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Introduction and Summary

This thesis consists of three papers in the area of interest rate derivatives
modelling. The pricing and hedging of (exotic) interest rate derivatives is one
of the most demanding and complex problems in option pricing theory and is of
great practical importance in the market. Models used in production at various
banks can broadly be divided in three groups: 1- or 2-factor instantaneous
short/forward rate models (such as Hull & White (1990) or Cheyette (1996)),
LIBOR/swap market models (introduced by Brace, Gatarek & Musiela (1997),
Miltersen, Sandmann & Sondermannn (1997) and Jamshidian (1997)) and the
one or two-dimensional Markov-functional models of Hunt, Kennedy & Pelsser
(2000)).

In brief and general terms the main characters of the above mentioned three
modelling frameworks can be summarised as follows. Short/forward rate mod-
els are by nature computationally efficient (implementations may be done using
PDE or lattice methods) but less flexible in terms of fitting of implied volatility
smiles and correlations between various rates. Calibration is hence typically
performed in a ‘local’ (product by product based) sense. LIBOR market mod-
els on the other hand may be calibrated in a ‘global’ sense (i.e. fitting close
to everything implying that one calibration may in principle be used for all
products) but are of high dimension and an accurate implementation has to be
done using the Monte Carlo method. Finally, Markov-functional models can be
viewed as designed to combine the computational efficiency of short/forward
rate models with flexible calibration properties.

The defining property of a Markov-functional model is that each rate and dis-
count factor at all times can be written as functionals of some (preferably
computationally simple) Markovian driving process. While this is a property
of most commonly used interest rate models Hunt et al. (2000) introduced a
technique to numerically determine a set of functional forms consistent with
market prices of vanilla options across strikes and expiries. The term a ‘Markov-
functional model’ is typically referring to this type of model as opposed to the
more general meaning, a terminology that is adopted also in this thesis.

Although Markov-functional models are indeed a popular choice in practise
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2 Introduction and Summary

there are a few outstanding points on the practitioners’ wish list. From a con-
ceptual point of view there is still work to be done in order to fully understand
the implications of various modelling choices and how to efficiently calibrate
and use the model. Part of the reason for this is that while the properties
of the short/forward rate and the LIBOR market models may be understood
from their defining SDEs this is less clear for a Markov-functional model. To
aid the understanding of the Markov-functional model Bennett & Kennedy
(2005) compares one-dimensional LIBOR and swap Markov-functional models
with the one-factor separable LIBOR and swap market models and concludes
that the models are similar distributionally across a wide range of viable mar-
ket conditions. Although this provides good intuition there is still more work
to be done in order to fully understand the implications of various modelling
choices, in particular in a two or higher dimensional setting.

The first two papers in this thesis treat extensions of the standard Markov-
functional model to be able to use a higher dimensional driving process. This
allows a more general understanding of the Markov-functional modelling frame-
work and enables comparisons with multi-factor LIBOR market models. From
a practical point of view it provides more powerful modelling of correlations
among rates and hence a better examination and control of some types of exotic
products.

Another desire among practitioners is to develop an efficient way of using a
process of stochastic volatility type as a driver in a Markov-functional model.
A stochastic volatility Markov-functional model has the virtue of both being
able to fit current market prices across strikes and to provide better control
over the future evolution of rates and volatilities, something which is impor-
tant both for pricing of certain products and for risk management. Although
there are some technical challenges to be solved in order to develop an effi-
cient stochastic volatility Markov-functional model there are also many (more
practical) considerations to take into account when choosing which type of
driver to use. To shed light on this the third paper in the thesis performs a
data driven study in order to motivate and develop a suitable two-dimensional
stochastic volatility process for the level of interest rates. While the main part
of the paper is general and not directly linked to any complete interest rate
model for exotic derivatives, particular care is taken to examine and equip the
process with properties that will aid use as a driver for a stochastic volatility
Markov-functional model.

Below follows brief summaries of each paper.

Paper 1: An n-Dimensional Markov-Functional Interest Rate Model
This paper develops an n-dimensional Markov-functional interest rate model
in the spot measure, i.e. a model driven by an n-dimensional state process and
constructed using Markov-functional techniques. It is shown numerically that
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Introduction and Summary 3

this model is very similar to an n-factor LIBOR market model hence allowing
intuition from the LIBOR market model to be transferred to the Markov-
functional model. This generalises the results of Bennett & Kennedy (2005)
from one-dimensional to n-dimensional driving state processes.

The model is suitable for pricing certain type of exotic interest rate derivative
products such as TARNs on LIBORs or CMS spreads. For these products, the
n-dimensional Markov-functional model may be used as a benchmark model
allowing for powerful and flexible control of both correlations between different
rates as well as skews/smiles in implied volatilities.

Paper 2: A Parametric n-Dimensional Markov-Functional Model in
the Terminal Measure
As in paper 1 this paper develops an n-dimensional Markov-functional inter-
est rate model. While parts of the construction are similar to the model in
paper 1 this model is formulated in the terminal measure and is based on para-
metric functional forms of exponential type. The parametric functional forms
enable analytical expressions for forward discount bonds and forward LIBORs
at all times and allows for calibration of the model to caplet prices given by a
displaced diffusion Black model. These analytical expressions provide a theo-
retical tool for understanding the structure of Markov-functional models and
comparisons with the LIBOR market model.

In particular it is shown that for ‘typical’ market data the model is close enough
to the LIBOR market model to be able to calibrate using the LIBOR mar-
ket model calibration setup and machinery. This provides further information
about the similarities (as well as some of the differences) between Markov-
functional and LIBOR market models.

The parametric n-dimensional Markov-functional model may be used for prod-
ucts that require high-dimensional models for appropriate pricing and risk man-
agement. Compared with an n-factor LIBOR market model it has the virtue
of being (much) faster for certain types of products.

Paper 3: Stochastic Volatility for Interest Rate Derivatives
This paper uses an extensive set of market data of forward swap rates and
swaptions covering 3 July 2002 to 21 May 2009 to identify a two-dimensional
stochastic volatility process for the level of rates. The process is identified step
by step by increasing the requirement of the model and introduce appropriate
adjustments.

The first part of the paper investigates the smile dynamics of forward swap
rates at their setting dates. Comparing the SABR model (with different βs) of
Hagan, Kumar, Lesniewski & Woodward (2002) and the Heston (1993) stochas-
tic volatility models informs about what different specifications of the driving
SDEs has to offer in terms of reflecting the dynamics of the smile across dates.
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4 Introduction and Summary

The outcome of the analysis is that a normal SABR model (β = 0) satisfac-
torily passes all tests and seems to provide a good match to the market. In
contrast we find the Heston model does not.

The next step is to seek a model of the forward swap rates (in their own
swaption measure) based on only two factors that enables a specification with
common parameters. It turns out that this can be done by extending the SABR
model with a time-dependent volatility function and a mean reverting volatility
process. The performance of the extended (SABR with mean-reversion) model
is analysed over several historical dates and is shown to be a stable and flexible
choice that allows for good calibration across expiries and strikes.

Finally a time-homogeneous candidate stochastic volatility process that can be
used as a driver for all swap rates is identified and used to construct a simple
terminal Markov-functional type model under a single measure. This candidate
process may in future work be used as a building block for a separable stochastic
volatility LIBOR market model or a stochastic volatility Markov-functional
model.
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8 An n-Dimensional Markov-functional Interest Rate Model

1 Introduction

The pricing of exotic interest rate derivatives is one of the most demanding and
complex problems in option pricing theory, being of great practical importance
in the market. Over the past decade the LIBOR market model has become
increasingly popular and serves as the benchmark model for pricing and risk
management of these products. The market models were the first models that
modelled observable rates directly and could calibrate perfectly to Black’s for-
mula for caplets. This approach also enabled direct control over the modelling
of the correlations between LIBORs, which is important for the pricing of exotic
derivatives. While the theory underlying the market models is straightforward,
implementing them is not, and the literature devoted to efficient implementa-
tion and calibration is vast. This is due to their high dimensionality, which is
a feature of these models even when only one stochastic driver is used.

An alternative class of models that can also calibrate to Black’s formula (or in-
deed any arbitrage-free formula) for caplets and also gives control over the mod-
elling of the observable market rates is the class of Markov-functional models.
The spirit of the Markov-functional modelling approach is to base the model
on a low-dimensional (usually one or two) Markov process which allows for
efficient implementation of the model on a lattice, providing fast computation
of prices and, importantly, risk sensitivities.

As shown in Bennett & Kennedy (2005), one-dimensional Markov-functional
models and one-factor (i.e. one Brownian motion driver) separable LIBOR
market models are very similar distributionally and virtually indistinguishable
numerically for short maturities and typical market conditions. Although not
in the spirit of the original Markov-functional approach, from a theoretical
point of view it is a natural question to ask if this is true more generally, i.e.
whether we can formulate a model using Markov-functional ideas that is similar
to a multi-factor LIBOR market model, and if we can, how similar will it be
to the corresponding LIBOR market model?

This paper develops a full-rank Markov-functional model, that is, a model
driven by a Markov process of the same dimension as the number of LIBORs
being modelled. Inspired by the techniques developed in Hunt et al. (2000), we
model LIBORs at their setting dates as functions of an n-dimensional driving
Markov process. As a consequence of the high dimension we may no longer
implement the model on a lattice representing a low-dimensional process and in-
stead we use the Monte Carlo method to be able to cope with high-dimensional
integrals. Moreover we will be working under the rolling spot measure and use
forward induction instead of the standard terminal measure and backward in-
duction.

For a LIBOR market model an accurate implementation also has to be done
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using the Monte Carlo method. The challenge in this model is to cope with
the stochastic integral appearing in the drift term in each of the SDEs which
specify the model. At first sight an accurate path-wise computation of these
stochastic integrals would imply a very slow model. However, by clever im-
plementations that approximate the drift over fairly large time-steps one may
achieve a significant speed up; see Joshi & Stacey (2006), for an overview.
Drift approximations of this type are also used for tractable calibration of the
correlation structure of the model to the market.

The primary motivation for the development of Markov-functional models was
to produce a class of models that could be implemented efficiently on a lat-
tice. This is not the case for the models introduced here which have been
developed, as we have stated above, for purely theoretical reasons. However,
if one is willing to accept the limitations of working with a model that can
only be implemented using Monte Carlo techniques (as is the case for the LI-
BOR market model), then the models that we introduce have some advantages.
First, it allows for flexible alterations of the marginal distributions of the LI-
BORs at their setting dates. Secondly, approximations are usually used for
the model’s correlation structure when calibrating. It turns out that the cor-
relation structure within the Markov-functional model is closer to that of the
standard approximation than is that of the LIBOR market model, particularly
for long maturities. This will become clearer later in the paper, see the motiva-
tion Section 3.1 for intuition and Figures 1.2 and 1.13 for numerical examples.
Moreover, for products only depending on (the interaction of) LIBORs at their
setting dates we do not need to keep track of a large number of processes
through time and thus, for the same accuracy, the model is faster than the
LIBOR market model.

As for the low-dimensional Markov-functional model, the properties of the
higher-dimensional version we develop are not transparent. We perform several
tests comparing the n-dimensional Markov-functional and the n-factor LIBOR
market models and find that as, in the low-dimensional case, they are very
closely connected and that the intuition from the LIBOR market model SDEs
may be transferred over to the Markov-functional model. We first study the
connection from a distributional point of view and then look at the pricing of
Targeted Accrual Redemption Notes (TARNs). As shown in Section 6 the n-
dimensional Markov-functional model seems like a suitable benchmark model
for this type of products allowing to explore the impact of skews/smiles and
different correlations structures in an efficient, flexible and accurate manner.

For products depending on (the interaction of) LIBORs before their setting
dates the model is less efficient as it requires repeated computations of a high-
dimensional conditional expectation. However, as shown in Section 5, the con-
ditional expectation may be approximated with decent accuracy implying a
reasonably efficient and accurate model. As the approximation is not depen-

1. Introduction 9

using the Monte Carlo method. The challenge in this model is to cope with
the stochastic integral appearing in the drift term in each of the SDEs which
specify the model. At first sight an accurate path-wise computation of these
stochastic integrals would imply a very slow model. However, by clever im-
plementations that approximate the drift over fairly large time-steps one may
achieve a significant speed up; see Joshi & Stacey (2006), for an overview.
Drift approximations of this type are also used for tractable calibration of the
correlation structure of the model to the market.

The primary motivation for the development of Markov-functional models was
to produce a class of models that could be implemented efficiently on a lat-
tice. This is not the case for the models introduced here which have been
developed, as we have stated above, for purely theoretical reasons. However,
if one is willing to accept the limitations of working with a model that can
only be implemented using Monte Carlo techniques (as is the case for the LI-
BOR market model), then the models that we introduce have some advantages.
First, it allows for flexible alterations of the marginal distributions of the LI-
BORs at their setting dates. Secondly, approximations are usually used for
the model’s correlation structure when calibrating. It turns out that the cor-
relation structure within the Markov-functional model is closer to that of the
standard approximation than is that of the LIBOR market model, particularly
for long maturities. This will become clearer later in the paper, see the motiva-
tion Section 3.1 for intuition and Figures 1.2 and 1.13 for numerical examples.
Moreover, for products only depending on (the interaction of) LIBORs at their
setting dates we do not need to keep track of a large number of processes
through time and thus, for the same accuracy, the model is faster than the
LIBOR market model.

As for the low-dimensional Markov-functional model, the properties of the
higher-dimensional version we develop are not transparent. We perform several
tests comparing the n-dimensional Markov-functional and the n-factor LIBOR
market models and find that as, in the low-dimensional case, they are very
closely connected and that the intuition from the LIBOR market model SDEs
may be transferred over to the Markov-functional model. We first study the
connection from a distributional point of view and then look at the pricing of
Targeted Accrual Redemption Notes (TARNs). As shown in Section 6 the n-
dimensional Markov-functional model seems like a suitable benchmark model
for this type of products allowing to explore the impact of skews/smiles and
different correlations structures in an efficient, flexible and accurate manner.

For products depending on (the interaction of) LIBORs before their setting
dates the model is less efficient as it requires repeated computations of a high-
dimensional conditional expectation. However, as shown in Section 5, the con-
ditional expectation may be approximated with decent accuracy implying a
reasonably efficient and accurate model. As the approximation is not depen-



10 An n-Dimensional Markov-functional Interest Rate Model

dent on the choice of marginal distribution the model is hence a flexible and
powerful alternative also for this type of product. As an example CMS spread
TARN swaps are priced in Section 7.

The paper is organised as follows. Section 2 introduces notation and reviews the
LIBOR market model. Section 3 develops the n-dimensional Markov-functional
model. In sections 4 and 6 we test some properties of the models numerically,
with Section 4 focusing on the distributional similarities and differences for
LIBORs at their setting dates and Section 6 treating terminal correlations and
the pricing of TARNs. Section 5 develops an approximation of LIBORs before
setting dates and 7 applies it to the pricing of CMS spread TARN swap. Finally,
Section 8 presents our conclusions.

2 Preliminaries

Consider a fixed set of increasing maturities

today = T0 < T1 < · · · < Tn < Tn+1

and let, for simplicity, the accrual factors be given by αi = Ti+1−Ti. By letting
DtT denote the price, at time t, of a zero-coupon bond paying a unit amount
at time T , LIBOR forward rates contracted at time t for the period [Ti, Ti+1]
are defined as

Li
t =

1

αi
· DtTi −DtTi+1

DtTi+1

, i = 1, ..., n. (1)

We let the uncertainty in the economy be resolved over a complete filtered
probability space (Ω,F ,P, {Ft}t≥0) and we assume the existence of forward
measures, Qi, i = 1, . . . , n i.e. the equivalent martingale measures using D·Ti+1

as numeraire. Note that this implies that under Qi, Li is a martingale with
respect to the filtration {Ft}.
The models used in this paper will be constructed under what is commonly
referred to as the rolling spot measure (henceforth denoted by N). This is the
equivalent martingale measure associated with the discrete savings account as
numeraire. Normalising to unit value at time T1 the numeraire process is given
by

Nt = DtT1 , 0 ≤ t ≤ T1, (2)

Nt = DtTi+1 ·
i∏

j=1

(1 + αjL
j
Tj
), Ti ≤ t ≤ Ti+1. (3)
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We will further on assume the existence of an n-dimensional Wiener process
under the measure N

W =
(
W 1, . . . ,Wn

)
with a given correlation structure

dW i
t dW

j
t = ρijdt, i, j = 1, . . . , n. (4)

We assume that the filtration {Ft}t≥0 is the augmented natural filtration gen-
erated by W .

2.1 The n-factor LIBOR market model

This section reviews the definition of the lognormal n-factor LIBOR market
model of n continuous LIBORs under the rolling spot measure and using the
‘scalar’ formulation.

Suppose we are given n deterministic scalar volatility functions

σi
t, t ≤ Ti. (5)

The LIBOR market model under the rolling spot measure is specified by a
system of correlated SDEs. In order to have a straightforward calibration to
market volatilities the setup is done such that under a measure change N → Qi,
Li is a lognormal martingale. Then the price today (i.e. at T0 = 0) for a caplet
that expiries at Ti will be given by Black’s formula using the volatility

σ̄i :=

√∫ Ti

0
(σi

s)
2ds

Ti
, (6)

and hence calibration of the LIBOR market model to the caplet market is
trivial.

The LIBOR market model can be formally defined as follows.

Definition 2.1 Suppose the LIBORs have the dynamics

dLi
t = Li

tσ
i
tdW̃

i
t , i = 1, . . . , n, (7)

where W̃ i is the Qi-Wiener process generated by W i under the Girsanov trans-
formation N → Qi. Then we have a discrete tenor LIBOR market model with
volatilities σ1, . . . , σn.

From the above definition it is not obvious that, given a specification of σ1, . . . , σn,
there exist a corresponding LIBOR market model. The following proposition
states that, under the weak condition of bounded volatility, this is the case.
For a proof see Bjork (2004).
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Proposition 2.1 Consider a given volatility structure σ1, . . . , σn where each
σi is assumed to be bounded. Denote by β(t) the smallest integer such that t ≤
Tβ(t). Now, define, under the rolling spot measure, N, the processes L1, . . . , Ln

by

dLi
t = Li

t

⎛
⎝ i∑

j=β(t)

αjL
j
t

1 + αjL
j
t

σi
tσ

j
t ρij

⎞
⎠ dt+ Li

tσ
i
tdW

i
t , t ≤ Ti. (8)

Then the Qi-dynamics of Li are given by (7) and thus there exists a LIBOR
market model with the given volatility structure.

3 An n-dimensional Markov-functional model

Markov-functional interest rate models (Hunt et al. (2000)) were introduced as
an alternative to short rate and LIBOR market models. The main advantages
with low-dimensional Markov-functional models are that while they allow for
a flexible and powerful calibration they may be implemented on a lattice and
derivatives may be priced using backward induction implying fast and stable
computations. The basic idea underlying Markov-functional modelling is to
choose some Markov process x defined on (Ω,F ,P, {Ft}t≥0), and then develop a
model where discount factors, numeraires and/or rates are written as functions
of this process. The Markov process could be viewed as a process containing
information about the state of the economy but have in general no economic
meaning.

This section develops and discusses a Markov-functional model driven by an
n-dimensional state process. When constructing higher-dimensional Markov-
functional models the key is to ensure that

• the univariate and monotonicity properties which are required to make
the functional fitting efficient in the one-dimensional case are retained,
and

• the desired correlation/covariance structure is captured.

The standard trick when constructing multi-dimensional Markov-functional
models is to introduce a pre-model that expresses each LIBOR as a function
of the driving Markov process (which we now assume to be of dimension k).
An example could be to take a k-factor LIBOR market model and replace the
time-dependent drift with the time zero values. This would result in a model
with something very close to the desired correlation structure and in which
all LIBORs are lognormally distributed, but for which there is significant ar-
bitrage. This arbitrage is finally removed by a Markov-functional sweep that
works as a small perturbation of the pre-model.
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In particular one assumes that the functional dependence of Li
Ti

on the multi-

dimensional vector xTi
is only via the pre-model L̃i

Ti
. Thus

Li
Ti

= f i
(
L̃i
Ti
(xTi

)
)
, (9)

for some monotonic function f i. This specialisation is what enables the uni-
variate and monotonicity properties in this higher dimensional setting to be
retained. The derivation of the functional forms can then be done in an almost
identical manner to the one-factor case.

However, computing non-trivial expectations by numerical integration and con-
structing a grid for evaluation of exotic derivatives is practically impossible in
dimensions higher than two. But, if we are willing to use the Monte Carlo
method we can use Markov-functional ideas to formulate a high dimensional
model suitable for certain products. In the next section we turn first to the
LIBOR market model introduced earlier for motivation on how to formulate
the model and then we discuss how the model may be constructed.

3.1 Motivation

Consider an n-dimensional state vector process under the measure N,

x =
(
x1, x2, . . . , xn

)
, (10)

This paper will analyse the case where x is n-dimensional Gaussian, but the
construction carries over in principle also to other types of n-dimensional pro-
cesses. For i = 1, . . . , n let,

xi
t =

∫ t

0

σi
sdW

i
s , (11)

where the W is are, as earlier, Brownian motions under N, with instantaneous
correlation dW i

t dW
j
t = ρijdt.

The benchmark model for the type of products we have in mind is the n-
factor LIBOR market model and we will start from this model to motivate the
construction of the n-dimensional Markov-functional model. First note that
the formal solution to the SDE defining the n-factor LIBOR market model in
(8) can be written, for t ≤ Ti, as

Li
t = Li

0 · exp
⎛
⎝∫ t

0

i∑
j=β(s)

αjL
j
s

1 + αjL
j
s

σi
sσ

j
sρ

ijds−
∫ t

0

(σi
s)

2

2
ds+ xi

t

⎞
⎠
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The computational challenge with this model is to take care of the (stochastic)
integral in the drift term. As a motivation for the n-dimensional Markov-
functional model we will consider a very crude drift approximation of the LI-
BOR market model. This is done by taking a single very long Euler step from
times 0 to Ti, freezing all the Lj

t values at their time zero values. Hence, by
performing this very crude drift approximation one approximates Li

t using

L̂i
t = Li

0 · exp
⎛
⎝ i∑

j=1

αjL
j
0

1 + αjL
j
0

∫ min(t,Tj)

0

σi
sσ

j
sρ

ijds−
∫ t

0

(σi
s)

2

2
ds+ xi

t

⎞
⎠ . (12)

This gives a computationally very fast model but unfortunately there is a risk
for significant errors in bond and caplet prices and the joint distribution prop-
erties of the approximation might be too far from the intended model to be
of practical use. However, this approximation is very useful when calibrating
the LIBOR market models to ‘terminal correlations’ because it allows us to
compute an analytical approximation formula. Since our main focus is mod-
elling LIBORs at their setting dates we will below give the formula for this
case. Similar versions holds for other times as well, see for example Brigo &
Mercurio (2006). Hence, when referring to ‘terminal correlations’ we will mean
the correlation between log(Li

Ti
) and log(Lj

Tj
). Using (12)

Corr(log(Li
Ti
), log(Lj

Tj
)) ≈ Corr(logL̂i

Ti
), log(L̂j

Tj
))

=

∫min(Ti,Tj)

0
σi
tσ

j
t ρ

ijdt√∫ Ti

0
(σi

t)
2dt
√∫ Tj

0
(σj

t )
2dt

, (13)

which provides a connection between the instantaneous correlation parameters
(ρij) with something that may be estimated in the market. The danger of using
this formula is obvious; if the approximation is not very good, the resultant
LIBOR market model will not accurately reflect the intended terminal corre-
lations, something which could have a large impact on correlation dependent
products. Figure 1.2 in Section 4.1 leads us to guess that this formula will work
well for maturities up to around 10 years, but could break down for longer ma-
turities. In connection with pricing TARNs (Section 6.2) we will study this
formula more closely and confirm that this is the case. Note however that
even though terminal correlations are measure dependent this approximation
formula is not and would look the same irrespective of measure for the LMM.

The drift approximation displayed above would be very crude and would typ-
ically not be used in a practical implementation of the LIBOR market model.
Beveridge, Denson & Joshi (2009) compares several proposed approximations
with respect to induced errors in bond prices as well as caplet prices. Their
findings are that predictor-corrector type discretisations have a better overall
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performance than the arbitrage-free discretisation method of Zhao & Glasser-
man (2000). The Predictor-corrector method is a two-step method based on
the Euler technique. At each step forward in time one first take a standard
Euler step forward holding the Lj

t s constant at their previous values. This
gives the predicted Li

t+δ. These are then used in the corrector step to provide
a more accurate estimate of the Lj in the time interval [t, t+δ]. The predictor-
corrector technique allows for quite long steps to be made with reasonable
errors in bonds and caplets prices and could mean a significant computational
speed-up compared with the standard Euler technique. When implementing
the LIBOR market model this is the technique we are using.

This paper will, however, not focus on drift approximations of the LIBOR
market model. Instead we develop an alternative approach which takes as its
focus the modelling of the joint distributions of the LIBORs at their setting
dates. When performing the crude drift approximation above what one is
effectively doing is writing each LIBOR at its setting date as a monotonic
function of xi

Ti
and that leads us to ask the question whether it’s possible to

construct a model which is similar to the crude drift approximation, in the
sense that Li

Ti
is a function of xi

Ti
only, but unlike the drift approximation has,

in an accurate implementation, negligible errors in bonds and caplets prices.

We will show below that by using the techniques introduced by Hunt et al.
(2000) it is possible to construct an n-dimensional model with the above prop-
erties. This model can be seen as a small perturbation of the drift approxima-
tion model using a Markov-functional sweep i.e. for some monotonic function
f̃ letting

Li
Ti

= f̃ i(L̂i
Ti
). (14)

From the construction of the model we will see that, once the process x is
chosen, in order for the model to be arbitrage free and calibrated to Black’s
model for caplets the monotonic function of xi

Ti
must be unique (see Theorem

3.1) and hence we may postulate

Li
Ti

= f i(xi
Ti
), (15)

directly.

Remark 3.1 Intuitively, the Markov-functional sweep on the drift approxi-
mation model can be seen as a small perturbation that removes the induced
discretisation errors and re-fits the marginal distributions. Since it’s only a
small perturbation the idea is that the terminal correlations produced by the
Markov-functional model should be close to the terminal correlations produced
by the analytical formula (13). The n-dimensional Markov-functional model is
hence an arbitrage free model that is modelling terminal correlations as a first-
order approximation of the LIBOR market model and has the right marginal
distributions.
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3.2 Construction

The program is to construct a LIBOR Markov-functional model, modelling n
LIBORs as functions of the above state vector process. As motivated above it
would make sense to model each LIBOR as a function of a single component
of the state vector. This is supported also from a construction point of view
since it assures that the important univariate and monotonicity properties are
retained. Thus let, under N,

Li
Ti

= f i(xi
Ti
), i = 1, . . . , n, (16)

for some monotonically increasing function f i. The functional forms will be
found in a similar fashion to standard Markov-functional modelling, but us-
ing forward instead of backward induction. For a one-dimensional Markov-
functional model implemented using the rolling spot measure setup, see Fries
& Rott (2004). In this setting one must use digital caplets in arrears instead of
the standard digital caplets as calibration instruments (see Fries & Rott (2004)
for a proof of why calibrating an arbitrage free model to digital caplet in arrears
is equivalent to calibrating it to caplets).

Denote by V i(K) the value today (at time t = 0) of a digital caplet in arrears
with strike K that expires at time Ti. By risk-neutral valuation under the
measure N,

V i(K) = N0E
N

[
1{Li

Ti
≥ K}

NTi

]
, (17)

Now consider the ith step in the forward fitting procedure, i.e. assume the
functional forms of Lk

Tk
are already known for k = 1, . . . , i − 1 and that the

functional form of Li
Ti

is sought. Start by choosing a grid of values (scalars)
x∗ and for each x∗ calculate (note that this is typically a high-dimensional
integral)

J i(x∗) := N0E
N

[
1{xi

Ti
≥ x∗}

NTi

]
. (18)

Then search for the strike K∗ such that

V i(K∗) = J i(x∗) (19)

and finally conclude that

f i(x∗) = K∗. (20)
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The last conclusion follows from

N0E
N

[
1{Li

Ti
≥ K∗}

NTi

]
=

V i(K∗) ≡ J i(x∗) =

N0E
N

[
1{xi

Ti
≥ x∗}

NTi

]
= N0E

N

[
1{f i(xi

Ti
) ≥ f i(x∗)}
NTi

]
,

= N0E
N

[
1{Li

Ti
≥ f i(x∗)}
NTi

]
, (21)

where the monotonicity assumption is crucial for the second to last equality.

While the above construction is fine theoretically there is however one crucial
practical problem to solve, namely computing J i(x∗) in equation (18). Recall
that the numeraire, NTi , is a function of the first i− 1 LIBORs and hence, by
construction, a function of the first i − 1 components of the state vector, x.
This implies that one needs to compute a multidimensional integral under a
non-trivial joint distribution function. The standard numerical technique for
doing this is Monte Carlo integration. Subsection 3.5 outlines the setup for
implementing the model.

Remark 3.2 Note how using digital caplets in arrears and not standard digital
caplets allows efficient calibration under N. Since digital caplets in arrears both
sets and pays at time Ti, the functional form of the numeraire NTi

is all that is
required to determine J i(x∗) in equation (18) under N. Since NTi is a function
of L1

T1
, ..., Li−1

Ti−1
it is determined using the functional forms deduced in the

previous steps.

3.3 Marginal distribution

Note that the construction algorithm presented in the previous subsection is
not dependent on the particular choice of prices of digital caplets in arrears
which dictates the marginal distributions. In principle one may choose any
set of arbitrage free prices of digital caplets in arrears and hence enforce any
marginal distribution on LIBORs at their setting dates. In this paper the main
assumption will be that prices are given by the Black model implying lognormal
marginal distributions of each forward LIBOR at their setting dates under their
respective forward measures. This case is extensively numerically investigated
in Section 4.

However, easy control over the marginal distributions is one of the major advan-
tages with the Markov-functional model compared with LIBOR market models
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and this section will display two possibilities to enforce implied volatility skews
of caplets into the model.

Displaced diffusions

LIBOR market models with displaced diffusion marginal distributions have
been very popular over the last decades, see for example Rebonato (2002) and
Brigo & Mercurio (2006). Displaced diffusion marginal distributions are easily
incorporated into the Markov-functional model. To get displaced diffusion
marginals one models Li

Ti
under Qi as

Li
Ti

= Yi − ai (22)

where Yi is a lognormal random variable and ai ∈ 	. More precisely, write
Yi := exp (Ni) and set EQi

[Yi] = yi. Then Ni has a normal distribution with

EQi

[Ni] = log(yi) − η2
i

2 where η2i = VarQ
i

[Ni]. Note that under the condition

EQi [
Li
Ti

]
= Li

0, yi must be chosen as Li
0 + ai. For ai = 0 we are back at

the lognormal case and as ai tends to ∞, Li
Ti

tends to a normally distributed
random variable.

One benefit of the displaced diffusion marginal distributions is that caplet prices
(and hence also digital caplets in arrears prices) are given by a simple extension
of the Black formula (simply add ai to Li

0 and to the strike). Moreover, ai
strictly positive leads to a strictly decreasing implied volatility skew, something
which is roughly in line with typical observations in the market. The direct
disadvantage is that the support of Li

Ti
is (−ai,∞), i.e. for positive ai there is

a possibility of negative rates.

In the displaced diffusion LIBOR market model the SDE for Li under N is
given by

dLi
t = (Li

t + ai)

⎛
⎝ i∑

j=β(t)

αj(L
j
t + aj)

1 + αjL
j
t

σi
tσ

j
t ρij

⎞
⎠ dt+ (Li

t + ai)σ
i
tdW

i
t , t ≤ Ti.

(23)
In the motivation section above the case ai = 0 was studied. Note that by
the structure of the above SDE everything in the motivation section carries
through as it is if one puts focus on Li

t + ai instead of Li
t. Section 4.4 provides

a numerical investigation/comparison of the displaced diffusion LIBOR market
model and the n-dimensional Markov-functional model calibrated to displaced
diffusion marginal distributions.
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Modified displaced diffusions

Although displaced diffusion marginal distributions are easy to handle and may
give market-like implied volatility skews the fact that it allows for negative
LIBORs is a clear objection against it. In a Markov-functional setting there
are robust ways around this since one does not have to define a continuous
process for Li, only the distribution of Li

Ti
. In general one may choose to

model LIBOR at it’s setting date as

Li
Ti

= g(Yi) (24)

for some function g. The function g may be then be chosen to enforce desired
properties of the marginal distribution, such as implied volatility skews, positive
rates, desirable look of the probability density function etc.

We will now display one possible choice of g that is similar to the displaced
diffusion case but does not allow negative rates. Let,

Li
Ti

= EQi [
(ZiYi − ai)

+
∣∣Yi

]
(25)

where Zi is a lognormal random variable with EQi

[Zi] = 1 and Var[ln(Zi)] = ν2i
and with Yi and ai as above. The expectation may be computed in a Black-
Scholes type fashion and leads to the formula

Li
Ti

= YiN(d1)− aiN(d2) (26)

d1 =
log
(

Yi

ai
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+

ν2
i

2

νi
(27)

d2 =
log
(

Yi
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− ν2

i
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Moreover, given the requirement EQi [
Li
Ti

]
= Li

0, yi is endogenously given by

the choice of ai and νi. Roughly yi = Li
0+ai as in the displaced diffusion case.

