
ABSTRACT

Title of dissertation: Tuning Parallel Applications in Parallel

Ananta N Tiwari, Doctor of Philosophy, 2011

Dissertation directed by: Professor Jeffrey K Hollingsworth
Department of Computer Science

Auto-tuning has recently received significant attention from the High Perfor-

mance Computing community. Most auto-tuning approaches are specialized to work

either on specific domains such as dense linear algebra and stencil computations,

or only at certain stages of program execution such as compile time and runtime.

Real scientific applications, however, demand a cohesive environment that can ef-

ficiently provide auto-tuning solutions at all stages of application development and

deployment. Towards that end, we describe a unified end-to-end approach to auto-

tuning scientific applications. Our system, Active Harmony, takes a search-based

collaborative approach to auto-tuning. Application programmers, library writers

and compilers collaborate to describe and export a set of performance related tun-

able parameters to the Active Harmony system. These parameters define a tun-

ing search-space. The auto-tuner monitors the program performance and suggests

adaptation decisions. The decisions are made by a central controller using a parallel

search algorithm. The algorithm leverages parallel architectures to search across a

set of optimization parameter values. Different nodes of a parallel system evaluate

different configurations at each timestep.

Active Harmony supports runtime adaptive code-generation and tuning for

parameters that require new code (e.g. unroll factors). Effectively, we merge tra-

ditional feedback directed optimization and just-in-time compilation. This feature

also enables application developers to write applications once and have the auto-

tuner adjust the application behavior automatically when run on new systems. We

evaluated our system on multiple large-scale parallel applications and showed that

our system can improve the execution time by up to 46% compared to the original

version of the program.

Finally, we believe that the success of any auto-tuning research depends on how

effectively application developers, domain-experts and auto-tuners communicate and

work together. To that end, we have developed and released a simple and exten-

sible language that standardizes the parameter space representation. Using this

language, developers and researchers can collaborate to export tunable parameters

to the tuning frameworks. Relationships (e.g. ordering, dependencies, constraints,

ranking) between tunable parameters and search-hints can also be expressed.

Tuning Parallel Applications in Parallel

by

Ananta N Tiwari

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor Jeffrey K Hollingsworth, Chair/Advisor
Professor James F. Drake Jr., Dean’s Representative
Professor Alan L. Sussman
Professor Adam Porter
Professor Peter J. Keleher

c© Copyright by

Ananta N Tiwari
2011

For my dad and mom, Ashok Nath Tiwari and Kamala Tiwari.
For the better half, Prathu.

For my sisters, Sunu and Sudhu.
For my nephews, Rohan and Raunak.

Acknowledgments

First and foremost, I would like to extend my sincere gratitude to my advisor,

Dr. Jeffrey K. Hollingsworth. Without your guidance, patience and undivided

support, this research would not have materialized. Thank you for your continued

kindness.

I would also like to thank my friends, colleagues and my seniors (in no partic-

ular order) — Arkady Yerukhimovich, Dov Gordon, Vladimir Kolovski, Nick Rutar,

Tuğrul İnce, Mike Lam, Ray Chen, Mustafa Tikir, Chadd Williams, Jeff Odom,

Geoffrey Stoker, Vahid Tabatabaee and I-Hsin Chung. Thank you for always being

there when I needed support. Thank you to Arkady, Dov and Vladimir for three

wonderful years as housemates and for your perpetual friendship. Thank you to

Nick for always cheering me up with his witty remarks and pop-culture references.

Thank you to Tuğrul for always showing me the bright side of different situations.

Thank you to Mike, Geoff and Ray for many interesting conversations. Let me tell

you all that I will always cherish the friendship that we have developed for the rest

of my life.

Sincere thank you to my family. Dad and mom, you have always been an

infinite source of inspiration. Thank you to my dear wife, Prathana, who has always

been there for me, who endured many all-nighters, and who always guided me in

trying times.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation . 3
1.2 Auto-tuning Modes . 4
1.3 Sources of Tunable Data . 5

2 Related Work 9
2.1 Domain-specific Auto-tuners . 9
2.2 Compiler-based Auto-tuners . 11

2.2.1 Code-transformation Frameworks 11
2.2.2 Auto-tuning Frameworks . 12

2.3 Application-level Auto-tuners . 14
2.4 Runtime Auto-tuners . 15
2.5 Auto-tuning via Performance Modeling and Analysis 18
2.6 Search Algorithms . 21
2.7 Performance Variability . 22

3 Parameter Tuning Algorithm 24
3.1 Problem Definition and Performance Metric 26
3.2 Direct Search Algorithms . 29

3.2.1 Simplex Algorithm . 30
3.2.2 Rank Ordering Algorithm for Parameter Tuning 31
3.2.3 Projection Operator . 36
3.2.4 Simplex Construction and Size 38
3.2.5 Stopping Criteria . 39

3.3 Performance Variability and its Impact on Parameter Tuning 40
3.3.1 Two Job Model . 40
3.3.2 Heavy-tail Model . 42
3.3.3 Case study: GS2 . 43

3.4 Summary . 48

4 The Framework — Active Harmony 49
4.1 Harmonization . 50
4.2 Need to Coordinate Auto-tuners . 51
4.3 Collaborative Tuning via CSL . 53
4.4 Framework Components . 56

4.4.1 Code-server . 56
4.4.2 Projection Component . 56
4.4.3 Database Component . 57

4.5 Summary . 59

iv

5 Application-level Auto-tuning 60
5.1 Parameter Ordering Scheme . 62
5.2 Empirical Results . 62

5.2.1 PSTSWM . 63
5.2.2 High Performance Linpack (HPL) 67
5.2.3 Parallel Ocean Program . 70

5.3 Summary . 74

6 Compiler based auto-tuning 75
6.1 Motivation . 75
6.2 Parallelizing Expansion Check Step 77
6.3 System Design . 79

6.3.1 Loop Transformation Framework: CHiLL 79
6.3.2 Overall System Workflow . 80

6.4 Empirical Results . 82
6.4.1 Performance of PRO-C . 84
6.4.2 Triangular Solver (TRSM) . 87
6.4.3 Jacobi . 88

6.5 Summary . 90

7 Whole Program Tuning 91
7.1 Overall Workflow . 92
7.2 Subject Application: SMG2000 . 94
7.3 Empirical Results . 95
7.4 Summary . 98

8 Runtime auto-tuning 99
8.1 System Design . 101

8.1.1 Code-servers . 101
8.1.2 Overall Workflow . 102

8.2 Empirical Results . 104
8.2.1 Platforms . 105
8.2.2 Calculating the “Net” Speedup 106
8.2.3 Code-server Sensitivity . 107
8.2.4 Subject Application: Poisson’s Equation Solver (PES) 110
8.2.5 Subject Application: Parallel Multiblock Lattice Boltzmann

(PMLB) . 115
8.2.6 Cross-platform Comparison 122

8.3 Summary . 123

9 Future Work 125
9.1 Short-term Vision . 125

9.1.1 Code-tuning API . 125
9.1.2 Online Tuning for AMR Codes 126
9.1.3 Code-server Sensitivity . 126

v

9.2 Long-term Vision . 127
9.2.1 Power Auto-tuning . 127
9.2.2 Communication Tuning for Exascale Systems 129
9.2.3 CHiLL Recipe Library . 130
9.2.4 CSL Library . 131

10 Conclusion 132

A Constraint Specification Language 135

Bibliography 140

vi

List of Tables

4.1 A simple CSL specification and the corresponding python output . . 55
4.2 Projection API . 58

5.1 PSTSWM parameters . 65
5.2 Summary of results for PSTSWM . 66
5.3 Tunable input parameters for HPL 68
5.4 POP parameters . 71
5.5 Summary of results for POP . 73

6.1 Compiler-based tuning: top table shows kernels used for experiments.
Bottom table provides the transformation recipes and constraints . . 82

6.2 MM results - alternate simplex sizes 85

7.1 SMG2000 tuning: top table shows the kernel. Bottom table provides
the transformation recipe and constraints (SMG2000) 96

7.2 SMG2000: full run performance . 98

8.1 Sensitivity experiment results . 109
8.2 PES tuning: top table shows the kernels. Bottom table provides the

transformation recipes and constraints 111
8.3 PMLB tuning: top table shows the kernel. Bottom table provides

the transformation recipe and constraints 116
8.4 Results for cross-platform experiments 121

A.1 Constraint Specification Language grammar - Part I 136
A.2 Constraint Specification Language grammar - Part II 137
A.3 Search specification for MM tuning (tiling and unrolling) 138
A.4 Python script output for MM specification 139

vii

List of Figures

1.1 Parameter space for tiling and unrolling for MM 4

3.1 Single iteration time plot for 3 algorithms 28
3.2 Total time plot for 3 algorithms . 29
3.3 Original 4 point simplex in a 2-dimensional space, along with the

simplex transformation steps . 34
3.4 Illustration for expansion check step 34
3.5 Running time for 800 iterations of the GS2 program on 4 out of 64

parallel processors . 44
3.6 pdf of the GS2 data . 45
3.7 1-cdf of the GS2 data . 46
3.8 pdf of the truncated GS2 data . 46
3.9 1-cdf of the truncated GS2 data . 47

4.1 A simple use-case scenario for Active Harmony 51

5.1 GS2 performance plot with two tunable parameters. 61
5.2 Comparison of best performing points of PRO and Nelder-Mead Al-

gorithm . 66
5.3 Comparison of best performing points of PRO and Nelder-Mead Al-

gorithm . 70
5.4 Comparison of the best performing points of PRO and Nelder-Mead

Algorithm . 72

6.1 Overall system workflow diagram . 81
6.2 Effects of different degree of parallelism on the convergence of PRO-C 84
6.3 Performance distribution for randomly chosen MM configurations . . 86
6.4 Results for MM kernel . 87
6.5 Results for TRSM kernel . 88
6.6 Results for Jacobi kernel . 89

7.1 Overall workflow: SMG2000 tuning 93
7.2 Search evolution for offline SMG2000 tuning 97

8.1 Fig.8.1-(a) shows the overall online tuning workflow Fig.8.1-(b) shows
application level view of the auto-tuning workflow 103

8.2 Sensitivity results demonstrating how the change in the number of
code-servers affects the search evolution 108

8.3 A plot for aggregate worst timing at each iteration 112
8.4 Performance improvement of harmonized PES, net speedup, and post-

harmony run of the solver (64 core run on umd-cluster) 113
8.5 Performance improvement of harmonized PES, net speedup, and post-

harmony run of the solver (128 core run on umd-cluster) 114

viii

8.6 Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (64 core run on umd-cluster) 117

8.7 Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (128 core run on umd-cluster) 118

8.8 Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (256 core run on Carver) 119

8.9 Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (512 core run on Carver) 119

8.10 Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (512 core run on Hopper) 120

8.11 Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (512 core run on Hopper) 120

ix

Chapter 1

Introduction

Today’s complex and diverse architectural features require applying nontrivial

optimization strategies on scientific codes to achieve high performance. As a result,

programmers usually have to spend countless hours in modifying and tuning their

codes. Furthermore, a code that performs well on one platform often faces perfor-

mance problems on another; therefore, the tuning process must be largely repeated

to move from one computing platform to another. Recently, there has been a grow-

ing interest in developing empirical auto-tuning software that helps programmers

manage this tedious process of tuning and porting their codes. Empirical auto-

tuning software (or auto-tuners) can be broadly grouped into three categories: (1)

compiler-based auto-tuners that automatically generate and search a set of alterna-

tive implementations of a computation [16, 95, 33]; (2) application-level auto-tuners

that automate empirical search across a set of parameter values proposed by the ap-

plication programmer [18, 62]; and, (3) runtime auto-tuners that automate on-the-

fly adaptation of application-level and architecture-specific parameters to react to

the changing conditions of the system that executes the application [11, 87]. What

is common across all these different categories of auto-tuners is the need to search a

range of possible configurations to identify the best-performing solution. The result-

ing search space of alternative configurations can be very complex and prohibitively

1

large. Therefore, a key challenge for auto-tuners, especially as we expand the scope

of their capabilities, involves scalable search among alternative configurations.

While it is important to keep advancing the state-of-the-art in auto-tuning

software from the above three categories, our research demonstrates that full appli-

cations require a mix of these rather disjoint tuning approaches: compiler-generated

code, application-level and runtime parameters exposed to auto-tuning environ-

ments. This brings us to the thesis of our research: Full applications demand and

benefit from a cohesive environment that can seamlessly select between different kinds

of auto-tuning techniques and that employs a scalable search to manage the cost of

the search process.

To investigate the thesis of our research, we have introduced several exten-

sions to a scalable end-to-end auto-tuning infrastructure — Parallel Active Harmony

(henceforth referenced as Active Harmony). Active Harmony takes a search-based

collaborative approach to auto-tuning. Application programmers, library writers

and compilers collaborate to describe and export a set of performance related tun-

able parameters to the Active Harmony system. These parameters define a tun-

ing search-space. The auto-tuner monitors the program performance and suggests

adaptation decisions. The decisions are made by a central controller using a parallel

search algorithm. The algorithm leverages parallel architectures to search across a

set of optimization parameter values. Different nodes of a parallel system evaluate

different configurations at each timestep.

Active Harmony can be used to tune compiler-level parameters, application-

level input parameters and runtime parameters. Furthermore, our system supports

2

runtime adaptive code-generation and tuning for parameters that require new code

(e.g. loop unroll factors, loop permutation orders). Effectively, we merge tradi-

tional feedback directed optimization and just-in-time compilation. This feature also

enables application developers to write applications once and have the auto-tuner

adjust the application behavior automatically when run on new systems.

In the next section, we motivate the need for a search-based auto-tuner. We

then identify various sources of tunability in real codes and discuss how those sources

can be exploited by auto-tuners to find optimal parameter configurations faster.

1.1 Motivation

To motivate the need for auto-tuning, we consider the problem of tuning matrix

multiplication, a well-known and well-studied benchmark kernel. We apply two

code-transformations to this kernel — tiling1 and unrolling2. More precisely, we

take a näıve IJK-implementation and tile all three loops with the same tile-size and

unroll the innermost loop. Tiling factors range from 2 to 80 and unrolling factors

from 2 to 32. Figure 1.1 illustrates how tiling and unrolling transformations interact

with each other. We elaborate on these interactions in chapter 6. The figure shows

the performance of square matrix multiplication (of size 800× 800) as a function of

tiling and unrolling factors. The search space is not smooth and contains multiple

1Tiling loop transformation partitions a loop nest’s iteration space into small blocks and then
iterates through those blocks in sequence. The goal is to maintain a small data footprint for the
sub-loop nests for better cache usage.

2Unrolling replicates a loop body by a given factor and then steps the loop by the same factor.
Unrolling simplifies the control flow and exposes independent computations to the scheduler to
improve instruction-level parallelism.

3

 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50 60 70 80

 0
 5

 10
 15

 20
 25

 30
 35

 1
 2
 3
 4
 5
 6
 7
 8

Runtime

Parameter Interaction (Tiling and Unrolling for MM, N=800)

Tile Size

Unroll Amount

Runtime

Figure 1.1: Parameter space for tiling and unrolling for MM

minimums and maximums. The best and the worst configurations are a factor of

six different.

This example demonstrates the need for search-based auto-tuning systems to

adapt code. The relatively large plateau of good performance is also typical of many

applications we have studied. Such a topography argues for the need to have auto-

tuning systems that rapidly get applications out of “bad” regions of performance

and into the “good” ones. Achieving optimal performance is a secondary goal once

“good” performing region is reached.

1.2 Auto-tuning Modes

Auto-tuning can be performed in either offline or online mode. Offline mode

refers to tuning between successive full application runs. The performance data

4

collected in this fashion can be used for training based application tuning as well.

This mode is often used for parameters that are read once when the program starts

and must remain fixed throughout the execution of the application. For example,

a parameter which governs data distribution can be tuned in an offline mode to

minimize communication costs. In addition, the offline mode can also be used to for

auto-tuning compiler-generated code.

Online mode refers to runtime tuning during production runs. This mode is

used when application parameters can be adapted during runtime for improved per-

formance. For example, in a 3D Jacobi algorithm, blocking factors for the triply

nested stencil loops can be changed across different iterations to get a better cache

reuse. Online tuning has the privilege of exploiting fine-grained, up-to-date and

accurate performance data that can be directly linked back to specific code sec-

tions, characteristics of input datasets, architecture specific features and changing

conditions of the system.

1.3 Sources of Tunable Data

Auto-tuners do not randomly create things to change in a program. Rather

they provide a way optimize a program’s performance based on trying out a set of

possible changes. This set of possible changes comes from many sources including

options that application programmers discover, library parameters and algorithmic

choices that depend on library use, and from possible code transformations identified

by compilers.

5

In addition to considering what can change, another important source of out-

side guidance for auto-tuning is insight on how changes might impact performance.

Information from performance models that are parametrized by the tunable com-

ponents can help guide an auto-tuning system to the correct values to use. Even

simple non-parametric models can help to indicate how close an auto-tuning system

is to reaching the best achievable performance. We provide a simple language that

programmers, library writers, compilers and performance modeling experts can uti-

lize to express this information to the auto-tuners. The language is presented in

chapter 4.

Another source of data for tuning is to use training runs to auto-tune the

software based on a well defined benchmark or typical workload. Training runs are

application executions designed mainly to produce performance data that feed into

the auto-tuning process. A single auto-tuning run can evaluate several configura-

tions. More often than not, several auto-tuning runs are performed with slightly

different settings (e.g. different input sizes) before the application is run under

production mode. Therefore, if a database of such evaluations (along with some

context information) is maintained locally, tuning time can be reduced by consult-

ing the database during consecutive auto-tuning runs. We use this technique in

Active Harmony. A more elaborate discussion is provided in chapter 4.

Target architecture parameters such as cache sizes, memory bandwidth, reg-

ister file size etc. can be used rule out mediocre configurations from the parameter

space. For example, the tile-size parameter for tiling loop transformation can be

constrained by half of the available cache. In addition, runtime tuning can take

6

advantage of the input dataset knowledge to further reduce the search space. An

example of this would be to opt out from data-copy optimization for matrix multipli-

cation if the input matrices fit in the largest available cache. We elaborate more on

how this architecture-specific and runtime information is used by Active Harmony

in chapters 6, 7 and 8.

In this dissertation, we make the following contributions:

1. We present a unified end-to-end tuning solution for scientific applications and

show that full applications benefit from such a system. Our system can be

used to tune compiler-level parameters, application-level input parameters and

runtime parameters.

2. We present a powerful parameter tuning algorithm that leverages parallelism

to converge to solutions faster. Multiple, sometimes unrelated, configurations

are evaluated simultaneously at each search step.

3. We study performance variations inherent in today’s HPC architectures and

suggest robust strategies that function properly, even when application per-

formance is variable.

4. We present an auto-tuning approach that supports runtime adaptive code-

generation and tuning for parameters that require new code. This feature

enables programmers to write applications once and have the auto-tuner adjust

the application behavior automatically when run on new systems or on the

same system with a new workload.

7

5. We demonstrate how our system allows simultaneous tuning of multiple ap-

plication components.

6. We present a simple interface for application programmers, library writers,

compilers and performance modelers to interact with auto-tuners. This part

of our work is aimed at bridging the communication gap that exists between

these communities.

8

Chapter 2

Related Work

One of the main contributions of this work is the integration of three dis-

joint auto-tuning techniques — application-level input parameter tuning, compiler-

based tuning, and runtime tuning. The integrated framework is general-purpose

and can be used to tune whole applications. We divide the projects that are related

to our work into seven broad categories — domain-specific auto-tuners, compiler-

based auto-tuners, application-level auto-tuners, runtime auto-tuners, auto-tuning

via performance modeling, and search algorithms for high-dimensional optimiza-

tion spaces. Finally, we discuss relevant projects that have studied performance

variability in high performance computing platforms.

2.1 Domain-specific Auto-tuners

There are many research projects working on empirical optimization of linear

algebra kernels and domain specific libraries. ATLAS [89] uses the technique to

generate highly optimized BLAS routines. The Oski (Optimized Sparse Kernel In-

terface) [88] library provides automatically tuned computational kernels for sparse

matrices. FFTW [30] and SPIRAL [93] are domain specific libraries. FFTW com-

bines the static models with empirical search to optimize FFTs. SPIRAL generates

empirically tuned Digital Signal Processing (DSP) libraries.

9

Datta et al [24] explore architecture-specific optimizations for stencil compu-

tations — a class of algorithms that are at the heart of many structured grid codes.

They use a Perl code generator that produces multithreaded C code variants which

utilize their stencil computation optimization strategies. In addition, they use a

search-based component that navigates the parameter space through a combination

of explicit search for the global maximum with heuristics that constrain and prune

the search space.

Williams et al [90] apply the idea of search-based auto-tuning to lattice Boltz-

mann application, which is characterized by complex data structures and memory

access patterns. The authors use a code generator that generates variants. These

variants use various optimization strategies such as loop unrolling and reordering,

simdization, software prefetching, TLB blocking etc. The system then identifies

highly optimized platform-specific versions for a variety of architectures.

Chandramowlishwaran et al [12] look into single-node performance optimiza-

tion, tuning and analysis of the fast multipole method (FMM) on a diverse set of

multi-core systems. They consider numerous performance enhancing strategies for

FMM — low-level instruction selection, SIMD vectorization and scheduling, numer-

ical approximation, data structure transformations, OpenMP-based parallelization,

and tuning of algorithmic parameters.

Domain-specific libraries, in most cases, are better suited than Active Har-

mony to handle domain-specific computations. Our goal is different in that we pro-

vide a general-purpose compiler based framework, which can generate and evaluate

different optimizations that can be applied on arbitrary application codes.

10

2.2 Compiler-based Auto-tuners

Compiler-based auto-tuning frameworks mostly target loop optimizations that

can exploit available memory hierarchy. Tuning is done by generating a set of

equivalent alternatives and by searching/selecting the one that performs best on the

target architecture. Apart from an efficient search algorithm to navigate the search

space of loop transformation parameters (e.g. tiling factors, loop permutations),

another key requirement for a compiler-based auto-tuning framework is a code-

generation framework that can generate code rapidly during the search. In this

section, we first discuss compiler frameworks that encourage application developer

and expert participation in deciding what optimization strategy to use for a given

piece of code. We then discuss projects that use these frameworks to do empirical

tuning.

2.2.1 Code-transformation Frameworks

POET [94] is a transformation scripting language embedded in an arbitrary

programming language. It is interpreted by a POET compiler to apply source-to-

source code transformations. TLOG [45] is a code generator for parameterized tiled

loops where tile sizes are symbolic parameters. Symbolic tile-size enables static or

runtime tile size optimization without repeatedly generating the code and recom-

piling it for each tile size. Interactive Compilation Interface (ICI) [31] provides a

flexible and portable interface to internal compiler optimizations so that iterative

optimization [3] can be applied at the loop or instruction-level by adjusting opti-

11

mization decisions externally.

Several tools for loop transformations and code generation are based on poly-

hedral representation of loops. Such representation facilitate compilers to compose

complex loop transformations in a mathematically rigorous way to ensure code cor-

rectness. WRaP-IT [33] and Petit [43] are both polyhedral loop transformation

frameworks that support composition of transformations. LeTSeE [71] is an it-

eration optimization tool based on the polyhedral model. It finds all legal affine

scheduling of a loop nest and explores this space to find the best scheduling and

parameter values. Pluto [9] is an automatic parallelization and locality optimization

tool also based on the polyhedral model.

CHiLL [14, 15] is another polyhedral loop transformation and code generation

framework. CHiLL provides capability for composing high-level loop transforma-

tions with a simple script interface to describe the transformations and search space

to the search engine. It supports a wide array of loop transformations (for both

perfect and imperfect loop nests) required to achieve high-performance on today’s

computer architectures. We use CHiLL in our compiler-based auto-tuning work.

2.2.2 Auto-tuning Frameworks

In this section, we discuss relevant projects that use search algorithms to ex-

plore compiler generated parameter spaces. Orio [35] is an extensible annotation

system, implemented in Python, that aims to improve both performance and pro-

ductivity by enabling software developers to insert annotations into their source

12

code (in C or Fortran) that trigger a number of low-level performance optimizations

on a specified code fragment. The tool generates many tuned versions of the same

operation using different optimization parameters, and performs an empirical search

for selecting the best among multiple optimized code variants.

