
ABSTRACT

Title of dissertation: Combining Static and Dynamic Typing in Ruby

Michael Furr
Doctor of Philosophy, 2009

Dissertation directed by: Professor Jeffrey S. Foster
Department of Computer Science

Many popular scripting languages such as Ruby, Python, and Perl are dynam-

ically typed. Dynamic typing provides many advantages such as terse, flexible code

and the ability to use highly dynamic language constructs, such as an eval method

that evaluates a string as program text. However these dynamic features have tra-

ditionally obstructed static analyses leaving the programmer without the benefits

of static typing, including early error detection and the documentation provided by

type annotations.

In this dissertation, we present Diamondback Ruby (DRuby), a tool that

blends static and dynamic typing for Ruby. DRuby provides a type language that

is rich enough to precisely type Ruby code, without unneeded complexity. DRuby

uses static type inference to automatically discover type errors in Ruby programs

and provides a type annotation language that serves as verified documentation of a

method’s behavior. When necessary, these annotations can be checked dynamically

using runtime contracts. This allows statically and dynamically checked code to

safely coexist, and any runtime errors are properly blamed on dynamic code. To



handle dynamic features such as eval, DRuby includes a novel dynamic analysis and

transformation that gathers per-application profiles of dynamic feature usage via a

program’s test suite. Based on these profiles, DRuby transforms the program before

applying its type inference algorithm, enforcing type safety for dynamic constructs.

By leveraging a program’s test suite, our technique gives the programmer an easy

to understand trade-off: the more dynamic features covered by their tests, the more

static checking is achieved.

We evaluated DRuby on a benchmark suite of sample Ruby programs. We

found that our profile-guided analysis and type inference algorithms worked well,

discovering several previously unknown type errors. Furthermore, our results give us

insight into what kind of Ruby code programmers “want” to write but is not easily

amenable to traditional static typing. This dissertation shows that it is possible to

effectively integrate static typing into Ruby without losing the feel of a dynamic

language.



Combining Static and Dynamic Typing in Ruby

by

Michael Furr

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:
Professor Jeffrey S. Foster, Chair/Advisor
Professor Michael Hicks
Professor Neil Spring
Professor Vibha Sazawal
Professor Bruce Jacob, Dean’s Representative



c© Copyright by
Michael Furr

2009



Dedication

To my wife, Laura.

ii



Table of Contents

List of Figures vi

1 Introduction 1
1.1 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 RIL, a Ruby Analysis Framework . . . . . . . . . . . . . . . . 4
1.2.2 Static Types for Ruby . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Profiled-Guided Analysis of Dynamic Features . . . . . . . . . 6

2 A Framework for Ruby Analysis 7
2.1 An Introduction to Ruby . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Parsing Ruby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Language Ambiguities . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 A GLR Ruby Parser . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 The Ruby Intermediate Language . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Eliminating Redundant Constructs . . . . . . . . . . . . . . . 20
2.3.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Materializing Implicit Constructs . . . . . . . . . . . . . . . . 25

2.4 Additional Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Pretty Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Scope Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Visitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.5 File Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.6 Runtime Instrumentation . . . . . . . . . . . . . . . . . . . . 32

2.5 Using RIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Eliminating Nil Errors . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Dataflow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.3 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 A Static Type System for Ruby 46
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Static Types for Ruby . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Basic Types and Type Annotations . . . . . . . . . . . . . . . 48
3.2.2 Intersection Types . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Optional Arguments and Varargs . . . . . . . . . . . . . . . . 51
3.2.4 Union Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.5 Object Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.6 F-Bounded Polymorphism . . . . . . . . . . . . . . . . . . . . 54
3.2.7 The self type . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.8 Abstract Classes and Mixins . . . . . . . . . . . . . . . . . . . 56
3.2.9 Tuple Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

iii



3.2.10 First Class Methods . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.11 Types for Variables and Nil . . . . . . . . . . . . . . . . . . . 60
3.2.12 Unsupported features . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.13 Cast Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 MiniRuby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.1 Source Language . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.3 Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 82
3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Analyzing Dynamic Features 90
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Dynamic Features in DynRuby . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 An Instrumented Semantics . . . . . . . . . . . . . . . . . . . 100
4.3.2 Translating Away Dynamic Features . . . . . . . . . . . . . . 102
4.3.3 Safe Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.4 Formal Properties . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.1 Additional Dynamic Constructs . . . . . . . . . . . . . . . . . 112
4.4.2 Implementing safe eval . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Profiling Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.5.1 Dynamic Feature Usage . . . . . . . . . . . . . . . . . . . . . 117
4.5.2 Categorizing Dynamic Features . . . . . . . . . . . . . . . . . 118

4.6 Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.6.1 Performance and Type Errors . . . . . . . . . . . . . . . . . . 125
4.6.2 Changes for Static Typing . . . . . . . . . . . . . . . . . . . . 127

4.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5 Future Work 139
5.1 Type System Improvements . . . . . . . . . . . . . . . . . . . . . . . 139
5.2 Profiling Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Conclusions 145

A RIL Example Source Code 148

B Proofs for MiniRuby 153
B.1 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
B.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.3 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

iv



C Proofs for DynRuby 174
C.1 Type Checking Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
C.2 Complete Formalism and Proofs . . . . . . . . . . . . . . . . . . . . . 177

C.2.1 Translation Faithfulness . . . . . . . . . . . . . . . . . . . . . 177
C.2.2 Type Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Bibliography 197

v



List of Figures

2.1 Sample Ruby code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Example GLR Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Disambiguation example . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Nested Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 RIL Linearization Example . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Dynamic Instrumentation Architecture . . . . . . . . . . . . . . . . . 31

3.1 MiniRuby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Type Checking Rules for Expressions . . . . . . . . . . . . . . . . . . 68

3.3 Type Checking Rules for Definitions . . . . . . . . . . . . . . . . . . . 72

3.4 Subtyping Judgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Type Inference Rules (Updates Only) . . . . . . . . . . . . . . . . . . 76

3.6 Type Inference Results . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Using require with dynamically computed strings . . . . . . . . . . . . 91

4.2 Example of require from Rubygems package manager . . . . . . . . . 92

4.3 Use of send to initialize fields . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Defining methods with eval . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Intercepting calls with method missing . . . . . . . . . . . . . . . . . . 95

4.6 DynRuby source language . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Instrumented operational semantics (partial) . . . . . . . . . . . . . . 100

4.8 Transformation to static constructs (partial) . . . . . . . . . . . . . . 103

4.9 Safe evaluation rules (partial) . . . . . . . . . . . . . . . . . . . . . . 107

4.10 Dynamic feature profiling data from benchmarks . . . . . . . . . . . . 116

vi



4.11 Categorization of profiled dynamic features . . . . . . . . . . . . . . . 121

4.12 Type inference results . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.13 Changes needed for static typing . . . . . . . . . . . . . . . . . . . . 124

B.1 Type Checking Rules for Values . . . . . . . . . . . . . . . . . . . . . 154

B.2 Big-step Operational Semantics for Expressions (1/2) . . . . . . . . . 155

B.3 Big-step Operational Semantics for Expressions(2/2) . . . . . . . . . 156

B.4 Big-step Operational Semantics for Definitions . . . . . . . . . . . . . 158

C.1 Type checking rules for DynRuby (selected rules) . . . . . . . . . . . 175

C.2 Instrumented big-step operational semantics for DynRuby (exclud-
ing blame and error rules) . . . . . . . . . . . . . . . . . . . . . . . . 178

C.3 Transformation to static constructs (complete) . . . . . . . . . . . . . 179

C.4 Safe evaluation rules (complete) . . . . . . . . . . . . . . . . . . . . . 180

C.5 Additional operational semantics rule wrapped expressions (1/2) . . . 181

C.6 Additional operational semantics rule wrapped expressions (2/2) . . . 182

C.7 Type checking rules for DynRuby (complete) . . . . . . . . . . . . . 183

C.8 Type checking rules for DynRuby (complete) . . . . . . . . . . . . . 184

vii



Chapter 1

Introduction

Over the last decade a new wave of programming languages such as Perl [77],

Python [75], and Ruby [70] have gained popularity. These languages are distin-

guished by their strong support for regular expressions and string manipulation,

terse syntax, comprehensive libraries, and expressive language constructs. Com-

bined, these features aim to make solving common programming tasks as easy as

possible. In particular, these features ease the development of prototypes, where

producing a implementation quickly is often more important than producing a pro-

gram that is correct for every possible input. These languages are also dynamically

typed, meaning that no program is ever prevented from being executed. If a type

error occurs at runtime, such as evaluating true + 3, the program will be aborted

with an error message. However, if this expression is not evaluated, no error will

be emitted. This can be advantageous early in the development cycle. For exam-

ple, a programmer may wish to run her program to observe the layout of a GUI

component, ignoring the fact that clicking on a button would cause the program to

crash.

In contrast, statically typed languages attempt to detect potential type errors

1



before the program is ever executed. In order to be decidable, static type systems

must approximate which programs may cause a type error at runtime. For example,

if ( is prime 10) then true + 3 end would be considered ill-typed by most type sys-

tems despite the fact that this program will never produce a type error at runtime as

the primality test for 10 will always fail. Despite rejecting this program, one could

argue that the type system is justified in its conservatism: if the true branch was

ever taken (e.g., after performing some code refactoring) it would in fact produce

a type error, suggesting that this code should be changed nonetheless to make the

code more robust.

Ideally, we would like to have the best of both worlds: increased flexibility

when developing new features, and additional static checks when the code base

matures. In this dissertation, will explore adding an optional, static type system

to the Ruby programming language. Our aim is to add a typing discipline that

is simple for programmers to use, flexible enough to handle common idioms, that

provides programmers with additional checking where they want it, and reverts to

run-time checks where necessary.

There are several challenges in applying static typing to Ruby. First, Ruby

is a dauntingly large language, with many constructs and complex control flow.

Ruby aims to “feel natural to programmers” [65] by providing a rich syntax that

is almost ambiguous, and a semantics that includes a significant amount of special-

case, implicit behavior. While the resulting language is arguably easy to use, its

complex syntax and semantics make it hard to write tools that work with Ruby

source code.

2



Second, since Ruby is dynamically typed, it imposes few restrictions on the

kind of code that developers can write, allowing programmers to use any idiom they

choose. For example, program variables may be used with different types within the

same scope.

Finally, like other scripting languages, Ruby includes a range of hard-to-

analyze, highly dynamic constructs, such as an eval method that evaluates a string

as program text. While these constructs allow terse and expressive code, they have

traditionally obstructed static analysis.

1.1 Thesis

Despite these challenges, in this dissertation we will show:

Static typing can be effectively integrated into the Ruby language. A

static type system for Ruby can be precise and does not require Ruby

developers to significantly modify their programs to be accepted as well-

typed. Furthermore, Ruby’s dynamic features can be effectively profiled

and approximated with statically analyzable constructs.

As evidence in support of this thesis, we present Diamondback Ruby 1 (DRuby),

an extension to Ruby that blends the benefits of static and dynamic typing. DRuby

is focused on Ruby, but we expect our advances to apply to many other scripting

languages as well. DRuby is available as a free download at http://www.cs.umd.

edu/projects/PL/druby.

1The diamondback terrapin is the official mascot of the University of Maryland

3



1.2 Contributions

The remainder of this section will sketch our contributions, as presented in the rest

of this dissertation.

1.2.1 RIL, a Ruby Analysis Framework

As we embarked on building DRuby, we quickly discovered that working with Ruby

code was going to be quite challenging. Thus, in order to enable our other contri-

butions, Chapter 2 presents RIL, a framework that simplifies analyzing Ruby code.

The primary motivation for RIL is to provide a representation of Ruby source code

that makes it easy to develop source code analysis and transformation tools. RIL

includes an extensible GLR parser for Ruby, and an automatic translation into an

easy-to-analyze intermediate form. This translation eliminates redundant language

constructs, unravels the often subtle ordering among side effecting operations, and

makes implicit interpreter operations explicit. RIL also includes several additional

useful features, such as an instrumentation library for building dynamic analyses

and a dataflow analysis engine.

Combined, these transformations and libraries make writing static analyses

with RIL much easier than working directly with Ruby source code. RIL allowed us

to build DRuby, but we believe it will be useful to others who wish to build analysis

tools for Ruby.

4



1.2.2 Static Types for Ruby

In Chapter 3, we present DRuby’s static type language. DRuby includes union

and intersection types [52], nominal and structural object types [1], a self type [15],

F-bounded polymorphism [53], tuple types for heterogeneous arrays, flow sensitive

types for local variables, and optional and variable arguments in method types.

We have proven DRuby’s type system sound for a small Ruby-like calculus (Ap-

pendix B).

DRuby also includes a surface type annotation syntax. Annotations are re-

quired to give types to Ruby’s core standard library, since it is written in C rather

than Ruby, and for some types that DRuby cannot infer, such as higher order poly-

morphic types. Annotations are also useful for providing documentation in the form

of type signatures to Ruby methods and classes. These annotations are verified using

a mix of static and dynamic checks. DRuby’s dynamically checked annotations im-

prove upon Ruby’s existing dynamic type system by tracking blame, i.e., statically

typed code is never blamed for a run-time type error. We believe our annotation

language is easy to understand, and indeed it resembles the “types” written down

informally in the standard library documentation.

DRuby includes a type inference algorithm to statically discover type errors

in Ruby programs, which can help programmers detect problems much earlier than

dynamic typing. By providing type inference, DRuby helps maintain the lightweight

feel of Ruby, since programmers need not write down extensive type annotations to

gain the benefits of static typing.

5



1.2.3 Profiled-Guided Analysis of Dynamic Features

To handle the dynamic features of Ruby, DRuby includes a novel, profile-guided

analysis (Chapter 4). Our approach uses run-time instrumentation to gather per-

application profiles of dynamic feature usage from an application’s test suite. Based

on these profiles, we replace dynamic features with statically analyzable alternatives,

adding instrumentation to safely handle cases when subsequent runs do not match

the profile. Transformed code can then be analyzed using DRuby’s static type

inference algorithm to enforce type safety.

We prove that our transformation is faithful, meaning it does not change the

behavior of a program under its profile, and that transformed programs that pass

our type checker never go wrong at run time, except possibly from code that was

instrumented with blame tracking (Appendix C).

Lastly, we evaluated DRuby using a benchmark suite of sample Ruby pro-

grams and libraries. We found that dynamic features are pervasive throughout the

benchmarks and the libraries they include, but that most uses of these features are

highly constrained and hence can be effectively profiled by our technique. Using

the profiles to guide type inference, we found that DRuby can generally statically

type our benchmarks modulo some refactoring, and we discovered several previously

unknown type errors. These results suggest that profiling and transformation is a

lightweight but highly effective approach to bring static typing to highly dynamic

languages.

6



Chapter 2

A Framework for Ruby Analysis

In this chapter, we describe the Ruby Intermediate Language (RIL), an interme-

diate language designed to make it easy to extend, analyze, and transform Ruby

source code. As far as we are aware, RIL is the only Ruby front-end designed with

these goals in mind. RIL provides four main advantages for working with Ruby

code. First, RIL’s parser is completely separated from the Ruby interpreter, and is

defined using a Generalized LR (GLR) grammar [74], which makes it much easier

to modify and extend. In particular, it was rather straightforward to extend our

parser grammar to include type annotations, a key part of adding static types to

Ruby (Section 2.2). Second, RIL translates many redundant syntactic forms into one

common representation, reducing the burden on the analysis writer. For example,

Ruby includes four different variants of if-then-else (standard, postfix, and standard

and postfix variants with unless), and all four are represented in the same way in RIL.

Third, RIL makes Ruby’s (sometimes quite subtle) order of evaluation explicit by

assigning intermediate results to temporary variables, making flow-sensitive anal-

yses like dataflow analysis simpler to write. Finally, RIL makes explicit much of

Ruby’s implicit semantics, again reducing the burden on the analysis designer. For

7



example, RIL replaces empty Ruby method bodies by return nil to clearly indicate

their behavior (Section 2.3).

In addition to the RIL data structure itself, our RIL implementation has a

number of features that make working with RIL easier. RIL includes an implemen-

tation of the visitor pattern to simplify code traversals. The RIL pretty printer can

output RIL as executable Ruby code, so that transformed RIL code can be directly

run. To make it easy to build RIL data structures (a common requirement of trans-

formations, which often inject bits of code into a program), RIL includes a partial

reparsing module [23]. RIL also has a dataflow analysis engine, and extensive sup-

port for run-time instrumentation, which we use to profile highly dynamic features

such as eval in Chapter 4.

RIL is written in OCaml [43], which we found to be a good choice due to its

support for multi-paradigm programming. For example, its data type language and

pattern matching features provide strong support for manipulating the RIL data

structure, the late binding of its object system makes visitors easier to re-use, and

RIL’s dataflow and instrumentation libraries can be instantiated with new analyses

using functors.

Along with DRuby, RIL has also been used to build DRails, a tool that brings

static typing to Ruby on Rails applications [7]. In addition, several students in a

graduate class at the University of Maryland used RIL for a course project. The

students were able to build a working Ruby static analysis tool within a few weeks.

These experiences lead us to believe that RIL is a useful and effective tool for

analysis and transformation of Ruby source code. We hope that others will find

8



RIL as useful as we have, and that our discussion of RIL’s design will be valuable

to those working with other dynamic languages with similar features.

2.1 An Introduction to Ruby

We begin by introducing some of Ruby’s key features. In Ruby, everything is an

object, and all objects are instances of a particular class. For example, the literal

42 is an instance of Fixnum, true is an instance of TrueClass, and nil is an instance

of NilClass . As in Java, the root of the class hierarchy is Object.

There are several kinds of variables in Ruby, distinguished by a prefix: local

variables x have no prefix, object instance variables (a.k.a. fields) are written @x,

class variables (called static variables in Java) are written @@x, and global variables

are written $x.1

Figure 2.1 contains some sample code that illustrates many features of Ruby.

Local variables are not visible outside their defining scope are never declared, but

rather come into existence when they are written to (line 1). It is an error to refer to

a local variable before it is initialized (line 3). Since local variables are dynamically

typed, their types may change as evaluation proceeds. In Figure 2.1, line 4 writes

a string to b, effectively changing its type, so on line 5 it makes sense to invoke the

length method on b.

Lines 7–19 define a new class Container with instance methods get and set, class

1As an aside, there are a few oddball variables like $1 that are prefixed as a global but are in

fact local.

9



1 a = 42 # a in scope from here onward
2 b = a + 3 # equivalent to b = a.+(3)
3 c = d + 3 # error : d undefined
4 b = ”foo” # b is now a String
5 b. length # invoke method with no args
6

7 class Container # implicitly extends Object
8 def get() # method definition
9 @x # field read; method evaluates to expr in body

10 end
11 def set(e)
12 @@last = @x # class variable write
13 @x = e # field write
14 end
15 def Container. last () # class method
16 $gl = @@last
17 @@last
18 end
19 end
20 f = Container.new # instance creation
21 f . set (3) # could also write as ”f . set 3”
22 g = f.get # g = 3
23 f . set (4)
24 h = Container.new.get # returns nil
25 l = Container. last # returns 3
26 $gl # returns 3
27

28 i = {‘‘ size ’ ’ => 3,
29 ‘‘ color ’ ’ => ‘‘blue’ ’} # hash literal
30 j = [1, 2, 3] # array literal
31 k = j. collect { |x| x + 1} # k is [2, 3, 4]
32

33 module My enumerable # module creation
34 def leq(x)
35 ( self ⇔ x) ≤ 0 # note method ”⇔” does not exist here
36 end
37 end
38

39 class Container
40 include My enumerable # mix in module
41 def ⇔(other) # define required method
42 @x ⇔ other.get
43 end
44 end
45

46 f ⇔ f # returns 0

Figure 2.1: Sample Ruby code

10



method last , an instance variable @x, and a class variable @@last. Methods evaluate

to the last statement in their body (line 9), and may also include explicit return

statements. Instances are created by invoking the special new method (line 20).

Method invocation syntax is standard (line 21), though parentheses are optional

for the outermost method call in an expression (lines 20 and 22). Class methods

must be called with the class as the receiver (line 25). Method names need not be

alphanumeric; operations such as addition (line 2) are equivalent to method calls (in

this case, equivalent to a.+(3)). Unlike local variables, fields are by default initialized

to nil (line 24); the same is true with class and global variables. As usual, class

variables are shared between all instances of a class (line 25).

To elaborate on Ruby’s scope rules, class and instance variables are only visible

within their defining class. For example, there is no syntax to access the @x or @@last

fields of f from outside the class. Local variables are not visible inside nested classes

or methods, e.g., it would be an error to refer to b inside of Container. Global

variables are visible anywhere in the program (lines 16 and 26).

Like most scripting languages, Ruby provides special syntax for hash literals

(line 28) and array literals (line 30) . Ruby also supports higher-order functions,

called code blocks. Line 31 shows an invocation of the collect method, which pro-

duces a new array by applying the supplied code block to each element of the

original array. The code block parameter list is given between vertical bars, and,

unlike methods, code blocks may refer to the local variables that are in scope when

they are created. Using standard syntax as shown, each method may take at most

one code block as an argument, and a method invokes the code block using the

11



special syntax yield(e1, . . . , en). Ruby does have support for passing code blocks as

regular arguments, but the syntax is messier, discouraging its use.

Ruby supports single inheritance. The declaration syntax class Foo < Bar in-

dicates that Foo inherits from Bar. If no explicit inheritance relationship is specified

(as with Container in Figure 2.1), then the declared class inherits from Object. Ruby

also includes modules (a.k.a. mixins) [13] for supporting multiple inheritance. For

example, lines 33–37 define a module My enumerable, which defines an leq method in

terms of another method ⇔ that implements three-way comparison. On lines 39–

44, we mix in the My enumerable module (line 40) via include , and then define the

needed ⇔ method (lines 41–43). From line 46 onward, we can invoke Container. leq.

Note also that on line 39 we reopened class Container and added a new mixin and

method. This is just one way in which programmers can modify classes and methods

dynamically. We will examine more of these features in detail in Chapter 4.

Additional information on the Ruby language is available elsewhere [70, 29].

2.2 Parsing Ruby

The first step in analyzing Ruby is parsing Ruby source. One option would be to

use the parser built in to the Ruby interpreter. Unfortunately, that parser is tightly

integrated with the rest of the interpreter, and uses very complex parser actions to

handle the ambiguity of Ruby’s syntax. We felt these issues would make it difficult to

extend Ruby’s parser for our own purposes, e.g., to add a type annotation language

for DRuby.

12



Thus, we opted to write a Ruby parser from scratch. The fundamental chal-

lenge in parsing Ruby stems from Ruby’s goal of giving users the “freedom to choose”

among many different ways of doing the same thing [76]. This philosophy extends

to the surface syntax, making Ruby’s grammar highly ambiguous from an LL/LR

parsing standpoint. In fact, we are aware of no clean specification of Ruby’s gram-

mar.2 Thus, our goal was to keep the grammar specification as understandable (and

therefore as extensible) as possible while still correctly parsing all the potentially

ambiguous cases. Meeting this goal turned out to be far harder than we originally

anticipated, but we were ultimately able to develop a robust parser.

2.2.1 Language Ambiguities

We illustrate the challenges in parsing Ruby with three examples. First, consider

an assignment x = y. This looks innocuous enough, but it requires some care in

the parser: If y is a local variable, then this statement copies the value of y to x.

But if y is a method (lower case identifiers are used for both method names and

local variables), this statement is equivalent to x = y(), i.e., the right-hand side is a

method call. Thus we can see that the meaning of an identifier is context-dependent.

Such context-dependence can manifest in even more surprising ways. Consider

the following code:

1 def x() return 4 end
2 def y()
3 if false then x = 1 end

2There is a pseudo-BNF formulation of the Ruby grammar in the on-line Ruby 1.4.6 language

manual, but it is ambiguous and ignores the many exceptional cases [46].

13



4 x + 2 # error , x is nil , not a method call
5 end

Even though the assignment on line 3 will never be executed, its existence causes

Ruby’s parser to treat x as a local variable from there on. At run-time, the inter-

preter will initialize x to nil after line 3, and thus executing x + 2 on line 4 is an

error. In contrast, if line 3 were removed, x + 2 would be interpreted as x() + 2,

evaluating successfully to 6. (Programmers might think that local variables in Ruby

must be initialized explicitly, but this example shows that the parsing context can

actually lead to implicit initialization.)

As a second parsing challenge, consider the code:

6 f () do |x| x + 1 end

Here we invoke the method f, passing a code block (higher-order method) as an

argument. In this case the code block, delimited by do ... end, takes parameter x

and returns x + 1. It turns out that code blocks can be used by several different

constructs, and thus their use can introduce potential ambiguity. For example, the

statement:

7 for x in 1..5 do puts x end

prints the values 1 through 5. Notice that the body of for is also a code block (whose

parameters are defined after the for token)—and hence if we see a call:

8 for x in f () do ... end ...

then we need to know whether the code block is being passed to f() or is used as

the body of the for. (In this case, the code block is associated with the for.)

14



Finally, a third challenge in parsing Ruby is that method calls may omit

parentheses around their arguments in some cases. For example, the following two

lines are equivalent:

9 f (2∗3, 4)

10 f 2∗3, 4

However, parentheses may also be used to group sub-expressions. Thus, a third way

to write the above method call is:

11 f (2∗3),4

Of course, such ambiguities are a common part of many languages, but Ruby has

many cases like this, and thus using standard techniques like refactoring the gram-

mar or using operator precedence parsing would be quite challenging to maintain.

2.2.2 A GLR Ruby Parser

To meet these challenges and keep our grammar as clean as possible, we built our

parser using the dypgen generalized LR (GLR) parser generator, which supports

ambiguous grammars [50]. Our parser uses general BNF-style productions to de-

scribe the Ruby grammar, and without further change would produce several parse

trees for conflicting cases like those described above. To indicate which tree to pre-

fer, we use helper functions to prune invalid parse trees, and we use merge functions

to combine multiple parse trees into a single, final output.

An excerpt from our parser is given in Figure 2.2. Line 9 delimits the OCaml

functions defined in the preamble (lines 1–8), versus the parser productions (lines 10–

15



1 let well formed do guard body = match ends with guard with
2 | E MethodCall( , ,Some (E CodeBlock(false, , , )), ) →
3 raise Dyp.Giveup
4 | →()
5

6 let well formed command m args = match args with
7 | [E Block ] → raise Dyp.Giveup
8 | ...
9 %%

10 primary:
11 | T LPAREN[pos] stmt list[ss ] T RPAREN
12 { E Block(ss,pos) }
13 | func[ f ] { f }
14 | K FOR[pos] formal arg list [ vars ] K IN arg[guard]
15 do sep stmt list [body] K lEND
16 { well formed do guard body; E For(vars ,range,body,pos) }
17

18 command:
19 | command name[m] call args[args]
20 { well formed command m args;
21 methodcall m args None (pos of m)}
22 | ...
23

24 func:
25 | command name[m] T LPAREN call args[args] T RPAREN
26 { methodcall m args None (pos of m) }
27 | ...

Figure 2.2: Example GLR Code

16



27). A dypgen production consists of a list of terminal or non-terminal symbols

followed by a semantic action inside of {}’s. The value of a symbol may be bound

using []’s for later reference. For example, the non-terminal stmt list[ss] reduces to

a list of statements that is bound to the identifier ss in the body of the action.

The production primary, defined on line 10, handles expressions that may ap-

pear nested within other expressions, like a subexpression block (line 11), a method

call (line 13), or a for loop (line 14). On line 16, the action for this rule calls the

helper function well formed do to prune ill-formed sub-trees. The well formed do func-

tion is defined in the preamble of the parser file, and is shown on lines 1–4. This

function checks whether an expression ends with a method call that includes a code

block and, if so, it raises the Dyp.Giveup exception to tell dypgen to abandon this

parse tree. This rule has the effect of disambiguating the for...do..end example by

only allowing the correct parse tree to be valid. Crucially, this rule does not re-

quire modifying the grammar for method calls, keeping that part of the grammar

straightforward.

We use a similar technique to disambiguate parentheses for method calls. The

command (line 18) and func (line 24) productions define the rules for method calls

with and without parentheses respectively. Each includes a list of comma separated

arguments using the call args production, which may reduce to the primary produc-

tion (line 10). As with the action of the for production, the command production calls

the helper function well formed command to prune certain parse trees. This function

(line 6) aborts the parse if the method call has a single argument that is a grouped

sub-expression (stored in the E Block constructor).

17



Ruby source command func

f (x,y) comma in sub-expr success
f (x),y success comma after reduction
f x,y success no parens
f (x) raise Giveup success

Figure 2.3: Disambiguation example

Figure 2.3 shows how our grammar would parse four variations of a Ruby

method call. The first column shows the source syntax, and the last two columns

show the result of using either func or command to parse the code. As the GLR

parsing algorithm explores all possible parse trees, dypgen will attempt to use both

productions to parse each method call. The first variation, f(x, y), fails to parse

using the command production since the sub-expression production on line 11 must

apply, but the pair x, y is not a valid (isolated) Ruby expression. Similarly, the

second example does not parse using func since it would reduce f(x) to a method

call, and be left with the pair (f(x)), y which is invalid for the same reason. The third

example, f x, y would only be accepted by the command production as it contains

no parentheses. Thus, our productions will always produce a single parse tree for

method calls with at least 2 arguments. However, the last variation f(x) would be

accepted by both productions, producing two slightly different parse trees: f(x) vs

f((x)). To choose between these, the well formed command function rejects a function

with a single E Block argument (line 7), and thus only the func production will

succeed.

By cleanly separating out the disambiguation rules in this way, the core pro-

ductions are relatively easy to understand, and the parser is easier to maintain and

18



extend. For example, as we discovered more special parsing cases baked into the

Ruby interpreter, we needed to modify only the disambiguation rules and could

leave the productions alone. Similarly, adding type annotations to individual Ruby

expressions required us to only change a single production and for us to add one

OCaml function to the preamble. We believe that our GLR specification comes

fairly close to serving as a standalone Ruby grammar: the production rules are

quite similar to the pseudo-BNF used now [46], while the disambiguation rules de-

scribe the exceptional cases. Our parser currently consists of 75 productions and

513 lines of OCaml for disambiguation and helper functions.

Since Ruby has no official specification, we used three techniques to establish

our parser is compatible with the existing “reference” parser, which is part of the

Ruby 1.8 interpreter. First, we verified that our parser can successfully parse a

large corpus of over 160k lines of Ruby code without any syntax errors. Second, we

developed 458 hand-written unit tests that ensure Ruby syntax is correctly parsed

into known ASTs. For example, we have tests to ensure that both f x, y and f (x), y

are parsed as two-argument method calls. Finally, we parse and then unparse to

disk the test suite shipped with the Ruby interpreter. This unparsed code is then

executed to ensure the test suite still passes. This last technique is also used to

verify that our pretty printing module and the semantic transformations described

in Section 2.3 are correct (these modules each have their own unit test suites as

well).

19



2.3 The Ruby Intermediate Language

Parsing Ruby source produces an abstract syntax tree, which we could then try to

analyze and transform directly. However, like most other languages, Ruby ASTs are

large, complex, and difficult to work with. Thus, we developed the Ruby Interme-

diate Language (RIL), which aims to be low-level enough to be simple, while being

high-level enough to support a clear mapping between RIL and the original Ruby

source. This last feature is important for tools that report error messages (e.g., the

type errors produced by DRuby), and to make it easy to generate working Ruby

code directly from RIL.

RIL provides three main advantages: First, it uses a common representation of

multiple, redundant source constructs, reducing the number of language constructs

that an analysis writer must handle. Second, it makes the control-flow of a Ruby

program more apparent, so that flow-sensitive analyses are much easier to write.

Third, it inserts explicit code to represent implicit semantics, making the semantics

of RIL much simpler than the semantics of Ruby.

We discuss each of these features in turn.

2.3.1 Eliminating Redundant Constructs

Ruby contains many equivalent constructs to allow the programmer to write the

most “natural” program possible. We designed RIL to include only a small set of

disjoint primitives, so that analyses need to handle fewer cases. Thus, RIL translates

several different Ruby source constructs into the same canonical representation. As

20



an example of this translation, consider the following Ruby statements:

(1) if p then e end (3) e if p

(2) unless (not p) then e end (4) e unless (not p)

All of these statements are equivalent, and RIL translates them all into form (1).

As another example, there are many different ways to write string literals, and

the most appropriate choice depends on the contents of the string. For instance,

below lines 1, 2, 3, and 4–6 all assign the string Here′s Johnny to s, while RIL

represents all four cases internally using the third form:

1 s = ”Here’s Johnny”
2 s = ’Here\’s Johnny’
3 s = %{Here’s Johnny}
4 s = <<EOF
5 Here’s Johnny
6 EOF

RIL performs several other additional simplifications. Operators are replaced

by the method calls they represent, e.g., x + 2 is translated into x.+(2); while and

until are coalesced; logical operators such as and and or are expanded into sequences

of conditions, similarly to CIL [48]; and negated forms (e.g., ! =) are translated into

a positive form (e.g., ==) combined with a conditional.

All of these translations serve to make RIL much smaller than Ruby, and

therefore there are many fewer cases to handle in a RIL analysis as compared to an

analysis that would operate on Ruby ASTs.

21



result =
begin

if p then a() end
rescue Exception => x

b()
ensure

c()
end

begin
if p then

t1 = a()
else

t1 = nil
end

rescue Exception => x
t1 = b()

ensure
c()

end
result = t1

(a) Ruby code (b) RIL Translation

Figure 2.4: Nested Assignment

2.3.2 Linearization

In Ruby, almost any construct can be nested inside of any other construct, which

makes the sequencing of side effects tricky and tedious to unravel. In contrast, each

statement in RIL is designed to perform a single semantic action such as a branch

or a method call. As a result, the order of evaluation is completely explicit in

RIL, which makes it much easier to build flow-sensitive analyses, such as dataflow

analysis.

To illustrate some of the complexities of evaluation order in Ruby, consider

the code in Figure 2.4(a). Here, the result of an exception handling block is stored

into the variable result. If an analysis needs to know the value of the right-hand side

and only has the AST to work with, it would need to descend into exception block

and track the last expression on every branch, including the exception handlers.

Figure 2.4(b) shows the RIL translation of this fragment, which inlines an

assignment to a temporary variable on every viable return path. Notice that the

22



value computed by the ensure clause (this construct is similar to finally in Java) is

evaluated for its side effect only, and is not returned. Also notice that the translation

has added an explicit nil assignment for the fall-through case for if. (This is an

example of implicit behavior, discussed more in Section 2.3.3.) These sorts of details

can be very tricky to get right, and it took a significant effort to find and implement

these cases. RIL performs similar translations for ensuring that every path through

a method body ends with a return statement and that every path through a block

ends with a next statement3.

Another problematic case for order-of-evaluation in Ruby arises because of

Ruby’s many different assignment forms. In Ruby, fields are hidden inside of ob-

jects and can only be manipulated through method calls. Thus using a “set method”

to update a field is very common, and so Ruby includes special syntax for allowing

a set method to appear on the left hand side of an assignment. The syntax a.m = b

is equivalent to sending the m= message with argument b to the object a. However,

as this syntax allows method calls to appear on both sides of the assignment oper-

ator, we must be sure to evaluate the statements in the correct order. Moreover,

the evaluation order for these constructs can vary depending on the whether the

assignment is a simple assignment or a parallel assignment.

Figure 2.5 demonstrates this difference. The first column lists two similar

Ruby assignment statements whose only difference is that the lower one assigns to

a tuple (the right-hand side must return a two-element array, which is then split

3next acts as a local return from inside of a block.

23



Ruby Method Order RIL

a (). f = b().g a,b,g, f=

t1 = a()
t3 = b()
t2 = t3.g()
t1. f=(t2)

a (). f ,x = b().g b,g,a, f=

t2 = b()
t1 = t2.g()
(t4, x) = t1
t3 = a()
t3. f=(t4)

Figure 2.5: RIL Linearization Example

and assigned to the two parts of the tuple). The second column lists the method

call order—notice that a is evaluated at a different time in the two statements. The

third column gives the corresponding RIL code, which makes the evaluation order

clear.

