zt ∼ t8(0,Pt) (left panels) and zt ∼ N(0,Pt) (right panels) for four
different numbers of dimensions (N). The actual rejection frequency is plotted against
the nominal size. Markers correspond to Robust NT (◦: T = 2500, +: T = 10000),
HH (�: T = 2500, ×: T = 10000) and LMECCC (�: T = 2500, �: T = 10000).
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Figure 3.8 Results of power simulations of the tests using the EDCC-GARCH(1,1)
DGPs with zt ∼ t10(0,Pt) (left panels) and zt ∼ t15(0,Pt) (right panels) for four
different numbers of dimensions (N). The size discrepancy is plotted against the
nominal size. Markers correspond to Robust NT (◦: T = 2500, +: T = 10000), HH
(�: T = 2500, ×: T = 10000) and LMECCC (�: T = 2500, �: T = 10000).
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Positivity Constraints on the Conditional Variances in the
Family of Conditional Correlation GARCH Models1†

Abstract

In this article, we derive a set of necessary and sufficient conditions for positivity of
the vector conditional variance equation in multivariate GARCH models with explicit
modelling of conditional correlation. These models include the constant conditional
correlation GARCH model of Bollerslev (1990, Review of Economics and Statistics,
72, 498) and its extensions. Under the new conditions, it is possible to introduce neg-
ative volatility spillovers in the model. An empirical example illustrates usefulness of
having such conditions in practice.

1This is a joint work with Timo Teräsvirta. The chapter was published as Nakatani and Teräsvirta
(2008), and is contained in this thesis under the Authors’ rights granted by Elsevier.

†Acknowledgements: We wish to thank Christian Hafner for helpful comments on an earlier
version of the paper. Responsibility for any errors and shortcomings remains ours. This research has
been supported by the Jan Wallander and Tom Hedelius Foundation, Project No. P2005-0033:1, and
the Danish National Research Foundation. Part of the research was conducted while I was visiting
CREATES, Aarhus University, whose kind hospitality is gratefully acknowledged.
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4.1 Introduction

Restrictions on parameters in univariate GARCH models are necessary in order to
ensure the positivity of the conditional variance. Nelson and Cao (1992) and Tsai
and Chan (2008) obtained necessary and sufficient conditions for such a positivity
restriction in the standard GARCH(p, q) model of Bollerslev (1986). The positivity
of the conditional variance is replaced with the positive definiteness of the conditional
covariance matrix in multivariate GARCH models. However, except for particular
models such as the BEKK-GARCH of Engle and Kroner (1995) and the matrix ex-
ponential GARCH of Kawakatsu (2006) that by construction provide the positive
definiteness, establishing analytic necessary and sufficient conditions in general mul-
tivariate GARCH models seems complicated (He and Teräsvirta, 2002).

The constant conditional correlation GARCH of Bollerslev (1990) is yet another
model with built-in positive definiteness of the conditional covariance matrix. The
volatility part of this model is a vector analogue of Bollerslev’s original GARCH(p, q)
representation with the restriction that a conditional variance is modelled as a function
of its own lagged squared innovations and conditional variances. Therefore, each con-
ditional variance is usually described by a standard univariate GARCH(p, q) model,
and because of this, the necessary and sufficient positivity conditions derived for the
univariate model are directly applicable. This property is carried over to other mul-
tivariate GARCH representations with explicit modelling of conditional correlations,
such as the varying correlation GARCH of Tse and Tsui (2002), the dynamic con-
ditional correlation GARCH of Engle (2002), and the smooth transition conditional
correlation GARCH model of Silvennoinen and Teräsvirta (2005).

A natural extension of this type of multivariate GARCH models is to allow for
volatility interactions or spillovers; see, for instance, Jeantheau (1998) and Nakatani
and Teräsvirta (2009). However, the necessary and sufficient positivity conditions
for the standard univariate GARCH model are no longer valid because each of the
extended conditional variance equations now contains terms for spillover effects as
well that are described by lagged squared innovations and conditional variances of
other variables in the system.

The aim of this paper is to provide necessary and sufficient positivity conditions of
the extended conditional variance equation. Together with a positive definite condi-
tional correlation matrix that can be time-varying, the derived conditions guarantee
the positive definiteness of the conditional covariance matrix in multivariate condi-
tional correlation (CC-) GARCH models.

The new “positivity” conditions relax a set of trivial sufficient conditions that all
parameters in the extended conditional variance equations in a CC-GARCH model
are non-negative. It will be shown that certain parameters associated with volatility
interactions can take negative values while the conditional correlation matrix remains
positive definite. The new conditions thus allow the existence of negative volatility
spillover effects in the CC-GARCH framework. In this respect, the paper is best
viewed as a multivariate extension of the work of Nelson and Cao (1992).

The organisation of the paper is as follows. Section 4.2 defines the general expres-
sion for the CC-GARCH model. The main results are derived in Section 4.3. As an
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empirical illustration, we fit a bivariate CC-GARCH model with constant conditional
correlation to stock returns in Section 4.4. Finally, Section 4.5 concludes.

4.2 The model and the positive definiteness of the
covariance matrix

Consider the following vector stochastic process:

yt = μ+ εt (4.1)

εt = Dtzt (4.2)

whereDt = diag(h
1/2
1,t , . . . , h

1/2
N,t), the sequence of the stochastic vector zt = [z1,t, . . . , zN,t]

′

is independently distributed with E[zt|Ft−1] = 0 and E[z′tzt|Ft−1] = Pt where Ft is
the information set up to and including time t, and Pt ∈ Ft−1.

With these assumptions, E[εt|Ft−1] = 0 and E[εtε
′
t|Ft−1] = DtPtDt = Ht, so

that Ht and Pt are the time-varying conditional covariance matrix and the time-
varying positive definite conditional correlation matrix of the process εt, respectively.
Matrix Ht has its elements given by

Ht =

{
hi,t i = j,

h
1/2
i,t h

1/2
j,t ρij,t i �= j.

(4.3)

Let ht = [h1,t, . . . , hN,t]
′. Define the vector GARCH(p, q) process such that

ht = a0 +

q∑
i=1

Aiε
(2)
t−i +

p∑
j=1

Bjht−j (4.4)

where ε
(2)
t = [ε21,t, . . . , ε

2
N,t]

′, a0 is an (N × 1) vector of constants, and Ai and Bj

are (N ×N) matrices with elements such that hi,t in ht are positive for all t. When
Ai and Bj are diagonal, the positivity conditions for ht collapse into conditions for
hi,t > 0, given in Nelson and Cao (1992). Furthermore,

Pt = P(xt,φ) (4.5)

where P( ) is a function such that Pt remains a positive definite correlation matrix,
xt ∈ Ft−1 is a vector of explanatory variables, and φ is a vector of parameters. Equa-
tions (4.1) through (4.5) define a class of N -dimensional CC-GARCH(p, q) models.

A number of different specifications are possible for both ht and Pt such that
Ht and Pt are positive definite for all t. Modelling the dynamic behaviour of the
conditional correlation matrix (4.5) has recently attracted much attention. However,
we leave the form of Pt unspecified and simply assume that Pt is positive definite for
all t.

He and Teräsvirta (2002) considered conditions for Ht in a general vector ARCH
model to be positive definite. Recently, Gouriéroux (2007) derived necessary and
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sufficient conditions for the positive definiteness of the conditional covariance matrix
in a bivariate autoregressive specification. Although in principle their results can be
extended to a general vector GARCH model, the authors point out that the extension
seems infeasible because of the tedious algebra involved. But then, in the CC-GARCH
model, the situation is less complicated as the following proposition (Bollerslev, 1990)
demonstrates:

Proposition 4.1 Suppose that the conditional correlation matrix Pt is positive defi-
nite for all t. Matrix Ht is positive definite for all t if and only if Dt is well defined,
that is, ht > 0 elementwise3 for all t.

By Proposition 4.1, the positive definiteness of Ht in the CC-GARCH model solely
rests on the positivity of ht, provided that Pt is positive definite. A set of trivial
sufficient conditions for ht > 0 is that a0 > 0, Ai ≥ 0 and Bj ≥ 0 for each i
and j. As we shall show, considerations analogous to the ones in Nelson and Cao
(1992) enable us to find necessary and sufficient conditions for ht > 0 in the class of
CC-GARCH models.

4.3 Main results

4.3.1 CC-GARCH(p, q) model

We begin by rewriting the CC-GARCH(p, q) equation (4.4) as

B(L)ht = a0 +A(L)ε
(2)
t−1 (4.6)

where B(L) = IN −∑p
j=1 BjL

j , A(L) =
∑q

i=1 AiL
i, L is the lag operator and IN

denotes the N -dimensional identity matrix. For (4.6) to have the vector ARCH(∞)
form, we make the following assumptions:

A1: |B(z)| �= 0 for |z| ≤ 1.

A2: The CC-GARCH(p, q) model of (4.6) is minimal4 in the sense of Jeantheau
(1998, Definition 3.3).

A3: |IN −∑p
j=1 Bjz

j −∑q
i=1 Aiz

i| �= 0 for |z| ≤ 1.

Under these assumptions, the ARCH(∞) representation of (4.6) is available and

is given by ht = a∗0 + Ψ(L)ε
(2)
t where a∗0 = B(1)−1a0 and Ψ(L) =

∑∞
k=0 ΨkL

k =
B(L)−1A(L). With this representation, necessary and sufficient conditions for ht > 0
are obvious and summarised in Theorem 4.2.

3Inequalities associated with matrices or vectors denote elementwise relation throughout.
4Assumption A2 is the identifiability condition of the model (4.6). It rules out, among others, a

common left divisor of A(L) and B(L).
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Theorem 4.2 Let Ak = 0 for k > q, Bk = 0 for k > p and Ψk = 0 for k ≤ 0 and
assume that A1, A2 and A3 hold. Then ht > 0 if and only if for all k ∈ N

a∗0 = B(1)−1a0 > 0 (4.7)

Ψk = B1Ψk−1 +B2Ψk−2 + · · ·+Bk−1Ψ1 +Ak ≥ 0. (4.8)

It follows from (4.8) with k = 1 that the elements of A1 have to remain positive
regardless of the orders, p and q. Since k ∈ N, Theorem 4.2 involves infinitely many
difference equations. Expressing these conditions by a finite number of parameter con-
straints is possible in the CC-GARCH(1, 1) model. However, tedious algebra makes
it hard to generalise them for higher-order models. We shall consider the simplest
case which is the bivariate CC-GARCH(1, 1) model. For this model, analytic results
are readily available.

4.3.2 CC-GARCH(1, 1) model

The conditional variance equation of the CC-GARCH(1, 1) model has the following
form:

ht = a0 +A1ε
(2)
t−1 +B1ht−1. (4.9)

The next corollary is an immediate consequence of Theorem 4.2.

Corollary 4.3 Let A1, A2 and A3 hold for p = q = 1. In the CC-GARCH(1, 1)
model, ht > 0 for all t if and only if

(I−B1)
−1a0 > 0 (4.10)

Bk−1
1 A1 ≥ 0, ∀k ∈ N. (4.11)

If B1 and A1 are assumed to be diagonal, the trivial sufficient conditions are also
necessary. In contrast, Corollary 4.3 allows some entries in B1 to take negative values
once the diagonality assumption is removed.

Further simplification is available in the bivariate case. With the reparameterisa-
tion shown in the Appendix, it is summarised as follows:

Corollary 4.4 In addition to the assumptions in Corollary 4.3, let the following
assumptions hold:
A4: The diagonal elements b11 and b22 of B1 are positive, and |B1| > 0,
A5: B1 has two distinct real eigenvalues.
Then (4.11) is satisfied if and only if{

cij,1 > 0

cij,1 + cij,2 > 0
i, j = 1, 2 (4.12)

where cij,1 and cij,2, i, j = 1, 2, are defined in the Appendix. The proof can be found
in the Appendix. For higher-dimensional models, an analogous simple structure does
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not seem to be available. Instead, our recommendation is to check the validity of
both (4.10) and (4.11) numerically during optimisation.

