
Abstract

Title of dissertation: TRACTABLE LEARNING AND INFERENCE IN

HIGH-TREEWIDTH GRAPHICAL MODELS

Justin Domke, Doctor of Philosophy, 2009

Dissertation directed by: Professor Yiannis Aloimonos

Department of Computer Science

Probabilistic graphical models, by making conditional independence assumptions,

can represent complex joint distributions in a factorized form. However, in large

problems graphical models often run into two issues. First, in non-treelike graphs,

computational issues frustrate exact inference. There are several approximate infer-

ence algorithms that, while often working well, do not obey approximation bounds.

Second, traditional learning methods are non-robust with respect to model errors– if

the conditional independence assumptions of the model are violated, poor predictions

can result.

This thesis proposes two new methods for learning parameters of graphical models:

implicit and procedural fitting. The goal of these methods is to improve the results

of running a particular inference algorithm. Implicit fitting views inference as a large

nonlinear energy function over predicted marginals. During learning, the parameters

are adjusted to place the minima of this function close to the true marginals. Inspired

by algorithms like loopy belief propagation, procedural fitting considers inference as

a message passing procedure. Parameters are adjusted while learning so that this

message-passing process gives the best results. These methods are robust to both

model errors and approximate inference because learning is done directly in terms of

predictive accuracy.

Tractable Learning and Inference in

High-Treewidth Graphical Models

Justin Domke

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2009

Committee:

Professor Yiannis Aloimonos, Chair

Dr. Cornelia Fermüller

Professor David Jacobs

Professor P. S. Krishnaprasad, Dean’s representative

Professor Ben Taskar

Contents

1 Overview 1

2 Background on Graphical Models 16

2.1 Graphical Models . 16

2.1.1 Directed Models . 17

2.1.2 Markov Random Fields . 18

2.1.3 Conditional Random Fields 22

2.2 Inference in Graphical Models . 22

2.2.1 Dynamic Programming . 24

2.2.2 Belief Propagation . 25

2.2.3 Computational Complexity and the Junction Tree Algorithm . 28

2.2.4 Loopy Belief Propagation and the Bethe Approximation . . . 28

2.2.5 Mean Field . 31

3 Loss Functions 35

3.1 Empirical risk minimization . 35

3.2 The Likelihood and Conditional Likelihood 37

3.3 Approximate Likelihoods, Approximate Inference, and the Exponential

Family . 39

3.4 Pseudolikelihood . 46

3.5 Univariate Loss Functions . 47

i

3.5.1 Univariate Conditional Likelihood 48

3.5.2 Univariate Quadratic Loss . 48

3.5.3 Smoothed Univariate Classification Loss 49

3.6 Clique Loss Functions. 50

3.6.1 Clique Conditional Likelihood 51

3.6.2 Clique Quadratic Loss . 51

3.6.3 Smoothed Clique Classification Error 51

3.7 Experiments on Chain Graphs . 52

4 Implicit Fitting 62

4.1 Overview . 62

4.2 Marginal Inference as an Optimization 64

4.3 Optimization of the Dual . 65

4.4 Optimization of the Primal . 67

4.5 Implicit Differentiation . 71

4.6 Learning . 74

4.7 Discussion . 76

4.8 Appendix . 77

5 Procedural Fitting 80

5.1 Message-passing algorithms as mappings. 80

5.2 Automatic Differentiation . 81

5.3 Procedurally fit CRFs . 83

5.4 Discussion . 84

6 Experiments 85

6.1 Parametrization . 85

6.1.1 Relationship to traditional CRFs 86

6.2 Binary Digits . 88

ii

6.3 Fitting Entropy Approximations . 90

6.4 Varying the number of iterations of Procedural Fitting 99

6.5 StreetScenes . 99

7 Discussion 107

7.1 Comparison to traditional approaches 107

7.2 Scaling to Huge Problems . 108

7.3 Convexity . 109

7.4 Approximate inference vs. simple models 110

7.5 Related Work: Energy Based Models 110

7.6 Probabilistic Modeling and Model Error 112

7.7 Why fit a joint distribution just to marginalize? 113

iii

List of Figures

1.1 Example CRFs . 2

1.2 The true distribution p0 may or may not be representable. 6

1.3 Test univariate classification error for three different datasets. 7

1.4 Some example binary digit results. 13

1.5 Some example results on the StreetScenes dataset. 14

2.1 Directed models. 18

2.2 An undirected model: A variable and its neighbors. 19

2.3 A Chain MRF . 24

2.4 A Chain Factor Graph . 26

2.5 An MRF and a Factor Graph. 27

2.6 Sets of beliefs. 33

3.1 Example tractable data. 52

3.2 Univariate classification errors . 54

3.3 Univariate classification errors for different training sizes. 55

3.4 Well-specified data evaluation. 56

3.5 Well-specified data evaluation for different training sizes. 57

3.6 Semi-misspecified data evaluation. 58

3.7 Semi-misspecified data evaluation for different training sizes. 59

3.8 Misspecified data evaluation. 60

iv

3.9 Misspecified data evaluation for different training sizes. 61

4.1 Bounds on entropy . 67

4.2 Convergence of the primal belief optimization algorithm. 72

5.1 A simple expression graph. 82

5.2 One iteration of updates for a a “grid” graph. 83

6.1 Binary Digit Errors-10% noise . 91

6.2 Binary Digit Errors-30% noise . 92

6.3 Binary Digit Errors-50% noise . 93

6.4 Binary Digit Errors-70% noise . 94

6.5 Example Binary Digit Results- 10% noise 95

6.6 Example Binary Digit Results- 30% noise 96

6.7 Example Binary Digit Results- 50% noise 97

6.8 Example Binary Digit Results- 70% noise 98

6.9 Entropy fitting results. 100

6.10 Entropy fitting errors. 101

6.11 Procedurally fit CRFs with varying numbers of iterations. 102

6.12 StreetScenes results for every tenth image in the test set. 105

7.1 A CRF vs. direct prediction of marginals. 113

v

List of Tables

1.1 Example binary digit univariate classification errors. 13

3.1 Loss function abbreviations. 53

4.1 Loss functions and derivatives . 77

6.1 Loss function abbreviations. 89

6.2 Features used with the StreetScenes dataset. 104

6.3 Test errors on the StreetScenes dataset 104

vi

Chapter 1

Overview

This overview tries to give a high-level “tour” of the rest of the thesis. The goal is to

informally convey the main results and ideas, with a minimum of technical details.

Chapter 2: Background on Graphical Models

Graphical Models. A graphical model is a probability distribution over a set of

variables, written in a factorized form. The probability of a configuration is pro-

portional to the product of “factors”, each defined on subsets of variables. There

are several types of graphical models, but the focus here is on “Conditional Random

Fields” (CRFs). These represent the conditional probability of some vector y given

an observation x as

p(y|x) ∝
∏

c

ψ(yc,x). (1.1)

The factors ψ do not have an immediate probabilistic interpretation. Some clari-

fication of notation:

• Each c denotes a subset of variables. A subscript of a set indicates the vector

of values in in that set. For example, if c = {1, 5, 7}, then yc = (y1, y5, y7).

1

replacements

y1 y2 y3 y4 y5

(a) A chain graph.

y1

y2

y3 y4

y5 y6

y7

(b) A Tree graph. (c) A general graph.

Figure 1.1: Example CRFs

• Each subset of variables c corresponds to a different function ψ. It would be

more correct to write the factors as ψc(yc,x), but the repeated subscript of c

becomes tedious.

It is convenient to picture graphical models by drawing a graph with one node

for each variable yi. A pair (i, j) will have an edge if there is a c such that i ∈ c

and j ∈ c. (Since each factor can depend on x arbitrarily, it is often better to ignore

x when drawing the graph.) Three example CRFs are pictured in Fig. 1.1. The

chain-structured graph represents a distribution of the form

p(y|x) ∝ ψ(y1, y2,x)ψ(y2, y3,x)ψ(y3, y4,x)ψ(y4, y5,x),

while the tree-structured graph represents a distribution of the form

p(y|x) ∝ ψ(y1, y3,x)ψ(y2, y3,x)ψ(y3, y4,x)ψ(y4, y5,x)ψ(y5, y6,x)ψ(y4, y7,x).

Two Basic Problems. There are two major problems to be solved with graphical

models: learning and inference. In learning, one has training data generated by an

unknown distribution. The problem is to adjust the parameters of the model to best

represent that true distribution. The meaning of “best”, of course, must be made

precise. The focus of this thesis is learning. However, the driving philosophy is that

2

the best way to learn depends on how the model will be used.

In inference, one asks questions of the distribution. There are many questions,

but our focus here is the problem of marginalization, where one seeks the (marginal)

probability of subsets of variables, independent of others. For example, one might

like univariate marginals like

p(y∗i |x) =
∑

y:yi=y∗i

p(y|x). (1.2)

Note that the number of terms in this sum is exponential in the dimensionality of y.

Thus, unless there are few variables, marginals cannot be tractably computed by a

direct sum as in Eq. 1.2.

It turns out that, for chain graphs like Fig. 1.1 (a), the summation can be done

efficiently by dynamic programming. This algorithm can be rephrased into a message-

passing form, where “messages” are sent between neighboring variables. This algo-

rithm, known as Belief-Propagation, is identical to dynamic programming for chains,

but also allows for exact and efficient inference in treelike graphs, such as Fig. 1.1

(b).

Computational Intractability. What about densely connected graphs, like Fig.

1.1 (c)? One strategy, if the graph is nearly a tree, is to create an equivalent treelike

graph by substituting “super-variables” with one value for each joint configuration of

several variables in the original graph. The Junction Tree algorithm, based on this

idea, can always compute exact marginals. But it is exponential in the treewidth, or

the number of variables that must be aggregated into a single super-variable.

In general graphs, even approximate inference is known to be NP-hard [1, 2].

Still, there are heuristic procedures that often work well. The most popular, Loopy

Belief-Propagation (LBP) is essentially just running the Belief-Propagation algorithm,

despite the fact that the graph is not a tree. The difference is that one must initialize

messages somehow, then iterate until they– hopefully– converge.

3

Marginal Inference as an Optimization. One can gain understanding into

what LBP is actually doing by looking at it from an optimization perspective. One

can create an energy function1 that, when minimized under certain constraints, yields

the true marginals. In treelike graphs, this function can be minimized exactly. In

general graphs, LBP can be seen as trying to minimize an approximate energy function

under approximate constraints. Let “beliefs” be a shorthand for “predicted marginals”.

Specifically, LBP tries to minimize the Bethe approximation

∑

c

∑

xc

b(xc) log b(xc) +
∑

i

ni
∑

xi

b(xi) log b(xi)−
∑

c

∑

xc

b(xc) logψ(xc), (1.3)

over the beliefs b under local consistency constraints enforcing, essentially, that uni-

variate and clique-wise beliefs form valid (positive, normalized) probability distribu-

tions

b(xi) ≥ 0 b(xc) ≥ 0

∑

xi

b(xi) = 1
∑

xc

b(xc) = 1, (1.4)

and that clique beliefs agree with univariate beliefs, i.e.

b(xi) =
∑

x
c\i

b(xc). (1.5)

Here, ni = 1− |{c : i ∈ c}| is a constant for each variable, determined by the number

of connected factors.

In general graphs, this function is non-convex, and so LBP can converge to local

1The terminology of an “energy” function will be used to contrast between learning and inference:
Inference objectives will be called “energy” functions, while learning objectives will be called “loss”
functions.

4

minima. In fact, LBP is not guaranteed to converge at all, although there are various

heuristics (such as “damping” of updates) that work well in practice.

Chapter 3: Loss Functions

Essentially, this thesis is about loss functions. Given a model, and some training

data, a “loss” measures the quality of fit. Learning consists of adjusting the model to

optimize the loss. Why are new loss functions needed? There are two basic reasons:

model misspecification, and intractable inference.

Model Misspecification. The first issue, also known as “model error” or “sys-

tematic error”, is discussed in Chapter 3. Whenever one specifies a graphical model,

one makes assumptions. First, the structure of the graph represents assumptions of

conditional independence. Second, in most real applications, one selects “features”, or

restricts factors in the graph to a parametric form. Because of all this, the graphical

model cannot represent any probability distribution, but only a restricted set P . Now,

let p0 be the true data-generating distribution. The model is said to be well-specified

if p0 ∈ P .

The classic loss for training CRFs is the conditional likelihood. Given a distribu-

tion p, and some particular training example (ŷ, x̂), it is defined by

L(p, ŷ, x̂) = − log p(ŷ|x̂).

If we are learning using this loss, we would seek the distribution p∗ in P that has the

best loss on the entire training set, i.e.,

p∗ = arg min
p∈P

∑

(ŷ,x̂)

L(p, ŷ, x̂).

If the model is well-specified, p∗ will converge to p0 in the infinite data limit, using the

5

p0

P

(a) A well-specified
model.

p0

P

(b) A misspecified model.

Figure 1.2: The true distribution p0 may or may not be representable.

conditional likelihood, or other standard loss functions such as the pseudolikelihood.

Of course, if p0 /∈ P , it is impossible to converge2 to p0. In practice, however, the true

data-generating mechanism is usually unknown to some degree. If p0 6∈ P , we should

not design a loss function to converge to p0, but rather to the best distribution in P .

Purposive Loss Functions. The question, of course, is what is meant by “best”?

There is no general answer. If forecasting the stock market, the best distribution

might be the one that leads to the highest expected return. If predicting the scene in

front of a robotic vehicle, we should like to avoid driving off cliffs.

It turns out that the conditional likelihood will asymptotically find the distribution

that minimizes the expected Kullback-Leibler divergence from the true distribution

(Section 3.2). In the infinite data limit, one will recover

p∗ = arg min
p∈P

∑

x

p0(x)KL
(

p0(y|x)||p(y|x)
)

.

This is a reasonable criterion in many cases, but is not in general optimal.

Is it possible to define more purposive loss functions with out considering the

details of the application? Consider how a graphical model will be used. Typically,

one runs an inference algorithm on it. A key idea of this thesis is that if a model will

only be used to produce marginals, then it only matters how accurate the marginals

are. Even if p0 is not in P , it is possible that some other distribution exists that still

2Strictly speaking, convergence is still possible if for every ǫ, there exists some p ∈ P such that
d(p, p0) < ǫ, for some appropriately defined distance measure d. A more correct definition would be
to say the model is misspecified if there exists some ǫ such that for all p ∈ P , d(p, p0) > ǫ.

6

cl ucl
0

0.1

0.2

0.3

0.4

0.2588 0.2591

well−specified

cl ucl
0

0.05

0.1

0.15

0.2

0.25

0.3

0.2447
0.2313

semi−misspecified

1 2
0

0.1

0.2

0.3

0.4

0.3264

0.2049

misspecified

Figure 1.3: Test univariate classification error for three different datasets. cl: condi-
tional likelihood training. ucl: univariate conditional likelihood training.

has marginals very close to those of p0.

There are many ways to measure marginal accuracy. The simplest may be the

univariate conditional likelihood, defined by

L(p, ŷ, x̂) = −
∑

i

log p(ŷi|x̂),

which, assuming the global minimum is found, will converge in the infinite data limit

to

p∗ = arg min
p∈P

∑

x

p0(x)
∑

i

KL
(

p0(yi|x)||p(yi|x)
)

.

This loss only tries to measure how close the univariate marginals p(yi|x) are to the

true marginals p0(yi|x). In particular, it does not matter how close the joint distribu-

tion p(y|x) is to the true joint distribution p0(y|x). There are other univariate loss

functions, here called the “smoothed univariate classification error”, and the “univari-

ate quadratic loss”. All these can be extended to the clique-wise case, measuring how

close marginals like p(yc|x) are to p0(yc|x).

Chapter 3 concludes with some experiments testing different loss functions on

tractable (chain-like) models. Figure 1.3 shows a subset of the results. Here, the con-

ditional likelihood and univariate conditional likelihood are both fit to three different

7

data sets. The well-specified dataset is generated (by Markov chain Monte Carlo)

by a representable distribution with random parameters. In this case, the results of

training on the two loss functions are nearly identical. The semi-misspecified and

misspecified datasets are generated from distributions not obeying the conditional

independencies asserted by the graph. (In the semi-misspecified case, these assump-

tions are only slightly violated.) In these cases, the univariate conditional likelihood is

able to produce significantly more accurate univariate marginals than the conditional

likelihood.

Though the univariate conditional likelihood was motivated here entirely by mod-

eling concerns, we will see in later chapters that loss functions like this also enjoy

certain computational advantages.

Chapter 4: Implicit Fitting

The second issue motivating new loss functions, intractable inference, is addressed

in Chapters 4 and 5. The trouble, as discussed above, is that it is intractable to

compute the marginals p(yi|x) or p(yc|x) in general (high treewidth) graphs. For

related reasons, it is not possible to fit the conditional likelihood.

Note that this intractability affects both the learning and inference stages. In

learning, we cannot fit by the conditional likelihood or any of the univariate or clique-

wise loss functions, as these require the marginals. As a thought experiment, however,

suppose we could. This is not so unreasonable if large resources are available for the

learning stage. For example, one could run an exhaustive Markov-chain Monte Carlo

algorithm (e.g. Gibbs sampling) to closely approximate the marginals.

However, intractability arises again in the inference stage. This usually must

be completed more quickly, forcing the use of approximations. Even if the marginals

p(yi|x) or p(yc|x) are very accurate, this accuracy is in some sense “wasted”. The infer-

8

ence procedure will not return the true marginals, but rather approximate marginals

b(yi|x) or b(yc|x).

Fitting to Approximations. The strategy of the rest of the thesis is roughly

this: Instead of fitting p, fit b. That is, rather than fitting the graphical model so

that the marginals it produces under exact inference are accurate, fit so that the

approximate marginals are. We can consider the parameters of a graphical model as

simply defining a mapping from the input x to predicted marginals b. These marginals

can be used in any of the univariate or clique-wise loss functions.

Chapter 4 considers the mapping defined by a convex inference procedure. Re-

call from above that Loopy Belief Propagation can be seen as optimizing a certain

approximate energy function. This function happens to be non-convex in general,

meaning it is difficult to reliably identify the global minimum. However, other similar

approximations yield convex energy functions.

Performing Inference. For Chapter 4, it is convenient to phrase the LBP

optimization (Eq. 1.3) more abstractly. If we notationally replace the functions

b(yi|x) and b(yc|x) with a single vector b containing all univariate and clique-wise

beliefs, the LBP optimization can be rephrased and generalized to the form

minimize F (b) = w(x)T (b⊙ log b) + v(x)Tb (1.6)

s.t. Ab = d

b ≥ 0.

Appropriate choice of the matrix A and vector d will result in enforcing local con-

sistency (Eqs. 1.4 and 1.5), while the vector v corresponds to the values − logψ(yc,x).

The vector w weights the entropy terms. Notice that if w is positive, this is a convex

inference procedure. (If w is chosen to correspond to LBP inference, some entries of

9

w will be negative.)

Unfortunately, however, existing message passing algorithms cannot perform this

general optimization. Chapter 4 suggests two (non message-passing) algorithms. The

first is based on taking the Lagrange dual. This results in a relatively simple un-

constrained maximization problem, where the gradient and Hessian are available in

closed form. Experimentally, however, standard optimization algorithms, including

L-BFGS, Newton’s method, and nonlinear Conjugate Gradients take more iterations

and computation time than the primal solution. The primal algorithm is based on

a novel successive approximation scheme. The terms bi log bi are replaced with a

quadratic upper bound. This bound is simultaneously used to asymptotically enforce

the constraint bi ≥ 0. As such, each iteration corresponds to solving a quadratic op-

timization under linear constraints, and so can be reduced to a single linear system.

