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Investigators frequently need to quickly learn new research domains in order

to advance their research. This thesis presents five contributions to understanding

how software helps researchers explore scientific literature networks. (1) A taxon-

omy which summarizes capabilities in existing bibliography tools, revealing patterns

of capabilities by system type. (2) Six participants in two user studies evaluate

Action Science Explorer (ASE), which is designed to create surveys of scientific

literature and integrates visualizations and statistics. Users found document-level

statistics and attribute rankings to be convenient when beginning literature ex-

ploration. (3) User studies also identify users’ questions when exploring academic

literature, which include examining the evolution of a field, identifying author rela-

tionships, and searching for review papers. (4) The evaluations suggest shortcomings

of ASE, and this thesis outlines improvements to ASE and lists user requirements for

bibliographic exploration. (5) I recommend strategies for evaluating bibliographic

exploration tools based on experiences evaluating ASE.
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Chapter 1

Introduction

1.1 Problem Definition

A frequent challenge for researchers and scholars is to quickly learn about a

new research area. There are many reasons someone may need to do this. Re-

searchers who wish to apply a state-of-the-art technique to their research will need

to search for leading papers and recent breakthroughs. A review panel which is re-

viewing grant proposals from unfamiliar fields may need to identify solved problems,

open questions, current trends, and emerging fields. Graduate students who need to

become familiar with the research in their chosen areas may search for historical pa-

pers, leading authors and research groups, appropriate publication venues, current

research methodology, and new directions for research. These tasks can be challeng-

ing due to the disparate sources of literature and the relative lack of powerful tools

to support exploring and summarizing academic literature.

1.1.1 Exploration of Academic Literature

Users with different profiles may wish to explore academic literature to an-

swer different but overlapping questions. Therefore, systems for exploring academic

literature should ideally support a variety of tasks and levels of users, thus introduc-

ing a significant challenge for system designers: A wide range of use cases need to
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be explored. For example, students may seek to identify a central paper for a class

presentation, interdisciplinary researchers will need to learn about research methods

from other domains, and new researchers will want to dig deep into a field of study.

As time goes by, digital libraries continue to expand due to new literature being

written and old literature continuously being digitized, thus perpetually enlarging

the pool of literature to explore. Although improving the accessibility of literature

should benefit researchers, it puts pressure on literature exploration systems to

support larger data sets, thus making in-depth exploration of digital libraries a

more challenging process.

Existing systems, such as Google Scholar [22] and CiteSeerX [42], provide

summaries on a per-paper basis. For a paper A, these summaries may include the

paper’s title, the abstract, list of authors, year of publication, number of citations,

a list of papers citing A, and excerpts from other papers showing the text that cites

A. These data and statistics can be useful for understanding the paper’s domain

and impact, but may be less helpful for exploring the domain or for understanding

the domain as a whole.

Furthermore, there is surprisingly little overlap in supported functionality

across existing systems, possibly indicating that there is no consensus regarding

which features are most salient for exploring academic literature. Search engine-

based systems naturally center around searching, but users may not have a clear

goal in mind, or the goal may be expressed in a query that a literature search engine

cannot easily answer, such as identifying the most prominent authors in a given

field of research. My first contribution is a survey in Section 2.2 of existing systems
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which can be used to explore scientific literature.

The discovery process potentially could be improved by providing summaries

of an entire academic field instead of summaries on a per-paper basis. To this end,

researchers have worked on summarizing literature textually and providing graphical

overviews, e.g., through citation summarizations [36] and graphical models of cita-

tions [3]. This could be augmented through additional visualizations, statistics, and

metadata. For example, combining a citation visualization with citation summaries

may be more powerful than either approach when used alone.

Action Science Explorer (ASE) was developed to address these issues. The

Visual Information Seeking Mantra [57] suggests providing an overview, allowing

users to zoom and filter, and giving details on demand. This can be a beneficial

model for exploring academic literature. In this situation users may wish to view

an overview of the papers in the domain, filter out uninteresting papers, and ac-

cess specific details on a given paper. ASE supports these actions by integrating

SocialAction, a network analysis tool with statistics and a dynamic network visu-

alization, and JabRef, a reference manager. SocialAction provides an overview by

displaying a collection of papers as a citation network, and allows users to rank

and filter papers by statistical properties. Selecting a paper will show the details

about the paper in JabRef plus display all sentences from other papers that cite the

selected paper. These are some of the many features supported by ASE, which is

described in more detail in Section 2.4.

These features may be highly beneficial for the exploration and discovery pro-

cess. With this in mind, we wish to determine whether and how ASE supports
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academic literature exploration. Specifically:

• What questions do users need/want to ask when exploring academic literature?

• Does ASE have sufficient features for users to make deep conclusions about a

collection of papers?

• How does ASE help users understand the literature in a new domain?

• What possible modifications would improve the system?

• What is the trajectory of use of new users as they learn ASE?

• For mature users, what are the process models of how they employ ASE?

My second contribution addresses these questions with an extended usability

study of ASE using qualitative research methods. The extended usability study

revealed several effective capabilities in ASE and some potential improvements to

ASE, which led me to develop an improved version of ASE. This user study also

led to my third contribution, which is a list of questions that users ask and tasks

that users wish to perform when they explore scientific literature. Additionally, my

fourth contribution is a list of user requirements for literature exploration systems.

1.1.2 Evaluation of Exploration Systems

A problem related to exploration of academic literature is how to evaluate

systems that support exploration and knowledge discovery. Some discoveries while

exploring the literature might be considered simple and may not require much time
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or effort if those actions are appropriately supported by the system, such as de-

termining the number of citations a paper has received. Yet other discoveries may

require longer periods of system use, such as identifying emerging trends in research.

There is no guarantee that discovery will happen quickly while exploring data [49],

and since I wish ultimately to evaluate whether the system supports discovery the

evaluation process should account for usage goals that may differ from other types

of systems such as productivity tools.

Emerging trends in evaluation methods aim to support effective evaluation of

exploration systems. Although controlled experiments measuring time and errors

have been a common metric for user interfaces, they may be less relevant for inter-

faces supporting discovery [49]. To resolve this, researchers have begun emphasiz-

ing open-ended protocols and qualitative analysis [39]. These evaluation strategies

might be realized through case studies which can be useful for analyzing long-term

patterns of use of the system [49], although when used alone with small numbers of

participants the results of case studies may not generalize well.

The goal of validity may be more effectively achieved through the use of Multi-

dimensional In-depth Long-term Case studies (MILCs), which are especially well

adapted to evaluating systems that support creativity, exploration, and discovery

[59]. MILCs emphasize long-term use of the system by domain experts solving

their own problems where usage data is collected from a variety of sources, such as

participant observation, surveys, interviews, and usage logs.

In this thesis I explored the use of extended usability studies for evaluating

evolving prototypes of Action Science Explorer. These evaluations yielded insights

5



into the evaluation methodology. My fifth contribution in this thesis is a set of

recommendations for evaluators of literature exploration systems.
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Chapter 2

Related Work

In this chapter I review related work in information seeking, literature explo-

ration systems, and evaluation methodology.

2.1 Information Seeking Theory

Hearst [24] provides a review of Information Seeking (IS) theories. These the-

ories frequently assume that seekers operate in a process which involves recognizing

an information need, specifying the query, evaluating the results, and possibly re-

formulating the query. However, when users are unsure what they are looking for,

or how to describe it, they may be more inclined to participate in exploration or

browsing behavior instead of searching.

Taylor was an early writer on the process of asking questions and information

need. He describes four levels of information need [61] [62]:

1. The actual, but unexpressed, need for information.

2. The conscious within-brain description of the need.

3. The formal statement of the question.

4. The question as presented to the information system.
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Taylor points out that information seekers frequently cannot define what they want,

but they are able to describe why they need it [62].

Kuhlthau conducted five studies to investigate common user experiences dur-

ing information seeking [33]. Her studies showed that the information seekers go

through a six-stage Information Search Process: initiation, selection, exploration,

formulation, collection, and presentation. Pirolli and Card [46] discuss information

foraging. Analysts tend to select documents which have a potentially high profit

and narrow the set down before finally reading the refined set of documents. In this

way analysts follow a “scent” or cue about how to direct the search process. Bates

[4] presents several information search stratagems and gives several examples, such

as the Area Scan where users identify a general area of interest and then browse in

that area.

One problem that information seekers frequently face is that they do not know

how to express or define what they don’t know, or their information need [30] [29] [5]

[6] [62] [5]. Hutchins discusses an approach to this problem where the “aboutness”

of documents is described in terms of the author’s presuppositions about readers

[30] [29]. In this approach, information systems contain descriptions of documents in

terms of what the document’s author presupposes the reader knows. The motivation

comes from the fact that even though information seekers may not know how to

express their information need, seekers can still define what they do know. Thus,

the information system can lead users from what they know to what they don’t

know, which they don’t know how to express or define.

Another model which describes the information seeking is Belkin’s Anomalous
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States of Knowledge (ASK) [5] [6]. Belkin calls “Anomalies” the factors that cause

people to go to IR systems. ASK is a synthesis of several other ideas, and the process

is described as follows: A person begins by realizing she has an information need. She

then queries an information retrieval system, and evaluates the information returned

from the system. She then decides if her information need has been completely

satisfied, only partly satisfied, or not satisfied at all. This inherently raises the

question of how to represent what is not known to the information seeker. Part of

the ASK model is the concept of non-specifiability of need, which can be cognitive or

linguistic. Cognitive non-specifiability can manifest itself as a low level of formedness

of need where information seekers cannot define their needs exactly, or as a high

level of formedness of need where information seekers know precisely what will satisfy

their needs. Linguistic non-specifiability refers to the ability of users to describe the

query in the appropriate language (e.g., if users know the kind of knowledge they

need but not the keywords to describe it). According to Belkin, when the anomaly

in the state of knowledge is at the lower end of the cognitive scale, the state of

knowledge is ill-formed and the individual does not know what knowledge will be

useful and how to modify his knowledge to meet the information need [5] [6].

2.2 Exploring Academic Literature

Several systems currently exist for exploring and summarizing academic lit-

erature, each with different strengths and features. The list below contains an

appropriate sample of the available systems and features.
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CiteSeerX is an online digital library for scientific literature [42]. It incorpo-

rates citation statistics (Figure 2.2), lists of citing papers, and the citation context

(i.e. an excerpt of the citing paper which contains the citation, see Figure 2.1).

