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Chapter 1

Introduction and Summary

This thesis consists of three papers. The first two papers deal with the im-
plications of market incompleteness for pricing and managing counterparty
risk in the context of over-the-counter (OTC) derivatives. The technique em-
ployed for this analysis is good deal bound pricing. In contrast, the last paper
develops methods for solving a large class of financial and economic problems
which are time inconsistent in the sense that they do not admit a Bellman
optimality principle. This is done by viewing them within a game theoretic
framework, and looking for Nash subgame perfect equilibrium points. The
connecting thread between the papers is the theory of stochastic optimal
control and its applications to financial problems: the good deal bounds
pricing problems are classical stochastic optimal control problems from a
mathematical point of view; the last paper deals with extending the classical
stochastical optimal control framework in order to allow the analysis of more
complex and interesting financial and economic questions.

As mentioned before, the first two papers deal with counterparty risk in
the context of OTC derivatives. Counterparty risk has been brought to the
forefront by recent events. The current financial crisis has underlined the
importance of good pricing and risk management tools for counterparty risk.
The papers approach the issue by developing tools which address the market
incompleteness due to the counterparty risk.

In the context of derivatives, the source for counterparty risk is the fact that
the products are traded over-the-counter (OTC). According to the Bank of
International Settlements, in December 2007, the OTC notional amounts
outstanding were 417 trillion US dollars. By comparison, at the end of the
same period, the notional amounts outstanding in exchange traded futures
were 28 trillion US dollars and the notional amounts outstanding in exchange
traded option were 52.5 trillion (see (BIS 2008)). Since the market for OTC
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derivatives is big, managing counterparty risk for OTC derivatives is essen-
tial. If traded on an organized exchange, the counterparty risk associated
with the derivatives disappears due to the presence of the market maker.
The market incompleteness comes from not having liquidly exchange-traded
financial products (credit derivatives) that would help pin down the market
price of risk for the counterparty’s default. This is a classic case of market
incompleteness.

As a way of solving the pricing issues raised by the market incompleteness, I
propose the good deal bounds method. The method imposes a new restriction
in the arbitrage free model by setting upper bounds on the Sharpe ratios of
the assets. The potential prices which are eliminated represent unreasonably
good deals. The constraint on the Sharpe ratio translates into a constraint
on the stochastic discount factor. Thus, one can obtain tight pricing bounds.
One has to note that by eliminating unusually good deals, we do not eliminate
extreme market outcomes, but extreme attitudes toward risk (i.e. investors
asking for extreme compensation for the risks taken).

To put good deal bounds in a general context, we remember that one of
the consequences of having an incomplete market setup is the fact that we
no longer have a unique stochastic discount factor or a unique equivalent
martingale measure, and consequently not a unique price. One could simply
calculate the bounds of the prices, generated by the interval of all possible
risk-neutral measures (or all possible stochastic discount factors). These
bounds are known as the no-arbitrage bounds. However, they are too large
to be of any practical use.

Another alternative would be to pick one of the possible equivalent martingale
measures, according to some criterium, chosen by the researcher/implementer
of the model. The literature adopting this path is vast. For further reference
to different strands of literature dealing with this approach see Schweizer
(2001), Henderson and Hobson (2004), Barrieu and Karoui (2005). However,
there is no clear cut way of choosing between different criteria and some
of them are somewhat ad-hoc, in the sense that they do not have a clear
economic interpretation.

In contrast to this, Cochrane and Saa-Raquejo (2000) proposed the method
of good deal bounds. The good deal approach aims at obtaining an interval
of “reasonable”prices in incomplete markets, rather than concentrating at
obtaining a unique price. Since the no-arbitrage bounds are too large to be
used, Cochrane and Saa-Raquejo (2000) suggested to rule out not only arbi-
trage opportunities, but also trade opportunities which are too favorable to
be observed on a real market. These unrealistically-favorable deals are con-
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sidered “too good to be true”, hence the name of “good deal bounds”(GDB).
One possible measure for the “goodness”of a deal is its Sharpe Ratio (SR),
and thus, trades/portfolios which have a SR above a certain threshold are
eliminated. Since the SR links the return of financial assets to the risk un-
dertaken, it is not extreme events which are eliminated from the set, but
extreme compensation for the risk undertaken. The SR is chosen as a mea-
sure for the “goodness of the deal”because of its intuitive meaning, but also
due to a large empirical literature which can tell us the range of the Sharpe
Ratios observed on the market. Thus, the bound on the SR will not be arbi-
trary. The procedure reduces the set of possible prices for the claims traded.
Hence, the good-deal bounds methodology leads to a much tighter interval
of possible prices than the bounds obtained by no-arbitrage.

The next step in developing a theory for “good deal bounds”was done by
Björk and Slinko (2005). They proposed a new frame for solving the opti-
mization problem defined by Cochrane and Saa-Raquejo (2000) while at the
same time allowing for more complex dynamics for the underlying assets,
such as jump-diffusion processes, to be taken into account. This formulation
of the good deal bounds will be used in the current project.

Previous literature on counterparty risk and good deal bounds involved struc-
tural models (e.g. Hung and Liu 2005). The first paper of this thesis also
approaches the issue form the same point of view. More exactly, we present
a unified framework for the pricing of vulnerable options (options where the
counterparty can default) using structural models, i.e. models for credit risk
that takes into account the value of the assets of the option writer (coun-
terparty) in order to define default. The main ingredients for such a frame-
work are the dynamics of the stock and the dynamics of the assets of the
counterparty. The current paper starts from the traditional framework of
pricing vulnerable options in complete markets and extends it to incomplete
markets. We start by presenting elements of pricing vulnerable options in
complete markets and by streamlining the results of Klein (1996) for a Eu-
ropean vulnerable call; to this end, we use the more-tractable technique of
change of numeraire. In the structural framework, default happens when the
assets of the counterparty fall below the level of the claims against the coun-
terparty. One major assumption for pricing vulnerable options is the fact
that we can observe the assets of the counterparty and that they are liquidly
traded. By relaxing the later assumption and allowing the assets of the coun-
terparty not to be liquidly traded, we are in an incomplete market setup. As
explained before, this implies that we no longer have a unique no-arbitrage
price, but an interval of possible prices. We are going to employ the good
deal bounds technique in order to compute the highest and the lowest possi-
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ble price, given a constraint on the Sharpe Ratio of all portfolios that can be
formed on this market. The paper also extends well known results for using
vanilla non-vulnerable options in the pricing of more complex exchange and
barrier options. We show how, in a similar manner, one can use the results
for vulnerable options in pricing barrier and exchange options. This is done
both for the complete and for the incomplete market setup.

The structural models have the advantage of allowing us to model explicitely
the correlation between various firms and it provides a relationship between
various securities issued by the same firm (equity, bonds, convertible bonds,
etc.). However, structural models assume one can observe accurately the
value of the firm analysed. Another major drawback with the classical frame-
work of structural models is the fact that default is predictable. Also, the
models become quickly untractable and predict credit spreads which are too
low when compared to the observed ones.

The next step in credit risk modelling has been the introduction of inten-
sity based models. They represent default in a jump process framework.
Thus, they can fit the market observed credit spreads and incorporate the
more realistical feature of unpredicable defaults. Intensity based models are
also more tractable than structural models and hence, can be used more ef-
fectively for the pricing and hedging of credit derivatives. Duffie and Lando
(2001) have linked the structural and intensity based models for credit risk by
showing that, when bond holders have incomplete information abou the value
of the firm, he structural models yields unpredicable default times. Hence,
there is an intensity based formulaion for structural models with incomplete
information about the value of the firm.

In the second chapter of this thesis, we allow for counterparty risk to be
given by intensity-based models, nowadays a standard tool in credit-risk
pricing and management. Previous literature on counterparty risk with in-
tensity models uses pricing directly under the risk neutral measure -which is
not unique (e.g. Brigo and Masetti 2005, Brigo and Pallavicini 2008). We
provide a link between the objective probability measure and the range of
potential risk neutral measures which has an intuitive economic meaning.
Furthermore, we study how the interval of prices induced by the good deal
bounds changes with different important parameters in the model: i.e. the
current intensity of default, the parameters of the intensity process, the good
deal bound constant chosen by the modeler, the recovery rate. Results show
that the current intensity of default and the recovery rate impact the GDB
price interval more than the chosen GDB constant. After we have studied
the effect of counterparty risk on one OTC financial derivative at a time, we
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turn our attention to how good deal bounds are computed and ”behave” in
a portfolio framework. Before this, however, we have to check if good deal
bounds meet the the requirements to be a good risk measure. Such require-
ments were put forward by Artzner and Heath (1999) and the resulting risk
management instrument carries the name of coherent risk measures. The first
to notice the link between good deal bounds and coherent risk measures were
Jaschke and Küchler (2001). However, they dismiss the good deal bounds on
the Sharpe Ratio à la Cochrane as not satisfying the monotonicity require-
ment. Under the new re-formulation of the GDB based on the SR done by
Björk-Slinko, one can notice that the lower GDB trivially satisfies the formal
properties proposed by Artzner and Heath (1999) and hence, it is a coherent
risk measure.
We study the effect of adding more assets traded with the same counterparty
to our portfolio and see how the GDB behave in this context. Then, we also
check how adding a new counterparty is going to affect the lower good deal
bound.

From a mathematical point of view, the good deal bounds pricing belongs
to the class of stochastical optimal control problems and, when solving such
problems, we employ the powerful tools of dynamic programming. How-
ever, in the financial and economic theory, there are problems such as the
mean-variance asset allocation problem or macroeconomic problems with hy-
perbolic discounting which do not allow the use of dynamic programming.
Solving these problems leads to time inconsistency - i.e. if for some fixed
initial point, we determine the control law which maximizes the objective
function, then at some later point the same control law will no longer be
optimal.

In the third paper, we undertake a rigorous study of time inconsistent control
problems in a reasonably general Markovian framework, and in particular we
do not want to tie ourselves down to a particular applied problem. We have
therefore chosen a setup of the following form.

• We consider a general controlled Markov process X, living on
some suitable space (details are given below). It is important to notice
that we do not make any structural assumptions whatsoever about
X, and we note that the setup obviously includes the case when X
is determined by a system of SDEs driven by a Wiener and a point
process.
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• We consider a functional of the form

J(t, x,u) = Et,x

[∫ T

t

C (x,Xu
s ,u(Xu

s )) ds+ F (x,Xu
T )

]
+G (x,Et,x [Xu

T ]) .

We see that with the choice of functional above, time inconsistency enters at
several different points. Firstly we have the appearance of the present state
x in the local utility function C, as well as in the functions F and G, and this
leads of course to time inconsistency. Secondly, in the term G (x,Et,x [Xu

T ])
we have, even forgetting about the appearance of x, a non linear function G
acting on the conditional expectation, again leading to time inconsistency.

Note that, for notational simplicity we have not explicitly included depen-
dence on running time t. This can always be done by letting running time
be one component of the state process X, so the setup above also allows
for expressions like F (t, x,Xu

T ), thus allowing (among many other things) for
hyperbolic discounting.

This setup is studied in some detail in continuous as well as in discrete time.
The discrete time results are parallel to those in continuous time, and our
main results in continuous time are as follows.

• We provide a precise definition of the Nash equilibrium concept. (This
is done along the lines of Ekeland and Lazrak (2006) and Ekeland and
Pirvu (2007)).

• We derive an extension of the standard Hamilton-Jacobi-Bellman equa-
tion to a non standard system of equations for the determination of the
equilibrium value function V .

• We prove a verification theorem, showing that the solution of the ex-
tended HJB system is indeed the equilibrium value function, and that
the equilibrium strategy is given by the optimizer in the equation sys-
tem.

• We prove that to every time inconsistent problem of the form above,
there exists an associated standard, time consistent, control prob-
lem with the following properties:

– The optimal value function for the standard problem coincides
with the equilibrium value function for the time inconsistent prob-
lem.

– The optimal control law for the standard problem coincides with
the equilibrium startegy for the time inconsistent problem.
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• We solve some specific test examples.

Thus, while in the first papers of this thesis one uses the tools of dynamic
programming in order to answer questions about the range of possible prices
of counterparty risk on OTC markets, the last paper develops tools needed
in order to address non-standard problems in economics and finance.
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Chapter 2

Vulnerable Options and Good
Deal Bounds - Structural
Model

We price vulnerable options - i.e. options where the counterparty may de-
fault. These are basically options traded on the OTC markets. Default is
modeled in a structural framework. The technique employed for pricing is
Good Deal Bounds. The method imposes a new restriction in the arbitrage
free model by setting upper bounds on the Sharpe ratios of the assets. The
potential prices which are eliminated represent unreasonably good deals. The
constraint on the Sharpe ratio translates into a constraint on the stochastic
discount factor. Thus, one can obtain tight pricing bounds. We provide a
link between the objective probability measure and the range of potential
risk neutral measures which has an intuitive economic meaning. We also
provide tight pricing bounds for European calls and show how to extend the
call formula to pricing other financial products in a consistent way. Specific
examples for exchange options and barrier options are computed. Finally, we
analyze numerically the behaviour of the good deal pricing bounds interval
and analyze the factors that impact its size.
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1 Introduction

Vulnerable options are options that bear counterparty risk - in other words,
the writer of the option may not deliver the underlying. The main reason
for having a counterparty risk is the fact that these options are traded over-
the-counter (OTC). If traded on an organized exchange, the counterparty
risk associated with the option disappears due to the presence of the market
maker. According to BIS, the OTC equity-linked option gross market value
in the first half of 2008 USD 863 bln. Also, the volume of equity linked
derivatives has increased during the last years. Thus, there is a necessity to
have consistent pricing of vulnerable options.
In the previous literature, an important assumption is that vulnerable op-
tions are traded in complete markets, i.e. that in addition to the asset un-
derlying the derivative, also the assets of the counterparty are the price of a
traded asset. Papers pricing vulnerable options in a complete market setup
include Johnson and Stulz (1987), Jarrow and Turnbull (1995), Hull and
White (1995), Klein (1996). In real life, vulnerable options are traded mainly
over-the-counter, and the assets of the counterparty are not traded assets on
the market. Thus, we are in a classical case of incomplete markets. The first
to notice this inconsistency were Hung and Liu (2005)
Hung and Liu (2005) have priced the vulnerable options using the structural
model set up by Klein (1996) and using ”good deal bounds”. The good
deal bounds were first introduced by Cochrane and Saa-Raquejo (2000) and
constitute a ”hybrid” between no-arbitrage pricing and utility-based pricing.
They narrow the wide bands of possible prices obtained with no arbitrage
pricing, while avoiding the model-sensitivity implied by utility-based pricing.
The method imposes a new restriction in the arbitrage free model, by set-
ting upper bounds on the Sharpe ratio-s of the assets. The potential prices
which are eliminated represent unreasonably good deals. The constraint on
the Sharpe ratio translates into a constraint on the stochastic discount fac-
tor. Björk and Slinko (2005) translate the stochastic discount problem to
an equivalent martingale problem and use martingale methods to solve the
optimization problem. Thus, the calculations are more tractable and the
price processes can be characterised by point processes, besides the tradi-
tional Wiener framework.
In this paper, we present a unified framework for the pricing of vulnerable
options using structural models. Traditionally, vulnerable options were anal-
ysed in a structural framework, i.e. a model for credit risk that takes into
account the value of the assets of the option writer(counterparty) in order to
define default. The main ingredients for such a framework are the dynamics
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of the stock and the dynamics of the assets of the counterparty. The current
paper starts from the traditional framework of pricing vulnerable options in
complete markets and extends it to incomplete markets.
Section 2 presents elements of pricing vulnerable options in complete mar-
kets. We start by streamlining the results of Klein for a European vulnerable
call; to this end, we use the more-tractable technique of change of numeraire.
Then, we extend some well-known results for non-vulnerable options to the
vulnerable case. More specifically, these results concern pricing of derivatives
with linearly homogeneous payoffs and pricing of barrier options.
In section 3, we deal with pricing vulnerable options in incomplete mar-
kets. To this purpose, we use the good deal bounds framework proposed
by Björk and Slinko (2005) which allows for higher degree of tractability.
Besides pricing vulnerable European vulnerable options, we also show how
results obtained for the complete markets can be extended in the incomplete
market case, i.e. we price exchange options and barrier options. Section 4
presents a few numerical results and section 5 concludes.

2 The Complete Market case - The Klein Model

2.1 Setup

This section takes the setup proposed by Klein (1996) and calculates the
price of a vulnerable option by applying a different method, the change of
numeraire. This method will alow for a better tractability of the old results,
as well as for extending the results for a call option to other vanilla products,
such as min or exchange options.
The option is written on the stock S and has maturity T and strike K.
For simplicity, we will assume through the entire paper that the stock S is
traded on the market. The case of an option written on an untraded stock
is a straightforward extension for the incomplete market case analysed in
subsequent sections. Since the option to be priced is traded over-the-counter,
there is also counterparty risk to be taken into account.
In a first setting, default will depend on the assets of the counterparty - the
writer of the option. They are denoted by Y . As stated in Klein (1996), the
assets of the counterparty are defined such that they include all assets of the
counterparty, marked to market, as well as all derivative positions.
To begin with, we consider Y traded on the market. This assumption implies
we are in a complete market setup. The total value of the claims against the
counterparty is denoted by D and we are not concerned with modelling D.
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We assume a riskless bond B with interest rate r is traded on the market.
We proceed by giving the main features of the market:

Assumption 2.1

1. Let (Ω,F , P,F) be given; F is the internal filtration generated by the
Wiener process W̃ , which will be defined below.

2. The market model under the objective probability measure P is given by
the following dynamics:

dYt = µtYtdt+ Ytσ̄tdW̃t

dSt = αtStdt+ Stγ̄tdW̃t

dBt = Btrdt

where Yt denotes the assets of the counterparty underwriting the option,
St the price of the stock on which the option is contracted and Bt the
bank account. The assets of the counterparty are defined such that they
include all assets of the counter-party, marked to market, as well all
derivative positions.

3. µt and αt are scalar deterministic functions of time, σ̄t and γ̄t are (1,2)
row vector deterministic functions of time, specified as follows:

γ̄t =
(
γt, 0

)
σ̄t =

(
σtρ, σt

√
1− ρ2

)
4. Let W̃ be a two dimensional P-Wiener process:

W̃ =

(
W̃ 1,

W̃ 2

)
with W̃ 1 and W̃ 2 independent scalar P-Wiener processes.

5. Assume that both the assets of the counterparty underwriting the option
and the stock are traded on the market.

6. The payoff of a vulnerable European call option,X = Φ(ST , YT , T ), is
given by

X = Φ(ST , YT , T ) = max(ST −K, 0)I(YT ≥ D) +RI(YT < D)

where D is the value of the total value of the claims against the counter-
party.
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Before proceeding, we need to clarify a few things. First, note that while σ̄t
and γ̄t are defined as row vector coefficients of the diffusion terms, sometimes
it is more convienient to work with the scalar values of σt and γt. However,
it is straightforward when one uses scalar notation instead of vector notation
and switching to the vector notation does not pose any technical difficulty.
Next, we are going to give an intuition for the payoff function of a vulnerable
option. The general payoff function for vulnerable options has two compo-
nents - the payoff of the claim in case of no default and the recovery payoff,
i.e. the payoff in case the counterparty defaults. We denote the general pay-
off by X and the recovery payoff by R. If there is no default, the payoff of the
claim is the standard option payoff, i.e. max(ST −K, 0); if the counterparty
defaults, the payoff is the recovery payoff R. The default occurs if the value
of the assets of the counterparty at time T , YT , falls below the value of the
claims written against the counterparty, D. All payments are done at time
T.

For the complete market setup, the value of the recovery payoff R is given
by:

R = (1− β)
YT
D

max(ST −K, 0)

The logic behind the above formula is straightforward. One gets a propor-
tional part of the value of the claim, corresponding to how much the assets
of the counter-party have fallen below the value of the claim. However, there
are some deadweight costs associated to the bankrupcy procedure. These
costs are captured by the β parameter. This recovery specification is very
close to the specification for recovery of treasury.

Assumption 2.2 Let the recovery payoff be given by:

RI(YT < D) = (1− β)
YT
D

max[ST −K, 0]I {YT < D}

Having defined the main assumptions of the model, we will now proceed
to price the vulnerable option in the complete markets setup, by using the
change of numeraire technique.



16 CHAPTER 2. GOOD DEAL BOUNDS - STRUCTURAL MODEL

2.2 Pricing the vulnerable options by change of nu-
meraire

Change of numeraire for the case with zero recovery

First, I will calculate the value of the claim, for the case of zero recovery. The
assumption of zero recovery is adopted only for the duration of the current
section. However, starting from this simplifying case gives a better clarity in
exposition and calculations are more tractable. The payoff function becomes
X = max[ST −K, 0]I[YT ≥ D] and we obtain:

X = max[ST −K, 0]I[YT ≥ D] = (ST −K)I[ST ≥ K]I[YT ≥ D]

= ST I[ST ≥ K]I[YT ≥ D]−KI[ST ≥ K]I[YT ≥ D]

In order to price the claim with payoff X, we will apply the change of nu-
meraire technique. For details, see Björk (2004). For the first term,ST I[ST ≥
K]I[YT ≥ D], we do a change of measure to QS, the measure corresponding
to St as numeraire. For the second term,KI[ST ≥ K]I[YT ≥ D], the change
of measure is to the forward measure, QT .

Denoting by Π the price of the vulnerable option, we will start from the
following pricing expression:

Π = S0Q
S[ST ≥ K;YT ≥ D]−Kp(0, T )QT [ST ≥ K;YT ≥ D] (2.1)

and we will first attack the second term, QT , and then the first, QS. The
calculations are detailed below.

• Under the forward measure, QT , we need to calculate:

QT (YT ≥ D,ST ≥ K) = QT

(
YT

p(T, T )
≥ D,

ST
p(T, T )

≥ K

)
since p(T, T ) = 1.

We denote ZY (t) = Yt
p(t,T )

and ZS(t) = St
p(t,T )

and want to calculate

QT (ZY (T ) ≥ D,ZS(T ) ≥ K). Under the forward measure, ZY (t) and
ZS(t) are martingales (as the price of asset with the forward price as
numeraire).

dZY (t) = ZY (t)σ̄tdW
T
t

dZS(t) = ZS(t)γ̄tdW
T
t
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The solutions to the above equations are:

ZY (T ) = ZY (0) exp

{
−1

2

∫ T

0

‖σ̄t‖2dt+

∫ T

0

σ̄tdW
T
t

}
ZS(T ) = ZS(0) exp

{
−1

2

∫ T

0

‖γ̄t‖2dt+

∫ T

0

γ̄tdW
T
t

}
We notice that the equations above have a very similar structure: the
exponent is the sum of a time integral and a stochastic integral with
a deterministic integrand, which leads to the entire exponent being
normally distributed. The variance of the exponent is

∫ T
0
‖σ̄t‖2dt for

the first equation, respectively
∫ T

0
‖γ̄t‖2dt for the second equation.

Now, we need to transform the two lognormal variables into standard-
normal variables. In order to perform this easy transformation, we use
the following string of equivalent inequalities:

YT ≥ D

ZY (T ) ≥ D

ZY (0) exp

{
−1

2

∫ T

0

‖σ̄t‖2dt+

∫ T

0

(σ̄t)dW
T
t

}
≥ D

lnZY (T )− lnZY (0) + 1
2

∫ T
0
‖σ̄t‖2dt√∫ T

0
‖σ̄t‖2dt

≥
lnD − lnZY (0) + 1

2

∫ T
0
‖σ̄t‖2dt√∫ T

0
‖σ̄t‖2dt

ξ ≥
ln Dp(0,T )

Y (0)
+ 1

2

∫ T
0
‖σ̄t‖2dt√∫ T

0
‖σ̄t‖2dt︸ ︷︷ ︸
−b2

where ξ is standard-normally distributed.
Following the same steps, we have:

ST ≥ K ⇔ ZS(T ) ≥ K

and by writing explicitely ZS(T ), taking logs and suitably transforming
the resulting normal variable, we obtain the equivalent inequality:

η ≥
ln Kp(0,T )

S(0)
+ 1

2

∫ T
0
‖γ̄t‖2dt√∫ T

0
‖γ̄t‖2dt︸ ︷︷ ︸
−a2
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where η is standard normally distributed.

Summing up the calculations above, one obtains:

QT (YT ≥ D,ST ≥ K) = QT (η ≥ −a2, ξ ≥ −b2, ρ1) (2.2)

where η and ξ are standard normal, ρ1 is the correlation coefficient
between η and ξ. The constants a2 and b2 are given above.
The first step in clarifying the right-handside term in (2.2) is calculating
the correlation coefficient ρ1. We formulate the result as a lemma.

Lemma 2.1 Given assumptions 3.1 and η and ξ defined as in (2.2),
the correlation coefficient between η and ξ is given by:

ρ1 =
ρ
∫ T

0
σtγtdt√∫ T

0
σ2
t dt
√∫ T

0
γ2
t dt

.

Proof. We know that

ξ =
ln
(
ZY (T )
ZY (0)

)
+ 1

2

∫ T
0
‖σ̄t‖2dt√∫ T

0
‖σ̄t‖2dt

η =
ln
(
ZS(T )
ZS(0)

)
+ 1

2

∫ T
0
‖γ̄t‖2dt√∫ T

0
‖γ̄t‖2dt

The only stochasticity in the formulas comes from the expressions A1

and A2 defined below:

A1 = ln

(
ZY (T )

ZY (0)

)
= −1

2

∫ T

0

‖σ̄t‖2dt+

∫ T

0

σ̄tdW
T
t

A2 = ln

(
ZS(T )

ZS(0)

)
= −1

2

∫ T

0

‖γ̄t‖2dt+

∫ T

0

γ̄tdW
T
t

Simplifying even further, we obtain that:

ρ1 = Corr[A1;A2] = Corr

[∫ T

0

σ̄tdW
T
t ;

∫ T

0

γ̄tdW
T
t

]
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where σ̄t =
(
σtρ, σt

√
1− ρ2

)
and γ̄t =

(
γt, 0

)
andW T =

(
W 1;T , W 2;T

)′
,

with W 1;T and W 2;T independent T-Wiener processes1. By direct cal-
culation, it follows that

ρ1 =
Cov

[∫ T
0
σ̄tdW

T
t ;
∫ T

0
γ̄tdW

T
t

]
√
V ar

[∫ T
0
σ̄tdW T

t

]
V ar

[∫ T
0
γ̄tdW T

t

] =
ρ
∫ T

0
σtγtdt√∫ T

0
σ2
t dt
√∫ T

0
γ2
t dt

.

If σt and γt are constant, we have ρ1 = ρ.

At this point, we need to introduce some new notation.

Definition 2.1 Let N (a, b, r) be the probability P [X ≤ a;Y ≤ b],
where X and Y are standard normal variables with correlation coef-
ficient r.

We are going to use this notation to express the right handside of (2.2)
in terms of CDF-s. In order to do this, we need to study the behaviour
of the bivariate standard normal distribution, when the two variable
are correlated, which will be done by means of characteristic functions.
Let Φ1(t1, t2) be the characteristic function for the bivariate normal
distribution with correlation coefficient r, N [0, 0, 1, 1, r]:

Φ1(t1, t2) = exp

{
−1

2
[t21 + t22 + 2rt1t2]

}
Since the characteristic function Φ1(t1, t2) is a real function, we know
the distribution is symmetric (see Gut (2005)), or

P [X ≥ a;Y ≥ b] = P [X ≤ −a;Y ≤ −b] = N [−a;−b; r], (2.3)

where X, Y are standard normal distributed and have correlation coe-
ficient r.
Then, we try to transform P [X ≥ a;Y ≤ b] into a CDF. We know
that if (X, Y ) N [0, 0, 1, 1, r], then (−X, Y ) N [0, 0, 1, 1,−r]. Hence, we
conclude that:

P [X ≥ a;Y ≤ b] = P [−X ≤ −a;Y ≤ b] = N [−a; b;−r] (2.4)

1The independence of W 1;T and W 2;T follows from the independence of the P-Wiener
processes W̃ 1 and W̃ 2 (see assumption 3.1). If we denote by ϕT the Girsanov kernel
between the objective probability measure P and the equivalent martingale measure QT ,
it is easy to see that dW 1;T

t W 2;T
t = (−ϕT dt + dW̃ 1

t )(−ϕT dt + dW̃ 2
t ) = 0
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Note the change of signs in the correlation coefficient.
Thus, we obtain QT (η ≥ −a2, ξ ≥ −b2, ρ1) = N (a2, b2, ρ1).

Going back to (2.2), we conclude that:

QT (YT ≥ D,ST ≥ K) = N (a2, b2, ρ1) (2.5)

where ρ1 is given by lemma (2.1) and:

a2 = −
ln Kp(0,T )

S(0)
+ 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt

b2 = −
ln Dp(0,T )

Y (0)
+ 1

2

∫ T
0
σ2
t dt√∫ T

0
σ2
t dt

• We need to calculate QS(YT ≥ D,ST ≥ K) before being able to give a
solution to the the initial pricing equation (2.1).

To this purpose, we start by identifying the dynamics of the assets
under the new probability measure QS. The dynamics of Yt under QS

are given by standard theory as:

dYt = Yt(µt + σ̄tϕ
S
t )dt+ Ytσ̄tdW

S
t

where ϕS is the Girsanov kernel for the transformation P → QS. The
Girsanov kernel ϕS is obtained by imposing the martingale condition
under QS for Yt

St
:

µt − αt − σtγtρ+ 2γ2
t + (σ̄t − γ̄t)ϕSt = 0

and for Bt
St

:

r − αt + 2γ2
t − γ̄tϕSt = 0.

Since we have a system of two equations with two unknowns, ϕS is
completely identified and we have:

µt + ϕSt σ̄t = r + γtσtρ
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The solution to SDE describing the dynamics of Yt is:

YT = Y0 exp

(∫ T

0

(r + γtσtρ)dt− 1

2

∫ T

0

σ2
t dt+

∫ T

0

σ̄tdW
S
t

)
(2.6)

Since the exponent part from (2.6) is formed by a time integral and a
stochastic integral with a deterministic integrand, it is clear that the
exponent of Yt is normally distributed with variance

∫ T
0
‖σ̄t‖2dt.

We need to transform the lognormal variables into standard normal
variables:

YT ≥ D

Y (0) exp

(∫ T

0

(r + γtσtρ)dt− 1

2

∫ T

0

σ2
t dt+

∫ T

0

(σ̄t)dW
S
t

)
≥ D

ξ ≥
ln D

Y (0)
−
∫ T

0
(r + γtσtρ)dt+ 1

2

∫ T
0
σ2
t dt√∫ T

0
σ2
t dt︸ ︷︷ ︸

−b1

where ξ is standard normally distributed.
For ST we reformulate:

ST ≥ K ⇔ 1

ST
≤ 1

K
⇔ p(T, T )

ST
≤ 1

K

We know that p(t,T )
St

is a martingale under QS. The dynamics for p(t,T )
St

can be calculated by the Ito formula. Since, in this model, the interest
rate is deterministic and the price of a riskless bond is given by p(t, T ) =
exp {−r(T − t)}, the dynamics are:

d

[
p(t, T )

St

]
= −p(t, T )

St
γ̄tdW

S
t

The solution to the above equation is:

p(T, T )

ST
=
p(0, T )

S0

exp

(
−1

2

∫ T

0

‖γ̄t‖2dt−
∫ T

0

γ̄tdW
S
t

)
The exponent is normally distributed with variance

∫ T
0
‖γ̄t‖2dt.

We have:
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ST ≥ K

p(T, T )

ST
≤ 1

K
⇔ log

p(T, T )

ST
≤ log

1

K

η ≤
ln S0

p(0,T )K
+ 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt︸ ︷︷ ︸

a1

Now, we have:

QS(YT ≥ D,ST ≥ K) = QS(η ≤ a1, ξ ≥ −b1, r)

where η and ξ are standard normal variables; r is the correlation coeffi-
cient between the two standard normal variables; a1 and b1 are defined
above. Following the same steps as before, it is easy to show by direct
computation that r = −ρ1.
Also, the properties of the bivariate normal distribution derived before
allow us to change the generic probability into a CDF. Thus, we obtain:

QS(YT ≤ D,ST ≥ K) = N (a1, b1, ρ1)

where ρ1 is given by lemma (2.1) and

a1 =
ln S0

p(0,T )K
+ 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt

b1 = −
ln D

Y0
−
∫ T

0
(r + γtσtρ)dt+ 1

2

∫ T
0
σ2
t dt√∫ T

0
σ2
t dt

.

Up to this point, we have performed all calculations necessary to obtain a
pricing expression for vulnerable options, in the case of complete markets,
for the zero recovery payoff. We needed to calculate the probabilities that
appear in the transformation of the general risk neutral pricing formula:

Π(0, X) = S0Q
S[ST ≥ K;YT ≥ D]−Kp(0, T )QT [ST ≥ K;YT ≥ D]

Now we can gather the results from the last calculations and obtain a pricing
expression similar to the Black Scholes equation.
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Proposition 2.1 Under the assumptions 3.1, the price for a vulnerable op-
tion with maturity T, strike price K, and zero recovery, Π1

0, is given by:

Π1
0 = S0N (a1, b1, ρ1)−Kp(0, T )N (a2, b2, ρ1)

where

a1 =
ln S0

p(0,T )K
+ 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt

b1 =
ln Y0

p(0,T )D
+
∫ T

0
γtσtρdt− 1

2

∫ T
0
‖σ̄t‖2dt√∫ T

0
‖σ̄t‖2dt

a2 =
ln S0

Kp(0,T )
− 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt

b2 =
ln Y0

Dp(0,T )
− 1

2

∫ T
0
σ2
t dt√∫ T

0
σ2
t dt

ρ1 =
ρ
∫ T

0
σtγtdt√∫ T

0
σ2
t dt
√∫ T

0
γ2
t dt

Change of numeraire for the recovery payoff

Now, we can go back to the original case and price the recovery payoff for
complete markets. We recall from the assumption 4.1 that the recovery payoff
is given by:

RI(YT < D) = (1− β)
YT
D

max[ST −K, 0]I {YT < D}

= (1− β)
YT
D

(ST −K)I {ST ≥ K} I {YT < D}

=
1− β
D

YTST I {ST ≥ K} I {YT < D}

−1− β
D

KYT I {ST ≥ K} I {YT < D}
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Since the calculations about to follow are cumbersome, it is for the benefit of
the reader to split the above formula in 2 parts, to be analysed separately:

R1 =
1− β
D

YTST I {ST ≥ K} I {YT < D} (2.7)

R2 =
1− β
D

KYT I {ST ≥ K} I {YT < D} . (2.8)

The recovery payoff is given by the equality RI(YT < D) = R1−R2. We will
use the general risk neutral pricing formula for a general claim X (T, ZT ):

Πt(X ) = e{r(T−t)}EQ [X (T, ZT )| Ft]

where Πt(X ) denotes the price of a claim X at time t.
Then, we apply the technique of change of numeraire. For R2, I will use the
martigale measure which has the Yt as numeraire. For R1, the situation is
not so straight forward. It seems that the most appropriate numeraire would
be StYt. However, this is not the price of a traded asset. Hence, one cannot
say that we apply the traditional change of numeraire. Even if StYt is not a
traded asset, one can still perform an appropriate change of measure in order
to calculate easier e{r(T−t)}EQ [X (T, ZT )| Ft]. More details upon the exact
change of measure will follow in the paper.

