

University of South Florida Scholar Commons

Graduate Theses and Dissertations

Graduate School

January 2013

The Effects of Drilling Slurry on Reinforcement in Drilled Shaft Construction

Justin Bowen University of South Florida, jpbowen1@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the <u>Engineering Commons</u>

Scholar Commons Citation

Bowen, Justin, "The Effects of Drilling Slurry on Reinforcement in Drilled Shaft Construction" (2013). *Graduate Theses and Dissertations.* http://scholarcommons.usf.edu/etd/4804

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

The Effects of Drilling Slurry on Reinforcement

in Drilled Shaft Construction

by

Justin P. Bowen

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering Department of Civil and Environmental Engineering College of Engineering University of South Florida

> Co-Major Professor: Gray Mullins, Ph.D. Co-Major Professor: Abla Zayed, Ph.D. Michael J. Stokes, Ph.D.

Date of Approval: November 7, 2013

Keywords: Mineral Slurry, Polymer Slurry, Bond Strength, Pullout Testing, Viscosity

Copyright © 2013, Justin P. Bowen

DEDICATION

I would like to dedicate my work to the people who mean the most to me, without them this accomplishment would not have been possible. My mother for her unyielding love and support throughout this entire process. My dad, which a day doesn't go by that I don't think of you and hope you are proud of the person I have become. My brother, Karl, and step-father, David, for your love and support.

This project would not have been possible without the help from some amazing friends, Kevin (shakes) Johnson, Liz Mitchell, Vince DePianta, and Ramzi Dkeidek, without your time and energy, this project would never have been completed. Danny Winters, for providing me with the tools and expertise that was integral in completing this project.

My extended family, David Gillett and Jessica McRory, your friendship, guidance, and wisdom have been invaluable throughout this endeavor.

Mr. David Wilson, it was your willingness to take me under your wing, and provide me with various opportunities that has created the drive and determination to accomplish these goals.

ACKNOWLEDGMENTS

I am forever grateful to Dr. Abla Zayed, and Dr. Gray Mullins, for without their guidance and support this would not be possible. I cannot thank you enough for the experience and knowledge I have gained throughout this process. Dr. Michael Stokes, for your enthusiasm and love for teaching.

I would also like to thank CETCO for their generosity in donating the materials and support for this research. Arehna Engineering for providing professional advice as well as laboratory assistance throughout this endeavor. Most importantly, the Florida Department of Transportation for funding this research.

TABLE OF CONTENTS

LIST OF TABLES	iii
LIST OF FIGURES	vii
ABSTRACT	xii
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 BACKGROUND	6
2.1 Drilled Shafts	6
2.2 Shaft Construction	8
2.3 Mineral Slurry	11
2.4 Polymer Slurry	12
2.5 Quality Control	13
2.6 Viscosity (API 13B-1.6, FM 8-RP13B-2)	13
2.7 Density (API 13B-1.4, FM 8-RP13B-1)	14
2.8 Sand Content (API 13B-1.9, FM 8-RP13B-3)	15
2.9 pH Test (API 13B-1.11, FM 8-RP13B-4)	16
2.10 API Filter Press Test (API 13B-1.7.2)	16
2.11 State Specifications	17
2.12 Development Length	19
2.13 Adverse Effects of Wet Construction	20
CHAPTER 3 LABORATORY TESTING	23
3.1 Bentonite Testing	23
3.2 Form Fabrication	25
3.3 Reinforcing Cage	27
3.4 Slurry Preparation	29
3.5 De-Bonding of Reinforcement	32
3.6 Concrete Placement	33
3.7 Pullout Testing	34
CHAPTER 4 TESTING RESULTS	36
4.1 Slurry Properties	36
4.2 Concrete Properties	38
4.3 Pullout Data	41
4.4 Physical Defects	47

CHAPTER 5 CONCLUSIONS	52
5.1 Pullout Testing	52
5.2 Durability	55
5.3 Future Work	60
REFERENCES	62
APPENDIX A: PHOTO DOCUMENTATION	64
APPENDIX B: STATE SPECIFICATIONS	84
APPENDIX C: CONCRETE INFORMATION	141

LIST OF TABLES

Table 3.1. Results for small scale testing to determine bentonite quantities	24
Table 4.1. Shaft number and viscosity by placement	
Table 4.2. Breakdown of slurry properties for model shafts from placement 2	37
Table 4.3. Breakdown of slurry properties for model shafts from placement 3	37
Table 4.4. Breakdown of slurry properties for model shafts from placement 4	
Table 4.5. Concrete plastic properties for placement 1	
Table 4.6. Concrete plastic properties for placement 2	
Table 4.7. Concrete plastic properties for placement 3	
Table 4.8. Concrete plastic properties for placement 4	
Table 4.9. Compressive strength data from placement 1	40
Table 4.10. Compressive strength data from placement 2	40
Table 4.11. Compressive strength data from placement 3	40
Table 4.12. Compressive strength data from placement 4	41
Table 4.13. Placement 1 pullout data	41
Table 4.14. Placement 2 pullout data	42
Table 4.15. Placement 3 pullout data	43
Table 4.16. Placement 3 stiffness data	43
Table 4.17. Placement 4 pullout data	47
Table B.1. Alabama slurry specifications (ALDOT, 2012)	84
Table B.2. Alaska slurry specifications (AlaskaDOT, 2004)	85

Table B.3. Arizona slurry specifications (AZDOT, 2008)	86
Table B.4. Arkansas slurry specifications (Freeling, 2013)	87
Table B.5. California slurry specifications (Caltrans, 2010)	88
Table B.6. Colorado slurry specifications (CDOT, 2006)	89
Table B.7. Connecticut slurry specifications (ConnDOT, 2009)	90
Table B.8. Delaware slurry specifications (DELDOT, 2009)	91
Table B.9. Florida slurry specifications (FDOT, 2014)	92
Table B.10. Georgia slurry specifications (GDOT, 2006)	94
Table B.11. Hawaii slurry specifications (HDOT, 2005)	95
Table B.12. Idaho slurry specifications special provisions (Buu, 2013)	96
Table B.13. Illinois slurry specifications (IDOT, 2012)	97
Table B.14. Indiana slurry specifications (INDOT, 2013)	98
Table B.15. Iowa slurry specifications (IowaDOT, 2012)	99
Table B.16. Kansas slurry specifications (KSDOT, 2007)	100
Table B.17. Kentucky slurry specifications (KYTC, 2008)	101
Table B.18. Louisiana slurry specifications (LaDOT, 2006)	102
Table B.19. Maine slurry specifications (MDOT, 2002)	103
Table B.20. Maryland slurry specifications (MDOT, 2008)	104
Table B.21. Massachusetts slurry specifications (MDH, 2012)	105
Table B.22. Michigan slurry specifications (MDOT, 2012)	106
Table B.23. Minnesota slurry specifications (MnDOT, 2005)	107
Table B.24. Mississippi slurry specifications (MDOT, 2007)	108
Table B.25. Missouri slurry specifications (MODOT, 2013)	109

Table B.26. Montana slurry specifications (MDT, 2011)	111
Table B.27. Nebraska slurry specifications (Larsen, 2013)	112
Table B.28. Nevada slurry specifications (NDOT, 2001)	113
Table B.29. New Hampshire slurry specifications (NHDOT, 2010)	114
Table B.30. New Jersey slurry specifications (NJDOT, 2007)	115
Table B.31. New Mexico slurry specifications (NMDOT, 2007)	117
Table B.32. New York slurry specifications (NYSDOT, 2008)	118
Table B.33. North Carolina slurry specifications (NCDOT, 2012)	119
Table B.34. North Dakota slurry specifications (NDDOT, 2010)	121
Table B.35. Ohio slurry specifications (ODOT, 2013)	122
Table B.36. Oklahoma slurry specifications (ODOT, 2009)	123
Table B.37. Oregon slurry specifications (ODOT, 2008)	124
Table B.38. Pennsylvania slurry specifications	
Table B.39. Rhode Island slurry specifications 2010	126
Table B.40. South Carolina slurry specifications (SCDOT, 2007)	127
Table B.41. South Dakota slurry specifications	
Table B.42. Tennessee slurry specifications (TDOT, 2006)	129
Table B.43. Texas slurry specifications (TxDOT, 2004)	131
Table B.44. Utah slurry specifications	132
Table B.45. Vermont slurry specifications (AOT, 2009)	133
Table B.46. Virginia slurry specifications (VDOT, 2010)	134
Table B.47. Washington slurry specifications (WSDOT, 2014)	135
Table B.48. West Virginia slurry specifications (WVDOT, 2000)	137

Table B.49. Wisconsin slurry specifications (WDOT, 2013)	138
Table B.50. Wyoming slurry specifications	139
Table B.51. Federal Highway Admistration slurry specifications (FHWA, 2010)	140

LIST OF FIGURES

Figure 1.1. Shaft construction: excavation (left), cage placement (center) and concreting (right)	1
Figure 1.2. Shaft exhumed to show poor concrete flow performance from slurry or fresh concrete properties	3
Figure 2.1. Clean out bucket(left) and flight auger (right) for shaft excavation	9
Figure 2.2. Temporary surface casing providing containment for slurry	9
Figure 2.3. Marsh funnel and cup for determining viscosity	14
Figure 2.4. Mud balance for determining density	15
Figure 2.5. Test kit for sand content	15
Figure 2.6. pH meter (left) and litmus strips (right)	16
Figure 2.7. Bench top filter press	17
Figure 2.8. Breakdown of available state recommended viscosities	18
Figure 2.9 Exhumed drilled shaft displaying concrete flow issues	22
Figure 3.1. Plot of test results illustrating the non-linear relationship	24
Figure 3.2. Test results focused on nation-wide current allowable viscosities	25
Figure 3.3. 18 gauge steel rolled to 42-inch diameter	26
Figure 3.4. Finished form prior to placement of reinforcement	26
Figure 3.5. Silicon to seal form(left), water testing to ensure water tight seal (right)	27
Figure 3.6. Structural, outer layer, reinforcement (left) and full cage (right)	28
Figure 3.7. Reinforcement after machining	28

Figure 3.8. Mixing mineral slurry with Hootonanny® eductor	29
Figure 3.9. Batches of mineral slurry after mixing	30
Figure 3.10. 60 sec/qt polymer slurry after mixing being agitated with bubbler system	30
Figure 3.11. Placing mineral slurry in forms night prior to placement	31
Figure 3.12. Reinforcement cage after de-bonding prior to slurry placement	32
Figure 3.13. Placing concrete via tremie	33
Figure 3.14. Form removal after shaft achieves suitable compressive strength	34
Figure 3.15. Ram configuration during pullout testing with LVDT in place	35
Figure 4.1. Plot of load vs. displacement for shaft 7 (30 sec bentonite)	44
Figure 4.2. Plot of load vs. displacement for shaft 8 (40 sec bentonite)	44
Figure 4.3. Plot of load vs. displacement for shaft 9 (50 sec bentonite)	45
Figure 4.4. Plot of load vs. displacement for shaft 10 (90 sec bentonite)	45
Figure 4.5. Plot of load vs. displacement for shaft 11 (60 sec polymer)	46
Figure 4.6. Plot of load vs. displacement for shaft 12 (60 sec polymer)	46
Figure 4.7. Illustrates the 90 second (left) and 40 second shaft (right) from placement one following form removal	48
Figure 4.8. Buildup encountered at bottom of 90-second shaft from placement one	48
Figure 4.9. 90-second shaft after pressure washing	49
Figure 4.10. Slurry that was encapsulated in the concrete (90-second shaft)	49
Figure 4.11. Slurry present at surface of reinforcement (top) depth of visible crease (bottom	ı)50
Figure 4.12. Shaft cast with polymer slurry following pressure washing	51
Figure 5.1. Residual slurry noticed on reinforcement 30 second (left), 40 second (right)	52
Figure 5.2. Residual slurry noticed on reinforcement 30 second (left), 50 second (right)	53
Figure 5.3. Residual slurry noticed on reinforcement 30 second (left), 90 second (right)	53

Figure 5.4. Comparison of pullout test results using bentonite slurry	54
Figure 5.5. Comparison of pullout test results using polymer slurry	55
Figure 5.6. Layer of slurry encased in concrete	56
Figure 5.7. Illustrates the visible creases in the concrete from 90 sec/qt shaft	57
Figure 5.8. Illustrates the consolidation of the 60 sec/qt polymer shaft	57
Figure 5.9. Core hole in 50 sec/qt shaft; crack corresponds to line formed by reinforcement	58
Figure 5.10. Poor consolidation around reinforcement in 40 sec/qt shaft	58
Figure 5.11. Encapsulated slurry in 50 sec/qt shaft core	59
Figure 5.12. Slurry encased in void in 90 sec/qt shaft	59
Figure 5.13. Flow of concrete around reinforcement during placement of 60 sec/qt polymer shaft	60
Figure A.1. Steel testing form, 42-inches in diameter	64
Figure A.2. Steel testing form, 24-inches in height	64
Figure A.3. Steel form, clamped, welded angle closures	65
Figure A.4. Bottom of form after polyurethane and cap placement	66
Figure A.5. Form with structural reinforcement prior to placement of pullout steel	66
Figure A.6. Final reinforcement configuration prior to slurry placement	67
Figure A.7. Typical de-bonding for reinforcement	67
Figure A.8. Verifying water tight seal of form	68
Figure A.9. Re-circulating mineral slurry prior to placement in form	68
Figure A.10. Testing plastic properties of fresh concrete	69

Figure A.11. Placing concrete for shaft 2, 90 sec/qt mineral slurry	69
Figure A.12. Placing concrete for shaft 1, 40 sec/qt mineral slurry	70
Figure A.13. Shaft 1 (right) and shaft 2 (left) after pressure washing	70
Figure A.14. Form layout for placements 2 through 4	71
Figure A.15. Shaft 6 (water) after pressure washing	71
Figure A.16. Shaft 3, 40 sec/qt mineral slurry after pressure washing	72
Figure A.17. Shaft 4, 50 sec/qt mineral slurry after pressure washing	72
Figure A.18. Shaft 5, 90 sec/qt mineral slurry after pressure washing	73
Figure A.19. Shaft 7, 30 sec/qt mineral slurry after pressure washing	73
Figure A.20. Shaft 8, 40 sec/qt mineral slurry after pressure washing	74
Figure A.21. Shaft 9, 50 sec/qt mineral slurry after pressure washing	74
Figure A.22. Shaft 10, 90 sec/qt mineral slurry after pressure washing	75
Figure A.23. Shaft 11, 60 sec/qt polymer slurry after pressure washing	75
Figure A.24. Shaft 13, 30 sec/qt mineral slurry after pressure washing	76
Figure A.25. Shaft 15, 50 sec/qt mineral slurry after pressure washing	
Figure A.26. Shaft 17, 85 sec/qt polymer slurry after pressure washing	77
Figure A.27. Shaft 18, water shaft after pressure washing	77
Figure A.28. Core from shaft 6, water	78
Figure A.29. Core from shaft 11, 60 sec/qt polymer	79
Figure A.30. Core from shaft 7, 30 sec/qt mineral slurry	80
Figure A.31. Core from shaft 8, 40 sec/qt mineral slurry	81
Figure A.32. Core from shaft 9, 50 sec/qt mineral slurry	
Figure A.33. Core from shaft 10, 90 sec/qt mineral slurry	
Figure A.34. Bar failure from shaft 6, water	83

Figure C.1. Page 1 of cement mill certificate	141
Figure C.2. Page 2 of cement mill certificate	142
Figure C.3. FDOT batch ticket for placement 1	143
Figure C.4. FDOT batch ticket for placement 2	144
Figure C.5. FDOT batch ticket for placement 3	145
Figure C.6. FDOT batch ticket for placement 4	146

ABSTRACT

Drilled shafts are cast-in-place concrete, deep foundation elements that require high levels of quality control to ensure the borehole does not become unstable either during excavation or during concreting. Bentonite slurry is a popular choice among state DOT officials nationwide to maintain borehole stability as it has a long history with reasonable load carrying performance. However, specifications developed to replicate successful shaft construction are largely based on empirical data. Further, as slurry construction is a blind process, the final asbuilt shaft is rarely visually inspected and much of the perceived concrete flow and slurry interaction with rebar and the soil interface are largely unverified.

This thesis presents the wide range of nationwide specifications for slurry viscosities (upper and lower) and notes that in only one case out of a hundred (50 states with an upper and lower viscosity limit) is there a rational basis for setting the limit. To this end, the objective of this thesis was to provide compelling evidence to support or dispute present upper viscosity limits. The study was part of a larger scope to show the effects of high viscosity slurry on concrete / soil interface and rebar bond. However, this thesis addresses only the latter via large scale testing to show concrete flow patterns, the build-up of bentonite slurry on rebar, and the degradation of rebar pull-out capacity as a function of bentonite slurry viscosity.

Pull-out test results from 126 specimens, comprised of No. 8 rebar embedded in 42in diameter shafts, showed that rebar bond degraded as much as 70% and more when in the presence of bentonite slurry that conformed to most state viscosity specifications (40 to 90 sec/qt). Visual inspection which is rarely possible on drilled shafts showed convincingly that the

concrete that flowed through the cage to form the cover concrete does not fully encapsulate the rebar. In most cases a void/crease was formed reflecting the cage grid and which would provide a pathway from the soil pore water directly to the reinforcing steel.

While present specifications nationwide dictate bentonite slurry ranges from a minimum of 28 to a maximum of 60 sec/qt, the study findings indicate that only viscosity levels of 30 sec/qt and below are reasonable from both a bond and durability stand point. As pure water has a viscosity of 26 sec/qt, this leaves only a very slight window of acceptability which is unlikely to provide sufficient lateral borehole stability.

CHAPTER 1 INTRODUCTION

Drilled shafts are cylindrical, cast-in-place concrete, deep foundation elements that are typically selected over driven piles based on cost effectiveness, the soil stratum encountered, and/or to control vibrations due to sensitive surroundings. In general, the process of constructing shafts involves the drilled excavation of soil or rock using large diameter augers to form a deep cylindrical void space. Within the excavation the necessary reinforcing steel is placed followed by concrete (Figure 1.1). This process requires the in- situ soils to act as the formwork and define the shape of the concrete. The greatest concern during this process is maintaining the stability of the excavation walls (formwork) and preventing the collapse or sloughing of material into the boring during excavation or the concreting process. This thesis focuses on an application called wet construction where the water table is encountered.

Figure 1.1. Shaft construction: excavation (left), cage placement (center) and concreting (right)

The excavation stability is maintained mechanically, hydrostatically, or with a combination of both. Mechanical stability implies the use of a full length steel casing that holds the soil in place while the construction process is performed. Upon completion of concreting, the casing is often fully extracted before the concrete cures and the wet/fluid concrete pushes out against the excavation walls.

Hydrostatic stabilization is the process of using fluid within the excavation wherein the fluid level is maintained higher than the surrounding ground water table and thus, flow is always into the soil walls and not flowing out of the soil walls causing collapse. The fluid can be natural ground water, sea water, or a slurry formed by mineral or polymer additives. The selection of slurry products or additives is somewhat controversial as various states permit or restrict the use of some products. However, most commonly, the clay mineral bentonite is mixed with water to form a slurry with a density slightly higher than water, but with the added advantage of greatly slowing or completely stopping inflow rates into the surrounding soil or ground water. Polymer slurry products tend to only slow the inflow rate but do not completely seal off the excavation walls.

Although the term slurry can apply to the mixture of in-situ soil and water that forms without the use of additives, this thesis will restrict the definition of slurry to those fluids that are intentionally mixed from mineral or polymer additives.

With any slurry product, the ratio of product to water volume can be adjusted to meet the needs of the soil conditions encountered. For mineral slurries the ratio could range from 0.5 to 1.0 lb/gal while polymer products may only require $1/100^{\text{th}}$ of that required by mineral slurries. In all cases, a thick / viscous fluid results that is designed to aid the drilling process (i.e. thicker

for more porous materials). Further, as various products may be more or less effective, the amount of material is not as crucial as the resulting properties, specifically viscosity and density.

State specifications are imposed to control the slurry properties with the aim of circumventing the potential for problematic shafts. However, despite these efforts (specifications), problems persist. Figure 1.2 shows an example of a shaft that exhibited concrete flow problems, either from fresh concrete or slurry properties.

Figure 1.2. Shaft exhumed to show poor concrete flow performance from slurry or fresh concrete properties.

To date, specifications throughout the Unites States vary from state to state whereby both minimum and maximum values of viscosity are dictated. Many of these values were established on the basis of experience and not science. A recent study (Mullins, et al, 2010) provided a rational explanation for the determination of lower viscosity limits for such specifications.