These summaries and statistics provide insight into a paper and its contribution:

the number of citations indicate the impact of the paper, the citing papers indicate

the domains which are interested in the work, and the citation context indicates why

the paper is being cited. CiteSeerX also allows users to view search results sorted by

publication year or number of citations. This information is potentially highly valu-

able for exploring academic literature, but the information is spread apart in many

different pages which potentially makes it difficult to see an overview of a domain;

each view is essentially limited to each paper rather than an entire discipline. Thus,

although CiteSeerX might be a useful system for summarizing individual papers, it

is not ideal for summarizing an entire body of literature.

Google Scholar [22] is an application of the Google search interface to articles,

patents, and court cases. Figure 2.3 shows a page with search results for the query

“Support-Vector Networks”. Search results are similar to CiteSeerX and display

the paper’s title, authors, publication venue and date, text excerpts highlighting

keyword matches, and citation count. Again, these data can be useful for single-

document search, but it may not be useful for multi-document exploration.

GoPubMed [66] shows publications by year and country (both in numeric and

visualization form), by journal and keywords (numeric form only), and a network

showing coauthorship of top authors. These data can be shown for authors, journals,

and search queries. Figure 2.4 shows the top terms and publication counts over time
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Figure 2.1: Query results page on CiteSeerX for “Support-Vector Networks”. (1)

Search results can be ranked by search relevance, number of citations, publication

year, or recency (which attempts to provide results that are both relevant and

recent). (2) Excerpts from the documents which match the search query are shown

in bold italics, and the citation count is shown at the bottom of each record.
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Figure 2.2: CiteSeerX’s detailed view of a paper, “Support-Vector Networks” by

Corinna Cortes and Vladimir Vapnik. (1) Clicking the link for the number of ci-

tations shows all the documents which cite “Support-Vector Networks” and allows

users to see the citation context of each citation. (2) The list of papers which

“Support-Vector Networks” cites, with citation counts for each citation.
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Figure 2.3: Query results page on Google Scholar for “Support-Vector Networks”.

Search results can be filtered by recent years. Excerpts from the documents which

match the search query are shown in bold text, and the citation count is shown at

the bottom of each record.

13



for the author Antonella Tosti, and Figure 2.5 shows her collaboration network.

Unfortunately, the visualizations and statistics are static, which forces the website

to reload whenever the focus changes to a different keyword, author, or journal.

Furthermore, the summaries listed above are not available on a per-paper basis,

which potentially limits the analysis that can be performed.

Web of Knowledge [63] can create a citation map using hyperbolic trees which

show a hierarchy of papers and the papers that cite them, as shown in Figure 2.6.

These citation maps support a limited amount of dynamic interaction, mainly for

changing the focal point of the map. Other interactions, such as filtering by pub-

lication year, require recreating the citation map which slows down the interaction

and exploration process.

Of course, no system can work with documents that are not already part of

its library. One of the limitations of the above systems is that there is no way to

load additional documents, or to filter out all but a subset of the documents. The

systems described below allow users to define custom libraries.

Reference managers such as JabRef [31], Zotero [9], EndNote [64], and Mende-

ley [35] also provide search features and some limited summary capabilities. For

example, users can import a library of documents into Mendeley and then use it to

search the full-text of the document, write notes on a document, and view limited

statistics such as the number of publications per author and the most frequent pub-

lication venues. These statistics either can be aggregated across all documents in a

user’s own library or aggregated across all documents from all Mendeley users’ li-

braries (see Figures 2.7 and 2.8). However, even though a custom-built library could
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Figure 2.4: A view in GoPubMed of the author Antonella Tosti which shows (1) a

summary of top terms, and (2) a bar chart of publication counts over time.
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Figure 2.5: A view in GoPubMed of the author collaboration network for Antonella

Tosti.
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Figure 2.6: A citation map in Web of Knowledge of “Literate Programming” by

Donald Knuth. This network can be filtered by publication year (1)—in this case,

the network is filtered to show only papers published between 1970 and 1995. The

citation map (2) shows the backward citations (i.e., papers cited by “Literate Pro-

gramming”) and forward citations (i.e., papers that cite “Literate Programming”).
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promote improved searching, many of these features in reference managers are not

any better for summarizing groups of papers than digital libraries such as CiteSeerX

and Google Scholar, and in some ways are worse because reference managers do not

tend to provide lists of citing papers or citation context.

XplorMed is a system for summarizing literature search results by keywords

and word context [45]. Analyses are performed on abstracts, and results show key-

words and keyword chains, plus their frequencies of occurrence in the abstracts along

with the abstracts themselves. Users can iteratively refine a corpus by repeatedly fil-

tering out documents with low keyword frequencies. Figure 2.9 shows screenshots of

this process in Xplormed. XplorMed also allows users to supply their own database

to analyze. However, the system does not allow users to visualize the data.

Recommender systems can also be used to aid the exploration of academic

literature [65] [34] [23]. These systems work by recommending papers based on a

given input, such as a paper or author name. Ekstrand et al. [18] use a novel ap-

proach that incorporates the influence of a paper when recommending introductory

academic reading lists, but the authors assume that users already have a few pa-

pers in the field they want to learn about. Although these systems can recommend

relevant papers, they do not necessarily give users an overview of a domain, nor do

they freely allow users to explore the literature.

Boyack and Börner [8] used VxInsight [15] to visualize interconnections be-

tween research areas, institutions, grants, publications, and authors. The relation-

ships were visualized as 3D landscape maps with points representing keywords,

institutions, and other fields (see Figure 2.10 for an example). Boyack and Börner’s
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Figure 2.7: Mendeley can aggregate information from all users’ libraries and show

users (1) the top read articles in one or all disciplines, and (2) the most read articles

in one or all disciplines.
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Figure 2.8: For users’ own personal libraries, Mendeley can show (1) the growth in

users’ libraries over time, (2) the top authors, (3) the top publication outlets, and

(4) the most frequently used tags.
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(a) MeSH categories. (b) Word associations.

(c) Word chains.

Figure 2.9: XplorMed users can filter their document set by categories and year (a),

see word association scores (b), and filter documents by ranked word chains (c).
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Figure 2.10: Boyack and Börner’s visualization in VxInsight of Behavioral and So-

cial Research (BSR) Program grants and publications clustered by Medical Subject

Heading (MeSH) terms. Labels show common keywords, and height indicates num-

ber of documents. Image is from [8].

primary goal was to explore these relationships, but the landscape maps also show

the relative sizes of research areas and sub-areas, which could be useful for exploring

growing sub-topics. The authors noted several difficulties in collecting and linking

datasets, highlighting some of the issues with cleaning and merging data from dis-

parate sources. Although their visualizations yielded interesting results, a purely

visualization-driven interface would have difficulty revealing details of the research.

CiteSpace II uses purple rings and burst-detection to indicate indicate sudden

activity in networks (see Figure 2.11(a)), indicating breakthroughs and foundational
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work in scientific literature networks [10]. Chen et al. [12] summarize author co-

citation and document co-citation networks used for providing overviews of the field

of information science. They go on to introduce a co-citation analysis technique in

CiteSpace II using structural, temporal, and semantic patterns plus citations and

automatic clustering and labeling. One aspect of this is a co-citation timeline shown

in Figure 2.11(b). The authors then used these methods to identify specialties within

the information science domain.

Trimmer is a system that produces text summaries of scientific literature in

the context of the iOPENER project [71] [36] [72]. Several sources may serve as

input to Trimmer, including full papers, abstracts, and citation texts (the set of

sentences from other papers that refer to a given paper). Summaries can be helpful

for gaining understanding understanding about unfamiliar corpora, but Trimmer

was not designed to explore literature networks.

The iOPENER project also explored the use of a network visualization of

citations to reveal research fronts and their relationships on a semantic substrate

that grouped related papers in separate screen regions [3].

News summarizers also attempt to summarize topics and corpora. One exam-

ple is NewsInEssence [50] which summarizes news topics, but does not necessarily

account for the corpus structures which are relevant for scientific literature domains.

As such, these summaries might not be successful at telling the story of the evolution

of a field. NewsCube [41] allows aspect-level news browsing and classifies articles by

similarities of aspects, or viewpoints, which allows partitioning not only by topic but

by author perspective. However, neither summarization nor aspect-level browsing
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(a) Citation bursts are shown by purple rings.

(b) Co-citation cluster timeline.

Figure 2.11: CiteSpace II can highlight sudden increases in citations with bursts of

color (a) and show co-citation clusters over the timeline of the network (b).
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Summary of textual excerpts • •

Custom database • • • • • • • •

Create notes • • • •

Ranking • • • • • • • •

Full-text search • • • • • •

Document recommendations • • • • • •

Document statistics • • • • • •

“Cited by” list • • • • •

Search excerpts • • •

Corpus statistics • • •

Keyword summary • • •

Citation visualization • •

Citation context •

Table 2.1: Table of capabilities by system, grouped by system type (search engines,

reference managers, and summarizers and recommenders).

alone will provide both overviews and details on demand of a pool of articles.

Table 2.1 summarizes the above systems by the following capabilities, defined

in terms of a given paper c, a set of papers C (that include c) loaded in the sys-

tem, and a superset corpus S (e.g., the Association of Computational Linguistics

Anthology):

Summary of textual excerpts Automatically generated summaries from textual

excerpts from c or documents citing c.
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Custom database The capability to load a custom document database C into the

system.

Create notes Tool for creating and storing notes in the system about c or some

subset of C.

Ranking A ranking of documents in C or S, using features such as publication

year, author, citation count, etc.

Full-text search A query tool that searches text in c in addition to the metadata

associated with c.

Document recommendations Recommendations of documents in C or S of likely

interest to users.

Document statistics Statistical information about c.

“Cited by” list A list of documents in C or S that cite c.

Search excerpts Search query results that show text excerpts highlighting the

query keywords in c.

Corpus statistics Statistical information about C or S.

Keyword summary A list of the most prominent keywords or phrases in c, C, or

their metadata.

Citation context The citing text that shows the context of the citation of c.
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Citation visualization A visualization showing a partial or complete citation net-

work, possibly centered on a single paper c.