• We will start calculations with R2. We apply the risk-neutral pricing
formula and a change of numeraire from the bank account to Yt. We
should calculate QY (ST ≥ K,YT < D) and we will use the following
chain of inequalities:

YT < D ⇔ 1

YT
>

1

D
⇔ p(T, T )

YT
>

1

D

Under QY , p(t,T )
Yt

is a martingale with dynamics:

d
p(t, T )

Yt
= −p(t, T )

Yt
σ̄dW Y

t

Since p(t,T) is deterministic, we obtain:

p(T, T )

YT
=
p(0, T )

Y0

exp

(
−1

2

∫ T

0

σ2
t dt−

∫ T

0

σ̄tdW
Y
t

)
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The exponent is normally distributed with variance
∫ T

0
σ2
t dt. We have:

YT < D
p(T, T )

YT
>

1

D

ln
p(T, T )

YT
> ln

1

D

ξ >
ln Y0

p(0,T )D
+ 1

2

∫ T
0
σ2
t dt√∫ T

0
σ2
t dt︸ ︷︷ ︸

−b4

where ξ is standard normally distributed.

Now, we turn to the first part of the probability to compute. The
dynamics of St under QY are given by:

dSt = (αt + γ̄tϕ
y
t )Stdt+ Stγ̄tdW

Y
t

The Girsanov kernel is obtained by imposing the martingale condition
to the dynamics of the asset on the market, expressed in the new nu-
meraire, Yt. The assets in case are St

Yt
and Bt

Yt
and the derived conditions

are:

αt − µt − σtγtρ+ 2σ2
t + [γ̄t − σ̄t]ϕyt = 0

r − µt + 2σ2
t − σ̄tϕ

y
t = 0.

Since we have two equations with two unknowns, the Girsanov kernel
is completely identified:

ϕyt =
(
r−αt+σtγtρ

γt
,

γt(r−µt+2σ2
t )−σtρ(r−αt+σtγtρ)

σtγt
√

1−ρ2

)
and we obtain:

αt + γ̄tϕ
y
t = r + σtγtρ.

Then, we proceed to solve the stochastic differential equation above,
which yields:

ST = S0 exp

(∫ T

0

(r + σtγtρ)dt− 1

2

∫ T

0

‖γ̄t‖2dt+

∫ T

0

γ̄tdW
Y
t

)
The exponent of St is normally distributed with variance

∫ T
0
‖γ̄t‖2dt.

As before, we need to transform the lognormal variable into a standard
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normal variable:

ST ≥ K

S(0) exp

(∫ T

0

(r + σtγtρ)dt− 1

2

∫ T

0

γ2
t dt+

∫ T

0

γ̄tdW
Y
t

)
≥ K

η ≥
ln K

S(0)
+
∫ T

0
[r + σtγtρ]dt+ 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt︸ ︷︷ ︸

−a4

where η is standard normally distributed. Thus,

QY (ST ≥ K,YT < D) = QY (η ≥ −a4, ξ > −b4, ρ2)

where η and ξ are standard normal and

a4 = −
ln K

S0
+
∫ T

0
[r + σtγtρ]dt+ 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt

b4 = −
ln Y0

p(0,T )D
+ 1

2

∫ T
0
σ2
t dt√∫ T

0
σ2
t dt

By ρ2, we denote the correlation coefficient between the two standard
normal variables. As in the previous subsection, by direct calculation
and following the same steps, it is straightforward to show

ρ2 = −
ρ
∫ T

0
σtγtdt√∫ T

0
‖σ̄t‖2dt

√∫ T
0
‖γ̄t‖2dt

= −ρ1

. Using the properties of the bivariate normal distribution derived
before, we obtain:

QY (ST ≥ K,YT < D) = N (a4, b4,−ρ1)

• Calculation for R1 are detailed below. We take each part of the calcu-
lation separetely for a better exposition. As before, the starting point
for the calculations is a change of measure. However, since no trivial
numeraire leads to esier computations, we will use a change of measure
rather than a change of numeraire.
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Starting from a general expression for the value of R1 at time t, which
we will denote by Πt[R1]:

Πt[R1] = EQ
[
e−

∫ T
t rsdsSTYT I[ST ≥ K,YT < D]

∣∣∣Ft]
= EQ

[
e−

∫ T
t rsdsXTZ

∣∣∣Ft]
where XT = STYT and Z = I[ST ≥ K,YT < D], we rewrite the above
expression as:

R1 = EQ
[
e−

∫ T
t rsdsmTRTZ

∣∣∣Ft] (2.9)

where mT = EQ[XT ] and RT = XT
EQ[XT ]

.

We assume that YT ≥ 0. Since ST is the price of a traded stock,
we have ST ≥ 0. Thus, we have XT ≥ 0 P-a.s. Also, we note that
EQ[RT ] = 1. These facts allow us to use RT as a Radon-Nycodim
derivative in a change of measure and define a measure Q̂ by:

dQ̂ = RTdQ on FT

Using Bayes’ Theorem, we can re-write (2.9) as:

R1 = e−
∫ T
t rsdsmTE

Q [RT | Ft]EQ̂ [Z| Ft]

If we define the likelihood process Lt, 0 ≤ t ≤ T , by:

dQ̂ = LtdQ on Ft

we have by standard theory:

Lt = EQ [LT | Ft] = EQ [RT | Ft] (2.10)

Note that even if LT = RT , we cannot draw the conclusion Lt = Rt

for t < T . This is a consequence of the fact that STYT is not a traded
asset.
In order to proceed, we need to calculate the following:

– mT ,

– EQ [RT | Ft],
– the dynamics for Lt in order to indentify the Girsanov transfor-

mation Q→ Q̂,

– EQ̂ [Z| Ft]
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(a) In order to calculate mT , we need to obtain the dynamics of StYt
under Q:

d(StYt) = StYt(2r + γtσtρ)dt+ StYt(γ̄t + σ̄t)dWt (2.11)

Hence, mT = S0Y0 exp
{∫ T

0
(2r + γtσtρ)ds

}
.

(b) Using (2.11), we obtainEQ [XT | Ft] = StYt exp
{∫ T

t
(2r + γtσtρ)ds

}
,

so

EQ [RT | Ft] =
StYt
S0Y0

exp

[
−
∫ t

0

(2r + γtσtρ)ds

]
(2.12)

(c) Since Lt is a martingale under Q, we assume the dynamics of Lt
are of form:

dLt = LtϕtdWt (2.13)

From (2.10),(2.12) and (2.13), we obtain:

dLt = Lt(γ̄t + σ̄t)dWt (2.14)

The Girsanov transformation Q→ Q̂ is now identified and we can
write

dWt = (γ̄t + σ̄t)
′dt+ dŴt

where Ŵ is Q̂-Wiener.

(d) By applying this Girsanov transformation to St and Yt, we obtain
the following dynamics under Q̂:

dSt = St[r + (γ̄t + σ̄t)γ̄
′
t]dt+ Stγ̄tdWt

dYt = Yt[r + (γ̄t + σ̄t)σ̄
′
t]dt+ Ytσ̄tdWt

Hence, we obtain:

ST = S0 exp

[∫ T

0

(r + σtγtρ+
1

2
γ2
t )dt+

∫ T

0

γ̄tdŴt

]
YT = Y0 exp

[∫ T

0

(r + σtγtρ+
1

2
σ2
t )dt+

∫ T

0

σ̄tdŴt

]
,
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which yields:

ST ≥ K

S0 exp

[∫ T

0

(r + σtγtρ+
1

2
γ2
t )dt+

∫ T

0

γ̄tdŴt

]
≥ K

η ≥
ln K

S0
−
∫ T

0
[r + σtγtρ+ 1

2
γ2
t ]dt√∫ T

0
γ2
t dt︸ ︷︷ ︸

−a3

YT < D

Y0 exp

[∫ T

0

(r + σtγtρ+
1

2
σ2
t )dt+

∫ T

0

σ̄tdŴt

]
< D

ξ <
ln D

Y0
−
∫ T

0
[r + σtγtρ+ 1

2
σ2
t ]dt√∫ T

0
σ2
t dt︸ ︷︷ ︸

b3

Hence, by combining the previous results, we obtain:

Πt(R1) = e−r(T−t)mTE
Q [RT | Ft]EQ̂ [Z| Ft]

= e−r(T−t)S0Y0 exp

[∫ T

0

(2r + γtσtρ)ds

]
StYt
S0Y0

exp

[
−
∫ t

0

(2r + γtσtρ)ds

]
Q̂[ST ≥ K,YT < D]

= e−r(T−t)StYt exp

[∫ T

t

(2r + γtσtρ)ds

]
Q̂(η ≥ −a3, ξ < b3, ρ2)

where η and ξ are standard normal, ρ1 is the correlation coefficient
between the two standard normal variables and

a3 = −
ln K

S0
−
∫ T

0
[r + σtγtρ+ 1

2
γ2
t ]dt√∫ T

0
γ2
t dt

b3 =
ln D

Y0
−
∫ T

0
[r + σtγtρ+ 1

2
σ2
t ]dt√∫ T

0
σ2
t dt

We follow the same steps as before, and show by direct calculation that

ρ2 = −
ρ
∫ T

0
σtγtdt√∫ T

0
σ2
t dt
√∫ T

0
γ2
t dt

.
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Using the properties of the bivariate normal distribution, we transform
the probability in the above formula for Πt(R1) in a CDF and have:

Πt(R1) = StYt exp

[∫ T

t

(r + γtσtρ)ds

]
N (a3, b3,−ρ1)

At this point, we have obtained all the necessary information in order to
price the recovery payoff for the vulnerable option. We are going to collect
the last calculations by presenting them in the following proposition:

Proposition 2.2 Let assumptions 3.1 and 4.1 hold. Then, the fair price for
the recovery payoff, Π2, is:

Π2 =
1− β
D

S0Y0 exp

[∫ T

0

(r + γσρ)ds

]
N (a3, b3,−ρ1)

−1− β
D

KY0N (a4, b4,−ρ1)

where

a3 =
ln S0

p(0,T )K
+
∫ T

0
[σtγtρ+ 1

2
γ2
t ]dt√∫ T

0
γ2
t dt

b3 =
ln p(0,T )D

Y0
−
∫ T

0
[σtγtρ+ 1

2
σ2
t ]dt√∫ T

0
σ2
t dt

a4 =
ln S0

p(0,T )K
−
∫ T

0
[σtγtρ]dt− 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt

b4 = −
ln Y0

p(0,T )D
+ 1

2

∫ T
0
σ2
t dt√∫ T

0
σ2
t dt

ρ1 =
ρ
∫ T

0
σtγtdt√∫ T

0
σ2
t dt
√∫ T

0
γ2
t dt

Collecting the results

So far, we were concerned with pricing vulnerable options in a complete mar-
ket setup. In the previous subsections, we have obtained separate expressions
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for the payoff of a vulnerable option in the case of zero recovery and for the
recovery payoff, respectively. For both expressions,we have started from the
risk-neutral pricing formula and employed the change of numeraire. Now, we
are going to collect the previous results into one formula.

Proposition 2.3 Let assumptions 3.1 and 4.1 hold. Then, the price for a
vulnerable option at time 0,Π, is given by:

Π0 = S0N [a1, b1, ρ1]−Kp(0, T )N [a2, b2, ρ1]

+
1− β
D

S0Y0 exp

{∫ T

0

(r + γsσsρ)ds

}
N [a3, b3,−ρ1]

−1− β
D

KY0N [a4, b4,−ρ1]

with:

a1 =
ln S0

p(0,T )K
+ 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt

b1 =
ln Y0

p(0,T )D
+
∫ T

0
γtσtρdt− 1

2

∫ T
0
σ2
t dt√∫ T

0
σ2
t dt

a2 =
ln S0

Kp(0,T )
− 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt

b2 =
ln Y0

Dp(0,T )
− 1

2

∫ T
0
σ2
t dt√∫ T

0
σ2
t dt

a3 =
ln S0

p(0,T )K
+
∫ T

0
[σtγtρ+ 1

2
γ2
t ]dt√∫ T

0
γ2
t dt

b3 =
ln p(0,T )D

Y0
−
∫ T

0
[σtγtρ+ 1

2
σ2
t ]dt√∫ T

0
σ2
t dt
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a4 =
ln S0

p(0,T )K
−
∫ T

0
[σtγtρ]dt− 1

2

∫ T
0
γ2
t dt√∫ T

0
γ2
t dt

b4 = −
ln Y0

p(0,T )D
+ 1

2

∫ T
0
σ2
t dt√∫ T

0
σ2
t dt

ρ1 =
ρ
∫ T

0
σtγtdt√∫ T

0
σ2
t dt
√∫ T

0
γ2
t dt

2.3 Extensions to other products

Vulnerable exchange options

In the current subsection, I will show how one can easily extend the formula
for a European call to price other options. The example used will be that of
a vulnerable exchange option. An exchange option is a contract that gives
the right, but not the obligation to exchange one stock for another. In this
section, we will modify a bit the previous assumptions. We need to have a
market consisting of two stock price processes. Also, the payoff function is
being modified.
An exchange option has the payoff max[S1

T − S2
T , 0]. In its vulnerable form,

the payoff of an exchange option becomes:

X = Φ(S1
T , S

2
T , YT ) = max[S1

T − S2
T , 0]I {YT ≥ D}+RI(YT < D)

where the recovery payoff, R is given by:

R = (1− β)
YT
D

max[S1
T − S2

T , 0]

The assumptions needed in order to price a vulnerable exchange option are:

Assumption 2.3

1. Let (Ω,F , P,F) be given, where F is the internal filtration given by the
3-dimensional P-Wiener process W̃ , which is defined below.

2. The market model under the objective probability measure P is given by
the following dynamics:



2. THE COMPLETE MARKET CASE - THE KLEIN MODEL 33

dS1
t = α1S

1
t dt+ S1

t γ̄1dW̃t

dS2
t = α2S

2
t dt+ S2

t γ̄2dW̃t

dYt = µYtdt+ Ytσ̄dW̃t

dBt = Btrdt

where Yt is denoting the assets of the counterparty underwriting the
option, S1

t and S2
t the price processes of the stocks on which the option

is contracted and Bt the bank account.

3. In the equations above, µ, α1 and α2 be scalars, and σ̄, γ̄1 and γ̄2 are
(1,3) row vectors specified as follows:

γ̄1 =
(
γ1, 0, , 0

)
γ̄2 =

(
γ2ρ12, γ2

√
1− ρ2

12, 0
)

σ̄ =

(
σρ13, σ ρ23−ρ12ρ13√

1−ρ2
12

, σ

√
1− ρ2

13 −
[
ρ23−ρ12ρ13√

1−ρ2
12

]2
)

4. W̃ is a three dimensional P-Wiener process:

W̃ =

W̃ 1,

W̃ 2,

W̃ 3


with W̃ 1, W̃ 2 and W̃ 3 being independent scalar P-Wiener processes.

5. Assume that both the assets of the counterparty underwriting the option
and the stock are traded on the market.

Remark 2.1 Note that, in this section, the model parameters µ, α1, α2,
σ, γ1, γ2 are constants. This is done for notational convenience. In the
case of time varying but deterministic coefficients, the calculations are easily
extended, but become very messy.

Since derivations are very similar to the ones in the previous section, we are
going to summarize the results in the following proposition. A proof for the
results follows.
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Proposition 2.4 Let Assumptions 4.2 hold. Then, the price for a vulnerable
option at time zero, Π(0; Φ), is given by:

Π(0; Φ) = S1
0N (a1, b1, ρ)− S2

0N (a2, b2, ρ)

+
1− β
D

Y0S
1
0 exp {T (r + γ1σρ13)ds}N (a3, b3,−ρ)

−1− β
D

Y0S
2
0 exp {T (r + γ2σρ23)}N (a4, b4,−ρ).

where

a1 =
ln
(
S1

0

S2
0

)
+ 1

2
T (γ2

2 − 2γ1γ2ρ12 + γ2
1)√

T (γ2
2 − 2γ1γ2ρ12 + γ2

1)

b1 =
ln
(
Y0

D

)
+ T (r + σγ1ρ13)− 1

2
Tσ2

√
Tσ2

a2 =
ln
(
S1

0

S2
0

)
− 1

2
T (γ2

2 − 2γ1γ2ρ12 + γ2
1)√

T (γ2
2 − 2γ1γ2ρ12 + γ2

1)

b2 =
ln
(
Y0

D

)
+ T (r + σγ2ρ23)− 1

2
Tσ2

√
Tσ2

a3 =
ln
(
S1

0

S2
0

)
+ T [σγ1ρ13 − σγ2ρ23 + 1

2
(γ2

2 − 2γ1γ2ρ12 + γ2
1)]√

T (γ2
2 − 2γ1γ2ρ12 + γ2

1)

b3 =
ln
(
D
Y0

)
− T [r + γ1σρ13 + 1

2
σ2]

√
Tσ2

a4 =
ln
(
S1

0

S2
0

)
− T [σγ1ρ13 − σγ2ρ23 + 1

2
(γ2

2 − 2γ1γ2ρ12 + γ2
1)]√

T (γ2
2 − 2γ1γ2ρ12 + γ2

1)

b4 =
ln
(
D
Y0

)
− T [r + γ2σρ23 + 1

2
σ2]

√
Tσ2

ρ = − γ2ρ23 − γ1ρ13√
(γ1)2 + (γ2)2 − 2γ2γ1ρ12
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Proof. By a change of numeraire from the risk neutral measure Q to Q2,
the EMM with S2

t as numeraire, we obtain

Π(0; Φ) = S2
0E

2

[
max

[
S1
T

S2
T

− 1, 0

]
I {YT ≥ D}+

(1− β)YT
D

max

[
S1
T

S2
T

− 1, 0

]
I {YT < D}

]
We denote

S1
t

S2
t

by Zt and from standard theory we know that Z is a Q2-

martingale, i.e. it has a zero rate of return.
Our goal is now to apply the formula for the simple European call writen on
Zt, with strike K = 1 and local rate of return 0.
However, we cannot apply the previous result directly. In the formula for
a vulnerable option, both the underlying stock and the assets of the coun-
terparty have the same rate of return r. Under Q2, the underlying stock
has zero rate of return, but the assets of the counterparty do not. From the
standard Girsanov transformation, we obtain the following dynamics for Yt:

dYt = (r + γ2σρ23)Ytdt+ σ̄dW 2
t

We denote r + γ2σρ23 = c, and we can re-write Yt as:

Yt = ectỸt

where Ỹt is defined below.

Definition 2.2 We define Ỹt as the stochastic process given by

Ỹt = Yt exp {−(r + γ2σρ23)T} .

The point of this is that Ỹt is a Q2-martingale. Thus the price of the vulner-
able exchange option can be written as:

Π(0; Φ) = S2
0E

2

[
max

[
S1
T

S2
T

− 1, 0

]
I
{
ỸT ≥ e−cTD

}]
+ S2

0e
cTE2

[
(1− β)ỸT

D
max

[
S1
T

S2
T

− 1, 0

]
I
{
ỸT < e−cTD

}]

Since both Z and Ỹ are Q2-martingales, we obtain the price of a vulnerable
exchange option simply by tranfering the result for the price vulnerable Eu-
ropean call option, written on Zt, with strike 1, local rate of return 0; the
assets of the counterparty are given by Ỹt and the default barrier becomes
e−cTD. The only thing we will need to calculate the correlation coefficient
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ρ̃ between Zt and Yt. A reasoning similar to the one in the proof of lemma
(2.1) gives us:

ρ̃ = Corr[(γ̄2 − γ̄1)W 1
T , σ̄W

1
T ]

By applying the definition of the correlation coefficient, one obtains:

ρ̃ =
γ2ρ23 − γ1ρ13√

(γ1)2 + (γ2)2 − 2γ2γ1ρ12

(2.15)

Thus, by transfering results from Proposition 2.3, we obtain the price for the
vulnerable exchange option given in Proposition 3.4.

Linearly Homogeneous Payoffs

Let Assumption 4.2 hold. In this section, we extend results from section 2.3
to a more general class of contracts. More specifically, we now consider a T-
claim X = Φ(S1

T , S
2
T ). In order to do so, we need a homogeneity assumption.

Assumption 2.4 We assume Φ(x, y) is a linearly homogenous function, i.e.

Φ(λx, λy) = λΦ(x, y),∀λ ≥ 0

Furthermore, we define the contract function Υ by

Υ(z) = Φ(z, 1)

A well known result in mathematical finance relates the non-vulnerable pric-
ing problem of Φ to the simpler problem of pricing Υ. We would like to
see if it is possible to find such a relation between vulnerable versions of the
contracts defined above. We denote the vulnerable version of the contract
function Φ(S1

t , S
2
t ) by ΦV (S1

t , S
2
t , Yt) and the vulnerable version of the con-

tract function ψ(St) by ψV (St, Yt). In general, the vulnerable version of a
contract function F (x), denoted by F V (x, y) is given by:

F V (x, y) = F (x)I {y ≥ D}+
(1− β)y

D
F (x)I {y < D}

By applying the risk neutral valuation formula to the claimXV = ΦV (S1
t , S

2
t , Yt),

we obtain the following expression for the price of the claim, Π(0, XV ):

Π(0, XV ) = e(−rT )EQ
[
ΦV (S1

t , S
2
t , Yt)

]
= S2

tE
2

[
Φ

(
S1
T

S2
T

, 1

)
I {YT ≥ D}

]

+ S2
tE

2

[
(1− β)YT

D
Φ

(
S1
T

S2
T

, 1

)
I {YT < D}

]
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where E2[•] is the expectation operator taken under the equivalent martin-
gale measure Q2 where S2 is numeraire.
The present argument follows the same lines as the reasoning outlined in the

previous section. We denote
S1
t

S2
t

by Zt. Under Q2, Z is a martingale, and

has a zero rate of return. In order to obtain a similar calculation formula
to the one used in the non-vulnerable claims case, we need Yt also to be a
Q2-martingale. Since this is not the case, we rewrite Yt as:

Yt = Ỹte
ct

where c = r + γ2σρ23 and the process Ỹt is defined in Definition 2.2. We
remember that Ỹt is a martingale under Q2.
Thus, we can write the price of the claim XV , as

Π(0, XV ) = S2
tE

2
[
Φ(ZT , 1)I

{
ỸT ≥ De−cT

}]
+ S2

tE
2

[
(1− β)ỸT
De−cT

Φ(ZT , 1)I
{
ỸT < De−cT

}]
= S2

tE
2
[
Υ(ZT , ỸT )

]
where the default barrier for the vulnerable claim X V = Υ(ZT , ỸT ) is De−cT .
The result is summarized in the following proposition. Again, we reduce the
problem of pricing a contract written on two assets S1 and S2 to the pricing
problem of a contract written for a single asset, Z.

Proposition 2.5 Let Assumptions 4.2 and 2.4 hold. Then, we have the
following equivalence between two pricing problems:

Π[0,ΦV (S1
T , S

2
T , YT )] = S2

t Π[0,ΥV (ZT , ỸT )]

where Zt and Yt are defined as above. The claim ΥV is prices in a world of zero
local return and the default barrier for the vulnerable claim X V = Υ(ZT , ỸT )
is De−cT .

Barrier Options

In this subsection, we are going to show how one can use the formula for a
vulnerable European call to price a vulnerable barrier option. In order to
be more concrete, we are going to price a vulnerable down-and-out barrier
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option. Let assumptions 3.1 and 4.1 hold. The payoff of a down-and-out
barrier option is

CLO =

{
max[ST −K, 0], if St > L for all 0 < t < T
0, if St ≤ L for some 0 < t < T

If the down-and-out barrier option is not vulnerable, it can be shown (see
Björk (2004)) that the price of the barrier option is given by:

• If the barrier L is lower than the strike price K, L ≤ K:

cLO(t, s,K) = c(t, s,K)−
(
L

s

) 2r̃
γ

c(t,
L2

s
,K)

where cLO(t, s,K) is the price of the down-and-out barrier option with
strike K, barrier L, evaluated at the initial point St = s; c(t, s,K)
is the price of a European call with strike K, evaluated at the initial
point St = s; c(t, L

2

s
, K) is the price of a European call with strike K,

evaluated at the initial point St = L2

s
; r̃ = r − 1

2
γ2

• If the barrier L is higher than the strike price K, L > K:

cLO(t, s,K) = g(t, s, L,K)−
(
L

s

) 2r̃
γ

g(t,
L2

s
, L,K)

where
g(t, z, L,K) = c(t, z, L) + (L−K)h(t, z, L)

and h(t, z, L) is the price generated by a digital option that pays 1 if
ST > L and 0 otherwise.

We will un fact prove below that that the same relationship holds for vul-
nerable down-and-out options, with the only difference that the prices used
before are the prices of corresponding vulnerable European calls and vulner-
able digital options. In order to do so, we are need to introduce the following
elements:

Definition 2.3 For any process X and real number L, the process XL de-
notes the process X with (possible) absorbtion at L

Definition 2.4 For any function Φ(x, y), we define the function ΦL(x, y) as

ΦL(x, y) =

{
Φ(x, y), x > L
0, x ≤ L.
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Definition 2.5 Let X be a simple T-claim with contract function Φ(ST ).
Then, we denote by

• XV the corresponding vulnerable claim, with contract function ΦV (ST , YT )

• XLO the corresponding down and out claim,

• XV
LO the corresponding vulnerable down-and-out claim.

Next, we are going to show how to link the price of a vulnerable down-and-
out barrier derivative to the price of the corresponding vulnerable derivative.
Let the payoff of the derivative to be priced be Ψ(ST ), then the payoff of the
vulnerable version of the same derivative ΨV (ST , YT ) is:

ΨV (ST , YT ) = Ψ(ST )I {YT ≥ D}+
(1− β)YT

D
Ψ(ST )I {YT < D}

= Ψ(ST )[I {YT ≥ D}+
(1− β)YT

D
I {YT < D}]

Thus, we see that the payoff function for a vulnerable claim can be written
as:

ΨV (ST , YT ) = Ψ(ST )F (YT ),

where

F (YT ) = I {YT ≥ D}+
(1− β)YT

D
I {YT < D} .

This, in turn, allows us to derive the following expression for the price of the
down-and-out barrier claim at time 0, Π(0,ΨV

LO):

Π(0,ΨV
LO) = e−rTEQ

0,s [ΦLO] = e−rTEQ
0,s

[
ΨV (ST , YT )I

{
inf

0≤t≤T
St > L

}]
= e−rTEQ

0,s

[
ΨV
L (SL(T ), YT )I

{
inf

0≤t≤T
St > L

}]
= e−rTEQ

0,s

[
ΨV
L (SL(T ), YT )

]
where SL denotes the process S with absorbtion at L. From standard theory,
it is easy to derive the following equation for S:

St = exp {Xt}

where the process X is given by:

dX = (r − 1

2
γ2)dt+ γ̄dW

X0 = ln s
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We remember that before we have denoted r − 1
2
γ2 by r̃.

This allows us to write SL(T ) as:

SL(T ) = exp {XlnL(T )}

where XlnL denotes the process X with absorbtion at lnL. We can perform
the same exercise for Y :

Yt = exp {Zt}
where the process Z is given by:

dZ = (r − 1

2
σ2)︸ ︷︷ ︸

r̄

dt+ σ̄dW

Z0 = ln y

We denote the density of the the stochastic variable
(
XlnL(T ), Y (T )

)
by

f(x, z). The proposition B.1 tells us that f(x, z) is a combination of bivariate
normal densities:

f(x, z) = nx,z[(ln s+ r̃
√
T , ln y + r̄

√
T ), (γ

√
T , σ
√
T ), ρ]

− exp

{
−2r̃(ln s− lnL)

γ2

}
×

n[(2 lnL− ln s+ r̃
√
T , ln y + 2ρ(lnL− ln s) + r̄

√
T ), (γ

√
T , σ
√
T ), ρ]

where we keep the same notation as in Appendix B.
We introduce the above result in the pricing formula for a down-and-out
vulnerable claim XV

LO with payoff ΨV
LO. Thus, we obtain:

Π(0,ΨV
LO) = e−rTEQ

0,s,y

[
ΨV
LO

]
= e−rTEQ

0,s,y

[
ΨV
L (SL(T ), YT )

]
= e−rTEQ

0,x,z

[
ΨV
L (exp {XlnL(T )} , exp {ZT})

]
= e−rT

{
EQ

0,s,y

[
ΨV
L (ST , YT )

]
−
(
L

s

) 2r̃
γ2

EQ

0,L
2

s
,y(Ls )

2ρ

[
ΨV
L (ST , YT )

]}
.

Proposition 2.6 Let Assumptions 3.1 and 4.1 hold. Then, the price of a
vulnerable down-and-out claim ΨV

LO is given by:

Π(0,ΨV
LO) = e−rT

{
EQ

0,s,y

[
ΨV
L (ST , YT )

]
−
(
L

s

) 2r̃
γ2

EQ

0,L
2

s
,y(Ls )

2ρ

[
ΨV
L (ST , YT )

]}
.

(2.16)
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The above proposition links the pricing of a down-and-out barrier claim to
the much simpler problem of pricing a certain simple claim. The vulnerable
component does not play a role when setting the criteria for the barrier.
Hence, if ΨV (ST , YT , K) is the payoff for a vulnerable European call with
strike K, ΨV

L (ST , YT , K) is given by:

• for L < K,
ΨV
L (ST , YT ) = ΨV (ST , YT , K)

• for L > K,

ΨV
L (ST , YT ) = ΨV (ST , YT , L) + (L−K)HV (ST , YT , L)

where HV (ST , YT , L) denotes the payoff of a vulnerable digital option
that pays 1 if ST > L and 0 otherwise.

One can show that ,in complete markets, the price of a vulnerable digital
option,denoted by H below, is:

H = p(0, T )N [−a1,−b1, ρ] +
1− β
D

Y0N [−a2,−b2, ρ] (2.17)

with:

a1 =
ln Kp(0,T )

S0
+ 1

2

∫ T
0
‖γ̄t‖2dt√∫ T

0
‖γ̄t‖2dt

b1 =
ln Dp(0,T )

Y0
+ 1

2

∫ T
0
‖σ̄t‖2dt√∫ T

0
‖σ̄t‖2dt

a2 =
ln K

S0
+
∫ T

0
[αt + ϕyt γ̄t]dt+ 1

2

∫ T
0
‖γ̄t‖2dt√∫ T

0
‖γ̄t‖2dt

b2 =
log Y0

p(0,T )D
+ 1

2

∫ T
0
‖σ̄t‖2(t)dt√∫ T

0
‖σ̄t‖2dt

ρ =
ρ
∫ T

0
σtγt′dt√∫ T

0
‖σ̄t‖2dt

√∫ T
0
‖γ̄t‖2dt

By combining the results above, we obtained the result we looked for.



42 CHAPTER 2. GOOD DEAL BOUNDS - STRUCTURAL MODEL

Proposition 2.7 Let Assumptions 3.1 and 4.1 hold. Then, the price of a
vulnerable down-and-out option cVLO(s, y,K, L) is given by:

• If the barrier L is lower than the strike price K, L ≤ K:

cVLO(t, s,K, L) = cVy (t, s,K)−
(
L

s

) 2r̃
γ

cV
y(Ls )

2ρ(t,
L2

s
,K)

where K is the strike price of the option and L is the barrier; c(t, s,K)
is the price of a European call with strike K, evaluated at the initial
point St = s; c(t, L

2

s
, K) is the price of a European call with strike K,

evaluated at the initial point St = L2

s
; the subscript denotes the initial

value to be taken for the assets of the counterparty when evaluating the
vulnerable option.

• If the barrier L is higher than the strike price K, L > K:

cVLO = gVy (t, s, L,K)−
(
L

s

) 2r̃
γ

gV
y(Ls )

2ρ(t,
L2

s
, L,K)

where
gVx (t, z, L,K) = cVx (t, z, L) + (L−K)hV x(t, z, L)

and hVx (t, z, L) is the price of a vulnerable digital option that pays 1 if
ST > L and 0 otherwise.

The prices cV (t, z, L) and hV (t, z, L) are given by Proposition 2.3 and equa-
tion (2.17). Notice that results in Propositions 2.6 and 2.7 are very similar
with results obtained for non-vulnerable down-and-out claims.

3 Incomplete Markets and Good Deal Bounds

One of the main limitations of the previous approach is the assumption that
the assets of the counterparty, or the default ”trigger”, are liquidly traded
on the market. It is a stong assumption, which allows us to obtain a unique
price for the vulnerable option. If both the stock and the assets of the coun-
terparty are traded on the market, we have a complete market model and,
hence, a unique price.
However, if the assets of the counterparty are not liquidly traded, we are not
in a complete market setup, and hence, we are not entitled to use the for-
mula derived in the previous section. One of the consequences of having an
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incomplete market setup is the fact that we no longer have a unique EMM,
and consequently not a unique price. One could simply calculate the bounds
of the prices, generated by the interval of all possible risk-neutral measures.
These bounds are known as the no-arbitrage bounds. However, they are too
large to be of any practical use.
Another alternative would be to pick one of the possible equivalent martingale
measures, according to some criterium, chosen by the researcher/implementer
of the model. The literature adopting this path is vast. For further reference
to different strands of literature dealing with this approach see Schweizer
(2001), Henderson and Hobson (2004), Barrieu and Karoui (2005) However,
there is no clear cut way of choosing between different criteria and some of
them are somewhat ad-hoc, in the sense that they do not have a clear eco-
nomic interpretation.
In contrast to this, Cochrane -Saa-Requejo proposed in Cochrane and Saa-
Raquejo (2000), the method of good deal bounds. The good deal approach
aims at obtaining an interval of ”reasonable” prices in incomplete markets,
rather than concentrating at obtaining a unique price. Since the no-arbitrage
bounds are too large to be used, Cochrane and Saa-Raquejo (2000) propose to
rule out not only arbitrage opportunities, but also trade opportunities which
are too favorable to be observed on a real market. These unrealistically-
favorable deals are considered ”too good to be true”, hence the name of
”good deal bounds”. One possible measure for the ”goodness” of a deal is its
Sharpe Ratio, and thus, trades/portfolios which have a Sharpe Ratio (SR)
above a certain threshold are eliminated. The SR is chosen as a measure for
the ”goodness of the deal” because of its intuitive meaning, but also due to
a large empirical literature which can tell us the range of the Sharpe Ratios
observed on the market. Thus, the bound on the SR will not be arbitrary.
The procedure reduces the set of possible prices for the claims traded. Thus,
the good-deal bounds methodology leads to a much tighter interval of possi-
ble prices than the bounds obtained by no-arbitrage.
The next step in developing a theory for ”good deal bounds” was done by
Björk and Slinko (2005). They proposed a new frame for solving the opti-
mization problem defined by Cochrane and Saa-Raquejo (2000) while at the
same time allowing for more complex dynamics for the underlying assets,
such as jump-diffusion processes, to be taken into account.