It is not unrealistic to assume that b11 and b22 be positive and that |B1| = b11b22−
b12b21 > 0, because in applications off-diagonal elements typically take values one
magnitude smaller in absolute value than the positive diagonal ones. In addition to
the conditions required for satisfying (4.10), there are four restrictions in the first-
order bivariate model. This is useful in applications because the restrictions can then
easily be incorporated in an appropriate algorithm for maximum likelihood estimation.

4.4 Empirical example

As an empirical illustration, we fit a bivariate CC-GARCH(1, 1) model with the con-
stant conditional correlation to a pair of daily Japanese stock returns under the two
different sets of conditions. The series consist of daily closing prices of Toshiba and
Hitachi, two leading companies in the Japanese heavy industry, traded at the Tokyo
Stock Exchange. A return is computed by the log-price difference for two consecutive
trading days multiplied by 100. The time series extend from January 4, 1983 to March
1, 2006, which amounts to 5913 observations for each return series.

The estimation results5 can be found in Table 4.1. All the estimates satisfy both
(4.10) and (4.11). The maximum of the log-likelihood increases when the restrictions
requiring all coefficients to be non-negative are no longer binding. The most con-
spicuous change occurs in the estimate for b21. Under the trivial restrictions, it is
a small positive number (3 × 10−8) and statistically insignificant but turns negative
(−0.047) and significant under our new conditions. At the same time, the estimates
of the other off-diagonal elements both in A1 and B1 become larger, whereas the
estimate of the constant conditional correlation remains unchanged (0.611 for both
sets of conditions).

4.5 Concluding remarks

In this article, we consider necessary and sufficient conditions on parameter matrices
to ensure the positive definiteness of the conditional covariance matrix in the class of
CC-GARCH models. These models can be extended to have parameters that describe
interactions between volatilities. With any such extension, assuming all parameters
positive is a trivial sufficient condition for the positive definiteness of the covariance
matrix. We derive a set of necessary and sufficient conditions for the positive def-
initeness by considering the positivity of the individual conditional variances. We
show that these conditions are expressed in a relatively simple analytic form when
the model is a bivariate CC-GARCH(1,1) model. The conditions become more com-
plicated with the increasing dimension of the model. Validity of these conditions is
checked in estimation, either analytically in the bivariate model or numerically in
higher-order models.

5Numerical optimisations are carried out with the free statistical environment R ver.2.5.1 (R
Development Core Team, 2007).
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As an empirical example, we fit a bivariate CC-GARCH(1, 1) model with the
constant conditional correlation to a pair of daily Japanese stock return series. The
results show that the model estimated with our necessary and sufficient conditions fits
the data better than the model estimated under the trivial conditions. It also captures
both negative and positive volatility spillover effects. Consequently, we conclude
that in modelling and forecasting volatility it is important to take into account the
interaction effects among volatilities, and, in particular, to allow for negative as well
as positive effects.
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4.A Reparameterisation of the model and proof of
Corollary 4.4

We begin by presenting the reparameterisation. Applying the Jordan decomposition
to the 2× 2 matrix B1 yields

Bk−1
1 A1 = ΓΛk−1Γ−1A1

=

[
1 γ2
γ1 1

] [
λk−1
1 0

0 λk−1
2

] [
1 γ2
γ1 1

]−1 [
a11 a12
a21 a22

]
=
[∑2

n=1 cij,nλ
k−1
n

]
(4.13)

where Γ is a matrix of eigenvectors of B1 with ones on diagonal entries and Λ is a
diagonal matrix of eigenvalues (λ1 > λ2) of B1. Furthermore, denote

c11,1 = (a11 − a21γ2)/(1− γ1γ2) (4.14)

c11,2 = γ2c21,2 (4.15)

c21,1 = γ1c11,1 (4.16)

c21,2 = (a21 − a11γ1)/(1− γ1γ2) (4.17)

c12,1 = (a12 − a22γ2)/(1− γ1γ2) (4.18)

c12,2 = γ2c22,2 (4.19)

c22,1 = γ1c12,1 (4.20)

c22,2 = (a22 − a12γ1)/(1− γ1γ2). (4.21)

The proof proceeds as follows. By A1, A4 and A5, we have 0 < λ2 < λ1 < 1.
It follows that the terms in the sequence (λ2/λ1)

k−1, k = 1, 2, . . . , are positive and
converge monotonically to zero as k → ∞. Therefore,

cij,1λ
k−1
1 + cij,2λ

k−1
2 > 0 ⇐⇒ cij,1 + cij,2(λ2/λ1)

k−1 > 0.

When cij,2 > 0,

cij,2 > cij,2(λ2/λ1) > · · · > cij,2(λ2/λ1)
k−1 > 0

so that by adding cij,1 > 0

cij,1 + cij,2(λ2/λ1)
k−1 > cij,1 > 0.

But then, for cij,2 < 0 one obtains

cij,2 < · · · < cij,2(λ2/λ1)
k−1,

and adding cij,1 > 0 gives

0 < cij,1 + cij,2 < · · · < cij,1 + cij,2(λ2/λ1)
k−1.
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This proves the sufficiency of (4.12).
To show that these conditions are necessary, let cij,2 > 0. Then

cij,1 + cij,2 > · · · > cij,1 + cij,2(λ2/λ1)
k−1 > 0

and

lim inf
k→∞

{
cij,1 + cij,2(λ2/λ1)

k−1
}
= cij,1 > 0.

When cij,2 < 0

cij,1 > cij,1 + cij,2(λ2/λ1)
k−1 > · · · > cij,1 + cij,2 > 0.

This concludes the proof. �
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Table 4.1 Estimation results of the bivariate CC-GARCH(1,1) model for the
Japanese stock returns
Panel A: the trivial sufficient conditions[
h1,t

h2,t

]
=

⎡⎣0.0997(0.0205)

0.0416
(0.0128)

⎤⎦+

⎡⎣0.0845(0.0097)
0.0295
(0.0282)

0.0201
(0.0325)

0.0528
(0.0126)

⎤⎦[ε21,t−1

ε22,t−1

]
+

⎡⎣ 0.8509
(0.0097)

0.0197
(0.0226)

3× 10
(0.0079)

−8 0.9154
(0.0198)

⎤⎦[h1,t−1

h2,t−1

]
ρ̂ = 0.6107

(0.0091)
, λ(ΓC) = 0.9873, LogLik = −23018.11

Panel B: the necessary and sufficient conditions[
h1,t

h2,t

]
=

⎡⎣0.1288(0.0252)

0.0541
(0.0135)

⎤⎦+

⎡⎣0.1018(0.0100)
0.0350
(0.0257)

0.0341
(0.0315)

0.0394
(0.0118)

⎤⎦[ε21,t−1

ε22,t−1

]
+

⎡⎣ 0.8093
(0.0087)

0.0353
(0.0197)

−0.0467
(0.0056)

0.9627
(0.0142)

⎤⎦[h1,t−1

h2,t−1

]
ρ̂ = 0.6109

(0.0089)
, λ(ΓC) = 0.9909, LogLik = −23007.27

Note: Numbers in parenthesis are the robust standard errors. λ(ΓC) < 1 is the stationarity
condition, see Chapter 2 for details. LogLik denotes the value of the log-likelihood
function evaluated at the estimates.
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ccgarch: An R Package for Building Multivariate GARCH
Models with Conditional Correlations∗

Abstract

This paper contains an introduction to the package ccgarch that is developed
for use in the open source statistical environment R (R Development Core Team,
2009). ccgarch can estimate certain types of multivariate GARCH models with ex-
plicit modelling of conditional correlations (the CC-GARCH models). The package
is also capable of simulating data from major types of the CC-GARCH models with
multivariate normal or Student’s t innovations. Small Monte Carlo simulations are
conducted to see how the choice of initial values affects the parameter estimates in
maximum likelihood estimation. The usefulness of the package is illustrated by fitting
a trivariate Dynamic CC-GARCH model to daily stock returns series.

∗Acknowledgements: Part of this research has been supported by the Jan Wallander and Tom
Hedelius Foundation, Project No. P2005-0033:1, KAKENHI for Young Scientists (B), 21780201,
2009 from the Japan Society for the Promotion of Science, and a research grant from the Executive
Office of Hokkaido University, Japan. Materials from this paper have been presented at useR!
2008: the R users conference in Dortmund, Germany, August 2008, the 4th World Conference of
the International Association for Statistical Computing (IASC), Yokohama, Japan, December 2008,
and the 1st IIMA International Conference on Advanced Data Analysis, Business Analytics and
Intelligence (ICADABAI), Ahmedabad, India, June 2009. I would like to thank participants for
helpful comments. I am also greatly indebted to Timo Teräsvirta for his detailed comments and
suggestions that have improved manuscript. In addition, I acknowledge feedback from users of
ccgarch. The responsibility for any errors and shortcomings in this paper remains mine. Part of
the paper was written while I was visiting CREATES, Aarhus University, whose kind hospitality is
gratefully acknowledged.
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5.1 Introduction

Multivariate GARCH models with explicit modelling of conditional correlations (here-
after called CC-GARCH models) have been widely used in modelling high-frequency
financial time series. Examples include the Constant Conditional Correlation (CCC-)
GARCH of Bollerslev (1990), the Dynamic Conditional Correlation (DCC-) GARCH
of Engle (2002), the Varying Correlation (VC-) GARCH of Tse and Tsui (2002), the
Smooth Transition Conditional Correlation (STCC-) and the Double STCC (DSTCC-
) GARCH of Silvennoinen and Teräsvirta (2005, 2009a) and their extensions to allow-
ing for volatility spillovers (see Nakatani and Teräsvirta, 2009). For recent reviews of
multivariate GARCH literature, see, for example, Bauwens, Laurent, and Rombouts
(2006) and Silvennoinen and Teräsvirta (2009b).

This paper contains an introduction to the package ccgarch (Nakatani, 2010) that
is developed for use in the open source statistical environment R (R Development
Core Team, 2009). In applying the CC-GARCH models, one generally has to resort
to existing commercial packages or has to spend a substantial amount of time to
create his or her own codes. The purpose of the package ccgarch is to reduce such
an effort and give the users free access to software with which to handle a number of
CC-GARCH models.

Currently, there are some contributed R packages that can handle the standard
univariate GARCH model and its variants1. As for multivariate GARCH models, on
the other hand, ccgarch and gogarch (Pfaff, 2009) are the only registered packages at
CRAN.

The paper is organised as follows. The next section reviews the CC-GARCH
models considered in ccgarch. The contents of ccgarch are described in Section 5.3.
How to use the package is illustrated in Section 5.4 by fitting a trivariate DCC-
GARCH model to daily Japanese stock market data. Section 5.5 concludes.

5.2 The model

Nakatani and Teräsvirta (2008b) define the family of CC-GARCH models as follows.
Consider the following vector stochastic process:

yt = μ+ εt (5.1)

εt = Dtzt (5.2)

whereDt = diag(h
1/2
1,t , . . . , h

1/2
N,t), the sequence of the stochastic vector zt = [z1,t, . . . , zN,t]

′

is independently distributed with E[zt|Ft−1] = 0 and E[z′tzt|Ft−1] = Pt = [ρij,t] where
Ft is the information set up to and including time t, and Pt ∈ Ft−1. With these as-
sumptions, E[εt|Ft−1] = 0 and E[εtε

′
t|Ft−1] = DtPtDt = Ht, so that Ht and Pt are

the time-varying conditional covariance matrix and the time-varying positive definite
conditional correlation matrix of the process εt, respectively. Matrix Ht has its (i, j)

1See Comprehensive R Archive Network (CRAN) Task View: Empirical Finance at http://cran.r-
project.org/web/views/Finance.html for details
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element defined as hi,t if i = j and h
1/2
i,t h

1/2
j,t ρij,t otherwise. A time-varying conditional

correlation matrix at time t is of a general form given by

Pt = P(xt,φ) (5.3)

where P( ) is a function such that Pt remains a positive definite correlation matrix,
xt ∈ Ft−1 is a vector of observable explanatory variables2, and φ is a vector of param-
eters. Equations (5.1) through (5.3) define a class of N -dimensional CC-GARCH(p, q)
models. For simplicity, we assume p = q = 1 in the rest of the paper.

