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ABSTRACT 

 

As the field service life of retroreflective raised pavement marker (RRPM) is 

much shorter than expected, it is necessary to identify the causes and thus improve the 

RRPM structural design to mitigate the main failure modes, such as poor retention from 

pavements, structural damage, and loss of retroreflectivity. One strategy for extending 

RRPM service life is to enhance RRPM geometric characteristics to decrease critical 

stresses in markers. The main purpose of this thesis is to analyze the relationship between 

stresses, failure modes, and RRPM profiles. Based on this research, some measures are 

suggested in order to avoid corresponding failure modes by optimizing RRPM profiles. 

The information about current performance of different types of RRPMs is 

summarized through literature review, questionnaire surveys, and a series of field surveys 

in Tampa bay area. Field survey observations show that the RRPM failure modes include 

lens cracking, lens loss, body cracking, body breakage, complete loss of RRPMs from 

pavement surface, severe abrasion or contamination of the retroreflective faces, and 

sinking of RRPMs into asphalt concrete. The overall performances of RRPMs in 

surveyed pavement sections are summarized and ranked as: 3M 290> Rayolite 

RS >Ennis 980>Ennis C80>Apex 921AR. 

The distributions and magnitudes of various stress indicators, such as von Mises 

stress, principal stress, shear stress and normal stress within the RRPM structure, are 

estimated by finite element model (FEM) of pavement/tire/marker systems in ANSYS 
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software. Based on finite element model simulations, the critical stresses in the RRPMs 

and the observed failure modes are linked. Both the critical von Mises stress and 

compressive stress are concentrated on the rims and corners of the markers’ top surface. 

Tensile stress is produced on the mid-top of markers’ shell and distributed symmetrically. 

For shear stress at the RRPM bottom, the maximum one occurs on the non-lens sides of 

the RRPM. Upward normal stress, which may cause RRPM detachment from pavement, 

exists at the bottom, especially on the edge of lens side and at the middle of the curve 

edge.   

One orthogonal experiment of a matrix of L16 (4
5-3

) and one full factorial 

experiment of 4×5 were used to guide the FME simulations. Based on the stress 

magnitudes variations on different RRPM types, the relationships between the RRPM 

profiles and the stresses are obtained.  It is found that RRPMs of geometric designs of 

smaller bottom width and top length, larger bottom length, lower height, and lower ratio 

of top width over bottom width witness decreases of experienced critical stresses. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Retroreflective raised pavement marker (RRPM) is a device that is applied as a 

positioning guide to supplement or substitute for pavement markings (FHWA, 2003), 

especially during night and wet weather conditions when the pavement markings 

experience a substantial reduction of retroreflectivity. Moreover, RRPM can also cause 

vehicle vibration and audible tone to alert drivers for crossing over it (NCHRP, 2004).  

However, the Texas Department of Transportation conducted a number of studies 

to conclude that most RRPMs lose reflectivity over very short periods of time (Hofmann 

and Dunning, 1995). In recent years, RRPMs exhibited poor field performance, such as 

poor retention on pavements, structural damage, and loss of retroreflectivity (Zhang et al., 

2009).  

These unexpected damages significantly reduce RRPM service life. Considering 

the relatively high cost of RRPM (material and installation), based on benefit-cost 

calculation, most states do not install RRPMs if pavement overlay or replacement is 

scheduled within five years or less (Matthias, 1988; Zador et al., 1982). This strategy also 

can be interpreted that the anticipated RRPM service life should be beyond five years, 

otherwise the negative profit appears. However, questionnaire survey, conducted by a 

University of South Florida (USF) investigation team, shows that the average RRPM 
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service life is 28.6 months, which is less than half of the expected minimum service life. 

Therefore, it is important to investigate how to extend the RRPM service life. 

1.2 Organization of the Thesis 

The thesis is organized as follows. As a preparation for the study, the remainder 

of Chapter 1 introduces all types of RRPMs, which were collected by searching all states 

Department of Transportation (DOT) specifications and attached Qualified Product Lists 

(QPLs). Chapter 2 shows the current performance of these RRPMs according to 

questionnaire and field surveys. The questionnaire survey was conducted with 

participants including maintenance engineers, contract managers, and other personnel in 

various state DOTs. The field surveys were conducted around the Tampa Bay area of 

Florida. Chapter 3 describes the methodology of building a finite element model (FEM) 

of the tire/marker/pavement system to simulate the RRPM conditions in the real world. 

Chapter 3 also describes the experimental designs, including one orthogonal design and 

one full factorial design. The rest of Chapter 3 introduces different critical stresses and 

why these types of stresses are considered. Chapter 4 is divided into three parts. The first 

part analyzes the magnitudes and locations of critical stresses on some typical size 

RRPMs. The second part conducts statistical analysis of stresses. The third part verifies 

the FEM simulation results based on the survey results in Chapter 2. Conclusions and 

future researches are listed in Chapter 5. 

1.3 Types of RRPMs 

RRPMs can be classified in various ways based on their structures and functions. 

According to a common classification used in Florida Department of Transportation 

(FDOT) 2010 Standard Specifications for Road and Bridge Construction, Section 970, 
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RRPMs in Florida are mainly grouped into four classes: Class A for temporary, Class B 

for permanent, Class D for work zone, and Class E for temporary work zone. Many other 

states further separate the permanent RRPMs into two subcategories: snowplowable and 

nonsnowplowable. Snowplowable RRPMs typically consist of cast iron housing and 

reflective lens, and are used in snowplow regions, like the northern states of the USA. 

Nonsnowplowable RRPMs do not have protective housing, and thus are only suited for 

roadways that do not experience snow plowing, such as those in Florida. Based on a 

comprehensive review of DOT specifications and qualified or approved product lists 

(QPLs/APLs) of RRPMs in each state, the use of snowplowable or nonsnowplowable 

RRPMs in the US is summarized in Figure 1-1. 

 

Figure 1-1 Use of Snowplowable or Nonsnowplowable RRPMs in the U.S. 
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Figure 1-1 shows that the states using permanent nonsnowplowable RRPMs are 

concentrated in the southern areas where air temperature is relatively high. This map also 

shows that, in many northern areas, permanent nonsnowplowable RRPMs are typically 

not installed. 

Since this study is intended for the RRPM use in Florida of rare snow chances, 

only nonsnowplowable RRPMs are of interests. Figure 1-1 shows how widely this type of 

RRPMs is used. Because all information in this map was derived from DOT 

specifications and QPLs/APLs, the map only describes the current use of RRPMs on U.S. 

Route highways, U.S. Interstate highways, and State Route highways. The use of RRPMs 

on local roads and streets is not included. During the survey, it was discovered that a few 

states have recently stopped the use of nonsnowplowable RRPMs and begun to use 

snowplowable ones instead.  

Based on the state DOT QPLs/APLs, four companies are mainly approved for 

providing nonsnowplowable RRPMs: 

1) 3M 

2) Ennis/Stimsonite 

3) Ray-o-lite, and  

4) Apex 

For 3M, the major product is 290 series, including 290PSA series (PSA stands for 

pressure sensitive adhesive, which means a simple pressure can activate the adhesive 

function); For Ennis/Stimsonite, the company provides 6 widely used types of RRPMs: 

C80, C88, Model 911, Model 980, Model 948, and Model 953; For Apex, only 921AR is 

mentioned, but widely appearing, on the States QPL/APL; For Ray-o-lite, the AA (All 
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Acrylic), RS (Round Shoulder), SS (Squared Shoulder), and Model 2002 are the main 

products. The AA and RS types also include ARC (abrasion resistant coats) and FH 

categories.  The use of these RRPMs in various states is summarized in Table 1-1, and 

plotted in Figure 1-2. 