Finally, Ruby allows assignments to be chained together. For example, a = b = 3

assigns 3 to both a and b. However, when a method call is used in place of b, the

call is evaluated purely for its side effect. For example:

1 class A
2 def x=(newx)
3 @x = newx
4 return 3
5 end
6 end
7 a = A.new
8 y = a.x = (2+3)

Interestingly, line 8 assigns the value 5 to y, not the return type of a.x =. Thus RIL

translates line 8 into:

1 t1 = 2.+(3)
2 a.x=(t1)
3 y = t1

On line 1, we save the right most expression into a temporary variable so that it is

24



only evaluated once. Then line 2 calls the x = method with the temporary variable

as its argument and discards the return value. Lastly, we store the result of line 1 in

y. Again, these intricacies were hard to discover, and eliminating them makes RIL

much easier to work with.

2.3.3 Materializing Implicit Constructs

Finally, Ruby’s rich syntax tries to minimize the effort required for common oper-

ations. As a consequence, many expressions and method calls are inserted “behind

the scenes” in the Ruby interpreter. We already saw one example of this above,

in which fall-though cases of conditionals return nil. A similar example is empty

method bodies, which also evaluate to nil.

There are many other constructs with implicit semantics. For example, it is

very common for a method to call the superclass’s implementation using the same

arguments that were passed to it. In this case, Ruby allows the programmer to omit

the arguments altogether and implicitly uses the same values passed to the current

method. For example, in the following code:

1 class A
2 def foo(x,y) ... end
3 end
4 class B < A
5 def foo(x,y)
6 ...
7 super
8 end
9 end

the call on line 7 is the same as super(x,y), which is what RIL translates the call

to. Without this transformation, every analysis would have to keep track of these

25



parameters itself, or worse, mistakenly model the call on line 7 as having no actual

arguments.

One construct with subtle implicit semantics is rescue. In Figure 2.4(b), we

saw this construct used with the syntax rescue C => x, which binds the exception to

x if it is an instance of C (or a subclass of C). However, Ruby also includes a special

abbreviated form rescue => x, in which the class name is omitted. The subtlety

is that, contrary to what might be expected, a clause of this form does not match

arbitrary exceptions, but instead only matches instances of StandardError, which is

a superclass of many, but not all, exceptions. To make this behavior explicit, RIL

requires every rescue clause to have an explicit class name, and inserts StandardError

in this case.

Finally, Ruby is often used to write programs that manipulate strings. As

such, it contains many useful constructs for working with strings, including the #

operator, which inserts a Ruby expression into the middle of a string. For example,

‘‘ Hi #{x.name}, how are you?’’ computes x.name, invokes its to s method to convert it

to a string, and then inserts the result using concatenation. Notice that the original

source code does not include the call to to s. Thus, RIL both replaces uses of #

with explicit concatenation and makes the to s calls explicit. The above code is

translated as:

1 t1 = x.name
2 t2 = ‘‘Hi ’ ’ + t1.to s
3 t2 + ‘‘, how are you?’ ’

This form may also be used inside of regular expression literals (/ab#{e}c/) or

symbols (: “ab#{e}c′′). Because this form may introduce side-effects, forms that

26



would otherwise be considered expressions must be translated to statements. To do

this, we use the same transformation as above, and convert the final string into the

intended type using Regexp.new or String.to sym respectively.

Similar to linearization, by making implicit semantics of constructs explicit,

RIL enjoys a much simpler semantics than Ruby. In essence, like many other in-

termediate languages, the translation to RIL encodes a great deal of knowledge

about Ruby and thereby lowers the burden on the analysis designer. Instead of

having to worry about many complex language constructs, the RIL user has fewer,

mostly disjoint cases to be concerned with, making it easier to develop correct Ruby

analyses.

2.4 Additional Libraries

RIL includes several other modules that can be used to simplify the implementation

of a Ruby analysis.

2.4.1 Dataflow

To specify a dataflow analysis [5] in RIL, the user supplies a module that satisfies

the following signature:

1 module type DataFlowProblem =
2 sig
3 type t (∗ abstract type of facts ∗)
4 val top : t (∗ initial fact for stmts ∗)
5 val eq : t → t → bool (∗ equality on facts ∗)
6 val to string : t → string
7

8 val transfer : t → stmt → t (∗ transfer function ∗)

27



9 val meet : t list → t (∗ meet operation ∗)
10 end

Given such a module, RIL includes basic support for forwards and backwards

dataflow analysis; RIL determines that a fixpoint has been reached by comparing

old and new dataflow facts with eq. This dataflow analysis engine was extremely

easy to construct because each RIL statement has only a single side effect.

2.4.2 Pretty Printer

RIL includes a pair of pretty printing modules that can be used for emitting its data

structures. The first module, CodePrinter outputs RIL’s internal data structure

as syntactically valid Ruby code, which can be executed by the standard Ruby

interpreter. RIL also includes an ErrorPrinter module, which DRuby uses to emit

code inside of error messages—since RIL introduces many temporary variables, the

code produced by CodePrinter can be hard to understand. Thus, ErrorPrinter omits

temporary variables (among other things), showing only the interesting part. For

instance, if t1 is a temporary introduced by RIL, then ErrorPrinter shows the call

t1 = f() as just f().

Each of these modules provide a set of functions for formatting RIL’s datatypes

(expressions, statements, etc...) using OCaml’s standard Format library. To use

these modules, the user provides a format string with %a tokens indicating where

the formatted output should be inserted. The format string is then followed by a

formatting function paired with the corresponding RIL value. For example:

1 open CodePrinter

28



2 Format. sprintf ‘‘%a = %a’’ format lhs some lhs format expr some expr

formats an assignment statement where format lhs formats the left hand side some lhs,

and format expr formats the right hand side some expr.

RIL also provides a functional unparsing interface in the style of Danvy [21].

Like the modules above, we supply both a CodeUnparser and ErrorUnparser module

to print syntactically valid Ruby code, and more user friendly strings respectively.

Using this interface, the above example can instead be written:

1 open CodeUnparser
2 sprintf ( lhs ++ s‘‘=’’ ++ expr) some lhs some expr

Here, the format descriptor is built directly from unparsing combinators instead of

using %a tokens followed by formatting functions. The expression ( lhs ++ s‘‘=’’ ++ expr),

is a descriptor that accepts a left hand side and an expression, which are passed at

the end (the s combinator simply inserts a string literal).

RIL also includes a partial reparsing module [23] that lets us mix concrete and

abstract syntax. To use it, we call the reparse function instead of sprintf, passing in

the necessary format string and arguments:

1 reparse ˜env: localenv ‘‘%a = %a’’ format lhs some lhs format expr some expr

Also, recall from Section 2.2 that parsing in Ruby is highly context-dependent.

Thus, on line 2 we pass localenv (which accompanies RIL’s main data structure) as

the optional argument env to ensure that the parser has the proper state to correctly

parse this string in isolation.

29



2.4.3 Scope Resolution

Class names in Ruby are actually just constants bound to special class objects. In

general, constants, which are distinguished by being capitalized, can hold any value,

and may be nested inside of classes and modules to create namespaces. For example,

the following code:

1 class A
2 class B
3 X = 1
4 end
5 end

defines the classes A and A::B, and the non-class constant A::B::X. RIL includes a

module to resolve the namespaces of all constants statically (except for explicitly

dynamic forms, like self :: A). Identifying the binding of a particular constant is

actually rather tricky, because it involves a search in the lexical scope in which the

constant was created as well as the superclasses and mixins of the enclosing class.

Thus, RIL would rewrite the above example as:

1 class :: A
2 class :: A::B
3 :: A::B::X = 1
4 end
5 end

2.4.4 Visitor

RIL includes an implementation of the visitor pattern modeled after CIL [48]. A

visitor object includes a (possibly inherited) method for each RIL syntactic vari-

ant (statement, expression, and so on), allowing a client analysis to only override

30



/tmp/filesInstrument YAML

Transform
Document

All Files
main.rb

Document
Final Files

Require
Static Analysis

I II

III

IV
V

Figure 2.6: Dynamic Instrumentation Architecture

the variants they are interested in. Within each method, a client can then use

OCaml’s powerful pattern matching features to extract salient attributes of the rel-

evant datatypes. RIL defines a few base classes that other analyses can inherit and

extend, such as a visitor that visits every statement in a file, and a visitor that visits

every statement in the current scope.

2.4.5 File Loading

Finally, RIL also includes a file loader module to streamline parsing and translation

into its intermediate language. This module mimics the path lookup algorithm used

by the Ruby interpreter, and can keeps track of which files were already loaded,

returning each at most once. The file loader also allows clients to specify different

actions based on whether the file is a Ruby source file or a compiled C object file.

For instance, DRuby analyzes Ruby files directly, but must load a stub file filled

with typing annotations when it encounters a C file.

31



2.4.6 Runtime Instrumentation

To support writing dynamic analyses, RIL also includes a runtime instrumentation

and transformation library. This library allows a client to dynamically instrument

and execute a Ruby program, and to use the results of this execution to transform the

program before applying a static analysis. The architecture of this library is shown

in Figure 2.6 and consists of five main stages. Note that these five stages represent

the full capability of this library, and a client may use any subset of this functionality

(e.g., to implement a pure dynamic analysis with no static counterpart).

First, stage I executes the target program (potentially using the program’s

test suite), but with a special Ruby file preloaded that redefines require, the method

that loads another file. Our new version of require behaves as usual, except it also

records all of the files that are loaded during the program’s execution. This is

because require has dynamic behavior: Ruby programs may dynamically construct

file names to pass to require (and related constructs) or even redefine the semantics

of the require method.

After we have discovered the set of application files, in stage II we instrument

each file to implement the client’s dynamic analysis. We then unparse the modified

source files to disk using RIL’s pretty printer and execute the resulting program in

stage III. Here we must be very careful to preserve the execution environment of the

process, e.g., the current working directory, the name of the executed script (stored

in the Ruby global $0), and the name of the file (stored in FILE in Ruby). For

example, RIL inlines the string value of $0 to ensure the execution is unchanged

32



by running in a different directory. When the execution is complete, we serialize

the data observed by the dynamic analysis to disk using YAML, a simple markup

language supported by both Ruby and OCaml [84]. In stage IV, we read in the

YAML data and use it to transform the original source code prior to applying a

static analysis in stage V.

To use our dynamic analysis library, a client provides the instrumentation used

in stage II, the transformation in stage IV, and the static analysis in stage V. We

discuss each of these by example in Section 2.5.3.

2.5 Using RIL

In this section, we demonstrate RIL by developing a simple dynamic null pointer

analysis that uses a source-to-source transformation to prevent methods from being

called on nil. We then construct a dataflow analysis to improve the performance

of the transformed code. Finally, we use our instrumentation library to further

optimize functions that are verified with a test suite. Along the way, we illustrate

some of the additional features our implementation provides to make it easier to work

with RIL. In our implementation, RIL is represented as an OCaml data structure,

and hence all our examples below are written in OCaml.

2.5.1 Eliminating Nil Errors

We will develop an example Ruby-to-Ruby transformation written with RIL. Our

transformation modifies method calls such that if the receiver object is nil then the

33



call is ignored rather than attempted. In essence this change makes Ruby programs

oblivious [55] to method invocations on nil, which normally cause exceptions4. As

an optimization, we will not transform a call if the receiver is self, since self can

never be nil. Our example transformation may or may not be useful, but it works

well to demonstrate the use of RIL. The full source code for our example can be

found in Appendix A.

The input to our transformation is the name of a file, which is then parsed,

transformed, and printed back to stdout. The top-level code for this is as follows:

1 let main fname =
2 let loader = File loader . create File loader .EmptyCfg [] in
3 let stmt = File loader . load file loader fname in
4 let new stmt = visit stmt (new safeNil ) stmt in
5 CodePrinter. print stmt stdout new stmt

First, we use RIL’s File loader module to parse the given file (specified in the formal

parameter fname), binding the result to stmt (lines 2–3). Next, we invoke new safeNil

to create an instance of our transformation visitor, and pass that to visit stmt to

perform the transformation (line 4). This step performs the bulk of the work,

and is discussed in detail next. Finally, we use the CodePrinter module to output

the transformed RIL code as syntactically valid Ruby code, which can be directly

executed (line 5).

The code for our safeNil visitor class is as follows:

1 class safeNil = object
2 inherit default visitor as super
3 method visit stmt node = match node.snode with

4In fact, nil is a valid object in Ruby and does respond to a small number of methods, so some

method invocations on nil would be valid.

34



4 | MethodCall( , {mc target=‘ID Self}) → SkipChildren
5 | MethodCall( , {mc target=#expr as targ}) →
6 ChangeTo (transform targ node)
7 | → super#visit stmt node
8 end

The safeNil class inherits from default visitor (line 2), which recursively visits ev-

ery statement, but performs no actions. We then override the inherited visit stmt

method to get the behavior we want: method calls whose target is self are ignored,

and we skip visiting the children (line 4). This is sensible because RIL method

calls do not have any statements as sub-expressions, thanks to the linearization

transformation mentioned in Section 2.3.2. Method calls with non-self receivers are

transformed (lines 5–6). Any other statements are handled by the superclass visitor

(line 7), which descends into any sub-statements or sub-expressions. For example,

at an if statement, the visitor would traverse the true and false branches.

To implement the transformation on line 6, we need to create RIL code with the

following structure, where E is the receiver object and M is the method invocation:

1 if E.nil? then nil else M end

To build this code, we simply use RIL’s reparsing function:

1 let transform targ node =
2 reparse ˜env:node. locals
3 ” if %a.nil? then nil else %a end”
4 format expr targ format stmt node

Here the string passed on line 3 describes the concrete syntax, just as above, with %a

wherever we need “hole” in the string. We pass targ for the first hole, and node for

the second. As mentioned in Section 2.4.2 we also include the option env parameter

to ensure the string can be parsed in isolation. Note that one potential drawback

35



of reparsing is that reparse will complain at run-time if mistakenly given unparsable

strings; constructing RIL data structures directly in OCaml would cause mistakes

to be flagged at compile-time, but such direct construction is far more tedious.

2.5.2 Dataflow Analysis

The above transformation is not very efficient because it transforms every method

call with a non-self receiver. For example, the transformation would instrument the

call to + in the following code, even though we can see that x will always be an

integer.

1 if p then x = 3 else x = 4 end
2 x + 5

To address this problem, we can write a static analysis to track the flow of literals

through the current scope (e.g., a method body), and skip instrumenting any method

call whose receiver definitely contains a literal.

We can write this analysis using RIL’s built-in dataflow analysis engine. For

this particular problem, we want to determine which local variables may be nil and

which definitely are not. Thus, we begin our dataflow module, which we will call

NilAnalysis, by defining the type t of dataflow facts to be a map from local variable

names (strings) to facts, which are either MaybeNil or NonNil:

1 module NilAnalysis = struct
2 type t = fact StrMap.t
3 and fact = MaybeNil | NonNil (∗ core dataflow facts ∗)
4 ...

We omit the definitions of top, eq, to string, and meet, as they are uninterest-

ing (they may be found in Appendix A. Instead, we will present only the transfer

36



function and a small helper function to demonstrate working with RIL’s data struc-

tures. The function transfer takes as arguments the input dataflow facts map, a

statement stmt, and returns the output dataflow facts:

1 let rec transfer map stmt = match stmt.snode with
2 | Assign( lhs , # literal ) → update lhs NonNil map lhs
3 | Assign( lhs , ‘ID Var(‘Var Local , rvar )) →
4 update lhs (StrMap.find rvar map) map lhs
5 | MethodCall(Some lhs, ) | Yield(Some lhs, )
6 | Assign( lhs , ) → update lhs MaybeNil map lhs
7 | → map
8

9 and update lhs fact map lhs = match lhs with
10 | ‘ ID Var(‘Var Local , var) → update var fact map
11 | # identifier → map
12 | ‘Tuple lst → List. fold left (update lhs MaybeNil) map lst
13 | ‘ Star (#lhs as l ) → update lhs NonNil map l
14

15 (∗ val update : string → fact → t → t ∗)
16 end

The first case we handle is assigning a literal (line 2). Since literals are never nil,

line 2 uses the helper function update lhs to mark the left-hand side of the assignment

as non-nil.5

The function update lhs has several cases, depending on the left-hand side. If

it is a local variable, that variable’s dataflow fact is updated in the map (line 10).

If the left-hand side is any other identifier (such as a global variable), the update

is ignored, since our analysis only applies to local variables. If the left-hand side

is a tuple (i.e., a parallel assignment), then we recursively apply the same helper

function but conservatively mark the tuple components as MaybeNil. The reason

is that parallel assignment can be used even when a tuple on the left-hand side is

5Perhaps surprisingly, nil itself is actually an identifier in Ruby rather than a literal, and RIL

follows the same convention.

37



larger than the value on the right. For example x,y,z = 1,2 will store 1 in x, 2 in

y and nil in z. In contrast, the star operator always returns an array (containing

the remaining elements, if any), and hence variables marked with that operator will

never be nil (line 13). For example, x,y,∗z = 1,2 will set x and y to be 1 and 2,

respectively, and will set z to be a 0-length array.

Going back to the main transfer function, lines 3–4 match statements in which

the right-hand side is a local variable. We look up that variable in the input map, and

update the left-hand side accordingly. Lines 5–6 match other forms that may assign

to a local variable, such as method calls. In these cases, we conservatively assume

the result may be nil. Finally, line 7 matches any other statement forms that do not

involve assignments, and hence do not affect the propagation of dataflow facts.

To use our NilAnalysis module, we instantiate the dataflow analysis engine with

NilAnalysis as the argument:

1 module NilDataFlow = Dataflow.Forwards(NilAnalysis)

Finally, we add two new cases to our original visitor. First, we handle method

definitions (lines 2–5) where we invoke the fixpoint function on the body of the

method. fixpoint takes a RIL statement and an initial set of dataflow facts (init formals

sets each formal argument to MaybeNil) and returns two hash tables, which provide

the input and output facts at each statement (line 4 ignores the latter). Second,

we check if a method target is a local variable and skip the instrumentation if it is

NonNil (lines 6–12):

1 ... (∗ safeNil visitor ∗)
2 | Method(name,args,body) →

38



3 let init facts = init formals args MaybeNil in
4 let in facts , = NilDataFlow.fixpoint body init facts in
5 (∗ visit body ∗)
6 | MethodCall( ,
7 {mc target=(‘ID Var(‘Var Local, var) as targ)}) →
8 let map = Hashtbl.find in facts node in
9 begin match StrMap.find var map with

10 | MaybeNil → ChangeTo(transform targ node)
11 | NonNil → SkipChildren
12 end

2.5.3 Dynamic Analysis

In order to reduce the overhead of our transformed code, we can use RIL’s trans-

formation library to gather information from a program’s test suite. Currently, we

use an intraprocedural dataflow analysis, and so method parameters are conserva-

tively assumed to be MaybeNil by our analysis. While public methods may need

to handle nil values (possibly by simply throwing an informative exception), pri-

vate methods might have stronger assumptions, since they can only be called from

within the current class. If we knew a private method is only invoked with non-nil

values, our analysis could take this information into account. It may be possible

to do this with a sufficiently advanced static analysis, but another option is to use

a dynamic analysis to ensure this property holds which may be more light-weight.

Technically, relying on a test suite to verify this property is unsound, as the test

suite may be incomplete. Thus, this gives a programmer a choice, he can improve

the performance of the transformation if he trusts his test suite to properly verify

the specified methods.

Our strategy is as follows. First, we will instrument the program to ensure that

39



selected methods are only passed non-nil values. Second, we will execute the test

suite, to check that these invariants hold. Finally, we will transform the program

using a slightly improved dataflow analysis that takes this runtime data into account.

To simplify the presentation, we only track if all of a method’s arguments

are non-nil, instead of tracking them individually. In reality, we could treat each

parameter separately without much difficulty.

Instrumentation To record data from a profiled execution, RIL provides a small

runtime library for collecting and storing application values to disk. Data is passed

to this library by inserting explicit calls into the application using RIL’s instrumen-

tation pass (stage II in Figure 2.6). Thus, the first step in building a new dynamic

analysis is to register a new collection class with our runtime library. This is done by

providing a small Ruby class that defines how the data is to be collected at runtime:

1 class DRuby::Profile
2 class Dynnil < Interceptor
3 def initialize ( collector )
4 super( collector , ”dynnil”)
5 end
6 def Dynnil . extract (recv ,mname,∗args)
7 args . all ? {|x| !x. nil?}
8 end
9 end

10 end

Here, we define the class Dynnil, which inherits from the base class Interceptor that

is part of RIL. Our class then defines two methods, a constructor on lines 3–5 that

registers our module with the data collection object under the name “dynnil,” and

a class method extract, which collects the data of interest. In our case, it returns

40



true if all of the arguments to a method call are non-nil, and false otherwise. The

RIL runtime library will instantiate this class automatically at runtime, providing

an appropriate instance of collector to the constructor.

To use this class, we create an OCaml module that uses RIL’s visitors to

instrument the application’s methods, inserting calls to the runtime library.

1 module NilProfile : DynamicAnalysis = struct
2 let name = ”dynnil”
3

4 let instrument mname args body pos =
5 let file , line = get pos pos in
6 let code = reparse ˜env:body. lexical locals
7 ”DRuby::Profile :: Dynnil .watch(’%s’,%d,self ,’%a’,[%a])”
8 file line format def name mname
9 (format comma list format param) args

10 in
11 let body’ = seq [code;body] body.pos in
12 meth mname args body’ pos

We begin our module, called NilProfile, by declaring the name of our Ruby collection

on line 2 (matching the string used in the constructor above). Next, lines 4–12 define

the function instrument method, which inserts a call to the watch method, a method

that Dynnil inherits from the Interceptor class. This method calls our overloaded

extract method as a subroutine and stores the boolean result along with the given

filename, line number, and method name in the YAML store. Like our example in

Section 2.5.1, we construct a call to watch using our reparsing module (lines 6–9), and

prepend it to the front of the method body using the seq function (line 11), which

creates a sequence of statements. Finally, we construct a new method definition

using the helper meth (line 12). The effect of this instrumentation is shown below:

1 def add(x,y) # before
2 x + y

41



3 end
4

5 def add(x,y) # after
6 DRuby::Profile :: Dynnil .watch(” file . rb” ,1, self ,”add”,[x,y ])
7 x + y
8 end

Lastly, we invoke the instrument method function by constructing a new visitor

object that instruments a method on line 6 if should instrument returns true and

otherwise keeps the existing method definition (line 7).

1 class instrument visitor = object( self )
2 inherit default visitor as super
3 method visit stmt stmt = match stmt.snode with
4 | Method(mname,args,body) →
5 if should instrument stmt
6 then ChangeTo (instrument mname args body stmt.pos)
7 else SkipChildren
8 | → super#visit stmt stmt
9 end

Transformation After our application has been profiled, we can transform it

using our safeNil visitor as defined in Section 2.5.2. The only modification we must

make is that RIL’s dynamic analysis library provides us with an additional lookup

function, which can be used to query the YAML store. Thus, we will update the

Method definition case in our visitor, by first checking the YAML store to see if

the arguments are all non-nil, and if so, use stronger dataflow facts. Our NilProfile

OCaml module continues:

13 module Domain = Yaml.YString
14 module CoDomain = Yaml.YBool
15

16 (∗ lookup : Domain.t → pos → CoDomain.t list ∗)
17 let really nonnil lookup mname pos =
18 let uses = lookup mname pos in
19 if uses = [] then false

42



20 else not ( List .mem false uses)
21

22 ... (∗ safeNil visitor ∗)
23 | Method(mname,args,body) →
24 let init facts =
25 if really nonnil lookup mname body.pos
26 then init formals args NonNil
27 else init formals args MaybeNil
28 in
29 let in facts , = NilDataFlow.fixpoint body init facts in
30 (∗ visit body ∗)
31 end

Lines 13–14 define two submodules which define the types we expect in the YAML

store, i.e., a mapping from strings (method names) to boolean values (only non-nil

arguments). RIL will automatically parse the YAML data and ensure it matches

these types, giving us the type-safe lookup function described on line 16. This

function takes a method name and a source location and returns a list of boolean

values recorded at that position, one for each observation. This function is then

used by the really nonnil function, which returns false on line 19 if the list is empty

(e.g., the method was never called or not instrumented) or returns false if any of

the observations returned false (line 20). Finally, we update the safeNil visitor to

set the initial dataflow facts for the method formal arguments to NonNil based on

the result of really nonnil.

2.6 Related Work

Another project that provides access to the Ruby AST is ruby parser [56]. This

parser is written in Ruby and stores the AST as an S-expression. ruby parser

performs some syntactic simplifications, such as translating unless statements into

43



if statements, but does no semantic transformations such as linearizing effects or

reifying implicit constructs. The authors of ruby parser have also developed several

tools to perform syntax analysis of Ruby programs [57]: flay, which detects struc-

tural similarities in source code; heckle, a mutation-based testing tool; and flog,

which measures code complexity. We believe these tools could also be written using

RIL, although most of RIL’s features are tailored toward developing analyses that

reason about the semantics of Ruby, not just its syntax.

Several integrated development environments [54, 49] have been developed

for Ruby. These IDEs do some source code analysis to provide features such as

code refactoring and method name completion. However, they are not specifically

designed to allow users to develop their own source code analyses. Integrating

analyses developed with RIL into an IDE would be an interesting direction for

future work.

The Ruby developers recently released version 1.9 of the Ruby language, which

includes a new bytecode-based virtual machine. The bytecode language retains

some of Ruby’s source level redundancy, including opcodes for both if and unless

statements [85]. At the same time, opcodes in this language are lower level than

RIL’s statements, which may make it difficult to relate instructions back to their

original source constructs. Since this bytecode formulation is quite new, it is not

yet clear whether it would make it easier to write analyses and transformations, as

was the goal of RIL.

While the Ruby language is defined by its C implementation, several other

implementations exist, such as JRuby [39], IronRuby [37], and MacRuby [40]. These

44



projects aim to execute Ruby programs using different runtime environments, taking

advantage of technologies present on a specific platform. For example, JRuby allows

Ruby programs to execute on the Java Virtual Machine, and allows Ruby to call

Java code and vice versa. While these projects necessarily include some analysis of

the programs, they are not designed for use as an analysis writing platform.

Finally, RIL’s design was influenced by the C Intermediate language [48], a

project with similar goals for C. In particular, the author’s prior experience us-

ing CIL’s visitor class, and CIL’s clean separation of side-effect expressions from

statements, lead to a similar design in RIL.

45



Chapter 3

A Static Type System for Ruby

In this chapter, we present the core static type system used by DRuby. We begin

with a design overview in Section 3.1, followed by an example-driven introduction

to our type system in Section 3.2. In Section 3.3, we formalize and prove a type

soundness result for a small Ruby-like calculus that highlights the interesting parts

of our type system. We then describe our implementation in Section 3.4, followed

by the results of applying our type system to a small benchmark suite in Section 3.5.

Lastly, we describe some related work in Section 3.6.

3.1 Overview

Designing DRuby’s type system has been a careful balancing act. On the one hand,

we would like to statically discover all programs that produce a type error at run

time. On the other hand, we should not falsely reject too many correct programs,

lest programmers find static typing too restrictive. Thus to maximize flexibility,

DRuby gives the programmer control over the amount of static checking it performs.

By default, DRuby rejects any program that is potentially dynamically incorrect.

However, a programmer may override this behavior by using annotations to force

46



DRuby to accept a potentially incorrect program.

To minimize the burden on the programmer, DRuby tries to be precise as pos-

sible. For example, we track the types of local variables flow-sensitively through the

program, e.g., allowing a variable to first contain a String and then later an Array. On

the other hand, some of Ruby’s more dynamic features, such as metaprogramming

with eval, are difficult to model statically and require more sophisticated analyses

to be accepted as type correct. It turns out that modeling constructs like eval is

critical to typing standard library code, and we will revisit this more in Chapter 4,

where we present a novel technique for handling such constructs.

Between these two extremes lies some middle ground: DRuby might not be

able to infer a static type for a method, but it may nonetheless have one. For

example, DRuby supports but does not infer intersection types. To model these

kinds of types, DRuby provides an annotation language that allows programmers

to annotate code with types that are assumed correct at compile time and then are

checked dynamically at run time. While the Ruby interpreter already safely aborts

an execution after a run-time type error, our checked annotations localize errors

and properly blame [26] the errant code. Annotations are required to give types to

Ruby’s core standard library, since it is written in C rather than Ruby. We believe

our annotation language is easy to understand, and indeed it resembles the “types”

written down informally in the standard library documentation.

DRuby’s type language is designed with the features we found necessary to

precisely type Ruby code: union and intersection types [52], object types (to com-

plement nominal types) [1], F-bounded polymorphism [53], a self type, tuple types

47



for heterogeneous arrays, and optional and variable arguments in method types.

DRuby also includes a type inference algorithm to statically discover type

errors in Ruby programs, which can help programmers detect problems much ear-

lier than dynamic typing. By providing type inference, DRuby helps maintain the

lightweight feel of Ruby, since programmers need not write down extensive type

annotations to gain the benefits of static typing.

To evaluate our core type system, we have applied DRuby to a suite of small

benchmark programs ranging from 29–1030 lines of code. DRuby found these

18 benchmarks to be largely amenable to static typing: it reported 5 potential

errors and 16 warnings for questionable code compared to 16 false positives. Chap-

ter 4 will present additional results for larger programs once we have developed the

necessary techniques to hand Ruby’s more dynamic features.

3.2 Static Types for Ruby

We begin our discussion of DRuby’s type system with a series of examples. The

design of DRuby was driven by experience—we included features expressive enough

to type idioms common in our benchmark programs and the standard library APIs,

but at the same time we tried to keep types easy for programmers to understand.

3.2.1 Basic Types and Type Annotations

In Ruby, everything is an object, and all objects are class instances. For example,

42 is an instance of Fixnum, true is an instance of TrueClass, and an instance of a

48



class defined with class A ...end is created with A.new. Thus, a basic DRuby type

is simply a class name, e.g., Fixnum, TrueClass, A, etc. Classes can extend other

classes, but a subclass need not be a subtype. The class Object is the root of the

class hierarchy.

Although Ruby gives the illusion that built-in values such as 42 and true are

objects, in fact they are implemented inside the Ruby interpreter in C code, and thus

DRuby cannot infer the types of the methods defined for of these classes. However,

we can declare their types using DRuby’s type annotation language. In DRuby, type

annotations are written before the corresponding class or method declaration and

are prefixed with ##%, and therefore appear as comments to the standard Ruby

interpreter.

We developed a file base types.rb that annotates the “core library,” which

contains classes and globals that are pre-loaded by the Ruby interpreter and are

implemented purely in C. This file includes types for 1,112 methods in 190 classes

and 19 modules, using 1,262 lines of type annotations in total. Our implementation

analyzes base types.rb before applying type inference to a program.

For example, here is part of the declaration of class String, with ##% removed

for clarity:

1 class String
2 ”+” : (String ) → String
3 insert : (Fixnum, String) → String
4 ...
5 end

The first declaration types the method + (non-alphanumeric method names appear

in quotes), which concatenates a String argument with the receiver and returns a

49



new String. Similarly, the next line declares that insert takes a Fixnum (the index to

insert at) and another String, and produces a new String as a result.

3.2.2 Intersection Types

Many methods in the standard library have different behaviors depending on the

number and types of their arguments. For example, here is the type of String’s

include? method, which either takes a Fixnum representing a character and returns

true if the object contains that character, or takes a String and performs a substring

test:

1 include? : (Fixnum) → Boolean
2 include? : ( String ) → Boolean

The type of include? is an example of an intersection type [52]. A general intersection

type has the form t and t′, and a value of such a type has both type t and type t′.

For example, if A and B are classes, an object of type A and B must be a common

subtype of both A and B. In our annotation syntax for methods, the and keyword

is omitted, only method types may appear in an intersection, and each conjunct of

the intersection is listed on its own line.

Another example of intersection types is String’s slice method, which returns

either a character or a substring:

1 slice : (Fixnum) → Fixnum
2 slice : (Range) → String
3 slice : (Regexp) → String
4 slice : ( String ) → String
5 slice : (Fixnum, Fixnum) → String
6 slice : (Regexp, Fixnum) → String

50



Notice that this type has quite a few cases, and in fact, the Ruby standard library

documentation for this function has essentially the same type list.1 Intersection

types serve a purpose similar to method overloading in Java, although they are

resolved at run time via type introspection rather than at compile time via type

checking. Annotation support for intersection types is critical for accurately mod-

eling key parts of the core library—77 methods in base types.rb use intersection

types. Note that our inference system is unable to infer intersection types, as method

bodies may perform ad-hoc type tests to differentiate various cases, and so these

types can currently be created only via annotations.

3.2.3 Optional Arguments and Varargs

One particularly common use of intersection types is methods with optional argu-

ments. For example, String’s chomp method has the following type:

1 chomp : () → String
2 chomp : (String) → String

Calling chomp with an argument s removes s from the end of self, and calling chomp

with no arguments removes the value of (global variable) $/ from self. Since op-

tional arguments are so common, DRuby allows them to be concisely specified by

prefixing an argument type with ?. The following type for chomp is equivalent to

the intersection type above:

1 chomp : (?String) → String

1http://ruby-doc.org/core/classes/String.html#M000858

51



DRuby also supports varargs parameters, specified as ∗t, meaning zero or more

parameters of type t (the corresponding formal argument would contain an Array of

t’s). For example, here is the type of delete, which removes any characters in the

intersection of its (one or more) String arguments from self:

1 delete : ( String , ∗String) → String

Notice this type is equivalent to an intersection of an unbounded number of types.

3.2.4 Union Types

Dually to intersection types, DRuby supports union types, which allow programmers

to mix different classes that share common methods. For example, consider the

following code:

1 class A; def f () end end
2 class B; def f () end end
3 x = ( if ... then A.new else B.new)
4 x. f

Even though we cannot statically decide if x is an A or a B, this program is clearly

well-typed at run time, since both classes have an f method. Notice that if we

wanted to write a program like this in Java, we would need to create some interface I

with method f, and have both A and B implement I. In contrast, DRuby supports

union types of the form t or t′, where t and t′ are types (which can themselves be

unions) [36]. For example, x above would have type A or B, and we can invoke any

method on x that is common to A and B. We should emphasize the difference with

intersection types here: A value of type A and B is both an A and a B, and so it has

both A’s and B’s methods, rather than the union type, which has one set of methods

52



or the other set, and we do not know which.

Note that the type Boolean used in the type of include? above is equivalent

to TrueClass or FalseClass (the classes of true and false, respectively). In practice we

just treat Boolean as a pseudo-class, since distinguishing true from false statically is

essentially useless—most uses of Booleans could yield either truth value.

3.2.5 Object Types

Thus far we have only discussed types constructed from class names and self. How-

ever, we need richer types for inference so that we can describe objects whose classes

we do not yet know. For example, consider the following code snippet:

1 def f(x) y = x.foo; z = x.bar; end

If we wanted to stick to nominal typing only, we could try to find all classes that

have methods foo and bar, and then give x a type that is the union of all such classes.

However, this would be both extremely messy and non-modular, since changing the

set of classes might require updating the type of f.

Instead, DRuby includes object types [m0 : t0, . . . ,mn : tn], which describes

an object in which each method mi has type ti. The parameter x above has type

[foo : () → t, bar : () → u] for some t and u. As another example, base types.rb

gives the print method of Kernel the type

1 print : (∗[ to s : () → String]) → NilClass

Thus print takes zero or more objects as arguments, each of which has a no-argument

to s method that produces a String. Object types are critical to describe code that

53



relies on the structure of a type (this structural view of types is commonly referred to

as duck-typing2), rather than the type name. Forty-nine methods in base types.rb

include object types.