Kisuki et al [46] address the problem of selecting tile sizes and unroll factors

simultaneously. Different search algorithms are used to search the parameter space

— Genetic algorithms, Simulated Annealing, Pyramid search, Window search and

Random search. Qasem et al [74, 72] use a modified version of pattern-based di-

rect search algorithm to explore the same search space. In addition, they provide

compiler-based tuning for whole applications. The framework performs an offline

search on compiler generated search spaces.

Triantafyllis et al [84] use iterative compilation technique to explore the space

of optimizations offered by compilers. The framework uses the compiler writers’

knowledge to select a small number of promising optimization alternatives for a

given code segment. Time required for multiple compilations is kept under control

by evaluating only these alternatives for hot code segments.

Our work on compiler-based auto-tuning considers a much broader range of

loop transformations and our auto-tuner can also effectively navigate the space of

optimizations offered by compilers. The design of our system separates the search

algorithm from the code-generation part, which allows us to easily switch between

different underlying code-generation tools (e.g. if we are tuning CUDA code, we

can switch to a code-transformation framework that supports CUDA code trans-

formation). Finally, Kisuki et al[46] report converging to a solution in hundreds of

13

iterations. By effectively utilizing the underlying parallel infrastructure, we converge

to solutions in a few tens of iterations.

2.3 Application-level Auto-tuners

Scientific applications and libraries expose a set of input parameters which

allow the end-users to adjust their execution behavior to the characteristics of the

execution environment. The selection of appropriate parameter values is, thus,

key in ensuring maximum throughput. Application-level auto-tuning frameworks

attempt to identify a set of input parameters that delivers a reasonable performance.

Nelson et al [62] focus on empirical techniques to find the best integer value

of application-level input parameters that the programmer has identified as being

critical to performance. Programmers provide high-level models of the impact of

parameter values, which are then used by the tuning system to guide and to prune

the search for optimal input parameters. Hunold et al [38] consider input parameter

tuning for the matrix-matrix multiplication routine PDGEMM of ScaLAPACK [17].

PDGEMM is a part of PBLAS, which is the parallel implementation of BLAS (Basic

Linear Algebra Subprograms) for distributed memory systems. Input parameters

selected for experimentation include the dimension of input matrices, number of

processors, logical processor grid and three blocking factors (one for each dimension).

Experimental evaluation provides results with up to 47% increase in performance

for PDGEMM.

Chung et al [19] use short benchmarking runs to reduce the cost of full appli-

14

cation execution incurred in application-level input parameter tuning. Short bench-

marking runs exercise all aspects of the application (or at least all aspects that are

influenced by the choice of input parameters). The authors use their search algo-

rithm (modified Nelder-Mead search) to navigate input parameter space of large-

scale scientific applications. Similar ideas of using program reduction methods to

tune application-level input parameters have also been reported by Che et al [13].

In our application-level input parameter tuning and offline tuning of whole

applications, we utilize the idea of the short benchmarking runs. The main difference

between the related projects and our system is that we use a parallel search algorithm

to find better performing parameter configurations at a much faster rate.

2.4 Runtime Auto-tuners

Several techniques have been put forth to dynamically adapt a program to a

given input and the runtime environment. Autopilot [75] is an online tuning frame-

work for parallel applications. Based on application request patterns and observed

system performance, Autopilot’s real-time adaptive control mechanism automati-

cally chooses and configures resource management algorithms. There are three main

software components — “sensors”, “decision-procedures” and “actuators”. Sensors

are used to extract quantitative and qualitative application performance data. Deci-

sions are made by the decision-procedures using fuzzy logic, where are then executed

by actuators by changing parameter values of applications and resource management

policies of the underlying system.

15

AppLes [8] and Odyssey [65] both are application-centric tools and emphasize

application level resource awareness. Applications adapt by (re)allocating the re-

sources based upon a customized scheduling to maximize their performance. Rather

than leaving the adaptation decisions to applications, Active Harmony’s approach

uses a centralized server to control such decisions and to coordinate the tuning of

multiple application components.

CUMULVS [32] is an infrastructure library that allows a programmer to easily

extract data from a running parallel simulation and send the data to a visualization

package. CUMULVS includes the capability to steer user-defined parameters in a

distributed simulation. The programmer defines the decomposition of parallel data

and the number and types of scalar parameters, and CUMULVS does the rest.

It supports the simultaneous viewing of multiple dynamically attached front-end

visualization programs, or viewers.

SciRUN [67] is a scientific programming and debugging environment that al-

lows interactive steering of large scale applications. SciRUN enables scientists to

design and modify models and automatically change parameters and boundary con-

ditions as well as the mesh discretization level needed for an accurate numerical

solution. Our approach in Active Harmony is different because we do not attempt

to alter the execution in a manner that can change the output of the program.

We only consider performance-related parameters that do not affect the program’s

output or correctness.

Dynamic code-generation and runtime loading of different versions of code-

sections is a technique that has been used both in the context of dynamic software

16

updating [60] and auto-tuning [87]. ADAPT [87] is a compiler-supported infrastruc-

ture for high-level adaptive program optimization. It allows developers to leverage

existing compilers and optimization tools by describing a runtime heuristic for apply-

ing techniques in a domain specific language, ADAPT Language. ADAPT supports

remote dynamic compilation, parameterization and runtime sampling, allowing de-

velopers the flexibility in heuristic development. Our work is distinct from ADAPT

in two ways. First, we target SPMD-based parallel applications and use the par-

allelism to our advantage by evaluating multiple parameter configurations within

one search iteration. Second, our system is designed to tune multiple code-sections

simultaneously.

CPO (Continuous Program Optimization) [11] uses monitoring agents that

collect information from all layers of an application execution stack. This informa-

tion is used to model the application behavior and predict the relative benefit of

using large pages for different application data structures.

MATE [57] performs dynamic tuning in three basic and continuous phases:

monitoring, performance analysis and application modification. This environment

dynamically and automatically instruments a running application to gather informa-

tion about the application’s behavior. The analysis phase receives events, searches

for bottlenecks, detects their causes and gives solutions on how to overcome them.

Finally, the application is dynamically tuned by applying a solution described by

simple performance models. Our work is distinct from MATE in that we use ef-

fective and light-weight algorithms to search for optimal parameters rather than

relying on simple performance models.

17

PetaBricks [4] is an implicitly parallel language and compiler that allows a

programmer to describe algorithmic choices explicitly; the idea is to allow the com-

piler to perform deeper optimization. Using this mechanism, PetaBricks programs

define a search space of possible algorithmic program pathways. At runtime, an

auto-tuner composes the program pathways using fine-grained algorithmic choices

and finds the right choice for many other parameters.

Otto et al [66] present a language-based auto-tuner that targets applications

that use task and pipeline parallelism. Their approach automatically infers tun-

ing parameters from high-level parallel language constructs. Instead of identifying

and adjusting tuning parameters manually, the system exploits compiler’s context

knowledge about the program’s parallel structure and appropriate heuristics to fig-

ure out the values for tunable parameters at runtime. We have designed the Active

Harmony API so that the changes that must be introduced in an application to

make it tunable are minimal. Language-based auto-tuners, in most cases, require

application developers to make extensive code modifications.

2.5 Auto-tuning via Performance Modeling and Analysis

Many groups [39, 52, 44, 79, 81], have used modeling techniques to study

application behavior and to predict application performance. Ipek et al [39] uses

machine learning techniques to build performance models. The idea is to build

the model once and query it in the future to derive performance prediction for

different input configurations. The model is trained on a dataset which consists

18

of points spread regularly across the complete input parameter space. After the

training phase, they query their model at runtime for points in the full parameter

space. The paper reports that their model can predict application performance

for points not included in the training dataset within 5-7% of actual application

runtime. Others [79] and [52] have also used similar machine learning techniques to

build performance models. The key limiting factor of the listed modeling techniques

is the size of the training set. Ipek et al report using training set of size 3K (for

SMG2000), which amounts to 3K unique executions of the application just to train

the model. Active Harmony avoids the cost of these training runs and can improve

application performance within one single execution.

Kerbyson et al [44] present predictive analytical model that accurately reflects

the behavior of SAGE, a multidimensional hydrodynamics code with adaptive mesh

refinement. Inputs to the model include machine-specific information such as latency

and bandwidth and application-specific information such as data-decomposition,

problem size etc. Vetter et al [86] use the idea of performance assertions. Per-

formance assertions are expressions that contain a variety of tokens that represent

empirically measured performance metrics, constants, variables, mathematical oper-

ations etc. By allowing the user to specify a performance expectation with individual

code segments, the runtime system can jettison raw data for measurements that pass

their expectation, while reacting to failures with a variety of responses. Static mod-

els, performance expectations and assertions become outdated when architectures

and compilers change. Moreover, since models usually make a lot of simplifying

assumptions, they can be rendered ineffective as the size and the complexity of the

19

problem being solved changes.

There are several tools that provide performance analysis of parallel programs.

Scalea [85] is a performance instrumentation, measurement, analysis and visualiza-

tion tool for parallel programs that supports post-mortem and online performance

analysis. A graphical user interface provides an access to performance metrics at

the level of arbitrary code regions, threads, processes, and computational nodes.

KappaPI 2 [42] tool is a performance analysis tool designed to incorporate par-

allel performance knowledge about performance bottlenecks. The tool is able to

detect and analyze performance bottlenecks and then make suggestions to the user

to improve the application behavior.

TAU [78] is a portable profiling and tracing toolkit for parallel programs. TAU

is capable of gathering performance information through instrumentation of func-

tions, basic blocks and statements. A graphical interface allows users to explore the

performance data and to pinpoint potential performance problems. HPCToolkit [2]

is an integrated suite of tools that supports measurement, analysis, attribution and

presentation of application performance for both sequential and parallel programs.

The tool can identify and quantify scalability bottlenecks in fully optimized parallel

programs. Active Harmony utilizes the information presented by these performance

analysis tools to determine whether there are opportunities for performance im-

provement.

20

2.6 Search Algorithms

In this section, we briefly review some search algorithms that have been used

in various auto-tuning frameworks. While this is not a complete set of search algo-

rithms used in the auto-tuning realm, we describe the most widely used algorithms.

ATLAS [89] uses orthogonal line search, which optimizes each tunable parameter

independently by keeping the rest fixed to their reference values. The parameters

are tuned in a pre-determined order and each successive parameter tuning uses the

optimized values for parameters that precede it in the ordering. The disadvantage of

using this search in a general-purpose framework is that it requires a pre-determined

ordering for parameters. ATLAS exploits years of experience in dense linear algebra

tuning to determine appropriate ordering for parameters. However, such knowledge

is not available for general-purpose tuning cases.

Several auto-tuners [46, 20, 50] have used genetic algorithms (GA). GA algo-

rithm starts by randomly generating an initial population of possible configurations.

Each configuration is represented as a genome and the “fitness” of the configuration

is the performance metric. Based on the fitness, each successive iteration of the

algorithm produces new set of configurations by using genetic operations — muta-

tion, crossover and selection. While GA has shown its promise by converging to

good configurations, the key disadvantage lies in its long convergence time. Fur-

thermore, the transient behavior of GA is unpredictable and jittery, which makes

the algorithm unsuitable for online tuning of production codes.

Direct search methods are also popular among auto-tuners. These methods do

21

not explicitly use function derivatives. The parameter tuning problem is a very good

use-case for direct search methods, since in most cases the performance function at a

given point in the search space have to be evaluated by actually running the program.

The Nelder-Mead Simplex algorithm [61], is one of the most widely used direct search

methods in auto-tuning systems [1, 23, 35]. We provide a high-level description of

the algorithm in chapter 3. The Nelder-Mead algorithm sometimes finds solutions

efficiently, however, many studies [51, 56, 47] have described unpredictable behavior

of the algorithm as the number of parameters (search space dimension) increases.

Looptool [74], which is a compiler-based auto-tuning framework uses pattern-

based direct search method proposed by Hookes and Jeeves [37]. The pattern-based

search method have been observed to be very reliable method, however, in some

cases, the convergence time of the algorithm is slow [47].

2.7 Performance Variability

Performance variation in parallel architectures is discussed by Kramer et al[49].

The authors explore the amount of variation seen in large distributed memory sys-

tems. They analyze the causes for the observed variations and discuss what can be

done to decrease the variations without impacting performance. Petrini et al [69]

attempt to quantify performance variability. The authors use models to quantify the

gap between measured and expected application performance. Their approach also

evaluates the contribution of various sources of variability to the overall application

behavior.

22

Mraz et al [59] look into the performance variability in point-to-point com-

munication. This work pinpoints several causes for this variability — daemons,

interrupts, and other system activity. They also analyze multiple techniques to re-

duce the performance loss (e.g. raising the priority of user application above that

of the system daemons).

Most of the published work in studying and quantifying performance variabil-

ity in real systems provide a systematic mechanism to find the causes of variations,

and then discuss strategies to fix them. Our approach is different; we model per-

formance variations as a stochastic process and suggest strategies that function

properly, even when application performance is variable.

23

Chapter 3

Parameter Tuning Algorithm

A key to any auto-tuning system is how it goes about selecting the specific

combinations of choices to try. We refer to this process as the search algorithm.

While a simple parameter space might be exhaustively searched, most systems con-

tain too many combinations to try them all. Instead, an auto-tuning system must

rely on search heuristics to evaluate only a sub-set of the possible configurations

while trying to find an optimal one (or at least as nearly optimal as practical). In

this chapter, we focus on the design of this algorithm. Parameter tuning problems

have some distinct characteristics and requirements that must be considered when

designing the optimization algorithm. The characteristics and requirements are:

1. Exponential size of the Optimization Space: Consider an application

with 10 tunable parameters. If each of the tunable parameter takes 4 values,

the size of the parameter space is 220. Our optimization algorithm should be

capable of tuning multiple parameters at one time while exploring only a small

fraction of the search space.

2. Unstructured Optimization Space: Many of the optimization algorithms

work appropriately on well structured problems. For instance, gradient based

algorithms are appropriate for continuous convex optimizations. In Active

Harmony, we are often dealing with integer restricted parameters and an un-

24

known non-convex function with multiple local minimums. Therefore, we have

to resort to a class of optimization algorithms that work under these condi-

tions.

3. Parallel Search: We are primarily interesting in tuning high performance

scientific applications. These applications are run on parallel computing plat-

forms. Therefore, it is desirable to employ optimization algorithms that can

take advantage of the underlying parallelism by searching for configurations

in parallel.

4. Performance Variability: The tuning process monitors the performance of

the application for different tunable parameter values and based on the ob-

served performance measurements modifies the parameters. The goal is to

ultimately find the parameter values that gives optimal, or at least, near opti-

mal performance. Most optimization algorithms assume perfect and accurate

data, which is not the case in real systems. The performance measurement for

an application with a fixed set of tunable parameters varies in time even on

the same platform. These variations are triggered by external factors such as

OS jitter. Therefore, it is desirable to develop algorithms that are resilient and

converge to good solutions, even in the presence of performance variability.

5. Performance Metric: The final result and the convergence time (in terms

of the number of evaluations of the objective function) are two common per-

formance metrics for optimization algorithms (used by the optimization algo-

rithms community). However, for auto-tuning systems, these are not the most

25

appropriate ones. For auto-tuning systems, the overall performance of the

system from the start to the end are equally important. This is particularly

critical for online optimization because if the transient behavior is poor, the

overall tuning time and hence the running time of the application will suffer.

Therefore, the appropriate performance metric should consider and capture

the transient behavior and performance of the intermediate points visited in

the path to the final solution.

6. Parameter Interactions: Tunable parameters interact with each other in

complex ways. For example, for loop-level transformation parameters, tile-size

parameter can limit unroll-factor parameter. Our parameter search algorithm

must take into account such interactions and be able to tune the parameters

simultaneously.

In the next section, we provide a problem definition for parameter tuning and

introduce the performance metric for the optimization algorithms.

3.1 Problem Definition and Performance Metric

We consider software applications with an iterative structure using SPMD

style computation. After finishing each iteration on all processors, information is

exchanged between nodes and the next iteration starts. We consider that the ap-

plication should run for a fixed number of iterations or timesteps, say K, to get the

ultimate result. Our objective is to minimize Total T ime(K), which is the time

that it takes to run the program for the desired number of timesteps, K. Suppose

26

that we want to run the application for K timesteps on P parallel processors. Let

Tk be the time that it takes to run the kth iteration, and tp,k be the time that it

takes to run kth iteration on the pth processor. We have,

Tk = max
p=1,···,P

(tp,k), (3.1)

and

Total T ime(K) =
K
∑

k=1

Tk. (3.2)

Our main performance metric is Total T ime(K). Two typical performance

metrics for optimization algorithms are the final solution after convergence and the

convergence speed. These asymptotic metrics could be misleading for auto-tuning,

since the number of iterations is fixed to K and the algorithm may not have enough

time to converge. Even if K is large enough that the algorithm converges, the overall

performance could be dominated by the performance of the algorithm at the initial

timesteps before convergence.

Furthermore, for every iteration k, the worst case performance (maximum

value) is used for Tk. This is again different from common practice, where the best

performance is considered in every iteration. Note that in our auto-tuning model

all processors should wait for the last processor before starting the next iteration;

hence, the worst case performance is the bottle neck 1.

To clarify the performance metric issues, consider three optimization algo-

1Our actual tuning system works for applications that do not have this synchronization require-
ment, but for the purpose of algorithm analysis it provides the worst case scenario.

27

0 100 200 300 400 500 600 700 800 900 1000
10−3

10−2

10−1

100

101

102

103

104 Single Iteration Time for 3 Algorithms

Time step

Ite
ra

tio
n

Ti
m

e

Algorithm 1
Algorithm 2
Algorithm 3

Figure 3.1: Single iteration time plot for 3 algorithms

rithms whose performance are plotted in figures 3.1 and 3.2. These algorithms are

different variants of direct search optimization methods that we discuss later in this

chapter. Figure 3.1 shows each iteration’s worst case performance, Tk, versus iter-

ation. This plot is closer to the plots that are typically used for comparison of the

optimization algorithms, where the best case performance is usually used. However,

for auto-tuning the Total Time plot of figure 3.2 is more appropriate. Note that the

Total Time curve of figure 3.1 is the integral of the worst case performance given in

figure 3.1. By looking at figure 3.1, one may conclude that Algorithm 3 is the best,

where as from figure 3.2, we can conclude that Algorithm 1 is more appropriate for

auto-tuning. The main reason behind the discrepancy is the transient behavior of

Algorithm 1 in the first 100 timesteps, where it has significant fluctuations.

In summary, for auto-tuning, initial transient behavior of the algorithm can

be more significant than the final value at the convergence point of the algorithm.

This fact should be taken into account in selecting the appropriate optimization

28

0 100 200 300 400 500 600 700 800 900 1000
0

5000

10000

15000

Time Step

To
ta

l T
im

e

Total Time for 3 Algorithms

Algorithm 1
Algorithm 2
Algorithm 3

Figure 3.2: Total time plot for 3 algorithms

algorithm. For instance, randomized scheduling algorithms such as Simulated An-

nealing and Genetic Algorithms that are often considered suitable for unstructured

optimization problems are not appropriate for auto-tuning, since even though they

can ultimately converge to the optimal solution, they have very poor initial perfor-

mance.

3.2 Direct Search Algorithms

Direct search methods are a class of optimization algorithms that do not ex-

plicitly use function derivatives. Consider the problem of finding a local minimum

of a real-valued function f(X). If f is differentiable and ∇f(X) can be computed

or estimated, there is a plethora of gradient-based algorithms to solve this problem.

However, if ∇f(X) is not available or if f is not differentiable, we have to rely on

alternative algorithms such as direct search methods. The parameter tuning prob-

29

lem is a very good example for the latter group, since in most cases the performance

function is not differentiable, and if it is differentiable, its gradient is not explicitly

computable.

The Nelder and Mead Simplex algorithm [61] is one of the most commonly used

direct search methods. In fact, prior to this thesis, the Simplex algorithm was used

in the Active Harmony system [23]. Despite its popularity, the Simplex algorithm

has several shortcomings, which motivated us to consider Rank Ordering algorithms.

The Rank Ordering algorithms are an alternative group of direct search algorithms.

In the following we briefly review the Simplex and Rank Ordering algorithms, and

then describe our Parallel Rank Ordering implementation for parameter tuning.

3.2.1 Simplex Algorithm

The Nelder-Mead Simplex method is a direct search algorithm for minimizing a

function of multiple variables. For a function of N variables, the algorithm maintains

a set of N +1 points forming the vertices of a simplex or polytope in N -dimensional

space. This simplex is successively updated at each iteration by discarding the

vertex having the highest function value and replacing it with a new vertex having

a lower function value.

Let v0, · · · , vN be the vertices of the corresponding simplex and vN be the point

with the highest function value among them. We first compute c, the centroid of

the other simplex vertices:

c =

(

N−1
∑

i=0

vi

)

/N (3.3)

30

The point vN will be replaced by a point on the line vN +α(c−vN). Typically,

α ∈ {0.5, 2, 3}, but the α selection process depends on implementation. Usually, the

first step is to compute the function value at the reflection point (α = 2). Depending

on the result we either check for expansion (α = 3) or contraction (α = 0.5). If none

of the computed values is less than the function value at vN , we contract the whole

simplex around the best point.

The simplex algorithm works well, however, the algorithm is inherently se-

quential and is not able to fully take advantage of parallel infrastructures. In the

online tuning applications that we consider, often there are multiple processors that

are executing the same or very similar code and after each iteration they exchange

information. Therefore, it is desirable to use different parameter values on different

processors and evaluate their performance concurrently. Rank Ordering algorithms

can take advantage of the concurrent performance evaluation to speedup conver-

gence.

3.2.2 Rank Ordering Algorithm for Parameter Tuning

Kolda, et al. [47] introduces a class of reliable direct search algorithms, Gen-

erating Set Search (GSS). They also prove that if the objective function f is con-

tinuously differentiable, then GSS produces a sequence of points Xk such that,

lim
k→∞

inf ‖∇f(Xk)‖ = 0. (3.4)

This result is similar to the convergence results for gradient based algorithms,

31

Algorithm 1 : Sequential Rank Ordering

1: Start with initial simplex with vertices {v0
0 , · · · , v

n
0 } and evaluate f(vj

0), j = 0, · · · , n
2: k = 0
3: while Stopping criteria not valid do

4: Reorder simplex vertices so that f(v0
k) ≤ · · · ≤ f(vn

k)
5: rk = 2v0

k − vn
k , evaluate f(rk) {Reflection checking step}

6: if f(rk) < f(v0
k) then

7: ek = 3v0
k − 2vn

k , evaluate f(ek) {Expansion checking step}
8: if f(ek) < f(rk) then {Accept expansion}
9: v

j
k+1 = 3v0

k − 2vj
k, evaluate f(vj

k+1) j = 1, · · · , n {Expansion steps}
10: else {Accept reflection}
11: v

j
k+1 = 2v0

k − v
j
k, evaluate f(vj

k+1) j = 1, · · · , n {Reflection steps}
12: end if

13: else {Accept shrink}
14: v

j
k+1 = 0.5(v0

k + v
j
k), evaluate f(vj

k+1) j = 1, · · · , n {Shrink steps}
15: end if

16: k = k+1
17: end while

since it guarantees that the GSS algorithms converge to a stable point of the objec-

tive function f . Therefore, compared to non-GSS direct search methods, the GSS

algorithms have predictable and more reliable performance.

In Active Harmony, we use Rank Ordering direct search algorithms [53], which

are in the GSS class and constitute all necessary conditions for convergence. The

Rank ordering algorithms can leverage parallelism [25] to speedup convergence. For

clarity and brevity, we explain Rank Ordering algorithms in the basic form appro-

priate for our application and not in the most general form.

Rank Ordering algorithms start with an initial simplex with vertices {v0
0, · · · , v

n
0 }

and evaluate f at all vertices. The initial simplex should span the optimization

space, hence n ≥ N . At every iteration, the simplex is either reflected, expanded or

shrunk around its best vertex (the vertex with the least function value).

Algorithm 1 is the basic Sequential Rank Ordering (SRO) algorithm given in

32

[53]. At each iteration, one of the three possible steps of reflection, expansion, or

shrink will be accepted. Examples for each one of these steps are shown in figure 3.3

for a 2-dimensional space and a 4 point simplex.