 

Figure 1-2 Number of States Using Various Models of RRPMs 

Table 1-1 Current Types of RRPMs in the US States 

  3M Ennis/ Stimsonite Ray-O-Lite Apex 

State 290(PSA) C80 C88 911 980 948 953 AA RS SS 2002 921AR 

Alabama                 

Arizona                 

Arkansas                    

California              

Florida                   

Georgia yellow                

Louisiana yellow/blue               

Mississippi                     

New Mexico                        

North Carolina                    

Tennessee                 

Texas                

Nevada                

Oregon                     

Washington              

Massachusetts                       

Kentucky                       
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According to their various materials and structures, RRPMs can be grouped as 

follows. 

1.3.1 With or Without Fill Materials 

Typical RRPMs without fill material are 3M 290 series and Ennis C80. The body 

structure is hollow as illustrated in Figure 1-3. 

 

Figure 1-3 Cross Sections of 3M 290 and Ennis C80 

RRPMs shown in Figure 1-4 are with filler material, such as Rayolite RS and 

Ennis C88.  

 

Figure 1-4 Cross Sections of Ennis C88 and Rayolite RS 

1.3.2 Squared Bottom or Bottom With Curves 

Geometrically, RRPMs can be divided into two categories: type I with squared 

bottom, such as Ennis C88, and type II with bottom with curve, such as Ennis C80.  
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For type I, the radius of bottom curve can be determined from bottom width and 

length directly, based on their relationship shown in Figure 3-2. These bottom curves also 

extend RRPM widths, and the width in this type is termed as extended width, which is 

shown in Figure 1-5. For type II, its squared bottom can be treated as one special case of 

type I, whose radius of curvature is infinite. 

Moreover, different from type I, the bottom width of type II is unequal to its top 

width. However, this specific classification method is only for investigating the effects of 

change in RRPM geometric characteristics (outline of RRPM profile), without 

consideration of shell and filling material components. 

 

Figure 1-5 Bottoms of 3M 290 and Ennis C80 

Because both types of RRPM profiles can be depicted by five variables (bottom 

length, bottom width, top length, top width and height), this classification is selected to 

be used in the subsequent study for geometric optimization. 

Specifically, when building the FEM in ANSYS, changing the bottom shape can 

directly switch these two types of RRPM profile to each other. As a consequence, the 

geometric analysis of RRPM profiles can be concentrated on the marker which not only 

has bottom with curves, but also has unequal bottom width and top width.  
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Figure 1-6 Bottoms of Rayolite RS and Ennis C88 
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CHAPTER 2: QUESTIONNAIRE SURVEY AND FIELD SURVEY 

 

2.1 Details of Questionnaire Survey 

To collect up-to-date information on RRPMs from experienced engineers and 

specialists, a questionnaire survey was developed and distributed electronically across the 

nation. The respondents include maintenance engineers, contract managers, and other 

personnel in various state DOTs. Based on the relevancy to the purposes of the study, the 

respondents are divided into three groups: Group A from FDOT District 7 (Tampa area), 

Group B from other FDOT Districts, and Group C from other states (mainly DOT 

personnel with a few from the industry). The questions in the questionnaire vary slightly 

among the three groups. Among a total of 11 questions in the questionnaire survey, only 

two are directly related to geometric optimization. In this study, these two questions and 

corresponding responses are summarized, as follows, to provide useful information for 

further analysis. 

Question 1 to Groups A, B, and C is what types of RRPMs (based on FDOT 

qualified product list if in Florida) are most commonly used? Why? Are there any 

RRPMs seen as good markers and any seen as bad markers in terms of field performance? 

Response from Group A shows that 3M and Stimsonite are more commonly used 

due to pricing. 3M is seen as a good marker which has a longer life on the road and 

Stimsonite as not so good in the area of field performance. The markers shall comply 
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with ASTM D 4280 Class A (no abrasion treatment) and Class B (with abrasion 

treatment). 

Response from Group B shows that Type B markers which are listed on the 

FDOT QPL are only used. The certification of materials is checked before beginning 

work. No significant difference in performance between manufacturers. 

Response from Group C shows that Georgia uses 2×4 inches or 4×4 inches size 

RRPMs. All approved markers have similar service lives. In South Carolina, plastic 

makers with reflective surfaces, such as the 3M markers, have become more popular in 

recent years. Typically, Ray-O-Lite, Ennis (Stimsonite) and 3M markers which meet the 

general requirements of specifications are used on contracts. Louisiana uses 3M because 

of low bids. Contractors also seem to use more of the Ennis and Ray-O-lite markers. The 

Ennis markers seem to hold up better. 

Arkansas uses 3M, Ennis, and Ray-O-Lite markers according to Supply Contract 

Specifications. No significant difference exists in performance between manufacturers. In 

Arizona, 3M 290 markers have dominated for quite a while. Ennis 88, 911 and 980, Apex 

920 or 921, Ray-O-Lite round shoulder, ARC II markers have been approved, but are not 

often used. Washington State typically uses the Stimsonite model 88 RRPMs in Olympic 

Region because they last up to the plow abuse and normal highway use. Other RRPMs 

similar to the Stimsonite 948 ones are also used in Washington but they do not hold up 

well.  

One respondent from California thinks that 3M is the best type: they seem to 

outlast all others by far as reflectivity is concerned. Respondents from Nevada and North 

Carolina only mentioned 3M but no significant difference exists.  
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Thus, 3M, Ennis, and Ray-O-Lite are the most popular RRPMs manufacturers in 

these states. 3M has dominated for quite a while because of its low bids and good 

performance. Apparently, the types of applied RRPMs vary with states, but the 

mainstream exists. Figure 2-1 shows that all these 7 states use 3M, and adversely, Apex is 

not so popular.  

For field performance, Group A prefers 3M, and regards Stimsonite as not so 

good. Group B claims that there is no significant difference in performance between 

manufacturers. 

In Group C, three respondents have the same comment as Group B. One 

respondent from Louisiana feels that Ennis seems to hold up better, and another 

respondent from Arizona replies that 3M dominates. Figure 2-2 shows that most of the 

respondents feel no significant difference in field performance of these approved RRPMs.  

 

Figure 2-1 Numbers of States Using Various RRPMs 
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Figure 2-2 Comments and Their Percentages 

Question 2 to Groups A, B, and C is what failure modes are often observed (e.g., 

lens cracking, RRPM body cracking, and loss of RRPMs [adhesive failure]) on asphalt 

pavements/ concrete pavements?  

Response from Group A shows that, based on observed damage, it is true that 

most of the encountered damages are lens and body cracking, and scuffing of the lens 

surface. Moreover, there is one more item of failure modes: compression into the 

pavement surface, which typically occurs on new asphalt. The adhesion tracking onto 

lens caused by sun heating, rain and dirt is also treated as damage.  

Response from Group B shows that, for the failure modes on asphalt pavements, 

the respondents’ answers are different, as listed in Table 2-1 and plotted in Figure 2-3. As 

can be seen, lens and body cracking, sinking, and loss are the three main observed failure 

modes of RRPMs on asphalt pavements in Florida. Additionally, two respondents 

emphasized that the loss of RRPMs should be the most failure mode. For the failure 

modes on concrete pavements, the results are consistent: adhesive failure.  

Table 2-1 Main Failure Modes and Number of Respondents in Group B 

 
Failure Modes 

Loss Crack Sink 

Number of Respondents 3 3 1 
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Figure 2-3 Main Failure Modes and Percentage of Respondents in Group B 

Response from Group C shows that, for the failure modes on asphalt pavements, 

answers are similar to those from Group B. The specific results are shown in Table 2-2. 

For markers on concrete pavements, the failure modes are similar to those on asphalt 

pavements, with the exception of sinking.  

Table 2-2 Main Failure Modes and Number of Respondents in Group C 

 
Failure Modes 

Loss Crack Sink 

Number of Respondents 7 7 3 

 

 

Figure 2-4 Main Failure Modes and Percentage of Respondents in Group C 
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Thus, based on the respondents’ answers, it is safe to say that lens and body crack 

and loss of RRPMs are the main failure modes, and their proportions are almost equal.  