The log-likelihood of the CC-GARCH model at time t is in general given by

�t(θ) = −N

2
ln(2π)− 1

2
ln |DtPtDt| − 1

2
ε′tD

−1
t P−1

t D−1
t εt. (5.4)

A number of different specifications are possible for both ht = [h1,t, . . . , hN,t]
′ and Pt

such that Ht and Pt are positive definite for all t.
In the subsequent sections, we first look at the volatility component of the model,

and then consider three major representations of the conditional correlation matrix
(5.3).

5.2.1 The volatility component of the model

Here we focus on its simplest specification, namely, a multivariate counterpart of the
univariate GARCH(1, 1) model. Define the vector GARCH(1, 1) process such that

ht = a0 +Aε
(2)
t−1 +Bht−1 (5.5)

where ε
(2)
t = [ε21,t, . . . , ε

2
N,t]

′, a0 is an (N × 1) vector of positive constants, and A and
B are (N ×N) matrices with elements such that the elements of ht = (h1,t, . . . , hN,t)

′

are positive for all t. Nakatani and Teräsvirta (2008b) give conditions that allow
negative off-diagonal elements in B. If A and B are diagonal and if the model is of
order (1, 1) as in (5.5), hi,t are then GARCH (1, 1) processes, and the necessary and
sufficient positivity conditions already appeared in Bollerslev (1986) (a0i > 0, a1i > 0
and b1i > 0, i = 1, · · · , N). For simplicity, however, we assume that all the elements
in A and B are positive.

AssumingA andB diagonal in (5.5) rules out the possibility of volatility spillovers.
In the bivariate case, the model can then be written as

ht =

[
a01
a02

]
+

[
a11 0
0 a22

] [
ε21,t−1

ε22,t−1

]
+

[
b11 0
0 b22

] [
h1,t−1

h2,t−1

]
. (5.6)

Most of the previous literature adopts this diagonal specification in the context of
CC-GARCH models. On the other hand, a natural extension of (5.6), proposed by
Jeantheau (1998), does allow volatility spillovers:

ht =

[
a01
a02

]
+

[
a11 a12
a21 a22

] [
ε21,t−1

ε22,t−1

]
+

[
b11 b12
b21 b22

] [
h1,t−1

h2,t−1

]
. (5.7)

2This formulation therefore excludes the Regime Switching Dynamic Correlation GARCH model
of Pelletier (2006).
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Spillover effects are described through the off-diagonal elements of A and B. Using
Jeantheau’s CCC-GARCH model, Nakatani and Teräsvirta (2009) find statistically
significant volatility spillovers in both stock and foreign exchange markets. Their
results justify such an extension of the standard CCC-GARCH model. The package
ccgarch covers extended CC-GARCH models as well.

5.2.2 The correlation component of the model

The CCC-GARCH model

The simplest way of modelling the correlation structure is to assume a constant re-
lationship among variables in the model. The CCC-GARCH model is proposed by
Bollerslev (1990) and is later extended by Jeantheau (1998) as described in the pre-
vious section. In the (Extended) CCC-GARCH model the conditional correlation
matrix is constant over time, that is,

Pt ≡ P. (5.8)

Bollerslev (1990) suggests a two-step procedure for estimating a CCC-GARCH
model. First, estimate the parameters of the GARCH equation. Then, conditionally
on the GARCH parameter estimates, estimate the correlations. Asymptotic normal-
ity of the estimators can be achieved through the two step estimation method, so
that it has become a standard procedure for estimating CC-GARCH models. One
can also estimate all parameters of an (E)CCC-GARCH model simultaneously. The
latter method gains efficiency. The log-likelihood function of the CCC-GARCH model
at time t is obtained by replacing Pt in (5.4) with P. This facilitates numerical op-
timisation of the log-likelihood function because inversion of the correlation matrix,
hence the covariance matrix, is required only once in each iteration.

The package ccgarch carries out estimation of the (E)CCC-GARCH(1, 1) model.
In addition, it includes a function for simulating data from an (E)CCC-GARCH(1, 1)
process.

The DCC-GARCH model

It turns out that the assumption of constant conditional correlations over time is often
too restrictive in practice, and for this reason many authors have proposed models of
time-varying conditional correlations. The DCC-GARCHmodel of Engle (2002) is one
of the most popular CC-GARCH models with time-varying conditional correlations.
Engle (2002) applies GARCH-type dynamics in modelling the conditional correlations.
Its correlation structure is defined as

Pt = (Qt � IN )−1/2Qt(Qt � IN )−1/2 (5.9)

Qt = (1− α− β)Q+ αzt−1z
′
t−1 + βQt−1 (5.10)

α+ β < 1 and α, β > 0 (5.11)

where � denotes the Hadamard or elementwise product of two conformable matrices
and Q is a sample covariance matrix of zt. In this formulation, the correlation process
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is driven by the two parameters, α and β. This is one of the advantages of the
DCC-GARCH model in the sense that the number of parameters to be estimated for
conditional correlations does not depend on the number of variables in the model.
With this property, one can alleviate the computational burden and yet obtain large-
dimensional conditional correlations. But then, the simple structure of the DCC
parameterisation may be seen as a weakness because all correlation processes are
assumed to have the same dynamic behaviour.

The log-likelihood function of the DCC-GARCH model is in principle obtained
by defining Pt in (5.4) as in (5.9). It can be decomposed into two parts, namely the
volatility component and the correlation component. The volatility component at
time t is given by

�v,t(ω) = −N

2
ln(2π)− 1

2
ln |Vt| − 1

2
ε′tV

−1
t εt (5.12)

where Vt = D2
t , and the correlation component at time t is

�c,t(ω,φ) = −1

2
ln |Pt| − 1

2
z′tP

−1
t zt +

1

2
z′tzt. (5.13)

By applying this decomposition, the estimation of a DCC-GARCH model can be
carried out in two steps. First, maximise (5.12) with respect to ω, the parameters in
the volatility component. Then maximise (5.13) with respect to φ, the parameters
in the correlation component, given the estimates from the preceding stage. It is
worth mentioning that the constraints on α and β must be satisfied throughout the
iterations because otherwise {Qt} may become an explosive sequence.

The package ccgarch provides functions for simulating data from and estimat-
ing the parameters of the (E)DCC-GARCH(1, 1) model of an arbitrary dimension.
Estimation is carried out using the aforementioned two-step procedure.

The STCC-GARCH model

Another variant of the CC-GARCHmodels is proposed by Silvennoinen and Teräsvirta
(2005). They assume time-invariant two extreme states in the correlation structure,
P(1) and P(2), and a conditional correlation matrix at time t is described by a convex
combination of the two regimes:

Pt = (1−Gt)P(1) +GtP(2), P(1) �= P(2) (5.14)

Gt(st) = [1 + exp{−γ(st − c)}]−1, γ > 0. (5.15)

The correlation structure is smoothly changing over time according to the transition
function Gt() that is bounded between 0 and 1. Silvennoinen and Teräsvirta (2005)
use the logistic function (5.15), though one can define other functions for Gt() as
well. The parameters γ and c are the slope and the location parameters, of which γ
determines the speed of transition and c the location. The conditional correlations
become constant either if st ≡ c, P(1) = P(2) or γ → 0, whereas the transition
between the two states becomes abrupt when γ → ∞.
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The transition function (5.15) is driven by the transition variable st. Silvennoinen
and Teräsvirta (2005) list typical candidates for st such as time, functions of past
values of the return series and a stochastic exogenous variable. The STCC-GARCH
model has an advantage in the sense that the model builder can choose the transition
variable conforming to his or her research problem. In their application, for example,
Silvennoinen and Teräsvirta (2005) investigate effects of market turbulence on con-
ditional correlations with lagged seven-day averages of absolute Standard and Poors
500 returns as transition variable.

The log-likelihood function of the STCC-GARCH model has the same form as in
(5.4) with Pt now given by (5.14). Estimation of an STCC-GARCH model is imple-
mented iteratively by concentrating the likelihood. The optimisation is performed by
sequentially iterating over the three sets of parameters, namely, those in the volatility
component, the ones in the correlation component and the two parameters in the
transition function. Their experience is that by splitting every iteration into these
three stages, numerical problems are avoided. For more details on an estimation
procedure, see Silvennoinen and Teräsvirta (2005).

Silvennoinen and Teräsvirta (2009a) further extend the STCC-GARCH to the
Double STCC (DSTCC-) GARCH in which the time-varying conditional correlation
matrix Pt is described as a convex combination of four constant correlation matrix of
extreme states. The current version of ccgarch is able to simulate data from the STCC-
GARCH with the transition variable following an univariate GARCH(1, 1) process.
A future version of ccgarch will include functions for dealing with estimation and
simulation of the STCC- and DSTCC-GARCH models with other types of transition
variables.

5.3 The package: ccgarch

5.3.1 Overview

The first public release of the package ccgarch was dated on 29 August 2008 with initial
version 0.1.0. The current version (as of March 20, 2009) is 0.2.0 and is continuously
updated. ccgarch has been registered as a contributed extension package for R. Since
its first release, it has been distributed under the terms of the GNU General Public
License (GPL) Version 2 or higher. The source codes (for Unix or Linux) and the pre-
complied binaries (for Windows and Mac OS) are available from CRAN (http://cran.r-
project.org/package=ccgarch) or its mirror sites. Running the package requires R
Version 2.6.1 or later. The installation can proceed in the usual manner.

Due to the autoregressive nature of GARCH models, it is not easy to avoid using
loops in the codes. One can write all the necessary programs for the CC-GARCHmod-
els in the R language, but this would potentially slow down the execution. Therefore,
to gain faster implementation, main engines for estimation and simulation heavily rely
on the external C language through the interface function .Call. Most of the C codes
in the package then use the Basic Linear Algebra Subprograms (BLAS) libraries that
come along with R. The header file R home/include/R ext/BLAS.h includes declara-
tions of the BLAS functions.
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In what follows, we keep in mind the users of the Windows version of R. Note that
> denotes the prompt on the R console window, followed by associated commands.

Once the package is installed, the users can invoke it by a command such as

> library(ccgarch)

The HTML help files are available from the R console window.
Currently, ccgarch can carry out the following tasks:

• Simulation of the following first-order models:

– CCC-GARCH, ECCC-GARCH

– DCC-GARCH, EDCC-GARCH

– STCC-GARCH, ESTCC-GARCH

• Estimation of the following first-order models:

– CCC-GARCH, ECCC-GARCH

– DCC-GARCH, EDCC-GARCH

• Checking for the stationarity conditions of the GARCH component.

• Misspecification tests for causality in conditional variances

– a test proposed by Hafner and Herwartz (2006)

– a test proposed in Chapter 3 and its robust version

• Computing basic statistics:

– the Ljung-Box test statistic

– the Jarque-Bera test statistic

– skewness and excess kurtosis measures and their robust versions

The subsequent sections describe briefly about usage of commands for the tasks above.

5.3.2 Simulation with dcc.sim

Inputs

The current version of ccgarch is capable of simulating data from a (E)CCC-GARCH(1, 1)
by the function eccc.sim, a (E)DCC-GARCH(1, 1) by dcc.sim, a (E)STCC-GARCH(1, 1)
by stcc.sim. In the default set-up, innovations are assumed to follow a multivariate
normal distribution. One can alternatively use a multivariate Student’s t-distribution
by setting the argument d.f=nu ∈ (4,∞). The dimension N and the length of the
time series T are restricted by the available memory space of the computer.