At each iteration rk, the reflection point of the worst vertex, vn
k around the

best vertex, v0
k is computed. Intuitively, the direction from the point with lowest

function value to the point with highest function value approximates the gradient

direction. If f(rk) is less than f(v0
k), i.e., the best performance point on the simplex,

we compute ek, the expansion of the worst point. If the expansion point performance

is better than the reflection point, we accept the expansion, otherwise we accept the

reflection. Note that reflection and expansion are only accepted if their performance

is better than the best point discovered so far (otherwise we shrink the simplex). This

is different from the Simplex algorithm approach, where the reflection is accepted if

its performance is better than the worst vertex of the simplex.

The Parallel Rank Ordering (PRO) for parameter tuning is given in Algo-

rithm 2. Function Π(.) that is used in PRO description is projection mapping — its

purpose is to make sure that the computed points always belong to the admissible

region (i.e. the points satisfy the constraints, see section 3.2.3). After initialization

steps the main loop starts in line 3. In the main loop, performance (function value)

at all the reflection points are found in parallel on n processors (line 5). If reflection

is successful, which means that there is at least one reflected point with better per-

formance than the best point of the simplex, we check for expansion (line 8). Recall

that in the SRO, we only compute one point in the reflection checking step (line 5

of Algorithm 1). Therefore, the PRO criteria for reflection and expansion, since it

33

Figure 3.3: Original 4 point simplex in a 2-dimensional space, along with the simplex
transformation steps

relies on performance of n points, is more reliable and improves the performance.

Note that before computing all expansion points (line 10), we check the out-

come of the expansion for only the most promising case first (line 8). The most

promising point (shown in Figure 3.4) is the point in the original simplex whose

reflection around the best point returns a better function value. This seems to be

Figure 3.4: Illustration for expansion check step

34

Algorithm 2 : Parallel Rank Ordering

1: Start with initial simplex with vertices {v0
0 , · · · , vn

0 } and evaluate f(vj
0), j = 0, · · · , n

in parallel on n processor.
2: k = 0
3: while Stopping Criteria Not Valid do

4: Reorder simplex vertices, so that f(v0
k) ≤ · · · ≤ f(vn

k)

5: Compute n reflection points r
j
k = Π

(

2v0
k − v

j
k

)

, and function values f(rj
k), j =

1, · · · , n in parallel on n processors. {Reflection step}
6: l = arg minj f(rj

k)
7: if f(rl

k) < f(v0
k) then

8: ek = Π
(

3v0
k − 2vl

k

)

, evaluate f(ek) {Expansion checking step}

9: if f(ek) < f(rl
k) then {Accept expansion}

10: Compute n expansion points e
j
k = Π

(

3v0
k − v

j
k

)

, and function values

f(ej
k), j = 1, · · · , n in parallel on n processors. {Expansion step}

11: v
j
k+1 = e

j
k j = 1, · · · , n

12: else {Accept reflection}
13: v

j
k+1 = r

j
k j = 1, · · · , n

14: end if

15: else {Accept shrink}

16: Compute Π
(

v
j
k+1 = 0.5v0

k + 0.5vj
k

)

, and f(vj
k+1) j = 1, · · · , n in parallel on n

processor. {Shrink step}
17: end if

18: k = k+1
19: end while

counter-intuitive at first glance, since we are not taking full advantage of the par-

allelism. However, in our experiments, we realized there are some expansion points

with very poor performance that can slow down the algorithm (for example, setting

a tile size to zero). Therefore, to avoid these time consuming instances and to ensure

good transient behavior of the search algorithm, we calculate the expansion point

performance for the most promising case first and only if it is successful, perform a

full expansion of the simplex.

If reflection is not successful and there is no reflected point performing bet-

ter than the best point of the simplex, shrinking of the simplex is accepted. All

the shrinking points and their performance are computed in parallel. Each itera-

35

tion of the PRO algorithm, thus, takes at most 3 timesteps (reflection, expansion

checking, and expansion steps). In the following, we will go over some PRO specific

implementation issues.

3.2.3 Projection Operator

Parameter tuning is a constrained optimization problem. Therefore, in each

step we have to make sure that the points computed by simplex transformation

steps are admissible, i.e. they satisfy the constraints. The projection operator Π(.)

takes care of this problem by mapping points that are not admissible to admissible

points. We consider two types of parameter constraints: boundary constraints and

internal discontinuity constraints.

Boundary constraints are upper and/or lower limits for the parameters. If the

computed value for a parameter is less (greater) than the lower (upper) limit, the

projected value for that parameter would be equal to the lower (upper) limit.

Some tuning parameters can only have admissible discrete values. For instance,

many of the variables are finite integer numbers. The projection operator makes sure

that the computed parameters are rounded to an admissible discrete value. Consider

the point x = (x(1), · · · , x(N)) ∈ RN that is computed after a transformation

(reflection, extraction, or shrink) around the point v0
k in PRO. For every parameter

i, if x(i) is admissible it will remain the same. Otherwise, if l(i) < x(i) < u(i),

for two consecutive admissible values l(i) and u(i), then projection of x(i) is l(i) if

v0
k(i) < x(i), and is u(i) if v0

k(i) > x(i). In other words, every parameter is rounded

36

to its lower or higher discrete value, whichever is closer to the transformation center

v0
k(i). In this way, after a finite number of consecutive shrinking transformations,

all discrete parameters x(k) become equal to v0
k(i). This property will be used to

check convergence in the stopping criteria.

This aforementioned methods work well for hyper-rectangular search spaces,

but not when we have an arbitrarily shaped space defined by (possibly non-linear)

constraints on parameter values. To account for arbitrarily shaped spaces, we pro-

vide two implementations of the projection operator:

1. L1 distance based method: In this method, we geometrically project an inad-

missible point to its nearest neighbor. We define distance between two points

using L1 distance, which is the sum of the absolute differences of their coor-

dinates. The nearest neighbor of an inadmissible point (calculated in terms

of L1) will thus be a legal point with the least amount of change (in terms of

parameter values) summed over all dimensions.

Computing the least L1 distance unfortunately involves finding the nearest

neighbors in a high dimensional space, which is a computationally inten-

sive task. After experimenting with multiple nearest-neighbor algorithms, we

adopted the Approximate Nearest Neighbor (ANN) [5] algorithm for two rea-

sons. First, for approximate neighbors, ANN has linear space requirements

and logarithmic time complexity on the number of points in the search space.

Second, an efficient implementation of the ANN library is available [58]. The

library supports a variety of metrics to define distance between two points,

37

including L1 distance metric. We elaborate more on how we actually imple-

mented this projection method in chapter 4.

2. Penalty Factor: The aforementioned distance-based method is computation-

ally intensive and may slow down online tuning. Thus, for online tuning, we

use a penalization method to handle boundary constraints. We add a penalty

factor to the performance metric associated with the points that violate the

constraints. The idea is to discourage the simplex from moving towards illegal

regions of the search space. This approach has been used previously in the

context of constrained optimization using genetic algorithms [40]. In all of the

online tuning experimental results presented in chapter 8, we use this method

because it is simple and light-weight.

3.2.4 Simplex Construction and Size

The initial simplex, with size kN , needs to be non-degenerate so that it can

span the whole parameter space; therefore, kN must be at least N + 1, where N is

the number of tunable parameters. To exploit all available parallelism, kN can be

set to the number of resources/processors available.

We provide a set of initial simplex construction methods. Applications can

choose to use a particular method at the start of a tuning session. These methods

range from a completely random simplex to user-defined set of simplex points. Here

we describe the most commonly used method. We start by randomly selecting kN

38

points2. The first iteration of the algorithm evaluate these random configurations.

The initial simplex is then constructed by randomly sampling points at distance d

(L1 distance) from the best performing point. The distance d is problem dependent

and end-users can specify this as a parameter to our algorithm. The set of search

directions/vectors (from the initial best point to the sampled points) generated in

this fashion is guaranteed to be a linearly independent set, which in turn guarantees

that the simplex points span the search space.

3.2.5 Stopping Criteria

After every iteration, the algorithm checks to see if all simplex vertices are

the same (since we deal exclusively with discrete parameters). If that is the case,

the search algorithm has converged to a point in the search space. At this stage,

we construct a new simplex by randomly sampling points within d (L1 distance)

from the convergence point. We evaluate the new set of points in parallel; if none

of them outperforms v0
k, then v0

k is a local minimum and we can stop, otherwise we

can continue PRO with the generated simplex.

Applications can specify the number of new-direction trials. We start d at one

and keep increasing the distance until either one of the newly computed points is

better than v0
k or we reach the maximum number of trials specified by the applica-

tion.

2Note that this randomized method can sometimes select points in the search space that have
poor performance. We pay this penalty for one iteration at the beginning of the search to gather
some knowledge about the search space. The cost of this step is usually amortized within the first
few PRO steps.

39

3.3 Performance Variability and its Impact on Parameter Tuning

Besides the tunable parameters, there are many other factors affecting a pro-

gram’s performance. Therefore, even for a fixed set of tunable parameters, the

application performance varies in time. Other applications running on the same pro-

cessor, network contention, operating system, and memory architecture are common

sources of performance variability. In this section, we provide a simple stochastic

model for performance variability and present evidence, based on measurements

from a real cluster, indicating the presence of a heavy-tail component in the prob-

ability distribution function (PDF) associated with the application execution time

data.

3.3.1 Two Job Model

We model the computing system as a single machine with a strict priority

scheduler serving two sets of jobs. The tunable application is the second priority

job and all sources of performance variability are modeled as first priority jobs (i.e.

background workload). The computing system serves the application, when there

are no first priority jobs in the system. First priority jobs arrival and service time

are random processes; therefore, the application performance (finishing time of the

second priority job) is a random variable (r.v.).

Let f(v) be the ideal application execution time for parameter value v, when

there are no first priority jobs in the system. The real (or observed) application

40

performance, y, when there are background jobs in the system is:

y = f(v) + n(·). (3.5)

The r.v. n(·) is the time the system spends serving first priority jobs while the

application is in the system. It will shortly become clear that, even in this simple

model, n(·) is a function of v. Hence, in our analysis, we cannot assume that noise

(serving time of first priority job) is independent of the selected parameter values v.

Let ρ be the fraction of time the system spends, on average, to process the first

priority jobs. Let E(y) be the average observed application execution time. With

these assumptions, the average time that the system spends serving first priority jobs

while the application is waiting is ρE(y), and (1−ρ)E(y) is the time that the system

spends serving the application. But the serving time of application (excluding the

waiting time) is, by definition, f(v)3. Hence, the average observed execution time

of the application is:

E(y) =
f(v)

1 − ρ
. (3.6)

Taking the average of (3.5), we have,

E(y) = f(v) + E(n(·)). (3.7)

3Note that f(v) is a deterministic function - when there are no background jobs in the system,
the ideal application performance (for parameter value v) is constant.

41

From equations (3.6)-(3.7) we have:

E(n(·)) =
ρ

1 − ρ
f(v). (3.8)

Now, it should be clear that the expected variability, E(n(·)), is a linear function of

f(v); hence, the r.v. n(·) is a function of the application parameters v and we can

write

y = f(v) + n(v). (3.9)

3.3.2 Heavy-tail Model

In the previous section, using the two job model, we showed that the expected

performance is a function of ρ, background workload level. In this section, we

attempt to capture the characteristics of performance variability that are critical for

the optimization process.

Previous studies of the performance variability indicate that there is a non-

negligible probability of observing large variations in the finishing time of an ap-

plication [49, 69]. When application execution time is measured at per timestep

granularity, large variations in the finishing time can be mainly attributed to few

timesteps that take relatively long time to complete. This behavior can be charac-

terized through the use of heavy-tail models. Heavy-tail distributions exhibit tails

that decay as a hyperbolic function, which is in contrast to the typical exponential

decay in other models such as a Gaussian distribution.

42

A distribution is said to have a heavy-tail if:

P [X > x] ∼ x−α, as x → ∞, 0 < α < 2 (3.10)

This means that regardless of the distribution for small values of the random vari-

able, if the asymptotic shape of the distribution is hyperbolic, it is heavy-tailed [21].

The simplest heavy-tailed distribution is the Pareto distribution which is hyperbolic

over its entire range and its cumulative distribution function (cdf) is given by:

FX(x) = P [X ≤ x] = 1 − (β/x)α, (3.11)

where β is the smallest value the X can take. For 1 < α < 2, Pareto distribution

has finite mean and infinite variance, and for 0 < α ≤ 1, both mean and variance

are infinite.

Heavy-tailed distributions have properties that are qualitatively different from

commonly used distributions such as Exponential or Poisson distributions. There-

fore, it is important to know if the performance variability distribution is heavy-tail.

In the next section, we will try to answer this question using GS2 as our subject

parallel application.

3.3.3 Case study: GS2

We use the GS2 [26, 48] application to study the performance variability, when

the application parameters are fixed. GS2 has several tunable parameters, which

43

can be set to represent the appropriate conditions for different modes.

0 100 200 300 400 500 600 700 8004
5
6
7

Iteration

Ti
m

e(
m

s)

Performance of 4 out of 64 processors running GS2 in parallel

0 100 200 300 400 500 600 700 8004
5
6
7

Iteration

Ti
m

e(
m

s)

0 100 200 300 400 500 600 700 8004
5
6
7

Iteration

Ti
m

e(
m

s)

0 100 200 300 400 500 600 700 8004

5

6

7

Ti
m

e(
m

s)

Iteration

Figure 3.5: Running time for 800 iterations of the GS2 program on 4 out of 64
parallel processors

Figure 3.5 shows the running time of the GS2 with fixed parameters for 800

timesteps on 4 processors from a 64 processor run4. Clearly, there are two distinct

types of spikes (or equivalently, timesteps that take relatively long time to complete)

in the plots: big and small. There is also high correlation and similarity between

the curves. Regardless of the cross-processor correlation, the existence of spikes is

evidence of a heavy-tail component.

We do not know if the source of the observed variation in execution time

between time steps is due to the application, or due to the system it runs on.

4Runs were conducted on a 64 node Linux cluster. More information on the cluster is provided
in section 6.4.

44

However, for the purposes of designing a robust optimization algorithm, the source

of this variability is not important, but its properties (i.e. is it heavy-tailed) is what

matters.

We use two methods to detect heavy-tailed behavior in GS2 execution time

dataset. In the first method, we draw a log-log plot of complementary cumulative

distribution frequency, (1− cdf), which is P [X > x]. For the heavy-tail r.v., the tail

of the log-log plot should be approximately linear. The second method estimates

the tail index, α in (3.10), using the method5 suggested by Crovella et al [22]. We

should note that while these methods are useful in detecting heavy-tailed behavior

in a dataset, they can only suggest that such behavior is present; they cannot

conclusively confirm heavy-tailed property.

4 4.5 5 5.5 6 6.5 70

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (ms)

Pr
ob

ab
ilit

y

Histogram for GS2 Runtime

Heavy tail component

(0.8994)

Figure 3.6: pdf of the GS2 data

Figure 3.6 is the PDF of all 64 processors performance data. As we expect,

the last six bars are not negligible. Figure 3.7 is the (1 − cdf) log-log plot for the

5An efficient C-implementation of the method is available at http://www.cs.bu.edu/
∼crovella/aest.html. For our estimation of α, we used author suggested values for the ag-
gregation factor (2) and aggregation levels (10).

45

100.7 100.810−4

10−3

10−2

10−1

100
1−cdf for GS2 Run Time in log−log scale

Time (ms)

P(
X>

=T
im

e)

Heavy tail component
R2=0.94

Figure 3.7: 1-cdf of the GS2 data

4.2 4.4 4.6 4.8 5 5.2 5.40

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (ms)

Pr
ob

ab
ilit

y

Histogram for Truncated GS2 data

(0.7026)

(0.2083)

Figure 3.8: pdf of the truncated GS2 data

same GS2 data and the last part (tail) of the graph approximately forms a line. A

least squares linear fit (with R2 = 0.94) to the tail is shown in the figure. Using the

method suggested by Crovella et al [22], we estimated the tail index, α, in relation

(3.10) to be 1.21, which indicates that the distribution has finite mean and infinite

variance.

In order to study characteristic of the small spikes in figure 3.5, we truncate

the GS2 data and remove all samples that are larger than 5.5. The pdf and (1−cdf)

46

100.64 100.66 100.68 100.7 100.7210−4

10−3

10−2

10−1

100

Time (ms)

P(
X>

=T
im

e)

1−cdf for Truncated GS2 Runtime in a log−log scale

Heavy tail component
R2=0.96

Figure 3.9: 1-cdf of the truncated GS2 data

plots for the truncated data are shown in figure 3.8 and 3.9 respectively. Evidence

for a heavy-tail component, which is due to the small spikes this time, is present in

the plots. We estimated the tail index, α, to be 1.37 for the truncated dataset.

In summary, the data presented in this section suggests that the performance

variability is heavy-tailed. What this means from the perspective of auto-tuning

is that there is a non-negligible probability of observing large variations in the

measured performance. The sampled performance measurements could, therefore,

have infinite variance. This observation essentially renders average operator inef-

fective. Average is the most widely used operator to aggregate and estimate “real”

performance from multiple samples. As an alternative, we showed, in our earlier

work [83], taking a minimum of multiple performance measurements is an effective

way for performance estimation even in the presence of heavy-tail component in the

performance distribution. The minimum has finite mean and variance and is not

heavy-tailed. We note even in the presence of 5% variability due to background

noise, taking the minimum of two samples is enough to ensure the convergence of

47

the search algorithm.

3.4 Summary

In this chapter, we presented the Parallel Rank Ordering algorithm for tuning

of application parameters. The algorithm is well-suited for navigating parameter

spaces for parallel applications because it can leverage parallelism to search for

parameters in parallel. We discussed various implementation-level aspects of the

algorithm and provided methods to prevent the search algorithm from venturing

into inadmissible regions of the search-space. We also studied the nature of per-

formance variability and showed results that indicate the performance variability of

applications on clusters is heavy-tailed.

48

Chapter 4

The Framework — Active Harmony

In this chapter, we describe our search-based auto-tuner — Active Harmony.

The goal of our framework is to bring together all tunable targets in a given appli-

cation within a single unified auto-tuning framework. Entities within an application

(e.g. library parameters, computationally intensive loop nests) that can be changed

or transformed (for better performance) without affecting the application result are

appropriate for exploration by Active Harmony.

Active Harmony takes a search-based collaborative approach to auto-tuning.

Our system allows application programmers, library writers, compilers and perfor-

mance modelers to describe and export a set of performance related tunable pa-

rameters. These parameters define a tuning search-space. More often than not,

this search-space is high-dimensional and exponential in size and thus, cannot be

explored manually or even exhaustively with automation. Our system monitors the

program performance and makes adaptation decisions. The decisions are made by a

central controller using a parallel search algorithm1. The parallel search algorithm

leverages parallel architectures to search across a set of optimization parameter val-

ues. Different nodes of a parallel system evaluate different configurations at each

1In addition to the parallel search algorithm, Active Harmony provides a selection of other al-
gorithms — Nelder-Mead simplex algorithm, Brute-force algorithm and Random search algorithm.
The search algorithm choice can be made at Active Harmony server launch time. Unless otherwise
indicated, the auto-tuning experiments reported in this document were done using the parallel
search algorithm.

49

timestep.

The design of Active Harmony was originally proposed by Hollingsworth and

Keleher [36]. Since then, the software architecture has evolved along several di-

mensions. The current design uses the client-server model. Figure 4.1 shows a

simple use-case scenario for Active Harmony. The example shows a “harmonized”

(see section 4.1) SPMD-based parallel application2. Lets assume the computational

hotspot for this application is the Jacobi kernel (a stencil code). A small fragment

of the tiled three-dimensional Jacobi kernel is shown in the figure. Active Harmony

is used to conduct the search for tile-control variables — TI and TJ. For SPMD-

based programs, each MPI process acts as an independent Active Harmony client.

Thus, with the use of the Parallel Rank Ordering(PRO) as the search algorithm,

we can have different processors evaluate completely different values for the tunable

parameters (TI and TJ in the figure 4.1) at each timestep. Each client reports the

performance measurement corresponding to the values of the tunable parameters it

received to the Active Harmony server. The server bases its adaptation decisions

on this performance data.

4.1 Harmonization

For online tuning, developers can use the Active Harmony API to add “hooks”

in their application to make the application tunable. In Active Harmony vocabulary,

we refer to this process of adding hooks as harmonization. The process involves

2In SPMD parallel programming model, multiple instances of the same code run on multiple
processors.

50

Figure 4.1: A simple use-case scenario for Active Harmony

making fairly small changes to the application code to call library routines that

make a connection to the Active Harmony server, export tuning options, update the

server with performance values and import the parameter values suggested by the

Active Harmony server. The phrase harmonized application is used to refer to an

application that uses Active Harmony to adapt its execution.

For offline-tuning, we provide a set of driver programs that end-users can use

to drive the tuning process by repeatedly invoking the application with different

command line options or input files. We elaborate more on these driver programs

in chapter 7.

4.2 Need to Coordinate Auto-tuners

Since auto-tuning can take place at many levels of a program from the user

to specific libraries, an important question is how to coordinate this process. Left

uncoordinated, each component of a program may try to run its own auto-tuner.

Such a process would likely lead to a dissonance where multiple components change

something nearly simultaneously and then try to assess if it improved the program’s

51

performance. However, without coordination it would be impossible to tell which

change was actually improving the program. In fact, it is likely that one change

might improve performance and the second hurt performance and the net perfor-

mance benefit is little or none. Thus an important question is how to best coordinate

the efforts of auto-tuners. There are a variety of approaches possible ranging from

simple arbitration to ensure that only one auto-tuner is running at once to a fully

unified system that allows coordinated simultaneous search of parameters originat-

ing from different auto-tuners.

In the Active Harmony project, we distinguish between dependent and inde-

pendent auto-tuning targets and use the following coordination methods.

1. Dependent auto-tuning targets: For dependent auto-tuning targets (for ex-

ample, multiple code-sections within a single function (or even a single loop)

that share data-structures), we take the approach of a coordinated system to

allow all auto-tuning targets to be tuned together. We accomplish this by

having each target expose its tunable parameters. A central search engine

then manages the evaluation of possible auto-tuning steps. The core search

algorithm is able to decide which sources of auto-tuning information should

be considered and when.

2. Independent auto-tuning targets: For independent auto-tuning targets (for

example, code-sections in different libraries used by the application that do

not affect each other in terms of the application execution and data structures),

application developers can choose to start multiple (and parallel) auto-tuning

52

sessions with separate Active Harmony servers to allow simultaneous tuning of

multiple targets. Developers can also choose to use different search algorithms

for different targets.

4.3 Collaborative Tuning via CSL

We firmly believe that the success of any high performance computing research

depends on how effectively application developers, domain-experts and auto-tuners

communicate and work together. However, to our dismay, we realized that there

is a severe communication gap that exists between these communities. Even when

so many auto-tuning frameworks are available, the use of these frameworks has not

yet been a part of the mainstream application development. We believe that the

hesitancy in part of the developers to use the tools is mainly due to the lack of a

simple and common interface that can be used to export their tuning needs to the

auto-tuners.

Search-based auto-tuners require a precise specification of valid parameters.

Such specification could be as simple as expressing the minimum, maximum and

initial values for a parameter. Sometimes not all parameters values within a range

should be searched, so option to specify a step function is useful. Likewise for

parameters with a large range (i.e. a buffer that could be from 1K to 100Megabytes),

it is useful to specify that parameter should be searched based on the log of the value.

Another critical factor is that not all parameters are independent. Frequently,

there is a relationship between parameters (i.e. when considering tiling a two di-

53

mensional array, it is often useful to have the tiles be rectangles with a definite

aspect ratio). To meet the needs of having a fully expressive way for developers to

define parameters, we have developed a simple and extensible language (Constraint

Specification Language, CSL) that standardizes parameter space representation for

search-based auto-tuners. CSL allows tool developers to share information and

search strategies with each other. Meanwhile, application developers can use CSL

to export their tuning needs to auto-tuning tools.

CSL provides constructs to define tunable parameters and to express relation-

ships between those parameters. Dependencies between different parameters can be

easily specified using mathematical expressions. CSL supports a fairly comprehen-

sive list of mathematical, logical and relational operators. Hints to the underlying

search algorithm in the form of initial points to start the search, default values for

parameters, simple constraints on parameters such as MPI message-sizes, number

of OpenMP threads, etc. can be easily expressed using CSL. Information from per-

formance models can be specified in the form of constraints to guide the search.

Furthermore, parameters can also be grouped into different categories to allow ap-

plication of similar tuning strategies. This is particularly helpful when there are

multiple code-sections that benefit from the same optimization. We provide the full

CSL grammar in tables A.1 and A.2 (in the Appendix).