This questionnaire survey also asked respondents for some suggestion, which can 

be done, to extend RRPM service life. There are two suggestions related to optimizing 

RRPM geometric characteristics. One is to decrease the RRPM profile height, and the 

other is to enlarge RRPM bottom area. These suggestions will be checked in Chapter 4.  

This questionnaire survey also directly asked respondents in different states about 

whether their state uses RRPMs. Six respondents who respectively work in Virginia, 

Pennsylvania, Tennessee, New Mexico, Oklahoma, and Kentucky replied no, although 

their DOT specifications do mention RRPMs. Considering the weather conditions, these 

DOTs all use snowplowable RRPMs and temporary RRPMs, instead. Their answers 

contribute to modifying the “RRPM map”, which is shown in Figure 2-5. 

 

Figure 2-5 Modified Map of Use of Snowplowable or Nonsnowplowable RRPMs in the US 
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2.2 Details of Field Survey 

In the summer and the fall of 2012, two field surveys with several objectives were 

conducted to record the conditions of RRPMs installed on selected FDOT roadways. 

Considering optimization of RRPM geometric characteristics, only the following two 

parts are discussed in this study: 

1) Which types of RRPMs are widely used on FDOT roadways and how do they 

perform?  

2) Which major failure modes do the RRPMs exhibit in the field?  

2.2.1 Site Selection 

The roadway sections surveyed, as shown in Figure 2-6, were selected through 

consulting with FDOT personnel to cover various marker types and damage conditions 

and high and low traffic volumes. One route, starting 10 miles south of Ruskin, along US 

41, and then turning to SR 674, till the intersection with Plant City-Picnic Rd. The second 

route is along the Dale Mabry Hwy and 22 St, which are connected by SR 60. The third 

route is along 22 St, crossing SR 60, to the Causeway Blvd, until the intersection with 

Maydell Dr. These sections have various geometric features, such as tangent, horizontal 

curve, vertical curve, width and position (entry and departure approaches at intersections). 

The current traffic conditions, such as annual average daily traffic (AADT), truck volume, 

pavement surface condition (e.g., cracking and roughness) are also different.  

The geometric characteristics and the conditions of the roadways were determined 

from the geographic information system (GIS) data and Straight Line Diagrams (SLDs), 

which are both available on FDOT website.  The RRPMs and their failure modes were 

recorded by a digital camera. 
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Figure 2-6 Locations of Roadway Sections Surveyed 

2.2.2 Field Survey in May, 2012 

The major failure modes on different RRPM types were observed during the field 

survey in May, 2012. 

Generally, the RRPM failure modes can be identified into four types: lens 

breakage and loss; cracking of the RRPM body; complete loss of RRPM from pavement 

surface; and severe abrasion or contamination of the retro-reflective faces (Zhang et al., 

2009). For more accurate description, this study further separates the specific modes into 
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seven categories, as follows:  

1) LC:  lens cracking 

2) LL:  lens loss 

3) BC: body cracking 

4) BB:  body breakage 

5) LR: complete loss of RRPMs from pavement surface with only adhesive 

remaining 

6) AC: severe abrasion or contamination of the retroreflective faces 

7) S: sinking of RRPMs into asphalt concrete 

 

Figure 2-7 Failure Modes 
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Based on the condition survey on the selected FDOT roadways, the counts of sites 

where different failure modes were observed are shown in Table 2-3. 

Table 2-3 Counts of Sites with Different Failure Modes of Four RRPM Brands 

 LC LL BC BB LR AC S No. of Sites Surveyed 

3M 290 1 0 2 2 3 10 6 11 

AA ARC II 3 2 3 1 2 3 1 5 

C80 0 0 0 0 0 1 0 1 

Round Shoulder 0 0 0 0 0 1 0 1 

 

It can be seen from Table 2-3 that: 

1) 3M 290 is most widely used at these field survey sites, followed by AA ARC II.  

2) For 3M 290 markers, their lenses are relatively sturdy, because no lens loss (LL) 

was observed at these sites. However, frequent abrasion or contamination of the lens 

surface (AC) and marker sinking (S) were observed. 

3) AA ARC II exhibited various distress modes without any single mode 

dominating.  

4) The marker bodies of 3M 290 and AA ARC II all seem to be weak in the 

middle. It is observed that the middle body of 3M 290 has to bear more loads, because of 

its finger grips. AA ARC II has an abrasion resistant coating which is separated into two 

bond parts. The bond boundary in the middle body of the RRPMs seems to be a weak 

layer for cracking.  

5) C80 and Round Shoulder markers only show abrasion or contamination of the 

retroreflective faces. They were only observed on portland Cement Concrete (PCC) 

pavements in this survey. Compared with 3M 290, C80 may protect the lens more 

effectively since its lens is slightly dented. 

6) Many RRPMs’ failure extents are not commensurate with the roads’ condition, 
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such as those at sites 1, 2, 4, 5, 8, 9, 10, 13, 14, and 15. These sites sustained heavy truck 

traffic and showed pavement distresses such as cracking, but the markers looked fine. 

One potential reason is that the markers had been replaced frequently. One example is at 

site 13 (on SR 60), where the remaining adhesives on the pavement indicated that the 

markers had been replaced for at least four times in the last few years. The age 

information of the markers, however, could not be obtained from FDOT, which limited 

the extent of analysis of the field data and made ensuing field surveys indispensable.  

For better evaluation of the current RRPM situations, the method to measure the 

performance of RRPMs are in accordance with NTPEP (National Transportation Product 

Evaluation Program): 

5

0

( )i

i

R R i


  

where: 

R = Total Rating, 

R (i) = Rating defined by NTPEP, 

R (5) = 5-Excellent; Completely Intact, “Like New” Condition, 

R (4) = 4-Good; Minor Scrapes and Scratches, 

R (3) = 3-Fair; Obvious Damage but still Functional, 

R (2) = 2-Poor; Major Damage, Marginally Functional, 

R (1) = 1-Very Poor; Non-functional, 

R (0) = 0-Missing, 

i  = Estimated Proportion. 

According to the estimated proportion of different RRPM ratings at different sites, 

as shown in Table 2-4, the total rating can be calculated from the equation above. 
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Table 2-4 RRPM Rating at Each Site from First Survey 

 

The total ratings for each RRPM type in Table 2-4 are averaged and shown in 

Table 2-5. 

Table 2-5 Average Ratings of Various RRPM Types from First Survey 

Marker Type Average Rating 

3M 290 3.53 

Rayolite AA ARC II 3.8 

Rayolite Round Shoulder 4.1 

Ennis Paint Model C80 3.3 

 

Table 2-5 shows that the Rayolite Round Shoulder has the best performance rank, 

and the other three RRPM types are all on “good-fair” level, based on the information 

from the field survey in May, 2012. 

Site ID Marker Type 

Survey 1 

 Performance  

Date 1 2 3 4 5 0 Total 

4 3M 290 5/10/2012    95% 5%  4.05 

5 Rayolite AA ARC II 5/10/2012    95% 5%  4.05 

6 3M 290 5/10/2012  10% 80% 10%   3 

7 Rayolite AA ARC II (FH) 5/10/2012   15% 65%  20% 3.05 

8 3M 290 5/11/2012    90% 10%  4.1 

9 Rayolite Round Shoulder 5/11/2012    90% 10%  4.1 

10 Ennis Paint Model C80 5/11/2012    70% 10% 20% 3.3 

11 Rayolite AA ARC II (FH) 5/11/2012   70% 30%   3.3 

12 3M 290 5/11/2012   50% 30%  20% 2.7 

13 
3M 290; 

Rayolite AA ARC II 
5/21/2012    20% 80%  4.8 

15 3M 290 5/21/2012   60% 20%  20% 2.6 

16 3M 290 5/21/2012    50% 30% 20% 3.5 
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2.2.3 Field Survey in September, 2012 

To clear the confounding effect of various RRPM ages, one ensuing field 

evaluation after four months was made to check whether the failure of RRPMs was 

exacerbated in the same time period for all sections. 