The digital libraries, such as CiteSeerX and Google Scholar, tend to support

literature exploration and features for summarizing articles and authors, but are

less likely to support functionality to summarize an entire field or corpus such as

corpus-level statistics. Reference managers have the benefit of supporting custom-

built databases and sorting references by various properties, but generally lack infor-

mation on citation links between papers. Recommender and summarization systems

provide automatic reports on a corpus, but the ones surveyed here do not support

citation-level summaries or statistics. Overall, one can see a trend where each class

of system tends to support a specific set of functionalities. In particular, most of

these applications lack visualizations and the ability to see the citation context which

give the context of citations. Each application has a different target audience, and

across all applications there seems to be a lack of support for effectively summarizing

and exploring academic literature.

Interestingly, the systems that support document statistics do not usually sup-

port corpus statistics, even though these seem to be similar and related capabilities.

The systems that provide document statistics are more likely to also provide docu-

ment recommendations and a “cited by” list instead.
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2.3 Evaluation

Human-subjects evaluation of bibliographic systems and digital libraries is

important to analyze the utility and acceptance of the systems. Xie [68] highlights

many issues surrounding user evaluation of digital libraries. According to Xie, us-

ability is the most investigated evaluation criterion. She performed an evaluation

with graduate students in Information Studies, who may have a different perspective

on digital libraries from non-professional information seekers. The study compared

the use and perception of the American Memory and University of Wisconsin Digi-

tal Collections digital libraries, and found that users regarded usability and system

performance as the most important criteria. Other studies have compared two or

three IR systems or digital libraries [47] [70] [74].

Scatter/Gather [13] is a browsing technique for large corpora. Scatter/Gather

clusters similar documents, and then allows users to iteratively select documents

and clusters, and then re-cluster the selection. Pirolli et al. [47] compared Scat-

ter/Gather to a word-based search interface in their abilities to retrieve docu-

ments and enhance users’ understanding of the document collection. The evalu-

ation methodology required participants to locate documents on a specific topic,

and draw diagrams of the document collection structure. They found that Scat-

ter/Gather alone is not as effective as other kinds of information retrieval tools for

finding specific documents; however, Scatter/Gather can be useful for exploratory

browsing.

Yuan et al. [70] compared user perception of retrieval results visualization sys-
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tem and a text-based information retrieval system. They used CiteSpace and Web

of Science as the visualization and text-based systems respectively. The researchers

conducted a user study with search-based and browsing-based tasks, and then mea-

sured participants’ perceptions. Participants perceived CiteSpace as more usable

for the tasks, and users felt that the visualization system conveyed the information

significantly better than the text-based system.

Zhang et al. [74] conducted usability studies to examine the usability of in-

teraction design in the ACM, IEEE Xplore, and IEEE Computer Society digital

libraries. As with the study in Yuan et al., the participants performed search-based

and browsing-based tasks; however, this study was augmented with user feedback.

Zhang et al. conclude by providing guidelines for the interface design of other digital

libraries.

Hill et al. [26] conducted user evaluations of three versions of the Alexandria

Digital Library. They used several evaluation methodologies, and the researchers

used the results to iteratively improve the interface.

A major issue in user interfaces is that of evaluation: widely used quantitative

techniques in tightly controlled laboratory conditions may not be adequate for cap-

turing important aspects of system usage, such as creativity and discovery [7] [11]

[59]. Common metrics in HCI research often focus on measuring the time to com-

plete a task or the number of errors while performing the task [7]. One alternative to

task completion time or number of errors is to quantitatively or qualitatively analyze

the insights gained from using the system [54] [69] [60] [53]. Other alternatives have

been proposed for evaluating effectiveness of different presentation approaches—
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such as the application of ROUGE or Pyramid metrics for automatic evaluation of

textual summaries of academic literature [36]—but these methods do not involve

user evaluation nor do they assess visualization and exploration capabilities.

Qualitative evaluation methods for information visualization systems are be-

coming more common [59], which include cognitive walkthroughs [1], Grounded The-

ory [20], longitudinal studies [53] [55] [44], surveys [27] [55] [73], and case studies

[55] [56] [44]. This reflects a growing shift that emphasizes the need for participants

to use systems under naturalistic conditions similar to their everyday situations [49]

[59].

Short-term studies—such as one- to two-hour evaluation sessions—when ap-

plied to data exploration systems are criticized because they are unable to capture

the sort of insights gained by long-term data analysis [53] [49] [59] [67]. In contrast,

longitudinal case studies have been successfully used to evaluate several information

visualization systems [21] [55] [53].

Questionnaires are occasionally used to supplement other evaluation tech-

niques with a quantitative component [55]. Questionnaires can be especially useful

for measuring participant preferences and providing overviews [24]; however when

used alone they may not provide sufficient depth to provide useful insights about

the system under evaluation [25].

Several researchers highlight the need to have research participants analyze

their own data, which keeps participants motivated and gives the system significance

[53] [20] [59] [28] [49] [24]. They argue that systems to support discovery should be

tested in more realistic situations where users will try to make discoveries, and
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users will be more interested in making discoveries if they are important to the

users. Thus, users may be less motivated to explore data and less likely to make

discoveries if the discoveries and data are less significant to the users.

Although qualitative evaluations can allow more flexibility for studying cer-

tain aspects, such as long-term effects or allowing participants to use their own

data, these methods have their own limitations: as evaluators reduce carefully con-

trolled conditions they risk reducing the generalizability of their results. However,

an emerging idea is that by “triangulating” with multiple evaluation methods these

limitations can be minimized [59]. If multiple evaluation methods all indicate the

same pattern of usage, then there is some reassurance in claims about the system’s

usage.

The challenges of effective evaluation are some of the motivations for advocat-

ing Multi-dimensional In-depth Long-term Case studies (MILCs) as described by

Shneiderman and Plaisant [59]. By using multiple evaluation methods in long-term

case studies where participants analyze their own data, we can gain meaningful

understanding of how the system is actually being used and whether it has the

necessary functionality for users to perform the tasks they wish to perform.

Perer and Shneiderman used a methodology inspired by MILCs to evaluate

SocialAction [44]. Their approach was to use interviews and long term case studies

over 4–8 weeks with four participants who were each analyzing their own data.

The case studies detailed the stages of users’ development of SocialAction’s usage,

including training, early use, mature use, and outcomes. However, adding other

dimensions to the study may have revealed insights such as which features are used
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most commonly for certain types of analyses.

Seo and Shneiderman also used a MILC-like methodology for evaluating Hier-

archical Clustering Explorer [55] by using questionnaires and three long-term case

studies. The case studies consisted of interviews and participant observation which

lasted for several months. In an attempt to increase the generalizability of the case

studies the evaluators recruited participants from different fields. The questionnaires

provided insight into frequency of use, feature usage, and impact on data analysis.

Multiple-window and multiple-view coordination, such as that in ASE, can

be an important feature [40]. However, effective evaluation of multiple-coordinated

views is not easy [52]. Kandogan and Shneiderman evaluated Elastic Windows

using a quantitative experiment followed by interviews to debrief participants [32].

Namata et al. performed case studies with two participants of their dual-view of

a network visualization [37], but there is no indication of the length of the case

studies.

Because ASE incorporates multiple-coordinated views of multiple tools, it fits

best on large high-resolution displays. Shupp et al. note the majority of research

on large high-resolution displays has not focused on the impact and benefits of

larger displays [60]. However, there is research supporting the benefits of large

high-resolution displays, such as a preliminary comparative study performed by

Czerwinski et al. [14] which showed significant performance improvement, and a

study by Andrews et al. which showed that larger space can improve sensemaking

[2]. We suspect that larger higher-resolution displays will benefit the usability of

ASE, but there may be a point of diminishing returns.
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Regardless of the system being evaluated, it is important to appropriately

use exploratory, formative, and summative evaluations [19]. Due to the nature of

MILCs, and considering the current state of ASE, I performed an extended usability

study using qualitative methods as part of the iterative evaluation process to identify

ASE’s utility as well as potential improvements to the system.

2.4 Description of Action Science Explorer

Action Science Explorer1 (ASE) is a system developed by Dunne et al. [16] [17]

which can be used to explore scientific literature domains. A screenshot is shown in

Figure 2.12. The system integrates bibliometrics, various summarization techniques,

search features, and visualization tools. This is a combination of several features

seen in other search engines and reference managers plus other features that, to the

authors’ knowledge, are novel in literature exploration and search tools.

Two of the main components are the JabRef reference manager [31] and the

SocialAction network analysis tool [43]. JabRef contains many features found in

typical reference managers: searching, grouping papers, sorting the bibliography,

viewing abstracts, creating text annotations, viewing the full-text PDF, and im-

porting and exporting many different formats.

SocialAction supplies a powerful suite of network analysis tools. Among these

are a visualization of the citation network, paper rankings by various network met-

rics, filtering papers by metric values, automatic cluster detection, and scatter plots

1More information and a video are available at the ASE website: http://www.cs.umd.edu/

hcil/ase/
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of paper attributes.

A third set of views provides several text views and summaries of the docu-

ments. If a paper or cluster of papers is selected, the In-Cite Text view shows a

list of all sentences from other papers that are citing the selected paper(s). Each

of these sentences is in turn a hyperlink. Clicking on one will open the full-text of

the source paper in the Out-Cite Text view, which includes citation highlighting to

show other hyperlinked citations to other papers. If the user has selected a cluster

of documents, then the In-Cite Summary view will show an automatically generated

summary of all the sentences shown in the In-Cite Text view.

All of these views are linked together, showing multiple coordinated views of

the document set. When a paper is selected in the reference manager, it becomes

highlighted in the citation network visualization. If the user clicks a node in the

citation network, the citation text is shown in the In-Cite Text view. If a user

clicks a link in the Out-Cite Text view, the corresponding paper becomes selected

in the network visualization. Furthermore, each view can be detached into its own

dockable window, allowing ASE to be rearranged and customized to fit a variety of

displays (Figure 2.13 demonstrates the dockable window feature).

Below are detailed descriptions of the most prominent features of ASE, defined

in terms of a given paper c, a set of papers C (that includes c) loaded in the

system, and a superset corpus S (e.g., the Association of Computational Linguistics

Anthology):

Attribute Ranking Ranking tool for sorting the nodes (papers) by network met-
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Figure 2.12: The Action Science Explorer system: (1) the bibliography list, (2) bib-

liographic entry details, (3) bibliographic search, (4) bibliographic groups, (5) the

attribute ranking view, (6) the citation network visualization with Find Communi-

ties enabled, (7) the In-Cite Text, (8) the multi-document In-Cite Summary of a

cluster, and (9) the full-text article with linked citations.
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Figure 2.13: The different views in Action Science Explorer can be hidden or de-

tached into separate windows. Here, the In-Cite Summary view is hidden, and the

Reference Manager (1) and In-Cite Text (2) views have been detached from the

main window (3) into their own windows and rearranged to fit a vertical display.
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rics, such as document set in-degree (number of times c is cited in C), doc-

ument set out-degree (number of papers in C cited by c), corpus in-degree

(number of times c is cited in S), and corpus out-degree (number of papers in

S cited by c).