3.2.6 F-Bounded Polymorphism

To give precise types to container classes, we use F-bounded polymorphism, also

called generics in Java. For example, here is part of the Array class type, which is

parameterized by a type variable t, the type of the array contents:

1 class Array<t>
2 at : (Fixnum) → t
3 collect <u> : () {t → u} → Array<u>
4 ...
5 end

As usual, type variables bound at the top of a class can be used anywhere inside

that class. For example, the at method takes an index and returns the element at

that index. Methods may also be polymorphic. For example, for any type u, the

collect (map) method takes a code block (higher-order function) from t to u and

produces an array of u.

We also allow bounds to be placed on the quantified variables. For example,

1 class Hash<k,v>
2 fetch : k → v
3 store<v’> ; v’ ≤ v : (k, v’ ) → v’
4 ...
5 end

2When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call

that bird a duck.—James Whitcomb Riley [80]

54



here, the Hash class is parameterized by two type parameters, k for the type of keys

and v for values. A value is extracted from the hash using fetch which takes a key

and returns the corresponding value. The store method takes any type v′ that is a

subtype of v and returns that same type. Thus, if hsh has type Hash < Fixnum,A >

and B is a subtype of A, then we can safely call

1 hsh. store (1,B.new).b method

which passes in B, and then calls the method b method (defined only in B) on the

return type. If we had instead used the type

1 store : (k, v) → v

then the above usage would not be well-typed, since DRuby would think the return

type was A and the call to b method would not be allowed. When a bound is omitted,

it is assumed to be >.

3.2.7 The self type

Consider the following code snippet:

1 class A; def me() self end end
2 class B < A; end
3 B.new.me

Here class A defines a method me that returns self . We could naively give me

the type () → A, but observe that B inherits me, and the method invocation on

the last line returns an instance of B, not of A. Thus our type language includes

the special type, “self” which always refers to the current receiver that invoked the

method. Therefore a more appropriate type for the method me would be () → self.

55



Internally, DRuby de-sugars the self type into a polymorpic type bounded by the

current class. For example, DRuby would internally translate the type for me into

me<t> ; t ≤ A : () → t.

3.2.8 Abstract Classes and Mixins

Self annotations may also be explicitly quantified in order to support abstract meth-

ods. For example:

1 class Base
2 def foo
3 bar()
4 end
5 def baz
6 return 3
7 end
8 end

Here, the Base class is abstract as it only defines the foo and baz methods,

but not the bar method. Classes that inherit from Base must define the bar method

in order allow calls to the foo method. To allow this flexibility, the foo method can

be given an annotation that explicitly quantifies self under a different bound than

Base, as dictated by its use:

1 foo<t> ; self ≤ [bar : () → t] : () → t

This annotation ensures that any call to foo must have as the receiver an object

that responds to the bar method.

However, Ruby has no restrictions on abstract classes, and so Base may be

freely instantiated with new and any calls to baz will be type-safe (but not to foo).

Ruby also includes support for modules (a.k.a mixins [13]) for implementing multiple

56



inheritance which are similar to abstract classes. For example, the following code

defines a module Ordered, which includes an leq method that calls another method

⇔ (three-way comparison). Class Container mixes in Ordered via include and defines

the needed ⇔ method.

1 module Ordered # module/mixin creation
2 def leq(x)
3 ( self ⇔ x) ≤ 0 # note ”⇔” does not exist here
4 end end
5

6 class Container
7 include Ordered # mix in module
8 def ⇔(other) # define required method
9 @x ⇔ other.get

10 end end

Standard object-oriented type systems would check all the methods in a class

together, but DRuby cannot do that because of abstract classes and mixins, e.g.,

when typing leq, the actual ⇔ method referred to depends on where Ordered is in-

cluded. Instead, whenever a method m invokes another method on self, DRuby adds

the appropriate constraints to self, e.g., when typing leq, DRuby adds a constraint

that self has a⇔ method. Then when m is called, we check those constraints against

the actual receiver.

3.2.9 Tuple Types

The type Array<t>, that we saw in Section 3.2.6, describes homogeneous arrays in

which each element has the same type. However, since Ruby is dynamically typed,

it also allows programmers to create heterogeneous arrays, in which each element

may have a different type. This is especially common for returning multiple values

57



from a function, and there is even special parallel assignment syntax for it. For

example, the following code

1 def f ()
2 return [1, true]
3 end
4 a, b = f

assigns 1 to a and true to b. If we were to type f’s return value as a homogeneous

Array, the best we could do is Array<Fixnum or Boolean>, with a corresponding loss

of precision.

DRuby includes a special type Tuple<t1,. . ., tn> that represents an array whose

element types are, left to right, t1 through tn. When we access an element of a Tuple

using parallel assignment, we then know precisely the element type.

Of course, we may initially decide something is a Tuple, but then subsequently

perform an operation that loses the individual element types, such as mutating a ran-

dom element or appending an Array. In these cases, we apply a special subsumption

rule that replaces the type Tuple<t1, . . ., tn> with the type Array<t1 or . . . or tn>.

3.2.10 First Class Methods

DRuby includes support for another special kind of array: method parameter lists.

Ruby’s syntax permits at most one code block (higher-order function) to be passed

to a method. For example, we can map λx.x+1 over an array as follows:

1 [1, 2, 3]. collect {|x| x + 1} # returns [2, 3, 4]

If we want to pass multiple code blocks into a method or do other higher-order

programming (e.g., store a code block in a data structure), we need to convert it to

58



a Proc object:

1 f = Proc.new {|x| x + 1} # f is λx.x+1
2 f . call (3) # returns 4

A Proc object can be constructed from any code block and may be called with

any number of arguments. To support this special behavior, in base types.rb, we

declare Proc as follows:

1 class Proc<ˆargs,ret>
2 initialize : () {(ˆargs) → ret} → Proc<ˆargs,ret>
3 call : (ˆargs) → ret
4 end

The Proc class is parameterized by a parameter list type ^args and a return type ret.

The ^ character indicates the corresponding type variable ranges over parameter list

types (e.g., optional and vararg arguments) instead of class or object types. The

initialize method (the constructor called when Proc.new is invoked) takes a block

with parameter types ^args and a return type ret and returns a corresponding Proc.

The call method then has the same parameter and return types.

As another example use of ^, consider the Hash class:

1 class Hash<k, v>
2 initialize : () {(Hash<k, v>, k) → v} → Hash<k, v>
3 default proc : () → Proc<ˆ(Hash<k, v>, k),v>
4 end

The Hash class is parameterized by k and v, the types of the hash keys and values,

respectively. When creating a hash table, the programmer may supply a default

function that is called when an accessing a non-existent key. Thus the type of

initialize includes a block that is passed the hash table (Hash<k,v>) and the missing

key (k), and produces a value of type v. The programmer can later extract this

59



method using the default proc method, which returns a Proc object with the same

type as the block.

3.2.11 Types for Variables and Nil

DRuby tracks the types of local variables flow-sensitively, maintaining a per-program

point mapping from locals to types, and combining types at join points with unions.

This allows us to warn about accesses to locals prior to initialization, and to allow

the types of local variables to vary from one statement to another. For example, in

the following code

1 b = 42 # b is a Fixnum (no length method)
2 b = ”foo” # b is now a String (has a length method)
3 b. length # only look for length in String , not Fixnum

we need flow-sensitivity for locals so to permit the call b.length.

We have to be careful about tracking local variables that may be captured by

blocks. For example, in the code

1 x = 1
2 foo() { |y| x = y } # pass in function λy.x=y

the value of x in the outer scope will be changed if foo invokes the code block. To

keep our analysis simple, we track potentially captured variables flow-insensitively,

meaning they have the same type throughout the program. We also model class,

instance (fields), and global variables flow-insensitively.

Finally, as it is common in statically typed object-oriented languages, we treat

nil as if it is an instance of any class. Not doing so would likely produce an excessive

number of false alarms, or require a very sophisticated analysis.

60



3.2.12 Unsupported features

As we stated in the introduction, DRuby aims to be flexible enough to type common

Ruby programming idioms without introducing needless complexity into its type

system. Thus, there are a number of uses of Ruby that DRuby cannot type.

First, there are standard library methods with types DRuby cannot represent.

For example, there is no finite intersection type that can describe Array.flatten, which

converts an n-dimensional array to a one-dimensional array for any n.

Second, some features of Ruby are difficult for any static type system. In

particular, Ruby allows classes and methods to be changed arbitrarily at run time

(e.g., added to via class reopening or removed via the undef method method). To

keep DRuby practical, we assume that all classes and methods defined somewhere

in the code base are available at all times and disallow any calls to undef method.

Third, in Ruby, each object has a special eigenclass that can be modified

without affecting other objects. For example, suppose x and y are both instances

of Object. Then def x.foo() ... end adds method foo to the eigenclass of x but

leaves y unchanged. Thus, after this declaration, we can invoke x.foo but not y.foo.

DRuby is unable to model eigenclasses because it cannot always decide statically

which object’s type is being modified.

Finally, Ruby includes reflection (e.g., accessing fields by calling instance variable get)

and dynamic evaluation (the eval method). Combined with the ability to change

classes at run time, this gives programmers powerful metaprogramming tools. For

example, our text-highlight benchmark includes the following:

61



1 ATTRIBUTES.each do |attr|
2 code = ‘‘def #{attr}(&blk) ... end’’
3 eval code
4 end

This code iterates through ATTRIBUTES, an array of strings. For each element it

creates a string code containing a new method definition, and then evaluates code.

The result is certainly elegant—methods are generated dynamically based on the

contents of an array. Handling this kind of code is difficult, and will be the focus of

Chapter 4. For purposes of this chapter and evaluating our core static type system,

we manually expanded calls to “eval” to use statically typed equivalents in our

benchmarks (Section 3.5).

3.2.13 Cast Insertion

Dynamic annotations allow DRuby to interface with code it cannot statically verify,

either because the code is written in C, or because it is too expressive for our type

system. However, because DRuby trusts such annotations to be correct, improperly

annotated code may cause run-time type errors, and these errors may be misleading.

For example, consider the following code:

1 ##% evil : Fixnum → Fixnum
2 ##% evil : Float → Float
3 def evil (x) eval (‘‘ #{x}.to s ()’’) end
4 def f () return( evil (2) ∗ 3) end
5 f()−4

Here we have annotated the evil method on line 3 to return either a Fixnum or a

Float based on the type of its parameter, and given this assumption, DRuby verifies

that the remainder of the program is statically type safe. However, evil uses eval

62



to return the string “2.” This does not cause a type error on line 4 because String

has a method ∗ : Fixnum→String, but then the resulting String is returned to line 5,

where the Ruby interpreter finally raises a NoMethodError, since String does not have

a − method.

There are two problems here. First, DRuby has certified that line 5 will never

cause a type error, and yet that is exactly what has occurred. Second, the error

message gives little help in determining the source of the problem, since it accuses

the return value of f of being incorrect, rather than the return value of evil .

We can solve this problem with higher-order contracts [26], which allow us to

attribute the blame for this example correctly. To ensure that a method matches its

annotation, we instrument each annotated method with run-time checks that inspect

the parameters and return values of the method. DRuby ensures that “inputs” have

the correct type, and the dynamic checks ensure the “outputs” match the static

types provided to DRuby.

There is one catch, however: if a method has an intersection type, we may

not know statically which parameter types were passed in, which might affect what

result type to check for. Whether the result of evil should be a Fixnum or a Float

depends on the input parameter type. Our instrumented code for this example

(slightly simplified) looks like the following:

1 alias untyped evil evil
2 def evil (arg)
3 sigs = [[Fixnum,Fixnum],[Float, Float ]]
4 result = untyped evil(arg)
5 fail () unless sigs . include? [arg . class , result . class ]
6 end

63



On line 1, we save the old evil method under the name untyped evil before defining

a new version of evil on line 2. The annotated signature is then stored as a Ruby

value in the variable sigs (line 3), and the original method is called on line 4. Finally,

on line 5 we check to ensure that the combination of the argument class and return

class are included in the list of possible signatures.

DRuby supports run-time checking for nominal and object types, union and

intersection types, parameter lists with regular, optional, and vararg arguments,

blocks, and polymorphic methods. We plan on expanding our support for annota-

tions in future work, including runtime checks for polymorphic classes and annota-

tions on individual expressions.

3.3 MiniRuby

We now present MiniRuby, a small Ruby-like calculus. The interesting parts of this

language are implicitly defined local variables, imperatively updatable fields, tuples,

parallel assignment, first-class Class names, and type inspection. At the type level,

we have F-bounded polymorphism, union and intersection types, width and depth

subtyping on objects, and structural subtyping. However, MiniRuby does deviate

from Ruby in several ways. First, we require explicit definitions for fields, whereas

fields in Ruby are created at their first assignment. Second, MiniRuby stratifies

method definitions from expressions. In Ruby, everything is an expression, and

methods may be defined at any point. Will we relax this restriction for DynRuby,

our formalism in Chapter 4. Finally, we do not include inheritance. While this is

64



an important aspect of Ruby, it provides no technical insight, only complicating the

lookup of fields and methods and thus we omit it from our calculus.

3.3.1 Source Language

The term language for MiniRuby is shown in Figure 3.1(a). Expressions e include

identifiers, which are local variables x, the distinguished variable self, fields @x,

and class names A (which are first class). We also include tuples inside of []s, and

sequencing with semicolon. Assignment comes in three forms: to local variables, to

fields, and a parallel assignment form. Objects are created from classes using new e,

which allocates a new object of type e. Notably, e is an arbitrary expression, not

just a class name. Methods are invoked by using e0.m(e1, . . . , en), which sends the

message m to the receiver object e0 with arguments e1, . . . , en. Finally, we include

a type discrimination form, typecase e1 when (x : A) e2 else e3. Here, if the runtime

type of e1 is A, then e2 is evaluated with x bound to e1. Otherwise, e3 is evaluated.

A program P is made up of a list of class definitions c followed by a “main”

expression e. A class definition is annotated with a polytype and includes a series

of definitions d. A definition is either a method definition def m(x1, . . . , xn) : η = e,

which is annotated with a intersection type η (discussed below), or a field definition

@x = e.

65



e ::= id Identifiers
| [e1, . . . , en] Tuple
| e; e Sequencing
| lval = e Assignment
| new e Object creation
| e.m(e, . . . , e) Method invocation
| typecase e when (x : A)e else e Type case

d ::= def m(x1, . . . , xn) : η = e Method definition
| @x = e Field definition

c ::= class A : σ = d∗ Class definition
P ::= c∗; e

lval ::= x | @x | x1, . . . , xn
id ::= self | x | @x | A

x ∈ local variable names
@x ∈ instance variable names
A ∈ class names
m ∈ method names

(a) Term Language

τ ::= α | (τ × · · · × τ)→ τ | τ ∪ τ Mono-Types
| (τ × · · · × τ) | [F ;M ] | τ class | >

σ ::= ∀ α <: τ .σ | τ Poly-Types
η ::= σ | η ∩ η Intersection Types
F ::= ∅ | @x : τ, F Field Sets
M ::= ∅ | m : η,M Method Sets

Ω : ∅ | Ω, A : σ Heap Environment
Γ ::= ∅ | Γ, α <: τ Type Var Environment
∆ ::= ∅ | ∆, x : τ Term Var Environment

(b) Type Language

Figure 3.1: MiniRuby

66



3.3.2 Type Checking

Our type language is shown in Figure 3.1(b). Types are stratified into monotypes τ ,

polytypes σ, and intersection types η. Monotypes include type variables α, uncurried

function types (τ × · · · × τ) → τ , union types τ ∪ τ , and tuple types τ × · · · × τ .

Objects types [F ;M ] include a field set F and a method set M . These sets are

viewed as unordered collections, and we implicitly allow permutations among the

elements in the set. Class types are written with postfix class, and the top type >

is a supertype of all types.

Classes and methods may be given a bounded polymorphic type ∀α <: τ.σ.

Here, α may be instantiated to any monontype τ ′ that is a subtype of τ (that is,

our polymorphism is predicative). Intersection types (η) are restricted to methods,

which are immutable in this calculus, thus keeping soundness [22]. Also, since we

only allow intersection types on methods (not expressions in general), and methods

are not curried, we have no need for the problematic distributive rule for intersection

types [22].

We describe our type checking rules formally in Figure 3.2 using judgments in

natural deduction style. The notation

=1 · · · =n

=

means that the conclusion = holds if all of the premises =i also hold. For a type

system, our aim is to ensure that every expression in a program can be assigned a

type and thus our assertions will be of the form e : τ , meaning that expression e

67



Ω; Γ; ∆ ` e : τ ; ∆′

(Subsumptionτ )
Ω; Γ; ∆ ` e : τ ′; ∆′ Γ ` τ ′ <: τ

Ω; Γ; ∆ ` e : τ ; ∆′

(Seqτ )
Ω; Γ; ∆1 ` e1 : τ1; ∆2

Ω; Γ; ∆2 ` e2 : τ2; ∆3

Ω; Γ; ∆1 ` e1; e2 : τ2; ∆3

(Varτ )
x ∈ dom(∆)

Ω; Γ; ∆ ` x : ∆(x); ∆

(Var Assignτ )
Ω; Γ; ∆ ` e : τ ; ∆1

Ω; Γ; ∆ ` x = e : τ ; ∆1[x 7→ τ ]

(Tupleτ )
Ω; Γ; ∆i ` ei : τi; ∆i+1 i ∈ 1..n

Ω; Γ; ∆1 ` [e1, . . . , en] :
(τ1 × · · · × τn); ∆n+1

(Tuple Assignτ )
Ω; Γ; ∆ ` e : (τ1 × · · · × τn)
Ω; Γ; ∆ ` x1, . . . , xn = e :

(τ1 × · · · × τn); ∆[xi 7→ τi]

(Fieldτ )
Ω; Γ; ∆ ` self : τs; ∆
Γ ` τs <: [@x : τ ′]

Ω; Γ; ∆ ` @x : τ ′; ∆

(Field Assignτ )
Ω; Γ; ∆ ` e : τ ; ∆′

Ω; Γ; ∆′ ` self : τs; ∆′

Γ ` τs <: [@x : τ ]
Ω; Γ; ∆ ` @x = e : τ ; ∆′

(Selfτ )
self ∈ dom(∆)

∆(self) = [F ;M ]
Ω; Γ; ∆ ` self : [F ;M ]; ∆

(Classτ )
Ω(A) = σ Γ ` σ <: [F ;M ] class

Ω; Γ; ∆ ` A : [F ;M ] class ; ∆

(Newτ )
Ω; Γ; ∆ ` e : τ class ; ∆′

τ = [F ;M ]
Ω; Γ; ∆ ` new e : τ ; ∆′

(Callτ )
Ω; Γ; ∆i ` ei : τi; ∆i+1 i ∈ 1..n

Ω; Γ; ∆n+1 ` e0 : τ0; ∆n+2

Γ ` τ0 <: [m : (τ1 × · · · × τn)→ τ ]
Ω; Γ; ∆0 ` e0.m(e1, . . . , en) : τ ; ∆n+2

(TypeCaseτ )
Ω; Γ; ∆ ` e1 : [F ;M ]; ∆1 Ω; Γ; ∆1 ` A : τ ′ class ; ∆1

Ω; Γ; ∆1, x : τ ′ ` e2 : τ ; ∆2 Ω; Γ; ∆1 ` e3 : τ ; ∆3

∆′ = ∆2|dom(∆1) ]∆3|dom(∆1)

Ω; Γ; ∆ ` typecase e1 when (x : A) e2 else e3 : τ ; ∆′

Figure 3.2: Type Checking Rules for Expressions

68



has type τ . Our judgments make use of three environments: Ω maps class names

to class types (A : σ); the environment Γ maps type variables to subtype bounds

(α <: τ); and ∆ maps term variables to types (x : τ).

Our judgments are flow-sensitive, meaning the judgments have both an “in”

environment and an “out” environment to allow the types variables to change

throughout the body of the program. Specifically, our judgments have the form:

Ω; Γ; ∆ ` e : τ ; ∆′

meaning that in environments Ω, Γ, and ∆, expression e has type τ , and the evalu-

ation of e produces environment ∆′.

We now discuss each type rule in turn. (Subsumptionτ ), (Seqτ ), (Varτ ),

and (Tupleτ ) are standard. For (Var Assignτ ), we update the environment with

x bound to the type of the right-hand side. For (Tuple Assignτ ), we require the

right-hand side to be a tuple of the correct width and then update each variable on

the left-hand side in the resulting environment.

The rule (Fieldτ ) types a field access. Fields may only be accessed through

self, which is given some type τs. (Fieldτ ) then constrains τs to have a field @x with

some type τ ′ which is the type of the expression. As we show later, we require field

types to be invariant in our subtyping judgments. The use of subtyping here is for

consistency with (Classτ ) and (Callτ ); note that fields always have a monotype.

(Field Assignτ ) is similar to (Fieldτ ) updating the value of a field as long as the

right-hand side expression has the appropriate type.

Rule (Selfτ ) simply looks up self, which must always be an object in ∆.

69



(Classτ ) looks up a class type in Ω, ensuring it has a class type. Note that this

rule does not explicitly instantiate the type σ. Instead of instantiating such types in

the type judgments for terms, we use a subtyping rule ((Sub-App<:) in Figure 3.4,

discussed below) to perform the instantiation. Using a subtyping rule allows us

to provide a uniform formalism for instantiating bounded polymorphic types and

intersection types (which are simply finitely polymorphic types), similarly to other

systems that combine intersection and polymorphic typing [38]. Thus, (Classτ )

instantiates the type Ω(A), which may be a polytype, to a monotype by adding the

subtyping constraint σ <: τ class .

(Newτ ) creates a new instance for the class type τ class . Rule (Callτ )

handles method calls. First, each argument is typed left-to-right, followed by the

receiver e0. We then use the subtype constraint to extract and instantiate the type

of the method itself, which may have an intersection or polymorphic type.

Finally, (TypeCaseτ ) provides conditional branching in our calculus. First,

we type the guard e1, which must have an object type. We then type the “match”

branch e2 under the assumption that x is an instance of the matched class A.

However, the “else” branch is typed with no additional assumptions. Both branches

must be have the same type τ , which is the type of the entire expression. Since

each branch may update, or introduce new term variables, we use the ] operator to

combine the types of the variables in each branch. Formally:

70



Definition 1

∆1 ]∆2 = {x 7→ τ1 ] τ2 | x ∈ dom(∆1) ∩ dom(∆2) ∧ τ1 = ∆1(x) ∧ τ2 = ∆2(x)}

τ1 ] τ2 = τ1 if τ1 = τ2

τ1 ] τ2 = τ1 ∪ τ2 if τ1 6= τ2

This operator makes variables defined inside of a branch local to that branch and

combines variables that have been updated with different types by taking their

union. Therefore, only when a variable exists prior to a typecase will it be in scope

afterwards as well.

Our type checking rules for definitions and programs are given in Figure 3.3.

We explain the rules in Figure 3.3 bottom-up. Recall that programs P are made up

of a series of class definitions followed by a “main” expression. Thus our judgments

for P have the form ` P since all of the environments are explicitly constructed by

our typing judgments for definitions. In (Programτ ), we initialize the initial class

environment Ω0 to the empty set, and then incrementally build the class environment

by visiting each class definition in turn. Thus, each Ωj contains the definitions of

the previous j−1 classes. The special token cur class is used to store the name and

type of the current class in Ω. Each class definition is given its own scope, and thus

∅ is used for the initial ∆ environment. Finally, we type the “main” expressions e

using the final class environment and an empty ∆ environment.

Class definitions are typed by either (Poly Classτ ) or (Mono Classτ ). The

former recursively types the class definition by peeling away a ∀ quantifier and

71



Ω; Γ; ∆ `m m

(Mono Methodτ )
τ = (τ1 × · · · × τn)→ τr

Ω; Γ; ∆[xi 7→ τi] ` e : τr; ∆′

Ω; Γ; ∆ `m def m(x1, . . . , xn) : τ = e

(Poly Methodτ )
σ = ∀α <: τ.σ′ α 6∈ FV (Γ)

Ω; Γ[α <: τ ]; ∆ `m def m(x1, . . . , xn) : σ′ = e

Ω; Γ; ∆ `m def m(x1, . . . , xn) : σ = e

(Inter Methodτ )
η = η1 ∩ η2

Ω; Γ; ∆ `m def m(x1, . . . , xn) : η1 = e
Ω; Γ; ∆ `m def m(x1, . . . , xn) : η2 = e

Ω; Γ; ∆ `m def m(x1, . . . , xn) : η = e

Ω; Γ; ∆ ` d

(Field Declτ )
Ω; Γ; ∅ ` e : τ ; ∆′

Γ ` ∆(self) <: [@x : τ ]
Ω; Γ; ∆ ` @x = e

(Method Declτ )
Γ ` ∆(self) <: [m : η]
Ω[cur class] = (A, σ)

Ω[A 7→ σ]; Γ; ∆ `m def m(x1, . . . , xn) : η = e

Ω; Γ; ∆ ` def m(x1, . . . , xn) : η = e

Ω; Γ; ∆ ` c

(Poly Classτ )
σ = ∀α <: τ.σ′ α 6∈ FV (Γ)

Ω; Γ[α <: τ ]; ∆ ` class A : σ′ = d1, . . . , dn

Ω; Γ; ∆ ` class A : σ = d1, . . . , dn

(Mono Classτ )
Ω; Γ; [self 7→ τ ] ` di i ∈ 1..n

labels(τ) = {label(d1), . . . , label(dn)}
Ω; Γ; ∆ ` class A : τ = d1, . . . , dn

` P

(Programτ )
Ω1 = ∅ ci = (class Ai : σi = ei)

Ωj = Ωj−1[Aj−1 7→ σj−1] j ∈ 2..n
Ωi[cur class 7→ (Ai, σi)]; ∅; ∅ ` ci
Ωn+1; ∅; ∅ ` e : τ ; ∆ i ∈ 1..n

` c1 · · · cn, ; e

Figure 3.3: Type Checking Rules for Definitions

72



adding the corresponding subtyping assumption to Γ. Once any quantifiers have

been instantiated in Γ, class bodies are typed using (Mono Classτ ). Here, we

create an initial local environment containing only self, mapping to the current

monomorphic class type, and type each element of the class body. The last hy-

pothesis in (Mono Classτ ) ensures that the class definition is complete. That is,

it requires that the body of the class define all of the fields and methods (termed

“labels”) present in τ and that no label is defined twice.

Rule (Field Declτ ) types field declarations. The first hypothesis checks the

value of the field with an empty environment so that the right hand side expression

may not reference self as the class is still being defined. The second hypothesis

then ensures that the type of the expression matches the expected type for the field

in self.

Method declarations are similar: we ensure that the current class has a compat-

ible type for m by constraining self. Unlike fields, however, we allow method bodies

to reference the current class. Therefore, we type add the current class to Ω and type

the method declaration with ∆ instead of ∅. The method definition is then typed

using an auxiliary judgment `m using (Inter Methodτ ), (Poly Methodτ ), or

(Mono Methodτ ) depending on the form of η.

If m has the intersection type η = η1∩ η2, then m must have both type η1 and

type η2. Thus (Inter Methodτ ) recursively types the method under each case. If

m is a polymorphic type ∀α <: τ.τ ′, then similar to (Poly Classτ ), we add the

subtyping assumption to Γ and recurse to ensure m is well-typed under τ ′.

Finally, we type m with a monotype using (Mono Methodτ ). We first ensure

73



that the type τ is in fact a function type with the correct arity. We then type

the body e adding the formal arguments to ∆, which already contains self from

(Mono Classτ ).

Our subtyping rules are given in Figure 3.4. Rules (Refl<:), (Trans<:),

and (Top<:) are standard. (Var<:) simply checks that the variable is bound in Γ.

(Fun<:) includes the standard contravariance for function parameters and covari-

ance for function return types. Tuples are covariant in their elements as they are

immutable. When comparing two bounded polymorphic types, we use the “kernel”

rule [17], which requires the subtype bounds to be equal to avoid undecidability.

If a union type appears on the left of <:, (UnionL<:) requires that each com-

ponent must be a subtype of the type on the right-hand side. Howver, if the union

appears on the right, (UnionR<:) requires only one type to match. Conversely,

(InterL<:) only requires one type to match when an intersection occurs on the left,

and (InterR<:) requires both components to match.

The rule (Object<:) gives the subtyping rule for objects. Here, the object on

the left may include additional fields and methods not found on the right (notice the

width-subtyping via n ≥ p and r ≥ q). Any fields that common to both objects must

have the same type (field types are invariant). However, methods are immutable,

and we therefore allow method types to be subtypes (i.e., they use depth subtyping).

Finally, one can view the (InterL<:) rule for intersection types as an elim-

ination form for intersection types. We include a similar rule that instantiates ∀

quantifiers with rule (App<:). Intuitively, this rule says that a generalization is a

74



Γ ` η <: η

(Refl<:)

Γ ` η <: η

(Trans<:)
Γ ` η1 <: η2

Γ ` η2 <: η3

Γ ` η1 <: η3

(Top<:)

Γ ` η <: >

(Var<:)
α <: τ ∈ Γ
Γ ` α <: τ

(Fun<:)
Γ ` τ ′i <: τi i ∈ 1..n Γ ` τn+1 <: τ ′n+1

Γ ` (τ1 × · · · × τn)→ τn+1 <: (τ ′1 × · · · × τ ′n)→ τ ′n+1

(Tuple<:)
Γ ` τi <: τ ′i

Γ ` (τ1 × · · · × τn) <: (τ ′1 × · · · × τ ′n)

(Kernel<:)
Γ, α : τ ` σ <: σ′

Γ ` (∀α <: τ.σ) <: (∀α <: τ.σ′)

(UnionL<:)
Γ ` τ1 <: τ3 Γ ` τ2 <: τ3

Γ ` τ1 ∪ τ2 <: τ3

(UnionR<:)
Γ ` τ1 <: τi for some i ∈ {2, 3}

Γ ` τ1 <: τ2 ∪ τ3

(InterL<:)
Γ ` ηi <: η3 for some i ∈ {1, 2}

Γ ` η1 ∩ η2 <: η3

(InterR<:)
Γ ` η1 <: η2 Γ ` η1 <: η3

Γ ` η1 <: η2 ∩ η3

(Object<:)
n ≥ p r ≥ q τi = τ ′i Γ ` ηk <: η′k

Γ ` [@xi : τi,mj : ηj ]i∈1..n,j∈1..r <: [@xk : τ ′k,ml : η′l]
k∈1..p,l∈1..q

(Class<:)
Γ ` τ <: τ ′

Γ ` τ class <: τ ′ class

(App<:)
Γ ` τ ′1 <: τ1 Γ ` τ [α/τ ′1] <: τ ′

Γ ` (∀α <: τ1.τ) <: τ ′

Figure 3.4: Subtyping Judgments

75



(Field’τ )
Ω; Γ; ∆ ` self : τ ; ∆ Γ ` τ <: [@x : α]

α fresh
Ω; Γ; ∆ ` @x : α; ∆

(Call’τ )
Ω; Γ; ∆i ` ei : τi; ∆i+1 i ∈ 1..n

Ω; Γ; ∆n+1 ` e0 : τ0; ∆n+2

Γ ` τ0 <: [m : (τ1 × · · · × τn)→ α]
α fresh

Ω; Γ; ∆0 ` e0.m(e1, . . . , en) : α; ∆n+2

(App’<:)
Γ ` β <: τ1 β fresh

Γ ` τ [α/β] <: τ ′

Γ ` ∀α <: τ1.τ <: τ ′

(UnionR’<:)

Γ ` τ <: τ ∪ τ ′

(InterL’<:)
Γ ` τn+1 <: τ ′n+1

Γ ` (τ1 × · · · × τn)→ τn+1 ∩ η <: (τ1 × · · · × τn)→ τ ′n+1

Figure 3.5: Type Inference Rules (Updates Only)

subtype of any valid instantiation of the type.

We have proven our type system sound in Appendix B. The operational

semantics use two stores: S for values stored in the heap and V for local variables

and self. Our semantics then define a reduction relation of the form 〈S, V, e〉 →

〈S ′, V ′, v〉. Here, an expression e in state S and V reduces to a value v and yields

new stores S ′ and V ′. Our proof verifies that every well-typed program always

reduces to a value, i.e., it does not go wrong. Formally:

Theorem 2 (Type Soundness) If ` P then 〈∅, ∅, P 〉 → 〈S, V, r〉 where r 6= error.

3.3.3 Type Inference

Our type inference system is constructed as a constraint-based analysis. We first

traverse the entire program (including base types.rb), visiting each statement once

76



and generating subtyping constraints between program expressions. Our inference

rules are very similar to the checking rules presented in Section 3.3 and therefore

we present only the updated rules in Figure 3.5.

Subtyping constraints are generated by rules (Field’τ ) and (Call’τ ) by using

fresh type variables for the types of fields and method return values. For example,

if we see x.m(), then (Call’τ ) requires that x have method m() by generating the

constraint: Γ ` τx <: [m : ()→ α], meaning the type of x is a subtype of an object

type with an m method, but with an as-yet-unknown return type α. Similarly, we

instantiate polymorphic types with a fresh type variable α using (App’<:). Note

that in general, Γ ` α 6<: β when α and β are fresh type variables.

We resolve the generated set of constraints by exhaustively applying a set of

rewrite rules to ensure the subtyping judgments in Γ are consistent [24]. For exam-

ple, given Γ ` τ <: α and Γ ` α <: τ ′, we add the closure constraint Γ ` τ <: τ ′,

implementing (Trans<:). During this process, we issue a warning if any constraints

are immediately inconsistent by violating one of our subtyping judgments. For ex-

ample, if A <: [m : η] and class A has no method m, then (Object<:) is violated

and we have found a type error. If we detect no errors, the constraints are satisfiable,

and we have found a valid typing for the program.

When solving a constraint with unions on the right hand side, e.g., Γ ` τ1 <:

τ2∪ τ3, we require τ1 to have a fully-resolved type that is equal to (not a subtype of)

either τ2 or τ3 by rule (UnionR’<:). These restrictions mean DRuby cannot find a

solution to all satisfiable constraint systems, but keeps constraint solving tractable.

We place a similar restriction on method parameters in constraints with intersection

77



on the left-hand side using rule (InterL’<:).

Finally, note that none of our inference rules are able to generalize type vari-

ables or produce an intersection type. Therefore, a class or method can only be

given a non-monotype by using an explicit annotation. We do this for two reasons.

First, since we have higher-order polymorphism, inference can easily become un-

decidable [78]. Second, since we do not have principle types, our inference system

might generate arbitrarily complex intersection types that would likely be incom-

prehensible by the programmer.

3.4 Implementation

We have implemented the type system described in Section 3.3 as part of DRuby.

DRuby is a drop-in replacement for Ruby: the programmer invokes “druby file-

name” instead of “ruby filename.” DRuby also accepts several custom options to

control its behavior, e.g., to specify the location of base types.rb. Another option

instructs DRuby to execute the script with Ruby after performing its analysis (even

in the presence of static type errors), which can be useful for testing specific exe-

cution paths during development. When DRuby is run, it first loads in the library

annotations in base types.rb, and then analyzes the “main” program passed as a

command line argument. Ruby programs can load code from other files by invoking

either require or load. When DRuby sees a call to one of these methods, it analyzes

the corresponding file if the name is given by a string literal, and otherwise DRuby

issues an error. In Chapter 4 we will present a technique that allows DRuby to

78



precisely determine which files are loaded by require.

Language constructs like new and include, which appear to be primitives, are

actually method calls in Ruby. However, because they implement fundamental lan-

guage operations, DRuby recognizes calls to these methods syntactically and mod-

els them specially, e.g., creating a new class instance, or adding a mixin module.