Unfortunately, at sites 6, 7 and 8, the roads had been repaved and old RRPMs had 

been replaced. Therefore the RRPMs at these three sites cannot be considered for 

comparison with the RRPM former condition.  

Similar to the first field survey, the total ratings of different RRPM types are 

calculated and shown in Table 2-6. 

Table 2-6 RRPM Rating at Each Site from Second Survey 

 

The total rating for each RRPM type in Table 2-6 are averaged and shown in 

Table 2-7. 

Site ID Marker Type 

Survey 2 

 Performance  

Date 1 2 3 4 5 0 Total 

4 3M 290 9/11/2012   5% 95%   3.95 

5 Rayolite AA ARC II 9/11/2012    85% 5% 10% 3.65 

6 3M 290 9/11/2012    20% 80%  4.8 

7 Rayolite AA ARC II (FH) 9/11/2012    10% 70% 20% 3.9 

8 3M 290 9/12/2012    5% 95%  4.95 

9 Rayolite Round Shoulder 9/12/2012    90% 10%  4.1 

10 Ennis Paint Model C80 9/12/2012    65% 10% 25% 3.1 

11 Rayolite AA ARC II (FH) 9/12/2012   70% 30%   3.3 

12 3M 290 9/12/2012   50% 30%  20% 2.7 

13 
3M 290; 

Rayolite AA ARC II 
9/12/2012    20% 80%  4.8 

15 3M 290 9/12/2012   40%   60% 1.2 

16 3M 290 9/12/2012   20% 40%  40% 2.2 
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Table 2-7 Average Ratings of Various RRPM Types from Second Survey 

Marker Type Average Rating 

3M 290 3.51 

Rayolite AA ARC II 3.9 

Rayolite Round Shoulder 4.1 

Ennis Paint Model C80 3.1 

 

The average ratings of RRPMs obtained from the two field surveys are compared 

and shown in Table 2-8. RRPMs at sites 6, 7, and 8 are excluded in the comparison since 

they had been replaced. 

Table 2-8 shows that 3M 290 got damaged more than the other three RRPM types. 

The failure of Rayolite AA ARC II and Ennis Paint Model C80 was slightly exacerbated, 

and the condition of Rayolite Round Shoulder seems to exhibit no change during these 

four months.  

Table 2-8 Comparison of Average Ratings of Various RRPM Types from First and Second Surveys 

Marker Type 

Average Rating from  

1
st
 Survey 

Average Rating from  

2
nd

 Survey 

3M 290 3.53 2.97 

Rayolite AA ARC II 4.05 3.9 

Rayolite Round Shoulder 4.1 4.1 

Ennis Paint Model C80 3.3 3.1 

 

2.3 Summary of Current RRPM Conditions by Surveys 

Evaluations of RRPMs from different sources, such as questionnaire survey, field 

survey, and literature review have already been obtained. However, every source has its 

own blind side. For example, a short-term field survey cannot fully show the different 

qualities of RRPMs, because of the capricious external conditions. Therefore, the task of 

this section is to summarize these evaluations individually, and then to combine them to 

get a comprehensive rank of those RRPMs that are used in Florida.  
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2.3.1 Questionnaire Survey 

This survey directly provides general evaluations of different RRPMs from 

experienced engineers and specialists. The results show that 27 percent respondents select 

3M 290 as the best type, and the rests have no significant preference.  Thus, this 

questionnaire survey identifies 3M 290 as better performing than the other types of 

RRPMs.  

2.3.2 Field Survey 

In contrast with the questionnaire survey, field survey provides more details of 

RRPM performance. According to rating performances of RRPMs from two field surveys, 

which are shown in Table 2-8, the rank of RRPMs is determined as follows: Rayolite RS > 

Rayolite AA ARC II >Ennis C80-FH > 3M 290.  

Specifically, the typical failure modes in different types of RRPMs are observed 

and shown in Figure 2-8. For Ennis C80, there is almost no damage on the body and lens. 

For Rayolite RS, severe abrasion occurs on the rim of body. For 3M 290, all failure types 

can be observed in different sites, such as lens cracking and loss, body cracking and 

breakage, completely loss, severe abrasion, and sinking into the pavement.  

 

Figure 2-8 Typical Failure Modes in Different Types of RRPMs 
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2.3.3 Manufacturers’ Information 

Manufacturers also provide some related information about their products. 

However, to avoid bias, this part only compares two RRPMs manufactured from the 

same company. In Florida, only Ennis’ two different RRPM modes are approved in the 

QPL. Ennis states that Ennis 980 marker is a new product which has higher performance 

and durability than their former products. It seems that Ennis 980 is the next generation 

of Ennis C80. Therefore, it is safe to say that Ennis 980 is more advanced than Ennis C80. 

2.3.4 NTPEP Field Evaluation 

NTPEP conducted field evaluations of RRPMs twice on Georgia test decks, 

respectively starting from 2004 and 2007. Ennis C80 and Rayolite RS were selected for 

the field evaluation in 2004 (NTPEP, 2004). Ennis 980 and Ennis C80 were installed for 

ensuing field evaluation in 2007 (NTPEP, 2011). Based on the raw records on the marker 

ratings, the average rating of every RRPM type can be calculated, and the results are 

shown as follows. 

Table 2-9 RRPM Field Evaluation in Georgia 

2004,Georgia 2007,Georgia 

  Ennis C80 Rayolite RS   Ennis C80 Ennis 980 

6  Month 
Concrete 3.842 3.963 

6  Month 
Concrete 3.675 3.531 

Asphalt 3.988 3.933 Asphalt 3.356 3.5 

12 Month 
Concrete 3.213 3.264 

12 Month 
Concrete 3.556 3.486 

Asphalt 3.042 3.139 Asphalt 2.785 2.826 

18 Month 
Concrete 2.859 2.979 

18 Month 
Concrete 3.523 3.469 

Asphalt 2.63 2.786 Asphalt 2.102 1.922 

24 Month 
Concrete 2.327 2.601 

24 Month 
Concrete 3.134 3.286 

Asphalt 2.464 2.47 Asphalt / / 

 

Table 2-9 illustrates that Rayolite RS is better than Ennis C80, and the general 

performances of Ennis C80 and Ennis 980 are similar.  
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2.3.5 Other Literature Review 

One two-year field test, which was conducted on test decks in Texas, shows that 

3M 290 is better than Ennis C80 (Zhang et al., 2009), and Apex 921AR has a worse 

performance (Zhang et al., 2009).  

Table 2-10 Results of RRPM Performance Ranking by Difference Sources 

  No. Results (rank) 
Blind side of 

source 

Reliability of 

source 

Questionnaire 

survey 
1 3M 290 is the best performing 

No details of 

analysis / 

Only based on 

experience 

Experience 

Field survey 2 

Rayolite RS >  

Rayolite AA ARC II 

 >Ennis C80-FH > 3M 290 

No control of 

various external  

conditions (e.g., 

age, truck 

volume)/Insuffici

ent sites 

Practical 

performance 

Manufactures' 

information 
3 Ennis 980>Ennis C80 

No comparison 

between RRPMs  

from two different 

companies 

Comparison 

between RRPMs 

from same 

company is 

reliable 

NTPEP field 

evaluation 
4 

Rayolite RS>Ennis 980/Ennis 

C80 
/ 

Sufficient 

samples/ Control 

of external 

conditions/ 

Practical  

performance/ 

Long time period 

Other field test 5 
3M 290>Ennis C80>Apex 

921AR 
/ 

Sufficient 

samples/ Control 

of external 

conditions/ 

Practical  

performance/ 

Long time period 

 

Table 2-10 lists the results from different sources, with their blind sides and their 

reliabilities. Although each source provides different RRPM ratings, Table 2-10 shows 

that sources 1, 3, 4, and 5 are not conflicting. The performance of these RRPMs can be 

ranked as follows: 3M 290> Rayolite RS >Ennis 980>Ennis C80>Apex 921AR. 