Therein, the viscosity was identified below which flow increased disproportionate to viscosity. The same study noted that no parallel study had been published to establish an upper limit and forms the basis of this thesis. To establish an upper limit two concerns arise: (1) at what point does the slurry become too thick or heavy to easily displace during concreting and (2) at what point does the slurry viscosity adversely affect the concrete bond with rebar or the surrounding soil.

This thesis discusses the types of testing that are necessary to define an upper viscosity limit. Such a threshold should ensure that slurry viscosity at or below the limit would not impede the overall shaft performance while also remaining cognizant of construction procedures (i.e. without needless restrictions). Of the two concerns identified above, this thesis focuses mainly into slurry testing and the testing of the bond between concrete and reinforcing steel. The organization of the thesis is broken into the four following chapters.

Chapter 2 defines the use of shafts and reasons for choosing drilled shafts over driven piles, the process of constructing drilled shafts, quality control, slurry products and testing. The variation in state specifications will also be presented which highlights the need for a rational upper limit specification.

Chapter 3 discusses the construction and fabrication of the testing beds for the scale model testing as well as the processes used to cast the model drilled shafts. The test matrix including the identified variables is stated along with the equipment and process utilized for the rebar pullout testing.

Chapter 4 discusses the results of the laboratory slurry testing as well as the rebar pullout test results. Post testing evaluation of the test specimens is also discussed as it pertains to integrity of shaft constructed using the wet / slurry method.

Chapter 5 provides a commentary and summary of the results as well as recommendations for defining an upper viscosity limit and future research or testing that may further the overall understanding of the phenomena observed.

CHAPTER 2 BACKGROUND

The following chapter provides a brief history of drilled shafts, and the role slurry plays in the construction of drilled shafts.

2.1 Drilled Shafts

When a traditional spread or shallow footing is unable to carry the required loads a deep foundation is required. Of the many types of deep foundations, two of the most popular are driven piles and drilled shafts. Driven piles are steel, timber or pre-cast concrete elements that are driven to the appropriate depth wherein the pile lengths are predetermined based on either capacity requirements, shipping limitations or physical constraints of the installation method. Drilled shafts, on the other hand, are cast-in-place concrete elements where the practical upper limit of length is 30 to 40 diameters of the shaft (e.g. 4-foot diameter can be 120 to 160-feet deep). The Federal Highway Administration (FHWA) defines a drilled shaft as a *"cast-in-place deep foundation element constructed in a drilled hole that is stabilized to allow controlled placement of reinforcement and concrete"* (FHWA 2010).

Drilled shafts have evolved from caissons which were first used during the late 1800's. Caissons were originally precast foundations that were sunk in place to a depth that provided suitable bearing or cast-in-place in a hand dug braced excavations that were progressively advanced in lengths equivalent to available board lengths used to provide lateral wall stability. The excavation techniques for drilled shafts have not been altered much since the 1940's but improvements in technology have allowed the process to become more efficient and a viable option for any type of construction. Of the aforementioned deep foundations, the drilled shaft can be more cost effective than driven piles in some circumstances. This is due in part to the load carrying capacity of a drilled shaft versus that of a driven pile where large axial and lateral loads can be withstood and the moment capacities are significantly greater. This often allows for fewer elements when using drilled shafts and in turn, allows for an overall smaller cap. For example, in cases exposed to large vessel collision forces, hundreds of piles can be replaced with several drilled shafts.

Drilled shaft construction is also the preferred method when dealing with varying geological strata. Driven piles are restricted to handling and shipping lengths as well as driving criteria set to ensure the piles are not damaged during driving. This is particularly problematic when encountering denser layers near the surface that require drilling prior to driving. This is not an issue with drilled shafts since the elements are cast-in-place, and the boreholes are drilled to the proper depth (reported up to over 300 feet) to reach the required capacity.

Drilled shaft construction has other benefits over driven piles wherein minimal vibrations and noise are produced while drilling and placing concrete. This makes drilled shafts more conducive for environments (urban areas) where vibrations are a major concern and could damage sensitive structures.

Despite the possible advantages of drilled shafts, they must be constructed properly. This is where the design and quality control practices come to light. When designing foundations, drilled shafts have the same structural resistance (φ) factors as above ground columns that can be visually inspected; this highlights the need for quality assurance procedures and test methods to match the same level of above ground construction practices but for blindly constructed shafts.

2.2 Shaft Construction

Drilled shaft construction is performed in three basic steps: (1) excavation, (2) placement of reinforcing cage, and (3) concreting. The process requires a drill rig capable of drilling to the depth and diameters needed to achieve the design capacity. Drill rigs are typically mechanically or hydraulically driven with telescoping Kelley bars that will vary in length and capacity attached to a multi-flight auger (Figure 2.1). The auger is not continuous-flight, but rather 2 or 3 flights. Once the proper tip elevation is reached, the auger is replaced with a clean out bucket in order to remove any loose material from the bottom of the excavation.

The most important aspect of the construction process is maintaining the integrity of the excavation walls. This is done either mechanically, hydrostatically, or a combination of both. Mechanical stabilization is achieved by inserting a steel casing and drilling inside the casing. The steel casing can either be permanent or temporary. Hydrostatic stabilization (wet construction) involves introducing slurry into the excavation that provides a net outward pressure against the insitu ground water. Therein, the slurry inside the excavation is typically maintained 4 to 8-feet above the water table depending on the type of slurry. Of these methods, slurry type construction tends to be more cost effective; however, it requires more quality control. When using slurry, a temporary surface casing is often required for the upper portion of the shaft in order to raise the slurry level and increase the hydrostatic pressure on the walls of the excavation (Figure 2.2).

Although slurry is most commonly formed by adding dry clay powder with water, slurry can be categorized as mineral, polymer, or natural. Mineral implies that dry clay powder (sodium or calcium montmorillonite) was used to form the slurry; polymer slurries are typically

8

Figure 2.1. Clean out bucket(left) and flight auger (right) for shaft excavation.

Figure 2.2. Temporary surface casing providing containment for slurry.

a form of polyacrylamide and water; and natural slurries are formed when plain water mixes with the natural soil. Plain water is introduced only when mechanical stabilization is used to simply offset the inflow of ground water through the bottom of the casing which would needlessly loosen the soils below the shaft tip. The use of slurry to maintain the boring plays several roles, depending on the type of slurry. When using mineral slurry, the slurry provides a method of transporting the cuttings from the excavation while also providing lateral stability. These cuttings are held in suspension, and discharged with the slurry during concreting. When excess sand is found to be present in the slurry, the slurry is de-sanded in order to reduce the potential of sand pockets from forming in the shaft concrete. In order for the mineral slurry to function properly, it must be fully hydrated which could take 24 hours or more depending on the mixing method. However, rapid hydration methods are available that perform this step in a matter of minutes (Mullins et al, 2010). Mineral slurries usually require a minimum of 4-feet of head differential relative to the ground water elevation.

Polymer slurry acts similarly to mineral slurries, in that it requires a minimum head to maintain the hydrostatic pressure on the excavation walls. However, polymer slurry requires a slightly larger head than that of mineral (e.g. 6 - 8-feet) due to the lower density. Where the mineral slurry suspends the solids by way of mineral gel strength, polymer slurry allows the cuttings to flocculate and fall-out through the material requiring only cleanout from the bottom of the excavation. Therefore, slurry de-sanding is not necessary.

Upon reaching the proper tip elevation, the excavation is cleaned with the clean out bucket and inspected for proper depth and dimensions. Once approved the reinforcement is lowered into the excavation. Prior to concrete placement the properties of the slurry are verified, and once approved, concrete is placed.

Concrete is placed via a tremie pipe in order to prevent segregation of the concrete; concrete is essentially pumped to the bottom of the excavation through a 6 - 12-inch pipe and the slurry is displaced as the concrete level rises. It was originally thought that as the concrete was

placed there was a shearing effect on the walls of the excavation in turn scrubbing away any filter cake that may have formed (when mineral slurry is used). However, as concrete is placed, it has been shown to fill up the center of the reinforcement cage, and flow outwardly pushing through the reinforcement and then resting against the walls of the excavation (Mullins et al, 2005). This effect was increased with tighter cage spacing, as well as when the tremie pipe was not centered in the opening. When placing concrete, the tremie must be embedded into the rising concrete level to a depth sufficient to ensure that there is no unwanted segregation. However, until that depth of concrete is achieved within the excavation, some segregation must be expected. The tremie pipe must be removed at a rate that maintains this requirement. As the concrete level raises towards the top of shaft elevation, the slurry is collected; and concrete overflows from the excavation to ensure proper slurry removal.

2.3 Mineral Slurry

Mineral slurry is the most widely used material when employing wet construction methods. Sodium montmorillonite (bentonite) is a natural occurring mineral with a massive absorption capacity. This particular trait is beneficial in a drilling fluid. The majority of bentonite production in the United States is in the Black Hills area of South Dakota, Montana, and Wyoming (Grim, 1978). This particular bentonite contains higher amounts of the crystallite smectite. The amount of smectite within the bentonite is directly related to performance in that it enhances the absorption capacity of bentonite.

When bentonite is mixed with water, typically keeping a maximum of five percent solids, it creates slurry with properties conducive for drilling. Bentonite changes water from a Newtonian fluid to a non-Newtonian fluid with properties of a Bingham plastic. A Newtonian fluid will maintain the same viscosity regardless of the rate of shear (viscosity can vary with temperature), whereas a non-Newtonian fluids viscosity will vary as the shear rate is varied. A Bingham plastic is a fluid that can have plastic properties and would require a stress to begin flow. The stress required to begin the flow of the material is called the yield point of the fluid (Baker Hughes, 2006). It is these characteristics that allows for the fluid to have gel strength. Gel strength is the ability of the fluid to regain its viscosity after shear thinning and gel strength allows the slurry to carry the cuttings in suspension. According to the American Petroleum Institute (API), there are two gel strengths measured at 10 seconds and 10 minutes after the material has been agitated (API, 2009). The test requires a viscometer and it is recommended that the sample be mixed at 600 rpm, sit for the allotted time, then measure the maximum shear stress while rotating at 3 rpm.

When the mineral slurry is introduced into the excavation, it begins to form a thin layer, filter cake, along the walls as it deposits clay particles while flowing into the surrounding soils. This thin layer, along with the higher hydrostatic pressure of the slurry, prevents ground water intrusion. The filter cake strengthens the walls of the excavation which in turn helps to prevent the sloughing of material. As the geology changes the properties of the slurry must be monitored to ensure there are no adverse changes disabling the filter cake formation. For more porous soils additional bentonite is typically introduced into the suspension (CETCO, 2013).

2.4 Polymer Slurry

Polymer slurries are formed when polyacrylamide materials are mixed with water. The mixture forms long polymer chains that are vital for proper performance. When mixing polymer slurries it is preferred to not shear the polymer chains. This can be done by using a diaphragm pump during recirculation in lieu of more traditional centrifugal pumps. Like mineral slurry, polymer slurry requires a minimum head in order to provide the required hydrostatic pressure.

However with a lower density than that of mineral slurries and a lower pressure gradient at the soil-slurry interface, it requires a slightly larger head.

The performance of polymer slurry is based solely on the viscosity of the material. Where mineral slurries form a filter cake barrier, polymer slurry flows into the walls of the excavation in order to maintain stability; in turn prevents ground water intrusion. Since there is no gel strength with polymer slurries it cannot carry the cuttings in suspension. Therefore, all material can be removed more immediately without concern of trapping sand in the shaft concrete. This is also beneficial when reusing the slurry since it reduces the need for de-sanding the slurry.

2.5 Quality Control

When using slurry, mineral or polymer, quality control is needed to ensure that the material will function properly. It is common practice to verify the properties of the slurry prior to introduction into the excavation for viscosity, density, and pH in the field. The same tests are to be performed prior to the placement of concrete as well, but the sand content becomes more important at that time. These test methods are based on the American Petroleum Institute (API) test methods provided in API 13B-1.

2.6 Viscosity (API 13B-1.6, FM 8-RP13B-2)

The viscosity of a fluid is its ability to resist flow under shear stress. Viscosity that is verified with a viscometer is the ratio of shear stress to strain rate. When determining the viscosity in the field a Marsh funnel is used (Figure 2.3). This determines the time required for one quart of material to pass through a standard funnel (qt/sec). The material tested is passed first through a No. 12 sieve when introduced to the funnel. The Marsh funnel is based on the principles of the falling head flow; therein, fluid flows faster with higher pressure (when the

funnel is full) and progressively slows as the pressure decreases (funnel empties) As a result, longer emptying times indicate higher viscosity, but the Marsh funnel test is not a true viscosity test (shear stress/strain rate). The test is simply an indicator of gel strength and/or the presence of clay mineral content. However, the flow times can be affected by the presence of suspended solids.

Figure 2.3. Marsh funnel and cup for determining viscosity.

2.7 Density (API 13B-1.4, FM 8-RP13B-1)

The density of slurry prior to introduction to the bore hole, as well as prior to the placement of concrete is verified with a mud balance (Figure 2.4). Prior to introduction, the slurry must have sufficient density such that the net pressure across the soil/slurry interface maintains wall stability. Prior to concreting, the density should not be too high, whereby the slurry will not be easily displaced by the heavier concrete. There have been no studies to show at what level the slurry may be too heavy, but high density is more commonly attributed to high solids content.

Figure 2.4. Mud balance for determining density.

2.8 Sand Content (API 13B-1.9, FM 8-RP13B-3)

The suspended solids are measured by the sand content test (API, 2009). Sand content is determined by filling a glass vial with a specified amount of fluid, pouring the fluid through a 200 mesh and rinsing the mesh back into the tube for a measurement of retained solids (Figure 2.5). The sand content is measured as a percent of total volume.

Figure 2.5. Test kit for sand content.

2.9 pH Test (API 13B-1.11, FM 8-RP13B-4)

The pH can be verified with either a pH meter or with litmus paper (Figure 2-6). The pH of the mixing water prior to introducing the bentonite powder is important to ensure that the mixing water meets the manufacturer's recommendations (e.g. CETCO, 2013). The pH can negatively affect the hydration of the bentonite if too low, or can hamper the ability of polymer slurry to achieve its desired viscosity.

Figure 2.6. pH meter (left) and litmus strips (right).

2.10 API Filter Press Test (API 13B-1.7.2)

The filter press is typically not mandatory for drilled shaft construction. The filter press is beneficial only for mineral slurry, as it determines the flow rate and filter cake formation. The test measures the time required to pass 25ml of fluid through a filter paper and the filter cake thickness is measured. The output is then 25ml/time elapsed. However, if the time exceeds 30 minutes, the amount of fluid is measured at this time and the filtrate volume/30 min is recorded (Figure 2-7).

Figure 2.7. Bench top filter press.

2.11 State Specifications

Each state provides specifications that limit the viscosity, density, sand content and pH of slurry prior to introduction into the borehole and prior to placement of concrete. FHWA also provides a range for each of the aforementioned tests. In general, state recommended ranges for density, sand content, and pH contents are all consistent with the values set forth by the FHWA. However, specifications for viscosity from each state show that there is quite a variance in the acceptable values that are permitted. Figure 2-8 illustrates the varying viscosities from state to state as well as that from FHWA. The large range of acceptable viscosities is presumably based on empirical data but the rationales are not published with the exception of the recent lower viscosity limit set in Florida (FDOT, 2013). In general, the lower viscosities are similar, but the upper viscosity limit can vary greatly and no rationale for these values is published. A breakdown of all state slurry specifications is provided in Appendix B.

Figure 2.8. Breakdown of available state recommended viscosities.

2.12 Development Length

The development length of a deformed bar can be determined with the equation provided by the American Concrete Institute ACI 318-10 (Equation 1) stemming from ACI Committee 408 tasked with determining the bond strength between concrete and steel reinforcement. According to this committee, the bond strength is based on the friction between the concrete and the reinforcement which is affected by the strength of the reinforcement, surface deformation characteristics, system geometry and concrete strength. Any factor or material that interferes with this interface could adversely affect this friction, and in turn reduce the bond strength.

$$L_{d} = \left[\frac{3}{40} \frac{f_{y}}{\sqrt{f'c}} \frac{(\psi_{t} \psi_{e} \psi_{s} \lambda)}{\left(\frac{c_{b} + K_{tr}}{d_{b}}\right)}\right] d_{b}$$
Equation 1

According to ACI 408, there are several formulas to determine the bond strength. The equations use different coefficients, but the variables are consistent. According to the available equations, the main variables are the concrete strength, the concrete cover, clear spacing, and surface area of the reinforcement (Equations 2 - 5), but not steel strength when considering bond.

$$u = 0.083045 \sqrt{f'_{c}} \left[1.2 + 3\frac{c}{d_{b}} + 50\frac{d_{b}}{L_{d}} \right]$$
 Equation 2

(Orangun et al, 1977)

$$u = 0.083045 \sqrt{f'_{\varsigma}} \left[\left(1.06 + 2.12 \frac{c}{d_b} \right) \left(0.92 + 0.08 \frac{c_{max}}{c_{min}} \right) + 75 \frac{d_b}{L_d} \right]$$
Equation 3

(Darwin et al, 1992)

$$u = 0.265 \sqrt{f'_{\varsigma}} \left[\frac{c}{d_b} + 0.5 \right]$$
 Equation 4

(Australian Standard, 1994)
$$u = 0.083045 \sqrt{f'_{\text{c}}} \left[22.8 - 0.208 \frac{c}{d_b} - 38.212 \frac{d_b}{L_d} \right]$$
 Equation 5

(Hadi, 2008)

where,

 $d_b = Bar Diameter$ $L_d = Development length$ c = Minimum clear cover $f'_c = Compressive strength of concrete$ $c_{max} = Maximum of side cover, bottom cover, clear spacing/2$ $c_{min} = Minimum of side cover, bottom cover, clear spacing/2$

These equations were used to determine the bond strength for this project to both design the pullout equipment and to evaluate the actual measured values (Chapter 3 and 4, respectively).

2.13 Adverse Effects of Wet Construction

Even when following the recommended state specifications, unforeseen complications can still arise. For instance, the contact time for slurry in the excavation is referenced in the FHWA recommendations, and the specified maximum exposure time varies from state to state. FDOT limits bentonite exposure to 36-hours after which the borehole should be over-reamed to remove any filter cake. As some excavations take longer than 36-hours to complete, the bottom 5-feet must be drilled within 12-hours of concreting (FDOT, 2013). This in effect allows the upper most portion of the shaft to be exposed for longer exposure times and degraded side shear between the shaft and soil in those regions, but not in the lower 5 ft.

The plastic properties of the concrete can also affect flow and displacement of the bentonite slurry during concrete placement. FDOT state specification for drilled shaft concrete

slump ranges from 7 to 10 inches (FDOT, 2013). However, slump loss is permitted to go as low as 5 inches during concreting. This low slump concrete has been shown to reduce flow resulting in near zero pressure against the soil walls, especially for full length temporary casing applications (Garbin, 2003). This also results in increased potential for anomalies in the concrete outside the cage. Figure 2.9 shows a shaft that was exhumed due to a mismatch in the theoretical and actual concrete volume placed. It clearly shows flow through the cage was compromised despite meeting state specifications at the time of the concrete placement. Additionally, there are indications that the suspended solids may have been too high as well.

According to FHWA, there is "no reduction in bond strength when using bentonite" (FHWA, 2010, Fleming and Sliwinski, 1975). This research was based on pullout tests that were performed on concrete panels. For the pullout tests that were performed, the bars that were to be in contact with the slurry were attached to the lateral reinforcing, and were cast in place, whereas the reinforcing that was not in contact with bentonite was pushed through the plastic concrete and not attached to the lateral reinforcement. It has been shown in previous work that the lateral reinforcement increases the pullout capacity of the reinforcement (ACI, 2003). Therefore, the results between the reinforcing in contact with bentonite, and the reinforcement not in contact with bentonite are not comparable. This research was based on pullout tests that were performed on concrete panels that were not poured in keeping with the drilled shaft concrete flow patterns as known today. Although there is no flow of slurry into the reinforcing steel, the rebar bond may also be affected by contact time.

Figure 2.9. Exhumed drilled shaft displaying concrete flow issues.

It is the purpose of this thesis to determine if there are any adverse effects of the bond strength between the reinforcement and the concrete interface when using the wet construction method and specifically those involving bentonite. To this end, it is also a focus to define an upper limit above which the viscosity adversely affects the drilled shaft integrity or performance.

CHAPTER 3 LABORATORY TESTING

This chapter discusses the preparation of the bentonite slurry, the fabrication of the casting forms, as well as the process used for the pullout testing.