44 CHAPTER 2. GOOD DEAL BOUNDS - STRUCTURAL MODEL

3.1 Setup

First, we will consider the classical structural model, dropping only the mar-
ket completeness assumption. The model is identical to the one presented
in the previous section, except for one feature. The assumption that the
assets of the counterparty are traded on the market is dropped. We make
the following assumptions:

Assumption 3.1

1. Let (Ω,F , P,F) be given.

2. The market model is given by the following dynamics under the objective
probability measure P.

dYt = µtYtdt+ Ytσ̄tdW̃t,

dSt = αtStdt+ Stγ̄tdW̃t,

dBt = Btrdt.

Here Yt is denoting the assets of the counterparty underwriting the op-
tion, St the price of the stock on which the option is contracted and Bt

the bank account.

3. µt and αt are scalar deterministic functions of time, σ̄t and γ̄t are
positive deterministic functions of time specified as follows:

γ̄t =
(
γt, 0

)
σ̄t =

(
σtρ, σt

√
1− ρ2

)
4. W̃ is a two dimensional P-Wiener process:

W̃ =

(
W̃ 1,

W̃ 2

)
with W̃ 1 and W̃ 2 being independent scalar P-Wiener processes.

5. We assume that the assets of the counterparty underwriting the option
are not traded on the market and that the stock is traded.

6. The payoff of a vulnerable European call option, X = Φ(ST , YT ), is
given by

X = Φ(ST , YT ) = max(ST −K, 0)I(YT ≥ D) +RI(YT < D)

where D is the total value of the claims against the counter-party.
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7. Recovery payoff is given by:

R = (1− β)
YT
D

max[ST −K, 0]

Notice that the above assumptions are identical to assumptions 3.1 and 4.1,
with the exception of point 5, which leads to market incompleteness.

Q-dynamics:

Since we are in an incomplete market set-up, we do not have a unique equiva-
lent martingale measure (EMM), but a whole class of EMM. For any potential
EMM Q ∼ P we define the corresponding likelihood process L by:

Lt =
dQ

dP
on Ft (2.18)

Since Ft = FWt , Lt must have dynamics of the form:

dLt = Ltϕ
′
tdW̃t (2.19)

L0 = 1 (2.20)

where ϕt =
(
ϕ1
t , ϕ2

t

)′
is adapted to F . From Girsanov’s theorem, it follows

that:
dW̃t = ϕtdt+ dWt

where Wt is a Q-Wienner process.
Thus, the dynamics of the two assets under the potential martingale measure
Q are:

dYt = (µt + σ̄tϕt)Ytdt+ YtσtdWt

dSt = (αt + γ̄tϕt)Stdt+ StγtdWt

dBt = Btrdt

Since St is a traded asset, its drift must equal the risk free interest rate under
an equivalent martingale measure. Thus, in order for Q to be a martingale
measure, ϕ has to satisfy the martingale condition:

r = αt + γ̄tϕt (2.21)

i.e
r = αt + γtϕ

1
t (2.22)
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The martingale condition does not determine a unique Girsanov kernel ϕt,
but only the first term of the ϕt. Thus we do not have a unique equivalent
martingale measure, but we obtain a class of martingale measures. They are
defined as the class of measures obtained by (2.18)- (2.20) and satisfying the
martingale condition (2.21).

3.2 Optimization Problem

As mentioned before, the ”good deal bound” valuation framework rests on
the idea of placing constraints on the Sharpe ratio of the claim to be priced.
The problem becomes that of finding the highest and the lowest arbitrage
free price processes, subject to a constraint on the maximum Sharpe Ratio
(SR). However, if we want to be consistent, we should look for a framework
which allows us to place an upper bound on the SR not only of the deriva-
tive unde rconsideration, but also of all the portfolios that can be formed
on the market consisting of the underlying assets, the derivative claim and
the money account. It then turns out that binding the Sharpe Ratio of all
possible portfolios is equivalent to using the Hansen-Jagannathan bounds.
An extended version of the Hansen Jaganathan bounds is derived and proven
in Björk and Slinko (2005). This inequality provides the bounds for the
Sharpe ratio of the assets on the market, as well as for all derivatives and
self financing portfolios formed on the market, and reads as follows:

|SRt|2 ≤ ‖λt‖2.

Here we denote by λt the market price of risk and by SRt the Sharpe ratio
on a particular asset derivative or self financing portfolio on the market; ‖•‖
stands for the Euclidian norm. As we can see, the Sharpe ratio is bounded
by the norm of the price of risk on the market. Standard theory gives us the
relationship between the Girsanov kernel, ϕt, and the market price of risk:

ϕt = −λt.

Thus, our pricing problem can be reformulated as follows: we are trying to
find the highest and the lowest arbitrage free pricing processes, subject to
an upper bound on the norm of the market price for risk or equivalently, a
bound on the Girsanov kernel ϕt for every t. Dealing with the market price
of risk translates to dealing with the Girsanov kernel of the equivalent mar-
tingale measures.
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Following the above reasoning, we can now define the good deal bounds.

Definition 3.1 The upper good deal bound price process for a vulnerable
option is defined the optimal value process for the following optimal control
problem:

max
ϕ

EQ[e−r(T−t)(max[ST −K, 0]I {YT ≥ D}+RI {YT ≤ D})]

dYt = (µt + σ̄tϕt)Ytdt+ Ytσ̄tdWt

dSt = rStdt+ Stγ̄tdWt

αt + γ̄tϕt = r

‖ϕt‖2 ≤ C2

The lower good deal bound process is the optimal value process for a
similar optimal control problem, with the only difference that we minimize
the expression, subject to the same constraints.
We denote the optimal value process by V (t, St, Yt), where V is the optimal
value function.

Before proceeding, let us comment on the structure of the optimization prob-
lem. The objective function is the arbitrage-free price for the payoff function,
where the expectation is computed under the risk neutral measure generated
by ϕ. Since we have to select this measure from a continuum of eligible
EMM, we maximize with respect to the Girsanov kernel ϕ.
The optimization is subject to the dynamics of the assets on the market,
under the appropiate probability measure.
The constraints:

dSt = rStdt+ Stγ̄tdWt

αt + γ̄tϕt = r

are the usual constraints on the drift of the traded assets on the market that
establish the probability measure as a risk neutral measure.
If all the elements of ϕ could be identified from these constraints, we would
be in a complete market setup and would be able to find a unique price.
Since the number of traded assets is smaller than the number of risk sources,
we cannot price all the risk factors and need the last inequality in order to
tighten the no arbitrage price bounds. We will refer to this inequality:

‖ϕt‖2 ≤ C2, 0 ≤ t ≤ T

as the good deal bounds condition.
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3.3 The Hamilton Jacobi Bellman equation

The optimization problem stated above is a standard stochastic optimal con-
trol problem and we will solve it with the aid of the Hamilton Jacobi Bellman
equation. We restrict ourselves to the case when the market price of risk de-
pends only on the stock and the assets of the counterparty; thus, we have
ϕt = ϕ(t, St, Yt)
According to the general theory of dynamic programing, the optimal value
function satisfies the following PDE, also known as the Hamilton Jacobi Bell-
man equation, where A denotes the infinitesimal operator for (S, Y ).

∂V

∂t
(t, s, y) + sup

ϕ
AV (t, s, y)− rV (t, s, y) = 0

V (T, s, y) = Φ(s, y).

Here
Φ(s, y) = max(s−K, 0)I(y ≥ D) +R(s, y)I(y ≤ D)

and
R(s, y) = (1− β)

y

D
max[s−K, 0]

The infinitesimal operator is given by:

AV =
∂V

∂s
rs+

∂V

∂y
(µt + σ̄tϕt)y

+
1

2

∂2V

∂s2
s2γ̄tγ̄t′+

1

2

∂2V

∂y2
y2σ̄tσ̄t′+

∂2V

∂s∂y
syγ̄tσ̄t′

The first step in solving the PDE is to solve for each t, s, y the embedded
static maximization problem, corresponding to supAV subject to constraints.
In our case, for fixed t, s, y, the static problem takes the form:

max
ϕ

∂V

∂y
σϕy (2.23)

α + γ̄ϕ = r (2.24)

‖ϕ‖2 ≤ C2 (2.25)

We notice that the above problem is in fact a linear optimization problem and
therefore, the solution will be a boundary solution. Thus, both constraints
are binding. Since the Girsanov kernel ϕ is a (2,1) column vector, by solving
the system of equations:

α + γ̄ϕ = r

‖ϕ‖2 = C2
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we obtain:

ϕ̂(t, s, y)′ =
(
−αt−r

γt
, ±

√
C2 − ( r−αt

γt
)2
)

(2.26)

Thus, we have two candidates for the optimal ϕ and it remains to determine
which is the optimal one. Since our objective function is linear in ϕ:

∂V

∂y
σϕy

and σ and y are positive by assumption, we need to investigate the sign of
∂V
∂y

in order to decide which of the possible Girsanov kernels we choose.

Lemma 3.1 Under assumptions 3.1 and if ϕ does not depend on s and y,
we have

∂V

∂y
≥ 0 (2.27)

Proof. We are going to prove that ∂V
∂y
≥ 0, or, equivalently, that the value

function is increasing in y. We do this by first showing that the payoff func-
tion is increasing in y. Then we prove that this implies that the associated
pricing function is increasing in y, and hence, the optimal value function is
too.
To see that the payoff function Φ(s, y) is non-decreasing in y, we note that
for y ≥ D,

Φ(s, y) = max(s−K, 0),

which does not depend on the value of y, hence, it is non-decreasing in y.
For y < D, the payoff function is

Φ(s, y) = R(s, y) < max(s−K, 0)

and thus, Φ(s, y) is non-decreasing as y = D−. Also, the recovery payoff is a
linear function of the assets of the counterparty,

R(s, y) = (1− β)
y

D
max[s−K, 0],

with the coefficient of y positive. Hence, Φ(s, y) is non-decreasing in y.
Let ΠQ(t, s, y) be a pricing function, i.e.

ΠQ(t, s, y) = EQ[e−r(T−t)Φ[ST , YT ]|St = s, Yt = y]
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where Q is some admisible EMM.
We now want to prove that if the payoff function Φ(s, y) is increasing in y
and the Girsanov kernel is a deterministic function of time

ϕ(t, s, y) = ϕ(t),

then also the pricing function ΠQ(t, s, y) is increasing in the variable y.
We solve the SDE giving the dynamics of Yt under Q:

dYt = (µt + σ̄tϕt)Ytdt+ Ytσ̄tdWt

and obtain the following formula for YT , given Yt = y:

YT = y exp

(∫ T

t

[
µt + σ̄tϕt −

1

2
σ2
t

]
dt+

∫ T

t

σ̄tdWt

)
Thus, for a given ϕ which does not depend on s and y, we can write YT = yZ,
where Z is a lognormal variable that does not depend on y.
One can easily see that if Φ(s, y) is increasing in the second variable, than
also the pricing function ΠQ(t, s, y)is increasing in the variable y.
In our case, we know that

V = ΠQ

when Q is generated by ϕ̂. Since we see from (2.26) does not depends on s
and y, we conclude that ΠQ(t, s, y) and thus V is nondecreasing in y.

In conclusion, the optimal Girsanov kernel is:

ϕ̂t =
(
−αt−r

γt
,
√
B2 − ( r−αt

γt
)2
)
′

Proposition 3.1 Under assumptions 3.1, the Girsanov kernel corresponding
to the upper good deal bound EMM is

ϕ̂′max =
(
−αt−r

γt
,
√
B2 − ( r−αt

γt
)2
)

The Girsanov kernel for the lower good deal bound EMM is given by

ϕ̂′min =
(
−αt−r

γt
, −

√
B2 − ( r−αt

γt
)2
)
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3.4 A closed form solution

Introducing the result above in the HJB equation, we obtain:

Vt + Vsrs+ Vy(µt + σ̄tϕ̂t)y +
1

2
Vsss

2γ̄t′γ̄t

+
1

2
Vyyy

2σ̄tσ̄t + +Vsysyγ̄t′σ̄t − rV = 0

V (T, s, y) = Φ(T, s, y)

where ϕ̂t ∈ {ϕ̂min, ϕ̂max}.
By applying Feynman Kac to the above equation, we have obtained the
following formula:

Π(t, s, y) = V (t, s, y) = EQ̂
[
e−r(T−t)Φ(s, y)

∣∣Ft] (2.28)

where is Q̂ is defined by the Radon Nykodim derivative:

Lt =
dQ̂

dP
dLt = Ltϕ̂

′
tdWt

where ϕ̂t ∈ {ϕ̂min, ϕ̂max}. By using the change of numeraire and similar tech-
niques to the ones presented in the section dealing with good-deal bounds,
one can obtain a closed form solution for the price of vulnerable options in
incomplete markets. We present the result below, followed by the proof.

Proposition 3.2 (Incomplete markets) Let assumptions 3.1 hold. The
upper good deal bound price of a vulnerable option is given by:

Π(t) = StN [a1, b1, ρ2]− e−r(T−t)KN [a2, b2, ρ2]

+
1− β
D

StYt exp

{∫ T

t

[µs + σ̄sϕ̂s + σsγsρ] ds

}
N [−a3; b3;−ρ2]

− e−r(T−t)
K(1− β)

D
Yt exp

{∫ T

t

(µs + σ̄sϕ̂s)ds

}
N (a4, b4,−ρ2)
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where

a1 =
ln St

K
+
∫ T
t

{
r + 1

2
γ2
s

}
ds√∫ T

t
γ2
sds

b1 =
ln Yt

D
+
∫ T
t

[
µs + σ̄sϕ̂s + σsγsρ− 1

2
σ2
s

]
ds√∫ T

t
σ2
sds

a2 =
ln St

K
+ r(T − t)− 1

2

∫ T
t
γ2
sds√∫ T

t
γ2
sds

b2 =
ln Yt

D
+
∫ T
t

[
µs + σ̄sϕ̂s − 1

2
σ2
s

]
ds√∫ T

t
σ2
sds

a3 =
ln St

K
+
∫ T
t

{
r + 1

2
γ2
s + σsγsρ

}
ds√∫ T

t
γ2
sds

b3 =
log D

Yt
−
∫ T
t

{
µs + σ̄ϕ̂+ γσρ+ 1

2
σ2
}
ds√∫ T

t
‖σ̄‖2ds

a4 =
ln St

K
+
∫ T
t

[
r + γsσsρ− 1

2
γ2
s

]
ds√∫ T

t
γ2
sds

b4 =
ln D

Yt
+
∫ T
t

[
µs + σ̄ϕ̂+ 1

2
σ2
s

]
ds√

σ̄σ̄′(T − t)

ρ2 =
ρ
∫ T
t
σsγsds√∫ T

t
σ2
sds
√∫ T

t
γ2
sds

ϕ̂t =
(
−αt−r

γt
,
√
B2 − ( r−αt

γt
)2
)
′.

The lower good deal bound price is given by a similar pricing formula, with
the only exception that

ϕ̂t =
(
−αt−r

γt
, −

√
B2 − ( r−αt

γt
)2
)
′.

Proof. After a few easy transformations on (2.28), we obtain the following
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expression:

Π(t, s, y) = EQ
[
e−r(T−t)ST I {ST > K, YT > D}

∣∣Ft]
− e−r(T−t)KQt[ST > K, YT > D]

+
1− β
D

EQ
[
e−r(T−t)STYT I {ST > K, YT < D}

∣∣Ft]
− e−r(T−t)

K(1− β)

D
EQ [YT I {ST > K, YT < D}| Ft]

As before, we need to calculate several expectations and we will start calcu-
lating the easiest and moving towards the more complicated ones.

• We start with the expression Q[ST > K, YT > D]. From the dynamics
of St and Yt under Q, we obtain:

ST = St exp

(
r(T − t)− 1

2

∫ T

t

γ2
sds+

∫ T

t

γ̄sdWs

)
YT = Yt exp

(∫ T

t

[
µs + ϕ̂sσ̄s −

1

2
σ2
s

]
dt+

∫ T

t

σ̄sdWs

)
Through a chain of inequalities similar to the ones performed in the
section on complete markets, one obtains:

ST > K ⇔ η >
ln K

St
− r(T − t) + 1

2

∫ T
t
γ2
sds√∫ T

t
γ2
sds︸ ︷︷ ︸

−a2

YT > D ⇔ ξ >
ln D

Yt
−
∫ T
t

[
µs + σ̄sϕ̂s − 1

2
σ2
s

]
ds√∫ T

t
σ2
sds︸ ︷︷ ︸

−b2

where η and ξ are standard normal with correlation coefficient ρ2. Sum-
marizing the last computations, we can say:

Qt[ST > K, YT > D] = N [a2, b2, ρ2] (2.29)

with a2 and b2 as above. We obtain ρ2 through similar computations
to the ones in the previous section and obtain:

ρ2 =
ρ
∫ T
t
σsγsds√∫ T

t
σ2
sds
√∫ T

t
γ2
sds

(2.30)
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• The next expectation we are going to calculate is

EQ
[
e−r(T−t)ST I {ST > K, YT > D}

∣∣Ft]
. We can rewrite the expectation as S0E

Q̃ [I {ST > K, YT > D}| Ft],
where Q̃ is defined by:

dQ̃ = LtdQ

dLt = γ̄dWt

Through a chain of inequalities similar to the ones before, one obtains:

ST > K ⇔ η >
ln K

St
−
∫ T
t

{
r + 1

2
γ2
s

}
ds√∫ T

t
γ2
sds︸ ︷︷ ︸

−a1

YT > D ⇔ ξ >
ln D

Yt
−
∫ T
t

[
µs + σ̄sϕ̂s + σsγsρ− 1

2
σ2
s

]
ds√∫ T

t
σ2
sds︸ ︷︷ ︸

−b1

and

EQ
[
e−r(T−t)ST I {ST > K, YT > D}

∣∣Ft] = S0N [a1, b1, ρ2] (2.31)

with a1 and b1 as above and ρ2 the coefficient of correlation between η
and ξ, given by the equation (2.30).

• Now we are going to turn to EQ [YT I {ST > K, YT < D}| Ft]. In order
to calculate this expectation, we are going to use a variant of the change
of numeraire technique as follows:

EQ

YT I {ST > K, YT < D}︸ ︷︷ ︸
Z

∣∣∣∣∣∣Ft
 = EQ

EQ[YT ]︸ ︷︷ ︸
mT

YT
EQ[YT ]︸ ︷︷ ︸

RT

Z

∣∣∣∣∣∣∣∣∣Ft


= mTE
Q [RT | Ft]EQ̃ [Z| Ft]

where Q̃ is the equivalent martingale measure defined by:

dQ̃ = LTdQ (2.32)

LT = RT (2.33)

Lt = EQ [RT | Ft] (2.34)

By calculating each of the parts of the formula separately, we obtain:
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– mT = Y0 exp
{∫ T

0
(µs + σ̄sϕ̂s)ds

}
– EQ [RT | Ft] = Yt

Y0
exp

{
−
∫ t

0
(µs + σ̄sϕ̂s)ds

}
– In order to calculate the last expectation, we need the dynamics

of Lt, given by dLt = Ltσ̄tdWt from (2.34).

– Before obtaining a formula for EQ̃ [Z| Ft], we must have the dy-
namics of St and Yt under Q̃. By applying Girsanov’s transforma-
tion, we have:

dSt = (r + γtσtρ)Stdt+ Stγ̄tdWt

dYt = (µt + σ̄tϕ̂t + σ2
t )Ytdt+ Ytσ̄tdWt

and from the formula for the geometric brownian motion and a
chain of inequalities similar to the ones in the previous section,
we obtain:

ST ≥ K ⇔ η ≥
ln K

St
−
∫ T
t

[
r + γsσsρ− 1

2
γ2
s

]
ds√∫ T

t
γ2
sds︸ ︷︷ ︸

−a4

YT ≤ D ⇔ ξ ≤
ln D

Yt
−
∫ T
t

[
µs + σ̄sϕ̂s + 1

2
σ2
s

]
ds√∫ T

t
σ2
sds︸ ︷︷ ︸

b4

By summing up the last calculations, we obtain the following equality:

EQ [YT I {ST > K, YT < D}| Ft] = Yt exp {(µs + σsϕ̂s)(T − t)}N (a4, b4,−ρ2)
(2.35)

where a4 and b4 are defined as above and ρ2 is the correlation coefficient
between ξ and η, given by equation (2.30).

• The last expectation to be calculated is

EQ

e−r(T−t) STYT︸ ︷︷ ︸
XT

I {ST > K, YT < D}︸ ︷︷ ︸
Z

∣∣∣∣∣∣Ft


and we will apply the same technique as above. We denote EQ[XT ] by
mT and XT

EQ[XT ]
by RT and rewrite the expectation to be calculated as
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e−r(T−t)mTE
Q [RT | Ft]EQ̄ [Z| Ft], where Q̄ is defined by

dQ̄ = LTdQ (2.36)

LT = RT (2.37)

Lt = EQ [RT | Ft] (2.38)

Before proceeding, we need to calculate the dynamics of StYt under Q.
An easy application of Ito’s lemma yields:

d(StYt) = StYt [r + µt + σ̄tϕ̂t + σtγtρ] dt+ StYt(σ̄t + γ̄t)dWt (2.39)

From (2.39), we obtain:

– mT = S0Y0 exp
{∫ T

0
[r + µs + σ̄sϕ̂s + σsγsρ] ds

}
– EQ [RT | Ft] = StYt

S0Y0
exp

{
−
∫ t

0
[r + µs + σ̄sϕ̂s + σsγsρ] ds

}
– the Girsanov kernel corresponding to the dynamics of Lt, given

by ϕ̃t = (σ̄t + γ̄t)
′

– EQ̄ [Z| Ft], from the dynamics of St and Yt under Q̄. According to
the definition of Q̄ and Girsanov’s transformation, the dynamics
of St and Yt are given by:

dSt = St[r + γ2
t + σtγtρ]dt+ Stγ̄tdWt

dYt = Yt[µt + ϕ̂tσ̄t + γtσtρ+ σ2
t ]dt+ Ytσ̄tdWt

By solving the above stochastic differential equations for ST and,
respectively, for YT , we obtain the following inequalities:

ST ≥ K ⇔ η ≥
ln K

St
−
∫ T
t

{
r + +σsγsρ+ 1

2
γ2
s

}
ds√∫ T

t
γ2
sds︸ ︷︷ ︸

−a3

YT < D ⇔ ξ <
ln D

Yt
−
∫ T
t

{
µs + σ̄sϕ̂s + γsσsρ+ 1

2
σ2
s

}
ds√∫ T

t
σ2
sds︸ ︷︷ ︸

b3

where η and ξ are standard normal. The correlation coefficient
between the two standard variables is denoted by ρ2 and it is
given by (2.30).
We can write the initial expectation

A = EQ
[
e−r(T−t)STYT I {ST > K, YT < D}

∣∣Ft]
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as:

A = StYt exp

{∫ T

t

[µs + σ̄sϕ̂s + σ̄sγ̄
′
s] dt

}
N [a3; b3;−ρ2] (2.40)

By summing up the calculations from (2.29), (2.31), (2.35) and (2.40), we
obtain the closed form solution from proposition (3.2)

3.5 Extension to other products

Exchange Options and GDB

One of the advantages of the GDB is that one can transfer results for the
European calls to other simple vanilla products on a manner similar to the
one used in the complete market case. Below, we exemplify how to do this
for the case of an exchange option. The assumptions needed are similar to
the ones stated for the complete market case, except that the assets of the
counter-party underwriting the option are not traded.

Assumption 3.2

1. Let (Ω,F , P,F) be given, where F is the internal filtration given by the
P-Wiener process W̃ , which is defined below.

2. The market model under the objective probability measure P is given by
the following dynamics:

dS1
t = α1S

1
t dt+ S1

t γ̄1dW̃t

dS2
t = α2S

2
t dt+ S2

t γ̄2dW̃t

dYt = µYtdt+ Ytσ̄dW̃t

dBt = Btrdt

where Yt is denoting the assets of the counterparty underwriting the
option, S1

t and S2
t the price processes of the stocks on which the option

is contracted and Bt the bank account.

3. Let µ, α1 and α2 be scalars, σ̄, γ̄1 and γ̄2 be (1,3) row vectors specified
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as follows:

γ̄1 =
(
γ1, 0, , 0

)
γ̄2 =

(
γ2ρ12, γ2

√
1− ρ2

12, 0
)

σ̄ =

(
σρ13, σ ρ23−ρ12ρ13√

1−ρ2
12

, σ

√
1− ρ2

13 −
[
ρ23−ρ12ρ13√

1−ρ2
12

]2
)

4. Let W̃ be a three dimensional P-Wiener process:

W̃ =

W̃ 1,

W̃ 2,

W̃ 3


with W̃ 1, W̃ 2 and W̃ 3 being independent scalar P-Wiener processes.

5. Assume that the two stocks are traded on the market, but the assets of
the counterparty underwriting the option are not liquidly traded.

Remark 3.1 Note that, in this section, the model parameters µ, α1, α2, σ,
γ1, γ2 are constants. This is done for notational convenience. In the case
of time varying coefficients, calculations are easily extended, but become very
messy.

Before we continue, we remember that an exchange option has the payoff
max[S1

T − S2
T , 0]. In its vulnerable form, the payoff of an exchange option

becomes:

X = Φ(S1
T , S

2
T , YT , T ) = max[S1

T − S2
T , 0]I {YT ≥ D}+RI(YT < D)

where the recovery payoff, R is given by:

R = (1− β)
YT
D

max[S1
T − S2

T , 0]

Definition 3.2 The upper good deal bound price process for a vulnera-
ble exchange option is defined as the optimal value process for the following



3. INCOMPLETE MARKETS AND GOOD DEAL BOUNDS 59

optimal control problem:

max
ϕ

EQ[e−r(T−t)X ]

dYt = (µ+ σ̄ϕt)Ytdt+ Ytσ̄dWt

dS1
t = rS1

t dt+ S1
t γ̄1dWt

dS2
t = rS2

t dt+ S2
t γ̄2dWt

α1 + γ̄1ϕt = r

α2 + γ̄2ϕt = r

‖ϕt‖2 ≤ C2.

The lower good deal bound is the optimal value process for a similar op-
timal control problem, except that we minimize instead of maximizing subject
to the same constraints.

Our aim is to obtain an equivalent good deal bounds problem expressed under
Q2, the measure where S2 is numeraire. We are going to show how to obtain
this equivalent good deal bounds problem which allows a direct transfer from
the pricing problem of a vulnerable exchange option to the pricing problem
of a simple vulnerable European call, which is more simple.
We will do this by obtaining equivalent expressions to the objective function
and the constraints, under the new measure Q2 and involving Girsanov kernel
corresponding to the change of measure P → Q2, denoted by ψ.
We are going to present how we have obtained the equivalent problem:

• We apply a standard change of measure to the objective function of
the upper good deal bound problem and we obtain:

EQ[e−rTX ] = S2
0E

2[Z]

where

Z = max [ZT − 1, 0] I {YT ≥ D}+R(ZT )I {YT < D}

and ZT =
S1
T

S2
T

. We have

R(ZT ) = (1− β)
YT
D

max[ZT − 1, 0]

and E2(•) denotes the expectations operator under Q2.
We denote by ψ the Girsanov kernel corresponding to the change of
measure P → Q2.
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• Since our objective function is under Q2, we would like to have also the
dynamics of the assets under the same measure. From the dynamics
of S1 and S2 given by equations (2.41) and (2.41) , we can derive the
following dynamics under Q2. We obtain the the dynamics of Yt from

the standard Girsanov transformation. The dynamics for
S1
t

S2
t

is a Q2-

martingale, according to the definition of Q2.

dYt = (µ+ σ̄ψt)Ytdt+ Ytσ̄dW
2
t

d

(
S1
t

S2
t

)
=
S1
t

S2
t

(γ̄1 − γ̄2)dW 2
t

where W 2
t is Q2-Wiener.

• The next step is deriving the martingale conditions corresponding to
Q2. They are obtained in the following way: we calculate the dynamics

of
S1
t

S2
t

and Bt
S2
t

under the P-measure; we perform a Girsanov transforma-

tion P → Q2. We know that both
S1
t

S2
t

and Bt
S2
t

are martingales under

Q2 and hence we impose the drift of the two processes to be zero. We
obtain:

r − α2 = γ̄2ψt − γ2
2

α1 − α2 = γ1γ2ρ12 − γ2
2 − (γ̄1 − γ̄2)ψt

• The next step in our equivalence problem is to take the good deal bound
condition for the transformation P → Q:

‖ϕt‖2 ≤ C2

and find an equivalent good deal bound condition for the transforma-
tion P → Q2. We define the following transformations:

– P → Q , defined by the following relationship:

L =
dQ

dP
on FT

dL = Lϕ′dW̃

– P → Q2 , defined by the following relationship:

L2 =
dQ2

dP
on FT

dL2 = L2ψ′dW̃
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– Q→ Q2 , defined by the following relationship:

L1,2 =
dQ2

dP
on FT

dL1,2 = L1,2γ̄2dW

We notice that
dQ2

dP
dQ
dP

=
dQ2

dQ
.

The above equation together with the dynamics of the three Radon-
Nikodym derivatives yield the following relation between ϕ and ψ:

ϕ = ψ − γ̄′2
Thus, the good deal bounds contraint becomes:

‖ψ − γ̄′2‖2 ≤ C2

Hence, the problem below is equivalent to the original upper good deal bound
problem:

max
ψ

S2
tE

2[Z]

dYt = (µ+ σ̄ψ)Ytdt+ Ytσ̄dW
2
t

d

(
S1
t

S2
t

)
=
S1
t

S2
t

(γ̄1 − γ̄2)dW 2
t

r − α2 = γ̄2ψt − γ̄2γ̄
′
2

α1 − α2 = γ̄1γ̄
′
2 − γ̄2γ̄

′
2 − (γ̄1 − γ̄2)ψt

‖ψ − γ̄′2‖2 ≤ C2

Thus, we have reduced the problem of pricing a vulnerable claim written on
2 assets to the problem of pricing a vulnerable claim written on one asset.

Proposition 3.3 The upper good deal bound price process defined in 3.2 is
also the optimal value process for the optimal control problem given below:

max
ψ

S2
tE

2[Z]

dYt = (µ+ 2σ̄ψ − σ̄γ̄2)Ytdt+ Ytσ̄dW
2
t

d

(
S1
t

S2
t

)
=
S1
t

S2
t

(γ̄1 − γ̄2)dW 2
t

r − α2 = γ̄2ψt − γ2
2

α1 − α2 = γ1γ2ρ12 − γ2
2 − (γ̄1 − γ̄2)ψt

‖ψ − γ̄′2‖2 ≤ C2
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The lower good deal bound is the optimal value process for a similar optimal
control problem, where we minimize subject to the same constraints as above.

By a reasoning very similar to the one in the previous section, we calculate
the upper good deal bound Girsanov kernel, ψu = (ψ1

u, ψ
2
u, ψ

3
u)
′, as given

below:

ψu =


r−α1

γ1
+ γ2ρ12,

1
γ2
√

1−ρ12

[
r − α2 − γ2ρ12

r−α1

γ1

]
+ γ2

√
1− ρ12,√

C2 − (ψ1)2 − (ψ2)2+(γ2)2

 (2.41)

The lower good deal bound Girsanov kernel is given by:

ψl =


r−α1

γ1
+ γ2ρ12,

1
γ2
√

1−ρ12

[
r − α2 − γ2ρ12

r−α1

γ1

]
+ γ2

√
1− ρ12,

−
√
C2 − (ψ1)2 − (ψ2)2+(γ2)2

 (2.42)

Thus, we can deduce the following proposition concerning the upper and
lower GDB prices. This is done by applying the formula for a European call

written on Zt =
S1
t

S2
t

with strike 1 and local rate of return 0 for the process Zt.

Proposition 3.4 Let assumptions 3.2 hold. Then, the upper good deal bound
price for a vulnerable option at time zero,Π(S1, S2, Y ), is given by:

Π(S1, S2, Y ) = S1
0N (a1, b1, ρ)− S2

0N (a2, b2, ρ)

+
1− β
D

Y0S
1
0 exp

{
T
[
µ+ σ̄ψ̂u + σγ1ρ13

]}
N (a3, b3,−ρ)

−1− β
D

Y0S
2
0 exp

{
T (µ+ σ̄ψ̂u + σγ2ρ23)

}
N (a4, b4,−ρ).

where
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a1 =
ln
(
S1

0

S2
0

)
+ 1

2
T (γ2

2 − 2γ1γ2ρ12 + γ2
1)√

T (γ2
2 − 2γ1γ2ρ12 + γ2

1)

b1 =
ln Y0

D
+ T

[
µ+ σ̄ψ̂u + σγ1ρ13 − σγ2ρ23 − 1

2
σ2
]

√
Tσ2

a2 =
ln
(
S1

0

S2
0

)
− 1

2
T (γ2

2 − 2γ1γ2ρ12 + γ2
1)√

T (γ2
2 − 2γ1γ2ρ12 + γ2

1)

b2 =
ln Y0

D
+ T

[
µ+ σ̄ψ̂u − 1

2
σ2
]

√
Tσ2

a3 =
ln
(
S1

0

S2
0

)
+ T [σγ1ρ13 − σγ2ρ23 + 1

2
(γ2

2 − 2γ1γ2ρ12 + γ2
1)]√

T (γ2
2 − 2γ1γ2ρ12 + γ2

1)

b3 =
ln
(
D
Y0

)
− T [µ+ σ̄ψ̂ + γ1σρ13 + 1

2
σ2]

√
Tσ2

a4 =
ln
(
S1

0

S2
0

)
+ T [σγ1ρ13 − σγ2ρ23 + 1

2
(γ2

2 − 2γ1γ2ρ12 + γ2
1)]√

T (γ2
2 − 2γ1γ2ρ12 + γ2

1)

b4 =
ln
(
D
Y0

)
− T

[
µ+ σ̄ψ̂u + 1

2
σ2 + γ2σρ23

]
√
Tσ2

ρ = − γ2ρ23 − γ1ρ13√
(γ1)2 + (γ2)2 − 2γ2γ1ρ12

In the above formula ψ̂u is given by (2.41) The lower good deal bound price
is given by the same general formula, but replacing ψ̂u by the lower bound
Girsanov kernel ψ̂l given by (2.42)

Before proceeding to the next section, we are going to make a short note
with respect to claims with payoffs linearly homogenous in the underlying
(see section 2.3). The above proposition can be easily generalized to deal
with linearly homogenous payoffs. In general, the GDB pricing problem for
a linearly homogenous payoff ΦV (S1

T , S
2
T , YT ) can be reduced to a modified
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GDB problem for the associated simple claim ΥV (ZT , YT ):

max
ψ

S2
tE

2[ΥV (ZT , YT )]

dYt = (µ+ 2σ̄ψ − σ̄γ̄2)Ytdt+ Ytσ̄dW
2
t

d

(
S1
t

S2
t

)
=
S1
t

S2
t

(γ̄1 − γ̄2)dW 2
t

r − α2 = γ̄2ψt − γ2
2

α1 − α2 = γ1γ2ρ12 − γ2
2 − (γ̄1 − γ̄2)ψt

‖ψ − γ̄′2‖2 ≤ C2

where we kept the notation used before.