However, source 2 conflicts with this sequence. Weighing the pros and cons, because of 
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their severe blind sides which are listed in Table 2-10, the ranking from source 2 is 

ignored. The result of source 2 also illustrates that the RRPM performance significantly 

depends on the external conditions.  

As the final consequence, the estimated rank of RRPMs in Florida can be 

expressed as: 3M 290> Rayolite RS >Ennis 980>Ennis C80>Apex 921AR. 
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CHAPTER 3: METHODOLOGY 

 

3.1 Finite Element Model of Tire/Marker/Pavement Systems 

In the real world, RRPM is installed on flexible or rigid pavement and impacted 

by tires with different velocities, directions, and impact locations. This whole contacting 

process is not static, but dynamic. Moreover, RRPM and tire both have complex profiles 

which cannot be deemed as simple geometric objects. As a consequence, building finite 

element models (FEM) for this system can not only simulate and analyze the real stress-

strain condition efficiently, but also modify the RRPM dimensions for obtaining optimal 

shapes conveniently and efficiently. This system can be separated into three components: 

pavement model, RRPM model, and tire model, as shown in Figure 3-1. 

 

Figure 3-1 Tire/Marker/Pavement System 
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3.1.1 Pavement Model 

Normally, pavement has two categories: flexible and rigid. For flexible one, it 

typically consists of three layers: surface of asphalt, base and subgrade courses of 

aggregates and soil. For rigid one, the surface is portland cement concrete instead and 

may be without base course. Because questionnaire and field surveys involve mainly 

flexible pavements in Florida, only flexible one is considered in this study. The following 

characteristics of a pavement model is obtained by Texas Transportation Institute (TTI) 

researchers and used in this study (Zhang et al., 2009). This pavement model matches the 

geometric designs of interstate highways bearing a large percentage of heavy traffic 

volume. 

Table 3-1 Profiles and Material Properties for Flexible Pavement 

Layer name  Thickness (m)  Density (kg/m
3
) Poisson’s Ratio Young’s 

Modulus (MPa) 

Surface  0.2 2322 0.35 3000 

Base 0.3 2162 0.35 300 

Subgrade 5.0 2001 0.35 10 

 

3.1.2 Tire Model 

Tire model, used in this paper, was previously developed by a USF investigation 

team for studying Locked Wheel Skid Tester (LWST) (Kosgolla, 2012). The cross 

sectional profile of this tire model is derived by slicing a spent standard ASTM E524-08 

tire. This tire model consists of two fiberglass belted plies, two polymer biased plies, 

steel beads and tire rubber. As the main tire component contributing to friction, a tire 

rubber with styrene butadiene rubber (SBR) has both hyperelastic and viscoelastic 

properties. In ANSYS 12.0, Mooney-Revlin model can be developed for hyperelastic 
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property, and Prony series model can be applied for viscoelastic property. These relevant 

material properties and empirical constants are achieved from previous ASTM studies 

(ASTM 2001; ASTM 2006). Based on the above information, a three-dimension tire 

model is constructed in SolidWorks 2010 software, and then imported to the ANSYS 

platform for providing dynamic impact to RRPM. 

3.1.3 RRPM Model 

3.1.3.1 Details of RRPM Geometric Characteristics 

As mentioned in Chapter 1, RRPMs can be divided into two categories: one with 

squared bottom, such as Ennis C88, and the other with curved bottom, such as Ennis C80. 

For Ennis C80, the radius of bottom curve can be plotted from bottom width and length 

directly, which is shown in Figure 3-2. In other words, the bottom curve is not an 

independent variable. As a consequence, without considering less significant geometric 

features, such as finger-grip, fillet, or chamfer, both types of RRPM model can be built 

by five basic factors: bottom width, bottom length, top width, top length and height. 

 

Figure 3-2 Geometric Relations on Bottom of Ennis C80 

For more clearly describing the results obtained from ANSYS in the next chapter, 

Figure 3-3 defines and identifies all different parts of RRPM. 
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Figure 3-3 Different Parts of RRPM 

3.1.3.2 Measurements of RRPMs and Material Properties 

For dimensions of RRPMs, the precise geometry information was obtained by 

measuring the cut-into-piece substructure of the RRPMs with a vernier caliper. A list of 

the major geometry data of the four RRPMs is provided in Table 3-2. For material 

properties, an extensive literature review of multiple sources, such as manufacturer 

specifications, published studies, and Google searching, were performed to obtain the 

relevant material properties, which are summarized in Table 3-3 through Table 3-5.   

 

Figure 3-4 Cutting the RRPMs to Measure the Geometric Information 
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Table 3-2 Profiles of Each RRPMs (mm) 

Type Thickness Length Width Top Length Top Width 

3M 290 15.7 88.9 72.3 44.9 69.8 

Ennis C80 17.5 80.8 86.3 39.2 78.0 

Ennis C88 18.1 101.0 101.0 40.1 85.8 

Rayolite RS 17.3 99.3 100.2 48.8 57.5 

 

Table 3-3 Material Properties of 3M 290 

Body and Lens (Acrylic) 

Density  1350 kg/m
3
 

Young’s modulus 5800 MPa 

Poisson ratio 0.35 - 

Yield strength 80 MPa 

 

Table 3-4 Material Properties of Ennis C80 

Body (Acrylic) 

Density  1040 kg/m
3
 

Young’s modulus 2100 MPa 

Poisson ratio 0.35 - 

Yield strength 44 MPa 

Lens (Acrylic) 

Density  1190 kg/m
3
 

Young’s modulus 3103 MPa 

Poisson ratio 0.11 - 

Yield strength 70 MPa 

 



32 

Table 3-5 Material Properties of Rayolite RS 

Filler (Inert Thermosetting Compound) 

Density   kg/m
3
 

Young’s modulus 2600 MPa 

Poisson ratio 0.44 - 

Yield strength  MPa 

Housing (Acrylonitrile  Butadiene Stryrene ) 

Density   kg/m
3
 

Young’s modulus 2300 MPa 

Poisson ratio 0.37 - 

Yield strength  MPa 

Lens ( Methyl Methcrylate ) 

Density   kg/m
3
 

Young’s modulus 2450 MPa 

Poisson ratio 0.37 - 

Yield strength  MPa 

 

3.1.3.3 Building RRPM Models in ANSYS 

Two types of RRPMs are built in ANSYS based on the dimensions of RRPMs. 

And the material properties of each RRPM component are inputted into “Engineering 

Data” section in the software. In this study, as mentioned in section 1.3.2, the shape of 

RRPM is the combination of both types, which not only has bottom with curves, but also 

has unequal bottom width and top width. 
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Figure 3-5 RRPM Model in ANSYS 

3.1.4 Contact Model 

Contact behavior is a highly nonlinear process, requiring special skills to assure 

the simulation accuracy. ANSYS provides powerful analysis tool to execute the contact 

command. In this study, surface to surface contact elements were used since they are 

suitable to detect the gap between the two contact interfaces. The pavement and maker 

are much stiffer compared to the rolling tire. Considering this, the pavement surface 

elements and the RRPM surface elements were treated as target elements (blue part in 

Figure 3-6) and the bottom surface elements of the rubber block were treated as contact 

elements (red part in Figure 3-6). 