Find Communities Clustering tool that uses Newman’s community detection al-

gorithm [38] to cluster documents in C or S based on citations. A user-movable

slider sets clustering size, ranging from a single large loosely connected clus-

ter to a single small tightly connected cluster (with several mid-sized clusters

halfway in between).

Search Search tool in JabRef that supports basic regular expression and logical

operators, and can search any fields in the bibliographic entry for c, including

title, author, abstract, keywords, and user-added notes.

Sorting Sorting tool in JabRef that sorts bibliographic entries in C or S by any

field, such as title, author, or abstract.

Groups Tool in JabRef for creating, and adding to, groups of papers in C or S

based on authors, keywords or keyword pairs in the bibliographic entries. Some

pre-computed groups of papers are created. These pre-computed groups are

based on authors and keywords, allowing users to find papers from a particular

author or papers which use the same keywords.

Import/Export Citations Exporting tool in JabRef for exporting citations to

Word, LaTeX, and OpenOffice.org.
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In-Cite Text Tool for displaying sentences from other papers in C or S that cite

c. Each sentence is a hyperlink that opens the full-text of the citing paper in

the Out-Cite Text view.

In-Cite Summary Tool for displaying an automatically generated summary of all

sentences that cite c, using the Trimmer software [71]. This is a summary of

the text show in the In-Cite Text view.

Out-Cite Text Tool for displaying the full-text of the source paper c, with sentence

highlighting to show other hyperlinked sentences to other papers C.

Together, these features provide a multi-faceted approach to explore, search,

and analyze a literature network. Of particular interest are the Attribute Ranking,

Filtering, and Find Communities features, which, to my knowledge, are novel to

literature search and exploration software. For example, Attribute Ranking allows

users to rank documents several metrics, including network statistics not found in

other systems. These features potentially allow users to quickly identify papers with

key attribute values and groups of papers clustered around a common theme.

Early formative evaluations helped guide the development of ASE and pro-

vided a foundation for the evaluation presented in this paper. These early evalu-

ations consisted of four participants over a period of about one year. Two of the

participants used ASE individually over several 1- to 2-hour sessions which included

assigned tasks and free exploration. The data were analyzed qualitatively, and the

results informed ASE’s development and helped refine the ASE training methods.

The other two participants used the system together to explore the dependency
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parsing dataset (described in Section 3.1.2). These two participants used ASE to

analyze the corpus and create a report which described several insights about the

corpus as well as their comments and suggestions to ASE’s developers.
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Chapter 3

Evaluation and Improvements

Choosing an evaluation methodology was one of the first steps in evaluating

ASE. One of the shortcomings in the current version of ASE is that it requires a

non-trivial amount of data cleaning and processing to import a corpus into the pro-

gram. This made it impractical to perform evaluations using the MILCs framework

for ASE because the only data set that had been imported was a set of 147 papers

on dependency parsing. Extended usability studies with computational linguistics

students and postdocs offer a compromise evaluation strategy: participants are mo-

tivated to analyze the dataset because it is related to their work, but these usability

studies do not require importing new datasets for each participant.

3.1 First Usability Study

In order to evaluate the usability and effectiveness of Action Science Explorer

(ASE), I conducted several usability evaluation sessions.

3.1.1 Participants

The qualitative evaluation sessions were performed with four participants who

will be referred to as P1, P2, P3, and P4. Two of the participants were current

Computer Science Ph.D. students and two were recent graduates. The ages ranged
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from 24 to 32 years old. Two of the participants were female.

All of the participants are currently working on computational linguistics. P2

and P4 are notable for already having some experience with dependency parsing,

describing themselves as having “a little bit” of experience, and being “quite famil-

iar” with dependency parsing respectively. P2 also had some previous experience

using JabRef, but did not appear to have experience with anything except the most

basic features.

3.1.2 Experimental Design

The evaluations were conducted on an Intel Core i3 2.26 Ghz laptop with 4

GB of RAM. The ASE system was displayed on an external 30-inch monitor at a

resolution of 1920x1080.

I limited each session to two hours, and began by having participants read and

sign the IRB-approved informed consent form. Next, participants went through a 30

minute training session. Participants were then asked to perform some predefined

tasks, which usually lasted for one hour. For the last 30 minutes, participants were

asked to perform tasks they thought would be useful. At the end of the session

participants were asked to provide comments on their experience using the system.

After the training session, the participants were asked to think-aloud while they

performed the tasks, and I took notes about the participants’ thoughts and actions.

For the sessions, I setup a potential use case by loading the system with a

set of 147 papers taken from the Association for Computational Linguistics (ACL)
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Anthology Network [51] which were isolated by performing a keyword search for

“dependency parsing”. Dependency parsing is a subfield of computational linguistics

and is a way to analyze sentences according to which components depend on others.

All papers were published between 1969 and 2008. The dataset includes common

reference fields, such as author, title, publication year, and publication venue, as well

as a field for the unique ACL ID. The ACL ID is used for the network visualization

label, and the ID is based on the publication venue and year (e.g. W03-0501 is

taken from the Human Language Technologies and North American Association for

Computational Linguistics Text Summarization Workshop in 2003).

3.1.3 Procedure

Participants were recruited by announcing the evaluation at a computational

linguistics seminar, and $30 USD was offered for compensation. The participants

signed informed consent forms and were given the opportunity to withdraw from

the study at any time, as per IRB requirements.

The reason for recruiting participants with experience in computational lin-

guistics was to address the motivation issue discussed in Section 2.3. Participants

familiar with computational linguistics will be more likely to understand and want

to explore documents on dependency parsing.

Each participant was in a separate evaluation session which consisted of two

parts: a training session and an experimental session. During the training stage, the

participants were shown a series of video clips describing ASE and demonstrating its
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features. After each video, the participant was asked to practice by performing the

tasks shown in the videos. The participants were also given opportunities during

the training session to ask questions if they did not understand the system or its

features.

The remainder of the session was divided into two parts. In the first part, the

participants were asked to perform the following main tasks:

• Identify authors and papers which appear important to the participant and

store them in groups.

• Select an important paper and collect evidence to determine why it is impor-

tant.

This provided a common benchmark for performance of basic functionality

in ASE, as well as observing variation in the depth of analysis that participants

achieved.

For the second part, the participants were asked what they would want to find

out about the dataset. One or more of these goals were selected as tasks for that

individual participant, and the participant was asked to perform that task or tasks.

This added some unique relevance to each participant in their evaluation session.

The data in Tables 3.1, 3.2, and 3.3 show the system capabilities that each

participant used in each task. The tables were created by analyzing my observation

notes from each participant. The system capabilities in the top row were selected

by choosing the capabilities which were demonstrated in the training video. The

system capabilities in the top row were chosen selecting all capabilities which met
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two criteria: (1) the capabilities were demonstrated in the training video, and (2) the

capabilities support exploring, viewing, summarizing, or grouping papers or meta

data such as dates or abstracts. A system capability is marked in a participant’s

row if the participant used that capability at least once during the task.

3.1.4 Results

There were two sets of tasks during the evaluation sessions: predefined tasks

and user-defined tasks. For all participants the predefined tasks were performed

first, followed by the user-defined tasks.

3.1.4.1 Predefined tasks

During the first predefined task (to identify important papers and authors),

all participants created two groups in the reference manager for storing the most im-

portant authors and papers. Participants P1 and P3 relied mostly on node ranking

to determine prominence, whereas P2 and P4 relied more on their prior knowledge

of the field.

Participant P1 took the simplest approach and initially only used attribute

ranking to select important papers and authors who wrote highly cited papers.

Later P1 gained deeper insight by scanning the In-Cite Text and observing authors

who were frequently mentioned in other papers. P1 also discovered an author who

seemed to have done a lot of work on efficient algorithms, and this indicated to P1

that the author must be important, regardless of citation count (see Figure 3.1).
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Figure 3.1: The In-Cite Text view (bottom right) shows several citations which

make positive remarks about the paper H05-1066 by McDonald et al.
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In order to identify important authors, P3 wanted to see rankings on a per-

author basis to identify which authors had been cited most frequently. P3 described

a method of using Find Communities and looking in each cluster for highly cited

authors, but had trouble completing the task and chose not to finish it.

Initially, P2 only used the reference manager to view the list of authors and

select ones P2 already knew were key. P2 tried to augment her approach by finding

all papers of a certain author (Nivre) in the reference manager and selecting them

to view their in-degree ranking in the network visualization. However, due to a bug

in the software, the view was not coordinated, so her selection was not reflected in

the node ranking which made it difficult to determine the ranking for each authors’

papers. When identifying important papers, P2 wanted to rank papers both by

in-degree and publication year in order to see which years had the most highly cited

papers.

P4 had a similar approach to P2, but only used the reference manager to

sort by author name and visually scan the list to select authors and papers that

P4 already regarded as important. P4 did not use the network visualization or

any other part of ASE to verify P4’ notions of importance, indicating that P4 was

confident in the selections and did not expect to make any additional discoveries.

Table 3.1 summarizes ASE’s capabilites each participant used in the first pre-

defined task.

For the second task, finding evidence to determine why a paper is important,

P2 and P4 continued their pattern of relying on their prior knowledge. P4 did not use

the system at all and described from memory why the selections were important.
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P1 • • •

P2 • • •

P3 •

P4 •

Table 3.1: Table of capabilities in my first usability study used by each participant

for the first predefined task (identifying important authors and papers).

P2 combined her existing knowledge with node ranking by corpus in-degree, and

was able to disregard some well ranked papers because P2 felt that the papers were

always cited out of obligation rather than because they are relevant. P2 ultimately

chose a paper and justified her claim by filtering the node ranking to show only the

highest corpus in-degree and then seeing in the visualization that this paper linked

two of the most highly cited papers in this filtered subset (see Figure 3.2).

P3 used a similar approach to P2, and ranked nodes by in-degree. Then

P3 selected a highly cited paper and justified her claim by pointing out in the

visualization that it is cited by another highly cited paper.