In practice, this algorithm typically converges to high accuracy in 5-20 iterations.

Fitting Mappings. Since convex functions can be minimized quite reliably, we

can think of a model and a convex inference procedure together producing a mapping

from an input to predicted marginals. So, acting on the philosophy above, we would

like to fit this mapping to be accurate. Put another way, we would like to shape the

energy function (over predicted marginals) so as to put the minima in good places.

Clearly, given the parameters defining a model, it is not hard to measure a

marginal-based loss function: One simply performs inference to get predicted marginals,

then plugs these into a loss function. In principle, this is enough to allow learning,

but things would be much easier if one could also compute the gradient of the loss

with respect to the parameters of the model. This appears difficult to do, since the

model determines the loss only though an optimization.

Now, take some parameter of the model θ. We want to know how changing θ will

affect the loss. However, the loss is determined by the intermediate step of computing

beliefs. By the vector chain rule, the derivative of the loss with respect to θ can be

10

decomposed as

dL

dθ
=
dL

db

T db

dθ
. (1.7)

The first term, the derivative of the loss with respect to beliefs is trivial to calculate.

However, the value of b is determined by solving the optimization problem in Eq. 1.6.

Thus, the second term cannot be calculated directly. The following self-contained

result enables learning:

Claim: If b(θ) = arg minb F (b, θ) such that Ab = d, then

db

dθ
=

(

D−1AT (AD−1AT)−1AD−1 −D−1
) ∂2F

∂b∂θ
,

where D := ∂2F
∂b∂bT .

This tells us how the predicted beliefs will change if we modify the parameter

θ, since ∂2F/∂b∂θ will be known in closed form. These derivatives can be used to

compute dL/dθ, i.e. the derivatives of the loss function. This, in turn, can be fed

into a nonlinear optimization to improve the loss on data.

Chapter 5: Procedural Fitting

An advantage of LBP inference is that running it for a few iterations is very fast, and

scalable to huge problems. Often, just a few iterations give acceptable accuracy. It

is also sometimes suggested that if the nonconvex LBP approximation is minimized

correctly, it gives better predictions than convex procedures. Unfortunately, Chapter

4’s approach cannot handle non-convex inference.

Procedures as Mappings. This chapter pursues a different strategy. Rather

than fitting an inference energy function, fit a message passing inference procedure.

11

In order to think of a message-passing procedure as a mapping, several things must

be held constant: The beliefs must be initialized in the same way, updates must take

place in the same order, and for the same number of iterations.

Again, the technical problem arises to calculate the gradient of a loss with respect

to the parameters of the model. Clearly, the loss is differentiable: it is calculated

from the final beliefs, which are the product of a fixed series of basic differentiable

operations (addition, multiplication). It is possible to analytically derive an algorithm

to “backpropagate” the derivatives of a loss function to find how it changes with re-

spect to the parameters of the model. Here, however, the far simpler (and equivalent)

solution is taken of using automatic differentiation tools to do this automatically.

Again, with the derivatives dL/dθ in hand, one can apply a nonlinear optimization

algorithm to fit the parameters of the model to improve the loss.

Chapter 6: Experiments

Chapter 6 finally applies the above strategies to data.

Binary Digits. The first dataset consists of binary images of handwritten digits

that have been corrupted by various amounts of noise. The goal is to recover the

original image. The advantages of this dataset are simplicity, and the ability to

smoothly vary the amount of noise, ranging from an easy problem with low noise,

to a rather difficult one with high noise. Some example results are presented in

Figure 1.4 and Table 1.1. This compares a convex approximation of the conditional

likelihood (convex), implicit fitting of the univariate conditional likelihood (ucl), and

procedural fitting of same, with 4 iterations of updates (ucl-4). We see, roughly, that

at low amounts of noise, all three methods perform well, while with large amounts of

noise, the proposed methods have an edge, with procedural fitting performing better

than implicit fitting.

12

True 10% 30% 50% 70%

convex

Implicit Fitting: ucl

Procedural Fitting: ucl-4

Figure 1.4: Some example binary digit results.

10% 30% 50% 70%

convex .0092 .0304 .0716 .158

Implicit Fitting: ucl .0104 .0319 .0710 .135

Procedural Fitting: ucl-4 .0087 .0285 .0599 .105

Table 1.1: Example binary digit univariate classification errors.

Fitting Entropy Parameters. An unusual idea explored here is to adjust en-

tropy parameters when doing implicit fitting (Section 6.3) for best performance. This

appears to significantly improve the performance of the implicit fitting strategy. For

example, it achieves a univariate classification error of around .059 on the binary

digits with 50% noise, very similar to the error of procedural fitting.

StreetScenes. The next dataset, known as StreetScenes, consists of unstructured

images taken on streets around Massachusetts. The goal is to label each pixel. Here,

five classes are used: buildings, trees, roads/sidewalks, cars, and sky. Due to the pres-

ence of unlabeled pixels, the convex likelihood cannot be used. Instead, it is necessary

to compare to a poorer approximation of the likelihood, the pseudolikelihood. The

proposed methods deal easily with unlabeled data, with no extra technique required-

one simply computes the loss functions over the observed variables.

Figure 1.5 shows some example results on the StreetScenes dataset. The base-

line result corresponds to fitting a totally disconnected graphical model, where each

pixel independently predicts its label given the surrounding image patch. The uquad

13

x̂ ŷ pseudo baseline uquad uquad-1

Figure 1.5: Some example results on the StreetScenes dataset.

(implicit fitting) and uquad-1 (procedural fitting) results improve on this, while the

pseudolikelihood actually performs far worse.

Chapter 7: Discussion

Chapter 7 discusses previous work, future work, and considers the strengths and

weaknesses of the proposed methods.

Summary

Thesis: Implicit and procedural fitting can adjust parameters of graphical models to

optimize the performance of approximate marginal inference methods.

Many problems have a certain character, where one cares mostly about the aver-

age results per variable, or on small groups of variables. Problems like these are most

naturally addressed with marginal inference. In general graphs, however, approxi-

mate inference must be used. Implicit and procedural fitting are two methods for

fitting graphical models that try to compensate for the defects in approximate infer-

ence. These methods directly seek the parameters that will yield the most accurate

predictions. These methods are only guaranteed to find a local minima in parameter

space.

14

Contributions. The two major contributions of this thesis, clearly, are the im-

plicit fitting and procedural fitting methods. Other specific technical contributions

are:

1. The univariate quadratic loss (Section 3.5.2).

2. The clique-wise extension of the univariate loss functions, i.e. the clique-wise

conditional likelihood, quadratic loss, and smoothed classification error, along

with an argument for their consistency. (Section 3.6).

3. The algorithms for optimizing beliefs, either by the dual (Section 4.3), or by a

successive approximation scheme in the primal (Section 4.4).

15

Chapter 2

Background on Graphical Models

This thesis will make heavy use of somewhat non-standard notation. As is common,

boldface denotes a vector. We also allow vectors with “set subscripts”. For example,

if x = (x1, ..., x5), and c = {2, 4, 5}, then xc = (x2, x4, x5). Similarly, conditions can

act as subscripts. For example, x≥4 = (x4, x5), and x6=2 = (x1, x3, x4, x5).

2.1 Graphical Models

At its most basic, a graphical model is simply a way of writing a probability distri-

bution in a factorized form. Consider some probability distribution,

p(x) = p(x1, x2, · · · , xn).

If each variable xi is binary, there are 2n possible configurations for x. Clearly, the

“brute-force” approach of writing down the probability of each configuration will fail

for any reasonable n. Instead, in a graphical model, one writes the joint distribution

as a product of terms, each defined over some (presumably small) subset of variables.

This will resist the “curse of dimensionality” as long as each subset is of a bounded

size.

16

Clearly, not every joint distribution can be written as a product of terms. When

will it be possible? Graphical models give theoretical guarantees in terms of condi-

tional independencies. The exact nature of the conditional independence assumptions

leads to different types of graphical models.

2.1.1 Directed Models

By elementary rules of probability, any distribution can be written exactly as a prod-

uct of terms, where each term is the probability of one variable, given all those before

it in some order.

p(x) = p(x1)p(x2|x1) · · ·p(xn|x1, x2, · · · , xn−1)

In a directed model, or Bayesian Network, one assumes a set of “parents” for each

variable that render it independent of all others before it in the ordering. Let π(i)

denote the set of parents for xi. Then, the assumption is that

p(xi|x1, · · · , xi−1) = p(xi|xπ(i)) (2.1)

and so

p(x) =
∏

i

p(xi|xπ(i)).

Given a set of assumed parents for each node, it is convenient to picture the

situation by drawing a graph with one node for each variable, and directed edges

from each parent to each child (Fig. 2.1(a)).

Notice that there is no reference in Eq. 2.1 to any conditional independence

relative to variables xi+1, xi+2, · · · , xn. A directed model asserts only independence

of a variable to those before it, given its parents. What, then, is the “Markov blanket”

of xi– the set of variables that render it independent of all others? This turns out to

17

i

π(i)

(a) A variable and its parents.

i

M(i)

(b) A variable and its Markov blanketM.

Figure 2.1: Directed models.

consist of xi’s parents, children, and the parents of its children (Fig. 2.1(b)).

Though the ideas of this thesis apply to all graphical models, the presentation is

confined to one type for clarity. Hence, this thesis will not focus on directed models.

2.1.2 Markov Random Fields

In a Markov Random Field (MRF), one directly specifies the Markov blanket of each

variable. Let N (i) denote the set of “neighbors” of i. One then asserts that xi is

independent of all other variables given its neighbors.

p(xi|x6=i) = p(xi|xN (i))

The neighborhood system must be symmetric.

i ∈ N (j)↔ j ∈ N (i)

An MRF is pictured by drawing a graph with one node for each variable, and

undirected edges between all neighbors (Fig. 2.2).

The immediate question is, given an MRF, what form can its probability distri-

bution take? It is not easy to specify p(x) in terms of local conditional distributions,

because in general graphs these turn out to have severe, non-obvious constraints. The

18

i

N (i)

Figure 2.2: An undirected model: A variable and its neighbors.

solution ultimately came in the form of the Hammersley-Clifford theorem. Notice that

it is required that p give positive probability to all configurations.

Hammersley-Clifford Theorem: p(x) > 0 obeys the set of conditional

independencies asserted by a graph if and only if there exist functions

ψ(xc) such that

p(x) =
1

Z

∏

c

ψ(xc), (2.2)

where the product is over the set of cliques c in the neighborhood graph,

and Z is a normalization constant.

Z =
∑

x

∏

c

ψ(xc). (2.3)

The local functions ψ(xc) do not have a direct probabilistic interpretation.

Note that while it is easy to show that a distribution written as in Eq. 2.2 obeys

the conditional independencies asserted by a graph, the converse is not at all obvious.

The following is based upon the original proof by Besag [3]. Here, it is assumed that

each variable xi can take on a finite number of values, 0, · · · ,M . The vector of all

zeros is denoted by 0.

Proof Sketch:

1. Define q(x) = log p(x)
p(0)

19

2. There is a unique expansion for q(x) of the form

q(x) =
∑

i

xigi(xi) +
∑

i

∑

j 6=i

xixjgij(xi, xj) + · · ·+ x1 · · ·xNg1···N(x1, · · · , xN).

(2.4)

3. Define xi→0 = (x1, · · · , xi−1, 0, xi+1, · · · , xN). Then

q(x)− q(xi→0) = log p(xi|xN (i))− log p(xi = 0|xN (i)).

In particular, note this is a function only of xi, and xN (i).

4. At the same time, (with x1 chosen arbitrarily for convenience)

q(x)−q(x1→0) = x1

(

g1(x1)+
∑

j 6=1

xjg1j(x1, xj)+· · ·+x2 · · ·xNg1···N(x1, · · · , xN)
)

.

5. So, gc 6= 0 only if ∀i, j ∈ c, i ∈ N(j). That is, all nonzero functions in the

expansion of Eq. 2.4 are functions of cliques.

Additional discussion for each of the above steps follows.

Step 1: Note that q(x) is just a function, not a valid probability distribution.

Step 2: Suppose that an expansion exists. To see that it is unique, note for

example that q(0, · · · , 0, xi, 0, · · · , 0) = xigi(xi), since all other terms on the right

hand side of Eq. 2.4 will be zero. This fixes all terms of the form xigi(xi). Next,

one can consider values like q(0, · · · , 0, xi, 0, · · · , 0, xj, 0, · · · , 0), which will then fix

all the functions xixjgij(xi, xj). Analogous values then fix all functions up to on the

right-hand side of Eq. 2.4. Since every value q(x) will be satisfied by this strategy,

clearly an expansion does exist.

20

Step 3: This is quite easy to show.

q(x)− q(xi→0) = log
p(x)

p(0)
− log

p(xi→0)

p(0)

= log
p(x)

p(xi→0)

= log
p(x6=i)p(xi|x6=i)

p(x6=i)p(xi = 0|x6=i)

= log
p(xi|xN (i))

p(xi = 0|xN (i))

Step 4: Simply notice that in the expansions for q(x) and q(x1→0), any terms not

involving x1 will cancel.

Step 5: In the expression for step 4, consider g1j, j 6∈ N (1). Take the value

x∗ = (x1, 0, · · · , 0, xj, 0, · · · , 0). Observe that

q(x∗)− q(x∗
1→0) = x1

(

g1(x1)− xjg1j(x1, xj)
)

.

But, by step 3, we know that q(x∗)− q(x∗
1→0) is independent of xj . So we must have

x1xjg1j = 0. Similarly, consider g1jk, j 6∈ N (1). Take the value

x∗ = (x1, 0, · · · , 0, xj, 0, · · · , 0, xk, 0, · · · , 0).

Now,

q(x∗)− q(x∗
1→0) = x1

(

g1(x1) + xjg1j(x1, xj) + xkg1k(x1, xk) + xjxkg1jk(x1, xj, xk)
)

.

Again, by step 3, we know that q(x∗) − q(x∗
1→0) is independent of xj . Since x1xjg1j

is already know to be zero, this implies that x1xjxkg1jk = 0. Similar examples hold

for higher-order functions.�

21

2.1.3 Conditional Random Fields

Suppose we want to represent a conditional distribution p(y|x). A Conditional Ran-

dom Field (CRF) is defined by

p(y|x) =
1

Z(x)

∏

c

ψ(yc,x), (2.5)

with the normalization constant now a function of x.

Z(x) =
∑

y

∏

c

ψ(yc,x)

One way to arrive at this definition is to take a Markov Random Field defined jointly

over y and x, and then condition it.

p(y,x) =
1

Z

∏

c

ψ(yc,xc)→ p(y|x) =
p(y,x)

p(x)
=

∏

c ψ(yc,xc)
∑

y′

∏

c ψ(y′
c,xc)

(2.6)

Note that if there are any cliques c that contain only variables in x they can be

dropped, since those terms will be constant on the numerator and denominator in

Eq. 2.6.

The definition of a CRF in Eq. 2.5 is slightly more general since it allows each

term to depend on the entire vector x rather than just the variable in a clique.

2.2 Inference in Graphical Models

Suppose we have a graphical model. What will we do with it? From a decision

theory viewpoint, there is no universal answer. An application demands a decision,

and the graphical model will be used in a problem-dependent way to make the choice

with the best expected outcome, taking into account how risk adverse we are, etc.

Nevertheless, there are several common questions to ask of graphical models, called

“inference” problems.

22

In maximum a posteriori probability or MAP inference, one looks for the single

value y with maximum probability given x.

MAP inference: y∗ = arg max
y

p(y|x) (2.7)

Another common problem, and the one of focus in this thesis is marginalization.

Marginal inference: p(y∗i |x) =
∑

y:yi=y∗i

p(y|x) (2.8)

While MAP inference looks like (and is) a challenging combinatorial optimization

problem, the notational simplicity of writing down p(yi|x) understates the difficulty

of computing marginals. The naive method– a brute force sum over all vectors y :

yi = y∗i as in Eq. 2.8– will rarely be tractable, due to the curse of dimensionality.

A problem that has aspects of both of the above is Maximum Posterior Marginal

or MPM inference[4].

MPM inference: y∗i = arg max
yi

p(yi|x) (2.9)

Whereas MAP inference pursues the joint vector y∗ that has maximum probability,

MPM inference does this separately for each variable. Thus, if one cares about the

number of variables in error, as opposed to if all variables are correct simultaneously

or not, MPM is to be preferred to MAP inference. In MPM inference, one first runs

a marginalization algorithm, then for each index i chooses the value with maximum

marginal probability. Since the second step is trivial, the main computational problem

remains marginal inference.

The focus of this thesis is marginal inference, both for its own sake, and for

enabling MPM inference. The discussion of inference algorithms below will be entirely

23

x1 x2 x3 x4 x5

Figure 2.3: A Chain MRF

for marginal inference. However, the computational issues faced by MAP inference

are similar, and sometimes almost the same algorithm can be used for both with slight

changes. (An example of this is how the “sum-product” version of belief propagation

discussed below for marginal inference can be trivially transformed into a “min-sum”

form for MAP inference. [5, 26.2-3])

2.2.1 Dynamic Programming

This section will first show how marginals can be computed exactly on pairwise chains

by dynamic programming. The next section generalizes this to arbitrary singly-

connected graphs through a message-passing algorithm. For simplicity of notation,

this section computes the marginals p(xi) for an MRF, but with trivial changes the

same algorithm can compute p(yi|x) for a CRF.

Consider a chain MRF defined on pairs of variables (Fig. 2.3).

p(x) ∝
n−1
∏

i=1

ψ(xi, xi+1)

Since, by definition p(xi) =
∑

x 6=i
p(x),

p(xi) ∝
∑

x<i

∑

x>i

i−1
∏

j=1

ψ(xj , xj+1)

n−1
∏

j=i

ψ(xj, xj+1)

=
(

∑

x<i

i−1
∏

j=1

ψ(xj , xj+1)
)(

∑

x>i

n−1
∏

j=i

ψ(xj , xj+1)
)

(2.10)

= TL(xi)TR(xi) (2.11)

24

where the tables TL and TR are defined for the sums two sums above. These tables

can be computed efficiently by dynamic programming.

TL(xi) :=
∑

x<i

i−1
∏

j=1

ψ(xj , xj+1)

=
∑

xi−1

ψ(xi−1, xi)TL(xi−1) (2.12)

TR(xi) :=
∑

x>i

n−1
∏

j=i

ψ(xj , xj+1)

=
∑

xi+1

ψ(xi, xi+1)TR(xi+1) (2.13)

Boundary conditions simply use TL(x1) = TR(xn) = 1.

We can also use these tables to compute pairwise probabilities as

p(xi, xi+1) ∝
(

∑

x<i

i−1
∏

j=1

ψ(xj , xj+1)
)

ψ(xi, xi+1)
(

∑

x>i+1

n−1
∏

j=i+1

ψ(xj , xj+1)
)

= TL(xi)ψ(xi, xi+1)TR(xi+1).

If computed exactly as in Eqs. 2.12 and 2.13, the values in the tables will often

become very large or small. However, we can observe that the values are only actually

needed up to a constant factor. Thus, to avoid numerical problem, one can instead

use updates like TL(xi) = α
∑

xi−1
TL(xi−1)ψ(xi−1, xi), where α is chosen, e.g., so that

∑

xi
TL(xi) = 1.