In this study, CONTA 174 element was selected as contact element since it is 

capable of changing the coefficient of friction with “temperature, time, normal pressure, 

sliding distance, or sliding relative velocity” (ANSYS, 2009). On the other hand, TARGE 

170 was used as the target elements. Augmented-Lagrangian algorithm was used as the 

contact algorithm, which was able to prevent element penetration effectively (ANSYS, 

2009). The stiffness matrix was updated for each iteration to obtain more accurate 

simulations at the expense of additional running time. The coefficient of friction (μ) was 
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defined using the Coulomb friction model and in the modeling, field surveyed value was 

used (ANSYS, 2009). 

 

Figure 3-6 Tire-Marker Contact System 

3.1.5 Mesh Generation 

After building the tire-marker-pavement system and defining the contact model, 

this system can be directly meshed by “mesh” order in ANSYS. Because of this powerful 

function for generating mesh, the time-consuming issue from re-mesh whenever the 

RRPM dimensions are changed is avoided. 

 

Figure 3-7 Mesh Generation 

Because the sizes of tire, marker, and pavement are different, the finite element 

sizes are also defined by different values. Element sizes of tire, marker, and pavement are 

4 mm, 40 mm, and 150 mm, respectively. Mesh generation also includes edge sizing: 
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eight edges of two pavement layers are selected and every edge is divided by three 

divisions. 

3.1.6 Finite Element Model Assembly 

In this part, the tire is molded to roll over the RRPMs dynamically. Several 

external factors, such as tire loading and vehicle velocity, are defined. Because the 

federal government limits vehicle weights and speeds on most interstate highways, these 

critical values are used in this study to define the tire load and vehicle velocity, which are 

22200 N and 31.3m/s, respectively (Zhang et al., 2009). The boundary condition is that 

the bottom of sub-grade layer is set as “fixed support” for this system. After defining 

these external factors and assembling all the components, the whole system is simulated 

in ANSYS.   

3.2 Experimental Design 

After the completion of the previous work, the researcher continued to examine 

the effects of geometric factors—bottom length (BL), top length(TL), bottom width 

(BW), top width (TW) and height (H)—on the various stresses inside the markers, such 

as von Mises stress, principal stress, shear stress, and normal stress. The reasons of 

analyzing these stresses are specifically described in section 3.3. The levels of involved 

factors (BL, TL, BW, TW/BW, and H) are listed in Table 3-6. 

Table 3-6 Matrix of Test Scenarios 

Level Element 

  BL 

(mm) 

TL 

(mm) 

BW 

(mm) 

TW/BW H 

(mm) 

Lv. 1 80.2 40.1 64.3 0.85 14 

Lv. 2 85.3 42.2 70.5 0.9 15.7 

Lv. 3 90 44.6 75.2 0.94 17.5 

Lv. 4 95 47.1 80.2 1 19.25 
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It is realized that the entire modeling program would involve 54 1024  

combinations of the levels of influencing factors, as shown in Table 3-6, for a full 

factorial design. Considering that every simulation takes at least two and a half hours 

using ANSYS, conducting all these tests is very much time consuming. To reduce the 

simulation work and meanwhile maintain the reliability of conclusions, an orthogonal 

design was used.  

3.2.1 Orthogonal Design 

3.2.1.1 Basic Concept of Orthogonal Design 

Orthogonal design (Taguchi method) is a highly fractionated factorial design. 

This multi-factor multi-level experimental design selects some representative points from 

full-scale test to efficiently observe relationships between factors and effects. Because the 

selected points are evenly dispersed and neatly comparable, all interactions between the 

controls can be negligible.  

Specifically, one typical example of fractional factorial design about four factors 

at three levels is introduced in detail as following. 

If one experimental design has 4 factors and each factor has 3 levels, a full 

factorial design needs 
43 81  tests, as shown in Figure 3-8. Compared to the full 

factorial design, a fractional factorial design only needs 
4 23 9  tests, as shown in Figure 

3-9. Although the fractional factorial design omits many tests, it still can express the 

integral situation by highly representative tests. These selected tests are distributed evenly, 

without any redundancy.  

Through fractional factorial design, because of uniform appearance of other 

control factors, which can be offset by each other, every factor can be viewed as 



37 

independent (Hedayat et al., 1999). Take factor A for example. When the level of factor 

A increases, all other factors (B, C, D) on 4 levels appear only once on “horizontal face” 

in Figure 3-9.  
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Figure 3-9 
4 23 

Fractional Factorial Design 

This property makes this fractional factorial design to obtain two properties: 1) no 

factor is redundant and unimportant (in other words, all factors are strongly 

representatives); 2) because all interactions are neglected, the main effect of every factor 
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can be observed individually. This property also makes orthogonal design to lack 

information about interactions and the main effects of individual factors are only general 

tendency, not accurate enough. So, this fractional factorial design is also termed as 

orthogonal main effect design.  

The test arrangement in Figure 3-9 can be transferred into Table 3-7. 

Table 3-7 Orthogonal Table of 
4 2

9 3 
L ( )  

                  Factor 
  Level 

Test A B C D 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

 

For this orthogonal array, all columns can be deemed as vectors, such as A 

[1,1,1,2,2,2,3,3,3], B[1,2,3,1,2,3,1,2,3], C[1,2,3,2,3,1,3,1,2], and D[1,2,3,3,1,2,2,3,1]. 

Mathematically, two vectors are orthogonal when their dot product is zero. Apparently, in 

this case, dot product by any two vectors is not zero, but equal. If the codes of three 

levels are replaced by -1, 0, and +1, the dot product by any two vectors will be zero. This 

is a good method to check whether the fractional factorial design is orthogonal. 

For any fractional factorial design, the array can be expressed by the symbol as 

OA (N, k, s, t) (Hedayat et al., 1999). Number of tests, factors, and levels are represented 

by parameters N, k, and s, respectively. In this case, the orthogonal design can be 

described as OA (9, 4, 3, 2). 
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3.2.1.2 Four-level Fractional Factorial Design 

The L16 (4
5-3

) table which was obtained from Sloane’s website is adjusted and 

used in this specific situation, with the array listed in Table 3-8. Table 3-8 shows that 

every 4 tests are conducted for each factor on each level. Within every 4 tests, other 

control variables on different levels appear equally. Taking factor C on level 3 (C3) for 

instance, test 3, test 8, test 9 and test 14 are conducted for this specific factor on specific 

level. A1 to A4, B1 to B4, D1 to D4 and E1 to E4 all appear only once in these 4 tests. 

Hence, the interactive effects are offset, and only the individual effects of each parameter 

are considered. Compared to the full factorial design, this four-level fractional factorial 

design can save substantial time and avoid redundancy.  

Table 3-8 Orthogonal Table of L16 (4
5-3

)  

 
Factor 

Test A B C D E 

1 A4 B1 C1 D1 E1 

2 A4 B2 C2 D2 E2 

3 A4 B3 C3 D3 E3 

4 A4 B4 C4 D4 E4 

5 A1 B1 C2 D3 E4 

6 A1 B2 C1 D4 E3 

7 A1 B3 C4 D1 E2 

8 A1 B4 C3 D2 E1 

9 A2 B1 C3 D4 E2 

10 A2 B2 C4 D3 E1 

11 A2 B3 C1 D2 E4 

12 A2 B4 C2 D1 E3 

13 A3 B1 C4 D2 E3 

14 A3 B2 C3 D1 E4 

15 A3 B3 C2 D4 E1 

16 A3 B4 C1 D3 E2 
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In the context of this study, the orthogonal table can be converted into Table 3-9, 

with the elements in Table 3-8 substituted by the involved parameters.   