We have developed and released a standalone tool that takes a CSL description

and checks for the correctness of the description. The underlying parsing framework

is ANTLRv3 [68]. The tool also generates a python script based on the parameters

and constraints specifications provided in the description. This python script uses

54

Table 4.1: A simple CSL specification and the corresponding python output
CSL Description Python output

search space simple {

parameter definitions

parameter x int {

range [1:8:1];

}

parameter y int {

range [1:8:1];

}

parameter z int {

range [1:8:1];

}

constraints

constraint cone {

x+z>=z;

}

constraint ctwo {

y>z;

}

#putting everything together

specification {

cone && ctwo;

}

}

from constraint import *

simple=Problem()

parameter declarations

class x:

def values(self):

ls=[1,2,3,4,5,6,7,8]

return ls

simple.addVariable("x",x().values())

class y:

def values(self):

ls=[1,2,3,4,5,6,7,8]

return ls

simple.addVariable("y",y().values())

class z:

def values(self):

ls=[1,2,3,4,5,6,7,8]

return ls

simple.addVariable("z",z().values())

Constraints

def cone (z,x):

return ((x + z) >= z)

def ctwo (z,y):

return (y > z)

def specification (z,y,x):

return (cone(z, x) and ctwo(z, y))

simple.addConstraint(FunctionConstraint(\

specification), ("z","y","x"))

sols=simple.getSolutions()

the python-constraint module [64], which offers solvers for Constraint Solving Prob-

lems (CSPs) over finite domains. The users can then run the python interpreter on

the generated script to generate all valid points in the search space. These points

are used by the projection server (discussed in the next section) to make projection

decisions.

We provide a simple parameter specification example in Table 4.1. In this

example, the search space consists of three parameters — x, y and z. The rela-

tionships between these parameters are expressed using two constraint definitions

— cone and ctwo. We also provide the python script output generated by our

standalone tool in Table 4.1. In the appendix, we provide an example of a more

55

elaborate parameter specification using the CSL (in Table A.3). This specification

defines tiling and unrolling parameters for matrix multiplication tuning. It also

defines constraint relations between the parameters. We provide the python script

output generated by our standalone tool in Table A.4 (in the Appendix).

4.4 Framework Components

Apart from the Active Harmony server, which consists of the optimization

backend implemented in Tcl/Tk, the auto-tuning system consists of three other

main components — code-server, projection server and database.

4.4.1 Code-server

Our system relies on code-server to generate and compile code for tunable

parameters that require new code to move from one admissible value to another.

Code-server is a distributed code-generation and compilation tool. Users provide a

list of machines at the start of the auto-tuning session. Upon receiving the request

to generate code for a set of parameters, the task is farmed out to the machines

specified by the user. We describe the design of code-server in great details in

chapters 6 and 8.

4.4.2 Projection Component

The design of this component is based on the client-server model and the

component consists of a projection server and a client API. The projection server is

56

used by the optimization kernel of Active Harmony to “project” inadmissible points

(points that violate CSL constraints) in the simplex to the admissible region in the

search space. The optimization kernel uses the projection API function calls to

connect and communicate with a projection server. The projection API is listed in

Table 4.2. Since the optimization backend of Active Harmony is implemented using

Tcl/Tk, a tcl-callable API is generated using swig [82].

The projection server returns the nearest L1 neighbor (in the admissible region)

for a given inadmissible point. The projection server relies on ANN[5, 58] to do this

nearest neighbor calculation. Using the standalone tool that we described in section

4.3, users first convert the parameter space definition (written in CSL) into a python

script. The python interpreter then enumerates all legal points in the parameter

space. The data file which consists of all possible points is read by the projection

server to populate the underlying data-structures. This operation can be expensive

if the size and the dimension of the search space is large. However, this is a one

time process that happens at projection server startup. When the Active Harmony

search algorithm generates new points via simplex transformations, a request to the

projection server is made to verify that the points are valid. For each invalid point,

the projection server returns its nearest neighbor in the legal region.

4.4.3 Database Component

It is evident from the discussion of the stopping criteria (in chapter 3) that as

the simplex nears convergence, multiple vertices in the simplex become identical. We

57

Table 4.2: Projection API

/*

* Connecting to a projection server.

*/

int projection_startup(char* hostname, int sport);

/*

* Announce an end of the session to the server.

*/

void projection_end();

/*

* Is given point admissible?

*/

int is_a_valid_point(char* point);

/*

* initial simplex construction based on a given initial point.

*/

void simplex_construction(char* request);

/*

* Project a point.

*/

char* do_projection_one_point(char *request);

/*

* Project a set of points.

*/

char* do_projection_entire_simplex(char *request);

exploit this property of the search algorithm to reduce the offline tuning time. The

Active Harmony server maintains a global database of the candidate configurations

and the associated performance metric. Clients can query the server to see if the

configuration that they have been assigned has been evaluated earlier (possibly by

other clients). If the server does find an entry, it notifies the client and the client

can choose not to run the application to save tuning time3.

For online tuning, the database component can be used to distribute the best

configuration to all the clients at periodic intervals.

3We realize that instead of the clients asking the server, we can have the server send an “already
evaluated” message. This is an implementation-level detail that we missed.

58

4.5 Summary

In this chapter, we presented our auto-tuning framework. We discussed var-

ious components of the system — code-server, projection server and the database

component. We elaborated on how these components interact with each during an

auto-tuning session. We also introduced CSL, which is designed to promote greater

collaboration between application developers, compilers and auto-tuners.

59

Chapter 5

Application-level Auto-tuning

Scientific applications and libraries often include tunable input parameters

that users can select at launch time to optimize the application’s performance. These

input parameters are meant to control several important aspects of the application

performance such as data decomposition and alignment, numerical algorithm selec-

tion, communication protocol selection, etc. Choosing appropriate values for these

parameters is essential in getting maximum application throughput. Figure 5.1 un-

derscores this fact. The figure shows the performance (application execution time)

of GS2 [26, 48], a physics application developed to study low-frequency turbulence

in magnetized plasma, as a function of two input parameters. All other input pa-

rameters are fixed. Clearly, the parameter space is not smooth and contains multiple

local minimums. The best and worst points are a factor of 10 different.

The task of making a good selection of the input parameters is non-trivial be-

cause this requires a concrete understanding of the interactions between the input

parameters and the underlying algorithmic behaviors that they are meant to con-

trol. Moreover, the input parameters also interact with the elements of the target

architecture. Compounding these challenges is the fact that the input parameter

space is usually high-dimensional (due to applications having many parameters) and

exponential in size. Under these conditions, it is practically impossible to manually

60

0
2

4
6

8
10

12
14

16

0

5

10

15

20
0

500

1000

1500

2000

2500

parameter 1

GS2 Performance as a function of two tunable parameters when the third parameter is fixed

parameter 2

Pe
rfo

rm
an

ce

Figure 5.1: GS2 performance plot with two tunable parameters.

tune the parameters to optimize the application performance; therefore, automated

parameter tuning is required.

To that end, in this chapter, we use the Active Harmony system to auto-

matically select input parameter configurations for scientific applications. We also

compare the performance of the parallel rank ordering algorithm to that of the

modified Nelder-Mead simplex algorithm, a sequential algorithm. The comparison

is based on the number of search iterations and the quality of the input configura-

tions found by the two algorithms. In the next section, we describe a method that

we use to establish a “pseudo”-ordering on non-numeric tunable parameters.

61

5.1 Parameter Ordering Scheme

Both PRO and Nelder-Mead algorithms require a rough ordering to be es-

tablished among different options for a given parameter. Non-numerical parameters

generally lack a natural ordering. For example, three different FFT algorithms have

no natural order. Our approach to ordering these values is to measure performance

by holding the rest of the parameters fixed and measuring our objective function for

each value. We attempt to establish such orderings by studying the parameters in

isolation. For any given parameter P , we obtain the minimum of 4 sample perfor-

mance values for each of the options it can take. For each of these evaluations, we

keep the problem characteristics the same and all other tunable input parameters

are kept at their default values. The options are then ordered based on the perfor-

mance observed during these evaluations. When selecting the order of parameters

to tune, we ignore parameter interaction. However, such interaction is taken into

consideration by the optimization algorithms when evaluating configurations and

moving the simplexes across the parameter space.

Note that this process also gives us an additional information about which

parameter to focus on and which parameter to eliminate from the search space

during the optimization phase.

5.2 Empirical Results

In this section, we present our experimental results. We use Active Harmony’s

offline tuning mechanism to tune input parameters of three well-studied scientific

62

application benchmarks. We compare the tuning results (in terms of the quality of

parameter configurations and the number of search iterations) from PRO with the

results from the Nelder-Mead simplex algorithm. When a default input configuration

is available, we compare our results with default performance as well.

All experiments reported in this chapter were performed on a 64 node Linux

cluster (henceforth referenced as umd-cluster). Each node is equipped with dual

Intel Xeon 2.66 GHz (SSE2) processors. Nodes are connected via a Myrinet network.

A PBS scheduler schedules at most one application per node at a time. L1-cache

and L2-cache sizes are 128 KB and 4096 KB respectively.

Subject applications were selected from three different realms of scientific com-

puting – nonlinear spectral method (PSTSWM), dense linear algebra (HPL) and

finite difference method (POP). Each of the application has multiple tunable input

parameters. The parameter space for each of the applications is fairly large.

5.2.1 PSTSWM

The main idea behind PSTSWM [91] was to embed algorithmic options into

codes that allow them to be “tuned” for a particular machine without requiring

code modifications. To accomplish this, the benchmark provides a variety of input

parameters that can be set at program launch time to choose between several types

of parallel algorithms, communication protocols and data decomposition. The code

has been used extensively to evaluate performance of many high-end supercomputers

[27].

63

The underlying numerical code of PSTSWM solves the nonlinear shallow water

equations on a rotating sphere using the spectral transform method [91]. Two

transformations of state variables are done at each timestep: first from the physical

tensor product longitude-latitude-vertical grid to spectral domain using Fast Fourier

Transform (FFT) and in the reverse direction via Legendre Transformation (LT).

For both transformations, two classes of parallel algorithms are available: distributed

(uses fixed data decomposition) and transpose (remaps the domain to calculate the

transformations sequentially). In our study, we looked at all four combinations of

these algorithms:

• Algorithm 1 (A1): distributed FFT and transpose LT

• Algorithm 2 (A2): distributed FFT and distributed LT

• Algorithm 3 (A3): transpose FFT and transpose LT

• Algorithm 4 (A4): transpose FFT and distributed LT

For each algorithm, there are 10 input parameters that can be set during

launch time. The parameters, their domain-size and default values are given in

Table 5.1. The pq parameter defines the logical processor grid. Meshopt determines

how to map the logical processor mesh to the “physical”processors. The commfft

(commflt) and commift (commilt) parameters specify which algorithm variants to

be used in the parallel forward and inverse FFT (LT) algorithms respectively. The

protfft, protift, protflt and protilt parameters specify the communication protocol to

be used for respective parallel FFT and LT algorithms. As evident from table 5.1,

the input search space is fairly large for PSTSWM - on the order 109. The user’s

64

manual provides some rough guidelines on how to choose the values and also provides

default values. However, given the size of the parameter space, finding a good

set of input configuration for a given platform requires extensive experimentation.

The performance metric (objective function) chosen is the solve-time reported in

PSTSWM results.

Table 5.1: PSTSWM parameters
Parameter Number of possible values Default Value

pq Depends on the # of procs. n/a

meshopt 10 1

commfft 4 (for dist. FFT) 12 (for trans.) 1

commift 4 (for dist. FFT) 12 (for trans.) 1

commflt 4 (for dist. FFT) 12 (for trans.) 1

commilt 4 (for dist. FFT) 12 (for trans.) 1

protfft 6 1

protift 6 1

protflt 6 1

protilt 6 1

For our experiments, we considered the T85L32 problem (20 simulation hours).

The problem is run on 32 processors. Algorithm A2 had the poorest performance

on our cluster. So, we exclude it from the rest of the analysis and instead focus

on the results for the remaining three combinations of algorithms. Both PRO and

Nelder Mead algorithms are used to search the parameter space. The performance of

the best configuration is then compared with the performance of default parameter

configuration.

Figure 5.2 shows the best points of the two optimization algorithms at different

iterations (for A3). The first 11 iterations for the Nelder Mead algorithm are not

shown in the figure. These initial iterations are exploratory and are used to construct

65

0 10 20 30 40 50 60
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Search Iterations

Ap
pli

ca
tio

n
Ex

ec
ut

ion
 T

im
e

(S
ec

on
ds

)

Performance plot: PRO vs. Nelder−Mead Algorithm for PSTSWM (A3)

PRO
Nelder−Mead

default conf. performance

Figure 5.2: Comparison of best performing points of PRO and Nelder-Mead Algo-
rithm

the initial N +1 simplex. For A3, the default input configuration takes 4.25 seconds

(minimum of four samples) to complete the T85L32 run. PRO finds a configuration

that outperforms the default execution time by 22.6% after just 15 iterations and

converges to a point in the 18th iteration. Nelder Mead finds a configuration which

outperforms default configuration after 35 iterations. However, it took 54 iterations

for the Nelder Mead algorithm to find an input set that outperforms the default

configuration by 19%.

Table 5.2: Summary of results for PSTSWM
Application Number of Number of

Algorithm Runtime (sec) Iterations function
Evaluations

Default Nelder-Mead PRO Nelder-Mead PRO Nelder-Mead PRO
(improv. %) (improv. %) (speedup)

A1 4.385 3.473 3.411 41 11 41 188
(21%) (22%) (3.7)

A3 4.250 3.445 3.288 54 15 53 238
(19%) (23%) (3.6)

A4 5.656 4.831 4.601 55 13 55 139
(15%) (19%) (4.2)

66

Table 5.2 summarizes the results for all algorithms. PRO consistently finds

better configurations for all classes. The percent improvement listed in the table for

PRO and Nelder Mead shows the percentage improvement of the respective config-

urations against the default configuration. Speedup indicates how fast PRO finds

configurations compared to the Nelder Mead algorithm - 3.7, 3.6 and 4.2 times faster

for A1, A2 and A3 respectively. Note that the number of PRO function evaluations

is significantly larger than that for Nelder Mead. This additional expense is amelio-

rated by the parallel evaluation of candidate configurations. Moreover, for all our

experiments, we use our database of previously evaluated candidate configurations

to eliminate rerunning configurations previously measured. This also helps to reduce

the overall tuning time.

5.2.2 High Performance Linpack (HPL)

HPL is a popular message-passing implementation of the Linpack benchmark.

HPL solves an order N dense system of linear equations of the form Ax=b using LU

factorization. The matrix is divided into NB × NB blocks. The blocks are then

dealt onto a P × Q processor grid a using block-cyclic data distribution. HPL is

built on top of the Basic Linear Algebra Subroutine (BLAS) package. We used high-

performance Goto BLAS [34] in our installation. The performance of the system

is measured in GFlops/second. This measurement is provided as a part of the

program output. The goal is to select a good matrix size N and blocking factor NB

to maximize this metric. In addition, HPL exposes 15 other input parameters that

67

can be set at launch time to tailor the execution of the code on different platforms.

However, with very coarse-grained instructions on how to set these parameters, users

are left with no choice but to hand-tune the parameters. Such hand-tuning is guided

by semi-random guesses. Thus, finding a good input configuration is tedious and

can take substantial time. We use Active Harmony’s offline tuning mechanism to

automate the search for input parameters. Once the parameter space definition is

sent to the Harmony server, no intermediate feedback is required to guide the search

process. With no default input configuration available, this experiment provides a

strict comparison between PRO and Nelder Mead algorithms.

Table 5.3: Tunable input parameters for HPL
Parameter Domain

P×Q Depends on the number of processors
used (usually square grids are better)

N Up to 80 % of the available memory, step size: 256

NB 32-256: step size: 2

pfact left, right, crout

nbmin 2-10

ndiv 2-10

rfact left, right, crout

We took note of previous research that studied the application behavior of HPL

[79]. These results suggested that not all HPL parameters have noticeable impact on

performance. Of course, parameters that do not affect performance in one system

might have significant impact on another. We conducted a parameter study to

determine what parameters had significant impact on performance on our cluster.

We vary only one parameter at a time to try and measure its importance. After

trying all the applicable options for a given parameter (when the other parameters

68

are fixed), if the HPL performance remains roughly1 the same for all options, we

remove the parameter from our search space. After the study, we short-listed the

parameters that have a noticeable impact on HPL performance on our system. This

parameter list along with their domain values is provided in Table 5.3. Parameter

bcast was set at 2rg (increasing two-ring broadcasting method)2 and depth at 0. pfact

(and rfact) specifies panel (recursive) factorization method. nbmin specifies the

number of sub-panels and ndiv specifies the number of columns in the recursive base

case. The matrix size N should not exceed the amount of memory available across

the nodes in the cluster. HPL guidelines suggest using 80% of available memory for

the matrix to get the maximum performance leaving 20% for the Operating System

and other background activities.

The experiment was conducted for 8 Nodes (16 CPUs). The performance met-

ric (objective function) is Rmax, which is the maximum measured HPL performance

in GigaFlops/second. To calculate the efficiency of the system, we divide Rmax

by the theoretical peak performance, Rpeak, for the system. Rpeak is calculated by

multiplying the total number of processors, the processor clock frequency and the

theoretical number of 64-bit floating-point operations per clock.

Figure 5.3 shows the iteration history of both PRO and Nelder Mead algo-

rithms. PRO input configurations reached 69.3% of Rpeak after 11 iterations and

the algorithm evaluated 96 unique candidate configurations in the process. Mean-

1We use a 3% threshold, i.e. if HPL performance numbers for different options (that a given
parameter can take) remain within 3%, we eliminate the parameter from the search space. The
3% value was chosen because taking four performance samples for the same HPL run (with fixed
parameters) achieves this threshold.

2Parameter bcast had no impact on the execution time of HPL on our Linux cluster. In fact,
we can set this parameter to any other permissible value.

69

0 5 10 15 20 25 30 35 40
45

50

55

60

65

70

75

Search Iterations

%
Pe

ak

Performance plot: PRO vs. Nelder−Mead Algorithm for HPL

PRO
Nelder−Mead

Figure 5.3: Comparison of best performing points of PRO and Nelder-Mead Algo-
rithm

while Nelder-Mead configurations could not get more than 65.9% of Rpeak for the

first 33 iterations. The performance slightly improved to 67.4% after 33 iterations.

In conclusion, PRO finds a better input configuration 3 times faster than Nelder-

Mead simplex algorithm.

5.2.3 Parallel Ocean Program

The Parallel Ocean Program (POP) [28, 80] was developed at Los Alamos Na-

tional Laboratory and is a descendant of Bryan-Cox-Semtner class of Ocean models

first developed at the NOAA (National Oceanic and Atmospheric Administration) in

Princeton, NJ in the late 1960s. Currently, POP is being used as the ocean compo-

nent of the Community Climate System Model (CCSM). The program solves three-

dimensional primitive equations for fluid motions on a sphere using hydrostatic and

Boussinesq approximations. Spatial derivatives are computed using finite-difference

70

discretizations which are formulated to handle any generalized orthogonal grid on

a sphere, including dipole and tripole grids. POP provides approximately three

dozen input parameters that can be changed at application launch time. With

each parameter taking anywhere from 2 to 4 different values, the parameter space

for POP is fairly large. After conducting a survey of parameters for their effect

on the application performance on our platform, we narrowed down the list to 11

parameters, which are listed in Table 5.4. These parameters allow users to select

among various numerical algorithms and physical parameterizations at launch time.

For example, solv type specifies which iterative method (pre-conditioned conjugate

gradient, Jacobi or conjugate gradient residual) is used to solve a two-dimensional

elliptical equation for the surface pressure.

Table 5.4: POP parameters
Parameter Domain Default Default PRO-value Nelder-Mead

for test for x1 after 6 after 42
iterations iterations

solv type pcg, cgr, jac pcg pcg cgr cgr

tadvect ctype centered, upwind3 centered upwind3 centered centered

vmix choice const, kpp, rich rich rich const const

hmix momentum choice del2, del4, anis del2 anis del2 del2

hmix tracer choice del2, del4, gent del2 gent del2 del2

state choice jmcd, mwjf, poly, line mwjf jmcd line line

state range opt ignore, check, enforce enforce ignore ignore enforce

ws interp type nearest, linear, 4point nearest nearest 4point 4point

shf interp type nearest, linear, 4point nearest nearest linear 4point

sfwf interp type nearest, linear, 4point nearest nearest 4point 4point

ap interp type nearest, linear, 4point nearest nearest 4point 4point

For our experiments, we use the following two benchmarks: test and x1. The

first benchmark comes bundled with the POP distribution and is used for validation

and performance tuning. The model grid (192×128×20) generated internally is an

71

equally-spaced latitude-longitude global grid with idealized land-masses. The x1

benchmark is set up to be identical to the actual production configuration of the

Community Climate System Model [41]. The model grid (320×384×40), topogra-

phy, initial state, equation of state coefficients and other benchmark specifications

for x1 are available at the POP website [70]. Default parameter values for both the

test and the x1 benchmarks are provided in Table 5.4. In our experiment, tuning

is done using the test benchmark. The benchmark is run for 20 timesteps on 32

processors. Input configurations generated by PRO and the Nelder Mead algorithm

are then used to measure the execution time of x1 (which is run on 32 processors

for 20 simulation days).

0 5 10 15 20 25 30 35 40 45
2.5

3

3.5

4

4.5

5

5.5

Search Iterations

Ap
pli

ca
tio

n
Ex

ec
ut

ion
 T

im
e

(S
ec

on
ds

)

Performance plot: PRO vs. Nelder−Mead Algorithm for POP

PRO
Nelder−Mead

default conf. performance

Figure 5.4: Comparison of the best performing points of PRO and Nelder-Mead
Algorithm

Figure 5.4 plots the best points of both algorithms at different iterations. The

initial 12 Nelder Mead iterations are not shown in the graph. PRO achieves a 26.4%

improvement in execution time (for the test benchmark) in just 6 iterations and

72

evaluates 52 unique input configurations in the process. PRO converges to a point

in the 11th iteration. Nelder-Mead also out-performed the default configuration by

a similar margin. However, it took over 7 times as many iterations. Table 5.4 shows

the best configuration found by PRO after 6 iterations and that found by Nelder

Mead after 42 iterations.

Table 5.5 summarizes the results for this experiment. Both the PRO and

Nelder Mead input configurations perform well on the production sized runs of x1

and reduce the execution time by 58%. The data from actual production sized

runs for POP allows us to explore the relationship between the tuning time and

the execution time of production size simulations. The tuning time for 6 PRO

iterations is approximately 125 seconds (which is the sum of the worst performing

measurements at each iteration) and the tuning time for 42 Nelder Mead iterations

is approximately 840 seconds. Only one production run of x1 amortizes the cost

of tuning using Active Harmony and PRO. Generally, production runs consist of

multiple runs as part of a parameter sweep, so in practice Harmony would provide

significant gains in execution time.

Table 5.5: Summary of results for POP
Execution Time (seconds) Number of Tuning

Algo Iterations Time (seconds)

Default Nelder-Mead PRO Nelder-Mead PRO Nelder-Mead PRO
(improv. %) (improv. %) (speedup) (speedup)

test 4.02 2.98 2.96 42 6 840 125
(26%) (26%) (7) (6.7)

x1 1,246.61 510.9 513.1 - - - -
(59%) (59%)

73

5.3 Summary

In this chapter, we used Active Harmony (in offline auto-tuning mode) to

automatically select appropriate input configurations for parallel programs. We

evaluated PRO within the Active Harmony system and studied the performance of

the algorithm on three well-studied benchmark codes: PSTSWM, HPL, and POP.

We compared the performance of PRO with the Nelder Mead Simplex algorithm

and show that PRO finds better input configurations up to 7 times faster. We

showed that tuning for input parameters can reduce the application execution time

significantly. Using PRO to tune input parameters, we reduced the execution time

of PSTSWM by 23%. For HPL, an input configuration that achieved 69.3% of Rpeak

for 8-Nodes (16 CPUs) was discovered in just 11 iterations. For POP, we were able

to increase performance by over 26% in just 6 PRO iterations. A production sized

run of POP showed a 59% improvement in execution time by using the configuration

found by our search algorithm.