Barrier options and good deal bounds

In this section, we are going to show how to extend the the good deal bounds
option pricing setup in order to encompass down-and-out claims as well. We
are in the same framework as Section 2.3, except now the assets of the coun-
terparty, denoted by Yt are not traded. Throughout this section we use the
same notation as in section 2.3.
In general, we due to technical reasons, one cannot obtain a closed-form so-
lution the vulnerable barrier option problem by good deal bounds. However,
in the case when Yt and St are independent, this is possible.
Remember that, when proving Proposition 2.6, we use the existence of a
risk-neutral neasure but not the uniqueness. Thus, the formula:

Π(0,ΨV
LO) = e−rT

{
EQ

0,s,y

[
ΨV
L (ST , YT )

]
−
(
L

s

) 2r̃
γ2

EQ

0,L
2

s
,y(Ls )

2ρ

[
ΨV
L (ST , YT )

]}
.

must hold also in incomplete markets as long as we have picked a risk neutral
measure Q according to some criteria. When Yt and St are independent,

y
(
L
s

)2ρ
= y. Then, we can re-write the pricing formula as

Π(0,ΨV
LO) = e−rT

{
EQ

0,s,y

[
ΨV
L (ST , YT )

]
−
(
L

s

) 2r̃
γ2

EQ

0,L
2

s
,y

[
ΨV
L (ZT , YT )

]}

= e−rT

{
EQ

0,s,y [ΨL(ST )F (YT )]−
(
L

s

) 2r̃
γ2

EQ

0,L
2

s
,y

[
ΨV
L (ZT )F (YT )

]}
where dZt = dSt and Z0 = L2

s
and

F (YT ) = I {YT ≥ D}+
(1− β)YT

D
I {YT < D} ,
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which in turn yields:

Π(0,ΨV
LO) = e−rT

{
EQ

0,s,L
2

s
,y

[{
ΨL(ST )−

(
L

s

) 2r̃
γ2

ΨL(ZT )

}
F (YT )

]}

= e−rT
{
EQ

0,s,L
2

s
,y

[G(ST , ZT )F (YT )]

}
= e−rT

{
EQ

0,s,L
2

s
,y

[GV (ST , ZT , YT )]

}
where

G(ST , ZT ) = ΨL(ST )−
(
L

s

) 2r̃
γ2

ΨL(ZT )

and GV (ST , ZT , YT ) is the corresponding vulnerable claim.
Then, the upper good deal bound problem for a barrier option can be written
as:

max
ϕ

e−rT
{
EQ

0,s,L
2

s
,y

[GV (ST , ZT , YT )]

}
dYt = (µ+ σ̄ϕt)Ytdt+ Ytσ̄dWt

dSt = rStdt+ Stγ̄dWt

dZt = rZtdt+ Ztγ̄dWt

α + γ̄ϕt = r

‖ϕt‖2 ≤ C2.

Note that the above problem is a standard GDB problem, but it is formu-
lated for a different vulnerable claim. As usual, the lower good deal bound
problem is the corresponding minimization problem subject to the same con-
straints.
As before, we define the optimal value function V and we set up the HJB
equation:

∂V

∂t
(t, s,

L2

s
, y) + sup

ϕ
AV (t, s,

L2

s
, y)− rV (t, s,

L2

s
, y) = 0 (2.43)

V (T, s,
L2

s
, y) = GV (s,

L2

s
, y). (2.44)

and solve for each t, s, y the embedded static maximization problem, corre-
sponding to supAV subject to constraints. In our case, for fixed t, s, y, the
static problem takes the form:

max
ϕ

∂V

∂y
σϕy

α + γ̄ϕ = r

‖ϕ‖2 ≤ C2
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We notice that the above problem is the same type of problem as analyzed
before: a linear optimization problem whose solution ϕ is obtained by solving
the system of equations:

α + γ̄ϕ = r

‖ϕ‖2 = C2

Just as before, we obtain:

ϕ̂(t, s, y)′b =
(
−αt−r

γt
, ±

√
C2 − ( r−αt

γt
)2
)

Again, we have two candidates for the optimal ϕ. Our objective function is
linear in ϕ:

∂V

∂y
σϕy

and σ and y are positive by assumption. Therefore, we must investigate the
sign of ∂V

∂y
before deciding in order to decide which of the possible Girsanov

kernels to choose. The proof is basically identical to the previous proof for
vulnerable European calls.

Lemma 3.2 Under assumptions 3.1 and if ϕ does not depend on s and y,
we have

∂V

∂y
≥ 0

Proof. We are going to prove that ∂V
∂y
≥ 0, or, equivalently, that the value

function is increasing in y. We do this by first showing that the payoff func-
tion is increasing in y. Then we prove that this implies that the associated
pricing function is increasing in y, and hence, so is the optimal value func-
tion. In te following reasoning we denote L2

s
by z.

To see that the payoff function G(s, z, y) is non-decreasing in y, we note that
for y ≥ D, GV (s, z, y) = G(s, z) which, being the payoff of a barrier option
on St does not depend on the value of y, hence, it is non-decreasing in y. For
y < D, the payoff function is

GV (s, z, y) = R(s, z, y) < G(s, z)

and thus, GV (s, z, y) is non-decreasing as y = D−. Also, the recovery payoff
is a linear function of the assets of the counterparty,

R(s, y) = (1− β)
y

D
G(s, z),
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with the coefficient of y positive. Hence, G(s, z, y) is non-decreasing in y.
Let ΠQ(t, s, z, y) be a pricing function, i.e.

ΠQ(t, s, z, y) = EQ[e−r(T−t)GV [ST , ZT , YT ]|St = s, Zt = z, Yt = y]

where Q is some admisible EMM.
We now want to prove that if the payoff function GV (s, z, y) is increasing in
y and the Girsanov kernel is a deterministic function of time

ϕ(t, s, y) = ϕ(t),

then also the pricing function ΠQ(t, s, z, y) is increasing in the variable y.
We solve the SDE giving the dynamics of Yt under Q:

dYt = (µt + σ̄tϕt)Ytdt+ Ytσ̄tdWt

and obtain the following formula for YT , given Yt = y:

YT = y exp

(∫ T

t

[
µt + σ̄tϕt −

1

2
σ2
t

]
dt+

∫ T

t

σ̄tdWt

)
Thus, for a given ϕ which does not depend on s, z and y, we can write
YT = yX, where X is a lognormal variable that does not depend on y.
One can easily see that if Φ(s, z, y) is increasing in the third variable, than
also the pricing function ΠQ(t, s, z, y)is increasing in the variable y.
In our case, we know that

V = ΠQ

when Q is generated by ϕ̂b. Since we see that ϕ̂b does not depends on s and
y, we conclude that ΠQ(t, s, y) and thus V is nondecreasing in y.

In conclusion, the optimal Girsanov kernel for the upper good deal bound is:

ϕ̂b =
(
−αt−r

γt
,
√
B2 − ( r−αt

γt
)2
)
′

Further more, as we see in section 2.3, the payoff function ΨV
L (s, y,K, L) has

the following form:

• If the barrier L is lower than the strike price K, L ≤ K:

ΨV
L (t, s,K, L) = ΨV (t, s,K)
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• If the barrier L is higher than the strike price K, L > K:

ΨV
L (s, y, L,K) = ΨV (s, y, L) + (L−K)HV (s, y, L)

and HV (s, y, L) is a vulnerable digital option payoff that yields 1 if
ST > L and 0 otherwise.

Hence we can transfer results from Section (3.4).

Remark 3.2 The upper and the lower good deal bounds of a vulnerable dig-
ital option can be easily calculated as:

Hu/l(t) = e−r(T−t)N [−a1,−b1, ρ]

−e−r(T−t) (1− β)

D
Yt exp

{∫ T

t

(µs + σ̄sϕ̂s)ds

}
N (−a2,−b2, ρ)

where

a1 =
log K

St
− r(T − t) + 1

2

∫ T
t
‖γ̄‖2(t)dt√∫ T

t
‖γ̄‖2(s)ds

b1 =
log D

Yt
−
∫ T
t

[
µ+ ϕ̂σ̄ − 1

2
‖σ̄‖2(s)

]
ds√∫ T

t
‖σ̄‖2(s)ds

a2 =
log K

St
−
∫ T
t

[
r + γ̄σ̄ − 1

2
‖γ̄‖2

]
ds√

γ̄γ̄′(T − t)

b2 =
log D

Yt
−
∫ T
t

[
µ+ σ̄ϕ̂+ σ̄σ̄′ − 1

2
‖σ̄‖2

]
ds√

σ̄σ̄′(T − t)

ρ =
ρ
∫ T

0
σtγt′dt√∫ T

0
‖σ̄t‖2dt

√∫ T
0
‖γ̄t‖2dt

ϕ̂u/l =
(
−αt−r

γt
, ±

√
B2 − ( r−αt

γt
)2
)
′.

If the underlying stock and the assets of the counterparty are not indepen-
dent, we can still solve a GDB problem. However, we cannot obtain a closed
for solution. We start from:

Π(0,ΨV
LO) = e−rT

{
EQ

0,s,y

[
ΨV
L (ST , YT )

]
−
(
L

s

) 2r̃
γ2

EQ

0,L
2

s
,y(Ls )

2ρ

[
ΨV
L (ST , YT )

]}
.
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and introduce a stochastic process Z defined by:

dZt = dSt,

Z0 =
L2

s
,

and a process X defined by

dXt = dYt,

X0 = y

(
L

s

)2ρ

.

We proceed by re-writing the pricing formula as:

Π(0,ΨV
LO) = e−rT

{
EQ

0,s,y

[
ΨV
L (ST , YT )

]
−
(
L

s

) 2r̃
γ2

EQ

0,L
2

s
,y(Ls )

2ρ

[
ΨV
L (ZT , XT )

]}

= e−rTEQ

0,s,L
2

s
,y,y(Ls )

2ρ

[
ΨL(ST )F (YT )−

(
L

s

) 2r̃
γ2

ΨL(ZT )F (XT )

]
= e−rTEQ

0,s,L
2

s
,y,y(Ls )

2ρ [G(ST , ZT , YT , XT )]

where the function F is defined as previously. We set up the standard GDB
problem:

max
ϕ

e−rT
{
EQ

0,s,L
2

s
,y,y(Ls )

2ρ [G(ST , ZT , YT , XT )]

}
dYt = (µ+ σ̄ϕt)Ytdt+ Ytσ̄dWt

dXt = (µ+ σ̄ϕt)Xtdt+Xtσ̄dWt

dSt = rStdt+ Stγ̄dWt

dZt = rZtdt+ Ztγ̄dWt

α + γ̄ϕt = r

‖ϕt‖2 ≤ C2.

As usual, the lower good deal bound problem is the corresponding minimiza-
tion problem subject to the same constraints.
As before, we define the optimal value function V and we set up the HJB
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equation:

∂V

∂t

(
t, s,

L2

s
, y, y

(
L

s

)2ρ
)

+ sup
ϕ
AV

(
t, s,

L2

s
, y, y

(
L

s

)2ρ
)

−rV

(
t, s,

L2

s
, y, y

(
L

s

)2ρ
)

= 0

V

(
T, s,

L2

s
, y, y

(
L

s

)2ρ
)

= G

(
s,
L2

s
, y, y

(
L

s

)2ρ
)
.

and solve for each t, s, y, x the embedded static maximization problem, cor-
responding to supAV subject to constraints. In our case, for fixed t, s, y,x,
the static problem takes the form:

max
ϕ

(
∂V

∂y
y +

∂V

∂x
x

)
σϕ

α + γ̄ϕ = r

‖ϕ‖2 ≤ C2

Until this point, the two problems seem to be identical and we can already
guess that, depending on the sign of ∂V

∂y
y + ∂V

∂x
x the upper GDB Girsanov

kernel is going to be one of the following:

ϕ̂(t, s, y, x)∗b =
(
−αt−r

γt
, ±

√
C2 − ( r−αt

γt
)2
)

However, we do not have a clear way how to determine the sign of

∂V

∂y
y +

∂V

∂x
x.

Hence, in the more general case, we cannot come up with a closed form
solution for pricing vulnerable barrier options with good deal bounds.

4 Numerical Results

In this section, we are going to analyze a simple numerical example of the
good deal bounds applied to vulnerable options. The goal is to explore
the sensitivity of the GDB interval to different model parameters. One can
separate these parameters in two major groups:
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• parameters specific to each transaction;

• parameters which characterize the general market environment.

In the class of relevant parameters related to each specific transaction we
mention the distance of the counterparty to default, the volatility of the assets
of the counterparty and the correlation between the assets of the counterparty
and the underlying asset.
In the second class of parameters, one can include the size of the good deal
bound constraint (B) and the dead weight loss parameter (β).
The GDB contraint parameter B is chosen by the modeler as the bound of
the Sharpe ratios for the all transactions on the market. We remember that
we place an upper bound on the SR of all the portfolios that can be formed
on the market consisting of the underlying assets, the derivative claim and
the money account; binding the Sharpe Ratio of all possible portfolios is
equivalent to using the Hansen-Jagannathan bounds:

|SRt|2 ≤ ‖λt‖2.

where λt is the market price of risk and by SRt the Sharpe ratio on a par-
ticular asset derivative or self financing portfolio on the market. This, the
choice of the GDB bound B should be dictated in part by the characteris-
tics of the market on which we are performing the transaction. Empirical
evidence suggests that, for mature markets, a Sharpe Ratio above 2 is rare.
Thus, even if B is chosen by the modeler, its choice should reflect general
characteristics about the market on which we deal.
The deadweight loss parameter β represents the deadweight costs associated
with bankrupcy reflected in the recovery payoff:

R = (1− β)
YT
D

max(ST −K, 0)

One gets a proportional part of the value of the claim, corresponding to how
much the assets of the counter-party have fallen below the value of the claim,
minus deadweight costs associated to the bankrupcy procedure. These costs
are captured by the β parameter. Since β reflects inefficiencies of the recovery
process embedded in the system, it is also a parameter specific to the general
market environment, rather than to each specific transaction.
In order to present numerical results for the size of the GDB interval, we
are going to present the following baseline case: the underlying asset price
St varies from 1 till 60. The volatility of the stock, γ is 0.45 and the drift is
α = 0.1. The strike price of the option K is 30. The level of the claims against
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the counterparty, D, is 30. The volatility of the assets of the counterparty,
σ is 0.2 and the drift is µ = 0.1. The interest rate r is 0.04 and the time to
maturity is 1. The deadweight loss due to bankrupcy is 0.3. The size of the
good deal bound constraint is given by B = 2.5.
We start by analysing the influence of the transaction-specific parameters
on the good deal bounds. However, since the good deal bound interval is
very sensitive to the distance to default of the counterparty, we are going
to present results both when the counterparty is near default (modelled as
Yt = 32 and D = 30) and when the counterparty is far from default (Yt = 40
and D = 30). Also we present results for options out-of-the-money, at-the-
money and in-the-money. All graphs and tables are presented in the appendix
A.

• The distance to default

The GDB interval is very sensitive to the distance to default. The closer
an option is to default, the bigger is the GDB. The intuition behind
this is as follows: the closer we are to default, the more important is
the risk premium accounting for the possibility of a default from the
counterparty. Below, we present a graph comparing the size of the
GDB interval for a vulnerable option at-the-money when the distance
to default varies. As a measure of the distance to default we use the
ratio between the assets of the counterparty and the total claims against
the counterparty. Please note that this is not the ratio between equity
and debt. According to the basic books of finance, a ratio over 1.3
would be a mark of a stable company. For ratios below 1, the company
is bankrupt.

We notice that the size of the GDB interval decreases rapidly with
the distance to default. In the interval between DD = 1 and 1.3, we
notice a drop in the GDB interval of more than 1.4. These effects are
amplified when calculate them for in-the-money options. This is why
we continue to present results for the GDB both when the counterparty
is near default (modelled as Yt = 32 and D = 30, Yt

D
= 1.06) and when

the counterparty is far from default (Yt = 40 and D = 30, Yt
D

= 1.33).

• The volatility of the assets of the counterparty

We present results for the size of the good deal bounds interval when
the volatility of the assets of the counterparty is 0.15, 0.25, 0.4, 05.
We notice that the GDB interval increase with the volatility. Due to
interaction effects, this increase is more pronounced when the assets of
the counterparty are near default. Also, they are more pronounced for
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options in-the-money. From a mathematical point of view, this is due
to the fact that the Girsanov kernel enters the pricing equation only
multiplied by the variance of the stochastic process analyzed. From
an economic point of view, the explanation envolves the market price
of risk. We remember that the market price of risk and the Girsanov
kernel are linked by the following inequality:

ϕt = −λt.

Since the assets of the counterparty are not traded assets, the coun-
terparty risk cannot be hedged. Thus, the more volatile the assets of
the counterparty, the bigger the risk that we need to account for and
which is not hedge-able and the bigger the good-deal bounds interval.

• The correlation between the assets of the counterparty and the under-
lying asset

We present result for the size of the GDB when the correlation of the
assets of the counterparty and the underlying asset is 0, 0.3,0.5, 0.9.
We notice that the GDB interval is very small for high correlated assets
and increases very fast. From a GDB interval of 2.84 for a correlation
of 0.9 it grows to 8.5 for asset correlation of 0.5, when the counterparty
is near default. When the counterparty is far from default, the interval
grows from 0.25 for ρ = 0.9 to 4.04 when ρ = 0.5.

The intuition for this variation in the size of the GDB comes as follows:
when the assets of the counterparty and the underlying are highly cor-
related, the big part of the counterparty risk can be hedged directly by
traded on the underlying. The size of the risk which cannot be hedged
determines the size of the GDB interval.

Results do not change qualitatively for negative correlation between
the stock and the assets of the counterparty.

We now are going to analyse the influence of some general market parameters
on the good deal bounds interval:

• The size of the Good Deal Bound constraint

As one might expect, the size of the good deal bound interval increases
with the size of the parameter B. This happens because, by relaxing the
good deal bound constraint, we simply increase the set of the admissible
equivalent martingale measures and hence the set of possible prices.
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• The deadweight cost β

The good deal bound interval varies with the size of the deadweight cost
β. The dead weight cost β acts as a weight on the unhedgeable risk, The
higher the deadweight cost, the more important is the counterparty risk
in the valuation of the claim, and hence, the higher the GDB interval.
For β = 0 and the assets of the counterparty far from default, we have
a GDB interval of 1.35; at the other end of the spectrum, for β = 0.9
and the assets of the counterparty far from default, the GDB interval
observed is 9.42.

When analyzing the GDB interval, we notice another rather striking fact: in
general, we have:
Black-Scholes price > Upper GDB > Complete Market price > Lower GDB.
While in general, we would expect the Black-Scholes price to be above the
upper good deal bound price, it is striking how close the two are. In most
cases, the two of them coincide up to the 4th decimal. Upon closer analysis,
we notice this is driven by the following elements in the model:

i) we have a payoff function increasing in the assets of the counterparty;

ii) the assets of the counter-party are driven only by a Wiener process.

Since the payoff is increasing in the assets of the counterparty, when deter-
mining the GDB, we will choose the border solution:

ϕ̂t =
(
−αt−r

γt
,
√
B2 − ( r−αt

γt
)2
)
′.

The assets of the counterparty are driven only by a Wiener process and
hence, the risk neutral expectation of YT is increasing with the corresponding
Girsanov kernel. The probability P [YT > D] goes to 1 faster for a higher
Girsanov kernel and the probability of default goes to 0 faster. The faster
P [YT > D] goes to 1, the closer we are to the Black-Scholes case, when there
is no counterparty risk.

5 Concluding Remarks

We price vulnerable options - i.e. options where the counterparty may de-
fault. These are basically options traded on the OTC markets. Default is
modeled in a structural framework. We start by streamlining literature in
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complete markets and extending results for pricing more complex vulnerable
financial derivatives, such as linearly homogenous payoffs in the underlying
and barrier options.
Then, we move to the more realistic, incomplete market pricing problem.
The technique employed for pricing is Good Deal Bounds. The method im-
poses a new restriction in the arbitrage free model by setting upper bounds
on the Sharpe ratios of the assets. The potential prices which are eliminated
represent unreasonably good deals, as defined by Cochrane and Saa-Raquejo
(2000) and Björk and Slinko (2005). The constraint on the Sharpe ratio
translates into a constraint on the stochastic discount factor. Thus, one can
obtain tighter pricing bounds. We provide a link between the objective prob-
ability measure and the range of potential risk neutral measures which has
an intuitive economic meaning. We also provide tight pricing bounds for
European calls and show how to extend the call formula to pricing other fi-
nancial products in a consistent way. Specific examples for exchange options
and barrier options are computed.
Finally, we analyze numerically the behaviour of the good deal pricing bounds
interval and analyze the factors that impact its size. We consider factors
specific to each transaction and factors which characterize the general mar-
ket environment. In the class of relevant parameters related to each spe-
cific transaction we mention the distance of the counterparty to default, the
volatility of the assets of the counterparty and the correlation between the
assets of the counterparty and the underlying asset. In the second class of
parameters, we analyze the size of the good deal bound constraint (B) and
the dead weight loss parameter (β). We find out that the size of the good
deal bound constraint (B) is not the most critical choice in obtaining tight
pricing bounds. Rather, factors that impact the importance of the unhedge-
able risk (i.e. the counterparty risk) have a bigger influence on the size of
the GDB interval. In general, the bigger the probability of default of the
counterparty, the bigger the interval of possible prices, calculated according
to the GDB method.
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A Appendix: Graphs and Tables

• The variable B (or the size of the GDB constraint)

– when the counterparty is near default
Yt=32, D=30 B 2 2.5 3 4

BS 1.2523 1.2523 1.2523 1.2523
St=20,K=30 Klein 1.2268 1.2268 1.2268 1.2268

LB 0.9896 0.8820 0.7818 0.6286
UB 1.2523 1.2523 1.2523 1.2523

UB-LB 0.2627 0.3703 0.4705 0.6236
BS 5.8444 5.8444 5.8444 5.8444

St=30,K=30 Klein 5.6170 5.6170 5.6170 5.6170
LB 4.2922 3.8112 3.3909 2.7614
UB 5.8437 5.8443 5.8444 5.8444

UB-LB 1.5515 2.0331 2.4535 3.0830
BS 22.0729 22.0729 22.0729 22.0729

St=50,K=30 Klein 20.6565 20.6565 20.6565 20.6565
LB 15.1785 13.4945 12.0671 9.9116
UB 22.0635 22.0711 22.0726 22.0729

UB-LB 6.8850 8.5766 10.0055 12.1612
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– when the counterparty is far from default
Yt=40, D=30 B 2 2.5 3 4

BS 1.2523 1.2523 1.2523 1.2523
St=20,K=30 Klein 1.2513 1.2513 1.2513 1.2513

LB 1.1962 1.1361 1.0486 0.8378
UB 1.2523 1.2523 1.2523 1.2523

UB-LB 0.0560 0.1162 0.2037 0.4145
BS 5.8444 5.8444 5.8444 5.8444

St=30,K=30 Klein 5.8304 5.8304 5.8304 5.8304
LB 5.4031 5.0388 4.5763 3.6233
UB 5.8444 5.8444 5.8444 5.8444

UB-LB 0.4413 0.8056 1.2681 2.2211
BS 22.0729 22.0729 22.0729 22.0729

St=50,K=30 Klein 21.9416 21.9416 21.9416 21.9416
LB 19.6099 18.0276 16.2193 12.8539
UB 22.0728 22.0729 22.0729 22.0729

UB-LB 2.4629 4.0453 5.8536 9.2190

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

Stock price

O
pt

io
n 

pr
ic

e/
bo

un
ds

B=2

 

 

0 10 20 30 40 50 60
−10

0

10

20

30

40

Stock price

O
pt

io
n 

pr
ic

e/
bo

un
ds

B=2.5

 

 

0 10 20 30 40 50 60
−10

0

10

20

30

40

Stock price

O
pt

io
n 

pr
ic

e/
bo

un
ds

B=3

 

 

0 10 20 30 40 50 60
−10

0

10

20

30

40

Stock price

O
pt

io
n 

pr
ic

e/
bo

un
ds

B=4

 

 

BS
complete market
lower bound
upper bound

BS
complete market
lower bound
upper bound

BS
complete market
lower bound
upper bound

BS
complete market
lower bound
upper bound



78 CHAPTER 2. GOOD DEAL BOUNDS - STRUCTURAL MODEL

• the deadweight cost β

– near default
Yt=32, D=30 Beta 0 0.3 0.6 0.9

BS 1.2523 1.2523 1.2523 1.2523
St=20,K=30 Klein 1.2471 1.2268 1.2066 1.1864

LB 1.1052 0.8820 0.6588 0.4356
UB 1.2523 1.2523 1.2523 1.2523

UB-LB 0.1471 0.3703 0.5935 0.8167
BS 5.8444 5.8444 5.8444 5.8444

St=30,K=30 Klein 5.7923 5.6170 5.4417 5.2664
LB 4.9479 3.8112 2.6745 1.5377
UB 5.8444 5.8443 5.8442 5.8441

UB-LB 0.8965 2.0331 3.1697 4.3064
BS 22.0729 22.0729 22.0729 22.0729

St=50,K=30 Klein 21.7099 20.6565 19.6032 18.5499
LB 17.9473 13.4945 9.0418 4.5890
UB 22.0726 22.0711 22.0696 22.0680

UB-LB 4.1253 8.5766 13.0278 17.4790
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– far away from default
Yt=40, D=30 Beta 0 0.3 0.6 0.9

BS 1.2523 1.2523 1.2523 1.2523
St=20,K=30 Klein 1.2521 1.2513 1.2504 1.2495

LB 1.2212 1.1361 1.0509 0.9658
UB 1.2523 1.2523 1.2523 1.2523

UB-LB 0.0311 0.1162 0.2013 0.2865
BS 5.8444 5.8444 5.8444 5.8444

St=30,K=30 Klein 5.8421 5.8304 5.8187 5.8070
LB 5.6026 5.0388 4.4749 3.9111
UB 5.8444 5.8444 5.8444 5.8444

UB-LB 0.2418 0.8056 1.3695 1.9333
BS 22.0729 22.0729 22.0729 22.0729

St=50,K=30 Klein 22.0487 21.9416 21.8345 21.7274
LB 20.7189 18.0276 15.3362 12.6448
UB 22.0729 22.0729 22.0729 22.0729

UB-LB 1.3540 4.0453 6.7367 9.4280
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• Correlation

– when the counterparty is near default
Yt=32, D=30 ρ 0 0.3 0.5 0.9

BS 1.2523 1.2523 1.2523 1.2523
St=20,K=30 Klein 1.0908 1.1861 1.2268 1.2523

LB 0.6386 0.7534 0.8820 1.2467
UB 1.2520 1.2523 1.2523 1.2523

UB-LB 0.6134 0.4988 0.3703 0.0056
BS 5.8444 5.8444 5.8444 5.8444

St=30,K=30 Klein 5.0907 5.4340 5.6170 5.8366
LB 2.9806 3.3667 3.8112 5.5746
UB 5.8431 5.8441 5.8443 5.8444

UB-LB 2.8625 2.4773 2.0331 0.2698
BS 22.0729 22.0729 22.0729 22.0729

St=50,K=30 Klein 19.2263 20.1190 20.6565 21.6012
LB 11.2567 12.2579 13.4945 19.2253
UB 22.0681 22.0705 22.0711 22.0713

UB-LB 10.8114 9.8125 8.5766 2.8460
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– when the counterparty is far from default
Yt=40, D=30 ρ 0 0.3 0.5 0.9

BS 1.2523 1.2523 1.2523 1.2523
St=20,K=30 Klein 1.2246 1.2465 1.2513 1.2523

LB 0.8501 1.0081 1.1361 1.2523
UB 1.2523 1.2523 1.2523 1.2523

UB-LB 0.4022 0.2442 0.1162 0.0000
BS 5.8444 5.8444 5.8444 5.8444

St=30,K=30 Klein 5.7154 5.8007 5.8304 5.8444
LB 3.9673 4.5197 5.0388 5.8421
UB 5.8444 5.8444 5.8444 5.8444

UB-LB 1.8771 1.3247 0.8056 0.0023
BS 22.0729 22.0729 22.0729 22.0729

St=50,K=30 Klein 21.5855 21.8249 21.9416 22.0687
LB 14.9836 16.4475 18.0276 21.8186
UB 22.0728 22.0729 22.0729 22.0729

UB-LB 7.0893 5.6254 4.0453 0.2543

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

Stock prices

O
pt

io
n 

bo
un

ds

Corr = 0, counterparty far from default

0 10 20 30 40 50 60
−10

0

10

20

30

40

Stock prices

O
pt

io
n 

bo
un

ds

Corr = 0.3, counterparty far from default

0 10 20 30 40 50 60
−10

0

10

20

30

40

Stock prices

O
pt

io
n 

bo
un

ds

Corr = 0.5, counterparty far from default

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

Stock prices

O
pt

io
n 

bo
un

ds

Corr = 0.9, counterparty far from default



82 CHAPTER 2. GOOD DEAL BOUNDS - STRUCTURAL MODEL

• Volatility of the assets of the counterparty Yt

– when the counterparty is near default
Yt=32, D=30 σv 0.15 0.25 0.4 0.5

BS 1.2522 1.2522 1.2522 1.2522
St=20,K=30 Klein 1.2369 1.2172 1.1905 1.1732

LB 0.9731 0.8107 0.6480 0.5618
UB 1.2522 1.2522 1.2522 1.2521

UB-LB 0.2791 0.4414 0.6041 0.6903
BS 5.8443 5.8443 5.8443 5.8443

St=30,K=30 Klein 5.6979 5.5439 5.34980 5.2279
LB 4.2462 3.4694 2.6850 2.2763
UB 5.8443 5.8441 5.8433 5.8426

UB-LB 1.598 2.3747 3.1583 3.5663
BS 22.07288 22.0728 22.0728 22.0728

St=50,K=30 Klein 21.1043 20.2662 19.2640 18.6531
LB 15.1410 12.1829 9.1628 7.6150
UB 22.0723 22.0690 22.0594 22.0508

UB-LB 6.9313 9.8860 12.8965 14.4358
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– when the counterparty is far from default
Yt=40, D=30 σv 0.15 0.25 0.4 0.5

BS 1.2523 1.2523 1.2523 1.2523
St=20,K=30 Klein 1.2522 1.2489 1.2344 1.2209

LB 1.2187 1.0438 0.8173 0.7024
UB 1.2523 1.2523 1.2523 1.2523

UB-LB 0.0336 0.2085 0.4350 0.5499
BS 5.8444 5.8444 5.8444 5.8444

St=30,K=30 Klein 5.8425 5.8043 5.6716 5.5619
LB 5.5601 4.5346 3.4083 2.8618
UB 5.8444 5.8444 5.8443 5.8441

UB-LB 0.2843 1.3098 2.4360 2.9823
BS 22.0729 22.0729 22.0729 22.0729

St=50,K=30 Klein 22.0495 21.7456 20.9129 20.2950
LB 20.3841 15.9782 11.6411 9.5884
UB 22.0729 22.0728 22.0713 22.0686

UB-LB 1.6888 6.0946 10.4301 12.4801
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B Appendix: Proposition needed to prove

the results in the barrier option case

Denote W (t) =
(
W 1(t), W ∗(t)

)′
where dW 1(t)dW ∗(t) = ρdt or

W (t) =
(
W 1(t), ρW 1(t) +

√
1− ρ2W 2(t)

)′
with W 1(t) and W 2(t) independent Wiener processes. We assume W 1(0) =
x0 and W ∗(0) = y0, hence W 2(0) = y0−ρx0√

1−ρ2
.

We denote by WA(t) =
(
W 1
A(t), ρW 1(t) +

√
1− ρ2W 2(t)

)′
, where the nota-

tion W 1
A(t) refers to the Wiener process W 1(t) with absorbtion at the barrier

0.We notice that the second component of WA(t) is not absorbed. We are
time t = 0 and denote absorbtion time with T. Let I1 = (x, x + dx) with
x > 0 and I∗ = (y, y + dy) with y > 0.
We can write I = I1×I∗. IfW 1(t) ∈ I1 and ρW 1(t)+

√
1− ρ2W 2(t) ∈ I∗,then

W 2(t) ∈

(
y − ρ(x+ dx)√

1− ρ2
,
y + dy − ρx√

1− ρ2

)
= I2. (2.45)

Ir1 = {x ∈ R : −x ∈ I1}. We want to calculate P [WA(t) ∈ I] for t > 0. Hence
we have

P [WA(t) ∈ I] = P [
{
W 1
A(t) ∈ I1

}
∩
{
ρW 1(t) +

√
1− ρ2W 2(t) ∈ I∗

}
]

= P [
{
W 1
A(t) ∈ I1

}
∩
{
W 2(t) ∈ I2

}
]

= P [W 1
A(t) ∈ I1]× P [W 2(t) ∈ I2]

= P [
{
W 1(t) ∈ I1

}
∩ T > t]P [W 2(t) ∈ I2]

= (P [W 1(t) ∈ I1]− P [
{
W 1(t) ∈ I1

}
∩ T < t])P [W 2(t) ∈ I2]

= (P [W 1(t) ∈ I1]− P [W 1(t) ∈ Ir1 ])P [W 2(t) ∈ I2]

= (φ(x, x0,
√
t)− φ(x,−x0,

√
t))φ(y,

y0 − ρx0√
1− ρ2

,
√
t)dxdy

where φ(z, z0, σ) denotes the density of the normal distribution of the vari-
able z with mean z0 and standard deviation σ. We want to translate these
results in terms of W 1 and W ∗ and hence denote by n(a, b, σ, γ, r) the joint
density of two normal variables with means and standard deviations a and
σ, respectively b and γ and correlation r. Then, we can write P [WA(t) ∈ I]
in terms of the densities of W 1(t) and W ∗(t)

P [WA(t) ∈ I] =
(
n
[
(x0, y0), (

√
t,
√
t), ρ

]
− n

[
(−x0, y0 − 2ρx0), (

√
t,
√
t), ρ

])
dxdy
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One can easily extend this expression and prove the following proposition:

Proposition B.1 Let X be a stochastic process defined by:

dX(t) = αdt+ dW 1(t),

X(0) = x,

and Y be a stochastic process defined by

dY (t) = µdt+ dW 2(t),

Y (0) = y0

where dW 1(t)dW 2(t) = ρdt. We denote by Xβ the process with absorbing
barrier β 6= 0, and x0 > β.
For a fixed t > 0, the density fβ of the stochastic process (Xβ, Y ) is given by

fβ = n[(x0 + αt, y0 + µt), (
√
t,
√
t), ρ]

− exp {2α(x0 − β)}n[(2β − x0 + αt, y0 + 2ρ(β − x0) + µt), (
√
t,
√
t), ρ]

Proof. We start by a short digression. Notice that we can re-write the
dynamics of X and Y as

dX(t) = αdt+
(
1, 0

)
dW (t),

dY (t) = µdt+
(
ρ,

√
1− ρ2

)
dW (t)

where W =
(
W 1, W ∗)′ with W 1 and W ∗ independent Wiener processes.