Table 5.1 contains the required arguments for simulating data from a DCC-
GARCH(1, 1) process by the function dcc.sim. The subsequent R commands il-
lustrate how data are simulated from a DCC-GARCH(1, 1) process:
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# Defining the parameters

> nobs <- 5000; nu <- 8

> a <- c(0.003, 0.005, 0.001)

> A <- diag(c(0.2,0.3,0.15))

> B <- diag(c(0.75, 0.6, 0.8))

> uncR <- matrix(c(1.0, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0),

3, 3)

> dcc.para <- c(0.01,0.98)

# for normally distributed innovations

> dcc.data <- dcc.sim(nobs, a, A, B, uncR, dcc.para,

model="diagonal")

# for t distributed innovations

> dcc.data.t <- dcc.sim(nobs, a, A, B, uncR, dcc.para, d.f=nu,

model="diagonal")

The first line after the comment (a comment line begins with the symbol #) defines
the number of observations to be simulated and the degrees of freedom parameter
for the t-distribution. The values of the parameters of the model parameters are
specified in the next five lines. The number of dimensions in the data is automatically
determined by the number of rows in uncR. When the parameter matrices A and B

are full matrices and model="extended", dcc.sim generates data from an EDCC-
GARCH(1, 1) process. One can also simulate data with t-distributed innovations by
setting d.f=nu.

Outputs

The output from dcc.sim is summarised in a list with variables in Table 5.2. In
the sample codes above, dcc.data$eps is a (T × N) matrix containing realisations
from the DCC-GARCH(1, 1) process. The simulated dynamic conditional correlations
and conditional variances are stored in dcc.data$dcc and dcc.data$h, respectively.
Each row of dcc.data$dcc contains vec(Pt)

′ where vec() denotes an operator that
transforms an (N ×N) matrix into an (N2 × 1) vector by stacking its columns. The
list dcc.data includes the standardised residuals (dcc.data$std.z) and the random
draws (dcc.data$z) as well.

*.sim functions have an analogous structure, and the help pages of ccgarch can
be consulted for detailed implementation.

5.3.3 Estimation with dcc.estimation

Inputs

The current version of ccgarch can estimate the first-order (E)DCC-GARCH model
by dcc.estimation, and the (E)CCC-GARCH model by eccc.estimation. We
shall now use dcc.estimation as an example to explain how users can estimate a
DCC-GARCH model.
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dcc.estimation requires nine arguments that are listed in Table 5.3. Neither one
of them, except for method, gradient and message, has default values, so one has
to explicitly provide the values. The first four arguments, namely a (length N), A
(N × N), B (N × N) and dcc.para (length 2), contain initial values for iterations
that have to be fed in an appropriate way. Section 5.3.3 discusses further remarks
regarding a choice of initial values.

The next argument, dvar, contains the data to be analysed. Since the conditional
mean is assumed to equal zero, the data must be pre-whitened by fitting, for instance,
a vector ARMA model in advance. The argument model is a character string that
indicates which model is to be estimated, i.e., either “diagonal” or “extended”. The
arguments method and gradient specify the optimisation algorithm used at the first
and second stage in optim and constrOptim, respectively. The default is “BFGS” for
both stages.

In the default setup, dcc.estimation returns a message to tell the user that the
estimation has been completed. When the function is used in simulation studies, it
is annoying to see such a message every time the optimisation is finished. The last
argument message is designed for controlling the display of the message. The user
can turn it off by setting message=0.

Remarks on the choice of initial values

The user must feed these initial values in an appropriate way. Otherwise the program
does not run correctly. For example, A and B must be supplied as an N ×N matrix
for both diagonal and extended specifications. In choosing initial values, the following
conditions must be met to avoid an unexpected termination of the estimation:

positivity: a0 > 0, A > 0, and B > 0 elementwise

stationarity 1: the stationarity of the GARCH process (5.5)

stationarity 2: the stationarity of the DCC process (5.10).

It is easy to make sure that positivity is satisfied. stationarity 1 can be verified
by the utility function stationarity. A brief explanation about stationarity 1 is
given in Section 5.3.4. When an extended model is estimated, it is always recom-
mended to check whether or not stationarity 1 is fulfilled. To satisfy stationarity
2, set the elements of the DCC parameters (dcc.para) according to (5.11), that is,
sum(dcc.para)<1 and min(dcc.para)>0. It should be noted that the above condi-
tions also apply to simulating data from a DCC-GARCH process.

It is worth mentioning that a choice of initial values does not seem to affect
resulting parameter estimates in dcc.estimation. Small Monte Carlo experiments
are carried out in such a way that a DCC-GARCH(1,1) model is fitted to the data
simulated from a DCC-GARCH(1,1) process with two sets of initial values, one with
the true parameter values and the other with ones that deviate from the true values.
The DGP is defined in Section 5.3.2 with T = 1000. Descriptive statistics of the
parameter estimates in 1000 replications are summarised in Table 5.4. The numbers
under the heading “True initial values” contain the mean, standard deviations (SD)
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and mean squared errors (MSE) of estimates with the true parameter values as initial
values in the optimisation, while those under “Untrue initial values” include outcomes
with untrue values as starting values. The means of estimates in both cases are very
close to each other as well as to the true values although those in the untrue initial
values have larger SD and MSEs. Regarding the average number of iterations for
the first stage optimisation to converge, it is 162.8 with the untrue initial values, and
112.5 with the true initial values. For the second stage estimation, the corresponding
figures do not differ much from each other: 18.6 iterations with the true values and
18.7 with the untrue values.

Outputs

Once the estimation process is completed, the results are stored in a list with compo-
nents summarised in Table 5.5. The first argument out contains the quasi-maximum
likelihood (QML) estimates of the parameters and their robust standard errors. The
value of the log-likelihood function evaluated at the estimates are saved in loglik.
The estimated conditional variances and the dynamic conditional correlations are
stored in h and DCC, respectively. The outcomes of the first and second stage optimi-
sation can be retrieved through the list variables first and second. The procedure
is further illustrated in Section 5.4.

There are two major possibilities of erroneous termination of the estimation pro-
cess. One is that the initial parameter values do not satisfy conditions listed above.
For example, if stationarity 1 is not met, the estimation process may be terminated
immediately with the following error message:

Error in optim(par = init, fn = loglik.dcc1, method = method,

control = list(maxit = 10^5, :

initial value in ’vmmin’ is not finite

This message shows that the objective function in the first stage estimation
(loglik.dcc1) does not attain a finite value with the initial parameter values sup-
plied.

The other possibility is that the numerical optimisation does not end successfully.
When convergence is not achieved, the following error messages appear in the console
window. For the first stage, the message is

**********************************************

* The first stage optimization has failed. *

* See the list variable "first" for details. *

**********************************************

whereas for the second stage, it has the form

***********************************************

* The second stage optimization has failed. *

* See the list variable "second" for details. *

***********************************************
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By looking at the value of first$convergence or second$convergence, one may
pinpoint a cause of an error. It is often the case in GARCH estimation that the
number of iterations performed exceeds a pre-determined limit. In ccgarch, however,
this convergence error is unlikely to occur because the limit of iterations is set to
105. Error messages due to other types of unfavourable behaviour such as a singular
Hessian matrix depend on internal messages in R. Therefore, the user is requested to
read associated help files of the internal functions when other types of error message
appear.

Some technical issues

There are technical issues that deserve an explanation. As was mentioned in Sec-
tion 5.2.2, estimation of a DCC-GARCH model is performed in two steps. The
function dcc.estimation internally calls two other functions, dcc.estimation1 and
dcc.estimation2, that carry out the first and second stage optimisation. optim is
called in dcc.estimation1, whereas constrOptim is invoked in dcc.estimation2.
Past experiences show that the optimisation at the first stage converges without nu-
merical problems in almost all cases. On the other hand, second stage optimisation
often leads to an overflow due to the violation of the restriction α + β < 1. There-
fore, the constraint is explicitly imposed during iterations, and this is done through
constrOptim. As was mentioned earlier, the default optimisation algorithm is set to
BFGS at both stages. For the first stage, the user can change it either to the Nelder
and Mead (1965) method (“Nelder-Mead”) or to a conjugate gradients method (“CG”)
by setting the argument method in dcc.estimation. If the user wants to change the
algorithm at the second stage optimisation, setting gradient=0 implies using the
Nelder-Mead algorithm. One can further change the optimisation algorithm, conver-
gence criteria and other parameters both in optim and constrOptim. To do this, the
user must modify the relevant source codes. This is not recommended, however, un-
less the user is familiar with optimisation techniques and R programming convention.
For discussion of various optimisation algorithms see, for example, Fletcher (1987),
Hendry (1995, Appendix A5) or Teräsvirta, Tjøstheim, and Granger (2010, Chapter
12).

5.3.4 Utility functions

ccgarch includes some utility functions for carrying out misspecification tests, report-
ing basic statistics and checking restrictions on parameters.

Misspecification tests

As was described in Chapter 3, there are a couple of misspecification tests proposed
for testing causality in conditional variance. From version 0.2.0, ccgarch includes two
functions for carrying out such misspecification tests. One is hh.test, and the other
is nt.test. The former computes a test statistic proposed by Hafner and Herwartz
(2006) and the latter is for the test discussed in Chapter 3. nt.test returns the
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standard (non-robust) and heteroskedasticity robust test statistics and associated p-
values. Both functions are designed for computing test statistics for N -dimensional
time series data. Their usage is illustrated in Section 5.4.

Skewness and excess kurtosis

In financial econometrics, it is well-known that stock returns exhibit negative skew-
ness and large excess kurtosis. This is often regarded as evidence for non-normality
of stock return distribution. Kim and White (2004), however, find in their Monte
Carlo simulations that the conventional measures of skewness and kurtosis are ex-
tremely sensitive to a small number of outliers. Therefore, they propose alternative
measures based on quantiles that are robust against the existence of outliers. Further
discussions about stylised facts and robust measures can be found, for instance, in
Teräsvirta and Zhao (2007). The functions rob.sk and rob.kr return both conven-
tional and robustified measures of skewness and excess kurtosis, respectively. The
examples of their use are shown in Section 5.4.

Stationarity condition

When formulating the CC-GARCH model, the GARCH equation (5.5) is assumed to
be stationary. Parameter matrices A and B are therefore constrained in such a way
that the stationarity of (5.5) holds. Such a condition has been worked out by He
and Teräsvirta (2004) for a general error distribution and by Nakatani and Teräsvirta
(2009) under the assumption of normality. The function stationarity checks the
stationarity condition of Nakatani and Teräsvirta (2009) for the GARCH equation
(5.5). This is done by computing the modulus of the largest eigenvalue of A + B.
The stationarity condition is satisfied if the modulus of the largest eigenvalue of this
matrix is strictly less than one. This function is useful in the extended CC-GARCH
models. In the diagonal models one can directly examine the condition by looking at
the largest element in A+B, as aii + bii < 1 is the stationarity condition of the ith
univariate GARCH (1, 1) model.

Tests for autocorrelations and non-normality of residuals

The Ljung-Box (LB) test statistic for serial correlations (Ljung and Box, 1978) can be
calculated by ljung.box.test. ljung.box.test can only handle a univariate time
series. The LB test is often applied to squared residuals to detect evidence for ARCH
effects in the time series. When this is the case, the LB test is equivalent to the
McLeod and Li (1983) test. However, Li and Mak (1994) found that the asymptotic
null distribution of the McLeod and Li (1983) test statistic is not a χ2 distribution
when the test is applied to the residuals of an estimated GARCH equation. Therefore,
the McLeod and Li (1983) test is not suitable for this purpose. For further discussions,
see, Li and Mak (1994) and Silvennoinen and Teräsvirta (2009b, Section 4).

Another function in the package carries out the Lomnicki-Jarque-Bera (LJB) test
for non-normality (Lomnicki, 1961; Jarque and Bera, 1987). The LJB test is imple-
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mented by jb.test. jb.test simultaneously returns test statistics and associated
p-values for as many time series as desired.

5.4 Illustrative example

5.4.1 The data

In this section, we demonstrate how the user can fit a DCC-GARCH (1, 1) model
to financial data. The data set consists of the daily closing stock prices of three
Japanese leading electronic firms, NEC, Hitachi and Toshiba, traded at the Tokyo
Stock Exchange. The sample period spans from 4 January 1983 to 1 March 2006,
giving us 5913 observations of log-returns for each series.3 These return data are
stored in the variable called eps. The graphs of the three Japanese stock returns are
presented in the top row of the panels in Figure 5.1.