Since the functional form of Li
Ti

under Qi is then specified, prices of caplets
may be computed using standard one-dimensional numerical quadrature. The
roles of the parameters are:

• ai: The main driver of the slope of the implied volatility skews (as in the
displaced diffusion case).

• ηi: Determines the level of the ATM implied volatility skew (as in the
displaced diffusion case).

• νi: Shifts the probability mass away from zero. Note that for νi = 0 one
has a displaced diffusion model with floor at zero. Here νi > 0 shifts the
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probability mass away from zero, the larger the νi the further the mass
moves.

Note that moving the mass from zero will lead to a somewhat less steep implied
volatility smile for the modified displaced diffusion model compared with the
displaced diffusion case. To match up the smiles one typically chooses ai larger
for the modified displaced diffusion model. Figure 1.1 displays an example of
implied volatility skews and probability density functions given by the modified
and standard displaced diffusion models.
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Figure 1.1: Implied volatility skews and probability density functions for the
displaced diffusion and modified displaced diffusion models. L10

0 = L20
0 = 0.05.

For the DD model a10 = a20 = 0.05, η10 = 0.0988, η20 = 0.0975 and for the
modififed DD model a10 = 0.055, a20 = 0.08, η10 = 0.0949, η20 = 0.0793, ν10 =
ν20 = 0.1, x10 = 0.105, x20 = 0.128.
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3.4 Uniqueness

The following result is helpful when providing intuition about the structure of
the n-dimensional Markov-functional model. Basically it says that once the
joint distribution of (x1

T1
, . . . , xn

Tn
) has been specified then the functional forms

f i, i = 1, . . . , n in (16) are uniquely determined.

Theorem 3.1 Consider an n-dimensional Markov-functional model based on
the tenor structure T1, . . . , Tn which satisfies the following conditions:

1. The driving Markov process is of the form specified in (11).

2. The ith LIBOR at time Ti, L
i
Ti
, is a monotonically increasing function

of the variable xi
Ti
, i.e.

Li
Ti

= f i(xi
Ti
).

3. The model is calibrated to caplet prices (given by any arbitrage free model)
corresponding to the rates L1, L2, . . . , Ln setting at dates T1, T2, . . . , Tn.

If such a model exists then it’s unique, that is, the functional forms f1, f2, . . . , fn

are uniquely determined.

Proof. This follows from the construction of the n-dimensional Markov-
functional model described in the previous section.

Start with the case i = 1. Pick any x∗ ∈ 	 and compute J1(x∗). Since for
an arbitrage free model the value of a digital caplet in-arrears must be strictly
monotonically decreasing in strike, the strike s.t. V 1(K∗) = J1(x∗) is unique
and hence also f1(x∗) is uniquely determined.

For the case i = 2, uniqueness of f1 implies uniqueness of f2 using the same
arguments as above. By induction the functional forms at all times in the above
tenor structure must be unique.

Note that this result explains why we can write (15) directly instead of (14).

Remark 3.3 Note the implications of this result in practice. Any approxima-
tion to an n-factor LIBOR market model that is designed to be approximately
arbitrage free and models each LIBOR at it’s setting date, Li

Ti
, as a monotonic

function of xi
Ti

is, in effect, also an approximation to the unique arbitrage free
n-dimensional Markov-functional model that calibrates to Black’s formula for
pricing the corresponding vanilla caplets.
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3.5 Implementation and efficiency

This section will describe in some detail how we chose to implement the n-
dimensional Markov-functional model for pricing products depending on LI-
BORs at their setting dates. For products depending on LIBORs before set-
ting dates, see Section 5. The main difference compared with a one-dimensional
Markov-functional models is that, due to the high dimension, one can not use
fast and accurate numerical integration methods such as Gaussian quadrature
to compute expectations such as equation (18). Instead we choose to use Monte
Carlo integration. While being straightforward to implement, Monte Carlo in-
tegration is inherently slow and since it will be used to find the functional forms
this is a potential hazard to efficient implementation. Two methods we employ
to mitigate this are as follows.

First, due to the fairly low dimension (the number of rates modelled) it is pos-
sible to speed up the convergence rate significantly by using low-discrepancy
sequences, e.g. the Sobol sequence. The convergence rate for standard Monte
Carlo integration is of the order O( 1√

M
), where M is the number of reali-

sations. Jaeckel (2002), states a lower bound for the convergence rate using

low-discrepancy sequences of the order O( log
dM
M ), where d is the dimension,

but also argues that this lower bound is quite crude and that a careful im-
plementation using Sobol sequences and Brownian bridge path construction
methods could achieve far faster convergence, with a lot weaker dependence
on dimension. Note at this point that for an accurate implementation of the
n-factor LIBOR market model the dimension will become rather large (unless
single steps out to each setting date is used) and hence the benefits of using
Sobol sequences tends to decrease.

The second way to speed up the n-dimensional Markov-functional model is to
use the same simulated state vector for calibration (i.e. pricing of digital caplet
in arrears) and for pricing (of the intended exotic derivative). This will make
up for major parts of the statistical error in a similar way as using caplets as
control variates. We will give some examples of this at the end of this section.

Below follows a step by step outline of how we have implemented the model
including some hints of how to speed up the implementation. All numerical
routines are described (and implemented) in Press, Teukolsky, Vetterling &
Flannery (2002).

1. Simulate a set of M realisations of the (n-dimensional Gaussian) state
vector process

x̃(ωk) =
(
x1
T1
(ωk), x

2
T2
(ωk), . . . , x

n
Tn

(ωk)
)
, k = 1, . . . ,M. (29)

To do this we simulate a set of independent normally distributed variables
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(using either pseudo-random (Mersenne Twister) or Sobol sequences) and
then use spectral decomposition.

2. For each i = 1, . . . , n choose a set of reference grid points at which the
functional form values will be computed. For this we have tested two
different approaches;

• The first method forces the probability mass for the gap between the
grid points to be roughly equally large. To do this, sample every,
say, kth number out of the (sorted) M simulated values of xi

Ti
. For

example, if M = 10000, sort the simulated values and sample every
100th of them yielding a total of 100 reference grid points.

• With the second method we divide the difference between the sim-
ulated largest and smallest values with the number of intended grid
points and spread the grid evenly.

In our experience the second method has been more efficient, implying a
reduction in the number of grid points and hence speeding up the model.

3. Fix i ∈ {1, . . . , n}. Then to find the functional form value f i at the grid
point x∗ proceed as follows.

(a) Compute J i(x∗) by Monte Carlo integration

J i(x∗) ≈ N0
1

M

M∑
k=1

1{xi
Ti
(ωk) ≥ x∗}

NTi
(ωk)

. (30)

The value of the numeraire at time Ti in state of the world ωk,
NTi(ωk), is computed and stored in step i− 1. Note that by sorting
the state vectors a significant speed-up can be gained by not having
to check whether or not xi

Ti
(ω) ≥ x∗ for all states.

(b) Find the strike that matches the Black model value of a digital
caplet in arrears with each of the J i(x∗). This is done in a fast and
robust way using Brent’s one-dimensional root finding algorithm.
Remember that this strike is exactly the functional form value at
point x∗

(c) Having computed the functional form values for all grid points, use
cubic splines to interpolate over the whole range of xi

Ti
. To our

knowledge around 100 grid points interpolates with good precision.

(d) Finally update the values of the numeraire at time Ti+1 by

NTi+1(ωk) =
(
1 + αif

i(xi
Ti
(ωk))

)
NTi(ωk), k = 1, . . . ,M. (31)

To get the values f i(xi
Ti
(ωk)) the cubic splines fitted in the previous

step are used. Even if calls to get the cubic spline interpolated values
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are fairly quick it might at this point be useful to store (if memory
allows) the realisations of the values f i(xi

Ti
(ωk)) and reuse them for

pricing later on.

4. Use the simulated state vector processes with corresponding LIBORs to
price exotic derivatives using the Monte Carlo method.

As for efficiency we believe that the n-dimensional model is potentially, for the
same degree of accuracy, quite a bit faster than the n-factor LIBOR market
model. Computational times will of course highly depend on the skills of the
person who implements the model and should always be taken somewhat light-
hearted. Nevertheless, for products depending on (the interaction of) LIBORs
at their setting dates we have found computational gains of at least a factor
10 (and potentially up to a factor 50) over an n-factor LIBOR market model
implemented using one year long steps with the predictor-corrector scheme.

4 Numerical comparison of the models

The n-dimensional Markov-functional model defined in the previous section is
formulated very differently from the n-factor LIBOR market model. While the
behaviour of the LMM is fairly transparent due to its defining SDE this is not
the case for the MFM, whose properties might be quite hard to grasp. Yet,
given the motivation for the construction of the Markov-functional model (see
Section 3.1) we wouldn’t expect the models to be very different distributionally.

Note that what matters for the main type products we will consider is the joint
distribution of Li

Ti
, i = 1, . . . , n under N; if this distribution were the same for

the two models we would get identical prices. To see this recall that for pricing
a payoff depending on Li

Ti
under N we will need to model also Lj

Tj
, j < i, due to

their presence in the numeraire NTi
. This section will investigate the structure

of the differences between the joint distributions (of the LIBOR at their setting
dates) produced by the two models, through a number of comparisons. The
main focus will be on providing intuition about in which sense the models are
different and whether it is possible to transfer the intuition given from the LMM
SDE over to the less transparent Markov-functional model. Most results deals
with comparing the standard LMM with the MFM calibrated to the marginal
distributions given by the Black model for caplet prices, however there is also
a section displaying what happens in the displaced diffusion case.

Let’s start with the following observation about marginal distributions in the
standard case where caplet prices are given by the Black model. Recall that by
construction the models’ marginal distributions under the respective forward
measures are fixed to be identical (Li

Ti
has a lognormal distribution under Qi).
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However, this doesn’t hold, in general, under N. For time T1 we have

N(L1
T1

≤ y) = EN
[
1{L1

T1
≤ y}]

=
D0T2

D0T1

EQ1 [
(1 + α1L

1
T1
)1{L1

T1
≤ y}] , (32)

where we have used the fact that the Radon-Nikodym derivative for the measure
change Q1 to N is

dN

dQ1

∣∣∣∣
T1

=
NT1

N0
· D0T2

DT1T2

=
D0T2

D0T1

(1 + α1L
1
T1
). (33)

Since we have made sure that both models have the same lognormal distribu-
tion under Q1 for L1

T1
it’s clear that the models will imply the same marginal

distributions for L1
T1

under N as well. However, for the general case we get

N(Li
Ti

≤ y) =
D0Ti+1

D0T1

EQi

⎡
⎣ i∏
j=1

(1 + αjL
j
Tj
)1{Li

Ti
≤ y}

⎤
⎦ . (34)

For this case the situation is different since, depending on the joint distribution
of the Lj

Tj
’s, the marginals under N might not be identical.

The most apparent difference between the models is that the MFM models
each LIBOR at its setting date as a function of xi

Ti
only, whereas for the LMM,

Li
Ti

depends not only on the value of xi
Ti

but also, through the drift term, on

the exact trajectories of xj
t , j ≤ i, t ∈ [0, Tj ] (see equation (3.1) in Section 3.1).

The process x which links the models under N will be key to making sensible
comparisons between the models. In Section 4.1 we will provide scatter plots for
the LMM overlayed on plots of the functional forms of the MFM. In Section 4.2
we study the distributions of Li

Ti
conditional on some outcome for xi

Ti
and in

Section 4.3 we condition on the whole vector
(
x1
T1
, . . . , xn

Tn

)
.

All results presented in this section are based on a scenario with flat initial
LIBORs at 5%, flat term structure of volatility at 20% and instantaneous cor-
relations given by ρij = exp{−0.1|Ti−Tj |}. We have performed tests also with
other scenarios, in particular scenarios corresponding to the ones in Bennett
& Kennedy (2005), Table 1. For these other tests we take initial forward LI-
BORs in the range 0.02 to 0.1 and volatilities in the range 0.1 to 0.3 (the term
structures could be both flat, upward or downward sloping). As understood
from the LMM SDE the dispersion of the LMM realisations will increase with
increasing initial forward LIBORs or volatilities and the magnitude in the level
of the rates will change according to the initial forward LIBOR levels. How-
ever, for these other scenarios, qualitatively nothing changes compared with
the above base scenario. Since it is the qualitative features we are after in this
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However, this doesn’t hold, in general, under N. For time T1 we have

N(L1
T1

≤ y) = EN
[
1{L1

T1
≤ y}]

=
D0T2

D0T1

EQ1 [
(1 + α1L

1
T1
)1{L1

T1
≤ y}] , (32)

where we have used the fact that the Radon-Nikodym derivative for the measure
change Q1 to N is

dN

dQ1

∣∣∣∣
T1

=
NT1

N0
· D0T2

DT1T2

=
D0T2

D0T1

(1 + α1L
1
T1
). (33)

Since we have made sure that both models have the same lognormal distribu-
tion under Q1 for L1

T1
it’s clear that the models will imply the same marginal

distributions for L1
T1

under N as well. However, for the general case we get

N(Li
Ti

≤ y) =
D0Ti+1

D0T1

EQi

⎡
⎣ i∏
j=1

(1 + αjL
j
Tj
)1{Li

Ti
≤ y}

⎤
⎦ . (34)

For this case the situation is different since, depending on the joint distribution
of the Lj

Tj
’s, the marginals under N might not be identical.

The most apparent difference between the models is that the MFM models
each LIBOR at its setting date as a function of xi

Ti
only, whereas for the LMM,

Li
Ti

depends not only on the value of xi
Ti

but also, through the drift term, on

the exact trajectories of xj
t , j ≤ i, t ∈ [0, Tj ] (see equation (3.1) in Section 3.1).

The process x which links the models under N will be key to making sensible
comparisons between the models. In Section 4.1 we will provide scatter plots for
the LMM overlayed on plots of the functional forms of the MFM. In Section 4.2
we study the distributions of Li

Ti
conditional on some outcome for xi

Ti
and in

Section 4.3 we condition on the whole vector
(
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T1
, . . . , xn

Tn

)
.
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from the LMM SDE the dispersion of the LMM realisations will increase with
increasing initial forward LIBORs or volatilities and the magnitude in the level
of the rates will change according to the initial forward LIBOR levels. How-
ever, for these other scenarios, qualitatively nothing changes compared with
the above base scenario. Since it is the qualitative features we are after in this
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section we have chosen to use only this scenario, being fairly representative of
typical market conditions.

4.1 Scatter plots

As a first investigation about how the models are coupled via the process x we
plot in Figure 1.2 the functional form of log(Li,mfm

Ti
) as well as scatter plots for

log(Li,lmm
Ti

)(ω) vs xi
Ti
(ω). The scatter plots are constructed by simulating a

number of realisations of Li,lmm
Ti

(with high accuracy) and for each realisation

plotting the natural logarithm of the value vs the realised xi
Ti
. Once this is

done the functional form for Li,mfm
Ti

, f i is plotted over the same range as for
the simulated scatter plots.

Figure 1.2: Scatter plots of log(Li,lmm
Ti

) vs xi
Ti

as well as the functional form

logf i(xi
Ti
) for the cases 5, 10, 20 and 30 years.

From Figure 1.2 we note the following:

• The functional forms, f i, of the Markov-functional model seem to be very
close to log-linear in xi

Ti
.

• For maturities up to at least 10 years the LIBOR market model also seem
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very close to log-linear in xi
Ti
. For longer maturities, however, the impact

of the stochastic drift term starts to become noticeable.

Let’s first note what this implies in terms of terminal correlations. Since the
MFM functional forms are very close to log-linear we would expect the correla-
tion structure of (log(L1

T1
), . . . , log(Ln

Tn
)) and (x1

T1
, . . . , xn

Tn
) to be very similar.

However, for the LIBOR market model the fairly large scatter for longer ma-
turities implies that we wouldn’t necessarily expect the approximation formula
(13) to be very accurate for these cases. This view is supported by a closer
investigation in connection with the pricing of TARNs which we discuss in the
next section.

With regards to joint distributions note that Figure 1.2 motivates writing

log(Li,lmm
Ti

)(ω) = log(Li,mfm
Ti

)(ω) + εi(ω) = log(f i(xi
Ti
(ω))) + εi(ω), (35)

where for each i, εi is a random variable that, at least for shorter maturities,
has mean close to zero and comparably small variance. Hence,

Li,lmm
Ti

(ω) ≈ f i(xi
Ti
(ω)) (36)

which would lead us to expect that the joint distribution of Li
Ti
, i = 1, . . . , n,

will be close for the two models. For longer maturities however the scatter
from the LIBOR market model is quite significant implying that the variance
of εi starts getting sizeable. Moreover, it seems like we can no longer expect
the mean to be zero. We will investigate this further in the next section, trying
to display how the mean and variance of εi depend on maturity.

4.2 Conditioning on xi
Ti

The scatter plots above give us realizations from the joint distributions of
(xi

Ti
, Li,lmm) and (xi

Ti
, Li,mfm). Since xi

Ti
is common for both models and seems

to describe a large part of the variation also for Li,lmm
Ti

it would be interesting

to study the distribution of the Li,lmm
Ti

conditional on xi
Ti
. To do this we fix

an xi
Ti

value and then conditionally fill in the whole path needed for a full
simulation of the LIBOR market model (since the x vector is Gaussian this is
straightforwardly done, albeit a bit messy, using some standard results from
Statistics). In Figure 1.3 we plot the mean together with the 5th and 95th
percentile of 100 realisations of Li

Ti
, i = 5, 10, 20, and 30, conditional on

xi
Ti

= yj , j = 1, . . . , 25, where the values yj are defined by N(xi
Ti

≤ yj) =
j
26 ,

j = 1, . . . , 25. We also plot the MFM functional form values f i(yj).

The plots in Figure 1.3 confirm the findings of the scatter plots. The condi-
tional variance of εi is extremely small for short maturities and even for longer
maturities we still consider it small.
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Figure 1.3: Plots of the mean (circles) together with the 5th and 95th per-
centiles of realisations from the LMM conditional on values for xi

Ti
as described

in the text. We also plot the MFM functional form values (dots) at the condi-
tioned values.

To investigate this further we subtract the MFM values from the LMM ones
and thus, from equation (35), we can estimate the conditional mean of εi:

E
[
εi
∣∣xi

Ti
= yj

] ≈ 1

100

100∑
k=1

logLi,lmm
Ti

(ωk)|xi
Ti

(ωk)=yj
− logf i(yj). (37)

Results from this test are given in Figure 1.4. Note that the conditional mean
seems to be positively biased for longer maturities. Also note that the condi-
tional variance increases with magnitude of xi

Ti
.

To summarize the findings of this section we argue that the conditional mean
and variance of εi are very close to zero and very small, respectively, for shorter
maturities. Hence we would expect the joint distributions of the models to be
numerically very similar for short maturities. For longer maturities, however,
the conditional mean is positive (though small) and the variance is certainly
sizeable. Given this we can no longer be certain that the models will imply
very similar joint distributions. However, the models are definitely still very
closely connected, implying that the intuition from the LMM SDE would be
transferable to the MFM.
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Figure 1.4: Estimation of the conditional mean of εi introduced in equation
(35) for maturities i = 5, 10, 20 and 30. The plots also contain the 5th and
95th percentile of the simulated values.

4.3 Conditioning on (x1
T1
, . . . , xn

Tn
)

In the discussion above, our starting point was the fact that for the MFM,
Li
Ti

is governed by xi
Ti

and hence we studied the LMM conditional on xi
Ti
. To

highlight differences between the models we now consider what happens when
conditioning on (x1

T1
, . . . , xn

Tn
). More precisely we will choose i = 10 and study

the behaviour of the LIBOR market model when the vector (x1
T1
, . . . , xn

Tn
) is

fixed and L10 is simulated over the interval [0, T10].

Figure 1.5 displays four different state vector scenarios that we condition on
when simulating L10 from time zero up to it’s setting time T10 = 10 years.
The first three scenarios are chosen to represent ‘typical’ realisations, and the
fourth displays an usual scenario having a largely negative state vector. We fill
in intermediate values needed to simulate a LIBOR market model using half-
year long steps. We get realisations of L10

t , where t goes from zero to T10=10
years, as in Figure 1.6.

These plots are at first sight rather remarkable. Despite the fact that the
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Figure 1.5: Four different scenarios for the fixed state vectors

Figure 1.6: Ten different realisations of L10
t , where t goes from 0 to T10=10

years, conditional on the four different state vector scenarios in Figure 1.5

realised LIBORs can be very different before the setting date they all come
together to what seems like almost the same spot at the end. This is consistent
with the results we have seen in Figure 1.4 where we only conditioned on the
end points.

An interesting next step from here would be to condition on some not so prob-
able paths and see if they are all still coming together nicely. Three scenarios
are plotted in the upper left graph in Figure 1.7. First note that all three
scenarios end up at the points x10

T10
= 0.76 but the other 9 components of the

state vector are hugely different. The first scenario is a highly improbable sce-
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nario with the xi
Ti
s waving from largely positive to largely negative values, the

second scenario fixes all other xi
Ti
s to be zero and the third scenario fixes all

xi
Ti
s to yis s.t. N(x

i
Ti

≤ yi) = N(x10
T10

≤ 0.76).

Figure 1.7: 10 different realisations of the L10
t , where t goes from 0 to T10=10

years, conditional on the three state vector scenarios displayed in the graph in
the upper left corner.

These plots look in effect very similar to the ones in Figure 1.6, with the
difference that the scatter is a bit larger and that the pattern in the conditional
x vectors may readily be spotted in the realisations. We will now compare the
outcomes of the L10

T10
values for these scenarios with the Markov-functional

ones. The idea is that for these quite unusual scenarios there is a possibility
that the models might not be very close anymore. To do this we generalise the
scenarios (one waving, one zero and one fixed percentiles, exact values depends
on the value of x10

10) such that we can insert them into Figure 1.4 where we
only conditioned on the final outcome, x10

10. This gives rise to the graph in
Figure 1.8.

From Figure 1.8 we note that even if we force the paths to take on very strange
trajectories up to time T10 we end up with values not very different from the
Markov-functional ones. Some intuition for the look of the respective paths
could be as follows. Assume that x10

T10
is fixed to a positive value and consider

the second scenario. Forcing all xi
Ti
s, i = 1, . . . , 9 to be zero implies that the
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Figure 1.8: The graph in Figure 1.4 with added realisations from conditioning
on generalisations of the scenarios used in Figure1.7.

Li
t, i = 1, . . . , 9 on average will be lower than they ‘should’ given the positive

correlation between the components of x. Too low values implies a too low
drift term and hence in the end a too low L10

T10
. Fixing x10

T10
to a negative

value reverses the arguments. These too low and too high values give rise to
the biased pattern seen in the plots. For Scenario 3 similar arguments holds
however since for scenario 1 the xi

Ti
are both negative and positive it’s not clear

what will happen.

4.4 The displaced diffusion case

This section will explain how the above gained intuition is transferred to the
case of the displaced diffusion LIBOR market model and the displaced diffusion
Markov-functional models. The data used in this section is the same as in the
displaced diffusion case in the TARNs pricing part, Section 6.

Figure 1.9 displays the displaced diffusion version of figure 1.2. In this plot both
the functional forms in the standard Black case and the displaced diffusion case
are given. The main differences between the two cases are that the range of the
LIBOR realisations is smaller in the displaced diffusion case and, perhaps most
interestingly, the LMM LIBOR scatter is significantly smaller. To understand
why the scatter is smaller recall the LMM DD SDE, equation (23). Note that if
one chooses ai =

1
αi

the drift no longer depends on earlier LIBORs and the n-
dimensional DD Markov-functional model and the n-factor DD LIBOR market
models would be identical! The typical DD models will have ai somewhere in
between zero and 1

αi
and hence have scatter somewhere in between these two

cases.

Redoing the other plots in the previous subsections for the displaced diffusion
case provides no extra interesting information. For ai > 0 the scatter is smaller
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Figure 1.9: This plot is built up in the same manner as in figure 1.2. In addition
to the Black case scatter plots of the displaced diffusion cases log(Li,lmm

Ti
+ ai)

vs xi
Ti

as well as the functional form of log(f i(xi
Ti
) + ai) is plotted. Only the

cases 20 and 30 years are displayed.

and the figures look similar although with different scales.

4.5 Summary

From the tests in this section we have seen that Li
Ti

is largely determined by

xi
Ti

for the LIBOR market model. However, as seen in Figure 1.2, for longer

maturities the values of xj
t , t < Tj , j < i have a more noticeable effect on the

LIBOR market model realisation of the ith LIBOR at its setting date Ti.

Remember that ultimately it is the intuition about the model behaviour we are
after. We know a priori that by construction the differences displayed in the
above tests will be there and our main concern was that there would be some
bias somewhere which would affect the model behaviour too much. Despite
the slight bias for longer maturities we still argue that the models are close
enough to be able to transfer the intuition from the LMM SDE over to the
Markov-functional model.

The differences displayed in the test should actually be of greater concern for
someone implementing a speedy version of the LIBOR market model using drift
approximations over large steps. The arbitrage and distorted calibration prop-
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The differences displayed in the test should actually be of greater concern for
someone implementing a speedy version of the LIBOR market model using drift
approximations over large steps. The arbitrage and distorted calibration prop-
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erties introduced by the drift approximation are hard to control and, for longer
maturities, the exact trajectories in the LIBOR market model is important
and has a non-negligible effect. With the Markov-functional model we are only
concerned about whether we can still transfer the intuition, since the model
by construction is arbitrage free and perfectly calibrated to market marginal
distributions and terminal correlations. This should imply that at least for
longer maturities the Markov-functional model should have a clear advantage
over drift approximation models.

5 Computing the forward LIBOR curve

We have so far only considered properties of the model at the setting dates of
the modelled LIBORs. A natural question to ask is how the model is specified
at a general time t, not only the setting dates. Via the martingale property of
Li under its associated forward measure we have (using a change of measure
from Qi to N and the abstract Bayes’ formula)

Li
t = EQi [

Li
Ti

∣∣Ft

]
=

EN
[∏i

j=1(1 + αjL
j
Tj
)−1Li

Ti

∣∣∣Ft

]
EN

[∏i
j=1(1 + αjL

j
Tj
)−1
∣∣∣Ft

] . (38)

Observe that since x is a Markov process under N, once we have chosen the
process x (and therefore the conditional distribution of (x1

T1
, ..., xi

Ti
) given xt)

and the calibrating distributions, the Markov-functional model is fully specified
at all times. Noting the product form in the equations and using the ‘take out
what is known technique’ we can take out the LIBORs setting before time t and

thus Li
t will be a function of (x

β(t)
t , ..., xi

t). Hence, it is not possible to formulate
an arbitrage free model where Li

t depends only on xi
t at all times (not only the

setting time Ti) something which holds for the extreme drift approximation in
equation (12).

While being informative, the above expression (38) might not be the best choice
to work from in order to compute Li

t. By using the martingale property of
numeraire rebased assets one may derive the following two expressions which
are slightly nicer to work from. Let Tk ≤ t < s ≤ Tk+1. Then for i = k+1, . . . , n

EN

⎡
⎣ i∏

j=k+1

(
1 + αjL

j
s

)−1

∣∣∣∣∣∣Ft

⎤
⎦ =

i∏
j=k+1

(
1 + αjL

j
t

)−1

. (39)

Alternatively, one may also start from LIBORs at their setting dates to get

EN

⎡
⎣ i∏

j=k+1

(
1 + αjL

j
Tj

)−1

∣∣∣∣∣∣Ft

⎤
⎦ =

i∏
j=k+1

(
1 + αjL

j
t

)−1

(40)

34 An n-Dimensional Markov-functional Interest Rate Model

erties introduced by the drift approximation are hard to control and, for longer
maturities, the exact trajectories in the LIBOR market model is important
and has a non-negligible effect. With the Markov-functional model we are only
concerned about whether we can still transfer the intuition, since the model
by construction is arbitrage free and perfectly calibrated to market marginal
distributions and terminal correlations. This should imply that at least for
longer maturities the Markov-functional model should have a clear advantage
over drift approximation models.

5 Computing the forward LIBOR curve

We have so far only considered properties of the model at the setting dates of
the modelled LIBORs. A natural question to ask is how the model is specified
at a general time t, not only the setting dates. Via the martingale property of
Li under its associated forward measure we have (using a change of measure
from Qi to N and the abstract Bayes’ formula)

Li
t = EQi [

Li
Ti

∣∣Ft

]
=

EN
[∏i

j=1(1 + αjL
j
Tj
)−1Li

Ti

∣∣∣Ft

]
EN

[∏i
j=1(1 + αjL

j
Tj
)−1
∣∣∣Ft

] . (38)

Observe that since x is a Markov process under N, once we have chosen the
process x (and therefore the conditional distribution of (x1

T1
, ..., xi

Ti
) given xt)

and the calibrating distributions, the Markov-functional model is fully specified
at all times. Noting the product form in the equations and using the ‘take out
what is known technique’ we can take out the LIBORs setting before time t and

thus Li
t will be a function of (x

β(t)
t , ..., xi

t). Hence, it is not possible to formulate
an arbitrage free model where Li

t depends only on xi
t at all times (not only the

setting time Ti) something which holds for the extreme drift approximation in
equation (12).

While being informative, the above expression (38) might not be the best choice
to work from in order to compute Li

t. By using the martingale property of
numeraire rebased assets one may derive the following two expressions which
are slightly nicer to work from. Let Tk ≤ t < s ≤ Tk+1. Then for i = k+1, . . . , n

EN

⎡
⎣ i∏

j=k+1

(
1 + αjL

j
s

)−1

∣∣∣∣∣∣Ft

⎤
⎦ =

i∏
j=k+1

(
1 + αjL

j
t

)−1

. (39)

Alternatively, one may also start from LIBORs at their setting dates to get

EN

⎡
⎣ i∏

j=k+1

(
1 + αjL

j
Tj

)−1

∣∣∣∣∣∣Ft

⎤
⎦ =

i∏
j=k+1

(
1 + αjL

j
t

)−1

(40)



5. Computing the forward LIBOR curve 35

That is, one could work from either the (already known) functional forms for
LIBORs at their setting dates or iteratively using the time Tk+1 functional
forms. In either case one will at each time, say, Tk need to solve n− k expec-
tations to get the full forward LIBOR curve.

Note that while for the case i = k+1, Lk+1
Tk

is a function of xk+1
Tk

and may hence
be computed using numerical quadrature, the general case requires, due to the
high dimension, the use of Monte Carlo integration. Computing the condi-
tional expectations with Monte Carlo integration will be very computationally
intense. To understand this suppose that we are constructing the model using
m state matrices xj

Tk
, 1 ≤ k ≤ j ≤ n. Then, to get all rates in each realisation

one will need to compute n− 2 + n− 3 + . . .+ 1 = (n−2)(n−1)
2 expectations by

Monte Carlo integration.

To avoid using Monte Carlo integration of the conditional expectation the next
subsection develops an approximation. In what follows we will restrict ourselves
to specifying the model forward LIBORs at the canonical dates. Although the
model is not in any way restricted to these dates it simplifies the presentation
and still allows for pricing of most common derivative types.

5.1 Approximating Li
Tk

Note that to get the forward LIBOR Li
Tk

one would need to compute the
conditional expectations in (38), (39) or (40). To speed up the computations
this subsection outlines one possible approximation based on the expression
(40).

Let, for a general set of times [t1, . . . , tn],

Gi
k(x

k+1
tk+1

, . . . , xi
ti) :=

i∏
j=k+1

(
1 + αjL

j
Tj
(xj

tj )
)−1

(41)

To enable analytical computation of the expectation of Gi
k(x

k+1
Tk+1

, . . . , xi
Ti
) con-

ditional on xTk
one may expand Gi

k to second order in x around xTk
and then

take the conditional expectation. A few rather straightforward computations
give

EN
[
Gi

k(x
k+1
Tk+1

, . . . , xi
Ti
)
∣∣∣xTk

]
≈ Gi

k(x
k+1
Tk

, . . . , xi
Tk
)
(
1 +Ai

k

)
. (42)
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where

Ai
k =

i∑
j=k+1

⎛
⎝( αjL

′j
Tj
(xj

Tk
)

1 + αjL
j
Tj
(xj

Tk
)

)2

− 1

2

αjL
′′j
Tj
(xj

Tk
)

1 + αjL
j
Tj
(xj

Tk
)

⎞
⎠Cj

j (Tk, Tj)

+
i∑

j=k+1

i∑
u=j+1

αjαuL
′j
Tj
(xj

Tk
)L′u

Tu
(xu

Tk
)

(1 + αjL
j
Tj
(xj

Tk
))(1 + αuLu

Tu
(xu

Tk
))
Cj

u(Tk, (Tj , Tu)
−),

and Ci
j(t, T ) := covar[xi

T−xi
t, x

j
T−xj

t ], L
′i
Ti
(x) =

∂L′iTi
(x)

∂x and L′′i
Ti
(x) =

∂2L′iTi
(x)

∂x2 .