P1 changed approaches several times while performing the task. P1 began

by turning on Find Communities and viewing the In-Cite Summary of the largest

community, but did not find anything that P1 thought was helpful. Then P1 opined
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Figure 3.2: P2 chose H05-1066 as an important paper after ranking papers by corpus

in-degree filtering to show the top most highly cited papers. This revealed that H05-

1066 (shown highlighted in blue) is highly cited and cites two of the most highly

cited papers. The paper’s details are visible on the left, including authors, title, and

abstract.
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P1 • •

P2 •

P3 •

P4

Table 3.2: Table of capabilities in my first usability study evaluation used by each

participant for the second predefined task (collecting evidence).

that the most recent paper that gave an efficient algorithm for dependency parsing

would be the most important paper. P1 wanted to find a list of all papers that cited

a given paper and then sort the results by publication year, but P1 had difficulty

with this because there is no automated way to do it. P1 then went back to Find

Communities and began searching through the largest community by looking at the

incoming citation sentences. P1 eventually chose C96-1058 and H05-1066 based on

the sentences shown in the In-Cite Text view which talk about efficient algorithms,

but P1 could not satisfy the original search for a most recent paper on efficient

algorithms.

Table 3.2 summarizes ASE’s capabilities that each participant used during the

second predefined task.

49



3.1.4.2 User-defined tasks

Users were asked what kinds of questions they would want to answer while

exploring this dataset. Below is a summary of these questions, grouped by the

participant who was interested in that question:

• P2 Identify the historical foundations of the field.

• P2 Identify the big breakthroughs in the field, and the state of the art.

• P1,P4 Find relationships between communities and clusters of papers, such

as papers that use the same research methods.

• P1 Discover frequent co-authors.

• P3 Find review papers.

• P3 Search for specific aspects (e.g. models or applications).

• P3 Identify different research methods used in the literature.

• P3 Identify student-advisor relationships in papers.

The participants mostly gave unique lists of questions, except P1 and P4 both

were interested in identifying relationships among papers in communities. How-

ever, some participants identified similar questions, such as discovering frequent

co-authors and discovering student-advisor relationships.

To test whether users are able to answer their own questions using the system,

the facilitator chose some of the tasks identified by each participant and asked that
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participant, except for P1, to perform the task(s). P1 was an exception because the

allotted time for the session had expired by this point.

P2’s task was to try to search for papers that the participant would want to

start reading to identify the state of the art in dependency parsing, since this was

one of the tasks P2 had identified. P2 first tried ranking papers by publication

year and trying to look at the In-Cite Text for the most recent papers, but they

did not have In-Cite Text because they had no citations. P2 then continued this

approach without using the Attribute Ranking by selecting papers in the network

visualization and examining their publication year and In-Cite Text. P2 appeared

to be selecting papers randomly. P2 then chose a paper from 2007 and commented

that finding the state of the art can be difficult if it is too new because it will not

yet be cited by many papers. P2 created a group in the reference manager to store

her results, and examined the paper titles and abstracts in the reference manager

for relevance, and eventually opened the full PDF version of candidate papers to

scan them. In the end, P2 successfully identified papers that the participant wanted

to investigate later.

P3 was assigned two additional tasks. First, P3 was asked to determine if

the most important author was still active. To accomplish this, P3 wished to rank

papers both by corpus in-degree and by publication year. This action is not directly

supported in the system, so after a few attempts to do this, P3 changed her approach

because the participant felt that recent publications might not be highly cited. P3

then sorted the references by author and looked for authors with many publications

who also have a recent publication, allowing her to identify two authors.

51



P3’s second task was to find review papers. Her approach was to rank nodes

by corpus out-degree because a review paper will cite lots of other papers. After

looking at the top papers and not finding a review paper, P3 also used the search

feature to search for the keywords “tutorial” and “survey” but did not find any

matches. After the evaluation session I discussed the dataset with another graduate

student in computational linguistics who works with dependency parsing, and he

said it is likely that there is no survey paper on dependency parsing in this dataset.

P4’s task was to find any unifying themes in any of the communities. P4 used

the Find Communities feature and noticed that most of the papers in the biggest

community cited the same central papers. P4 proceeded to look at the titles of the

papers in the community, and P4 then mentioned that it was hard to find a unifying

theme by looking at the paper titles. Eventually P4 said “It doesn’t jump out at

me why it clustered these things [this way].” At this point P4 had looked as much

as possible P4 felt was possible, and gave up on the task.

Table 3.3 summarizes the capabilites in ASE that participants used for the

user-defined tasks.

3.1.4.3 Additional tasks

Due to P4’s familiarity with dependency parsing, I gave this participant four

additional tasks.

The first was to determine if there has been any interesting work using any

of the most important papers. P4 began by selecting a paper, P05-1013, in the

52



Participant A
tt

ri
b
u
te

R
an

k
in

g

F
in

d
C

om
m

u
n
it

ie
s

P
lo

t
N

o
d
es

In
-C

it
e

T
ex

t

In
-C

it
e

S
u
m

m
ar

y

S
ea

rc
h

S
or

ti
n
g

G
ro

u
p
s

P1

P2 • • •

P3 • • •

P4 •

Table 3.3: Table of capabilities in my first usability study used by each participant

for the user-defined tasks.

visualization and looking at recent citations: P4 would examine the In-Cite Text,

click on the hyperlink, and then look at the publication at the top of the plain text

(out-cite text). P4 expressed frustration that in order to open the PDF for any of

these citing papers that focus had to be removed from P05-1013. After using the

procedure for a few papers and opening a few PDFs to see if authors were citing

P05-1013 in a way indicating something interesting, P4 isolated D07-1123 as an

interesting advancement of P05-1013.

P4’s second task was to use the system to support P4’s previous claims about

the most important authors from the first pre-defined task. P4 first ranked the nodes

by document set in-degree and corpus in-degree, and mostly P4 used a single paper

from each author as a representative for the author’s body of work; however, P4

wanted to group papers by author and look at rankings just for a specific author’s
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papers. P4 only looked at the document set in-degree and corpus in-degree rankings

to decide that P4’s choice of Schank is not supported; P4 felt the paper is classic,

but it has a low document set in-degree and corpus in-degree ranking. For another

author, P4 felt that the paper was actually ranked higher than it should have been,

but nonetheless P4’s previous selection was justified. For the other three papers—

P05-1013, C96-1058, and P96-1025—P4 felt that the attribute rankings confirmed

P4’s previous choices, and that overall the previous choice of authors was confirmed.

For the third task, P4 needed to use the system to support P4’s previous

claims about important papers. This time P4 used only attribute ranking by corpus

in-degree, and felt that eight of the eleven choices were confirmed by the attribute

rankings.

P4’s final task was to summarize the literature using the system. P4 first

commented that ranking the nodes and finding the top paper could be a good place

to begin. However, P4 decided to use the Find Communities feature and look at

the In-Cite Summary for the largest community. P4 noticed several things in the

automatically generated summary that were factually incorrect, and decided that

the summary was not helpful. At this point the session time had expired and the

participant did not have time to complete the task.

3.1.5 Discussion

Overall, participants were able to quickly grasp the basics of the reference man-

ager and network visualization components of ASE. Some participants immediately
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began using somewhat more advanced features, such as P1 who began using searches

almost from the beginning. However, participants did not, in general, appear to im-

prove much from the beginning of the session through the end; the functionality

they used at the beginning of the sessions tended to be the same functionality they

used at the end.

By examining the functionality used per task shown in Tables 3.1, 3.2, and

3.3 it is clear that by far the most used feature was attribute ranking. Participants

almost ubiquitously used it to determine author and paper importance. Even when

tasks did not directly involve finding an important paper. participants still relied

heavily on attribute ranking, such as when searching for review papers. This may be

partly because review papers often focus on the most salient aspects of the corpus

and users may believe those papers will be cited most often. On the other hand,

participants relied almost exclusively on corpus-level and document set-level degree

ranking, and occasionally mentioned that they were not sure how to interpret some

of the other metrics such as betweenness centrality.

As Hearst discusses [24], there are theories describing how information seekers

make navigation decisions based on information “scent.” One example of this is

when P2 used papers’ In-Cite Text to guess which papers might describe state-of-

the-art research, and P2 then examined promising-looking papers in more detail by

opening the PDF full-text versions. It is possible that participants were so eager to

use the Attribute Ranking feature because it provided very powerful quantitative

clues to begin their navigation process and it offered information seekers a simple

way to direct their search during the Exploration stage of Kuhlthau’s [33] description
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of information seeking behavior.

It could also be possible that Attribute Ranking offered a fast way for par-

ticipants to filter out potentially unimportant papers and allow the participants to

focus their exploration on portions of the literature which would be considered most

important according to some Attribute Ranking metric. This is similar to the Area

Scan stratagem described by Bates [4] where users browse in a general area after

identifying an area of interest.

In general, participants did not seem to use multiple features in the system

to drill down and find specific answers to questions; they tended to use a single

system capability, such as Attribute Ranking, to support their claims. For example,

when participants selected an important paper most of the participants only used

Attribute Ranking by document set in-degree to justify their claim. It is possible

that participants found Attribute Ranking to be very accessible because it is simple

to use and easy to interpret. However, participants did sometimes use other capa-

bilities, so they did appear to understand ASE’s many capabilities. However, it is

possible that the participants were not familiar enough with ASE to use multiple

capabilities in conjunction with one another.

Although the Out-Cite Text view is potentially useful, it was not without its

problems. For example, participants had difficulty understanding what the Out-

Cite Text is and which paper it comes from. When P2 asked for clarification,

the participant was shown a node-linked diagram which seemed to improve her

understanding, but P2 still made a few comments which indicated the participant

did not fully understand the Out-Cite Text view. Furthermore, there were issues
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with changing focus in the network diagram to a different paper when using the Out-

Cite Text view and not being able to easily return focus to the previously selected

paper. When a participant wanted to investigate further a different paper linked

in the Out-Cite Text view, P2 had to change focus onto that paper, but there was

no convenient way to return focus to the previously selected paper. If the view had

been filtered to show only the selected node and all of its citing papers it might have

made the task easier.

We also see the importance of multiple coordinated views in the example

when P2 tried to select papers in the reference manager and see their ranking in

the Attribute Ranking view. In that version of ASE, the view was not coordinated

and the paper did not become selected in the Attribute Ranking view. This bug

constrained the participant’s use of ASE and limited her analysis.