Basic descriptive statistics such as mean, minimum, maximum and standard de-
viations can be calculated by standard functions in the base package of R. The con-
ventional (standard) and the robustified skewness and excess kurtosis are computed
by functions in the ccgarch as follows:

> rob.sk(eps)

series 1 series 2 series 3

standard 0.28244996 0.30720786 0.26612296

robust -0.07751916 -0.03743396 -0.08137347

> rob.kr(eps)

series 1 series 2 series 3

standard 3.36349611 2.5790472 2.8534653

robust 0.07961675 0.1982779 0.1612939

One can recognise from the output that the difference between the standard statistics
and the robust ones are large, meaning that the conventional measures are affected
by a small number of outliers.

5.4.2 Fitting a DCC-GARCH(1,1) model

Before fitting a DCC-GARCHmodel, misspecification tests for causality in conditional
variance were performed by the two functions, nt.test and hh.test. Under the null
of no causality in conditional variance, all the test statistics are distributed as χ2 with
2N(N − 1).

The outcomes of hh.test and nt.test are as follows:

> hh.test(eps)

Test Stat p-Value

5.121297e+01 8.542556e-07

> nt.test(eps)

3Part of the data was investigated in Nakatani and Teräsvirta (2009).
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Test stat p-value

NT 106.70618 2.676155e-17

robNT 66.60557 1.374528e-09

According to the reported p-values, the null of no causality in conditional variance is
rejected with very very small significance levels in any of three tests. Therefore, it it
recommended to use the extended version of the conditional variance.

For the estimation of the extended DCC (EDCC-) GARCH model, the initial
parameter matrices are set by

a <- c(0.003, 0.005, 0.001)

A <- matrix(c(0.2, 0.002, 0.001,

0.001, 0.3, 0.0005,

0.003, 0.005, 0.15), 3, 3, byrow=T)

B <- matrix(c(0.75, 0.0001, 0.0015,

0.002, 0.6, 0.0003,

0.001, 0.008, 0.8), 3, 3, byrow=T)

dcc.para <- c(0.1, 0.8)

and the estimation is carried out by the following command:

> dcc.results <- dcc.estimation(inia=a, iniA=A, iniB=B,

ini.dcc=dcc.para, dvar=eps,

model="extended")

To estimate the EDCC-GARCH model, the variable “model” is set to ”extended”.
In the above code the method of optimisation is not specified, so that the optimisation
is performed through the default algorithm “BFGS”. As already mentioned, the user
can specify another algorithm, namely, either “Nelder-Mead” or “CG”.

When the estimation is successfully completed, the following messages appear in
the console window:

****************************************************************

* Estimation has been completed. *

* The outputs are saved in a list with components: *

* out : the estimates and their standard errors *

* loglik : the value of the log-likelihood at the estimates *

* h : a matrix of estimated conditional variances *

* DCC : a matrix of DCC estimates *

* std.resid : a matrix of the standardised residuals *

* first : the results of the first stage estimation *

* second : the results of the second stage estimation *

****************************************************************

The parameter estimates and their robust standard errors are retrieved by:

> round(dcc.results$out,3)

a1 a2 a3 A11 A21 A31 A12 A22 A32
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estimates 0.095 0.087 0.033 0.061 0.013 0.008 0.018 0.077 0.020

std.err 0.024 0.011 0.012 0.012 0.026 0.040 0.038 0.026 0.011

A13 A23 A33 B11 B21 B31 B12 B22 B32

estimates 0.010 0.031 0.050 0.889 0.003 0.001 0.00 0.847 0.005

std.err 0.014 0.011 0.023 0.041 0.038 0.017 0.01 0.011 0.010

B13 B23 B33 dcc alpha dcc beta

estimates 0.006 0.012 0.906 0.025 0.957

std.err 0.022 0.030 0.028 0.002 0.005

The robust standard errors are computed by the analytic first and second partial
derivatives of the log-likelihood function of the DCC-GARCH model. The analytic ex-
pressions for these derivatives are summarised in Appendix 5.A. The estimated condi-
tional variances and the dynamic conditional correlations are saved in dcc.results$h

and dcc.results$DCC, respectively. They are depicted on the panels in the second
and the third rows of Figure 5.1.

5.4.3 Cautionary remarks

If either the first or the second stage optimisation algorithm does not converge, the
estimation process is terminated with an error message explained in Section 5.3.3.
There are two ways of solving the non-convergence problem. The first option is to
change the initial parameter values and try again. The second one consists of fine
tuning of the optional variables in optim for the first stage or constrOptim for the
second stage. Then each optimisation is implemented separately by dcc.estimation1
or by dcc.estimation2. In the latter option, one can manually follow the steps that
are executed in dcc.estimation. Therefore, the user can use the functions such as
dcc.results to obtain standard errors of the estimates, vector.garch to have the
conditional variances, and dcc.est to compute the dynamic conditional correlations.
When this happens, the user is asked to redefine the relevant parts of the associated
functions in ccgarch. The contents of the functions can be seen by typing their names
without argument in the R console window.

5.5 Concluding remarks

This paper deals with usage of the package ccgarch that is developed for use in the
open source statistical environment R. ccgarch is capable of estimating certain types
of the CC-GARCH models and generating data from them by simulation. Before
documenting the contents of the package, three representative members, namely, the
CCC-, the DCC- and the STCC-GARCH, of the CC-GARCH models and their ex-
tended forms are briefly reviewed. In applying the CC-GARCH models, one has
hitherto been forced to resort to commercial packages or has been compelled to spend
a substantial amount of time to create his or her own codes. The purpose of the pack-
age ccgarch is to narrow the gap between the demand for estimation and evaluation
of the CC-GARCH models and the accessibility of software available for performing
these tasks.
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The package ccgarch is still in its infancy, which means that there is room for
improvements and extensions in many directions. One of the most urgent tasks is
to incorporate procedures for various diagnostic or misspecification tests into the
package. Including a function for estimating an STCC-GARCH model in ccgarch is
also an imminent task. In fact, the work is already underway to include those and
other useful functions in future versions of the package.
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5.A Mathematical derivations

In this appendix, derivatives of the likelihood function and the robust covariance
matrix of the QML estimators of the (E)DCC-GARCH model are summarised since
the package relies on those derivatives in estimating the robust covariance matrix.
Further details of the covariance matrix estimation can be found in Engle (2002) and
references therein.

It is straightforward to derive all the results below through vector and matrix
derivatives, so that proofs are omitted. Similar results can be found, for example, in
Hafner and Herwartz (2008) and Nakatani and Teräsvirta (2009). To save space, ∇ω

is used for denoting partial derivatives with respect to ω, and so on.

5.A.1 Partial derivatives of the volatility component

The first partial derivative of (5.12) with respect to its parameter vector ω is given
by

∇ω�v,t = −1

2
∇ωVt vec

(
V−1

t −V−1
t εtε

′
tV
−1
t

)
. (5.16)

The negative of the conditional expectation of the second partial derivatives of (5.12)
is equal to

−E
[∇2

ω�v,t
]
=

1

2
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(
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t ⊗V−1
t

)∇ωV
′
t =

N∑
i=1

h−2
i,t ∇ωhi,t∇ωh

′
i,t. (5.17)

The expression for ∇ωhi,t can be found in Nakatani and Teräsvirta (2008a).

5.A.2 Partial derivatives of the correlation component

Partial derivatives of the correlation component are available in a similar way. The
first partial derivative of (5.13) is given by

∇φ�c,t = −1

2
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t −P−1
t ztz

′
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−1
t

)
(5.18)

where

∇φPt = ∇φQt
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and
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]
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′

]
+ β∇φQt−1. (5.20)



ccgarch: An R Package for Building Multivariate GARCH Models 115

The operator dg creates an (N × N) diagonal matrix from its argument vector of
length N .

The negative of the conditional expectation of the second and cross partial deriva-
tives are

−E
[∇2

φ�c,t
]
=

1

2
∇φPt
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P−1

t ⊗P−1
t

)∇φP
′
t (5.21)
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∇ωQt = −α∇ωDt−1(Pt−1 ⊗D−1
t−1 +D−1

t−1 ⊗Pt−1) + β∇ωQt−1 (5.24)

and using the fact that E
[
zt−1z

′
t−1

]
= Pt−1.

(5.25)

5.A.3 Asymptotic covariance matrix of the QML estimator

The asymptotic covariance matrix of the QMLE θ̂ of the (E)DCC-GARCH model is
given by

Σ = G−1ΩG−1 (5.26)

where

G = E

[∇2
ω�v 0

∇φω�c ∇2
φ�c

]
(5.27)

Ω = E

[∇ω�v∇ω�
′
v ∇ω�v∇φ�

′
c

∇φ�c∇ω�
′
v ∇φ�c∇φ�

′
c

]
(5.28)

with ∇ω�v =
∑T

t=1 ∇ω�v,t evaluated at the true parameters, and so on. G and Ω are
consistently estimated by their sample counter parts.
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5.B A User’s Manual of ccgarch

The following pages contain a user’s manual of ccgarch that is accompanied with the
package bundle. When the user installed the package into the R system on her/his
PC, the same contents are available either in the HTML format or in the plain texts
that can be accessible from the R console window. Alternatively, the PDF version of
the manual is downloadable from http://cran.r-project.org/package=ccgarch.
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Index 35

analytical.grad Analytical gradient of the log-likelihood function of the (E)CCC-
GARCH(1,1) model

Description

This function returns the analytical gradient of the log-likelihood function of the (E)CCC-GARCH(1,1)
model.

Usage

analytical.grad(a, A, B, R, u, model)

Arguments

a a vector of constants in the vector GARCH equation (N × 1)

A an ARCH parameter matrix in the vector GARCH equation (N ×N)

B a GARCH parameter matrix in the vector GARCH equation (N ×N)

R a constant conditional correlation matrix (N ×N)

u a matrix of the data used for estimating the (E)CCC-GARCH(1,1) model (T ×
N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

a npar × T matrix of gradients

Note

In the output, each column (not row) corresponds to the gradient at observation t.
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analytical.Hessian 3

References

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147–163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.

analytical.Hessian Analytical Hessian of the (E)CCC-GARCH

Description

This function computes the analytical Hessian of the log-likelihood function of the (E)CCC-GARCH
model.

Usage

analytical.Hessian(a, A, B, R, u, model)

Arguments

a a vector of constants in the vector GARCH equation (N × 1)

A an ARCH parameter matrix in the vector GARCH equation (N ×N)

B a GARCH parameter matrix in the vector GARCH equation (N ×N)

R a constant conditional correlation matrix (N ×N)

u a matrix of the data data used for estimating the (E)CCC-GARCH(1,1) model
(T ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

a npar × npar Hessian matrix of the log-likelihood function of the (E)CCC-GARCH model

References

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147–163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.
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4 dcc.est

d2lv Hessian of the DCC log-likelihood function

Description

This function returns the analytical Hessian of the volatility part of the DCC log-likelihood function.

Usage

d2lv(u, B, h, model)

Arguments

u a matrix of the data data used for estimating the (E)DCC-GARCH(1,1) model
(T ×N)

B a GARCH parameter matrix (N ×N)

h a matrix of the conditional variances (T ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

the Hessian of the volatility part of the DCC log-likelihood function (T ×N2)

References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

Hafner, C.M. and H. Herwartz (2008), “Analytical Quasi Maximum Likelihood Inference in Multi-
variate Volatility Models.” Metrika 67, 219–239.

dcc.est Dynamic conditional correlations

Description

This function returns dynamic conditional correlations based on the parameters specified.
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dcc.estimation 5

Usage

dcc.est(dvar, param)

Arguments

dvar a matrix of the standardised residuals (T ×N)

param a vector of the DCC parameters (2× 1)

Value

a list with components:

DCC a matrix of the dynamic conditional correlations (T ×N2)

Q a matrix of the Qt (T ×N2)

Note

a constant matrix Q in the DCC equation is computed by Q = cov(dvar).

References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

dcc.estimation Estimating an (E)DCC-GARCH model

Description

This function carries out the two step estimation of the (E)DCC-GARCH model and returns es-
timates, standardised residuals, the estimated conditional variances, and the dynamic conditional
correlations.