Solving for an explicit expression for Li
Tk

gives

1 + αiL
i
Tk

=
EN

[
Gi−1

k (xk+1
Tk+1

, . . . , xi−1
Ti−1

)
∣∣∣xTk

]
EN

[
Gi

k(x
k+1
Tk+1

, . . . , xi
Ti
)
∣∣∣xTk

] ≈ (1 + αiL
i
Ti
(xi

Tk
))
1 +Ai−1

k

1 +Ai
k
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(43)
This expression provides quite good intuition about how Li

Tk
depends on x. The

main driver of Li
Tk

is xi
Tk

and the other parts of x are of secondary importance.

What they do is basically providing some values of Li
Tk

that are scattered

around Li
Ti
(xi

Tk
), see Section 5.3 for more intuition.

Note that the approximation requires the partial derivatives L′i
Ti

and L′′i
Ti
. Since

the construction of the Markov-functional model is based on finding the func-
tional forms of Li

Ti
these are in principle easy to find. However, for high

numerical precision we recommend fitting a parametric function of the type
Li
Ti
(x) = âi exp(b̂ix + ĉix

2) to the functional forms and then get L′ and L′′

from this.

This is of course not the only possible way of approximating Li
Tk
. Among the

ones we have tested it performs quite well and is reasonably simple, efficient
and flexible and is therefore our preferred choice. In particular, note that the
approximation is not contingent on the type of functional form of Li

Ti
and

it hence works for all of the marginal distributions introduced in the previous
sections. Test results for the case with lognormal marginal distributions of each
forward LIBORs at their setting dates under their respective forward measures
are provided in sections 5.3 and 7.

5.2 Improving the approximation

In general the approximation in the previous subsection might not be accurate
enough for practical purposes. As a way to improve the approximation one
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may parameterise the approximation for Li
Tk

in (43) as

1 + αiL
i
Tk
(xTk

) ≈ 1 + αiL̃
i
Tk
(xTk

)

:=
(
1 + αiak exp

(
bkx

i
Tk

+ ck
(
xi
Tk

)2)
Li
Ti
(xi

Tk
)
) 1 + dkA

i−1
k

1 + ekAi
k

.

(44)

This gives five parameters (ak, bk, ck, dk, ek) to play with at each Tk. The idea
is hence to choose the parameters in order to reduce the approximation er-
rors. Note that for higher accuracy it is of course possible to parameterise
each Li

Tk
independently, for example by using (aik, b

i
k, c

i
k, d

i
k, e

i
k) instead of

(ak, bk, ck, dk, ek). We have however found that the computational cost and
added complexity of doing this is not motivated by the (marginally) improved
performance.

Suppose the model is set up using M realisations of the state matrix x. In
order to control the accuracy of the approximation L̃i

Tk
it may be compared

with both accurately Monte Carlo computed Li
Tk

values as well as the errors
in the ‘bond pricing relations’

EN

[
DTkTi

NTk

]
=

D0Ti

N0
, i = k + 2, . . . , n. (45)

As the above is a consequence of the martingale property of numeraire rebased
assets it is of high importance to assure small errors in this relation. This
suggests using the following algorithm to find the parameters (ak, bk, ck, dk, ek).

1. Pick a ‘base’ set of M̂ (random or user-defined) vectors x̂Tk
(m̂), m̂ =

1 . . . , M̂ , with M̂ << M . Typically a M̂ of about 100 seems to work well
in our test applications.

2. Compute the forward LIBORs values Li
Tk
, i = k + 2, . . . , n at each of

the M̂ chosen vectors using an accurate Monte Carlo integration (this
could be using the same number of state matrices M as in setting up the
model or fewer depending on the desired accuracy). Denote these values
by L̂i

Tk
(x̂Tk

(m̂)), m̂ = 1, . . . , M̂ .

3. Pick some initial parameter values (ak, bk, ck, dk, ek). The default alter-
native would be to take ak = dk = ek = 1 and bk = ck = 0 but an
experienced user of the model may of course also pick parameters that
are believed to be close to the calibrated ones.

4. Define the squared errors

E1
k :=

M̂∑
m̂=1

n∑
i=k+2

(
L̂i
Tk
(x̂Tk

(m̂))− L̃i
Tk
(x̂Tk

(m̂))
)2

. (46)
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and

E2
k :=

n∑
i=k+2

(
EN

[
D̃TkTi

NTk

]
− D0Ti

N0

)
, (47)

where D̃TkTi is the discount bond prices obtained using the approximation
L̃i
Tk
. Compute this expectation using M or potentially fewer realisations

depending on the desired accuracy.

5. Define the weighted total error as Etot := w1E
1
k + w2E

2
k.

6. Minimise Etot
k over the set of parameters (ak, bk, ck, dk, ek).

An example of the outcome of this exercise is given in Section 5.3. As the
speed of the calibration is determined largely by the time it takes to Monte
Carlo compute the accurate estimates L̂i

Tk
before entering the optimisation

routine as well as the expectation in E2
k within the optimisation routine the

next subsection outlines how these computations may be sped up.

Speed up using control variates

To speed up the Monte Carlo integrations of L̂i
Tk

and the expectation in E2
k we

propose to use quantities based on the approximation as control variates. For
a good explanation of the control variate technique, see Glasserman (2004).

To find L̂i
Tk
, i.e. the accurate Monte Carlo computed estimates of Li

Tk
, we will

work from equation (40). Note that computing these conditional expectations
gives the (forward) discount factors and hence to find all L̂i

Tk
, i = k + 1, . . . , n

we need to compute all the n−k expectations (using Monte Carlo integration)
and then divide through as in equation (43). Recall that in equation (42) we
approximated these expectations by expanding the product inside the expecta-
tion to second order in x around xTk

. Having done this we could then compute
the conditional expectation analytically.

The idea here is hence to use the second order approximation of the product
(used to get equation (42)) as control variate when computing the conditional
expectations in (40). Since this approximation is correct to second order we
expect it to be highly correlated with the true product. In our tests the corre-
lation is, depending on i and k, in the set [0.95, 1] implying a reduction of the
required number of paths in the Monte Carlo integration of at least a factor 10
and in many cases up to a factor above 100.

The control variates technique may also be used to compute the expectation in
E2

k using Monte Carlo integration and also in this case the approximation may
be used to define a control variate. Unfortunately the value of the expectation
in the expression for E2

k is not given analytically for the approximation and
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and in many cases up to a factor above 100.

The control variates technique may also be used to compute the expectation in
E2

k using Monte Carlo integration and also in this case the approximation may
be used to define a control variate. Unfortunately the value of the expectation
in the expression for E2

k is not given analytically for the approximation and



5. Computing the forward LIBOR curve 39

instead a proxy for this will be computed before entering the optimisation
routine. The procedure is a follows.

1. Pick some initial parameter values (ak, bk, ck, dk, ek) as in point 3. in the
above algorithm.

2. Let
D̃cv

TkTi

NTk
denote the ith numeraire rebased discount bond at time Tk us-

ing the initial parameter values. Before entering the optimisation routine,
compute the values of

EN

[
D̃cv

TkTi

NTk

]
, i = k + 2, . . . , n,

by Monte Carlo integration with the M paths used for setting up the
model or potentially fewer depending on the desired accuracy.

3. Within the optimisation routine, compute the values of EN
[
D̃TkTi

NTk

]
, i =

k + 2, . . . , n using
D̃cv

TkTi

NTk
as control variates.

As within the optimisation routine each new set of ‘proposed’ (reasonable)
parameters are typically close to the initial guesses set in point 1, the random

variable
D̃cv

TkTi

NTk
will be highly correlated with

D̃TkTi

NTk
and hence a significant

reduction of paths may be achieved. In our tests these correlations are in
[0.99, 1] implying a reduction of paths of at least a factor 50 and in many cases
several hundred.

5.3 Testing the approximation

This subsection will test the quality of the basic as well as calibrated approxima-
tions. To test the accuracy of the approximations the model forward LIBORs
Lk+j
Tk

are computed for k = 1, . . . , 20 and j = 0, . . . , 10. The test is based on
the same times, rates, volatilities and correlations as in the pricing tests in
Section 6 and 7 and under the assumption that prices of caplets are given by
the Black formula. In general the approximation behaves well with very small
errors for low k and j values and reasonable errors for large k and j. To get
an idea about the accuracy we will display the cases L20

T10
and L15

T10
. When

calibrating the approximations we have used M̂ = 100 (randomly chosen) base
realisations out of the M = 100000 realisations used to set up the model.

Figure 1.10 displays 100 randomly chosen (other than the 100 base paths used
for calibrating the approximations) values of L20

T10
computed using the Monte
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Carlo method, the base approximation (ie ak = dk = ek = 1 and bk = ck = 0)
and two different calibrated approximations. The first calibrated approxima-
tion (‘Cal Approx 1’) is calibrated using w1 = 1 and w2 = 10, ie a high weight
(10 times more important than matching the Monte Carlo computed L̂i

Tk
) on

the ‘bond pricing relation’ (45) whereas the second calibrated approximation
(‘Cal Approx 2’) puts w1 = 1 and w2 = 0, ie it focuses solely on matching
the Monte Carlo computed L̂i

Tk
. Figure 1.11 displays the differences between

the Monte Carlo computed values and the (calibrated) approximations for the
cases L15

T10
and L20

T10
.
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Figure 1.10: 100 randomly chosen values of L20
T10

computed using Monte Carlo
and various approximations. ‘Approx’ refers to the non-calibrated approxima-
tion, ‘Cal Approx 1’ is calibrated using a high weight on the ‘pricing relation’
and ‘Cal Approx 2’ solely focuses on matching the Monte Carlo computed base
values.

First note that the intuition about L20
T10

coming from the approximation (43)
seems correct; L20

T10
is determined to a large extent by x20

T10
. The dependence

on other bits of the x-vector give rise to some scatter and this scatter seem
to be reasonably covered by the approximation. Moreover, as may be seen by
studying the larger rate values, note that the calibrated approximations seem
to be able to adjust the basic approximation quite well.

From the difference plots note that the case L15
T10

has errors in the size of
just a few basis points. Moreover, in both displayed examples, note that the
calibrated approximations are centered around zero and one could hence hope
for that the errors in a pricing situation will cancel out reasonably well.

As a further display of the accuracy of the approximation it is constructive
to check the ‘bond pricing relation’ (45). To get something to compare with
we have tested this relation also for the LIBOR market model implemented
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Figure 1.11: The differences between 100 randomly chosen values of L20
T10

com-
puted using Monte Carlo and various approximations. ‘Approx’ refers to the
non-calibrated approximation, ‘Cal Approx 1’ is calibrated using a high weight
on the ‘pricing relation’ and ‘Cal Approx 2’ solely focuses on matching the
Monte Carlo computed values.

using one predictor-corrector step in between every setting date. One year
long steps with the predictor-corrector method seems as far as we know to be
generally accepted in practice. Figure 1.12 displays the errors at time T20 for
i = 20, . . . , 30. As expected the calibrated approximation with a high weight on
reducing this particular error does very well. It is however interesting to note
that the errors of the non-calibrated approximation is similar in size (but with
reversed sign) to the LMM errors. As a general comment note that the size
of the approximation errors are increasing in time and at Ti < T20 the errors
are in general much smaller. To the benefit of the LMM it should however also
be noted that at earlier times it seems to do better than the non-calibrated
approximation.

6 TARNs

Targeted Accrual Redemption Notes (TARNs) provide some tough challenges
for appropriate pricing due to that they are highly sensitive to correlation
between the LIBORs at their setting dates. For this reason we believe it is an
informative product to use in order to display properties of the n-dimensional
Markov-functional model. Piterbarg (2004) provides a thorough introduction
to TARNs that covers both pricing, risk sensitivities and Monte Carlo speed-
up techniques in a LIBOR market model setting. Having done this he studies
the deal-specific volatility structure components of a LIBOR market model and
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Figure 1.12: Testing the ‘bond pricing relation’ (45) at time T20 for i =
21, . . . , 31. On the x-axis label i corresponds to the quantity related to D·i.

projects the main characteristics down on a low-dimensional Markov-functional
model, the stochastic volatility Cheyette short rate model. Papers dealing with
fast and stable computations of risk sensitivities of TARNs in a LIBOR market
model setting are Fries & Joshi (2008), and Pietersz (2005).

TARNs can be structured both as notes and swaps. We have chosen to focus on
a swap based product defined on the tenor structure T1 < T2 < ... < Tn < Tn+1,
with accrual factors αi = Ti+1 − Ti. For simplicity we will assume a unit
notional in the description of the swap. For i = 1, . . . , n, at time Ti+1, if the
swap is not yet knocked-out, the investor receives

Ci = αimax(a− bLi
Ti
, 0) (48)

and pays

αiL
i
Ti
,

where a and b are some constants, which will typically depend on the level
and slope of the yield curve. The swap is knocked-out when the total coupon
payments reaches the target return level R. For i = 2, . . . , n + 1, define the
aggregate coupon payments, at time Ti, as

Qi =

i−1∑
j=1

Cj , (49)

(with Q1 = 0). Then, for i ≥ 1, the time Ti+1 swap payment is

Xi = αi

(
min(R−Qi−1, Ci)− Li

Ti

)
, (50)
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where the term min(R − Qi−1, Ci) represents that the total return to the in-
vestor is capped by R. Thus, from the investors viewpoint, the value of the
TARN swap at time 0 working under some risk-neutral measure Q with nu-
meraire N is

V = N0E
Q

[
n+1∑
i=2

Xi−11{Qi−1 < R}
NTi

]
. (51)

6.1 Pricing TARN swaps

The TARN swaps priced in this section are of the type presented above with
parameter values as in Table 1.1. As initial data we use the forward LIBOR
structure Li

T0
= min (2% + 0.5%Ti, 10%), i.e. linearly increasing from 2.5% at

year 1 up to 10% at year 16 and then constant at 10% until year 30, constant
implied Black volatilities at 20% and instantaneous correlations given by

ρij = exp {β|Ti − Tj |} , (52)

where β is set at 0.05. For the displaced diffusion model we take ai = Li
0 for

all i and choose ηi in order to match up an ATM implied volatility of 20%.

Tenors 1Y
Maximum length 5Y, 10Y, 15Y, 20Y, 25Y, 30Y
Pay Li

Ti

Receive max(10%− 2Li
Ti
, 0)

Target level 10%
Notional 10 000

Table 1.1: Specifications of the TARN swaps

TARN swaps such as the one above will be very sensitive to correlations be-
tween the LIBORs. To see this consider the extreme cases full correlation and
zero correlation and market data as above for a 30 year deal. Given the in-
verse floater coupon and the increasing LIBOR structure we get that with full
correlation we will terminate early (during the first 5 years) on all ‘downward’
realisations (i.e. LIBORs setting lower than today’s forward values) whereas
in the ‘upward’ scenarios there is a high risk that we will continue the swap
until year 30. The latter case implies a huge cost for the investor, having to
pay LIBOR for 30 years, but, due to the inverse floater, basically not receiving
anything until year 30. With zero correlation the chance of early termination
is much higher, since it will basically be enough if 3 out of the first 6 LIBORs
set below their time-zero values. Hence, the value of the TARN swap to the
investor will be significantly higher for the case with zero correlation than with
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full correlation. As we will see later, prices can change dramatically already
for comparably small changes in instantaneous correlation.

Which measure to choose when implementing the LIBOR market model is a
moot question, but in our view the rolling measure is most suitable as the bias
from discretising the drift term is more evenly distributed among the different
LIBORs. When pricing TARNs with a model designed for up to 30Y deals this
problem is quite acute and at least for our implementation of the LMM, the
rolling measure works much better.

Values to an investor of entering TARN swaps using an n-factor LIBOR mar-
ket model and an n-dimensional Markov-functional model as well as the corre-
sponding displaced diffusion versions, all implemented under the rolling mea-
sure N, are reported in Table 1.2. For both models 100 000 paths were used.
For the LIBOR market model the SDEs were evolved using 10 in-between
steps between every setting date using the Predictor-Corrector method. For
the Markov-functional model 1000 reference points were used to deduce the
functional forms. Note that these choices are made to make sure that both the
discretisation and statistical errors are very small and one could typically get
away with a lot fewer steps, grid points and realisations in practice.

5 10 15 20 25 30
LMM -187.6 -729.2 -1095.3 -1270.5 -1338.0 -1362.5
MFM -186.5 -719.2 -1067.4 -1230.9 -1294.0 -1316.7
LMM-DD -213.3 -798.1 -1206.7 -1410.0 -1492.8 -1525.3
MFM-DD -212.2 -792.4 -1191.8 -1388.6 -1467.9 -1498.8
s 5.8 12.6 17.4 19.7 20.6 21.0
vega 10.3 21.6 20.6 14.9 10.3 7.5
corr -1.7 -9.6 -18.2 -22.4 -24.4 -25.2

Table 1.2: Values to an investor of entering into the TARN swaps specified
above. Here s is defined as the number such that a 95% confidence interval
for the Monte Carlo estimated value, say y, is given by [y − s, y + s]. The
vegas are defined as the change in value when bumping all initial implied Black
volatilities upwards by 1% (i.e. using 21 instead of 20%). Finally corr is defined
as the change in value when using instantaneous correlations given by equation
52 using β = 0.045 instead of β = 0.05. The s, vega, and corr are all computed
using the standard LMM.

The table displays some interesting features. Consider first the standard LMM
and MFM models. In this case values of TARN swaps with maximum lengths
up to around 10-15 years are within one vega and hence similar enough for
practical purposes. However, for longer lengths the models produce values that
are similar, but a bit too different to be able to say that model choice wouldn’t
matter with respect to uncertainty in input volatilities. Moreover, bumping the
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instantaneous correlations affects prices a lot, confirming the intuition provided
earlier. The prices given by the displaced diffusion models are quite different
compared with the standard case and it seems like the ability to incorporate
skews in the pricing model is important for TARNs pricing. The differences
between the displaced diffusion LMM and MFM is smaller than for the standard
cases, but qualitatively similar.

Note that when computing the above results we have chosen the same instan-
taneous correlation matrix for all models. However, this does not necessarily
imply that the terminal correlations are the same and it is really the terminal
correlations that will affect prices of TARNs. Recall the approximation for-
mula for terminal correlations given by equation (13). If this formula works
very well for both the LMM and MFM models, then we would have similar
terminal correlations. If terminal correlations are in fact not the same, then
this might be the main reason for the above price differences and should be
investigated further. This is done in the following two subsections.

6.2 Terminal Correlations

This section studies terminal correlations, i.e. the correlation between Li
Ti

and Lj
Tj

produced by the two models. With respect to terminal correlations,
calculations and intuition will be clearer by transformation of the LIBORs
through the natural log

Corr(log(Li
Ti
), log(Lj

Tj
)).

Recall the approximation formula (13) in Section 3.1. This approximation is
standard in the literature and commonly used in practice in order to calibrate
the LIBORmarket models to terminal correlations quickly and efficiently. How-
ever, in order for the calibrated LMM to actually perform as intended when
calibrating it, the accuracy of this approximation is crucial. Recall the plots in
Figure 1.2. For the 5 and 10 years cases the drift term in the LIBOR market
model seem to have a very small impact and the natural log of Li,lmm

Ti
seem to

be fairly well approximated as a linear function of xi
Ti
. We therefore expect the

approximation formula to work well in these cases. However for later LIBORs
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down in these cases. On the other hand, for the Markov-functional model the
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Figure 1.13 confirms the intuition described above. For the Markov-functional
model the approximation formula is almost perfect and essentially provides a
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Figure 1.13: terminal correlations for the LMM and the MFM, respec-
tively. Each line corresponds to the difference between the model termi-
nal correlations and the approximation formula, i.e the line L10

T10
displays

Corr(log(L10
T10

), log(Li
Ti
)) − Corr(log(L̂10

T10
), log(L̂i

Ti
)) for i = 1, . . . , n, for the

two models respectively. The data used to produce these plots are the same as
in the TARNs pricing part.

formula is systematically overestimating correlation in the calibrated LMM
compared with a target correlation matrix. For longer maturities the problem
seems to be quite acute and worthy of note, given that it seems to be the
formula of choice for market participants.

In the displaced diffusion case the story is similar to the one above. Recall from
Section 4.4 that the DD LMM scatter is decreasing in the displacement param-
eter. This leads to the terminal correlation formula working better for the DD
LMM model. In the specific numerical case studied here, the errors from using
the approximation formula are roughly half as large in the displaced diffusion
LMM as in the standard LMM. For the DD MFM the terminal correlation
formula continues to work very well.
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6.3 Matching the models

This section will deal with providing a better match between the two model
frameworks in order to potentially produce similar TARN prices. We will focus
on two different but connected questions:

1. given a calibrated LIBOR market model, how can we come up with a
Markov-functional model that matches it?

2. given market volatilities and terminal correlations of the LIBOR at their
setting dates, how can we construct models that reflect these?

For question 1 we take the stand point that someone hands us a calibrated
LIBOR market model and asks us to produce a Markov-functional model that
mirrors it in terms of TARN prices. To do this we start with highlighting the
following three empirical facts:

• increasing instantaneous correlations implies decreasing prices (see Table
1.2).

• the LMM produces consistently higher terminal correlations than the
MFM using the same driving process x (see Figure 1.13).

• the LMM TARN swap prices are consistently lower than the MFM ones
when using the same driving process.

These three facts motivates using a different state vector process than the obvi-
ous one (x) to drive the MFM, in particular a process with higher instantaneous
correlation. Since we know that the approximation formula works very well for
the MFM we could back out the ρijs needed for matching the terminal corre-
lations of the MFM with an estimated terminal correlation matrix created by
Monte Carlo simulating the target LMM. Hence, define the state vector pro-
cess x̂ exactly as the original x process but with the instantaneous correlations
between the Brownian motions as

ρ̂ij = LMMTC(i, j)

√∫ Ti

0
(σi

t)
2dt
√∫ Tj

0
(σj

t )
2dt∫min(Ti,Tj)

0
σi
tσ

j
tdt

, (53)

where LMMTC is the terminal correlation matrix obtained by simulation of
the target LMM.

To match up the correlations also of the displaced diffusion versions we first
compute the target LMM terminal correlations of logged Li

Ti
+ ai. For the DD

MFM we then matched up these correlations using the approximative terminal
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correlations formula whereas for the DD LMMwe needed to use repeated Monte
Carlo runs, since the terminal correlation formula was not accurate enough in
this case. Having done this we would then have a good match between the
all the models terminal correlations (remember that they are all calibrated to
market marginals through the caplet market) and it would be interesting to see
the effect of this on TARN swap prices. Table 6.3 displays the results. Note
that the standard LMM and the MFM driven by x̂ are now very close. This
holds also in the displaced diffusion case. There is however still a quite large
difference in price depending on the choice of marginals distributions.

5 10 15 20 25 30
LMM -187.6 -729.2 -1095.3 -1270.5 -1338.0 -1362.5
MFM -186.5 -719.2 -1067.4 -1230.9 -1294.0 -1316.7

M̂FM -187.0 -726.5 -1090.3 -1266.6 -1337.9 -1365.9
LMM-DD -213.3 -798.1 -1206.7 -1410.0 -1492.8 -1525.3
MFM-DD -212.2 -792.4 -1191.8 -1388.6 -1467.9 -1498.8

L̂MM-DD -220.2 -833.1 -1276.4 -1492.7 -1588.0 -1625.7

M̂FM-DD -219.3 -832.2 -1271.7 -1493.7 -1586.2 -1623.5
s.e 5.8 12.6 17.4 19.7 20.6 21.0
vega 10.3 21.6 20.6 14.9 10.3 7.5
corr -1.7 -9.6 -18.2 -22.4 -24.4 -25.2

Table 1.3: Values to an investor of entering into the TARN swaps specified

above. A hat such as, M̂FM , means the MFM or LMM in the case of matched
up terminal correlations with the standard LMM case.

Let’s now turn to question 2, i.e. given a view on market volatilities and
terminal correlations, how can we construct a model that reflects these?

Since the terminal correlation approximation formula works very well for the
Markov-functional model, calibrating the model to market volatilities and ter-
minal correlations is straightforward. Recall that if we force the Markov-
functional model and the LIBOR market model to agree on the terminal corre-
lations of LIBORs at their setting dates, their prices are in almost perfect agree-
ment. Moreover, in Section 4 we saw that the MFM and LMM are closely con-
nected distributionally. Hence we are led to believe that with the n-dimensional
Markov-functional model we have a model that is comparably fast computa-
tionally, calibrates easily and accurately and produces prices of derivatives that
are very close to prices calculated with an accurately calibrated LIBOR market
model.

For the LIBOR market model things are not as straightforward as for the
Markov-functional model. As we have seen the approximation formula for ter-
minal correlations breaks down for longer maturities and the prices produced
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by using this model could be quite different from the intended ones (recall
Table 6.3). A possible route to resolve this would be to use the Monte Carlo
method in the calibration routine, however, this would be very slow and in-
tractable. Hence, there seems to be a role for a better approximation formula
to implement a LIBOR market model that is as accurate as the n-dimensional
Markov-functional model.

7 CMS spread TARN swaps

This section uses the model to price CMS spread TARN swaps. A CMS spread
TARN swap behaves in the same way as a standard TARN but with the dif-
ference that the coupon is based on the spread between two swap rates instead
of the LIBOR. For this type of product one thus needs to model the joint
behaviour over time of two swap rates as well as the LIBORs. Note that for
this product we require knowledge of LIBORs at dates other than their setting
dates and we will thus use the approximation developed in Section 5.

The CMS spread TARN swap considered is specified in Table 1.4. Initial for-
ward LIBORs, volatilities and correlations as given in the TARN section, (Sec-
tion 6) and caplets are assumed to be priced using the Black formula. For
this setting, prices are given in Table 5. Note that the differences in prices
between the LMM and calibrated MFM approximations are in general outside
the 95% confidence interval for the LMM prices. Also the differences between
the LMM and the calibrated MFM are about the same size as the differences
between the MFM approximation and calibrated MFM approximation. The
differences correspond to a 1% shift in implied volatility or a 0.005 change in
the parameter β which controls the correlation via equation (52). This price
difference is not unexpected for similar reasons to those dicussed in Section 6.

Tenors 1Y
Maximum length 5Y, 10Y, 15Y, 20Y
Pay 0.3 Li

Ti

Receive max(CMS10Y − CMS2Y, 0)
Target level 10%
Notional 10 000

Table 1.4: Specifications of the CMS spread TARN swaps

A final note about computational efficiency might be in place. For the pricing of
standard TARNs we argued that the n-dimensional Markov-functional model
is an efficient and flexible alternative to the n-factor LIBOR market model.
As the pricing of CMS spread TARNs requires knowledge of more than the
spot LIBOR at each future date some of the gain in efficiency is lost. In our
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Model 5 10 15 20
LMM 389.2 258.2 235.0 229.1
MFM-Cal 1 387.1 260.1 241.1 237.3
MFM-Cal 2 385.8 259.8 241.7 238.2
MFM-Approx 389.0 267.5 250.3 246.9
s 1.1 2.0 2.3 2.4
vega -3.9 -2.8 -2.0 -1.8
corr -0.7 -5.8 -7.2 -7.4

Table 1.5: Values to an investor of entering into the CMS spread TARN swaps
specified in Table 1.4. Here s is defined as the number such that a 95%
confidence interval for the Monte Carlo estimated value, say y, is given by
[y − s, y + s]. The vegas are defined as the change in value when bumping
all initial implied Black volatilities upwards by 1% (i.e. using 21 instead of
20%). Finally corr is defined as the change in value when using instantaneous
correlations given by equation (52) using β = 0.045 instead of β = 0.05. The
s, vega, and corr are all computed using the standard LMM.

implementation, for a similar level of accuracy, computational times are roughly
similar in both types of models. Note however that the n-dimensional Markov-
functional model is a flexible option for incorporating skew/smile effects.

8 Conclusions

This paper has developed a full rank model of n LIBORs where the ith LI-
BOR at it’s setting date is written as a function of the ith component of
an n-dimensional state vector process. The functional forms are found using
Markov-functional techniques originally developed for one-dimensional state
vector processes by Hunt et al. (2000). This model allows us to extend the
study of Bennett & Kennedy (2005), from the one-dimensional case with a
separable volatility structure into this n-dimensional setting. It is shown nu-
merically that there is a close connection between the n-dimensional Markov-
functional model and the n-factor LIBOR market model even in the absence
of separability. Although the Markov-functional models are models in their
own right and not some type of approximation of LIBOR market models this
connection is very useful since it allow us to transfer the intuition from the
transparent LIBOR market model SDE formulation over to the, perhaps less
transparent, Markov-functional model.

From the construction of the model we are able to prove a uniqueness result,
Theorem 3.1 in Section 3.4, that has an interesting implication for n-factor
LIBOR market models. In particular it means that any drift approximation of
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an n-factor LIBOR market model such that each LIBOR at its setting date,
Li
Ti

is modelled as a monotonic function of xi
Ti

is an approximation to the
n-dimensional Markov-functional model that allows for arbitrage.

If one is willing to use Monte-Carlo techniques the n-dimensional Markov-
functional model turns out to be potentially suitable as a benchmark model
for certain types of exotic interest rate derivatives. In particular it provides a
flexible and efficient way to study the effects of skews/smiles in implied volatil-
ity as well as the correlations between LIBORs for products depending on (the
interaction of) LIBORs at their setting dates. For TARNs it is shown that it is
of high importance to model both correlations and marginals correctly. The n-
factor LIBOR market model is less flexible in modelling marginal distributions
of LIBORs at their setting dates and also fails to fit the common approximation
formula used for controlling correlation between the LIBORs with acceptable
accuracy.

8. Conclusions 51

an n-factor LIBOR market model such that each LIBOR at its setting date,
Li
Ti

is modelled as a monotonic function of xi
Ti

is an approximation to the
n-dimensional Markov-functional model that allows for arbitrage.

If one is willing to use Monte-Carlo techniques the n-dimensional Markov-
functional model turns out to be potentially suitable as a benchmark model
for certain types of exotic interest rate derivatives. In particular it provides a
flexible and efficient way to study the effects of skews/smiles in implied volatil-
ity as well as the correlations between LIBORs for products depending on (the
interaction of) LIBORs at their setting dates. For TARNs it is shown that it is
of high importance to model both correlations and marginals correctly. The n-
factor LIBOR market model is less flexible in modelling marginal distributions
of LIBORs at their setting dates and also fails to fit the common approximation
formula used for controlling correlation between the LIBORs with acceptable
accuracy.





Paper 2Paper 2





Paper 2

A Parametric
n-Dimensional
Markov-functional Model
under the Terminal
Measure

Paper 2

A Parametric
n-Dimensional
Markov-functional Model
under the Terminal
Measure



56 A Parametric n-Dimensional Markov-functional Model under the Terminal Measure

1 Introduction

Over the past decade the LIBOR market model (LMM) and its various exten-
sions has become increasingly popular for exotic interest rate derivatives. For
certain complex products that may require multi-factor or full rank models the
LMM seems to serve as a benchmark for pricing and risk management. The
market models were the first models that modeled observable rates directly
and could calibrate perfectly to Black’s formula for caplets and the approach
enabled direct control over the modeling of the correlations between LIBORs,
which is important for the pricing of exotic derivatives. While the theory un-
derlying the market models is straightforward, implementing them is not, and
the literature devoted to efficient implementation and calibration is vast. This
is due to their high dimensionality, which is a feature of these models even
when only one stochastic driver is used.

An alternative class of models that can also calibrate to Black’s formula (or
indeed any arbitrage-free formula) for caplets and also gives control over the
modeling of the observable market rates is the class of Markov-functional mod-
els (MFM). The idea of the Markov-functional modeling approach is to base
the model on a low-dimensional (usually one or two) Markov process which
allows for efficient implementation of the model on a lattice, providing fast
computation of prices and, importantly, risk sensitivities. As shown in Bennett
& Kennedy (2005), one-dimensional Markov-functional models and one-factor
(i.e. one Brownian motion driver) separable LIBOR market models are very
similar distributionally and virtually indistinguishable numerically for short
maturities and typical market conditions.

Although not in the spirit of the original Markov-functional approach Kaisajuntti
& Kennedy (2011) constructed a full rank model under the spot measure of n
LIBORs using Markov-functional techniques. The key in the construction was
to write the ith LIBOR at its setting date as a function of the ith component of
an n-dimensional Markovian state vector process. This model allowed for ex-
tending the study of Bennett & Kennedy (2005), from the one-dimensional case
with a separable volatility structure into this n-dimensional setting and it was
shown numerically that there is a close connection between the n-dimensional
Markov-functional model and the n-factor LIBOR market model even in the
absence of separability. Although the Markov-functional models are models in
their own right and not some type of approximation of LIBOR market mod-
els this connection is useful since it allow transfer of the intuition from the
transparent LIBOR market model SDE formulation over to the, perhaps less
transparent, Markov-functional model.