Let F be the filtration spanned by both W 1 and W ∗ and P the probability
measure under which we have defined the two processes X and Y . We define
the probability measure Q ∼ P by the process:

L(T ) =
dQ

dP
on FT

dL(t) = Lt

(
α, µ−ρα√

1−ρ2

)
dW

If we denote by V the 2-dimensional Wiener process under Q, the dynamics
of X and Y under the new probability measure are:

dX(t) =
(
1, 0

)
dV (t),

dY (t) = [µ− ρα− µ− ρα√
1− ρ2

√
1− ρ2]dt+

(
ρ,

√
1− ρ2

)
dV (t)
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Also, notice that, by solving the dynamics of Lt and after a bit of algebraic
manipulationm we can re-write Lt as:

Lt = exp

{
α− ρµ
1− ρ2

[X(t)−X(0)] +
µ− αρ
1− ρ2

[Y (t)− Y (0)]− 1

2

µ2 + α2 − 2αµρ

1− ρ2
t

}
We notice that both processes have become martingales under Q. We will
use Bayes’ theorem and the previous proof in order to prove our proposition.
Let I1 = (x, x+ dx) with x > β and I2 = (y, y + dy) with y > 0.We need to
calculate:

P ({Xβ(t) ∈ I1} ∩ {Y (t) ∈ I2}) = EP [I {Xβ(t) ∈ I1, Y (t) ∈ I2}]
= EQ [I {Xβ(t) ∈ I1, Y (t) ∈ I2}L(t)]

= EQ

[
I

{
V 1
β (t) ∈ I1, V

2(t) ∈

(
y − ρ(x+ dx)√

1− ρ2
,
y + dy − ρx√

1− ρ2

)
= I2∗

}
L(t)

]
= n[(x0 + αt, y0 + µt), (

√
t,
√
t), ρ]

− exp {2α(x0 − β)}n[(2β − x0 + αt, y0 + 2ρ(β − x0) + µt), (
√
t,
√
t), ρ]
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Chapter 3

Pricing Counterparty Risk
Using Good Deal Bounds

We develop a method for pricing counterparty risk by using good deal bounds.
The method imposes a new restriction in the arbitrage free model by setting
upper bounds on the Sharpe ratios of the assets. The potential prices which
are eliminated represent unreasonably good deals. The constraint on the
Sharpe ratio translates into a constraint on the stochastic discount factor.
Thus, one can obtain tight pricing bounds. Previous literature on counter-
party risk and good deal bounds involved structural models. We allow for
counterparty risk to be given by intensity-based models. Also, previous liter-
ature on counterparty risk with intensity models uses pricing directly under
the risk neutral measure - which is not unique. We provide a link between the
objective probability measure and the range of potential risk neutral mea-
sures which has an intuitive economic meaning. Also, we study numerically
the tightness of the bounds and underline the use of good deal bounds for
risk management. In this context, we also study portfolio effects on the good
deal bounds prices.
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1 Introduction

Counterparty risk has been brought to the forefront by recent events. The
current financial crisis has underlined the importance of good pricing and
risk management tools for counterparty risk. This paper approaches the
issue by developing tools which address the market incompleteness due to
the counterparty risk.

In the context of derivatives, the source for counterparty risk is the fact that
the products are traded over-the-counter (OTC). According to the Bank of
International Settlements, in December 2007, the OTC notional amounts
outstanding were 417 trillion US dollars. By comparison, at the end of the
same period, the notional amounts outstanding in exchange traded futures
were 28 trillion US dollars and the notional amounts outstanding in exchange
traded option were 52.5 trillion. Since the market for OTC derivatives is big,
managing counterparty risk for OTC derivatives is essential1. If traded on
an organized exchange, the counterparty risk associated with the derivatives
disappears due to the presence of the market maker. The market incom-
pleteness comes from not having liquidly exchange-traded financial products
(credit derivatives) that would help pin down the market price of risk for the
counterparty’s default. This is a classic case of market incompleteness.

As a way of solving the pricing issues raised by the market incompleteness, I
propose the good deal bounds method. The method imposes a new restriction
in the arbitrage free model by setting upper bounds on the Sharpe ratios of
the assets. The potential prices which are eliminated represent unreasonably
good deals. The constraint on the Sharpe ratio translates into a constraint
on the stochastic discount factor. Thus, one can obtain tight pricing bounds.
One has to note that by eliminating unusually goos deals, we do not eliminate
extreme market outcomes, but extreme attitudes toward risk (i.e. investors
asking for extreme compensation for the risks taken).

To put good deal bounds in a general context, we remember that one of
the consequences of having an incomplete market setup is the fact that we
no longer have a unique stochastic discount factor or a unique equivalent
martingale measure, and consequently not a unique price. One could simply
calculate the bounds of the prices, generated by the interval of all possible
risk-neutral measures (or all possible stochastic discount factors). These
bounds are known as the no-arbitrage bounds. However, they are too large
to be of any practical use.

1source: BIS report Statistical Annex to Quarterly review Sep 08 - (BIS 2008)
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Another alternative would be to pick one of the possible equivalent martingale
measures, according to some criterium, chosen by the researcher/implementer
of the model. The literature adopting this path is vast. For further reference
to different strands of literature dealing with this approach see Schweizer
(2001), Henderson and Hobson (2004), Barrieu and Karoui (2005). However,
there is no clear cut way of choosing between different criteria and some
of them are somewhat ad-hoc, in the sense that they do not have a clear
economic interpretation.

In contrast to this, Cochrane and Saa-Raquejo (2000) proposed the method
of good deal bounds. The good deal approach aims at obtaining an interval
of “reasonable”prices in incomplete markets, rather than concentrating at
obtaining a unique price. Since the no-arbitrage bounds are too large to be
used, Cochrane and Saa-Raquejo (2000) suggested to rule out not only arbi-
trage opportunities, but also trade opportunities which are too favorable to
be observed on a real market. These unrealistically-favorable deals are con-
sidered “too good to be true”, hence the name of “good deal bounds”(GDB).
One possible measure for the “goodness”of a deal is its Sharpe Ratio (SR),
and thus, trades/portfolios which have a SR above a certain threshold are
eliminated. Since the SR links the return of financial assets to the risk un-
dertaken, it is not extreme events which are eliminated from the set, but
extreme compensation for the risk undertaken. The SR is chosen as a mea-
sure for the “goodness of the deal”because of its intuitive meaning, but also
due to a large empirical literature which can tell us the range of the Sharpe
Ratios observed on the market. Thus, the bound on the SR will not be arbi-
trary. The procedure reduces the set of possible prices for the claims traded.
Hence, the good-deal bounds methodology leads to a much tighter interval
of possible prices than the bounds obtained by no-arbitrage.

The next step in developing a theory for “good deal bounds”was done by
Björk and Slinko (2005). They proposed a new frame for solving the opti-
mization problem defined by Cochrane and Saa-Raquejo (2000) while at the
same time allowing for more complex dynamics for the underlying assets,
such as jump-diffusion processes, to be taken into account. This formulation
of the good deal bounds will be used in the current project.

Previous literature on counterparty risk and good deal bounds involved struc-
tural models (e.g. Hung and Liu 2005). We allow for counterparty risk to
be given by intensity-based models, which is a standard tool in credit-risk
pricing and management. Also, previous literature on counterparty risk with
intensity models uses pricing directly under the risk neutral measure -which
is not unique (e.g. Brigo and Masetti 2005, Brigo and Pallavicini 2008). I
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provide a link between the objective probability measure and the range of
potential risk neutral measures which has an intuitive economic meaning.
Furthermore, I study how the interval of prices induced by the good deal
bounds changes with different important parameters in the model: i.e. the
current intensity of default, the parameters of the intensity process, the good
deal bound constant chosen by the modeler, the recovery rate. Results show
that the current intensity of default and the recovery rate impact the GDB
price interval more than the chosen GDB constant.

Besides the theoretical interest in the link between the risk neutral and ob-
jective probability measure, calculating good deal bounds can be useful from
a risk management perspective. The good deal bound pricing problem can
be reformulated as follows: we are trying to find the highest and the lowest
arbitrage free pricing processes, subject to an upper bound on the norm of
the market price for risk present on the market. This means that one can
use the lower good deal bound as a measure for how low can one expect for
the price of a derivative or a portfolio of derivatives to fall, when counter-
party risk is taken into account, provided that there are no other changes in
the underlying financial product. I prove that this bound is a coherent risk
measure according to Artzner and Heath (1999).2.

I study how stable are the pricing measures induced by good deal bounds
in the context of introducing new financial products in a portfolio. Alterna-
tively, keeping the set of financial products traded fixed, I study the quanti-
tative effect of a new counterparty for the pricing measure of the lower good
deal bound prices. These investigations are necessary in order to assess how
useful is the lower GDB price as a measure of counterparty risk in a more
complex setting. The measure is stable with respect to the introduction of
new assets traded with existing counterparties. Since we do not have a good
model for the correlation of defaults, the lower good deal bounds price is also
sensitive to this general drawback of the credit derivatives literature.

The paper is organized as follows. First, I present the GDB methodology.
Then, I use vulnerable options as an example for implementing GDB and
analyze numerically the results. As a next step, I analyze good deal bounds in
the context of portfolio management and introduce the lower good deal bound
as a coherent risk measure for portfolio management. Then, I conclude.

2The link between GDB and coherent risk measures was first noticed by Jaschke and
Küchler (2001). However, he excludes SR based good deal bounds. We show that under
the framework of Björk and Slinko (2005), SR based good deal bounds are coherent risk
measures as well
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2 Good Deal Bounds

One of the main limitations when pricing counterparty risk is the assump-
tion that either the assets of our counterparty or a credit derivative (e.g.
a credit default swap, CDS) on our counterparty are liquidly traded on an
exchange. In practice, CDS-es are traded OTC and thus bear counterparty
risk themselves. This means that it is difficult to pin down whether a change
in the CDS spread is due to a change in the risk of default of the CDS name
or a change in the risk of default of the CDS counterparty. Figure 1 repre-
sents a comparison between a real world measure probability of default like
KMV Moody’s EDF and the risk-neutral probability of default calibrated
from CDS prices (without taking into account CDS counterparty risk). As
we see, the risk neutral probability of default varies much more than the
objective one and we cannot clearly separate the cause (changing measure
effect or additional risk undertaken through the CDS trade). However, since
we have one asset (the CDS) and two sources of randomness, we are still in
an incomplete market setup.
In order to deal with the market incompleteness, we are going to employ
good deal bounds. We eliminate trade opportunities which are considered
too favorable to be observed in the real markets. The elimination of the
unrealistically good trades is done as follows. From the extended Hansen-
Jaganathan bounds, we know that a constraint on the generalized Sharpe
Ratio translates into a constraint on the market price of risk (or the Girsanov
kernel for the equivalent martingale measure) - for a detailed explanation see
Björk and Slinko (2005). We are going to show that these bounds are quite
tight and investigate numerically how sensitive to different specific factors
the bounds are.
A major difference with the good deal bounds (GDB) approach is the fact
that the model is specified under P - the objective probability measure. Most
derivative pricing models are specified directly under Q - the risk-neutral
probability measure. By doing so, we do not run into the difficulty of sepa-
rating the probability of default of the name of the CDS from the probability
of the counterparty of the CDS, implied by the series of prices. We need,
however, a good measure of the real world probability of default. One such
measure is KMV Moody’s EDF measure. Among the advantages of such a
measure is the fact that it is a continuous measure which does not cluster
heterogeneous companies together as ratings usually do.
In the next section, we will demonstrate how to price counterparty risk in the

context of vulnerable options on equity. Although interest rate derivatives
are more widely traded on the OTC markets, they are also more complex



94 CHAPTER 3. GOOD DEAL BOUNDS - COUNTERPARTY RISK

source:Duffie and Schranz (2005)

products which require much more sophisticated modeling. Also, the most
traded fixed income derivatives are swaps, which are two-sided deals. If we
take counterparty risk into account, in the case of no recovery, the value of
the swap rate for a swap with maturity TN is given by:

N∑
i=1

Kp(t, Ti)I[Y1(Ti) = 0] =
N∑
i=1

L(t, Ti−1, T, i)p(t, Ti)I[Y2(Ti) = 0]

where K is the swap rate, p(t, Ti) is the price of a zero-coupon bond with ma-
turity Ti, L(t, Ti−1, T, i) is the forward LIBOR rate with maturity Ti, Yj(Ti)
is the probability of survival up to time Ti for the counterparty j, j = 1, 2.
Thus, we need to take into account the probability of default of 2 counterpar-
ties and potentially the 2 different recovery rates for both participants in the
transaction. By comparison, pricing a vulnerable option requires taking into
account only the default risk for the writer of the option. Thus, we proceed
with computing the good deal bound prices for a vulnerable option.

3 Example on Vulnerable Options

In this section, we are going to show how to implement the good deal bounds
for vulnerable options - i.e. options where the counterparty may default. The
OTC equity marked options gross market value in December 2007 was 6.2
trillion US dollars. Although a small proportion from the total derivatives
transactions in the OTC markets, it is almost a fifth of the exchange traded
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futures market3.
The underlying stock for our chosen derivative is traded and we choose to
model the stock as a geometric Brownian motion in order to isolate counter-
party risk. Jumps and stochastic volatility extensions are straightforward.
However, they would add to the market incompleteness generated by counter-
party risk and it would make it harder to separate the impact of counterparty
risk on the prices.
Our model is defined under the measure P. The market is formed by the stock
and a risk free bank account. We also have a non-traded default indicator
Y , which is modeled as a point process with intensity of default λ. Default
occurs at the first jump of the process Y . In the main part of the paper,
we model λ as an affine process. Appendix A presents computations for the
good deal bound problem when λ is constant.
The assumptions we make are summarized as follows:

Assumption 3.1

1. Let the filtration space (Ω,F , P,F) be given, where F is the internal
filtration generated by the processes W P , W̃ P and N , defined below.

2. W P and W̃ P are P-Wiener processes and dW PdW̃ P = ρdt. N is a
Cox process with predictable intensity λt.

3. We assume the intensity of the Cox process λt to follow the dynamics

dλt = κ(θ − λt)dt+ σ
√
λtdW

P
t

4. The market model under the objective probability measure P is given by
the following dynamics:

dSt = Stαtdt+ StγtdW̃
P
t

dBt = rBtdt

where St denotes a traded stock and Bt the money bank account.

5. αt and γt are scalar deterministic functions of time.

6. We assume a European call option is written on the stock. Default of
the counterparty/writer of the option is described by the process Yt =
Nt. Default occurs at the first jump of the Cox process Nt.

3source: BIS report Statistical Annex to Quarterly review Sep 08
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3.1 The payoff function

The payoff for a vulnerable European derivative is given by

X =

{
Φ(ST ), if YT = 0
R, if Yτ > 0 for some 0 < τ ≤ T

where R denotes the recovery payoff.
We will compute the good deal bound price for the specific example of a
vulnerable European call, Φ(ST ) = max[ST −K, 0]. However, since the rea-
soning carries through for more derivatives, we prefer solving for the general
case as far as possible and taking the European call as an example only in
the last step.
We model the recovery payoff as recovery to market value (RMV). For this
type of recovery specification, the payment of the recovery is done imme-
diately after default. Let τ be the time of default. Define the stochastic
variable Vt as the market value of the vulnerable option, conditional on no
default up to time t:

Vt = EQ
[
e−r(T−t)Φ(ST , YT )

∣∣Ft, Yt = 0
]

where Q is the equivalent martingale measure under which the pricing is
done, as defined in the next section. If default occurs at τ , the recovery
process is equal to:

R = (1− q)Vτ− where 0 < q < 1 and Vt− = lim
s↗t

Vs (3.1)

It was proven that, for this recovery specification, the price of a derivative
with counterparty risk is:

Π = EQ
[
e−r(T−t)(Φ(ST )I{YT = 0}+RI{YT > 0})|Ft

]
= EQ

[
e
∫ T
t −(ru+qλu)duΦ(ST )|Ft

]
Besides the mathematical convenience of RMV, the specification is generally
preferred for the modeling OTC derivatives counterparty risk, according to
Schönbucher (2003).

3.2 Q dynamics

Any intensity-based credit risk model assumes an incomplete market setup,
since we have two sources of risk and only one traded asset. Hence, we do
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not have a unique equivalent martingale measure (EMM), but a whole class
of potential EMM. For any potential EMM Q ∼ P we define L by:

Lt =
dQ

dP
on FT (3.2)

The fact that F is the internal filtration implies that Lt must have dynamics
of the form:

dLt = LthtdW̃
P
t + Ltgt

√
λdW P

t + Lt−ϕt(dNt − λtdt) (3.3)

L0 = 1 (3.4)

where ht and gt are adapted processes and ϕt is a predictable stochastic pro-
cess. We have chosen to model the Girsanov kernel corresponding to W P

as gt
√
λ in order to preserve the affine character of λ under the risk neutral

measure.
From an economic point of view, −ht corresponds to the market price of risk
for the stock, St; ϕ compensates for the default event itself, while −gt

√
λ

corresponds to the market compensation for the uncertainty over the proba-
bility of default.
From Girsanov’s theorem, it follows that:

dW̃ P
t = htdt+ dW̃t

dW P
t = gt

√
λtdt+ dWt

where Wt and W̃t are Q-Wiener processes.
Also, the intensity of the Cox process becomes λQt = (1 + ϕt)λt. This leads
to a positivity constraint on ϕt:

ϕt ≥ −1 (3.5)

St is a traded asset and, from the definition of an EMM, the drift of any
traded asset under the EMM must equal the risk free interest rate. Thus, ht
must satisfy the martingale condition:

r = αt + γtht (3.6)

The class of equivalent martingale measures is defined as the class of mea-
sures obtained by (3.2), (3.3) and (3.4) and satisfying the conditions (3.5)
and (3.6).
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3.3 Optimization Problem

As mentioned in the introduction, we are trying to find the highest and the
lowest arbitrage free pricing processes, subject to an upper bound on the
norm of the market price for risk, or equivalently, a bound on the Girsanov
kernel. Dealing with the market price of risk translates to dealing with the
Girsanov kernel of the equivalent martingale measures. Thus, we define the
good deal bounds as follows

Definition 3.1 The lower good deal bound price process for a vulnerable
option is defined as the optimal value process for the following optimal control
problem:

min
h,g,ϕ

EQ
[
e
∫ T
t −(ru+qλu)duΦ(ST )|Ft

]
dSt = rStdt+ StγtdW̃t

dλt = [κ (θ − λt) + gtσλt]dt+ σ
√
λtdWt

λQt = λt(1 + ϕt)

αt + γtht = r (3.7)

ϕt ≥ −1 (3.8)

h2
t + g2

t λt + ϕ2
tλt ≤ C2 (3.9)

The upper good deal bound process is the optimal value process for a
similar optimal control problem, with the only difference that we maximize
the expression, subject to the same constraints.
We denote the optimal value process by V (t, St, YT ), where V is the optimal
value function.

Before proceeding, let us comment on the structure of the optimization prob-
lem. The objective function is the arbitrage-free price for the payoff function,
where the expectation is computed under the risk neutral measure generated
by ht, gt, and ϕ. Since we have to select this measure from a continuum of
eligible EMM, we maximize with respect to the Girsanov kernels.
The optimization is subject to the dynamics of the assets on the market,
under the appropriate probability measure. The first five constraints are the
usual constraints necessary for changing the measure and establishing it as
a probability measure, in general (3.8), and a risk-neutral measure (3.7).
If all the Girsanov kernel elements could be identified from these constraints,
we would be in a complete market setup and would be able to find a unique
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price. Since the number of traded assets is smaller than the number of risk
sources, we cannot price all the risk factors and need the last inequality in
order to tighten the no arbitrage price bounds. We will refer to this inequal-
ity:

h2
t + g2

t λt + ϕ2
tλt ≤ C2, 0 ≤ t ≤ T

as the good deal bounds condition.
Notice that ϕt does not appear in equation (3.7), the condition for the drift
of the stock under the martingale measure, but in equations (3.8) and (3.9).
This separation of the two components of the Girsanov kernel allows us to
obtain more elegant closed form solutions.
Classical control theory allows us to solve for the lower good deal bound by
solving the Hamilton Jacobi Bellman equation, given by the following
PDE:

∂V

∂t
+ inf

h,g,ϕ
Ah,g,ϕV − rV = 0

V (T, s, y, λ) = Φ(ST )

where A is the infinitesimal operator of (W, W̃ ,N):

AV = Vssr + Vλ [κ (θ − λt) + gtσλt]

+∆V λQt +
1

2
γ2s2Vss

+
1

2
σ2λVλλ + γσs

√
λVsλ

where ∆V = V (t, s, 1, λ)− V (t, s, 0, λ) = −qV .
The problem for the upper bound is reduced to an similar PDE, but the
inf-problem is replaced by supht,gt,ϕt AV .
The HJB equation is solved in 2 steps:

• solving for each t, s, λ the embedded static problem, in order to obtain
the Girsanov kernel;

• solving the PDE, in order to obtain the price of the vulnerable option

Solving the static problem from the HJB equation reduces to solving the
following simple problem:

min
h,g,ϕ

−qV λϕ+ σλVλg

α + γh = r

ϕ ≥ −1

h2 + g2 + ϕ2λ ≤ B2
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This is solved by standard Karoush-Kuhn-Tucker and we find that the lower
bound Girsanov kernel is given by:

• ĥt = r−αt
γt

• ϕ̂t = −qV
√

C2−h2

λ[(qV )2+(σVλ)2]

• ĝt = σVλ
√

C2−h2

λ[(qV )2+(σVλ)2]
.

We notice the Girsanov kernel depends on the optimal value function V . In
a similar way, we can compute the upper GDB Girsanov kernel

Proposition 3.1 Under assumptions 3.1, the Girsanov kernel for the lower
good deal bound EMM as defined in definition 3.1 is given by:

• ĥt = r−αt
γt

• ϕ̂t = −qV
√

C2−h2

λ[(qV )2+(σVλ)2]

• ĝt = σVλ
√

C2−h2

λ[(qV )2+(σVλ)2]
.

The Girsanov kernel corresponding to the upper good deal bound EMM is
given by:

• ĥt = r−αt
γt

• ϕ̂t = max

∆V

√
B2 − h2

λ
{

(∆V )2 + (σVλ)
2}︸ ︷︷ ︸

L

, −1︸︷︷︸
R



• ĝt =


σVλ

√
B2−h2

λ{(∆V )2+(σVλ)2} , if ϕ̂t = L

−
√
B2 − h2 − λ if ϕ̂t = R



3. EXAMPLE ON VULNERABLE OPTIONS 101

Now, we should plug in the above solution in the HJB equation and solve the
PDE. The PDE proves to be unmanageable, and we need to employ some
different techniques. We will use a first order Taylor expansion in order to
approximate the solution of the HJB equation. We would like to have an
approximation that incorporates the tightness of our good deal bounds con-
straint. Approximating it around C yields explosive solutions. It turns out
that the proper variable for this is y =

√
C2 − h2, where h was determined

by the martingale constraint.

We will do the approximation around the minimal martingale measure
result given by:

min
h,g,ϕ

h2 + g2 + ϕ2

α + σh = r

Formally, we define the minimal martingale measure as follows:

Definition 3.2 Let QMM ∼ P , we define L by:

Lt =
dQMM

dP
on FT (3.10)

with dynamics of the form:

dLt = LthtdW̃
P
t (3.11)

L0 = 1 (3.12)

where ht is given by the equation

r = αt + γtht (3.13)

The minimal martingale measure QMM is defined as the measure obtained by
(3.10), (3.11) and (3.12) and satisfying the condition (3.13).

Remark 3.1 For a thorough analysis on the minimal martingale measure
(MMM) and its properties, we refer to Schweizer (1995). Approximations of
the good deal bounds solutions around the MMM were first used by Björk
and Slinko (2008). In their paper, approximations of GDB are used to
price derivatives on underlying with jump-diffusion dynamics and stochas-
tic volatility. The approximations seem to perform well.
For us, the minimal martingale measure Girsanov kernels are trivially 0.
This means that λQ = λ and the dynamics of λ under the minimal martin-
gale measure do not change.
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The intuition behind these approximations is as follows: we can re-write the
HJB equation by incorporating the Karoush-Kuhn-Tucker constraints:

∂V

∂t
(t, s, y, λ) + Vssr + Vλ [κ (θ − λt) + gtσλt]− qV λt(1 + ϕt) +

1

2
γ2s2Vss

+
1

2
σ2λVλλ + γσs

√
λVsλ − rV (t, s, y, λ)

+ν[g2
t λ+ ϕ2

tλ+ h2
t − C2] = 0 (3.14)

where y is defined as above. If we replace g, h and ϕ by ĝ, ĥ and ϕ̂ as
computed above, the solution of (3.14) is the lower good deal bound price.
When we compute the lower good deal bound price by approximating around
the minimal martingale solution, we obtain:

VLGB = VMM + (yMM − y)
∂V

∂y
(yMM) (3.15)

where VLGB denotes the lower GDB price, VMM the minimal martingale
price and ∂V

∂y
represents the sensitivity of V , the solution of PDE (3.14), with

respect to the variable y. The variable yMM is taken to be zero. This means
that the above equation translates into

VLGB = VMM −
√
C2 − h2

∂V

∂y
(0)

Hence, we need to compute two objects: VMM and ∂V
∂y

(0). The price under
the minimal martingale measure is given by:

VMM = EMM
t

[
exp

{
−
∫ T

t

(ru + qλu)du

}
Φ(ST )

]
where EMM

t [•] denotes the expectations under the minimal martingale mea-
sure. If the intensity of default λ and the stock price S are independent, we
have a closed-form solution

VMM = EMM
t

[
exp

{
−
∫ T

t

(r + qλu)du

}]
EMM
t [Φ(ST )]

where

dSt = rStdt+ StγtdW̃t

dλt = κ (θ − λt) dt+ σ
√
λtdWt
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which yields

VMM = exp {−r(T − t) + [A(t, T, q) +B(t, T, q)qλt]}EMM
t [Φ(ST )]

The terms A(t, T, q) and B(t, T, q) can be computed by employing the clas-
sical machinery of affine processes. For κ, θ, σ are constants, λ has CIR
dynamics and

B(t, T, q) =
2
(
eδ(T−t) − 1

)
(δ + qκ) (eδ(T−t) − 1) + 2δ

A(t, T, q) =

[
2δe(qκ+δ)(T−t)/2

(δ + qκ) (eδ(T−t) − 1) + 2δ

]2qκθ/σ2

where δ =
√

(qκ)2 + 2qσ2. If our claim is a European call, then Φ(ST ) =
max[ST −K] and EMM

t [Φ(ST )] is the Black Scholes price.
If the underlying stock for the derivative and the intensity of default are not
independent and ρ 6= 0, we cannot obtain the V MM in closed form and need
to use Monte Carlo simulations. Monte Carlo methods for affine processes
and geometric Brownian motion are well known and developed.

Now, we need to compute the sensitivity factor ∂V
∂y

(0). First, we are going to
present results for ρ = 0.
We denote ∂V

∂y
(•) by Z(t, •). We re-write HJB equation as (3.14) and take

the first derivative with respect to y. By applying the envelope theorem and
some computations detailed in Appendix B, we obtain:

∂Z

∂t
+ Zssr + Zλ [κ (θ − λt)] +

1

2
γ2s2Zss +

1

2
σ2λZλλ

+ργσs
√
λZsλ − [qλt + r]Z +

√
λ

√
(qVMM)2 +

(
∂VMM

∂λ
σ

)2

= 0

Z(T, s, λ) = 0

We can solve the above problem by applying Feinman-Kac. The general
solution is:

Z(t, s, λ) =

∫ T

t

EMM
t,s,λ

[
exp

{
−
∫ u

t

r(τ) + qλ(τ)dτ

}√
λuM(u)

]
dτ

where M(u) =

√
(qVMM)2(u, Su, λu) +

(
∂VMM

∂λ
(u, Su, λu)σ

)2
.

If we have obtained VMM by Monte Carlo simulation (in the general case,
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when ρ is different from zero), we will need to compute also the sensitivity
of the solution with respect to λ. We can use the likelihood ratio method
in order to do so, as explained by Glasserman (2003). Appendix C presents
graphs that show the impact of ρ on the lower GDB price.
However, if ρ = 0, then we know

∂VMM

∂λ
(t) = qB(t, T, q)VMM(t)

and, we obtain

Z(t, s, λ) =

∫ T

t

EMM
t,s,λ

[
e{−

∫ u
t r(τ)+qλ(τ)dτ}qVMM(u)

√
λu
√

1 +B2(u, T, q)σ2
]
du

After replacing VMM in the above, we obtain:

Z(t, s, λ) = qVMM(t)

∫ T

t

EQ̂
t

[√
λu

]√
1 + σ2B2(u, T, q)du

where Q̂ is as defined in Appendix B. It is a well known fact (see Glasserman
2003,Schönbucher 2003) that λ is non-central chi-square distributed with
weighting factor

η =
qσ2

4
B(t, T, q), (3.16)

degrees of freedom

ν =
κθ

σ2
, (3.17)

and non-centrality factor4

Λ =
4

σ2

∂
∂T
B(t, T, q)

B(t, T, q)
λ(t). (3.18)

This means that
√
λt is non-central chi distributed with non-centrality factor

Λ and the formula for the mean is given by:

EQ̂
[√

λ
]

=

√
π

2
ηL

(ν/2−1)
1/2

(
−Λ2

2

)
(3.19)

where L
(a)
i (x) is the generalized Laguerre polynomial and η, ν and Λ are

given by (3.27), (3.28) and (3.29). We can summarize our results about Z in
the following proposition:

4For detailed derivations of the parameters of the non-central chi-square distribution
under the Q̂ measure, we refer to chapter 7 from Schönbucher (2003)
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Proposition 3.2 Let assumptions 3.1 hold. Let V be the optimal value func-
tion that solves the lower good deal bound problem, as defined by Definition
3.1. Let VMM be the price of a vulnerable option computed under the minimal
martingale measure defined by Definition 3.2.

• The derivative of the optimal value function V with respect to the vari-
able y =

√
C2 − h2 and evaluated at yMM = 0, Z(t, s, λ), is given by

the following PDE:

∂Z

∂t
+ Zssr + Zλ [κ (θ − λt)] +

1

2
γ2s2Zss +

1

2
σ2λZλλ

+ργσs
√
λZsλ − [qλt + r]Z −

√
λ

√
(qVMM)2 +

(
∂VMM

∂λ
σ

)2

= 0

Z(T, s, λ) = 0

• The derivative can also be found as:

Z(t, s, λ) =

∫ T

t

EMM
t,s,λ

[
e{−

∫ u
t r(τ)+qλ(τ)dτ}√λuM(u)

]
dτ

where M(u) =

√
(qVMM(u, Su, λu))2 +

(
∂VMM

∂λ
(u, Su, λu)σ

)2
.

• For the case when the underlying stock and the probability of default
are uncorrelated (ρ = 0), Z(t, s, λ) is given by:

Z(t, s, λ) = qVMM(t)

∫ T

t

EQ̂
t

[√
λu

]√
1 + σ2B2(u, T, q)du (3.20)

with EQ̂
t

[√
λu
]

given by equation (3.30).

Hence, when ρ = 0, equations (3.15) and (3.20) imply that the lower bound
for the price of a derivative with counterparty risk is

VLGB = VMM

[
1− q

√
C2 − h2

∫ T

t

EQ̂
t

[√
λu

]√
1 + σ2B2(u, T, q)du

]
We summarize results about the good deal bound prices in the proposition
below.

Proposition 3.3 Let assumptions 3.1 hold. Let VMM be the price of a vul-
nerable option computed under the minimal martingale measure defined by
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Definition 3.2. Let Z be the derivative of the optimal value function V with
respect to the variable y =

√
C2 − h2 and evaluated at yMM = 0, as in Propo-

sition 3.2. The upper/lower good deal bound price for a vulnerable option is
given by:

VU/LGB = VMM ±
√
C2 − h2Z

where

VMM = EMM
t

[
exp

{
−
∫ T

t

(ru + qλu)du

}
Φ(ST )

]
and

Z(t, s, λ) =

∫ T

t

EMM
t,s,λ

[
exp

{
−
∫ u

t

r(τ) + qλ(τ)dτ

}√
λuM(u)

]
dτ.

where M(u) =

√
(qVMM(u, Su, λu))2 +

(
∂VMM

∂λ
(u, Su, λu)σ

)2
.

For the special case when ρ = 0 and κ, θ, σ are constants, the upper/lower
good deal bound price is given by:

VU/LGB = VMM

[
1± q

√
C2 − h2

∫ T

t

EQ̂
t

[√
λu

]√
1 + σ2B2(u, T, q)du

]
with EQ̂

t

[√
λu
]

given by equation (3.30) and

VMM = exp {−r(T − t) + [A(t, T, q) +B(t, T, q)qλt]}EMM
t [Φ(ST )]

where EMM
t [Φ(ST )] is the Black Scholes price and

B(t, T, q) =
2
(
eδ(T−t) − 1

)
(δ + qκ) (eδ(T−t) − 1) + 2δ

A(t, T, q) =

[
2δe(qκ+δ)(T−t)/2

(δ + qκ) (eδ(T−t) − 1) + 2δ

]2qκθ/σ2

with δ =
√

(qκ)2 + 2qσ2.