Thus if a Ruby program redefines some of these methods (a powerful metapro-

gramming technique), DRuby may report incorrect results. DRuby also has special

handling for the methods attr, attr accessor, attr writer, and attr reader, which cre-

ate getter and/or setter methods named according to their argument. Finally, while

MiniRuby included a syntactic type case construct, Ruby has no single distin-

guished form for this operation. Instead, there are a myriad of ways to perform a

type test using a variety of techniques. We leave handling of these forms for future

work (Chapter 5), and instead rely on dynamic checks to verify method bodies that

perform type tests.

3.5 Experimental Evaluation

We evaluated DRuby’s core static type system by applying it to a suite of programs

gathered from our colleagues and RubyForge. We believe these programs to be

representative of the kind of small-to-medium sized scripts that people write in

Ruby and that can benefit from the advantages of static typing. We will explore

larger benchmarks once we add support for dynamic features in Chapter 4. The

left portion of Figure 3.6 lists the benchmark names, their sizes as computed by

79



Program LOC Changes Tm(s) E W FP
pscan-0.0.2 29 None 3.7 0 0 0

hashslice-1.0.4 91 S 2.2 1 0 2
sendq-0.0.1 95 S 1.9 0 3 0

merge-bibtex 103 None 2.6 0 0 0
substitution solver-0.5.1 132 S 2.5 0 4 0

style-check-0.11 150 None 2.7 0 0 0
ObjectGraph-1.0.1 153 None 2.3 1 0 1

relative-1.0.2 158 S 2.3 0 1 5
vimrecover-1.0.0 173 None 2.8 2 0 0

itcf-1.0.0 183 S 4.7 0 0 1
sudokusolver-1.4 201 R-1, S 2.7 0 1 1

rawk-1.2 226 None 3.1 0 0 2
pit-0.0.6 281 R-2, S 5.3 0 0 1

rhotoalbum-0.4 313 None 12.6 0 1 0
gs phone-0.0.4 827 S 37.2 0 0 0

StreetAddress-1.0.1 877 R-1, S 6.4 0 0 0
ai4r-1.0 992 R-10, S 12.2 1 6 1

text-highlight-1.0.2 1,030 M-2, S 14.0 0 0 2
M–expanded meta-programming code E–Errors
R–require with non-constant String W–Warnings
S–simulate unit test FP–False Positives

Figure 3.6: Type Inference Results

80



SLOCCount [79], and the number and kinds of changes required to be analyzable

by DRuby (discussed below). The analyzed code includes both the application or

library and any accompanying test suite.

In this chapter, we will not analyze the standard library due to its frequent

use of dynamic language features. Instead, we created a stub file with type an-

notations for the portion of the standard library, 120 methods in total, used by

our benchmarks. Surprisingly, we found that although the standard library itself is

quite dynamic, the APIs revealed to the user very often have precise static types

in DRuby. These stub files were the only places we added type annotations in our

benchmarks, and were therefore all checked dynamically. For those benchmarks that

supplied test suites (8 of the 18), we ran the test suite with and without dynamic

annotation checking enabled. None of the dynamic checks failed, and the overhead

was minimal. Five test suites took less than one second with and without dynamic

checking. The remaining three test suites ran in 2, 6, and 53 seconds and had over-

heads of 7.7%, 0.37%, and -12% respectively. The last test suite actually ran faster

with our instrumentation, likely due to interactions with the Ruby interpreter’s

method cache.

We made three kinds of changes to the benchmarks to analyze them. First, the

benchmarks labeled with “R” included require calls that were passed dynamically

constructed file names. For instance, the test suite in the StreetAddress benchmark

contained the code

1 require File .dirname( FILE ) + ’../ lib / street address ’

81



In the benchmarks that used this technique, we manually replaced the argument of

require with a constant string.

Second, several of the benchmarks used a common unit testing framework

provided by the standard library. This framework takes a directory as input, and

invokes any methods prefixed by test contained in the Ruby files in the directory. To

ensure we analyzed all of the testing code, we wrote a stub file that manually required

and executed these test methods, simulating the testing harness. Benchmarks with

this stub file are labeled with “S.”

Finally, the text-highlight benchmark used metaprogramming (as shown in

Section 3.2) to dynamically generate methods in two places. DRuby did not ana-

lyze the generated methods and hence thought they were missing, resulting in 302

false positives the first time we ran it. We manually replaced the metaprogramming

code with direct method creation, eliminating this source of imprecision. This man-

ual transformation directly motivated our solution to handling dynamic features in

general, which we discuss in Chapter 4.

3.5.1 Experimental Results

The right portion of Figure 3.6 shows the running times for DRuby, the number

of errors, the number of warnings, and the number of false positives. Times were

the average of 5 runs on an AMD Athlon 4600 processor with 4GB of memory. We

define errors (E) as source locations that may cause a run-time type error, given

appropriate input, and warnings (W) as locations that do not cause a run-time error

82



for any input, but involve questionable programming practice. False positives (FP)

are locations where DRuby falsely believes a run-time error can occur, but the code

is actually correct.

For these 18 programs, DRuby runs quickly (under 7 seconds except four mid-

size benchmarks), producing 37 messages that we classified into 5 errors, 16 warn-

ings, and 16 false positives.

Errors The 5 errors discovered by DRuby occurred in 4 benchmarks. The error

in ai4r was due to the following code:

return rule not found if !@values. include ?(value)

There is no rule not found variable in scope at this point, and so if the condition ever

returns true, Ruby will signal an error. Interestingly, the ai4r program includes a

unit test suite, but it did not catch this error because it did not exercise this branch.

The two errors in vimrecover were also due to undefined variables, and both occurred

in error recovery code.

The error in hashslice is interesting because it shows a consequence of Ruby’s

expressive language syntax, which has many subtle disambiguation rules that are

hard to predict. In hashslice, the test suite uses assertions like the following:

assert nothing raised { @hash[’a’ , ’b’ ] = 3, 4 }
assert kind of (Fixnum, @hash[’a’ , ’b’ ] = 3, 4)

The first call passes a code block whose body calls the []= method of @hash with the

argument [3,4] . The second call aims to do a similar operation, verifying the return

value is a Fixnum. However, the Ruby interpreter (and DRuby) parse the second

83



method call as having three arguments, not two as the author intended (the literal

4 is passed as the third argument). In the corresponding standard library stub file,

this method is annotated as the following:

assert kind of <t> : (Class, t , ?String) → NilClass

Because 4 is a Fixnum and not a String , DRuby considers this a type error. Although

our type annotation matches the documentation for assert kind of , the actual im-

plementation of the method coerces its third argument to a string, thus masking

this subtle error at run time.

The last error is in ObjectGraph, which contains the following:

1 $baseClass = ObjectSpace.each object(Class)
2 { |k| break k if k.name == baseClassName }

The method each object takes a code block, applies it to each element of the col-

lection, and returns the total number of elements visited (a Fixnum). However, the

block supplied above terminates the iteration early (break k), returning a specific

element that has type Class. The programmer intended the loop to always terminate

in this fashion, using $baseClass throughout the program as a Class, not a Fixnum.

However, it is easy to make the loop terminate normally and therefore return a

Fixnum, since the above code depends on data provided by the end user.

Warnings 14 of the 16 reported warnings are due to a similar problem. Consider

the code “5.times { | i | print ”∗” }”, which prints five stars: The times function

calls the code block n times (where n is the value of the receiver), passing the values

0..n − 1 as arguments. In the above code, we never used parameter i, but we still

84



included it. However, Ruby allows blocks to be called with too many arguments

(extra arguments are ignored) or too few (missing arguments are set to nil ). We

think this is bad practice, and so DRuby reports an error if blocks are called with the

wrong number of arguments, resulting in 14 warnings. In DRuby, if the user intends

to ignore block parameters, they can supply an anonymous vararg parameter such

as 5.times {|∗| ...} to suppress the warning.

Of the two remaining warnings, one occurs in substitution solver, which con-

tains the block arguments |tetragraph, freq| instead of |(tetragraph, freq)|. In the

former case, DRuby interprets the block as taking two arguments, whereas the

latter is a single (tuple) argument. As each calls the block with only a single ar-

gument, DRuby signals an error. As it turns out, Ruby is fairly lenient and allows

the programmer to omit the parentheses in this case. However, we feel this leads

to confusing code, and so DRuby always requires parentheses around tuples used in

pattern matching.

The last warning occurs in relative, which, similarly to ObjectGraph, calls an

iterator where all executions are intended to exit via a break statement. In this

case, the normal return path of the iterator block appears to be infeasible, and so

we classify this as a warning rather than an error.

False positives DRuby produced a total of 16 false positives, due to several

causes. Three false positives are due to union types that are discriminated by

run-time tests. For example, one of the methods in the sudokusolver benchmark

returns either false or an array, and the clients of this method check the return

85



values against false before using them as arrays. DRuby does not model type tests

to discriminate unions, something we plan on addressing in future work (Chapter 5).

Three additional false positives occurred because a benchmark redefined an

existing method with a different type, which DRuby forbids since then it cannot

tell at a call site whether the previous or the redefined method is called. (Unlike

statically typed object-oriented languages, redefined methods in Ruby can have

radically different types.)

The remaining false positives occurred because DRuby could not resolve the

use of an intersection type; because DRuby could not locate the definition of a con-

stant; because of a wrapper around require that dynamically changed the argument;

and because of rebinding of the new method.

3.6 Related Work

Many researchers have previously studied the problem of applying static typing

to dynamic languages. Some of the earliest work in this area is soft typing for

Scheme, which uses a set-based analysis to determine what data types may reach

the destructors in a program [18, 6, 81, 28]. Typed Scheme adds type annotations

and type checking to Scheme [73]. One of the key ideas in this system is occurrence

types, which elegantly model type testing functions used to discriminate elements of

union types. As mentioned earlier, DRuby support for modeling type tests would

be useful future work.

Several researchers investigated static typing for Smalltalk, a close relation of

86



Ruby. Graver and Johnson [31] propose a type checking system that includes class,

object, union, and block types. Strongtalk [66], a variant of Smalltalk extended

with static types, has a similar system with additional support for mixins [11].

Spoon [63] and RoelTyper [83] each a present type system that trades precision for

scalability. Agesen et al. [4, 3] explored type inference for Self, which is an object-

based (rather than class-based) language. DRuby differs from these system as it

integrates both static type inference and dynamically checked annotations.

Type inference for Ruby has been proposed before. Kristensen [42] developed

a Ruby type inference system based on the cartesian product algorithm. However,

their system does not yet support the full Ruby language, including complete sup-

port for code blocks. They also do not include a type annotation language or support

for the same features as DRuby’s type system such as F-bounded polymorphism.

Morrison [47] developed a type inference algorithm that has been integrated into

RadRails, an IDE for Ruby on Rails. In RadRails, type inference is used to select

the methods suggested during method completion. There is no formal description of

RadRails’s type inference algorithm, but it appears to use a simple intraprocedural

dataflow analysis, without support for unions, object types, parameter polymorphic,

tuples, or type annotations.

Several type systems have been proposed to improve the performance of dy-

namic languages. The CMUCL[45] and SBCL[60] Lisp compilers use type inference

to catch some errors at compile time, but mainly rely on inference to eliminate run-

time checks. Similarly, aggressive type inference [10], Starkiller [58], and a system

proposed by Cannon [16] all infer types for Python code to improve performance.

87



RPython is a statically-typed subset of Python designed to compile to JVM and CLI

bytecode [8]. RPython includes type inference, though it is unclear exact what typ-

ing features are supported. One interesting feature of RPython is that it performs

type inference after executing any load-time code, thus providing some support for

metaprogramming. This work motivated our solution to handling metaprogramming

in Ruby (Chapter 4).

There are several proposals for type inference for Javascript [9, 69]. The pro-

posed ECMAScript 4 (Javascript) language includes a rich type annotation language

with object types, tuple types, parametric polymorphism, and union types [33]. The

challenges in typing Ruby are somewhat different than for Javascript, which builds

objects by assigning pre-methods to them rather than using classes.

Aside from work on particular dynamic languages, the question of statically

typing dynamic language constructs has been studied more generally. Abadi et

al. [2] propose adding a type Dynamic to an otherwise statically typed language.

Quasi-static typing takes this basic idea and makes type coercions implicit rather

than explicit [67]. Gradual type systems improve on this idea further [62, 34], and

have been proposed for object-oriented type systems [61]. Sage mixes a very rich

static type system with the type Dynamic [32]. Tobin-Hochstadt and Felleisen [72]

present a framework for gradually changing program components from untyped to

typed.

Finally, our run-time type checks are based heavily on contracts, which were

developed as the dynamic counterpart to static types to generalize and extend run-

time assertions [27, 25]. An important property of contracts is to track blame

88



through a program to ensure that when a contract is violated, the cause of the

failure is correctly correlated with the proper syntactic origin, which can be tricky

in the higher-order case [26].

89



Chapter 4

Analyzing Dynamic Features

In the previous chapter, we showed that DRuby can successfully infer types for

small Ruby scripts. However, there is a major challenge in scaling up static typing

to large script programs: Ruby includes a range of hard-to-analyze, highly dynamic

constructs. In addition to eval, Ruby includes other constructs such as allowing pro-

grammers to use reflection to invoke methods via send, and define a method missing

method to handle calls to undefined methods. These kinds of features lend them-

selves to a range of terse, flexible, and expressive coding styles, but they also impede

standard static analysis. In fact, in Ruby it is even hard to statically determine what

source files to analyze, because scripts can perform computation to decide what other

files to load.

In this chapter, we solve this problem by combining run-time profiling of dy-

namic features with static typing. We begin with several real-world examples in

Section 4.1 that motivate our solution. We then give a brief, high-level overview of

our approach in Section 4.2 before formally presenting the details using DynRuby,

a small object-oriented language with eval, send, and method missing in Section 4.3.

Next, we describe our implementation in Section 4.4. To evaluate our tech-

90



1 require File . join ( File .dirname( FILE ),’ .. ’ ,
2 ’ lib ’ , ’ sudokusolver ’ )
3

4 Dir . chdir (” .. ”) if base == ”test”
5 $LOAD PATH.unshift(Dir.pwd + ”/lib”)
6 ...
7 require ”memoize”

Figure 4.1: Using require with dynamically computed strings

nique, we applied DRuby to a suite of benchmarks that use dynamic features, either

directly, via the standard library, or via a third-party library. Sections 4.5 and

4.6 describe our experience profiling dynamic constructs in our benchmarks, and in

applying DRuby’s type inference algorithm to these programs. Lastly, we describe

potential threats of validity to our results in Section 4.7, conclude with related work

in Section 4.8.

4.1 Motivation

In this section, we motivate the need for our solution by giving examples showing

uses of Ruby’s dynamic features. All of the examples in this section were extracted

from the benchmarks in Section 4.5. DRuby also handles several other dynamic

features of Ruby, discussed in Section 4.4.

Require To load code stored in a file, a Ruby program invokes the require method,

passing the file name as a string argument. Since this is an ordinary method call, a

Ruby program can actually perform run-time computation to determine which file

to load. Figure 4.1 gives two examples of this. Lines 1–2, from the sudokusolver

91



1 alias gem original require require
2

3 def require (path)
4 gem original require path
5 rescue LoadError => load error
6 ( if spec = Gem.searcher.find(path) then
7 Gem.activate(spec.name, ”= #{spec.version}”)
8 gem original require path
9 else

10 raise load error
11 end)
12 end end

Figure 4.2: Example of require from Rubygems package manager

benchmark, call dirname to compute the directory containing the currently executing

file, and then call File.join to create the path of the file to load. We have found similar

calls to require (with computed strings) are common, occurring 11 times across 5

of our benchmarks. As another example, lines 4–7, from the memoize benchmark,

first modify the load path on line 5 before loading the file memoize on line 7. This

example shows that even when require is seemingly passed a constant string, its

behavior may actually vary at run time.

For a much more complex use of require, consider the code in Figure 4.2. This

example comes from Rubygems, a popular package management system for Ruby.

In Rubygems, each package is installed in its own directory. Rubygems redefines the

require method, as shown in the figure, so that require’ing a package loads it from the

right directory. Line 1 makes an alias of the original require method. Then lines 3–11

give the new definition of require. First, line 4 attempts to load the file normally,

using the old version of require. If that fails, the resulting LoadError exception is

caught on line 5 and handled by lines 6–11. In this case, Rubygems searches the file

92



1 def initialize (args)
2 args .keys .each do | attrib |
3 self .send(”#{attrib}=”, args[ attrib ])
4 end end

Figure 4.3: Use of send to initialize fields

system for a library of the same name (line 6). If found, the package is “activated”

on line 7, which modifies the load path (as in Figure 4.1), and then the file is loaded

with the old require call on line 8.

This implementation is convenient for package management, but it makes pure

static analysis quite difficult. Even if we could statically determine what string was

passed to the new version of require, to find the corresponding file we would need to

reimplement the logic of the Gem.searcher.find method.

Send When a Ruby program invokes e0.send(“meth”, e1, . . . , en), the Ruby inter-

preter dispatches the call reflectively as e0.meth(e1, . . . , en). Figure 4.3 shows a

typical use of this feature, from the StreetAddress benchmark. This code defines a

constructor initialize that accepts a hash args as an argument. For each key attrib in

the hash, line 3 uses send to pass args[attrib], the value corresponding to the key, to

the method named “#{attrib} =”, where #{e} evaluates expression e and inserts

the resulting value into the string. For example, if initialize is called with the argu-

ment {“x”⇒ 1}, it will invoke the method self.x=(1), providing a lightweight way

to configure a class through the constructor.

Another common use of send is in test drivers. For example, the Ruby commu-

nity makes heavy use of Ruby’s standard unit testing framework (not shown). To

93



1 ATTRIBUTES = [”bold”, ”underscore”, ... ]
2 ATTRIBUTES.each do |attr|
3 code = ”def #{attr}(&blk) ... end”
4 eval code
5 end

Figure 4.4: Defining methods with eval

write a test case in this framework, the programmer creates a class with test meth-

ods whose names begin with test . Given an instance of a test class, the framework

uses the methods method to get a string list containing the names of the object’s

methods, and then calls the appropriate ones with send.

Eval Ruby also provides an eval method that accepts a string containing arbitrary

code that is then parsed and executed. Our experiments show that use of eval is

surprisingly common in Ruby—in total, eval and its variants are used to evaluate 423

different strings across all our benchmark runs (Section 4.5). Figure 4.4 shows one

example of metaprogramming with eval, taken from the text-highlight benchmark (as

previously shown in Section 3.2.12). This code iterates through the ATTRIBUTES

array defined on line 1, creating a method named after each array element on lines 3–

4. We found many other examples like this, in which Ruby programmers use eval

to create methods via macro-style metaprogramming.

Method Missing Figure 4.5 gives an example use of method missing, which re-

ceives calls to undefined methods. This code (slightly simplified) is taken from the

ostruct library, which creates record-like objects. In this definition, line 2 converts

the first argument, the name of the invoked method, from a symbol to a string

94



1 def method missing(mid, ∗args)
2 mname = mid.id2name
3 if mname =˜ /=$/
4 ...
5 @table[mname.chop!.intern] = args[0]
6 elsif args . length == 0
7 @table[mid]
8 else
9 raise NoMethodError, ”undefined method...”

10 end
11 end

Figure 4.5: Intercepting calls with method missing

mname. If mname ends with = (line 3), then on line 5 we update @table to map

mname (with the = removed and interned back into a symbol) to the first argument.

Otherwise there must be no arguments (line 6), and we read the value corresponding

to the invoked method out of @table. For example, if o is an instance of the ostruct

class, the user can call o.foo = (3) to “write” 3 to foo in o, and o.foo() to “read”

it back. Notice that we can use method invocation syntax even though method foo

was never defined. This particular use of method missing from ostruct is one of two

occurrences of method missing that are dynamically executed by our benchmark test

suites.

One interesting property of method missing is that it cannot be directly mod-

eled using other dynamic constructs. In contrast, the require and send methods are

in a sense just special cases of eval. We could implement require by reading in a file

and eval’ing it, and we could transform o.send(m, x, y) into eval(“o.#{m}(x, y)”).

95



4.2 Overview

Our key insight is that even though the examples in the previous section use con-

structs that appear to be dynamic, in fact their use is almost always heavily con-

strained, so that in practice they act statically. As an extreme example, a call

eval “x + 2” is morally the same as the expression x + 2, and can be typed just as

easily with DRuby. Thus, the goal of our approach is to determine the restricted

ways in which these constructs act, and to replace them with forms that are more

amenable to static analysis.

To achieve this, DRuby analyzes Ruby code in three steps. First, it performs

a source-to-source translation on the program to be analyzed so that when run,

the program records a profile of how dynamic features were used in that execution.

Among other information, we record what strings are passed to eval, what methods

are invoked via send, and what invocations are handled by method missing. Next, the

user runs the program to gather a sufficient profile, typically using the program’s

test suite. Then DRuby uses the profile to guide a program transformation that

removes highly dynamic constructs, e.g., by replacing eval calls with the source code

seen in the profile. Lastly, DRuby applies type inference to the transformed program

to detect any type errors. DRuby can also safely handle program runs that do not

match the profile. In these cases, DRuby instruments newly seen code to include

full dynamic checking and blame tracking, so that we can detect errors in the code

and place the blame appropriately.

Notice that DRuby relies on the programmer to provide test cases to guide

96



e ::= x | v | d | e1; e2 | e1≡e2 | let x = e1 in e2

| if e1 then e2 else e3 | e0.m(e1, . . . , en)
| eval` e | e0.send`(e1, . . . , en)
| safe eval` e | JeK` | blame `

v ::= s | true | false | new A | JvK`
d ::= def` A.m(x1, . . . , xn) = e

x ∈ local variable names A ∈ class names
m ∈ method names s ∈ strings
` ∈ program locations

Figure 4.6: DynRuby source language

profiling. We think this is a reasonable approach because not only do most Ruby

programs already come with test suites (testing is widely adopted in the Ruby com-

munity), but it gives the programmer an easy to understand trade-off: The more

dynamic features covered in the profile, the more static checking is achieved. More-

over, run-time profiling gives DRuby very precise information for type inference.

This is in contrast to using, e.g., purely static string analysis [44, 19, 30], which

could easily over-approximate the set of strings seen at run time [59]. It also allows

us to statically analyze effectful dynamic code. For example, in our experiments,

we found many cases where eval’d strings define methods, and those methods are

referred to in other parts of the program. As far as we are aware, techniques such

as gradual typing [62, 61, 34] would be unsound in the presence of such effects in

dynamic code—static guarantees could be undermined if dynamically eval’d code

overwrites a method used in statically typed code.

97



4.3 Dynamic Features in DynRuby

We model our approach to statically type checking dynamic language features with

DynRuby, shown in Figure 4.6. The core language includes local variables x (such

as the distinguished local variable self) and values v. Values include strings s,

booleans true and false, objects created with new A, and wrapped values JvK`, which

indicate values with dynamic rather than static types. We annotate JvK` with a

program location ` so that we may later refer to it. In DynRuby, objects do not

contain fields or per-object methods, and so we can represent an object simply by

its class name. We could add richer objects to DynRuby, similarly to MiniRuby,

but we keep the language simple to focus on its dynamic features.

In DynRuby, method definitions d can appear in arbitrary expression posi-

tions, i.e., methods can be defined anywhere in a program. A definition def` A.m(x1, . . . , xn) =

e adds or replaces class A’s method m at program location `, where the xi are the

arguments and e is the method body. Note that DynRuby does not include explicit

class definitions. Instead, a program may create an instance of an arbitrary class A

at any point, even if no methods of A have been defined, and as we see occurrences

of def` A.m(. . .) = . . ., we add the defined method to a method table used to look

up methods at invocation time. For example, consider the following code:

let x = new A in(def` A.m() = . . .);x.m()

The call to x.m() is valid because A.m() was defined before the call, even though

the definition was not in effect at new A. This mimics the behavior of Ruby, in

98



which changes to classes affect all instances, and allows eval to be used for powerful

metaprogramming techniques, as shown in Figure 4.4. Our method definition syntax

also allows defining the special method missing method for a class, which, as we saw

in Section 4.1, receives calls to non-existent methods.

Other language constructs in DynRuby include sequencing e1; e2, the equality

operator e1≡e2, let binding, conditionals with if, and method invocation e0.m(e1, . . . , en),

which invokes method m of receiver e0 with arguments e1 through en.

DynRuby also includes two additional dynamic constructs we saw in Sec-

tion 4.1. The expression eval` e evaluates e to produce a string s, and then parses and

evaluates s to produce the result of the expression. The expression e0.send`(e1, . . . , en)

evaluates e1 to a string and then invokes the corresponding method of e0 with ar-

guments e2 through en. We annotate both constructs with a program location `.

The last three expressions in DynRuby, safe eval` e, JeK`, and blame `, are

used to support dynamic typing and blame tracking. These expressions are inserted

by our translation below to handle uses of dynamic constructs we cannot fully resolve

with profiling. Our approach is somewhat non-standard, but these constructs in our

formalism closely match our implementation (Section 4.4), which performs blame

tracking without modifying the Ruby interpreter. We delay discussing the details

of these expressions to Section 4.3.3.

99



(Var)

〈M,V, x〉 → 〈M, ∅,V(x)〉

(Def)

〈M,V, d〉 → 〈(d,M), ∅, false〉

(Eval)

〈M,V, e〉 → 〈M1,P1, s〉 〈M1,V, parse(s)〉 → 〈M2,P2, v〉
〈M,V, eval` e〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

(Send)

〈M,V, e1〉 → 〈M1,P1, s〉 m = parse(s)
〈M1,V, e0.m(e2, . . . , en)〉 → 〈M2,P2, v〉

〈M,V, e0.send`(e1, . . . , en)〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

(Call-M)

〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = new A
(def` A.m(. . .) = . . .) 6∈ Mn+1

(def`′ A.method missing(x1, . . . , xn+1) = e) ∈ Mn+1 s = unparse(m)
m 6= method missing V′ = [self 7→ v0, x1 7→ s, x2 7→ v1, . . . , xn+1 7→ vn]

〈Mn+1,V′, e〉 → 〈M′,P ′, v〉
〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (

⋃
i

Pi) ∪ P ′ ∪ [`′ 7→ s], v〉

Figure 4.7: Instrumented operational semantics (partial)

4.3.1 An Instrumented Semantics

To track run-time uses of eval, send, and method missing, we use the instrumented

big-step operational semantics shown in Figure 4.7. Since most of the rules are

straightforward, we show only selected, interesting reduction rules, and similarly for

the other formal systems we discuss below. The complete set of rules and proofs

are presented in Appendix C. In our implementation, we add the instrumentation

suggested by our semantics via a source-to-source translation.

Reduction rules in our semantics have the form 〈M,V, e〉 → 〈M′,P , v〉. Here M

and M′ are the initial and final method tables, containing a list of method definitions;

V is a local variable environment, mapping variables to values; e is the expression

100



being reduced; v is the resulting value; and P is a profile that maps program loca-

tions (occurrences of eval, send, and method missing definitions) to sets of strings. In

these rules, we use parse(s) to denote the expression produced by parsing string s,

and we use unparse(e) to denote the string produced by unparsing e.

The first rule, (Var), looks up a variable in the local environment and pro-

duces the empty set of profiling information. To see why we opted to use envi-

ronments rather than a substitution-based semantics, consider the program let x =

2 in eval` “x + 1”. In a substitution-based semantics, we would rewrite this pro-

gram as (eval` “x + 1”)[x 7→ 2], but clearly that will not work, since this is equal

to (eval` “x+ 1”), i.e., substitution does not affect strings. We could try extending

substitution to operate on string arguments to eval, but since the string passed to

eval can be produced from an arbitrary expression, this will not work in general.

Other choices such as delaying substitution until later seemed complicated, so we

opted for the simpler semantics using variable environments.

The next rule, (Def), adds a method definition to the front of M and returns

false. When we look up a definition of A.m in M, we find the leftmost occurrence,

and hence (Def) replaces any previous definition of the same method.

The last three rules in Figure 4.7 handle the novel features of DynRuby.

(Eval) reduces its argument e to a string s, parses s and then reduces the resulting

expression to compute the final result v. The resulting profile is the union of the

profiles P1 (from evaluating e), P2 (from evaluating parse(s)), and [` 7→ s], which

means s should be added to the set of strings associated with `. In this way, we

track the relationship between eval` e and the string s passed to it a run-time.

101



(Send) behaves analogously. We evaluate the first argument, which must

produce a string, translate this to a method name m, and finally invoke m with

the same receiver and remaining arguments. In the output profile, we associate the

location of the send with the string s.

Finally, (Call-M) handles invocations to undefined methods. In this rule we

evaluate the receiver and arguments, but no method m has been defined for the

receiver class. We then look up method missing of the receiver class and evaluate

its body in environment V′, which binds the first formal parameter to s, the name

of the invoked method, and binds self and the remaining formal parameters appro-

priately. The output profile associates s with `, the location where method missing

was defined.

4.3.2 Translating Away Dynamic Features

After profiling, we can translate a DynRuby program into a simpler form that

eliminates features that are hard to analyze statically. Figure 4.8 gives a portion of

our translation. Excluding the final rule, our translation uses judgments of the form

P ` e  e′, meaning given profile P , we translate expression e to expression e′.

For most language forms, we either do nothing, as in (Refl ), or translate sub-

expressions recursively, as in (Seq ); we omit other similar rules.

The first interesting rule is (Eval ), which translates eval` e. First, we recur-

sively translate e. Next, recall that (Eval) in Figure 4.7 includes in P(`) any strings

evaluated by this occurrence of eval. We parse and translate those strings sj to yield

102



(Refl )
e ∈ {x, v, blame `}
P ` e e

(Seq )
P ` e1  e′1
P ` e2  e′2

P ` e1; e2  e′1; e′2

(Eval )
P ` e e′ P ` parse(sj) ej sj ∈ P(`) x fresh

e′′ =


let x = e′ in

if x≡s1 then e1

else if x≡s2 then e2 . . .
else safe eval` x


P ` eval` e e′′

(Send )
P ` ei  e′i i ∈ 0..n sj ∈ P(`) x fresh

e′ =


let x = e′1 in

if x≡s1 then e′0.parse(s1)(e′2, . . . , e
′
n)

else if x≡s2 then e′0.parse(s2)(e′2, . . . , e
′
n) . . .

else safe eval` “e′0.” + x+ “(e′2, ..., e
′
n)”


P ` e0.send`(e1, . . . , en) e′

(Meth-Missing )
P ` e e′ sj ∈ P(`)

e′′ =
(

def` A.parse(s1)(x2, . . . , xn) = (let x1 = s1 in e′);
def` A.parse(s2)(x2, . . . , xn) = (let x1 = s2 in e′); . . .

)
P ` def` A.method missing(x1, . . . , xn) = e e′′

(Prog )
P ` e e′ (def`j A

j .mj(xj1, . . . , x
j
n) = . . .) ∈ e′

ed =
(

def`1 A
1.m1(x1

1, . . . , x
1
n1) = blame `1;

def`2 A
2.m2(x2

1, . . . , x
2
n2) = blame `2; . . .

)
P ` e⇒ (ed; e′)

Figure 4.8: Transformation to static constructs (partial)

103



expressions ej. Then we replace the call to eval by a conditional that binds e′ to a

fresh variable x (so that e′ is only evaluated once) and then tests x against the strings

in P(`), yielding the appropriate ej if we find a match. If not, we fall through to the

last case, which evaluates the string with safe eval` x, a “safe” wrapper around eval

that adds additional dynamic checks we describe below (Section 4.3.3). This catch-

all case allows execution to continue even if we encounter an unprofiled string, and

also allows us to blame the code from location ` if it causes a subsequent run-time

type error. In our formalism, adding the form blame ` allows us to formally state

soundness: DynRuby programs that are profiled, transformed, and type checked

never go wrong at run time, and reduce either to values or to blame. In practice, by

tracking blame we can also give the user better error messages.

(Send ) is similar to (Eval ). We recursively translate the receiver e0 and

arguments ei. We replace the invocation of send with code that binds fresh variable

x to the first argument, which is the method name, and then tests x against each

of the strings sj in P(`), which were recorded by (Send) in our semantics. If we

find a match, we invoke the appropriate method directly. While our formal rule

duplicates e′i for each call to send, in our implementation these expressions are side-

effect free (i.e., they consist only of literals and identifiers), and so we actually

duplicate very little code in practice. Otherwise, in the fall-through case, we call

safe eval with a string that encodes the method invocation—we concatenate the

translated expressions e′i with appropriate punctuation and the method name x.

(Note that in this string, by e′i we really mean unparse(e′i), but we elide that detail

to keep the formal rule readable.)

104



(Meth-Missing ) follows a similar pattern. First, we recursively translate

the body as e′. For each string sj in P(`) (which by (Call-M) in Figure 4.7 contains

the methods intercepted by this definition), we define a method named sj that takes

all but the first argument of method missing. The method body is e′, except we bind

x1, the first argument, to sj, since it may be used in e′.

Our approach to translating method missing completely eliminates it from the

program, and there is no fall-through case. There are two advantages to this ap-

proach. First, a static analysis that analyzes the translated program need not include

special logic for handling method missing. Second, it may let us find places where

method missing intercepts the wrong method. For example, if our profiling runs

show that A.method missing is intended to handle methods foo and bar, DRuby’s

type system will complain if it sees a call to an undefined A.baz method in the trans-

lated program. We believe this will prove more useful to a programmer than simply

assuming that a method missing method is intended to handle arbitrary calls. How-

ever, one consequence of this approach is that if a program is rejected by DRuby’s

type system, then unprofiled calls to method missing would cause the program to go

wrong.

The last step in the translation is to insert “empty” method definitions at the

top of the program. We need this step so we can formally prove type soundness.

For example, consider a program with a method definition and invocation:

. . . def` A.m(. . .) = e; . . . ; (new A).m(. . .); . . .

The challenge here is that the definition of A.m might occur under complex cir-

105



cumstances, e.g., under a conditional, or deep in a method call chain. To ensure

(new A).m(. . .) is valid, we must know A.m has been defined.

One solution would be to build a flow-sensitive type system for DynRuby,

i.e., one that tracks “must be defined” information to match uses and definitions.

However, in our experience, this kind of analysis would likely be quite complex, since

definitions can appear anywhere, and it may be hard for a programmer to predict

its behavior.

Instead, we assume that any method syntactically present in the source code

is available everywhere and rely on dynamic, rather than static, checking to find

violations of our assumption. Translation P ` e⇒ (ed; e
′), defined by (Prog ) in

Figure 4.8, enforces this discipline. Here ed is a sequence of method definitions, and

e′ is the translation of e using the other rules. For each definition of A.m occurring

in e′, we add a mock definition of A.m to ed, where the body of the mock definition

signals an error using blame ` to blame the location of the actual definition.

We could also have built ed from the method definitions actually seen during

execution, e.g., (Def) in Figure 4.7 could record what methods are defined. We

think this would also be a reasonable design, but would essentially require that users

have tests to drive profiling runs in order to statically analyze their code, even if they

do not use features such as eval. Thus for a bit more flexibility, we build ed based

on static occurrences of definitions, but we might make dynamic method definition

tracking an option in the future.