Although the model by Kaisajuntti & Kennedy (2011) was primarily developed
for theoretical reasons in order to be able to compare and transfer intuition from
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for theoretical reasons in order to be able to compare and transfer intuition from



1. Introduction 57

the LMM it is a flexible and reasonably efficient alternative for products de-
pending on LIBORs at their setting dates. However, for products depending on
(the interaction of) LIBORs before their setting dates the model is less efficient
as it requires repeated computations of a high-dimensional conditional expec-
tation. Although an algorithm is outlined for how the conditional expectation
may be approximated with decent accuracy it is a rather cumbersome exercise
as the setup of the model is not particularly well designed for these type of
products.

Inspired by Kaisajuntti & Kennedy (2011) this paper develops a full rank model
by backward induction under the terminal measure. Also in this model the
construction is based on writing the ith LIBOR at its setting date as a func-
tion of the ith component of an n-dimensional time-changed Brownian motion.
The key here is that the choice of the terminal measure and forcing a specific
parametric form for LIBORs at their setting dates implies that the required
high-dimensional expectations may be computed analytically. Hence all LI-
BORs at all times are represented by the underlying n-dimensional Markov
process through an explicit analytical function.

The chosen parametric functional form resembles the form obtained by fitting
an n-dimensional MFM to prices given by a displaced diffusion Black model.
Moreover, since the model provides an explicit analytical representation of all
LIBORs at all times it provides a clearer understanding of the behaviour of
Markov-functional models than is provided by the standard MFM construction.
In particular, by the way the model is constructed it seems reasonable to believe
that it should be close to the displaced diffusion LIBOR market model and the
explicit functional forms provides a link to understanding the similarities and
differences between the two model frameworks.

The close connection suggests using the same instantaneous volatilities and
correlations in the driving process of both models. In fact, as displayed in
Section 4.2, the standard correlation and swaption approximations used when
calibrating the LMM seems to work also for the MFM, suggesting both that
the models are close (in the sense that the differences in terms of calibration
products are within acceptable calibration errors of the LMM) and that the
machinery of calibration of the LMM may be used also for the MFM.

Due to the high dimension of the driving process pricing and risk computa-
tions must be performed using the Monte Carlo method. The analytical rep-
resentation of LIBORs at all dates in terms of an n-dimensional time-changed
Brownian motion is then a highly desirable feature as the computations may
be performed by the Monte Carlo method without discretisation error. How-
ever, as we will see, while the functional forms for LIBORs before setting dates
are on analytic form they can consist of a large number of terms and hence
for efficient implementation, for some of the LIBORs, the forms need to be
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approximated. Section 3.5 outlines a couple of straightforward and easy to
implement approximations.

For the LIBOR market model an accurate implementation also has to be done
using the Monte Carlo method. The challenge in this model is to cope with
the stochastic integral appearing in the drift term in each of the SDEs which
specify the model. At first sight an accurate pathwise computation of these
stochastic integrals would imply a very slow model. However, by clever im-
plementations that approximate the drift over fairly large time-steps one may
achieve a significant speed up. The key for efficient use of the LMM is hence to
chose a drift approximation enabling an as long as possible time-step without
inducing too large discretisation errors. If a single step out to each date of
interest is used, then the drift approximated LMM is similar in spirit to the
MFM in the sense that each LIBOR is explicitly represented as a function of
an n-dimensional time-changed Brownian motion.

In terms of pricing caplets and FRAs using a single step out to each expiry Joshi
& Stacey (2006) studies the induced errors of several different drift approxi-
mations. By the setup of the n-dimensional parametric MFM it is particularly
well designed for pricing products depending on (the interaction of) LIBORs at
their setting dates. However, the use of the specific parametric functional form
implies that prices of caplets are only approximately given by the displaced dif-
fusion Black formula. Under the same setup, Section 4.1 compares some of the
drift approximation methods in Joshi & Stacey (2006) with the n-dimensional
parametric MFM and concludes that the parametric MFM is both much faster
and provides prices of caplets that are closer to the displaced diffusion Black
model than any of the drift approximated LMMs.

For products depending on (the interaction of) LIBORs before their setting
dates any of the approximations developed in Section 3.5 need to be used in
order to improve the computational performance. Section 4.2 argues that the
performance of the approximations is quite good in terms of both computational
speed and induced errors in prices of (forward) discount bonds and swaptions.

The paper is organised as follows. Section 2 sets notation, reviews the displaced
diffusion LIBOR market model, the standard Markov-functional models and
the basics of functional form modeling in this setting. Section 3 develops the
n-dimensional Markov-functional model and discusses calibration and approx-
imations. Then Section 3.6 discusses the relation with other models, Section 4
tests some properties of the model numerically and finally Section 5 presents
the conclusions.
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2 Preliminaries

2.1 Setup

Consider a fixed set of increasing maturities

today = T0 < T1 < · · · < Tn < Tn+1

and let, for simplicity, the accrual factors be given by αi = Ti+1−Ti. By letting
DtT denote the price at time t of a zero-coupon bond paying a unit amount at
time T , LIBOR forward rates contracted at time t for the period [Ti, Ti+1] are
defined as

Li
t =

1

αi
· DtTi −DtTi+1

DtTi+1

, i = 1, ..., n. (1)

The uncertainty in the economy is resolved over a complete filtered probability
space (Ω,F ,P, {Ft}t≥0) and we assume the existence of forward measures, Qi,
i = 1, . . . , n i.e. the equivalent martingale measures using D·Ti+1

as numeraire.
Note that this implies that under Qi, Li is a martingale with respect to the
filtration {Ft}.
Furthermore, assume the existence of an n-dimensional Wiener process under
the measure Qn

W =
(
W 1, . . . ,Wn

)
with a given correlation structure

dW i
t dW

j
t = ρijdt, i, j = 1, . . . , n. (2)

The filtration {Ft}t≥0 is taken as the augmented natural filtration generated
by W .

Finally, for later reference, let xt =
(
x1
t , . . . , x

n
t

)
and define the following quan-

tities

xi
t :=

∫ t

0

σi
sdW

i
s , (3)

V i
t := Var

[
xi
t

]
, (4)

Cj
i (s, t) := Covar

[
xi
t − xi

s, x
j
t − xj

s

]
. (5)

2.2 The displaced diffusion Black model

In the displaced diffusion Black model (see for example Brigo &Mercurio (2006)
or Rebonato (2004)) Li

Ti
under Qi is modeled as

Li
Ti

= Yi − ai (6)
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where Yi is a lognormal random variable and ai ∈ 	. More precisely, let
Yi = exp(Ni) where Ni is a Gaussian random variable where

EQi

[Ni] = log(Li
0 + ai)− η2i

2

VarQ
i

[Ni] = η2i

In this setting it may be shown that caplet prices are given by the Black pricing
formula by adding ai to the arguments for the strike and the initial forward
LIBOR value. Moreover, positive ai leads to a strictly decreasing implied
volatility skew, a feature that is roughly in line with typical observations of
caplet prices in the market. The direct disadvantage of the displaced diffusion
extension of the Black model is that the support of Li is (−ai,∞), i.e. for
positive ai there is a possibility of negative rates.

For calibration the parameter η may be chosen to fit the market ATM (or indeed
any strike) caplet price and ai may be chosen to provide an implied volatility
skew that is similar to the observed market skew. Note that, of course, for
ai = 0, η corresponds to the standard Black implied volatility.

2.3 The DD-LMM: definition and approximations

In the displaced diffusion LIBOR market model (henceforth DD-LMM) under
the measure Qn the forward LIBORs Li

t, t ≤ Ti, i = 1, . . . , n are given by (see
for example Brigo & Mercurio (2006))

Li
t = −ai + (ai + Li

0) exp

(
−

n∑
j=i+1

∫ t

0

αj(aj + Lj
s)σ

j
sσ

n
s ρjn

1 + αjL
j
s

− (σi
s)

2

2
ds+ xi

t

)
. (7)

The above dynamics is induced such that under a change of measures Qn to
Qi, Li

t has drift less dynamics with the explicit solution

Li
t = −ai + (Li

0 + ai) exp

(
− (σi

s)
2

2
ds+

∫ t

0

σi
sdŴ

i
s

)
,

where Ŵ i is a standard Wiener process under Qi. This implies that the price
of a caplet at time 0 is given by the displaced diffusion Black formula with

ηi =

√∫ Ti

0

(
σi
t

)2
dt

Ti
. (8)

and hence calibration of the LIBOR market model to the caplet market is a
trivial exercise.
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While the drift implies straightforward calibration to caplets it provides a chal-
lenge when numerically implementing the model as the value of Li

t under Qn

depends on the complete history of Lj
s, j = i + 1, . . . , n, 0 ≤ s ≤ t. This

is an impediment to efficient implementation since in a practical implemen-
tation the drift integral will need to be approximated. In a first attempt to
implementation one could consider using the log-Euler method implying

L̂i
t+h = −ai + (ai + Li

t) exp

(
−

n∑
j=i+1

αj(aj + Lj
t )

1 + αjL
j
t

∫ t+h

t

σj
sσ

n
s ρij

− (σi
s)

2

2
ds+

(
xi
t+h − xi

t

))
. (9)

In general the step size h required for an accurate implementation is fairly small
and leads to a computationally inefficient model. To improve on the naive
straightforward log-Euler approximation there is a wide variety of proposed
approximations for the drift integral in the literature including for example the
Predictor-Corrector (henceforth, PC) method of Hunter, Jackel & Joshi (2001),
the Brownian bridge (BB) method of Pietersz, Pelsser & Van Regenmortel
(2004) and the arbitrage free discretisation method (GZ) by Zhao & Glasserman
(2000).

Ideally, for best computational performance, one would like to take as long
steps as possible using an efficient approximation method. In particular, if one
is interested in Li

t the ideal solution would be to take a single step from time
zero to time t. This leads to an approximation of Li

t of the form

Li
t ≈ −ai + (ai + Li

0) exp
(
DA(xt) + xi

t

)
,

where DA(xt) is the applied drift approximation, being a function of time t,
the set of initial forward LIBORs, the collection of instantaneous volatilities in
[0, t] and the process xt. Note that this implies that Li

t is now a functional of
xt as it is represented by the Markov process xt and may hence be written on
the form

Li
t = f i

DA(t, xt).

This implies an attractive model from an implementation point of view, but,
depending on the accuracy of the drift approximation, there is risk for errors
in bonds and options prices. Joshi & Stacey (2006) compares most introduced
drift approximations (and introduces a few more) in terms of pricing forward
rate agreements and caplets using a single step. Their conclusion is that an
improved version of the PC method has the overall best performance, at the
cost of being a few times slower than the original PC method (which is the
fastest among the tested drift approximation methods and about half as fast
as the naive one-step log-Euler approximation).
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In the above mentioned drift approximations the full system of forward LIBORs
Li, i = 1, . . . , n is in general of dimension n. This would be the case even if
the dimension of the driving Brownian motion would be of dimension one. To
reduce the dimensions further one may specify a separable volatility structure.
Under a separable volatility specification each component xi may be written
as

xi
t = νix̂t, (10)

where νi is an m-dimensional row vector and x̂t is an m-dimensional column
vector where the jth entity is given as x̂j

t =
∫ t

0
σ̂j
sdW

j
s . Under this specification

it is enough to keep track of the process x̂t through time and the system of
drift approximated forward LIBORs may hence be represented by a Markov
process of dimension m. Using m = 1 or 2, Pietersz et al. (2004) combines sep-
arable volatility and a Brownian bridge drift approximation to develop a model
that may be implemented on a lattice, implying fast and stable computations
compared with the Monte Carlo based implementation required in the general
case.

2.4 Markov-functional models

An alternative to LIBOR market models and in particular to the separable
single-step drift approximation models is the one- or two-dimensional Markov-
functional model introduced in Hunt et al. (2000). As in the LIBOR market
model a LIBOR Markov-functional model also models discretely compounded
forward LIBORs but, instead of specifying the instantaneous dynamics of the
forward LIBORs, it directly specifies all rates and discount bonds as functionals
of some Markov process zt. While this is a feature of most available models in
the literature (put f.e. z = (L1, L2, . . . , Ln) in the LIBOR market model) Hunt
et al. (2000) introduced an algorithm to deduce the time-t functional forms of
some ‘computationally simple’ Markov process (for example x above) that is
consistent with a set of arbitrage free market prices of European type options.

In a LIBOR Markov-functional model, prices of caplets (across strikes) with
expiry at each of the setting dates of the forward LIBORs, Ti, deduce the
functional forms Li

Ti
(xTi

). The functional forms at earlier dates are then given
by the martingale property of numeraire rebased assets,

DtTi

DtTn+1

(xt) = EQn

[
1

DTiTn+1
(xTi

)

∣∣∣∣xt

]
. (11)

In the particular case of x being a one-dimensional (or a function of a two-
dimensional) process the model allows an efficient implementation on a lattice.

While the model construction and properties of the LIBOR market model (as
well as, most of, the drift approximations) is quite transparent and easily under-
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the literature (put f.e. z = (L1, L2, . . . , Ln) in the LIBOR market model) Hunt
et al. (2000) introduced an algorithm to deduce the time-t functional forms of
some ‘computationally simple’ Markov process (for example x above) that is
consistent with a set of arbitrage free market prices of European type options.

In a LIBOR Markov-functional model, prices of caplets (across strikes) with
expiry at each of the setting dates of the forward LIBORs, Ti, deduce the
functional forms Li

Ti
(xTi

). The functional forms at earlier dates are then given
by the martingale property of numeraire rebased assets,

DtTi

DtTn+1

(xt) = EQn

[
1

DTiTn+1
(xTi

)

∣∣∣∣xt

]
. (11)

In the particular case of x being a one-dimensional (or a function of a two-
dimensional) process the model allows an efficient implementation on a lattice.

While the model construction and properties of the LIBOR market model (as
well as, most of, the drift approximations) is quite transparent and easily under-
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stood it might not be the case for the LIBORMarkov-functional model. To shed
light on this Bennett & Kennedy (2005) compares the one dimensional Markov-
functional and the Pietersz et al. (2004) drift approximation model with the
one-factor (accurately implemented) LIBOR market model and conclude that
the models are very close through a wide range of market conditions. Since
the LIBOR Markov-functional model prices bonds and caplets across all strikes
(almost, depending on the accuracy of the grid implementation) perfectly and
has similar computational efficiency as the single-step drift approximation of
Pietersz et al. (2004) they argue it might be a preferred choice in practice for
products where one-factor models are appropriate.

For a state process of dimension larger than two the efficiency of the standard
Markov-functional model tend to get lost due to that it may no longer be imple-
mented on a lattice. In the spot measure Kaisajuntti & Kennedy (2011) intro-
duces an n-dimensional model that is constructed using the Markov-functional
technique. It is argued that this model is close to the n-factor LIBOR market
model and that it provides reasonably fast and flexible (and accurate due to
lack of drift approximation errors) pricing of certain types of derivatives. Even
though computations has to be done using the Monte Carlo method it is still
quite efficient computationally due to the fact that each Li

t is a functional of
the simple Markov process xt.

The key to the construction of the n-dimensional model in Kaisajuntti &
Kennedy (2011) is the particular identification that Li

Ti
is a function of xi

Ti

only. Note that this identification aids in the construction of an n-dimensional
Markov-functional model under the terminal measure as well. The key in the
construction is to compute the quantity

J(x∗) = D0Tn+1E
Qn

[
1
{
xi
Ti

≥ x∗}
DTi+1Tn+1

]

= D0Tn+1E
Qn

⎡
⎣1{xi

Ti
≥ x∗} n∏

j=i+1

(1 + αjL
j
Tj
)

⎤
⎦ .

Having computed this, the functional form value of Li
Ti
(x∗) is then given by

the strike of the digital caplet with expiry Ti whose price is equal to J(x∗) (see
Kaisajuntti & Kennedy (2011) for details in the spot measure, the terminal
measure follows in a similar fashion). By working backwards the functional
forms of Li

Ti
may be deduced subsequently and, since the functional forms at

the setting dates are all that is needed to compute J(x∗), finding the functional
forms of the LIBORs at their setting dates may be done reasonably efficient
using a set of pre-simulated vectors

(
x1
T1
, . . . , xn

Tn

)
.

As is the case in any Markov-functional model, the values before setting needs
to be found using the conditional expectation in (11), which due to the high-
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dimensional setting, will be very time consuming to compute. In the spot
measure Kaisajuntti & Kennedy (2011) developed an approximation that either
could be used as it is (if the approximation errors would seem acceptable for
the product at hand) or preferably optimised to fit a set of correctly computed
values. While this is a possible route to take also in the terminal measure, this
paper takes a different route to the model construction by forcing the functional
form of (displaced) LIBORs at their setting dates to be of exponential type.
The reason for assuming this particular form is that the conditional expectation
in (11) may then be computed analytically. The driving relation used in the
model construction is displayed in the next subsection.

2.5 Functional form modeling

Recall the martingale property of numeraire rebased bonds (11) and its use
in the construction of Markov-functional models. In effect this relation is also
determining the drift term in the LMM. To see this, recall that for the LIBOR
market model by assumption

dLi
t = μi(t, Lt)L

i
tdt+ σi

tL
i
tdW

i
t , (12)

where Lt = (L1
t , . . . , L

n
t ). Also recall that since Ln is a martingale under Qn it

has drift less dynamics. From (11) note that for t ≤ Tn−1

(1 + αn−1L
n−1
t )(1 + αnL

n
t ) = EQn

[
(1 + αn−1L

n−1
Tn−1

)(1 + αnL
n
Tn−1

)
∣∣∣Ft

]
implying that the product

Zt := (1 + αn−1L
n−1
t )(1 + αnL

n
t )

is a martingale with respect to the filtration Ft. Hence, by the Ito formula,

dZt = (1 + αn−1L
n−1
t )αndL

n
t + (1 + αnL

n
t )αn−1dL

n−1
t

+ αnαn−1dL
n−1
t dLn

t

=
(
(1 + αnL

n
t )αn−1μ

n−1(t, Lt) + αnαn−1L
n
t L

n−1
t σn

t σ
n−1
t ρn,n−1

)
dt

+ . . . dWn
t + . . . dWn−1

t

which is drift less if

μn−1(t, Lt) = − αnL
n
t

1 + αnLn
t

σn
t σ

n−1
t ρn,n−1.

This is the LIBOR market model drift condition for Ln−1. This exercise may of
course be repeated for all i = 1, . . . , n and hence, given the assumption that the
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dynamics is of the form specified in (12), the martingale property (11) implies
the form of μi(t, Lt) for the LMM.

The model developed in this paper is constructed using a slight reformulation
of (11) including only the conditional expectation of LIBORs at their setting
dates.

Proposition 2.1 For all 0 ≤ t ≤ Ti

DtTi

DtTn+1

=

n∏
j=i

(
1 + αjL

j
t

)
= EQn

⎡
⎣ n∏

j=i

(
1 + αjL

j
Tj

)∣∣∣∣∣∣Ft

⎤
⎦ (13)

Proof.

EQn

⎡
⎣ n∏

j=i

(
1 + αjL

j
Tj

)∣∣∣∣∣∣Ft

⎤
⎦ =

EQn

⎡
⎣n−1∏

j=i

(
1 + αjL

j
Tj

)
EQn [

1 + αnL
n
Tn

∣∣FTn−1

]∣∣∣∣∣∣Ft

⎤
⎦ =

EQn

⎡
⎣n−1∏

j=i

(
1 + αjL

j
Tj

) DTn−1Tn

DTn−1Tn+1

∣∣∣∣∣∣Ft

⎤
⎦ =

EQn

⎡
⎣n−2∏

j=i

(
1 + αjL

j
Tj

) 1

DTn−1Tn+1

∣∣∣∣∣∣Ft

⎤
⎦ =

EQn

⎡
⎣n−2∏

j=i

(
1 + αjL

j
Tj

) DTn−2Tn−1

DTn−2Tn+1

∣∣∣∣∣∣Ft

⎤
⎦ =

EQn

[
1

DTiTn+1

∣∣∣∣Ft

]
=

DtTi

DtTn+1

(14)

A few manipulations shows that Li
t is then given explicitly as

Li
t =

1

γi+1
t

EQn

⎡
⎣Li

Ti

n∏
j=i+1

(
1 + αjL

j
Tj

)∣∣∣∣∣∣Ft

⎤
⎦ (15)

where γi
t :=

∏n
j=i

(
1 + αjL

j
t

)
and γn+1

t := 1
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Given this relation a model may be build through specifying the Qn marginal
distributions of the random variables Li

Ti
as well as the law of the Wiener

process that generates the filtration Ft, in a similar fashion to the procedure of
a standard Markov-functional model. As mentioned before, in high dimensions
the conditional expectations will in general need to be computed using Monte
Carlo integration implying a very inefficient model. However, as will be shown
in the next section, by assuming a particular exponential form for Li

Ti
the above

conditional expectation may be computed analytically implying a much more
efficient model construction.

3 A parametric MFM under Qn

This section develops a full rank arbitrage free model under the terminal mea-
sure that is similar to the full rank LMM but with the difference that Li

t may
be directly represented as a function of xt. The model is based on a postulated
simple parametric functional forms for (spot) LIBORs at their setting dates
and the no arbitrage form of the (forward) LIBORs at dates prior to setting
will subsequently be derived using the relation (15).

3.1 Motivation

Recall that in the LMM only the terminal LIBOR, Ln, allows to be represented
by xt since there

Ln
t = Ln

0 exp

(
xn
t − V n

t

2

)
(16)

for all t ∈ [0, Tn]. Expressions for the other forward LIBORs follow from
the assumption of a particular form of the dynamics which is then explicitly
pinned down by the requirement to fulfill certain measure dependent martingale
relations. As we have seen this leads to a conceptually appealing model, but
for which efficient implementation in the general case is quite challenging.

As a crude approximation to the LIBOR market model one may fix the drift
at the time zero values

Li
t = Li

0 exp

(
xi
t −

V i
t

2
− μi(0, L0)t

)
. (17)

This ‘model’ has the advantage of being computationally efficient but admits
arbitrage and has errors in bond prices. Moreover, caplet prices are only ap-

proximately given by the Black formula with volatility

√
V i
Ti

Ti
. However, since

the variability and size of the drift term is fairly small one would not expect it
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to be too far away from the correctly specified LIBOR market model distribu-
tionally. The model developed in this section is intuitively based on the above
crude approximation but with the arbitrage removed by ‘filtering’ it through
the martingale type relation (15).

3.2 The model

Assume that the functional forms at the setting dates are

Li
Ti

= bi exp

(
dix

i
Ti

− d2iV
i
Ti

2

)
, i = 1, . . . , n (18)

where bi and di are some constants. As we will see later the constants bi and
di may be chosen to assure that bonds and caplets are correctly priced.

Recall that the relation (15) determines the time-t value of the forward LIBORs
given the functional forms at their respective setting dates and hence, given
(18), the model is completely specified at all times. Note that in principle the
functional forms at the setting dates may be quite freely chosen and the reason
for choosing this particular form is in order to be both close to the LMM and
allow analytical computations of the conditional expectation in (15). The next
subsection generalises this form to the displaced diffusion case.

To understand the procedure in the computation of (15) the cases Ln
t , L

n−1
t

and Ln−2
t are computed explicitly. Using the notation

L̂i
t := bi exp

(
dix

i
t −

d2iV
i
t

2

)
(19)

and following (15) gives

Ln
t = EQn [

Ln
Tn

∣∣Ft

]
= EQn [

Ln
Tn

∣∣xt

]
= L̂n

t , (20)

Ln−1
t =

1

γn
t

EQn
[
Ln−1
Tn−1

(1 + αnL
n
Tn

)
∣∣∣xt

]

=
1

γn
t

(
L̂n−1
t + αnL̂

n−1
t L̂n

t exp
(
dndn−1C

n
n−1(t, Tn−1)

))
(21)
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with Cn
n−1(t, Tn−1) as in (5) and

Ln−2
t =

1

γn−1
t

EQn
[
Ln−2
Tn−2

(1 + αn−1L
n−1
Tn−1

)(1 + αnL
n
Tn

)
∣∣∣xt

]
=

=
1

γn−1
t

(
L̂n−2
t + αn−1L̂

n−2
t L̂n−1

t exp
(
dn−1dn−2C

n−1
n−2 (t, Tn−2)

)
+ αnL̂

n−2
t L̂n

t exp
(
dndn−2C

n
n−2(t, Tn−2)

)
+ αn−1αnL̂

n−2
t L̂n−1

t L̂n
t exp

(
dn−1dn−2C

n−1
n−2 (t, Tn−2)

+ dndn−2C
n
n−2(t, Tn−2) + dndnC

n
n−1(t, Tn−1)

))
(22)

Note that the structure is such that moving one step further from n implies an
addition of all possible combinations of terms including also the next interme-
diate LIBOR.

To display the form for the general case Li
t it is useful to introduce the vector

of integers Ki,n. Ki,n refers to a particular choice of k integers out of the
integers (i + 1, . . . , n). The lth integer in the vector is referred to as Ki,n[l].
Note that in total it is possible to choose k elements out of m in

(
m
k

)
unique

ways. For some given i, n all possible vectors of integers may hence be referred
to as Ki,n

j , j = 1, . . . ,
(
n−i
k

)
. Using this notation one may express Li

t as in the
below proposition.

Proposition 3.1 Given the choice of functional forms at the reset dates as in
(18), the ith forward LIBOR at time t is given by

Li
t =

L̂i
t

γi+1
t

(
1 +

n−i∑
k=1

h(Li+1
t , . . . , Ln

t ; k)

)
(23)

where

h(Li+1
t , . . . , Ln

t ; k) =

(n−i
k )∑

j=1

∏(
αKi,n

j

)∏(
L̂
Ki,n

j

t

)
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(
C̄

Ki,n
j

t

)
, (24)

with

∏(
αKi,n

j

)
= αKi,n

j [1] · . . . · αKi,n
j [k], (25)
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L̂
Ki,n

j

t

)
= L̂

Ki,n
j [1]

t · . . . · L̂Ki,n
j [k]

t , (26)
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with Cn
n−1(t, Tn−1) as in (5) and

Ln−2
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1

γn−1
t

EQn
[
Ln−2
Tn−2

(1 + αn−1L
n−1
Tn−1

)(1 + αnL
n
Tn

)
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L̂n−2
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n−2
t L̂n−1

t exp
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dn−1dn−2C

n−1
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)
+ αnL̂

n−2
t L̂n

t exp
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dndn−2C

n
n−2(t, Tn−2)
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+ αn−1αnL̂

n−2
t L̂n−1

t L̂n
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dn−1dn−2C

n−1
n−2 (t, Tn−2)

+ dndn−2C
n
n−2(t, Tn−2) + dndnC

n
n−1(t, Tn−1)
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(22)

Note that the structure is such that moving one step further from n implies an
addition of all possible combinations of terms including also the next interme-
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m
k

)
unique
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k

)
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and

C̄
Ki,n

j

t :=

k∑
u=1

didKi,n
j [u]C

Ki,n
j [u]

i (t, Ti)

+
k∑

u=1

k∑
v=u+1

dKi,n
j [u]dKi,n

j [v]C
Ki,n

j [v]

Ki,n
j [u]

(
t, TKi,n

j [u]

)
, (27)

under the convention that empty sums are zero.

Proof. First note that the expression holds for the cases Ln, Ln−1, Ln−2 given
above. Straightforward, but rather tedious, calculations for Ln−3 and Ln−4

reveals the structure in the result from which the general case follows.

While the expression in the above proposition might look fairly greasy due to
all indices it is in effect just a sum of terms and is relatively straightforward
to implement on a computer. Note however that the number of terms in the
expression for Li

t is given as 2n−i. Hence for i far from n evaluating this expres-
sion is rather time consuming. Section 3.5 outlines a possible approximation
that reduces the computation time.

3.3 The displaced diffusion case

In the displaced diffusion setting the functional form at the setting date is

Li
Ti

= −ai + bi exp

(
dix

i
Ti

− d2iV
i
Ti

2

)
. (28)

To understand the structure in the difference from the case with ai = 0 note
that, using the notation

δi := 1− αiai (29)

Ln−2
t is given by
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Ln−2
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δn−1δnL̂

n−2
t

+ δnαn−1L̂
n−2
t L̂n−1

t exp
(
dn−1dn−2C

n−1
n−2 (t, Tn−2)

)
+ δn−1αnL̂

n−2
t L̂n

t exp
(
dndn−2C

n
n−2(t, Tn−2)
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+ αn−1αnL̂

n−2
t L̂n−1

t L̂n
t exp
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dn−1dn−2C
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n−2 (t, Tn−2)

+ dndn−2C
n
n−2(t, Tn−2) + dndn−1C

n
n−1(t, Tn−1)

))
(30)

Powered with this one may observe the structure in the expressions by studying
the similarities with the ai = 0 case above and perhaps also writing the expres-
sion out for the case Ln−3. To write the expression in a bit more condensed
form let the vector K̄i,n contain the integers between i+ 1, . . . , n that are not
in the vector Ki,n. The general expression is given in the below proposition.

Proposition 3.2 Given the choice of functional forms at the reset dates as in
(28), the ith forward LIBOR at time t is given by

Li
t = −ai +

L̂i
t

γi+1
t

(
δi+1·, . . . , ·δn +

n−i∑
k=1

g(Li+1
t , . . . , Ln

t ; k)

)
(31)

where

g(Li+1
t , . . . , Ln

t ; k) =

(n−i
k )∑

j=1

∏(
δK̄i,n

j

)∏(
αKi,n

j

)∏(
L̂
Ki,n

j

t

)
exp

(
C

Ki,n
j

t

)
,

(32)
with ∏(

δK̄i,n
j

)
= δK̄i,n

j [1] · . . . · δK̄i,n
j [n−i−k], (33)

and the other entities as in proposition 3.1.

3.4 Calibration

When calibrating the parametric MFM it is possible to borrow most of the
already developed calibration techniques for the (DD) LIBOR market model,
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see for example Brigo & Mercurio (2006) for a wide variety of different ap-
proaches and possible choices of the instantaneous volatility functions σi

t and
instantaneous correlations ρij .

In principle, to calibrate the LMM, one first chooses the instantaneous volatil-
ities as either constant, piecewise constant or some parametric time-dependent
(preferably time to expiry dependent) function. These are then calibrated such
that market prices of (ATM or some other strike) caplets are fitted by matching
the relation (8). The instantaneous correlations ρij are then fitted to match
a view about terminal correlations and/or prices of swaptions and/or other
option market prices through various approximations.

For terminal correlations in the LMM a standard approximation is based on
freezing the drifts at time zero and then computing the correlations between
the natural log of the (forward) LIBORs leading to

corr
[
log
(
Li
Tk

+ ai
)
, log

(
Lj
Tk

+ aj

)]
≈ corr

[
xi
Tk
, xj

Tk

]

=

∫ Tk

0
σi
tσ

j
t ρ

ijdt√∫ Tk

0

(
σi
t

)2
dt
∫ Tk

0

(
σj
t

)2
dt

.(34)

For swaptions there exists a variety of approximations (Brigo &Mercurio (2006)
covers several of them) and one of the simplest, most straightforward and
popular choices is the Rebonato approximation. In this approximation the
implied squared volatility multiplied with time to expiry for an option expiring
at Ti to enter a β periods swap is given as

(ΣTi,β)
2
Ti =

i+β−1∑
k,l=i

wk
0w

l
0L

k
0L

l
0

yi,β0

ρkl
∫ Ti

0

σk
t σ

l
tdt (35)

where wk
0 is a function of the time zero discount bond prices and yi,β0 is the

time zero forward swap rate for the swap under consideration. Note how this
formula is linked to the above approximation of the terminal correlations by the

integrals
∫ Ti

0
σk
t σ

l
tdt implying that there is a rather close link between swaption

prices and terminal correlations/covariances in the LMM.

For the parametric MFM note that by construction

corr
[
log
(
Li
Ti

+ αi

)
, log

(
Lj
Tj

+ αj

)]
= corr

[
xi
Ti
, xj

Tj

]
and hence the above formula (34) is exact and not an approximation for the
correlations between (logged) LIBORs at their setting dates in this model.
For correlations between Li and Lj at some time Tk the link is less direct as
there are higher order terms to take into account as well. However, given the
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expressions in propositions 3.1 and 3.2, it seems reasonable to believe that most
of the variation of Li

Tk
comes from xi

Tk
and that the formula (34) may be used

also for the parametric MFM. Moreover, given the similarities in the setup of
the parametric MFM and the LMM it seems reasonable to use the swaption
approximation formula (35) also for the parametric MFM. These choices are
tested and justified in Section 4.2.

While calibration of the instantaneous volatilities and correlations (as well as
the displaced diffusion coefficients ai) may be performed in the same manner as
for the LMM, the parameters bi and di also need to be set for the parametric
MFM. The constants di may be chosen in order to exactly fit caplet prices
and a way to do this is outlined in section 4.1. Finally, given di, bi is uniquely
determined by the requirement that the model should hit the time zero forward
LIBORs and may be found by putting t = 0 and inverting the expressions (23)
or (31) such that Li

0 equals the initial forward LIBOR values. Obviously, the
bi:s should be determined backwards since for given bj , j = i + 1, . . . , n, bi is
linear in the equations (23) and (31).