2.2.2 Belief Propagation

The Belief Propagation or Sum-Product algorithm can handle general tree graphs,

and is more elegant than dynamic programming. Instead of “tables”, this algorithm

sends “messages” performing the same function. There are two types of messages,

those from variables to cliques,

mi→c(xi) =
∏

d:i∈d,d6=c

md→i(xi), (2.14)

25

x1 x2 x3 x4 x5

a b c d

Figure 2.4: A Chain Factor Graph

and those from cliques to variables.

mc→i(xi) =
∑

xc\i

ψ(xc)
∏

j∈c,j 6=i

mj→c(xj) (2.15)

The final univariate marginals can be recovered from

p(xi) ∝
∏

d:i∈d,d6=c

md→i(xi),

while the clique marginals are given by

p(xc) ∝ ψ(xc)
∏

j∈c

mj→c(xj).

This algorithm is best explained by example. It is convenient to picture a “factor

graph” consisting again of nodes for variables, but now also square nodes for cliques.

A node and clique are connected if and only if the node participates in the clique.

First, let us consider again a chain. The factor graph in Fig. 2.4 corresponds to Fig.

2.3 above.

Messages are not “sent” until all prerequisite messages have been “received”. Note

that the message m1→a(x1) = 1 can immediately be sent. The messages can then

be computed from left to right in order: ma→2, m2→b, mb→3, etc. We then find that

ma→2(x2) =
∑

x1
ψ(x1, x2), and more generally that the messages mc→i(xi) coming

from the left correspond exactly to the values TL(xi) in dynamic programming, while

26

x1

x2

x3 x4

x5

x6 x7

x1

x2

x3 x4

x5

x6 x7

a

b

c

d

e

Figure 2.5: A general graph, at top pictured as an MRF, and at bottom as a Factor
Graph.

those coming from the right correspond to TR(xi). This justifies the algorithm at

least for the case of pairwise chain graphs.

Now consider the more general graph in Fig. 2.5. Again, the messages from

nodes at the end will be constant, so m1→a(x1) = m2→a(x1) = 1. It follows that

ma→3(x3) =
∑

x1

∑

x2
ψ(x1, x2, x3). Similarly, it is not hard to see that each message

from one element to another consists of a sum over all configurations “on the other

side” of the sender. For example

m4→d(x4) =
∑

x{1,2,3,5}

ψ(x{1,2,3})ψ(x{3,4})ψ(x{4,5}),

and

mb→3(x3) =
∑

x{4,5,6,7}

ψ(x{4,5})ψ(x{4,6})ψ(x{6,7}).

27

As with dynamic programming, messages are only needed up to a constant factor.

Thus, to prevent numerical problems, the update formulas (Eqs. 2.14 and 2.15) can

introduce a normalizer chosen so that messages sum to one.

Notice that the belief propagation algorithm will be applicable exactly when the

factor graph is singly connected. As in Fig. 2.5, the MRF need not be singly con-

nected.

2.2.3 Computational Complexity and the Junction Tree Algo-

rithm

What to do if faced with a graph that is not a tree? One possibility, if the graph is

nearly a tree, is to convert it into an equivalent, singly connected graph. This can be

done, roughly speaking, by creating variables with one state for each joint configura-

tion of a set of variables in the original graph. Inference can proceed exactly on this

new graph by Belief Propagation. The problem with this is that in a large general

graph, a large number of variables will need to be aggregated, with an exponential

number of joint configurations. Thus, the junction tree algorithm is only practical on

graphs with low treewidth.

2.2.4 Loopy Belief Propagation and the Bethe Approximation

Though the belief propagation algorithm is defined for singly-connected graphs, with

slight changes, one can run the algorithm on an arbitrary graph. The major difference

is that the messages need to be initialized somehow, and iteratively re-updated until

everything (hopefully) converges. This “loopy” belief propagation often appears to

give good results, though it might converge to different stationary conditions, and

might fail to converge at all.

A theoretical understanding of this algorithm was given by Yedidia et al. [6], who

28

made connections to an approximation from statistical physics known as the Bethe

approximation. A rough idea of this is the following. Consider minimizing the KL-

divergence between some “belief” distribution b(x) and the true distribution p(x) =

1
Z

∏

c ψ(xc). If done exactly, of course, we would simply recover b = p. However, it is

useful to cast the problem in this “variational” form, since approximations can then

be made to the optimization. It can easily be shown1 that

arg min
b
KL

(

b(x)||p(x)
)

= arg min
b

∑

x

b(x) log b(x)−
∑

c

∑

xc

b(xc) logψ(xc). (2.16)

The second term is easy to compute exactly. The first term, known as the entropy,

is difficult. In general, the curse of dimensionality prevents even representing an

arbitrary distribution b(x). To get a tractable approach, one can approximate the

entropy with a function of local beliefs. The Bethe approximation is

∑

x

b(x) log b(x) ≈
∑

c

∑

xc

b(xc) log b(xc) +
∑

i

ni
∑

xi

b(xi) log b(xi), (2.17)

with ni = 1−|{c : i ∈ c}|. The motivation for this choice is that for singly-connected

graphs, the Bethe approximation is exact2. So, under this approximation, one searches

1By definition, arg minbKL
(

b(x)||p(x)
)

= argminb

∑

x b(x) log b(x) −
∑

x b(x) log p(x). Now,
working on the right hand side, we can see that

∑

x

b(x) log p(x) =
∑

x

∑

c

b(x) logψ(xc)−
∑

x

b(x) logZ

The second term can be disregarded, since it is a constant. Finally, make the substitution

∑

x

∑

c

b(x) logψ(xc) =
∑

c

∑

xc

b(xc) logψ(xc).

2To see this, first note that a tree structured distribution can be written as

p(x) =
∏

i

p(xi)
∏

c

p(xc)
∏

i∈c p(xi)
.

This is easy to see by induction, starting from a single clique and adding neighboring cliques one
at a time. From this it follows that

29

for beliefs to minimize

∑

c

∑

xc

b(xc) log b(xc) +
∑

i

ni
∑

xi

b(xi) log b(xi)−
∑

c

∑

xc

b(xc) logψ(xc).

However, for arbitrary local distributions b(xc) and b(xi), there need not exist a

consistent joint distribution b(x) giving them. “Local consistency” means enforcing

only that local beliefs are valid (i.e. non-negative and sum to one), and that clique

beliefs marginalize to univariate beliefs.

b(xi) ≥ 0 b(xc) ≥ 0

∑

xi

b(xi) = 1
∑

xc

b(xc) = 1

b(xi) =
∑

x
c\i

b(xc) (2.18)

These constraints are sufficient for global consistency in singly-connected graphs,

but not in general graphs. Moreover, the set of constraints needed to ensure global

consistency in general graphs is intractably large [7].

Yedidia et al. [6] showed that if loopy belief propagation converges, it is at a

stationary point of the Bethe free energy subject to local consistency and that a

stationary point of the Bethe free energy subject to local consistency corresponds to

a convergent point of loopy belief propagation3.

It is important to emphasize there are two different approximations made by loopy

∑

x

p(x) log p(x) =
∑

x

p(x)
∑

c

log p(xc) +
∑

x

p(x)
∑

i

ni log p(xi)

=
∑

c

∑

x

p(xc) log p(xc) +
∑

i

ni

∑

x

p(xi) log p(xi)

3To see this, form a Lagrangian enforcing constraints b(xi) =
∑

xc\i
b(xc),

∑

xi
b(xi) = 1, and

∑

xc
b(xc) = 1.

30

belief propagation:

1. The approximation of the entropy (Eq. 2.17).

2. The relaxation of global consistency into local consistency (Eq. 2.18).

Recall still that LBP may not converge, and that it can converge to different stationary

points. Empirically, it is found that fixed points almost always correspond to local

minima.

2.2.5 Mean Field

(This section can be skipped with out loss of continuity.) Mean field is an alterna-

tive method for approximate inference. The idea, as above, takes the perspective of

L =
∑

c

∑

xc

b(xc) log b(xc) +
∑

i

ni

∑

xi

b(xi) log b(xi)−
∑

c

∑

xc

b(xc) logψ(xc)

+
∑

c

∑

i∈c

∑

xi

λc(xi)
(

b(xi)−
∑

xc\i

b(xc)
)

+
∑

i

γi(
∑

xi

b(xi)− 1) +
∑

c

γc(
∑

xc

b(xc)− 1)

First, we show that a fixed point of this Lagrangian corresponds to a convergent configuration
for loopy belief propagation. Suppose we have a stationary point. Taking dL/db(xc) = 0 and
dL/db(xi) = 0 (assuming ni 6= 0) gives the relationships

b(xc) = ψ(xc) exp(
∑

i∈c

λc(xi)− 1− γc), b(xi) = exp(−
1

ni

∑

c:i∈c

λc(xi)−
γi

ni
− 1).

Now, we can produce a convergent loopy belief propagation configuration. Suppose the messages
are chosen so that λc(xi) = log

∏

a6=c:i∈ama→i(xi) (To see that this is possible, see Eq. 2.19 below).
Then the beliefs are

b(xc) ∝ ψ(xc)
∏

i∈c

∏

a6=c:i∈ama→i(xi) = ψ(xc)
∏

i∈c

mi→c(xi)

b(xi) ∝
(
∏

c:i∈c

∏

a6=c:i∈ama→i(xi)
)−1/ni

=
∏

c:i∈c

mc→i(xi).

The following construction for messages verifies that it is possible to find messages satisfying the
criteria for λc(xi) above. It can be mechanically checked that log

∏

a6=c:i∈ama→i(xi) = λc(xi).

ma→i(xi) = exp
(

−
ni + 1

ni
λa(xi)−

1

ni

∑

c 6=a:i∈c

λc(xi)
)

. (2.19)

To see the converse (that a fixed point of loopy BP gives a stationary point of the Bethe free
energy), notice that the above proof can be run “in reverse”: Given the messages ma→i, choose
λc(xi) = log

∏

a6=c:i∈ama→i(xi), and then observe that for appropriately chosen γi and γc, this gives
a stationary point.

31

minimizing the KL-divergence from some approximating distribution b to the true

distribution p. The essential difference is that mean field restricts b to a simple fully-

factorized form, b(x) =
∏

i b(xi). Under this large restriction, it is possible to find an

exact local minima. Substituting a fully-factorized b into the KL-divergence, when

again p(x) = 1
Z

∏

c ψ(xc) gives4

arg min
b
KL(b||p) = arg min

b

∑

i

∑

xi

b(xi) log b(xi)−
∑

c

∑

xc

logψ(xc)
∏

i∈c

b(xi). (2.20)

Notice that if p(x) is itself fully factorized, it will be possible to set b(xi) so that

KL(b||p) = 0, and so mean-field will give exact marginals at the global minimum. On

the other hand, if p(x) cannot be well-approximated by a fully factorized distribution,

we can expect mean-field to give poor results.

Now, consider updating an individual factor b(xj) to minimize the KL-divergence

with all other factors fixed. It can be shown5 that the update will be

4After substituting, one can drop the constant term corresponding to the partition function.

arg min
b

∑

x

b(x) log
b(x)

p(x)
= arg min

b

∑

x

b(x) log b(x)−
∑

x

b(x)
∑

c

logψ(xc)

= arg min
b

∑

i

∑

xi

b(xi) log b(xi)−
∑

c

∑

xc

logψ(xc)
∏

i∈c

b(xi)

5Consider the minimization just as a function of b(xj). Form a Lagrangian enforcing that
∑

xj
b(xj) = 1.

Lj =
∑

xj

b(xj) log b(xj)−
∑

c:j∈c

∑

xc

logψ(xc)
∏

i∈c

b(xi) + λ(1 −
∑

xj

b(xj))

Taking dLj/db(xj) = 0 gives

log b(xj) + 1−
∑

c:j∈c

∑

xc\j

logψ(xc)
∏

i∈c:i6=j

b(xi)− λ = 0.

Now, solve for b(xj).

b(xj) = exp(
∑

c:j∈c

∑

xc\j

logψ(xc)
∏

i∈c:i6=j

b(xi) + λ− 1)

32

Local Consistency

Global Consistency

Fully Factorized

Figure 2.6: Sets of beliefs.

b(xj) ∝ exp
(

∑

c:j∈c

∑

xc\j

logψ(xc)
∏

i∈c:i6=j

b(xi)
)

. (2.21)

One can either iterate directly using Eq. 2.21 or consider this as a system of

equations, and solve it by other means. If iterating, the KL-divergence can never

increase, meaning that the updates cannot cycle. However, the mean field objective

function (Eq. 2.20) is non-convex in the local beliefs, meaning that different local

minima are possible.

Mean-field can be made slightly more powerful by using a “tree-structured” ap-

proximating distribution rather than a fully-factorized one. This still allows the KL-

divergence to be computed exactly, and gives a strictly more powerful space of ap-

proximating distributions.

Wainwright and Jordan [7] give an insightful contrast between mean-field and

loopy belief propagation. In mean-field, one exactly minimizes the KL-divergence

KL(b||p), but must drastically restrict the space of approximating distributions. In

LBP, meanwhile, local consistency enlarges the space of allowed beliefs beyond those

that are (globally) consistent, while simultaneously the Bethe approximation means

only an approximation of KL-divergence is minimized. Fig. 2.6 visualizes the space

of globally consistent beliefs in white. It can by approximated either with a fully-

factorized subset (in black), or a locally-consistent superset (in gray).

In the presentation here, mean field was seen as minimizing a function only of uni-

variate beliefs. However, it can also be seen as performing a constrained minimization

of a function of both univariate and clique-wise beliefs. In this case a convex objective

33

function is minimized over a non-convex constraint set. This leads to a Figure similar

to Fig. 2.6, where the set of Fully-Factorized distributions appears nonconvex [7].

34

Chapter 3

Loss Functions

3.1 Empirical risk minimization

A loss function measures how well a given model fits to some training data. When

discussing loss functions, it is useful to remember that the ultimate goal is to fit

some aspect of the true distribution, for which the training data is a surrogate. All

the loss functions in this thesis can be derived from the perspective of empirical risk

minimization. Suppose that the true distribution is p0(x). Abstractly, learning can

be phrased as choosing some distribution p from a set of candidate distributions P .

Suppose that we would like to minimize the expected value of some loss function

L(p,x). Then, we would like to minimize the “true risk”,

arg min
p∈P

∑

x

p0(x)L(p,x). (3.1)

Of course, this cannot actually be done, since p0 is unknown. We have access only

to some data sampled from p0. In empirical risk minimization, one approximates the

true risk with an “empirical risk”. If X̂ is a set of points x̂ sampled from p0, one can

make a Monte-Carlo approximation

35

∑

x

p0(x)L(p,x) ≈
1

N

∑

x̂∈X̂

L(p, x̂), (3.2)

where |X̂| = N . Minimizing this “empirical risk” is called “empirical risk minimiza-

tion”.

arg min
p∈P

∑

x̂∈X̂

L(p, x̂) (3.3)

Note that there is no guarantee that substituting data for the the true distribution

like this will yield a consistent estimator. For fixed p, the Monte-Carlo approximation

in Eq. 3.2 will converge as N → ∞, under mild conditions. However, if P contains

infinitely many distributions, this does not mean in general that the minimizer of

Eq. 3.3 will converge to the minimizer of Eq. 3.1. Statistical learning theory [8]

studies the conditions under which this approximation is consistent. Despite their

importance, these issues will not be discussed further in this thesis.

Note that when the set of candidate distributions P is large, a direct minimization

of Eq. 3.3 will often produce a distribution that fits the training data well, but has

a poor true risk. To combat this “overfitting” one will usually add a “regularization”

term, which penalizes complex distributions and favors simple ones.

In practice, we will usually not be interested in fitting a joint distribution p(x),

but rather a conditional distribution p(y|x). In this case, the true risk is

arg min
p∈P

∑

x

∑

y

p0(y,x)L(p,y,x). (3.4)

Now, the training data will be some set D̂ = {(ŷ, x̂)} sampled from p0. In learning,

one again simply selects the distribution with minimum empirical risk.

arg min
p∈P

∑

(ŷ,x̂)∈D̂

L(p, ŷ, x̂), (3.5)

36

Below, the set of candidate distributions (P) and training data (X̂ or D̂) will be

suppressed for notational simplicity.

3.2 The Likelihood and Conditional Likelihood

The (negative-log) likelihood loss is simply the negative log-probability of some data

element.

L(p, x̂) = − log p(x̂).

Usually, the likelihood is defined as log p(x̂), a quantity to be maximized in learning.

This thesis uses the negative log probability to maintain consistently that all loss

functions should be minimized.

To optimize the likelihood is to try to minimize the Kullback-Leibler or KL-

divergence between the true distribution, and the one being fit. The KL-divergence

is defined by

KL(p(x)||q(x)) :=
∑

x

p(x) log
p(x)

q(x)
.

Roughly speaking, the KL-divergence measures how many bits are wasted on

average if one builds a code for data coming from p under the assumption that the

data is coming from q. Importantly, KL(p||q) = 0 if and only if p = q. See Minka [9]

for intuition in the context of graphical models.

Now, suppose the true, unknown distribution is p0(x). It is easy to see that the

true risk is equivalent to the negative log probability.

arg min
p
KL

(

p0(x)||p(x)
)

= arg min
p
−

∑

x

p0(x) log p(x).

37

The (negative-log) conditional likelihood loss is very similar.

L(p, ŷ, x̂) = − log p(ŷ|x̂)

Optimizing this turns out to be equivalent to minimizing the expected KL-divergence

from the true distribution.

arg min
p

∑

x

p0(x)KL
(

p0(y|x)||p(y|x)
)

= arg min
p
−

∑

x

p0(x)
∑

y

p0(y|x) log p(y|x)

= arg min
p
−

∑

x

∑

y

p0(y,x) log p(y|x)

Now we consider how to compute the derivative of the conditional likelihood loss.

Recall the definition of a CRF.

p(y|x) =
1

Z(x)

∏

c

ψ(yc,x)

The negative logarithm is

L(p, ŷ, x̂) = −
∑

c

logψ(ŷc, x̂) + logZ(x̂).

Now, if the functions ψ are tuned by some parameters θ, the gradient is1

∂L

∂θ
= −

∑

c

∂

∂θ
logψ(ŷc, x̂) +

∑

c

∑

yc

p(yc|x̂)
∂

∂θ
logψ(yc, x̂). (3.6)

Notice the meaning of this: one can compute the gradient of the likelihood loss if one

can compute the marginals p(yc|x̂).

1There is a bit of manipulation needed to calculate the derivative of the partition function.

∂

∂θ
logZ(x) = 1

Z(x)

∑

y
∂
∂θ

∏

c ψ(yc,x) =
1

Z(x)

∑

y

(

∏

c

ψ(yc,x)
)

∑

c

1

ψ(yc,x)

∂

∂θ
ψ(yc,x)

=
∑

y p(y|x)
∑

c
∂

∂θ
logψ(yc,x) =

∑

c

∑

yc

p(yc|x)
∂

∂θ
logψ(yc,x)

38

3.3 Approximate Likelihoods, Approximate Inference,

and the Exponential Family

(This section, which is based on Wainwright and Jordan [7], can be skipped with

minimal loss of continuity.) One fairly common method in practice for parameter

fitting with high-treewidth graphical models is to use an algorithm such as loopy

belief propagation to compute approximate marginals, and then use these in place of

the true marginals to estimate the gradient in Eq. 3.6. This heuristic argument seems

to have motivated the original use of this approach. A more principled understanding

of this method comes from the perspective of the exponential family. A probability

distribution in the exponential family can be defined by

p(x; θ) = exp(θT f(x)− A(θ)),

A(θ) = log
∑

x

exp θT f(x),

where f is some vector of “sufficient statistics”. (Essentially, the elements of f can be

arbitrary features of x). It can be shown2 that the first and second order derivatives

of A correspond to the expected value, and covariance matrix of f .

d

dθ
A(θ) =

∑

x

p(x; θ)f(x) = Eθ[f(x)]

2The computation of the first order derivative is mechanical.

d

dθ
A(θ) =

∑

x exp(θT f(x))f(x)
∑

x expθT f(x)
=

∑

x

p(x; θ)f(x) = µ

The second order derivative is somewhat more involved.

d2

dθdθT
A(θ) =

∑

x f(x) d
dθT p(x; θ) =

∑

x

f(x)p(x; θ)
(

fT (x)− µT
)

=
∑

x p(x; θ)f(x)fT (x)− µµT = Eθ[(f(x) − µ)(f(x) − µ)T]

39

d2

dθdθT
A(θ) = Covθ[f(x)]

Now, consider fitting θ to some dataset using the likelihood loss. The goal is to

minimize

1

N

∑

x̂

L(x̂) = −
1

N

∑

x̂

log p(x̂; θ)

= A(θ)−
1

N

∑

x̂

θT f(x̂).