74

Chapter 6

Compiler based auto-tuning

In this chapter, we describe a scalable and general-purpose framework for

auto-tuning compiler-generated code. We combine Active Harmony’s parallel search

backend with the CHiLL compiler transformation framework to generate in paral-

lel a set of alternative implementations of computation kernels and automatically

select the one with the best-performing implementation. Our framework provides

a general-purpose and scalable solution to code optimization with minimum or no

feedback from the users. The resulting system achieves performance of compiler-

generated code comparable to the fully automated version of the ATLAS library for

the tested kernels. We start the chapter by providing a high-level motivation for a

general purpose auto-tuner for compiler-generated search spaces.

6.1 Motivation

Today’s complex architecture features and deep memory hierarchies require ap-

plying nontrivial optimization strategies on loop nests to achieve high performance.

This is even true for a simple and well-studied loop nest like Matrix Multiply. Al-

though naively tiling all three loops of Matrix Multiply would significantly increase

its performance, the performance is still well below hand-tuned libraries. Chen et al

[16] demonstrate that automatically-generated optimized code can achieve perfor-

75

mance comparable to hand-tuned libraries by using a more complex tiling strategy

combined with other optimizations such as data copy and unroll-and-jam. Com-

bining optimizations, however, is not an easy task because loop transformation

strategies interact with each other in complex ways.

Different loop optimizations usually have different goals, and when combined

they might have unexpected (and sometimes undesirable) effects on each other. Even

optimizations with similar goals but targeting different resources, such as unroll-and-

jam plus scalar replacement targeting data reuse in registers, and loop tiling plus

data copy for reuse in caches, must be carefully combined. The unroll factors must

be tuned so that reuse in registers is exploited without causing register spilling or

instruction cache misses. On the other hand, tiling plus data copying for reuse in

caches changes the iteration order and data layout, and may affect reuse in registers.

When combining unroll-and-jam and tiling, both unroll and tile sizes must be tuned

so that performance gains are complementary. To illustrate this point, consider

again Figure 1.1. This graph illustrates these complex interactions by showing the

performance of square matrix multiplication as a function of tiling and unrolling

factors1. Tiling factors range from 2 to 80 and unrolling factors from 2 to 32. We

see a corridor of best performing combinations along the x-y diagonal where tiling

and unrolling factors are equal, and smaller corridors when tile factors are multiples

of unroll factors. The best performing code variant used a tiling factor of 24 and

unrolling factor of 24 and achieves a performance of 845 MFLOPS.

1Recall from chapter 1 that we took a naive Matrix Multiplication implementation. All three
loops were tiled with the same tile-size. Only the innermost loop was unrolled.

76

Empirical optimization can compensate for the lack of precise analytical mod-

els by performing a systematic search over a collection of automatically generated

code variants. Each variant exposes a set of parameters that controls the application

of different transformation strategies. Parameter configurations for variants serve

as points in the search space and the objective function values2 associated with the

points are gathered by actually running the variants on the target architecture. The

success of empirical search is largely driven by how well the chosen search algorithm

navigates the search space. The search space shown in Figure 1.1 is not smooth and

contains multiple minimas and maximas. The best and the worst configurations are

a factor of six different.

Finding a good set of loop transformation parameters is an example of the

type of search that the Active Harmony system is designed to address. Our system

provides a selection of search algorithms designed specifically to deal with search

spaces where the explicit definition of the objective function is not available. In the

next section, we describe a specific modification that we made to the original PRO

algorithm to make it suitable for searching compiler generated parameter spaces.

6.2 Parallelizing Expansion Check Step

Recall that each simplex transformation step generates up to kN − 1 new ver-

tices. The time required to complete the parallel evaluation of these new vertices

is the time taken by the worst performing vertex. Recall that the decision to in-

2The objective function values associated with points in the search space can be any desired
metric of performance (for example - time per timestep, MFLOPS, cache utilization etc.).

77

troduce the expansion-check step in PRO was motivated by the observation that

there are some expansion points with very poor performance. For online tuning

of SPMD-based parallel applications, such configurations slow down not only the

search but also the execution of the application itself. To avoid these time consuming

instances, before evaluating all expansion points, PRO first calculates the expansion

point performance of only the most promising case at the expense of parallelism. If

the expansion checking step is successful, the algorithm performs expansion of other

points in the simplex.

In an offline parallel search, however, processors participating in the search

are independent and do not have to finish evaluating the configuration that they

were assigned. This allows us to take full advantage of the underlying parallelism

while still avoiding expansion points with poor performance. To that end, the

modified PRO (henceforth referenced as PRO-C) evaluates all expansion points and

the decision to accept or reject the expanded simplex is based on the performance of

the most promising case. If the performance reported by the most promising case is

worse than that of the best point in the reflected simplex, our system sends a signal

to all the other processors to stop the evaluation of their candidate configurations

and accepts the reflected simplex. The expansion of the simplex is accepted if

the performance of the most promising case is better than the best vertex in the

reflected simplex. With this modification, we not only reduce the number of steps

within one iteration of the search algorithm to at most two (reflection-expansion

and reflection-shrink) but also increase parallelism.

78

6.3 System Design

In this section, we describe our system design. We divide the discussion into

two parts. First, we provide a brief and high-level overview of CHiLL — a loop

transformation and code generation framework that is capable of generating code-

variants based on the parameter values supplied by the Active Harmony server.

Second, we describe how CHiLL and Active Harmony interact with each other to

generate a set of alternative implementations of computation kernels and select the

best-performing implementation.

6.3.1 Loop Transformation Framework: CHiLL

CHiLL [14, 15] is a polyhedral loop transformation and code generation frame-

work. CHiLL’s high-level script interface allows compilers or application program-

mers to use a common interface to describe parameterized code transformations to

be applied to a computation, whose parameters can be instantiated by an external

search engine. In CHiLL nomenclature, these scripts are called “recipes” (we pro-

vide example recipes later in this chapter). Besides making it easy to interface with

the code-generation utility, these code transformation recipes offer an additional

advantage. Unlike traditional compiler optimizations which must be coded into the

compiler, these recipes can be evolved and reused over time. A recipe library, cre-

ated by compiler experts and developers based on their experience working with real

codes, can then be consulted by auto-tuners to tune arbitrary loop-nests.

79

6.3.2 Overall System Workflow

Figure 6.1 shows the overall workflow of our system. The code transforma-

tion recipes and parameter specifications (i.e. parameter domain and constraints)

can be either generated by the compiler automatically or by the users tuning their

application code. With this flexibility, our approach can support both fully auto-

mated compiler optimizations and user-directed tuning. For our experiments, we

translate loop transformation sequences from the algorithms presented by Chen et

al [16] to CHiLL scripts. Specifications for unbound parameters in the scripts are

derived using simple heuristics based on architectural parameters (e.g., by consid-

ering cache capacity to generate constraints for tile-sizes). We elaborate more on

parameter specification in the next section. If a user, with domain knowledge, wants

more control over what part of the parameter space to focus on, he/she can provide

additional constraints to fine-tune the search space. Using the parameter specifica-

tions, we normalize the domain of each parameter onto our internal integer based

coordinate system. This step is necessary to ensure that the differences in the range

of values parameters can take in different dimensions do not unduly influence the

L1 distance metric.

Parameters that appear in one or more constraints are considered to be inter-

dependent and are evaluated as sets. For example, tile-size parameters for multiple

loops may appear in one or more cache capacity constraints. A simple constraint

solver is then used to enumerate points for each of these sets. Projection of an

inadmissible point to a valid point in the search space is done (by the projection

80

Figure 6.1: Overall system workflow diagram

server) separately for different groups of parameters.

At each search step, Active Harmony first generates a set of parameter con-

figurations. These configurations are evaluated by the projection server. The pro-

jection server projects the inadmissible points (if any) to nearest admissible points.

Active Harmony server then requests CHiLL to generate code variants with given

sets of parameters for loop transformations. The optimization driver waits until the

code-generation process is complete. The CHiLL generated code variants are then

compiled and evaluated in parallel on the target architecture by the optimization

driver. Measured performance values are consumed by the search-kernel to make

simplex transformation decisions.

81

Table 6.1: Compiler-based tuning: top table shows kernels used for experiments.
Bottom table provides the transformation recipes and constraints

Kernel Naive

Code

MM

DO K = 1, N

DO J = 1, N

DO I = 1, N

C[I,J] = C[I,J]+A[I,K]*B[K,J]

TRSM

DO J = 1, N

DO K = 1, N

DO I = K + 1,N

B(I,J) = B(I,J) - B(K,J)*A(I,K)

Jacobi

DO K = 2, N-1

DO J = 2, N-1

DO I = 2, N-1

A(I,J,K) = C*(B(I-1,J,K)+B(I+1,J,K)+

B(I,J-1,K)+B(I,J+1,K)+

B(I,J,K-1)+B(I,J,K+1))

Kernel T ransformation Constraints

Recipe

MM

permute([3,1,2])

tile(0,2,TJ)

tile(0,2,TI)

tile(0,5,TK)

datacopy(0,3,2,1)

datacopy(0,4,3)

unroll(0,4,UI)

unroll(0,5,UJ)

TK × TI ≤ 1

2

(

sizeL2

2

)

TK × TJ ≤ 1

2

(

sizeL1

2

)

UI × UJ ≤ sizeR

TI, TJ , TK ∈ [0, 2, 4, . . . , 512]
UI, UJ ∈ [1, 2, . . . , 16]

TRSM

permute([1,3,2])

tile(0,3,TK)

split(0,2,L3>=L1+TK)

tile(0,3,TI,2)

tile(0,3,TJ,2)

datacopy(0,3,2)

datacopy(0,4,3,1)

unroll(0,4,UJ1)

unroll(0,5,UI1)

datacopy(1,2,3,1)

unroll(1,2,UJ2)

unroll(1,3,UI2)

TK × TK ≤ 1

2

(

sizeL2

2

)

TK × TJ ≤ 1

2

(

sizeL1

2

)

TK × TI ≤ 1

2

(

sizeL2

2

)

UI1 × UJ1 ≤ sizeR

UI2 × UJ2 ≤ sizeR

TI, TJ, TK ∈ [0, 2, 4, . . . , 512]
UI1, UJ1, UI2, UJ2 ∈ [1, 2, . . . , 16]

Jacobi

original()

tile(0, 3, TI)

tile(0, 3, TJ)

tile(0, 3, TK)

unroll(0,5,UJ)

TI, TJ, TK ∈ [0, 2, 4, . . . , 512]
UJ ∈ [1, 2, . . . , 16]

6.4 Empirical Results

In this section, we present an experimental evaluation of our offline auto-

tuner. First, we use a Matrix Multiplication kernel to explore the effectiveness of
82

PRO-C (the modified PRO) on the search space for loop transformation parameters.

We study how the size of the initial simplex (and hence the degree of parallelism)

affects the convergence and performance of the search algorithm. In the second

part, we use our framework to optimize two additional computational kernels —

Triangular Solver (TRSM) and Jacobi. The use of linear algebra kernels — Matrix

Multiplication and Triangular Solver - was motivated by our goal to compare the

effectiveness of our framework to well tuned codes. The results for the Jacobi kernel

show that our framework is general-purpose and that it can handle arbitrary code

beyond the linear algebra library domain. For all the kernels, we provide the original

code, the transformation recipe and the constraints on unbound parameters in Table

6.1.

The experiments were performed on the umd-cluster (see section 5.2). We

compare the performance of our code versions with those of the native compiler (ifort

10.0.026, compiled with -O3 -xN). When compiling our transformed code, we turn off

the native compiler’s loop transformations to prevent the compiler from interfering

with our optimizations. For Matrix Multiplication and Triangular Solver, we present

the performance of ATLAS (version 3.8) self-tuning libraries. In addition to a near

exhaustive sampling of the search space, ATLAS uses carefully hand-tuned BLAS

routines contributed by expert programmers. To make a meaningful comparison,

we provide the performance of the search-only version of ATLAS - code generated

by the ATLAS Code Generator via pure empirical search. The search-only version

was generated by disabling the use of architectural defaults and turning off the use

of hand-coded BLAS routines.

83

0 10 20 30 40 50

1.4

1.6

1.8

2

2.2

Search Steps

Sp
ee

du
p

ov
er

 th
e

Na
tiv

e
Co

m
pi

le
r

Effects of Simplex Size on the Convergence of the Search Algorithm

2N Simplex (10 Nodes)
4N Simplex (20 Nodes)
8N Simplex (40 Nodes)
12N Simplex (60 Nodes)

Figure 6.2: Effects of different degree of parallelism on the convergence of PRO-C

For all our experiments, unroll factors and tile sizes are constrained by the

storage capacity of their associated memory hierarchy levels. In addition, for tile

sizes, we use a simple heuristic which tries to fit references with temporal reuse into

half of the cache, leaving the other half for references with spatial or no reuse.

6.4.1 Performance of PRO-C

In this section, we use Matrix Multiplication (MM) to demonstrate the effec-

tiveness of parallel search. The optimization strategy reflected in the transformation

recipe in Table 6.1 exploits the reuse of C(I, J) in registers, and the reuse of A(I, K)

and B(K, J) in caches (A and B have the same amount of temporal reuse, carried

by different loops). The transformation recipe applies tiling to B in the L1 cache

and A in the L2 cache. Data copying is applied to avoid conflict misses. In addi-

tion, to expose SSE optimization opportunities to the Intel compiler, the copying of

A transposes the data into the temporary array. The values for the five unbound

parameters TI, TJ , TK, UI and UJ are determined by the search algorithm.

84

Table 6.2: MM results - alternate simplex sizes
2N 4N 8N 12N

Number of Function Evals. 276 571 750 961

Number of Search Steps 49 32 22 18

Speedup over Native 2.30 2.33 2.32 2.33

To study the effect of simplex size, we considered four alternative simplex sizes

- 2N (10 Nodes), 4N (20 Nodes), 8N (40 Nodes) and 12N (60 Nodes), where N is

the number of unbound parameters (N = 5 for this experiment). Each simplex was

constructed around the same initial point, which was randomly selected from the

search space at the beginning of the experiment. The search algorithm was run for

a square matrix of size 800 × 800. The results for this experiment are summarized

in Table 6.2.

Figure 6.2 shows the performance of the best point in the simplex across search

steps. Search conducted with 12N and 8N simplices clearly use fewer search steps

than the search conducted with smaller simplices. Recall from our discussion in

section 6.1 and from Figure 1.1 that loop transformation parameter space is not

smooth and contains multiple local minimas and maximas. The existence of long

stretches of consecutive search steps with minimal or no performance improvement

(marked by arrows in Figure 6.2) in 2N and 4N cases show that more search steps

are required to get out of local minimas for smaller simplices. At the same time,

by effectively harnessing the underlying parallelism, 8N and 12N simplices evaluate

more unique parameter configurations (see Table 6.2) and get out of local minimas

at a faster rate.

85

500 1000 1500 2000 2500 30000

5

10

15
Performance Distribution

MFLOPS

Pe
rc

en
ta

ge
 o

f t
he

 T
ot

al
 S

am
pl

es

1.7% of 100,000 Samples

Figure 6.3: Performance distribution for randomly chosen MM configurations

The results summarized in Table 6.2 also show that as the simplex size in-

creases, the number of search steps decreases, thereby confirming the effectiveness

of increased parallelism. Using a 12N initial simplex, the search converges to a

solution 2.7 times faster than using 2N initial simplex.

The next question regarding the effectiveness of our framework relates to the

quality of the search result. To answer this question, we selected 100,000 uniformly

distributed samples from the search space, which has over 70 million total points,

and evaluated the performance associated with all the samples. The performance

distribution is shown is Figure 6.3. Approximately 1.7% of the total samples report

performance greater than 3 GFLOPS. The best performance (3.22 GFLOPS) was

associated with the configuration TI = 160, TJ = 6, TK = 162, UI = 1 and

UJ = 6. For the same problem size, our code delivers 3.17 GFLOPS. The result

demonstrates PRO-C’s effectiveness on compiler-generated search spaces.

Finally, figure 6.4 shows the performance of the code variant produced by a

86

500 1000 1500 2000 2500 3000 35001

1.5

2

2.5

3

3.5

4

4.5

Matrix Size(N)

G
FL

O
PS

Matrix Multiplication Results

Ifort
ATLAS search−only
Harmony−CHiLL
ATLAS Full

Figure 6.4: Results for MM kernel

12N simplex across a range of problem sizes along with the performance of native

compiler, ATLAS’ search-only and full version. Our code version performs, on

average, 2.36 times faster than the native compiler. The performance is 1.66 times

faster than the search-only version of ATLAS. Our code variant also performs within

20% of ATLAS’ full version (with processor-specific hand coded assembly).

6.4.2 Triangular Solver (TRSM)

The optimization strategy for the TRSM kernel is outlined in its transforma-

tion recipe provided in Table 6.1. Two inner loops are permuted to reuse B(I, J)

in registers, and loops I and J are unrolled. For data reuse in cache, loop K is

tiled first. The splitting condition is based on the decision to separate read access

B(I, J) from write access B(K, J). After splitting, one subloop has non-overlapping

read and write accesses and it is optimized in the same way as matrix multiplication.

The other subloop has only one non-overlapping read access A(I, K), for which data

copy is applied to reduce cache conflict misses caused by this array reference.

87

500 1000 1500 2000 2500 30000

0.5

1

1.5

2

2.5

3

3.5

4

Matrix Size(N)

G
FL

O
PS

Triangular Solver Results

Ifort
ATLAS search−only
Harmony−CHiLL
ATLAS Full

Figure 6.5: Results for TRSM kernel

Unbound parameters in the transformation recipe TI, TJ , TK, UI1, UJ1,

UI2 and UJ2 form a seven dimensional parameter space. PRO-C used a 60-point

simplex and converged to a solution in 55 steps evaluating 1,579 unique parameter

configurations. Figure 6.5 shows the performance of the code variant along with

the performance of the Native compiler and both ATLAS versions. The parameter

configuration selected by PRO-C performs, on average, 3.62 times faster than the

native Intel compiler. The performance, on average, is 1.07 times faster than the

search-only version of ATLAS. However, ATLAS full-version (with processor-specific

hand-tuned assembly) performance is 1.55 times faster than our code-variant.

6.4.3 Jacobi

The transformation recipe provided in Table 6.1 outlines the optimization

strategy we use for this kernel. Since only array B has reuse on three dimensions,

the loops are tiled on three dimensions for reuse in L1 or L2 cache. Arrays A and B

access data in the loop nest in the same order as the dimensionality of the iteration

88

0 50 100 150 200 250 300 350 400 450350

400

450

500

550

600

650

700

750

800

Matrix Size(N)

M
FL

O
PS

Jacobi Results

Ifort
Harmony−CHiLL

Figure 6.6: Results for Jacobi kernel

space, thus the original loop order is best for spatial reuse in cache and TLB. Finally

loop J is unrolled for register reuse. Four unbound parameters in the script TI, TJ ,

TK and UI form a four-dimensional parameter space.

PRO-C took 23 steps (870 unique function evaluations) to converge to TI = 0,

TJ = 22, TK = 0 and UJ = 1. The results of TK = 0 and TI = 0 suggest that

no tiling is needed for K and I loops. Tiling only the J loop produces the best

performance. Also no unroll is performed. We suspect that the native compiler’s

scalar replacement cannot take advantage of available register reuse across the I

dimension so there is little benefit of unrolling J . Figure 6.6 shows the performance

of our code variant. Note that we did not include a comparison to ATLAS for

Jacobi because it is not a linear algebra kernel and therefore there is no ATLAS

implementation available. On average, our code variant performs 1.35 times faster

than the native Intel compiler.

89

6.5 Summary

In this chapter, we described a scalable and general-purpose framework for

auto-tuning compiler-generated code. We showed for three benchmark kernels that

with automatic compilation and tuning in parallel, we can achieve performance that

greatly exceeds that of the native compiler, and is comparable to near-exhaustive

search of the ATLAS library system. Performance for various kernels is 1.4 to 3.6

times faster than the Native Intel compiler without search.

We note that we are not trying to compete with linear algebra library gen-

erators such as ATLAS. Our goal is to provide a general-purpose compiler based

framework, which can generate and evaluate different optimizations that can be ap-

plied on arbitrary application codes. In the absence of a general-purpose framework,

manual exploration of possible optimizations can be prohibitively time consuming

and painful for a programmer.

90

Chapter 7

Whole Program Tuning

In chapter 6 we showed that for well-defined benchmark kernels (such as matrix

multiplication), compiler-based offline auto-tuning can deliver significant improve-

ments over the optimizations offered by native compilers. That success sparked an

interest in extending the search-based empirical auto-tuning methodology to arbi-

trary program components and whole programs. Shifting the focus from empirically

tuning a few kernels to tuning whole programs will certainly help avoid the enor-

mous productivity costs associated with tuning and retargeting applications to next

generation exascale systems. However, the shift also comes with its own set of

challenges. The first challenge stems from the fact that compute intensive loop-

nests in full applications are often wedged in the middle of large monolithic code

sections. Code outlining tools are needed to extract these loop-nests to separate

standalone functions. These outlined codes can be more easily managed, analyzed

and transformed by loop-transformation tools. In addition, code-outlining process

helps reduce the challenging whole program tuning problem into a set of manage-

able kernel tuning tasks. We use ROSE compiler framework to do the code-outlining

[54]. The second challenge is related to the number of code-variants for a complete

application. This number can be fairly large. Therefore, strategies to judiciously se-

lect what transformation techniques to apply to different sections of the application

91

code are needed to keep the tuning time at manageable levels. We work directly

with compiler experts and application developers to make these decisions. Further-

more, compiler-based auto-tuning requires a code-transformation framework that is

able to generate different codes rapidly during the search by adjusting parameter

values. It also demands that the compiler have a clean interface to a separate pa-

rameter search engine. We use CHiLL (described in section 6.3.1), which provides

a high-level script interface to describe code transformation sequences, to transform

ROSE-outlined functions.

The auto-tuning framework presented in this chapter combines Active Har-

mony with ROSE’s outliner and CHiLL compiler transformation framework. We

use a real application benchmark, SMG2000 [10], as a subject application. The

auto-tuning process is driven by Active Harmony which utilizes the outlined code

and the code-transformer to search for the best performing variants of outlined

loop-nests. In the next section, we describe the overall tuning workflow.

7.1 Overall Workflow

Figure 7.1 shows the overall workflow of our system. The tuning process

starts by first using application profiling tools (such as HPCToolkit [2]) to identify

computationally intensive loop-nests (not shown in the figure). The ROSE outliner

outlines the kernels to separate and independently compilable C source files with

all dependent structures and typedef declarations preserved. Code-outlining is a

one-time process — outlined kernels can be reused in subsequent auto-tuning runs.

92

s m g 2 0 0 0 * * s m g 2 0 0 0 * * s m g 2 0 0 0 * * s m g 2 0 0 0 * *

* D r i v e r s i n v o k e C H i L L w i t h a p p r o p r i a t e s c r i p t s t o g e n e r a t e n e w c o d e a n d c o m p i l e t h e c o d e t o . s o . a n d
l a u n c h s m g 2 0 0 0 s h o r t e x e c u t i o n

A c t i v e H a r m o n y

D r i v e r * 1 D r i v e r * 2 D r i v e r * 3 D r i v e r * N

P e r f o r m a n c e
n u m b e r s

P a r a m e t e r
C o n f i g u r a t i o n s

* * A p p l i c a t i o n i s r u n o n t h e t a r g e t a r c h i t e c t u r e . E a c h i n s t a n c e e v a l u a t e s a d i f f e r e n t . s o .

T a r g e t
M a c h i n e

A U T O - T U N I N G

O u t l i n e r

W h o l e A p p l i c a t i o n

O u t l i n e d F u n c t i o n (s)

R O S E O u t l i n e r

O U T L I N I N G :
O n e t i m e p r o c e s s : O n c e p e r

 a p p l i c a t i o n

O u t l i n e d F u n c t i o n (s)

T r a n s f o r m e d C o d e

t r a n s f o r m e d . s o

C H i L L

C o m p i l e r

C O D E G e n e r a t i o n

Figure 7.1: Overall workflow: SMG2000 tuning

Application developers make simple modifications to the driver code that we

provide as a part of the software release package. These changes are made to ex-

port application-specific tuning options to the Active Harmony server. The driver,

which can be run on the login nodes of a parallel machine, connects to a given Ac-

tive Harmony server and requests candidate parameter configurations. The driver

93

then invokes CHiLL to generate variants of the outlined kernel based on the code

transformation parameters supplied by the Active Harmony server. The code gen-

erated on-demand is compiled into a shared library. Once the new code is ready,

the application is run on the target machine. The application dynamically loads

the transformed kernel by using the dlopen/dlsym mechanism. Once the execution

is complete, the driver collects performance measurement and sends them to the

Active Harmony server. The process continues for a specified number of iterations

or until the search algorithm converges to a point in the search space. For parallel

search, we run multiple copies of the driver. The number of copies is determined

by the number of tunable parameters and the simplex size (which is, in turn, de-

termined by the available resources). The use of shared library mechanism helps to

keep the tuning time short because only the outlined and transformed code has to

be recompiled between successive tuning runs.