3.5 Approximating Li
Tk

Recall from propositions 3.1 and 3.2 that there are in total 2n−i terms to
sum up in the expression for Li

t. In a practical implementation, when n >>
i, computing all terms exactly would be too time-consuming and hence this
expression needs to be approximated somehow. Luckily, in most situations,
terms of order larger than 3-4 (i.e. terms involving the product of more than
3-4 LIBORs) are very small and the main contribution is coming from the first
few terms of the sum. At this point note that the terms L̂i

t is similar to the
crude LMM one-step Euler drift approximation and hence the approximation
Li
t ≈ L̂i

t would imply a model of similar accuracy. Powered with this a first
approximation could hence be to simply remove the contribution of terms of
higher order than some maximum level M . While this seems to work O.K.
a better method is outlined below which requires small extra computational
costs.

Suppose we are interested in approximating Li
t in the general displaced diffusion

case and that Lj
t , j > i are already determined. Recall that each of the terms

in the sum producing g(Li+1
t , . . . , Ln

t ; k) consists of four terms; products of
1− αiai, accrual factors and forward LIBORs and the exponential of the sum
of covariances. One way to approximate g is provided in the below four steps.

1. Compute the first M terms in (31) exactly.
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2. Note that the terms∏(
δK̄i,n

j

)
= δK̄i,n

j [1] · . . . · δK̄i,n
j [n−i−k],∏(

αKi,n
j

)
= αKi,n

j [1] · . . . · αKi,n
j [k]

are more or less the same for each j, the only difference being due to day
counting conventions (note that typically the dates in the dates structure
are roughly equally spaced). Hence, for each k = M + 1, . . . , n− i take

∏(
δK̄i,n

j

)
≈ δK̄i,n := (δi+1 · . . . · δn)

n−i−k
n−i , j = 1, . . . ,

(
n− i

k

)
(36)

∏(
αKi,n

j

)
≈ αKi,n := (αi+1 · . . . · αn)

k
n−i , j = 1, . . . ,

(
n− i

k

)
. (37)

Note that this approximation has typically very good precision and all
products may be pre-computed and stored in the local cache before per-
forming the simulations.

3. Then, inspired by the above case, take for each k = M + 1, . . . , n− i

∏(
L̂
Ki,n

j

t

)
≈ L̂Ki,n

t :=
(
L̂i+1
t · . . . · L̂n

t

) k
n−i

, j = 1, . . . ,

(
n− i

k

)
.

(38)
which is obviously a much cruder approximation. Note, however, that
the contributions from these terms are typically rather small if M is
sufficiently high and since all forward LIBORs typically are strongly cor-
related (this depends of course on the choice of instantaneous correlations
ρij), there is hence hope that this is not a too bad of an approximation.

4. Note that in the previous step each of the products of forward LIBOR
realisations are approximated to be the same for all j. As the sum of
covariances are all deterministic all relevant sums may be pre-computed
and stored in the local cache before performing the simulations. As there
still can be quite many terms to sum up this may, depending on desired
computational speed and accuracy, be done either exact or approximated.
This step may hence be split in two parts, either

(a) compute the sum of all exponentials of covariance terms exactly, or

(b) first compute the sum of all relevant covariance terms

C̄i,n
t :=

n∑
u=i+1

diduC
u
i (t, Ti) +

n∑
u=i+1

n∑
v=u+1

dudvC
v
u (t, Tu) , (39)
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L̂
Ki,n

j

t

)
≈ L̂Ki,n

t :=
(
L̂i+1
t · . . . · L̂n

t

) k
n−i

, j = 1, . . . ,

(
n− i

k

)
.

(38)
which is obviously a much cruder approximation. Note, however, that
the contributions from these terms are typically rather small if M is
sufficiently high and since all forward LIBORs typically are strongly cor-
related (this depends of course on the choice of instantaneous correlations
ρij), there is hence hope that this is not a too bad of an approximation.

4. Note that in the previous step each of the products of forward LIBOR
realisations are approximated to be the same for all j. As the sum of
covariances are all deterministic all relevant sums may be pre-computed
and stored in the local cache before performing the simulations. As there
still can be quite many terms to sum up this may, depending on desired
computational speed and accuracy, be done either exact or approximated.
This step may hence be split in two parts, either

(a) compute the sum of all exponentials of covariance terms exactly, or

(b) first compute the sum of all relevant covariance terms

C̄i,n
t :=

n∑
u=i+1

diduC
u
i (t, Ti) +

n∑
u=i+1

n∑
v=u+1

dudvC
v
u (t, Tu) , (39)
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and then approximate

C̄
Ki,n

j

t ≈ C̄Ki,n

t := C̄i,n
t

k(k + 1)

(n− i+ 2)(n− i+ 1)
, j = 1, . . . ,

(
n− i

k

)
,

(40)
where the multiplication factor stems from that there are in total
k(k+1)

2 terms in each of the C̄Ki,n
j and (n−i+2)(n−i+1)

2 terms in C̄i,n.

To sum up, the above steps define two potential approximations of the k:th
order terms

g(Li+1
t , . . . , Ln

t ; k) = δK̄i,nαKi,nL̂Ki,n

t ·
(n−i

k )∑
j=1

exp
(
C̄Ki,n

j

)
, (41)

g(Li+1
t , . . . , Ln

t ; k) = δK̄i,nαKi,nL̂Ki,n

t ·
(
n− i

k

)
exp

(
C̄Ki,n

t

)
, (42)

In tests of the above approximations on market like data it seems like an M
between 0 to 4 is enough where the order depends on the difference n − i.
In an actual implementation of the parametric MFM in practice we would
recommend using an adaptive algorithm that starts approximating the product
of the forward LIBORs when the previous order only implies a marginally (as
defined by the user) change in the value of Li

t. Note that it is also to some
extent possible to use information of what was good for Li+1

t when deciding
at which order to start approximating. Finally, note that while the cruder of
the above approximations (42) is tested on data in Section 4.2 and is found to
behave reasonably well there are most probably better approximations to be
found in a careful study.

Remark 3.1 Note the similarities in intuition with an implementation of the
LMM in practice. There the induced errors are due to the size of the time-step
and the choice of drift approximation and there has, as mentioned previously,
been a large number of papers introducing and comparing different drift approx-
imations. For the parametric MFM there is no time-discretisation error, but
instead there is an induced error by approximating the exact form for Li

t.

3.6 Relationships with other models

The LIBOR market model

Recall that by construction the parametric MFM is setup to be close to the
LMM in the sense that it has the same structure as a crude one-step log-
Euler approximation of the LMM. For further understanding of the connection
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consider the Qn dynamics of Ln−1
t under the parametric MFM model

dLn−1
t = L̂n−1

t

αnL
n
t

1 + αnLn
t

(
exp

(
Cn−1

n (t, Tn−1)
)− 1

)
σn
t dndW

n
t

+ Ln−1σn−1
t dn−1dW

n−1
t + . . . dt (43)

Note that while the Wn−1 diffusion parts of the models are the same the para-
metric MFM also depends on Wn

t , a feature that by assumption is restricted in
the setup of the LMM. Also note that as t gets close to the setting date Tn−1

the contribution from the Wn
t bit decreases as Cn−1

n (t, Tn−1) tends to 0. The
finite variation terms are rather greasy and consists of a few terms that are
not particularly instructive and we confine ourself to mention that it contains
a term which is similar to the LMM drift term.

Intuitively one can view the parametric MFM and the LMM as models sharing
the same foundation but with the LMM enforcing exact recovery of Black caplet
prices (at the sacrifice of functional representation of the forward LIBORs in
terms of x) and the parametric MFM enforcing functional representation of
the forward LIBORs in terms of x (at the sacrifice of exact recovery of Black
caplet prices). To get a feeling for the similarities and differences, Section 4
provides some numerical comparisons between the LMM and the parametric
MFM model.

Markov-functional models

Consider a ‘properly implemented’ n-dimensional Markov-functional model, i.e.
a model constructed using the construction technique briefly outlined in Section
2.4, fitted to caplet prices given by the displaced diffusion Black formula. While
the parametric Markov-functional model will provide very similar functional
forms of LIBORs at their setting dates (and hence prices) they will not be
exactly the same as the simple exponential functional form of the parametric
MFM is not flexible enough.

On the other hand, note that if a ‘properly implemented’ n-dimensional Markov-
functional model is fitted to the caplet prices given by the parametric Markov-
functional model they would be exactly the same as this will return exactly the
exponential functional forms of the parametric MFM.

The numerical tests in Section 4 will provide some evidence for the closeness
between the ‘properly’ implemented n-dimensional MFM and the parametric
MFM by studying the resulting caplet prices.
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The Hull-White model

Note that if one puts ai =
1
αi

and di = 1, ∀i in the displaced diffusion version
of the MFM type model then the ratios of discount factors for all i are

DtTi

DtTn+1

=

n∏
j=i

(
1 + αjL

j
t

)
= EQn

⎡
⎣ n∏

j=i

(
1 + αjL

j
Tj

)∣∣∣∣∣∣Ft

⎤
⎦

= EQn

⎡
⎣ n∏

j=i

(
L̂j
Tj

)∣∣∣∣∣∣Ft

⎤
⎦ =

n∏
j=i

bj exp

(
xj
t −

V j
t

2

)
. (44)

Inverting this expression subsequently and then evaluating it at t = 0 gives
that bi =

1
αi

+ Li
0 and

Li
t = − 1

αi
+

(
1

αi
+ Li

0

)
exp

(
xi
t −

V i
t

2

)
, i = 1, . . . , n. (45)

Compared with the general expression given in proposition 3.2 this expression
is of course much easier and faster to work with as the expression for Li

t does
not contain any other forward LIBORs. It is interesting to note that also for
the DD-LMM, taking ai =

1
αi

for all i, gives exactly the same expression for

the Li
t:s as then the drift term disappears. Hence, in this particular case the

MFM and the LMM are exactly the same.

The particular simple product form of the ratio of discount factors seems like
something that should have been introduced previously in the literature. In
fact this is effectively the n-dimensional Hull-White model for which it can
be shown (see Hunt & Kennedy (2000) for the details in the one-dimensional
case) that under the terminal forward measure the ratios of discount factors
are given as

DtTi

DtTn+1

=
D0Ti

D0Tn+1

n∏
j=i

exp

(∫ t

0

σ̂i
sdW

i
s −

∫ t

0

(
σ̂i
sds
)2

2

)
(46)

for some function σ̂i
t that depends on the (time-dependent) parameters of the

Hull-White model.

3.7 Rank reduction

As mentioned in the introduction to the LMM the rank may be reduced by
letting the vector xt be driven by an m-dimensional instead of n-dimensional
process. However, also in this case the dimension of the model would still be n
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and to reduce the dimension a separable volatility structure along the lines of
(10) is needed. As is the case for the LMM from a computational perspective
this will only reduce computational speed marginally unless m ≤ 2 for which
the model may be implemented on a lattice or solved by PDE methods.

This paper will only focus on the full rank case and investigations of the rank
reduced models are left to future research.

4 Implementation, calibration and numerics

This section studies the pricing of caplets and swaptions as well as the terminal
correlations between the (forward) LIBORs. First we will study the modeling
of LIBORs at their setting dates, something which the parametric MFM is well
suited at. Recall that by construction of the model

corr
[
logLi

Ti
, logLj

Tj

]
= corr

[
xi
Ti
, xj

Tj

]
= ρij (47)

and hence there is perfect control of these correlations in the model. Recall
that the motivation for the choice of the parametric form was that it should
be close to a crude drift approximation of the LMM and hence should give
prices that are close to the ones for the LMM. In particular we want the caplet
prices to be close to the caplet prices obtained using the displaced diffusion
Black formula under the appropriate forward measures. Clearly, caplet prices
depend on the constants di but, even if these constants are chosen to match
up the ATM volatility, it is not clear how caplets are priced across strikes (i.e.
how close distributionally the parametric MFM is from the displaced diffusion
Black formula). Calibrating the di:s to match the ATM volatility and testing
caplet pricing are done in the first subsection in this section.

After this the parametric MFM is investigated in terms of terminal correlations
between (forward) LIBORs and swaption pricing. The start point for these in-
vestigations are that the parametric MFM is so close to the LMM that all
standard LMM calibration techniques and intuition can be transferred. Hence,
by matching terminal correlations as well as the pricing of caplets and/or swap-
tions to the LMM the idea is that then also prices of exotics will be similar in
the two models.

In the spot measure Kaisajuntti & Kennedy (2011) introduces a similar model
but takes a different route in terms of testing the model. Instead of studying
correlations and the pricing of simple products Kaisajuntti & Kennedy (2011)
investigates pricing of the exotic products TARNs and CMS spread TARNs
and compares with the LIBOR market model. Conclusions are that if terminal
correlations and volatilities are matched, then also prices of exotics are matched
in the two model frameworks. While these products would be suitable also for
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the parametric MFM in the terminal measure we believe that there is not much
extra insights to gain by pricing these products also in this paper and hence
put focus on the ‘basic’ quantities instead.

Throughout this section only the case with all displacement factors ai = 0
are considered. The reason for this is that positive displacement constants
(negative would not be interesting as market skews are ‘always’ declining in
strike) reduce the variation in the models coming from the drift term in the
LMM and the higher order terms in the MFM and hence this case is the
‘hardest’ to deal with. For some numerical checks in a similar model using a
positive displacement factor, see Kaisajuntti & Kennedy (2011).

4.1 Caplet pricing

The purpose of this section is to provide intuition about the parametric MFM,
to display a way to fit the model to ATM caplet prices and to numerically
compare the prices across strikes with the Black formula. Note that even
though for the LMM caplet prices across strikes should theoretically be in
perfect agreement with the Black formula with constant ‘volatility’ η this would
not be the case in a practical implementation of the model. The reason is
the induced discretisation error when implementing the model. As mentioned
previously there is a variety of drift approximations introduced to reduce this
error and throughout this section a single-step drift approximation of the LMM
using the Glasserman-Zhao (GZ) and the predictor-corrector (PC) methods will
be used as a comparison.

The reason for choosing to use a single step is that this leads to a model which
is similar in spirit to the Markov-functional model in the sense that Li

t is then
a functional of xt and does not depend on values of xs for s < t. Also, from
a computational perspective the LMM needs to be simulated using a single
step in order to compete at all with the parametric MFM in terms of speed.
Moreover, note that while in the parametric Markov-functional model Li

t is a
function of only xi

t, in the single-step drift approximation using the PC and GZ
methods Li

t is a function of the whole vector (xi
t, . . . , x

n
t ), although xi

t provides
by far most of the variation.

Joshi & Stacey (2006) compares several of the introduced LMM drift approx-
imation methods when using a single time step out the final expiry. The two
chosen methods are due to their popularity and the fact that the GZ method
has no bond pricing error (as is the case for the parametric MFM) and that
the PC is one of the fastest and most flexible of the available methods and
still, according to Joshi & Stacey (2006) provides among the best in terms of
accuracy. The results in this section are based on the same inputs as in Joshi
& Stacey (2006) i.e. flat rates at 5%, flat volatilities at 20% and instantaneous
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correlation ρij = exp(−β|Ti − Tj |), with β = 0.05 for a set of forward LIBOR
rates with one year tenors out to 20 years.

Recall that the parameters bi are used to perfectly calibrate the MFM to bond
prices and that the parameters di may be chosen to fit the prices of ATM
caplets. Before displaying how this may be done it will be informative to start
by studying the case when all di = 1.

Putting all di = 1

Figure 2.1 displays the prices of ATM caplets converted into implied volatilities
using 50 million (antithetic) pseudorandom paths implying that the size of a
95% confidence intervals of the caplet prices are all less than 0.1 bp. Note that
both the GZ and the PC methods for the LMM gives errors in the caplet prices.
These errors are consistent with the errors reported in Joshi & Stacey (2006)
although they display caplet prices instead of corresponding implied volatilities.
Also note that in contrast with Joshi & Stacey (2006) we do not get any bias
with the GZ method for short caplet expiries.

In terms of computational time the pricing of caplets is very fast in the para-
metric MFM. In Joshi & Stacey (2006) the PC method is the fastest available
method and the GZ one of the slowest (about 5 times slower). Generating a
set of Li

Ti
, for i = 1, . . . , 20 is in our implementation about 40 times faster

in the parametric MFM compared with the PC method. The reason for this
is that given a value of xi

Ti
the parametric MFM only needs one call to the

exponential function to evaluate Li
Ti

whereas the PC LMM first needs to recall

xi
Ti
, Lj

0, j = i + 1, . . . , n, the (previously computed) Lj
Ti
, j = i + 1, . . . , n, the

integral of the covariance functions up to time Ti, evaluate the sum in the drift
terms twice and finally input it to the exponential function.

Note that with all di = 1 the parametric MFM caplet prices are larger than the
‘desired’ 20%, with the largest bias at the 13 year expiry. This difference is a
bit too large to be of practical use and hence the model needs to be calibrated
by changing the dis. This is the task of the next subsection.

Calibrating di

As noted in the previous subsection the constants di needs to be modified in
order to perfectly fit the model to ATM caplet prices. Ideally one would like
to have an analytical (or a good approximate) expression for caplet prices, as
is the case in the LMM (by switching measures). Switching measures in the
MFM model would not help with this as the expression will then (still) include
a drift term. While this drift term perhaps could be approximated with decent
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Ti
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exponential function to evaluate Li
Ti
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xi
Ti
, Lj
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Ti
, j = i + 1, . . . , n, the
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Figure 2.1: ATM caplet prices in terms of implied volatilities for the parametric
MFM with all di = 1 as well the single-stepped LMM using the PC and GZ
drift approximations.

precision we have not found any good generic way to do this such that it would
be of practical use.

Instead we propose a numerical way of calibrating the model to caplet prices.
Since caplet pricing is fast and efficient in the parametric MFM one could
perform a calibration using the Monte Carlo method in reasonable computation
time. To speed up the convergence of the Monte Carlo method we have chosen
to use FRAs as control variates. As FRAs are highly correlated with caplets
this work very efficiently as is motivated in Figure 2.2. This figure displays
the differences between the model and the ‘market’ caplet prices (ie the Black
model using a volatility of 20%). Note the huge improvement in convergence
by using the FRAs as control variates. To achieve the same type of error using
standard Monte Carlo one needs to use about 60 times more realisations.

By the use of FRAs as controls variates one may hence calibrate the di to ATM
caplets in a reasonably fast way by the following simple algorithm:

1. Set di = 1 for all i.

2. Set bi for all i.

3. For each i compute ATM caplet prices and convert into implied volatility.

4. Put di = di
Σi

target

Σi
model

, where Σi
target and Σi

model are the target and model
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Figure 2.2: ATM caplet pricing with the FRA as control variate in the para-
metric MFM.

implied volatilities.

5. Reset bi.

6. Repeat point 2 to 4 a few times. Typically two times are enough.

Figure 2.3 displays the implied volatilities after round 0, 1 and 2 using 10
million paths. Note that 10 million paths are a lot more than needed in prac-
tice but are chosen to make sure that the statistical error of the Monte Carlo
method is redundant. Figure 2.4 displays the differences between market and
model caplets and FRAs using 50 million paths. Note that the accuracy of the
calibration algorithm is of the same order as the statistical FRA and caplet
pricing errors using 50 million implying that the simple algorithm described
above does a good job. Also note how correlated the FRA and caplet pricing
(without control variates) errors are.

Remark 4.1 Calibration using the Monte Carlo method would seem a bit inef-
ficient. Note however that due to that Monte Carlo caplet pricing using control
variates is very efficient this is not particularly prohibitive. Suppose for exam-
ple that the model would be used for pricing a standard LIBOR TARN and that
m realisations are needed for good accuracy. Then, three rounds with the above
algorithm using, say, m

10 realisations (which is perfectly fine if control variates
are used) takes shorter time than generating the paths for pricing the TARN
and hence the total computation time would still be less than for single-stepped
LMM using for example the PC drift approximation.
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Remark 4.1 Calibration using the Monte Carlo method would seem a bit inef-
ficient. Note however that due to that Monte Carlo caplet pricing using control
variates is very efficient this is not particularly prohibitive. Suppose for exam-
ple that the model would be used for pricing a standard LIBOR TARN and that
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Figure 2.3: Calibration of the parametric MFM to ATM caplet prices using the
simple algorithm described in the text. Round 0 refers to caplet prices using
all di = 1 and round 1 and round 2 refers to caplet prices using the adjusted
di after one and two rounds of adjustment respectively.
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Figure 2.4: Results from the calibration exercise. Note that two rounds of
adjustments are enough to get prices in line with the accuracy from using 50
million antithetic paths. Also note how correlated the caplet pricing errors
without control variates and the FRA pricing errors are.
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Remark 4.2 Note that in a typical LMM setup the instantaneous volatilities
are modeled by some time to expiry dependent function g(Ti − t). To get a
perfect fit to the ATM volatility it is then common to introduce multiplying
constants ki. The di used in the parametric MFM could be seen as having the
same goal and effect as these constants.

Non ATM strikes

The previous subsection displayed how to calibrate the parametric MFM to
ATM (or indeed any particular strike of interest at each Ti) caplets. Since the
model is not constructed to be perfectly consistent with the Black model a
natural question to ask is far off is it? To get something to compare with and
to put the results into context the GZ and PC ‘single-step’ drift approximation
methods will once again be used as references.

Figure 2.5 displays caplet prices converted into implied volatility for the para-
metric MFM for some different strikes and figures 2.6 and 2.7 display the same
thing for the PC and GZ drift approximations. First note that the GZ drift ap-
proximation has quite distorted marginal distributions with caplet prices that
are scattered around the correct prices (in effect producing a skew in the im-
plied volatility smiles). The PC has less scattered prices but has a negative
bias on average. The calibrated parametric MFM on the other hand has both
fairly small scatter as well close to correct ATM implied volatilities. Hence,
compared with the GZ and the PC ‘single-step’ drift approximations it seems
fair to say that the parametric MFM is the most consistent with the Black
model. Needless to say, shorter steps with the GZ and the PC methods will
of course improve the performance. However, since the parametric MFM is
already at this point much faster, the LMM drift approximations will then be
quite significantly slower.
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Figure 2.5: Caplet prices in terms of implied volatility across strikes for the
calibrated parametric MFM. Note the small systematic difference in implied
volatility between the different strikes.
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Figure 2.6: Caplet prices in terms of implied volatility across strikes for the cal-
ibrated single-stepped LMM using the PC drift approximation. Note that this
method misprices ATM caplet prices by about 50 implied volatility basis points
for the 13 years to expiry caplet. There is also a systematic difference in im-
plied volatility between the different strikes of similar size as in the parametric
MFM.
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Figure 2.7: Caplet prices in terms of implied volatility across strikes for the
calibrated single-stepped LMM using the GZ drift approximation. Note the
big systematic difference difference in implied volatility between the different
strikes.
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Figure 2.7: Caplet prices in terms of implied volatility across strikes for the
calibrated single-stepped LMM using the GZ drift approximation. Note the
big systematic difference difference in implied volatility between the different
strikes.
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4.2 DF, TC and swaptions

This section studies LIBORs before their setting dates. Recall that while the
parametric MFM is an efficient choice for products depending on LIBORs at
their setting dates, computing LIBORs before setting could be rather inefficient
if the full expression (recall propositions 3.1 and 3.2) for the Li

t:s (in particular
when i << n) would be used. As an attempt to speed up the computations
Section 3.5 argued that these expressions could be computed by using the
exact values up to some order M and then approximating the higher order
terms. Hence, as opposed to when pricing caplets, in this case the values for
both the parametric MFM and the LMM are affected by both statistical and
approximation (discretisation) errors. To keep the statistical error low 5 million
antithetic paths are used for both models in all computations in this section.

As test products the prices of (forward) discount bonds and swaptions as well
as terminal correlations will be computed and compared with either the true
values or the approximation formulae, (34) and (35). In order for these results
to be comparable with the previous tests the same data as in Section 4.1 are
used.

All studied results are dependent on the forward discount curve at T10 = 10
years and for the parametric MFM the orders M = 3, 4 and 5 are used whereas
for the LMM either 1 or 8 PC steps per year are used. Although only the results
are displayed at T = 10 years we were computing the full discount curves at all
dates in the date structure and this case is displayed due to that it is one of the
hardest to approximate (in both models) and is hence displaying the largest
errors. The computational times in our implementation are about the same for
M = 4 with the parametric MFM and one step per year in the LMM.

The first test is based on the martingale property

EQn

[
DTkTi

DTkTn

]
=

D0Ti

D0Tn

, i = k, . . . , n. (48)

Note that this relation is important to fulfill in order to not induce errors in
bond and FRA prices. For both the parametric MFM and the LMM Figure
2.8 displays the ratios of the left and right hand sides of (48) for Tk = T10 = 10
years under all of the above mentioned cases. To get something to compare
with, the figure also displays the boundaries of a 95% confidence interval for
the statistical error (centered around the value 1) computed using 1 million
paths in the LMM with one PC step per year. The statistical errors using 5
million paths are rather small (but sizeable in the test) and a 95% confidence
interval is given by about plus/minus 0.0002-0.0005. Also note that for the
MFM there is no approximation error and only statistical error at the first two
points and the values are hence the same irrespective of the order M .

86 A Parametric n-Dimensional Markov-functional Model under the Terminal Measure

4.2 DF, TC and swaptions

This section studies LIBORs before their setting dates. Recall that while the
parametric MFM is an efficient choice for products depending on LIBORs at
their setting dates, computing LIBORs before setting could be rather inefficient
if the full expression (recall propositions 3.1 and 3.2) for the Li

t:s (in particular
when i << n) would be used. As an attempt to speed up the computations
Section 3.5 argued that these expressions could be computed by using the
exact values up to some order M and then approximating the higher order
terms. Hence, as opposed to when pricing caplets, in this case the values for
both the parametric MFM and the LMM are affected by both statistical and
approximation (discretisation) errors. To keep the statistical error low 5 million
antithetic paths are used for both models in all computations in this section.

As test products the prices of (forward) discount bonds and swaptions as well
as terminal correlations will be computed and compared with either the true
values or the approximation formulae, (34) and (35). In order for these results
to be comparable with the previous tests the same data as in Section 4.1 are
used.

All studied results are dependent on the forward discount curve at T10 = 10
years and for the parametric MFM the orders M = 3, 4 and 5 are used whereas
for the LMM either 1 or 8 PC steps per year are used. Although only the results
are displayed at T = 10 years we were computing the full discount curves at all
dates in the date structure and this case is displayed due to that it is one of the
hardest to approximate (in both models) and is hence displaying the largest
errors. The computational times in our implementation are about the same for
M = 4 with the parametric MFM and one step per year in the LMM.

The first test is based on the martingale property

EQn

[
DTkTi

DTkTn

]
=

D0Ti

D0Tn

, i = k, . . . , n. (48)

Note that this relation is important to fulfill in order to not induce errors in
bond and FRA prices. For both the parametric MFM and the LMM Figure
2.8 displays the ratios of the left and right hand sides of (48) for Tk = T10 = 10
years under all of the above mentioned cases. To get something to compare
with, the figure also displays the boundaries of a 95% confidence interval for
the statistical error (centered around the value 1) computed using 1 million
paths in the LMM with one PC step per year. The statistical errors using 5
million paths are rather small (but sizeable in the test) and a 95% confidence
interval is given by about plus/minus 0.0002-0.0005. Also note that for the
MFM there is no approximation error and only statistical error at the first two
points and the values are hence the same irrespective of the order M .



4. Implementation, calibration and numerics 87

First note that one year long PC steps in the LMM performs by far the worst
and is outside the one million paths confidence interval, implying that the dis-
cretisation error is, with more than 95% probability, larger than the statistical
error achieved using one million paths. In fact, the discretisation error is of
about the same size as the limits of a 95% confidence interval obtained using
about 100 000 paths. While this might be an O.K. accuracy in a practical
application note that the MFM using M = 4 or 5 are both much better and
that also M = 3 performs better. Using M > 5 gives very small differences
compared with the M = 5 case. Also note that using eigth steps per year in
the LMM effectively reduced the disretisation error.
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Figure 2.8: Ratios of the left and right hand sides of (48) for Tk = T10 = 10
years. The figure displays the ratios using the LMM with both one and eight
PC steps per year as well as the parametric MFM using the correct orders up
to M = 3, 4 and 5. The figure also displays the boundaries of a 95% confidence
interval (centered around the value 1) computed using 1 million paths in the
LMM with one PC step per year.

The next performed test treats the accuracy of the terminal correlation formula
(34) proposed to be used for calibration or check-ups of both models. First
recall that for the parametric MFM this formula is exact for LIBORs at their
setting dates. For the LMM the errors when using the formula for LIBORs at
their setting dates are given in Figure 2.9. Note that while the errors do display
a somewhat worrying pattern they are quite small and likely smaller than the
uncertainty in a traders estimate of desired terminal correlations. Note however
that increasing the volatility or time to expiry will increase these errors.

Figure 2.10 displays the terminal correlation errors between different forward
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The next performed test treats the accuracy of the terminal correlation formula
(34) proposed to be used for calibration or check-ups of both models. First
recall that for the parametric MFM this formula is exact for LIBORs at their
setting dates. For the LMM the errors when using the formula for LIBORs at
their setting dates are given in Figure 2.9. Note that while the errors do display
a somewhat worrying pattern they are quite small and likely smaller than the
uncertainty in a traders estimate of desired terminal correlations. Note however
that increasing the volatility or time to expiry will increase these errors.

Figure 2.10 displays the terminal correlation errors between different forward
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LIBORs at T10 = 10 years for both the parametric MFM and the LMM. Note
that also these are quite well approximated although the errors for the LMM
is in general about twice as large as for the parametric MFM. Also note that
the approximation errors have a different sign in the MFM versus the LMM.

 

-0.02
-0.018
-0.016
-0.014
-0.012
-0.01

-0.008
-0.006
-0.004
-0.002

0

1 6 11 16

Di
ffe

re
nc

e 

j 

i=1

i=5

i=10

i=14

i=17

i=20

Figure 2.9: Correlations between the LIBORs at their setting dates for the
LMM.

 
LMM MFM 

-0.025

-0.02

-0.015

-0.01

-0.005

0

10 15 20
j 

i=10

i=12

i=14

i=16

i=18

i=20

0

0.005

0.01

0.015

0.02

0.025

10 15 20
j 

Figure 2.10: Correlations between the forward LIBORs at some dates Tj .

Prices of swaptions (in terms of implied volatilities) expiring at T10 with tenors

88 A Parametric n-Dimensional Markov-functional Model under the Terminal Measure

LIBORs at T10 = 10 years for both the parametric MFM and the LMM. Note
that also these are quite well approximated although the errors for the LMM
is in general about twice as large as for the parametric MFM. Also note that
the approximation errors have a different sign in the MFM versus the LMM.

 

-0.02
-0.018
-0.016
-0.014
-0.012
-0.01

-0.008
-0.006
-0.004
-0.002

0

1 6 11 16

Di
ffe

re
nc

e 

j 

i=1

i=5

i=10

i=14

i=17

i=20

Figure 2.9: Correlations between the LIBORs at their setting dates for the
LMM.

 
LMM MFM 

-0.025

-0.02

-0.015

-0.01

-0.005

0

10 15 20
j 

i=10

i=12

i=14

i=16

i=18

i=20

0

0.005

0.01

0.015

0.02

0.025

10 15 20
j 

Figure 2.10: Correlations between the forward LIBORs at some dates Tj .

Prices of swaptions (in terms of implied volatilities) expiring at T10 with tenors



4. Implementation, calibration and numerics 89

of one up to eleven years are reported in Figures 2.11 and 2.12. Figure 2.11
displays the prices for the parametric MFM with M = 4, the LMM with one
year long PC steps as well as the swaption approximation (35) equipped with
the 95% bounds for an LMM simulation with 1 million paths. Note that while
the LMM prices are outside the confidence interval the parametric MFM is
almost within the confidence interval in all cases. Figure 2.12 displays the
differences between the model prices and the swaption approximation. From
this one may conclude that while the parametric MFM seems to be rather
close to the swaption approximation the model does seem to give a slightly
different behaviour in terms of time to expiry. For the LMM note that whereas
the correctly computed prices with eight steps per year are very close to the
approximation the one year steps case gives a consistent bias at all expiries.

The intuition provided in these tests points at that calibrating the parametric
MFM using the machinery developed for the LMM seems to work reasonably
well. For the swaption approximation there might be a need for a slightly better
approximation than provided by the Rebonato LMM swaption approximation.
While this and further tests are left for future research note that a start of
a better swaption approximation could be to write down the full dynamics of
the generating SDE in the parametric MFM case and then follow the same
arguments leading to the approximation in the LMM case.

4.3 Summing up

The results of this sections points at that compared with a drift-approximated
LMM over long time-steps the parametric MFM is an appealing alternative as
it provides small errors in bond and caplet prices (across strikes) and may be
calibrated to terminal correlations and/or swaptions with good accuracy using
the already developed calibration approximations of the LMM. This supports
the view of Bennett & Kennedy (2005) and Kaisajuntti & Kennedy (2011) that
MFM and LMM are closely connected.