3.1 Bentonite Testing

In order to determine the amounts of bentonite required to obtain the varying viscosities, small scale (1 gallon) batches of slurry were mixed. Prior to batching slurry, the mixing water was mixed with soda ash to bring the pH within the required range and meet state specifications and manufacturer recommendations (for FDOT this is between 8 and 11, FDOT, 2013). For all slurry mixed during the following experiments the pH was increased to approximately 9.5. In order to encompass all viscosities currently recommended from state specifications the tests were performed as well as extending the testing to 90 sec/quart. The bentonite introduced was increased in increments of 0.1 pounds/gallon until the desired viscosity was obtained (Table 3.1). For the tests performed CETCO's PureGold Gel[©] was used. This particular brand was chosen based on previous research that indicated more product would be needed to produce comparable viscosities when compared to other brands (Yeasting, 2011). This in turn should provide a worst case scenario as far as percent solids in suspension of the slurry. As Figure 3.1 illustrates, these tests were required due to the non-linear characteristics. Along with the viscosities, the density, pH and temperature were recorded. For the laboratory testing a 100mL volumetric flask and a digital scale were used to determine the density. This method provided more accurate results and the volume could be more precisely determined. All small scale samples were mixed with a drill press and a paddle bit for a duration of 20 minutes to ensure a homogeneous mixture.

Bentonite (lb/gal)	pН	Mass/ 100mL (g)	Density (g/mL)	Densit y (lb/ft ³)	Temp (C°)	Average Viscosity (sec)
0.1	8.34	1001.1	1.0011	62.50	25.0	30.70
0.2	8.34	1018.1	1.0181	63.56	22.1	29.79
0.3	9.13	1013.9	1.0139	63.30	25.0	29.27
0.4	9.10	1016.3	1.0163	63.45	25.0	29.93
0.5	9.11	1020.0	1.0200	63.68	25.0	30.57
0.6	9.16				25.0	33.04
0.7	9.09	1036.6	1.0366	64.71	25.0	35.33
0.8	9.04	1045.0	1.0450	65.24	25.0	39.23
0.9	9.05	1050.8	1.0508	65.60	25.0	46.07
1.0	9.16	1059.9	1.0599	66.17	25.0	59.87
1.1	9.12	1061.5	1.0615	66.27	25.0	98.16
1.2	9.09	1073.1	1.0731	66.99	25.0	359.30

Table 3.1. Results for small scale testing to determine bentonite quantities.

Figure 3.1. Plot of test results illustrating the non-linear relationship.

Figure 3.2. Test results focused on nation-wide current allowable viscosities.

3.2 Form Fabrication

The sizing considerations of the scale model shafts were two-fold: (1) the shafts should be large enough to maximize the sample size and use a full rebar cage to model a congested, within design constraints, reinforcement cage with minimum clearances and openings, and (2) concrete should be tremie placed to replicate field concrete flow conditions. The scale shafts were 24-inches tall, and 42-inches in diameter.

The sidewalls for the shafts were constructed from 18 gauge steel. The steel sheets were cut into 24-inch x 132-inch strips and rolled into a circular shape. Once the sheets were rolled, the strips were trimmed and 2-inch x 2-inch x 0.25-inch steel angles were welded to the edges in order to allow the repeated opening and closing of the forms (Figure 3.2).

Figure 3.3. 18 gauge steel rolled to 42-inch diameter.

Once the sidewalls were completed, ³/₄ -inch plywood sheets were cut into 4-foot x 4-foot sections and treated with polyurethane in order to achieve a non-absorptive surface. In order to increase repeatability, PVC caps were anchored and, silicon sealed to the plywood base as a means to locate the reinforcement. Once the plywood was treated and the PVC caps were installed, the sheets were framed out with 2-inch x 6-inch boards as to dam the flow of slurry during placement in order to pump evacuated slurry into holding tanks. In order to increase the sample numbers for a given pour, a total of six forms were fabricated.

Figure 3.4. Finished form prior to placement of reinforcement.

In order to prevent fluid loss during the testing process, each form was sealed with silicone around the base of the form. Once the material had time to cure, a water test was performed in order to ensure that each form was in fact water tight.

Figure 3.5. Silicon to seal form (left), water testing to ensure water tight seal (right).

3.3 Reinforcing Cage

In order to maximize the congestion, and still remain within state specifications, a reinforcement arrangement consisting of 14-No. 8 bars (1.0-inch diameter) vertically, and 2-No. 3 bars were used for the horizontal (stirrups) reinforcement. In addition to the steel stirrups, polyethylene pipe (PEX pipe) was incorporated as a second layer of horizontal reinforcement congestion. The vertical reinforcement was placed in two layers with a minimum of 6-inches of clear spacing between bars. The exterior layer was in place to provide structural reinforcement for the model shafts and was not used for the pullout testing. The steel stirrups were placed on the exterior of the outer layer of vertical reinforcement for confinement purposes, and did not come in contact with the vertical reinforcement to be tested. The PEX pipe was placed between the vertical reinforcement layers to provide congestion without providing any strength to the shaft. The stirrups were placed 6-inches on center. The PEX pipe was also placed 6-inches on

center, however the PEX pipe, non-structural, was placed for the entire depth of the shaft, where the steel, structural, was placed only in the top 10-inches (Figure 3.5).

Figure 3.6. Structural, outer layer, reinforcement (left) and full cage (right).

Each of the vertical reinforcing bars was cut to a length of 4-feet in order to allow enough length for the hydraulic ram, and steel spacers during testing. Each bar to be tested was machined down to 0.865-inches for a length of 3-inches on the end. Once machined the bars were threaded for a 0.875-inch nut. This was to provide a point of resistance for the ram during the pullout testing (Figure 3.6).

Figure 3.7. Reinforcement after machining.

3.4 Slurry Preparation

In order to ensure proper hydration, all slurry was mixed a minimum of 24-hours prior to placement in the forms. To maximize the mixing hydration process during mixing, each batch was mixed using the rapid hydration Hootonanny® eductor. Four different viscosities were chosen to be tested (30, 40, 50, and 90-seconds). The current most prevalent upper viscosities, were tested at 40 sec/qt and 50 sec/qt corresponding to state and federal limits, respectively. The mix ratios were based on previous test data. The 30 sec/qt was achieved with 0.3 lbs/gallon of water, 40 sec/qt with 0.8 lbs/gallon of water, 50 sec/qt with 0.95 lbs/gallon, and the 90 sec/qt with 1.05 lbs/gallon.

Figure 3.8. Mixing mineral slurry with Hootonanny® eductor.

The bentonite slurry was mixed with a combination of 3-inch and 2-inch shear pumps. Each batch consisted of 150-gallons for the mineral slurries that were tested. For quality assurance, the viscosities were verified after mixing and again after a setting time of 24-hours to ensure full hydration as well as confirm the desired viscosities.

Figure 3.9. Batches of mineral slurry after mixing.

For comparison, the manufacturer's recommended minimum and maximum viscosities for polymer slurries were tested as well. Shore Pac® was the material chosen for the polymer testing performed. Due to the sensitive nature of the polymer chains a diaphragm pump, along with a bubbler system was used to mix and agitate the polymer slurries. The chosen viscosities for the polymer slurry were 60 sec/qt (lower end) and 135 sec/qt (upper end). The polymer mix ratios were 60 sec/qt mix required 0.21 lbs/gallon for the 60 sec/qt mix and 0.88 lbs/gallon for the 135 sec/qt mix again per manufacturer's recommendations. The polymer slurry was mixed in 300 - 400 gallon batches.

Figure 3.10. 60 sec/qt polymer slurry after mixing being agitated with bubbler system.

For every placement the slurries were tested for density, and viscosity at the time of introduction to the forms, and again prior to placement of concrete. The viscosities were measured by the Marsh funnel method, as well as with a viscometer. Prior to the placement of concrete the mineral slurries were tested with the filter press. In order to show the effects of exposure, the maximum permissible set time was used wherein the slurry was allowed to remain in the forms, and in contact with the reinforcement for 12-hours prior to placement of concrete (FDOT, 2013). Slurry was placed in the forms the night prior to the concrete placement with either the shear pump (mineral) or a diaphragm pump (polymer).

Along with the mineral and polymer slurries, two shafts were constructed using only water. This was done as a control sample to acquire test results without slurry, and in ideal conditions.

Figure 3.11. Placing mineral slurry in forms night prior to placement.

3.5 De-Bonding of Reinforcement

According to the American Concrete Institute (ACI) 318-11, the required development length for a deformed No.-8 bar is 47-inches and can be calculated with the development length equation provided (Equation 1). Due to the size of the shafts being constructed, this value is not attainable. The ACI Committee 408 has performed research to try to determine the force that is required to pullout a deformed bar. These equations were used to approximate the de-bonded region of the bars to be tested (Equations 2 - 5).

Throughout the project the de-bonded region was modified in order to ensure the best test results. For the initial placement, a bonded length of 18-inches was used, 2-inches at the bottom and 4-inches at the top of the shaft. The length was increased in the top of the shaft in order to protect against rupture of the concrete. Due to higher than expected pullout capacity, the debonded length was reduced to 10-inches for the following placement, and finally to 6-inches for all subsequent placements. De-bonding was achieved with the use of 1-inch thin-walled PVC pipe cut to length, sealed with tape, and tied in place with plastic ties.

Figure 3.12. Reinforcement cage after de-bonding prior to slurry placement.

3.6 Concrete Placement

The concrete used to cast the model shafts was chosen based on the criteria that it was an FDOT approved mix with a 28 day compressive strength of 4000 psi, contained 20% to 30% flyash, and had a slump ranging from 7 to 10-inches. Preferred Materials, Inc. was chosen as the concrete supplier and provided a Class IV Drilled Shaft concrete, mix ID 01-1031-01. This FDOT approved mix had a 0.4 water to cement ratio and met the previous requirements.

The concrete placement began within the 12 hours of the slurry placement as previously discussed. The concrete was placed via tremie to simulate concrete placement in the field. For quality assurance the plastic properties of the concrete were tested, and 4-inch by 8-inch cylinders were cast in order to verify compressive strength prior to performing pull out tests. Once the concrete placement was completed the tops of the model shafts were leveled and finished for subsequent pullout tests.

Figure 3.13. Placing concrete via tremie.

Upon achieving appropriate compressive strength, the steel forms were removed from the shaft in order to visually inspect for anomalies and imperfections. Once the forms were removed and initial inspection had taken place, the shafts were then pressure washed in order to remove any remaining mineral slurry on the exterior or that was not displaced by the concrete placement.

Figure 3.14. Form removal after shaft achieves suitable compressive strength.

3.7 Pullout Testing

Pullout testing was performed with a hydraulic pump and a 30-ton hollow-core hydraulic ram. In order to capture the data, the hydraulic pump pressure was measured with an inline pressure transducer connected to computerized data acquisition system (Omega DAQ-55). Data was acquired at a sampling rate of 4-Hertz to ensure that the peak load was captured.

In order to determine the stiffness of the bond, a displacement transducer was attached to the ram to measure the bar pullout movement during loading. Pullout testing was performed after the concrete reached a minimum compressive strength of 4-ksi, and were all completed on the same day as the compressive strength testing. During testing, the ram was placed over the bar to be tested, and seated on the previously leveled concrete surface. A 0.375-inch steel plate was placed between the ram and the threaded region of the bar. In order to distribute the load along the entire threaded region 2 high-strength nuts were used to hold the steel plate in place.

Figure 3.15. Ram configuration during pullout testing with LVDT in place.

In all, a total of 126 pullout tests were performed on 18 different shaft specimens. The data acquired from each pullout test was then analyzed to show the effects of stiffness, ultimate capacity, and any trends associated with the bond of the rebar in the various environments.

CHAPTER 4 TESTING RESULTS

This chapter discusses the results of the testing that was performed. This includes: the properties of the slurry at preparation and prior to placement, concrete properties during placement, and concludes with the results of the pullout tests.

4.1 Slurry Properties

Prior to placing slurry in the forms, on the eve of the concrete placement, the viscosity was determined with the Marsh funnel method, and verified with a viscometer. In addition to the viscosity, the density was tested for each sample at the time the slurry was introduced into the form, as well as prior to concrete placement. Table 4.1 details the shaft number, as well as the anticipated slurry viscosity.

Placement 1	Shaft 1	40 Second		
Placement 1	Shaft 2	90 Second		
	Shaft 3	40 Second		
Placement 2	Shaft 4	50 Second		
Flacement 2	Shaft 5	90 Second		
	Shaft 6	26 Second (Water)		
	Shaft 7	30 Second		
	Shaft 8	40 Second		
Placement 3	Shaft 9	50 Second		
Flacement 5	Shaft 10	90 Second		
	Shaft 11	60 Second (Polymer)		
	Shaft 12	60 Second (Polymer)		
	Shaft 13	30 Second		
	Shaft 14	30 Second		
Placement 4	Shaft 15	50 Second		
Flacement 4	Shaft 16	90 Second (Polymer)		
	Shaft 17	90 Second (Polymer)		
	Shaft 18	26 Second (Water)		

Table 4.1. Shaft number and viscosity by placement.

For the first concrete placement the viscosity was determined via the Marsh Funnel method, for all subsequent placements the viscosity was first determined via the Marsh Funnel followed by determining the plastic viscosity and gel strength with a viscometer. The subsequent tables provide a breakdown of the slurry properties at the time of slurry placement, as well as at the time of concrete placement (Table 4.2 - 4.4). For the first placement only the viscosity was verified to be 40 sec and 90 sec at the time of slurry placement for shafts 1 and 2, respectively.

Shaft Number	Sample Time	Viscosity (sec/qt)	Plastic Viscosity (cP)	10 Sec Gel Strength	10 Min Gel Strength	Density (lb/ft ³)	Yield Point
2	Intro	41.15	10.00	33	55.00	65 27	40.51
3	Placement	43.81	11.50	0.00	58.00	03.37	39.67
4	Intro	51.57	12.88	64.00	66.00	65 20	84.98
4	Placement	57.20	15.32	66.00	99.00	03.29	72.23
5	Intro	83.90	20.16	135.00	118.00	65 72	138.34
5	Placement	108.39	23.99	118.00	180.00	03.72	122.77
6		26 (Water)	n/a	n/a	n/a	n/a	n/a

Table 4.2. Breakdown of slurry properties for model shafts from placement 2.

Table 4.3. Breakdown of slurry properties for model shafts from placement 3.

Shaft Number	Sample Time	Viscosity (sec/qt)	Plastic Viscosity (cP)	10 Sec Gel Strength	10 Min Gel Strength	Density (lb/ft ³)	Yield Point
7	Intro	30.01	2.80	0.00	4.00	63 21	5.19
1	Placement	31.10	4.46	0.00	5.00	03.21	2.11
Q	Intro	38.10	8.71	18.00	51.00	61 27	32.65
0	Placement	41.73	11.74	22.00	55.00	04.27	31.16
0	Intro	48.76	14.03	53.00	103.00	64 61	62.88
9	Placement	56.72	15.34	54.00	98.00	04.01	71.08
10	Intro	80.73	20.84	96.00	172.00	65 17	115.01
10	Placement	119.59	22.97	107.00	178.00	03.17	130.71
11	Intro	65.99	5.75	0.00	0.00	62.02	6.30
Polymer	Placement	64.89	5.37	2.00	2.00	02.05	8.58
12	Intro	66.46	5.77	3.00	3.00	62.00	578
Polymer	Placement	65.97	5.30	2.00	3.00	02.09	9.15

Shaft Number	Sample Time	Viscosity (sec/qt)	Plastic Viscosity (cP)	10 Sec Gel Strength	10 Min Gel Strength	Density (lb/ft ³)	Yield Point
12	Intro	29.88	2.59	3.00	5.00	62 /1	3.05
15	Placement	30.43	3.31	4.00	5.00	03.41	4.18
14	Intro	30.22	2.16	3.00	7.00	62 / 1	11.77
14	Placement	31.24	3.32	2.00	5.00	03.41	4.51
15	Intro	52.87	13.31	52.00	101.00	65.02	70.94
15	Placement	61.37	17.18	48.00	78.00	03.02	75.21
16	Intro	81.76	7.15	11.00	15.00	61.06	27.58
Polymer	Placement	86.76	7.59	10.00	15.00	01.00	26.31
17	Intro	83.18	7.15	11.00	15.00	61.06	27.58
Polymer	Placement	85.05	7.48	10.00	15.00	01.00	30.16
18		26 (water)	n/a	n/a	n/a	n/a	n/a

Table 4.4. Breakdown of slurry properties for model shafts from placement 4.

4.2 Concrete Properties

During each concrete placement the plastic properties were tested to ensure compliance with FDOT specifications. This required a slump range of 7 to 10-inches (FDOT, 2013). The concrete properties are detailed in Table 4.5 through 4.8 for placements 1 through 4, respectively. For placement 1, only the slump data was recorded and cylinders were cast between the placement of shaft 1 and shaft 2, and for the subsequent placements the test times were recorded.

Table 4.5 Concrete plastic properties for placement 1.

Concrete Data									
Shaft NumberSlurry TypeViscosity (sec)Slump (in)CylindersSlurry Conta Time (hours)									
1	Bentonite	40	8.50	n/a	12				
2	Bentonite	90	8.50	yes	12				

The concrete slumps encountered during testing ranged from 4.5-inches to 9.5-inches upon arrival at the test site. The properties are specified in the mix design and were noted on the delivery tickets, (Appendix C) however, this variability was still encountered, and it is assumed that the same issues could arise in the field under normal drilled shaft construction.

Concrete Data										
Shaft	Slurry	Viscosity	Slump	Culindana	Slurry Placed	Slurry Casting Tim		Time		
Number	Туре	(sec)	(in)	Cylinders		Start	Finish			
3	Bentonite	40	9.50	yes	10:04 PM	10:31 AM	10:36 AM			
4	Bentonite	50	8.50	n/a	9:06 PM	9:43 AM	9:48 AM			
5	Bentonite	90	9.25	n/a	9:35 PM	10:03 AM	10:07 AM			
6	Water	26	8.50	yes	9:00 PM	10:57 AM	11:02 AM			

Table 4.6. Concrete plastic properties for placement 2.

Table 4.7. Concrete plastic properties for placement 3.

Concrete Data									
Shaft	Slurry	Viscosity	Slump	Calindona	Slurry	Slurry Casting Time			
Number	Туре	(sec)	(in)	Cynnders	Placed	Start	Finish		
7	Bentonite	30	8.25	n/a	9:39 PM	11:03 AM	11:05 AM		
8	Bentonite	40	7.75	n/a	10:05 PM	11:13 AM	11:15 AM		
9	Bentonite	50	8.50	n/a	10:28 PM	11:20 AM	11:24 AM		
10	Bentonite	90	8.00**	yes	9:17 PM	10:52 AM	10:56 AM		
11	Polymer	60	7.75	n/a	10:49 PM	11:27 AM	11:29 AM		
12	Polymer	60	7.75	yes	11:08 PM	11:38 AM	11:40 AM		

** Added approximately 27 gallons of water to obtain slump.

Table 4.8. Concrete plastic properties for placement 4.

Concrete Data									
Shaft	Slurry	Viscosity	Slump	Culindona	Slurry Placed	Slurry Casting Time		g Time	
Number	Туре	(sec)	(in) [_]	Cylinders		Start	Finish		
13	Bentonite	50	9.50	n/a	8:31 PM	9:02 AM	9:06 AM		
14	Bentonite	30	9.50	yes	8:55 PM	9:17 AM	9:20 AM		
15	Bentonite	30	10.00	n/a	9:13 PM	9:29 AM	9:31 AM		
16*	Polymer	85	10.00	n/a	9:38 PM	9:38 AM	9:42 AM		
17	Polymer	85	9.50	n/a	9:42 PM	9:49 AM	9:55 AM		
18	Water	26	10.00	yes	9:22 PM	10:07 AM	10:14 AM		

* 2 1/2 hour contact time due to form leaking.

Prior to performing any pullout testing the concrete cylinders cast during the concrete placement were tested to verify the compressive strength. A minimum of 4-ksi was needed in order to model field conditions, as well as to prevent major failure during pullout. Tables 4.9 through 4.12 provide the compressive strength data for the concrete placements.

Table 4.9. Compressive strength data from placement 1.

	Break Date	Diameter (in)	Diameter (in)	Area (in^2)	Force (lbs)	Strength (psi)		
Average Compressive Strength								

Table 4.10. Compressive strength data from placement 2.

	Break Date	Diameter (in)	Diameter (in)	Area (in^2)	Force (lbs)	Strength (psi)
Set 1	5-14-13	4.025	4.049	12.800	56130	4385
Set 1	5-14-13	4.059	4.033	12.857	56050	4359
Set 2	5-14-13	4.063	4.023	12.838	54390	4237
Set 2	5-14-13	4.051	4.046	12.873	57290	4450
				Average	strength	4358

Table 4.11. Compressive strength data from placement 3.