106



(SEval)

〈M,V, e〉 → 〈M′,P, s〉 parse(s) ↪→` e
′ 〈M′,V, Je′K`〉 → 〈M′′,P ′, v〉

〈M,V, safe eval` e〉 → 〈M′,P ∪ P ′, v〉

(If↪→)
e1 ↪→` e

′
1 e2 ↪→` e

′
2 e3 ↪→` e

′
3

if e1 then e2 else e3 ↪→` if Je′1K` then e′2 else e′3

(Call↪→)
ei ↪→` e

′
i i ∈ 0..n

e0.m(e1, . . . , en) ↪→` Je′0K`.m(e′1, . . . , e
′
n)

(Def↪→)

def`′ A.m(x1, . . . , xn) = e ↪→` blame `′

(If-Wrap-T)

〈M,V, e1〉 → 〈M1,P1, JtrueK`〉 〈M1,V, e2〉 → 〈M2,P2, v2〉
〈M,V, if e1 then e2 else e3〉 → 〈M2, (P1 ∪ P2), v2〉

(If-Wrap-Blame)

〈M,V, e1〉 → 〈M1,P1, v〉 v ∈ {JsK`, Jnew AK`}
〈M,V, if e1 then e2 else e3〉 → 〈M1,P1, blame `〉

(Call-Wrap)

〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = Jnew AK`′′
(def` A.m(x1, . . . , xn) = e) ∈ Mn+1 m 6= method missing

V′ = [self 7→ v0, x1 7→ Jv1K`′′ , . . . , xn 7→ JvnK`′′ ]
〈Mn+1,V′, e〉 → 〈M′,P ′, v〉

〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (
⋃
i

Pi) ∪ P ′, JvK`′′〉

Figure 4.9: Safe evaluation rules (partial)

4.3.3 Safe Evaluation

To handle uses of dynamic features not seen in a profile, our translation in Figure 4.8

inserts calls to safe eval` e, a “safe” wrapper around eval. Figure 4.9 gives some of

the reduction rules for this form. In the first rule, (SEval), we reduce safe eval` e

by evaluating e to a string s, parsing s, translating the result to e′ via the ↪→`

107



relation (a source-to-source transformation), and then evaluating Je′K`, a wrapped

e′. The expression Je′K` behaves the same as e′, except if it is used type-unsafely

then our semantics produces blame `, meaning there was an error due to dynamic

code from `. This is contrast to type-unsafe uses of unwrapped values, which cause

the semantics to go wrong (formally, reduce to error). In practice, we implement

Je′K` by a method that accepts an object and modifies it to have extra run-time

checking (Section 4.4).

The relation e ↪→` e
′ rewrites the expression e, inserting J·K` where needed.

We give three example rewrite rules. (If↪→) rewrites each subexpression of the if,

wrapping the guard since its value is consumed. Similarly, (Call↪→) wraps the

receiver so that at run time we will check the receiver’s type and blame ` if the call

is invalid. Lastly, (Def↪→) replaces a method definition by blame—we cannot permit

methods to be redefined in dynamically checked code, since this could undermine

the type safety of statically typed code.

When wrapped values are used, we unwrap them and either proceed as usual

or reduce to blame `. For example, (If-Wrap-T) evaluates the true branch of an

if given a guard that evaluates to JtrueK`, whereas (If-Wrap-Blame) evaluates to

blame ` if the guard evaluates to a non-boolean. Notice the contrast with ordinary

reduction, which would instead go wrong when if is used with a non-boolean guard.

(Call-Wrap) handles a method invocation in which the receiver is a wrapped

object. Here we must be careful to also wrap the arguments (in the definition of

V′) when evaluating the method body; because we did not statically check that this

call was safe, we need to ensure that the arguments’ types are checked when they

108



are used in the method body. Similarly, we must wrap the value returned from the

call so that it is checked when used later.

Notice that our semantics for safe eval` e does not use any static type informa-

tion. Instead, it performs extensive object wrapping and forbids method definitions

in dynamic code. One alternative approach would be to run DRuby’s type inference

algorithm at run time on the string e returns. However, this might incur a sub-

stantial run-time overhead (given the space and time requirements of DRuby’s type

inference system), and it disallows any non-statically typed parts of the program.

Another alternative would be to only keep objects wrapped until they are passed to

statically typed code. At that point, we could check their type against the assumed

static type, and either fail or unwrap the object and proceed. This would be similar

to gradual typing [62, 61, 34]. We may explore this approach in the future, as having

static types available at run time could reduce the overhead of our wrappers at the

expense of additional space overhead.

4.3.4 Formal Properties

It should be clear from the discussions above that our translation preserves the

character of the original program, with respect to the core behavior and the dynamic

features seen during the profiling run(s). We can prove this formally:

Theorem 3 (Translation Faithfulness) Suppose 〈∅, ∅, e〉 → 〈M, P ′, v〉 and P ′ ⊆

P and P ` e⇒ e′. Then there exist MP such that 〈∅, ∅, e′〉 → 〈MP , ∅, v〉.

109



In other words, if we translate an expression based on its profile (or a superset of

the information in its profile), both the original and translated program produce the

same result. Also, since our translation has removed all dynamic features, we will

record no additional profiling information in the second execution, making the final

profile ∅.

In our formal system, an expression e always evaluates to the same result and

produces the same profile, but in practice, programs may produce different profiles

under different circumstances. For example, if we want to test the behavior of e,

we could evaluate e; e1, where e1 is a test case for the expression e, and e; e2, where

e2 is a different test case. Based on the above theorem, if our profiling runs are

sufficient, we can use them to translate programs we have not yet profiled without

changing their behavior:

Corollary 4 Suppose 〈∅, ∅, (e; e1)〉 → 〈M1,P1, v1〉. Further, suppose that 〈∅, ∅, (e; e2)〉 →

〈M2,P2, v2〉. Then if P2 ⊆ P1 and P1 ` (e; e2)⇒ e′, then 〈∅, ∅, e′〉 → 〈M′2, ∅, v2〉.

In other words, if the dynamic profile P1 of (e; e1) covers all the dynamic behavior

of (e; e2), then using P1 to translate e; e2 will not change its behavior. In our

experiments, we found that many dynamic constructs have only a limited range of

behaviors, and hence can be fully represented in a profile. Thus, by this theorem,

most of the time we can gather a profile and then use that to transform many

different uses of the program.

Finally, the last step is to show that we can perform sound static analysis on

the translated program. Appendix C gives a (mostly standard) type system for this

110



language. Our type system proves judgments of the form MT ` e, meaning under

method type table MT, a mapping from method names to their types, program e is

well-typed. In order for our type system to be sound, we forbid well-typed programs

from containing eval, send, or method missing (since we cannot check these stati-

cally), though programs may contain uses of safe eval and J·K` (which are checked

dynamically). We can formally prove the following type soundness theorem, where

r stands for either a value, blame `, or error, an error generated if the expression

goes wrong:

Theorem 5 (Type Soundness) If ∅ ` e and 〈∅, ∅, e〉 → 〈M,P , r〉, then r is either

a value or blame `. Thus, r 6= error.

This theorem says that expressions that are well-typed in this language do not go

wrong.

Recall that the translation from Section 4.3.2 eliminates the three dynamic

features that this type system does not permit, and inserts appropriate mock defini-

tions at the beginning of the program. Thus, if we start with an arbitrary program,

gather information about its dynamic feature usage via the instrumentation in Fig-

ure 4.7, and translate it according to Figure 4.8, we can then apply sound static

type checking to the resulting program, while still precisely modeling uses of eval,

send, and method missing in the original program.

4.4 Implementation

To use DRuby’s profiling library, the user simply invokes DRuby with the command

111



druby --dr-profile filename.rb

This command executes all of the stages described in Figure 2.6. That is, it first

runs filename.rb to discover the set of required files, and then adds instrumentation

to record uses of eval, send, method missing, and other dynamic features, to mimic

the semantics in Section 4.3.1. DRuby then executes the instrumented program to

gather a profile, transforms the program to eliminate dynamic constructs according

to the profile (as in Section 4.3.2), and then runs its type inference on the resulting

program. In the future, we expect profiling to be done separately and the results

saved for later use, but for experimental purposes our current all-in-one setup is

convenient.

4.4.1 Additional Dynamic Constructs

In addition to the constructs discussed in Section 4.3, DRuby also handles several

other closely related dynamic features. Similarly to eval, Ruby includes instance eval,

class eval, and module eval methods that evaluate their string argument in the con-

text of the method receiver (an instance, class, or module, respectively). For exam-

ple, calling

x.class eval(“def foo()...end”)

adds the foo method to the class stored in variable x. We profile these methods the

same way as eval, but we use a slightly different transformation. For example, we

replace the above code by

x.class eval() do def foo()...end end

112



Here we keep the receiver object x in the transformed program, because the definition

is evaluated in x’s context. DRuby recognizes this form of class eval (which is also

valid Ruby code) specially, analyzing the body of the code block in x’s context. Our

transformation for instance eval and module eval is similar.

Ruby includes four methods for accessing fields of objects, {instance, class}

variable {get, set}, which take the name of the instance or class variable to read or

write. When DRuby profiles these methods, it records the variable name and trans-

forms the expression into calls to {instance, class} eval. For example, we transform

a.instance variable set (“@x”, 2) into a.instance eval do @x = 2 end.

Finally, DRuby also includes support for attr and attr {reader,writer, accessor},

which create getter/setter methods given a field name, and also for const {get, set},

which directly read or write constants (write-once variables). DRuby profiles calls

to these methods, and replaces the non-literal field or constant name arguments

with the string literals seen at run time. DRuby then specially handles the case

when these methods are called with string literals. For example, when DRuby sees

const set(“X”, 3),it will give the constant X the type Fixnum. These constructs are

translated similarly to how the other dynamic features are treated, e.g., by inserting

calls to safe eval for unseen strings.

Ruby includes some dynamic features DRuby does not yet support. In par-

ticular, DRuby’s type system treats certain low-level methods specially, but these

methods could be redefined, effectively changing the semantics of the language. For

instance, if a programmer changes the Module# append features method, they can

alter the semantics of module mixins. Other special methods include Class#new,

113



Class#inherited, Module#method added, and Module# included. DRuby also does

not support applying dynamic constructs to per-object classes (eigen-classes) or

calling dynamic features via the Method class. In addition to these features, DRuby

currently does not support const missing, which handles accesses to undefined con-

stants, similarly to method missing; we expect to add support for this in the future.

Currently, DRuby does not support nested dynamic constructs, e.g., eval’ing

a string with eval inside it, or send’ing a message to the eval method. In these

cases, DRuby will not recursively translate the nested construct. We believe these

restrictions could be lifted with some engineering effort.

4.4.2 Implementing safe eval

We implemented safe eval` e, JeK`, and blame ` as two components: a small Ruby

library with methods safe eval(), wrap(), and blame(), and druby eval, an external

program for source-to-source translation.

The druby eval program is written using RIL, and it implements the ↪→` trans-

lation as shown in Figure 4.9. For example, it translates method definitions to calls

to blame(), and it inserts calls to wrap() where appropriate. There are a few ad-

ditional issues when implementing ↪→` for the full Ruby language. First, we need

not wrap the guard of if, because in Ruby, if accepts any object, not just booleans.

Second, in addition to forbidding method definitions, we must also disallow calls to

methods that may change the class hierarchy, such as undef method. Lastly, we add

calls to wrap() around any expressions that may escape the scope of safe eval, such

114



as values assigned to global variables and fields.

Given druby eval, our library is fairly simple to implement. The safe eval()

method simply calls druby eval to translate the string to be evaluated and then

passes the result to Ruby’s regular eval method. The blame() method aborts with

an appropriate error. Lastly, the wrap() method uses a bit of low-level object manip-

ulation (in fact, exactly the kind DRuby cannot analyze) to intercept method calls:

Given an object, wrap() first renames the object’s methods to have private names

beginning with druby, then calls undef method to remove the original methods, and

lastly adds a method missing definition to intercept all calls to the (now removed)

original methods. Our method missing code checks to see if the called method did

exist. If so, it delegates to the original method with wrapped arguments, also wrap-

ping the method’s return value. If not, it calls blame().

One nice feature of our implementation of wrap() is that because we do not

change the identity of the wrapped object, we preserve physical equality, so that

pointer comparisons work as expected. Our approach does not quite work for in-

stances of Fixnum and Float, as they are internally represented as primitive values

rather than via pointed-to objects. Instead, we wrap these objects by explicitly box-

ing them inside of an traditional object. We then extend the comparison methods

for these classes to delegate to the values inside these objects when compared.

115



Benchmark LoC Req Eval Snd Total
ai4r-1.0 764 4/ 4 2/ 2 4/ 4 10/ 10
bacon-1.0.0 258 · · · ·
hashslice-1.0.4 78 · · · ·
hyde-0.0.4 115 2/ 2 1/11 1/ 2 4/ 15
isi-1.1.4 224 · 1/ 1 · 1/ 1
itcf-1.0.0 178 · · · ·
memoize-1.2.3 69 · · 1/ 1 1/ 1
pit-0.0.6 166 2/ 2 · · 2/ 2
sendq-0.0.1 88 · · · ·
StreetAddress-1.0.1 875 1/ 1 · 1/15 2/ 16
sudokusolver-1.4 188 2/ 2 1/ 1 · 3/ 3
text-highlight-1.0.2 262 · 2/48 · 2/ 48
use-1.2.1 193 · · · ·
Total 3,458 11/11 7/63 7/22 25/ 96
Req – dyn. require and load G/S – field and constant get/set;
Eval – eval and variants attr and its variants
Snd – send and send MM – method missing
n/m – n=occ, m=uniq strs

(a) Per-benchmark results (no occ. of MM or G/S)

Lib Module LoC Req Eval Snd G/S MM Total
archive-tar-minitar 539 · · · 2/ 32 · 2/ 32
date 1,938 · 3/ 33 · · · 3/ 33
digest 82 1/ 1 · · 1/ 1 · 2/ 2
fileutils 950 · 4/101 · · · 4/101
hoe 502 1/ 2 · 1/ 2 · · 2/ 4
net 2,217 · 1/ 8 · · · 1/ 8
openssl 637 · 3/ 2 · · · 3/ 20
optparse 964 · · 2/ 4 · · 2/ 4
ostruct 80 · · 2/ 2 · 1/ 9 3/ 11
pathname 511 · · 1/ 1 · · 1/ 1
rake 1,995 2/19 3/136 · · · 5/155
rubyforge 500 · 1/ 2 · · · 1/ 2
rubygems 4,146 · 4/ 32 · 4/ 68 · 8/100
tempfile 134 · · 1/ 2 · 1/ 2 2/ 4
term-ansicolor 78 · 1/ 28 · · · 1/ 28
testunit 1,293 · · 1/63 · · 1/ 63
Other 4,871 · · · · · ·
Total 21,437 4/22 20/360 8/74 7/101 2/11 41/568

(b) Library results (as covered by benchmarks)

Figure 4.10: Dynamic feature profiling data from benchmarks

116



4.5 Profiling Effectiveness

We evaluated DRuby by running it on a suite of 13 programs downloaded from

RubyForge. We included any dependencies directly used by the benchmarks, but

not any optional components. Each benchmark in our suite uses at least some of

the dynamic language features handled by DRuby, either in the application itself or

indirectly via external libraries. All of our benchmarks included test cases, which

we used to drive the profiling runs for our experiments. Finally, many projects

use the rake program to run their test suites. Rake normally invokes tests in forked

subprocesses, but as this would make it more difficult to gather profiling information,

we modified rake to invoke tests in the same process.

4.5.1 Dynamic Feature Usage

Figure 4.10 measures usage of the dynamic constructs we saw in our profiling runs.

We give separate measurements for the benchmark code (part (a)) and the library

modules used by the benchmarks (part (b)). We should note that our measurements

are only for features seen during our profiling runs—the library modules in particular

include other uses of dynamic features, but they were in code that was not called

by our benchmarks.

For each benchmark or module, we list its lines of code (computed by SLOC-

Count [79]) and a summary of the profiling data for its dynamic features, given in

the form n/m, where n is the number of syntactic occurrences called at least once

across all runs, and m is the number of unique strings used with that feature. For

117



Req and G/S, we only count occurrences that are used with non-constant strings.

Any library modules that did not execute any dynamic features are grouped together

in the row labeled Other in Figure 4.10(b).

These results clearly show that dynamic features are used pervasively through-

out our benchmark suite. All of the features handled by DRuby occur in some pro-

gram, although method missing is only encountered twice. Eight of the 13 bench-

marks and more than 75% of the library module code use dynamic constructs.

Perhaps surprisingly (given its power) eval is the most commonly used construct,

occurring 27 times and used with 423 different strings—metaprogramming is indeed

extremely common in Ruby. Over all benchmarks and all libraries, there were 66

syntactic occurrences of dynamic features that cumulatively were used with 664

unique strings. Given these large numbers, it is critical that any static analysis

model these constructs to ensure soundness.

4.5.2 Categorizing Dynamic Features

The precision of DRuby’s type inference algorithm depends on how much of the

full range of dynamic feature usage is observed in our profiles. To measure this,

we manually categorized each syntactic occurrence from Figure 4.10 based on how

“dynamically” it is used. For example, eval “x + 2” is not dynamic at all since the

eval will always evaluate the same string, whereas eval ($stdin.readline) is extremely

dynamic, since it could evaluate any string.

Figure 4.11 summarizes our categorization. We found that all of the dynamic

118



features in our profiles are used in a controlled manner—their use is either deter-

mined by the class they are called in, or by the local user’s Ruby environment. In

particular, we found no examples of truly dynamic code, e.g., eval’ing code supplied

on the command line, suggesting that profiling can be used effectively in practice.

We now discuss each category in detail.

Single The least dynamic use of a construct is to always invoke it with the same

argument. Three uses of eval and seven uses of send can only be passed a single

string. For instance, the sudokusolver benchmark includes the code

PROJECT = ”SudokuSolver”
PROJECT VERSION =

eval (”#{PROJECT}::VERSION”)

which is equivalent to SudokuSolver::VERSION. As another example, the ostruct mod-

ule contains the code

meta.send(:define method, name) { @table[name] }

This code uses send to call the private method define method from outside the class.

The other uses of send in this category were similar.

Collection A slightly more expressive use of dynamic constructs is to apply them

to a small, fixed set of arguments. One common idiom (18 occurrences) we observed

was to apply a dynamic construct uniformly across a fixed collection of values. For

example, the code in Fig. 4.4 iterates over an Array of string literals, evaling a method

definition string from each literal. Thus, while multiple strings are passed to this

occurrence of eval, the same strings will be used for every execution of the program.

119



Additionally, any profile that executes this code will always see all possible strings

for the construct.

Bounded We also found some dynamic constructs that are called several times

via different paths (in contrast to being called within the same iteration over a

collection), but the set of values used is still bounded. For example, consider the

following code from the pathname module:

if RUBY VERSON < ”1.9”
TO PATH = :to str

else TO PATH = :to path end
path = path. send (TO PATH)

Here one of two strings is passed to send, depending on the library version.

Sometimes dynamic constructs are called in internal methods of classes or

modules, as in the following example from the net/https library:

def self . ssl context accessor (name)
HTTP.module eval(<<−End, FILE , LINE + 1)

def #{name}() ... end # defines get method
def #{name}=(val) ... end # defines set method
end

End
end
ssl context accessor :key
ssl context accessor : cert store

This code defines method ssl context accessor, which given a symbol generates get

and set methods based on that name. The body of the class then calls this method

to add several such get/set methods. This particular method is only used in the

class that defines it, and seems not to be intended for use elsewhere (nor is it used

anywhere else in our benchmarks).

120



Category Req Eval Snd G/S MM Total
Single · 3/ 3 7/ 7 · · 10/ 10

Collection · 14/337 1/ 2 3/ 48 · 18/387
Bounded · 7/ 69 4/20 3/ 52 · 14/141

File system 11/11 3/ 14 · · · 14/ 25
Open module 4/22 · 3/67 1/ 1 2/11 10/101

Total 15/33 27/423 15/96 7/101 2/11 66/664
n/m – n=occ, m=uniq strs

Figure 4.11: Categorization of profiled dynamic features

Features in this category are also essentially static, because their behavior is

determined by the class they are contained in, and profiling, even in isolation, should

be fully effective. Combining this with the previous two categories gives a total of 42

features used with 538 unique strings, which means around 2/3 of the total dynamic

feature usage across all runs is essentially static.

File System The next category covers those dynamic features whose use depends

on the local file system. This includes most occurrences of require, e.g., the code

at the top of Figure 4.1, which loads a file who name is derived from FILE , the

current file name. Another example is the following convoluted code from rubyforge:

config = File .read( FILE ). split (/ END /).last .gsub(
/#\{(.∗)\}/) { eval $1 }

This call reads the current file, removes any text that appears before END (which

signals the Ruby interpreter to stop reading), and then substitutes each string that

matches the given pattern with the result of calling eval on that string. The intent

of this code is to read configuration data that has been embedded at the end of the

source file. Despite its complexity, for any given installation of the library module,

this code always evaluates the same set of strings.

121



The other cases of this category are similar to these two, and in all cases, the

behavior of the dynamic constructs depends on the files installed in the user’s Ruby

environment.

Open module The last category covers cases in which dynamic features are called

within a library module, but the library module itself does not determine the uses.

For example, the testunit module uses send to invoke test methods that the module

users specify. Similarly, the rake module loads client-specified Ruby files containing

test cases. As another example, the ostruct module is used to create record-like

objects, as shown in Figure 4.5.

These cases represent an interesting trade-off in profiling. If we profile the

library modules in isolation, then we will not see all client usage of these 10 con-

structs (hence they are “open”). However, if we assume the user’s Ruby environment

is fixed, i.e., there are no new .rb files added at run time, then we can fully pro-

file this code with any client files, and therefore we can perform full static typing

checking on the code.

4.6 Type Inference

Finally, we used DRuby to perform type inference on each of the benchmarks, i.e.

DRuby gathered the profiling data reported in Figure 4.10, transformed the code as

outlined in Sections 4.3 and 4.4, and then applied DRuby’s type inference algorithm

on the resulting program.

When we first ran DRuby on our benchmarks, it produced hundreds of mes-

122



Benchmark Total LoC Time (s)
ai4r-1.0 21,589 343
bacon-1.0.0 19,804 335
hashslice-1.0.4 20,694 307
hyde-0.0.4 21,012 345
isi-1.1.4 22,298 373
itcf-1.0.0 23,857 311
memoize-1.2.3 4,171 9
pit-0.0.6 24,345 340
sendq-0.0.1 20,913 320
StreetAddress-1.0.1 24,554 309
sudokusolver-1.4 21,027 388
text-highlight-1.0.2 2,039 2
use-1.2.1 20,796 323

Figure 4.12: Type inference results

sages indicating potential type errors. As we began analyzing these results, we noted

that most of the messages were false positives, meaning the code would actually ex-

ecute type safely at run time. In fact, we found that much of the offending code is

almost statically typable with DRuby’s type system. To measure how “close” the

code is to being statically typable, we manually applied a number of refactorings and

added type annotations so that the programs pass DRuby’s type system, modulo

several actual type errors we found.

The result gives us insight into what kind of Ruby code programmers “want”

to write but is not easily amenable to standard static typing. In the remainder

of this section, we discuss the true type errors we found (Section 4.6.1), and what

refactorings were needed for static typing (Section 4.6.2). Overall, we found that

most programs could be made statically typable, though in a few cases code seems

truly dynamically typed.

123



Module LoC Refactorings Annots Errors
archive-minitar 538 3 · 1
date 1,938 58 8 ·
digest 82 1 · ·
fileutils 950 1 7 ·
hoe 502 3 2 ·
net 2,217 22 3 ·
openssl 637 3 3 1
optparse 964 15 21 ·
ostruct 80 1 · ·
pathname 511 21 1 2
pit-0.0.6 166 2 · ·
rake 1,995 17 7 ·
rational 299 3 25 ·
rbconfig 177 1 · ·
rubyforge 500 7 ·
rubygems 4,146 44 47 4
sendq-0.0.1 88 1 · ·
shipit 341 4 · ·
tempfile 134 1 3 ·
testunit 1,293 3 20 ·
term-ansicolor 78 1 ·
text-highlight-1.0.2 262 1 1 ·
timeout 59 1 1 ·
uri 1,867 15 20 ·
webrick 435 4 1 ·
Other 4,635 · · ·
Total 24,895 226 177 8

Figure 4.13: Changes needed for static typing

124



4.6.1 Performance and Type Errors

Figure 4.12 shows the time it took DRuby to analyze our modified benchmarks.

For each benchmark, we list the total lines of code analyzed (the benchmark, its

test suite, and any libraries it uses), along with the analysis time. Times were the

average of three runs on an AMD Athlon 4600 processor with 4GB of memory.

These results show that DRuby’s analysis takes only a few minutes, and we expect

the time could be improved further with more engineering effort.

Figure 4.13 lists, for each benchmark or library module used by our bench-

marks, its size, the number of refactorings and annotations we applied (discussed in

detail in the next section), and the number of type errors we discovered. The last

row, Other, gives the cumulative size of the benchmarks and library modules with

no changes and no type errors.

DRuby identified eight type errors, each of which could cause a program crash.

The two errors in the pathname module were due to code that was intended for the

development branch of Ruby, but was included in the current stable version. In

particular, pathname contains the code

def world readable ?() FileTest . world readable ?(@path) end

However, the FileTest.world readable? method is in the development version of Ruby

but not in the stable branch that was used by our benchmarks. The second error in

pathname is a similar case with the world writable? method.

The type error in archive-minitar occurs in code that attempts to raise an

125



exception but refers to a constant incorrectly. Thus, instead of throwing the intended

error, the program instead raises a NameError exception.

The four type errors in rubygems were something of a surprise—this code is

very widely used, with more than 1.6 million downloads on rubyforge.org, and so we

thought any errors would have already been detected. Two type errors were simple

typos in which the code incorrectly used the Policy class rather than the Policies

constant. The third error occurred when code attempted to call the non-existent

File.dir? method. Interestingly, this call was exercised by the rubygems test suite,

but the test suite defines the missing method before the call. We are not quite sure

why the test suite does this, but we contacted the developers and confirmed this is

indeed an error in rubygems. The last type error occurred in the =∼ method, which

compares the @name field of two object instances. This field stores either a String

or a Regexp, and so the body of the method must perform type tests to ensure the

types are compatible. However, one of the four possible type pairings is not handled

correctly, which could result in a run time type error.

Finally, the openssl module adds code to the Integer class that calls

OpenSSL :: BN :: new(self). In this call, self has type Integer, but the constructor

for the OpenSSL :: BN class takes a string argument. Therefore, calling this code

always triggers a run-time type error.

126



4.6.2 Changes for Static Typing

To enable our benchmarks and their libraries to type check (modulo the above

errors), we applied 226 refactorings and added 177 type annotations. We can divide

these into the following categories. For the moment, we refrain from evaluating

whether these changes are reasonable to expect from the programmer, or whether

they suggest possible improvements to DRuby; we discuss this issue in detail in

Chapter 5.

Dynamic Type Tests (177 Annotations) Ruby programs often use a single

expression to hold values with a range of types. Accordingly, DRuby supports

union types (e.g., A or B) and intersection types (e.g., (Fixnum → Fixnum) and

(Float → Float)). However, DRuby does not currently model run-time type tests

specially. For example, if e has type A or B, then DRuby allows a program to call

methods present in both A and B, but it does not support dynamically checking if e

has (just) type A and then invoking a method that is in A but not in B.

To work around this limitation, we developed an annotation for conditional

branches that allows programmers to indicate the result of a type test. For example,

consider the following code:

1 case x
2 when Fixnum: ###% x : Fixnum
3 x + 3
4 when String: ###% x : String
5 x.concat ‘‘ world’ ’
6 end

Here, the case expression on line 1 tests the class of x against two possibilities. The

annotations on lines 2 and 4 tell DRuby to treat x as having type Fixnum and String,

127



respectively, on each branch. These annotations were extremely common—we added

them to 135 branches in total. We also added 9 method annotations for intersection

types and 33 method annotations for higher order polymorphic types. Polymorphic

type signatures can be used by DRuby given annotations, but cannot currently be

inferred. DRuby adds instrumentation to check all the above annotations dynami-

cally at run time, to ensure they are correct.

Class Imprecision (81 Refactorings) In Ruby, classes are themselves objects

that are instances of the Class class. Furthermore, “class methods” are actually

methods bound inside of these instances. In many cases, we found programmers

use Class instances returned from methods to invoke class methods. For example,

consider the following code:

1 class A
2 def A.foo() ... end
3 def bar()
4 self . class . foo() # calls A.foo()
5 end
6 end

Here the call on line 4 goes to the class method defined on line 2. However, the class

method invoked on line 4 has type () → Class in DRuby, and since Class has no

foo() method, DRuby rejects the call on line 4. To let examples like this type check,

we changed self.class to use a different method call that dispatches to the current

class. For example,

def bar()
myclass (). foo()

end
def myclass()

A
end

128



Similarly, an instance can look up a constant dynamically in the current class using

the syntax self . class :: X, requiring an analogous transformation.

Block Argument Counts (24 Refactorings) In Ruby, higher-order methods

can accept code blocks as arguments. However, the semantics of blocks is slightly

different than regular methods. Recall from Chapter 3, that Ruby does not require

the formal parameter list of a block to exactly match the actual arguments: formal

arguments not supplied by the caller are set to nil, and extra actual arguments are

ignored. DRuby, on the other hand, requires strict matching of the number of block

arguments, since otherwise we could never discover mismatched argument counts for

blocks. Thus we modified our benchmarks where necessary to make arguments lists

match. We believe this is the right choice, because satisfying DRuby’s requirement

is a very minor change.

Non-Top Level Requires (21 Refactorings) DRuby uses profiling to decide

which files are required during a run, and therefore which files should be included

during type checking. However, some of our benchmarks had conditional calls to

require that were never triggered in our test runs, but that we need for static typing.

For instance, the URI module contains the following code:

1 if target . class == URI::HTTPS
2 require ‘net/https ’
3 http.verify mode = OpenSSL::SSL::VERIFY PEER

Here line 2 loads net/https if the conditional on line 1 is true. The method called on

line 3 is added by a load-time eval inside of net/https. Thus, to successfully analyze

this code, DRuby needs to not only analyze the source code of net/https, but it also

129



must have its profile to know this method exists. However, the branch on line 1 was

never taken in our benchmarks, and so this require was never executed and the eval

was not included in the profile.

We refactored cases like this by moving the require statement outside of the

method, so that it was always executed when the file is loaded.

Multiple Configurations (10 Refactorings) We encountered some code that

behaves differently under different operating environments. For example,

if defined?(Win32)
.... # win32 code

end

first checks if the constant Win32 is defined before using windows-specific methods

and constants in the body of the if. As another example, consider this code from

rubygems :

1 if RUBY VERSION < ’1.9’ then
2 File .read file name
3 else
4 File .read file name , :encoding => ’UTF−8’

In versions prior to Ruby 1.9 (the current development version of Ruby), the read

method only took a single parameter (line 2), whereas later versions accept a second

parameter (line 4). When DRuby sees this code, it assumes both paths are possible

and reports that read is called with the wrong number of arguments. To handle

these type-conflicting cases, we commented out sections of code that were disabled

by the platform configuration.

Heterogeneous Containers (12 Refactorings) DRuby supports homogeneous

containers with types such as Array<T> and Hash<K,V>. Since arrays are sometimes

130



used heterogeneously, DRuby also includes a special type Tuple<T1, . . ., Tn>, where

the Ti are the tuple element types from left to right. Such a type is automatically

coerced to Array<T1 or . . . or Tn> when one of its methods is invoked.

However, sometimes this automatic coercion causes type errors. For instance,

the optparse module contains the following code:

1 def append(∗args)
2 update(∗args)
3 @list .push(args [0])
4 end

Here, calling the [] method on line 3 forces args to have a homogeneous array type,

losing precision and causing a type error. We refactored this code to list the ar-

guments to append explicitly, allowing DRuby to type check this method. We also

encountered several other similar cases, as well as examples where instances of Hash

were used heterogeneously.

Flow-insensitive Locals (11 Refactorings) DRuby treats local variables flow-

sensitively, since their type may be updated throughout the body of a method.

To be sound, we conservatively treat any local variables that appear inside of a

block flow-insensitively. However, this causes DRuby to report an error if a flow-

insensitive local variable is assigned conflicting types at different program points.

We eliminated these errors by introducing a fresh local variable at each conflicting

assignment and renaming subsequent uses.

Other (65 Refactorings) We also needed a few other miscellaneous refactorings.

In our benchmarks, there were 32 calls handled by method missing that were never

131



seen in our benchmark runs. Hence DRuby reported these calls as going to undefined

methods. We fixed this by manually copying the method missing bodies for each

method name they were called with, simulating our translation rules. We could also

have fixed this with additional test cases to expand our profiles, so that DRuby

would add these methods automatically during its transformation.

In some cases, DRuby infers union types for an object that actually has just

one type. For example, rubygems includes a Package.open method that returns an

instance of either TarInput or TarOutput, depending on whether a string argument is

“r” or “w.” DRuby treats the result as having either of these types, but as they have

different methods, this causes a number of type errors. We fixed this problem by

directly calling TarInput.open or TarOutput.open instead. A similar situation where

a string was used to select a class occurred in the uri module.

We also refactored a few other oddball cases, such as a class that created its

own include method (which DRuby would confuse with Module.include) and some

complex array and method manipulation that could be simplified into typable code.

Untypable Code (12 Refactorings) Finally, some of the code we encountered

could not reasonably be statically typed, even with refactorings and checked anno-

tations. One example is the optparse class, which provides an API for command

line parsing. Internally, optparse manipulates many different argument types, and

because of the way the code is structured, DRuby heavily conflates types inside

the module. We were able to perform limited refactoring inside of optparse to gain

some static checking, but ultimately could only eliminate all static type errors by

132



manually wrapping the code using the wrap() method from our safe eval library

(Section 4.4.2).

The other cases of untypable code were caused by uses of low-level methods

that manipulate classes and modules directly in ways that DRuby does not support.

For example, we found uses of remove method, undef method, and anonymous class

creation. We also found uses of two modules that perform higher-level class manip-

ulation: Singleton, which ensures only one instance of a class exists, and Delegate,

which transparently forwards method calls to a delegate class. DRuby does not sup-

port code that uses these low-level features and will not detect any run-time errors

from their misuse.

Discussion In chapter 3, we found that small benchmarks are statically typable.

We believe that our results with DRuby suggest that even large Ruby programs are

mostly statically typable—on balance, most of our refactorings and type annotations

indicate current limitations of DRuby, and a few more suggest places where Ruby

programmers could easily change their code to be typable (e.g., making argument

counts for blocks consistent). Given the extreme flexibility of Ruby, we think this

result is very encouraging, and it suggests that static typing could very well succeed

in practice. Furthermore, these benchmarks were not written with static typing

in mind and we believe that DRuby could be most useful to programmers while

they are developing their code, so that potential errors can be caught early in the

development life cycle.

133



4.7 Threats to Validity

There are several potential threats to the validity of our results. Figures 4.10(a) and

(b) only include dynamic constructs that were observed by our benchmark runs. As

we mentioned earlier, there are also other dynamic constructs that are present in

the code (particularly the library modules) but were not called via our test suites.

However, additional profiling to try to exhibit these features would only bolster our

claim that dynamic features are important to model. A more important consequence

is that our categorization in Figure 4.11 may not generalize. It is possible that if we

examined more constructs, we would find other categories or perhaps some features

used in very dynamic ways. However, this would not affect our other results, and

we believe we looked at enough occurrences (66 total) to gather useful information.

In Ruby, it is possible for code to “monkey-patch” arbitrary classes, chang-

ing their behavior. Monkey patching could invalidate our categorization from Sec-

tion 4.5.2, e.g., by exposing a dynamic feature whose uses were previously bounded

within a class. However, this would only affect our categorization and not DRuby,

which can still easily profile and analyze the full, monkey-patched execution.

Similarly, Ruby’s low-level object API could allow a programmer to subvert

our analysis, as discussed at the end of Section 4.6.2. Because we cannot verify

these unsafe features, they could potentially disable our run-time instrumentation,

causing a Ruby script to fail. However, we hope that programmers who use unsafe

features will treat them with appropriate caution.

134



4.8 Related Work

The key contribution of DRuby is our sound handling of highly dynamic language

constructs. The previous chapter avoided these features by sticking to small ex-

amples, using programmer annotations for library APIs, and eliminating dynamic

constructs with manual transformation. However, as we saw in Section 4.5, highly

dynamic features are pervasive throughout Ruby, and so this approach is ultimately

untenable. Kristensen [42] has also developed a type inference system for Ruby

based on the cartesian product algorithm. This system does not handle any of

Ruby’s dynamic features, making it unsound in the presence of these constructs.