In terms of exotic instruments this means that if both the parametric MFM
and the LMM are calibrated using the outlined approximations then it seems
reasonable to believe that prices should be quite close. Recall, however, that
the errors of calibrating the terminal correlations seem to have different signs
and the behaviour of the swaption implied volatilities across expiry are slightly
different in the two models. For some types of products, and in particular
for larger volatility levels or long maturities, one could expect these ‘calibra-
tion errors’ to have a sizeable effect on prices. For some intuition about this
note that Kaisajuntti & Kennedy (2011) compares prices of LIBOR and CMS
spread TARNs using the same type of models (albeit under the spot measure)
and argues that if terminal correlations are matched up (exactly, not approx-
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imately via some approximation formula) then prices of LIBOR TARNs are
very similar.

Finally, note that we have performed some tests also on other term structures
of forward LIBORs and volatilities such as different levels as well as upward
and downward sloping market like term structures. The results display similar
patterns as the above ones, albeit scaled roughly with the level of volatility and
forward LIBOR values.
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Figure 2.11: ATM swaption prices in terms of implied volatility (expiry 10
years and tenors of one up to eleven years) for the LMM, the parametric MFM
and the Rebonato swaption approximation.

5 Conclusions

This paper has developed and tested an n-dimensional Markov-functional in-
terest rate model in the terminal measure based on parametric functional forms
of exponential type. The parametric functional forms enable analytical expres-
sions for forward discount bonds and forward LIBORs at all times and allows
for (approximate) calibration of the model to caplet prices given by a displaced
diffusion Black model. By studying the prices of caplets across strikes it is
argued that the parametric functional forms are very close to the forms ob-
tained by a standard non-parametric Markov-functional model calibrated to
caplet prices given by a displaced diffusion Black model. Hence, the analyti-
cal expressions of the model provides a theoretical tool for understanding the
structure of standard Markov-functional models.
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Figure 2.12: The difference between ATM Swaption prices (expiry 10 years
and tenors of one up to eleven years) in terms of implied volatility for vari-
ous approximations of the parametric MFM and the LMM and the Rebonato
swaption approximation given in refswpnapprox.

The setup of the model suggests it to be similar to an n-factor LIBOR market
model. This is supported numerically by studying the prices of caplets and
swaptions and the terminal correlations between the (forward) LIBORs. In
particular it is shown that for ‘typical’ market data the models are close enough
to be able to use the machinery developed for calibration and understanding
of the LMM as a drop in replacement in the parametric MFM.

The similarities between Markov-functional and LIBOR market models are also
reported in Bennett & Kennedy (2005) and Kaisajuntti & Kennedy (2011).
In particular the latter paper, that is similar in structure to this paper, the
models are compared in the spot measure and with the main focus on path
wise comparisons of rates at their setting dates and prices of exotic products
such as (LIBOR and CMS spread) TARNs. In addition to that paper this paper
also explicitly compares the models at times before settings by studying prices
of swaptions and terminal correlations. Taken together this provides further
information about the similarities (and differences) of Markov-functional and
LIBOR market models.

The parametric n-dimensional Markov-functional model may be used for prod-
ucts that require high-dimensional models for appropriate pricing and risk man-
agement. Compared with an n-factor LIBOR market model it has the virtue
of being (much) faster for certain types of products.
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Future research may focus on using a more general and flexible form than the
exponential function for LIBORs at their setting dates as well as extending the
driving process to allow for jumps or stochastic volatility. Moreover, as the
parametric MFM model has explicit forms for LIBORs at all dates and is close
to both the standard MFM and LMM it might be used to derive further links
between the models as well as approximation formulae for correlations and
swaptions in the standard MFM setting. In particular it could be interesting
to compare the rank reduced model with the model in Pietersz et al. (2004)
as well as properly implemented one- and two-dimensional LMM and Markov-
functional models.
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96 Stochastic Volatility for Interest Rate Derivatives

1 Introduction

The objective of this paper is to perform a data-driven investigation in order
to find a good model for pricing interest rate derivatives. This is, of course, a
hugely complex problem, in general, requiring an understanding of the number
of factors needed in the model and which copula is most appropriate, amongst
other things.

Given the reality of the data available in practice (lots of asset/swap prices that
could inform us about the infinitessimal behaviour of rates, but relatively few
prices that would inform us about the distribution of rates at discrete times in
the future) and given the non-stationary properties of the market in general,
we do not attempt such an ambitious task. Instead we consider only what
market data tells us about the overall level of rates (its joint distribution at a
set of future times). Thus an output of our analysis is not a model suitable
for pricing Bermudan-callable CMS-spread options. But it could be considered
adequate for pricing simpler level-dependent derivatives, the canonical example
of which is the standard Bermudan swaption.

To this day many banks continue to price level-dependent derivatives using a
one-factor model. However it is clear that such a model does not adequately
capture the joint distribution of the level of rates. Indeed Hagan et al. (2002)
showed that in order to adequately capture the distribution of a single swap
rate at its setting date an extra factor is required. Our objective in this paper
is to formulate a model for the level of rates that will improve on this situation,
without creating a model with unnecessary complexity (too many factors).
It turns out that we can do this with just one more factor which represents
stochastic volatility.

Given our objective of modelling only the level of rates, we proceed by first
choosing a rate to represent the overall level of rates and investigate how to
model it. We later change this choice to ensure that the results of our analysis
are not dependent on this somewhat arbitrary initial selection. Our initial
investigations were made for a model for 10 year swap rates of start dates 2 to
30 years. Start dates shorter than this may require a different class of models
to capture the behaviour appropriately. By looking at 10 year tenors we were
purposely choosing rates that had a large overlap so the models for different
rates could be viewed as a block. From this we would expect parameters driving
the model to be comparable between rates and one would have good hope of
finding an appropriate common driver for all rates. Having fitted a model with
common parameters that captured the (macro distributions of the) market well
we took the ten year spot rate as our proxy when reading off a suitable model
for the level of rates. Later checks using 20 and 30 year tenors show the results
to be qualitatively similar.

96 Stochastic Volatility for Interest Rate Derivatives

1 Introduction

The objective of this paper is to perform a data-driven investigation in order
to find a good model for pricing interest rate derivatives. This is, of course, a
hugely complex problem, in general, requiring an understanding of the number
of factors needed in the model and which copula is most appropriate, amongst
other things.

Given the reality of the data available in practice (lots of asset/swap prices that
could inform us about the infinitessimal behaviour of rates, but relatively few
prices that would inform us about the distribution of rates at discrete times in
the future) and given the non-stationary properties of the market in general,
we do not attempt such an ambitious task. Instead we consider only what
market data tells us about the overall level of rates (its joint distribution at a
set of future times). Thus an output of our analysis is not a model suitable
for pricing Bermudan-callable CMS-spread options. But it could be considered
adequate for pricing simpler level-dependent derivatives, the canonical example
of which is the standard Bermudan swaption.

To this day many banks continue to price level-dependent derivatives using a
one-factor model. However it is clear that such a model does not adequately
capture the joint distribution of the level of rates. Indeed Hagan et al. (2002)
showed that in order to adequately capture the distribution of a single swap
rate at its setting date an extra factor is required. Our objective in this paper
is to formulate a model for the level of rates that will improve on this situation,
without creating a model with unnecessary complexity (too many factors).
It turns out that we can do this with just one more factor which represents
stochastic volatility.

Given our objective of modelling only the level of rates, we proceed by first
choosing a rate to represent the overall level of rates and investigate how to
model it. We later change this choice to ensure that the results of our analysis
are not dependent on this somewhat arbitrary initial selection. Our initial
investigations were made for a model for 10 year swap rates of start dates 2 to
30 years. Start dates shorter than this may require a different class of models
to capture the behaviour appropriately. By looking at 10 year tenors we were
purposely choosing rates that had a large overlap so the models for different
rates could be viewed as a block. From this we would expect parameters driving
the model to be comparable between rates and one would have good hope of
finding an appropriate common driver for all rates. Having fitted a model with
common parameters that captured the (macro distributions of the) market well
we took the ten year spot rate as our proxy when reading off a suitable model
for the level of rates. Later checks using 20 and 30 year tenors show the results
to be qualitatively similar.



1. Introduction 97

Let yi denote the swap rate corresponding to start date Ti in the future and
having a 10 year tenor. In seeking a suitable model for the 10 year swap rates
themselves we worked within the class of stochastic volatility models specified
by a system of SDEs of the form

dyit = f i(Ti − t, yit, σ
i
t)dW

i
t , (1)

dσi
t = hi(σi

t)dt+ g(σi
t)dV

i
t , (2)

under Si corresponding to P i
. (the PVBP corresponding to yi) as numeraire

and where W i, V i are Brownian motions with

dW i
t dW

j
t = dV i

t dV
j
t = dt, dW i

t dV
i
t = ρdt, j �= i.

Theoretically it is not necessary to restrict to this class in our search for a
model but we found this class to be adequate for our purpose at each stage
of the modelling process. In our investigations we put aside considerations
of tractability and let the data dictate the precise final form of the model as
we increased the modelling demands made of it. The judgement of whether
the model was successful at any stage was based on how well it could represent
information on the macro distributions contained in the data. Given the quality
of the data available from the market we believe this was the most sensible
yardstick to judge a model by.

The first part in our search for an appropriate building block is to find a good
model for the Si marginal distribution(

yiTi
, σi

Ti
|yi0, σi

0

)
(3)

for each i = 1, . . . , N . Note that fitting the implied volatility smile for swaptions
with time to expiry Ti implies fitting the Si marginal distribution(

yiTi
, σi

Ti
|yi0 = y, σi

0 = σ
)
. (4)

This may be done with good accuracy for a large variety of models in the class of
stochastic volatility models. However, models agreeing on (4) do not necessarily
agree on (3) (where we are assuming the parameters of the model remain fixed).
To be able to analyse this we assume that market data is generated by a model
such that the conditional distribution is roughly stable over time. This enables
us to use observations of swaption prices (implied volatility smiles) with time
to expiry Ti at several trading dates to inform about (3).

A model assigning an appropriate distribution (3) provides a ‘smile dynamic’
that is similar to the market one and hence calibrated parameters would be
nearly stationary across dates. Section 4 provides an investigation of the SABR
model with different β as well as the Heston model in order to inform about
what the different specifications of the SDE have to offer in terms of reflecting
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the available information on the market one step conditional distributions. We
found that the SABR model with β = 0 gave very good results so we did
not need to extend our search beyond these two popular models. We note in
passing that the results of this section are of independent interest in terms of
offering a data driven analysis of SABR versus Heston.

What we have identified so far is a model that gives a good fit to the distribu-
tion of the swap rate at its setting date with each start date treated separately.
Having a model which gives a good representation of the conditional distri-
bution at Ti does not tell us anything about whether the model gives a good
representation of the (conditional) ‘forward smiles’ i.e. the distribution of(
yiTi

, σi
Ti
|yit, σi

t

)
, t ∈ (0, Ti). Note that a stochastic volatility model for yi does

specify all the conditional distributions and hence does imply both a certain
smile dynamic and forward smile. In particular the stochastic volatility models
studied in this first stage are time homogeneous whereas we expect the distri-
bution of yit to depend on time to maturity Ti − t. Never the less we use the
SDE identified at this stage, the SABR model, as our starting point for the
next step and address the issue of appropriate time dependence of the model
when fitting to data at several expiries requires it.

Our next objective in our search for a stochastic volatility model for the level
of rates is to seek a model of the swap rates (in their own swaption measure)
based on only two factors and that enables a specification of parameters that
is common to all forward swap rates having ten year tenor and start dates
from 2 to 30 years. This simultaneous fit to all expiries is done in Section 5
(for a single date) and can be achieved by replacing the geometric Brownian
motion for the volatility process in the SABR model by the exponential of an
Ornstein-Uhlenbeck process and a term exponential in Ti−t in the equation for
the forward rate. Section 6 provides further study of this model by analysing its
performance over several historical dates and the model is shown to be a good
representation of the market smile dynamics. In particular it is investigated if
using a separable volatility structure is a major limitation and to what extent
the model could be simplified in order to allow efficient implementation.

Our end goal is to identify a two-dimensional time homogeneous process of
stochastic volatility type for the level of rates. Up to this point the focus has
been on finding a suitable volatility structure linking the rates yi under their
respective measures. Given that the swap rates we are looking at have a large
overlap and that we have been able to represent the data well with common
parameters the expectation is that this procedure should give us a good guage
on a process which captures the level of rates. Note that as we are assuming
the process we are seeking is time homogeneous in principle, we only need to
fit to one expiry. However in practice as we are unable to observe the volatility
process directly we need the simultaneous fit for all expiries to pick up the right
signal from the data.
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In Section 7 by considering the corresponding spot rate process and ignoring
the effect of measure changes we identify a candidate model for the level of
rates. Denoting this candidate process by X we have that

dXt = −cXtdt+ exp(Ut)dWt, X0 = 0,

dUt = κUtdt+ νdVt,

dWtdVt = ρdt,

where c, ν, κ are positive constants, ρ ∈ (−1, 1) and W and V are correlated
Brownian motions under SN say, with TN being the final expiry. We carry out
a simple check on our candidate by using it as a two dimensional driver for a
model of the swap rates in the one measure and show we can recover the prices
of swaptions with different expiries.

2 Preliminaries and market data

Consider the discrete date structure 0 = T0 < T1 < . . . TN < TN+1 with
δi = Ti − Ti−1 and let DTiTj

denote the zero-coupon bond price at time Ti for
a unit payoff at the maturity time Tj . The time t equilibrium forward swap
rate for a swap that starts at time Ti and ends at time Tj is given by

yt(Ti, Tj) :=
DtTi

−DtTj+1

Pt(Ti, Tj)
,

where P is the the present value of a basis point, PVBP, of the swap

Pt(Ti, Tj) :=

j∑
k=i

δi+1DtTk+1
.

For ease of notation, when the tenor of the swap is either obvious or irrelevant,
the forward swap rate setting at date Ti will be referred to as yit and the PVBP
as P i

t .

In the market prices of swaptions are tracked using the implied Black volatility
as this allows for easier comparison of swaptions at different strikes, tenors and
expiries as well as across dates. To refer to the implied volatility we will use Σ
equipped with specific arguments when needed (such as Σ(K, yi)). Moreover,
the term implied volatility smile refers to the implied volatilities across strikes
and likewise the implied volatility surface/cube for implied volatilities across
strikes, tenors and/or expiries.

Finally, note that the distribution of yiTi
(given the initial conditions) under

Si completely specifies the time-0 implied volatility smile across strikes for
swaptions with expiry Ti. Vice versa, market implied volatilities with expiry
Ti at some strikes provides partial information about the Si distribution of yiTi

.
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2.1 Market data

The empirical investigations in this paper are based on an extensive data set of
Euro swap rates and swaption prices. Each snapshot of data contains forward
swap rates with expiries 2Y, 3Y . . . , 10Y, 12Y, 15Y, 20Y, 25Y, and 30Y and
tenors 1Y, 2Y, . . . , 10Y, 12Y, 15Y, 20Y, 25Y, and 30Y. All rates are based on
annual payment frequencies. For each rate the corresponding swaption implied
Black volatilities are given for strikes -2, -1, -0.5, -0.25, 0, 0.25, 0.5, 1 and 2
percent away from the at-the-money (ATM) strike. As the data covers the
period 3 July 2002 to 21 May 2009 it is produced using a one-curve approach
as opposed to the more recent multi-curve approach taken by many banks as
a consequence of the changed market environment due to the financial crisis
starting in the autumn of 2008.

The data consists of two series, the first contains 66 roughly monthly spaced
snapshots of the market spanning the period 3 July 2002 to 9 March 2007 and
the second 556 daily samples of data covering 9 March 2007 to 21 May 2009.
To our knowledge this is one of the very first papers that uses such an extensive
data set. From almost daily samples of USD market data covering June 2002 to
June 2005 the performance of a variety of models for dynamic swaption hedging
is performed in Henrard (2005). While the mean is different the goal and the
conclusions of the article is partly similar to the analysis performed in Section
4. Using data of Euro swaptions covering 15 December 2004 to 5 October 2007
Rebonato, McKay & White (2010) makes similar observations as we do and
proposes a SABR/LIBOR market model to account for the observed effects.
While their aim and to some extent approach is similar to ours their end goal
is different and they limit the study to the LIBOR market model framework.
In a recent paper Trolle & Schwartz (2010) uses a very extensive data set of
both Euro and USD swaptions across strikes, tenors and expiries. Their end
goal is however quite different from ours as they focus on displaying stylized
facts of the distributions and its macroeconomic drivers.

Figure 3.1 displays a typical set of ten year tenor swaption implied volatility
smiles from 27 October 2007. Note that the smiles look quite similar in shape
although the curvature of the implied volatility smile seems to be decreasing
in expiry. Figure 3.2 displays the forward swap rates as well as the ATM
level, slope and curvature of the implied volatility smiles at 101 dates spanning
the available period of data (66 dates up to 9 March 2007 and then another
35 evenly spaced samples from the daily data period). As a proxy for the
ATM slope and curvature finite difference approximations are computed using
the ATM and the plus/minus 1% strikes. These quotes are used as they are,
according to traders, the most liquid strikes in the market.

First note that, beginning September 2008, the market turmoil is clearly spot-
ted with large movements in rates and volatility measures and in particular
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the 30 year rate gets very low compared with previous dates. Also note that,
except for the turmoil period the different expiries moves largely in parallel and
that there seem to be a positive correlation between the forward spot rate and
the ATM level and curvature of the implied volatility smile, implying that as
rates go down, implied volatilities and curvature increases. Moreover, while in
the calm period the ATM level and curvature of the implied volatility smiles
are declining in expiry this is not the case in the turmoil period where things
seems much more disconnected.

For the slope of the implied volatility smiles there is no clear relation with
time to expiry. There does however seem to be negative correlation between
the rates and slope implying that as rates go down, the slope of the implied
volatility smile gets steeper.

Although the above analysis just provides a rough idea about the macro (large
time steps) behaviour of rates and implied volatilities it provides an idea about
the challenge and requirements on a sound model for the level of rates. In
particular, one would expect that during the turmoil period any model would
struggle to fit the market data and market moves.

Section 4 provides a further and cleaner look at slopes and curvature dynamics
of the smiles at one expiry at a time using the daily data series and Sections 5
and 6 develops and tests a model for all expiries.
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Figure 3.1: The implied volatility smiles for 10 year tenor swaptions with 2, 5,
10, 20, and 30 years to expiry on October 27, 2007.
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Market data: overview 
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Figure 3.2: The forward swap rates and the implied volatility smile levels,
slopes and curvatures at 101 evenly sampled dates in the data set. Swaptions
with 10 year tenors. Dates are in chronological order, i.e. the left most data
points refers to 3 July 2002.

3 Objective

As outlined in the introduction our approach to finding a suitable model for
the level of rates is to build the model one step at a time, at any stage trying
to understand where our model fails to reflect the data and adding complexity
as necessary to capture the right qualitative behaviour.

Our first task is to specify a model that gives a good representation of (3), the
one step marginal distributions of the swap rates at their setting dates. The
paper Hagan et al. (2002) makes clear that even for the first step we need to
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introduce at least a second factor to adequately reflect the behaviour of the
market. Technically a second factor can only be introduced as a multiplicative
factor if we are to specify our model as a diffusion. Given this we choose to
start our analysis with an assessment of how well a stochastic volatility model
can capture the one step macro distributions of the data where the volatility
is specified by an autonomous equation.

The two most well known stochastic volatility models are of course the SABR
model introduced by Hagan et al. (2002) and the Heston model (Heston (1993)).
In Section 4 we carefully examine the ability of each of these models to reflect
the features of our data at a single expiry. This was not a case of deciding which
model is best but whether either does the job. We found the SABR model to
pass all the tests we put it through and so took this as our building block for
the next stage. One concern regarding the SABR model is that its widespread
use in the market in general and its influence on practitioners in filling in the
implied curve from liquid points in particular could make this choice of model a
self-fulfilling one. We address this point in our study and argue why we believe
it to be a sound choice for our purposes though there is room for improvement
in capturing behaviour away from at the money.

We should mention here that there are several stochastic volatility models for
interest rate derivatives introduced in the literature, see for example Andersen
& Brotherton-Ratcliffe (2005), Piterbarg (2005) and Rebonato et al. (2010) in
a LIBOR/swap market model setting or Andersen & Andreasen (2002) and
Albanese & Trovato (2005) for HJM type models. Our work differ from the
above in that we initially put considerations of tractability aside and investi-
gate historical data to dictate the final form of the model and we only concern
ourselves with capturing the level of rates process, a (potentially) low dimen-
sional problem. Our approach may in future studies give some insight into
what the most appropriate building block would be for a high dimensional full
term-structure model such as a separable LIBOR market model.

4 Smile dynamics: SABR vs Heston

Recall our objective of formulating a model that is data driven. However we
have to work within the constraints of the quality of the available data as we do
not have available reliable and liquid option prices for each swaption at every
strike. On any given day, apart from the ATM strike, only a few of the implied
volatilities at various strikes will correspond to liquidly traded swaptions, with
the other prices coming from some form of interpolation carried out by the
bank. Given this we need to impose some structure to begin the modelling
process and we have chosen to work within the class of stochastic volatility
models specified by (1) - (2).
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The first test any proposed model within this class must pass is that it should
be able to fit each of the one step marginal distributions of(

yiTi
, σi

Ti
|yi0, σi

0

)
, i = 1, . . . , N, (5)

under the measures Si, respectively. In this section we will make the assumption
that for each i this conditional distribution is stable over time. Through this
assumption we can link our model to the observed changes in the market smile
as yi0 and σi

0 change, referred to as the smile dynamics. We will then investigate
whether the one step marginals distributions given by the most popular models,
the SABR model (for different βs) and the Heston model are consistent with
the one step marginal distributions observed using historical data of forward
swap rates and implied volatility smiles. All test in this section are based on
the daily data series.

4.1 The SABR model

The SABR model dynamics for some underlying forward process ft under some
forward martingale measure is given by

dft = fβ
t σtdWt, f0 = f, (6)

dσt = νσtdVt, σ0 = σ, (7)

dWtdVt = ρdt, (8)

for β ∈ [0, 1], ν ≥ 0 and W,V Brownian motions with correlation ρ ∈ (−1, 1).
For this model Hagan et al. (2002) derives a reasonably accurate approximation
of the implied volatility as a function of the initial values of the variables f and
σ, the parameters β, ρ and ν and time to expiry T . This approximation is in
widespread use to calibrate the SABR model to option prices in an efficient
manner.

In addition to the higher order approximation a simpler approximation (eq.
(3.1) in Hagan et al. (2002)) is also derived from which it is easier to understand
the behavior of the model. For this ‘crude’ approximation the implied volatility
for an option with strike K when the underlying forward is at f is given by

Σ(K, f) ≈ σ

f1−β

{
1− 1

2

[
1− β − ρνf1−β

σ

]
log

K

f
(9)

+
1

12

[
(1− β)2 + (2− 3ρ2)ν2

f2−2β

σ

]
log2

K

f

}
.

Note that using this approximation the ATM implied volatility is given by

Σ(f, f) =
σ

f1−β
. (10)
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Σ(K, f) ≈ σ

f1−β

{
1− 1

2

[
1− β − ρνf1−β

σ

]
log

K

f
(9)

+
1

12

[
(1− β)2 + (2− 3ρ2)ν2

f2−2β

σ

]
log2

K

f

}
.

Note that using this approximation the ATM implied volatility is given by

Σ(f, f) =
σ

f1−β
. (10)
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Inserting this in (9) gives a formula for the implied volatility across strikes in
terms of the ATM implied volatility

Σ(K, f) ≈ Σ(f, f)

{
1− 1

2
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1− β − ρν

σ(f, f)

]
log

K

f
(11)

+
1

12

[
(1− β)2 + (2− 3ρ2)

ν2

σ2(f, f)

]
log2

K

f

}
.

For a pure fitting of the implied volatility smile the most interesting effects
of the parameters are that β and ρ both have a direct affect on the slope of
the smile whereas ν has a direct affect on the curvature. The overlap of the
parameters β and ρ implies that fitting the market smile for some expiry across
a reasonably wide range of strikes may be done with similar precision for any
value of β and hence the exact value of β would seem redundant. This is not
the case.

Even for pure inter/extrapolating of implied volatilities β has an effect since
while SABR models with different β may be fitted to more or less exactly agree
on some strikes around the ATM point they do in general not agree exactly
on all other strikes. In particular for large strikes this is an issue and market
prices of CMS products can depend quite strongly on the choice of β.

Another aspect on the choice of β is that for a change in f or σ, the change in
the implied volatility smile depends on β. This difference in ‘smile dynamics’
will have an effect on hedging or pricing of anything more exotic than vanilla
swaptions. As our data set does neither contain market prices for high strikes
nor prices of CMS products the focus of our investigations are on this latter
aspect of the choice of β.

In terms of distributions, recall that fitting the implied volatility smile for some
particular values of f and σ fixes the distribution of

(fT , σT |f0 = f, σ0 = σ) . (12)

While this can be done with similar precision for any β ∈ [0, 1] it does not
imply that the distributions of

(fT , σT |f0, σ0) . (13)

are the same (for a fixed set of parameters). This is easily seen by matching up
the implied volatility smiles for some different β and then vary the variables f
and σ. A natural question to ask is hence; is the SABR model consistent with
observed market ‘martingale measure’ marginal distributions and, if so, which
β is appropriate?

In Hagan et al. (2002) the authors suggest choosing β by fitting the ‘backbone’
to historical data, where the backbone is defined as the curve traversed by the
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ATM volatility, Σ(f, f), as the underlying f varies. Indeed, as shown in figure
3.3, there is typically an inverse relation between the ATM volatility and the
underlying. For the SABR model Hagan et al. (2002) identifies the backbone
as approximately σ

f1−β and proposes to estimate β by a linear regression of the
relation

log Σ(f, f) = log σ − (1− β) log f (14)

using historical observations of (f,Σ(f, f)) pairs. This estimation procedure is
unfortunately flawed as within a stochastic volatility model, as f changes, so
does σ. If the market data was really from a SABR model we can’t treat σ as
a fixed parameter, since it is highly linked to f through the correlation ρ. That
is, observations of (f,Σ(f, f)) do not provide sufficient information to estimate
β via the macro approach (i.e. via considering the distribution of the forward
at time T ).
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Figure 3.3: Daily quotes of ATM implied volatility plotted versus the forward
swap rate for the period 9 March 2007 to 21 May 2009. Swaptions on the
10Yx10Y forward swap rate.

Let’s now consider how observations of (f,Σ(f, f)) could be used to estimate β
by taking an infinitesimal approach. First note that one may rewrite the SDE
for the volatility as

dσt = ρν
dft

fβ
t

+ νσ
√
1− ρ2dZt, (15)

where Zt is a Brownian motion uncorrelated to W and V . Letting Σt :=
Σ(ft, ft) and using Ito’s formula on the approximation (10) gives (after a few
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manipulations)

dΣt = [ρν + (β − 1)Σt]
dft
ft

+ ν
√
1− ρ2ΣtdZt

+ (β − 1)Σt

[
β − 2

2
Σ2

t + ρν

]
dt. (16)

Dividing through with Σt gives that ρν and (β − 1) may be estimated by
regressing on the factors dft

Σtft
and dft

ft
using a set of historical observations.

Using a large amount of simulated data from a SABR model we have found
this procedure to work decently. However, for estimation using market data
one would need a lot more data than we have available and, moreover, as we
can not expect market data to be generated exactly by a SABR model the
estimation would probably be a rather noisy exercise.

Returning to the macro approach note that from (9) the ATM slope of the
implied volatility smile is approximately

∂Σ(K, f)

∂K
|K=f≈ 1

2f
(Σ(f, f)(β − 1) + ρν). (17)

Estimating β from a regression of

2f
∂Σ(K, f)

∂K
|K=f= Σ(f, f)(β − 1) + ρν, (18)

requires estimation of the ATM slope of the implied volatility smile and thus
information about the implied volatility at more than the ATM strike is needed.
While ATM swaptions are liquidly traded this is not the case for all strikes and
in particular not necessarily the strikes that are very close to ATM and needed
for an accurate computation of the ATM slope. The next subsection deals with
informing about β (as well, if needed, ρ and ν) from slope and curvature of the
implied volatility smile like relations.

4.2 Estimating β for the SABR model

As argued above we would not expect to be able to estimate β from histori-
cal observations of ATM implied volatilities and forward swap rates with good
precision. To extract information about β we instead propose to investigate
the slope of the implied volatility smile. Note that from (11) the first order
difference between the implied volatility at strikes f + h and f − h is approxi-
mately

Σ(f + h, f)− Σ(f − h, f) ≈ 1

2
[(β − 1)Σ(f, f) + ρν]

(
log

f + h

f
− log

f − h

f

)
. (19)
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After some manipulations, define

S(h, f) := 2
[Σ(f + h, f)− Σ(f − h, f)]

log( f+h
f−h )

≈ (β − 1)Σ(f, f) + ρν. (20)

Since, for small h, log( f+h
f−h ) ≈ 2h

f the l.h.s. in the above relation is tending to
2f times the ATM implied volatility slope as h tends to 0. This means that
the above relation is relating a, suitably scaled, finite difference approximation
of the ATM implied volatility slope to the parameters of the SABR model.
Hence, if the SABR model is a good representation of the market then β (and
the product ρν) could be estimated by a linear regression of the l.h.s. on Σ(f, f)
from a set of market snapshots.

To further investigate (or indeed estimate the parameters ρ and ν) whether the
SABR model fits market data one may study a relation linked to the curvature
of the implied volatility smile. Using the implied volatility at the strikes f +
2h, f and f − 2h and (11) up to second order gives

C(h, f) :=
2Σ(f, f)

F2
[Σ(f + 2h, f) + Σ(f − 2h, f)− 2Σ(f, f)]

≈
[
(1− β)2

6
− (1− β)

F1

F2

]
Σ2(f, f) + ρν

F1

F2
Σ(f, f) +

2− 3ρ2

6
ν2,(21)

where F1 = log(1 + 2h
f ) + log(1− 2h

f ) and F2 = log2(1 + 2h
f ) + log2(1− 2h

f ).

Note that for small h, F2 ≈ 2
(

2h
f

)2
and hence the l.h.s. above is closely

related to the finite difference approximation of the ATM curvature of the im-
plied volatility smile scaled with the factor f2Σ(f, f). Moreover, for small h,
F1

F2
≈ − 1

2 and hence as h tends to 0 the above relation tends to the, suit-
ably scaled, ATM curvature of the implied volatility smile calculated from the
approximation (11).

To sum up; if the SABR model is a good representation of the market, then
the parameters of the quadratic polynomial in Σ(f, f) in the r.h.s. of (21) may
be estimated using a set of market snapshots. Alternatively, β may be fixed
from (20) and a linear regression may be performed to work out ρ and ν.

4.3 Investigating the SABR model using market data

The previous subsection outlines a method to estimate the parameters of a
SABR model using a set of implied volatilities for the ATM plus two other
strikes. However, typically, for a fixed β, ρ and ν are calibrated using current
market data and there is hence no need to estimate them using historical data.
What we are mainly interested in is investigating whether there is a β such
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Figure 3.4: Market values of the l.h.s. of the ‘slope’ relation (20) versus the
ATM implied volatility. h = 0.01. Daily values from the period 9 March 2007
to 21 May 2009 of 10Yx10Y swaptions.

that the marginal distributions of (5) from the SABR model is consistent with
the market. As we can’t extract much information from using only the ATM
implied volatilities we will use the dynamics of the rescaled slope and curvature
relations to inform about appropriate marginal distributions.

This subsection tests the SABR model using the set of daily market data of
swaptions covering the period 9 March 2007 to 21 May 2009. To evaluate the
SABR model we have chosen to use the 10 years tenors and the strikes ATM,
ATM - 1% and ATM + 1%. According to traders these are the most liquid
strikes and tenors and hence the most reliable quotes. Main focus is on the 10
years expiry but we also provides results for the 2, 5 20 and 30 years expiries.

Slope

Recall that if the market is well represented by a SABR model then daily
values of the lhs of (20) plotted versus the ATM implied volatility would give,
approximately, an affine function. Figure 3.4 plots S(0.01, y100 ) vs σ(y100 , y100 )
for the 10Yx10Y swaptions at all available dates. Note that the points seems
to form ‘lines’ between which there at some dates is a jump. In terms of
equation (20), (β − 1) would then be the slope of the ‘lines’ and the jumps
would correspond to a change in the product ρν. By inspection the slope of
the lines seems to correspond to a β of around 0.