Table 3-9 Orthogonal Main Effect Design of L16 (4
5-3

) 

  Element 

  BL TL BW TW/BW H 

Test 1 95 40.1 64.3 0.85 14 

Test 2 95 42.2 70.5 0.9 15.7 

Test 3 95 44.6 75.2 0.94 17.5 

Test 4 95 47.1 80.2 1 19.25 

Test 5 80.2 40.1 70.5 0.94 19.25 

Test 6 80.2 42.2 64.3 1 17.5 

Test 7 80.2 44.6 80.2 0.85 15.7 

Test 8 80.2 47.1 75.2 0.9 14 

Test 9 85.3 40.1 75.2 1 15.7 

Test 10 85.3 42.2 80.2 0.94 14 

Test 11 85.3 44.6 64.3 0.9 19.25 

Test 12 85.3 47.1 70.5 0.85 17.5 

Test 13 90 40.1 80.2 0.9 17.5 

Test 14 90 42.2 75.2 0.85 19.25 

Test 15 90 44.6 70.5 1 14 

Test 16 90 47.1 64.3 0.94 15.7 

 

3.2.2 Full Factorial Design 

Because the orthogonal design only concentrates on the main effect of each factor, 

the interactive effects within factors are neglected. However, it is possible that the 

interactive effects exist within these geometric factors in this case. Thus, a full factorial 

design is necessary to be conducted for seeking potential interactions. Moreover, full 

factorial design can simultaneously show the main effects and even multi-way interactive 

effects. These main effects and factorial interactions can be expressed in one full model. 

Take the below 2-factor full model for instance: 

0 1 1 2 2 12 1 2Y X X X X          
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In this full factorial model, β12 represents the interactive effect; β1and β2 

respectively indicate the main effect of X1 and X2 (Hill and Lewicki, 2006). The 

researcher can use ANOVA in statistical software, such as SPSS, to analyze the main 

effects and interaction effects of these factors. Moreover, statistically, all “beta” 

coefficients, R-squared, t value can be obtained and then used to check some conclusions. 

For example, if t value of X1 X2 is larger than critical value, β12 means one variable does 

significantly influence the effect of another variable on response Y (Hill and Lewicki, 

2006). Because full factorial design in this study is based on the results of fractional 

factorial design, the details of full factorial design are described later. 

3.3 Stress Indicators Determination 

Questionnaire survey and field survey show that RRPM suffers different failure 

modes under different scenarios. These failures happen on the various locations, such as 

top edges, top shell, and bottom surface of RRPM. In this study, four types of stresses, 

including von Mises stress, principal stress, shear stress on bottom, and normal stress on 

bottom, are analyzed to figure out which stress causes which specific failure mode. The 

results also can indirectly illustrate the relationship between the RRPM geometric 

characteristics and their failure modes.  

3.3.1 Von Mises Stress 

The most commonly used stress is von Mises stress, which is also termed as 

equivalent tensile stress. Von Mises stress is determined by principal stresses in three 

directions, as shown in the following equation: 

     
2 2 22

1 2 2 3 3 12 v             

where 1 , 2 , 3 are principal stresses (Wikipedia, 2012). 
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or expressed by normal stresses and shear stresses: 

       
2 2 22 2 2 2

11 22 22 33 33 11 23 31 122 6v                   

where 11 , 22 , 33 are normal stresses and 12 , 23 , 13 are shear stresses (Wikipedia, 

2012). 

Above equations show that the von Mises stress is a scalar stress value, which can 

be used to formulate the von Mises yield criterion. The von Mises yield criterion is 

independent of the first stress invariant, so it is “applicable for the analysis of plastic 

deformation for ductile materials” (Wikipedia, 2012). 

3.3.2 Principal Stress  

Von Mises stress only indicates the scalar stress value. To obtain the specific 

magnitudes and location of compressive stress and tensile stress, the principal stresses in 

three dimensions are calculated sequentially: maximum principal stress, middle principal 

stress and minimum principal stress. The signs of these principal stresses reflect whether 

the stress is compressive or tensile.  

Normally, the damage happens on top edges and non-lens sides of marker are 

mainly caused by compressive stress, while the mid-bottom fracture and body bend of 

markers are caused more frequently by tensile stress (Zhang et al., 2009). 

Depending on the distributions of these principal stress and their corresponding 

failure modes, it is desired to improve the RRPM geometric designs to decrease the 

magnitudes of these principal stresses.  

3.3.3 Shear Stress on RRPM Bottom  

Literature and field surveys show that, besides the abrasion and cracks of RRPM 

body and lens, the retention failure is another main failure mode of RRPMs. The poor 
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retention performance is mainly caused by shear stress, which is introduced by impact 

from high-speed moving vehicles. This shear stress occurs on the interface of marker and 

adhesive. In this study, the shear stress on the RRPM bottom face is calculated. 

3.3.4 Normal Stress on RRPM Bottom 

Similar to shear stress damage, the damage caused by normal stress also cripples 

the RRPM service life significantly, which is especially manifested as sinking into 

flexible surface of asphalt concrete pavement. Moreover, normal stress at RRPM bottom 

may cause tensile failure. Therefore, quantification of normal stress at RRPM bottom is 

very necessary, not only to prevent sinking, but also to avoid detachment.  
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CHAPTER 4: ANALYSIS OF SIMULATION RESULTS 

 

Based on the main methodologies which are introduced in Chapter 3, the 

relationship between stresses, failure modes, and RRPM profiles can be connected. As 

reflected in Figure 4-1 to Figure 4-6, the magnitudes and locations of various stresses are 

shown in the snapshots of the FEM of RRPMs of different sizes. Then, these figures are 

compared with the images taken from field survey to deduce the relations between stress 

and failure modes. After constructing the connection between stresses and failure modes, 

statistical analysis of simulation results are made to suggest any relationship between the 

stresses and geometric parameters. According to the connections between stresses, failure 

modes, and RRPM profiles, this chapter finally provides some geometrical 

countermeasures for the specific failure modes. 

4.1 Magnitudes and Distributions of Stresses on RRPMs 

4.1.1 Von Mises Stress Magnitude and Distribution 

As mentioned in section 3.3.1, von Mises stress is a scalar stress value that shows 

any “combined stress” distribution on the RRPMs. Figure 4-1, which is plotted by 

ANSYS, shows the von Mises stresses on the RRPMs of different sizes.  

Figure 4-1 shows that the von Mises stress is mainly distributed on the edge of 

marker’s top and the sides with no lens, which may cause cracks on these sides. The von 

Mises stress also occurs on the upper corner of lens, which probably causes the lens 

abrasion and crack. 
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Figure 4-1 Von Mises Stress Distribution 

The von Mises stress magnitude is ranging from 150MPa to 300MPa. The 

distribution patterns of von Mises stress do not change significantly when the RRPM size 

changes. 

For more clearly understanding the von Mises stress distribution, the 

deformations of RRPM and tire are also plotted by ANSYS, shown in Figure 4-2. Figure 

4-2 illustrates why von Mises stress concentrates on the no-lens sides of marker’s top 

shell: the deformation of tire is concave-up and it makes the tire surface contact with the 

marker on the no-lens sides of marker’s top shell. 

 

Figure 4-2 Deformations of Tire and RRPM 
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4.1.2 Principal Stress Magnitude and Distribution 

Because von Mises stress is a scalar stress, it cannot be used to identify whether 

the stress condition is compressive or tensile. Thus the maximum and minimum principal 

stresses are required for more detailed analysis. 

In ANSYS, the negative sign of principal stress indicates compressive stress and 

the positive sign means tensile stress.  Figure 4-3 shows the maximum principal stress 

and Figure 4-4 shows the minimum principal stress. 

 

Figure 4-3 Maximum Principal Stress Distribution 

 

Figure 4-4 Minimum Principal Stress Distribution 

Figure 4-3 and Figure 4-4 show that the magnitude of the minimum principal 

stress is significantly higher than that of the maximum principal stress.  

Specifically, compared to the von Mises stress, the maximum tensile stress in 

Figure 4-3 occurs close to the middle of shell symmetrically, and also on the non-lens 

sides. Its distribution changes obviously when the size of marker changes. 
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The minimum principal stress distribution is similar to the distribution of von 

Mises stress. Because the magnitudes of compressive stress are noticeably larger than 

those of tensile stress, the lowest compressive stress and the highest tensile stress both are 

expressed in red color in ANSYS, and thus cannot be identified from each other clearly in 

Figure 4-4.  