In addition to DRuby, researchers have proposed a number of other type

systems for dynamic languages including Scheme [18, 73], Smalltalk [31, 66, 83],

Javascript [69, 33, 9], and Python [58, 10, 16], though these Python type systems

are aimed at performance optimization rather than at the user level. To our knowl-

edge, none of these systems handles send, eval, or similar dynamic features.

One exception is RPython [8], a system that inspired our work on DRuby.

RPython translates Python programs to type safe back-ends such as the JVM. In

RPython, programs may include an initial bootstrapping phase that uses arbitrary

language features, including highly dynamic ones. RPython executes the boot-

strapping phase using the standard Python interpreter, and then produces a type

safe output program based on the interpreter state. The key differences between

RPython and DRuby are that DRuby supports dynamic feature use at arbitrary

execution points; that we include a formalization and proof of correctness; that

135



we provide some information about profile coverage with test runs; and, perhaps

foremost, that DRuby operates on Ruby rather than Python.

Another approach to typing languages with dynamic features is to use the type

Dynamic [2]. Extensions of this idea include quasi-static typing [67], gradual type

systems [62, 61, 34], and hybrid types [32]. However, we believe these approaches

cannot handle cases where dynamic code might have side effects that interact with

(what we would like to be) statically typed code. For example, recall the code

from Figure 4.4, which uses eval to define methods. Since these definitions are

available everywhere, they can potentially influence any part of the program, and

it is unclear how to allow some static and some dynamic typing in this context.

In contrast, DRuby explicitly supports constructs that would look dynamic to a

standard type system, but act essentially statically, because they have only a few

dynamic behaviors that can be seen with profiling; for code that is truly dynamic,

DRuby reverts to full dynamic checking.

Several researchers have proposed using purely static approaches to eliminating

dynamic language constructs. Livshits et al. [44] use a static points-to analysis to

resolve reflective method calls in Java by tracking string values. Christensen et

al. [19] propose a general string analysis they use to resolve reflection and check the

syntax of SQL queries, among other applications. Gould et al. [30] also propose

a static string analysis to check database queries, and several proposed systems

use partial evaluation to resolve reflection and other dynamic constructs [14, 68].

The main disadvantage of all of these approaches is that they rely purely on static

analysis. Indeed, Sawin and Rountev [59] observe that pure static analysis of strings

136



is unable to resolve many dynamic class loading sites in Java. They propose solving

this problem using a semi-static analysis, where partial information is gathered

dynamically and then static analysis computes the rest. In DRuby, we opted to use

a pure dynamic analysis to track highly dynamic features, to keep DRuby as simple

and predictable as possible.

Chugh et al. [20] present a hybrid approach to information flow in Javascript

that computes as much of the flow graph as possible statically, and performs only

residual checks at run time when new code becomes available. In Ruby, we found

that the effects of dynamic features must be available during static analysis, to

ensure that all defined methods are known to the type checker. Our runtime instru-

mentation for blame tracking is similar to a proposed system for tracking NULL

values in C [12]. One difference is that we must check for and allow type-correct

methods at runtime, whereas NULL supports no operations.

Finally, there is an extensive body of work on performing static analysis for

optimization of Java. A major challenge is handling both dynamic class loading and

reflection. Jax [71] uses programmer specifications to ensure safe modeling of reflec-

tive calls. Sreedhar et al. [64] describe a technique for ahead-of-time optimization of

parts of a Java program that are guaranteed unaffected by dynamic class loading.

Pechtchanski and Sarkar [51] present a Java optimization system that reanalyzes

code on seeing any dynamic events that would invalidate prior analysis. Hirzel et

al. [35] develop an online pointer analysis that tracks reflective method calls and can

analyze classes as they are dynamically loaded. All of these systems are concerned

with optimizing a program, whereas in contrast, DRuby extracts run-time profiling

137



information to guide compile-time (user-level) type inference.

138



Chapter 5

Future Work

DRuby has already proven useful by detecting several previously unknown type

errors in our benchmarks. However, DRuby’s type system and its profiling library

could be benefit from further improvements. We now sketch a few ways in which

DRuby could be improved in the future.

5.1 Type System Improvements

Annotated Expressions DRuby uses inference to discover the types of a user’s

code automatically. This frees the programmer from having to write down the types

needed to type his program. However, when the inference algorithm discovers a type

error, the resulting error message can be opaque. One reason for this is that a type

error is produced when a collection of typing constraints is unsatisfiable, and DRuby

has no idea which constraint was at fault. For example, consider the code

1 class A
2 def bar() ... end
3 end
4 class B
5 def baz() ... end
6 end
7 def c(x) x.baz() end
8 c(A.new)

139



When run on this program, DRuby will emit an error message saying that class A

does not have a baz method. One possibility is that the programmer mistakenly

passed an instance of class A to method c method, where he should have passed an

instance of B. Or, another possibility is that the call x.baz on line 7 is a typo, and it

should actually be x.bar. Other implicitly typed languages such as OCaml solve this

problem by allowing individual expressions to be annotated with a type expression,

thereby reducing the set of constraints that influence an error. Currently, DRuby

only allows annotations on classes and method signatures. Allowing annotations on

arbitrary expressions would help with user comprehension of error messages.

Modular Analysis DRuby currently must analyze an entire Ruby program at

once, taking up to a few minutes to complete its analysis on a single benchmark.

While we believe this time could be reduced with some engineering effort, DRuby

would ultimately benefit most from analyzing parts of a program in isolation (e.g.,

analyzing the standard library separately from a client program).

One solution would be to use interface files that can be analyzed in isolation.

Interface files would be similar to Ruby files, except instead of containing source

code, they would only contain type signatures for classes and methods. This would

allow DRuby to analyze the bodies of a methods only once (when the interface

file is first verified). For example, consider the following Ruby implementation and

interface files:

Implementation (A.rb):
class A

def foo(data)
max = data.map {|s| s. to i }.max

140



sqr = max ∗ max
return(sqr − 2 / 13)

end
end

Interface (A.rbi ):
class A

foo : Array<String> −> Fixnum
end

Analyzing the body of the foo method requires DRuby to generate constraints for 6

different method calls (map, to i,max, ∗,−, and /). However, once the code in A.rb

is found to match the interface file A.rbi, the constraints on these calls do not need

to be regenerated every time a program requires “A.rb”. Instead, DRuby would

load “A.rbi” in place of “A.rb” and would only need to verify that code uses the

foo method at the right type in other files. By reducing the number of constraints

generated by DRuby, its performance would certainly improve.

Statically Modeling Dynamic Type Tests Section 4.6.2 demonstrated that

dynamic type tests are clearly important to Ruby programmers but are not modeled

by DRuby. Modeling type tests statically poses two challenges. First, we need to be

able to detect when a type test occurs in the source code. Unfortunately, there are

a myriad of ways to perform such a test in Ruby. For example, each of the following

lines checks to see if x is an instance of Fixnum (except for the last 2 lines, which

merely check that it responds to the + method):

1 x. class == Fixnum
2 Fixnum === x
3 case x when Fixnum ...
4 x. is a ? Fixnum
5 x. responds to? :+
6 x.methods.include? ‘‘+’ ’

141



Second, the type system must be able to reason about the paths within a

method body to generate the proper typing constraints. For example, consider the

code:

1 ##% foo: Fixnum −> Fixnum
2 ##% foo: Boolean −> Boolean
3 def foo(x)
4 y = x.clone
5 case y
6 when Boolean
7 return true
8 else
9 return x + 1

10 end
11 end

Here, we define a method foo with an intersection type. One way to statically type

this method would be to first assume that the parameter x has type Fixnum and

then verify the return type of the method also has type Fixnum (and then repeat

this for Boolean). However, this method would still be difficult to type check for two

reasons. First, even if DRuby were to assume x has type Fixnum, it would need to

ignore the return statement on line 7 that returns the literal true. Second, if DRuby

were to assume x has type Boolean, it must know to ignore the else branch on line 9

since x + 1 would otherwise result in a type error.

Occurrence Typing [73], previously proposed for Scheme, is one possible solu-

tion we plan to explore. Although given the multitude of ways to test the dynamic

type of a value in Ruby, some care must be taken to strike the right balance between

supporting common uses and producing an easy-to-use system.

Detecting Nil Errors Like Java, DRuby treats nil as a subtype of any class.

Therefore, errors related to nil are not detected by the type system. However, unlike

142



Java, nil is an object in Ruby (and an instance of the NilClass class) and does respond

to some methods. Thus, if DRuby were able to model type tests like those mentioned

above, it would be able to detect when a programmer was performing a type test

on nil. If this analysis still proved to be too coarse, then another alternative would

be to extend DRuby’s runtime contracts to check for nil values dynamically so that

DRuby would not falsely reject too many programs based on subtle usages of nil.

5.2 Profiling Improvements

Some of the refactorings we performed in Section 4.6.2 may be difficult to address

with changes to DRuby’s type inference algorithm, but could be handled with im-

provements to our profiling technique. For example, currently DRuby performs

profiling, transformation, and type inference in one run (Section 4.4). If we could

combine profiles from multiple runs, we could run additional tests to improve code

coverage. For example, instead of hoisting require to the top-level of a file, a better

solution may be to use additional test suites (such as those provided by a library

maintainer), or for libraries to ship a profile database that could be used by library

clients.

Along the same lines, commenting out code to handling multiple configurations

will not work in practice. A better solution might be to annotate particular constants

as configuration variables whose values are then profiled by DRuby. DRuby could

then use these profiles to automatically prune irrelevant code sections, similarly to

the C preprocessor.

143



Lastly, our refactorings for code that uses strings to select different classes

(e.g., “r” for TarInput, “w” for TarOutput) were similar to the automated transfor-

mations that DRuby performs. Therefore, we might be able to support this idiom

by extending DRuby to profile user-defined constructs similarly to Ruby’s reflective

constructs such as send.

144



Chapter 6

Conclusions

In this dissertation, we have presented DRuby, a tool that blends static and dynamic

typing for Ruby. DRuby allows programmers to select the amount of static checking

desired, allowing for dynamic scripts to be incrementally hardened into robust code

bases. In order to maintain the “feel” of a dynamic language in the presence of

static types, DRuby uses three techniques:

First, DRuby uses a type inference algorithm to automatically infer static types

for existing Ruby code, minimizing the burden on the programmer to write down

types in their code. Common Ruby idioms are modeled precisely, e.g., using flow

sensitive types for local variables and heterogeneous types for tuples. We have proven

DRuby’s static type system is sound, ensuring that a well-typed Ruby program will

never go wrong at runtime.

Second, DRuby allows programmers to add annotations to their code when

necessary or desired. DRuby can then check these annotations either statically

using its type checking algorithm or dynamically by using runtime contracts with

blame tracking. The latter allows programmers to write dynamic code without

affecting the safety guarantees of statically checked code. DRuby’s type annotation

145



syntax is similar to existing informal documentation format used by Ruby and so

should be familiar to existing Ruby programmers.

Third, programmers may use dynamic features such as eval to write expressive

code. Using the program’s test suite, DRuby can profile these constructs discovering

their effects. Again, the programmer is given flexibility here: the more dynamic

features covered in their test suite, the more static checking is achieved. These

profiles then guide a transformation phase that replaces dynamic constructs with

statically analyzable code that approximate its behavior. We have proven that our

transformation is faithful and typing checking the resulting code is sound for a small

Ruby-like calculus with dynamic features. We believe that using profiles to enhance

static analysis is a promising technique for analyzing programs written in highly

dynamic scripting languages in general.

We have also presented the implementation details of DRuby. DRuby is built

on top of RIL, which provides a representation of Ruby source code that makes

it easy to develop source code analysis and transformation tools. We believe RIL

minimizes redundant work and reduces the chances of mishandling certain Ruby

features, making RIL an effective and useful framework for working with Ruby

source code. We hope that RIL’s features will enable others to more easily build

analysis tools for Ruby, and that our design will inspire the creation of similar

frameworks for other dynamic languages.

Finally, we evaluated the effectiveness of DRuby on a range of benchmarks.

We found that our static type system worked well and discovered several latent type

errors as well as a number of questionable coding practices. Additionally,the use of

146



dynamic features is pervasive throughout our benchmarks, but that most uses of

these features are essentially static, and hence can be profiled. In conclusion, this

dissertation has shown that DRuby effectively integrates static typing into Ruby

without losing the feel of a dynamic language.

147



Appendix A

RIL Example Source Code

open Cfg
open Cfg printer
open Visitor
open Utils

let method formal name = function
| ‘Formal meth id var
| ‘Formal amp var
| ‘ Formal star var
| ‘ Formal default (var , ) −> var

module NilAnalysis = struct

type t = fact StrMap.t
and fact = MaybeNil | NonNil

let top = StrMap.empty
let eq t1 t2 = StrMap.compare Pervasives.compare t1 t2 = 0
let fact to s = function MaybeNil −> ”MaybeNil” | NonNil −> ”NonNil”
let to string t = strmap to string fact to s t

let meet fact t1 t2 = match t1,t2 with
| MaybeNil,
| , MaybeNil −> MaybeNil
| NonNil, NonNil −> NonNil

let update s fact map = StrMap.add s fact map

let meet fact s v map =
let fact =

try meet fact (StrMap.find s map) v
with Not found −> v

in StrMap.add s fact map

148



let meet lst =
List . fold left (fun acc map −> StrMap.fold meet fact map acc)

StrMap.empty lst

let rec update lhs fact map lhs = match lhs with
| ‘ ID Var(‘Var Local , var) −> update var fact map
| # identifier −> map
| ‘Tuple lst −> List. fold left (update lhs MaybeNil) map lst
| ‘ Star (#lhs as l ) −> update lhs NonNil map l

let transfer map stmt = match stmt.snode with
| Assign( lhs , # literal ) −>

update lhs NonNil map lhs
| Assign( lhs , ‘ID Var(‘Var Local , rvar )) −>

update lhs (StrMap.find rvar map) map lhs

| MethodCall(lhs o, {mc target=Some (‘ID Var(‘Var Local,targ))}) −>
let map = match lhs o with
| None −> map
| Some lhs −> update lhs MaybeNil map lhs

in
update targ NonNil map

| Class(Some lhs, , ) | Module(Some lhs, , )
| MethodCall(Some lhs, ) | Yield(Some lhs, )
| Assign( lhs , ) −> update lhs MaybeNil map lhs

| −> map

let init formals args fact =
List . fold left

(fun acc param −>
update (method formal name param) fact acc

) top args

end

module NilDataFlow = Dataflow.Forwards(NilAnalysis)

open Cfg refactor
open Cfg printer .CodePrinter

let transform targ node =
freparse ˜env:node. lexical locals ”unless %a.nil? then %a end”

format expr targ format stmt node

149



class safeNil inf = object( self )
inherit default visitor as super
val facts = inf

method visit stmt node = match node.snode with
| Method(mname,args,body) −>

let in ’, out’ = NilDataFlow.fixpoint body NilAnalysis .top in
let me = {<facts = in’>} in
let body’ = visit stmt (me:> cfg visitor ) body in

ChangeTo (update stmt node (Method(mname,args,body’)))

| MethodCall( , {mc target=(Some ‘ID Self| None)}) −> SkipChildren
| MethodCall( , {mc target=Some (‘ID Var(‘Var Local,var) as targ)}) −>

begin try let map = Hashtbl.find facts node in
begin try match StrMap.find var map with
| NilAnalysis .MaybeNil −> ChangeTo (transform targ node)
| NilAnalysis .NonNil −> SkipChildren

with Not found −> ChangeTo (transform targ node)
end

with Not found −> assert false
end

| MethodCall( , {mc target=Some (#expr as targ)}) −>
ChangeTo (transform targ node)

| −> super#visit stmt node
end

open Dynamic

module NilProfile : DynamicAnalysis = struct
module Domain = Yaml.YString
module CoDomain = Yaml.YBool

let name = ”dynnil”

let really nonnil lookup mname pos =
let uses = lookup mname pos in

if uses = [] then false
else not ( List .mem false uses)

class dyn visitor lookup ifacts =
object( self )

inherit ( safeNil ifacts ) as super

method visit stmt node = match node.snode with
| Method(defname,args,body) −>

let mname = format to string format def name defname in

150



let init facts =
if really nonnil lookup mname body.pos
then NilAnalysis . init formals args NilAnalysis .NonNil
else NilAnalysis .top

in
let in ’, = NilDataFlow.fixpoint body init facts in
let me = {<facts = in’>} in
let body’ = visit stmt (me:> cfg visitor ) body in

ChangeTo (update stmt node (Method(defname,args,body’)))

| −> super#visit stmt node
end

let transform cfg lookup stmt =
compute cfg stmt;
compute cfg locals stmt;
let i , = NilDataFlow.fixpoint stmt NilAnalysis .top in

visit stmt (new dyn visitor lookup i :> cfg visitor ) stmt

let instrument ast ast = ast

let get pos pos =
pos.Lexing.pos fname, pos.Lexing.pos lnum

let format param ppf p =
Format. pp print string ppf (method formal name p)

open Cfg.Abbr

let instrument mname args body pos =
let file , line = get pos pos in
let code = freparse ˜env:body. lexical locals

”DRuby::Profile :: Dynnil .watch(’%s’,%d,self ,’%a’,[%a])”
file line format def name mname

(format comma list format param) args
in
let body’ = seq [code;body] body.pos in

meth mname args body’ pos

let should instrument stmt = true

class instrument visitor = object( self )
inherit default visitor as super

method visit stmt stmt = match stmt.snode with
| Method(mname,args,body) −>

if should instrument stmt
then ChangeTo (instrument mname args body stmt.pos)

151



else SkipChildren
| −> super#visit stmt stmt

end

let instrument cfg stmt =
compute cfg stmt;
compute cfg locals stmt;
visit stmt (new instrument visitor ) stmt

let transform ast ym ast = ast
end

let dyn main fname =
let module Dyn = Make(Singleton(NilProfile)) in
let loader = File loader . create File loader .EmptyCfg [”../ lib ”] in

print stmt stdout (Dyn.run loader fname)

let main fname =
let loader = File loader . create File loader .EmptyCfg [] in
let s = File loader . load file loader fname in
let () = compute cfg s in
let () = compute cfg locals s in
let ifacts , = NilDataFlow.fixpoint s NilAnalysis .top in
let s ’ = visit stmt (new safeNil ifacts :> cfg visitor ) s in

print stmt stdout s ’

let =
if (Array. length Sys.argv) != 2
then begin

Printf . eprintf ”Usage: print cfg < ruby file> \n”;
exit 1

end;
let fname = Sys.argv.(1) in

dyn main fname;
(∗main fname;∗)
()

152



Appendix B

Proofs for MiniRuby

B.1 Static Semantics

The first step to proving soundness is to augment our typing rules to include the

runtime values used by our dynamic semantics:

e ::= . . . | v

v ::= l | [A;Fv;Mv] | [v, . . . , v]

Fv ::= ∅ | @x = v, Fv

Mv ::= ∅ | def m(x1, . . . , xn) : η = e,Mv

Ω ::= . . . | Ω, l : τ

r ::= error | v

Values v include locations l (which point to objects), object literals [A;Fv;Mv],

which include their class name A, as well as field and method sets. Although only

fields may be updated in our calculus, we use a single form for objects that is

updated during program evaluation. Thus each instance of an object includes its

own set of (immutable) method definitions. Values also include a literal form for

153



Ω; Γ; ∆ ` e : τ ; ∆′

(Locτ )
l ∈ dom(Ω) Ω(l) = [F ;M ]

Ω; Γ; ∆ ` l : [F ;M ]; ∆

(Class-Litτ )
Ω(A) = σ i ∈ 1..n
Γ ` σ <: [F ;M ] class

A : [F ;M ] class ; Ω; Γ; ∆ ` di
Ω; Γ; ∆ ` [A; d1, . . . , dn] : [F ;M ] class ; ∆

Figure B.1: Type Checking Rules for Values

tuples [v, . . . , v]. Our type checking judgments for these new forms are shown in

Figure B.1.

(Locτ ) looks up locations in the current store, which also must be objects.

Similarly, class literals are typed using (Class-Litτ ) by looking up the class name in

Ω. We then check the body of the class using the (Field Declτ ) and (Method Declτ ).

B.2 Dynamic Semantics

We now give our evaluation rules for MiniRuby. Our operational semantics will use

“big-step” rules for evaluation [41]. We use the additional stores S and V : S maps

either class names A or heap locations l to values, and V maps local variables x to

values. We define a configuration to be a tuple 〈S, V, e〉 meaning that expression e

is being evaluated in the context of stores S and V .

Our dynamic semantics for expressions are shown in Figures B.2 and B.3. We

omit the error states and implicitly assume that any time none of our rules apply

then the expression reduces to error.

154



(Var→)
x ∈ dom(V )

〈S, V, x〉 → 〈S, V, V (x)〉

(Assign Local→)
〈S, V, e〉 → 〈S ′, V ′, v〉
V ′′ = V ′[x 7→ v]

〈S, V, x = e〉 → 〈S ′, V ′′, v〉

(Class→)
A ∈ dom(S)

〈S, V,A〉 → 〈S, V, S(A)〉

(Self→)
self ∈ dom(V ) l = V (self)

〈S, V, self〉 → 〈S, V, l〉

(Tuple→)
〈Si, Vi, ei〉 → 〈Si+1, Vi+1, vi〉

i ∈ 1..n

〈S1, V1, [e1, . . . , en]〉 →
〈Si+1, Vi+1, [v1, . . . , vn]〉

(Assign Tuple→)
〈S, V, e〉 → 〈S ′, V ′, [v1, . . . , vn]〉
V ′′ = V ′[xi 7→ vi] i ∈ 1..n

〈S, V, x1, . . . , xn = e〉 →
〈S ′, V ′′, [v1, . . . , vn]〉

(Field→)
〈S, V, self〉 → 〈S, V, l〉

S(l) = [A; @x = v, Fv;Mv]

〈S, V,@x〉 → 〈S, V, v〉

(Assign Field→)
〈S, V, e〉 → 〈S ′, V ′, v〉
〈S ′, V ′, self〉 → 〈S ′, V ′, l〉
S ′(l) = [A; @x = v′, Fv;Mv]

S ′′ = S ′[l 7→ [A; @x = v, Fv;Mv]]

〈S, V,@x = e〉 → 〈S ′′, V ′, v〉

(New→)
〈S, V, e〉 → 〈S ′, V ′, v〉 v = [A;Fv;Mv]

S ′′ = S ′[l 7→ v] l 6∈ dom(S ′)

〈S, V, new e〉 → 〈S ′′, V ′, l〉

(Seq→)
〈S, V, e1〉 → 〈S ′, V ′, v1〉
〈S ′, V ′, e2〉 → 〈S ′′, V ′′, v2〉
〈S, V, e1; e2〉 → 〈S ′′, V ′′, v2〉

Figure B.2: Big-step Operational Semantics for Expressions (1/2)

155



(TypeCase Match→)
〈S1, V1, e1〉 → 〈S2, V2, l〉

S2(l) = [A;Fv;Mv] V3 = V2[x 7→ l]
〈S2, V3, e2〉 → 〈S3, V4, v2〉

V ′ = V4|dom(V2)

〈S1, V1, typecase e1 when (x : A) e2 else e3〉
→ 〈S3, V

′, v2〉

(TypeCase Else→)
〈S1, V1, e1〉 → 〈S2, V2, l〉

S2(l) 6= [A;Fv;Mv] 〈S2, V2, e3〉 → 〈S3, V3, v3〉
V ′ = V3|dom(V2)

〈S1, V1, typecase e1 when (x : A) e2 else e3〉
→ 〈S3, V

′, v3〉

(Call→)
〈Si, Vi, ei〉 → 〈Si+1, Vi+1, vi〉 i ∈ 1..n

〈Si+1, Vi+1, e0〉 → 〈S ′, V ′, l〉
S ′(l) = [A;Fv; def m(x1, . . . , xn) : η = e,Mv]

Vm = [self 7→ l, x1 7→ v1, . . . , xn 7→ vn]
〈S ′, Vm, e〉 → 〈S ′′, V ′m, v〉

〈S1, V1, e0.m(e1, . . . , en)〉 → 〈S ′′, V ′, v〉

Figure B.3: Big-step Operational Semantics for Expressions(2/2)

156



(Var→) looks up the variable x in V and reduces to its value if present.

(Assign Local→) updates the variable in V and then reduces to the value of the

right hand side. (Class→) and (Self→) look up their respective identifiers in S

and V .

(Tuple→) reduces a tuple of expressions into a tuple of values evaluating left

to right. Similarly, (Assign Tuple→) stores each xi in V if the tuple is the correct

width.

(Field→) first reduces self to a location, and then looks up l in the heap store

S, extracting the value stored at @x. Analogously, (Assign Field→) updates the

store S to point to a new object where the value of @x has been updated.

(New→) allocates a new object by storing a class object at a fresh location l

in the heap store S.

(Seq→) is straight forward.

(TypeCase Match→) applies when e1 is an instance of class A. In this case,

x is added to V2 with the value that the guard e1 reduced to v1, and then evaluates

e2 with that store. We then restrict the final variable store to include only variables

defined before the typecase . (TypeCase Else→) applies when e1 is not an instance

of class A. In this case, we simply reduce e3 and make a similar restriction on V3.

Finally, (Call→) reduces method calls. First we evaluate each of the n argu-

ments from left to right. Then, we reduce the receiver to a location l and look up

its object literal in S ′. We then create a new local environment Vm and evaluate the

body of the method with the corresponding formal parameters set to their values.

The resulting local environment is discarded and we reduce to v.

157



(Class Def→)
d = (@xi = ei); (def mj(x1, . . . , xjn) : ηj = e′j) i ∈ 1..p, j ∈ 1..q

〈Si, ∅, ei〉 → 〈Si+1, Vi, vi〉
v = [A; @xi = vi; def mj(x1, . . . , xjn) : ηj = e′j]

S ′ = Sp+1[A 7→ v]

〈S1, V, class A : σ = d〉 → 〈S ′, V, v〉

(Program→)
S1 = ∅ i ∈ 1..n

〈Si, ∅, ci〉 → 〈Si+1, Vi, vi〉
〈Sn+1, ∅, e〉 → 〈S, V, v〉

〈∅, ∅, c1 · · · cn; e〉 → 〈S, V, v〉

Figure B.4: Big-step Operational Semantics for Definitions

Our rules for definitions and programs are shown in Figure B.4. Class def-

initions are handled by rule (Class Def→). A class definition evaluates each of

its fields accumulating a single heap store Si, but using a fresh local store for each

definition. Note that methods need no evaluation at this point. We then construct

a class literal v containing each field and method value. Finally, we add the class A

to the store S ′.

Lastly, we evaluate programs by evaluating each class definition then evaluat-

ing the “main” expression in its own local scope.

B.3 Soundness

We proceed to show soundness in the style of Wright and Felleisen [82].

Definition 6 (Compatibility) The environments Ω, Γ, and ∆ are said to be com-

patible with the stores S and V (written 〈Ω,Γ,∆〉 ∼ 〈S, V 〉) if:

• dom(Ω) = dom(S)

158



• dom(∆) = dom(V )

• ∀l ∈ dom(S), there exists τ such that Ω; Γ; ∆ ` l : Ω(l); ∆ and Ω; Γ; ∆ ` S(l) :

Ω(l) class ; ∆

• ∀A ∈ dom(S), there exists τ such that Ω; Γ; ∆ ` A : Ω(A); ∆ and Ω(A) =

τ class .

• ∀x ∈ dom(V ), Ω; Γ; ∆ ` V (x) : ∆(x); ∆.

Definition 7 (Well-Formedness) The stores S, V and environments Ω are said

to be well-formed if

• ∀v ∈ dom(S), S(v) = [A;Fv;Mv] for some A, Fv, and Mv

• V (self) = l for some l

• ∀A ∈ dom(Ω), if (def m(x1, . . . , xn) : η = e) ∈ A, then A : Ω(A); Ω; Γ; ∅ `

def m(x1, . . . , xn) : η = e

Definition 8 (Restriction) Let M be any map from A → B (such as ∆, S, or

V ).

Define M|Y = {a 7→ b | a ∈ dom(M) ∧ a ∈ Y ∧ b =M(a)} where a 7→ b is a

mapping from a to b.

Definition 9 (Extension) M′ is an extension of M, written M⇒M′ if M =

M′|dom(M)

Lemma 10 (Variable Weakening) If 〈Ω,Γ,∆〉 ∼ 〈S, V 〉, then for any set X,

and any environment ∆′, 〈Ω,Γ,∆|X ]∆′|X〉 ∼ 〈S, V |X〉

159



Proof: Assume 〈Ω,Γ,∆〉 ∼ 〈S, V 〉, and let X be any set and ∆′ be any envi-

ronment. Let V ′ = VX and let ∆′′ = ∆|X ] ∆′|X . Then we must show ∀x ∈ V ′,

Ω; Γ; ∆′′ ` V (x) : ∆′′(x); ∆′′.

Without loss of generality, let x ∈ V ′. By Definition 8, x ∈ V and therefore

Ω; Γ; ∆ ` V (x) : ∆(x); ∆ by assumption. By examining Definition 1, either ∆′′(x) =

∆(x) = ∆′(x), or ∆′′(x) = ∆(x) ∪ ∆′(x). In the first case, Ω; Γ; ∆′′ ` V ′(x) :

∆′′(x); ∆′′ holds trivially.

Assume ∆′′(x) = ∆(x) ∪ ∆′(x). Then Ω; Γ; ∆ ` V (x) : ∆(x) ∪ ∆′(x); ∆ by

(Subsumptionτ ) and (UnionR<:). That is, Ω; Γ; ∆ ` V (x) : ∆′′(x); ∆ Then by

(varτ ), Ω; Γ; ∆′′ ` V (x) : ∆′′(x); ∆′′ �

Lemma 11 (Inversion) If Ω is well-formed, then:

• If Ω; Γ; ∆ ` v : [F ;M ]; ∆ then v = l.

• If Ω; Γ; ∆ ` v : [F ;M ] class ; ∆ then v = [A;Fv;Mv] with Ω(A) = [F ;M ].

• If Ω; Γ; ∆ ` v : (τ1× · · · × τn); ∆ then v = [v1, . . . , vn] with Ω; Γ; ∆ ` vi : τi; ∆.

Proof: By inspecting the type rules, there is a one to one correspondence between

type rules and values which satisfies this equality. �

Lemma 12 If Ω; Γ; ∆ ` r : τ ; ∆ then r is not error.

Proof: No type rules are given for error, thus if a type rule applies, r 6= error. �

Lemma 13 (Extension Transitivity) If M ⇒ M′ and M′ ⇒ M′′ then M ⇒

M′′.

160



Lemma 14 (Extension Weakening) If Ω; Γ; ∆ ` e : τ ; ∆′ and Ω ⇒ Ω′ then

Ω′; Γ; ∆ ` e : τ ; ∆′.

Lemma 15 (Value Strengthening) If Ω; Γ; ∆ ` v : τ ; ∆, then for any ∆′, we

have Ω; Γ; ∆′ ` v : τ ; ∆′.

Proof: By inspecting the type rules, none of the rules for values make use of ∆.

�

Lemma 16 (Field Select) If Ω; Γ; ∆ ` [A; @x = v, Fv;Mv] : [@x : τ, F ;M ] class ; ∆

and A ∈ dom(Ω), then Ω; Γ; ∆ ` v : τ ; ∆.

Lemma 17 (Field Update) If Ω; Γ; ∆ ` [A; @x = v, Fv;Mv] : [@x : τ, F ;M ] class ; ∆

and Ω; Γ; ∆ ` v′ : τ ; ∆ then Ω; Γ; ∆ ` [A; @x = v′, Fv;Mv] : [@x = τ, F ;M ] class ; ∆.

Lemma 18 (Store Update) If 〈Ω,Γ,∆〉 ∼ 〈S, V 〉 and l 6∈ dom(Ω) and Ω′ =

Ω[l 7→ τ ] and Ω′; Γ; ∆ ` l : τ ; ∆ and Ω′; Γ; ∆ ` v : τ class ; ∆ then 〈Ω[l 7→ τ ],Γ,∆〉 ∼

〈S[l 7→ v], V 〉

Theorem 19 (Subject Reduction for Expressions) If all of the following hold:

• Ω; Γ; ∆ ` e : τ ; ∆′

• 〈Ω,Γ,∆〉 ∼ 〈S, V 〉

• S, V, and Ω are well-formed

• 〈S, V, e〉 → 〈S ′, V ′, r〉

then there exists Ω′ such that

161



(i) Ω⇒ Ω′

(ii) Ω′; Γ; ∆′ ` r : τ,∆′

(iii) 〈Ω′,Γ,∆′〉 ∼ 〈S ′, V ′〉

(iv) Ω′, S ′, and V ′ are well-formed.

Proof: We proceed by induction on the structure of e:

case v: Values, compatibility and well-formedness are re-established trivially.

case x: By assumption, Ω; Γ; ∆ ` x : τ ; ∆′. Therefore, by (Varτ )

x ∈ dom(∆)

Ω; Γ; ∆ ` x : ∆(id); ∆

and thus ∆′ = ∆. Therefore, since x ∈ dom(∆) and 〈Ω,Γ,∆〉 ∼ 〈S, V 〉, then

x ∈ dom(V ). Thus, (Var→) applies and r = V (x) giving Ω,∆ ` V (x) :

∆(x); ∆ by compatibility. Let Ω′ = Ω . Then the conclusions hold trivially as

the stores are unchanged in this case.

case A: By a parallel argument to x using (Classτ ) and S instead of (Varτ ) and

V .

case self: By assumption, Ω; Γ; ∆ ` self : τ ; ∆′. Therefore (Selfτ ) applies:

self ∈ dom(∆) ∆(self) = [F ;M ]

Ω; Γ; ∆ ` self : [F ;M ]; ∆

Since self ∈ dom(∆) and 〈Ω,Γ,∆〉 ∼ 〈S, V 〉, then self ∈ dom(V ) and Ω; Γ; ∆ `

V (self) : ∆(self); ∆ by compatibility. Since V is well-formed, V (self) = l and

162



the reduction (Self→) applies with r = l. Thus, Ω; Γ; ∆ ` l : ∆(self); ∆

showing (ii). Let Ω′ = Ω. As the stores are unchanged in this reduction,

extension, compatibility, and well-formedness are re-established trivially.

case @x: By inspecting the type rules, the only rule that can apply is (Fieldτ ):

Ω; Γ; ∆ ` self : τ ′; ∆ Γ ` τ ′ <: [@x : τ ]

Ω; Γ; ∆ ` @x : τ ; ∆

and thus ∆′ = ∆. In fact, by (Selfτ ), we know that τ ′ = [F ;M ] for some

F,M . Since τ ′ <: [@x : τ ], then @x : τ ∈ F by (Object<:). That is,

Ω; Γ; ∆ ` self : [@x : τ, F ′;M ]; ∆.

Suppose 〈S, V, self〉 → 〈S ′, V ′, r〉. As Ω; Γ; ∆ ` self : τ ′; ∆′ then by induc-

tion there exists Ω′ such that Ω ⇒ Ω′ (showing i), Ω′; Γ; ∆ ` r : τ ′; ∆ and

〈Ω′,Γ,∆〉 ∼ 〈S, V 〉 (showing iii), and Ω′ is well-formed (showing iv). Thus r is

not error and so it must be a value. Therefore (Self→) applies and r = l, and

Ω′; Γ; ∆ ` l : [@x : τ, F ′;M ]; ∆. Note also that this means that l ∈ dom(∆),

S = S ′ and V = V ′. This also means we can reduce with (Field→).

By compatibility, Ω′; Γ; ∆ ` S(l) : [@x : τ, F ′;M ] class ; ∆ and therefore S(l)

must be a class object with a @x field: S(l) = [A; @x = v, Fv;M ] for some v.