Taking the gradient with respect to θ, and setting this to zero gives

∑

x

p(x; θ)f(x) =
1

N

∑

x̂

f(x̂). (3.7)

These are called moment matching conditions. The expected value of the features

under p must be equal to the average value of the features in the data. To illuminate

the connection to approximate graphical models and approximate inference, it is

useful to rederive this same result by a different route.

Since the matrix of second order derivatives of A is a covariance matrix, it must

be positive definite, and so A is convex in θ. Hence, it possible to write A in terms

of its conjugate (or Legendre) dual function as

A(θ) = sup
µ

{θTµ−A∗(µ)}. (3.8)

The connection to approximate inference and entropy approximations stems from

the dual function. It can be shown3 that A∗ is the negative entropy of p, when the

3By definition, A∗(µ) = supθ{θ
T µ−A(θ)}.

By taking the derivative of the expression inside the supremum, we see that that if there is a θ is
such that µ = Eθ[f(x)], then the supremum will be obtained there. Let θ∗ be the parameters where
the maximum is attained. Then, we have that

40

mean parameters µ are achievable. Let

MARG = {µ : ∃θ,µ =
∑

x

p(x; θ)f(x)}

be the set of achievable mean parameters. The entropy is defined by

H(µ) = −
∑

x

p(x; µ) log p(x; µ),

where p(x; µ) is a shorthand for the distribution resulting from finding the parameters

that yield µ. So, finally,

A∗(µ) =















−H(µ) µ ∈ MARG

∞ µ 6∈ MARG.

(3.9)

Notice, incidentally, that since A∗(µ) is convex H(µ) must be concave. By substi-

tuting Eq. 3.9 into Eq. 3.8, we see that we can write the partition function in terms

of a constrained optimization.

A(θ) = sup
µ∈MARG

{θTµ +H(µ)} (3.10)

We will need the derivative of A in this variational form. By Danskin’s theorem4,

if H is concave, then

dA(θ)

dθ
=

d

dθ
sup

µ∈MARG

{θTµ +H(µ)}

= arg max
µ∈MARG

{θTµ +H(µ)}. (3.11)

θ∗T µ−A(θ∗) =
∑

x

p(x; θ∗)
(

θ∗T f(x) −A(θ∗)
)

=
∑

x

p(x; θ∗) log p(x; θ∗).

If there does not exist such a θ, then A∗(µ) =∞.
4Danskin’s theorem states generally that if f(x, z) is convex in x for all z, then g(x) =

maxz f(x, z) is convex in x, and d
dxg(x) = d

dxf(x, z̄), where z̄ = argmaxz f(x, z).

41

Eq. 3.10 can be used to give a variational representation of the likelihood loss.

L(x̂) = − log p(x̂; θ)

= sup
µ∈MARG

{θTµ +H(µ)} − θT f(x̂)

Using Eq. 3.11 we can also calculate the gradient of this loss.

dL(x̂)

dθ
= arg max

µ∈MARG

{θTµ +H(µ)} − f(x̂) (3.12)

So, we see that the three problems of performing inference, computing likelihoods

or likelihood gradients, and computing the partition function all face essentially the

same computational difficulty, namely performing the optimization in Eq. 3.10.

If θ is fit to optimize the likelihood loss on data, the solution will satisfy

1

N

∑

x̂

dL(x̂)

dθ
= 0,

which, substituting Eq. 3.12, can be solved to yield

arg max
µ∈MARG

{θTµ +H(µ)} =
1

N

∑

x̂

f(x̂).

These are the same moment matching constraints from Eq. 3.7. The reason for

deriving this alternative form, as we will see below, is that we can understand the

effect of approximations.

Now, we observe that optimization developed previously for exact inference in

graphical models (Eq. 2.16) can be seen as a special case of Eq. 3.10. To see

this, identify the vector θ with the values − logψ(xc), and set as “features” indicator

functions for all clique configurations. That is, use the features fi(x) = δ(xc = a) for

all possible c and a.

42

Of course, just casting the problem in terms of the exponential family does not

cause any of the previous computational problems to disappear. In general graphs,

MARG will be difficult to characterize. Hence, one typically simplifies this, e.g. using

local consistency. Similarly, the entropy is in general intractable to compute (and not

even defined for µ 6∈ MARG), meaning it must also be approximated. Take some

approximate entropy H̃ , and an approximate marginal polytope ˜MARG. It is natural

to define an approximate partition function

Ã(θ) = sup
µ∈ ˜MARG

{θTµ + H̃(µ)}, (3.13)

yielding the approximate moments

µ̃ =
dÃ

dθ
= arg max

µ∈ ˜MARG

{θTµ + H̃(µ)}, (3.14)

and an approximate likelihood

L̃(x̂) = sup
µ∈ ˜MARG

{θTµ + H̃(µ)} − θT f(x̂).

The derivative of the approximate likelihood is particularly interesting. The

derivative of the true likelihood (Eq. 3.12) is the difference of the moments and

the features of one data element. Now we have

dL̃(x̂)

dθ
= arg max

µ∈ ˜MARG

{θTµ + H̃(µ)} − f(x̂),

i.e. the difference of the approximate moments and the features. If θ is fit to optimize

this approximate likelihood on data, then it will satisfy

43

arg max
µ∈ ˜MARG

{θTµ + H̃(µ)} =
1

N

∑

x̂

f(x̂).

Thus, this procedure is a kind of “approximate moment matching”. The approximate

moments are matched to data, rather than the true moments.

Now, let us make the connection to graphical models more explicit. Consider per-

forming inference in a graphical model with the Bethe approximation to the entropy,

and the local consistency approximation to the marginal polytope. Then, we have

the correspondences

θ ↔ {logψ(xc)} ∪ {logψ(xi)}

µ ↔ {b(xc)} ∪ {b(xi)}

Ĥ(µ) ↔ −
∑

c

∑

xc

b(xc) log b(xc)− ni
∑

i

∑

xi

b(xi) log b(xi)

˜MARG ↔ {b :
∑

xc

b(xc) = 1,
∑

xi

b(xi) = 1,

b(xc) ≥ 0, b(xi) ≥ 0, b(xi) =
∑

xc\i

b(xc)} (3.15)

and so the maximization maxµ∈ ˜MARG
{θTµ+ H̃(µ)} is equivalent to the optimization

max
∑

c

∑

xc

b(xc) logψ(xc)−
∑

c

∑

xc

b(xc) log b(xc)−
∑

i

ni
∑

xi

b(xi) log b(xi)

subject to the constraints in Eq. 3.15. This is precisely the optimization we previously

saw in Section 2.2.4 (phrased as a maximization instead of a minimization).

Henceforth the “approximate likelihood loss” will refer to the objective function

L(p, x̂) = −
∑

c

logψ(x̂c) + log Z̃. (3.16)

44

The approximate log-partition function is

log Z̃ =
∑

c

∑

xc

b̄(xc) logψ(xc)− H̃(b̄),

where H̃(b) is some approximate entropy, and b̄ is the set of beliefs resulting from

inference. Now let φ the parameters of the factors. We know from Eq. 3.14 that

d log Z̃

d logψ(xc)
= b̄(xc),

and so

d log Z̃

dφ
=

∑

c

∑

xc

d log Z̃

d logψ(xc)

d logψ(xc)

dφ

=
∑

c

∑

xc

b̄(xc)
d logψ(xc)

dφ
.

Hence, the approximate likelihood loss has the derivatives alluded to above: the

same derivatives as for the true likelihood, but where approximate marginals are used

in place of the true marginals.

∂L

∂φ
= −

∑

c

∂

∂φ
logψ(x̂) +

∑

c

∑

xc

b̄(xc)
∂

∂φ
logψ(xc). (3.17)

Similarly, we can define an “approximate conditional likelihood loss”,

L(p, ŷ, x̂) = −
∑

c

logψ(ŷc, x̂) + log Z̃(x̂), (3.18)

log Z̃(x̂) =
∑

c

∑

xc

b̄(xc) logψ(xc)−H(b),

which has the gradient

45

∂L

∂φ
= −

∑

c

∂

∂φ
logψ(ŷc, x̂) +

∑

c

∑

yc

b̄(yc)
∂

∂φ
logψ(yc, x̂). (3.19)

3.4 Pseudolikelihood

The pseudolikelihood [10, 11] loss is

L(p, x̂) = −
∑

i

log p(x̂i|x̂6=i).

The usual justification for this is that the pseudolikelihood is consistent5. That

is, if p0 ∈ P , then

p0 = arg min
p∈P

∑

x

p0(x)L(p,x).

Hence if the model is well-specified, as the amount of data increases we can expect

minimization of the pseudolikelihood to converge to the true distribution.

However, if p0 6∈ P (e.g. because the graphical model asserts conditional in de-

pendencies that do not hold on p0) then the pseudolikelihood may give poor results.

The author is not aware of any argument that in the case of an misspecified model,

the pseudolikelihood will converge to an optimal estimate in any useful sense.

If estimating a conditional distribution, the conditional pseudolikelihood is

L(p, ŷ, x̂) = −
∑

i

log p(ŷi|ŷ6=i, x̂). (3.20)

5To see this, set up a Lagrangian enforcing that all conditional distributions are normalized.

L =
∑

x

p0(x)L(p,x) +
∑

i

∑

x 6=i

λ(x6=i)(1−
∑

xi

p(xi|x6=i))

Taking dL/dp(xi|x6=i) = 0, one obtains −p0(x)/p(xi|x6=i) − λ(x6=i) = 0, or, equivalently,
p(xi|x6=i) ∝ p0(x). This gives p(xi|x6=i) = p0(xi|x6=i). If this is true for all i, then p = p0.

46

Similar arguments hold for the conditional likelihood: Given a correct model, it

gives a consistent estimator. Given an incorrect model, it does not give an opti-

mal estimate for any natural definition of “optimal”. Liang and Jordan [12] give an

asymptotic analysis of the likelihood, pseudolikelihood, and conditional likelihood.

3.5 Univariate Loss Functions

What are we trying to do in learning? The best results will be achieved if the model

is chosen to give the best performance in whatever way it will be used.

Purposive learning is most valuable when the model is misspecified. In some

simple cases, e.g. flipping a biased coin, we can say with high confidence that the

uncertainty can be modeled with a specific form of distribution [13], meaning we have

a well-specified model. In most all real applications, however, this is not the case,

and the true distribution p0 is best regarded to some degree as an unknown “black

box” [14]. The standard reason for using the likelihood is not that we truly wish

to minimize KL-divergence, but that we want to drive it to zero, i.e. find the true

distribution. If we do not assume that p0 ∈ P , this justification for the likelihood

cannot be used.

The idea of adapting the learning procedure to the specific application is so general

that one can say little in the abstract. Still, we can consider the basic question: what

inference algorithm will we run on the model? Suppose that the application calls for

using a marginalization algorithm to compute p(yi|x). If that is the case, no aspect of

the joint distribution p(y|x) other than the marginals will ever be observed. The idea

of univariate loss functions is to fit the model only to predict univariate marginals

well. If one can “trade” joint accuracy for marginal accuracy, such an approach makes

sense.

47

3.5.1 Univariate Conditional Likelihood

The univariate conditional likelihood loss is

L(p, ŷ, x̂) = −
∑

i

log p(ŷi|x̂).

If one is only interested in marginal accuracy, an obvious idea would be to min-

imize the expected sum of univariate KL-divergences. This results in the univariate

conditional likelihood.

arg min
p

∑

x

p0(x)
∑

i

KL
(

p0(yi|x)||p(yi|x)
)

= arg min
p
−

∑

x

p0(x)
∑

i

∑

yi

p0(yi|x) log p(yi|x)

= arg min
p
−

∑

x

p0(x)
∑

i

∑

y

p0(y|x) log p(yi|x)

= arg min
p
−

∑

x

∑

y

p0(y,x)
∑

i

log p(yi|x)

The univariate conditional likelihood was proposed by Kakade et al. [15], who

also provide an algorithm for calculating the gradient for models with exact inference

and linear features.

3.5.2 Univariate Quadratic Loss

The univariate conditional quadratic loss[16] is

L(p, ŷ, x̂) =
∑

i

(

−2p(ŷi|x̂) +
∑

yi

p(yi|x̂)2
)

.

This loss stems from trying to minimize the expected squared difference of marginal

probabilities.

48

arg min
p

∑

x

p0(x)
∑

i

∑

yi

(

p0(yi|x)− p(yi|x)
)2

=arg min
p

∑

x

p0(x)
∑

i

(

∑

yi

−2p0(yi|x)p(yi|x) +
∑

y′
i

p(y′i|x)2
)

=arg min
p

∑

x

p0(x)
∑

i

∑

y

p0(y|x)
(

−2p(yi|x) +
∑

y′
i

p(y′i|x)2
)

=arg min
p

∑

x

∑

y

p0(y,x)
∑

i

(

−2p(yi|x) +
∑

y′
i

p(y′i|x)2
)

3.5.3 Smoothed Univariate Classification Loss

The smoothed classification loss is

L(p, ŷ, x̂) =
∑

i

σ
(

λ(max
yi 6=ŷi

p(yi|x̂)− p(ŷi|x̂))
)

,

where λ is a control parameter, and σ is a smooth “sigmoid” approximation to the

step function, e.g. σ(a) = 1/(1 + exp(−a)).

In a common situation, given the observation x one needs to produce a single

“guess” y∗ of the hidden variables. The most common way to do this is MAP inference.

y∗ = arg max
y

p(y|x) (3.21)

Though this has great intuitive appeal, there are many circumstances where this is

not the best guess to make. To use MAP inference is to maximize the probability that

the entire vector y is exactly equal to the true vector. In cases where y is uncertain

and high dimensional, maxy p(y|x) will often be an extremely small number. We

often do not care about guessing a vector that has a 0.001% chance of being exactly

correct rather than a 0.0009% chance.

An alternative is to guess the vector y∗ that has the maximum number of variables

49

correct.

y∗i = arg max
yi

p(yi|x) (3.22)

The process of computing the marginals, and then using Eq. 3.22 is called Maximum

Posterior Marginal (MPM) inference (Section 2.2).

The smoothed univariate classification loss tries to fit p so that MPM inference

gives the best possible results. In principle, this would dictate

arg min
p

∑

y

∑

x

p0(y,x)
∑

i

δ[yi 6= arg max
yi

p(yi|x)]

for an indicator function6 δ. However, notice that for fixed x and y, δ[yi 6= arg maxyi
p(yi|x)]

is non-differentiable with respect to p. Hence, Gross et al. [17] suggested approxi-

mating the indicator function with a smooth sigmoid function.

arg min
p

∑

y

∑

x

p0(y,x)
∑

i

σ
(

λ(max
y′

i
6=yi

p(y′i|x)− p(yi|x))
)

The parameter λ determines how closely the sigmoid approximates the step func-

tion. For larger, λ, the approximation is better, but the loss function is more nonlin-

ear, which seems to increase the prevalence of local minima. Gross et al. also provide

an algorithm for calculating the gradient for models with exact inference and linear

features.

3.6 Clique Loss Functions.

Univariate loss functions are not consistent. If p0 ∈ P , selecting p = p0 will yield

perfect marginals, and so no other distribution can have a strictly better true risk.

However, one can construct cases where some other distribution achieves a loss equal

6The indicator function is defined by δ[expr] = 1 if expr is true, and δ[expr] = 0 if expr is false.

50

to that of p0. (Imagine a complex joint distribution that has simple marginals like

p(yi|x) = const.)

We can define loss functions analogous to those above that target clique accuracy,

rather than univariate accuracy. These functions are consistent.

The consistency of clique-wise loss functions stems from the fact that an MRF can

be seen as a member of the exponential family with indicator functions on cliques as

sufficient statistics. (Section 3.3) If all clique-wise marginals match, the distributions

thus must be the same. The same holds for a CRF: after conditioning, a CRF is

just and MRF, and hence if the conditional marginals p(yc|x) are always equal to

p0(yc|x), then p = p0. Note, however, that this argument does not apply to the

Clique Classification Error.

3.6.1 Clique Conditional Likelihood

L(p, ŷ, x̂) = −
∑

c

log p(ŷc|x̂)

3.6.2 Clique Quadratic Loss

L(p, ŷ, x̂) =
∑

c

(

−2p(ŷc|x̂) +
∑

yc

p(yc|x̂)2
)

3.6.3 Smoothed Clique Classification Error

If each clique configuration is predicted independently, the smoothed clique classifi-

cation error tries to measure how many cliques are predicted incorrectly. Note that it

is not enforced that a variable takes a single value in the different cliques. So it will

not be possible in general to produce vectors y∗ that achieve the clique classification

error.

L(p, ŷ, x̂) =
∑

c

σ
(

λ(max
yc 6=ŷc

p(yc|x̂)− p(ŷc|x̂))
)

51

(a) Well-specified x̂ (b) Semi-misspecified x̂ (c) Misspecified x̂

(d) Well-specified ŷ (e) Semi-misspecified ŷ (f) Misspecified ŷ

Figure 3.1: Example tractable data.

3.7 Experiments on Chain Graphs

This section presents experiments learning a simple (tractable) binary chain graph

model with all of the above loss functions. There are three different learning data

sets (Figure 3.1).

• Well-specified. In the first, x̂ is generated randomly from a uniform dis-

tribution, and then ŷ is created using MCMC with randomly selected CRF

parameters.

• Semi-misspecified. In the second, ŷ is generated by creating sequences of

alternating 0s and 1s, each in groups of ten. The “noisy” input x̂ is made by

taking ŷ, and setting 60% of the variables to random values.

• Misspecified. In the third, ŷ is set to be all one random value, with five

randomly chosen variables changed. The “noisy” input x̂ is made by taking ŷ,

and setting 75% of the variables to random values.

For each data set, a CRF was trained with a variety of loss functions. Since the

conditional likelihood is convex, the results of learning on it were used to initialize all

other loss functions.

52

Abbreviation Loss

pseudo Conditional Pseudolikelihood

cl Conditional Likelihood

ucl Univariate Conditional Likelihood

ccl Clique Conditional Likelihood

uquad Univariate Quadratic

cquad Clique Quadratic

uclass Smoothed Univariate Classification Error

cclass Clique Classification Error

s.uclass Smoothed Univariate Classification Error

s.cclass Smoothed Clique Classification Error

Table 3.1: Loss function abbreviations.

The goal of these experiments is to compare all the above loss functions, testing

how important is the assumption of being well-specified. Figures 3.2 and 3.3 show

the results averaged over 100 training sets, evaluated by univariate classification ac-

curacy. Notice that for well-specified training data, all loss functions ultimately give

approximately the same performance. However, for misspecified data, the conditional

likelihood asymptotically performs worse that other loss functions, and the pseudo-

likelihood performs worse still. Figures 3.4-3.9 show the same experiment, with test

evaluation on various loss functions.