3.4 Variation of the GDB interval for different model
specifications

In this section, we are analyzing how the low good deal bound price varies
with respect to several model parameters. The upper good deal bound price
is either very close or identical with the Black-Scholes price. The intuition
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behind this fact is that the higher price we can get for an asset with coun-
terparty risk is the one that we obtain when that particular risk is ignored.
When we analyze the sensitivity of the lower GDB price to different factors,
we notice that we can group them in 2 categories: parameters specific to
each transaction and parameters specific to the market environment. In the
first class, we mention the initial level of the probability of default for our
counterparty λ0, the volatility of the intensity of default σ, the long term
level of the intensity of default θ. In the second class, one can include the
size of the GDB constraint - the parameter C and, to a certain extent, the
loss to default parameter q.
The GDB constraint parameter C is chosen by the modeler as the bound of
the Sharpe ratios for the all transactions on the market. We remember that
we place an upper bound on the SR of all the portfolios that can be formed
on the market consisting of the underlying assets, the derivative claim and
the money account; binding the Sharpe Ratio of all possible portfolios is
equivalent to using the Hansen-Jagannathan bounds, which state that the
SR of all portfolios formed on the market are less or equal to the market
price of risk. Thus, the choice of the GDB parameter C should be dictated
in part by the characteristics of the market on which we are performing the
transaction. Empirical evidence suggests that, for mature markets, a Sharpe
Ratio above 2 is rare. Thus, even if C is chosen by the modeler, its choice
should reflect general characteristics about the market on which we deal.
The loss to default parameter q reflects both characteristics specific to the
counterparty and to the market environment - the dead weight loss due to
bankruptcy procedures.
Graphs and tables for this section are presented in the Appendix C. The
stock price varies between 1 and 60, the strike price is 30. We present results
for the stock being 20, 30 and 50 in order to capture the effect of the money-
ness of the option. In the baseline case, λ is 0.03, σ is 0.1 and the long term
intensity of default level θ is 0.2. The good deal bound constraint C is 2.5
and the loss to default parameter q is 0.4.
First, we present the impact of changing the size of the parameter C on the
lower GDB prices. As one might expect, the size of the good deal bound
interval increases with the size of the parameter C. This happens because,
by relaxing the good deal bound constraint, we simply increase the set of
the admissible equivalent martingale measures and hence the set of possible
prices. Result for C equal to 2, 2.5, 3, 4 are tabulated in the appendix. For
an option in the money, this translates into a change in price from 18.17 to
15.19. This is a considerable price impact.
However, when we compute the impact of the loss to default parameter, we
notice it has a strong influence as well. For a loss to default 0.2, the LGDB
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price is 19.73 only to fall at 13.90 for a loss to default of 0.8. The higher is the
loss to default, the more significant becomes the impact of the counterparty
risk on the price of the derivatives.
The intensity of default when the contract is concluded, λ0 plays a signifi-
cant role as well. We compute the price for intensities of 0.01, 0.03, 0.1 and
0.3. The lower good deal price changes from 19.37 to 7.23. Thus, we see the
choice of counterparty is crucial for the value of a derivative traded OTC.
This is even more striking when we see that the parameters for the dynamics
of λ do not have a big impact on the lower good deal bound price. The
main explanation for this is the fact that default is a 1-0 phenomenon - we
do not care if the intensity of default would revert in the future to a lower
probability of default, as much as we care what is the probability of default
in the next time interval. Once the default is realized, so are the losses and
the notion of intensity of default λ is not meaningful anymore. Thus, the
impact of σ and θ on the lower good deal bound price is only of the order of
decimals.
From the above exercise, we notice that the choice of GDB constraint is not
the most important factor in determining the lower good deal bound price.
The ”amount of counterparty risk” undertaken, as reflected by the loss to
default parameter and the current intensity of default, has a bigger impact
on the price then the constraint parameter. The high impact of the price of
λ0 - the current level of the probability of default - also points out toward an
”old time wisdom” - i.e. the most important part of risk management is to
choose your counterparty and monitor it carefully.

4 Counterparty risk for a portfolio

In the previous sections, we have studied the effect of counterparty risk on one
OTC financial derivative at a time. However, for risk management purposes,
we are interested more on how good deal bounds are computed and ”behave”
in a portfolio framework. Before this, however, we have to check if good
deal bounds meet the the requirements to be a good risk measure. Such
requirements were put forward in Artzner and Heath (1999), and the resulting
risk management instrument carries the name of coherent risk measures.
They are defined as follows:

Definition 4.1 A risk measure ρ : G → R satisfying the four axioms of

a) translation invariance:

ρ(X + αr) = ρ(X)− α,
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where X is a risky portfolio, α a real number and r is a reference risk
free investment.

b) subadditivity: for all risky portfolios X1 and X2 ∈ G,

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

c) positive homogeneity: for all λ > 0 and all X ∈ G,

ρ(λX) = λρ(X).

d) monotonicity:for all X and Y ∈ G with X ≤ Y ; we have ρ(Y ) ≤ ρ(X).

is called coherent.

Note that, although abstract, the requirements for coherent risk measures ac-
tually have intuitive economic meaning: translation invariance, for example,
basically asks that by adding capital to our position we reduce the amount of
riskiness of the position; the subadditivity property captures the beneficial
effects of diversification.
Artzner and Heath (1999) prove that given the total return R on a reference
investment, a risk measure ρ is coherent if and only if there exists a family
P of probability measures on the set of states of nature, such that

ρ(X) = sup

{
EP

[
−X
R

]
|P ∈ P

}
(3.21)

The first to notice the link between good deal bounds and coherent risk mea-
sures were Jaschke and Küchler (2001). However, they dismiss the good deal
bounds on the Sharpe Ration a la Cochrane as not satisfying the monotonic-
ity requirement. Under the new re-formulation of the GDB based on the SR
done by Björk-Slinko, one can notice that the lower GDB trivially satisfies
(3.21) and hence, it is a coherent risk measure.
In the rest of the paper, we are going to study the effect of adding more
assets traded with the same counterparty to our portfolio and see how the
GDB behave in this context. Then, we are going to check how adding a new
counterparty is going to affect the lower good deal bound.
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4.1 Good deal bounds for a portfolio with several as-
sets against one counterparty

As mentioned above, when we deal with counterparty risk, we are more
interested in the impact of the risk on the value of a portfolio rather then
the impact on the price of each asset. Usually, the two notions coincide
since, once the risk-neutral pricing measure is fixed, the price of a vulnerable
derivative ΠV (X) is given by

ΠV (X) = pcΠ(X)

where Π(X) is the price of the derivative in non-vulnerable form, and pc is
the additional discounting we need to do to account for counterparty risk.
However, when using good deal bounds, the choice of a particular set of risk-
neutral measures depends on the risk factors on our market, and introducing
a new asset traded with the same counterparty changes the choice of EMM
used for the pricing of the lower good deal bound.
In order to address this issue, we are going to examine what happens to
the prices when we take into account more traded assets in order to fix the
lower bound measure. We remember that, when we have included only the
underlying of our derivative, the lower good deal bound price is given by:

VLGB = VMM −
√
C2 − h2Z(t) (3.22)

where Zt is the first derivative of the pricing function V with respect to
y =
√
C2 − h2 and h2 is the norm of the market price of risk for the traded

asset. We notice that neither VMM nor Z(t) do not depend on the value
of y. They depend only on the traded underlying and the dynamics of λ
under P . Thus, it is straightforward to generalize the above expression to
the case when we have n traded assets. Consider a market model with n
stocks, a risk-free bank account. We trade n OTC derivatives against the
same counterparty. Each derivative is written on one asset.

Assumption 4.1

1. Let the filtration space (Ω,F , P,F) be given, where F is the internal
filtration generated by the processes W P , W̃ P

i , with i = 1, ...n and N ,
defined below.

2. W P and W̃ P
i are P-Wiener processes and dW PdW̃ P

i = ρidt. N is a
Cox process with predictable intensity λt.

3. W̃ P
i , W̃ P

j are independent P-Wiener processes; (W̃ P
i )i=1,..,n = W̃ P
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4. We assume the intensity of the Cox process λt to follow the dynamics

dλt = κ(θ − λt)dt+ σ
√
λtdW

P
t

5. The market model under the objective probability measure P is given by
the following dynamics:

dSit = Sitα
i
tdt+ Sit γ̄

i
tdW̃

P
t i = 1, ..., n

dBt = rBtdt

where Sit denotes the traded stock i, for i = 1, ..., n and Bt the money
bank account.

6. αit are scalar deterministic functions of time and γit are (1,n) determin-
istic vector functions of time.

7. We assume a European call option is written on each stock. Default of
the counterparty/writer of the option is described by the process Yt =
Nt. Default occurs at the first jump of the Cox process Nt.

We denote the payoff function of each European call on stock SiT as Φ(SiT )
and write the lower good deal problem as

min
h,g,ϕ

EQ

[
e
∫ T
t −(ru+qλu)du

n∑
i=1

Φ(SiT )|Ft

]
dSit = rSitdt+ Sit γ̄

i
tdW̃t

dλt = [κ (θ − λt) + gtσλt]dt+ σ
√
λtdWt

λQt = λt(1 + ϕt)

ᾱt + γ̄th̄t = r

ϕt ≥ −1
n∑
i=1

h2
i + g2λ+ ϕ2λt ≤ C2

where ᾱ = (αi)i=1,..n is a (n,1)-vector, γ̄ = (γ̄i)i=1,..n is a (n,n) matrix and
h̄ = (hi)i=1,..n, g and ϕ are the Girsanov kernels for the EMM measure change:

Lt =
dQ

dP
on FT

dLt = Lt

n∑
i=1

hi(t)dW̃
P
i (t) + Ltgt

√
λdW P (t) + Lt−ϕt(dNt − λtdt)

L0 = 1
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The Girsanov kernels hi are computed as the solution to the linear equation
system given by:

ᾱt + γ̄th̄t = r

As before, the minimal martingale measure h̄ does not change, but the mini-
mal martingale measure g and ϕ are 0. We solve the problem through meth-
ods similar to the previous sections and the lower good deal bound portfolio
value V n

LGB becomes:

V n
LGB = VMM −

√√√√C2 −
n∑
i=1

h2
iZ(t)

where VMM is the sum of the individual V i
MM computed as in Proposition

3.3 and Z(t) computed as in Proposition 3.3 for the new VMM .

Proposition 4.1 Let assumptions 4.1 hold. Let VMM be the price of a vul-
nerable portfolio of options computed under the minimal martingale measure.
Let Z be the derivative of the optimal value function V with respect to the
variable y =

√
C2 −

∑n
i=1 h

2
i and evaluated at yMM = 0. The lower good deal

bound price for a vulnerable option is given by:

VLGB = VMM −

√√√√C2 −
n∑
i=1

h2
iZ

where

VMM = EMM
t

[
exp

{
−
∫ T

t

(ru + qλu)du

} n∑
i=1

Φ(SiT )

]
and

Z(t, s, λ) =

∫ T

t

EMM
t,s,λ

[
exp

{
−
∫ u

t

r(τ) + qλ(τ)dτ

}√
λuM(u)

]
dτ.

where M(u) =

√
(qVMM)2(u, (Siu)

n
i=1, λu) +

(
∂VMM

∂λ
(u, (Siu)

n
i=1, λu)σ

)2
.

For the special case when all ρi = 0, i = 1, ..., n and κ,θ, σ are constants, the
upper/lower good deal bound price is given by:

VLGB = VMM

1− q

√√√√C2 −
n∑
i=1

h2
i

∫ T

t

EQ̂
t [
√
λu]
√

1 + σ2B2(u, T, q)du
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with EQ̂
t [
√
λu] given by equation (3.30) and

VMM = exp {−r(T − t) + [A(t, T, q) +B(t, T, q)qλt]}
n∑
i=1

EMM
t

[
Φ(SiT )

]
where EMM

t [Φ(SiT )] is the Black Scholes price for the option written on the
stock Si

B(t, T, q) =
2
(
eδ(T−t) − 1

)
(δ + qκ) (eδ(T−t) − 1) + 2δ

A(t, T, q) =

[
2δe(qκ+δ)(T−t)/2

(δ + qκ) (eδ(T−t) − 1) + 2δ

]2qκθ/σ2

with δ =
√

(qκ)2 + 2qσ2.

The individual good deal bound prices for each stock Sj from the option port-
folio are given by:

V j
LGB = V j

MM −

√√√√C2 −
n∑
i=1

h2
iZ

j

where VMM(Sj) and Z(Sj) are computed as in Proposition 3.3.

Proof. It is straightforward, by following exactly the same steps as in Propo-
sition 3.3.

This means it is easy to use the same setup as before in order to price the
value of a portfolio of derivatives traded with one counterparty. Appendix C
shows that lower good deal bound is fairly stable to the introduction of new
assets. For options deep in the money, the prices changes from 17.7698 to
17.8066 when we introduce 9 more assets. There are two main reasons for
this phenomenon. First, the value of Z(t) is close to zero. Second, as shown
in the last graph, the variable y =

√
C2 −

∑n
i=1 h

2
i changes very little with

the introduction of a new asset - by the introduction of 20 new assets, we
obtain a change of 0.8.

4.2 Good deal bounds for several counterparties

In this section, we are going to see how the introduction of a new counterparty
affects the good deal bound price of an asset. Our vulnerable option will be
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written on the stock S with dynamics given by:

dSt = αStdt+ γStdW̃t

We can trade the vulnerable option either with counterparty 1 or with coun-
terparty 2. The default indicator of counterparty i is given by a point process
N i with intensity λi, which is modeled as an affine process:

dλit = κi(θi − λit)dt+ σi
√
λitdW

P
i

where W P
i , i = 1, 2 are two Wiener processes, with dW P

1 dW
P
2 = ρdt. We

denote the correlation between the two counterparties intensities of default
as ρ.

Assumption 4.2

1. Let the filtration space (Ω,F , P,F) be given, where F is the internal
filtration generated by the processes W P , W̃ P and N , defined below.

2. W P
i , i = 1, 2 and W̃ P are P-Wiener processes and dW P

i dW̃
P = ρidt,

i = 1, 2 and dW P
1 dW

P
2 = ρdt. N i is a Cox process with predictable

intensity λit.

3. We assume the intensity of the Cox process λit to follow the dynamics

dλit = κi(θi − λit)dt+ σi
√
λitdW

P
i

4. κi, θi, σi are scalar deterministic functions of time, i = 1, 2.

5. The market model under the objective probability measure P is given by
the following dynamics:

dSt = Stαtdt+ StγtdW̃
P
t

dBt = rBtdt

where St denotes a traded stock and Bt the money bank account.

6. αt and γt are scalar deterministic functions of time.

7. We assume a European call option is written on the stock. Default of
the counterparty/writer of the option is described by the process Y i

t =
N i
t . Default of counterparty i, i = 1, 2 occurs at the first jump of the

Cox process N i
t .
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I am trying to compute the lower good deal bound price for a derivative on
S with counterparty 1. This is formulated as follows:

max
h,g1,g2,ϕ1,ϕ2

EQ[exp

{
−
∫ T

t

(ru + q1λ1
u)du

}
Φ(ST )|Ft]

dSt = rStdt+ StγtdW̃
Q
t

λQ1 = λ1(1 + ϕ1)

λQ2 = λ2(1 + ϕ2)

dλ1
t =

(
κ1(θ1 − λ1

t ) + g1σ
1
√
λ1
t

)
dt+ σ1

√
λ1
tdW

Q
1

dλ2
t =

(
κ2(θ2 − λ2

t ) + g2σ
2
√
λ2
t

)
dt+ σ2

√
λ2
tdW

Q
2

αt + γtht = r

ϕ1 ≥ −1

ϕ2 ≥ −1

h2
t + ϕ2

1λ
1 + ϕ2

2λ
2 + g2

1λ
1 + g2

2λ
2 ≤ C2

Please note that λ2 does not affect the payoff function and, in case of default
of the counterparty 2, we do not have a jump in the price process for the asset
traded with counterparty 1. However, the coefficients of the process λQ1 will
change, since dW P

1 dW
P
2 = ρdt - the two Wiener processes are correlated.

However, this will have a small impact on the price of our option. If you
remember the numerical results from section 3.4, a change in the parameters
of the intensity process has only a very small effect on the price of a vulnerable
option. Basically, good deal bounds shares the same flaw as the generic credit
risk framework of today, in not capturing contagion effects properly.

5 Conclusion

We have developed a method for pricing counterparty risk by using good deal
bounds. The method imposes a new restriction in the arbitrage free model by
setting upper bounds on the Sharpe ratios of the assets. The potential prices
which are eliminated represent unreasonably good deals. The constraint
on the Sharpe ratio translates into a constraint on the stochastic discount
factor. Thus, one can obtain tight pricing bounds. Previous literature on
counterparty risk and good-deal bounds involved structural models. We allow
for counterparty risk to be given by intensity-based models. Also, previous
literature on counterparty risk with intensity models uses pricing directly
under the risk neutral measure - which is not unique. We provide a link
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between the objective probability measure and the range of potential risk
neutral measures which has an intuitive economic meaning.
Also, we have studied numerically the tightness of the bounds and the change
in the GDB interval due to various factors. Thus, we have noticed that the
choice of GDB constraint (which is left at the discretion of the modeler) is
not the most important factor in determining the lower good deal bound
price. The “amount of counterparty risk”undertaken, as reflected by the loss
to default parameter and the current intensity of default, has a bigger impact
on the price then the constraint parameter. The high impact of the price of
λ0 - the current level of the probability of default - also points out toward
an “old time wisdom“- i.e. the most important part of risk management is
to choose your counterparty and monitor it carefully.
Finally, we underline the use of good deal bounds for risk management. We
prove the link between the lower good deal bound price and the coherent risk
measures. In this context, we also study portfolio effects on the good deal
bounds prices. We notice that the GDB are robust to the introduction of
new assets in the portfolio traded with our counterparty. Also, the techniques
and results used in computing the price of an asset are easily transferable to
the risk management framework for a portfolio. However, when it comes to
aggregating the effect of different counterparties, good deal bounds are not
good at capturing the effect of contagion, a feature transmitted through the
generic form of modeling default risk employed today.
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A Appendix: The Simple Poisson Process Case

This appendix will deal with the special case when the Cox process has a
constant intensity, being reduced to the Poisson process. In this case, we can
obtain closed form solutions for the price of the vulnerable options. Results
can be easily generalized for the case of Poison processes with piecewise
constant intensity.
In the case of deterministic intensity, the upper good deal bound problem
becomes:

max
h,g,ϕ

EQ
t

[
exp

{
−
∫ T

t

(rs + qλQs )ds

}
Φ(ST )

]
dSt = rStdt+ StγtdW̃t

λQt = λt(1 + ϕt)

αt + γtht = r

ϕt ≥ 1

h2
t + ϕ2

tλ ≤ C2

By solving the embedded static problem, we obtain the following optimal
Girsanov kernel

• ĥt = r−αt
γt

, ϕ̂t = max

[
−
√

C2−h2

λ
,−1

]
.

The case ϕ̂ = −1 reduces the jump intensity under Q to zero. Hence forward,

we will analyze only the case ϕ̂u/l = ∓
√

C2−(α−r
γ

)2

λ

We have the following valuation formula: Provided no default occurred until
the time of the pricing t, the general pricing formula for a defaultable claim
with payoff X and recovery to market value, as defined before is:

Πt = EQ
t

[
exp

{
−
∫ T

t

(rs + qλQs )ds

}
X

]
In our case, since both the interest rate and the jump intensity of default are
constant, we have:

Π = exp
{
−(r + qλQ)(T − t)

}
EQ
t [max[ST −K, 0]] (3.23)

We obtain the expectation EQ
t [max[ST−K, 0]] as ser(T−t)N [d1(t, s)]−KN [d2(t, s)].

Hence, the upper/lower good deal bound price for a vulnerable option, in the
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case of constant intensity is given by:

Πu/l = e−(r+qλQ
u/l

)(T−t) {ser(T−t)N [d1(t, s)]−KN [d2(t, s)]
}

(3.24)

where:

d1(t, s) =
1

σ
√
T − t

{
ln
( s
K

)
+

(
r +

1

2
σ2

)
(T − t)

}
,

d2(t, s) = d1(t, s)− σ
√
T − t,

λQu/l = λ

1∓

√
C2 − (α−r

γ
)2

λ



B Appedix: Computations for ∂V
∂y (yMM) - the

sensitivity of V with respect to the GDB

constraint

In this section, we detail the computations needed in order to obtain the
sensitivity of the lower good deal bounds pricing equation with respect to
the variable y =

√
C2 − h2 We re-write the HJB as

∂V

∂t
(t, s, y, λ) + Vssr + Vλ [κ (θ − λt) + gtσλt]− qV λt(1 + ϕt) +

1

2
γ2s2Vss

+
1

2
σ2λVλλ + ργσs

√
λVsλ − rV (t, s, y, λ) + ν[g2

t λ+ ϕ2
tλ+ h2

t − C2] = 0

where ν is the Langrange coefficient of the good deal bound constraint. We
apply the envelope theorem which allows us to derive the above PDE by
y =

√
C2 − h2 and denote ∂V

∂y
by Z. As it turns out, we obtain a different

PDE for Z:

∂Z

∂t
+ Zssr + Zλ [κ (θ − λt) + gtσλt]− qZλt(1 + ϕt)

+
1

2
γ2s2Zss +

1

2
σ2λZλλ + ργσs

√
λZsλ − rZ(t, s, y, λ)− ν2

√
C2 − h2 = 0

From the previous computations, we have obtained the Lagrange coefficient

ν = −1

2

√
λ
√

(qV )2 + (σVλ)2

√
C2 − h2
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and replace ν in the PDE for Z. Note that both the values for g and ϕ and
the terms qV and Vλ should be evaluated at the minimal martingale value.
The values for gMM and ϕMM are 0. Our PDE becomes

∂Z

∂t
+ Zssr + Zλ [κ (θ − λt) + gtσλt]− qZλt(1 + ϕt)

+
1

2
γ2s2Zss +

1

2
σ2λZλλ + ργσs

√
λZsλ − rZ(t, s, y, λ) +

√
λ
√

(qV MM)2 + (σV MM
λ )2 = 0

We solve this by Feynman-Kac:

Z =

∫ T

t

EMM
t,s,λ

[
exp

{
−
∫ u

t

(rτ + qλτ )dτ

}√
λu

√
(qV MM)2 + (σV MM

λ )2

]
du

We can distinguish 2 situations:

• for ρ 6= 0, we need to insert MC simulation results and solve the PDE
numerically. In order to compute V MM

λ , we use the maximum likelihood
method as explained in Glasserman (2003)

• for ρ = 0, we can go further:
from V MM

λ = −V MM
t qB(t, T, q), we get that:

Z =

∫ T

t

EMM
t,s,λ

[
e{−

∫ u
t (rτ+qλτ )dτ}√λuV

MM
√
q2 + (σqB(u, T, q))2

]
du

=

∫ T

t

q
√

1 + (σB(u, T, q))2EMM
t,λ

[
exp

{
−
∫ T

t

(rτ + qλτ )dτ

}√
λu

]
EMM
t,s [Φ(ST )] du

We need to compute

A = EMM
t,λ

exp

{
−
∫ T

t

(rτ + qλτ )dτ

}
︸ ︷︷ ︸

Mt

√
λu︸︷︷︸
X

 = EMM
t,λ [MtX]

= EMM
t,λ [mTRTX] (3.25)

where mT =
EMM [exp{∫ t0 qλτdτ}]

EMM [exp{∫ T0 qλτdτ}]]
and RT =

exp{− ∫ Tt (rτ+qλτ )dτ}
mT

.

We have exp
{
−
∫ T
t

(rτ + qλτ )dτ
}
≥ 0 by definition.Also, we note that
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EMM [RT ] = 1. These facts allow us to use RT as a Radon-Nycodim
derivative in a change of measure and define a measure Q̂ by:

dQ̂ = RTdQ
MM on FT (3.26)

Using Bayes’ Theorem, we can re-write (3.25) as:

A = mTE
MM [RT | Ft]EQ̂ [Z| Ft]

If we define the likelihood process Lt, 0 ≤ t ≤ T , by:

dQ̂ = LtdQ
MM on Ft

by standard theory, we have:

Lt = EMM [LT | Ft] = EMM [RT | Ft]

Note that even if LT = RT , we cannot draw the conclusion Lt = Rt for

t < T . This is a consequence of the fact that exp
{
−
∫ T
t

(rτ + qλτ )dτ
}

is not a traded asset.
We notice that

mTE
MM [RT | Ft] = EMM

[
exp

{
−
∫ T

t

(rτ + qλτ )dτ

}∣∣∣∣Ft]
Thus, in order to proceed, we need to calculate the following:

– EMM
[

exp
{
−
∫ T
t

(rτ + qλτ )dτ
}∣∣∣Ft],

– the dynamics for Lt in order to identify the Girsanov transforma-
tion QMM → Q̂,

– EQ̂ [X| Ft]

We know from the computations linked to V MM that

EMM

[
exp

{
−
∫ T

t

(rτ + qλτ )dτ

}∣∣∣∣Ft] = e{−[r∆T+A(t,T,q)+B(t,T,q)qλt]}

From the definition of Lt, one can easily derive the dynamics of Lt:

dLt = −σq
√
λB(t, T, q)LtdWt

and then derive the dynamics of λ under Q̂ are given by:

dλt = [κ(θ − λ)− σ2qλB(t, T, q)]dt+ σ
√
λdŴt
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Finally, we need to compute EQ̂
[√

λ
∣∣∣Ft]. For a detailed proof that λ

is non-central chi-square distributed with weighting factor

η =
qσ2

4
B(t, T, q), (3.27)

degrees of freedom

ν =
κθ

σ2
, (3.28)

and non-centrality factor

Λ =
4

σ2

∂
∂T
B(t, T, q)

B(t, T, q)
λ(t) (3.29)

under the Q̂ measure, we refer to chapter 7 from Schönbucher (2003).
This means that

√
λt is non-central chi distributed with non-centrality

factor Λ and the formula for the mean is given by:

EQ̂[
√
λ] =

√
π

2
ηL

(ν/2−1)
1/2

(
−Λ2

2

)
(3.30)

where L
(a)
i (x) is the generalized Laguerre polynomial and η,ν and Λ

are given by (3.27), (3.28) and (3.29).
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C Appendix: Graphs and Tables

The variable C (or the size of the GDB constraint)
C 2 2.5 3 4

St=20,K=30 BS 0.9291 0.9291 0.9291 0.9291
MM 0.903 0.903 0.903 0.903
VLGB 0.7763 0.7445 0.7127 0.6491

St=30,K=30 BS 5.2735 5.2735 5.2735 5.2735
MM 5.1252 5.1252 5.1252 5.1252
VLGB 4.4063 4.2256 4.0451 3.6843

St=50,K=30 BS 21.7537 21.7537 21.7537 21.7537
MM 21.1418 21.1418 21.1418 21.1418
VLGB 18.1763 17.4312 16.6866 15.1982
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The rate of recovery

q 0.2 0.4 0.6 0.8
St=20,K=30 BS 0.9291 0.9291 0.9291 0.9291

MM 0.9237 0.9192 0.9161 0.9151
VLGB 0.8427 0.7579 0.6749 0.5939

St=30,K=30 BS 5.2735 5.2735 5.2735 5.2735
MM 5.243 5.2173 5.1998 5.1938
VLGB 4.7829 4.3016 3.8309 3.3706

St=50,K=30 BS 21.7537 21.7537 21.7537 21.7537
MM 21.628 21.522 21.4498 21.4248
VLGB 19.73 17.7446 15.8027 13.9041
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The initial intensity of default
λ 0.01 0.03 0.1 0.3

St=20,K=30 BS 0.9291 0.9291 0.9291 0.9291
MM 0.9207 0.903 0.8437 0.6948
VLGB 0.8274 0.7445 0.5733 0.3092

St=30,K=30 BS 5.2735 5.2735 5.2735 5.2735
MM 5.2256 5.1252 4.7885 3.9436
VLGB 4.6961 4.2256 3.2541 1.7548

St=50,K=30 BS 21.7537 21.7537 21.7537 21.7537
MM 21.5562 21.1418 19.7531 16.2679
VLGB 19.3719 17.4312 13.4234 7.2389
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The volatility of the intensity of default process

σ 0.05 0.1 0.2 0.4
St=20,K=30 BS 0.9291 0.9291 0.9291 0.9291

MM 0.9184 0.9184 0.9185 0.9185
VLGB 0.7572 0.7571 0.7569 0.7557

St=30,K=30 BS 5.2735 5.2735 5.2735 5.2735
MM 5.2129 5.213 5.2131 5.2135
VLGB 4.2978 4.2974 4.2958 4.2894

St=50,K=30 BS 21.7537 21.7537 21.7537 21.7537
MM 21.5038 21.504 21.5044 21.5064
VLGB 17.7291 17.7274 17.7206 17.6943
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The long term intensity of default

θ 0.05 0.2 0.4 0.5
St=20,K=30 BS 0.9291 0.9291 0.9291 0.9291

MM 0.9186 0.9192 0.9201 0.9205
VLGB 0.759 0.7571 0.7545 0.7531

St=30,K=30 BS 5.2735 5.2735 5.2735 5.2735
MM 5.2136 5.2173 5.2222 5.2247
VLGB 4.3077 4.297 4.2823 4.2747

St=50,K=30 BS 21.7537 21.7537 21.7537 21.7537
MM 21.5068 21.522 21.5423 21.5524
VLGB 17.7698 17.7256 17.6647 17.6335
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Introducing new assets into the portfolio

Assets 1 10
St=20,K=30 ϕ 2.4955 2.4546

Z 0.0647 0.0647
VLGB 0.759 0.7605

St=30,K=30 ϕ 2.4955 2.4546
Z 0.3669 0.3669

VLGB 4.3077 4.3166
St=50,K=30 ϕ 2.4955 2.4546

Z 1.5137 1.5137
VLGB 17.7698 17.8066
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Introducing correlation between St and λt

ρ 0 0.3 0.6 0.9
St=20,K=30 MM 0.9055 0.9984 1.0672 1.1718

Z 0.0651 0.08761 0.1073 0.1267
VLGB 0.743 0.7798 0.7993 0.8556

St=30,K=30 MM 4.953 5.012 5.2048 5.4080
Z 0.3633 0.41833 0.4839 0.5460

VLGB 4.0462 3.9681 3.9973 4.0455
St=50,K=30 MM 20.8957 21.01 21.2336 21.2646

Z 1.5775 1.6959 1.8234 1.9407
VLGB 16.9589 16.7778 16.6833 17.1407
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Chapter 4

A General Theory of
Markovian Time Inconsistent
Stochastic Control Problems

Joint work with Tomas Bjork

We develop a theory for stochastic control problems which, in various ways,
are time inconsistent in the sense that they do not admit a Bellman optimality
principle. We attach these problems by viewing them within a game theoretic
framework, and we look for Nash subgame perfect equilibrium points. For a
general controlled Markov process and a fairly general objective functional
we derive an extension of the standard Hamilton-Jacobi-Bellman equation,
in the form of a system of non-linear equations, for the determination for the
equilibrium strategy as well as the equilibrium value function. All known
examples of time inconsistency in the literature are easily seen to be special
cases of the present theory. We also prove that for every time inconsistent
problem, there exists an associated time consistent problem such that the
optimal control and the optimal value function for the consistent problem
coincides with the equilibrium control and value function respectively for the
time inconsistent problem. We also study some concrete examples.
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1 Introduction

In a standard continuous time stochastic optimal control problem the object
is that of maximizing (or minimizing) a functional of the form

E

[∫ T

0

C (s,Xs, us) ds+ F (XT )

]
.

where X is some controlled Markov process, us is the control applied at time
s, and F , C are given functions. A typical example is when X is a controlled
scalar SDE of the form

dXt = µ(Xt, ut)dt+ σ(Xt, ut)dWt,

with some initial condition X0 = x0. Later on in the paper we will allow for
more general dynamics than those of an SDE, but in this informal section
we restrict ourselves for simplicity to the SDE case.

1.1 Dynamic programming and time consistency

A standard way of attacking a problem like the one above is by using Dynamic
Programming (henceforth DynP). We restrict ourselves to control laws, i.e.,
the control at time s, given that Xs = y, is of the form u(s, y) where the
control law u is a deterministic function. We then embed the problem above
in a family of problems indexed by the initial point. More precisely we
consider, for every (t, x), the problem Pt,x of maximizing

Et,x

[∫ T

t

C (s,Xs, us) ds+ F (XT )

]
.

given the initial condition Xt = x. Denoting the optimal control law for Pt,x
by utx(s,Xs) and the corresponding optimal value function by V (t, x) we see
that the original problem corresponds to the problem P0,x0 .

We note that ex ante the optimal control law utx(s,Xs) for the problem Pt,x
must be indexed by the initial point (t, x). However, problems of the kind
described above turn out to be time consistent in the sense that we have
the Bellman optimality principle, which roughly says that the optimal
control is independent of the initial point. More precisely: if a control law
is optimal on the full time interval [0, T ], then it is also optimal for any
subinterval [t, T ]. Given the Bellman principle, it is easy to informally derive
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the Hamilton-Jacobi-Bellman (henceforth HJB) equation

∂V

∂t
(t, x) + sup

u

{
C(t, x, u) + µ(t, x, u) +

∂V

∂x
(t, x)

1

2
σ2(t, x, u)

∂2V

∂x2
(t, x)

}
= 0,

V (T, x) = F (x),

for the determination of V . One can (with considerable effort) show rigor-
ously that, given enough regularity, the optimal value function will indeed
satisfy the HJB equation. On can also (quite easily) prove a verification
theorem which says that if V is a solution of the HJB equation, then V is
indeed the optimal value function for the control problem, and the optimal
control law is given by the maximizing u in the HJB equation.

We end this section by listing some important points concerning time con-
sistency.

Remark 1.1 The main reasons for the time consistency of the problem above
are as follows.

• The integral term C (s,Xs, us) in the problem Pt,x is allowed to depend
on s, Xs and us. It is not allowed to depend on the initial point (t, x).

• The terminal evaluation term is allowed to be of the form Et,x [F (XT )],
i.e the expected value of a non-linear function of the terminal value XT .
Time consistency is then a relatively simple consequence of the law of
iterated expectations. We are not allowed to have a term of the form
G(Et,x [XT ]), which is a non-linear function of the expected value.

• We are not allowed to let the terminal evaluation function F depend
on the initial point (t, x).

1.2 Three disturbing examples

We will now consider three seemingly simple examples from financial eco-
nomics, where time consistency fail to hold. In all these cases we consider a
standard Black-Scholes model for an underlying stock price S, as well as a
bank account B with short rate r.

dSt = αStdt+ σStdWt,

dBt = rBtdt.

We consider a self financing portfolio based on S and B where ut is the
number of dollars invested in the risky asset S, and c is the consumption
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rate at time t. Denoting the market value process of this portfolio by X, we
have

dXt = [rXt + (α− r)ut − ct]dt+ σutdWt,

and we now consider three indexed families of optimization problems. In all
cases the (naive) objective is to maximize the objective functional J(t, x,u),
where (t, x) is the initial point and u is the control law.

1. Hyperbolic discounting

J(t, x,u) = Et,x

[∫ T

t

ϕ(s− t)h(cs)dt+ ϕ(T − t)F (XT )

]
In this problem h is the local utility of consumption, F is the utility
of terminal wealth, and ϕ is the discounting function. This problem
differs from a standard problem by the fact that the initial point in time
t enters in the integral (see Remark 1.1). Obviously; if ϕ is exponential
so ϕ(s−t) = e−a(s−t then we can factor out eat and convert the problem
into a standard problem with objective functional

J(t, x,u) = Et,x

[∫ T

t

e−ash(cs)dt+ e−aTF (XT )

]
One can show, however, that every choice of the discounting function
ϕ, apart from the the exponential, case, will lead to a time inconsistent
problem. More precisely, the Bellman optimality principle will not
hold.

2. Mean variance utility

J(t, x,u) = Et,x [XT ]− γ

2
V art,x (XT )

This case is a continuous time version of a standard Markowitz in-
vestment problem where we want to maximize utility of final wealth.
The utility of final wealth is basically linear in wealth, as given by
the term Et,x [XT ], but we penalize the risk by the conditional variance
γ
2
V art,x (XT ). This looks innocent enough, but we recall the elementary

formula
V ar[X] = E[X2]− E2[X].

Now, in a standard time consistent problem we are allowed to have
terms like Et,x [F (XT )] in the objective functional, i.e. we are allowed
to have the expected value of a non-linear function of terminal wealth.