Then by Lemma 16, Ω′; Γ; ∆ ` v : τ ; ∆ showing (ii).

case [e1, . . . , en]: By inspecting the type rules, the only rule that can apply is

(Tupleτ ):

Ω; Γ; ∆i ` ei : τi; ∆i+1 i ∈ 1..n

Ω; Γ; ∆1 ` [e1, . . . , en] : (τ1 × · · · × τn); ∆n+1

163



with ∆1 = ∆. Let Ω1 = Ω.

Suppose 〈S1, V1, e1〉 → 〈S2, V2, r1〉. Since Ω1; Γ; ∆1 ` e1 : τ1; ∆2, then by induc-

tion there exists Ω2 such that Ω1 ⇒ Ω2, Ω2; Γ; ∆2 ` r1 : τ1; ∆2, 〈Ω2,Γ,∆2〉 ∼

〈S2, V2〉, and Ω2 is well-formed. Therefore r1 can not be error and must be a

value v1. We can apply this argument iteratively to show that for each i ∈ 1..n,

ri is a value vi and there exists Ωi+1 such that Ωi+1; Γ; ∆i+1 ` ri : τi; ∆i+1, and

〈Ωi+1,Γ,∆i+1〉 ∼ 〈Si+1, Vi+1〉 (showing (iii)), and Ωi+1 is well-formed (show-

ing (iv)). Thus we can reduce with (Tuple→). Note that by Lemma 13,

Ω⇒ Ωi+1, and we have shown (i).

By Lemma 14 and Lemma 15, Ωi+1; Γ; ∅ ` vj : τi; ∅ for j ∈ 1..n. Thus we can

again apply (Tupleτ ) Ωi+1; Γ; ∆i+1 ` [v1, . . . , vn] : (τ1 × · · · × τn); ∆i+1, thus

showing (ii).

case e1; e2: By inspecting the type rules, the only rul that can apply is (Seqτ ):

(Seqτ )

Ω; Γ; ∆1 ` e1 : τ1; ∆2 Ω; Γ; ∆2 ` e2 : τ2; ∆3

Ω; Γ; ∆1 ` e1; e2 : τ2; ∆3

Suppose 〈S, V, e1〉 → 〈S ′, V ′, r1〉. Then by induction, there exists Ω2 such

that Ω ⇒ Ω2, Ω2; Γ; ∆2 ` r1 : τ1; ∆2 and 〈Ω2,Γ,∆2〉 ∼ 〈S ′, V ′〉. Thus r1 is

not error by Lemma 12 and so r1 must be a value. Therefore we can reduce

via 〈S ′, V ′, e2〉 → 〈S ′′, V ′′, r2〉. Also by induction, there exists Ω3 such that

Ω2 ⇒ Ω3, Ω3; Γ; ∆3 ` r2 : τ2; ∆3 and 〈Ω3,Γ,∆3〉 ∼ 〈S ′′, V ′′〉. Thus r2 must

be a value v2 and we can reduce with (Seq→) and Ω3; Γ; ∆3 ` v2 : τ2; ∆3. By

Lemma 13, Ω⇒ Ω3, we have shown all of the conclusions.

164



case x = e: By assumption, Ω; Γ; ∆ ` x = e : τ ; ∆′. Therefore by (Var Assignτ ),

Ω; Γ; ∆ ` e : τ ; ∆1 ∆2 = ∆1[x 7→ τ ]

Ω; Γ; ∆ ` x = e : τ ; ∆2

with ∆2 = ∆′. Suppose 〈S, V, e〉 → 〈S1, V1, r〉. Then by induction, there exists

Ω′ such that Ω⇒ Ω′ (showing (i)) and Ω′; Γ; ∆1 ` r : τ ; ∆1 and 〈Ω′,Γ,∆1〉 ∼

〈S1, V1〉. Thus r is not error and so it must be a value v and Ω′; Γ; ∆2 ` v : τ ; ∆2

(showing (ii)). Therefore we can reduce via (Assign Local→) and so S = S1,

V ′ = V1[x 7→ v]. Since V ′(x) = v and ∆2(x) = τ , then Ω′; Γ; ∆2 ` V ′(x) :

∆2(x); ∆2. Therefore 〈Ω′,Γ,∆2〉 ∼ 〈S ′, V ′〉 (showing (iii)). Also, (iv) holds

since we did not update self in V ′ or update S, and by our inductive choice of

Ω′.

case @x = e: By assumption, Ω; Γ; ∆ ` @x = e : τ ; ∆′. Therefore by (Field Assignτ ),

Ω; Γ; ∆ ` e : τ ; ∆′ Ω; Γ; ∆′ ` self : τs; ∆′

Γ ` τs <: [@x : τ ′] Γ ` τ <: τ ′

Ω; Γ; ∆ ` @x = e : τ ; ∆′

Suppose 〈S, V, e〉 → 〈S ′, V ′, r1〉. Then by induction, there exists Ω′ such that

Ω ⇒ Ω′ and Ω′; Γ; ∆′ ` r1 : τ ; ∆′ and 〈Ω′,Γ,∆′〉 ∼ 〈S ′, V ′〉. Thus r1 is not

error and so it must be a value v. This establishes Ω′; Γ; ∆′ ` v : τ ; ∆′ and the

first hypothesis in (Assign Field→).

Suppose 〈S ′, V ′, self〉 → 〈S2, V2, r2〉. As Ω; Γ; ∆′ ` self : τs; ∆′ then Ω′; Γ; ∆′ `

self : τs; ∆′ by Lemma 14. Therefore by induction there exists Ω′′ such that

Ω′ ⇒ Ω′′, Ω′′; Γ; ∆′ ` r2 : τs; ∆′, and 〈Ω′′,Γ,∆′〉 ∼ 〈S2, V2〉. Thus r2 is not

165



error and so it must be a value. Therefore we can reduce using (Self→) and

r = l, establishing Ω′′; Γ; ∆′ ` l : τs; ∆′ and S2 = S ′ and V2 = V ′. We have

also established the second hypothesis in (Assign Field→).

Since, Ω′′; Γ; ∆′ ` l : τs; ∆′, then τs = [F ;M ] by (Locτ ). Further, since

Γ ` τs <: [@x : τ ′], Γ ` [F ;M ] <: [@x : τ ′]. By inspecting the subtyping rules,

(Object<:) must apply, which means that @x : τ ′ ∈ F . Thus, Ω′′; Γ; ∆′ ` l :

[@x : τ ′, F ′;M ] and l ∈ dom(Ω′′). By compatibility, Ω′′; Γ; ∆′ ` S ′(l) : [@x :

τ ′, F ′;M ] class ; ∆′. By inspecting the type rules, the only value with this

type is a class literal, thus, S ′(l) must be of the form: [A; @x = v′, Fv;Mv] for

some A. By Lemma 16, Ω′′; Γ; ∆′ ` v′ : τ ′ : ∆′. We have established the third

hypothesis of (Assign Field→).

Therefore, we can reduce using (Assign Field→) with S ′′ = S ′[l 7→ [A; @x =

v, Fv;Mv]]. Note that since we have not updated self, S ′′ is well-formed under

this update, and Ω′′ and V ′ are well-formed inductively, showing (iv). Since

Ω′; Γ; ∆′ ` v : τ ; ∆′, Ω′′; Γ; ∆′ ` v : τ ; ∆′ by Lemma 14. Thus we need only

show that compatibility is re-established to show our conclusion.

Since Ω′; Γ; ∆′ ` v : τ : ∆′ and Γ ` τ <: τ ′, then Ω′; Γ; ∆′ ` v : τ ′ : ∆′ by

(Subsumptionτ ). Also Ω′′; Γ; ∆′ ` v : τ ′ : ∆′ by Lemma 14 which shows (ii).

Therefore, since Ω′′; Γ; ∆′ ` [A; @x = v′, Fv;Mv] : [@x : τ ′, F ′;M ] class ; ∆′,

then Ω′′; Γ; ∆′ ` [A; @x = v, Fv;Mv] : [@x : τ ′, F ′;M ] class ; ∆′ by Lemma 17.

That is, Ω′′; Γ; ∆′ ` S ′′(l) : [@x : τ ′, F ′;M ] class and so 〈Ω′′,Γ,∆′〉 ∼ 〈S ′′, V ′〉

showing (iii).

166



Finally, by Lemma 14, Ω⇒ Ω′′ showing (i).

case x1, . . . , xn = e: Follows just like x = e above.

case new e: By assumption, Ω; Γ; ∆ ` new e : τ ; ∆′. Therefore by (Newτ ):

Ω; Γ; ∆ ` e : τ class ; ∆′

τ = [F ;M ]

Ω; Γ; ∆ ` new e : τ ; ∆′

Suppose 〈S, V, e〉 → 〈S ′, V ′, r〉. Then by induction, there exists Ω′ such that

Ω ⇒ Ω′, Ω′ is well-formed, Ω′; Γ; ∆′ ` r : [F ;M ] class ; ∆′ and 〈Ω′,Γ,∆′〉 ∼

〈S ′, V ′〉. Thus, r is not error and must be a class literal v = [A;Fv;Mv]

by Lemma 11. Let l be any location such that l 6∈ dom(S ′). Then we can

reduce using (New→) with S ′′ = S ′[l 7→ v]. Note S ′′ is well-formed since

v = [A;Fv;Mv]. Let Ω′′ = Ω′[l 7→ τ ]. Trivially, Ω′′,Γ,∆′ ` l : τ ; ∆′, showing

(ii). Also, since l 6∈ dom(S ′), l 6∈ dom(Ω′). Therefore since Ω′ ⇒ Ω′′, then

Ω ⇒ Ω′′ by Lemma 13 showing (i). Also, since 〈Ω′,Γ,∆′〉 ∼ 〈S ′, V ′〉, then

〈Ω′′,Γ,∆′〉 ∼ 〈S ′′, V ′〉 by Lemma 18 showing (iii). Since we did not add or

change any classes in Ω′ to produce Ω′′, then it is also well-formed, showing

(iv).

case e0.m(e1, . . . , en): By assumption, Ω; Γ; ∆ ` e0.m(e1, . . . , en) : τ ; ∆′. Therefore

167



by (Callτ ):

Ω; Γ; ∆i ` ei : τi; ∆i+1 i ∈ 1..n

Ω; Γ; ∆n+1 ` e0 : τ0; ∆n+2

Γ ` τ0 <: [m : (τ1 × · · · × τn)→ τ ]

Ω; Γ; ∆0 ` e0.m(e1, . . . , en) : τ ; ∆n+2

with ∆n+2 = ∆′. Let Ω1 = Ω. Suppose 〈S1, V1, e1〉 → 〈S2, V2, r1〉. By induc-

tion, there exists Ω2 such that Ω1 ⇒ Ω2, Ω2 is well-formed, Ω2; Γ; ∆1 ` e1 :

τ1; ∆2, and 〈Ω2,Γ,∆2〉 ∼ 〈S2, V2〉. Therefore r1 can not be error and must be

a value v1.

We can apply this argument iteratively to show that for each i ∈ 1..n, ri is

a value vi and there exists Ωi+1 such that Ωi+1 is well-formed, Ω ⇒ Ωi+1 by

Lemma 13, Ωi+1; Γ; ∆i+1 ` ri : τi; ∆i+1, and 〈Ωi+1,Γ,∆i+1〉 ∼ 〈Si+1, Vi+1〉.

Now suppose 〈Sn+1, Vn+1, e0〉 → 〈Sn+2, Vn+2, r0〉. By the same argument, r0 is

a value v0 and there exists Ωn+2 such that Ωn+2 is well-formed, Ω⇒ Ωn+2 by

Lemma 13, Ωn+2; Γ; ∆n+2 ` r0 : τ0; ∆n+2, and 〈Ωn+2,Γ,∆n+2〉 ∼ 〈Sn+2, Vn+2〉.

By subtyping, τ0 must be an object and by Lemma 11 v0 must be a location

l. Thus, v0 = l.

Also by subtyping τ0 = [F ;m : η,M ] with Γ ` η <: (τ1 × · · · × τn)→ τ .

By compatibility, Ωn+2; Γ; ∆n+2 ` Sn+2(l) : [F ;m : η,M ] class ; ∆n+2 and

therefore Sn+2(l) must be a class object with ammethod: Sn+2(l) = [A;Fv; def m(x1, . . . , xn) :

η = em,Mv].

Let Vm = [self 7→ l, xi 7→ vi] and ∆M = [self 7→ τ0, xi 7→ τi] for i ∈ 1..n.

168



Clearly Vm and ∆M are compatible by construction and thus 〈Ωn+2,Γ,∆M〉 ∼

〈Sn+2, Vm〉.

Suppose 〈Sn+2, Vm, em〉 → 〈S ′, V ′m, rm〉. Then by (Mono Methodτ )

(Mono Methodτ )

Ωn+2[A 7→ τa]; Γ; ∆m ` em : τ ; ∆′m

A : [F ;m : η,M ] class ;m : (τ1 × · · · × τn)→ τ ; Ωn+2; ; Γ; ∆n+2 `

def m(x1, . . . , xn) : η = em

Thus, by induction, there exists Ω′ such that Ωn+2 ⇒ Ω′, Ω′ is well-formed,

Ω′,Γ; ∆M ` rm : τ ; ∆′M , and 〈Ω′,Γ; ∆′M〉 ∼ 〈S ′, V ′m〉. Then by Lemma 13,

Ω ⇒ Ω′, showing (i). Also, rm is not error and thus rm = vm and therefore

Ω′,Γ; ∆′M ` vm : τ ; ∆′M . Therefore we can then apply (Call→): 〈S1, V1, e0.m(e1, . . . , en)〉 →

〈S ′, Vn+2, vm〉. By Lemma 15 Ω′,Γ; ∆′ ` vm : τ ; ∆′ showing (ii). Since

Ω⇒ Ωn+2 and Ωn+2 ⇒ Ω′ then Ω⇒ Ω′ by Lemma 13, showing (i).

Since 〈Ω′,Γ; ∆′M〉 ∼ 〈S ′, V ′m〉 and 〈Ωn+2,Γ,∆
′〉 ∼ 〈Sn+2, Vn+2〉 then 〈Ω′,Γ,∆′〉 ∼

〈S ′, Vn+2〉 , showing (iii). Finally since Ω′, S ′, and Vn+2 are well-formed by

induction, and we have shown (iv).

case typecase e1 when (x : A) e2 else e: By assumption Ω; Γ; ∆ ` typecase e1 when (x :

A) e2 else e : τ ; ∆′. Therefore, by (TypeCaseτ ):

Ω; Γ; ∆ ` e1 : [F ;M ]; ∆1 Ω; Γ; ∆1 ` A : τ ′ class ; ∆1

Ω; Γ; ∆1, x : τ ′ ` e2 : τ ; ∆2 Ω; Γ; ∆1 ` e3 : τ ; ∆3

∆′ = ∆2|dom(∆1) ]∆3|dom(∆1)

Ω; Γ; ∆ ` typecase e1 when (x : A) e2 else e3 : τ ; ∆′

169



Suppose 〈S, V, e1〉 → 〈S2, V2, r1〉. Then by induction there exists Ω′ such that

Ω ⇒ Ω′, Ω′ is well-formed, Ω′; Γ; ∆1 ` v1 : [F ;M ]; ∆1, and 〈Ω′,Γ,∆1〉 ∼

〈S2, V2〉. Thus, r1 is not error and must be a value, and therefore must be a

location l = r1 by Lemma 11. Since S2 is well-formed, S2(l) = [B;Fv;Mv] for

some B, Fv, and Mv.

We have two cases, whether or not B = A.

Assume that S2(l) = [A;Fv;Mv]. Then let V3 = V2[x 7→ l] and ∆′1 = ∆1[x 7→

[F ;M ]]. Since Ω′; Γ; ∆1 ` l : [F ;M ]; ∆1, then 〈Ω′; Γ; ∆′1〉 ∼ 〈S2, V3〉. Suppose

〈S2, V3, e2〉 → 〈S3, V4, r2〉. Then by induction, there exists Ω′′ such that Ω′ ⇒

Ω′′, Ω′′ is well-formed (showing (iv), Ω′′; Γ; ∆2 ` r2 : τ ; ∆2 and 〈Ω′′; Γ; ∆′1〉 ∼

〈S3, V4〉. Therefore r2 is not error and must be a value v2 = r2. There-

fore the rule (TypeCase Match→) applies and 〈S, V, typecase e1 when (x :

A) e2 else e〉 → 〈S3, V
′, v2〉 where V ′ = V4|dom(V2).

Recall that by (TypeCaseτ ), ∆′ = ∆2|dom(∆1) ]∆3|dom(∆1). Since Ω′′; Γ; ∆2 `

v2 : τ ; ∆2 then Ω′′; Γ; ∆′ ` v2 : τ ; ∆′ by Lemma 15, showing (ii). Also Ω⇒ Ω′′

by Lemma 13 showing (i).

Since 〈Ω′,Γ,∆1〉 ∼ 〈S2, V2〉, then dom(∆1) = dom(V2) by compatibility. Fur-

thermore, since 〈Ω′′; Γ; ∆′1〉 ∼ 〈S3, V4〉 then 〈Ω′′; Γ; ∆′〉 ∼ 〈S3, V
′〉 by Lemma 10,

showing (iii). This concludes this subcase.

Now assume that S2(l) = [B;Fv;Mv] with B 6= A. Suppose 〈S2, V2, e3〉 →

〈S3, V3, r3〉. Then by induction, there exists Ω3 such that Ω′ ⇒ Ω3, Ω3 is

well-formed (showing (iv), Ω3; Γ; ∆3 ` r3 : τ ; ∆3, and 〈Ω3,Γ,∆3〉 ∼ 〈S3, V3〉.

170



Therefore r3 is not error and must be a value v3 = r3. Therefore the rule

(TypeCase Else→) applies and 〈S, V, typecase e1 when (x : A) e2 else e〉 →

〈S3, V3, v3〉.

By a parallel argument to the first case, Ω⇒ Ω3 (showing (i)), Ω3; Γ; ∆′ ` v3 :

τ ; ∆′ (showing (ii)) and 〈Ω3,Γ,∆
′〉 ∼ 〈S3, V3〉 (showing (iii)), which concludes

this case.

�

Theorem 20 (Subject Reduction for Classes) If Ω; Γ; ∆ ` class A : σ = d

and Ω[cur class] = (A, σ) and 〈Ω,Γ,∆〉 ∼ 〈S, V 〉 and 〈S, V, c〉 → 〈S ′, V, r〉 and Ω,

S, and V are well-formed, then there exists Ω′ such that

(i) Ω⇒ Ω′

(ii) 〈Ω′,Γ; ∆〉 ∼ 〈S ′, V 〉

(iii) Ω′; Γ; ∆ ` r : τ ; ∆

(iv) Ω and S ′ are well-formed.

Proof: Suppose 〈S, V, c〉 → 〈S ′, V, r〉. In order to show that (Class Def→)

applies, we must only show that each field declaration in d reduces to a value.

Proceed by induction on the number of qualifiers in σ.

171



Our base case is when σ is a mono-type τ . In this case, (Mono Classτ )

applies:

Ω; Γ; [self 7→ τ ] ` di i ∈ 1..n

labels(τ) = {label(d1), . . . , label(dn)}

Ω; Γ; ∆ ` class A : τ = d1, . . . , dn

Without loss of generality, let @xi = ei be some field declaration di. Then by

(Mono Classτ ), Ω; Γ; [self 7→ τ ] ` @xi = ei. Therefore by (Field Declτ ):

Ω; Γ; ∅ ` ei : τi; ∆i

Γ ` τ <: [@x : τi]

Ω; Γ; [self 7→ τ ] ` @xi = ei

Since Ω; Γ; ∅ ` ei : τi; ∆i, then by Theorem 19 there exists Ω′i such that Ωi ⇒ Ω′i,

〈Si, Vi, ei〉 → 〈Si+1, Vi+1, vi〉 with 〈Ω′i,Γ,∆i〉 ∼ 〈Si+1, Vi+1〉. Note that by Lemma 14,

Ω′i; Γ; [self 7→ τ ] ` @xi = ei. Since @xi = ei was chosen arbitrarily, we can apply this

argument to each of the n field definitions in d. Therefore (Class Def→) applies

and r 6= error. Furthermore, by Lemma 13, Ω′n; Γ; ∆ ` class A : τ = d1, . . . , dn.

The inductive case follows immediately since (Poly Classτ ) uses our induc-

tion hypothesis as its only premise. �

Theorem 21 (Type Soundness) If ` P then 〈∅, ∅, P 〉 → 〈S, V, r〉 where r 6=

error.

Proof: Let P = c1 · · · cn; e. Assume that 〈∅, ∅, P 〉 → 〈S, V, r〉. Since ` P then

(Programτ ) applies and we can repeatedly apply Theorem 20 to each class defi-

nition to construct Ω such that 〈Ω, ∅, ∅〉 ∼ 〈S ′, ∅〉 with 〈∅, ∅, c1 · · · cn〉 → 〈S ′, ∅, v〉.

172



Again by (Programτ ) Ω; ∅; ∅ ` e : τ ; ∆ and by Theorem 19, there exists Ω′ such

that 〈S ′, ∅, e〉 → 〈S, V, v′〉 with and Ω′; ∅; ∅ ` v′ : τ . Therefore r 6= error. �

173



Appendix C

Proofs for DynRuby

C.1 Type Checking Rules

Figure C.1 presents a portion of a type checking system designed specifically for

the output of our translation (though it is in fact sound in general—it just may

not be able to type programs that have not been translated). This type system is

representative of the static typing discipline enforced by DRuby, though it is far

simpler.

The first group of rules in Figure C.1 prove judgments of the form MT; Γ ` e :

τ , meaning with method type table MT, a mapping from names A.m to method sig-

natures, and in type environment Γ, a mapping from variables to types, expression e

has type τ . Types τ are either string, bool, or a class A, and method signatures σ

consist of argument and result types.

(Varτ ) and (Instτ ) are trivial. (Wrapτ ), (SEvalτ ), and (Blameτ ) give the

corresponding expressions any type; the subexpressions in the first two forms are

evaluated with full dynamic checking, and the last form is used to abort execution

due to an error in a dynamic region of the code. (Callτ ) types the receiver and the

174



MT; Γ ` e : τ
τ ::= string | bool | A
σ ::= τ1 × · · · × τn → τ

(Varτ )
x ∈ Γ

MT; Γ ` x : Γ(x)

(Instτ )

MT; Γ ` new A : A

(Wrapτ )

MT; Γ ` JeK` : τ

(SEvalτ )
MT; Γ ` e : string

MT; Γ ` safe eval` e : τ

(Blameτ )

MT; Γ ` blame ` : τ

(Callτ )
MT; Γ ` ei : τi i ∈ 0..n m 6= method missing

MT(τ0.m) = τ1 × · · · × τn → τ

MT; Γ ` e0.m(e1, . . . , en) : τ

(Defτ )
MT(A.m) = τ1 × · · · × τn → τ

Γ′ = (self 7→ A, x1 7→ τ1, . . . , xn 7→ τn) MT; Γ′ ` e : τ
MT; Γ ` def ` A.m(x1, . . . , xn) = e : bool

MT ` d; MT′ MT ` e

(Def′τ )
σ = τ1 × · · · × τn → τ A.m ∈ dom(MT)⇒ MT(A.m) = σ

MT ` def ` A.m(x1, . . . , xn) = blame `; (A.m 7→ σ),MT

(Progτ )
MT ` d,MT′ MT′ ` e

MT ` d; e

(Prog-Exprτ )
MT; ∅ ` e : τ

MT ` e

Figure C.1: Type checking rules for DynRuby (selected rules)

175



arguments, and searches for a method signature for τ0.m in MT; for this search to

be successful, τ0 must be a class A whose m method was defined. As expected, it

matches the formal and actual argument types and extracts the result type from the

signature. Note that we omit subtyping from our type system, also to keep things

simple, but it is straightforward to add.

(Defτ ) types the definition of a method. The defined method A.m must have

a signature in MT, and the body e is type checked in the appropriate environment.

The definition itself returns false, so the type of the definition is bool.

Note that (Defτ ) applies to methods defined in the “middle” of a program.

Recall that the translation defined by (Prog ) produces a program of the form

(ed; e), where ed is a sequence of method definitions. The bottom part of Figure C.1

gives rules for typing programs of this form.

(Def′τ ) proves a judgment of the form MT ` d; MT′, where MT′ is MT but

with a method signature for d added. If there is more than one definition of the same

method, it must have the same signature in MT′. In (Def′τ ), the body of d must

consist solely of a blame expression, which will be the case for the method definitions

from ed in our translated program. Because the body is a blame expression, we need

not type check it. As a side note, since this is a type checking system, we have not

specified how to come up with method signature σ. In practice, it could be supplied

by type annotations or, in the case of DRuby, also by type inference.

The last two rules define judgment MT ` e, which given an expression (ed; e),

creates a method table MT′ with signatures for the definitions in ed and then type

checks e using that method table. These last two rules are non-deterministic, but

176



we generally will use (Progτ ) to accumulate as large a method table as possible

from the initial set of definitions, and then check the remainder of the expression

uses that method table.

C.2 Complete Formalism and Proofs

In this appendix, we give the full operational semantics (Figure C.2), program trans-

formation (Figure C.3), and type checking system (Figure C.7) for DynRuby, which

were abbreviated in the body of the paper due to lack of space.

C.2.1 Translation Faithfulness

Definition 22 We write P ` M M′ if all of the following hold:

1. M = (d1, . . . , dn)

2. For all i ∈ 1..n, we have P ` di  ei

3. M′ is the method table consisting of e1; . . . ; en flattened and treated as a list of

definitions

Lemma 23 Suppose 〈M,V, e〉 → 〈M′,P ′, v〉 and P ′ ⊆ P and P ` e eP . Further

assume VP |dom(V) = V and P ` M MP . Then 〈MP ,VP , eP〉 → 〈M′P ,P ′′, v〉 where

P ` M′  M′P .

177



(Eq-T)
〈M,V, e1〉 → 〈M1,P1, v〉
〈M1,V, e2〉 → 〈M2,P2, v〉

〈M,V, e1≡e2〉 → 〈M2, (P1 ∪ P2), true〉

(Eq-F)
〈M,V, e1〉 → 〈M1,P1, v1〉

〈M1,V, e2〉 → 〈M2,P2, v2〉 v1 6= v2

〈M,V, e1≡e2〉 → 〈M2, (P1 ∪ P2), false〉

(Let)
〈M,V, e1〉 → 〈M1,P1, v1〉

〈M1, (x : v1,V), e2〉 → 〈M2,P2, v2〉
〈M,V, let x = e1 in e2〉 → 〈M2, (P1 ∪ P2), v2〉

(Blame)

〈M,V, blame `〉 → 〈M,V, blame `〉

(Value)

〈M,V, v〉 → 〈M, ∅, v〉

(If-T)
〈M,V, e1〉 → 〈M1,P1, true〉
〈M1,V, e2〉 → 〈M2,P2, v2〉

〈M,V, if e1 then e2 else e3〉 → 〈M2, (P1 ∪ P2), v2〉

(Var)

〈M,V, x〉 → 〈M, ∅,V(x)〉

(If-F)
〈M,V, e1〉 → 〈M1,P1, false〉
〈M1,V, e3〉 → 〈M3,P3, v3〉

〈M,V, if e1 then e2 else e3〉 → 〈M3, (P1 ∪ P3), v3〉

(Call)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = new A

(def ` A.m(x1, . . . , xn) = e) ∈ Mn+1 m 6= method missing
V′ = [self 7→ v0, x1 7→ v1, . . . , xn 7→ vn]

〈Mn+1,V′, e〉 → 〈M′,P ′, v〉
〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (

⋃
i

Pi) ∪ P ′, v〉

(Call-M)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = new A

(def ` A.m(. . .) = . . .) 6∈ Mn+1

(def `′ A.method missing(x1, . . . , xn+1) = e) ∈ Mn+1 s = unparse(m)
m 6= method missing V′ = [self 7→ v0, x1 7→ s, x2 7→ v1, . . . , xn+1 7→ vn]

〈Mn+1,V′, e〉 → 〈M′,P ′, v〉
〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (

⋃
i

Pi) ∪ P ′ ∪ [`′ 7→ s], v〉

(Def)

〈M,V, d〉 → 〈(d,M), ∅, false〉

(Eval)
〈M,V, e〉 → 〈M1,P1, s〉

〈M1,V, parse(s)〉 → 〈M2,P2, v〉
〈M,V, eval` e〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

(Seq)
〈M,V, e1〉 → 〈M1,P1, v1〉
〈M1,V, e2〉 → 〈M2,P2, v2〉

〈M,V, e1; e2〉 → 〈M2, (P1 ∪ P2), v2〉

(Send)
〈M,V, e1〉 → 〈M1,P1, s〉 m = parse(s)
〈M1,V, e0.m(e2, . . . , en)〉 → 〈M2,P2, v〉

〈M,V, e0.send`(e1, . . . , en)〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

Figure C.2: Instrumented big-step operational semantics for DynRuby (excluding
blame and error rules)

178



(Refl )
e ∈ {x, v, blame `}
P ` e e

(Seq )
P ` e1  e′

1 P ` e2  e′
2

P ` e1; e2  e′
1; e′

2

(Eq )
P ` e1  e′

1 P ` e2  e′
2

P ` e1≡e2  e′
1≡e′

2

(Let )
P ` e1  e′

1 P ` e2  e′
2

P ` let x = e1 in e2  let x = e′
1 in e′

2

(If )
P ` e1  e′

1 P ` e2  e′
2 P ` e3  e′

3

P ` if e1 then e2 else e3  if e′
1 then e′

2 else e′
3

(Call )
P ` ei  e′

i i ∈ 0..n m 6= send

P ` e0.m(e1, . . . , en) e′
0.m(e′

1, . . . , e
′
n)

(Eval )
P ` e e′ P ` parse(sj) ej sj ∈ P(`) x fresh

e′′ =


let x = e′ in

if x≡s1 then e1
else if x≡s2 then e2
. . .
else safe eval` x


P ` eval` e e′′

(Send )
P ` ei  e′

i i ∈ 0..n sj ∈ P(`) x fresh

e′ =


let x = e′

1 in
if x≡s1 then e′

0.parse(s1)(e′
2, . . . , e

′
n)

else if x≡s2 then e′
0.parse(s2)(e′

2, . . . , e
′
n)

. . .
else safe eval` “e′

0.” + x+ “(e′
2, ..., e

′
n)”


P ` e0.send`(e1, . . . , en) e′

(Def )
P ` e e′ m 6= method missing

P ` def ` A.m(x1, . . . , xn) = e def ` A.m(x1, . . . , xn) = e′

(Meth-Missing )
P ` e e′ sj ∈ P(`)

e′′ =

 def ` A.parse(s1)(x2, . . . , xn) = (let x1 = s1 in e′);
def ` A.parse(s2)(x2, . . . , xn) = (let x1 = s2 in e′);
. . .


P ` def ` A.method missing(x1, . . . , xn) = e e′′

(Wrap )
P ` e e′

P ` JeK`  Je′K`

(SEval )
P ` e e′

P ` safe eval` e safe eval` e
′

(Prog )
P ` e e′ (def `j A

j .mj(xj
1, . . . , x

j
n) = . . .) ∈ e′

ed =

 def `1 A
1.m1(x1

1, . . . , x
1
n1) = blame `1;

def `2 A
2.mk(x2

1, . . . , x
2
n2) = blame `2;

. . .


P ` e⇒ (ed; e′)

Figure C.3: Transformation to static constructs (complete)

179



(Refl↪→)
e ∈ {x, v, blame `}

e ↪→` e

(Seq↪→)
e1 ↪→` e

′
1 e2 ↪→` e

′
2

e1; e2 ↪→` e
′
1; e′

2

(Eq↪→)
e1 ↪→` e

′
1 e2 ↪→` e

′
2

e1≡e2 ↪→` e
′
1≡e′

2

(Let↪→)
e1 ↪→` e

′
1 e2 ↪→` e

′
2

let x = e1 in e2 ↪→` let x = e′
1 in e′

2

(If↪→)
e1 ↪→` e

′
1 e2 ↪→` e

′
2 e3 ↪→` e

′
3

if e1 then e2 else e3 ↪→` if Je′
1K` then e′

2 else e′
3

(Call↪→)
ei ↪→` e

′
i i ∈ 0..n

e0.m(e1, . . . , en) ↪→` Je′
0K`.m(e′

1, . . . , e
′
n)

(Eval↪→)
e ↪→` e

′

eval`′ e ↪→` safe eval`′ Je′K`′

(Send↪→)
ei ↪→` e

′
i i ∈ 0..n

e0.send`(e1, . . . , en) ↪→` safe eval` “e′
0.e

′
1(e′

2, . . . , e
′
n)”

(Def↪→)

def `′ A.m(x1, . . . , xn) = e ↪→` blame `′

(Wrap↪→)
e ↪→`′ e′

JeK` ↪→`′ Je′K`

(SEval↪→)
e ↪→`′ e′

safe eval` e ↪→`′ safe eval` Je′K`

Figure C.4: Safe evaluation rules (complete)

Proof: By induction on the derivation of 〈M,V, e〉 → 〈M′,P , v〉. We proceed by

case analysis on the last rule applied. In this proof, we use · to indicate profiles we

do not refer to.