Many of the analyses performed by the participants may not have been possi-

ble, or would have been much more difficult, if the system did not allow users to use

a custom database of documents. Even so, participants frequently expressed inter-

est in analyzing only a subset of the papers in the network. Frequently participants

wanted to do this to show a given node and all of its neighbors. This underscores

the importance of allowing users to select a corpus of documents and drill down to

perform fine-grained analysis.

The In-Cite Summary is a feature that participants wanted to use. In the

version used during the evaluation sessions, the output quality of the summarization

algorithm was limited. This is an avenue of on-going research, and I received new

versions of the summaries which were used during the next set of usability evaluation
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sessions.

Three of the four participants said that they liked the system and thought it

was useful, in particular for searching for important papers. P4 was skeptical about

the system’s utility, however: P4 felt that the interface is too “busy”, and that the

system might not be useful unless P4 had a goal in mind and already knew a few

papers as a starting point. P2 also commented that the interface is complicated,

but the participant had an overall positive response, enjoyed using the network

visualization, and was very enthusiastic about the system.

One of the limitations of the user study is the size of the corpus, which only

contains 147 papers. This demonstrates a particular use case for a narrow research

domain, but may not be indicative of exploring a broader research domain such as

network visualization.

A further limitation is the number of participants who took part in the study.

This prompted additional evaluation sessions which are described in the next sec-

tions of this chapter.

3.2 Other Evaluations

My first set of usability studies revealed that ASE is well suited for some

tasks, such as searching for facts like the top ten most highly cited papers. It was

less clear whether ASE is useful for long-term exploration projects seeking deeper

insights. In an attempt to answer this question, a participant with experience in the

grant approval process volunteered to work with ASE over a period of a few weeks
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to analyze the dependency parsing data set used in the previous usability study.

During the first session, the participant appeared disinterested and unmotivated in

the data analyses. The participant was unresponsive to requests for follow-up data

analysis sessions and in the end did not work with ASE beyond the initial session.

This anecdote underscores the importance of having real people analyze real data,

as emphasized by Shneiderman and Plaisant [59].

An information retrieval expert also volunteered to use ASE for 45 minutes

and then to offer feedback. The participant began by watching the three training

videos, but found them to be too long and it was too difficult to remember all of the

functionalities and how to access them. Following the training phase, the participant

used ASE briefly and mentioned several points for improvement:

• The force-directed layout algorithm continuously animates, which causes a

distracting visual effect.

• ASE does not allow users to choose how a certain functionality is performed.

For example, ASE has a pre-defined way of performing clustering (based on

edges in the citation network) which may not be natural to users or could

be inappropriate for certain tasks (e.g., clustering to identify research insti-

tutions). Another example is the In-Cite Summary of communities, where

sometimes users may prefer to see a different type of community summary

instead.

• The interface is complex and could provide a steep learning curve.

However, the participant felt that ASE appears to be useful for identifying salient
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features of the scientific literature network, such as important papers and authors,

and groups of documents that comprise the core papers in the field.

3.3 Improvements Made to Action Science Explorer

Based on the results of the previous evaluations, I implemented three improve-

ments to ASE. One was a temporary improvement to the In-Cite Summary system

which was later replaced by a new version of the In-Cite Summary text created with

a new version of Trimmer.

Multiple coordinated views. One of the usability problems that arose

from my first usability study evaluations was that the multiple views were not fully

coordinated: When users selected a paper in the reference manager it would become

selected in the citation network visualization, but not in the Attribute Ranking view.

I fixed the system so that selections were fully coordinated across all views.

Multiple-selection across views. The Attribute Ranking view was limited

in that only one paper could be selected at a time. Although this was not a significant

usability concern during my first usability study evaluations, this problem came up

during several demonstrations of ASE. Because users expressed a desire to be able

to select a subset of the corpus for analysis, I enhanced the Attribute Ranking view

to allow multiple selections that would be correctly coordinated across all views.

This capability is illustrated in Figure 3.3. I also set out to add the capability for

users to select a group of documents in the reference manager and then filter the

visualizations and text views to show only the selected papers. However, it became
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clear that such a feature would require a significant re-engineering of both JabRef

and SocialAction; neither system is designed to be used in conjunction with the other

which makes complex interactions difficult. To illustrate this point, refer to Figure

3.3 which shows that JabRef has at least three different ways for a document to be

selected: (1) a document can be highlighted in blue indicating that its details are

being displayed in the bibliography entry preview, (2) a document can be selected

in white and moved to the top of the document list while the others are grayed

out, or (3) a document can be shown in the bibliography list because it matches a

search query while other documents which do not match the query are hidden from

view. This makes it difficult to coordinate complex interactions between JabRef and

SocialAction, and is one of the limitations of this style of software architecture.

In-Cite Summaries. As discussed in Section 2.4, the Find Communities

capability incorporates a slider to adjust community size. In the earlier version of

ASE, summaries only existed for every tenth increment of the slider, forcing users

to carefully adjust the slider or else summaries would not be displayed when users

clicked on a community. I explored a work-around in the software to ensure that

a summary was always shown, but eventually I obtained a complete set of citation

summaries which solved the problem and obviated my software work-around. These

summaries were produced by Michael Whidby, David Zajic, and Bonnie Dorr from

the University of Maryland Computational Linguistics and Information Processing

lab. This new complete set of summaries also used an updated version of Trimmer,

the summarization software. One goal of the updated summaries was to improve

readability and syntactic content of the summaries.
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Figure 3.3: The Attribute Ranking view in ASE was fixed to allow multiple selections

that would correctly coordinate selection across all views. Here, the top ten most

highly cited papers in the dependency parsing set were selected in the Attribute

Ranking (1), which then move to the top of the reference manager and are shown

in white and blue (2), allowing us to see that McDonald and Nivre authored eight

of the top ten papers.
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To incorporate these changes, I first had to learn two things: (1) ASE’s soft-

ware architecture, which is based on the NetBeans version of the Rich Client Plat-

form, a software framework for writing modular applications, and (2) the system

design of SocialAction, which I also had to modify to implement modifications in

ASE. Next, I implemented the new functionality in ASE, which resulted in 74 lines

of new and modified Java code. I tested the modifications through a set of GUI

test cases which tested selecting papers in the three views (the network visualiza-

tion, the Attribute Ranking view, and the reference manager). The test cases were

created using methodology based on the category-partition method. In total, these

modifications to ASE required close to one month of time.

These updates to both the functionality of ASE and the content of the sum-

maries prompted a second set of usability study evaluations.

3.4 Second Usability Study

After addressing the usability problems discussed in Section 3.3, four partic-

ipants took part in an additional evaluation session to evaluate the modifications

to ASE. Two of the participants from my first usability study participated in these

new evaluations, which provided additional insight into usage patterns of users with

more experience. This new evaluation took place about six months after my first

one.
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3.4.1 Participants

My second set of evaluation sessions were performed with four participants:

two new participants (referred to as P5 and P6), and two participants from my first

evaluation sessions (P1 and P3). All of the participants were current Computer

Science Ph.D. students. The ages ranged from 23 to 29 years old, and one of the

participants was female.

Two of the participants are currently working in computational linguistics. P5

and P6 described themselves as understanding the concept of dependency parsing,

but were not familiar with the literature on dependency parsing. P1 and P3 said

that they are familiar with dependency parsing and have read a small number of

papers on the topic.

3.4.2 Experimental Design

The experimental design was identical to the usability study evaluation in

Section 3.1.2.

3.4.3 Procedure

The procedure for the evaluation was identical to the usability study in Section

3.1.3, except that I recorded a video capture of the participants’ monitors plus audio

during the evaluation sessions.
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3.4.4 Results

As with the my first usability study, there were two sets of tasks during the

evaluation sessions: predefined tasks and user-defined tasks. For all participants

the predefined tasks were performed first, followed by the user-defined tasks. See

Section 3.1.3 for a description of the predefined tasks.

3.4.4.1 Predefined tasks

During the first predefined task (see Section 3.1.3), P1 began by creating

authors and papers groups, and then ranking papers by document set in-degree.

Next P1 explored the pre-computed groups of authors (shown in Figure 3.4), scanned

for authors P1 already knew about and added them to the group of important

authors. P1 then performed a search for particular authors and added them to the

group of authors. To add important papers, P1 ranked the papers by document

set in-degree, filtered out all but the five most highly cited papers, and added them

to the important papers group. P1 continued by using Plot Nodes by corpus in-

degree and publication year, and filtered out papers with low citation counts (see

Figure 3.5). P1 chose a recent paper which is highly cited. P1 identified this as

an important paper, but it was among the top five papers P1 already added to the

important papers group.

P3 began by creating groups in the reference manager for important papers

and important authors. P3 used plot nodes to compare relationships between corpus

in-degree and document set in-degree, and then selected papers which where had
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Figure 3.4: The pre-computed groups of authors (1) on the left can be selected,

which then moves the papers in that group (2) to the top of the list of bibliography

entries.
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Figure 3.5: The Plot Nodes view shows a scatter plot of the papers in the citation

network with one variable on the X axis (e.g., publication year) and a second variable

on the Y axis (e.g., corpus in-degree). Here, the vertical double-ended slider (1) has

been adjusted to filter out papers with a low corpus in-degree.
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high values for both metrics and P3 added them to the important papers group.

For selecting important authors, P3 wanted to compute the number of citations

that authors have for all of their papers. In lieu of that, P3 opted to choose the

authors who ranked in the top 10 as measured by the corpus in-degree ranking.

P5’s approach was to use Attribute Ranking to rank the documents by corpus

in-degree which P5 felt would give a “larger sample” of citations and give a more

accurate picture of importance than document set in-degree. P5 noted that Collins

had the most highly cited paper. To find all of Collins’ papers, P5 initially used

the search functionality but then chose to sort by author name in order to find all

papers written by Collins. P5 added the search results to the two groups for the

most important authors and most important papers. P5 went through a process of

choosing the next most highly cited paper, adding it to the group for important au-

thors, and then putting other highly cited papers by that author into the important

papers group. One problem that P5 encountered was that the reference manager

will only sort by first author, so sorting by author name may not group together all

papers from a particular author. Nonetheless, P5 preferred sorting by author name

instead of searching for an author because it was easier.