53

Well-specified training data

0

0.1

0.2

0.3

0.4
uclass evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

Semi-misspecified training data

0

0.1

0.2

0.3

0.4
uclass evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

Misspecified training data

0

0.1

0.2

0.3

0.4
uclass evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

Figure 3.2: Univariate classification errors on test data for a CRF trained with various
loss functions on three different data sets. For well-specified data, all loss functions
perform comparably, while for misspecified data, there are large asymptotic differ-
ences.

54

Well-specified training data

8 32 128 512

+0.265

+0.270

uclass evaluation

Training Data

pseudo
cl
ucl
ccl
uquad
cquad
s.uclass
s.cclass

Semi-misspecified training data

8 32 128 512

+0.235

+0.240

+0.245

+0.250

+0.255

+0.260

uclass evaluation

Training Data

Misspecified training data

8 32 128 512

+0.300

+0.350

+0.400
uclass evaluation

Training Data

Figure 3.3: Univariate classification errors on test data for a CRF trained with various
loss functions on three different data sets. For well-specified data, all loss functions
perform comparably, while for misspecified data, there are large asymptotic differ-
ences.

55

Well-specified training data

0

0.1

0.2

0.3

0.4

0.5
pseudo evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.1

0.2

0.3

0.4

0.5
cl evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.2

0.4

0.6

0.8
ucl evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.2

0.4

0.6

0.8

1
ccl evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

−0.8

−0.6

−0.4

−0.2

0
uquad evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

−0.5

−0.4

−0.3

−0.2

−0.1

0
cquad evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.1

0.2

0.3

0.4
uclass evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.1

0.2

0.3

0.4
cclass evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

Figure 3.4: Evaluations of different loss functions on a well-specified CRF. Roughly
speaking, if data is plentiful, the loss function used for training is unimportant.

56

Well-specified training data

8 32 128 512

+0.380

+0.400

+0.420

pseudo evaluation

Training Data
8 32 128 512

+0.450

+0.460

+0.470

+0.480

+0.490

+0.500
cl evaluation

Training Data

8 32 128 512

+0.540

+0.550

+0.560

ucl evaluation

Training Data
8 32 128 512

+0.960

+0.980

+1.000

+1.020

+1.040

ccl evaluation

Training Data

8 32 128 512

−0.645

−0.640

−0.635

−0.630

−0.625

uquad evaluation

Training Data
8 32 128 512

−0.450

−0.440

−0.430

−0.420

cquad evaluation

Training Data

8 32 128 512

+0.265

+0.270

uclass evaluation

Training Data

pseudo
cl
ucl
ccl
uquad
cquad
s.uclass
s.cclass

8 32 128 512

+0.390

+0.395

+0.400

+0.405

cclass evaluation

Training Data

Figure 3.5: Evaluations of different loss functions on a well-specified CRF. Roughly
speaking, if data is plentiful, the loss function used for training is unimportant.

57

Semi-misspecified training data

0

0.05

0.1

0.15

0.2

0.25
pseudo evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.1

0.2

0.3

0.4
cl evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.2

0.4

0.6

0.8
ucl evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.2

0.4

0.6

0.8
ccl evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

−0.8

−0.6

−0.4

−0.2

0
uquad evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

−0.8

−0.6

−0.4

−0.2

0
cquad evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.1

0.2

0.3

0.4
uclass evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.1

0.2

0.3

0.4
cclass evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

Figure 3.6: Evaluations of different loss functions on a semi-misspecified CRF. There
are asymptotic differences between the different loss functions, though they are not
large.

58

Semi-misspecified training data

8 32 128 512

+0.160

+0.180

+0.200

pseudo evaluation

Training Data
8 32 128 512

+0.280

+0.300

+0.320

cl evaluation

Training Data

8 32 128 512

+0.500

+0.510

+0.520

+0.530

ucl evaluation

Training Data
8 32 128 512

+0.760

+0.780

+0.800

+0.820

ccl evaluation

Training Data

8 32 128 512

−0.670

−0.660

−0.650

uquad evaluation

Training Data
8 32 128 512

−0.570

−0.560

−0.550

cquad evaluation

Training Data

8 32 128 512

+0.235

+0.240

+0.245

+0.250

+0.255

+0.260

uclass evaluation

Training Data
8 32 128 512

+0.285

+0.290

+0.295

+0.300

+0.305

+0.310

cclass evaluation

Training Data

pseudo
cl
ucl
ccl
uquad
cquad
s.uclass
s.cclass

Figure 3.7: Evaluations of different loss functions on a semi-misspecified CRF. There
are asymptotic differences between the different loss functions, though they are not
large.

59

Misspecified training data

0

0.2

0.4

0.6

0.8
pseudo evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.2

0.4

0.6

0.8
cl evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.2

0.4

0.6

0.8
ucl evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.5

1

1.5
ccl evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

−0.8

−0.6

−0.4

−0.2

0
uquad evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

−0.8

−0.6

−0.4

−0.2

0
cquad evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.1

0.2

0.3

0.4
uclass evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

0

0.1

0.2

0.3

0.4

0.5
cclass evaluation

pseudo cl ucl ccl
uquad cquad

s.uclass
s.cclass

Figure 3.8: Evaluations of different loss functions on a misspecified CRF. There are
large asymptotic differences between the different loss functions.

60

Misspecified training data

8 32 128 512

+0.500

+0.550

+0.600

+0.650

+0.700

+0.750
pseudo evaluation

Training Data
8 32 128 512

+0.550

+0.600

+0.650

cl evaluation

Training Data

8 32 128 512

+0.550

+0.600

+0.650

ucl evaluation

Training Data
8 32 128 512

+1.100

+1.150

ccl evaluation

Training Data

8 32 128 512

−0.600

−0.550

uquad evaluation

Training Data
8 32 128 512

−0.450

−0.400

cquad evaluation

Training Data

8 32 128 512

+0.300

+0.350

+0.400
uclass evaluation

Training Data
8 32 128 512

+0.350

+0.400

+0.450

cclass evaluation

Training Data

pseudo
cl
ucl
ccl
uquad
cquad
s.uclass
s.cclass

Figure 3.9: Evaluations of different loss functions on a misspecified CRF. There are
large asymptotic differences between the different loss functions.

61

Chapter 4

Implicit Fitting

4.1 Overview

The basic idea of this chapter is to consider a graphical model as defining an energy

function which, when minimized, gives predicted marginals. When learning, the goal

is to shape this energy function so that the minima give accurate beliefs.

Suppose one would like to fit a CRF using any of the univariate or clique-wise loss

functions from Chapter 3. Thus, p(y|x) = 1
Z(x)

∏

c ψ(yc,x), and one would like to fit

ψ so as to minimize some loss

∑

(ŷ,x̂)

L(p, ŷ, x̂).

In general graphs, this will be extremely difficult to do. All the proposed loss functions

(except the pseudolikelihood) require computing univariate or clique-wise marginals,

which is intractable. Thus, we cannot even evaluate the loss , much less adjust the

model to minimize it.

This chapter takes a different approach. Rather than fitting the distribution that

the CRF represents, fit the beliefs that the CRF produces under approximate inference.

There are two major advantages to this. First, learning becomes tractable: one only

62

needs approximate beliefs to compute a loss. We will see below that the gradient of the

loss is also computable. Secondly, this is a more purposive form of learning. The model

is fit to give the best possible predictions, taking into account all approximations that

must be made in the inference step.

As a simple example, if one were to fit using the univariate conditional likelihood,

the traditional loss would be (Sec. 3.5.1)

L(p, ŷ, x̂) = −
∑

i

log p(ŷi|x̂).

The strategy envisioned here, meanwhile would fit

L(ψ, ŷ, x̂) = −
∑

i

log bψ(ŷi|x̂),

where bψ are the beliefs that result from performing inference on the model defined

by ψ.

One difficulty here is that learning is implicit : The model is fit purely in terms

of the minima of the inference energy function. A technical difficulty is calculating

the derivative of the predicted beliefs with respect to each parameter of the model.

Formally, suppose that ψ is parametrized by some vector θ. Then, we would like to

calculate changes in local beliefs, e.g.

dbψ(yi|x)

dθj
or

dbψ(yc|x)

dθj
.

We find that this can be done using a strategy of implicit differentiation, as long as

the inference energy function is convex.

63

4.2 Marginal Inference as an Optimization

We saw in Section 2.2.4 that loopy belief propagation attempts to perform the opti-

mization

minimize
∑

c

∑

yc

b(yc) log b(yc) +
∑

i

ni
∑

yi

b(yi) log b(yi)−
∑

c

∑

yc

b(yc) logψ(yc,x).

subject to the constraints

b(yi) ≥ 0 b(yc) ≥ 0

∑

yi

b(yi) = 1
∑

yc

b(yc) = 1

b(yi) =
∑

y
c\i

b(yc) .

Here, we generalize this somewhat, to the form

minimize
∑

c

∑

yc
w(yc,x)b(yc) log b(yc) +

∑

i

∑

yi

w(yi,x)b(yi) log b(yi)

+
∑

c

∑

yc
v(yc,x)b(yc) +

∑

i

∑

yi

v(yi,x)b(yi),

subject to the same constraints. The final terms involving v(yi,x)b(yi) are linearly

dependent on the terms v(yc,x)b(yc), but are included for convenience.

This optimization is different from a standard Bethe optimization in several ways:

1. The log factors logψ(yc,x) are replaced with functions v(yc,x).

2. Instead of fixed constants (1 or ni) for the entropy terms, these are now full

functions w.

64

3. The entropy terms w can depend on the input x.

This is equivalent to an optimization of the form

minimize F (b) = w(x)T (b⊙ log b) + v(x)Tb (4.1)

s.t. Ab = d

b ≥ 0,

where ⊙ is the elementwise product. Here, b = {b(yi)} ∪ {b(yc)} is a vector of all

univariate and clique-wise beliefs. Similarly, w(x) = {w(yi,x)} ∪ {w(yc,x)}, and

v(x) = {v(yi,x)}∪ {v(yc,x)}. A boldface (b, w, or v) will always be used to specify

these elements in the form of vectors, while a standard font (b, w, or v) will be used

for the traditional representation as functions. Using both forms of notation simplifies

the presentation below significantly.

4.3 Optimization of the Dual

This section describes an algorithm for optimization of problems in the form of Eq.

4.1. The advantages over standard message passing algorithms are simplicity, gener-

ality, and convergence guarantees. Generality is meant to indicate that the algorithm

applies to any (convex) problem of the form of Eq. 4.1. This allows additional flex-

ibility in fitting models, as we will see in later sections. The disadvantages include

the larger number of iterations required in practice, and the poorer computational

scaling with respect to the number of variables.

The algorithm is a straightforward use of Newton’s method on the Lagrange dual

of Eq. 4.1. First, take the Lagrangian. As we will see below it is not necessary to

explicitly enforce that b ≥ 0.

65

L = wT (b⊙ logb) + vTb + λT (Ab− d)

Convex duality theory states that if Eq. 4.1 is convex (i.e. if w > 0), then if we

find some λ and b such that dL/db = 0 and dL/dλ = 0, then b will be an optimum

of the original problem. Taking dL/db = 0, and solving for b gives1

b(λ) = exp
(

−(v + ATλ)⊘w − 1
)

,

where ⊘ denotes elementwise division. Notice that b(λ) > 0. Hence, we are left with

the (unconstrained) Lagrange dual problem maximizeλ g(λ), where the Lagrange

dual function g(λ) simplifies2 into

g(λ) = −wTb(λ)− λTd. (4.2)

To complete Newton’s method, we require the gradient and Hessian of g. These

also have simple forms.

dg

dλ
= Ab(λ)− d

d2g

dλdλT
= −A diag

(

b(λ)⊘w
)

AT

Since the sparse Hessian is available, using Newton’s method, as suggested above,

is natural. However, solving large sparse linear systems scales super-linearly in the

number of variables (when using a direct solver), so this can be costly in large prob-

1dL/db = w ⊙ (1 + logb) + v +AT λ = 0. Hence, logb = −(v +AT λ)⊘w− 1.
2By definition,

g(λ) := min
b
L(b,λ) = wT (b(λ)⊙ logb(λ)) + vT b(λ) + λT (Ab(λ)− d).

Expanding log b(λ) and canceling terms gives Eq. 4.2.

66

0 0.2 0.4 0.6 0.8 1
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

x
−0.1 −0.05 0 0.05 0.1

−0.2

−0.1

0

0.1

0.2

0.3

x

Figure 4.1: Bounds on entropy. Black: x log x. Red: x(log x0− 1)+ x2

x0 for various x0.

lems. One can alternatively disregard the Hessian, and use methods that scale better,

e.g. L-BFGS or nonlinear conjugate gradient search. All practical experience is that

the primal algorithm below is more efficient. However, it is possible that a more

careful analysis of the above problem could yield a more efficient algorithm.

4.4 Optimization of the Primal

This section describes a novel successive approximation scheme for optimizing Eq.

4.1 in the primal. This method is based on a parametrizable global upper bound on

x log x. The bound is, for any x and x0 greater than zero,

x log x ≤ x(log x0 − 1) +
x2

x0
.

This is pictured in Fig. 4.1 for a range of different x0. Equality occurs when

x = x0. Note that a second-order Taylor approximation would be x log x ≈ −1
2
x0 +

x log x0 + (x
2

2x0), which provides a better local approximation but does not give a

bound.

The basic idea of this method is to repeatedly make the above approximation,

resulting in a quadratic optimization problem under linear constraints. After each

subproblem is solved, the bound is tightened. Hypothetically, this could be done

67

with the following algorithm3.

1. Repeat until convergence:

(a) g ← v + w ⊙ (log b0 − 1)

(b) H ← 2diag(w⊘ b0)

(c) Perform the optimization

minimize F (b) = gTb +
1

2
bTHb

s.t. Ab = d

b ≥ 0

(d) b0 ← b

This works fine, but performing each sub-optimization is rather expensive. If not for

the presence of the constraint b ≥ 0, this would be a quadratic optimization under

linear constraints, and so could be solved efficiently, with out iteration (see below).

Here, a different strategy is pursued. The basic idea is to use the above quadratic

approximation simultaneously as a bound on the entropy, and also as a penalty func-

tion, enforcing that the beliefs are positive. This is possible because progressively

smaller b0 place increasing penalty on beliefs where b < 0. So, we proceed by mini-

mizing the quadratic system, disregarding the positivity constraint. For terms where

bi > 0, simply set b0i equal to bi. For terms where bi < 0, “shrink” b0i towards 0 using

a sequence ǫ decreasing towards zero. This algorithm is summarized as follows.

3Here, b logb is approximated by

(log b0 − 1)T b + bT diag(1⊘ b0)b.

Hence wT (b⊙ logb) is approximated by

(w ⊙ (logb0 − 1))T b +
1

2
bT (2diag(w ⊘ b0))b.

68

1. Repeat until convergence:

(a) g ← v + w ⊙ (log b0 − 1)

(b) H ← 2diag(w⊘ b0)

(c) Perform the optimization

minimize F (b) = gTb +
1

2
bTHb

s.t. Ab = d.

(d) For all i,

i. If bi > 0 then b0i ← bi.

ii. Otherwise b0i ← ǫ(ci) and ci ← ci + 1.

Step (d) may, at first glance, seem unnecessarily complex. One might, instead, let

beliefs exponentially decay towards zero, replacing step (d)ii. with something like

b0i ← b0i /10. Unfortunately, this can lead to cycling. Using a decreasing sequence

ǫ guarantees that the penalty for violating bi < 0 increases over time, even if there

are occasionally iterations where bi > 0. The experiments below use the sequence

ǫ(c) = 1/(10c)2.

It is well known that a convex quadratic optimization problem under linear con-

straints can be reduced to a single least-squares problem [18, section 10.4.2]. Briefly,

the known result4 is that if

4This is fairly easy to show. Suppose that x∗ = arg mingTx + 1
2x

THx s.t. Ax = d, where, H is
assumed to be symmetric positive definite. Then, the Lagrangian would be

L = gTx +
1

2
xTHx + λT (Ax− d).

By taking the derivatives dL/dx = 0 and dL/dλ = 0, we obtain the conditions g+Hx+AT λ = 0,
and Ax− d = 0. One can solve the first equation to obtain

x∗ = −H−1(g +AT λ). (4.3)

Substituting this into the second equation results in −AH−1(g +AT λ) = d, which can be solved

69

Algorithm 1 Primal Belief Optimization Algorithm

1. Initialize b.

2. For all i, ci ← 1

3. Repeat until convergence:

(a) g ← w ⊙ (log b− 1) + v

(b) H−1 ← 1
2
diag

(

b ⊘w
)

(c) λ← −
(

AH−1AT
)−1(

d + AH−1g
)

(d) b′ ← −H−1(g + ATλ).

(e) For all i,

i. If b′i > 0, then bi ← b′i.

ii. Otherwise, bi ← ǫ(ci) and ci ← ci + 1.

b∗ = arg mingTb +
1

2
bTHb subject to Ab = d,

then one can obtain b∗ by first solving

λ = −
(

AH−1AT
)−1(

d + AH−1g
)

,

and then substituting the result to solve

b∗ = −H−1(g + ATλ).

The entire method is summarized as Algorithm 1. Note that the cost of this

algorithm is totally dominated by solving the sparse linear system in step 1(c).

The differences of this method to a constrained Newton’s method are, explicitly,

1. A local upper bound is used, rather than a second-order Taylor expansion.

for

λ = −
(

AH−1AT
)−1(

d +AH−1g
)

. (4.4)

70

2. The constraint b ≥ 0 is enforced only asymptotically.

3. Line searches are not necessary.

The upper bounding strategy used here is very robust, and deals with the constraint

b ≥ 0. However, unlike Newton’s method, it does not have quadratic convergence

guarantees. It may be possible to have the best of both methods by using the ap-

proach suggested here for early iterations, and switching to Newton’s method in later

iterations.

In large problems– e.g. grids of size 100x100 or larger– it becomes expensive to

solve the sparse linear system in Step 2(c) of Algorithm 1. This can be avoided by

a block optimization. All variables in smaller regions are optimized over, with the

rest held constant. Let Ak and dk correspond to the constraints relevant to block k

of variables. (Thus, Ak takes the columns of A indexed by k, and all rows that are

not identically zero on those columns, while dk is the entries of d for those rows.)

The principal difference is that when optimizing over block k, instead of constraining

Akbk = dk, one needs to account for the other variables. Thus, one instead constrains

it to be equal to dk −A−kb−k, where A−k is the matrix taking all variables not in k

as input and giving their output on the constraints relevant to block k. (Put another

way, A−k is “the rest” of the rows of A when Ak is removed). Experimentally, using

55x55 pixel regions with 5 pixel overlap between neighboring blocks works well with

binary variables.

Fig. 4.2 shows an example of convergence, visualizing univariate beliefs. For more

details, see Section 6.5.

4.5 Implicit Differentiation

This section will begin with a review of implicit differentiation in general before

discussing the application to the graphical models. Consider a relationship between

71

input 0 1 2 3

4 5 6 7 8

input 0 1 2 3

4 5 6 7 8

Figure 4.2: Convergence of the primal belief optimization algorithm. Top: Fixed
entropy. Bottom: Fit entropy.

72

Algorithm 2 Block Primal Belief Optimization Algorithm

1. Initialize b.

2. For all i, ci ← 1

3. Repeat until convergence:

(a) For all blocks k:

i. g← wk ⊙ (logbk − 1) + vk

ii. H−1 ← 1
2
diag

(

bk ⊘wk

)

iii. λ← −
(

AkH
−1ATk

)−1(
dk − A−kb−k + AkH

−1g
)

iv. b′
k ← −H

−1(g + ATkλ).

v. For all i ∈ k,

A. If b′i > 0, then bi ← b′i.

B. Otherwise, bi ← ǫ(ci) and ci ← ci + 1.

two groups of variables, implicitly defined by

f(x,y) = 0.