Usage

dcc.estimation(inia, iniA, iniB, ini.dcc, dvar, model,
method="BFGS", gradient=1, message=1)
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6 dcc.estimation

Arguments

inia a vector of initial values for the constants in the GARCH equation length(inia)=N
iniA a matrix of initial values for the ARCH parameter matrix (N ×N)

iniB a matrix of initial values for the GARCH parameter matrix (N ×N)

ini.dcc a vector of initial values for the DCC parameters (2× 1)

dvar a matrix of the data (T ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

method a character string specifying the optimisation method in optim. There are three
choices, namely, Nelder-Mead, BFGS (default) and CG.

gradient a switch variable that determines the optimisation algorithm in the second stage
optimisation. If gradient=0 Nelder-Mead is invokded. Otherwise BFGS
is used (default).

message a switch variable to turn off the display of the message when the estimation is
completed. If message=0, the message is suppressed. Otherwise, the message
is displayed (default)

Value

a list with components:

out the parameter estimates and their standard errors
loglik the value of the log-likelihood at the estimates
h a matrix of the estimated conditional variances (T ×N)

DCC a matrix of the estimated dynamic conditional correlations (T ×N2)

std.resid a matrix of the standardised residuals (T ×N ). See Note.
first the results of the first stage estimation
second the results of the second stage estimation

Note

The standardised residuals are calculated by dividing the original series dvar by the estimated
conditional standard deviations sqrt(h). See Engle (2002), in particular the equations (2) and
(14), for details.

dcc.estimation calls dcc.estimation1 and dcc.estimation2 for the first and sec-
ond stage estimation, respectively.

The details of the first and second stage estimation are also saved.

The switch variable simulation is useful when one uses dcc.estimation for simulation. It
supresses the display of the completion message.

References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.
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See Also

dcc.estimation1, dcc.estimation2, loglik.dcc1, loglik.dcc2, vector.garch,
dcc.est

Examples

# Simulating data from the original DCC-GARCH(1,1) process
nobs <- 1000; cut <- 1000
a <- c(0.003, 0.005, 0.001)
A <- diag(c(0.2,0.3,0.15))
B <- diag(c(0.75, 0.6, 0.8))
uncR <- matrix(c(1.0, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0),3,3)
dcc.para <- c(0.01,0.98)
dcc.data <- dcc.sim(nobs, a, A, B, uncR, dcc.para, model="diagonal")

# Estimating a DCC-GARCH(1,1) model
dcc.results <- dcc.estimation(inia=a, iniA=A, iniB=B, ini.dcc=dcc.para,

dvar=dcc.data$eps, model="diagonal")

# Parameter estimates and their robust standard errors
dcc.results$out

dcc.estimation1 Maximising the first stage log-likelihood function of the (E)DCC-
GARCH model

Description

This function carries out the first stage (volatility part) estimation of the (E)DCC-GARCH model.

Usage

dcc.estimation1(dvar, a, A, B, model, method="BFGS")

Arguments

dvar a matrix of the data used for estimating the (E)DCC-GARCH(1,1) model (T ×
N)

a a vector of constants in the vector GARCH equation (N × 1)

A an ARCH parameter matrix in the vector GARCH equation (N ×N)

B a GARCH parameter matrix in the vector GARCH equation (N ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

method a character string specifying the optimisation method in optim. There are three
choices, namely, "Nelder-Mead", "BFGS" (default) and "CG".

Value

a list of the estimation results. See the explanations in optim.
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References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

See Also

optim, dcc.estimation2, dcc.estimation

dcc.estimation2 Maximising the second stage log-likelihood function of the (E)DCC-
GARCH model

Description

This function carries out the second stage (DCC part) estimation of the (E)DCC-GARCH model.

Usage

dcc.estimation2(dvar, para, gradient=0)

Arguments

dvar a matrix of the standardised residuals (T ×N)

para a vector of the DCC parameters (2× 1)

gradient a switch variable whether to use the gradient in the constraint optimisation.
passed to constrOptim

Value

a list of the estimation results. See the explanations for constrOptim.

Note

dcc.estimation2 is a wrapper to constrOptim. The restrictions are α+β ≤ 1 and α, β ≥ 0
in the DCC equation.

References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

See Also

constrOptim, dcc.estimation1, dcc.estimation
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dcc.results Computing robust standard errors of the estimates in the (E)DCC-
GARCH model

Description

This function computes the robust standard errors of the estimates of a DCC-GARCH model.

Usage

dcc.results(u, garch.para, dcc.para, h, model)

Arguments

u a matrix of the data used for estimating the (E)DCC-GARCH model (T ×N)

garch.para a vector of the estimates of the volatility parameters

dcc.para a vector of the estimates of the DCC parameters (2× 1)

h a matrix of the estimated conditional variances (T ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

A matrix with the estimates in the first row, and the standard errors in the second row.

Note

dcc.results is called from dcc.estimation. When model="diagonal", only the di-
agonal entries in A and B are used.

References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

See Also

dcc.estimation
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dcc.sim Simulating an (E)DCC-GARCH(1,1) process

Description

This function simulates data either from the original DCC-GARCH by Engle (2002) or from the
Extended DCC-GARCH that has non-zero off-diagonal entries in the parameter matrices in the
GARCH equation, with multivariate normal or student’s t distributions.

The dimension (N ) is determined by the number of elements in the a vector.

Usage

dcc.sim(nobs, a, A, B, R, dcc.para, d.f=Inf, cut=1000, model)

Arguments

nobs a number of observations to be simulated (T )

a a vector of constants in the vector GARCH equation (N × 1)

A an ARCH parameter matrix in the vector GARCH equation (N ×N)

B a GARCH parameter matrix in the vector GARCH equation (N ×N)

R an unconditional correlation matrix (N ×N)

dcc.para a vector of the DCC parameters (2× 1)

d.f the degrees of freedom parameter for the t-distribution

cut the number of observations to be thrown away for removing initial effects of
simulation

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

A list with components:

z a matrix of random draws from N(0, I). (T ×N)

std.z a matrix of the standardised residuals. std.zt ∼ N(0,Rt) where Rt is the DCC
matrix at t. If d.f is set to a finite positive real number, zt ∼ td.f (0,Rt) (T ×N)

dcc a matrix of the simulated dynamic conditional correlations (T ×N2)

h a matrix of the simulated conditional variances (T ×N)

eps a matrix of the simulated time series with DCC-GARCH process (T ×N)

Note

When d.f=Inf, the innovations (the standardised residuals) follow the standard normal distribu-
tion. Otherwise, they follow a student’s t-distribution with d.f degrees of freedom.

When model="diagonal", only the diagonal entries in A and B are used. If the ARCH and
GARCH matrices do not satisfy the stationarity condition, the simulation is terminated.
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References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

See Also

stcc.sim, eccc.sim

Examples

# Simulating data from the original DCC-GARCH(1,1) process
nobs <- 1000; cut <- 1000; nu <- 8
a <- c(0.003, 0.005, 0.001)
A <- diag(c(0.2,0.3,0.15))
B <- diag(c(0.75, 0.6, 0.8))
uncR <- matrix(c(1.0, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0),3,3)
dcc.para <- c(0.01,0.98)

# for normally distributed innovations
dcc.data <- dcc.sim(nobs, a, A, B, uncR, dcc.para, model="diagonal")

# for t distributed innovations
dcc.data.t <- dcc.sim(nobs, a, A, B, uncR, dcc.para, d.f=nu,
model="diagonal")

dlc Various partial derivatives of the DCC part of the log-likelihood func-
tion

Description

This function computes various analytical derivatives of the second stage log-likelihood function
(the DCC part) of the (E)DCC-GARCH model.

Usage

dlc(dcc.para, B, u, h, model)

Arguments

dcc.para the estimates of the (E)DCC parameters (2× 1)

B the estimated GARCH parameter matrix (N ×N)

u a matrix of the used for estimating the (E)DCC-GARCH model (T ×N)
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h a matrix of the estimated conditional variances (T ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

a list with components:

dlc the gradient of the DCC log-likelihood function w.r.t. the DCC parameters (T ×
2)

dvecP the partial derivatives of the DCC matrix, Pt w.r.t. the DCC parameters (T×N2)

dvecQ the partial derivatives of the Qt matrices w.r.t. the DCC parameters (T ×N2)

d2lc the Hessian of the DCC log-likelihood function w.r.t. the DCC parameters (T ×
4)

dfdwd2lc the cross derivatives of the DCC log-likelihood function (T×npar.h+2) npar.h
stand for the number of parameters in the GARCH part, npar.h = 3N for
"diagonal" and npar.h = 2N2 +N for "extended".

References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

Hafner, C.M. and H. Herwartz (2008), “Analytical Quasi Maximum Likelihood Inference in Multi-
variate Volatility Models.” Metrika 67, 219–239.

dlv Gradient of the GARCH part of the log-likelihood function of an
(E)DCC-GARCH model

Description

This function returns the analytical partial derivatives of the volatility part of the log-likelihood
function of the DCC-GARCH model. The function is called from dcc.results.

Usage

dlv(u, a, A, B, model)
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Arguments

u a matrix of the data used for estimating an (E)DCC-GARCH model (T ×N)

a a vector of the constants in the volatility part (N × 1)

A an ARCH parameter matrix (N ×N)

B a GARCH parameter matrix (N ×N)

model a character string describing the model."diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

A matrix of partial derivatives. (T × npar.h) where npar.h stand for the number of parameters in
the GARCH part, npar.h = 3N for "diagonal" and npar.h = 2N2 +N for "extended".

References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

Hafner, C.M. and H. Herwartz (2008), “Analytical Quasi Maximum Likelihood Inference in Multi-
variate Volatility Models.” Metrika 67, 219–239.

See Also

dcc.estimation

dlv.est Gradient of the GARCH part of the log-likelihood function of an
(E)DCC GARCH model

Description

This function returns the gradient of the volatility part of the log-likelihood function of the DCC.

Usage

dlv.est(par, dvar, model)

Arguments

par a vector of the parameters in the vector GARCH equation

dvar a matrix of the data used for estimating an (E)DCC-GARCH model (T ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model
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Value

A vector of the gradient. (3N × 1) for "diagonal" and (2N2 +N × 1) for "extended".

Note

The function can be called from optim in dcc.estimation1. For obtaining the gradient for
all t, use dlv instead.

References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

Hafner, C.M. and H. Herwartz (2008), “Analytical Quasi Maximum Likelihood Inference in Multi-
variate Volatility Models.” Metrika 67, 219–239.

See Also

dcc.estimation1, dlv

eccc.estimation Estimating an (E)CCC-GARCH model

Description

This function estimates an (E)CCC-GARCH(1,1) model and returns estimates, estimated volatility
and various diagnostic statistics.

Usage

eccc.estimation(a, A, B, R, dvar, model, method="BFGS")

Arguments

a initial values for constants (N × 1)

A initial values for an ARCH parameter matrix (N ×N)

B initial values for a GARCH parameter matrix (N ×N)

R initial values a constant conditional correlation matrix (N ×N)

dvar a matrix of data used for (E)CCC-GARCH estimation (T ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

method a character string specifying the optimisation method in optim. There are three
choices, namely, Nelder-Mead, BFGS (default) and CG.
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Value

A list with components:

out a (4×npar) matrix. The estimates are contained in the first row. The remaining
rows report standard errors based on three different methods of estimating the
asymptotic covariance matrix

h the estimated conditional variances (T ×N)

std.resid a matrix of the standardised residuals (T ×N ). See Note.

opt the detailed results of the optimisation

para.mat vectorised parameter estimates

Note

The standardised residuals are calculated through dividing the original series by the estimated con-
ditional standard deviations. See, for instance, p.303 of Bollerslev (1990) for details.

References

Bollerslev, T. (1990), “Modelling the Coherence in Short-run Nominal Exchange Rates: A Multi-
variate Generalized ARCH Model”, Review of Economics and Statistics, 20, 498–505.

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147–163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.

eccc.sim Simulating an (E)CCC-GARCH(1,1) process

Description

This function simulates data either from the original CCC-GARCH by Bollerslev (1990) or from
the Extended CCC-GARCH that has non-zero off-diagonal entries in the parameter matrices in the
GARCH equation. The innovations (the standardised residuals) can be either a normal or student’s
$t$ distribution.