P6 had a simple approach of creating two groups for important authors and

papers, and then using Attribute Ranking to see the papers with the highest corpus

in-degree. P5 chose the top ten papers for the important papers group. P5 wanted

to see the total number of citations for each author, but since this was not directly

supported by ASE P5 instead sorted the papers by author name and ranked them

by corpus in-degree to determine which authors had the most highly cited papers.
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P1 • • • •

P3 • • •

P5 • • • •

P6 • • •

Table 3.4: Table of capabilities in my second usability study used by each participant

for the first predefined task (identifying important authors and papers).

P5 then chose the authors of the top ten papers as the important authors.

Table 3.4 summarizes ASE’s capabilities that the four participants used in the

first predefined task.

For the second predefined task, P1 explored the use of Find Communities

to search for evidence about important papers, but in the end P1 did not collect

evidence from it. Instead, P1 used Attribute Ranking by corpus in-degree to identify

candidate papers, viewed their In-Cite Text to see if other authors were saying good

things about the paper, read their abstracts, and then placed selected papers into a

group in the reference manager for candidate papers. P1 then used Plot Nodes by

year and corpus in-degree to search for recent highly cited papers, and continued to

read the In-Cite Text and abstracts for candidate papers. Eventually P1 selected

McDonald’s 2005 paper because of its research contribution to dependency parsing,
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it was highly cited, published recently, and other authors said good things about it

in the In-Cite Text. This was the same paper P1 selected from my first evaluation

session.

P3 used a similar approach as P6, but used Plot Nodes to create a scatter plot

with the two variables document set in-degree and corpus in-degree. P3 explained

that a good paper should be highly cited both by papers within the dependency

parsing subdomain as well as the whole domain of computational linguistics.

P5 chose the paper with the highest document set in-degree. P5 examined it

in the reference manager and justified this claim by saying the paper was slightly

older and thus should be a more canonical paper rather than a trendy paper which

may quickly fade.

P6 chose to use only Attribute Ranking by corpus in-degree to determine

which paper was the most important; P6 felt that was sufficient for determining

importance.

Table 3.5 summarizes ASE’s capabilities that the four participants used in the

second predefined task.

3.4.4.2 User-defined tasks

Users were asked what kinds of questions they would want to answer while

exploring this dataset. Below is a summary of these questions, grouped by the

participant who was interested in that question:

• P1 Find major topics being investigated by this collection.
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P1 • • • • •

P3 •

P5 •

P6 •

Table 3.5: Table of capabilities in my second usability study used by each participant

for the second predefined task (collecting evidence).

• P1 Identify major researchers by overall importance to other researchers.

• P3 Search for review papers.

• P3 Find papers that are easy to read.

• P3 Gather opinions of papers as a basis for paper importance.

• P3 Determine who founded the area.

• P3 Determine if a given domain is an author’s main research area, or if it is

more of a side project for the author.

• P3 Search for authors who collaborate together often and analyze collabora-

tion patterns.
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• P3 Choose a paper and view a list of all papers that cite it and were cited by

it.

• P3 Identify the state of the art.

• P5 Identify old papers with a high number of citations.

• P5 Follow an important paper’s citations backwards or forwards in time to

examine the evolution of the field.

• P1,P5 Examine the automatic clusters to search for subtopics.

• P6 Determine if there is a correlation between different paper metrics, such

as corpus in-degree and HITS Authority.

• P6 Find the author with the most papers in the document set.

• P6 Examine how a paper was cited over time, both through its In-Cite Text

and the number of citations over time.

Four of these questions are equivalent to questions identified during my first

usability study. Three of these overlapping questions come from P3.

As with my first usability study, the facilitator chose some of the tasks iden-

tified by each participant and asked that participant to perform the tasks.

P5’s first user-defined task was to start with Eisner’s 1996 paper and work

forwards in time through the citations. P5 began by looking at the In-Cite Text for

Eisner’s paper and wanted to be able to filter the In-Cite Text by categories such as

the paper or author the text is coming from, but ASE does not support any filtering
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or sorting for the In-Cite Text.c P5 followed a few In-Cite Text links, but felt that

P5 was not getting a good feel for how the field evolved since 1996.

P5’s second user-defined task was to examine the automatically detected com-

munities found by Find Communities and determine subtopics in the papers. P5

chose a large community and looked at the In-Cite Summary. Then P5 looked at the

community’s papers in the reference manager to look at the paper titles to search

for a common theme. (See Figure 3.6 for a screenshot of these actions.) Overall, P5

did not feel like it was possible to determine the subtopics in the cluster.

For P5’s final user-defined task, P5 was asked to identify old papers that have a

high citation count. P5 was easily able to do this using the Plot Nodes functionality,

and quickly spotted several papers that P5 felt were both older and highly cited.

P1’s first task was to identify major topics in the document set. P1’s process

was to enable Find Communities, go from community to community, and view

the In-Cite Summary. P1 commented that the summaries didn’t provide a clear

theme for the larger communities, but they did give a coherent summary of small

communities’ themes. Overall, P1 was satisfied with the linguistic structure of the

summaries. P1 also wanted to find communities based on keywords, which P1

thought might be more helpful for identifying themes in the document set, but ASE

does not support sorting or filtering communities by keyword content.

P1’s second task was to identify the authors who are important globally, even

to those not doing dependency parsing research. To accomplish this, P1 wanted

to see co-citation and collaboration networks of the authors in the network. Since

that is not supported, the participant sorted papers by author name and eventually
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Figure 3.6: When the Find Communities function is enabled, users can select a

cluster of papers (1) which become highlighted in yellow, the In-Cite Summary (2)

is shown, and the documents in the community are moved to the top of the reference

manager (3).
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chose McDonald and Nivre. P1’s basis for choosing Nivre was that P1 saw that

Nivre authored a large number of papers.

P1 also wanted to explore the document set in an undirected search for insights.

(Free exploration was not a task or question P1 gave in the list of questions for

literature exploration, so this portion of the study is not included in Table 3.6.) P1

enabled Find Communities and used Attribute Ranking to sort papers according to

the community to which they were assigned. P1 then sorted these papers in the

reference manager by publication year and then by publication venue. P1 found

that a majority of papers in the two largest clusters come from the 2006 CoNNL

conference and the 2007 EMNLP-CoNNL conference; in fact, P1 found that these

papers accounted for roughly 23% of all the papers in the document set (Figure 3.7

shows this insight). P1 commented that this explains the explosion of papers on

dependency parsing in 2006 and 2007. Using Google, P1 searched for the conference

websites from those two years and determined that the shared task in both years

was on dependency parsing.

P6’s first user-defined task used plot nodes to compare HITS Authority and

corpus in-degree. P6 saw a correlation, and noticed an outlier (shown in Figure

3.8) where the paper with the highest corpus in-degree but did not follow the trend

(a monotone increase in HITS Authority with corpus in-degree) because it had a

relatively low HITS Authority.

The second user-defined task for P6 was to look for the author with the highest

number of publications. But P6 quickly decided ASE doesn’t support this task in

any scalable way that could work for larger datasets, and the participant opted to
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Figure 3.7: While exploring the documents in the large cluster (1) and viewing them

in the attribute ranking (2) and reference manager (3), P1 was able to discover that

a large number of papers in this dataset were published in two conferences from

2006 and 2007 (3).
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Figure 3.8: A scatter plot of corpus in-degree and HITS Authority reveals an outlier

(1) (also highlighted in the citation network (2)) which is shown to be a paper by

Collins (3).
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stop the task.

P6’s third task was to look at the most highly cited paper and how the citations

of that paper changed over time. P6 thought that the system had some capability

to do that with the In-Cite Text view, but that it was not supported well enough

because it was not clear the In-Cite Text was sorted and the participant could not

customize the sorting.

P3 performed one additional task, which was to examine Jason Eisner’s collab-

oration patterns; specifically, to see if Jason Eisner made the transition from being a

first author as a graduate student to no longer being the first author as a researcher

who is advising graduate students. P3 did this by using the search capability to

search for “Eisner” and then look at the author field in the query results. P3 felt

that this was true, but there were not a lot of papers written by Eisner which made

it hard to see.

Table 3.6 summarizes the capabilities in ASE that participants used during

the user-defined tasks.

At the end of their two-hour sessions, both P1 and P3 asked if they could

have a copy of ASE to use in their own research, indicating that they think ASE

offers a package of useful capabilities not available in other systems. P3 gave more

details and expressed interest in the ability to rank by citation count, because this

is what is most important to P3 when exploring a completely new topic. P6 also

said “I would love to try [ASE] for my own research.” P5 said that ASE “seems

pretty handy” and both P5 and P6 thought it would be useful for following citations

across several papers. P5 also thought it would be easier to “keep things straight”
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P1 • • • •

P3 •

P5 • • • •

P6 • •

Table 3.6: Table of capabilities in my second usability study used by each participant

for the user-defined tasks.

than it would when using a system like Google Scholar.

With respect to the In-Cite Text and In-Cite Summaries, P3 thought that

citations would give a partial idea of what other authors think of a particular paper,

but P3 felt that citations can be negative and downplay results of other authors in

order to emphasize the need for their own paper. P6 also commented on the In-Cite

Summary: P6 wanted to generate a summary for an arbitrary group of papers.

P6 said that it would be good to stop the constant animation rather than

animating and having it flicker all the time.

3.4.5 Discussion

As with my first usability study, the new participants were able to quickly

learn how to use ASE.
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The general approach to the two predefined tasks was the same in both my

first and second set of usability studies, although both P1 and P3 began using Plot

Nodes in my second usability study when they had not used it during the my first

usability study.

The participants had some problems where they wanted to perform an action

which was not supported by ASE. Some examples include viewing a co-citation or

collaboration network instead of a citation network, and choosing a different type

of community summary such as topic modeling instead of citation summaries.

By comparing Tables 3.4 and 3.5 to Tables 3.1 and 3.2 we see that participants

in my second usability study used more capabilities of ASE per task than the partic-

ipants during my first usability study. Attribute ranking continued to be very highly

used, but now P1 and P3 augmented it by using Plot Nodes which allowed the par-

ticipants to rank by two variables simultaneously. This is interesting because none

of the participants used the Plot Nodes capability during my first usability study.

Participants mostly focused on degree ranking metrics, just as they did in my first

usability study.

There is some overlap between the two usability studies in questions the users

said they wanted to ask when exploring literature. Some of this overlap comes

from P3, who listed several identical questions both in my first and second usability

studies.