If x and y are two points satisfying this relationship, it can be shown5 that the

derivative of y with respect to x will be

∂y

∂xT
= −

(∂f

∂yT
)−1 ∂f

∂xT
. (4.5)

Here, we only need the simpler result where x is scalar.

5Imagine some small perturbation δx, resulting in a corresponding perturbation δy. These must
satisfy

f(x + δx,y + δy) = 0,

which can be approximated to first order by

f(x,y) +
∂f(x,y)

∂xT
δx +

∂f(x,y)

∂yT
δy = 0.

Substituting f(x,y) = 0, this can be solved to give

δy = −
(∂f

∂yT

)−1 ∂f

∂xT
δx.

73

∂y

∂x
= −

(∂f

∂yT
)−1 ∂f

∂x
. (4.6)

The relevance here is the implicit relationship given by minimizing the inference

energy function. Let θ denote the parameters of the energy function. If there were

no constraints, the relationship would be

∂F (b, θ)

∂b
= 0,

and so, substituting ∂F/∂b for f in Eq. 4.6,we would have the derivatives

∂b

∂θ
= −

(∂2F

∂b∂bT
)−1 ∂2F

∂b∂θ
.

If we are to include the equality constraints that Ab = d, a more complex solution

is necessary, though based on the same ideas. The result can be summarized by the

following.

Claim: Let F (b, θ) be strictly convex over b. If b(θ) = arg minb F (b, θ) such

that Ab = d, then

db

dθ
=

(

D−1AT (AD−1AT)−1AD−1 −D−1
) ∂2F

∂b∂θ
,

where D := ∂2F
∂b∂bT .

See the Appendix of this chapter for a proof.

4.6 Learning

By the vector chain rule, the derivative of the loss with respect to a given parameter

can be decomposed into the gradient of the loss with respect to the beliefs and the

derivative of the beliefs with respect to the parameter. Substituting the result from

the previous section for the latter, we have

74

dL

dθ
=

dL

dbT
db

dθ

=
dL

dbT
(

D−1AT (AD−1AT)−1AD−1 −D−1
) ∂2F

∂b∂θ
. (4.7)

The entries of dL
db

can be computed directly from the definition of the loss, as

summarized in Table 4.1. For ∂2F
∂b∂θ

, notice first that, from the definition of F (Eq.

4.1),

dF

db
= w(x)⊙ (logb + 1) + v(x), (4.8)

and so,

d2F

dbdθ
= (logb + 1)⊙

dw(x)

dθ
+
dv(x)

dθ
.

The derivatives of w(x) and v(x) with respect to θ depend on the parametrization

of the model. (In general, there is no weight sharing between w and v, and so one

of these derivatives will be zero.) Notice in particular that it is possible to fit not

only the factors (v), but also the entropy terms (w). These will be discussed in more

detail in Section 6.1.

For this objective function,

D =
∂2F

∂b∂bT
= diag(w(x)⊘ b). (4.9)

Finally, notice that in Eq. 4.7, mT = dL
dbT

(

D−1AT (AD−1AT)−1AD−1−D−1
)

does

not depend on which parameter is being differentiated. Hence, this can be computed

once, and reused to compute each parameter derivative by dL
dθ

= mT ∂2F
∂b∂θ

. This can

give a large computational savings when there are many parameters, as solving the

linear system required to find mT can dominate in large models.

For concreteness, the full procedure to calculate dL/dθ summarized as Alg. 3.

75

Algorithm 3 How to calculate dL/dθ.

1. Input some training element (ŷ, x̂), and parameters θ.

2. Perform the optimization (Section 4.3):

minimize F (b) = w(x̂)T (b⊙ log b) + v(x̂)Tb

s.t. Ab = d

b ≥ 0.

3. Calculate dL
db

. (Table 4.1)

4. D−1 ← diag(b⊘w(x))

5. Solve a linear system to obtain mT ← dL
dbT

(

D−1AT (AD−1AT)−1AD−1 −D−1
)

.

6. Calculate the gradient. ∀j, dL
dθj
← mT ∂2F

∂b∂θj
.

This can be employed in any standard gradient-based optimization algorithm, e.g.

L-BFGS, stochastic gradient descent, etc.

4.7 Discussion

This chapter considers a CRF as simply defining an objective function that, when

optimized, gives predicted marginals. This mapping from input to predicted marginals

is fit in learning. This strategy has the advantage that learning compensates for

defects in inference. However, there are two major downsides.

The first issue is efficiency. Solving the optimization problem takes a varying

number of iterations, each of which has a significant cost.

The second issue is the limitation to convex optimizations. (Note that this could

be relaxed somewhat by only enforcing that F is convex over the constraint set[19]).

In particular, the Bethe approximation is non-convex, and it has been suggested[20]

that this leads to better predicted marginals when optimized successfully. The next

chapter presents a different strategy that can cope with non-convex entropies.

76

Univariate Losses L
dL

db(yi)

Cond. Likelihood
∑

i− log b(ŷi) [yi = ŷi]
−1

b(yi)

Quadratic
∑

i

(

−2b(ŷi) +
∑

yi
b(yi)

2
)

−2[yi = ŷi] + 2b(yi)

Smooth Class.
∑

i σ
(

λ(max
yi 66=ŷi

b(yi)− b(ŷi))
)

σ′ · λ([yi = arg max
yi 6=ŷi

b(yi)]− [yi = ŷi]
)

Clique Losses L
dL

db(yc)

Cond. Likelihood
∑

c− log b(ŷc) [yc = ŷc]
−1

b(yc)

Quadratic
∑

c

(

−2b(ŷc) +
∑

yc
b(yc)

2
)

−2[yc = ŷc] + 2b(yc)

Smooth Class.
∑

c σ
(

λ(max
yc 6=ŷc

b(yc)− b(ŷc))
)

σ′ · λ([yc = arg max
yc 66=ŷc

b(yc)]− [yc = ŷc]
)

Table 4.1: Loss functions and derivatives

4.8 Appendix

Here, the result is proven for a vector of parameters θ.

Claim: Let F (b, θ) be strictly convex over b. If b(θ) = arg minb F (b, θ) such

that Ab = d, then

∂b

∂θT
=

(

D−1AT (AD−1AT)−1AD−1 −D−1
) ∂2F

∂b∂θT
,

where D := ∂2F
∂b∂bT .

Proof :

First, create a Lagrangian, enforcing the constraint.

L = F (b, θ) + λT (Ab− d).

The basic idea is to consider the response of the joint vector [b,λ] to a change in

θ. The implicit functional relationship is

77













∂L(b,λ,θ)
∂b

∂L(b,λ,θ)
∂λ













=













0

0













.

So the derivatives must, by Eq. 4.5, satisfy the linear system













∂b

∂θT

∂λ

∂θT













= −













∂2L
∂b∂bT

∂2L
∂b∂λT

∂2L
∂λ∂bT

∂2L
∂λ∂λT













−1 











∂2L
∂b∂θT

∂2L
∂λ∂θT













.

Making the substitutions

∂2L

∂b∂λT
= A

∂2L

∂λ∂bT
= AT

∂2L

∂b∂θT
=

∂2F

∂b∂θT

∂2L

∂λ∂λT
= 0

∂2L

∂λ∂θT
= 0,

and defining D = ∂2L
∂b∂bT = ∂2F

∂b∂bT , this is equivalent to the system













∂b

∂θT

∂λ

∂θT













= −













D AT

A 0













−1 











∂2F

∂b∂θT

0













.

One can recover ∂b

∂θT directly by solving this system. Alternatively, consider the

inverse of the central matrix. If its entries are X, Y , Z, U , by definition it must

satisfy

78













D AT

A 0

























X Y

Z U













=













I 0

0 I













. (4.10)

Two identities that follow directly from Eq. 4.10 are

DX + ATY = I,

AX = 0.

Solving these for X gives

X = D−1 −D−1AT (AD−1AT)−1AD−1.

Finally, observing that ∂b

∂θT = −X ∂2F

∂b∂θT gives the result.

�

79

Chapter 5

Procedural Fitting

5.1 Message-passing algorithms as mappings.

The previous chapter treated graphical models as simply defining an energy function.

Given an observation x, this function is minimized to give predicted marginals. Learn-

ing treats this function as essentially a black-box mapping: we want to fit parameters

so that the predicted marginals are good (as quantified by a loss function).

There are two major downsides to the previous strategy: efficiency and the re-

striction to convex energy functions. Performing a nonlinear optimization like in

Algorithm 1 is possible, even in large-scale situations. However, often simply running

a few iterations of a message passing algorithm like Loopy Belief-Propagation appears

to give good results in far less time.

It has been suggested that non-convex entropy approximations like the Bethe

approximation can yield better marginals if minimized successfully. But the lack of

confidence in reaching the global minimum complicates learning, and makes it difficult

to speak of a “mapping” from an observation to marginals.

This chapter treats graphical models as defining a different type of mapping.

Rather than thinking of a model producing an energy function, think of it producing

80

a message passing algorithm. If one uses a fixed update order, and a fixed number of

iterations, a message passing algorithm can be considered a deterministic mapping.

This is true even if the algorithm does not reach the global minima, or even fails to

converge: parameters will be fit so that approximate marginals after the fixed number

of iterations are optimal.

5.2 Automatic Differentiation

Automatic differentiation is a technique to compute gradients of functions. It is dis-

tinct from both numerical (or finite difference) differentiation and symbolic differenti-

ation. In particular, we are interested here in “reverse mode” automatic differentiation

(RAD).

Suppose one has implemented an algorithm that takes n inputs x1, ..., xn, and pro-

duces a single output. RAD will transform this algorithm into one that computes the

gradient of that function with respect to x1, ..., xn. In machine learning applications,

one will typically have a function taking parameters of a model as input and out-

putting a loss function, measuring how well those parameters fit some training data.

One would like the gradient so as to optimize that loss. Aside from the convenience of

not needing to derive gradients, RAD is very computationally efficient: The resulting

gradient algorithm has the same computational complexity as the original function.

The basic idea of RAD is to transform the original algorithm into an expression

graph, or a series of assignments to the results of basic operations.

Forward Propagation

1. For i = n+ 1, n+ 2, ... N :

(a) xi ← fi(xπ(i))

81

x1 x2 x3

x4 x5 x6

x7 x8

x9 x10

x11

input

output

x8 = f8(x5, x6)

dx8

dx11

=
dx9

dx11

∂f9

∂x8

+
dx10

dx11

∂f10

∂x8

Figure 5.1: A simple expression graph with n = 3 inputs, and a total of N = 11
variables.

Here, each fi is some basic operation, for example binary addition, multiplication,

or some unary operation such as a logarithm. It can be essentially arbitrary, but it

must be differentiable.

Now, we would like to compute dxN/dxi for all i. We see from the chain rule that

this can be computed from the derivatives of all immediate children of i by

dxN
dxi

=
∑

j:i∈π(j)

dxN
dxj

∂xj
∂xi

.

Hence, the derivatives can be computed by the following algorithm.

Back-Propagation

1.
dxN
dxN

← 1

2. For i = N − 1, N − 2, ... 1:

(a)
dxN
dxi
←

∑

j:i∈π(j)

dxN
dxj

∂fj
∂xi

This is illustrated on a very simple expression graph in Fig. 5.1. For more details,

see standard references on automatic differentiation [21].

82

1

2

3

4

5

6

7

8

9

10

11

12

13 14 15

16 17 18

19 20 21

22 23 24

35 34 33

32 31 30

29 28 27

26 25

47

46

45

44

43

42

41

40

39

38

37

36

Figure 5.2: One iteration of updates for a a “grid” graph.

5.3 Procedurally fit CRFs

To procedural fit a CRF, one simply writes a routine to perform a fixed sequence

of message passing updates, then compute the loss corresponding to the predicted

marginals. Applying automatic differentiation to this routine produces the gradient

of the loss with respect to the parameters of the model, which can be employed in a

gradient-based optimization algorithm.

The experiments below will use “grid” models, like Fig. 5.2. Updates are ordered

by cliques. First, each vertical clique is updated, each line in order, starting in the

upper-left corner. Next, horizontal connections are updated, also starting from the

upper-left corner. Finally, the process is repeated in the reverse order. (i.e. horizontal

connections are updated from the lower-right corner followed by vertical connections

also from the lower-right.) This is illustrated in Figure 5.2 for a 4x4 grid. This order

is chosen so that information on any part of the graph can reach every other part in

one iteration.

To update a clique, first all messages into that clique from connected variables

are updated. These messages are then used to update the messages out of the clique.

Thus, in the notation of Section 2.2.2, when updating clique c, one first updates mi→c,

for all i ∈ c and then updates mc→i.

In the experiments below, all messages are initialized to one.

83

5.4 Discussion

Though this strategy was applied here to loopy belief propagation, it could be applied

to different message passing algorithms as well, such as Mean Field (Section 2.2.5)

Tree-reweighted belief propagation[22], or expectation propagation[23].

Another way to potentially improve performance would be to increase the flexibil-

ity of the message updates. One way to do this, which has worked well in preliminary

experiments, is to give each iteration of updates its own set of parameters. (Usually,

one would do this by first fitting a model with fixed parameters for initialization.)

Done this way, the different updates can provide a kind of automatic convergence

control for the beliefs.

84

Chapter 6

Experiments

6.1 Parametrization

This section describes how w(x) and v(x) can be parametrized in the case of lin-

ear features. This allows a unified treatment of different types of input variables x

(discrete or continuous, etc.) Thus, abstractly, the weighting functions are given by

v(yc,x) = θv(yc)
T fc(x)

v(yi,x) = θv(yi)
T fi(x),

where fc(x) and fi(x) are features of the input1. Here, the notation θv(yc) is meant

to indicate that each clique configuration has its own set of parameters. These can

be specified arbitrarily by the “user” of the algorithm, though several typical cases

are given below. Now, given these definitions of features, we trivially have

1Note that these features could also be expressed as, e.g., v(yc,x) = θThc(yc,x), where the
feature vector hc is now the cross product of the input features fc(x) and indicator functions on the
values yc. Thus, the CRF resulting from these functions is a member of the exponential family.

85

dv(yc,x)

dθv(yc)
= fc(x)

dv(yi,x)

dθv(yi)
= fi(x).

This framework can be used with or with out weight sharing, and for discrete or

continuous input. The weights w are defined similarly, in terms of some features gc

and gc.

w(yc,x) = θw(yc)
Tgc(x)

w(yi,x) = θw(yi)
Tgi(x)

6.1.1 Relationship to traditional CRFs

Theoretically, the features fc, fi, gc, gi can depend on x, in arbitrary, “user-specified”

ways. However, for concreteness, typical cases most similar to traditional CRF ap-

proaches are explored here. A common CRF for images, and the one that will be

used for experiments below is

p(y|x) =
1

Z(x)

∏

c

ψ(yc)
∏

i

ψ(yi, xi).

Thus, there are some factors ψ(yc) defined on neighboring pairs c, not dependent

on the input, and univariate factors ψ(yi, xi) depending only on the input at a single

location. For this case, the “features” for cliques would simply be constant, the “work”

being entirely done by θv(yc).

fc(x) = 1, θv(yc) arbitrary

86

Now if the input is real-valued (e.g. a grayscale image), reasonable univariate features

would be a constant, plus the value at that node.

fi(x) =













1

xi













, θv(yi) arbitrary

If, on the other hand, the input is discrete valued, features might be indicator func-

tions for each possible value of xi.

fi(x) =

































[xi = 1

[xi = 2]

...

[xi = D]

































, θv(yi) arbitrary

Taking the inner product of these indicator functions with an arbitrary a(yi) is equiv-

alent to simply defining w(yi, xi) by a “table”, but removes the need to treat discrete

input as a special case.

Traditionally, the entropy terms w are not functions of x at all. When taking the

Bethe approximation, one would fix

gc(x) = 1, θw(yc) = 1,

gi(x) = 1, θw(yi) = ni,

and not modify θw during learning. Alternatively, one could “fit the entropy approx-

imation” during learning. This would mean taking values for each variable or clique

independent of y.

87

gc(x) = 1, θw(yc) = θwc,

gi(x) = 1, θw(yi) = θwi,

Yet more general would be, just as for v above, to take gc, gi as rich features of

the input and allow θw(yc) and θw(yi) to be arbitrary.

6.2 Binary Digits

The binary digit dataset consists of binarized 28x28 handwritten digits ŷ from the

MNIST database. These are corrupted with various amounts to form the input x̂.

There is a training set of 90 images (10 of each digit 1-9), and a similar set of 90 test

images. The input was corrupted with various amounts of noise: 10%, 30%, 50% and

70%. (The amount of noise indicates the fraction of pixels that are set randomly.)

The various loss functions used for training are shown in Table 6.1.

Because pseudo and convex are the only convex loss functions here, convex is first

fit, and then used to initialize the parameters of all other loss functions. Training

uses L-BFGS for the learning optimization. The primal optimization algorithm from

Section 4.4 was used for optimizing the beliefs of convex and the implicit losses.

These also all use the same simple convex entropy approximation, namely w(yc) =

1, w(yi) = .01. Loopy belief propagation is used for the test stage for the model

trained with pseudo.

Figures 6.1-6.4 show the errors for all the different methods, evaluated in various

ways. Figures 6.5-6.8 show example results. pseudo and lbp based learning perform

acceptably for low noise levels, but are disastrous above 50% noise. The convex ap-

proach is robust to high amounts of noise, but does not perform quite as well as the

proposed methods. For example, with 50% noise, convex has a univariate classifica-

88

Abbreviation Loss

pseudo Conditional pseudolikelihood

lbp Loopy belief propagation approximation of conditional likelihood.

convex Convex entropy approximation of conditional likelihood.

ucl Univariate conditional likelihood (implicit fitting)

ccl Clique conditional likelihood (implicit fitting)

uquad Univariate quadratic (implicit fitting)

cquad Clique quadratic (implicit fitting)

ucl-k Univariate conditional likelihood with k iterations (procedural fitting)

ccl-k Clique conditional likelihood with k iterations (procedural fitting)

uquad-k Univariate quadratic with k iterations (procedural fitting)

cquad-k Clique quadratic with k iterations (procedural fitting)

Table 6.1: Loss function abbreviations.

tion error of .0716, while uquad (implicit fitting) has .0700, and uquad-4 (procedural

fitting with 4 iterations) has .0601. Again, at 70% noise, uquad (procedural fitting)

slightly edges out convex (.0134 vs. .0158), while uquad-4 (procedural fitting) at

.0106 again beats both.

The results of these experiments are roughly as follows:

• With a given method (implicit fitting or procedural fitting) which specific loss

function is used makes relatively little difference.

• Implicit fitting works similarly to the convex likelihood, with somewhat better

results on the higher noise levels, depending on the specific loss functions. The

results are also visually very similar. (This is not so surprising, given that

these methods use the same entropy approximation and belief optimization

algorithm.)

• Procedural fitting generally performs better than implicit fitting.

89

• The results of procedural fitting depend surprisingly little on the number of

iterations used. In general, four iterations do better than one, but this effect is

neither strong nor universal.

6.3 Fitting Entropy Approximations

Implicit fitting has one advantage not taken advantage of in the above experiments.