1. INTRODUCTION 135

In the present case, however we have the term (Et,x [X])2. This is
not a non-linear function of terminal wealth, but instead a non-linear
function of the expected value of terminal wealth, and we thus have a
time inconsistent problem (see Remark 1.1).

3. Endogenous habit formation

J(t, x,u) = Et,x [ln (XT − x+ β)] , β > 0.

In this case we basically want to maximize log utility of terminal wealth.
In a standard problem we would have the objective Et,x [ln (XT − d)]
where d > 0 is the lowest acceptable level of terminal wealth. In our
problem, however, the lowest acceptable level of terminal wealth is
given by x − β and it thus depends on your wealth Xt = x at time t.
This again leads to a time inconsistent problem.

1.3 Approaches to handle time inconsistency

In all the three examples of the previous subsection we are faced with a time
inconsistent family of problems, in the sense that if for some fixed initial
point (t, x) we determine the control law û which maximizes J(t, x,u), then
at some later point (s,Xs) the control law û will no longer be optimal for
the functional J(s,Xs,u). It is thus conceptually unclear what we mean by
“optimality” and even more unclear what we mean by “an optimal control
law”, so our first task is to specify more precisely exactly which problem we
are trying to solve. There are then at least three different ways of handling
a family of time inconsistent problems, like the ones above

• We dismiss the entire problem as being silly.

• We fix one initial point, like for example (0, x0), and then try to find the
control law û which maximizes J(0, x0,u). We then simply disregard
the fact that at a later points in time such as (s,Xs) the control law
û will not be optimal for the functional J(s,Xs,u). In the economics
literature, this is known as pre-commitment.

• We take the time inconsistency seriously and formulate the problem in
game theoretic terms.

All of the three strategies above may in different situations be perfectly
reasonable, but in the present paper we choose the last one. The basic idea
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is then that when we decide on a control action at time t we should explicitly
take into account that at future times we will have a different objective
functional or, in more loose terms, “our tastes are changing over time”. We
can then view the entire problem as a non-cooperative game, with one player
for each time t, where player t can be viewed as the future incarnation of
ourselves (or rather of our preferences) at time t. Given this point of view,
it is natural to look for Nash equilibria for the game, and this is exactly our
approach.

In continuous time it is far from trivial to formulate this intuitive idea in
precise terms. We will do this in the main text below but a rough picture of
the game is as follows.

• We consider a game with one player at each point t in time. This
player is referred to as “player t”. You may think of player t as a
future incarnation of yourself, but conceptually it may be easier to think
of the game as being played by a continuum of completely different
individuals.

• Depending on t and on the position x in space, player t will choose a
control action. This action is denoted by u(t, x), so the strategy chosen
by player t is given by the mapping x 7−→ u(t, x).

• A control law u can thus be viewed as a complete description of the
chosen strategies of all players in the game.

• The reward to player t is given by the functional J(t, x,u). We note that
in the three examples of the previous section it is clear that J(t, x,u)
does not depend on the actions taken by any player s for s < t, so
in fact J does only depend on the restriction of the control law u to
the time interval [t, T ]. It is also clear that this is really a game, since
the reward to player t does not only depend on the strategy chosen by
himself, but also by the strategies chosen by all players coming after
him in time.

We can now loosely define the concept of a “Nash subgame perfect equilib-
rium point” of the game. This is a control law û satisfying the following
condition:

• Choose an arbitrary point t in time.

• Suppose that every player s, for all s > t, will use the strategy û(s, ·).
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• Then the optimal choice for player t is that he/she also uses the strategy
û(t, ·).

The problem with this “definition” in continuous time is that the individual
player t does not really influence the outcome of the game at all. He/she
only chooses the control at the single point t, and since this is a time set of
Lebesgue measure zero, the control dynamics will not be influenced. For a
proper definition we need some sort of limiting argument, which is given in
the main text below.

1.4 Previous literature

The game theoretic approach to time inconsistency using Nash equilibrium
points as above has a long history starting with Strotz (1955) where a de-
terministic Ramsay problem is studied. Further work along this line in con-
tinuous and discrete time is provided in Goldman (1980), Krusell and Smith
(2003), Peleg and Menahem (1973), and Pollak (1968).

Recently there has been renewed interest in these problems. In the interest-
ing, and mathematically very advanced, papers Ekeland and Lazrak (2006)
and Ekeland and Pirvu (2007), the authors consider optimal consumption
and investment under hyperbolic discounting (Problem 1 in our list above)
in deterministic and stochastic models from the above game theoretic point
of view. To our knowledge, these papers were the first to provide a precise
definition of the equilibrium concept in continuous time. The authors derive,
among other things, an extension of the HJB equation to a system of PDEs
including an integral term, and they also provide a rigorous verification the-
orem. They also, in a tour de force, derive an explicit solution for the case
when the discounting function is a weighted sum of two exponential discount
functions. Our present paper is much inspired by these papers, in particular
for the definition of the equilibrium law.

In Basak and Chabakauri (2008) the authors undertake a deep study of the
mean variance problem within a Wiener driven framework. This is basically
Problem 2 in the list above, but the authors also consider the case of multiple
assets, as well as the case of a hidden Markov process driving the parame-
ters of the asset price dynamics. The authors derive an extension of the
Hamilton Jacobi Bellman equation and manage, by a number of very clever
ideas, to solve this equation explicitly for the basic problem, and also for the
above mentioned extensions. The paper has two limitations: Firstly, from a
mathematical perspective it is somewhat heuristic, the equilibrium concept
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is never given a precise definition, and no verification theorem is provided.
Secondly, and more importantly, the methodology depends heavily on the
use of a “total variance formula”, which in some sense (partially) replaces
the iterated expectations formula in a standard problem. This implies that
the basic methodology cannot be extended beyond the mean variance case.
The paper is extremely thought provoking, and we have benefited greatly
from reading it.

1.5 Contributions of the present paper

The object of the present paper is to undertake a rigorous study of time
inconsistent control problems in a reasonably general Markovian framework,
and in particular we do not want to tie ourselves down to a particular applied
problem. We have therefore chosen a setup of the following form.

• We consider a general controlled Markov process X, living on
some suitable space (details are given below). It is important to notice
that we do not make any structural assumptions whatsoever about
X, and we note that the setup obviously includes the case when X
is determined by a system of SDEs driven by a Wiener and a point
process.

• We consider a functional of the form

J(t, x,u) = Et,x

[∫ T

t

C (x,Xu
s ,u(Xu

s )) ds+ F (x,Xu
T )

]
+G (x,Et,x [Xu

T ]) .

We see that with the choice of functional above, time inconsistency enters at
several different points. Firstly we have the appearance of the present state
x in the local utility function C, as well as in the functions F and G, and this
leads of course to time inconsistency. Secondly, in the term G (x,Et,x [Xu

T ])
we have, even forgetting about the appearance of x, a non linear function G
acting on the conditional expectation, again leading to time inconsistency.

Note that, for notational simplicity we have not explicitly included depen-
dence on running time t. This can always be done by letting running time
be one component of the state process X, so the setup above also allows for
expressions like F (t, x,Xu

T ) etc, thus allowing (among many other things) for
hyperbolic discounting.

This setup is studied in some detail in continuous as well as in discrete time.
The discrete time results are parallel to those in continuous time, and our
main results in continuous time are as follows.
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• We provide a precise definition of the Nash equlibrium concept. (This
is done along the lines of Ekeland and Lazrak (2006) and Ekeland and
Pirvu (2007)).

• We derive an extension of the standard Hamilton-Jacobi-Bellman equa-
tion to a non standard system of equations for the determination of the
equilibrium value function V .

• We prove a verification theorem, showing that the solution of the ex-
tended HJB system is indeed the equilibrium value function, and that
the equilibrium strategy is given by the optimizer in the equation sys-
tem.

• We prove that to every time inconsistent problem of the form above,
there exists an associated standard, time consistent, control prob-
lem with the following properties:

– The optimal value function for the standard problem coincides
with the equilibrium value function for the time inconsistent prob-
lem.

– The optimal control law for the standard problem coincides with
the equilibrium startegy for the time inconsistent problem.

• We solve some specific test examples.

Our framework and results extends the existing theory considerably. As
we noted above, hyperbolic discounting is included as a special case of the
theory. The mean variance example from above is of course also included.
More precisely it is easy to see that it corresponds to the case when

C = 0, F (x, y) = y − γ

2
y2, G (x, y) =

γ

2
y2

We thus extend the existing literature by allowing for a considerably more
general utility functional, and a completely general Markovian structure.
The existence of the associated equivalent standard control problem is to our
knowledge a completely new result.

1.6 Structure of the paper

Since the equilibrium concept in continuous time is a very delicate one, we
start by studying a discrete time version of our problem in Section 2. In
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discrete time there are no conceptual problems with the equilibrium concept,
but the arguments are sometimes quite delicate, the expressions are rather
complicated, and great care has to be taken. It is in fact in this section that
the main work is done. In Section 3 we study the continuous time problem
by taking formal limits for a discretized problem, and using the results of
the Section 2. This leads to an extension of the standard HJB equation to
a system of equations with an embedded static optimization problem. The
limiting procedure described above is done in an informal manner and it
is largely heuristic, so in order to prove that the derived extension of the
HJB equation is indeed the correct one we also provide a rigorous proof of
a verification theorem. In Section 4 we prove the existence of the associated
standard control problem, and in Section 5 we study some examples.

2 Discrete time

Since the theory is conceptually much easier in discrete time than in contin-
uous time, we start by presenting the discrete time version.

2.1 Setup

We consider a given controlled Markov process X, evolving on a measur-
able state space {X ,GX}, with controls taking values in a measurable control
space {U ,GU}. The action is in discrete time, indexed by the set N of nat-
ural numbers. The intuitive idea is that if Xn = x, then we can choose a
control un ∈ U , and this control will affect the transition probabilities from
Xn to Xn+1. This idea is formalized by specifying a family of transition
probabilities,

{pun(dz;x) : n ∈ N, x ∈ X , u ∈ U} .

For every fixed n ∈ N, x ∈ X and u ∈ U , we assume that pun(·;x) is a
probability measure on X , and for each A ∈ GX , the probability pun(A;x) is
jointly measurable in (x, u). The interpretation of this is that pun(dz;x) is the
probability distribution of Xn+1, given that Xn = x, and that we at time n
apply the control u, i.e.,

pun(dz;x) = P (Xn+1 ∈ dz |Xn = x, un = u) .

To obtain a Markov structure, we restrict the controls to be feedback con-
trol laws, i.e. at time n, the control un is allowed to depend on time n and



2. DISCRETE TIME 141

state Xn. We can thus write

un = un(Xn),

where the mapping u : N×X → U is measurable. Note the boldface no-
tation for the mapping u. In order to distinguish between functions and
function values, we will always denote a control law (i.e. a mapping) by us-
ing boldface, like u, whereas a possible value of the mapping will be denoted
without boldface, like, u ∈ U .

Given the family of transition probabilities we may define a corresponding
family of operators, operating on function sequences.

Definition 2.1 A function sequence is a mapping f : N×X → R, where
we use the notation (n, x) 7−→ fn(x).

• For each u ∈ U , the operator Pu, acting on the set of integrable function
sequences, is defined by

(Puf)n (x) =

∫
X
fn+1(z)pun(dz, x).

The corresponding discrete time “infinitesimal” operator Au is defined
by

Au = Pu − I,

where I is the identity operator.

• For each control law u the operator Pu is defined by

(Puf)n (x) =

∫
X
fn+1(z)pun(x)

n (dz, x),

and Au is defined correspondingly as

Au = Pu − I,

In more probabilistic terms we have the interpretation.

(Puf)n (x) = E [fn+1(Xn+1)|Xn = x, un = u] ,

and Au is the discrete time version of the continuous time infinitesimal op-
erator. We immediately have the following result.
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Proposition 2.1 Consider a real valued function sequence {fn(x)}, and a
control law u. The process fn(Xu

n ) is then a martingale under the measure
induced by u if and only if the sequence {fn} satisfies the equation

(Auf)n (x) = 0, n = 0, 1, . . . , T − 1.

Proof. Obvious from the definition of Au.

It is clear that for a fixed initial point (n, x) and a fixed control law u we
may in the obvious way define a Markov process denoted by Xn,x,u, where for
notational simplicity we often drop the upper index n, x and use the notation
Xu. The corresponding expectation operator is denoted by Eu

n,x [·], and we
often drop the upper index u, and instead use the notation En,x [·]. A typical
example of an expectation will thus have the form En,x [F (Xu

k )] for some real
valued function F and some point in time k.

2.2 Basic problem formulation

For a fixed (n, x) ∈ N × X , a fixed control law u, and a fixed time horizon
T , we consider the functional

Jn(x,u) = En,x

[
T−1∑
k=n

C (x,Xu
k ,uk(X

u
k )) + F (x,Xu

T )

]
+G (x,En,x [Xu

T ]) ,

(4.1)
Obviously, the functional J depends only on the restriction of the control law
u to the time set k = n, n+ 1, . . . , T − 1.

The intuitive idea is that we are standing at (n, x) and that we would like to
choose a control law u which maximizes J . We can thus define an indexed
family of problems {Pn,x} by

Pn,x : max
u

Jn(x,u),

where max is shorthand for the imperative “maximize!”. The complicating
factor here is that the family {Pn,x} is time inconsistent in the sense that if
û is optimal for Pn,x, then the restriction of û to the time set k, k+ 1, . . . , T
(for k > n) is not necessarily optimal for the problem Pk,Xu

k
. There are two

reasons for this time inconsistency:
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• The shape of the utility functional depends explicitly on the initial po-
sition x in space, as can be seen in the appearance of x in the expression
F (x,XT ) and similarly for the other terms. In other words, as the X
process moves around, our utility function changes, so at time t this
part of the utility function will have the form F (Xt, XT ).

• For a standard time consistent control problem we are allowed to have
expressions like En,x [G(XT )] in the utility function, i.e. we are allowed
to have the expected value of a non linear function G of the future pro-
cess value. Time consistency is then a relatively simple consequence of
the law of iterated expectations. In our problem above, however, we
have an expression of the form G (En,x [Xu

T ]), which is not the expecta-
tion of a non linear function, but a nonlinear function of the expected
value. We thus do not have access to iterated expectations, so the
problem becomes time inconsistent. On top of this we also have the
appearance of the present state x in the expression G (x,En,x [Xu

T ]).

The moral of all this is that we have a family of time inconsistent problems
or, alternatively, we have time inconsistent preferences. If we at some point
(n, x) decide on a feedback law û which is optimal from the point of view
of (n, x) then as time goes by, we will no longer consider û to be optimal.
To handle this problem we will, as outlined above, take a game theoretic
approach and we now go on the describe this in some detail.

2.3 The game theoretic formulation

The idea, which appears already in Strotz (1955), is to view the setup above
in game theoretic terms. More precisely we view it as a non-cooperative game
where we have one player at each point n in time. We refer to this player
as “player number n” and the rule is that player number n can only choose
the control un. One interpretation is that these players are different future
incarnations of yourself (or rather incarnations of your future preferences),
but conceptually it is perhaps easier to think of it as one separate player at
each n.

Given the data (n, x), player number n would, in principle, like to maximize
Jn(x,u) over the class of feedback controls u, but since he can only choose
the control un, this is not possible. Instead of looking for “optimal” feedback
laws, we take the game theoretic point of view and study so called subgame
perfect Nash equilibrium strategies. The formal definition is as follows.
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Definition 2.2 We consider a fixed control law û and make the following
construction.

1. Fix an arbitrary point (n, x) where n < T , and choose an arbitrary
control value u ∈ U .

2. Now define the control law ū on the time set n, n + 1, . . . , T − 1 by
setting, for any y ∈ X ,

ūk(y) =

{
ûk(y), for k = n+ 1, . . . , T − 1,

u, for k = n.

We say that û is a subgame perfect Nash equilibrium strategy if, for every
fixed (n, x), the following condition hold

sup
u∈U

Jn(x, ū) = Jn(x, û).

If an equlibrium control û exists, we define the equilibrium value function
V by

Vn(x) = Jn(x, û).

In more pedestrian terms this means that if player number n knows that all
players coming after him will use the control û, then it is optimal for player
number n also to use ûn.

Remark 2.1 An equivalent, and perhaps more concrete, way of describing
an equilibrium strategy is as follows.

• The equilibrium control ûT−1(x) is obtained by letting player T − 1
optimize JT−1(x,u) over uT−1 for all x ∈ X . This is a standard opti-
mization problem without any game theoretic components.

• The equilibrium control ûT−2 is obtained by letting player T − 2 choose
uT−2 to optimize JT−2, given the knowledge that player number T − 1
will use ûT−1.

• Proceed recursively by induction.

Obviously; for a standard time consistent control problem, the game theo-
retic aspect becomes trivial and the equilibrium control law coincides with
the standard (time consistent) optimal law. The equilibrium value function
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V will coincide with the optimal value function and, using dynamic program-
ming arguments, V is seen to satisfy a standard Bellman equation.

The main result of the present paper is that in the time inconsistent case, the
equilibrium value function V will satisfy a system of non linear equations.
This system of equations extend the standard Bellman equation, and for a
time consistent problem they reduce to the Bellman equation.

2.4 The extended Bellman equation

In this section we assume that there exists an equilibrium control law û
(which may not be unique) and we consider the corresponding equilibrium
value function V defined above. The goal of this section is to derive an system
of equations, extending the standard Bellman equation, for the determination
of V . This will be done in the following two steps:

• For an arbitrarily chosen control law u, we will derive a recursive equa-
tion for Jn(x,u).

• We will then fix (n, x) and consider two control laws. The first one
is the equilibrium law û, and the other one is the law u where we
choose u = un(x) arbitrarily, but follow the law û for all k with k =
n+ 1, . . . T − 1. The trivial observation that

sup
u∈U

Jn(x,u) = Jn(x, û) = Vn(x),

will finally give us the extension of the Bellman equation.

The reader with experience from dynamic programming (DynP) will recoginize
that the general program above is in fact more or less the same as for standard
(time consistent) DynP. However, in the present time inconsistent setting,
the derivation of the recursion in the first step is much more tricky than in
the corresponding step from DynP, and it also requires some completely new
constructions.

The recursion for Jn(x,u)

In order to derive the recursion for Jn(x,u) we consider an arbitrary initial
point (n, x), and we consider an arbitrarily chosen control law u. The value
taken by u at (n, x) will play a special role in the sequel, and for ease of
reading we will use the notation un(x) = u.
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We now go on to derive a recursion between Jn and Jn+1. This is conceptually
rather delicate, and sometimes a bit messy. In order to increase readability
we therefore carry out the derivation only for the case when the objective
functional does not contain the sum

∑T−1
k=n C (x,Xu

k ,uk(X
u
k )) in (4.1), and

thus has has the simpler form

Jn(x,u) = En,x [F (x,Xu
T )] +G (x,En,x [Xu

T ]) . (4.2)

We provide the result for the general case in Section 2.4. The derivation of
this is completely parallel to that of the simplified case.

We start by making the observation that Xn+1 will only depend on x and on
the control value un(x) = u motivating the notation Xu

n+1. The distribution
of Xk for k < n + 1 will, on the other hand depend on the control law u
(restricted to the interval [n, k]) so for k > n+ 1 we use the notation Xu

k .

We now go on to the recursion arguments. From the definition of J we have

Jn+1(Xu
n+1,u) = En+1

[
F (Xu

n+1, X
u
T )
]

+G
(
Xu
n+1, En+1 [Xu

T ]
)
, (4.3)

where for simplicity of notation we write En+1 [·] instead of En+1,Xu
n+1

[·]. We
now make the following definitions which will play a central role in the sequel.

Definition 2.3 For any control law u, we define the function sequences {fu
n }

and {gu
n}, where fu

n , g
u
n : X × X → R by.

fu
n (x, y) = En,x [F (y,Xu

T )] ,

gu
n(x) = En,x [Xu

T ] .

We also introduce the notation

fu,y
n (x) = fu

n (x, y).

The difference between fu,y
n and fu

n , is that we view fu
n as a function of the

two variables x and y, whereas fu,y
n is, for a fixed y, viewed as a function of

the single variable x.

From the definitions above it is obvious that, for any fixed y, the processes
fu,y
n (Xu

n ) and gu
n(Xu

n ) are martingales under the measure generated by u. We
thus have the following result.

Lemma 2.1 For every fixed control law u and every fixed choice of y ∈ X ,
the function sequence {fu,y

n } satisifes the recursion

(Aufu,y)n (x) = 0, n = 0, 1, . . . , T − 1.

fu,y
T (x) = F (y, x).



2. DISCRETE TIME 147

The sequence {gu
n} satisifes the recursion

(Augu)n (x) = 0, n = 0, 1, . . . , T − 1.

gu
T (x) = x.

Going back to (4.3) we note that, from the Markovian structure and the
definitions above, we have

En+1

[
F (Xu

n+1, X
u
T )
]

= fu
n+1(Xu

n+1, X
u
n+1)

En+1 [Xu
T ] = gu

n+1(Xu
n+1).

We can now write (4.3) as

Jn+1(Xu
n+1,u) = fu

n+1(Xu
n+1, X

u
n+1) +G

(
Xu
n+1, g

u
n+1(Xu

n+1)
)
.

Taking expectations gives us

En,x
[
Jn+1(Xu

n+1,u)
]

= En,x
[
fu
n+1(Xu

n+1, X
u
n+1)

]
+En,x

[
G
(
Xu
n+1, g

u
n+1(Xu

n+1)
)]
,

and, going back to the definition of Jn(x,u), we can write this as

En,x
[
Jn+1(Xu

n+1,u)
]

= Jn(x,u)

+ En,x
[
fu
n+1(Xu

n+1, X
u
n+1)

]
− En,x [F (x,Xu

T )]

+ En,x
[
G
(
Xu
n+1, g

u
n+1(Xu

n+1)
)]
−G (x,En,x [Xu

T ]) .

At this point it may seem natural to use the identities En,x [F (x,Xu
T )] =

fu
n (x, x) and En,x [Xu

T ] = gu
n(x), but for various reasons this is not a good

idea. Instead we note that

En,x [F (x,Xu
T )] = En,x [En+1 [F (x,Xu

T )]] = En,x
[
fu
n+1(Xu

n+1, x)
]
,

and that

En,x [Xu
T ] = En,x [En+1 [Xu

T ]] = En,x
[
gu
n+1(Xu

n+1)
]
.

Substituting these identities into the recursion above, we can now collect the
findings so far.

Lemma 2.2 The value function J satisfies the following recursion.

Jn(x,u) = En,x
[
Jn+1(Xu

n+1,u)
]

−
{
En,x

[
fu
n+1(Xu

n+1, X
u
n+1)

]
− En,x

[
fu
n+1(Xu

n+1, x)
]}

−
{
En,x

[
G
(
Xu
n+1, g

u
n+1(Xu

n+1)
)]
−G

(
x,En,x

[
gu
n+1(Xu

n+1)
])}

.
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The recursion for Vn(x)

We will now derive the fundamental equation for the determination of the
equlibrium function Vn(x). In order to do this we assume that there exists an
equilibrium control û. We then fix an arbitrarily chosen initial point (n, x)
and consider two strategies (control laws).

1. The first control law is simply the equilibrium law û.

2. The second control law u is slightly more complicated. We choose an
arbitrary point u ∈ U and then defined the control law u as follows

uk(y) =

{
u, for k = n,

ûk(y), for k = n+ 1, . . . , T − 1.

We now compare the objective function Jn for these two control laws. Firstly,
and by definition, we have

Jn(x, û) = Vn(x),

where V is the equilibrium value function defined earlier. Secondly, and also
by definition, we have

Jn(x,u) ≤ Jn(x, û),

for all choices of u ∈ U . We thus have the inequality

Jn(x,u) ≤ Vn(x),

for all u ∈ U , with equality if u = ûn(x). We thus have the basic relation

sup
u∈U

Jn(x,u) = Vn(x). (4.4)

We now make a small variation of Definition 4.3.

Definition 2.4 For arbitrary (k, z, y) we define the function sequences {fk}Tk=0

and {gk}Tk=0, where fk, gk : X × X → R by.

fk(z, y) = En,z
[
F
(
y,X û

T

)]
,

gn(z) = En,z
[
X û
T

]
.

We also introduce the notation

f yk (z) = fk(z, y).
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Using Lemma 2.2, the basic relation (4.4) now reads

sup
u∈U

{
En,x

[
Jn+1(Xu

n+1,u)
]
− Vn(x)

−
(
En,x

[
fu
n+1(Xu

n+1, X
u
n+1)

]
− En,x

[
fu
n+1(Xu

n+1, x)
])

−
(
En,x

[
G
(
Xu
n+1, g

u
n+1(Xu

n+1)
)]
−G

(
x,En,x

[
gu
n+1(Xu

n+1)
]))}

= 0.

W now observe that, since the control law u conicides with the equilibrium
law û on [n+ 1, T − 1], we have the following equalities

Jn+1(Xu
n+1,u) = Vn+1

(
Xu
n+1

)
,

fu
n+1(Xu

n+1, x) = fn+1(Xu
n+1, x),

gu
n+1(Xu

n+1) = gn+1(Xu
n+1).

We can thus write the recursion as

sup
u∈U

{
En,x

[
Vn+1

(
Xu
n+1

)]
− Vn(x)

−
(
En,x

[
fn+1(Xu

n+1, X
u
n+1)

]
− En,x

[
fn+1(Xu

n+1, x)
])

−
(
En,x

[
G
(
Xu
n+1, gn+1(Xu

n+1)
)]
−G

(
x,En,x

[
gn+1(Xu

n+1)
]))}

= 0.

The first line in this equation can be rewritten as

En,x
[
Vn+1

(
Xu
n+1

)]
− Vn(x) = (AuV )n (x).

The second line can be written as

En,x
[
fn+1(Xu

n+1, X
u
n+1)

]
− En,x

[
fn+1(Xu

n+1, x)
]

= En,x
[
fn+1(Xu

n+1, X
u
n+1)

]
− fn(x, x)−

(
En,x

[
fn+1(Xu

n+1, x)− fn(x, x)
])

= (Auf)n (x, x)− (Aufx)n (x).

To avoid misunderstandings: The first term (Auf)n (x, x), can be viewed as
the operator Au operating on the function sequence {h}n defined by hn(x) =
fn(x, x). In the second term, Au is operating on the function sequence fxn (·)
where the upper index x is viewed as a fixed parameter.

We rewrite the third line of the recursion as

En,x
[
G
(
Xu
n+1, gn+1(Xu

n+1)
)]
−G

(
x,En,x

[
gn+1(Xu

n+1)
])

= En,x
[
G
(
Xu
n+1, gn+1(Xu

n+1)
)]
−G(x, gn(x))

−
{
G
(
x,En,x

[
gn+1(Xu

n+1)
])
−G(x, gn(x))

}
.

In order to simplify this we need to introduce some new notation.
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Definition 2.5 The function sequence {G � g}k and, for a fixed z ∈ X , the
mapping Gz : X → R are defined by

(G � g)k (y) = G(y, gk(y)),

Gz(y) = G(z, y).

With this notation we can write

En,x
[
G
(
Xu
n+1, gn+1(Xu

n+1)
)]
−G

(
x,En,x

[
gn+1(Xu

n+1)
])

= Au (G � g)n (x)− {Gx(Pugn(x))−Gx(gn(x))} .

We now introduce the last piece of new notation.

Definition 2.6 With notation as above we define the function sequence
{
Hu
gG
}
k

by {
Hu
gG
}
n

(x) = Gx(Pugn(x))−Gx(gn(x)).

Finally, we may state the main result for discrete time models.

Theorem 2.1 Consider a functional of the form (4.2), and assume that an
equilibrium control law û exists. Then the the equilibrium value function V
satisfies the following equation.

sup
u∈U

{(AuV )n (x)− (Auf)n (x, x) + (Aufx)n (x) (4.5)

− Au (G � g)n (x) + Hu
gGn(x)

}
= 0,

VT (x) = F (x, x) +G(x, x), (4.6)

where the supremum above is realized by u = ûn(x).
Furthermore, for every fixed y ∈ X the function sequence f yn(x) is determined
by the recursion

Aûf yn(x) = 0, n = 0, . . . , T − 1, (4.7)

f yT (x) = F (y, x), (4.8)

and f(x, y) is given by
f(x, y) = f y(x).

The function sequence gn(x) is determined by the recursion.

Aûgn(x) = 0, n = 0, . . . , T − 1, (4.9)

gT (x) = x, (4.10)

In these recursions, the û occurring in the expression Aû is the equilibrium
control law.
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We now have some comments on this result.

• The first point to notice is that we have a system of recursion equation
(4.5)-(4.10) for the simultaneous determination of V , f and g.

• In the case when F (x, y) does not depend upon x, and there is no G
term, the problem trivializes to a standard time consistent problem.
The terms (Auf)n (x, x) + (Aufx)n (x) in the V -equation (4.5) cancel,
and the system reduces to the standard Bellman equation

(AuV )n (x) = 0,

VT (x) = F (x).

• In order to solve the V -equation (4.5) we need to know f and g but
these are determined by the equilibrium control law û, which in turn
is determined by the sup-part of (4.5).

• We can view the system as a fixed point problem, where the equilibrium
control law û solves an equation of the form M(û) = û. The mapping
M is defined by the following procedure.

– Start with a control u.

– Generate the functions f and g by the recursions

Auf yn(x) = 0,

Augn(x) = 0,

and the obvious terminal conditions.

– Now plug these choices of f and g into the V equation and solve
it for V . The control law which realizes the sup-part in (4.5) is
denoted by M(u). The optimal control law is determined by the
fixed point problem M(û) = û.

This fixed point property is rather expected since we are looking for
a Nash equilibrium point, and it is well known that such a point is
typically determined as fixed points of a mapping. We also note that
we can view the system as a fixed point problem for f and g.

• In the present discrete time setting, the situation is, however, simpler
than the fixed point argument above may lead us to believe. In fact;
looking closer at the recursions, it turns out that the system for V , f ,
and g is a formalization of the recursive strategy outlined in Remark
2.1.
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The general case

We now consider the more general functional form given in (4.1).

Jn(x,u) = En,x

[
T−1∑
k=n

C (x,Xu
k ,uk(X

u
k )) + F (x,Xu

T )

]
+G (x,En,x [Xu

T ]) .

(4.11)
The arguments for the C terms in the sum above are very similar to the
arguments for the F term. It is thus natural to introduce an indexed function
sequence defined by

ckn(x, y) = En,x
[
C(y,X û

k , ûk)
]
, 0 ≤ n ≤ k − 1,

where, as usual, û denotes the equilibrium law. The result is as follows. We
omit the proof, which is a small variation of the previous one.

Theorem 2.2 Consider a functional of the form (4.11), and assume that an
equilibrium control law û exists. Then the the equilibrium value function V
satisfies the following equation.

sup
u∈U
{(AuV )n (x) + C(x, x, u)−

T−1∑
k=n+1

(Auck)n(x, x) +
T−1∑
k=n+1

(Auck,x)n(x)

− (Auf)n (x, x) + (Aufx)n (x)−Au (G � g)n (x) + Hu
gGn(x)

}
= 0,

VT (x) = F (x, x) +G(x, x),

where the supremum above is realized by u = ûn(x).
Furthermore, for every fixed y ∈ X the function sequence f yn(x) is determined
by the recursion

Aûf yn(x) = 0, n = 0, . . . , T − 1,

f yT (x) = F (y, x),

and f(x, y) is given by
f(x, y) = f y(x).

The function sequence gn(x) is determined by the recursion.

Aûgn(x) = 0, n = 0, . . . , T − 1,

gT (x) = x
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For every k = 1, . . . , T , the function sequence ckn(x, y) = ck,yn (x) is defined by

(Aûck,y)n(x) = 0, 0 ≤ n ≤ k − 1,

ck,yk (x) = C(x, y, ûk(x)).

In these recursions, the û occurring in the expression Aû is the equilibrium
control law.

3 Continuous time

We now turn to the more delicate case of continuous time models. We start
by presenting the basic setup in term of a fairly general controlled Markov
process. We then formulate the problem and formally define the continuous
time equilibrium concept. In order to derive the relevant extension of the
Hamilton-Jacobi-Bellman equation we discretize, use our previously derived
results in discrete time, and go to the limit. Since the limiting procedure
is somewhat informal we need to prove a formal verification theorem, show-
ing the connection between the extended HJB equation and the previously
defined equilibrium concept.

3.1 Setup

We consider, on the time interval [0, T ] a controlled Markov process in
continous time. The process X lives on a measurable state space {X ,GX},
with controls taking values in a measurable control space {U ,GU}. The way
that controls are influencing the dynamics of the process is formalized by
specifying the controlled infinitesimal generator of X.

Definition 3.1 For any fixed u ∈ U we denote the corresponding infinites-
imal generator by Au. For a control law u, the corresponding generator is
denoted by Au.

As an example: of X is a controlled SDE of the form

dXt = µ(Xt, ut)dt+ σ(Xt, ut)dWt,

then we have, for any real valued function f(t, x), and for any fixed u ∈ U

Auf(t, x) =
∂f

∂t
(t, x) + µ(x, u)

∂f

∂x
(t, x) +

1

2
σ2(t, x)

∂2f

∂x2
(t, x)
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For a control law u(t, x) we have

Auf(t, x) =
∂f

∂t
(t, x) + µ(x,u(t, x))

∂f

∂x
(t, x) +

1

2
σ2(x,u(t, x))

∂2f

∂x2
(t, x).

By the Kolmogorov backward equation, the infinitesimal generator will, for
any control law u, determine the distribution of the process X, and to stress
this fact we will use the notation Xu

t . In particular we will have, for each
h ∈ R an operator Pu

h , operating on real valued functions of the form f(t, x),
and defined as

Pu
hf(t, x) = E

[
f(t+ h,Xu

t+h)
∣∣Xt = x

]
. (4.12)

We also recall that

Au =
dPu

h

dh
|h=0. (4.13)

3.2 Basic problem formulation

For a fixed (t, x) ∈ [0, T ]×X , a fixed control law u, we consider the functional

J(t, x,u) = Et,x

[∫ T

t

C (x,Xu
s ,u(Xu

s )) ds+ F (x,Xu
T )

]
+G (x,Et,x [Xu

T ]) .

(4.14)
As in discrete time we have the game theoretic interpretation that, for each
point t in time we have a player (“player t”) choosing ut who wants to max-
imize the functional above. Player t can, however, only affect the dynamics
of the process X by choosing the control ut exactly at time t. At another
time, say s, the control us will be chosen by player s. We again attack this
problem by looking for a Nash subgame perfect equilibrium point. The in-
tuitive picture is exactly like in continuous time: An equilibrium strategy û
is characterized by the property that if all players on the half open interval
(t, T ] uses û, then it is optimal for player t to use û.