The dimension (N) is determined by the number of elements in the a vector.

Usage

eccc.sim(nobs, a, A, B, R, d.f=Inf, cut=1000, model)
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Arguments

nobs a number of observations to be simulated (T )

a a vector of constants in the GARCH equation (N × 1)

A an ARCH parameter matrix in the GARCH equation. A can be a diagonal ma-
trix for the original CCC-GARCH model or a full matrix for the extended model
(N ×N)

B a GARCH parameter matrix in the GARCH equation. B can be a diagonal
matrix for the original CCC-GARCH model or a full matrix for the extended
model (N ×N)

R a constant conditional correlation matrix (N ×N)

d.f the degrees of freedom parameter for the t-distribution

cut the number of observations to be thrown away for removing initial effects of
simulation

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

A list with components:

h a matrix of the simulated conditional variances (T ×N)

eps a matrix of the simulated time series with (E)CCC-GARCH process (T ×N)

Note

When d.f=Inf, the innovations (the standardised residuals) follow the standard normal distribu-
tion. Otherwise, they follow a student’s t-distribution with d.f degrees of freedom equal.

When model="diagonal", only the diagonal entries in A and B are used. If the ARCH and
GARCH matrices do not satisfy the stationarity condition, the simulation is terminated.

References

Bollerslev, T. (1990), “Modeling the Coherence in Short-Run Nominal Exchange Rates: A Multi-
variate Generalized ARCH Approach”, Review of Economics and Statistics, 72, 498–505.

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147–163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.

See Also

dcc.sim, stcc.sim
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Examples

# Simulating data from the original CCC-GARCH(1,1) process
nobs <- 1000; cut <- 1000; nu <- 10
a <- c(0.003, 0.005, 0.001)
A <- diag(c(0.2,0.3,0.15))
B <- diag(c(0.79, 0.6, 0.8))
R <- matrix(c(1.0, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0),3,3)
ccc.data <- eccc.sim(nobs,a, A, B, R, model="diagonal")
ccc.data.t <- eccc.sim(nobs,a, A, B, R, d.f=nu, model="diagonal")

fourth Fourth-order moment condition for the vector GARCH equation

Description

This function computes the fourth-order moment condition for the vector GARCH equation in the
(E)CCC-GARCH models.

Usage

fourth(A, B, R)

Arguments

A an ARCH parameter matrix (N ×N)

B a GARCH parameter matrix (N ×N)

R a constant conditional correlation matrix (N ×N)

Value

a scalar. If strictly less than unity, the condition is satisfied.

References

He, C. and T. Teräsvirta (2004): “An Extended Constant Conditional Correlation GARCH model
and its Fourth-moment Structure”, Econometric Theory, 20, 904–926.

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147–163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.

See Also

stationarity
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grad.dcc.full Numerical gradient of the full log-likelihood function of the (E)DCC-
GARCH model

Description

This function computes numerical gradient of the full log-likelihood function of the (E)DCC-
GARCH(1,1) model with respect to its parameters.

Usage

grad.dcc.full(a, A, B, dcc.para, dvar, d=1e-5, model)

Arguments

a a constant vector in the vector GARCH equation (N × 1)

A an ARCH parameter matrix in the vector GARCH equation (N ×N)

B a GARCH parameter matrix in the vector GARCH equation (N ×N)

dcc.para a vector of the DCC parameters (2× 1)

dvar a matrix of the data used for estimating the (E)DCC-GARCH model (T ×N)

d a step size for computing numerical gradient

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

a matrix of partial derivatives (T × npar)

Note

this function is currently not in use.

grad.dcc2 Numerical gradient of the DCC part of the log-likelihood function

Description

This function computes numerical gradient of the second stage log-likelihood function of the DCC-
GARCH model w.r.t. its parameters.

Usage

grad.dcc2(param, dvar, d=1e-5)
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Arguments

param a vector of DCC parameters (2× 1)

dvar a matrix of the standardised residuals (T ×N)

d a step size for computing numerical gradient

Value

a vector of partial derivatives (2× 1)

Note

The function is used only from dcc.estimation2 when the switch variable gradient!=0.
dlc$dlc in dlc contains the analytical gradient of the second stage log-likelihood function.

See Also

dlc, dcc.estimation

hh.test Carrying out the test of Hafner and Herwartz

Description

This function computes the test statistic and the associated p-value of the test for causality in con-
ditiona variance in the CC-GARCH models.

Usage

hh.test(dvar)

Arguments

dvar (T ×N)

Value

A vector containing the test statistic and the associated p-value

References

Hafner, C.M. and H. Herwartz (2006), “A Lagrange Multiplier Test for Causality in Variance.”
Economics Letters 93, 137–141.

See Also

nt.test
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jb.test The Lomnicki-Jarque-Bera Test of normality (JB test)

Description

This function performs the Lomnicki-Jarque-Bera Test of normality and returns test statistics and
associated p-values.

Usage

jb.test(x)

Arguments

x a vector or matrix of variables to be tested

Value

Vector of test statistics and p-value

References

Jarque, C.M. and A.K. Bera (1987), “A Test for Normality of Observations and Regression Resid-
uals”, International Statistical Review, 55, 163–172.

Lomnicki, Z.A. (1961), “Tests for Departure from Normality in the Case of Linear Stochastic Pro-
cesses”, Metrika, 4, 37–62.

See Also

rob.sk, rob.kr, ljung.box.test

Examples

# for a vector
x <- rnorm(1000)
jb.test(x)

# for a matrix
X <- matrix(rnorm(10000), 5000,2)
jb.test(X)
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ljung.box.test The Ljung-Box Test statistic

Description

This function performs the Ljung-Box Test for a univariate time series.

Usage

ljung.box.test(x)

Arguments

x a vector of variables to be tested

Value

LB test statistics and associated p-values for lags 5, 10,..., 50.

Note

Argument x must be a vector. When x is squared residuals, the test is equivalent to the McLeord
and Li (1983) test.

References

Ljung, G.M. and G.E.P. Box (1978): “On a Measure of Lack of Fit in Time-Series Models”,
Biometrika, 65, 297–303.

McLeod, A.I., and W.K. Li (1983): “Diagnostic checking ARMA time series models using squared-
residual autocorrelations”, Journal of Time Series Analysis, 4, 269–273.

See Also

rob.sk, rob.kr, jb.test

Examples

x <- rnorm(1000)
ljung.box.test(x) # returns the LB Test statistic
ljung.box.test(x^2) # returns the McLeord-Li Test for no-ARCH effect
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loglik.dcc The log-likelihood function for the (E)DCC GARCH model

Description

This function returns a log-likelihood of the (E)DCC-GARCH model.

Usage

loglik.dcc(param, dvar, model)

Arguments

param a vector of all the parameters in the (E)DCC-GARCH model

dvar a matrix of the data used for estimating the (E)DCC-GARCH model (T ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matrices)
model

Value

the negative of the full log-likelihood of the (E)DCC-GARCH model

Note

param must be made by stacking all the parameter matrices.

References

Robert F. Engle and Kevin Sheppard (2001), “Theoretical and Empirical Properties of Dynamic
Conditional Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027
(Revised in Dec. 2001), New York University Stern School of Business.

Robert F. Engle (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate Gener-
alised Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

Examples

# Simulating data from the original DCC-GARCH(1,1) process
nobs <- 1000; cut <- 1000
a <- c(0.003, 0.005, 0.001)
A <- diag(c(0.2,0.3,0.15))
B <- diag(c(0.75, 0.6, 0.8))
uncR <- matrix(c(1.0, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0),3,3)
dcc.para <- c(0.01,0.98)
dcc.data <- dcc.sim(nobs, a, A, B, uncR, dcc.para, model="diagonal")

# Estimating a DCC-GARCH(1,1) model
dcc.results <- dcc.estimation(inia=a, iniA=A, iniB=B, ini.dcc=dcc.para,
dvar=dcc.data$eps, model="diagonal")

# Parameter estimates and their robust standard errors
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dcc.results$out

# Computing the value of the log-likelihood at the estimates
loglik.dcc(dcc.results$out[1,], dcc.data$eps, model="diagonal")

loglik.dcc1 The 1st stage log-likelihood function for the (E)DCC GARCH

Description

This function returns a log-likelihood of the (E)DCC-GARCH model in the first stage estimation.

Usage

loglik.dcc1(param, dvar, model)

Arguments

param initial values for a vector of the parameters (npar × 1)

dvar a matrix of the data (T ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

the negative of the first stage log-likelihood

Note

The function is used in optim in dcc.estimation1.

References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
ized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

See Also

dcc.estimation, dcc.estimation1
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loglik.dcc2 The 2nd stage log-likelihood function for the (E)DCC GARCH

Description

This function returns a log-likelihood of the (E)DCC-GARCH model in the 2nd step estimation.

Usage

loglik.dcc2(param, dvar)

Arguments

param initial values for the DCC parameters (2× 1)

dvar a matrix of the standardised residuals (T ×N)

Value

the negative of the second stage log-likelihood

Note

The function is used in constrOptim in dcc.estimation2.

References

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional
Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in
Dec. 2001), New York University Stern School of Business.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate General-
izSed Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic
Statistics 20, 339–350.

See Also

dcc.estimation, dcc.estimation2

loglik.eccc The log-likelihood function of the (E)CCC-GARCH model

Description

This function computes a log-likelihood of the (E)CCC-GARCH(1,1) model.

Usage

loglik.eccc(param, dvar, model)
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Arguments

param a vector of all the parameters in the (E)CCC-GARCH model

dvar a matrix of the data used for estimating the (E)DCC-GARCH model (T ×N)

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

the negative of the (E)CCC-GARCH log-likelihood

References

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147–163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.

nt.test Carrying out the test of Nakatani and Teräsvirta

Description

This function computes the test statistic and the associated p-value of the test for causality in con-
ditiona variance in the CC-GARCH models.

Usage

nt.test(dvar)

Arguments

dvar (T ×N)

Value

A matrix containing the test statistics of the standard (non-robust) test and the robust version, and
the associated p-values

References

Nakatani, T and T. Teräsvirta (2010), “An Alternative Test for Causality in Variance in the Condi-
tional Correlation GARCH models.” mimeo, Stockholm School of Economics.

See Also

hh.test
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p.mat Re-arranging a vector into parameter matrices

Description

A utility function that re-arranges a vector of parameters into parameter matrices in the CC-GARCH(1,1)
model.

Usage

p.mat(para, model, ndim)

Arguments

para a vector of parameters to be re-arranged into parameter matrices

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

ndim the number of dimension of the model

Value

A list with components:

a a vector of constants in the vector GARCH equation

A an ARCH parameter matrix

B a GARCH parameter matrix

R a constant conditional correlation matrix

References

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147–163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.

rob.kr Computing standard and robustified excess kurtosis

Description

This function computes standard and robustified excess kurtosis of a vector or matrix of variables.

Usage

rob.kr(x)
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Arguments

x vector or matrix of variables

Value

Vector of excess kurtosis and robustified excess kurtosis

References

Kim, T-H. and H. White (2004), “On More Robust Estimation of Skewness and Kurtosis”, Finance
Research Letters, 1, 56–73.

See Also

rob.sk, ljung.box.test, jb.test

Examples

x <- matrix(rnorm(1000), 100, 10)
rob.kr(x)

rob.sk Computing standard and robustified skewness

Description

This function computes standard and robustified skewness measures of a vector or matrix of vari-
ables.

Usage

rob.sk(x)

Arguments

x a vector or matrix of variables

Value

Vector of skewness and robustified skewness

References

Kim, T-H. and H. White (2004), “On More Robust Estimation of Skewness and Kurtosis”, Finance
Research Letters, 1, 56–73.

See Also

rob.kr, ljung.box.test, jb.test

Examples

x <- matrix(rnorm(1000), 100, 10)
rob.sk(x)
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stationarity The stationarity condition in Extended CC-GARCH models

Description

A utility function that checks if the two parameter matrices in a vector GARCH model satisfy the
stationarity condition.

Usage

stationarity(A,B)

Arguments

A an ARCH parameter matrix in the vector GARCH equation (N ×N)

B a GARCH parameter matrix in the vector GARCH equation (N ×N)

Value

a scalar. If strictly less than unity, the condition is satisfied.