Participants used the new multi-document selection capability several times

during my second usability study. P3 and P5 in particular used it frequently, pos-

sibly because it gave the ability to select an arbitrary set of papers in one view and
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then perform some types of analysis in the other views. Nonetheless, P6 wanted

this behavior to be more robust and be able to generate summaries of arbitrary

groups of papers, too. This emphasizes the point that users want to be able to filter

documents at many levels and to drill down onto a smaller document set to perform

additional analysis.

Participants tried to use clustering to complete several tasks. This indicates

that automatic clustering may be a useful capability for literature exploration. How-

ever, clustering was limited by two things: (1) the document set only contained 147

papers, and (2) automatically detected communities are only determined by how pa-

pers cite each other. The limited document set reduces the possibilities of clustering

(fewer possible clusters). By only computing clusters based on citations, users lack

control over choosing a clustering technique that is useful for their particular tasks

and process models. Consequently, literature exploration system developers should

consider adding automatic clustering functionalities, and implement a flexible clus-

tering technique that allows users to cluster documents in the most appropriate way

for a given task.

P1 was also able to make a powerful insight into the document set by discov-

ering that a large number of the papers come from two conferences whose themes

were on dependency parsing. This is an insight no one else had mentioned, even

though more than a dozen other people have examined this specific dataset. P1

was able to make this insight even after using ASE for less than four hours. This

emphasizes that insights can occur at any time, and it is necessary to have several

participants use the system under evaluation for a long period of time.
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Even though the usability studies have a low number of participants, P1’s

insight combined with P1 and P3’s increase in capability usage give us evidence

that users expand their analysis skills over time. Furthermore, ASE does support

users in developing both simple insights as well as deeper insights into scientific

literature.

We also see that ASE’s interface can be distracting. Both the information

retrieval expert and P6 commented that the continuous network animation is dis-

tracting, which echoes P4’s comment that the interface is too busy.

3.5 Summary of Evaluations

Between my first usability with four participants and my second usability study

with two new and two previous participants, the evaluations reveal several strengths

and weaknesses of ASE. Furthermore, they found that ASE offers novel and useful

features to information seekers. In particular, Attribute Ranking was very popular

and provided users with a simple method to begin their searches, and it became

clear that users wish to specify, at a fine-grained level, which documents to explore

and analyze. Although corpus-refinement is present in Scatter/Gather, it does not

appear to be a feature supported in consumer bibliography literature exploration

systems.

Repeating the evaluations with two participants provided insight into the tra-

jectory of use for maturing users. Participants who used ASE for a second time

used more system features and were able to make deeper insights into the literature
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network.

In the two usability studies, participants gave a set of questions they wish

to ask when exploring scientific literature networks. There is some overlap in the

questions given in my first and second usability studies, which indicates that users

may find some questions more important than others. The questions have some

common themes:

• Identify the foundations, breakthroughs, state-of-the-art, and evolution of a

field.

• Find collaborators and relationships between communities.

• Search for review papers and easily understandable papers.

Nonetheless, the evaluation of ASE revealed a few shortcomings of the evalu-

ation protocol: participants did not always remember ASE’s capabilities or how to

operate them, the participant who aborted the evaluation did not appear to be mo-

tivated, the evaluation used a small dataset because ASE does not readily support

importing new data, and the studies may not have been long enough. Applying

MILCs in the novel context of literature exploration systems would overcome many

of these shortcomings.

In summary, these usability studies provided clear guidance for work in de-

veloping ASE and specific recommendations to designers of literature exploration

systems:

• Allow users control over which documents to explore, both to select an initial

document set as well as drill down on a subset of documents.
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• Provide easy-to-understand metrics for ranking documents.

• Give users a way to see overviews of the corpus using multiple coordinated

views.

• Incorporate undo/redo functionality to navigate the history.

• Include capabilities to create groups of documents and annotations for docu-

ments.
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Chapter 4

Conclusions and Future Work

4.1 Information Seeking Behavior in Action Science Explorer

In the context of the ASK model, ASE’s developers assume that information

seekers have solved the linguistic non-specifiability of need—i.e., users are able to

collect a corpus of potentially relevant documents. ASE may not be well suited for

cognitive non-specifiability at the upper extreme where users know exactly what will

satisfy their information need; in this case a digital library or search engine may

be better suited to satisfying the users’ information needs. However, systems like

ASE which support multiple methods of exploration may be well-suited for non-

specifiable needs where information seekers’ needs are not well-formed and users

cannot define their needs thoroughly. All of the tasks in the evaluations had well-

defined information needs, but the results illustrate that some capabilities such

as attribute ranking can provide an effective filter to target a search in a set of

documents where the information is most likely to be found. Furthermore, attribute

ranking seems to provide an alluring information scent which directs users who are

beginning their search, and it seems to provide a simple way for users to focus their

exploration on portions of the literature that are most important according to some

ranking metric. Plot Nodes works in a similar way, but in cases where users want

to rank by two variables it is more powerful.
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4.2 Recommendations

Below are a list of recommendations that came from the evaluations of ASE.

4.2.1 User Requirements for Understanding Scientific Literature Net-

works

Allow users some level of control over which documents to explore.

The first step to analyze the field of dependency parsing was to create a custom

set of documents, thus an important capability of ASE is to allow users to define

a custom database. Users also frequently expressed the desire to choose a subset

of the document set and then perform further analysis on the subset. This allows

users to drill down onto a set of documents relevant to the users’ current tasks and

gives users the sense that they are in control of the analysis.

Give users an overview of the document set. Although participants

did not gain insights about the document set from the network diagram alone,

the participants frequently examined the network. It’s possible that overviews are

helpful to orient users in the document set and allow them to quickly get details-

on-demand by clicking on a paper in the network diagram. However, further study

about what kinds of overviews are most helpful is needed.

Provide users with easy-to-understand metrics for ranking docu-

ments. Attribute ranking was a nearly ubiquitous part of the analysis process.

However, participants avoided metrics that were difficult to interpret in citation

networks (e.g., betweenness centrality). Therefore, this thesis recommends that sys-
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tem designers focus on providing users with easy-to-understand metrics for ranking

documents.

Incorporate undo/redo functionality to navigate through users’ ex-

ploration history. Shneiderman and Plaisant [58] discuss the easy reversal of

actions in user interfaces and how it encourages users to explore. The participants

in my first usability study had more difficulties than the participants in my second

usability study with respect to going back to a previous navigation state, but it was

a problem nonetheless. Since one of the main goals of ASE is to aid exploration, it

is important to make users feel comfortable in all aspects of exploration.

Include capabilities to create groups of documents and annotations

for documents. Users created named groups to annotate documents for reference,

but doing so also helps them to drill down into these document subsets. If users can

easily create custom documents groups, then they can later analyze these groups.

Although the usability study participants did not create document annotations,

their creating named groups is equivalent to annotating them.

4.2.2 Evaluation Strategies

The evaluation of digital libraries and literature exploration systems often

focuses on usability issues, time to task completion, and errors while performing the

task [68], but many users don’t have well-defined search queries and use the systems

to explore topics and identify important documents. Thus, evaluation techniques

should account for individual users’ goals and measure whether users can make useful
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insights. With these goals in mind, MILCs [59] provide an appropriate framework

for evaluating literature exploration systems. To my knowledge, MILCs have not

been applied to the evaluation of literature exploration systems.

For longer term studies, it would be better to follow the suggestions of Plaisant

and Shneiderman [48] and have several short clips about each type of functionality

instead of a three videos that last one and a half minutes or more. During the one-

and-a-half hour post-training portion of the evaluation sessions, users sometimes

forgot about functionality that was introduced in the training videos. Having sev-

eral short video clips would allow users to easily view tutorials about functionality

whenever they need to refresh their memory. An additional possibility is to support

embedded training, where the software system uses pop-ups, call out boxes, and

animations to guide users in using the system’s capabilities.

Plan the design of your literature exploration system to import data easily

from at least one source, and identify a set of target evaluation participants early

on. From repeating the usability studies with P1 and P3 it became clear that users

can make interesting insights using ASE, but a MILCs-style evaluation that lasted

two weeks or more may have revealed additional details about the insight-making

process. Longer ethnographic studies also require researchers who are motivated to

use the system for their own research goals.

Participants should analyze their own data. It became clear that motivation

is a real problem for longer-term studies; the participant who volunteered to par-

ticipate over several evaluation sessions eventually decided to stop participating,

apparently due to motivation issues. Participants should have their own data and
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problems they wish to solve. Although participants may not already have a well-

formatted corpus to import into the system under evaluation, participants who have

a research goal should be able to produce a corpus from other databases such as

by performing a keyword search in a digital library to obtain a set of potentially

interesting documents.

Utilize longer-term evaluations of your system. Participants in the usability

studies described in Chapter 3 were able to make deeper insights the longer they

used ASE—for example, after two usability evaluation sessions P1 used multiple

capabilites in the system to learn something about the publication venues that no

other participant had seen. It is unknown how long it may take to develop an

insight, which is one goal of literature exploration systems. So evaluation protocols

should have participants use the systems over a longer period of time, such as 2-4

weeks.

4.3 Limitations

One limitation of the evaluations is that the data set contained only 147 papers.

These papers were chosen to demonstrate a particular use case for exploring the

search results from a larger corpus. Participants occasionally commented that they

thought some capabilities in ASE would work better with a larger set of documents,

but nonetheless the participants were still able to make insightful comments on the

papers.

A further limitation is that both sets of evaluations only had six participants
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total. However, two of the participants used ASE in two sessions, which gives insight

into the trajectory of use as users mature. Nonetheless, having more participants

from other domains would give a broader perspective on how ASE is used. Extending

the usability studies into case studies over a longer period of time would also give

better insight into domain experts’ working methods and users’ abilities to effectively

explore scientific literature networks.

Additionally, participants need to be appropriately motivated to use the sys-

tem. In the usability studies described in this thesis, participants were motivated by

offering compensation and recruiting computational linguists to analyze a literature

network from a sub-field of computational linguistics. Although this worked well for

extended usability studies, participants in longer-term case studies will need to be

motivated by analyzing their own data and producing insights that are meaningful

to their own investigations. An important measurement of the success of ASE will

be whether expert users can achieve their own goals through using ASE.

4.4 Conclusion

This thesis makes five contributions, outlined below:

• A taxonomy of capabilities in literature search and exploration systems.

• A formative evaluation of ASE and its capabilities.

• A list of questions that information seekers ask when exploring new scientific

literature domains.
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• A list of recommendations to literature exploration system designers.

• A set of recommendations for evaluators of literature exploration systems.
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