To be able to make a more precise investigation one may look at the difference
between the approximate slope relations between dates. Define the change in
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‘slope’ between date ti and tj as

ΔS(h, i, j) := S(h, ftj )− S(h, fti) (22)

and the change in ATM implied volatility as

ΔΣ(i, j) := Σ(ftj , ftj )− Σ(fti , fti). (23)

For a fixed β, but allowing a change in ρν, the difference in ‘slope’ between
dates i and j is then (using (20)) approximately

ΔS(h, i, j) ≈ (β − 1)ΔΣ(i, j) + ρ(j)ν(j)− ρ(i)ν(i). (24)

Hence, if the SABR model is a good representation of the market marginal
distributions, by using market data to plot the above lhs versus the change in
ATM implied volatility we would expect to see points lining up along a line
with slope β − 1 as well as potentially some scattered points corresponding to
changes in ρν. Figure 3.5 confirms that this is the case for 10Yx10Y swaptions.
In this case a linear regression using (24) would estimate β to be -0.04 with an
R2 of 0.84.

y = -1.0376x + 0.0002 
R² = 0.8391 
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Figure 3.5: Market values of ‘slope’ difference for 10Yx10Y swaptions plotted
versus the ATM implied volatility difference estimated using daily steps from
9 March 2007 to 21 May 2009. The linear regression line of the market values
are also displayed implying a β estimate of about -0.04.

The accuracy of informing about an appropriate β from the above procedure
depends mainly on two things. First, one needs a reasonably large sample of
reliable market data. The historical data set of swaption data used in this
paper consists of 556 dates. Hence, using daily steps to get data for (24) gives
555 points. By stepping more than one date forward one would get more points
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555 points. By stepping more than one date forward one would get more points
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(as well as larger differences) but in our experiments one date forward gives
enough points to provide estimates with decent accuracy.

Second, the approximation leading to the slope expression (24) needs to be
reasonably accurate. As the expression is based on a rather crude approxima-
tion this might of course be far from the case but there might also be hope
as we are only concerned with the slope and not the full implied volatility
smile across strikes. To address this we started by fixing a set of parameters
(β, ρ, ν), forward swap rates, ATM implied volatilities and expiries and then
compared the rhs of equation (24) with the values of the lhs produced using
the full approximation of Hagan et al. (2002). Our findings points at that
the rhs of expression (24) is reasonably accurate but slightly overestimates the
slope. More precisely, to match up the true value of the lhs we needed to ad-
just β downwards by a factor 0-0.12, depending on the specific values of the
parameters, rates, volatilities and expiries.

To approximately correct for this bias we have used a two-step procedure. In
the first step we find an estimate β∗ using linear regression and equation (24).
Note that as the rhs of (24) overestimates the slope we expect β∗ to be under-
estimated. In the second step we set β = β∗ and calibrate the parameters ρ∗(i)
and ν∗(i) at each of the dates in the sample (using the full Hagan approxima-
tion). We then search for a correction constant c that minimises

556∑
i=1

(S(0.01, fti)− (β∗ − c− 1)Σ(fti , fti)− ρ∗(i)ν∗(i))2 (25)

Finally, we take c as a proxy for the underestimation of β and set β∗
c = β∗ + c

as our corrected estimate of β.

It should at this point be noted that even though we do produce point estimates
for β we are mainly interested in informing about a reasonably good choice of
β and for our purposes we are hence fine with this level of accuracy.

Table 3.1 displays the estimates β∗, β∗
c the standard errors, ρν and the R2

obtained by regressing on (24) using data of 2Yx10Y, 5Yx10Y, 10Yx10Y,
20Yx10Y and 30Yx10Y swaptions. The regression is performed for both all
historical observations as well as the first one and a half year of the data that
covers a period of quite calm markets.

Note that the 2, 5 and 10 years expiries suggests a β of about zero irrespective
of estimation period. For the 20 and 30 years expiries β zero seems appropriate
during the calm period whereas during the turmoil it seems more appropriate
with a larger β. Actually, as the turmoil period provides most of the variation
in the data, estimation during the turmoil period gives an estimate very close
to estimation over the complete set of data. Other tenors are checked as well
and give similar estimates and accuracy.
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expiry period β∗ β∗
c s.e. ρν R2

2Y full -0.07 0.00 0.040 9.42E-05 0.56
2Y calm 0.01 0.07 0.043 8.15E-05 0.58
5Y full -0.08 -0.02 0.018 1.23E-04 0.87
5Y calm -0.07 -0.01 0.026 2.73E-05 0.81
10Y full -0.04 0.03 0.019 1.58E-04 0.84
10Y calm -0.07 -0.01 0.025 4.53E-05 0.82
20Y full 0.19 0.29 0.013 1.86E-04 0.88
20Y calm -0.07 0.00 0.026 4.68E-05 0.82
30Y full 0.30 0.41 0.014 1.27E-04 0.81
30Y calm -0.05 0.03 0.026 4.76E-05 0.80

Table 3.1: Regressing (24) on Σ(f, f) to estimate β for different expiries and
estimation periods.

The change in β for the longer expiries during the period of turmoil does not
appear to have its basis in a short term change in perception of the market
(where we might expect β to alter for the shorter expiries). Rather it is in-
dicative of a period of market instability and we would need a richer model
than SABR to capture anything useful. Even with a richer model it would be
difficult to extract a coherent signal. Indeed this period corresponds to the
subprime credit crunch. From the plots in Section 2.1 it can be seen that the
period of turmoil covers the last six months of the seven year period of the
monthly series. Our focus in this paper will be on building a model for the
period when the markets are stable.

Remark 4.1 The plot of the slope relation in Figure 3.5 looks remarkably like
what one would expect if the data came from a SABR model where the param-
eters ρ and ν were altered from time to time. In searching for an appropriate
model it is important to be careful not to carry out an investigation whose con-
clusions are a consequence of a SABR like implied volatility curve being used
by traders to interpolate between liquid strikes. That is why we worked with the
most liquid strikes in studying the data.

Remark 4.2 It is interesting to note however that from talking to traders they
seem to conclude that while β = 0 is appropriate they tend to prefer using a
larger β for day to day use. The reason for this is that though any β provides a
good fit near at the money, the prices of CMS products suggest that away from
the money a β closer to one tends to be more appropriate. The chosen value
of β is hence a compromise between these cases. This would suggest that if it
were possible to identify the liquid points away from ATM one might choose a
more general functional form than that of a CEV model in the equation for the
forward or choosing a different scaling of volatility of volatility.
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Curvature

As displayed in the previous subsection a SABR model with an appropriately
chosen β provides a good reflection of the market dynamics of slope of the
implied volatility smile. As a further check of whether the SABR model with a
suitably chosen β provides appropriate marginal distributions one may study
the dynamics of the curvature. As showed above by looking at scaled ‘curvature’
type relations one could estimate also ρ and ν using historical data, provided
sufficient accuracy of the approximation leading to (21). In general, however,
this is not needed since ρ and ν will be decided by fitting the model to option
values across strikes and this relation is only used to provide further intuition
for the behavior of the model.

As a first check of whether the SABR model provides a reasonable reflection
of the curvature it is instructive to relate the market changes in curvature to
the model changes. Note from (21) that for a SABR model the change in
the rescaled finite difference approximation of the curvature will depend on β.
Hence, plotting the market changes in the lhs of (21) versus the model changes
for different βs will display how well the model reflects the curvature dynamics.
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Figure 3.6: Scatter plots of changes in ‘curvature’ as defined in (21) for the
market (x-axis) and the SABR model (y-axis) with different β. Changes are for
10Yx10Y swaption and taken over one date during the calm period, implying
a total of 388 points. See the text for a more thorough explanation.

To get the SABR model values the following procedure is used. First the higher
order approximation of the SABR model is calibrated at date i to the strikes
K = f, f+0.01 and f−0.01. Note that this can be done perfectly for all β and
will hence exactly agree with the market values. Then, at date j the model is
recalibrated to the ATM implied volatility by updating (the variable) σ. All
parameters (β, ν and ρ) are kept fixed at the date i values. The model values
of the change in the lhs of (21) may then be computed. Figure 3.6 displays this
for the 10Yx10Y swaptions. Changes are computed during the calm period
and by stepping one date forward.
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Note that for β = 0 most points line up along the 45 degree line implying a
close relation between the market and the model. For β = 1 the points line
up along a line with significantly less steep slope and β = 0.5 is in between.
The reason for choosing the calm period is that the scatter is quite small and
hence good for displaying the effect without too much noise. However, other
periods and expiries displays the same effect albeit in some cases with a bit
more scatter. In general the β estimated from the ‘slope’ relations above seems
to work best also for the curvature.

As a further test it is instructive to plot the curvature changes versus the ATM
implied volatility changes as made in the ‘slope’ case above. Recall from (21)
that a finite difference approximation of the rescaled curvature is approximately
given by a quadratic polynomial in the ATM implied volatility. Hence, one can
not expect a linear relation between curvature and ATM implied volatility
changes. However, as for δ small the difference (x+ δ)2 − x2 is approximately
linear it could still be instructive to plot the change in curvature versus the
change in the ATM implied volatility for a period of small changes. Figure 3.7
plots the market change and the model changes with β = 0, 0.5 and 1 during
the calm period for the 10Yx10Y swaption.

Note that β = 0 gives a pattern similar to the market whereas for β = 0.5 and
1 the points line up with too flat slope.

4.4 The Heston model

This section investigates whether the Heston model (Heston (1993)) is consis-
tent with the market marginal distributions. The Heston model is defined by
the system of SDE:s

dft = ftσtdWt, f0 = f, (26)

dσ2
t = κ(σ̄2 − σ2

t )dt+ νσtdVt, σ2
0 = σ2, (27)

dWtdVt = ρdt. (28)

For the above system option prices may be found by numerical inversion of an
associated Fourier transform implying reasonably efficient pricing and calibra-
tion. In terms of fitting option prices across strikes the effects of ρ and ν are
similar as in the SABR model. In addition to the SABR model there is also
a mean-reversion term where the mean-reversion level σ̄ determines the long
run ATM implied volatility. The mean-reversion speed κ also has an effect
on the ATM implied volatility but the more interesting effect is a decline in
curvature of the smile which is roughly inversely proportional to the time to
expiry. Hence, ν and κ have similar, but opposite, effects. Through the com-
bination of ν and κ one may hence control the curvature of the smile across
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Figure 3.7: Changes in ‘curvature’ as defined in (21) for the market and the
SABR model with different β plotted against the change in the ATM implied
volatility. Changes are for the 10Yx10Y swaption and taken over one date
during the calm period, implying a total of 388 points. See the text for a more
thorough explanation.

several expiries. However, in terms of fitting one expiry only this may be done
at virtually similar accuracy for any σ̄ and κ.

In the standard Heston model there is no β term. Extending the model with a
CEV type local volatility function is of course in theory an easy task however
this implies that the Fourier transform technique can no longer be used and
hence efficient pricing of European type option is lost. To get around this issue
one may use a local volatility function of displaced diffusion type for which
the Fourier transform technique is still applicable, see Andersen & Piterbarg
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(2010) for details. To limit the extent of this study we have however chosen
to only investigate the standard Heston model and the fairest comparison with
the SABR model is hence the β = 1 case.

For the Heston model there does not, to our knowledge, exist a simple and
reasonably accurate approximation of implied volatilities as is the case for the
SABR model. For short expiries and strikes close to ATM Durrleman (2004)
provides an expression which is of similar complexity as (9) above. Expanding
this expression in log f

K and a few manipulations give

Σ(K, f) ≈ Σ(f, f) +
ρν

4Σ(f, f)
log

K

f
+

+

(
ν2

24Σ(f, f)σ2
(1− 7

4
ρ2)− ν2ρ2

32Σ3(f, f)

)
log2

K

f
. (29)

Note that this expression does not contain σ̄ or κ and is hence, if at all, only
expected to work for very short expiries. While this approximation is lot a
worse than the SABR approximation in terms of pricing it does provide a
reasonably accurate intuition for the behavior of the Heston model. For the
‘slope’ expression S(h, f) defined in (20) one gets that the ‘slope’ is inversely
proportional to Σ(f, f). Note that since interest rates implied volatility smiles
are typically (always) downward sloping, ρ is typically negative. Hence, for an
increase in implied volatility, the implied volatility slope will also increase (less
negative). Note that this is the opposite behavior to what is observed in the
market.

For the curvature expression (21) the story is similar to the one for the slope.
To analyse this case it is instructive to make a further approximation. Using
that for short expiries σ2 ≈ Σ2(f, f) (see Durrleman (2004)) the ‘curvature’
expression C(h, f) defined in (21) above is for the Heston model

C(h, f) ≈ νρ
F1

F2
+

ν2

96Σ2(f, f)

(
4− 10ρ2

)
. (30)

Hence, the effect of an increase in Σ(f, f) depends on the sign of (4 − 10ρ2).
It turns out that, across all dates and expiries in our sample, the calibrated
(4− 10ρ2) is negative and hence an increase in Σ(f, f) leads to an increase in
the ‘curvature’ C(h, f) of the implied volatility smile. Also this is opposite to
what is observed in the market.

Since the above approximation is quite crude it is not certain that this effect
is valid for the true Heston model. As a check consider Figure 3.8 in which
10Yx10Y swaptions are investigated during the calm period of the daily data
set. The upper plots in the figure display the Heston model ‘slope’ and ‘curva-
ture’ changes plotted versus the market ‘slope’ and ‘curvature’ changes. As for
the SABR model, the Heston changes are produced by fitting the parameters
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F1

F2
+

ν2

96Σ2(f, f)
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4− 10ρ2

)
. (30)

Hence, the effect of an increase in Σ(f, f) depends on the sign of (4 − 10ρ2).
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is valid for the true Heston model. As a check consider Figure 3.8 in which
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ture’ changes plotted versus the market ‘slope’ and ‘curvature’ changes. As for
the SABR model, the Heston changes are produced by fitting the parameters
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at one date and then at the next date updating σ2 such that the ATM im-
plied volatility is matched. The lower plots display the changes in ’slope’ and
’curvature’ versus the changes in the ATM implied volatility. Note that the
‘curvature’ changes are almost exactly opposite to the market ones and that
the ‘slope’ changes have the wrong sign.

To isolate the effect of σ̄ and κ these parameters are fixed at the initial value
(σ) as well as 0.01, respectively, for all dates. A κ of 0.01 is a typical value
resulting from a calibration of the Heston model to expiries ranging from 2 to
30 years simultaneously. Different values of σ̄ and κ were tested and provided
very similar results.

In general, for shorter expiries, results are a bit less noisy and more pronounced
than the ones displayed in the figure whereas for longer expiries investigated
during the full period of available historical observation there is more noise.
However, all performed test reveals the same issue; the Heston model provides
wrong changes in slope and curvature. Compared with SABR using β = 1 the
curvature case is the most different.

Remark 4.3 Following Durrleman (2004) it may be seen that extending the
Heston model with a local volatility function of CEV type (or a matched up
displaced diffusion transformation) adds the same β-terms that are present in
the ‘crude’ approximation of implied volatilities in the SABR model. Hence,
approximately, one may expect to modify the base case (β = 1) behavior in a
similar magnitude as in the SABR model. However, as the base case (β = 1)
is a lot closer to the market behavior in the SABR model compared with the
Heston model we conjecture that matching the market smile dynamics would be
challenging also when using an extended Heston model. In particular, as the β
terms have smaller effect on the curvature, the market curvature changes would
seem hard to match.

4.5 Summing up

The tests performed in this section provide evidence that the SABR model with
an appropriately chosen β is a good reflection of the marginal distributions of
swaptions observed in the market. The Heston model on the other hand seems
to provide a worse representation of the market.

Note that these two models are of course not the only ones in the class (1 -
(2) and there could be other stochastic volatility models that perform as well
as or better than SABR. In particular one may consider using different local
volatility functions for the forward or, for example, a power function in σ in
the SDE for the stochastic volatility process. For the latter choice note that
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Figure 3.8: Changes in ‘slope’ and ‘curvature’ in the Heston model for 10Yx10Y
swaptions investigated during the calm period. The tests were performed in
the same manner as for the SABR model.

in the Heston model the power constant would be 0.5 whereas in the SABR
model it would be 1. Again, Durrleman (2004) could be used to get intuition
about how the dynamics of the ‘slope’ and ‘curvature’ would look like in this
more general case and it might be possible to find a structure that matches up
both dynamics of the smile and market prices of CMS products.

However, given the constraints of our data and how well the SABR model with
an appropriate β performs in the outlined tests we have chosen the SABR
model as a building block for (5).
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5 One date, many expiries: the SABR-MR model

In the previous section we found that the SABR model with appropriate β
provides a good fit to the distribution of a forward swap rate at its start date.
For our objective of finding a stochastic volatility model for the level of rates the
contribution of this section is to engineer a model linking the forward swap rates
(although still under their own swaption measure) based on only two factors
that enables a specification of parameters that is common to all forward swap
rates having ten year tenor and start dates from 2 to 30 years.

Note that a model with a good representation of the conditional distribution
at Ti does not necessarily provide a good representation of the (conditional)
forward smiles i.e. the distribution of

(
yiTi

, σi
Ti
|yit, σi

t

)
, t ∈ (0, Ti). Using the

SABR model as our starting point we will in this section address the issue of
appropriate time dependence as fitting to data at several expiries requires it.

For our general model setup

dyit = f i(Ti − t, yit, σ
i
t)dW

i
t ,

dσi
t = hi(σi

t)dt+ g(σi
t)dV

i
t ,

we start by assuming the function f i is of the form

f i(Ti − t, yit, σ
i
t) = li(Ti − t)φi(yit)σ

i
t (31)

Note that this setup is not particularly restrictive and still covers most of the
previously introduced stochastic volatility models in the literature. The coming
sections discusses the implications of various choices of the functions f i, g, hi

and introduces the SABR with mean-reversion model.

5.1 Many expiries with the SABR model

Table 3.2 displays the parameters of disconnected SABR models calibrated to
expiries ranging from 2 up to 30 years. Note that for both β = 0 and β = 0.5
the calibrated parameter values of σ0 and ν are steadily decreasing in expiry
whereas the ρ values, although scattered, seems less dependent on expiry. The
patterns in σ0 and ν are a general feature in our data sample (albeit the decline
are at some dates less smooth and nice) whereas for ρ there are also dates
with more monotone patterns. In general, though, the dependence between
expiry and ρ is, if at all there, less clear and less pronounced than the one
in σ0 and ν. As we are after a model for the level of rates and hence need
common parameters for all swap rates we need to modify our model to avoid
such systematic changes in parameters.
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Expiry β σ0 ν ρ β σ0 ν ρ
2Y 0.5 0.026 0.326 -0.160 0 0.0057 0.309 0.060
3Y 0.5 0.025 0.309 -0.183 0 0.0056 0.290 0.042
4Y 0.5 0.025 0.299 -0.204 0 0.0056 0.278 0.023
5Y 0.5 0.025 0.297 -0.220 0 0.0055 0.275 0.003
6Y 0.5 0.024 0.289 -0.215 0 0.0054 0.268 0.007
7Y 0.5 0.024 0.283 -0.211 0 0.0054 0.263 0.012
8Y 0.5 0.024 0.276 -0.209 0 0.0053 0.255 0.017
9Y 0.5 0.023 0.269 -0.207 0 0.0053 0.249 0.022
10Y 0.5 0.023 0.263 -0.205 0 0.0052 0.243 0.027
12Y 0.5 0.022 0.253 -0.207 0 0.0050 0.233 0.028
15Y 0.5 0.022 0.241 -0.211 0 0.0048 0.221 0.031
20Y 0.5 0.020 0.223 -0.219 0 0.0044 0.203 0.035
25Y 0.5 0.019 0.212 -0.221 0 0.0041 0.192 0.038
30Y 0.5 0.018 0.203 -0.223 0 0.0038 0.183 0.041

Table 3.2: Calibration of the SABR model on 27 October 2007. Expiry in
years. Options to enter 10 year swaps.

5.2 Extending the SABR model

This section puts the issues with calibrating the SABR model to several expiries
simultaneously into context and discusses some potential extensions. To get
some insight into how the SABR model can be suitably modified the displaced
diffusion SABR model (DD-SABR) will be helpful. In this model the dynamics
of yit under S

i are given as

dyit = (yit + δi)σi
tdW

i
t , (32)

dσi
t = νiσi

tdV
i
t , (33)

dW i
t dV

i
t = ρidt, (34)

for some displacement constant δi ∈ 	. For models with deterministic volatility
Marris (1999) showed that by choosing (for β ∈ (0, 1])

δi = yi0
1− β

β
, (35)

σi
t = σcev,i

t β(yi0)
β−1 (36)

the CEV and displaced diffusions models produce very similar prices of Eu-
ropean calls across strikes. In a stochastic volatility setting Kennedy, Mitra
& Pham (2011) find that the standard SABR (CEV-SABR) and DD-SABR
models continue to be very close qualitatively (matched up using (35) and (36)
and taking the same νi and ρi parameters). To keep the link between the CEV-
SABR and DD-SABR we will continue to refer to the parameter β also for the
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DD-SABR model and will hence implicitly assume that δi from equation (35)
is used.

For the DD-SABR model with β ∈ (0, 1] the distribution of yiTi
can be written

(see Kennedy et al. (2011) or Appendix 9.1) as an exponential of a function of

V i
Ti

=
∫ Ti

0
(σi

s)
2ds and an independent standard normal random variable G

yiTi

d
= (yi0 + δi) exp

(
ρi

νi
(σi

Ti
− σi

0)−
1

2
V i
Ti

+
√

V i
Ti
G

)
− δi. (37)

For β = 0 the equivalent relation is

yiTi

d
= yi0 +

ρ

ν
(σi

Ti
− σi

0) +
√

V i
Ti
G. (38)

To analyse the (DD-) SABR model we will consider the case ρi = 0 for simplic-
ity. The case ρi �= 0 is similar in essence but with greasier expressions. Note
that for β = 0 taking ρi = 0 is not a too bad choice compared with the outcome
of a market calibration (see Table 3.2).

Note for β ∈ (0, 1], conditional on V i
Ti
, the distribution of yiTi

is displaced log-
normal and the hence the price of a swaption with strike K can be written
as an expectation of the standard Black’s pricing formula where the implied
volatility is a function of V i

Ti
. For β = 0 the conditional distribution of yiTi

is
instead Gaussian and so the Bachelier formula applies in this case. Without
stochastic volatility the implied volatility smiles are monotone, downward slop-
ing (steepness depending on β) and with no or very little curvature. Adding
stochastic volatility provides an increase in the overall level of the smile as well
as an increase in curvature (and if ρ is not zero a tilt in the slope). Hence the
particular distribution of V i

Ti
is linked to these features.

Although we do not know the distribution of V i
Ti

it is informative to study its
first two moments

ESi
[
V i
Ti

]
=

∫ Ti

0

(σi
0)

2 exp((νi)2s)ds =
(σi

0)
2

(νi)2
(
exp

(
(νi)2Ti

)− 1
)
(39)

ESi
[(
V i
Ti

)2]
= 2

∫ Ti

0

∫ t

0

ESi
[(
σi
s

)2 (
σi
t

)2]
dsdt

=
(σi

0)
4

15(νi)4
[
exp

(
(νi)2Ti

) (
exp

(
5(νi)2Ti

)− 6
)
+ 5

]
. (40)

Note that in the limit ν → 0 the first moment collapses to (σi
0)

2Ti and the
second moment is zero and we are back at the Black/Bachelier models. In
terms of the implied volatility smile a rough rule of thumb is that the first
moment controls the overall level of the smile and the second moment is linked
to the curvature of the smile.
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Now recall that the calibration of the CEV-SABR model to market data re-
turned decreasing σi

0 and νi with time to expiry. If we calibrate a DD-SABR
model instead we will get similar parameter values and, in particular, qualita-
tively the results will be exactly the same. For the purpose of this discussion
we can hence assume at this point that the calibrated parameters in Table 3.2
are from a calibrated DD-SABR model.

For our objective of finding a model with common parameters for all forward
swap rates the first and second moments are helpful in understanding how the
SABR model should be extended. Both moments in (39) and (40) are growing
at exponential pace in expiry (or really in (νi)2Ti). Compared with market data
exponential growth seems to be too fast (as calibration returns decreasing νi)
and in particular one would not expect this to be reasonable for long expiries.

To match the (market induced) moments of V i
Ti

we start with some intuition

from the deterministic case. Put νi = 0 and let σ̂i
0 denote the outcome of

a calibration to the market price of an expiry-Ti ATM swaption. If we take
σi
t = l(Ti − t) then equations (37) and (38) still hold and we need to choose

the parameters of l(Ti − t) such that V i
Ti

=
∫ Ti

0
l2(Ti − t)dt = (σ̂i

0)
2Ti for all i

to calibrate the model to the market prices of ATM swaptions across expiries.

If we extend the model in the stochastic volatility setting and set

dyit = (yit + δi)l(Ti − t)σi
tdW

i
t , (41)

with σi
t as in the usual SABR model but with σi

0 = 1 and V i
Ti

:=
∫ Ti

0
l2(Ti −

t)σi
tdt, then the distribution of yiTi

can still be written as in equations (37) and

(38) with the first and second moments of V i
Ti

given by

ESi
[
V i
Ti

]
=

∫ Ti

0

l2(Ti − t) exp((νi)2s)ds (42)

ESi
[(

V i
Ti

)2]
= 2

∫ Ti

0

l2(Ti − t) exp((νi)2t)

∫ t

0

l2(Ti − s) exp(5(νi)2s)dsdt.(43)

Note that the function l(Ti − t) affects both moments in a similar fashion.
However, as νi does not have the same effect on each of the moments the
extended model is still not powerful enough to match up both moments and
in particular it would struggle with matching up the second moment. At an
intuitive level the function l(Ti− t) can be thought of as targeted to fitting the
first moment (or the ATM level of the smiles) under the respective measures
Si.

To match both moments we hence need to extend the model further. To account
for the time to expiry effect of ν, Rebonato et al. (2010) uses a similar approach
as for σi

0 also for the volatility of volatility and extends the SABR model
constant ν with a function n(Ti − t). By using rather general and flexible
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functions l(Ti − t) and n(Ti − t) they manage to fit their model quite well
across strikes and expiries and then constructs a LIBOR/SABR market model.
Although this approach is adequate for the (high-dimensional) LIBOR market
model it does not enable using a common stochastic volatility driver for the
level of rates and is hence not suitable for our purposes. Instead we choose to
focus on an alternative route that alters the stochastic volatility process and
introduces mean-reversion.

While mean-reversion may be added to the SABR model in several ways we
aim for a specification that is similar to the standard SABR model but at the
same time flexible enough to be able to fully appreciate the extra degree of
freedom. Our approach builds on a model by Fouque, Papanicolaou & Sircar
(2000) and is based on taking

σi
t = σi

0 exp(U
i
t ), (44)

dU i
t = −κU i

tdt+ νdV i
t , U0 = 0. (45)

This modeling choice is also done in Jackel & Kahl (2007) although they choose
to focus on a minor modification of the exponential function of hyperbolic type.
With this choice of equation for the volatility process replacing the usual log-
normal equation in the SABR model again we have the distribution of yiTi

as

in (37) and (38) (see Appendix 9.1). If we allow for i-dependent σi
0 but choose

common ν and κ parameters we get

ESi
[
V i
Ti

]
= (σi

0)
2

∫ Ti

0

exp

(
ν2

κ

(
1− e−2κt)) dt (46)

ESi
[(

V i
Ti

)2]
= 2(σi

0)
4

∫ Ti

0

∫ t

0

exp

(
ν2

κ

(
5− 4e−2κs − e−2κ(t−s)

))
dsdt.(47)

As both moments are controlled by the combination of ν and κ there is an extra
degree of freedom that will aid in fitting both moments across expiries with a
single set of parameters. Note that ν directly effects the level of the moments
whereas κ controls the dampening over time. Finally note that the growth of
the first moment in Ti is now linear and the second quadratic compared to the
exponential growth for these moments in the SABR model.

5.3 The DD-SABR-MR model

The previous two subsections argued that the standard SABR model is not
adequate as a choice of model for the level of rates and displayed two types of
extensions of the SABR model; deterministic time to expiry dependent instan-
taneous volatility and mean-reversion. Combining both approaches gives the
displaced diffusion SABR with mean-reversion (DD-SABR-MR) model where
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each forward swap rate is modelled as

dyit = li(Ti − t) exp(U i
t )
(
yit + δi

)
dW i

t , yi0 = yi0, (48)

dU i
t = −κU i

tdt+ νdV i
t , U i

0 = 0, (49)

dW i
t dW

j
t = dV i

t dV
j
t = dt, dW i

t dV
i
t = ρdt.

under Si corresponding to P i
. as numeraire and with δ ∈ 	. Recall at this

point the link (35) between the CEV and displaced diffusion formulations. For
the remainder of this paper we will continue to refer to the parameter β which
means that the corresponding δi from equation (35) are being used. Moreover,
note from (35) that for large δ β is close to zero ((or indeed zero as δ → ∞) and
hence in this case we use the stochastic volatility Gaussian model (the β = 0
case in the CEV formulation) with yi dynamics

dyit = li(Ti − t) exp(U i
t )dW

i
t , yi0 = yi0. (50)

To get an intuitive feeling for the model note that U mean-reverts around zero
implying that the volatility of yit mean-reverts around the function li(Ti − t).
Indeed, Ito’s formula gives

dσt = d exp(Ut) = −κσt ln

(
σt

σ0

)
dt+ νσtdZt + σt

ν2

2
dt, (51)

which is why we have chosen to denote the model as the SABR with mean-
reversion model.

Note that we have chosen to use the displaced diffusion formulation instead
of the CEV one in the model. The main reason is that the CEV type local
volatility function φ(x) = xβ is quite cumbersome from an implementation
point of view. In particular, for β ∈ (0, 1) the behaviour around x = 0 is tricky
to deal with due to the property of absorption at 0. For example, for the Monte
Carlo method the behaviour close to zero needs special (ad-hoc) treatment and,
in particular for longer expiries, different (but all reasonable) choices can imply
rather different values of certain moments and products.

The displaced diffusion setting leads to a much more stable and effective imple-
mentation as in this case one may write out the distribution of each of the yit on
explicit form, see Appendix 9.1 for details. The direct disadvantage with this
choice is that the domain of the underlying is (−δ,∞) implying a possibility
of negative rates. Note however that while we will focus on the DD case most
results are generic in the sense that they would look very similar if the CEV
type formulation would be used instead.
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Modeling li(Ti − t)

In models with deterministic volatility, for example the LIBOR market model,
a popular choice of li(Ti − t) is to model this by an instantaneous volatility
function of the type (see for example Brigo & Mercurio (2006))

l̂i(Ti − t) := (a+ b(Ti − t)) exp (−c(Ti − t)) + d. (52)

The function l̂i links the different rates and induces appropriate time-dependence
by calibrating the constants a, b, c and d and is a rather powerful and flexible
choice. It is also the choice of Rebonato et al. (2010) in their LMM/SABR
model.

However, for our end goal of finding a common stochastic volatility driver for all
rates we need the volatility structure to be separable. Separability appears in
the literature when requiring some high-dimensional system to be represented
by a low-dimensional Markov process, see for example Pietersz et al. (2004) for
the use of separability to represent an approximate LIBOR market model by a
one- or two-dimensional driving Markov process. Separability is in this context
achieved if we may represent each of the time-dependent functions li(Ti − t) as

li(Ti − t) = Λ(Ti)λt (53)

Putting b = d = 0 in (52) gives

li(Ti − t) = Λ(Ti)λt := a exp (−cTi) exp (ct) (54)

which is of separable form. Note that if we are willing to add another factor we
could achieve the flexibility of (52) while retaining separability. However, by
using market data it is shown in Sections 5.4 and 6 that this is not necessary
as (54) does a good job provided the the ‘right’ choice of β.

To be able to perfectly calibrate to ATM implied volatilities we have further-
more chosen to equip the model with either i-dependent constants ki or using
a piecewise constant function

at = ai, Ti−1 < t ≤ Ti. (55)

Ideally, for a good model performance all ki should be close to 1 or all ai of
similar level. While we do believe that the piecewise constant formulation is a
better choice in practise the constants ki setting is good for displaying intuition
and behaviour of the model.

Simulation and calibration

The displaced diffusion formulation of the model implies a comparably fast and
stable implementation as in this case the distribution of yiT may be written out
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on explicit form, see Appendix 9.1 for details. This allows for straightforward
and accurate simulation as in order to simulate from 0 to T all that is required
is simulating the U -process (which has Gaussian increments) and computing a
few integrals involving U using numerical quadrature. As is displayed in figure
3.13 in Appendix 9.1 this is much faster and more accurate than an Euler based
implementation.

Calibration of the model is outlined in Appendix 9.2. As there is not a good
enough approximation of the (CEV/DD)-SABR-MR model available and deriv-
ing one is out of the scope of this paper we are using the Monte Carlo method in
the calibration routine. Although there is a fast and accurate way to simulate
the model, Monte Carlo calibration is of course a slow process and would not
be applicable in a live trading environment. Note however that by following the
approach of Kennedy et al. (2011) for the DD-SABR model it seems probable
that one could derive a good approximation also for the DD-SABR-MR model.