Namely, it is possible to also fit entropy approximations, so as to give the best possible

predictions. Here, the binary digits dataset with 50% noise is used to test the effects

of fitting entropy terms like this. The univariate conditional likelihood was fit with

eight different entropy approximations:

• A: w(yc) = 1, w(yi) = .01

• B: w(yc) = 1, w(yi) = .1

• C: w(yc) = 1, w(yi) = 1

• r1-r5: Each entry of w(yc) and w(yi) chosen randomly from [0, 1].

After fitting with the entropy fixed, another learning optimization was run to adjust

the entropy parameters. The results are shown in Figures 6.9 and 6.10. The following

conclusions are available from the results.

• Entropies A, B, and C are progressively less close to the Bethe approximation.

A, the closest approximation, does give slightly better results.

• One particular randomly chosen entropy (r3) happens to work better than the

others, including the more traditional approximations (A,B,C).

• Fitting the entropies improves results considerably, and gives very similar results

regardless of the initial entropy. The final univariate classifications errors (.050-

.059) are slightly better than the results for procedural fitting (.059-.063).

90

pseudo lbp convex
+.0000

+.0050

+.0100

+.0000

+.0050

+.0100

Likelihood Approximations

1.06e−2

9.23e−3 9.23e−3

ucl ccl uquad cquad

 uclass evaluation

Implicit Fitting

1.04e−2

9.23e−3

1.04e−2

9.18e−3

ucl ccl uquad cquad
Procedural Fitting

8.72e−3
8.63e−3

8.91e−3

8.74e−3

8.66e−3
8.62e−3

8.87e−3

8.67e−3

8.60e−3
8.57e−3

8.69e−3

8.63e−3

8.53e−3
8.79e−3

8.65e−3

8.84e−3

pseudo lbp convex
+.0000

+.0000

+.0000

+.0001

+.0001

Likelihood Approximations

7.66e−5

5.88e−5

4.83e−5

ucl ccl uquad cquad

 ucl evaluation

Implicit Fitting

5.55e−5
4.83e−5

8.61e−5

6.34e−5

ucl ccl uquad cquad
Procedural Fitting

4.52e−5
4.54e−5

4.46e−5
4.48e−5

4.48e−5
4.51e−5

4.44e−5
4.48e−5

4.39e−5
4.46e−5

4.38e−5
4.44e−5

4.32e−5
4.61e−5

4.24e−5
4.51e−5

pseudo lbp convex
+.0000

+.0001

+.0002

+.0003

Likelihood Approximations

2.77e−4

2.17e−4
1.91e−4

ucl ccl uquad cquad

 ccl evaluation

Implicit Fitting

2.04e−4
1.91e−4

2.79e−4

2.24e−4

ucl ccl uquad cquad
Procedural Fitting

1.73e−4
1.74e−4

1.71e−4

1.72e−4
1.71e−4

1.73e−4

1.70e−4

1.71e−4
1.68e−4

1.70e−4

1.66e−4

1.69e−4
1.61e−4

1.68e−4

1.61e−4

1.65e−4

pseudo lbp convex

−.0013

−.0013

−.0012

−.0012

−.0011

Likelihood Approximations

−1.24e−3 −1.24e−3
−1.25e−3

ucl ccl uquad cquad

 uquad evaluation

Implicit Fitting

−1.25e−3 −1.25e−3 −1.25e−3 −1.25e−3

ucl ccl uquad cquad
Procedural Fitting

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

−1.25e−3

pseudo lbp convex
−.0026

−.0024

−.0022

−.0026

−.0024

−.0022

Likelihood Approximations

−2.32e−3 −2.33e−3
−2.37e−3

ucl ccl uquad cquad

 cquad evaluation

Implicit Fitting

−2.37e−3 −2.37e−3 −2.35e−3 −2.36e−3

ucl ccl uquad cquad
Procedural Fitting

−2.36e−3

−2.36e−3

−2.36e−3

−2.36e−3

−2.36e−3

−2.36e−3

−2.36e−3

−2.36e−3

−2.37e−3

−2.37e−3

−2.37e−3

−2.37e−3

−2.37e−3

−2.37e−3

−2.37e−3

−2.37e−3

1 iter
2 iters
3 iters
4 iters

Figure 6.1: Binary Digit Errors-10% noise

91

pseudo lbp convex
+.0000

+.0200

+.0400

+.0600

Likelihood Approximations

5.53e−2

3.24e−2 3.04e−2

ucl ccl uquad cquad

 uclass evaluation

Implicit Fitting

3.19e−2 3.04e−2 3.12e−2 2.97e−2

ucl ccl uquad cquad
Procedural Fitting

2.85e−2
2.85e−2

2.88e−2
2.88e−2

2.86e−2
2.85e−2

2.87e−2
2.86e−2

2.84e−2
2.84e−2

2.85e−2
2.83e−2

2.81e−2
2.93e−2

2.82e−2
2.90e−2

pseudo lbp convex
+.0000

+.0001

+.0002

+.0003

Likelihood Approximations

2.87e−4

1.74e−4
1.48e−4

ucl ccl uquad cquad

 ucl evaluation

Implicit Fitting

1.54e−4 1.48e−4

1.88e−4
1.64e−4

ucl ccl uquad cquad
Procedural Fitting

1.41e−4
1.43e−4

1.45e−4
1.47e−4

1.41e−4
1.44e−4

1.45e−4
1.49e−4

1.35e−4
1.40e−4

1.40e−4
1.44e−4

1.30e−4
1.46e−4

1.30e−4
1.47e−4

pseudo lbp convex
+.0000

+.0005

+.0010

+.0000

+.0005

+.0010

Likelihood Approximations

9.59e−4

6.05e−4 6.04e−4

ucl ccl uquad cquad

 ccl evaluation

Implicit Fitting

6.10e−4 6.04e−4
6.65e−4 6.28e−4

ucl ccl uquad cquad
Procedural Fitting

5.05e−4
5.10e−4

5.16e−4
5.23e−4

4.95e−4
5.03e−4

5.08e−4
5.18e−4

4.68e−4
4.81e−4

4.82e−4
4.94e−4

4.81e−4
4.86e−4

4.86e−4
4.88e−4

pseudo lbp convex

−.0013

−.0012

−.0011

−.0013

−.0012

−.0011

Likelihood Approximations

−1.15e−3

−1.18e−3
−1.19e−3

ucl ccl uquad cquad

 uquad evaluation

Implicit Fitting

−1.19e−3 −1.19e−3
−1.18e−3 −1.19e−3

ucl ccl uquad cquad
Procedural Fitting

−1.19e−3

−1.19e−3

−1.19e−3

−1.19e−3

−1.19e−3

−1.19e−3

−1.19e−3

−1.19e−3

−1.20e−3

−1.19e−3

−1.19e−3

−1.19e−3

−1.20e−3

−1.20e−3

−1.20e−3

−1.20e−3

pseudo lbp convex

−.0024

−.0022

−.0020

−.0024

−.0022

−.0020

Likelihood Approximations

−2.09e−3

−2.16e−3
−2.20e−3

ucl ccl uquad cquad

 cquad evaluation

Implicit Fitting

−2.20e−3 −2.20e−3
−2.17e−3 −2.19e−3

ucl ccl uquad cquad
Procedural Fitting

−2.20e−3

−2.20e−3

−2.19e−3

−2.19e−3

−2.20e−3

−2.20e−3

−2.20e−3

−2.19e−3

−2.22e−3

−2.21e−3

−2.21e−3

−2.21e−3

−2.21e−3

−2.21e−3

−2.21e−3

−2.21e−3

1 iter
2 iters
3 iters
4 iters

Figure 6.2: Binary Digit Errors-30% noise

92

pseudo lbp convex
+.0000

+.0500

+.1000

+.1500

Likelihood Approximations

1.42e−1 1.41e−1

7.16e−2

ucl ccl uquad cquad

 uclass evaluation

Implicit Fitting

7.10e−2 7.16e−2 7.00e−2 6.51e−2

ucl ccl uquad cquad
Procedural Fitting

5.99e−2
5.93e−2

6.01e−2
6.01e−2

6.07e−2
6.03e−2

6.02e−2
6.00e−2

6.03e−2
6.05e−2

6.03e−2
6.04e−2

6.12e−2
6.31e−2

6.11e−2
6.28e−2

pseudo lbp convex
+.0000

+.0005

+.0010

+.0000

+.0005

+.0010

Likelihood Approximations

3.55e−4

1.08e−3

2.27e−4

ucl ccl uquad cquad

 ucl evaluation

Implicit Fitting

2.12e−4 2.27e−4 2.46e−4 2.17e−4

ucl ccl uquad cquad
Procedural Fitting

1.75e−4
1.76e−4

1.78e−4
1.77e−4

1.76e−4
1.82e−4

1.79e−4
1.80e−4

1.76e−4
1.79e−4

1.77e−4
1.78e−4

1.71e−4
1.93e−4

1.72e−4
1.91e−4

pseudo lbp convex
+.0000

+.0010

+.0020

+.0030

Likelihood Approximations

1.19e−3

3.54e−3

8.40e−4

ucl ccl uquad cquad

 ccl evaluation

Implicit Fitting

8.33e−4 8.41e−4 8.70e−4 8.48e−4

ucl ccl uquad cquad
Procedural Fitting

6.29e−4

6.27e−4
6.39e−4

6.35e−4

6.25e−4

6.27e−4
6.33e−4

6.34e−4

6.13e−4

6.16e−4
6.17e−4

6.13e−4

6.63e−4

6.61e−4
6.76e−4

6.62e−4

pseudo lbp convex

−.0012

−.0011

−.0010

−.0012

−.0011

−.0010

Likelihood Approximations

−1.13e−3

−1.07e−3

−1.16e−3

ucl ccl uquad cquad

 uquad evaluation

Implicit Fitting

−1.16e−3 −1.16e−3 −1.15e−3
−1.17e−3

ucl ccl uquad cquad
Procedural Fitting

−1.18e−3

−1.18e−3

−1.18e−3

−1.18e−3

−1.18e−3

−1.17e−3

−1.18e−3

−1.18e−3

−1.18e−3

−1.18e−3

−1.18e−3

−1.18e−3

−1.18e−3

−1.17e−3

−1.18e−3

−1.17e−3

pseudo lbp convex

−.0022

−.0020

−.0018

Likelihood Approximations

−2.05e−3

−1.88e−3

−2.11e−3

ucl ccl uquad cquad

 cquad evaluation

Implicit Fitting

−2.13e−3 −2.11e−3 −2.10e−3
−2.13e−3

ucl ccl uquad cquad
Procedural Fitting

−2.15e−3

−2.15e−3

−2.15e−3

−2.15e−3

−2.16e−3

−2.15e−3

−2.15e−3

−2.15e−3

−2.16e−3

−2.16e−3

−2.16e−3

−2.16e−3

−2.13e−3

−2.13e−3

−2.13e−3

−2.13e−3

1 iter
2 iters
3 iters
4 iters

Figure 6.3: Binary Digit Errors-50% noise

93

pseudo lbp convex
+.0000

+.2000

+.4000

+.6000

+.8000

Likelihood Approximations

1.78e−1

8.21e−1

1.58e−1

ucl ccl uquad cquad

 uclass evaluation

Implicit Fitting

1.35e−1 1.58e−1 1.34e−1 1.26e−1

ucl ccl uquad cquad
Procedural Fitting

1.05e−1
1.07e−1

1.04e−1
1.06e−1

1.06e−1
1.07e−1

1.05e−1
1.06e−1

1.07e−1
1.10e−1

1.05e−1
1.11e−1

1.06e−1
1.17e−1

1.05e−1
1.17e−1

pseudo lbp convex
+.0000

+.0020

+.0040

+.0060

+.0080

Likelihood Approximations

2.15e−3

7.62e−3

4.85e−4

ucl ccl uquad cquad

 ucl evaluation

Implicit Fitting

4.40e−4 4.86e−4 4.51e−4 4.23e−4

ucl ccl uquad cquad
Procedural Fitting

3.29e−4

3.04e−4
3.36e−4

3.11e−4

3.26e−4

2.93e−4
3.33e−4

3.03e−4

3.26e−4

3.05e−4
3.33e−4

3.10e−4

3.35e−4

3.02e−4
3.36e−4

3.07e−4

pseudo lbp convex
+.0000

+.0100

+.0200

+.0000

+.0100

+.0200

Likelihood Approximations

6.69e−3

2.37e−2

1.47e−3

ucl ccl uquad cquad

 ccl evaluation

Implicit Fitting

1.51e−3 1.47e−3 1.47e−3 1.49e−3

ucl ccl uquad cquad
Procedural Fitting

1.17e−3

1.09e−3
1.19e−3

1.11e−3
1.22e−3

1.09e−3
1.22e−3

1.11e−3
1.38e−3

1.14e−3
1.31e−3

1.10e−3
1.64e−3

1.10e−3
1.48e−3

1.10e−3

pseudo lbp convex

−.0010

−.0005

+.0000

+.0005

Likelihood Approximations

−7.23e−4

6.93e−4

−9.61e−4

ucl ccl uquad cquad

 uquad evaluation

Implicit Fitting

−9.91e−4 −9.61e−4 −9.91e−4 −1.01e−3

ucl ccl uquad cquad
Procedural Fitting

−1.07e−3

−1.09e−3

−1.08e−3

−1.09e−3

−1.07e−3

−1.10e−3

−1.08e−3

−1.09e−3

−1.07e−3

−1.09e−3

−1.07e−3

−1.09e−3

−1.06e−3

−1.09e−3

−1.07e−3

−1.08e−3

pseudo lbp convex

−.0020

−.0010

+.0000

+.0010

Likelihood Approximations

−1.21e−3

1.47e−3

−1.69e−3

ucl ccl uquad cquad

 cquad evaluation

Implicit Fitting

−1.76e−3 −1.69e−3 −1.76e−3 −1.80e−3

ucl ccl uquad cquad
Procedural Fitting

−1.88e−3

−1.91e−3

−1.88e−3

−1.91e−3

−1.84e−3

−1.90e−3

−1.85e−3

−1.91e−3

−1.72e−3

−1.88e−3

−1.78e−3

−1.91e−3

−1.62e−3

−1.89e−3

−1.68e−3

−1.89e−3

1 iter
2 iters
3 iters
4 iters

Figure 6.4: Binary Digit Errors-70% noise

94

True

10% Noise

Likelihood Approx.: pseudo

Likelihood Approx.: lbp

Likelihood Approx.: convex

Implicit Fitting: ucl

Implicit Fitting: ccl

Implicit Fitting: uquad

Implicit Fitting: cquad

Procedural Fitting: ucl-1

Procedural Fitting: ucl-2

Procedural Fitting: ucl-3

Procedural Fitting: ucl-4

Procedural Fitting: ccl-1

Procedural Fitting: ccl-2

Procedural Fitting: ccl-3

Procedural Fitting: ccl-4

Procedural Fitting: uquad-1

Procedural Fitting: uquad-2

Procedural Fitting: uquad-3

Procedural Fitting: uquad-4

Procedural Fitting: cquad-1

Procedural Fitting: cquad-2

Procedural Fitting: cquad-3

Procedural Fitting: cquad-4

Figure 6.5: Example Binary Digit Results- 10% noise
95

True

30% Noise

Likelihood Approx.: pseudo

Likelihood Approx.: lbp

Likelihood Approx.: convex

Implicit Fitting: ucl

Implicit Fitting: ccl

Implicit Fitting: uquad

Implicit Fitting: cquad

Procedural Fitting: ucl-1

Procedural Fitting: ucl-2

Procedural Fitting: ucl-3

Procedural Fitting: ucl-4

Procedural Fitting: ccl-1

Procedural Fitting: ccl-2

Procedural Fitting: ccl-3

Procedural Fitting: ccl-4

Procedural Fitting: uquad-1

Procedural Fitting: uquad-2

Procedural Fitting: uquad-3

Procedural Fitting: uquad-4

Procedural Fitting: cquad-1

Procedural Fitting: cquad-2

Procedural Fitting: cquad-3

Procedural Fitting: cquad-4

Figure 6.6: Example Binary Digit Results- 30% noise
96

True

50% Noise

Likelihood Approx.: pseudo

Likelihood Approx.: lbp

Likelihood Approx.: convex

Implicit Fitting: ucl

Implicit Fitting: ccl

Implicit Fitting: uquad

Implicit Fitting: cquad

Procedural Fitting: ucl-1

Procedural Fitting: ucl-2

Procedural Fitting: ucl-3

Procedural Fitting: ucl-4

Procedural Fitting: ccl-1

Procedural Fitting: ccl-2

Procedural Fitting: ccl-3

Procedural Fitting: ccl-4

Procedural Fitting: uquad-1

Procedural Fitting: uquad-2

Procedural Fitting: uquad-3

Procedural Fitting: uquad-4

Procedural Fitting: cquad-1

Procedural Fitting: cquad-2

Procedural Fitting: cquad-3

Procedural Fitting: cquad-4

Figure 6.7: Example Binary Digit Results- 50% noise
97

True

70% Noise

Likelihood Approx.: pseudo

Likelihood Approx.: lbp

Likelihood Approx.: convex

Implicit Fitting: ucl

Implicit Fitting: ccl

Implicit Fitting: uquad

Implicit Fitting: cquad

Procedural Fitting: ucl-1

Procedural Fitting: ucl-2

Procedural Fitting: ucl-3

Procedural Fitting: ucl-4

Procedural Fitting: ccl-1

Procedural Fitting: ccl-2

Procedural Fitting: ccl-3

Procedural Fitting: ccl-4

Procedural Fitting: uquad-1

Procedural Fitting: uquad-2

Procedural Fitting: uquad-3

Procedural Fitting: uquad-4

Procedural Fitting: cquad-1

Procedural Fitting: cquad-2

Procedural Fitting: cquad-3

Procedural Fitting: cquad-4

Figure 6.8: Example Binary Digit Results- 70% noise
98

It should be said that fitting entropy terms like this is a somewhat strange thing to

do. Though no theory suggests doing this, neither does any theory suggest it is a bad

idea. Intuitively speaking, allowing entropy terms to vary simply gives the learning

algorithm “more knobs to twiddle”, and so it is not so surprising that this improves

the results.

The results here allow one entropy value for each clique or univariate configuration,

independently of the input. One could go further, and allow the entropy terms to use

full features of the input, as described in Section 6.1.

6.4 Varying the number of iterations of Procedural

Fitting

When procedurally fit models are trained with a fixed number of iterations, how

fragile are they to a change in that number? Figure 6.11 tests models trained with

1-4 iterations, using 1-10 iterations. We see that models trained with more than one

iteration are relatively robust to extra iterations. However, the model trained with

just a single iterations gives poor results when many iterations are used for evaluation.

6.5 StreetScenes

The second dataset, known as StreetScenes[24], consists of hand-labeled color out-

door images of streets, reduced to 60x80 resolution. Here, only five labels are used:

building, sky, car, road/sidewalk, and tree. There are significant unlabeled regions

in the images, which prevents the use of LBP or convex likelihood based learning.

(Technically, the conditional pseudolikelihood also cannot be used, but there is an

obvious trick of simply using the sum over observed variables in Eq. 3.20.)

Because the system only uses linear features, these must be created by hand to

99

True

50% Noise

Fixed Entropy

A: w(yc) = 1, w(yi) = .01

B: w(yc) = 1, w(yi) = .1

C: w(yc) = 1, w(yi) = 1

r1: random entropy 1

r2: random entropy 2

r3: random entropy 3

r4: random entropy 4

r5: random entropy 5

Fit Entropy, Initialized to Above Solution

A: w(yc) = 1, w(yi) = .01

B: w(yc) = 1, w(yi) = .1

C: w(yc) = 1, w(yi) = 1

r1: random entropy 1

r2: random entropy 2

r3: random entropy 3

r4: random entropy 4

r5: random entropy 5

Figure 6.9: Entropy fitting results.