7.2 Subject Application: SMG2000

We consider the SMG2000 [10] benchmark as a subject application. SMG2000

is a parallel semi-coarsening multigrid solver for the linear systems arising from finite

difference, finite volume, or finite element discretizations of the diffusion equation

on logically rectangular grids (equation 7.1).

5 · (D 5 u) + σu = f (7.1)

The code solves both 2D and 3D problems with discretization stencils of up to

94

nine points in 2D and up to twenty seven points in 3D. The most time-consuming

kernel (approximately 55% of the execution time on the target system used for the

experiments) in the SMG2000 benchmark is shown in Table 7.1. The kernel consists

of sparse matrix vector multiplication expressed in four-deep loop-nest1. The kernel

performs a stencil computation by sweeping the same array data (accessed using the

inner i, j, and k indices) multiple times for each stencil element (the outermost s

index). Thus, the kernel lacks data reuse and causes excessive cache misses [54].

To minimize the time required for tuning, many offline auto-tuners use “rep-

resentative short application executions”. In this technique, the application being

tuned is run with a meaningful input data for a short period of time and tuning

modifications are made between successive short executions [19]. Recall that the ob-

jective function values associated with different parameter configurations are derived

by running the application on the target machine. Therefore, representative short

runs help reduce the overall time required for offline auto-tuning. SMG2000 execu-

tion is divided into three distinct phases — initialization, setup and solve. All

three phases make several calls to the outlined function. We disable the solve phase

and record the total time spent in the outlined kernel during the initialization

and setup phases.

7.3 Empirical Results

The auto-tuning experiments were performed on a 64-node Linux cluster. Each

node is equipped with dual-core Intel Xeon 2.66 GHz (SSE2) processor. L1- and L2-

1The outlined kernel shown is a simplified version. Actual code is less clean.

95

Table 7.1: SMG2000 tuning: top table shows the kernel. Bottom table provides the
transformation recipe and constraints (SMG2000)

Kernel Original

Code

Matrix − vectorMultiply

for (si = 0; si < stencil_size; si++)

for (kk = 0; kk < hypre__mz; kk++)

for (jj = 0; jj < hypre__my; jj++)

for (ii = 0; ii < hypre__mx; ii++)

rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=

((Ap_0[((ii+(jj*hypre__sy1))+

(kk*hypre__sz1))+(((A->data_indices)[i])[si])])*

(xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+

((*dxp_s)[si])]));

Kernel T ransformation Constraints

Recipe

Matrix − vectorMultiply

permute([2,3,1,4])

tile(0,4,TI)

tile(0,3,TJ)

tile(0,3,TK)

unroll(0,6,US)

unroll(0,7,UI)

0 ≤ TI ≤ 122
0 ≤ TJ ≤ 122
0 ≤ TK ≤ 122
0 ≤ UI ≤ 16
0 ≤ US ≤ 10

compilers ∈ {gcc, icc}

cache sizes are 128 KB and 4096 KB respectively. Active Harmony uses the Parallel

Rank Ordering (PRO) algorithm to navigate the search space. Short executions of

SMG2000 are done in parallel on the target machine, with each execution instance

using a different code-variant. Transformation parameters are adjusted and cor-

responding new code-variants are generated between successive runs of SMG2000.

The search uses a 24-point simplex, which means up to 23 new code-variants are

evaluated in parallel at each search-step.

The optimization strategy (expressed in terms of a CHiLL-recipe) and con-

straints on transformation parameters are provided in Table7.1. The recipe tiles the

i, j and k loops (with TI, TJ and TK tiling factors) to improve data reuse in caches.

The stencil loop and the innermost loop are unrolled (with US and UI unrolling fac-

tors) to improve reuse in registers. The search-space is six-dimensional and includes

96

2 4 6 8 10 12 14 16 18 200.6

0.8

1

1.2

1.4

1.6

1.8

2

Search Steps

To
ta

l K
er

ne
l E

xe
cu

tio
n

Ti
m

e
(s

ec
on

ds
)

Search Evolution for SMG2000

Orginal Performance: 1.76s

Figure 7.2: Search evolution for offline SMG2000 tuning

a parameter that chooses between two compilers to compile the transformed kernel

— gcc and icc.

The search converges in 20 steps. The search-evolution (performance of the

best-point at each search-step) is shown in Figure 7.2. The y-axis shows the to-

tal time spent in the outlined kernel(in seconds) per short representative SMG2000

execution. The x-axis shows the PRO search steps. The configuration that PRO

converges to is: TI=122, TJ=106, TK=56, UI=8, US=3, comp=gcc2. The perfor-

mance improvement is 2.37X of the time for the outlined kernel. We then use

the code-variant associated with this parameter configuration to do a full run of

SMG2000 (with input parameters -n 120 120 120 -d 3). The results from full

SMG2000 run are summarized in Table 7.2. Full application execution improves by

27.2%.

2This was gcc version 4.1.2 and icc version 10.0.026, where icc has been known to have poor
performance.

97

Table 7.2: SMG2000: full run performance

Auto-tuned Original Improvement

49.86s 68.52s 27.2%

7.4 Summary

In this chapter, we combined ROSE’s code-outliner, CHiLL loop-transformer

and Active Harmony to create a general-purpose offline auto-tuner that can handle

arbitrary program components and full applications. We demonstrated the benefits

of the system on a real scientific application benchmark — SMG2000. We showed

how these three components complement each other and work together to create

an integrated framework that supports code-outlining, automatic compilation and

parallel search and pinpoints a code-variant that perform 2.37 times faster than the

original loop nest. When the full application is run using the code variant found by

the system, the application’s performance improves by 27%.

98

Chapter 8

Runtime auto-tuning

In this chapter, we extend on the work presented in chapter 7 and present a

runtime compilation and tuning infrastructure designed to improve the performance

of parallel applications within a single execution. A unique feature that distinguishes

the work presented here from other runtime auto-tuners is that our system can also

handle runtime tuning for tunable parameters that require code generation (for

example, different unroll factors). For such parameters, our auto-tuner generates

and compiles new code on-the-fly. Effectively, we merge traditional feedback directed

optimization and just-in-time compilation. We show that our system can leverage

available parallelism in today’s HPC platforms by evaluating different code-variants

on different nodes simultaneously.

Based on the input dataset, a given parallel application can have vastly differ-

ent execution profiles. Input datasets can specify physical domain, solver type(s),

solver parameters, discretization order, and so on. Taking an offline tuning approach

to tune for all possible computational bottlenecks is not a tractable goal. Instead,

on-demand tuning during production execution is a desirable approach. This on-

demand approach also benefits from the availability of real-time performance data,

which can be linked back to specific code sections and architecture-specific features.

This information is generally not available at compile time and even when some

99

information is available, most compilers choose not to use the information. The

compilers are designed to be generic and as such, they base their optimization deci-

sions on simple and conservative analytical models. With continuous dynamic tun-

ing, more aggressive tuning strategies can be explored. Furthermore, some tuning

decisions made by the compiler can be undone at runtime should they interact with

more profitable optimizations negatively. Thus, taking an offline auto-tuning ap-

proach for full applications may not be enough. Finally, in an era when Grid/Cloud

computing is getting increasingly popular, runtime adaptation of applications in

heterogeneous computing environments is more important than ever.

Development of an online auto-tuner, however, presents its own set of chal-

lenges. Managing the cost of the search process and the cost of generating and

compiling code-variants on-the-fly are two daunting challenges that must be ad-

dressed. Furthermore, the costs of using an online tuning system must be minimal.

Otherwise, such costs can overshadow any benefit realized in application perfor-

mance. If the performance of harmonized code is better (or at least not worse) than

that of untuned version of the code, the minimal overhead objective is achieved.

Addressing these challenges and making online tuning practical is the topic of this

chapter. Our goal is to enable application developers to write applications once and

have the auto-tuner adjust the application execution automatically when run on

new systems. Thus, we reach the culmination of the ideas presented so far in this

dissertation — we combine many of the ideas presented in the previous chapters to

develop a single system that can provide runtime tuning for full programs. In the

next section, we describe our system design.

100

8.1 System Design

In this section, we describe our online auto-tuning approach for parameters

that require new code and present our system design. We divide the discussion

into two parts. First, we describe our implementation for code-servers. Second, we

present the overall workflow of the runtime auto-tuner.

8.1.1 Code-servers

To make runtime auto-tuning practical, the key issue that needs to be ad-

dressed is the efficient runtime management of the process of generating, compiling,

and maintaining a set of alternative implementations and searching among them. A

given loop-nest generally requires more than one flavor of transformation strategy.

As the number of transformations increases, the number of alternative code-variants

grows exponentially. A brute-force approach of generating all possible combinations

is, thus, not practical. Instead, our approach generates code variants on-demand by

utilizing third-party loop-transformation frameworks.

Active Harmony relies on standalone code-generation utility (or code-servers)

for on-demand code generation. Here we describe the two most important fea-

tures of this utility. First, the design of code-servers allows the users to easily

select and switch between available code transformation tools. We separate the

search-based navigation of the code-transformation parameter space and the code-

generation process, which allows us to easily switch between different underlying

code-generation tools (e.g. if we are tuning CUDA code, we can switch to a code-

101

transformation framework that supports GPUs via CUDA or OpenCL)1. Second,

our code-generation utility can take advantage of idle (possibly remote) machines

for distributed code-generation and compilation. Users provide a set of available

machines at the start of the tuning session. These machines do the actual code-

generation work. Once all code-variants are generated, the compiled code-variants

are transported to the scratch filesystem of the parallel machine, where the appli-

cation being tuned is executing. After the code-generation is complete, our code-

generation utility notifies the Active Harmony server about the status.

8.1.2 Overall Workflow

Figure 8.1-(a) shows a schematic diagram of the workflow within our online

tuning system. Figure 8.1-(b) shows the application-level view of the tuning process.

At each search step, the Active Harmony server issues a request to the code-servers

to generate code variants with a given set of parameters for loop transformations.

The code-variants that are generated are compiled into a shared library (denoted

as v_N.so in the figure 8.1-(b)) and placed in a repository (typically on the scratch

file systems). Once the code-generation is complete, the application receives a code-

ready message from the Active Harmony server. The nodes allocated to the parallel

application then load the new code using the dlopen-dlsym mechanism. The new

code is executed and the measured performance values (denoted as PM_N in the figure

8.1-(b)) are consumed by the Active Harmony server to make simplex transformation

1For all the experimental results presented in this chapter, we use CHiLL [14], a polyhedra-
based compiler framework, to generate code-variants. We discussed the advantages of using CHiLL
in section 6.3.1.

102

(a)

(b)

Figure 8.1: Fig.8.1-(a) shows the overall online tuning workflow Fig.8.1-(b) shows
application level view of the auto-tuning workflow

decisions. The timing of actual loading of new code is determined by hooks (inserted

using the Active Harmony API) in the application. For example, in most programs,

we load new code only on timestep boundaries.

Preparing an application for auto-tuning starts with outlining the compute-

intensive code-sections to separate functions. We then insert appropriate calls to

the outlined functions using function pointers. These function pointers are updated

when new codes become available. Currently, the code-sections are outlined man-

ually. In the future, we intend to automate this process using the ROSE compiler

framework [54]. Each node running the application keeps track of the best code-

variant it has seen thus far in the tuning process. If the code-server fails to deliver

new versions on time, the nodes continue their execution with the best version that

103

they have discovered up to that point in the tuning process. The period where

no new code is available is referred as search_stall (see figure 8.1-(b)). The non-

blocking relationship between application execution and dynamic code-generation is

important in minimizing the online tuning overhead. The application does not have

to wait until the new code becomes available. Furthermore, this asynchronous rela-

tionship enables our auto-tuner to exercise control over what code-generation utility

to use, how many parallel code-servers to run and how many code-variants to gen-

erate in any given search iteration. The policy decisions about what code-variants

to generate and evaluate at each iteration is made completely by the centralized

tuning server.

8.2 Empirical Results

In this section, we present an empirical evaluation of our framework. First,

we conduct a study using as a test application, a Poisson’s equation solver program,

to determine the least number of parallel code-servers needed to ensure that the

search_stall phase does not dominate the tuning workflow. Second, we use two

parallel applications to demonstrate the effectiveness of our system on three different

computing platforms. We compare the performance of harmonized applications

with that of original applications compiled with the vendor-suggested highest level

of optimization flags turned on. Once the harmonized application is done with its

execution, we take the best code-variants returned by the Active Harmony server

and run the application using those code-variants. We call these runs post-harmony

104

runs.

Active Harmony utilizes the first two search iterations to generate uniformly

distributed random configurations from the search space. These configurations are

evaluated in parallel. We call these iterations exploratory iterations. The best

among these configurations then serves as the starting point for the initial simplex

construction. For all our experiments, unroll factors and tile sizes are constrained

by the storage capacity of their associated memory hierarchy levels; the machine

parameter limits are derived from the CSL description.

To control for performance variability, we use the multiple sampling method.

Each configuration is evaluated twice (i.e. the performance of two consecutive

timesteps is recorded) and the minimum of the two samples is sent to the Active

Harmony server. As discussed in chapter 3 and more fully in our previous work [83],

even in the presence of 5% variability due to background noise, taking the minimum

of two samples is enough to ensure the convergence of the search algorithm.

8.2.1 Platforms

The experiments were performed on three platforms. The first platform is

the umd-cluster (see section 5.2). The second platform (at NERSC [63]) is named

Carver, which is an IBM iDataPlex system with 400 compute nodes. Each node con-

tains two quad-core Intel Nehalem 2.67 GHz cores (3,200 cores total in the machine).

Nodes are connected via a 4X QDR Infiniband interconnect. These architectures are

different from each other not only in terms of the core architectures — the Carver’s

105

cores are several generations newer — but also in terms of the interconnect used

to connect the nodes. Finally, the third platform, which is named Hopper2, is a

Cray XT5 machine at NERSC. Each node consists of two 2.4 GHz AMD Opteron

Shanghai quad-core cores (5,312 cores total in the machine). Nodes are connected

via a Seastar2 interconnect.

For the experiments on the umd-cluster, the code-generation and compila-

tion is delegated to idle local machines. For the experiments on Carver, the code-

generation is out-sourced to a 64-bit x86 machine at UMD (i.e. code is generated

just in time and shipped across the continental United States). This was done be-

cause Carver scheduler does not permit synchronized (co-scheduled) jobs yet, which

meant that we could not launch a code-generation job simultaneously with the ap-

plication job. For the experiments on Hopper, the code-generation and compilation

takes place on the login nodes.

8.2.2 Calculating the “Net” Speedup

Our runtime tuning strategy uses extra cores to generate and compile new

code. Ideally, a fair comparison would be between the execution time of the har-

monized application to that of the original application run on Nh + C cores, where

Nh is the number of cores the harmonized application is run on and C is the num-

ber of cores used for code-generation. However, this is not always possible due to

application’s data distribution semantics (for example, the application may require

the number of cores to be a power of 2). Instead, to account for these extra cores,

2Hopper has since been upgraded to a Cray XE6 with 153,408 cores.

106

we calculate a new metric — net speedup. We define charge factor (equation 8.1) as

the ratio of the number of cores used to run the application and the total number

of cores used for both code-generation and harmonized application execution.

c.f. =
Nh

Nh + C
(8.1)

We then multiply the speedup of harmonized applications over the original applica-

tion by this charge factor to derive the net speedup.

8.2.3 Code-server Sensitivity

With the experimental results presented in this section, we attempt to answer

the following question — how many parallel code-servers are needed to ensure that

the auto-tuner does not have to wait for too long before the new code is ready? A

related question is — How often is the system in the search_stall phase? These

questions are important because if the search_stall phase is long, the application

can possibly continue with mediocre parameter configurations for extended periods

of time.

The experiments were conducted on the umd-cluster using the PES application

(described in section 8.2.4). We controlled the input problem size (10243) and the

number of cores running the application (128). All 128 cores participate in the

tuning process, which means at each search step, code-servers have to generate and

compile up to 128 code-variants. This is a typical number of code-variants required

per search iteration in all the experiments reported in this chapter. We vary the

107

0 50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

Sensitivity analysis − Comparison of the search Evolution
 for different number of code server

0 50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

Iterations

Pe
r−

ite
ra

tio
n

tim
e

(s
)

1 code−server
2 code−servers
4 code−servers

8 code−servers
12 code−servers
16 code−servers

Stalls
Stalls

Stalls

Figure 8.2: Sensitivity results demonstrating how the change in the number of code-
servers affects the search evolution

number of code-servers running in parallel and record the average number of time-

steps that the application had to continue with the old code. We call this metric

“stalled” iterations.

Figure 8.2 shows how per-iteration performance measurements change over

time for auto-tuning conducted with alternate number of code-servers. Long stretches

of consecutive application timesteps with no performance improvement (marked

by arrows) in experiments conducted with 1, 2 and 4 code-servers indicate that

the application continued its execution without having new code ready for several

timesteps. The same is not true for tuning conducted with 8, 12 and 16 code-servers.

Table 8.1 summarizes the results for this experiment. Consider columns 3 and

5. As the number of code-servers is increased from 1 to 4, the average number of

stalled iterations goes down significantly. This is to be expected. What is surprising

108

Table 8.1: Sensitivity experiment results
of code Avg. # of Avg. # of Avg. # of code Avg.
servers search iters stalled iters evaluated speedup

1 6* 46 502 0.75

2 17* 13 710 0.97

4 27 7.18 928 1.04

8 23 4.48 818 1.23

12 22 4.06 833 1.21

16 26 3.59 931 1.24

* - search algorithm did not converge

is that the addition of extra code-servers from 8 to 16 does not significantly change

the application speedup or the number of stalled iterations. The reason for this is

that as the search algorithm evolves and starts converging to a point in the search

space, the load on code-servers goes down (i.e., more points in the simplex become

identical). The data in column 4 of table 8.1 shows the number of unique code-

variants evaluated in different experiments. We can see that as the average number

of search iterations goes from 6 for runs using 1 code-server to 17 for runs using 2

code-servers, the average number of unique code-variants goes up by only 208.

Our end goal with this experiment was to set a minimum number of code-

servers required to ensure a short search_stall phase for the rest of the experi-

ments. Having said that, we acknowledge that there are other factors that can play

important roles in setting this minimum. In one of our preliminary experiments, we

discovered that the size of the search space can also dictate this minimum. When we

ran the experiments with small tuning space, the exploratory iterations (initial ran-

dom search of points) were able to find good parameter configurations. In this case,

the number of stalled iterations did not matter because applications were already

109

executing with good configurations. Moreover, the number of minimum code-servers

can (and most probably will) change if we switch between different code-generation

tools. Currently, we are looking into more robust ways to account for these issues

and to derive the value for the minimum required parallel code-servers. For the rest

of the auto-tuning experiments we describe in this chapter, we used 8 code-servers.

8.2.4 Subject Application: Poisson’s Equation Solver (PES)

Poisson’s equation is a partial differential equation that is used to character-

ize many processes in electrostatics, engineering, fluid dynamics, and theoretical

physics. To solve for Poisson’s equation on a three-dimensional grid, we use a mod-

ified version of the parallel implementation provided in the KeLP-1.4 distribution

[6]. The application is written in C++ and Fortran. The implementation uses the

redblack successive over relaxation method to solve the equation. The core of the

computational time is spent on the relaxation function, which uses a 7-point stencil

operation, and the error calculation function, which calculates the sum of squares

of the residual over the 3D grid. These two code-sections are tuned simultaneously

using the Active Harmony framework. The code-sections are outlined in table 8.2.

The original implementation of the relaxation operation uses the first half of

one iteration to update “red” array points and the second half of the iteration to

update the “black” points. In the adapted version of the application, we use the

fused version of the relaxation operation. The fused version orders the loop iteration

so that black points in each column are updated immediately after the red points

110

Table 8.2: PES tuning: top table shows the kernels. Bottom table provides the
transformation recipes and constraints

Kernel Original

Code

Relaxation

do kk=wl2-1,wh2

do k=kk+1,kk,-1

if ((k.le.wh2).and.

(k.ge.wl2)) then

do j=wl1,wh1

do i=wl0+mod(kk+j+1,2),wh0,2

u(i,j,k) = c * (u(i-1,j,k)

+ u(i+1,j,k) + u(i,j-1,k)

+ u(i,j+1,k) + u(i,j,k-1)

+ u(i,j,k+1)- c2*b(i,j,k))

L2 Norm (Error)

do k = 1, N

do j = 1, N

do i = 1, N

du = c*(u(i-1,j,k) + u(i+1,j,k)

+ u(i,j-1,k) + u(i,j+1,k)

+ u(i,j,k-1) + u(i,j,k+1)

- c2*u(i,j,k))

r = b(i,j,k) - du

err = err + r*r

Kernel T ransformation Constraints

Recipe

Relaxation

Manual tiling:

i and j loops

(TI1, TJ1)

TI1 × TJ1 ≤ 1

2

(

cache size

2

)

TI1 ≥ TJ1
TI1 ∈ [0, 4, . . . , prob size]

TJ1 ∈ [0, 4, . . . , prob size]

L2 Norm (Error)

original()

tile(0, 3, TI2)

tile(0, 3, TJ2)

tile(0, 3, TK2)

unroll(0, 6, UI2)

TI2 ∈ [0, 4, . . . , prob size]
TJ2 ∈ [0, 4, . . . , prob size]
TK2 ∈ [0, 4, . . . , prob size]

TI2 ≥ TJ2
TJ2 ≥ TK2

UI2 ∈ [1, 2, . . . , register size]

Search space dimension : 6 Parameters :
[TI1, TJ1, T I2, TJ2, TK2,UI2]

Sample search space size: 3.11 × 107

possible configurations for

64 − core run with 5123domain − size

in the next column and vice versa [76]. This fused version (see table 8.2) serves as

the baseline for comparing the net speedup of harmonized PES.

Our tuning strategy for this application combines symbolic parameter tuning3

3Symbolic tuning refers to tuning for parameters that are symbolic, i.e. no new code is necessary
to move between parameter values.

111

0 100 200 300 400 5000

0.5

1

1.5

2

Application Iterations

Ti
m

e
(s

ec
)

Aggregate plot of the worst per−iteration performance
(PES, 128 cores, umd−cluster)

worst perf

Original Perf (0.84 sec)

Figure 8.3: A plot for aggregate worst timing at each iteration

and tuning with dynamic code-generation. For the relaxation function, we use

symbolic tuning. We tile the two outermost loops and use Active Harmony to

determine the dimension of the tiles. The error function is optimized using the

dynamic code-generation method. For this function, we tile all three loops and the

innermost loop is unrolled. The search space is, thus, six-dimensional (two tunable

parameters for the relaxation function and four for the error function). All cores

allocated to the application participate in the tuning process. Thus, a 128-core

run of this application evaluates up to 128 tiling configurations simultaneously for

the relaxation function and up to 128 loop-variants simultaneously for the error

function in a single search step. The optimization strategy (expressed in terms of

the CHiLL recipe) along with the constraints for unbound tunable parameters is

provided in table 8.2. For a 5123 problem size run on 64-cores, the search space has

approximately 3.11 × 107 possible configurations.

We performed two sets of auto-tuning experiments — one using 64 cores and

one using 128 cores. Both sets of experiments were done on the umd-cluster. For

112

512 576 640 704 768 832 896

0.8

1

1.2

1.4

1.6

1.8

2
PES Application (64 cores, umd−cluster)

Problem−domain (cubed)

Im
pr

ov
em

en
t

post−harmony
harmonized
net speedup

(108) (184) (254) (341) (428) (536) (680)

Figure 8.4: Performance improvement of harmonized PES, net speedup, and post-
harmony run of the solver (64 core run on umd-cluster)

each core count, we select multiple input domain sizes. Figure 8.3 shows how Active

Harmony steers per-iteration performance of the harmonized PES. This experiment

uses a grid size of 10243. The figure plots the timing of the worst performing

configuration for each application iteration. The running time of an SPMD-based

application is bounded, at each timestep, by the slowest configuration. Per-iteration

time for the original application is indicated by the horizontal line in the figure. The

figure shows that Active Harmony suggested configurations outperform the original

application’s per-iteration timing within the first few tens of iterations.