	Break Date	Diameter (in)	Diameter (in)	Area (in^2)	Force (lbs)	Strength (psi)
Set 1	6-25-13	4.075	4.067	13.016	54083	4150
Set 1	6-25-13	4.080	4.025	12.898	57098	4430
Set 2	6-25-13	4.022	4.000	12.636	62016	4910
Set 2	6-25-13	4.077	4.064	13.013	60180	4620
				Average	strength	4530

	Break Date	Diameter (in)	Diameter (in)	Area (in^2)	Force (lbs)	Strength (psi)
Set 1	10-18-13	4.000	4.000	12.566	61170	4870
Set 1	10-18-13	4.000	4.000	12.566	59050	4580
Set 2	10-18-13	4.000	4.000	12.566	60820	4810
				Average	strength	4750

Table 4.12. Compressive strength data from placement 4.

4.3 Pullout Data

Once the concrete achieved the desired compressive strength, the pullout testing could be performed. Pullout testing was performed on the same day as the compressive strength testing. The following tables detail the pullout data for each placement. The bonded length for placement 1 was 18-inches. The red shaded areas denote bars that failed in tension. All failures occurred in the threaded region due to the reduced cross section.

Table 4.13. Placement 1 pullout data.

Maximum Recorded Pullout Load					
	Bentonite				
Bar #	Shaft 1	Shaft 2			
	40 sec	90 sec			
1	58.706	55.724			
2	65.360	51.680			
3	54.071	51.073			
4	56.460	53.133			
5	55.160	33.097			
6	60.946	53.852			
7	49.935	49.367			
Max	65.360	55.724			
Min	49.935	33.097			
Average	57.234	49.704			
std dev	5.003	7.604			

For placement 2 the bonded length was adjusted from 18-inches to 10-inches based on the calculated values to determine the pullout strength. Again, the red shaded areas denote bars that failed in tension. The bonded length for the water shaft was varied where the shortest length was 8-inches, increasing in 2-inch increments up to 12-inches. Again, all the bar failures occurred in the threaded region of the bar where the cross section was reduced during machining.

Maximum Recorded Pullout Load							
		Water					
Bar #	Shaft 3	Shaft 4	Shaft 5	Shaft 6			
	40 sec	50 sec	90 sec	26 sec			
1	40.88	29.36	35.08	54.65			
2	40.70	34.68	36.46	51.19			
3	37.22	34.56	35.81	55.73			
4	40.52	38.96	46.21	54.34			
5	33.23	31.62	42.37	51.83			
6	26.99	34.17	35.80	55.46			
7	38.71	25.52	34.93	56.93			
Max	40.881	38.962	46.211	56.933			
Min	26.994	25.523	34.927	51.194			
Average	36.894	32.697	38.094	54.304			
std dev	5.138	4.332	4.405	2.090			

Table 4.14. Placement 2 pullout data.

For placement 3 the bonded length was again adjusted based on previous test data to a length of 6-inches. Along with determining the pullout strength, for placement 3 the bar displacement was measured to determine stiffness of the bond between the concrete and reinforcement. Table 4.15 (below) provides the pullout testing data from placement 3, and is followed by the stiffness data in Table 4.16.

Maximum Recorded Pullout Load (kips)						
	Bentonite				Polymer	
Bar #	Shaft 7	Shaft 8	Shaft 9	Shaft 10	Shaft 11	Shaft 12
	30 sec	40 sec	50 sec	90 sec	60 sec	60 sec
1	23.559	26.970	23.998	20.639	32.886	30.233
2	31.575	26.018	18.836	29.715	34.133	42.584
3	22.707	25.242	24.218	20.932	26.757	25.488
4	34.929	24.708	24.117	25.910	41.109	29.595
5	32.530	18.320	20.893	18.518	24.431	36.973
6	28.293	20.599	12.657	27.736	32.836	38.471
7	27.687	27.627	18.947	18.519	34.216	34.244
Max	34.929	27.627	24.218	29.715	41.109	42.584
Min	22.707	18.320	12.657	18.518	24.431	25.488
Average	28.754	24.212	20.524	23.139	32.338	33.941
std dev	4.569	3.454	4.203	4.580	5.445	5.896

Table 4.15. Placement 3 pullout data.

Table 4.16. Placement 3 Stiffness data.

Recorded Pullout Stiffness (kips/in)						
	Bentonite				Polymer	
Bar #	Shaft 7	Shaft 8	Shaft 9	Shaft 10	Shaft 11	Shaft 12
	30 sec	40 sec	50 sec	90 sec	60 sec	60 sec
1	184.524	155.147	200.293	178.007	236.414	233.316
2	147.035	95.463	121.542	n/a	229.444	124.058
3	160.456	178.462	133.714	116.327	242.478	183.385
4	118.177	157.900	181.749	146.099	193.904	183.348
5	133.818	134.670	116.816	126.856	98.494	157.599
6	187.597	144.364	79.575	93.945	150.325	129.961
7	154.469	132.983	147.729	103.965	102.648	118.166
Max	187.597	178.462	200.293	178.007	242.478	233.316
Min	118.177	95.463	79.575	93.945	98.494	118.166
Average	155.154	142.713	140.203	127.533	179.101	161.405
std dev	25.273	26.006	40.838	30.666	62.217	41.640

The stiffness was determined by calculating the change in load in the linear portion of the following plots (Figures 4.1 - 4.6).

Figure 4.1. Plot of load vs. displacement for shaft 7 (30 sec bentonite).

Figure 4.2 Plot of load vs. displacement for shaft 8 (40 sec bentonite).

Figure 4.3. Plot of load vs. displacement for shaft 9 (50 sec bentonite).

Figure 4.4. Plot of load vs. displacement for shaft 10 (90 sec bentonite).

Figure 4.5. Plot of load vs. displacement for shaft 11 (60 sec polymer).

Figure 4.6. Plot of load vs. displacement for shaft 12 (60 sec polymer).

For the fourth and final placement, the bonded length remained 6-inches, however another water shaft was constructed in order to determine a control value for the bond strength due to the tensile failure of the bars in the previous tests. The threads for bar 2 failed and the data was unusable for that particular bar. Table 4.17 (below) provides the pullout testing data from placement four.

Maximum Recorded Pullout Load (kips)							
	Bentonite			Polymer		Water	
Bar #	Shaft 13	Shaft 14	Shaft 15	Shaft 16	Shaft 17	Shaft 18	
	30 sec	30 sec	50 sec	85 sec	85 sec	26 sec	
1	20.000	24.960	21.000	25.590	25.460	37.410	
2	25.050	29.210	18.590	24.180	19.110		
3	28.560	27.130	24.540	27.430	24.670	41.500	
4	30.040	32.620	21.600	30.880	26.370	27.220	
5	25.360	31.530	16.370	23.280	27.740	29.040	
6	22.850	24.580	17.130	20.280	25.710	28.060	
7	27.590	23.460	19.400	16.900	34.670	41.020	
Max	30.040	32.620	24.540	30.880	34.670	41.500	
Min	20.000	23.460	16.370	16.900	19.110	27.220	
Average	25.636	27.641	19.804	24.077	26.247	34.042	
std dev	3.457	3.575	2.819	4.590	4.610	6.678	

Table 4.17. Placement 4 pullout data.

4.4 Physical Defects

Once the forms were removed the shafts were inspected to check for any defects, anomalies, or buildup of material on the shaft. Once the surface was inspected, the shafts were then pressure washed in order to remove any residual slurry that was not displaced during the concrete placement. The following figures illustrate the amount of slurry that remained between the concrete surface and the forms during placement, as well as the voids caused by the slurry that was not displaced.

Figure 4.7. Illustrates the 90 second (left) and 40 second shaft (right) from placement one following form removal.

Figure 4.8. Buildup encountered at bottom of 90-second shaft from placement one.

Figure 4.9. 90-second shaft after pressure washing.

Figure 4.10. Slurry that was encapsulated in the concrete (90-second shaft).

The previous images were from the first placement, and were a recurring trend in subsequent concrete placements. Once this trend was noticed the shafts were cored to determine the depth of the visible crease, as well as determine if any slurry was present between the reinforcement and the concrete. As Figure 4.11 illustrates, the slurry was still visible on the two halves left and right. The crack that separated these halves was also still visible adjacent the cored hole (Figure 4.11 bot).

Figure 4.11. Slurry present at surface of reinforcement (top) depth of visible crease (bottom).

Upon inspection, the polymer slurry shafts showed no sign of structural deficiencies that were noted in Figure 4.11. Figure 4.12 shows a polymer shaft with no visible signs of cage effects. Images for all shafts constructed can be found in Appendix A.

Figure 4.12. Shaft cast with polymer slurry following pressure washing.

CHAPTER 5 CONCLUSIONS

It is commonly thought that if all the quality control measures are observed and met, that the overall product would be sufficient. This is true for most applications, however it is the blind construction of drilled shafts that introduces uncertainty. In this thesis, the methods used to secure the excavation walls may unwittingly cause unforeseen complications pertaining to rebar bond, concrete flow, and possible degraded corrosion resistance / durability.

5.1 Pullout Testing

Based on the collected data, the bond strength between the concrete and reinforcement was reduced up to 70% in some cases. This can be attributed to the buildup of slurry on the reinforcement. This effect is evident in the Figures 5.1 - 5.3. These images were taken after one of the concrete placements was aborted due concrete not meeting the specified requirements. These figures depict the amount of slurry that can adhere to the reinforcement.

Figure 5.1. Residual slurry noticed on reinforcement 30 second (left), 40 second (right).

Figure 5.2. Residual slurry noticed on reinforcement 30 second (left), 50 second (right).

Figure 5.3. Residual slurry noticed on reinforcement 30 second (left), 90 second (right).

The residual slurry was reduced as the apparent viscosity was reduced, however was still noticeable.

Based on the results, it is assumed that this buildup is not removed during the concrete placement either, which is assumed to be the cause of the reduced bond strength. Figure 5.4 provides the overall loss of bond strength for bentonite slurry and Figure 5.5 for polymer slurry.

The viscosity values noted correspond to that measured at the time of concrete placement. There was a noticeable increase in viscosity between placement in the forms, and the placement of concrete for the higher viscosity slurry mixes.

The results indicate that as the apparent viscosity is increased the bond strength is decreased. This trend was replicated throughout the testing that was performed. These effects were more prevalent for the bentonite slurry, than the polymer slurry. The values were normalized by dividing the overall pullout load by a product of the contact surface area and the concrete strength.

Figure 5.4. Comparison of pullout test results using bentonite slurry.

Figure 5.5. Comparison of pullout test results using polymer slurry.

Upon completion of the pullout testing, the shafts were cored in order to determine the amount of slurry that was still present after the concrete placement. This is evident in Figure 5.6. A thin layer of slurry was noticed around the reinforcement, as well as a layer encased in a fold in the concrete leading back to the reinforcement, which can lead to durability issues.

5.2 Durability

In addition to the loss of bond strength, the scale shafts revealed possible permeability issues with the hardened concrete. Due to the flowing action of the concrete, the bentonite slurry was encapsulated in the concrete, outlining each piece of reinforcement. The encased slurry provides a direct pathway between the exterior of the shaft and the reinforcement. This was

Figure 5.6. Layer of slurry encased in concrete.

verified when the coring was conducted. The cores split in half along the visible crease in the 50 sec/qt, as well as the 90 sec/qt shafts. The 30 sec/qt and 40 sec/qt cores did not split, however showed visible signs of poor consolidation around the reinforcement. The cores that were cut from the shaft cast with water, and polymer did not show any signs of poor consolidation, or any noticeable defects in the concrete. Figures 5.7 through 5.12 illustrate the encapsulated slurry in the shafts following form removal and cleaning, as well as in the cores. The poor consolidation is also illustrated.

Figure 5.13 provides an excellent illustration as to the flow of concrete during placement, as well as an explanation for the creases that were prevalent in all the shafts that were constructed during this project.

Figure 5.7. Illustrates the visible creases in the concrete from 90 sec/qt shaft.

Figure 5.8. Illustrates the consolidation of the 60 sec/qt polymer shaft.

Figure 5.9. Core hole in 50 sec/qt shaft; crack corresponds to line formed by reinforcement.

Figure 5.10. Poor consolidation around reinforcement in 40 sec/qt shaft.

Figure 5.11. Encapsulated slurry in 50 sec/qt shaft core.

Figure 5.12. Slurry encased in void in 90 sec/qt shaft.

Figure 5.13. Flow of concrete around reinforcement during placement of 60 sec/qt polymer shaft.

5.3 Future Work

For this project a slump of 8-inches to 9.5-inches was used, also, the time the reinforcement was exposed to slurry was maximized but kept within the Florida Department of Transportation's drilled shaft requirements. Given the opportunity, it would be beneficial to vary the slump of the concrete in order to verify the trends noticed in the flow of the concrete. These trends could be verified with x-ray diffraction of the material encountered between the exterior of the shaft and the reinforcing in order to determine if bentonite is present and the amounts present. Further testing could be done on the polymer and water shafts in order to see if there is a localized higher water/cement ratio at these locations as well.

Varying the exposure time of the reinforcement with the slurry would also provide valuable information regarding the current specifications, and the allowable contact time. This

could determine if the increased viscosity of the slurry that was noticed during the contact time has an effect on the bond strength.

In order to determine the severity of the creases that were encountered, it would be beneficial to perform chloride diffusion testing on the specimens in order to determine the permeability of the concrete where the bentonite was not displaced.

REFERENCES

(2013, August 13). Retrieved August 13, 2013, from CETCO: http://www.cetco.com

318, C. (2011). *Building Code Requirements for Structural Concrete (318-11)*. Farmington Hills: ACI.

408, C. (2003). Bond and Development Strength of Straight Reinforcing Bars in Tension. Farmington Hills: ACI.

Administration, F. H. (2010). *Drilled Shafts: Construction Procedures and LRFD Design Methods*. Washington D.C.: National Highway Institute.

API. (2009). *Recommended Practice for Field Testing Water-based Drilling Fluids*. Washington D.C.: API Publising Services.

Edward J. Garbin, J. (2013). Construction Related Difficulties with Drilled Shaft Foundations and Recommendations for Mitigation. Tampa: University of South Florida.

FDOT. (2013). Standard Specifications for Road and Bridge Construction. Tallahassee: FDOT.

Hadi, M. N. (2008). Bond of High Strength Concrete with High Strength Reinforcing Steel. *The Open Civil Engineering Journal*, 143-147.

Hughes, B. (2004). *Fluids Facts Engineering Handbook*. Houston : Baker Hughes Drilling Fluids.

Mullins, G. (2010). *Rapid Hydration of Mineral Slurries for Drilled Shafts Final Report FDOT Project No. BDK-84-977-03.* Tampa: University of South Florida.

Ralph E. Grim, N. G. (1978). *Developments in Sedimentology 24, Bentonites Geology, Mineralogy, Properties and Uses.* New York: Elsevier Scientific Publishing Company.

Specialists, F. o. (2006). *Bentonite Support Fluids in Civil Engineering*. Beckenham: Federation of Piling Specialists.

W.K. Fleming, Z. S. (1975). Specification for Cast in Place Piles formed under Bentonite Suspension. *Ground Engineering*, 50-57.

W.K. Fleming, Z. S. (1977). *The use and influence of bentonite in bored pile construction*. London: Construction Industry Research and Information Association.

Yeasting, K. (2011). *The Evaluation of Hybrid Slurry Resulting from the Introduction of Additives to Mineral Slurries.* Tampa: University of South Florida.

APPENDIX A: PHOTO DOCUMENTATION

Figure A.1. Steel testing form, 42-inches in diameter.

Figure A.2. Steel testing form, 24-inches in height.

Figure A.3. Steel form, clamped, welded angle closures.

Figure A.4. Bottom of form after polyurethane and cap placement.

Figure A.5. Form with structural reinforcement prior to placement of pullout steel.

Figure A.6. Final reinforcement configuration prior to slurry placement.

Figure A.7. Typical de-bonding for reinforcement.

Figure A.8. Verifying water tight seal of form.

Figure A.9. Re-circulating mineral slurry prior to placement in form.

Figure A.10. Testing plastic properties of fresh concrete.

Figure A.11. Placing concrete for shaft 2, 90 sec/qt mineral slurry.

Figure A.12. Placing concrete for shaft 1, 40 sec/qt mineral slurry.

Figure A.13. Shaft 1 (right) and shaft 2 (left) after pressure washing.

Figure A.14. Form layout for placements 2 through 4.

Figure A.15. Shaft 6 (water) after pressure washing.

Figure A.16. Shaft 3, 40 sec/qt mineral slurry after pressure washing.

Figure A.17. Shaft 4, 50 sec/qt mineral slurry after pressure washing.

Figure A.18. Shaft 5, 90 sec/qt mineral slurry after pressure washing.

Figure A.19. Shaft 7, 30 sec/qt mineral slurry after pressure washing.

Figure A.20. Shaft 8, 40 sec/qt mineral slurry after pressure washing.

Figure A.21. Shaft 9, 50 sec/qt mineral slurry after pressure washing.

Figure A.22. Shaft 10, 90 sec/qt mineral slurry after pressure washing.

Figure A.23. Shaft 11, 60 sec/qt polymer slurry after pressure washing.

Figure A.24. Shaft 13, 30 sec/qt mineral slurry after pressure washing.

Figure A.25. Shaft 15, 50 sec/qt mineral slurry after pressure washing.

Figure A.26. Shaft 17, 85 sec/qt polymer slurry after pressure washing.

Figure A.27. Shaft 18, water shaft after pressure washing.

Figure A.28. Core from shaft 6, water.

Figure A.29. Core from shaft 11, 60 sec/qt polymer.

Figure A.30. Core from shaft 7, 30 sec/qt mineral slurry.

Figure A.31. Core from shaft 8, 40 sec/qt mineral slurry.

Figure A.32. Core from shaft 9, 50 sec/qt mineral slurry.

Figure A.33. Core from shaft 10, 90 sec/qt mineral slurry.

Figure A.34. Bar failure from shaft 6, water.

APPENDIX B: STATE SPECIFICATIONS

Table B.1. Alabama slurry specifications (ALDOT, 2012). Mineral Slurry Specifications (Sodium Bentonite or Attapulgite in Fresh Water)

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3** - 69.1**	64.3** - 75.0**	Density Balance
lb/ft ³			
$\{kg/m^3\}$	{1030* - 1110**}	{1030** - 1200**}	
Viscosity	28 - 45	28 - 45	Marsh Cone
Seconds/qt			
{Seconds/L)	$\{30 - 48\}$	$\{30 - 48\}$	
pН	8-11	8 - 11	pH paper, pH Meter
Sand Content	N/A	N/A	N/A
Percent by Volume			

**Increase by 2 pounds per cubic foot {32 kg/m³} in salt water

a. Tests should be performed when the slurry temperature is above 39° F.

b. If desanding is required, sand content shall not exceed 4 percent (by volume) at any point in the bore hole as determined by the American Petroleum Institute sand content test.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
lb/ft ³				
$\{kg/m^3\}$				
Viscosity				
Seconds/qt	Alabama has no polymer slurry specifications			
{Seconds/L}				
pН				
Sand Content				
Percent by Volume				

Source: United States. Alabama Department of Transportation. *Standard Specifications for Highway Construction.* 2012.

Their 2012 is still the most current, so no change was made

http://www.dot.state.al.us/conweb/specifications.htm

http://www.dot.state.al.us/conweb/doc/Specifications/2012%20DRAFT%20Standard%20Specs.pdf

Table B.2. Alaska slurry specifications (AlaskaDOT, 2004). Mineral Slurry Specification

Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
lb/ft ³				
$\{kg/m^3\}$				
Viscosity				
Seconds/qt	Alaska has no specification for drilled shaft slurry			
{Seconds/L)				
pH				
Sand Content				
Percent by Volume				
Polymer Slurry Specifications				
Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	

Troperty	At Thic of Sturry	In more at mine of	1031
(Units)	Introduction	Concreting	Method
Density			
lb/ft ³			
$\{kg/m^3\}$			
Viscosity			
Seconds/qt	Alaska has no	specification for drille	ed shaft slurry
{Seconds/L)			
pН			
Sand Content			
Percent by Volume			

Source: United States. Alaska Department of Transportation and Public Facilities. *Standard Specifications for Highway Construction*. 2004.