However, in continuous time this is not a bona fide definition. Since player
t can only choose the control ut exactly at time t, he only influences the
control on a time set of Lebesgue measure zero, and for most models this
will have no effect whatsoever on the dynamics of the process. We thus need
another definition of the equilibrium concept, and we follow Ekeland and
Lazrak (2006) and Ekeland and Pirvu (2007), who were the first to use the
definition below.
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Definition 3.2 Consider a control law û (informally viewed as a candidate
equlibrium law). Choose a fixed u ∈ U , a fixed real number h > 0. Also fix
an arbitrarily chosen initial point (t, x). Define the control law uh by

uh(s, y) =

{
u, for t ≤ s < t+ h, y ∈ X

û(s, y), for t+ h ≤ s ≤ T, y ∈ X

If

lim inf
h→0

J(t, x, û)− J(t, x,uh)

h
≥ 0,

for all u ∈ U , we say that û is an equilibrium control law. The equilibrium
value function V is defined by

V (t, x) = J(t, x, û).

Remark 3.1 This is our continuous time formalization of the corresponding
discrete time equilibrium concept. Note the necessity of dividing by h, since
for most models we trivially would have

lim
h→0
{J(t, x, û)− J(t, x,uh)} = 0.

We also note that we do not get a perfect correspondence with the discrete
time equilibrium concept, since if the limit above equals zero for all u ∈ U , it
is not clear that this corresponds to a maximum or just to a stationary point.

3.3 The extended HJB equation

We now assume that there exists an equilibrium control law û (not necessar-
ily unique) and we go on to derive and extension of the standard Hamilton-
Jacobi-Bellman (henceforth HJB) equation for the determination of the cor-
responding value function V . As in the discrete case we restrict ourselves
to the simpler case when the integral term in (4.14) is absent. The general
case is very similar and will be treated in Section 3.3.To clarify the logical
structure of the derivation we outline our strategy as follows.

• We discretize (to some extent) the continuous time problem. We then
use our results from discrete time theory to obtain a discretized recur-
sion for û and we then let the time step tend to zero.

• In the limit we obtain our continuous time extension of the HJB equa-
tion. Not surprisingly it will in fact be an equation system.
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• In the discretizing and limiting procedure we mainly rely on informal
heuristic reasoning. In particular we have do not claim that the deriva-
tion is a rigorous one. The derivation is, from a logical point of view,
only of motivational value.

• We show that our extended HJB equation is in fact the “correct” one,
by proving a rigorous verification theorem.

Deriving the equation

In this section we will, in an informal and heuristic way, derive a continuous
time extension of the HJB equation. Note again that we have no claims to
rigor in the derivation, which is only motivational. To this end we assume
that there exists an equilibrium law û and we argue as follows.

• Choose an arbitrary initial point (t, x). Also choose a “small” time
increment h > 0.

• Define the control law uh on the time interval [t, T ] by

uh(s, y) =

{
u, for t ≤ s < t+ h, y ∈ X

û(s, y), for t+ h ≤ s ≤ T, y ∈ X

• If now h is “small enough” we expect to have

J(t, x,uh) ≤ J(t, x, û),

and in the limit as h→ 0 we should have equality if u = û(t, x).

If we now use our discrete time results, with n and n + 1 replaced by t and
t+ h, we obtain the inequality

(Au
hV ) (t, x)−(Au

hf) (t, x, x)+(Au
hf

x) (t, x)−Au
h (G � g) (t, x)+(Hu

hg) (t, x) ≤ 0

where
(Au

hV ) (t, x) = Et,x
[
V (t+ h,Xu

t+h)
]
− V (t, x)

and similarly for the other terms. We now divide the inequality by h and
let h tend to zero. The the operator Au

h will converge to the infinitesimal
operator Au, but the limit of h−1 (Hu

hg) (t, x) requires closer investigation.

We have in fact

(Hu
hg) (t, x) = Gx(Et,x

[
g(t+ h,Xu

t+h)
]
)−Gx(g(t, x)).
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Furthermore we have the approximation

Et,x
[
g(t+ h,Xu

t+h)
]

= g(t, x) + Aug(t, x) + o(h),

and using a standard Taylor approximation for Gx we obtain

Gx(Et,x
[
g(t+ h,Xu

t+h

]
) = Gx(g(t, x)) +Gx

y(g(t, x)) ·Aug(t, x) + o(h),

where

Gx
y(y) =

∂Gx

∂y
(y).

We thus obtain

lim
h→0

1

h
(Hu

hg) (t, x) = Gx
y(g(t, x)) ·Aug(t, x).

Collecting all results we arrive at our proposed extension of the HJB equation.
To stress the fact that the arguments above are largely informal we state the
equation as a definition rather than as proposition.

Definition 3.3 The extended HJB system of equations for the Nash equilib-
rium problem is defined as follows.

sup
u∈U

{(AuV ) (t, x)− (Auf) (t, x, x) + (Aufx) (t, x)

− Au (G � g) (t, x) + (Hug) (t, x)} = 0, 0 ≤ t ≤ T

Aûf y(t, x) = 0, 0 ≤ t ≤ T,

Aûg(t, x) = 0, 0 ≤ t ≤ T,

V (T, x) = F (x, x) +G(x, x),

f(T, x, y) = F (y, x),

g(T, x) = x.

Here û is the control law which realizes the supremum in the first equation,
and f y, G � g, and Hg are defined by

f y(t, x) = f(t, x, y)

(G � g) (t, x) = G(x, g(t, x)),

Hug(t, x) = Gy(x, g(t, x)) ·Aug(t, x),

Gy(x, y) =
∂G

∂y
(x, y).

We now have some comments on the extended HJB system.
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• The first point to notice is that we have a system of recursion equation
(4.5)-(4.10) for the simultaneous determination of V , f and g.

• In the case when F (x, y) does not depend upon x, and there is no G
term, the problem trivializes to a standard time consistent problem.
The terms (Auf) (t, x, x) + (Aufx) (t, x) in the V -equation cancel, and
the system reduces to the standard Bellman equation

(AuV ) (t, x) = 0,

V (T, x) = F (x).

• In order to solve the V -equation we need to know f and g but these are
determined by the optimal control law û, which in turn is determined
by the sup-part of the V -equation.

• We can view the system as a fixed point problem, where the optimal
control law u solves an equation of the form M(u) = u. The mapping
M is defined by the following procedure.

– Start with a control u.

– Generate the functions f and g by the ODEs

Auf y(t, x) = 0,

Aug(t, x) = 0,

and the obvious terminal conditions.

– Now plug these choices of f and g into the V equation and solve
it for V . The control law which realizes the sup-part in the V -
equation is denoted by M(u). The optimal control law is deter-
mined by the fixed point problem M(û) = û.

This fixed point property is rather expected since we are looking for
a Nash equilibrium point, and it is well known that such a point is
typically determined as fixed points of a mapping. We also note that
we can view the system as a fixed point problem for f and g.

• The equations for g and f y state that the processes g(t,X û
t ) and f y(t,X û

t ))
are martingales. From the boundary conditions we then have the in-
terpretation

f(t, x, y) = Et,x
[
F (y,X û

T )
]
,

g(t, x) = Et,x
[
X û
T

]
.

A version of g function above appears, in a more restricted framework,
already in Basak and Chabakauri (2008).
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The general case

We now turn to the more general functional form given in(4.14) as

J(t, x,u) = Et,x

[∫ T

t

C (x,Xu
s ,u(Xu

s )) ds+ F (x,Xu
T )

]
+G (x,Et,x [Xu

T ]) .

(4.15)
Arguing as before we are led to the following definition.

Definition 3.4 The extended HJB system of equations for the Nash equilib-
rium problem with the functional (4.15) is defined as follows.

sup
u∈U

{(AuV ) (t, x) + C(x, x, u)−
∫ T

t

(Aucs)t(x, x)ds+

∫ T

t

(Aucs,x)t(x)ds

− (Auf) (t, x, x) + (Aufx) (t, x)−Au (G � g) (t, x) + (Hug) (t, x)} = 0, 0 ≤ t ≤ T

Aûf y(t, x) = 0, 0 ≤ t ≤ T

Aûg(t, x) = 0, 0 ≤ t ≤ T

(Aûcs,y)t(x) = 0, 0 ≤ t ≤ s

V (T, x) = F (x, x) +G(x, x),

cs,ys (x) = C(x, y, ûs(x)),

f(T, x, y) = F (y, x),

g(T, x) = x.

Here û is the control law which realizes the supremum in the first equation,
and f y, cs,y, G � g, and Hg are defined by

f y(t, x) = f(t, x, y)

cs,yt (x) = cst(x, y),

(G � g) (t, x) = G(x, g(t, x)),

Hug(t, x) = Gy(x, g(t, x)) ·Aug(t, x),

Gy(x, y) =
∂G

∂y
(x, y).

A simple special case

We see that the general extended HJB equation is quite complicated. In
many concrete cases there are, however, cancellations between different terms
in the equation. The simplest case occurs when the objective functional has
the form

J(t, x,u) = Et,x [F (Xu
T )] +G (Et,x [Xu

T ]) ,
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and X is a scalar diffusion of the form

dXt = µ(Xt, ut)dt+ σ(Xt, ut)dWt.

In this case the extended HJB equation has the form

sup
u∈U
{AuV (t, x)−Au [G (g(t, x))] +G′(g(t, x))Aug(t, x)} = 0,

and a simple calculation shows that

−Au [G (g(t, x))] +G′(g(t, x))Aug(t, x) = −1

2
G′′(g(t, x))σ2(x, u)g2

x.

Thus the extended HJB equation becomes

sup
u∈U

{
AuV (t, x)− 1

2
G′′(g(t, x))σ2(x, u)g2

x

}
= 0, (4.16)

We will use this result in Section 5 below.

A Verification Theorem

As we have noted above, the derivation of the continuous time extension of
the HJB equation is rather informal. It seems reasonable to expect that the
system in Definition 3.4 will indeed determine the equilibrium value function
V , but so far nothing has been formally proved. However, the following two
conjectures are natural.

• Assume that there exists an equilibrium law û and that V is the corre-
sponding value function. Assume furthermore that V is regular enough
to allow allow Au to operate on it (in the diffusion case this would imply
V ∈ C1,2). Define f and g by

f(t, x, y) = Et,x
[
F (y,X û

T )
]
, (4.17)

g(t, x) = Et,x
[
X û
T

]
. (4.18)

Then V satisfies the extended HJB system and û realizes the supremum
in the equation.

• Assume that V , f , and g solves the extended HJB system and that
the supremum i the V -equation is attained for every (t, x). Then there
exists an equlibrium law û, and it is given by the optimal u in the in
the V -equation. Furthermore, V is the corresponding equilibrium value
function, and f and g allow for the interpretations (4.17)-(4.18).
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In this paper we do not attempt to prove the first conjecture. Even for
a standard time consistent control problem, it is well known that this is
technically quite complicated, and it typically requires the theory of viscosity
solutions. We will, however, prove the second conjecture. This obviously has
the form of a verification result, and from standard theory we would expect
that it can be proved with a minimum of technical complexity.

Theorem 3.1 (Verification Theorem) Assume that V , f , g is a solution
of the extended system in Definition 3.4, and that the control law û realizes
the supremum in the equation. Then û is an equilibrium law, and V is
the corresponding value function. Furthermore, f and g can be interpreted
according to (4.17)-(4.18).

Proof. The proof consists of two steps:

• We start by showing that V is the value function corresponding to û,
i.e. that V (t, x) = J(t, x, û), and that f and g have the interpretations
(4.17)-(4.18).

• In the second step we then prove that û is indeed an equilibrium control
law.

To show that V (t, x) = J(t, x, û), we use the V equation to obtain:(
AûV

)
(t, x)−

(
Aûf

)
(t, x, x) +

(
Aûfx

)
(t, x)

−Aû (G � g) (t, x) +
(
Hûg

)
(t, x) = 0,

where
Hûg(t, x) = Gy(x, g(t, x)) ·Aûg(t, x).

Since V , f , and g satsifies the extended HJB, we also have(
Aûfx

)
(t, x) = 0, (4.19)

Aûg(t, x) = 0, (4.20)

and we thus have the equation(
AûV

)
(t, x)−

(
Aûf

)
(t, x, x)−Aû (G � g) (t, x) = 0. (4.21)

We now use Dynkin’s Theorem which says that if X is a process with in-
finitesimal operator A, and if h(t, x) is a sufficiently integrable real valued
function, then the process

h(t,Xt)−
∫ t

0

Ah(s,Xs)ds
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is a martingale. Using Dynkin’s Theorem we thus have

Et,x [V (T,XT )] = V (t, x) + Et,x

[∫ T

t

AûV (s,X û
s )ds

]
,

and from (4.21) we obtain

Et,x
[
V (T,X û

T )
]

= V (t, x) + Et,x

[∫ T

t

Aûf(s,X û
s , X

û
s ds)

]
+Et,x

[∫ T

t

Aû (G � g) (s,X û
s )ds

]
We again refer to Dynkin and obtain

Et,x

[∫ T

t

Aûf(s,X û
s , X

û
s )ds

]
= Et,x

[
f(T,X û

T , X
û
T )
]
− f(t, x, x),

Et,x

[∫ T

t

Aû (G � g) (s,X û
s )ds

]
= Et,x

[
G(XT , g(T,X û

T ))
]
−G(x, g(t, x)).

Using this and the boundary conditions for f and g we get

Et,x
[
F (X û

T , X
û
T ) +G(X û

T , X
û
T )
]

= V (t, x) + Et,x
[
F (X û

T , X
û
T )
]
− f(t, x, x)

+ Et,x
[
G(X û

T , X
û
T )
]
−G(x, g(t, x)),

i.e.
V (t, x) = f(t, x, x) +G(x, g(t, x)). (4.22)

Now, from (4.19)-(4.20) it follows that the processes f y(s,X û
s ) and g(s,X û

s )
are martingales, so from the boundary conditions for f and g we obtain

f(t, x, y) = Et,x
[
F (y,X û

T )
]
,

g(t, x) = Et,x
[
X û
T

]
.

This shows that f and g have the correct interpretation and, plugging it into
(4.22) we obtain

V (t, x) = Et,x
[
F (x,X û

T )
]

+G(x,Et,x
[
X û
T

]
)) = J(t, x, û).

We now go on to show that û is indeed an equilibrium law. To that end we
construct, for any h > 0 and an arbitrary u ∈ U , the control law uh defined
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in Definition 3.2. From Lemma 2.2, applied to the points t and t + h, we
have

Jn(x,u) = Et,x
[
J(t+ h,Xu

t+h,u)
]

−
{
Et,x

[
fu(t+ h,Xu

t+h, X
u
t+h)

]
− Et,x

[
fu(t+ h,Xu

t+h, x)
]}

−
{
Et,x

[
G
(
Xu
t+h, g

u(t+ h,Xu
t+h)

)]
−G

(
x,Et,x

[
gu(t+ h,Xu

t+h)
])}

.

where, for ease of notation, we have suppressed the lower index h of uh. By
the construction of u we have

J(t+ h,Xu
t+h,u) = V (t+ h,Xu

t+h),

fu(t+ h,Xu
t+h, x) = f(t+ h,Xu

t+h, x),

gu(t+ h,Xu
t+h) = g(t+ h,Xu

t+h),

so we obtain

Jn(x,u) = Et,x
[
V (t+ h,Xu

t+h)
]

−
{
Et,x

[
f(t+ h,Xu

t+h, X
u
t+h)

]
− Et,x

[
f(t+ h,Xu

t+h, x)
]}

−
{
Et,x

[
G
(
Xu
t+h, g(t+ h,Xu

t+h)
)]
−G

(
x,Et,x

[
g(t+ h,Xu

t+h)
])}

.

Furthermore, from the V -equation we have

(AuV ) (t, x)− (Auf) (t, x, x) + (Aufx) (t, x)

−Au (G � g) (t, x) + (Hug) (t, x) ≤ 0,

for all u ∈ U . Discretizing this gives us

Et,x
[
V (t+ h,Xu

t+h)
]
− V (t, x)−

{
Et,x

[
f(t,Xu

t+h, X
u
t+h)

]
− f(t, x, x)

}
+Et,x

[
f(t,Xu

t+h, x)
]
− f(t, x, x)

−Et,x
[
G(t+ h, g(t+ h,Xu

t+h)
]

+G(x, g(t, x))

+G(x,Et,x
[
g(t+ h,Xu

t+h)
]
−G(x, g(t, x)) ≤ o(h),

or, after simplification,

V (t, x) ≥ Et,x
[
V (t+ h,Xu

t+h)
]
− Et,x

[
f(t,Xu

t+h, X
u
t+h)

]
+ Et,x

[
f(t,Xu

t+h, x)
]

− Et,x
[
G(t+ h, g(t+ h,Xu

t+h)
]

+G(x,Et,x
[
g(t+ h,Xu

t+h)
]

+ o(h).

Using the expression for Jn(x,u) above, and the fact that V (t, x) = J(t, x, û),
we obtain

J(t, x, û)− J(t, x,u) ≥ o(h),

so

lim inf
h→0

J(t, x, û)− J(t, x,u)

h
≥ 0,

and we are done.
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4 An equivalent time consistent problem

The object of the present section is to provide a surprising link between time
inconsistent and time consistent problems. To this end we go back to the
general continuous time extended HJB equation. The first part of this reads
as

sup
u∈U
{(AuV ) (t, x) + C(x, x, u)−

∫ T

t

(Aucs)t(x, x)ds+

∫ T

t

(Aucs,x)t(x)ds

− (Auf) (t, x, x) + (Aufx) (t, x)−Au (G � g) (t, x) + (Hug) (t, x)} = 0.

Let us now assume that there exists an equilibrium control law û. Using
û we can then construct c, f and g by solving the associated equations in
Definition 3.4. We now define the function h by

h(t, x, u) = C(x, x, u)−
∫ T

t

(Aucs)t(x, x)ds+

∫ T

t

(Aucs,x)t(x)ds

− (Auf) (t, x, x) + (Aufx) (t, x)−Au (G � g) (t, x) + (Hug) (t, x).

With this definition of h, the equation for V above and its boundary condition
become

sup
u∈U
{(AuV ) (t, x) + h(t, x, u)} = 0,

V (T, x) = F (x, x) +G(x, x).

We now observe, by inspection, that this is a standard HJB equation for the
standard time consistent optimal control problem to maximize

Et,x

[∫ T

t

h(s,Xs, us)ds+ F (XT , XT ) +G(XT , XT )

]
. (4.23)

We have thus proved the following result.

Proposition 4.1 For every time inconsistent problem in the present frame-
work there exists a standard, time consistent optimal control problem with
the following properties.

• The optimal value function for the standard problem coincides with the
equilibrium value function for the time inconsistent problem.

• The optimal control for the standard problem coincides with the equi-
librium control for the time inconsistent problem.
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• The objective functional for the standard problem is given by (4.23).

We immediately remark that the Proposition above is mostly of theoretical
interest, and of little “practical” value. The reason is of course that in order to
formulate the equivalent standard problem we need to know the equilibrium
control û. In our opinion it is, however, quite surprising.

Furthermore, Proposition 4.1 has modeling consequences for economics. Sup-
pose that you want to model consumer behavior. You have done this using
standard time consistent dynamic utility maximization and now you are con-
templating to introduce time inconsistent preferences to obtain a richer class
of consumer behavior. Proposition 4.1 then tells us that from the point of
view of revealed preferences, nothing is gained by introducing time incon-
sistent preferences: Every kind of behavior that can be generated by time
inconsistency can also be generated by time consistent preferences. We im-
mediately remark, however, that even if a concrete model of time inconsistent
preferences is, in some sense, “natural”, the corresponding time consistent
preferences may look extremely “weird”.

5 Example 1: Mean-variance control

In this section we will illustrate the theory developed earlier, and as a first
test example we will consider dynamic mean variance optimization. This
is a continuous time version of a standard Markowitz investment problem,
where we penalize the risk undertaken by the conditional variance. As noted
in the introduction, in a Wiener driven framework this example is studied
intensively in Basak and Chabakauri (2008), where the authors also consider
the case of multiple assets, as well as the case of a hidden Markov process
(unobservable factors) driving the parameters of the asset price dynamics.
For illustrative purposes we first consider the simplest possible case of a
Wiener driven single risky asset and, without any claim of originality, re-
derivethe corresponding results of Basak and Chabakauri (2008). We then
extend the model in Basak and Chabakauri (2008) and study the case when
the risky asset is driven by a point process as well as by a Wiener process.
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5.1 The simplest case

We consider a market formed by a risky asset with price process S and a risk
free money account with price process B. The price dynamics are given by

dSt = αStdt+ σStdWt,

dBt = rBtdt,

where α and σ are known constants, and r is the constant short rate.

Let ut be the amount of money invested in the risky asset at time t. The value
Xt of a self-financing portfolio based on S and B will then evolve according
to the SDE

dXt = [rXt + (α− r)ut]dt+ σutdWt. (4.24)

Our value functional is given by

J(t, x,u) = Et,x [Xu
T ]− γ

2
V art,x (Xu

T ) ,

so we want to maximize expected return with a penalty term for risk. Re-
membering the definition for the conditional variance

V art,x[XT ] = Et,x[X
2
T ]− E2

t,x[XT ],

we can re-write our objective functional as

J(t, x,u) = Et,x [F (Xu
T )]−G(Et,x [Xu

T ])

where F (x) = x − γ
2
x2 and G(x) = γ

2
x2. As seen in the previous sections,

the term G(Et,x [XT ]) leads to a time inconsistent game theoretic problem.

The extended HJB equation is then given by the following PDE system:

sup
u

{
[rx+ (α− r)u]Vx +

1

2
σ2u2Vxx −Au(G ◦ g) + Hug

}
= 0,

V (T, x) = x,

Aûg = 0,

g(T, x) = x,

where lower case index denotes the corresponding partial derivative. This
case is covered in Section 3.3, and from (4.16) we can simplify to

Vt + sup
u

{
[rx+ (α− r)u]Vx +

1

2
σ2u2Vxx −

γ

2
σ2u2g2

x

}
= 0

V (T, x) = x

Aûg = 0

g(T, x) = x
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Given the linear structure of the dynamics, as well as of the boundary con-
ditions, it is natural to make the Ansatz

V (t, x) = A(t)x+B(t)

g(t, x) = a(t)x+ b(t).

With this trial solution the HJB equation becomes

Atx+Bt + sup
u

{
[rx+ (α− r)u]A− γ

2
σ2u2a2

}
= 0, (4.25)

atx+ bt + [rx+ (α− r)û]a = 0, (4.26)

A(T ) = 1,

B(T ) = 0,

a(T ) = 1,

b(T ) = 0.

We first solve the static problem embedded in (4.25). From the first order
condition, we obtain the optimal control as

û(t, x) =
1

γ

α− r
σ2

A(t)

a2(t)
,

so the optimal control does not depend on x. Substituting this expression
for û into (4.25) we obtain:

Atx+Bt + Arx+
1

2γ

(α− r)2

σ2

A2

a2
= 0.

By separation of variables we then get the following system of ODEs.

At + Ar = 0,

A(T ) = 1,

Bt +
1

2γ

(α− r)2

σ2

A2

a2
= 0,

B(T ) = 0.

We immediately obtain
A(t) = er(T−t).

Inserting this expression for A into the second ODE yields

Bt +
1

2γ

(α− r)2

σ2

e2r(T−t)

a2
= 0, (4.27)

B(T ) = 0.
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This equation contain the unknown function a, and to determine this we use
equation (4.26). Inserting the expression for û into (4.26) gives us

atx+ bt + rxa+
1

γ

(α− r)2

σ2

er(T−t)

a
= 0,

a(T ) = 1,

b(T ) = 0.

Again we have separation of variables and obtain the system

at + ar = 0,

bt +
1

γ

(α− r)2

σ2

er(T−t)

a
= 0.

This yields
a(t) = er(T−t),

and the ODE for b then takes the form

bt =
1

γ

(α− r)2

σ2
,

b(T ) = 0.

We thus have

b(t) =
1

γ

(α− r)2

σ2
(T − t).

Introducing the results in the optimal control formula, we get

û(t, x) =
1

γ

α− r
σ2

e−r(T−t).

Using the expression for a above, we can go back to equation (4.27) which
now takes the form

Bt +
1

2γ

(α− r)2

σ2
= 0,

so

B(t) =
1

2γ

(α− r)2

σ2
(T − t).

Thus, the optimal value function is given by

V (t, x) = er(T−t)x+
1

2γ

(α− r)2

σ2
(T − t)

We summarize the results as follows:
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Proposition 5.1 For the model above we have the following results.

• The optimal amount of money invested in a stock is given by

û(t, x) =
1

γ

α− r
σ2

e−r(T−t).

• The equilibrium value function is given by

V (t, x) = er(T−t)x+
1

2γ

(α− r)2

σ2
(T − t).

• The expected value of the optimal portfolio is given by

Et,x [XT ] = er(T−t)x+
1

γ

(α− r)2

σ2
(T − t).

Using Proposition 4.1 we can also construct the equivalent standard time
consistent optimization problem. An easy calculation gives us the following
result.

Proposition 5.2 The equivalent (in the sense of Proposition 4.1) time con-
sistent problem is to maximize the functional

max
u

Et,x

[
XT −

γσ2

2

∫ T

t

e2r(T−s)u2
sds

]
given the dynamics (4.24).

We note in passing that
σ2u2

tdt = d〈X〉t.

5.2 A point process extension

We will now present an extension of the mean variance problem when the
stock dynamics are driven by a jump diffusion. We consider a single risky
asset with price S and a bank account with price process B. The results
below can be easily extended to the case of multiple assets, but for ease of
exposition, we restrict ourselves to the scalar case. The dynamics are given
by

dSt = α(t, St)Stdt+ σ(t, St)StdWt + St−

∫
Z
β(z)µ(dz, dt),

dBt = rdt.
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Here W is a scalar Wiener process and µ is a marked point process on the
mark space Z with deterministic intensity measure λ(dz). Furthermore,
α(t, s), σ(t, s) and β(z) are known deterministic functions and r is a known
constant.

As before ut denotes the amount of money invested in the stock at time t,
and X is the value process for a self financing portfolio based on S and B.
The dynamics of Xt are then given by

dXt = [rXt + (α(t, St, Yt)− r)u]dt+ σ(t, St, Yt)udWt + ut−

∫
Z

β(z)µ(dz, dt).

Again we study the case of mean-variance utility, i.e.

J(t, x,u) = Et,x [Xu
T ]− γ

2
V art,x (Xu

T ) .

The extended HJB system now has the form

sup
u
{AuV (t, x, s)−Au(G ◦ g)(t, x, s) + (Hug) (t, x, s)} = 0, (4.28)

V (T, x, s) = x,

Aûg = 0, (4.29)

g(T, x, s) = x.

As before, we make the Ansatz

V (t, x, s) = A(t)x+B(t, s),

g(t, x, s) = a(t)x+ b(t, s),

A(T ) = 1,

B(T, s) = 0

a(T ) = 1,

b(T, s) = 0.

After some simple but tedious calculations, equation (4.28) can be re-written
as

sup
u
{Atx+Bt + A [rx+ (α− r)u] + αsBs +

1

2
σ2s2Bss + Au

∫
Z

β(z)λ(dz)

+

∫
Z

[B(t, s(1 + β(z)))−B(t, s)︸ ︷︷ ︸
∆βB(t,s,z)

]λ(dz)− 1

2
(σu)2γ[au+ bss]

2

−γ
2

∫
Z

[auβ(z) + b(t, s(1 + β(z)))− b(t, s)︸ ︷︷ ︸
∆βb(t,s,z)

]2λ(dz)} = 0 (4.30)
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First, we solve the embedded static problem in (4.30)

max
u

{
(α− r)Au+ Au

∫
Z

β(z)λ(dz)− 1

2
σ2u2[au+ bss]

2

−γ
2

∫
Z

[auβ(z) + ∆βb]λ(dz)

}
and obtain the optimal control

û(t, x, s) =

[
α(t, s)− r +

∫
Z
β(z)λ(dz)

]
A(t)

γa2(t)[σ2(t, s) +
∫
Z
β2(z)λ(dz)]

−
σ(t, s)bs(t, s)s+

∫
Z
β(z)∆βb(t, s, z)λ(dz)

a(t)[σ2(t, s) +
∫
Z
β2(z)λ(dz)]

Again we see that the optimal control does not depend on x. We can plug the
optimal control into equation (4.30) and as before, we can separate variables
to obtain an ODE for A(t) and a PIDE for B(t, s). The ODE for A is

At + rA = 0

A(T ) = 0

with solution A(t) = er(T−t). The PIDE for B(t, s) becomes

Bt + (α− r)û+ αsBs +
1

2
σ2s2Bss + Aû

∫
Z

β(z)λ(dz) (4.31)

+

∫
Z

[∆βB]λ(dz)− 1

2
σ2γ[a(t)û+ bss]

2 (4.32)

−γ
2

∫
Z

[a(t)ûβ(z) + ∆βb]
2λ(dz) = 0 (4.33)

B(T, s) = 0 (4.34)

In order to solve this we need to determine the functions a(t) and b(t, s). To
this end we use (4.29). This can be rewritten as

atx+ bt + [rx+ (α− r)û]a+ αsbs +
1

2
σ2s2bss

+aû

∫
Z

β(z)λ(dz) +

∫
Z

∆βbλ(dz) = 0. (4.35)
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with the appropriate boundary conditions for a and b. By separation of
variables we obtain the ODE

at + ra = 0,

a(T ) = 1,

and the PIDE

bt + (α− r)ûa+ αsbs +
1

2
σ2s2bss + aû

∫
Z

β(z)λ(dz) +

∫
Z

∆βbλ(dz) = 0,

b(T, s) = 0.

From the ODE we have a(t) = er(T−t) and, plugging this expression into the
previous formula for û, gives us

û =
α− r +

∫
Z
β(z)λ(dz)

γ[σ2 +
∫
Z
β2(z)λ(dz)]

e−r(T−t) −
σbss+

∫
Z
β(z)∆βbλ(dz)

[σ2 +
∫
Z
β2(z)λ(dz)]

e−r(T−t)

We can now insert this expression, as well as the formula for a, into the PIDE
for b above to obtain the PIDE

bt +

[
α−

[
α− r +

∫
Z
β(y)λ(dy)

]
σ2

[σ2 +
∫
Z
β2(y)λ(dy)]

]
sbs +

1

2
σ2s2bss +

[
α− r +

∫
Z
β(y)λ(dy)

]2
γ[σ2 +

∫
Z
β2(y)λ(dy)]∫

Z

∆βb(t, s, z)

{
1−

α− r +
∫
Z
β(y)λ(dy)

[σ2 +
∫
Z
β2(y)λ(dy)]

β(z)

}
λ(dz) = 0

b(T, s) = 0

This rather forbidding looking equation cannot in general be solved explicitly,
but by applying a Feynman-Kac representation theorem we can represent the
solution as

b(t, s) = EQ
t,s

[∫ T

t

[
α(τ, Sτ )− r +

∫
Z
β(z)λ(dz)

]2
γ[σ2(τ, Sτ ) +

∫
Z
β2(z)λ(dz)]

dτ

]
. (4.36)

Here the measure Q is absolutely continuous w.r.t. P , and the likelihood
process

Lt =
dQ

dP
on Ft,

has dynamics given by

dLt = LtϕdWt + Lt−

∫
Z

η(z) [µ(dz, dt)− λ(dz)dt] ,
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with ϕ and η given by

ϕ(t, s) = −
[
α(t, s)− r +

∫
Z
β(y)λ(dy)

]
σ(t, s)

[σ2(t, s) +
∫
Z
β2(y)λ(dy)]

,

η(t, s, z) = −
[
α(t, s)− r +

∫
Z
β(y)λ(dy)

]
[σ2(t, s) +

∫
Z
β2(y)λ(dy)]

β(z).

From the Girsanov Theorem it follows that the Q intensity λQ, of the point
process µ(dt, dz) is given by

λQ(t, s, dz) =

{
1−

[
α(t, s)− r +

∫
Z
β(y)λ(dy)

]
[σ2(t, s) +

∫
Z
β2(y)λ(dy)]

β(z)

}
λ(dz),

and that

dWt = −
[
α(t, St)− r +

∫
Z
β(y)λ(dy)

]
σ(t, St)

[σ2(t, St) +
∫
Z
β2(y)λ(dy)]

dt+ dWQ
t

where WQ is Q a Wiener process. A simple calculation now shows that the
Q dynamics of the stock prices S are given by

dSt = rStdt+ Stσ(t, St)dW
Q
t + St−

∫
Z
β(z)

[
µ(dt, dz)− λQ(t, St, dz)

]
so the measure Q is in fact a risk neutral martingale measure, and it is easy to
check (see for example ?)) that Q is in fact the so called “minimal martingale
measure” used in the context of local risk minimization and developed in ?)
and related papers. This fact was, in a Wiener process framework, observed
already in Basak and Chabakauri (2008).

Performing similar calculations, one can show that the solution of the PIDE
(4.33)-(4.34) can be represented as

B(t, s) = EQ
t,s

[∫ T

t

(α− r +
∫
Z
β(z)λ(dz))2

γ[σ2 +
∫
Z
β2(z)λ(dz)]

dτ

]
−EQ

t,s

[∫ T

t

1

2
σ2γ[er(T−τ)û+ bss]

2dτ

]
−EQ

t,s

[∫ T

t

γ

2

∫
Z

[er(T−τ)ûβ(z) + ∆βb]
2λ(dz)dτ

]
, (4.37)

with Q as above.

We can finally summarize our results.
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Proposition 5.3 With notation as above, the following hold.

• The optimal amount of money invested in a stock is given by

û =
(α− r +

∫
Z
β(z)λ(dz))

γ[σ2 +
∫
Z
β2(z)λ(dz)]

e−r(T−t)−
(σbss+

∫
Z
β(z)∆βb(z)λ(dz))

[σ2 +
∫
Z
β2(z)λ(dz)]

e−r(T−t)

• The mean-variance utility of the optimal portfolio is given by

U(t, x) = er(T−t)x+ b(t, s)

where b(t, s) is given by stochastic representation (4.36).

• The expected terminal value of the optimal portfolio is

Et,x [XT ] = xer(T−t) +B(t, s)

where x is the present portfolio value and B(t, s) is given by the stochas-
tic representation (4.37).

6 Conclusions and future research.

In the current chapter, we have derivde an extension of the standard Hamilton-
Jacobi-Bellman equation to a non standard system of equations for the deter-
mination of the equilibrium value function V which would allow us to solve a
larger of non-standard economic and financial problems. We have also proven
a veriffication theorem, showing that the solution of the extended HJB system
is indeed the equilibrium value function, and that the equilibrium strategy
is given by the optimizer in the equation system. To every time inconsis-
tent problem of th form analyzed, there exists an associated standard, time
consistent, control problem. While this observation is mostly of theoretical
interest, and of little “practical” value, it has interesting consequences for
economic modelling. from the point of view of revealed preferences, nothing
is gained by introducing time inconsistent preferences: Every kind of behav-
ior that can be generated by time inconsistency can also be generated by
time consistent preferences. We immediately remark, however, that even if a
concrete model of time inconsistent preferences is, in some sense, “natural”,
the corresponding time consistent preferences may look extremely “weird”.

There is still a lot of scope for research to be done in this area. First we
have to investigate several other relevant examples. Then, we would like to
investigate the same type of problems with parameter uncertainty. Inter-
esting questions about optimal stopping and time inconsistent problems are
another interesting problem to look into.
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