Figures 8.4 and 8.5 plot the net and harmonized speedups achieved within

one full execution of the harmonized PES. The original application execution times

(in seconds) are shown in parentheses below the label for x-axis. The application

was run on 64 and 128 cores on the umd-cluster for varying input data sizes. As

expected, as the size of the problem domain increases, the performance of the har-

monized application increases as well. This is intuitive because with the increase in

113

960 1024 1088 1152 1216 12801

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Problem−domain (cubed)

Im
pr

ov
em

en
t

PES Applicaition (128 cores, umd−cluster)

post−harmony
harmonized
net speedup

(411) (598) (700) (816) (929)(464)

Figure 8.5: Performance improvement of harmonized PES, net speedup, and post-
harmony run of the solver (128 core run on umd-cluster)

the problem size, the Active Harmony server gets more time to explore the search

space before the application completes its execution. For the 5123 problem size

(see figure 8.4), the program execution time is too short (108 seconds) and the

harmonized application runs 28% slower than the original untuned version. The

28% slowdown does incorporate the charge factor for 8 extra cores used for code-

generation. The harmonized application is unable to overcome the penalty of using

some poor configurations early in the short run of the program (132 seconds elapsed

time).

On average, for both core counts and different problem domains, harmonized

PES, in terms of the net speedup, performs 1.16 times faster than the original ap-

plication. Thus, even after allowing for the code-servers, a single execution with

no prior runs is, on average, 16% faster than the original application. The best

net speedup for the harmonized application is 1.37. Post-harmony runs, which use

Active Harmony suggested parameter configurations and code-variants, on average,

114

perform 1.72 times faster than the original application. This indicates the perfor-

mance gain if the program was run a second time on the same machine with similar

inputs.

8.2.5 Subject Application: Parallel Multiblock Lattice Boltzmann

(PMLB)

The Lattice Boltzmann Method (LBM) is a widely used method in solving

fluid dynamic systems. In contrast to the conventional methods in fluid dynamics,

which are based on the discretization of macroscopic differential equations, the LBM

has the ability to deal efficiently with complex geometrics and topologies [92]. For

our experiments, we use the parallel multiblock implementation (extended to 3D

problems) of the LBM developed by Yu et al [96]. The test case lattice model

for our experiments is D3Q19 (19 velocities in 3D) with the collision and streaming

operations. The application is written in C.

The PMLB code is divided into six main operations: initialization, collision,

communication, streaming, physical and finalization. Collision, communication,

streaming and physical operations are executed within a loop. Initialization and

finalization operations are performed once. We focus our attention on the streaming

operation, which accounts for more than 75% of the execution time. The streaming

operation moves particles in motion to new locations along with their respective 19

velocities. This operation requires a significant number of memory copy operations.

The streaming operation consists of five separate triply-nested kernels, which

115

Table 8.3: PMLB tuning: top table shows the kernel. Bottom table provides the
transformation recipe and constraints

Kernel Original

Code

streaming 1

for (i=1; i<=imax;i++)

for(j=1; j<=jmax; j++)

for(k=1; k<=kmax; k++)

{

c1 = i*(ny_local);

c2 = c1+(ny_local);

c3 = (c1+j)*(nz_local);

c4 = c3+(nz_local);

c5 = (c2+j)*(nz_local);

c6 = c5+(nz_local);

c7 = (c3+k)*en;

fi[6+c7]=fi[6+(k+1+c3)*en];

fi[4+c7]=fi[4+(k+c4)*en];

fi[18+c5]=fi[18+(k+1+c4)*en];

fi[2+c7]=fi[2+(k+c5)*en];

fi[14+c7]=fi[14+(k+1+ c5)*en];

fi[10+c7]=fi[10+(k+c6)*en];

}

Kernel T ransformation Constraints

Recipe

streaming1

original()

tile(0, 1, TI)

tile(0, 3, TJ)

unroll(0, 5, UK)

known(imax>1)

known(jmax>1)

known(kmax>1)

TI ∈ [0, 4, . . . , prob size]
TJ ∈ [0, 4, . . . , prob size]

UK ∈ [1, 2, 3, 4]
TI ≥ TJ

Search space dimension : 6
2 sets of [TI, TJ,UK] :

one for fused kernels and

one for non−fused kernels

Sample search space size: : 8.92 × 106

possible configurations for

128 − core, 5123 problem size

are tuned simultaneously. Our optimization strategy utilizes loop-fusion, loop-tiling

and loop-unrolling. The tuning is done in two phases. The first few iterations

of the LBM method are used to identify the best fusion configuration for the five

triply nested loops within the streaming operation. For this stage, we use the

exhaustive search. Once we identify the best performing fusion configuration, the

tuning moves to the second stage, which involves tiling the outermost two loops

116

256 320 384 448 512 5760.8

0.9

1

1.1

1.2

1.3

1.4

1.5
PMLB Application (64 cores, umd−cluster)

Problem−domain (cubed)

Im
pr

ov
em

en
t

post−harmony
harmonized
net speedup

(282) (474) (1122) (1559)(150) (746)

Figure 8.6: Performance improvement of harmonized PMLB, net speedup, and post-
harmony run of PMLB (64 core run on umd-cluster)

and unrolling the innermost loop4. The second stage uses the parallel rank ordering

algorithm to determine two sets of tiling and unrolling factors — one for the fused

loop-nests and another for the remaining loop-nests. The search parameter space

for all PMLB experiments is, thus, six-dimensional. The optimization strategy

(expressed in terms of the CHiLL recipe) along with the constraints for unbound

tunable parameters is provided in table 8.3. Out of the five deeply nested kernels

in the streaming operation, we show only one kernel in the table. Other kernels are

similar in structure. For a 5123 problem size run on 128-cores, the search space has

approximately 8.92 × 106 possible configurations.

PMLB tuning experiments were done on the umd-cluster, Carver and Hopper.

Figures 8.6 and 8.7 plot speedup results for harmonized and post-harmony PMLB

runs using 64 and 128 cores on umd-cluster. We use multiple input datasets for dif-

ferent core counts. Again, we see that the increase in the size of the problem domain

4Simple code modifications were required to remove scalar dependencies between different levels
of loop-nests to ensure legality of code transformations.

117

384 448 512 576 6400.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

PMLB Application (128 cores, umd−cluster)

Problem−domain (cubed)

Im
pr

ov
em

en
t

post−harmony
harmonized
net speedup

(379) (549) (781) (1108)(243)

Figure 8.7: Performance improvement of harmonized PMLB, net speedup, and post-
harmony run of PMLB (128 core run on umd-cluster)

leads to a better performance for the harmonized PMLB. On average, harmonized

PMLB performs 1.14 times faster than the original application, while post-harmony

runs perform 1.38 times faster than the original application.

For the experiments on Carver, we use two different core counts — 256 and

512. We were limited in terms of the number of core counts because 512 is the

maximum core count a user can reserve on Carver. Figures 8.8 and 8.9 plot speedup

results for harmonized and post-harmony runs using 256 and 512 cores of Carver. In

terms of the net speedup, on average, harmonized PMLB performs 1.11 times faster

than the original application. The best net speedup for a harmonized run is 1.46,

i.e. even after factoring in the extra cores for code-generation, a single execution of

harmonized PMLB is up to 46% faster than the original application. Post-harmony

runs perform, on average, 1.37 times faster than the original application.

Experiments on Hopper were done using 512 and 1024 cores. Figures 8.10

and 8.11 plot speedup results for harmonized and post-harmony runs using 512 and

118

512 640 768 896 1024 1152
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

PMLB Application (256 cores, Carver)

Problem−domain (cubed)

Im
pr

ov
em

en
t

post−harmony
harmonized
net speedup

(73) (151) (284) (533) (712) (1190)

Figure 8.8: Performance improvement of harmonized PMLB, net speedup, and post-
harmony run of PMLB (256 core run on Carver)

640 768 896 1024 1152 12800.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Problem−domain (cubed)

Im
pr

ov
em

en
t

PMLB Application (512 cores, Carver)

post−harmony
harmonized
net speedup

(238) (409) (886)(164) (651)(96)

Figure 8.9: Performance improvement of harmonized PMLB, net speedup, and post-
harmony run of PMLB (512 core run on Carver)

119

640 768 896 1024 1152 12800.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Problem−domain (cubed)

Im
pr

ov
em

en
t

PMLB Application (512 cores, Hopper)

post−harmony
harmonized
net speedup

(95) (178) (286) (443) (614) (846)

Figure 8.10: Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (512 core run on Hopper)

1024 1152 14081

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Problem−domain (cubed)

Im
pr

ov
em

en
t

PMLB Application (1024 cores, Hopper)

post−harmony
harmonized
net speedup

(204) (300) (562)

Figure 8.11: Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (512 core run on Hopper)

120

Table 8.4: Results for cross-platform experiments

speedups for post-

Problem-size harmony on umd-cluster

w/ umd w/ Carver w/ Hopper
confs confs confs

4483 1.42 1.13 1.00

5123 1.30 1.26 0.95

5763 1.38 1.16 1.02

speedups for post-

Problem-size harmony on Carver

w/ Carver w/ umd w/ Hopper
confs confs confs

4483 1.51 1.38 1.34

5123 1.34 1.31 1.33

5763 1.42 1.39 1.27

speedups for post-

Problem-size harmony on Hopper

w/ Hopper w/ Carver w/ umd
confs confs confs

4483 1.28 1.30 1.27

5123 1.34 1.31 1.28

5763 1.31 1.35 1.30

1024 cores of Hopper. In terms of the net speedup, on average, harmonized PMLB

performs 1.14 times faster than the original application. The best net speedup for a

harmonized run is 1.21. Post-harmony runs perform, on average, 1.28 times faster

than the original application.

121

8.2.6 Cross-platform Comparison

In the preceding section, we showed how we applied Active Harmony to auto-

tune the execution of two parallel applications on three different platforms. A

logical question is how do the parameters that Active Harmony selected for different

platforms relate to each other. To answer this question, we conducted a controlled

study using 64-cores on all three systems. We selected three problem sizes for

the PMLB application. The selection of the problem sizes was based on whether

Active Harmony’s search converges to a solution or not within a single execution

of the harmonized PMLB. This was done to ensure that Active Harmony gets a

fair chance to select good configurations on all the systems. We then use Active

Harmony suggested parameter configurations for a given problem size on one system

to conduct post-harmony runs for the same problem size on other systems.

The results are summarized in table 8.4. Post-harmony runs conducted on the

umd-cluster using the configurations suggested for Carver do perform better than

the original version of the application. However, the speedup difference between

post-harmony runs conducted on the umd-cluster with umd-cluster configurations

and Hopper configurations is rather significant. Upon closer look at the parameter

values, we observed that for umd-cluster and Carver, Active Harmony only fuses

the first and the third kernels in the streaming operation. While on Hopper, the

first, the third and the fifth kernels are fused together. Furthermore, on Hopper,

the second and the fourth kernels are fused as well. We suspect that the poor

performance can be attributed to the properties and size of the instruction cache on

122

umd-cluster. It is also possible that excessive application of loop-fusion causes more

register spills on umd-cluster than for the other two platforms, thereby degrading

the performance of the PMLB [73]. This result argues tuning not only for specific

architecture but also for specific processor implementation. In the future, we plan

to look at the question of how the configurations found for different input datasets

for the same harmonized application relate to each other.

It is also interesting to see that the post-harmony runs conducted on Carver

using Hopper configurations provide similar speedups when compared to the post-

harmony runs conducted on Carver using Carver configurations. The same is true

for post-harmony runs conducted on Hopper. We attribute this to the processor

architecture similarity of the two systems.

In the work presented in this chapter, we focused exclusively on optimizing

computation at the core level. In the future, we plan to look into communication

auto-tuning in tandem with per-core tuning. We believe that the difference in

the interconnect technology between the Carver and Hopper systems will show the

benefits of tuning for specific interconnect technology.

8.3 Summary

In this chapter, we presented our runtime compilation and tuning infrastruc-

ture designed to improve the performance of parallel applications within a single

execution. Since the system does not rely on any specific code-generation system,

new code transformations can be easily incorporated within our system. We showed

123

that for two programs, auto-tuning improves performance without training runs.

Even if the intent is to auto-tune an application for a specific machine and

leave it fixed, runtime code-generation is useful. By generating and trying multiple

configurations in a single run, we greatly reduce the time required to auto-tune a

program.

Our system enables application developers to write applications once and have

the auto-tuner adjust the application execution dynamically when run on new sys-

tems. We demonstrated the value of our system by applying it on real application

codes. The performance improvement of up to 46% for a 512-core parallel applica-

tion execution can be achieved within a single execution of the application.

124

Chapter 9

Future Work

There are several natural extensions of our auto-tuning framework. We divide

the discussion into two parts. The first part describes the short-term vision for

Active Harmony and the second part describes the long-term vision.

9.1 Short-term Vision

In this section, we present a couple of ideas that can have near-term impact

in improving the usability and performance of Active Harmony. These ideas are the

result of experience gained in the implementation of Active Harmony and our recent

discussions with Active Harmony users.

9.1.1 Code-tuning API

The current implementation of Active Harmony provides multiple examples

that demonstrate how the end-users can utilize our online adaptive code-generation

and tuning feature. As the system matured, we realized that these examples show

remarkable commonalities in terms of the overall tuning workflow. These com-

monalities can be extracted into a code-tuning API to reduce the amount of code

modifications developers have to make to harmonize their programs.

125

9.1.2 Online Tuning for AMR Codes

Active Harmony’s online tuning capability can help Adaptive Mesh Refinement

(AMR) codes. Rather than relying on one global grid resolution, AMR codes have

the ability to change the underlying granularity of the mesh or grid locally during

a single production run of the application [55]. Areas in the domain that need finer

grid resolution (e.g. area near the heat source in heat diffusion problem) can benefit

from AMR technique because this allows shifting of the computational resources to

the parts of the domain that need these resources the most. This dynamic change

in the mesh structure also changes the execution characteristics of the application.

Thus, an offline auto-tuner cannot adequately address the auto-tuning needs for

AMR codes. Instead, Active Harmony’s online adaptive code-generation and tuning

is better suited to tune AMR codes. Our runtime auto-tuner can help AMR codes

react to the changes in workloads and suggest different code-variants based on the

grid resolution.

9.1.3 Code-server Sensitivity

In chapter 8, we described our methodology to find a minimum number of

code-servers required to ensure a short search_stall (see section 8.1) phase for the

runtime auto-tuning experiments presented in that chapter. We also acknowledged

that there are other factors that can play important roles in setting this minimum

value. Some of these factors include the size of the search space, the underlying code-

generation utility and the compiler, the number of cores the harmonized application

126

is running on, etc. A model-based approach that takes into consideration the factors

that we just mentioned to find the minimum required number of code-servers will

help in further shortening the search_stall phase.

Furthermore, we would like to extend the distributed code-generation utility

so that we can add additional resources when the code-generation load is heavy and

remove the resources when the load is light.

9.2 Long-term Vision

In this section, we present some long-term ideas for Active Harmony. We

discuss the likely future trends in the auto-tuning research. We also describe how

Active Harmony can play a significant role in addressing the auto-tuning challenges

posed by the next generation exascale systems.

9.2.1 Power Auto-tuning

As we are entering the era of exascale systems, the key problem that the HPC

community is trying to address is the “power wall” problem. The problem arises

from the fact that as compute nodes (consisting of multi/many-cores) become in-

creasingly powerful, they also become increasingly power-hungry. The problem is

further exacerbated by the fact that these cores do need to be cooled down as well.

Going forward, we see the power-aware computing research in the HPC commu-

nity focus in two main areas. The first area of research will consist of projects

that are involved in developing simple and low-cost hardware and software solutions

127

to construct the power consumption profile of scientific applications. Devices such

as PowerMon2 [7] and software frameworks such as PowerPack [29] can help mea-

sure an application’s impact on CPU, memory, hard-disk and peripheral bus power

consumption. The second area of research will be led by auto-tuners that utilize

the information provided by the first to automatically generate code-variants that

reduce the power foot-print of different code-sections.

Active Harmony is well positioned to make contributions to the second area

of research. An obvious starting point is to redefine the objective function from

application-level performance (e.g. execution time, cache hits) to a system-level

metric that captures power consumption (e.g. FLOPS/watt). We can then use the

compiler-based auto-tuning design presented in this thesis to find code-variants that

reduce power consumption.

We expect application developers and library writers to implement and evalu-

ate alternative implementations of key algorithms (e.g. data distribution, collective

communication) to make their code ready for exascale systems. Each of these alter-

natives can have drastically different power consumption and performance profiles.

For example, an implementation which aims at reducing the power consumption by

limiting inter-node communication can increase computational load at core-level.

Active Harmony can help developers quantify this tradeoff and make choices that

balance application performance and power consumption. Active Harmony can also

help limit the load on some overused resource (e.g. interconnect) by switching to

algorithms that reduce the load on the resource.

Finally, the auto-tuner can also help reduce power consumption by suggesting

128

selective reduction in operating voltage of unused electronic components of a sys-

tem. It is reasonable to have different instances of Active Harmony monitoring an

application’s use of different key electronic components. If the component is under-

utilized for extended periods of time, the component can be powered down. This

strategy can, however, have undesirable consequences (e.g. application can fail when

it needs a component that is turned off or powered down). A careful combination of

information from historical power profiles (which can alert the system to power up

the components before the application needs it), and robust checkpointing/restart

mechanism can help avoid and mitigate those undesirable consequences.

9.2.2 Communication Tuning for Exascale Systems

In this thesis, we have focused mostly on improving node-level performance.

Inter-node communication is another critical factor that needs our attention. For ap-

plications running on large number of nodes, inter-node communication can quickly

become the most dominant factor in the overall application execution time. Exas-

cale systems are projected to have thousands of nodes (with thousands of cores on

each node). Communication tuning will therefore be crucial in expanding the scope

and usability of Active Harmony.

Towards that end, one interesting research area for Active Harmony is to

explore communication level parameters such as communication and computation

overlapping strategies and interconnect-specific parameters. Load balancing strate-

gies also play a vital role in reducing communication costs. Over the course of

129

our research, we have found frequent examples where even a slight load imbalance

can increase the communication costs by significant margins. Active Harmony can

help developers choose between different data-distribution algorithms during train-

ing runs. If dynamic data redistribution methodologies are made available by the

application (e.g. adaptive mesh refinement applications), Active Harmony can trig-

ger redistribution when the communication costs exceed a certain threshold.

We believe that hybrid MPI-OpenMP programming model will be extensively

used by programmers to port current applications to the next generation exascale

systems. We attribute this to the ever increasing number of cores in compute-

nodes and to the fact that intra-node communication is much cheaper than the

inter-node communication. Therefore the need for an auto-tuner that can explore

the combined search space of MPI and OpenMP parameters cannot be overstated.

Active Harmony can help find a performance enhancing balance between MPI and

OpenMP by selecting appropriate parameters (e.g. chunk-size, number of OpenMP

threads, MPI buffer size) for hybrid programs. These parameters can also be selected

dynamically to react to the changing behavior of the application and the computing

platform.

9.2.3 CHiLL Recipe Library

In this dissertation, we selected a single parametrized loop transformation

recipe for each loop-nest that we tuned. In the future, we would like to explore the

idea of the auto-tuner automatically selecting a recipe from a library of recipes —

130

a library that consists of platform-specific recipes for the most commonly seen loop

structures (e.g. stencil operations, dense and sparse linear algebra kernels, streaming

computations) in scientific applications. This library can be created and evolved by

compiler experts, application developers and auto-tuners based on their experience

working with real codes. Finally, we envision an auto-tuner that is capable of

generating recipes for arbitrary program components and loop-nests.

9.2.4 CSL Library

The idea of a CSL library is analogous to that of the CHiLL recipe library.

Contributions to the library can come from auto-tuners, application developers,

compiler experts, performance models and also from the platform vendors. The

library will consists of two parts. The first part will consist of platform-specific CSL

descriptions for the most commonly seen loop structures in scientific applications.

This description will describe the parameter space, tuning strategies and constraints

and relationships between the tunable parameters. The second part will provide

machine models. The models will incorporate architecture-specific details such as

memory bandwidth and latency, memory hierarchy information etc.

131

Chapter 10

Conclusion

In this dissertation, we described a unified end-to-end solution to auto-tuning

parallel applications. Our system is scalable, general-purpose and provides tuning

mechanisms for all stages of application development and deployment — compile

time, application launch time and runtime. The search-based tuning system is em-

powered with a parallel parameter tuning algorithm, which can take advantage of

the available parallelism inherent in today’s High Performance Computing systems.

The empirical results presented in this document showed that our tuning algorithm

can effectively deal with high-dimensional search spaces. The fact that the search

algorithm converges to solutions in only a few tens of search-steps while simultane-

ously tuning multiple parameters demonstrates its capability of taking into account

the latent interactions between tunable parameters.

We studied the nature of performance variability in real systems. One of

the most important observations we made was that the performance variability

is heavy-tailed. Heavy-tailed performance (execution time) distributions consist of

many small spikes with random occurrences of few large spikes, most likely because of

external factors. What this means from the perspective of auto-tuning is that there is

a non-negligible probability of observing large variations in the measured/estimated

performance. The sampled performance measurements could, therefore, have infinite

132

variance. This observation essentially renders the average operator, which is the

most widely used operator to get an estimate for “real” performance from multiple

samples, ineffective. As an alternative, we suggest taking a minimum of multiple

performance measurements. The minimum has finite mean and variance and is not

heavy-tailed.

We evaluated our auto-tuner using real applications and benchmark kernels.

Our system leverages available compiler technology to generate code on-the-fly for

tunable parameters that require new code. We showed how our runtime compilation

and tuning methodology improves the performance of parallel applications within

a single execution. Since the system does not rely on any specific code-generation

system, new code transformations can be easily incorporated within our system.

We showed that for multiple large-scale parallel programs, auto-tuning improves

performance without training runs.

Furthermore, our system enables programmers to write applications once and

have the auto-tuner adjust the application behavior automatically when run on new

systems or on the same system with a new workload. The performance improve-

ment of up to 46% for a 512-core parallel application execution can be achieved

within a single execution of the application. For a 1024-core execution of the same

application, our system improved the execution time by 21%. Even if the intent is

to auto-tune an application for a specific machine and leave it fixed, our system is

useful. By generating and trying multiple configurations in a single run, we greatly

reduce the time required to auto-tune a program.

The success of any auto-tuning research is largely determined by whether it can

133

successfully steer application’s performance. The overhead of using an auto-tuner

should be minimal and the auto-tuning infrastructure should be scalable. We showed

that our system shows remarkable promise in all these fronts. Active Harmony brings

together all tunable targets in a given application within a single unified auto-tuning

framework. Entities within an application (e.g. library parameters, computationally

intensive loop nests) that can be changed or transformed (for better performance)

without affecting the application result are appropriate for exploration by Active

Harmony. Therefore our auto-tuner is general-purpose and the system can be used

to tune compiler-level parameters, application-level input parameters and runtime

parameters.

134

Appendix A

Constraint Specification Language

Tables A.1 and A.2 provide the Extended Backus Naur Form (EBNF) grammar

for the Constraint Specification Language. The syntax for expressions is adapted

from an expression evaluator example written in ANTLR [77]. This expression

syntax closely resembles the C (and other high-level language) EBNF syntax. Table

A.3 provides an example specification for Matrix Multiplication tuning using the

CSL. Table A.4 is the output of the standalone tool that parses the CSL specification

and outputs a python script. The python script uses the python-constraint solver

module to enumerate the legal points in the search space.

We use the following convention to present the CSL grammar in tables A.1 and

A.2. Symbols and strings that appear as a part of the parameter specification are

“double-quoted” (e.g. “search”, “+”). Unquoted curly brackets (i.e. { and }) are

used for better readability of the grammar. Symbols ?, * and + have the following

meaning:

?: Symbol (or a group of symbols in curly brackets) can appear zero or one time.

*: Symbol (or a group of symbols in curly brackets) can appear zero or multiple

times.

+: Symbol (or a group of symbols in curly brackets) has to appear at least once and

can appear multiple times.