Their 2004 version is still the latest...

http://www.dot.state.ak.us/stwddes/dcsspecs/pop_hwyspecs_english.shtml

Table B.3. Arizona slurry specifications (AZDOT, 2008). Mineral Slurry Specifications ita in Enach Watar^a)

(Sodium Bentonite in	Fresh Water)		
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1	64.3 - 75.0*	Density Balance
lb/ft ³			
Yield Point	Bentonite	10 Maximum	Rheometer
{Pascals}	1.25 - 10		
Or			
Viscosity		28 - 50	Marsh Cone
Seconds/qt	28 - 50		
pH	7 – 12	7 – 12	pH paper, pH meter
Sand Content	0-4	0-2	API Sand Content
Percent by Volume			Kit

(Sodium Dont

- 85 lb/ft³ maximum when using Barite. *
- a. Range of results above 68°F.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
lb/ft ³			
Yield Point	Arizona has no polymer slurry specifications.		
{Pascals}			
Or	Only mentions:		
Viscosity	"The level of polymer slurry shall be maintained at or near		
Seconds/qt	the ground surface or higher, if required to maintain boring		
pН	stability."		
Sand Content			
Percent by Volume			

Source: United States. Arizona Department of Transportation. Standard Specifications for Road and Bridge Construction. 2008.

Their 2008 version is still the latest, no change in requirements http://azdot.gov/business/ContractsandSpecifications/Specifications

Table B.4. Arkansas slurry specifications (Freeling, 2013). **Mineral Slurry Specifications**

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64 – 75	None Specified	Mud Balance
lb/ft ³			ASTM D4380
$\{kg/m^3\}$			
Viscosity	28 - 45	None Specified	API RP13B-1
(Seconds/qt)			Section 2
{Seconds/L}			Marsh Funnel and
			Cup
pН	8 - 11	None Specified	ASTM D4972
Sand Content	4% Maximum	N/A	(Sand Screen Set)
Percent by Volume			ASTM D4381

a. Range of results at 60°F (20°C). Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64		(Mud Balance)
lb/ft ³	Maximum	N/A	ASTM D4380
$\{kg/m^3\}$	(fresh water		
	applications)		
Viscosity	40 to 90		API RP13B-1 Sect.
Seconds/qt	(or as approved by	N/A	2
{Seconds/L}	the		(Marsh Funnel &
	Engineer)		Cup)
pН			ASTM D4972
	8-10	N/A	
Sand Content	1 % maximum	1% Max	(Sand Screen Set)
Percent by Volume			ASTM D4381

a. Range of results at 60° F (20° C).

Source: United States. Arkansas State highway and Transportation Department. Special Provision Job No. 110229 Slurry Displacement Drilled Shaft. 2005.

Table B.5. California slurry specifications (Caltrans, 2010).Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3* - 69.1*	64.3* - 75.0*	Mud Weight
lb/ft ³			(Density)
			API 13B-1
			Section 1
Viscosity	(Bentonite)	None Specified	Marsh Funnel and
Seconds/qt	28 - 50		Cup
	(Attapulgite)		API 13B-1
	28 - 40		Section 2.2
pH	8 - 10.5	8 - 10.5	Glass Electrode pH
			meter, pH paper
Sand Content	Volume≤4.0	Volume≤4.0	Sand, API 13B-1,
Percent by Volume			Section 5

* When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased by up to 2 lb/ft³. Slurry temperature shall be at least 40°F when tested.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density	The physical propertie	es of synthetic slurries s	should be carefully	
lb/ft ³	monitored during drill	ling of the hole and bef	ore concrete	
Viscosity	placement. Because th	nese slurries in general	do not suspend	
Seconds/qt	particles, the permissi	ble density and sand co	ontent values are	
pН	much lower than those allowed for mineral slurries. The density			
Sand Content	and sand content values should be tested and the values			
Percent by Volume	maintained within the limits stated in the contract specifications to			
	allow for quick settlement of suspended materials. The synthetic			
	slurry's pH value should be tested and maintained within the			
	limits stated in the contract specifications to prevent			
	destabilization of the	slurry.		

If authorized, you may use salt water slurry. The allowable density of the slurry may be increased by 2 lb/ft^3 .

Source: United States. California Department of Transportation Division of Engineering Services. *Foundation Manual*. 2010.

http://www.dot.ca.gov/hq/esc/oe/construction_standards.html

Table B.6. Colorado slurry specifications (CDOT, 2006).Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	Less than 1.10	Less than 1.10	Mud Weight
g/ml			(Density)
			API 13B-1
			Section 1
Viscosity	(Bentonite)	None Specified	Marsh Funnel and
Seconds/qt	30-90 seconds		Cup
	Or		API 13B-1
	less than 20cP		Section 2.2
рН	8 - 10.5	8 - 10.5	pH indicator
			paper
			Strips or
			electrical
			pH meter
Sand Content	Less than 5%	Less than 5%	Screen
Percent by Volume			

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test		
(Units)	Introduction	Concreting	Method		
Density					
g/ml					
Viscosity	No specification for Polymer Slurries				
Seconds/qt					
pН					
Sand Content					
Percent by Volume					

Source: United States. Colorado Department of Transportation. *Permanent Changes to Project Dated Special Provisions, Revision of Section 503*. 2006.

http://www.coloradodot.info/business/designsupport/construction-specifications/2011-Specs/2011-specs-book/2011-Specs-Book.pdf/view

Which is specifications					
Property	At Time of Slurry	In Hole at Time of	Test		
(Units)	Introduction	Concreting	Method		
Density	64.3* - 69.1*	64.3* - 75.0*	Density Balance		
lb/ft ³					
Viscosity	28 - 45	28 - 45	Marsh Funnel		
Seconds/qt					
pН	8 - 11	8 - 11	pH paper, pH meter		
Sand Content	N/A	N/A	N/A		
Percent by Volume					

Table B.7. Connecticut slurry specifications (ConnDOT, 2009). Mineral Slurry Specifications

* Increase by 2 lb/ft³ in salt water. Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test		
(Units)	Introduction	Concreting	Method		
			·		
Density	Connecticut has no polymer slurry specifications.				
lb/ft ³					
Viscosity	"If polymer slurry, or blended mineral-polymer slurry, is				
Seconds/qt	proposed, the Contractor's slurry management plan shall include				
pН	detailed provisions for controlling the quality of the slurry,				
	including tests to be performed, the frequency of those tests, the				
	test methods, and the maximum and/or minimum property				
	requirements that must be met to ensure that the slurry meets its				
	intended functions in the subsurface conditions at the construction				
	site and with the construction methods that are to be used. The				
	slurry management plan shall include a set of the slurry				
	manufacturer's written recommendations and shall include the				
	following tests, as a minimum: Density test (API 13B-1,				
	Section 1), viscosity test (Marsh funnel and cup, API 13B-1,				
	Section 2.2, or approved viscometer), pH test (pH meter, pH				
	paper), and sand content test (API sand content kit, API 13B-1,				
	Section 5)."	·			

Source: United States. Connecticut Department of Transportation. Connecticut DOT Guide Drilled Shaft Spec. 2009.

http://www.ct.gov/dot/cwp/view.asp?a=3195&q=300782

http://www.ct.gov/dot/lib/dot/documents/dsoils/ConnDOTGuideDrilledShaftSpec.pdf

Property	At Time of Slurry	In Hole at Time of	Test			
(Units)	Introduction	Concreting	Method			
Density	63.55 - 68.51	63.55 - 74.41	Density Balance			
lb/ft ³						
$\{kg/m^3\}$	{1025 - 1105}	$\{1025 - 1200\}$				
Viscosity	849.5 - 1359.2	849.5 - 1359.2	Marsh Cone			
Seconds/ft						
{Seconds/L}	$\{30 - 48\}$	$\{30 - 48\}$				
pH	7 – 11	7 – 11	pH paper, pH meter			
Sand Content	1 MAX	4 MAX	200 Sieve Retain			
Percent by Volume						
Polymer Slurry Specifications						
Property	At Time of Slurry	In Hole at Time of	Test			
(Units)	Introduction	Concreting	Method			
Density						
kg/m ³						
Viscosity	No state specification pertaining to slurry parameters defined.					
Seconds/L	Refers to FHWA guidelines.					
pH						
Sand Content						
Percent by Volume						

Table B.8. Delaware slurry specifications (DELDOT, 2009).Mineral Slurry Specifications

Source: Keith Gray (Bridge Engineer, DELDOT), email message to author, March 7, 2009. http://www.deldot.gov/information/pubs_forms/manuals/standard_specifications/
Mineral Slurry Specifi	cations		
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64 – 73*	N/A	Mud Density
lb/ft ³	66 - 75 * *		Balance
$\{kg/m^3\}$	{1030 - 1170*}		FM 8-RP13B-1
	$\{1060 - 1200^{**}\}$		
Viscosity	30 - 50	N/A	Marsh Cone Method
Seconds			FM 8-RP13B-2
pН	8 - 11	N/A	Electric pH meter,
			pH paper
			FM 8-RP13B-4
Sand Content	4% or less	N/A	FM 8-RP13B-3

Table B.9. Florida slurry specifications (FDOT, 2014). Mineral Slurry Specifications

* Fresh water @ $68^{\circ}F(20^{\circ}C)$

** Salt water @ 68°F (20°C)

Polymer Slurry Specifications

Percent by Volume

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	62 to 64 lb/ft3	62 to 64 lb/ft3	Mud Density
lb/ft ³	(fresh water)	(fresh water)	Balance
$\{kg/m^3\}$	64 to 66 lb/ft3	64 to 66 lb/ft3	FM 8-RP13B-1
	(salt water)	(salt water)	
Viscosity	Range Published By	Range Published By	Marsh Cone Method
Seconds/qt	The Manufacturer	The Manufacturer	FM 8-RP13B-2
{Seconds/L}	for Materials	for Materials	
	Excavated	Excavated	
pH	Range Published By	Range Published By	Electric pH meter,
	The Manufacturer	The Manufacturer	pH paper
	for Materials	for Materials	FM 8-RP13B-4
	Excavated	Excavated	
Sand Content	0.5% or less	0.5% or less	FM 8-RP13B-3
Percent by Volume			

a. Range of results at 68° F

b. The Engineer will not allow polymer slurries during construction of drilled shafts for bridge foundations.

c. Materials manufactured expressly for use as polymer slurry for drilled shafts may be used as slurry for drilled shaft excavations up to 60 inches in diameter installed to support mast arms, cantilever signs, overhead truss signs, high mast light poles or other miscellaneous structures.

Table B.9. continued

- d. A representative of the manufacturer must be on-site or available for immediate contact to assist and guide the construction of the first three drilled shafts at no additional cost to the Department.
- e. Use polymer slurry only if the soils below the casing are not classified as organic, and the pH of the fluid in the hole can be maintained in accordance with the manufacturer's published recommendations.

Source: United States. Florida Department of Transportation . *Standard Specifications for Road and Bridge Construction*. 2014.

http://www.dot.state.fl.us/specificationsoffice/Implemented/SpecBooks/2014/Files/2014eBooks.pdf

21			
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	66 – 73	N/A	N/A
lb/ft ³			
$\{kg/m^3\}$	{1060 - 1170}		
Viscosity	30 - 45	N/A	Marsh Funnel
Seconds/qt			
{Seconds/L}	$\{32 - 48\}$		
pH	8 - 11	N/A	N/A
Sand Content	N/A	4%	N/A
Percent by Volume			

Table B.10. Georgia slurry specifications (GDOT,2006). Mineral Slurry Specifications

a. Perform sand content tests on slurry samples taken from the bottom of the shaft after placement of the reinforcing cage, but immediately before pouring concrete. Do not place concrete until all testing produces acceptable results.

- b. If sidewalls are unstable, or if artesian flow is present, use a weighing additive to increase the slurry density
- c. pH may be adjusted with soda ash.
- d. When sand content exceeds 4%, desanding or other equipment must be used.
- e. Tests must be performed at 39°F (4°C), slurry temperature.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64 - 67	N/A	N/A
lb/ft ³	{1025 - 1073}		
$\{kg/m^3\}$			
Viscosity	30 - 125	N/A	Marsh Funnel
Seconds/qt	$\{32 - 132\}$		
{Seconds/L}			
pН	8 - 11	N/A	N/A
Sand Content	N/A	≤1	N/A
Percent by Volume			

A weighing additive may be used to increase the density of the polymer slurry if the sidewalls are unstable or if artesian flow is present.

Source: United States. State of Georgia Department of Transportation. *Special Provision Section* 524 – Drilled Caisson Foundations. 2006.

http://www.dot.ga.gov/doingbusiness/theSource/Pages/specifications.aspx

Table B.11. Hawaii slurry specifications (HDOT, 2005). Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
lb/ft ³			
$\{kg/m^3\}$			
Viscosity	Slurry Drilling is not permitted*		
Seconds/qt			
{Seconds/L}			
pН			
Sand Content			
Percent by Volume			
	C1		

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
lb/ft ³			
$\{kg/m^3\}$			
Viscosity			
Seconds/qt	Sluri	ry Drilling is not permit	tted*
{Seconds/L}			
pН			
Sand Content			
Percent by Volume			

*Wet Construction Method – This method includes using water to maintain stability of shaft perimeter while advancing excavation to final depth, and placing reinforcing cage and shaft concrete.

Reuse drilling water only if permitted by the Engineer and contingent upon control of unit weight to no more than 62.5 pounds per cubic foot and Marsh funnel viscosity to not more than 27 seconds per quart, at the time drilling water is introduce into the borehole.

Source: United States. State of Hawaii Department of Transportation. *Standard Specifications*. 2005.

http://hidot.hawaii.gov/highways/s2005-standard-specifications/

Table B.12. Idaho slurry specifications special provisions (Buu, 2013). Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64 to 75	N/A	Mud Weight
lb/ft ³			(Density)
			API 13b-1, Section 1
Viscosity	26 to 50	N/A	Marsh Funnel
Seconds/qt			API 13b-1,
			Section 2.2
pH	8 - 11	N/A	N/A
Sand Content	N/A	4.0 Max	Sand API 13b-1
Percent by Volume			Section 5

Quality control testing will be by the contractor. Slurry temperature shall be at least 40°F when tested.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
kg/m ³			
Viscosity	No specifications pertaining to slurry parameters available at time		
Seconds/L	of study.		
pН			
Sand Content			
Percent by Volume			

Source: United StatesIdaho Transportation Department. Special Provision S501-20A SP Bridge-Drilled Shaft -2013.

Source: Tri Buu (Geotechnical Engineer, Idaho DOT), email message to author, July 26, 2013. http://itd.idaho.gov/newsandinfo/docs/2012SpecBook.pdf Table B.13. Illinois slurry specifications (IDOT, 2012). Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
kg/m ³			
Viscosity	No specifications pertaining to slurry parameters available.		
Seconds/L			
pH			
Sand Content			
Percent by Volume			
Polymer Slurry Speci	fications		
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
kg/m ³			

No specifications pertaining to slurry parameters available.

Sand Content Percent by Volume

Viscosity

Seconds/L pH

Source: United States. Illinois Department of Transportation. *Standard Specifications for Bridge Construction*. 2012.

http://www.dot.il.gov/desenv/spec2012/12specbook.pdf

Table B.14. Indiana slurry sp	pecifications (INDOT, 2013).
Mineral Slurry Specifications	

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density lb/ft ³	64.3 - 69.1	N/A	Density Balance
Viscosity Seconds/qt	28 - 45	N/A	Marsh Cone
pН	8-11	N/A	pH paper or meter
Sand Content Percent by Volume	N/A	N/A	N/A

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
kg/m ³			
Viscosity			
Seconds/L	Drilled shafts not permitted.		
pН			
Sand Content			
Percent by Volume			

Source: United States. Indiana Department of Transportation. *Standard Specifications*. 728-B-203 Drilled Shaft Foundations 2013

http://www.in.gov/dot/div/contracts/standards/book/sep11/sep.htm

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64 – 75	64 – 75	Slurry Density
lb/ft ³			Materials I.M. 387
$\{kg/m^3\}$	$\{1030 - 1200\}$	$\{1030 - 1200\}$	
Viscosity	104 - 201	104 - 201	Marsh Funnel and
Seconds/gal			Cup
$\{Sec./L\}$	(27.5 - 53)	(27.5 - 53)	Materials I.M. 387
pН	8 - 11	8 - 11	pH paper
Sand Content	≤ 4	≤ 4	Sand Content Test
Percent by Volume			Materials I.M. 387

Table B.15. Iowa slurry specifications (Iowa DOT, 2012). Mineral Slurry Specifications

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	62-63	62-63	Slurry Density
lb/ft ³			Materials I.M. 387
$\{kg/m^3\}$	{995 - 1010}	{995 - 1010}	
Viscosity	136-227 (36-60)	136-227 (36-60)	Marsh Funnel and
Seconds/gal	231-252 (61-66.5)	231-252 (61-66.5)	Cup
$\{Sec./L\}$	(dry sand/gravel)	(dry sand/gravel)	Materials I.M. 387
pН	8 - 11	8 - 11	pH paper
Sand Content	< 2	< 2	Sand Content Test
Percent by Volume			Materials I.M. 387

Source: United States. Iowa Department of Transportation. *Standard Specifications* 2012. http://www.iowadot.gov/specifications/Specificationsseries2012.pdf Table B.16. Kansas slurry specifications (KSDOT, 2007). Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
kg/m ³			
Viscosity	Drilled shafts permitted but no specifications pertaining to slurry		
Seconds/L		parameters available.	
pН			
Sand Content			
Percent by Volume			
Polymer Slurry Speci	fications		
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
kg/m ³			
Viscosity	Drilled shafts permit	ted but no specification	s pertaining to slurry
Seconds/L		parameters available.	
pН			
Sand Content			
Percent by Volume			

Source: United States. Kansas Department of Transportation. *Standard Specifications for State Road and Bridge Construction*. 2007.

http://www.ksdot.org/burconsmain/specprov/specifications.asp

Table B.17. Kentucky slurry specifications (KYTC, 2008). Mineral Slurry Specifications

At Time of Slurry	In Hole at Time of	Test	
Introduction	Concreting	Method	
No state specificati	on pertaining to slurry	parameters defined.	
Re	efer to FHWA Guidelin	es	
Polymer Slurry Specifications			
	At Time of Slurry Introduction No state specification Re fications	At Time of Slurry Introduction In Hole at Time of Concreting No state specification pertaining to slurry Refer to FHWA Guidelin fications	

Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
kg/m ³				
Viscosity				
Seconds/L	No state specification pertaining to slurry parameters defined.			
pН				
Sand Content				
Percent by Volume				

Source: United States. Kentucky Transportation Cabinet. Special Note 11C for Excavation and Embankment. 2008.

http://transportation.ky.gov/construction/pages/kentucky-standard-specifications.aspx

http://transportation.ky.gov/Construction/Standard%20amd%20Supplemental%20Specifications/ 600%20Structures%20and%20Concrete%2012.pdf

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1	64.3 - 75.0	Mud Balance
lb/ft ³			API 13B
$\{kg/m^3\}$	{1030 - 1107}	{1030 - 1202}	Section 1
	(fresh water)	(fresh water)	
Viscosity	28 - 45	N/A	Marsh Funnel
Seconds			API 13B Section 2
pН	8 - 11	8 - 11	pH paper, pH meter
			API 13B
			Section 6
Sand Content	4	4	Sand Screen Set
Percent by Volume			API 13B
			Section 4

Table B.18. Louisiana slurry specifications (LaDOT, 2006). Mineral Slurry Specifications

a. Slurry shall not stand for more than 4 hours in the excavation without agitation.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density lb/ft ³	63-64	63-64	Mud Balance
(kg/m3)	(1010-1026)	(1010-1026)	(API 13B- Sec 1)
	(fresh water)	(fresh water)	
Viscosity	45 MIN	N/A	Marsh Funnel
Seconds			(API 13B- Sec 2)
pН	8 - 10	8 - 10	pH Paper
			pH Meter
			(API 13B-Sec6)
Sand Content	1 MAX	1 MAX	Sand Screen Set
Percent by Volume			(API 13B- Sec 4)

a. The slurry shall not stand for more than 4 hours in the excavation without agitation Source: United States. Louisiana Department of Transportation. *Drilled Shaft Inspection Manual, Shaft Construction.* 2006.

http://www.dotd.la.gov/highways/specifications/documents/2006%20Standard%20Specifications %20for%20Roads%20and%20Bridges%20Manual/12%20-%202006%20-%20Part%20VIII%20-%20Structures.pdf Table B.19. Maine slurry specifications (MDOT, 2002). Mineral Slurry Specifications

Property (Units)At Time of Slurry IntroductionIn Hole at Time of ConcretingTest MethodDensity kg/m³Drilled shafts permitted but no specifications pertaining to share	
(Units)IntroductionConcretingMethodDensity kg/m3Drilled shafts permitted but no specifications pertaining to shaft	
Density kg/m ³ Viscosity Drilled shafts permitted but no specifications pertaining to shafts	
kg/m ³ Viscosity Drilled shafts permitted but no specifications pertaining to shafts	
Viscosity Drilled shafts permitted but no specifications pertaining to shafts	
	ırry
Seconds/L parameters available.	
pH	
Sand Content	
Percent by Volume	
Polymer Slurry Specifications	
Property At Time of Slurry In Hole at Time of Test	
(Units) Introduction Concreting Method	
Density	
kg/m ³	
Viscosity Drilled shafts permitted but no specifications pertaining to shafts	ırry
Seconds/L parameters available.	
pH	
Sand Content	
Percent by Volume	

Source: United States. Maine Department of Transportation. *Standard Specifications*. 2002. http://maine.gov/mdot/contractors/publications/standardspec/

 Table B.20. Maryland slurry specifications (MDOT, 2008).

Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
kg/m ³				
Viscosity				
Seconds/L	No specifications pertaining to slurry parameters available.			
рН				
Sand Content				
Percent by Volume				

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
kg/m ³				
Viscosity	No specifications pertaining to slurry parameters available.			
Seconds/L				
pН				
Sand Content				
Percent by Volume				

Source: United States. Maryland Department of Transportation. *Standard Specifications for Construction and Materials*. 2008.

 $\underline{http://apps.roads.maryland.gov/BusinessWithSHA/bizStdsSpecs/desManualStdPub/publications} online/ohd/bookstd/index.asp$

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64-75	64-75	Mud Density
lb/ft ³			API 13B- Sec. 1
$\{ kg/m^3 \}$	{1030-1200}	{1030-1200}	
Viscosity	26-50	26-50	Marsh Funnel and
Seconds/qt			Cup
$\{Sec./L\}$	{27.5-53}	{27.5-53}	API 13B- Sec. 2.2
pН	8 - 11	8 - 11	Glass Electrode, pH
			Paper, pH Meter
Sand Content	4 MAX	4 MAX	Sand Content
Percent by Volume			API 13B- Sec 5

Table B.21. Massachusetts slurry specifications (MDH, 2012). Mineral Slurry Specifications

* To be increased by 2 lb/ft3 (32 kg/m3) in salt water or brackish water.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	Natural or synthetic s	lurry shall have specific	e properties at the
lb/ft ³	time of mixing and of	concreting that are in c	conformance with the
$\{kg/m^3\}$	written recommendati	ons of the manufacture	r and the Contractor's
Viscosity	Drilled Shaft Installation Plan. The Contractor shall perform the		
Seconds/qt	required tests at the specified frequency and shall provide slurry		
{Seconds/L}	that complies with the maximum and/or minimum property		
pH	requirements for the subsurface conditions at the site and with the		
Sand Content	construction methods that are used. Whatever product is used, the		
Percent by Volume	sand content at the base of the shaft excavation shall not exceed		
	1% when measured by the API sand content test, immediately		
	prior to concreting.		

Water Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	The use of water slurry without full length steel casings will only		
lb/ft ³	be allowed if approved in writing by the Engineer. In that case, all		
Viscosity	of the properties of mineral slurry shall be met, except that the		
Seconds/qt	maximum density shall not exceed 70 lb/ft3 (1120 kg/m3).		
pH	Mixtures of water and on-site soils shall not be allowed for use as		
Sand Content	a drilling slurry, since particulate matter falls out of suspension		
Percent by Volume	easily and can contaminate the concrete.		

Source: United States. Massachusetts Department of Transportation. *Standard Specifications*. 2012.

http://www.massdot.state.ma.us/Portals/8/docs/construction/SupplementalSpecs20120615.pdf

	Table B.22.	Michigan slurry	^{<i>v</i>} specifications	(MDOT, 2012).
Polymer Slurry	y Specifications			

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	< 63	< 63	Density Balance
lb/ft ³			
Viscosity	33-43	33-43	Marsh Cone
Seconds/qt			
pH	8-11	8-11	pH meter, pH paper
Sand Content	< 1	< 1	API 13B-1
Percent by Volume			

a. Slurry temperature shall be at least 40° F when tested.

b. Use of mineral slurry in sat water installations will not be allowed.

Source: United States. Michigan Department of Transportation. *Standard Specifications for Construction*. 2012.

http://mdotcf.state.mi.us/public/specbook/2012/

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1	64.3 - 75.0	Density Balance
lb/ft ³			
$\{kg/m^3\}$	{1030 - 1107}	{1030 - 1201}	
Viscosity	28 - 45	28 - 45	Marsh Cone
Seconds/qt			
{Seconds/L}	$\{30 - 48\}$	$\{30 - 48\}$	
pH	8 - 11	8 - 11	pH paper, pH meter
Sand Content	N/A	N/A	N/A
Percent by Volume			

Table B.23. Minnesota slurry specifications (MnDOT, 2005). Mineral Slurry Specifications

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
lb/ft ³			
$\{kg/m^3\}$	No specifications	pertaining to slurry par	ameters available.
Viscosity			
Seconds/qt			
{Seconds/L}			
pН			

a. Mineral slurries shall be employed in the drilling process unless other drilling fluids are approved by the Engineer.

Source: United States. Minnesota Department of Transportation. *Standard Bridge Special Provisions*. 2005.

http://www.dot.state.mn.us/pre-letting/spec/

http://www.dot.state.mn.us/pre-letting/spec/2014/2014-Std-Spec-for-Construction.pdf

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3* - 69.1*	64.3* - 75.0*	Density Balance
lb/ft ³			
$\{kg/m^3\}$	{1030*-1105*}	{1030** - 1200*}	
Viscosity	28 - 45	28 - 45	Marsh Cone
Seconds/qt			
{Seconds/L}	$\{30 - 48\}$	$\{30 - 48\}$	
pН	8 - 11	8 - 11	pH paper, pH meter
Sand Content	N/A	N/A	N/A
Percent by Volume			

Table B.24. Mississippi slurry specifications (MDOT, 2007). Mineral Slurry Specifications

* Increase by 2 lb/ft^3 (30 kg/m³) in salt water.

a. Tests should be performed when slurry temperature is above $41^{\circ}F(5^{\circ}C)$.

b. If desanding is required, sand content shall not exceed 4% (by volume) at any point in the borehole as determined by the American Petroleum Institute sand content test.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
lb/ft ³				
$\{kg/m^3\}$	Mineral slurries shall be employed when slurry is used in the			
Viscosity	drilling process, unless other drilling fluids are approved in			
Seconds/qt	writing by the Engi	neer. No Polymer Spec	ification Available.	
{Seconds/L}				
pH				

Source:United States. Mississippi Department of Transportation. *Special Provision No. 907-803-18M, Deep Foundations*. 2007.

http://mdot.ms.gov/portal/construction.aspx

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	63.5 - 66.8	63.5 - 70.5	Density Balance
lb/ft ³			
$\{kg/m^3\}$	$\{1017 - 1129\}$	$\{1017 - 1129\}$	
Viscosity	32 - 60	32 - 60	Marsh Funnel
Seconds/qt			
{Seconds/L}	$\{34-60\}$	$\{34-60\}$	
pН	8 - 10	8 - 11	pH paper, pH meter
Sand Content	<4	<10	API Sand Content
Percent by Volume			Kit
Maximum Contact	N/A	4	N/A
Time*			
Hours			

Table B.25. Missouri slurry specifications (MODOT, 2013). Mineral Slurry Specifications

a. All values without agitation and sidewall cleaning.

b. Higher viscosities may be required to maintain excavation stability in loose or gravelly sand deposits.

c. All values for freshwater without additives.

Polymer Slurry Specifications

Emulsified Polymer				
Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density	< 63	< 63	Density Balance	
lb/ft ³	{1009}	{1009}	-	
$\{kg/m^3\}$				
Viscosity	33 - 43*	33 - 43*	Marsh Funnel	
Seconds/qt	${35-45}*$	${35-45}*$		
{Seconds/L}				
pН	8 - 11	8 - 11	pH Paper or pH	
			Meter	
Sand Content	< 1	< 1	API Sand Content	
Percent by Volume			Kit	
Maximum Contact				
Time Without				
Agitation and	72 hrs			
Sidewall Cleaning				

*Higher viscosities may be required to maintain excavation stability in loose or gravelly sand deposits.

Table B.	25. cont	inued
----------	----------	-------

Dry Polymer				
Property (Units)	At Time of Slurry Introduction	In Hole at Time of Concreting	Test Method	
Density lb/ft ³ {kg/m ³ }	< 63 {1009}	< 63 {1009}	Density Balance	
Viscosity Seconds/qt {Seconds/L}	50 - 80* {53 - 85}*	50 - 80* {53 - 85}*	Marsh Funnel	
рН	7 - 11	7 - 11	pH Paper or pH Meter	
Sand Content Percent by Volume	< 1	< 1	API Sand Content Kit	
Maximum Contact Time Without Agitation and Sidewall Cleaning	72 hrs			

*Higher viscosities may be required to maintain excavation stability in loose or gravelly sand deposits.

a. All values for freshwater without additives.

Source:United States. Missouri Department of Transportation. *Supplemental Specifications to 2013 Missouri Standard Specifications for Highway Construction*. 2013. http://www.modot.org/business/standards_and_specs/highwayspecs.htm Table B.26. Montana slurry specifications (MDT,2011). Mineral Slurry Specifications

2 1					
Property	At Time of Slurry	In Hole at Time of	Test		
(Units)	Introduction	Concreting	Method		
Density		·			
kg/m ³					
Viscosity					
Seconds/L	Mineral slurry use not permitted.				
рН					
Sand Content					
Percent by Volume					
Polymer Slurry Specif	fications				
Property	At Time of Slurry	In Hole at Time of	Test		
(Units)	Introduction	Concreting	Method		
Density					
kg/m ³					
Viscosity	Clymmy may at h	in conformance with N	Acousto aturar'a		
Seconds/L	Siurry must be	recommendations	vianulacturer s		
pH		recommentations			
Sand Content					
Percent by Volume					
The following synthet	tic slurries are approved	d as slurry systems:			
Product Manufacturer					
Novagel	vagel Geo-Tech Services, LLC				
220 North Zapata Highway, Suite 11A			way, Suite 11A		
		Laredo, TX 78043-446	54		
ShorePac GCV		CETCO			
		1500 West Shure Drive			
		Arlington Heights IL, 6	50004		
SlurryPro CDP		KB International, LLC	1		
		Suite 216, 735 Broad Street			
		Chattanooga, TN 3740	12-1855		
Comer Mar 14		DDC Commenter			
Super Mud*		PDS Company 8140 East Descence A	V.		
		Deremount CA 00722	NUC. 2751		
*Annroval as a needed	at applies to the liquid.	rataniouni, CA 90723 product only	-2/34		
Submit other propose	d synthetic slurry produ	product only.	it proposed additives for		
submit other proposed synthetic sturry products for approval. Submit proposed additives for					
Source: United States Montana Department of Transportation Special Provisions: Synthetic					
Slurry for Drillod Sha	1110 mana Department	or transportation. spec	iui 1 rovisions. Syninen		
Sinity for Drifted Shu	Sturry for Dritted Shafts. 2011.				

http://www.mdt.mt.gov/business/contracting/standard_specs.shtml

Table B.27. Nebraska slurry specifications (Larsen, 2013). Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
Ib/ft ⁻			
Viscosity			
Seconds/qt	Mineral slurry not allowed without engineer approval.		
pH			
Sand Content			
Percent by Volume			
Polymer Slurry Specifications			
D	A . TTY 0.01		m

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
lb/ft ³			
Viscosity			
Seconds/qt	Manufacturer speci	fications required upon	engineer approval.
pH			
Sand Content			
Percent by Volume			

Source: Jordan Larsen (Nebraska Department of Roads Bridge Foundation Engineer) in discussion with author, August 2013

http://www.transportation.nebraska.gov/ref-man/specbook-2007.pdf

winierar brany speen	louions		
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.0-68.8	64.0-74.6	Density Method
lb/ft ³			API 13B-1
$\{kN/m^3\}$	{10.1-10.8}	{10.1-11.8}	Section 1
Viscosity*	28 - 45	28 - 45	Marsh Funnel and
Seconds/qt			Cup
			API 13B-1 Section
			2.2
pH	8 - 11	8 - 11	pH paper, Glass
			Electrode pH meter
Sand Content	4 MAX	4 MAX	N/A
Percent by Volume			

Table B.28. Nevada slurry specifications (NDOT, 2001). Mineral Slurry Specifications

* The Marsh Funnel Test is conducted using one quart of fluid, not one liter.

a. Testing shall be performed when the slurry temperature is above $40^{\circ}F(4^{\circ}C)$.

b. The sand content shall not exceed 4% (by volume) at any point in the bore hole as determined by the American Petroleum Institute sand content test.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density lb/ft ³ {kN/m ³ } Viscosity* Seconds/qt pH	No specifications per	taining to slurry parame of study.	eters available at time

Source:United States. Nevada Department of Transportation. *Standard Specifications for Road and Bridge Construction*. 2001.

http://www.nevadadot.com/uploadedFiles/NDOT/About_NDOT/NDOT_Divisions/Engineering/ Specifications/2001StandardSpecifications.pdf

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1*	64.3 - 75.0*	Density Balance
lb/ft ³			
$\{kN/m^3\}$	$\{410 - 440^*\}$	$\{410 - 478^*\}$	
Viscosity	28 - 45	28 - 45	Marsh Funnel
Seconds/qt			
{Seconds/0.945L}	$\{28-45\}$	$\{28 - 45\}$	
pH	8 - 11	8 - 11	pH paper, pH meter
Sand Content	N/A	N/A	N/A
Percent by Volume			

Table B.29. New Hampshire slurry specifications (NHDOT, 2010). Mineral Slurry Specifications

* Upper limit assumes that the slurry is being reused after having been treated. Initial mixing of mineral powder and fresh water should be no higher than 65.5 lb/ft³ (717 kN/m³) unless additional density is obtained with weighting agents. Increase by 2 lb/ft³ (12.5 kN/m³) in salt water.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1*	64.3 - 75.0*	Density Balance
lb/ft ³			
$\{kN/m^3\}$	$\{410 - 440^*\}$	$\{410 - 478^*\}$	
Viscosity	28 - 45	28 - 45	Marsh Funnel
Seconds/qt			
{Seconds/0.945L}	$\{28 - 45\}$	$\{28 - 45\}$	
pH	8 - 11	8 - 11	pH paper, pH meter

* Upper limit assumes that the slurry is being reused after having been treated. Initial mixing of mineral powder and fresh water should be no higher than 65.5 lb/ft³ (717 kN/m³) unless additional density is obtained with weighting agents. Increase by 2 lb/ft³ (12.5 kN/m³) in salt water.

Source: United States. New Hampshire Department of Transportation. *Standard Specifications*. 2010.

http://www.nh.gov/dot/org/projectdevelopment/highwaydesign/specifications/index.htm

Table B.30. New Jersey slurry specifications (NJDOT, 2007). Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1*	$64.3 - 75.0^{*}$	Mud Balance
lb/ft ³			API 13B
			ASTM D 4380
Viscosity	$28 - 45^*$	$28 - 45^*$	Marsh Funnel and
Seconds/qt			Cup
			API 13B
			Section 2
pH	8 - 11	8 - 11	pH paper, Glass-
			Electrode pH meter
			API 13B
			Section 6
Sand Content	4 MAX	4 MAX	Sand Screen Set
Percent by Volume			API 13B Section 4
			ASTM D 4381

* Increase by 2 lb/ft^3 in salt water.

a. Perform tests when slurry temperature is above 40°F.

b. Ensure that the sand content does not exceed 4% (by volume) at any point in the borehole as determined by the API sand content test when the slurry is introduced.

- c. Perform tests to determine density, viscosity and pH value during the shaft excavation to establish a consistent working pattern. Perform a minimum of 4 sets of tests during the first 8 hours of slurry use. When the results show consistent behavior, the Contractor may decrease the testing frequency to 1 set per every 4 hours of slurry use.
- d. One $\sec/qt = 1.06 \sec/L$.

Table B.30. continued

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			API 13B-1, Section
lb/ft ³			1
$\{kg/m^3\}$			
Viscosity			(Marsh funnel and
Seconds/qt	No specifications pertaining to slurry		cup, API 13B-1),
{Seconds/L}	parameters available.		Section 2.2 or
			approved
			viscometer
рН			pH meter, pH paper
Sand Content			API sand content
Percent by Volume			kit, API 13B-1,
			Section 5

Provide a slurry management plan to the RE that includes a set of the slurry manufacturer's written recommendations and results of the following tests, as a minimum:

- 1. Density Test (API 13B-1, Section 1).
- 2. Viscosity Test (Marsh funnel and cup, API 13B-1), Section 2.2 or approved viscometer.
- 3. pH Test (pH meter, pH paper).
- 4. Sand Content Test (API sand content kit, API 13B-1, Section 5).

Also include the tests to be performed, the frequency of those tests, the test methods, and the maximum and minimum property requirements that must be met to ensure that the slurry meets its intended functions. Ensure that all test reports are signed, and provide them to the RE on completion of each drilled shaft.

Source: United States. New Jersey Department of Transportation. *Standard Specifications for Road and Bridge Construction*. 2007.

http://www.state.nj.us/transportation/eng/specs/

http://www.state.nj.us/transportation/eng/specs/2007/spec500.shtm#s503

wineral stuffy specifications				
Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density	N/A	64.0 - 75.0	Density Balance	
lb/ft ³				
Viscosity	28 - 45	N/A	Marsh Cone	
Seconds/qt				
pН	8 - 10	8 - 10	pH paper	
Sand Content	N/A	0 - 4	API Method	
Percent by Volume				

Table B.31. New Mexico slurry specifications (NMDOT, 2007). Mineral Slurry Specifications

a. Perform tests when the slurry temperature is above 40 °F.

b. Premix the slurry according to the manufacturer's directions. Prevent the slurry from "setting up" in the shaft. Dispose of the slurry offsite in accordance with Section 107.14.8, "Disposal of Other Materials and Debris."

i orginer starry specifications				
Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density	62.4 - 64	62.4 - 64	Density Balance	
lb/ft ³				
Viscosity	50-120	50-120	Marsh Cone	
Seconds/qt				
рН	8 - 11.7	8 - 11.7	pH paper	
Sand Content	0-1	0 - 1	API Method	
Percent by Volume				

Polymer Slurry Specifications

- a. Premix the slurry according to the manufacturer's directions. Prevent the slurry from "setting up" in the shaft. Dispose of the slurry offsite in accordance with Section 107.14.8, "Disposal of Other Materials and Debris."
- b. Perform tests when the slurry temperature is above 40 °F.
- c. Table pertains to Emulsified or Dry Phpa Polymer

Source: United States. New Mexico State Department of Transportation. *Standard Specifications for Highway and Bridge Construction*. 2007.

http://www.dot.state.nm.us/en/Standards.html

http://www.dot.state.nm.us/content/dam/nmdot/Plans_Specs_Estimates/2007_Specs_for_Highwa y_and_Bridge_Construction.pdf Table B.32. New York slurry specifications (NYSDOT, 2008). Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	1030 - 1106	1030 - 1200	Density Balance
kg/m ³			
Viscosity	29 - 48	29 - 48	Marsh Cone
Seconds/L			
pH	8-11	8-11	pH paper, pH meter
Sand Content	N/A	N/A	N/A
Percent by Volume			

Polymer Slurry Specifications

		T T T T T	
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	Polymer Slurry.	Provide a polymer slur	ry with sufficient
kg/m ³	viscosity and gel	characteristics to hold t	he hole open, and
Viscosity	transport excavated material to a suitable screening system.		
Seconds/L	Polymer slurry may b	e made from PHPA (er	nulsified), vinyl (dry),
pН	or natural polymers.	Desand the polymer sl	urry so that the sand
_	content is less that	n 1 percent (by volume) prior to concrete
	placement, as determed	nined by the American	Petroleum Institute
		sand content test.	

Source: United States. New York State Department of Transportation. Standard Specifications. 2008.

https://www.dot.ny.gov/main/business-center/engineering/specifications/updated-standard-specifications-us

Table B.33. North Carolina slurry specifications (NCDOT, 2012).

Define "slurry" as bentonite or polymer slurry. Mix bentonite clay or synthetic polymer with water to form bentonite or polymer slurry.