Case (Eval): We have

(Eval)

〈M,V, e〉 → 〈M1,P1, s〉

〈M1,V, parse(s)〉 → 〈M2,P2, v〉

〈M,V, eval` e〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

180



(SEval)
〈M,V, e〉 → 〈M′,P, s〉

parse(s) ↪→` e
′

〈M′,V, Je′K`〉 → 〈M′′,P ′, v〉
〈M,V, safe eval` e〉 → 〈M′,P ∪ P ′, v〉

(SEval-Wrap)
〈M,V, e〉 → 〈M′,P, JsK`′〉

parse(s) ↪→` e
′

〈M′,V, Je′K`〉 → 〈M′′,P ′, v〉
〈M,V, safe eval` e〉 → 〈M′,P ∪ P ′, v〉

(SEval-Blame)
〈M,V, e〉 → 〈M′,P, v〉 v ∈ {JtrueK`′ , JfalseK`′ , Jnew AK`′}

〈M,V, safe eval` e〉 → 〈M′,P, blame `〉

(SEval-Blame-Parse)
〈M,V, e〉 → 〈M′,P, v〉 v = s ∨ v = JsK`′ @parse(s)

〈M,V, safe eval` e〉 → 〈M′,P, blame `〉

(Wrap)
〈M,V, e〉 → 〈M,P, r〉

〈M,V, JeK`〉 → 〈M,P, JrK`〉

(Wrap-Define)
〈M,V, e〉 → 〈M′,P, r〉 M′ 6= M
〈M,V, JeK`〉 → 〈M,P, blame `〉

(Unwrap)

〈M,V, JJrK`′K`〉 → 〈M, ∅, JrK`〉

(Wrap-error)

〈M,V, JerrorK`〉 → 〈M, ∅, blame `〉

(Eq-Wrap-T)
〈M,V, e1〉 → 〈M1,P1, v1〉
〈M1,V, e2〉 → 〈M2,P2, v2〉

(v1 = v ∨ v1 = JvK`1) (v2 = v ∨ v2 = JvK`2)
〈M,V, e1≡e2〉 → 〈M2, (P1 ∪ P2), true〉

(Eq-Wrap-F)
〈M,V, e1〉 → 〈M1,P1, v1〉
〈M1,V, e2〉 → 〈M2,P2, v2〉

(v1 = v′
1 ∨ v1 = Jv′

1K`1) (v2 = v′
2 ∨ v2 = Jv′

2K`2)
v′
1 6= v′

2

〈M,V, e1≡e2〉 → 〈M2, (P1 ∪ P2), false〉

Figure C.5: Additional operational semantics rule wrapped expressions (1/2)

181



(If-Wrap-T)
〈M,V, e1〉 → 〈M1,P1, JtrueK`〉
〈M1,V, e2〉 → 〈M2,P2, v2〉

〈M,V, if e1 then e2 else e3〉 → 〈M2, (P1 ∪ P2), v2〉

(If-Wrap-F)
〈M,V, e1〉 → 〈M1,P1, JfalseK`〉
〈M1,V, e3〉 → 〈M3,P3, v3〉

〈M,V, if e1 then e2 else e3〉 → 〈M3, (P1 ∪ P3), v3〉

(If-Wrap-Blame)
〈M,V, e1〉 → 〈M1,P1, v〉
v ∈ {JsK`, Jnew AK`}

〈M,V, if e1 then e2 else e3〉 → 〈M1,P1, blame `〉

(Call-Wrap)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = Jnew AK`′′

(def ` A.m(x1, . . . , xn) = e) ∈ Mn+1 m 6= method missing
V′ = [self 7→ v0, x1 7→ Jv1K`′′ , . . . , xn 7→ JvnK`′′ ]

〈Mn+1,V′, e〉 → 〈M′,P ′, v〉
〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (

⋃
i

Pi) ∪ P ′, JvK`′′〉

(Call-Meth-Blame)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = Jnew AK`′′

((def ` A.m(x1, . . . , xn) = e) 6∈ Mn+1 ∨m = method missing)

〈M0,V, e0.m(e1, . . . , en)〉 → 〈Mn+1,
⋃
i

Pi, blame `′′〉

(Call-Type-Blame)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n

v0 ∈ {JtrueK`′′ , JfalseK`′′ , JsK`′′}
〈M0,V, e0.m(e1, . . . , en)〉 → 〈Mn+1,

⋃
i

Pi, blame `′′〉

Figure C.6: Additional operational semantics rule wrapped expressions (2/2)

182



MT; Γ ` e : τ
τ ::= string | bool | A
σ ::= τ1 × · · · × τn → τ

(Varτ )
x ∈ Γ

MT; Γ ` x : Γ(x)

(Stringτ )

MT; Γ ` s : string

(Boolτ )
e ∈ {true, false}
MT; Γ ` e : bool

(Instτ )

MT; Γ ` new A : A

(Blameτ )

MT; Γ ` blame ` : τ

(SEvalτ )
MT; Γ ` e : string

MT; Γ ` safe eval` e : τ

(Wrapτ )

MT; Γ ` JeK` : τ

(Seqτ )
MT; Γ ` e1 : τ1
MT; Γ ` e2 : τ2

MT; Γ ` e1; e2 : τ2

(Eqτ )
MT; Γ ` e1 : τ1
MT; Γ ` e2 : τ2

MT; Γ ` e1≡e2 : bool

(Letτ )
MT; Γ ` e1 : τ1

MT;x : τ1,Γ ` e2 : τ2
MT; Γ ` let x = e1 in e2 : τ2

(Ifτ )
MT; Γ ` e1 : bool

MT; Γ ` e2 : τ
MT; Γ ` e3 : τ

MT; Γ ` if e1 then e2 else e3 : τ

(Callτ )
MT; Γ ` ei : τi i ∈ 0..n m 6= method missing

MT(τ0.m) = τ1 × · · · × τn → τ

MT; Γ ` e0.m(e1, . . . , en) : τ

Figure C.7: Type checking rules for DynRuby (complete)

183



(Defτ )
MT(A.m) = τ1 × · · · × τn → τ

MT; (self 7→ A, x1 7→ τ1, . . . , xn 7→ τn) ` e : τ
MT; Γ ` def ` A.m(x1, . . . , xn) = e : bool

MT ` d; MT′

(Def′τ )
σ = τ1 × · · · × τn → τ A.m ∈ dom(MT)⇒ MT(A.m) = σ MT′ = (A.m 7→ σ),MT

MT ` def ` A.m(x1, . . . , xn) = blame `; MT′

MT ` e

(Progτ )
MT ` d; MT′ MT′ ` e

MT ` d; e

(Prog-Exprτ )
MT; ∅ ` e : τ

MT ` e

Figure C.8: Type checking rules for DynRuby (complete)

and VP |dom(V) = V and P ` M  MP . We also have P ` eval` e  eP where

P = P1 ∪ P2 ∪ [` 7→ s]. Thus by (Eval ), we have

(Eval )

P ` e e′ P ` parse(sj) ej sj ∈ P(`) x fresh

e′′ =



let x = e′ in

if x≡s1 then e1

else if x≡s2 then e2

. . .

else safe eval` x


P ` eval` e e′′

Then since P1 ⊆ P , by induction we have 〈MP ,VP , e′〉 → 〈M′P , ·, s〉 with P ` M1  

M′P . Notice also s ∈ P(`), and assume without loss of generality that s = s1. Let

V′P = x : s,VP .

184



Combining the last hypothesis of (Eval) with P1 ⊆ P and P ` parse(s1) e1

and V′P |dom(V) = V (since x is fresh) and P ` M1  M′P , we can apply induction to

get 〈M′P ,V′P , e1〉 → 〈M′′P , ·, v〉 where P ` M2  M′′P .

Then combining the derived reductions using (Let) and (If-T), we have

〈MP ,VP , e′′〉 → 〈M′′P , ·, v〉 where P ` M2  M′′P , which is the conclusion.

Case (Send): We have

(Send)

〈M,V, e1〉 → 〈M1,P1, s〉 m = parse(s)

〈M1,V, e0.m(e2, . . . , en)〉 → 〈M2,P2, v〉

〈M,V, e0.send`(e1, . . . , en)〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

and VP |dom(V) = V and P ` M MP . We also have P ` e0.send`(e1, . . . , en) eP

where P = P1 ∪ P2 ∪ [` 7→ s]. Thus by (Send ), we have

(Send )

P ` ei  e′i i ∈ 0..n sj ∈ P(`) x fresh

e′ =



let x = e′1 in

if x≡s1 then e′0.parse(s1)(e′2, . . . , e
′
n)

else if x≡s2 then e′0.parse(s2)(e′2, . . . , e
′
n)

. . .

else safe eval` “e′0.x(e′2, . . . , e
′
n)”


P ` e0.send`(e1, . . . , en) e′

Then since P1 ⊆ P , by induction we have 〈MP ,VP , e′1〉 → 〈M′P , ·, s〉 with P ` M1  

M′P . Notice also s ∈ P(`), and assume without loss of generality that s = s1. Let

V′P = x : s,VP .

185



Combining the last hypothesis of (Send) with P2 ⊆ P and P ` ei  e′i and

V′P |dom(V) = V (since x is fresh) and P ` M1  M′P , we can apply induction to get

〈M′P ,V′P , e′0.m(e′2, . . . , e
′
n)〉 → 〈M′′P , ·, v〉 where P ` M2  M′′P .

Then combining the derived reductions using (Let) and (If-T), and given

that m = parse(s), we have 〈MP ,VP , e′〉 → 〈M′′P , ·, v〉 where P ` M2  M′′P , which

is the conclusion.

Case (Call-M): We have

(Call-M)

〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = new A

(def ` A.m(. . .) = . . .) 6∈ Mn+1

(def `′ A.method missing(x1, . . . , xn+1) = e) ∈ Mn+1 s = unparse(m)

m 6= method missing V′ = [self 7→ v0, x1 7→ s, x2 7→ v1, . . . , xn+1 7→ vn]

〈Mn+1,V
′, e〉 → 〈M′,P ′, v〉

〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (
⋃
i

Pi) ∪ P ′ ∪ [`′ 7→ s], v〉

and VP |dom(V) = V and P ` M0  MP , where P = (
⋃
iPi) ∪ P ′ ∪ [`′ 7→ s]. We also

have
(Call )

P ` ei  e′i i ∈ 0..n m 6= send

P ` e0.m(e1, . . . , en) e′0.m(e′1, . . . , e
′
n)

Then by induction, we have 〈MP ,VP , e′0〉 → 〈M0
P , ·, v0〉 where P ` M1  

M0
P . Continuing this argument for each subsequent ei, we will have corresponding

reductions for the e′i, eventually leading to a 〈Mn+1
P , ·, vn+1〉 such that P ` Mn+1  

Mn+1
P .

186



From (Call-M) above, we see that (def `′ A.method missing(x1, . . . , xn+1) =

e) is the leftmost definition of A.method missing in M+n1. Furthermore, since P `

Mn+1  Mn+1
P , there must be a corresponding set of definitions d1, . . . , dk at the

corresponding position in Mn+1
P , where each di is the output of (Meth-Missing )

translating the A.method missing definition. We also have s ∈ P(`′), and assume

without loss of generality that s is the last string in P(`′). Then the d1 from Mn+1
P

must be

(∗) def `′ A.m(x2, . . . , xn) = let x1 = s in e′

where P ` e e′.

Next, we claim there cannot be any definitions of A.m to the left of the defi-

nition (∗) above. Since A.m is not in Mn+1 (by the hypotheses of (Call-M)) and

P ` Mn+1  Mn+1
P , there cannot be any directly translated definitions of A.m in

Mn+1
P . The only other possibility would be if A.m were added to Mn+1

P as a conse-

quence of translating a different definition of A.method missing. For that to occur

to the left of (∗), it would have to have come from a definition of A.method missing

that occurred to the left of the definition of A.method missing in Mn+1. But from

the hypotheses of (Call-M) we know the definition of A.method missing whose

translation yielded (∗) is the leftmost occurrence, so that is impossible. Thus we

see that (∗) is the leftmost definition of A.m.

Finally, also by induction, since P ` e e′ (from the application of (Meth-Missing )),

we have 〈Mn+1
P ,V′, e′〉 → 〈M′′P , ·, v〉 where P ` M′  M′′P . Let V′P = [self 7→ v0, x2 7→

x1, . . . , xn+1 7→ xn] Using straightforward reasoning about (Let) we can therefore

187



show we can show 〈Mn+1
P ,V′P , let x1 = s in e′〉 → 〈M′′P , ·, v〉. Then putting all the

derived reductions together with (Call), and using the fact that (∗) is the leftmost

definition 〈MP ,VP , e′0.m(e1, . . . , en)〉 → 〈M′′P , ·, v〉 where P ` M′  M′′P , which is

the conclusion we needed to show.

Case (Value), (Var), (Blame), (Unwrap), (Wrap-Error): Trivial.

Case (Def): We have
(Def)

〈M,V, d〉 → 〈(d,M), ∅, false〉

and VP |dom(V) = V and P ` M MP . There are two cases.

If d is not defining A.method missing, then the translation P ` d  d′ must

have been via (Def ):

(Def )

P ` e e′ m 6= method missing

P ` def ` A.m(x1, . . . , xn) = e def ` A.m(x1, . . . , xn) = e′

By (Def), we have 〈MP ,VP , d′〉 → 〈(d′,MP), ·, false〉 and P ` (d,M) (d′,MP) by

definition.

188



Otherwise, d is a definition of A.method missing, and our translation was via

(Meth-Missing ):

(Meth-Missing )

P ` e e′ sj ∈ P(`)

e′′ =


def ` A.parse(s1)(x2, . . . , xn) = (let x1 = s1 in e′);

def ` A.parse(s2)(x2, . . . , xn) = (let x1 = s2 in e′);

. . .


P ` def ` A.method missing(x1, . . . , xn) = e e′′

Letting d′1, . . . , d
′
k be the flattened list of definitions corresponding to e′′, by (Def)

we have 〈MP ,VP , e′′〉 → 〈(d′k, . . . , d′1,MP), ·, false〉 But then P ` (d,M) (d′k, . . . , d
′
1,MP),

by definition.

Case (Seq), (Eq-T), (Eq-F), (Let), (If-T), (If-F): Induction following the pat-

tern seen above in (Eval), (Send), and (Call-M)

Case (SEval), (*Wrap*)(*Blame*): Induction following the above pattern.

Case (Call): Similar reasoning to (Call-M). Notice that the method A.m invoked

in (Call) cannot be method missing, by one of the hypotheses of (Call), and hence

by (Def ) it is directly translated to a corresponding definition in the output. �

Lemma 24 If 〈∅, ∅, e〉 → 〈M,P , r〉 and e contains no definitions of method missing

and ed = d1; . . . ; dn, i.e., it is a sequence of definitions, and no di defines method missing,

then 〈∅, ∅, (ed; e)〉 → 〈M′,P , r〉.

Proof: We have 〈∅, ∅, ed〉 → 〈M′′, ∅, false〉, using (Seq) and (Def), for some M′′.

We claim that 〈M′′, ∅, e〉 → 〈M′,P , r〉. This holds because the original reduction of

189



e starting from the empty method table produced a value. Therefore, any methods

e calls are defined before they are used (because there are no calls handled by

method missing), thereby overriding any prior definition in M′′. But then by (Seq)

(or one of its variants for blame or error) we have our conclusion. �

Theorem 25 (Translation Faithfulness) Suppose 〈∅, ∅, e〉 → 〈M,P ′, v〉 and let

P ′ ⊆ P. Also assume P ` e ⇒ e′. Then there exist MP ,P ′′ such that 〈∅, ∅, e′〉 →

〈MP ,P ′′, v〉, i.e., both the original and translated program evaluate to the same result.

Proof: From (Prog ) we have

(Prog )

P ` e e′ (def `j A
j.mj(xj1, . . . , x

j
n) = . . .) ∈ e′

ed =


def `1 A

1.m1(x1
1, . . . , x

1
n1) = blame `1;

def `2 A
2.m2(x2

1, . . . , x
2
n2) = blame `2;

. . .


P ` e⇒ (ed; e

′)

Thus we have P ` e  e′. Trivially ∅|dom(∅) = ∅ and P ` ∅  ∅. By observa-

tion of the translation rules, we can see that e′ and ed contain no definitions of

method missing. Thus by Theorem 23, we have 〈∅, ∅, e′〉 → 〈MP ,P ′′, v〉 for some

MP ,P ′′. But then by Lemma 24 we have 〈∅, ∅, (ed; e′)〉 → 〈M′,P ′′, v〉. �

C.2.2 Type Soundness

We show soundness of the type system in Figure C.7 using a standard progress-

preservation approach. We begin by defining a relationship between the run-time

method table and variable store and their static approximations in the type system.

190



Definition 26 We write Γ ∼ V if dom(Γ) = dom(V) and ∀x ∈ dom(Γ) . ∅; Γ `

V(x) : Γ(x).

Definition 27 We write MT ∼ M if dom(MT) = {A.m | (def ` A.m(. . .) = . . .) ∈

M} and ∀d = (def ` A.m(x1, . . . , xn) = e) ∈ M we have MT; ∅ ` d : bool.

In addition to the semantics rules in Figure C.2, we assume that (a) any

expression such that a sub-computation reduces to blame `, itself reduces to blame `,

and (b) any undefined behavior causes the entire computation to reduce to error.

In the subsequent theorem, r is either a value, blame `, or error. Since the first two

forms are typable, the following theorem implies well-typed programs never reduce

to error.

Lemma 28 If MT; Γ ` e : τ and 〈M,V, e〉 → 〈M′,P , r〉 and Γ ∼ V and MT ∼ M

then ∅; ∅ ` r : τ and MT ∼ M′.

Proof: By induction on the derivation of 〈M,V, e〉 → 〈M′,P , r〉. We proceed by

case analysis on the expression e. Note that semantic rules that work on wrapped

values requires that any extra levels of wrapping be removed by (Unwrap), and

that JerrorK` 6∈ r, we also must have reduced it to blame ` by (Wrap-Error) if it

occurred.

Case x: By assumption, MT; Γ ` x : τ , and therefore by (Varτ ), we have Γ(x) = τ .

Then since we have Γ ∼ V, we have x ∈ dom(V) and ∅; Γ ` V(x) : τ . Therefore

MT; Γ ` V(x) : τ . And since x ∈ dom(V), reduction (Var) applies, and therefore

r = V(x).

191



Case s, true, false, new A: Trivial.

Case d: The reduction (Def) applies, so we have M′ = (d,M). Also by assumption,

MT ∼ M. But since we also assume MT; Γ ` d : bool, this implies MT; ∅ ` d : bool,

since Γ is not used in (Defτ ). Thus, we have MT ` (d,M) (notice that the A.m

defined by d already has a type in MT; as a side effect, this implies it already has a

previous definition in M). The remainder of the conclusion is trivial to show.

Case e1; e2: By assumption, MT; Γ ` e1; e2 : τ2. Therefore by (Seqτ ) we have

MT; Γ ` e1 : τ1 and MT; Γ ` e2 : τ2. Suppose 〈M,V, e1〉 → 〈M′,P1, r1〉. Then by

induction, we have ∅; ∅ ` r1 : τ1 and MT ∼ M1. Thus r1 is not error. If it is blame `,

then we are done, since by (Blameτ ) we have ∅; ∅ ` blame ` : τ2. Otherwise r1 must

be a value, and we can reduce via 〈M1,V, e2〉 → 〈M2,P2, r2〉. Also by induction, we

have ∅; ∅ ` r2 : τ2 and MT ∼ M2, so we have shown the conclusion.

Case safe eval` e: By assumption, MT; Γ ` safe eval` e : τ . Then we have

〈M,V, e〉 → 〈M′,P , r〉. By induction, we have ∅; ∅ ` r : string. Then there are

three cases. If r is an unwrapped value, then it must be a string s. Then we must

have applied either (SEval) or (SEval-Blame-Parse). The latter case is trivial

(since we reduced to blame `). In the former case, we had 〈M′,V, Je′K`〉 → 〈M′′,P ′, v〉.

But we also have MT; Γ ` Je′K` : τ by (Wrapτ ). So then by induction ∅; ∅ ` v : τ

and MT ∼ M′′.

Otherwise, r must be a wrapped value (it cannot be error), in which case we

applied (SEval-Wrap), (SEval-Blame), or (SEval-Blame-Parse). The first

case follows the reasoning for (SEval) above, and the last two cases follow trivially

192



by (Blameτ ).

Case JeK`: If (Wrap) was applied, then the conclusion is trivial, since M is

not changed by reduction, and the resulting value is JrK`, which has any type by

(Wrapτ ). If (Wrap-Define) was applied, the result holds by (Blameτ ). If (Un-

wrap) was applied, then the result is trivial by (Wrapτ ). The only other possibility

is (Wrap-Error), in which case the result is also trivial by (Wrapτ ).

Case e1≡e2: Similar to sequencing case.

Case let x = e1 in e2: By assumption, MT; Γ ` let x = e1 in e2 : τ2. Then by

(Letτ ) we have MT; Γ ` e1 : τ1 and MT;x : τ1,Γ ` e2 : τ2. Suppose 〈M,V, e1〉 →

〈M1,P1, r1〉. By induction, we have ∅; ∅ ` r1 : τ1 and MT ∼ M1. If r1 is blame `′

then we are done, and otherwise r1 must be a value.

Let Γ′ = x : τ1,Γ, and let V′ = x : r1,V. Since Γ ∼ V and Γ′ ` x : τ1, we have

Γ′ ∼ V′. Thus if we have 〈M1,V
′, e2〉 → 〈M2,P2, r2〉, we can apply induction to get

∅; ∅ ` r2 : τ2 and MT ∼ M2, which is our conclusion.

Case if e1 then e2 else e3: There are several cases. If e1 reduces to an unwrapped

value, then the proof is by induction, using the assumption that e1 has type bool, and

hence must be a boolean. Otherwise, if e1 reduces to a wrapped value, then we either

apply (If-Wrap-T) or (If-Wrap-F), satisfying the conclusion by induction, or we

apply (If-Wrap-Blame), satisfying the conclusion by induction and (Blameτ ).

Case e0.m(e1, . . . , en): By assumption, MT; Γ ` e0.m(e1, . . . , en) : τ . Thus by

(Callτ ), we must have MT; Γ ` ei : τi for i ∈ 0..n and MT(τ0.m) = τ1×· · ·×τn → τ

and m 6= method missing.

193



Let M = M0. Then MT ∼ M0. Let 〈M0,V, e0〉 → 〈M1,P , r0〉. Then by

induction, we have ∅; ∅ ` r0 : τ0 and MT ∼ M1. If r0 is blame `′ then we are done,

since by (Blameτ ) we have ∅; ∅ ` r0 : τ . Otherwise we know r0 is a value, and

we can continue reducing 〈M1,V, e1〉 → 〈M2,P , r1〉. Iteratively applying the same

argument for all ei, we have MT ` Mn+1 and ∅; ∅ ` ri : τi (unless one of them

reduces to blame `′, in which case we can trivially show the conclusion).

There are several cases, depending on which reduction we applied. Suppose we

applied (Call). Since MT(τ0) = τ1 × · · · τn → τ , we have τ0 = A for some A. And

since MT ∼ Mn+1, there must be some d = (def ` A.m(x1, . . . , xn) = e) ∈ Mn+1

such that MT; ∅ ` d : bool. Let V′ = [self 7→ r0, x1 7→ r1, . . . , xn 7→ rn], and

let Γ′ = (self 7→ A, x1 7→ τ1, . . . , xn 7→ τn). Then we have Γ′ ∼ V′. And, since

MT; ∅ ` d : bool, we must have MT; Γ′ ` e : τ .

Then by (Call), we have 〈Mn+1,V
′, e〉 → 〈M′,P ′, r〉. By induction (using

Γ′ ∼ V′, MT ∼ Mn+1, and MT; Γ′ ` e : τ), we have ∅; ∅ ` r : τ and MT ∼ M′, which

is the conclusion we wanted to show.

Otherwise, suppose that r0 is a wrapped value. If we applied (Call-Meth-

Blame) or (Call-Type-Blame), then we can show the conclusion by (Blameτ ).

Otherwise, we must have applied (Call-Wrap), and we have r0 = Jnew BK`′′ ; no-

tice that it is not necessarily the case that B = A, because by (Wrapτ ), Jnew BK`′′

may have any type. However, by (Call-Wrap) there must be some d = (def ` B.m(x1, . . . , xn) =

e) ∈ M such that MT; ∅ ` d : bool. Let V′ = [self 7→ r0, x1 7→ Jr1K`′′ , . . . , xn 7→

JrnK`′′ ]. Then since MT ∼ Mn+1, there must be a Γ′ and τ ′ such that dom(Γ′) =

dom(V′) and MT; Γ′ ` e : τ ′. But then since all values in V′ are wrapped, by

194



(Wrapτ ) we have Γ′ ∼ V′.

Then by (Call-Wrap), we have 〈Mn+1,V
′, e〉 → 〈M′,P ′, r〉. By induction,

as above, we have ∅; ∅ ` r : τ ′ and MT ∼ M′. Then by (Wrapτ ), we also have

∅; ∅ ` JrK`′′ : τ , showing the conclusion.

Notice that reduction via (Call-M) is impossible, because our type system

does to allow calls to undefined methods, even if a definition of method missing is

present.

Case eval` e: Impossible, because we assume MT; Γ ` eval` e : τ , and there are no

type rules that assign a type to eval` e.

Case e0.send`(e1, . . . , en): Impossible, as above.

Case blame `: Trivial, by (Blameτ ). �

Lemma 29 If MT ` e and 〈M, ∅, e〉 → 〈M′,P , r〉 and MT ∼ M then there exists τ

such that ∅; ∅ ` r : τ .

Proof: By induction on the derivation of MT ` e. There are two cases.

Case (Progτ ): By (Progτ ), we have MT ` d; MT′ and MT′ ` e. Then by (Def′τ ),

we have d = (def ` A.m(x1, . . . , xn) = blame `) and σ = τ1 × · · · τn → τ and

A.m ∈ dom(MT)⇒ MT(A.m) = σ and MT′ = (A.m 7→ σ),MT.

Furthermore, by (Def) we have 〈M, ∅, d〉 → 〈(d,M), ∅, false〉, and by assump-

tion we have MT ∼ M. We need to show MT′ ∼ (d,M). First, observe we have

dom(MT′) = {A.m} ∪ dom(MT) (def of MT′)

= {A.m} ∪ {B.m | (def ` B.m(. . .) = . . .) ∈ M} (MT ∼ M)

= {B.m | (def ` A.m(. . .) = . . .) ∈ (d,M)} (def of d)

195



Second, we need to show

∀d′ = (def ` A.m(. . .) = . . .) ∈ (d,M) we have MT′; ∅ ` d′ : bool

Clearly this holds for all d′ 6= d since MT ∼ M and since MT and MT′ agree on the

signatures of all common methods. And for d′ = d, by (Defτ ) and (Blameτ ) we

have MT′; ∅ ` d : bool.

Now since MT′ ∼ (d,M), let 〈(d,M), ∅, e〉 → 〈M′,P , r〉. By induction, there

exists τ such that ∅; ∅ ` r : τ .

Case (Prog-Exprτ ): By (Prog-Exprτ ), we have MT; ∅ ` e : τ , and we have

assumption MT ∼ M. Let 〈M, ∅, e〉 → 〈M′,P , r〉. Then since ∅ ∼ ∅, by Lemma 28,

we have ∅; ∅ ` r : τ . �

Theorem 30 (Type Soundness) If ∅ ` e and 〈∅, ∅, e〉 → 〈M,P , r〉, then r is

either a value of blame ` (i.e., r 6= error).

Proof: Since ∅ ∼ ∅, we can apply Lemma 29 to show there exists τ such that

∅; ∅ ` r : τ . Therefore r is either a value or has the form blame `. �

196



Bibliography

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.

[2] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically
typed language. ACM TOPLAS, 13(2):237–268, 1991.

[3] O. Agesen and U. Hölzle. Type feedback vs. concrete type inference: A com-
parison of optimization techniques for object-oriented languages. In OOPSLA,
pages 91–107, 1995.

[4] O. Agesen, J. Palsberg, and M. Schwartzbach. Type Inference of SELF.
ECOOP, 1993.

[5] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 1988.

[6] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft Typing with Conditional
Types. In POPL, pages 163–173, 1994.

[7] J. D. An, A. Chaudhuri, and J. S. Foster. Static Typing for Ruby on Rails.
In Proceedings of the 24th IEEE/ACM International Conference on Automated
Software Engineering, Auckland, New Zealand, Nov. 2009. To appear.

[8] D. Ancona, M. Ancona, A. Cuni, and N. Matsakis. RPython: Reconciling
Dynamically and Statically Typed OO Languages. In DLS, 2007.

[9] C. Anderson, P. Giannini, and S. Drossopoulou. Towards Type Inference for
JavaScript. In ECOOP, pages 428–452, 2005.

[10] J. Aycock. Aggressive Type Inference. In Proceedings of the 8th International
Python Conference, pages 11–20, 2000.

[11] L. Bak, G. Bracha, S. Grarup, R. Griesemer, D. Griswold, and U. Holzle. Mixins
in Strongtalk. Inheritance Workshop at ECOOP, 2002.

[12] M. Bond, N. Nethercote, S. Kent, S. Guyer, and K. McKinley. Tracking bad
apples: reporting the origin of null and undefined value errors. In Proceedings
of the 2007 OOPSLA conference, pages 405–422. ACM New York, NY, USA,
2007.

[13] G. Bracha and W. Cook. Mixin-based inheritance. In OOPSLA/ECOOP, pages
303–311, 1990.

[14] M. Braux and J. Noyé. Towards partially evaluating reflection in Java. In
PEPM, pages 2–11, 2000.

197



[15] K. B. Bruce, A. Schuett, and R. van Gent. Polytoil: A type-safe polymorphic
object-oriented language. In W. G. Olthoff, editor, ECOOP, pages 27–51, 1995.

[16] B. Cannon. Localized Type Inference of Atomic Types in Python. Master’s
thesis, California Polytechnic State University, San Luis Obispo, 2005.

[17] L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 17(4):471–523, 1985.

[18] R. Cartwright and M. Fagan. Soft typing. In PLDI, pages 278–292, 1991.

[19] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise Analysis of
String Expressions. In SAS, pages 1–18, 2003.

[20] R. Chugh, J. Meister, R. Jhala, and S. Lerner. Staged information flow for
javascript. In Proceedings of the 2009 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Dublin, Ireland, June 2009.
To appear.

[21] O. Danvy. Functional Unparsing. Technical Report RS-98-12, BRICS, Depart-
ment of Computer Science, University of Aarhus, May 1998.

[22] R. Davies and F. Pfenning. Intersection Types and Computational Effects. In
Proceedings of the Fifth ACM SIGPLAN International Conference on Func-
tional Programming, Montreal, Canada, Sept. 2000.

[23] A. Demaille, R. Levillain, and B. Sigoure. Tweast: a simple and effective
technique to implement concrete-syntax ast rewriting using partial parsing. In
S. Y. Shin and S. Ossowski, editors, SAC, pages 1924–1929. ACM, 2009.

[24] J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for
objects. In Proceedings of the tenth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 169–184, Oct. 1995.

[25] R. B. Findler and M. Blume. Contracts as pairs of projections. In FLOPS,
volume 3945, pages 226–241, Fuji Susono, JAPAN, Apr. 2006. Springer-Verlag.

[26] R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ICFP,
pages 48–59, 2002.

[27] R. B. Findler, M. Flatt, and M. Felleisen. Semantic casts: Contracts and
structural subtyping in a nominal world. In ECOOP, pages 365–389, 2004.

[28] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen. Catching
Bugs in the Web of Program Invariants. In PLDI, pages 23–32, 1996.

[29] D. Flanagan and Y. Matsumoto. The Ruby Programming Language. O’Reilly
Media, Inc, 2008.

198



[30] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically Generated
Queries in Database Applications. In ICSE, pages 645–654, 2004.

[31] J. O. Graver and R. E. Johnson. A type system for Smalltalk. In PLDI, pages
136–150, 1990.

[32] J. Gronski, K. Knowles, A. Tomb, S. Freund, and C. Flanagan. Sage: Hybrid
Checking for Flexible Specifications. Scheme and Functional Programming,
2006.

[33] L. T. Hansen. Evolutionary Programming and Gradual Typing in ECMAScript
4 (Tutorial), Nov. 2007.

[34] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing. Trends
in Functional Programming, 2007.

[35] M. Hirzel, A. Diwan, and M. Hind. Pointer Analysis in the Presence of Dynamic
Class Loading. In ECOOP, 2004.

[36] A. Igarashi and H. Nagira. Union types for object-oriented programming. In
SAC, pages 1435 – 1441, 2006.

[37] IronRuby - Ruby implementation for the .net platform, May 2009. http://

www.ironruby.net/.

[38] T. Jim. Rank 2 Type Systems and Recursive Definitions. Technical Report
MIT/LCS/TM-531, Laboratory for Computer Science, Massachusetts Institute
of Technology, Nov. 1995.

[39] JRuby - Java powered Ruby implementation, Feb. 2008. http://jruby.

codehaus.org/.

[40] MacRuby - Ruby implementation built on top of the objective-c common run-
time and garbage collector, May 2009. http://www.macruby.org/.

[41] G. Kahn. Natural semantics. In 4th Annual Symposium on Theoretical Aspects
of Computer Sciences, pages 22–39, London, UK, 1987. Springer-Verlag.

[42] K. Kristensen. Ecstatic – Type Inference for Ruby Using the Cartesian Product
Algorithm. Master’s thesis, Aalborg University, 2007.

[43] X. Leroy. The Objective Caml system, Aug. 2004.

[44] B. Livshits, J. Whaley, and M. S. Lam. Reflection Analysis for Java. In ASPLS,
2005.

[45] R. A. MacLachlan. The python compiler for cmu common lisp. In ACM con-
ference on LISP and functional programming, pages 235–246, New York, NY,
USA, 1992.

199



[46] Y. Matsumoto. Ruby Language Reference Manual, version 1.4.6 edition, Feb.
1998. http://docs.huihoo.com/ruby/ruby-man-1.4/yacc.html.

[47] J. Morrison. Type Inference in Ruby. Google Summer of Code Project, 2006.

[48] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate
Language and Tools for Analysis and Transformation of C Programs. In CC,
pages 213–228, 2002.

[49] NetBeans - integrated development environment with support for the Ruby
language, May 2009. http://www.netbeans.org/.

[50] E. Onzon. dypgen User’s Manual, Jan. 2008.

[51] I. Pechtchanski and V. Sarkar. Dynamic optimistic interprocedural analysis: a
framework and an application. In OOPSLA, pages 195–210, 2001.

[52] B. Pierce. Programming with Intersection Types and Bounded Polymorphism.
PhD thesis, CMU, 1991.

[53] B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[54] RadRails - Ruby on Rails authoring environment, May 2009. http://aptana.
com/rails/.

[55] M. C. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S. Beebee.
Enhancing server availability and security through failure-oblivious computing.
In OSDI, pages 303–316, 2004.

[56] Ruby Parser - Ruby parser written in pure Ruby, May 2009. http://

parsetree.rubyforge.org/.

[57] Flog, Flay, and Heckle - Ruby source analysis tools, May 2009. http://ruby.
sadi.st/.

[58] M. Salib. Starkiller: A Static Type Inferencer and Compiler for Python. Mas-
ter’s thesis, MIT, 2004.

[59] J. Sawin and A. Rountev. Improved static resolution of dynamic class loading
in Java. In IEEE International Working Conference on Source Code Analysis
and Manipulation, pages 143–154, 2007.

[60] Steel Bank Common Lisp, 2008. http://www.sbcl.org/.

[61] J. Siek and W. Taha. Gradual typing for objects. In ECOOP, pages 2–27, 2007.

[62] J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme
and Functional Programming Workshop, September 2006.

200



[63] S. A. Spoon. Demand-driven type inference with subgoal pruning. PhD the-
sis, Georgia Institute of Technology, Atlanta, GA, USA, 2005. Director-Olin
Shivers.

[64] V. Sreedhar, M. Burke, and J. Choi. A framework for interprocedural opti-
mization in the presence of dynamic class loading. In PLDI, pages 196–207,
2000.

[65] B. Stewart. An Interview with the Creator of Ruby, Nov. 2001. http://www.

linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html.

[66] Strongtalk, 2008. http://www.strongtalk.org/.

[67] S. Thatte. Quasi-static typing. In POPL, pages 367–381, 1990.

[68] P. Thiemann. Towards partial evaluation of full scheme. In Reflection 96, pages
95–106, 1996.

[69] P. Thiemann. Towards a type system for analyzing javascript programs. In
ESOP, pages 408–422, 2005.

[70] D. Thomas, C. Fowler, and A. Hunt. Programming Ruby: The Pragmatic
Programmers’ Guide. Pragmatic Bookshelf, 2nd edition, 2004.

[71] F. Tip, C. Laffra, P. Sweeney, and D. Streeter. Practical experience with an
application extractor for Java. In OOPSLA, pages 292–305, 1999.

[72] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: from scripts to
programs. In OOPSLA, pages 964–974, 2006.

[73] S. Tobin-Hochstadt and M. Felleisen. The Design and Implementation of Typed
Scheme. In POPL, pages 395–406, 2008.

[74] M. Tomita. Generalized LR Parsing. Springer, 1985.

[75] G. van Rossum and J. Fred L. Drake. The Python Language Reference Manual.
Network Theory Ltd., 2006.

[76] B. Venners. The Philosophy of Ruby: A Conversation with Yukihiro Mat-
sumoto, Part I, Sept. 2003. http://www.artima.com/intv/rubyP.html.

[77] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly & Asso-
ciates, 3rd edition edition, July 2000.

[78] J. B. Wells. Typability and type checking in System F are equivalent and
undecidable. Ann. Pure Appl. Logic, 98(1–3):111–156, 1999.

[79] D. A. Wheeler. Sloccount, 2008. http://www.dwheeler.com/sloccount/.

[80] Wikipedia. Duck typing, 2009. http://en.wikipedia.org/wiki/Duck_

typing.

201



[81] A. Wright and R. Cartwright. A practical soft type system for scheme. ACM
TOPLAS, 19(1):87–152, 1997.

[82] A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness.
Information and Computation, 115(1):38–94, 1994.

[83] R. Wuyts. RoelTyper, May 2007. http://decomp.ulb.ac.be/roelwuyts/

smalltalk/roeltyper/.

[84] Yaml: Yaml ain’t markup language, July 2009. http://www.yaml.org/.

[85] Yarv bytecode table, May 2009. http://lifegoo.pluskid.org/upload/doc/
yarv/yarv_iset.html.

202