135

Table A.1: Constraint Specification Language grammar - Part I
<parameter space> ::= "search" "space" <parameter space name>

"{"

<space body>

"}"

<space body> ::= {<constant declaration>}*

{<code region declaration>}*

{<region set declaration>}*

{<parameter declaration>}+

{<constraint declaration>}*

{<constraint specification>}*

{<grouping info>}*

{<ordering info>}*

<parameter space name> ::= <identifier>

<identifier> ::= (’a’..’z’ | ’A’..’Z’ | ’_’) (’a’..’z’ | ’A’..’Z’ | ’_’ | ’0’..’9’)*

<csl comment> ::= ’#’ (~(’\n’|’\r’))* (’\n’|’\r’(’\n’)?)

Constant Declaration Part:

--

<constant declaration> ::= "constants" "{" {<constants>}+ "}"

<constants> ::= <param type> <constant name> "=" <domain val> ";"

<constant name> ::= <identifier>

Code Region and Region Set Declaration Part:

--

<code region declaration> ::= "code_region" <region name> ";"

<region name> ::= <identifier>

<region set declaration> ::= "region_set"

<region set name> "[" <region name> <region name list> "]"";"

<region set name> ::= <identifier>

<region name list> ::= <region name> { "," <region name> }*

Parameter Declaration Part:

--

<param declaration> ::= "parameter" <parameter name> <param type>

"{"

<domain restrictions> {<default spec>}? {<region spec>}?

"}"

<parameter name> ::= <identifier>

<param type> ::= "int" | "float" | "string" | "bool" | "mixed"

<domain restrictions> ::= "range" "["<domail val> ":" <domain val> (":" <domain val>)? "]" ";"

| "prange" "["<domail val> ":" <domain val> ":" <domain val> "]" ";"

| "array" "[" array ("," "[" array "]")* "]" ";"

<array> ::= <domain val> ("," <domain val>)*

<domain val> ::= <integer> | <float> | <string> | <boolean>

<default spec> ::= "default" <integer> ";" | "default" <float> ";" | "default" <string> ";"

| "default" <boolean> ";"

<boolean> ::= "T" | "F"

<integer> ::= <digit> | <integer> <digit>

<float> ::= <integer> "." <integer>

Continued in Table A.2.

136

Table A.2: Constraint Specification Language grammar - Part II
Continuation from Table A.1.

<digit> ::= [0-9]

<string> ::= ’"’ (’a’..’z’ | ’A’..’Z’ | ’_’ | ’0’..’9’ | ’ ’)* ’"’

<region spec> ::= "region" <region set name> ";"

Constraint Declaration Part:

--

<constraint declaration> ::= "constraint" <constraint name>

"{" <expression> ";" "}"

<constraint name> ::= <identifier>

<expression> ::= <logical expression>

<logical expression> ::= <boolean and expression> {"||" <boolean and expression> }*

<boolean and expression> ::= <equality expression> {"&&" <equality expression>}*

<equality expression> ::= <relational expression> {("="|"!=") <relational expression>}*

<relational expression> ::= <additive expression> {("<"|"<="|">"|">=") <additive expression>}*

<additive expression> ::= <multiplicative expression> {("+"|"-") <multiplicative expression>}*

<multiplicative expression> ::= <power expression> {("*"|"/"|"%") <power expression>}*

<power expression> ::= <unary expression> {"^" <unary expression>}*

<unary expression> ::= <primary expression> | "!" <primary expression>

| "-" <primary expression>

<primary expression> ::= "(" <logical expression> ")" | <domain val>

| <parameter reference>

<parameter reference> ::= <identifier> | <identifier> "." <identifier>

| <identifier> "." "value"

Bind everything together with specification:

--

<constraint specification> ::= "specification"

"{"

<specification expr>";"

"}"

<specification expr> ::= <primary spec expr> (("&&"|"||") <primary spec expr>)*

<primary spec expr> ::= "(" <specification expr> ")" | <constraint name>

Parameter Ordering:

--

<ordering info> ::= "ordering"

"{" <parameter list> "}" ";"

<parameter list> ::= <parameter name> | <parameter name> {"," <parameter name>}+

Parameter Grouping:

--

<grouping info> ::= "groups"

"{" {<set declaration>}+ "}"

<set declaration> ::= "set" "[" <parameter reference> {"," <parameter reference>}* "]" ";"

137

Table A.3: Search specification for MM tuning (tiling and unrolling)
search space tiling_mm {

Now defining the search space specifics for tiling and unrolling

define some constants

constants {

int l1_cache=128;

int l2_cache=4096;

int register_file_size=16;

}

code region declarations: loopI, loopJ, loopK

code_region loopI;

code_region loopJ;

code_region loopK;

region set declaration

region_set loop [loopI, loopJ, loopK];

declare tile_size parameter and associate the parameter to region

set loop. default value of the parameter is set to 32.

parameter tile int {

prange -> power range [min:max:base]

prange [1:8:2];

2^1, 2^2, ..., 2^8

default 32;

region loop;

}

declare unroll_factor parameter and associate the parameter to

region set loop. default unroll factor is set to 1.

parameter unroll int {

range [1:8:2];

default 1;

region loop;

}

L1 cache (for array B)

constraint mm_l1 {

loopK.tile * loopJ.tile <= (l1_cache*4)/16;

}

L2 cache (for array A)

constraint mm_l2 {

loopK.tile * loopI.tile <= (l2_cache*1024)/16;

}

unroll constraint

constraint mm_unroll {

(loopI.unroll * loopJ.unroll * loopK.unroll) <= register_file_size;

}

putting everything together

specification {

mm_l1 && mm_l2 && mm_unroll;

}

}

138

Table A.4: Python script output for MM specification
import the python contraint module

from constraint import *

tiling_mm=Problem()

Constant Declarations

type:: int

l1_cache=128

type:: int

l2_cache=4096

type:: int

register_file_size=16

parameter Declarations

class tile:

default=32

def values(self):

ls=[]

for i in range(1,8):

ls.append(pow(2,i))

return ls

Region Set association: loop

tiling_mm.addVariable("loopI_tile", tile().values())

tiling_mm.addVariable("loopJ_tile", tile().values())

tiling_mm.addVariable("loopK_tile", tile().values())

class unroll:

default=1

def values(self):

ls=[]

ls=range(1, 8, 2)

return ls

Region Set association: loop

tiling_mm.addVariable("loopI_unroll", unroll().values())

tiling_mm.addVariable("loopJ_unroll", unroll().values())

tiling_mm.addVariable("loopK_unroll", unroll().values())

Constraint Declarations

def mm_l1 (loopJ_tile,loopK_tile):

return ((loopK_tile * loopJ_tile) <= ((l1_cache * 1024) / 16))

def mm_l2 (loopK_tile,loopI_tile):

return ((loopK_tile * loopI_tile) <= ((l2_cache * 1024) / 16))

def mm_unroll (loopK_unroll,loopJ_unroll,loopI_unroll):

return (((loopI_unroll * loopJ_unroll) * loopK_unroll) <= register_file_size)

Specification

def specification(loopK_unroll,loopJ_unroll,loopI_unroll,loopJ_tile,

loopK_tile,loopI_tile):

return ((mm_l1(loopJ_tile, loopK_tile) and

mm_l2(loopK_tile, loopI_tile)) and

mm_unroll(loopK_unroll, loopJ_unroll, loopI_unroll))

tiling_mm.addConstraint(FunctionConstraint(specification), \

("loopK_unroll","loopJ_unroll","loopI_unroll","loopJ_tile","loopK_tile","loopI_tile"))

format the output and print solutions

solution = tiling_mm.getSolution()

139

Bibliography

[1] D. Abramson, A. Lewis, T. Peachey, and C. Fletcher. An automatic design
optimization tool and its application to computational fluid dynamics. In Pro-
ceedings of Supercomputing ’01, pages 25–25, November 2001.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
and N. R. Tallent. Hpctoolkit: tools for performance analysis of optimized
parallel programs. Concurr. Comput. : Pract. Exper., 22(6):685–701, 2010.

[3] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,
J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to
focus iterative optimization. In Proceedings of the International Symposium on
Code Generation and Optimization, 2004.

[4] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe. Petabricks: A language and compiler for algorithmic choice. In
Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2009.

[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An opti-
mal algorithm for approximate nearest neighbor searching in fixed dimensions.
Journal of the ACM, 45(6):891–923, 1998.

[6] S. Baden. Kelp distribution webpage. http://cseweb.ucsd.edu/groups/

hpcl/scg/KeLP1.4/. [last accessed: Feb, 2010].

[7] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield. Powermon: Fine-grained
and integrated power monitoring for commodity computer systems. In Proceed-
ings of the IEEE SoutheastCon ’10, pages 479 –484, 2010.

[8] F. Berman and R. Wolski. Scheduling From the Perspective of the Application.
In Proceedings of the 5th International ACM Symposium on High Performance
Parallel and Distributed Computing, page 100, 1996.

[9] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A Practical
Automatic Polyhedral Program Optimization System. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation,
June 2008.

[10] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid
on distributed memory machines. SIAM Journal on Scientific Computing,
21(5):1823–1834, 2000.

[11] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wisniewski. Multiple
page size modeling and optimization. In Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques, pages 339–349,
2005.

140

[12] A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, and
R. Vuduc. Optimizing and tuning the fast multipole method for state-of-the-
art multicore architectures. In Proceedings of the 25th International Parallel
and Distributed Processing Symposium, pages 1 –12, 2010.

[13] Y. Che, Z. Wang, and X. Li. Reduction Transformations for Optimization
Parameter Selection. In Proceedings of the Eighth International Conference on
High-Performance Computing in Asia-Pacific Region, page 281, 2005.

[14] C. Chen. Model-Guided Empirical Optimization for Memory Hierarchy. PhD
thesis, University of Southern California, 2007.

[15] C. Chen, J. Chame, and M. Hall. CHiLL: A Framework for Composing High-
level Loop Transformations. Technical report, University of Southern Califor-
nia, 2008.

[16] C. Chen, J. Chame, and M. W. Hall. Combining models and guided empirical
search to optimize for multiple levels of the memory hierarchy. In Proceedings
of the International Symposium on Code Generation and Optimization, 2005.

[17] J. Choi and J. J. Dongarra. Scalable linear algebra software libraries for dis-
tributed memory concurrent computers. In Proceedings of the 5th IEEE Work-
shop on Future Trends of Distributed Computing Systems, page 170, 1995.

[18] I. Chung and J. K. Hollingsworth. Using Information from Prior Runs to
Improve Automated Tuning Systems. In Proceedings of Supercomputing ’04,
2004.

[19] I. Chung and J. K. Hollingsworth. A Case Study Using Automatic Perfor-
mance Tuning for Large-Scale Scientific Programs. In Proceedings of the 15th
International ACM Symposium on High Performance Parallel and Distributed
Computing, pages 45–56, 2006.

[20] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing compilers
for the 21st century. The Journal of Supercomputing, 23(1):7–22, 2002.

[21] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic:
evidence and possible causes. IEEE/ACM Transactions on Networking, 5:835–
846, December 1997.

[22] M. E. Crovella and M. S. Taqqu. Estimating the heavy tail index from scaling
properties. Method. Comput. Appl. Prob., 1(1):55–79, 1999.

[23] C. Ţăpuş, I. Chung, and J. K. Hollingsworth. Active harmony: towards auto-
mated performance tuning. In Proceedings of Supercomputing ’02, pages 1–11,
November 2002.

141

[24] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patter-
son, J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning
on state-of-the-art multicore architectures. In Proceedings of Supercomputing
’08, pages 4:1–4:12, November 2008.

[25] J. E. Dennis, Jr. and V. Torczon. Direct Search Methods on Parallel Machines.
SIAM Journal of Optimization, 1(4):448–474, 1991.

[26] W. Dorland, F. Jenko, M. Kotschenreuther, and B. Rogers. Electron tempera-
ture gradient turbulence. Physics Review Letters, 85(26):5579–82, 2000.

[27] J. B. Drake, S. Hammond, R. James, and P. H. Worley. Performance tun-
ing and evaluation of a parallel community climate model. In Proceedings of
Supercomputing ’99, page 34, November 1999.

[28] J. K. Dukowicz, R. D. Smith, and R. C. Malone. A reformulation and imple-
mentation of the bryan-cox-semtner ocean model. Journal of Atmospheric and
Oceanic Technology, 10:195–208, 1993.

[29] X. Feng, R. Ge, and K. Cameron. Power and energy profiling of scientific
applications on distributed systems. In Proceedings of the 19th International
Parallel and Distributed Processing Symposium, page 34, 2005.

[30] M. Frigo. A fast Fourier transform compiler. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation, May 1999.

[31] G. Fursin and A. Cohen. Building a practical iterative compiler. In Workshop on
Statistical and Machine Learning Approaches to Architectures and Compilation
(SMART’09), 2007.

[32] G. A. Geist II, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Providing
fault tolerance, visualization, and steering of parallel applications. International
Journal of High Performance Computing Applications, 11:224–236, 1997.

[33] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and
O. Temam. Semi-automatic composition of loop transformations for deep paral-
lelism and memory hierarchies. International Journal of Parallel Programming,
34(3):261–317, 2006.

[34] Goto-Webpage. http://www.tacc.utexas.edu/resources/software. [last
accessed: October 5, 2007].

[35] A. Hartono and S. Ponnuswamy. Annotation-Based Empirical Performance
Tuning Using Orio. In Proceedings of the 23rd International Parallel and Dis-
tributed Processing Symposium, May 2009.

[36] J. K. Hollingsworth and P. J. Keleher. Prediction and adaptation in active
harmony. Cluster Computing, 2:195–205, July 1999.

142

[37] R. Hooke and T. A. Jeeves. “Direct Search” Solution of Numerical and Statis-
tical Problems. Journal of the ACM, 8(2):212–229, 1961.

[38] S. Hunold and T. Rauber. Automatic tuning of PDGEMM towards optimal
performance . In Proceedings of European Conference on Parallel Computing,
pages 837–846, August 2005.

[39] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee. An Approach to
Performance Prediction for Parallel Applications. In Proceedings of European
Conference on Parallel Computing, August 2005.

[40] J. Joines and C. Houck. On the use of non-stationary penalty functions to solve
nonlinear constrained optimization problems with GA’s. In IEEE Conference
on Evolutionary Computation, volume 2, pages 579–584, June 1994.

[41] P. W. Jones, P. H. Worley, Y. Yoshida, I. J. B. White, and J. Levesque. Practical
performance portability in the parallel ocean program (pop): Research articles.
Concurrency and Computation: Practice and Experience, 17(10):1317–1327,
2005.

[42] J. Jorba, T. Margalef, and E. Luque. Search of performance inefficiencies in
message passing applications with KappaPI 2 tool. In Applied Parallel Com-
puting. State of the Art in Scientific Computing, volume 4699, pages 409–419.
Springer Berlin / Heidelberg, 2007.

[43] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott.
The Omega Library interface guide. Technical Report CS-TR-3445, University
of Maryland at College Park, 1995.

[44] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and M. Git-
tings. Predictive performance and scalability modeling of a large-scale applica-
tion. In Proceedings of Supercomputing ’01, November 2001.

[45] D. Kim, L. Renganarayanan, D. Rostron, S. Rajopadhye, and M. M. Strout.
Multi-level tiling: M for the price of one. In Proceedings of Supercomputing ’07,
pages 1–12, November 2007.

[46] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Combined Selection
of Tile Sizes and Unroll Factors Using Iterative Compilation. In Proceedings of
the International Conference on Parallel Architectures and Compilation Tech-
niques, page 237, 2000.

[47] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by Direct Search:
New Perspectives on Some Classical and Modern Methods. SIAM Review,
45(3):385–482, 2004.

[48] M. Kotschenreuther, G. Rewoldt, and W. M. Tang. Comparison of initial value
and eigenvalue codes for kinetic toroidal plasma instabilities. Computer Physics
Communications, 88:128–140, August 1995.

143

[49] W. T. C. Kramer and C. Ryan. Performance Variability of Highly Parallel
Architectures. In International Conference on Computational Science, pages
560–569, 2003.

[50] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson, M. Bailey,
Y. Paek, and K. Gallivan. Finding effective optimization phase sequences. In
Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler,
and tool for embedded systems, volume 38, pages 12–23, New York, NY, USA,
2003. ACM.

[51] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence
properties of the Nelder-Mead simplex algorithm in low dimensions. SIAM
Journal on Optimization, 9:112–147, 1998.

[52] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and S. A.
McKee. Methods of inference and learning for performance modeling of parallel
applications. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 249–258, New York, NY, USA, 2007. ACM.

[53] R. M. Lewis and V. Torczon. Rank Ordering and Positive Bases in Pattern
Search Algorithms. Technical Report TR-96-71, Institute for Computer Appli-
cations in Science and Engineering, NASA Langley Research Center, Hampton,
VA, 1996.

[54] C. Liao, D. J. Quinlan, R. Vuduc, and T. Panas. Effective Source-to-Source
Outlining to Support Whole Program Empirical Optimization. In Proceedings
of the 22nd International Workshop on Languages and Compilers for Parallel
Computing, Newark, Delaware, 2009.

[55] D. Martin and K. Cartwright. Solving poisson’s equation using adaptive mesh
refinement. Technical Report UCB/ERL M96/66, EECS Department, Univer-
sity of California, Berkeley, 1996.

[56] K. I. M. McKinnon. Convergence of the Nelder–Mead Simplex Method to a
Nonstationary Point. SIAM Journal on Optimization, 9(1):148–158, 1998.

[57] A. Morajko, P. Caymes-Scutari, T. Margalef, and E. Luque. MATE: Moni-
toring, Analysis and Tuning Environment for parallel distributed applications.
Concurrency and Computation: Practice and Experience, 19(11):1517–1531,
2007.

[58] D. M. Mount. Ann webpage. http://www.cs.umd.edu/∼mount/ANN/. [last
accessed: Feb 09, 2009].

[59] R. Mraz. Reducing the variance of point to point transfers in the ibm 9076
parallel computer. In Proceedings of the 1994 conference on Supercomputing,
Supercomputing ’94, pages 620–629, Los Alamitos, CA, USA, 1994. IEEE Com-
puter Society Press.

144

[60] I. Neamtiu. Practical Dynamic Software Updating. PhD thesis, University of
Maryland, College Park, August 2008.

[61] J. Nelder and R. Mead. A Simplex Method for Function Minimization. Com-
puter Journal, 7:308–313, 1965.

[62] Y. L. Nelson, B. Bansal, M. Hall, A. Nakano, , and K. Lerman. Model-guided
performance tuning of parameter values: A case study with molecular dynamics
visualization. In Proceedings of the 22nd International Parallel and Distributed
Processing Symposium, pages 1–8, April 2008.

[63] Nersc. National energy research scientific computing center. www.nersc.gov.

[64] G. Niemeyer. python-constraint module. http://labix.org/

python-constraint.org.

[65] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and
K. R. Walker. Agile application-aware adaptation for mobility. ACM SIGOPS
Operating Systems Review, 31(5):276–287, 1997.

[66] F. Otto, C. A. Schaefer, M. Dempe, and W. F. Tichy. A language-based tuning
mechanism for task and pipeline parallelism. In Proceedings of European Con-
ference on Parallel Computing, Euro-Par’10, pages 328–340, Berlin, Heidelberg,
2010. Springer-Verlag.

[67] S. G. Parker and C. R. Johnson. SCIRun: A Scientific Programming Envi-
ronment for Computational Steering. In Proceedings of Supercomputing ’95,
November 1995.

[68] T. Parr. Antlrv3. http://www.antlr.org.

[69] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of the Missing Supercom-
puter Performance: Achieving Optimal Performance on the 8,192 Processors of
ASCI Q. In Proceedings of Supercomputing ’03, November 2003.

[70] POP-Webpage. Pop benchmark inputs. http://oceans11.lanl.gov/

COSIMdownloads/POPBenchmarkInputs/. [last accessed: Oct 06, 2007].

[71] L. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimization in
the polyhedral model: Part II, multidimensional time . In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation,
June 2008.

[72] A. Qasem. Automatic Tuning of Scientific Applications. PhD thesis, Rice
University, 2007.

[73] A. Qasem and K. Kennedy. Profitable loop fusion and tiling using model-driven
empirical search. In Proceedings of the 2006 ACM International Conference on
Supercomputing, pages 249–258, New York, NY, USA, 2006. ACM.

145

[74] A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tuning of whole
applications using direct search and a performance-based transformation sys-
tem. The Journal of Supercomputing, 36(2):183–196, 2006.

[75] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopilot: Adaptive
Control of Distributed Applications. In Proceedings of the 7th International
ACM Symposium on High Performance Parallel and Distributed Computing,
page 172, 1998.

[76] G. Rivera and C. Tseng. Tiling optimizations for 3D scientific computations.
In Proceedings of Supercomputing ’00, 2000.

[77] S. Ros. ”state of the art expression evaluation”. http://www.codeproject.

com/KB/recipes/sota expression evaluator.aspx, November 2007.

[78] S. S. Shende and A. D. Malony. The TAU Parallel Performance System. Int.
J. High Perform. Comput. Appl., 20(2):287–311, 2006.

[79] K. Singh, E. İpek, S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caruana.
Predicting parallel application performance via machine learning approaches:
Research articles. Concurrency and Computation: Practice and Experience,
19(17):2219–2235, 2007.

[80] R. D. Smith, J. K. Dukowicz, and R. C. Malone. Parallel ocean general circula-
tion modeling. In Proceedings of the Eleventh Annual International Conference
of the Center for Nonlinear Studies on Experimental mathematics : Computa-
tional Issues in Nonlinear Science, pages 38–61. Elsevier, 1992.

[81] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha.
A Framework for Application Performance Modeling and Prediction. In Pro-
ceedings of Supercomputing ’02, November 2002.

[82] Swig. Simplified wrapper and interface generator. http://www.swig.org.

[83] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth. Parallel Parameter Tuning
for Applications with Performance Variability. In Proceedings of Supercomput-
ing ’05, page 57, November 2005.

[84] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August. Compiler
optimization-space exploration. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 204–215, 2003.

[85] H.-L. Truong and T. Fahringer. Scalea: A performance analysis tool for dis-
tributed and parallel programs. In Euro-Par 2002 Parallel Processing, volume
2400, pages 41–55. Springer Berlin / Heidelberg, 2002.

[86] J. S. Vetter and P. H. Worley. Asserting performance expectations. In Proceed-
ings of Supercomputing ’02, pages 1–13, November 2002.

146

[87] M. J. Voss and R. Eigenmann. ADAPT: Automated De-coupled Adaptive
Program Transformation. In Proceedings of the International Conference on
Parallel Processing, ICCP ’00, pages 163–170, August 2000.

[88] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of automatically
tuned sparse matrix kernels. Journal of Physics: Conference Series, 16:521–
530, June 2005.

[89] R. C. Whaley and J. Dongarra. Automatically tuned linear algebra software.
In Proceedings of Supercomputing ’98, 1998.

[90] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Lattice boltzmann
simulation optimization on leading multicore platforms. In Proceedings of the
22nd International Parallel and Distributed Processing Symposium, pages 1 –14,
2008.

[91] P. H. Worley and I. T. Foster. Parallel spectral transform shallow water model:
a runtime–tunable parallel benchmark code. In J. J. Dongarra and D. W.
Walker, editors, Proc. Scalable High Performance Computing Conf., pages 207–
214. 1994.

[92] X. Wu, V. Taylor, C. Lively, and S. Sharkawi. Performance analysis and opti-
mization of parallel scientific applications on cmp cluster systems. In ICPPW
’08: Proceedings of the 2008 International Conference on Parallel Processing -
Workshops, pages 188–195, 2008.

[93] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A language and com-
piler for DSP algorithms. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2001.

[94] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. POET: Parameter-
ized Optimizations for Empirical Tuning. Proceedings of the 21st International
Parallel and Distributed Processing Symposium, pages 1–8, March 2007.

[95] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P. Stodghill.
Is Search Really Necessary to Generate High-Performance BLAS? Proceedings
of the IEEE: Special Issue on Program Generation, Optimization, and Platform
Adaptation, 93(2):358–386, 2005.

[96] D. Yu and S. S. Girimaji. Multi-block Lattice Boltzmann Method: Extension
to 3D and Validation in Turbulence. Physica A: Statistical Mechanics and its
Applications, 362(1):118 – 124, 2006.

147