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 72	64.3 - 72	Mud Weight
lb/ft ³			API RP ^b 13B-1
			Section 4
Viscosity	28 - 50	28 - 50	Marsh Funnel and
Seconds/qt			Cup
			API RP ^b 13B-1
			Section 6.2
pH	8 - 11	8 - 11	Glass Electrode pH
			meter
			API RP ^b 13B-1
			Section 9
Sand Content	Vol≤4	Vol≤2	Sand
Percent by Volume			API RP ^b 13B-1
-			Section 9

Bentonite Slurry Specifications

a. Slurry temperature of at least 40°F (4.4°C) required.

b. American National Standards Institute/ American Petroleum Institute Recommended Practice

c. Increase density requirements by 2 lb/ft³ in salt water

d. pH paper is also acceptable for measuring pH.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	≤64	≤64	Mud Weight
lb/ft ³			API RP ^b 13B-1
			Section 4
Viscosity	32 - 135	32 - 135	Marsh Funnel and
Seconds/qt			Cup
			API RP ^b 13B-1
			Section 6.2
pН	8 - 11.5	8 - 11.5	Glass Electrode pH
			meter API RP ^b
			Section 11
Sand Content	≤0.5	≤0.5	Sand
Percent by Volume			API RP ^b 13B-1
			Section 9

a. Slurry temperature of at least $40^{\circ}F(4.4^{\circ}C)$ required.

b. American National Standards Institute/ American Petroleum Institute Recommended Practice

Table B.33. continued

- c. Increase density requirements by 2 lb/ft³ in salt water
 d. pH paper is also acceptable for measuring pH.

The following polymer slurries are approved for use:

Product	Manufacturer
Shore Pac	CETCO Construction Drilling Products
	2870 Forbs Avenue
	Hoffman Estates, IL 60192
	(800) 527-9948
https://connect.ncdot.gov/resources/Geologie	cal/Lists/GEOTechApprvlList/Attachments/2/SHOR
E%20PAC%20Technical%20Data.pdf	
Terragel	Geo-Tech Services, LLC
	220 North Zapata Highway
	Suite 11A-449A
	Laredo, TX 78043
	(210) 259-6386
https://connect.ncdot.gov/resources/Geologie	cal/Lists/GEOTechApprvlList/Attachments/32/Terra
gel%20Technical%20Data.pdf	
SlurryPro CDP	KB International, LLC
	735 Broad Street
	Suite 209
	Chattanooga, TN 37402
	(423) 266-6964
https://connect.ncdot.gov/resources/Geologie	cal/Lists/GEOTechApprvlList/Attachments/3/Slurry
Pro%20CDP%20Technical%20Data.pdf	
Super Mud	PDS Co., Inc.
	105 West Sharp Street
	El Dorado, AR 71731
	(800) 243-4755
https://connect.ncdot.gov/resources/Geologie	cal/Lists/GEOTechApprvlList/Attachments/4/Super
<u>%20Mud%20Technical%20Data.pdf</u>	
Super Mud Dry	PDS Co., Inc.
	105 West Sharp Street
	El Dorado, AR 71731
	(800) 243-475
https://connect.ncdot.gov/resources/Geologie	cal/Lists/GEOTechApprvlList/Attachments/5/Super
%20Mud%20Dry%20Technical%20Data.pd	<u>f</u>

Source: United States. North Carolina Department of Transportation. Standard Specifications. 2012.

Table B.34. North Dakota slurry specifications (NDDOT,2010). Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
kg/m ³				
Viscosity	No specifications per	taining to slurry parame	eters available at time	
Seconds/L		of study.		
pH				
Sand Content				
Percent by Volume				
Polymer Slurry Speci	Polymer Slurry Specifications			
Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
kg/m ³				
Viscosity	No specifications per	taining to slurry parame	eters available at time	
Seconds/L		of study.		
pH				
Sand Content				
Percent by Volume				

 $\underline{http://www.dot.nd.gov/dotnet/supplspecs/StandardSpecs.aspx}$

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1	64.3 - 75.0	Density Balance
lb/ft ³			
$\{kg/m^3\}$	{1030 - 1107}	{1030 - 1201}	
Viscosity	28 - 45	28 - 45	Marsh Cone
Seconds/qt			
{Seconds/L}	$\{30 - 48\}$	$\{30 - 48\}$	
pН	8 - 11	8 - 11	pH paper, pH meter
Sand Content	N/A	N/A	N/A
Percent by Volume			

Table B.35. Ohio slurry specifications (ODOT, 2013). Mineral Slurry Specifications

a. Range of values for 68°F.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	Only use polymer slur	ry after demonstrating	to the Engineer that
lb/ft ³	the stability of the hol	e perimeter can be mai	ntained while
$\{kg/m^3\}$	advancing the excavat	tion to its final depth by	excavating a trial
Viscosity	hole of the same diam	eter and depth as that o	f the production
Seconds/qt	shafts. Use the same p	olymer slurry in the tri	al hole as proposed
{Seconds/L}	for the production shafts. If using different sizes of the shafts at		
pН	the project, use the same size trial hole as that of the largest		
-	diameter shaft, except the depth of the trial hole need not be more		
	than 40 feet (12 meters). Only one trial hole per project is		
	required. Do not use the trial hole excavation for a production		
	shaft. After completing the trial hole excavation, fill the hole with		
	sand. The acceptance	of the polymer slurry d	oes not relieve the
	Contractor of responsi	ibility to maintain the s	tability of the
	excavation. Polymer s	lurry shall conform to	the manufacturer"s
	requirements.		

Source: Ohio Department of Transportation. *Construction and Material Specifications*. 2013. <u>http://www.dot.state.oh.us/Divisions/ConstructionMgt/OnlineDocs/Specifications/2013CMS/201</u> <u>3_CMS_11142012_FINAL.PDF</u>

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1	64.3 - 75.0	Density Balance
lb/ft ³			
$\{kg/m^3\}$	{1030 - 1107}	$\{1030 - 1200\}$	
Viscosity	28 - 45	28 - 45	Marsh Cone
Seconds/qt			
{Seconds/L}	$\{30 - 48\}$	$\{30 - 48\}$	
pH	8 - 11	8 - 11	pH paper, pH meter
Sand Content	N/A	N/A	N/A
Percent by Volume			

Table B.36. Oklahoma slurry specifications (ODOT, 2009). Mineral Slurry Specifications

a. Perform tests when slurry temperature is above 40°F [4°C]

b. Density values are for fresh water. Increase density values $2.0 \text{ lb/ft}^3 [32 \text{ kg/m}^3]$ for salt water

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	62.4 - 63	62.4 - 63.5	Density Balance
lb/ft ³			
$\{kg/m^3\}$	$\{1000 - 1010\}$	$\{1000 - 1017\}$	
Viscosity	30 - 40	30 - 40	Marsh Cone
Seconds/qt			
{Seconds/L}	$\{32 - 42\}$	$\{32 - 42\}$	
pН	9 – 11	9 – 11	pH paper, pH meter
Sand Content	< 1	< 1	N/A
Percent by Volume			

a. Perform tests when slurry temperature is above 40°F [4°C]

b. Density values are for fresh water. Increase density values $2.0 \text{ lb/ft}^3 [32 \text{ kg/m}^3]$ for salt water

Source: United States. Oklahoma Department of Transportation. *Standard Specifications Book*. 2009.

http://www.okladot.state.ok.us/c_manuals/specbook/oe_ss_2009.pdf

Table B.37. Oregon slurry specifications (ODOT, 2008). Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64 - 75	64 – 75	Mud Density
lb/ft ³			API 13B-1
			Section 1
Viscosity	26 - 50	26 - 50	Marsh Funnel and
Seconds/qt			Cup
			API 13B-1
			Section 2.2
pH	8 - 11	8 - 11	pH paper, pH meter,
			Glass Electrode
Sand Content	4 MAX	4 MAX	Sand
Percent by Volume			API 13B-1
			Section 5

a. Maintain slurry temperature at 40°F or more during testing. Polymer Slurry Specifications

i orymer blurry speen	louions		
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	(b) Synthetic Slurr	ies - Select synthetic slu	urries from the QPL.
lb/ft ³	Use synthetic s	lurries according to the	manufacturer's
Viscosity	recommendations and the Contractor's quality control plan. The		
Seconds/qt	sand content of synthetic slurry shall be less than 2.0 percent (API		
pН	13B-1, Section 5) prior to final cleaning and immediately prior to		
	concrete placement.		
Sand Content	<2	<2	Sand
Percent by Volume			API 13B-1
			Section 5

a. Maintain slurry temperature at 40°F or more during testing. Water may be used as slurry when casing is used for the entire length of the drilled shaft. Use of water slurry without full-length casing will only be allowed with the Engineer's approval.

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	70 MAX	70 MAX	Mud Density
lb/ft ³			API 13B-1
			Section 1
Sand Content	2 MAX	2 MAX	Sand
Percent by Volume			API 13B-1
			Section 5

a. Do not use blended slurries.

Source: United States. Oregon Department of Transportation. *Standard Specifications*. 2008. http://www.oregon.gov/ODOT/HWY/SPECS/docs/08book/08_00500.pdf Table B.38. Pennsylvania slurry specifications.

Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
lb/ft ³			
$\{kg/m^3\}$			
Viscosity	No specifications pertaining to slurry parameters available at time		
Seconds/qt	of study.		
{Seconds/L}			
рН			
Sand Content			
Percent by Volume			
Polymer Slurry Specifications			
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
lb/ft ³			
$\{kg/m^3\}$			
Viscosity	No specifications pertaining to slurry parameters available at time		
Seconds/qt	of study.		
{Seconds/L}			
рН			
Sand Content			
Percent by Volume			

 $\frac{ftp://ftp.dot.state.pa.us/public/bureaus/design/Pub408/pdf\%20for\%20printing\%202011\%206/408}{\%202011\%20Change\%206.pdf}$

Table B.39. Rhode Island slurry specifications 2010.

Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
lb/ft ³			
Viscosity	No specifications pertaining to slurry parameters available at time		
Seconds/qt	of study.		
pH			
Sand Content			
Percent by Volume			

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density			
lb/ft ³			
Viscosity	No specifications pertaining to slurry parameters available at time		
Seconds/qt	of study.		
pH			
Sand Content			
Percent by Volume			
http://www.dot.ri.gov/documents/engineering/BlueBook/Bluebook_2010.pdf			

	Table B.40. South Carolina slurry specifications (SCDOT, 2007).
Mineral Slurry	Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1	64.3 - 75.0	Density Balance
lb/ft ³			API 13B-1
			Section 1
Viscosity	28 - 45	28 - 45	Marsh Cone
Seconds/qt			API 13B-1
			Section 2.2
pH	8 - 11	8 - 11	pH paper, pH meter
Sand Content	N/A	N/A	N/A
Percent by Volume			

a. Perform tests when the slurry temperature is above 40° F.

b. If desanding is required, do not allow sand content to exceed 4% (by volume) at any point in the borehole as determined by the American Petroleum Institute Sand Content Test (API 13B-1, Section 5).

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1	64.3 - 75.0	Density Balance
lb/ft ³			API 13B-1
			Section 1
Viscosity	28 - 45	28 - 45	Marsh Cone
Seconds/qt			API 13B-1
_			Section 2.2
pH	8-11	8 - 11	pH paper, pH meter

Source: United States. South Carolina Department of Transportation. *Standard Specifications for Highway Construction*. 2007.

http://www.scdot.org/doing/construction_standardspec.aspx
Table B.41. South Dakota slurry specifications.

Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
kg/m ³				
Viscosity	Duillad shafts nameit	tad but no anasification	a nortaining to alumn	
Seconds/L	Drilled shafts permitted but no specifications pertaining to slurry			
pH	parameters available.			
Sand Content				
Percent by Volume				
Polymer Slurry Speci	fications			
Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
kg/m ³				
Viscosity	Drillad shafts normit	tad but no specification	a nortaining to durry	
Seconds/L	parameters available.			
pH				

Sand Content Percent by Volume

Source: United States. South Dakota Department of Transportation. *Standard Specifications*. 2004.

http://www.sddot.com/business/contractors/specs/Default.aspx

	Table B.42.	Tennessee slurry	specifications	(TDOT, 2006).
Mineral Slurry	Specifications			

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	63.5 - 66.8	63.5 - 70.5	Density Balance
lb/ft ³			
Viscosity	32 - 60	32 - 60	Marsh Funnel
Seconds/qt			
pН	8 - 10	8 - 10	pH paper, pH meter
Sand Content	Vol<4	Vol<10	API Sand Content
Percent by Volume			Kit
Maximum Contact	N/A	N/A	N/A
Time			
Hours			

Polymer Slurry Specifications

Emulsified Polymer			
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	< 63	< 63	Density Balance
lb/ft ³			
$\{kg/m^3\}$			
Viscosity	33-43*	33-43*	Marsh Funnel
Seconds/qt			
{Seconds/L}			
pН	8 - 11	8 - 11	pH paper or meter
Sand Content	< 1	< 1	API Sand Content
Percent by Volume			Kit
Maximum Contact			
Time Without	72 hrs	72 hrs	
Agitation or			
Sidewall Cleaning			

*Higher viscosities may be required to maintain excavation stability in loose or gravelly sand deposits.

Table B.42. continued

Dry Polymer			
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	< 63	< 63	Density Balance
lb/ft ³			
$\{kg/m^3\}$			
Viscosity	$50 - 80^{*}$	50 - 80*	Marsh Funnel
Seconds/qt			
{Seconds/L}			
pН	7 - 11	7 - 11	pH paper or meter
Sand Content	< 1	< 1	API Sand Content
Percent by Volume			Kit
Maximum Contact			
Time Without	72 hrs	72 hrs	
Agitation or			
Sidewall Cleaning			

*Higher viscosities may be required to maintain excavation stability in loose or gravelly sand deposits.

Source: United States. Tennessee Department of Transportation. Special Provisions Item 625: Drill Shaft Specifications. 2006.

http://www.tdot.state.tn.us/construction/specs.htm

Table B.43. Texas slurry specifications (TxDOT, 2004).Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Specific Gravity	≤1.10	≤1.15	
Viscosity	N/A	≤45	
Seconds/qt			
{Seconds/L}			
pН			
Sand Content	Vol≤1	Vol≤6	
Percent by Volume			
Polymer Slurry Specifications			
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Specific Gravity			
Viscosity			
Seconds/qt	"Do not use PHP	A (partially hydrolyzed	l polyacrylamide)
{Seconds/L}	polymeric slurry o	or any other fluid compo	osed primarily of a
pH		polymer solution."	
Sand Content			
Percent by Volume			
0 11 10 1			10 10 1 0004

Source: United States. Texas Department of Transportation. *Standard Specifications*. 2004. <u>http://www.dot.state.tx.us/business/specifications.htm</u>

Table B.44. Utah slurry specifications.

Mineral Slurry Specifications

Winerar Starty Specifications				
Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
kg/m ³				
Viscosity				
Seconds/L	Slur	ry drilling is not permi	tted.	
pН				
Sand Content				
Percent by Volume				
Polymer Slurry Specif	fications			
Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
kg/m ³				
Viscosity	1			
Seconds/L	Slurry drilling is not permitted.			
pH				
Sand Content				

Percent by Volume Source: United States. Utah Department of Transportation. *Standard Specifications*. 2012. http://vtransengineering.vermont.gov/publications

	1 un o mo		
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 69.1	64.3 - 75.0	Density Balance
lb/ft ³			API 13B-1
$\{kg/m^3\}$	{1030 - 1107}	{1030 - 1201}	Section 1
Viscosity	28 - 45	28 - 45	Marsh Cone
Seconds/qt	$\{30 - 47\}$	$\{30 - 47\}$	API 13B-1
{Seconds/L}			Section 2.2
pH	7 – 11	7 – 11	pH paper, pH meter
Sand Content	N/A	<u>≤</u> 4	Sand
Percent by Volume			API 13B-1
			Section 5

Table B.45. Vermont slurry specifications (AOT, 2009). Mineral Slurry Specifications

a. These tests shall be done per the American Petroleum Institute RP 13B-1 Standard Procedure for field testing Water Based Drilling Fluids.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	63 - 64	63 - 64	Density Balance
lb/ft ³			API 13B-1
$\{kg/m^3\}$	{1009 - 1025}	{1009 - 1025}	Section 1
Viscosity	45 min	45 min	Marsh Cone
Seconds/qt	{48 min}	{48 min}	API 13B-1
{Seconds/L}			Section 2.2
pН	7 - 11	7 – 11	pH paper, pH meter
Sand Content	N/A	< 1	Sand
Percent by Volume			API 13B-1
			Section 5

- a. These tests shall be done per the American Petroleum Institute RP 13B-1 Standard Procedure for field testing Water Based Drilling Fluids.
- b. Range of values for polymer slurry at 68° F [20° C]
- c. The use of a blended mineral-polymer slurry is not permitted.
- d. Polymer slurry (vinyl (dry) or natural polymers) shall be made from Partially-Hydrolyzed Polyacrylamide Polymer (PHPA) (emulsified). The polymer slurry product must be approved for use by the Agency.

Source: United States. Vermont Agency of Transportation. *Bennington AC NH 019-1(51) Construction Special Provisions*. 2009.

http://vtransengineering.vermont.gov/publications

Table B.46.	Virginia slurry specifications (VDOT, 2010).
Mineral Slurry Specifications	

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	63 - 65	65 - 67	Mud Balance
lb/ft ³			API 13B-1
			Section 1
Viscosity	50 max.	50 max.	Marsh Cone Method
Seconds/qt			API 13B-1
			Section 2.2
pH	8 - 10	8 - 10	pH paper, pH meter
Sand Content	0.3% max	1% max	API 13B -1
Percent by Volume			

a. Density values shall be increased by two pounds per cubic foot (lb/ft^3) in salt water.

- b. At time of concreting, sand content at any point in the drilled shaft excavation shall not exceed 1% (by volume); test for sand content as determined by the American Petroleum Institute.
- c. Minimum mixing time shall be 15 minutes.
- d. Storage time to allow for hydration shall be minimum of 4 hours.

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	63 - 65	65 - 67	Mud Balance
lb/ft ³			API 13B-1
			Section 1
Viscosity	50 max.	50 max.	Marsh Cone Method
Seconds/qt			API 13B-1
			Section 2.2
pН	8 - 10	8 - 10	pH paper, pH meter
Sand Content	0.3% max	1% max	API 13B -1
Percent by Volume			

(a) Density values shall be increased by two pounds per cubic foot (lb/ft^3) in salt water. (b) At time of concreting, sand content at any point in the drilled shaft excavation shall not exceed 1% (by volume); test for sand content as determined by the American Petroleum Institute.

(c) Minimum mixing time shall be 15 minutes.

(d) Storage time to allow for hydration shall be minimum of 4 hours.

Source: United States. Virginia Department of Transportation. *Special Provisions for Drilled Shafts*. 2010.

http://www.virginiadot.org/business/const/spec-default.asp

 Table B.47. Washington slurry specifications (WSDOT, 2014).

 Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	63 – 75	63 – 75	Mud Weight API
lb/ft ³			13B-1 Section 1
Viscosity	26 - 50	26 - 50	Marsh Funnel and
Seconds/qt			Cup API 13B-1
			Section 2.2
pH	8 - 11	8 - 11	Glass electrode, pH
			paper, pH meter
Sand Content	4 MAX	4 MAX	Sand
Percent by Volume			API 13B-1
			Section 5

a. Use of mineral slurry in salt water installations will not be allowed.

b. Slurry temperature shall be at least 40 F when tested.

Water Slurry Specifications

Water without site soils may be used as slurry when casing is used for the entire length of the drilled hole. Water slurry without full length casing may only be used with the approval of the Engineer.

11	6		
Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	65 MAX	65 MAX	Mud Weight
lb/ft ³			(Density)API 13B-1
			Section 1
Sand Content	1 MAX	1 MAX	Sand
Percent by Volume			API 13B-1
			Section 5

Use of water slurry in salt water installations will not be allowed. Slurry temperature shall be at least 40°F when tested.

Table B.47. continued.