References

He, C. and T. Teräsvirta (2004): “An Extende Constant Conditional Correlation GARCH model and
its Fourth-moment Structure”, Econometric Theory, 20, 904–926.

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147–163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.

See Also

fourth

stcc.sim Simulating Data from an STCC-GARCH$(1,1)$ process

Description

This function simulates data either from the original STCC-GARCH by Silvennoinen and Teräsvirta
(2005) or from the Extended STCC-GARCH that has non-zero off-diagonal entries in the parameter
matrices in the GARCH equation, with multivariate normal or student’s t distribution.

The dimension (N) is determined by the number of elements in the a vector.
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Usage

stcc.sim(nobs, a, A, B, R1, R2, tr.par, st.par, d.f=Inf,
cut=1000, model)

Arguments

nobs a number of observations to be simulated (T )

a a vector of constants in the vector GARCH equation (N × 1)

A an ARCH parameter matrix in the vector GARCH equation. (N ×N)

B a GARCH parameter matrix in the vector GARCH equation. (N ×N)

R1 a conditional correlation matrix in regime 1 (N ×N)

R2 a conditional correlation matrix in regime 2 (N ×N)

tr.par a vector of scale and location parameters in the transition function (2× 1)

st.par a vector of parameters for the GARCH(1,1) transition variable (3× 1)

d.f the degrees of freedom parameter for the t-distribution

cut the number of observations to be thrown away for removing initial effects of
simulation

model a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matri-
ces) model

Value

A list with components:

h a matrix of conditional variances (T ×N)

eps a matrix of time series with DCC-GARCH process (T ×N)

tr.var a vector of the transition variable

st a vector of time series of the transition function

vecR a (T ×N2) matrix of Smooth Transition Conditional Correlations

Note

When d.f=Inf, the innovations (the standardised residuals) follow the standard normal distribu-
tion. Otherwise, they follow a student’s t-distribution with d.f degrees of freedom equal.

When model="diagonal", only the diagonal entries in A and B are used. If the ARCH and
GARCH matrices do not satisfy the stationarity condition, the simulation is terminated.

References

Silvennoinen, A. and T. Teräsvirta (2005), “Multivariate Autoregressive Conditional Heteroskedas-
ticity with Smooth Transitions in Conditional Correlations.” SSE/EFI Working Paper Series in Eco-
nomics and Finance No. 577, Stockholm School of Economics, available at http://swopec.
hhs.se/hastef/abs/hastef0577.htm.

See Also

dcc.sim, eccc.sim
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Examples

# Simulating data from the original STCC-GARCH(1,1) process
nobs <- 1000; cut <- 1000
a <- c(0.003, 0.005, 0.001)
A <- diag(c(0.2,0.3,0.15))
B <- diag(c(0.79, 0.6, 0.8))
# Conditional Correlation Matrix for regime 1
R1 <- matrix(c(1.0, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0),3,3)
# Conditional Correlation Matrix for regime 2
R2 <- matrix(c(1.0, 0.01, -0.3, 0.01, 1.0, 0.8, -0.3, 0.8, 1.0),3,3)
# a parameter vector for the scale and location parameters
# in the logistic function
tr.para <- c(5,0)
# a parameter vector for a GARCH(1,1) transition variable
st.para <- c(0.02,0.04, 0.95)
nu <- 15
stcc.data <- stcc.sim(nobs, a, A, B, R1, R2,

tr.par=tr.para, st.par=st.para, model="diagonal")
stcc.data.t. <- stcc.sim(nobs, a, A, B, R1, R2,

tr.par=tr.para, st.par=st.para, d.f=nu,
model="diagonal")

tr.func Logistic transition function

Description

This function computes values from a Logistic transition function.

Usage

tr.func(tr.par, tr.var)

Arguments

tr.par a vector of parameters (2× 1)

tr.var a vector of transition variable (T × 1)

Value

a vector of transition function (T × 1)

Note

this function is used in stcc.sim

References

Teräsvirta, T. (1994): “Specification, Estimation, and Evaluation of Smooth Transition Autoregres-
sive Models”, Journal of the American Statistical Association, 89, 208–218.

See Also

stcc.sim
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uni.vola Computing univariate GARCH(1,1) conditional variances

Description

This function returns an univariate GARCH(1,1) conditional variances.

Usage

uni.vola(a,u)

Arguments

a a vector of parameters in the GARCH(1,1) equation (3× 1)

u a vector of the data (T × 1)

Value

a vector of GARCH(1,1) conditional variances (T × 1)

References

Bollerslev, T. (1986): “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of
Econometrics, 31, 307–327.

See Also

uni.vola.sim

Examples

a <- c(0.01, 0.04, 0.95)
u <- rnorm(1000)
h <- uni.vola(a, u)

uni.vola.sim Simulating a series with univariate GARCH(1,1) conditional vari-
ances

Description

This function simulates an univariate time series with GARCH(1,1) conditional variances.

Usage

uni.vola.sim(a, nobs, d.f=Inf, cut=1000)
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Arguments

a a vector of parameters (3× 1)

nobs a number of observations simulated (T )

d.f degrees of freedom parameter for t-distribution

cut a number of observations to be removed to minimise the initial effects

Value

A list with components:

h GARCH(1,1) conditional variances (T × 1)

eps a series of error term with the conditional variances "h" (T × 1)

Note

When d.f=Inf, the innovations (the standardised residuals) follow the standard normal distribu-
tion. Otherwise, they follow a student’s t-distribution with d.f degrees of freedom.

References

Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of
Econometrics, 31, 307–327.

Fiorentini, G., G. Calzolari and L. Panattoni (1996), “Analytic Derivatives and the Computation of
GARCH Estimates”, Journal of Applied Econometrics, 11, 399–417.

See Also

uni.vola

Examples

nobs <- 1000
nu <- 8
a <- c(0.1,0.2,0.7)
# with normal innovations
eps <- uni.vola.sim(a, nobs)
# with t innovations
eps.t <- uni.vola.sim(a, nobs, d.f = df)

vdR Computing partial derivatives of the CCC matrix

Description

This function computes partial derivatives of the CCC matrix with respect to its correlation coeffi-
cients.

Usage

vdR(n)
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Arguments

n the number of dimension of the model

Value

a matrix of zeros and ones ((N(N − 1))/2×N2)

References

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147-163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.

vec.garch.derivative
Computing partial derivatives of a vector GARCH(1, 1) equation

Description

This function computes partial derivatives of a vector GARCH(1, 1) equation with respect to its
parameters.

Usage

vec.garch.derivative(dvar, B, h)

Arguments

dvar a matrix of the data used for estimating an ECCC or DCC GARCH model (T ×
N)

B a GARCH parameter matrix in the vector GARCH equation (N ×N)

h a matrix of conditional variances (T ×N)

Value

a vector of partial derivatives (T ×N ∗ npar.h)

References

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147–163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.
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vector.garch A vector GARCH(1,1) conditional variances

Description

This function computes a vector GARCH(1,1) conditional variances.

Usage

vector.garch(dvar, a, A, B)

Arguments

dvar a matrix of the data, used as epsilon (T ×N)

a initial values for constants in the vector GARCH equation (N × 1)

A initial values for an ARCH parameter matrix in the vector GARCH equation
(N ×N)

B initial values for a GARCH parameter matrix in the vector GARCH equation
(N ×N)

Value

a matrix of conditional variances (T ×N)

References

Nakatani, T. and T. Teräsvirta (2009), “Testing for Volatility Interactions in the Constant Conditional
Correlation GARCH Model”, Econometrics Journal, 12, 147-163.

Nakatani, T. and T. Teräsvirta (2008), “Appendix to Testing for Volatility Interactions in the Con-
stant Conditional Correlation GARCH Model” Department of Economic Statistics, Stockholm
School of Economics, available at http://swopec.hhs.se/hastef/abs/hastef0649.
htm.
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Table 5.1 Arguments for dcc.sim

Name Description
nobs number of observations to be simulated.
a vector of constants in the GARCH equation (length N).
A ARCH parameter in the GARCH equation (N ×N).
B GARCH parameter in the GARCH equation (N ×N).
R unconditional correlation matrix (N ×N).
dcc.para vector of the DCC parameters (length 2).
d.f degrees of freedom parameter for the t-distribution (optional).
model character string, “diagonal” or “extended”.

Table 5.2 Output from dcc.sim

Name Description
z random draws from N(0, I) (T ×N).
std.z standardised residuals. std.z[t, ] ∼ ID(0,Pt) (T ×N).
dcc dynamic conditional correlations (T ×N2).
h simulated conditional variances (T ×N).
eps time series with DCC-GARCH process (T ×N).
NOTE: ID denotes an independent distribution, either a multivariate

normal or Student’s t distribution.
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Table 5.3 Arguments for dcc.estimation

Name Description
a initial values for the constants (length N).
A initial values for the ARCH parameter matrix (N ×N).
B initial values for the GARCH parameter matrix (N ×N).
dcc.para initial values for the DCC parameters (length 2).
dvar a matrix of the data (T ×N).
model a character string, “diagonal” or “extended”.
method a character string specifying the optimisation method

in optim. There are three choices, namely,
“Nelder-Mead”, “BFGS” (default) and “CG”.

gradient a switch variable that determines the optimisation
algorithm in the second stage optimisation. If gradient=0
Nelder-Mead is applied. Otherwise BFGS is used (default).

message a switch variable that controls if the message is displayed
when the estimation is completed. If message=0,
the message is suppressed. Otherwise, the message is
displayed (default)

Table 5.4 Effects of initial values for parameter estimates
in the DCC-GARCH(1, 1) model

True initial values Untrue initial values
Coefficients True Mean SD MSE Mean SD MSE

a1 0.003 0.0033 0.0010 0.0344 0.0033 0.0011 0.0345
a2 0.005 0.0052 0.0013 0.0406 0.0053 0.0014 0.0446
a3 0.001 0.0011 0.0004 0.0126 0.0012 0.0007 0.0234
a11 0.200 0.1997 0.0340 1.0749 0.1991 0.0346 1.0937
a22 0.300 0.2996 0.0453 1.4321 0.3008 0.0465 1.4709
a33 0.150 0.1501 0.0283 0.8941 0.1520 0.0293 0.9269
b11 0.750 0.7427 0.0409 1.3137 0.7435 0.0416 1.3302
b22 0.600 0.5940 0.0530 1.6845 0.5914 0.0566 1.8095
b33 0.800 0.7927 0.0384 1.2344 0.7877 0.0552 1.7877
α 0.010 0.0109 0.0070 0.2225 0.0114 0.0078 0.2512
β 0.980 0.9507 0.0854 2.8546 0.9404 0.0998 3.3928

NOTE: Based on 1000 replications. SD and MSE stand for standard
deviations and mean squared errors of parameter estimates,
respectively.
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Table 5.5 Outputs from dcc.estimation

Name Description
out the estimates and their robust standard errors
loglik the value of the log-likelihood function at the estimates
h a matrix of the estimated conditional variances (T ×N)
DCC a matrix of dynamic conditional correlation estimates (T ×N2)
std.resid a matrix of the standardised residuals (T ×N)
first the results of the first stage estimation
second the results of the second stage estimation
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Figure 5.1 Returns, estimated conditional variances and dynamic
conditional correlations of the three Japanese stock return series.
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Sjöblom, Lisa. Partner eller kontrollant: en studie av Sidas uppföljning. EFI Civil
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Sjöstrand, Sven-Erik. Management: fr̊an kontorsteknik till lednings- och organisa-

tionsteori: utvecklingen p̊a Handelshögskolan under 100 år: 1909-2009.
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Handelshögskolan under 100 år.

Dissertations
Axelson, Mattias. Enabling knowledge communication between companies: the role of

integration mechanisms in product development collaborations.
Benson, Ilinca. Organisering av överg̊angar p̊a arbetsmarknaden: en studie av omställ-
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Portnoff, Linda. Control, cultural production and consumption: theoretical perspec-
tives, empirical dilemmas, and Swedish music industry practices.
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