Comment on smile dynamics

Recall that in section 4 we deduced that the smile dynamics of the SABR model
with an appropriate β matched the market dynamics quite well. Even though
the DD-SABR-MR model is supposedly close to the SABR model in terms
of dynamics it is not clear that it would inherit these properties. To address
this first note that applying the results of Durrleman (2004) gives that the
first order ‘small time’ approximation (11) is in fact the same in this and the
standard SABR model. As argued in Section 4 in connection with the Heston
model note that while this means that while the mean-reversion term is not
even present in this expression, and hence the expression is not appropriate
for pricing, it is a reasonably good approximation for the dynamical relations
studied in Section 4. Numerical investigations of the same type as performed
when testing the appropriateness of using the approximate ‘slope’ expression
(24) reveals that the ‘slope’ and ‘curvature’ dynamics are almost exactly the
same in the SABR and the DD-SABR-MR model. Hence we believe that the
results and intuition from Section 4 may be transferred to the DD-SABR-MR
model.

5.4 Calibration results

This section displays the results from calibrating the DD-SABR-MR model to
market data of options to enter 10 years swaps on 27 October 2007 and 9 March
2003 across the same expiries as in Section 5.1.

The calibrated parameters on 27 October 2007 using β = 0, 0.5 and 1 are given
in Tables 3.3 and 3.4 and the calibration errors (market minus model implied
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volatility) are given in Figure 3.9. First note that β = 0 seems to produce a
very good fit to the market implied volatilities. For β = 0.5 the calibration
is also very satisfactory whereas for β = 1 the errors are (although still quite
acceptable) about three times larger than for β = 0. In fact, at this date,
for β = 0 the calibration errors are about the same size as the outcome from
standard SABR models calibrated at each expiry individually.

β a c κ ν ρ
1 0.122 0.078 0.015 0.283 -0.476
0.5 0.027 0.068 0.050 0.278 -0.233
0 0.006 0.065 0.098 0.317 0.033

Table 3.3: Calibrated parameters of the SABR-MR model on 27 October 2007.
2 to 30 years options to enter 10 year swaps.

ki ai
Expiry β = 0 β = 0.5 β = 1 β = 0 β = 0.5 β = 1
2Y 0.999 1.008 1.016 0.00579 0.02684 0.1241
3Y 0.996 1.004 1.011 0.00574 0.02655 0.1224
4Y 0.996 1.003 1.007 0.00578 0.02659 0.1221
5Y 0.998 1.002 1.004 0.00582 0.02661 0.1216
6Y 0.995 0.995 0.995 0.00571 0.02589 0.1177
7Y 0.997 0.994 0.991 0.00583 0.02636 0.1195
8Y 1.003 0.997 0.992 0.00595 0.02685 0.1216
9Y 1.005 0.997 0.991 0.00588 0.02653 0.1205
10Y 1.005 0.996 0.989 0.00583 0.02636 0.1200
12Y 1.004 0.994 0.988 0.00580 0.02635 0.1205
15Y 1.004 0.997 0.996 0.00582 0.02665 0.1229
20Y 1.000 1.000 1.005 0.00578 0.02668 0.1235
25Y 0.994 0.999 1.003 0.00573 0.02654 0.1224
30Y 0.996 1.008 1.011 0.00579 0.02706 0.1243

Table 3.4: Calibrated ki and levels of the piecewise constant function at for the
SABR-MR model on October 27, 2007. Expiry in years. Options to enter 10
year swaps.

Note that with a single set of parameters one would expect the slopes of the
implied volatility smiles to be too steep/flat and have too much/little curvature
at some expiries. This effect is spotted in Figure 3.9 by studying the plus/minus
2% offset strikes. Moreover, note that at this date the constants ki are all close
to 1 and the piecewise constant function, at, is close to constant implying a
very good fit to the full implied volatility surface.

As the results look remarkably good it should be noted that this particular date
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is one of the better dates in our sample. As a comparison, Figure 3.10 displays
the calibration results on 9 March 2003. Also at this date β = 0 performs best
in terms of fitting errors with 2-3 times smaller errors than the other two cases.
Moreover, note that for β = 0 it seems like a single ρ works very well whereas
the shorter (longer) expiries would need slightly smaller (larger) ν with the
medium term expiries displaying close to zero fitting errors. For β = 1 one
would on the other hand need to change both ρ and ν individually at almost
all expiries to effectively reduce the errors.

For this date studying the constants ki provides more information about appro-
priate choice of β and why choosing to use (54) instead of (52) as parametriza-
tion of lt is not necessarily particularly restrictive. Figure 3.11 displays the
forward swap rates, the ATM implied volatilities and the calibrated ki for the
different β. First note that at this date the ATM implied volatilities are steadily
declining until the 15 years expiry where it starts increasing. As, approximately,
for β = 1 the function lt needs to fit this dependence, the restricted function in
(54) is not flexible enough, something which is clearly displayed by the widely
varying constants ki.

However, as seen in Figure 3.11 for β = 0 or 0.5 the constants ki are all
close to 1. To understand why this is the case recall that in the SABR model
(as well as the deterministic CEV model or a matched up displaced diffusion
transformation) the ATM volatility is approximately given by Σ = σ0

yβ
0

. Hence,

there is a direct relation between the parameters σi
0, the forward swap rates and

the market implied ATM volatilities and it turns out that using an appropriate
β stabilizes the σi

0 and makes the function (54) flexible enough to fit the model.

To provide more information about the suitability of the model the next section
displays calibration results across all dates in our sample.
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Calibration results 

Figure 3.9: Calibration errors (market minus model implied volatilities) for the
SABR-MR model on 27 October 2007. 2 to 30 years options to enter 10 year
swaps.
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Figure 3.9: Calibration errors (market minus model implied volatilities) for the
SABR-MR model on 27 October 2007. 2 to 30 years options to enter 10 year
swaps.



130 Stochastic Volatility for Interest Rate Derivatives

  

 

Calibration results 

-2.5%

-1.5%

-0.5%

0.5%

1.5%

2.5%

-200 -100 0 100 200

Im
pl

ie
d 

vo
la

til
ity

 d
iff

er
en

ce
 

strike offset (bps) 

-2.5%

-1.5%

-0.5%

0.5%

1.5%

2.5%

-200 -100 0 100 200

Im
pl

ie
d 

vo
la

til
ity

 d
iff

er
en

ce
 

strike offset (bps) 

-2.5%

-1.5%

-0.5%

0.5%

1.5%

2.5%

-200 -100 0 100 200

Im
pl

ie
d 

vo
la

til
ity

 d
iff

er
en

ce
 

strike offset (bps) 

T = 2Y T = 3Y

T = 4Y T = 5Y

T = 6Y T = 7Y

T = 8Y T = 9Y

T = 10Y T = 12Y

T = 15Y T = 20Y

T = 25Y T = 30Y

Figure 3.10: Calibration errors (market minus model implied volatilities) for
the SABR-MR model on 9 March 2003. 2 to 30 years options to enter 10 year
swaps.

130 Stochastic Volatility for Interest Rate Derivatives

  

 

Calibration results 

-2.5%

-1.5%

-0.5%

0.5%

1.5%

2.5%

-200 -100 0 100 200

Im
pl

ie
d 

vo
la

til
ity

 d
iff

er
en

ce
 

strike offset (bps) 

-2.5%

-1.5%

-0.5%

0.5%

1.5%

2.5%

-200 -100 0 100 200

Im
pl

ie
d 

vo
la

til
ity

 d
iff

er
en

ce
 

strike offset (bps) 

-2.5%

-1.5%

-0.5%

0.5%

1.5%

2.5%

-200 -100 0 100 200

Im
pl

ie
d 

vo
la

til
ity

 d
iff

er
en

ce
 

strike offset (bps) 

T = 2Y T = 3Y

T = 4Y T = 5Y

T = 6Y T = 7Y

T = 8Y T = 9Y

T = 10Y T = 12Y

T = 15Y T = 20Y

T = 25Y T = 30Y

Figure 3.10: Calibration errors (market minus model implied volatilities) for
the SABR-MR model on 9 March 2003. 2 to 30 years options to enter 10 year
swaps.



6. Testing the model on all dates 131

Forward swap rates, ATM volatilities and constants  

0.04

0.09

0.14

0 5 10 15 20 25 30
Expiry (years) 

fwd swap rate

ATM vol

0.9

0.95

1

1.05

1.1

1.15

1.2

0 5 10 15 20 25 30
Expiry (years) 

Figure 3.11: The forward swap rates, the ATM implied volatilities and the
resulting constants ki on 9 March 2003. 2 to 30 years options to enter 10 year
swaps.

6 Testing the model on all dates

Recall that a well calibrated model has small calibration errors across expiries
and strikes as well as close to constant function at or all constants ki close
to 1. As seen in the previous section a SABR-MR model with appropriate β
seems to be able to fulfill both of of these properties with good accuracy. To
test if this is a general feature and whether β = 0 performs well in general this
section tests the calibration performance of the SABR-MR model at the 101
dates plotted in Figure 3.2 covering the period 3 July 2002 to 21 May 2009. As
the calibration errors during the turmoil will inevitably be larger and provides
a tough challenge for any model the data set is divided into two parts with 89
dates up to turmoil and 12 dates during the turmoil.

As the case β = 1 is shown in previous sections to be inferior both in terms
of smile dynamics and calibration this section only deals with β = 0 and 0.5.
Though β = 0.5 is not consistent with the value of β we found in Section 4
for the period when the markets were stable it is a value often used by traders
which is another reason why we include it here.
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6.1 Calibration errors, ‘normal’ markets

Table 3.5 provides summary statistics of the calibrated ki values at the first
89 dates up to the start of the turmoil. Note that the means of all ki (in
total 89 dates with 14 expiries implying 1246 values) are close to 1 (as they
should given appropriate calibration). Moreover, for both models the standard
deviation and the maximum and minimum values are quite close to zero and
one respectively implying a sound model from this perspective across all dates.
This is an appealing feature as is tells us that the sacrifice of using the simple
form for li(Ti−t) given in (54) is minor and hence separability may be imposed
without sacrificing the calibration performance of the model.

β mean stdev max min
0 1.0002 0.0108 1.0455 0.9593
0.5 1.0002 0.0113 1.0389 0.9567

Table 3.5: Summary statistics of calibrated constants ki on 89 dates from 2002
up to the turmoil period. 2 to 30 years options to enter 10 year swaps.

Summary statistics for the calibration errors in implied volatility are given in
Table 3.6. As expected the mean is quite close to zero however the standard
deviation, mean of the absolute errors and the maximum and minimum errors
are a bit smaller for β = 0 compared with β = 0.5. Even though plus/minus a
couple of percent in implied volatility is not too a too bad fitting note that if
only studying the plus/minus 1% strike offset or expiries ranging from 5 to 20
years then all fitting errors are for β = 0 within 1%.

At first sight the maximum and minimum fitting errors might seem a bit pro-
hibitive. However, as the overall level of the implied volatility surface changes
over time it is in relative terms not too bad. The date with the maximum
error has ATM implied vols ranging from 15 to 21 percent and while 2.76%
is a bit off it is not much worse in relative terms compared with other dates
(for example compared with the 9 March 2003 date studied in the previous
section). Moreover, the particular point with the error 2.76% is for the 2 year
expiry with -2% strike and a market implied volatility of 26%.

Recall that at each date the model is trying to fit 14 · 9 = 126 data points
with rather few parameters. As the parameters a, c and the constants ki or
the function at mainly focuses on the ATM part there is in effect only three
parameters to play with for the away from the money strikes. In principle, the
differences between the market and model implied volatilities are due to either
slope or curvature mismatch of the smiles.

Recall that for a fixed β, ρ fits the slope of the smile. If the slopes are ‘different’
for different expiries one parameter is not enough to fit all expiries perfectly
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and the calibration will return an ‘average’ ρ. At some dates this is not much of
an issue whereas at other it is worse. Note that in the second calibration date
displayed in Section 5 this is an issue for β = 1 whereas β = 0 has basically
only curvature errors.

Also recall that the combination ν and κ controls the curvature of the smiles.
The parametrisation of the SABR-MR model gives a specific type of control of
the curvature that seems to be a decent one at most dates. The β = 0 case in
the calibration on 9 March 2003 displayed in 3.9 is a good example of what is
going on with a calibration returning too little curvature for the 2 year smile
and too much curvature for the 30 year smile. At some dates this effect is
larger, at some dates smaller.

With only three parameters to fit all away from the money strikes we conclude
that the SABR-MR does a good job in terms of fitting and seems to be well
specified and parametrised. In particular we find no major reason to go into
complications about extending the model with time-dependent parameters ρ, κ
and ν, a route that has been suggested by some authors.

strike offset -2 -1 -0.5 -0.25 0 0.25 0.5 1 2
β=0
mean -0.05 0.16 0.10 0.05 0.00 0.01 0.03 0.04 0.07
stdev 0.47 0.19 0.09 0.05 0.00 0.04 0.07 0.16 0.34

mean(abs) 0.37 0.16 0.08 0.04 0.00 0.03 0.05 0.12 0.26
max 2.76 1.08 0.43 0.21 0.00 0.19 0.39 0.74 1.59
min -1.85 -0.51 -0.24 -0.12 0.00 -0.12 -0.15 -0.36 -0.82

β=0.5
mean 0.15 0.10 0.05 0.01 0.00 0.04 0.08 0.10 0.04
stdev 0.62 0.24 0.10 0.05 0.00 0.05 0.10 0.25 0.55

mean(abs) 0.48 0.18 0.07 0.03 0.00 0.04 0.08 0.18 0.38
max 3.48 1.24 0.47 0.19 0.00 0.23 0.49 0.91 1.69
min -1.90 -0.56 -0.28 -0.14 0.00 -0.11 -0.27 -0.78 -1.72

Table 3.6: Summary statistics of the errors (market minus model) in implied
volatility for calibrated SABR-MR models on 89 dates covering 3 July 2002 up
to the start of the turmoil in September 2008. 2 to 30 years options to enter
10 year swaps. Strike offset away from ATM and the implied volatilities are
reported in percent. The row mean(abs) refers to the mean of the absolute
values of the fitting errors.
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6.2 Calibration errors: turmoil period

As discussed earlier the period of market turmoil provides a tough challenge
for any interest rate model. While of course models with high number of
parameters will perform well in terms of fitting there is a risk for overfitting
when market prices are not necessarily internally sound and consistent. On the
other hand, while a model with few parameters may struggle in terms of fitting
it could be a more solid and stable companion when times are rough.

As observed in Figure 3.2 the yield curve as well as the ATM level, slope and
curvature of the implied volatility smiles are almost inverted and some values
are very different compared to ‘normal’ markets. As rates are very low we will
disregard from the -2% strike offset since this strike is close to zero implying
very high implied volatilities that will affect the calibration and choice of β a
bit too much and hence blur the results.

Summary statistics of calibrated constants ki are given in Table 3.7. Note that
in this case the errors are significantly larger (about twice as large) than before
and that β = 0 performs far better than β = 0.5.

β mean stdev max min
0 1.004 0.026 1.085 0.962
0.5 1.008 0.063 1.211 0.906

Table 3.7: Summary statistics of calibrated constants ki on 12 evenly spaced
dates during the turmoil period. 2 to 30 years options to enter 10 year swaps.

Summary statistics for the calibration errors in implied volatility are given in
Table 3.8. Note that in this period the errors are quite a lot larger than before
and that both choices of β has similar performance. Part of the increase in
errors are of course due to that the level of implied volatility is larger (note
from Figure 3.2 that the 2 and 30 years ATM implied volatilities are about
twice as large as on previous dates and moreover for some strikes the implied
volatility is above 40%) and actually the relative errors are not that much
larger compared with previous results. Given the large magnitude and the
vastly different slopes and curvatures of the smiles across expiries compared
with previous dates results are perhaps better than one ould expect them to
be. However, though we can fit the data using the model the results of Section
4 suggest that it is not consistent with how the market is behaving.

6.3 Calibrated parameters

To further investigate the performance of the SABR-MR Figure 3.12 plots time
series of calibrated parameters at the 101 reference dates. Note that although
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strike offset -1 -0.5 -0.25 0 0.25 0.5 1 2
β=0
mean -0.08 0.10 0.06 0.00 0.06 0.09 0.05 -0.13
stdev 1.24 0.34 0.13 0.00 0.15 0.25 0.42 0.66

mean(abs) 0.98 0.22 0.08 0.00 0.13 0.22 0.32 0.44
max 1.60 0.67 0.31 0.00 0.68 1.21 1.98 2.87
min -5.21 -1.33 -0.48 0.00 -0.18 -0.33 -0.62 -1.21

β=0.5
mean 0.04 0.07 0.04 0.00 0.09 0.09 -0.04 -0.50
stdev 0.97 0.26 0.09 0.00 0.07 0.12 0.36 0.75

mean(abs) 0.74 0.19 0.07 0.00 0.06 0.07 0.24 0.65
max 1.93 0.76 0.33 0.00 0.35 0.29 0.63 1.41
min -4.66 -0.98 -0.30 0.00 -0.16 -0.42 -1.19 -2.45

Table 3.8: Summary statistics of the errors (market minus model) in implied
volatility for calibrated SABR-MR models on 12 evenly spaced dates during
the turmoil period. 2 to 30 years options to enter 10 year swaps. Strike offset
away from ATM and the implied volatilities are reported in percent. The row
mean(abs) refers to the mean of the absolute values of the fitting errors.

parameter stability is one measure of a sound model it is the combination of
the parameters that provides the distribution. This means that rather different
combinations of some parameters (for example ν and κ combinations) may pro-
duce similar distributions and hence one should not put too much attention in
simply studying parameter stability. Nevertheless it does provide some further
intuition and evidence of model performance.

First note that the parameter variations are very similar for both choices of β.
Although parameters do vary over time the variation is not particularly large.
For example, for β = 0 minor tilts of a ν of about 0.33, a κ of 0.08 and a ρ
of 0 seems to do the job. Moreover, note that during the turmoil period the
parameter values are not much different from earlier which is a bit surprising
keeping in mind the vastly different ATM levels, slopes and curvatures of the
smiles observed in this period. This suggests that the model does a good job in
explaining the implied volatility smiles conditional on the values of the forward
swap rates and the instantaneous stochastic volatility.

Finally, note that for about a third of the dates ρ is negative also for β = 0
and recall that the combination of β and ρ determines the slope of the implied
volatility smile. This means that in general one can’t put ρ = 0 (which may be
desired from an implementation point of view) and change β to fit the smile as
then the slope of the smile will be too flat.
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Figure 3.12: Calibrated parameters at 103 evenly spaced dates covering 3 July
2002 to 21 May 2009.
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7 A stochastic volatility model for the level of
rates and pricing under a single measure

The output of our investigations so far is a model for each ten year swap rate in
its own swaption measure that is consistent with market implied distributions
for the corresponding swaptions and which is based on two factors and a set
of parameters which are common for all swap start dates. In this section our
task is to identify a candidate for modelling the level of rates process which
is of low dimension. We will specify our candidate process in the measure
Sn correponding to the final expiry Tn. The discussion here is suggestive of
a possible candidate process. We test that our simplifying assumptions have
led to a choice that is reasonable by using it to recover the prices of vanilla
swaptions under the one measure in the following subsection.

In order to understand how to link the swap rates under a single measure we
begin by studying the case corresponding to β = 0 where for each i under Si

we have

yit = yi0 + a

∫ t

0

exp(−c(Ti − u)) exp(U i
u)dW

i
u,

= yi0 + exp(−c(Ti − t))Xi
t

whereW i, V i are correlated Brownian motions and U i is an Ornstein-Uhlenbeck
process as specified in equation (49) and we have defined

Xi
t := a

∫ t

0

exp(−c(t− u)) exp(U i
u)dW

i
u. (56)

Note that the process Xi in the above equation provides a representation for
the spot process at time Ti under S

i, since yiTi
= yi0 +Xi

Ti
.

Now further suppose that ρ = 0. If we were to specify an expression for the
process Xi in some equivalent martingale measure (here the drift of V i and
hence of U i is left unaltered as we are working with bond based numeraires)
we would have

Xi
t = a

∫ t

0

exp(−c(t− u)) exp(Uu)dWu + F i
t .

Ut = ν exp(−κt)

∫ t

0

exp(κs)dVt,

where (W,V ) is a standard Brownian motion under our chosen EMM and F i is
a finite variation process dependent on the particular measure we have chosen.
Assuming the common diffusion part is what is significant for modelling sug-
gests a candidate for our level of rates process. Note that if ρ is not equal to
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zero moving to the one measure would introduce an i-dependent drift change
into the equation for U . Ignoring this complication (that to do this is a rea-
sonable assumption is verified numerically in the next subsection) we take our
candidate process for representing the level of rates when β = 0 as

dXt = −cXtdt+ exp(Ut)dWt, X0 = 0,

dUt = κUtdt+ νdVt,

dWtdVt = ρdt,

where W and V are correlated Brownian motions under Sn say, with Tn being
the final expiry.

Remark 7.1 Observe that our candidate model is mean reverting. Recall that
the short-rate in a one factor Hull-White model is mean reverting and if the
instantaneous volatility of the forward rate ftT is of the form exp(−c(T − t))σt

then the instantaneous volatility of the short-rate r is σt. It is interesting to
note that if we view yit as a discrete analogue of ftTi

and Xt as playing the role
r then we have the same relationship between the instantaneous volatility of
the two processes as in the Hull-White model despite the presence of stochastic
volatility.

For the case when β �= 0 observe that taking a monotonic increasing function
of the swap rates will not alter the information about the level of rates. For
the CEV form of the model define

F (x) = (1− β)x1−β , 0 ≤ β < 1,

= log x, β = 1.

and for the displaced diffusion version take

F (x) = log(x+ δ).

In the CEV version for each i under Si by Ito’s formula we have

F (yit) = F (yi0) + exp(−c(Ti − t))Xi
t

− aβ

2

∫ t

0

(yiu)
β−1 exp(−2(c(Ti − u) exp(2U i

u)du.

The displaced diffusion version for a given δ gives the same formula for F (yit)
as above but with β = 1. Hence, for the transformed rate we are back at the
β = 0 case albeit with the addition of a finite variation term. Again assuming
that the common diffusion part is what is significant for modelling suggests the
same candidate for our level of rates process.

Note that we have made several simplifying assumptions in arriving at our
candidate process. The next section checks our choice is sensible by using it to
recover swaption prices under a single measure.
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7.1 Pricing under a single measure

Up to now any model based recovery of swaption prices has been done by using
the model for each swap rate in its own swaption measure. Our earlier analysis
showed we were able to capture the marginal distribution of each rate with
good accuracy using a common set of parameters for all expiries. The swap
rates we considered were chosen to have a large overlap so that our end goal
of identifying a suitable model for the level of rates could be achieved. Having
identified a candidate we now need to test if this process does in fact adequately
summarize the state of our economy. In particular the simplifying assumptions
we made about the role of the drift need to be verified numerically.

Building a full term structure model based our candidate process is beyond
the scope of the paper. Instead we construct a terminal swap rate Markov-
functional type model and show that we may recover the vanilla swaption
prices under a single joint measure. The purpose here is to motivate that, also
in the stochastic volatility case, suitable functional forms may take care of the
induced drifts when switching measures and that a model may be constructed
in a Markov-functional manner using our identified stochastic volatility driver.
Note that though we investigate the suitability of our candidate process using
the Markov-functional approach the results of our analysis are general and the
proposed driver could be incorporated into a separable LIBOR market model
for example.

Suppose we work in the terminal measure Sn corresponding to PTn as nu-
meraire. We consider the same date structure as previously with yearly spaced
dates up to 30 years, i.e. we take n = 30. To simplify things slightly com-
pared with the suggestion made in the previous section we will take as our
two-dimensional driver the swap rate process y30, as it, of course, is a drift less
process under S30.

Note that under Sn swaption prices are given by

Ci
0(K) = Pn

0 E
Sn

[
P i
Ti

(
yiTi

−K
)+

Pn
Ti

]
(57)

In order to calculate these prices for each i we need to model yiTi
and

P i
Ti

Pn
Ti

under

Sn. For the stochastic volatility Gaussian case (i.e. β = 0) we take

yiTi
= Aiy

n
Ti

+Bi, (58)

and
P i
Ti

Pn
Ti

= (1 + ciy
n
Ti

+ di)
Tn−Ti , (59)
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Note that the equation for yiTi
follows from a first order Taylor expansion for

yiTi
which is viewed as a function of our driver at Ti and the second equation

is what we would get if we assumed that D0Tj = (1 + cy + d)−Tj . For the
displaced diffusion case we take

log
(
yiTi

+ δ
)
= Ai log(y

n
Ti

+ δ) +Bi (60)

To find the constants Ai, Bi, ci and di we solve the system of equations

ESn

[
P i
Ti

Pn
Ti

]
=

P i
0

Pn
0

(61)

ESn

[
yiTi

P i
Ti

Pn
Ti

]
=

yi0P
i
0

Pn
0

, (62)

Ci
0(K1) = Pn

0 E
Sn

[
P i
Ti

Pn
Ti

(
yiTi

−K1

)+]
, (63)

Ci
0(K2) = Pn

0 E
Sn

[
P i
Ti

Pn
Ti

(
yiTi

−K2

)+]
. (64)

The first two equations follow from the martingale property for rebased assets
and are hence crucial in order to assure that discount factors and swap rates
are recovered. The last two equations fits the model to swaption prices at
two different strikes where we have chosen to use the ATM and the ATM -
1% strikes. Intuitively the last two equations can be seen as required in order
to make up for the two-dimensional drift changes, although we have made no
attemp to formalize this.

In the test the calibrated parameters of the DD-SABR-MR model on 27 Octo-
ber 2007 reported in Table 3.3 are used and we take all constants ai and ki as 1.
To evaluate the model we calibrate the parameters Ai, Bi, ci, di to the expiries
Ti = 2, 5, 10, 15, 20, 25 and 30 years and compare the prices of swaptions across
strikes with the prices coming from the DD-SABR-MR model. The expecta-
tions are computed using the Monte Carlo method as outlined in Section 9.1.
In order to make sure that the statistical error is negligible we have used 200
000 (Sobol) paths and 300 steps out to each expiry for the stochastic volatility
process.

The differences between prices converted into implied volatility basis points
between the DD-SABR-MR model under each of the Si and the terminal swap
rate model under Sn are given in Table 3.9. Note that the size of the differences
are extremely small and that the largest difference at the 2 year swaption at
strike ATM - 2% is only about 0.05% in implied volatility. Also note that the
case β = 0 works a bit better than β = 0.5.
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Note that as the terminal swap rate model is set up as a rather crude approx-
imation of the forward swap rates these results are quite remarkable. Even
though there are four parameters that are used to remove arbitrage and match
up two strikes it is interesting to note that, as far as swaption pricing across
the ATM plus/minus 2% strikes goes, the model is providing correct marginal
distributions for each of the forward swap rates under the joint measure Sn.
This gives good hope for the construction of a full term structure model based
on our identified driver.

Expiry -2% -1% -0.5% -0.25% ATM 0.25% 0.5% 1% 2%
β = 0
2Y -0.41 0.00 0.01 0.01 0.00 -0.01 -0.02 -0.04 -0.07
5Y -0.08 0.00 0.01 0.00 0.00 0.00 -0.01 -0.02 -0.04
10Y -0.03 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.02
15Y -0.02 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01
20Y -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01
25Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

β = 0.5
2Y -4.94 0.00 0.26 0.14 0.00 -0.22 -0.44 -0.89 -1.76
5Y -0.71 0.00 0.07 0.07 0.00 -0.05 -0.18 -0.53 -1.25
10Y -0.32 0.00 0.09 0.09 0.00 -0.11 -0.24 -0.64 -1.64
15Y -0.25 0.00 0.13 0.04 0.00 -0.08 -0.14 -0.43 -0.87
20Y 0.01 0.00 -0.02 -0.08 0.00 0.07 0.18 0.34 0.99
25Y 0.09 0.00 -0.10 -0.11 0.00 0.15 0.38 0.85 2.17
30Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.9: Differences in implied volatility basis points between the DD-SABR-
MR swaption prices across strikes and the terminal Markov-functional model
using y30 as driver.

8 Conclusion

This paper has used an extensive set of historical market data of swap rates
and swaptions to identify a two-dimensional stochastic volatility process for the
level of rates. The procedure of the paper has been two identify this process
step by step by increasing the requirement of the model and discuss how to
adjust the process to take this into account.

We started off in Section 4 by identifying a suitable time-homogeneous model
for swap rates at their setting dates and it turned out that the SABR model
with β = 0 satisfactorily passed all our tests and that also β = 0.5 seemed to
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perform reasonably well. Section 5 then identified a model of ten year swap
rates under their own measures based on common parameters for all swap
start dates and Section 6 tested it on market data covering 3 July 2002 to
21 May 2009. The performed tests displayed that the model is a stable and
flexible choice that allows for good calibration across expiries and strikes. Sec-
tion 7 identified and put into context a time-homogeneous candidate stochastic
volatility process that can be used as a driver for all swap rates. Finally, Sec-
tion 7.1 used this to construct a simple terminal Markov-functional type model
under a single measure and displayed that prices of swaptions across strikes
and expiries may be recovered with good accuracy.

Recall that the ten year swap rates were chosen in order to have some overlap
between the rates and hence providing hope for that finding a model of the
above type would be possible. We have also performed the above tests on
the 5, 20 and 30 year swap rates and have observed similar results as the ten
year case. Moreover, we have calibrated the model to co-terminal swaptions,
as is required when pricing some Bermudan swaption type products, and our
findings suggests that also this may be done with good accuracy.

For future work we expect that the DD-SABR-MR model would make a good
building block for a stochastic volatility LIBOR market model. Moreover, as
we have put some considerations at keeping dimensions low and allowing for
separability we believe it would be a suitable driver of a stochastic volatility
Markov-functional model.

9 Appendix

9.1 Monte Carlo implementation

This section outlines a comparably fast and efficient way of implementing the
DD-SABR-MR model. Recall the dynamics (without the constants ki or piece-
wise constant function at for clarity) under each of the measures Si
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(
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)
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i
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t )

2
dt, (65)

dU i
t = −κU i

tdt+ νdZi
t , (66)

dW i
t dZ

i
t = ρdt, (67)

with

lit = a exp (−c(Ti − t)) , (68)

F (l, u) = l exp(u). (69)
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First note that W i
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Now note that conditional on the σ-algebra generated by Zi over [0, T ] the Si
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Finally, integrating (70) from t ≥ 0 to T ≤ Ti and again comparing the moment
generating functions under Si and using the tower law it is possible to show
that
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Hence, to simulate a realisation of yiT one only needs one standard normal
random variable plus the integrals Ii and V i along a particular path of U i. For
a simulated path of U i the integrals Ii(t, T ) and V i(t, T ) may be computed by
numerical quadrature using, for example, the Simpson rule.

Moreover, note that conditional on the full path of U from 0 to Ti, y
i
Ti

is a
displaced lognormal random variable and hence prices of swaptions are given in
closed form. Hence, in a Monte Carlo implementation to price swaptions it is
only needed to simulate realisations of U i, compute the values of F i, Ii and V i

using numerical quadrature and finally insert in the displaced diffusion Black
formula. Finally, note that for β = 0 the above calculations goes through with
just a minor modification.

To get an idea of the accuracy of using this method compared with the (log)
Euler method Figure 3.13 displays prices of a 10 year ATM swaption computed
using different number of steps per year. Note that while the Euler method
requires lots of steps per year to get rid of the discretisation error, the new
method allows for very long steps.
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Figure 3.13: Comparing the new implementation method of yi with the stan-
dard Euler method for pricing a 10 year ATM swaption. For the one step
method the prices plus/minus 2 standard deviations are also reported. 4 million
pseudo-random paths are used implying a very small statistical error. β = 0,
a = 0.009, c = 0.1, κ = 0.05, ν = 0.36 and ρ = 0.2.
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9.2 Calibration

To calibrate the SABR-MR model we are minimising the squared relative er-
ror between the market and model implied volatilities at all strikes and ex-
piries. Note that while in principle there are only five parameters to calibrate
(a, c, κ, ν, ρ) we also need to find the parameters of the function at or the con-
stants ki. As a full global optimisation of all parameters are too time-consuming
to perform in practise we perform the calibration in two steps

1. First calibrate (a, c, κ, ν, ρ). Since in the end we will make sure that the
ATM levels are perfectly matched the goal function is structured such
that first the ATM errors are found, then the model is adjusted to fit
the ATM perfectly by using the constants ki and finally the errors at the
other strikes are found.

2. In the second step we found the piecewise constants needed for at and
the constants ki subsequently starting from time T1.

As there is not a good enough approximation of the SABR-MR model available
and deriving one is out of the scope of this paper we are using the Monte Carlo
method in the calibration routine. To simulate yiTi

we are using the method
outlined in the previous subsection with 10 000 Sobol paths and 30 steps out to
each expiry. Note that in principle it is the number of points between time 0 and
expiry that is important, not the number of steps per year and we have found
the 30 steps gives good accuracy for all expiries. Compared with more accurate
choices that reduces the numerical errors we have found that the above choices
are correct within a few basis points. On a standard computer this means that
a full implied volatility surface of 14 expiries and 9 strikes per expiry is priced
in about 1 second and a calibration is made in at most a few minutes.

While this is of course not fast enough to be used in a market environment note
that the above structure gives hope of finding a good approximation for cali-
bration, see Kennedy et al. (2011) for a similar approximation for the standard
SABR model.
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