Synthetic Slurry Specifications

Synthetic slurries shall be used in conformance with the manufacturer's recommendations and shall conform to the quality control plan specified in Section 6-19.3(2)B, item 4. The synthetic slurry shall conform to the following requirements:

Property (Units)	At Time of Slurry Introduction	In Hole at Time of Concreting	Test Method
Density lb/ft ³	64 MAX	64 MAX	Mud Weight API 13B-1 Section 1
Viscosity Seconds/qt	32-135	32-135	Marsh Funnel and Cup API 13B-1 Section 2.2
рН	6 -11.5	6 -11.5	Glass electrode, pH paper, pH meter
Sand Content Percent by Volume	1 MAX	1 MAX	Sand API 13B-1 Sec 5

Source: United States. Washington State Department of Transportation. *Bridge Special Provisions*. 2014.

http://www.wsdot.wa.gov/biz/mats/qpl/QPLProductsGrid.cfm

Table B.48. West Virginia slurry specifications (WVDOT, 2000). Mineral Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test		
(Units)	Introduction	Concreting	Method		
Density	When the use of slurr	y is anticipated, details	of the methods to		
kg/m ³	mix, circulate, and de	-sand slurry. Any requ	est to use a slurry		
Viscosity	displacement method	for the construction of	caissons shall also		
Seconds/L	provide information for	or the Engineer's appro-	val as follows:		
pН	1. Detailed description of proposed construction method.				
Sand Content	2. Concrete mix, as modified for use with the slurry				
Percent by Volume	displacement method.				
	3. Components and proportions in proposed slurry mixture.				
	4. Tests proving slurry mixture will not degrade rock or				
	interfere with	interfere with bond.			
	5. Methods to ag	5. Methods to agitate slurry mixture prior to concrete			
	placement.	placement.			
	6. Methods to cle	6. Methods to clean slurry mixture for re-use.			
	7. Disposal meth	ods for used slurry.	7. Disposal methods for used slurry.		

Polymer Slurry Specifications

Property	At Time of Slurry	In Hole at Time of	Test	
(Units)	Introduction	Concreting	Method	
Density				
kg/m ³				
Viscosity	No specific polymer slurry specifications			
Seconds/L				
pН				
Sand Content				
Percent by Volume				

Source: United States. West Virginia Department of Transportation. West Virginia Division of Highways: Supplemental Specifications. 2000.

Table B.49. Wisconsin slurry specifications (WDOT, 2013). Mineral Slurry Specifications

Property at 68°F	At the Time of Slurry Before Concrete		Test Method
Units	Introduction into the	Placement in the	
	Drilled Shaft	Drilled Shaft	
Density in Fresh	64 to 69	64 to 75	Density Balance
Water (lb/ft^3) (a)			
Viscosity	28 to 45	28 to 45	Marsh Funnel
(seconds per quart)			
pН	7 to 11	7 to 11	pH paper or meter
Sand Content (%) (b)	4 maximum	10 maximum	200 Sieve Retain

Polymer Slurry Specifications

Property at 68°F	At the Time of Slurry	Before Concrete	Test Method
Units	Introduction into the	Placement in the	
	Drilled Shaft	Drilled Shaft	
Density in Fresh	63 or less	63 or less	Density Balance
Water (lb/ft^3) (a)			
Viscosity	50 minimum	50 minimum	Marsh Funnel
(seconds per quart)			
pН	8 to 11	8 to 11	pH paper or meter
Sand Content (%)	2 maximum	10 maximum	200 Sieve Retain

Source : United States. Wisconsin Department of Transportation. Standard Specification, 2013.

Table B.50. Wyoming slurry specifications.

Mineral Slurry Specifications

pH Sand Content Percent by Volume

mineral brang speen	Mineral Starry Specifications				
Property	At Time of Slurry	In Hole at Time of	Test		
(Units)	Introduction	Concreting	Method		
Density					
kg/m ³					
Viscosity	Duillad shafts nameit	tad but no anasification	a nortaining to alumn		
Seconds/L	parameters available.				
рН					
Sand Content					
Percent by Volume					
Polymer Slurry Speci	fications				
Property	At Time of Slurry	In Hole at Time of	Test		
(Units)	Introduction	Concreting	Method		
Density					
kg/m ³					
Viscosity					
Seconds/L	parameters available.				
a II					

Source: United States.	State of Wyoming	Department of	Transportation.	Standard Specifications.
2010.				

Table B.51. Federal Highway Administration slurry specifications	(FHWA, 201	0).
Mineral Slurry Specifications		

Property	At Time of Slurry	In Hole at Time of	Test
(Units)	Introduction	Concreting	Method
Density	64.3 - 72	N/A	Mud Weight
lb/ft ³			Density Balance
			(API 13B-1)
Viscosity	28 - 50	N/A	Marsh Funnel and
Seconds/L			Cup (API 13B-1)
pН	8 - 11	N/A	pH paper, pH meter
Sand Content	4 MAX	N/A	Sand Content
Percent by Volume			API 13B-1

Note: Density values shown are for fresh water. Increase density values 2 pounds per cubic foot for saltwater. Perform tests when slurry temperature is above 40 °F. If desanding is required, sand content shall not exceed 4 percent by volume at any point in the bore hole according to the American Petroleum Institute sand content test.

Property (Units)	At Time of Slurry	In Hole at Time of	Test Method
		NIA	
Density	≤ 64	N/A	Mud Weight
lb/ft ³			Density Balance
			(API 13B-1)
Viscosity	32 to 135	N/A	Marsh Funnel and
Seconds/L			Cup (API 13B-1)
pН	8 - 11.5	N/A	pH paper, pH meter
Sand Content	≤ 1.0	N/A	Sand Content
Percent by Volume			API 13B-1

Polymer Slurry Specifications

Source: United States. United States Department of Transportation Federal Highway Administration. *Drilled Shafts: Construction Procedures and LRFD Design Methods*. 2010.

APPENDIX C: CONCRETE INFORMATION

		Brooksville South Plant 19311 CEMENT PLANT ROAD Brooksville, Fi 34601 Phone (352) 799-7881 / FAX (352) 799-6088					CEME MILL TEST REPOR	NT r RT
Cement Identified as: AASI	HTO M	85, Ty	pe I, Type II a	nd Type II	(MH) , C-1	50	Date of Report	01/04/12
Beginning: 1-Dec-12 Ending: 31-Dec-12						Sil	o 1,2,4,5,13,15	;
CHEMICAL REQUIRMENTS	Test	Results	Spec Restions	AAS	HTO M 85. AST	M C 150	ASTN C-1187	I
ASTM C114 and AASHTO M 85			operioded is	Type I	TYPEII	TYPE I (MH)	QU	
Aluminum Oxide (Al2O2) %	1	20.1	Minimum			-		
Ferric Oxide (Fe2O3) %		4.9	Maximum		6.0	6.0		
Calcium Oxide (CaO) %		3.9	Maximum		6.0	6.0	t and	1
Magnesium Oxide (Mag) %	1	04.3						
Sulfur Triovide (SO3) % A	1	0.7	Maximum	6.0	6.0	6.0		
Loss on Ipnition /I Oth %		2.0	Maximum	3.5	3.0	3.0		
Insoluble Residue (IR) %	1	1.50	Maximum	0.75	3	3.0		
Akalies (Na2O equivalent) %		0.30	Maximum	0.75	0.75	0.75		
Carbon Dioxide in cement (CO2) %		1.10	Optional Max	0.60	0.60	0.60		
Limestone % in cement (ASTM C150 A1)		27	Manimum					
CaCO3 in limestone % (2.274 x %CO21.5)	1	86	Maximum.	30	200			
Inorpanic Processing Addition	1	00	Minimum	10	10	/ /0		
(Kiln dust) (%)	1	2.0	Manimum					
Potential Phase composition ^D		3.0	Maximum		5	-		
Tricalcium Silicate (C3S) %		61		1				
Dicalcium Silicate (C2S) %		10						
Tricalcium Aluminate (C3A) %			Maximum					
Tetracalcium Aluminoferrite (C4AF) %		12	maximum		°			
(C3S + 4.75 C3A)		00	Maninum	1.001				
(C4AF + 2C3A) or (C4AF + C2F) %	1	24	Maximum			100		
	1		maximum					
PHYSICAL REQUIRMENTS	1			1		1		
(ASTM C204) Blaine Fineness, cm2/g	1 3	972	Minimum	2600	2600	2600		
(ASTM C204) Blaine Fineness, cm2/g	3	972	Maximum			4300 ^B		
(ASTM C430) -325 Mesh %	9	5.8						
(ASTM C191) Time of Setting (Vicat)			1					
Initial Set, minutes	1 1	05	Min / Max	45/375	45/375	45/375	45/420	
	1		1		1	1		
(ASTM C185) Air Content of Mortar %		5.2	Maximum	12	12	12	-	
(ASTM C191) Autoclave Expansion %	-0	.020	Maximum	0.90	0.80	0.80	0.80	
(ASTM C1038) Expansion in Water % *	1 6	5.0	Maximum	0.000	0.000			
(ASTM C186) 7 day Heat of Hydration calls C	<u>،</u>	74	information	0.020	0.020	0.020	0.020	
(ASTM C109) Compressive Strength psi (Most			montational					
1 Day	2266	1 15.6						
3 Days	4148	28.6	Minimum	1740 (12.0)	1450 (10.0)	1450 (10.0)	1890 (13.0)	
7 Days	5236	(36.1	Minimum	2760 (19.0)	2470 (17.0)	2470 (17.0)	2900 (20.0)	
28 Days C	6324	(43.7	Minimum				4060 (28.0)	
As per role D of table 1. SO3 limit may be exceeded demonstrate Biante limits does not apply if Sum of C3S + 4.75° C3A <= 9 Text on the for the ended	ng expans 0	ion accord	ing to ASTM C 1038	<= 0.020		Physical Testing	completed by: K	W.ES
Adjusted per A 1.6	and brown					Unemical Testin	g completed by	NW, ES, RP
Required only if S03 exceeds limit of table 1. This Central Contrains Limitations.								
	Cernex hareby certifies that this cement meets or exceeds the chemical and physical specifications of : • AASHTO M 85 Type (WH) and ASTM C150 Type (and Type () • AASHTO M 85 Type (WH) and ASTM C150 Type () MHI							
Cernex hereby certifies that this cement meets or exceeds it AASHTD M 85 Type I and Type II and ASTM C150 Type II and AASHTD M 85 Type II (MIH) and ASTM C150 Type II (MIH)	nd Type I							
Centux hareby certifies that this centeril meals or exceeds 8 = AASHTO M 85 Type I and Type II and ASTM C150 Type I and AASHTO M 55 Type II (MH) and ASTM C150 Type II (MH) < ASTM C1157 GU	nd Type I					Officer	Sahn	
Certaix hareby certifies that this sement meals or exceeds # AASHTO M 85 Type I and Type II and ASTM C150 Type II and AASHTO M 85 Type II (MH) and ASTM C150 Type II (MH) ASTM C-1157 GU Florids Spec \$21	nd Type i					Officer	Sohn	

Figure C.1. Page 1 of cement mill certificate.

	×	Brooksville 10311 CEMENT Brooksville, Phone (352)	9 South Plant PLANT ROAD FI 34601 799-7881 / FAX (352) 799-6088	CEMENT MILL TEST REPORT
Cement Identified as: Production Period: Boginning: 1-Dec-12 Ending: 31-Dec-12	AASHTO M8	5, Type I, Type II a	nd Type II (MH) , C-150	Date of Report: 01/04/12 Silio 1,2,4,5,13,15
ADDITIONAL DATA Inorganic Processing Addition Type Baghouse Dust Amount (%) 3.0 SiO2 (%) 18.77 Al203 (%) 7.38 Fe203 (%) 2.6 CaO (%) 71.71 SO3 (%) 0.24		Base Cemer C3S (%) C2S (%) C3A (%) C4AF (%)	t Phase Composition 63 10 6 12	

Figure C.2. Page 2 of cement mill certificate.

Delivery Ticket for Structural Concrete

Financial Project Number DOT Plant Number		No. 1 Contraction	N/A Serial # 10-410 Date		7526992 May 8, 2013		
		10-					
Concrete Supplie	Br	Oldcastle Sou	uthern Group /	Delivered to	USF/DANNY WINTERS		
		Preferred M	laterials, Inc.	Phone #			
Phone Number		800-331-337	5	Address;	LAUREL	& HOLLEY	
Address	14.1 10.1 20.2	1811 N. 57th St	reet	hadddin HAMERIG	USF	Campage of the second	
		Tampa, FL 336	619	Contract with			
			84097	2010		CARRENT CONTRACTOR OF CONTRACTOR	
Truck #	DOT class		DOT mix ID		Cubic yar	ds this load	
4195	CL IV D	S 4000 EQUL		120		Standard Land	
allowable job	osite Water	Time loaded	Mixing revolu	tions	Cubic yar	ds total today	
13.	58	8:44 AM		78			
Chloride Test Results:			c	hioride Test Dat	e:	and the second	
Cement	-		Flyash / Slag				
American	TYPEI/ II	2075	ProAsh	F		1020	
source	Type	amount-lbs	source	Type		amount-lbs	
Coarse agg			Air admixture				
87-089	2.90	6400	Euclid	AEA-92S	1	12	
Pit num.	%moisture	amount-lbs	source	brand	Туре	amount-oz.	
Fine agg.			Admixture				
16-659	3.20	4500	Euclid	WR	l D	216	
Pit num.	% moisture	amount-lbs	source	brand	Type	amount-oz.	
		0.00					
ICE	Lbs.	Gal.	Admixture				
Batch water			Euclid	Viscstol	F	A STATE AND A STATE	
Amount	799.0	96	source	brand	Туре	amount	
	lbs	Gal					

Issuance of this ticket constitutes certification that the concrete batched was produced and information recorded in compliance with Department specifications for Structural Concrete

1/363-620-53-391-5 CTQP Technician Identification number

h

Signature of batch plant operator

Arrival on jobsite		Number of revolutions upon arrival at job site				
Water added at job site(g	al or lbs)	Additional mixing revs. With	n added water			
Time concrete completely discharged		Total number of revolutions				
Initial slump	Initial air	Initial concret/temp	Initial W/C ratio			
Accept. Slump	Accept. Air	Accept. Concrete temp	Accept W/C ratio			

Issuance of this ticket constitutes certification that the maximum specified water cementitious ratio was not exceeded and the batch was delivered and played in compliance with Department specification requirements

CTQP Technician Identification number

Signature of contractors representative

Figure C.3. FDOT batch ticket for placement 1.

Delivery Ticket for Structural Concrete

Financial Project Number	N/A	Serial #	7528042
DOT Plant Number	10-410	Date	June 5, 2013
Concrete Supplier	Oldcastle Southern Group /	Delivered to	KEVIN JOHNSON
	Preferred Materials, Inc.	Phone #	
Phone Number	800-331-3375	Address;	HOLLEY & PLUM DR
Address	1811 N. 57th Street		USF
	Tampa, FL 33619		

Truck #	DOT class		DOT mix ID		Cubic yard	this load	
4282	CLI	V DS 4000	01-1031-01			6	
allowable job 20.5	site Water 52	Time loaded 8:11 AM	Mixing revolu	Mixing revolutions 78		ds total today 6	
Chloride	e Test Results:	14 C	C	hloride Test Date	e:		
Cement			Flyash / Slag				
American	TYPEI/ II	3120	ProAsh	F		1525	
source	Type	amount-lbs	source	Type		amount-lbs	
Coarse agg		Air admixture	Air admixture				
87-089	3.00	9680	Euclid	AEA-92S		18	
Pit num.	%moisture	amount-lbs	SOUICE	brand	Туре	amount-oz.	
Fine agg.			Admixture				
16-659	4.10	6680	Euclid	WR	D	372	
Pit num.	% moisture	amount-lbs	source	brand	Туре	amount-oz.	
	C. String Pro-	0.00					
ICE	Lbs.	Gal.	Admixture		-		
Batch water			Euclid	Viscstol	F		
Amount	1132.0	136	source	brand	Туре	amount	
	Lbs.	Gal.					

Issuance of this ticket constitutes certification that the concrete batched was produced and information recorded in compliance with Department specifications for Structural Concrete

W363-620-53-391-0

CTQP Technician Identification number

Signature of batch plant operator

Arrival on jobsite Water added at job site(gal or lbs)		Number of revolutions upon arrival at job site Additional mixing revs. With added water			
Initial slump	Initial air	Initial concret temp	Initial W/C ratio		
Accept. Slump	Accept. Air	Accept. Concrete temp	Accept W/C ratio		

Issuance of this ticket constitutes certification that the maximum specified water cementitious ratio was not exceeded and the batch was delivered and plaved in compliance with Department specification requirements

CTQP Technician Identification number

Signature of contractors representative

Figure C.4. FDOT batch ticket for placement 2.

Delivery Ticket for Structural Concrete

Financial Project Number DOT Plant Number Concrete Supplier

Phone Number

Address

N/A Serial # 10-410 Date Oldcastle Southern Group / Preferred Materials, Inc. 800-331-3375 Address; 1811 N. 57th Street Tampa, FL 33619

	1020004	
-	June 18, 2013	
. : : 16g	KEVIN JOHNSON	1
	and the second	1
HOLL	EY & PLUM	

TAMPA

Truck #	DOT class		DOT mix ID		Cubic yards	s this load
4202	CLIV	/ DS 4000	01-1	1031-01		6
allowable job	site Water	Time loaded	Mixing revolut	tions	Cubic yards	s total today
7.4	2	9:45 AM	C. P. Starter	78		6
Chloride	e Test Results:		C	hloride Test Date	e:	
Cement			Flyash / Slag			
American	TYPEI/ II	3090	ProAsh	F	1 1	1520
source	Туре	amount-lbs	source	Туре		amount-lbs
Coarse agg			Air admixture			
87-089	3.40	9840	Euclid	AEA-92S	1 1	24
Pit num.	%moisture	amount-lbs	source	brand	Туре	amount-oz.
Fine agg.			Admixture			
16-659	3.40	6740	Euclid	WR		464
Pit num.	% moisture	amount-lbs	source	brand	Type	amount-oz.
	1.1.3.2000	0.00				
ICE	Lbs.	Gal.	Admixture			
Batch water			Euclid	Viscstol	F	집에 도둑을 받는 것
Amount	1241.0	149	source	brand	Type	amount
1	Lbs.	Gal				

Issuance of this ticket constitutes certification that the concrete batched was produced and information recorded in compliance with Department specifications for Structural Concrete

W363-620-53-391-0 CTOP Technician Identification number

3 AM MAS

Arrival on jobsite		Number of revolutions upon arrival at job site				
Water added at job site(gal or lbs)		Additional mixing revs. With added water				
Time concrete completely discharged		Total number of revolutions				
Initial slump	Initial air	Initial concretitemp	Initial W/C ratio			
Accept. Slump	Accept. Air	Accept. Concrete temp	Accept W/C ratio			

Issuance of this ticket constitutes certification that the maximum specified water cementitious ratio was not exceeded and the batch was delivered and plaved in compliance with Department specification requirements

CTQP Technician Identification number

Signature of contractors representative

Figure C.5. FDOT batch ticket for placement 3.

Preferred ERIALS, INC.

Delivery Ticket for Structural Concrete

Financial Project Number	N/A	Serial #	7531916
DOT Plant Number	10-410	Date	September 20, 2013
Concrete Supplier	Oldcastle Southern Group /	Delivered to	KEVIN JOHNSON
	Preferred Materials, Inc.	Phone #	
Phone Number	800-331-3375	Address;	4202 E FOWLER AVE
Address	1811 N. 57th Street	-	TAMPA
	Tampa, FL 33619		

Truck #	DOT class		DOT mix ID		Cubic yards	Cubic yards this load	
3972	CLI	/ DS 4000	01	-1031-01		5	
allowable jobs	ite Water	Time loaded	Mixing revolu	utions	Cubic yards	total today	
30.41		8:00 AM		78		5	
Chloride	Test Results:		(Chloride Test Date	e:		
Cement			Flyash / Slag	1			
American	TYPEI/ II	2565	ProAsh	F	1 1	1255	
source	Туре	amount-lbs	source	Туре		amount-lbs	
Coarse agg			Air admixture				
87-089	2.50	8040	Euclid	AEA-92S		17	
Pit num.	%moisture	amount-lbs	source	brand	Туре	amount-oz.	
Fine agg.			Admixture				
16-659	3.10	5540	Euclid	WR	D	387	
Pit num.	% moisture	amount-lbs	source	brand	Туре	amount-oz.	
		0.00		1			
ICE	Lbs.	Gal.	Admixture				
Batch water			Euclid	Viscstol	F		
Amount	924.0	111	source	brand	Туре	amount	
	Lbs.	Gal.					

Issuance of this ticket constitutes certification that the concrete batched was produced and information, recorded in compliance with Department specifications for Structural Concrete

レ363 - 62 0-53 - 391 - い CTQP Technician Identification number

M an ~

Signature of batch plant operator

Arrival on jobsite		Number of revolutions upon arrival at job site 115 Additional mixing revs. With added water	
Initial slump	Initial air	Initial concret/temp	Initial W/C ratio
Accept. Slump	Accept. Air	Accept. Concrete temp	Accept W/C ratio

Issuance of this ticket constitutes certification that the maximum specified water cementitious ratio was not exceeded and the batch was delivered and plaved in compliance with Department specification requirements

CTQP Technician Identification number

Signature of contractors representative

Figure C.6. FDOT batch ticket for placement 4.