100

A B C r1 r2 r3 r4 r5
0

0.02

0.04

0.06

0.08
.0711 .0718

.0784
.0733 .0733

.0639

.0739 .0722

 uclass − Fixed Entropy

A B C r1 r2 r3 r4 r5
0

0.02

0.04

0.06

0.08

.0579 .0579 .0579 .0581 .0581 .0580 .0595 .0579

 uclass − Fit Entropy

A B C r1 r2 r3 r4 r5
0

1

2

x 10
−4

2.12e−4 2.15e−4

2.51e−4

2.20e−4 2.20e−4

1.89e−4

2.21e−4 2.22e−4

 ucl − Fixed Entropy

A B C r1 r2 r3 r4 r5
0

1

2

x 10
−4

1.62e−4 1.62e−4 1.62e−4 1.62e−4 1.62e−4 1.62e−4 1.65e−4 1.62e−4

 ucl − Fit Entropy

Figure 6.10: Entropy fitting errors. See Figure 6.9 for a key for labels.

101

ucl−1 training ucl−2 training ucl−3 training ucl−4 training
0

0.05

0.1

0.15

0.2
 uclass evaluation

1 iter eval
2 iter eval
3 iter eval
4 iter eval
...

ucl−1 training ucl−2 training ucl−3 training ucl−4 training
0

1

2

3

4

5

6
x 10

−4 ucl evaluation

ucl−1 training ucl−2 training ucl−3 training ucl−4 training
0

0.5

1

1.5
x 10

−3 ccl evaluation

Figure 6.11: Procedurally fit CRFs with varying numbers of iterations.

102

achieve any reasonable performance. Those used here are summarized in Table 6.2.

• The raw RGB intensities are simply the original input image intensities in

the three color channels, rescaled to the range [0, 1].

• The histograms of gradients[25] at scale 0 are computed by first measuring

the gradient on the image. The horizontal derivative dx at scale 1 is approx-

imated by convolving the image with a filter [−1 0 1]. (At scale k one simply

enlarges this filter by substituting a matrix of size 1 + 2k for each value.) The

vertical derivative dy is approximated with the transpose of this filter. The

angle θ at each pixel is given by quantizing tan−1(dy/dx) to one of 8 values,

while the length r is given by
√

dx2 + dy2. The feature vector at scale 1 is

given by a histogram of the angles θi in the surrounding 7x7 patch, with each

pixel is weighted by ri/
√

ǫ2 +
∑

j r
2
j , where the sum is over the pixels j in the

neighborhood. The constant ǫ = .01 prevents regions with very low gradients

from contributing much. At scale k, the same thing is done, where the 7x7

patch is instead taken with a stride of 2k between the pixels.

• The cluster indicator functions were computed by first taking a large sample

of randomly selected 5x5 patches, and creating 50 clusters by k-means. The

vector at each pixel is simply a vector of zeros with a one for the cluster center

closest to the image patch. At half scale, the vector is created by filtering the

image, and then taking the 5x5 patch with a stride of 2. At quarter scale, the

same thing is done with more filtering, and a stride of 4.

A constant feature was not included, as it would be linearly dependent on the cluster

indicator functions (which always sum to one), and thus provide no advantage.

The results here use 100 training and test images at a resolution of 60x80. Because

of the computational expense of training this model, only the univariate quadratic

loss is used for training. Table 6.3 and Figure 6.12 give the results on test data.

103

Feature Number

Raw RGB intensities 3

Histograms of Gradients (Scale 0) 8

Histograms of Gradients (Scale 1) 8

Histograms of Gradients (Scale 2) 8

Cluster indicator functions 50

Cluster indicator functions (half scale) 50

Cluster indicator functions (quarter scale) 50

Total 177

Table 6.2: Features used with the StreetScenes dataset.

Method \ Loss uclass uquad

pseudo .847 .0000958

baseline .333 -.0001342

uquad .287 -.0001548

uquad + ent.fitting .239 -.0001823

uquad-1 .252 -.0001324

uquad-2 .264 -.0001612

Table 6.3: Test errors on the StreetScenes dataset

104

uquad

x̂ ŷ pseudo baseline uquad +ent.fitting uquad-1 uquad-2

Figure 6.12: StreetScenes results for every tenth image in the test set.

105

The baseline method refers to training a classifier on a totally disconnected graph–

i.e. with each pixel predicting its label independently. Surprisingly, pseudolikelihood

training performs far worse than the baseline, giving high probability to the label

“building” for all pixels. Because of this poor performance, it is preferable to sim-

ply initalize parameters by w = v = 0. Again, here, procedural fitting is able to

outperform implicit fitting.

106

Chapter 7

Discussion

7.1 Comparison to traditional approaches

In the experiments, both pseudolikelihood and loopy belief propagation based learning

performed very poorly on the more difficult problems. (Note, however, that since LBP

is based on a non-convex optimization, better performance might be possible though

different initialization, update orders, damping heuristics, etc.)

The Convex approximate likelihood performed well, when it could be applied.

In general, implicit fitting with a fixed entropy gave somewhat lower errors, while

implicit fitting with fit entropies, and procedural fitting did better still. On binary

digits with 50% noise, univariate classification rates were as follows.

Method uclass error

convex .072

ucl (Implicit Fitting) .071

ucl + entropy fitting (Implicit Fitting) .059

ucl-4 (Procedural Fitting, 4 iterations) .060

107

There are two other advantages worth mentioning. First, the proposed methods

deal easily with hidden variables, simply by taking the sums in the univariate or clique-

wise loss functions only over the observed variables. Maximum likelihood learning

in graphical models requires techniques such as Expectation-Maximization, with an

increased computational cost. So far as the author is aware, use of Expectation-

Maximization in the case of approximate inference remains heuristic.

The second advantage is speed. Implicit fitting has no speed advantage over convex

likelihood based learning. (Indeed, here the two methods use the same inference

algorithm.) However, procedural fitting is far faster. Running a one iteration of

LBP on a pairwise connected graph with P pairs of variables, each of which can

take L labels, will take Θ(P · L2) time (the same time belief propagation takes

for exact inference on a singly-connected graph). This is an advantage again the in

prediction stage. Standard inference algorithms take varying numbers of iterations,

while procedurally fit models take a fixed number by definition.

7.2 Scaling to Huge Problems

Procedural fitting scales linearly in the number of variables, and thus is applicable to

very large problems. The only potential problem is the memory requirements– every

intermediate message update must be kept in memory in order to backpropagate

errors and compute derivatives. This linear scaling may be an issue in situations

where many iterations are used. However, there are techniques to reduce the memory

requirements of automatic differentiation through storing only a subset of values, and

recomputing others as needed [26].

Implicit fitting faces a more serious scaling problem, namely solving increasingly

large sparse linear systems. There are two different systems that need to be solved:

Step 3(c) of the belief optimization algorithm (Alg. 1), and Step 4 of the algorithm

108

to calculate dL/dθ (Alg. 3). However, both of these involve solving systems of the

form (AD−1AT)−1b, for a sparse constraint matrix A, and a diagonal matrix D. In all

experiments here, these were solved by direct methods, i.e. by factoring the matrix

AD−1AT , and then finding the solution by back-substitution. However, the number

of nonzeros in the factors scales super-linearly. The obvious solution to scaling these

to large problems would be using iterative methods to solve these systems. Some

preliminary experimentation was not able to consistently solve these systems in less

time than direct methods, unless the system is extremely large (so that neither method

is really practical). Most likely, this can be improved through careful preconditioning.

An attractive alternative would be the use of algebraic multi-grid solvers.

7.3 Convexity

One major disadvantage of marginal-based loss functions is that they are non-convex,

even with favorable assumptions (e.g. exact inference or linear features). The debate

about the importance of convexity in loss functions goes back decades, and will not

be settled here. When a convex loss function exists, it is often a good idea to initialize

the non-convex loss to that solution. This was done in Chapter 3 for exact inference

(initializing to the conditional likelihood), and for all loss functions on binary digits

in Chapter 6. Note, however, that this is not guaranteed to give the best results. On

the StreetScenes dataset, for example, the pseudolikelihood parameters would be a

poor initialization.

Note also that methods for training likelihood losses with hidden variables (e.g.

Expectation Maximization) use non-convex loss functions, so there is no disadvantage

in that case.

109

7.4 Approximate inference vs. simple models

Rather than assuming that approximate inference is unavoidable, and trying to cope

with the approximations, a natural idea is to fit a simpler model. That is, one might

deal with tractability at the modeling stage, rather than in inference.

Domingos [27] suggested taking the complexity of inference into account while

learning. Lowd and Domingos[28] demonstrate an algorithm for learning arithmetic

circuits (an alternative representation of a Bayesian network due to Darwiche [29]).

The learned compact arithmetic circuits achieve comparable results to Bayesian net-

works, with huge increases in inference speed.

Other related work includes learning mixtures of tractable distributions, such as

fully factorized[30] or tree structured[31].

7.5 Related Work: Energy Based Models

One area of related work is Energy Based Models [32], and related methods, such

as Max-Margin Markov networks [33]. These similarly consider graphical models in

terms of the energy function that they create. Learning takes place by shaping that

objective function such that the minima give good predictions. The major difference

is that Energy Based Models focus on MAP, rather than marginal inference. There

are two major consequences of this.

The foremost is that MAP and marginal inference represent different priorities

(Section 2.2). Disregarding approximations, MAP inference seeks the single joint

configuration y with maximum probability p(y|x) given the input x. Marginal in-

ference, meanwhile, is concerned with the marginal probabilities p(yi|x) or p(yc|x).

Which of these is most appropriate depends on the situation. Roughly speaking,

marginal inference is better when we want the most individual variables yi to be

correct, while MAP inference is better when we only care about joint accuracy.

110

Paradoxically, however, it is common in computer vision to use MAP inference

in situations in which one is concerned with univariate accuracy. This tradition goes

back at least as far as Geman and Geman’s famous 1984 paper [34], in which simulated

annealing is used to denoise images, and continues to much present day work using

more advanced methods for, e.g., predicting stereo disparity [35].

One can design learning methods to maximize the univariate accuracy of these

MAP predictors. However, from a certain theoretical standpoint, this is a strange

thing to do. If we have some observation x, and we know the true distribution

p0(y|x), the optimal inference procedure is Maximum Posterior Marginal Inference–

compute the marginals p0(yi|x), and then maximize each independently. Thus, if

one has plentiful training data, a well-specified model, and exact inference, marginal

based learning and inference is guaranteed to give optimal predictions, while an EBM

based on the same graphical model is not.

Yet from more practical standpoint, training an EBM for univariate accuracy is

perfectly reasonable, and could outperform a marginalization approach in practice.

The reason is that the graphical model may not be well-specified, and so the above

guarantees do not apply. Absent assumptions about the true distribution, MAP and

marginal inference are just different classes of functions mapping from input to predic-

tions, neither of which is superior in general. Indeed, the probabilistic interpretation

of these models is sometimes explicitly downplayed [36, section 3.2], or not even

mentioned[37].

The second difference is the possibility of accounting for approximate inference

in learning. It is relatively easy to account for approximations in marginal inference.

One replaces the true entropy and marginal polytope with approximations which

then (if convex) can be optimized exactly. This chapter has focused on how to “fit

around the approximations” during learning. For MAP inference, however, it is not

clear how to analytically account for approximations. In certain restricted graphs

111

(e.g. low treewidth graphs, or binary associative networks [38][36, section 8]), exact

inference is possible. In general graphs, these methods replace exact inference with

approximations, and so success is not experimental. In practice, this often works well.

(Further, Taskar et al. [36, section 7.2]) conjecture that replacing exact inference with

approximate does indeed result in approximation-aware learning, to some degree.)

7.6 Probabilistic Modeling and Model Error

This thesis has argued for fitting graphical models for marginal accuracy and then us-

ing marginal inference for predictions. It should be noted that this has two supporting

arguments, with somewhat contradictory premises.

• Optimality of marginal inference. The first part of this argument is that if

one is interested in maximum univariate error, the optimal inference procedure

is to compute the marginals p(yi|x), and then find the label yi maximizing each

independently.

• Robustness to model error. The second part of this argument is that univari-

ate or clique-wise loss functions are preferable to likelihood based loss functions

because of model errors.

These two arguments are not simultaneously rigorous. In order to know that marginal

inference is optimal, we must assume that the model is well-specified. However,

marginal-based loss functions are preferable precisely when the model is misspecified.

Thus, this argument is heuristic in assuming that marginal inference continues to

be optimal in the case of model misspecification. This seems reasonable in the case

of only small model error. If the model is very wrong, however, this need not be true.

There is evidence that the models used in practice are often misspecified. For

example, the pseudolikelihood frequently gives very poor results, even when data is

112

y

x

y

x

Figure 7.1: A CRF vs. direct prediction of marginals.

plentiful. This is a sign that the model is not well-specified. If if one is not serious

about making conditional independence assumptions, it might be better to disregard

the probabilistic interpretation of graphical models.

7.7 Why fit a joint distribution just to marginalize?

The goal here is the prediction of accurate marginals. Why, then, do we fit joint

distributions? We have to work very hard to fit p(y|x), just to marginalize down to

p(yi|x). (Or, rather, approximately marginalize.) Why not “eliminate the middleman”,

and simply fit p(yi|x) directly?

Let us be more precise. Consider the CRF on the left of Fig. 7.1. Rather

than fitting a joint distribution p(y|x) and then marginalizing, one might identify

a set of “parents” xπ(i) for each variable yi, and directly fit p(yi|xπ(i)) using any

standard supervised learning method (e.g. logistic regression, k-nearest neighbors,

neural networks, etc.). How will these predicted marginals compare to those obtained

from a graphical model approach?

In many cases, this will work very well. Given how comparatively easy this ap-

proach is, the practitioner should probably try this before resorting to a graphical

model. In other cases, however, this will not succeed. the trouble lies in the size

of the set π(i). If there exists a small set such that yi is conditionally independent

of xj , x 6∈ π(i) given xπ(i), then the approach will work well. Often, however, this

set might need to be large, and the mapping p(yi|xπ(i)) very complex, when a very

simple CRF would work well. Notice that in the CRF in Fig. 7.1, yi will usually be

113

dependent on the entire vector x.

114

Bibliography

[1] Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence,

82(1-2):273 – 302, 1996.

[2] Venkat Chandrasekaran, Nathan Srebro, and Prahladh Harsha. Complexity of

inference in graphical models. In Proceedings of the 24th Annual Conference on

Uncertainty in Artificial Intelligence (UAI-08), null, 2008. null.

[3] Julian Besag. Spatial interaction and the statistical analysis of lattice systems.

Journal of the Royal Statistical Society. Series B (Methodological), 36(2):192–

236, 1974.

[4] J L Marroquin. Probabilistic solution of inverse problems. PhD thesis, Mas-

sachusetts Institute of Technology, 1985.

[5] David J. C. MacKay. Information Theory, Inference, and Learn-

ing Algorithms. Cambridge University Press, 2003. Available from

http://www.inference.phy.cam.ac.uk/mackay/itila/.

[6] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Constructing free en-

ergy approximations and generalized belief propagation algorithms. IEEE Trans-

actions on Information Theory, 51:2282–2312, 2004.

115

[7] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and

variational inference. Foundations and Trends in Machine Learning, 1:1–305,

2008.

[8] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer,

November 1999.

[9] T. Minka. Divergence measures and message passing (MSR-TR-2005-173). Tech-

nical report, Microsoft Research, 2005.

[10] Julian Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179–

195, 1975.

[11] Julian Besag. Efficiency of pseudolikelihood estimation for simple gaussian fields.

Biometrika, 64(3):616–618, 1977.

[12] Percy Liang and Michael Jordan. An asymptotic analysis of generative, discrim-

inative, and pseudolikelihood estimators. In ICML, 2008.

[13] J. Rissanen. Lectures on statistical modeling theory. http://www.

mdl-research.org/pub/lectures.pdf, 2008.

[14] L Breiman. Statistical modeling: The two cultures. Statistical Science,

16(3):199–215, 2001.

[15] Sham Kakade, Yee Whye Teh, and Sam T. Roweis. An alternate objective

function for markovian fields. In ICML, pages 275–282, 2002.

[16] J Domke. Learning convex inference of marginals. In Uncertainty in Artificial

Intelligence, 2008.

[17] Samuel S. Gross, Olga Russakovsky, Chuong B. Do, and Serafim Batzoglou.

Training conditional random fields for maximum labelwise accuracy. In

116

B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information

Processing Systems 19, pages 529–536. MIT Press, Cambridge, MA, 2007.

[18] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

University Press, March 2004.

[19] T Heskes. Convexity arguments for efficient minimization of the bethe and

kikuchi free energies. Journal of Artificial Intelligence Research, 26:153–190,

2006.

[20] V Ganapathi, D Vickrey, J Duchi, and D Koller. Constrained approximate

maximum entropy learning of markov random fields. In Uncertainty in Artificial

Intelligence, 2008.

[21] D. Gay. Semiautomatic differentiation for efficient gradient computations. Tech-

nical report, Sandia National Laboratories, 2004.

[22] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree-reweighted belief prop-

agation and approximate ml estimation by pseudo-moment matching. In Work-

shop on Artificial Intelligence and Statistics, 2003.

[23] Thomas Minka. Expectation propagation for approximate bayesian inference,

2001.

[24] Stanley Michael Bileschi. StreetScenes: Towards Scene Understanding in Still

Images. PhD thesis, Massachusetts Institute of Technology, 2006.

[25] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de-

tection. In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, Interna-

tional Conference on Computer Vision & Pattern Recognition, volume 2, pages

886–893, INRIA Rhône-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334,

June 2005.

117

[26] Andreas Griewank. Achieving logarithmic growth of temporal and spatial com-

plexity in reverse automatic differentiation. Optimization Methods and Software,

1:35–54, 1992.

[27] Pedro Domingos. Structured machine learning: Ten problems for the next ten

years. Machine Learning, 73:3–23, 2008.

[28] Daniel Lowd and Pedro Domingos. Learning arithmetic circuits. In Uncertainty

in Artificial Intelligence, 2008.

[29] A Darwiche. A differential approach to inference in bayesian networks. Journal

of the ACM, 50:280–305, 2003.

[30] Petri Kontkanen, Petri Myllymäki, and Henry Tirri. Constructing bayesian finite

mixture models by the em algorithm. Technical report, University of Helsinki,

Department of Computer Science, 1996.

[31] M Meila and M Jordan. Learning with mixtures of trees. Journal of Machine

Learning Research, 1:1–48, 2000.

[32] Yann LeCun, Sumit Chopra, Raia Hadsell, Ranzato Marc’Aurelio, and Fu-

Jie Huang. A tutorial on energy-based learning. In G. Bakir, T. Hofman,

B. Schölkopf, A. Smola, and B. Taskar, editors, Predicting Structured Data. MIT

Press, 2006.

[33] B. Taskar, C. Guestrin, and D. Koller. Max–margin Markov networks. In Ad-

vances in Neural Information Processing Systems, 2004.

[34] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions

and the bayesian restoration of images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 6(6):721–741, November 1984.

118

[35] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veskler, Vladimir Kol-

mogorov, Aseem Agarwala, Marshall Tappen, and Carsten Rother. A com-

parative study of energy minimization methods for markov random fields with

smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 30(6), 2008.

[36] B. Taskar, C. Guestrin, V. Chatalbashev, and D. Koller. Max-margin markov

networks. Journal of Machine Learning Research, To appear.

[37] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy mini-

mization via graph cuts. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 23:2001, 1999.

[38] Vladimir Kolmogorov and Ramin Zabih. What energy functions can be min-

imized via graph cuts. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26:65–81, 2004.

119