4.1.3 Shear Stress Magnitude and Distribution 

Compared to the above stresses, shear stress has the most complicated magnitude 

and distribution, which is shown in Figure 4-5. The value of shear stress in one case 

probably is three times larger than that in another case. Figure 4-5 illustrates that the 

shear stresses having equal magnitudes symmetrically distribute on the opposite 

directions. The maximum shear stresses occur on the non-lens bottom sides of the RRPM, 

whose parts are extended by curves.  

 

Figure 4-5 Shear Stress Distribution on Bottom of RRPM 

4.1.4 Normal Stress Magnitude and Distribution 

For normal stress, there is one dilemma condition: its magnitude should be neither 

too low, for avoiding detachment, nor too high, which can make the RRPM sink into the 

surface of the asphalt pavement. Its distribution is shown in Figure 4-6. 
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Figure 4-6 Normal Stress Distribution on Bottom of RRPM 

Figure 4-6 illustrates that some upward stresses exist on the RRPM bottom. These 

upward normal stresses, which potentially can detach the marker from the pavement 

surface, are concentrated on the edges of the lens sides and the centers of the curved 

edges. Although the magnitude of this normal stress is not large, for the adhesive with 

weak tensile strength, the upward stresses may detach the RRPMs. Compared to the 

upward normal stress, the downward normal stress is significantly larger and distributed 

more regularly.  

4.1.5 Relation between Stress and Failure Mode 

This section summarizes the connection between the stresses and the failure 

modes, depending on their locations and magnitudes. The analysis of simulation results 

have been performed in the section 4.1.1 through 4.1.4. Table 4-1 lists the observed 

results. The failure modes in Table 4-1 are only potential ones, because of the limited 

FEM simulations and missing considerations of material strength of RRPMs. In Table 

4-1, the tensile stress and compressive stress represent the maximum and minimum 

principal stresses, respectively. Moreover, considering the similar distributions of 

minimum principal stress and von Mises stress, the von Mises stress is not listed in Table 

4-1. 
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Table 4-1 Stresses and Their Related Failure Modes  

Stress Type Potential Failure Modes 

Compressive Stress 

1. Cracks or breakage on the corner of the top surface of RRPM  

2. Crack or abrasion on the non-lens side of the top surface of 

RRPM  

3. Crack or abrasion on the slope of non-lens curve side 

Tensile Stress 
1. Crack or abrasion on the non-lens side of RRPM top 

2. Crack or breakage close to middle of RRPM top shell 

Shear Stress on Bottom 1. Detach the marker from pavement 

Normal Stress on 

Bottom 

1. Detach the marker from pavement 

2. Sinking into asphalt  

 

4.2 Fractional Factorial Design Results 

With respect to the geometric characteristics of RRPMs, only five factors, 

including bottom length (BL), top length (TL), bottom width (BW), top width (TW) and 

height (H) are selected as candidates to investigate their roles on the mechanical response 

of RRPM. Due to the complexity of the process of tire-marker contact and the unclear 

influence of these geometric factors on RRPM, one main effect design, which is termed 

as orthogonal design, is necessary. As mentioned in the methodology part in Section 

3.2.1, the orthogonal design is used to determine the main effects of these geometric 

factors. In this orthogonal design, to make sure that the bottom width is larger than the 

top width, a ratio of top width and bottom width is used to replace the top width. 

The strain and stress conditions of RRPM in these tests are calculated by the FEM 

software, ANSYS. Table 4-2 shows the details of this orthogonal design and relevant 

results. 

Each factor on each level has four tests and the average result from these four 

tests represents the result on that level without interactions from other factors, as shown 

in Table 4-3. The signs of shear stresses on bottom represent only direction and their 
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magnitudes are symmetrical. Therefore, for the shear stress part, Table 4-3 only lists the 

average value of bottom shear stress for analysis.  

Table 4-2 Details of Orthogonal Design and Results of Tests   

 Element (mm) Von 

Mises 

Stress 
(MPa) 

Maximum 

Principal 

Stress 
(MPa) 

Minimum 

Principal 

Stress 
(MPa)  

Normal Stress 

On Bottom 
(MPa) 

Shear Stress 

On Bottom 
(MPa) 

Test BL TL BW 
TW/

BW 
H Max Min Max Min 

1 95 40.1 64.3 0.85 14 154.73 27.73 -270.62 0.59 -45.54 -7.89 7.44 

2 95 42.2 70.5 0.9 15.7 178.05 50.93 -329.20 0.97 -44.78 -12.49 10.02 

3 95 44.6 75.2 0.94 17.5 215.57 77.88 -359.39 1.20 -41.51 -13.20 9.88 

4 95 47.1 80.2 1 19.25 284.5 90.26 -461.98 1.64 -41.73 -8.14 12.79 

5 80.2 40.1 70.5 0.94 19.25 235.63 55.87 -409.47 0.06 -38.97 -9.43 9.12 

6 80.2 42.2 64.3 1 17.5 239.12 63.18 -389.48 0.14 -43.06 -5.14 5.11 

7 80.2 44.6 80.2 0.85 15.7 213.05 51.50 -347.48 2.45 -47.18 -12.59 11.77 

8 80.2 47.1 75.2 0.9 14 183.83 30.31 -290.83 3.34 -46.74 -21.57 16.47 

9 85.3 40.1 75.2 1 15.7 241.66 54.51 -361.79 0.89 -45.91 -10.39 8.99 

10 85.3 42.2 80.2 0.94 14 217.5 51.86 -355.39 1.12 -51.93 -14.79 14.17 

11 85.3 44.6 64.3 0.9 19.25 267.03 62.04 -358.00 0.05 -34.75 -14.25 12.50 

12 85.3 47.1 70.5 0.85 17.5 231.93 56.85 -396.02 0.22 -39.75 -13.22 13.88 

13 90 40.1 80.2 0.9 17.5 219.22 70.75 -348.76 1.01 -42.20 -16.27 12.16 

14 90 42.2 75.2 0.85 19.25 243.7 54.21 -365.20 0.69 -37.33 -10.89 14.67 

15 90 44.6 70.5 1 14 167.58 45.66 -251.84 1.02 -46.96 -13.95 8.05 

16 90 47.1 64.3 0.94 15.7 188.52 46.42 -340.02 0.65 -42.37 -14.68 15.62 

 

Table 4-3 Final Processed Results of Orthogonal Experiments (unit: MPa) 

  Von Mises stress 

lv. BL TL BW TW/BW H 

1 208.2125 212.81 212.35 210.8525 180.91 

2 217.9075 219.5925 203.2975 212.0325 205.32 

3 239.53 215.8075 221.19 214.305 226.46 

4 204.755 222.195 233.5675 233.215 257.715 

  Maximum  Principal Stress 

lv. BL TL BW TW/BW H 

1 50.2145 52.216 49.843 47.572 38.88925 

2 56.3145 55.04225 52.323 53.50625 50.84075 

3 54.25825 59.269 54.22625 58.00625 67.16275 

4 61.6985 55.9585 66.0935 63.40125 65.593 
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Table 4-3 Continued 

  Minimum  Principal Stress 

lv. BL TL BW TW/BW H 

1 -359.315 -347.66 -339.53 -344.83 -292.17 

2 -367.8 -359.8175 -346.6325 -331.6975 -344.6225 

3 -326.455 -329.1775 -344.3025 -366.0675 -373.4125 

4 -355.2975 -372.2125 -378.4025 -366.2725 -398.6625 

  Normal Stress (Minimum) 

lv. BL TL BW TW/BW H 

1 1.496979 0.635099 0.353364 0.98702 1.516865 

2 0.568482 0.726103 0.565426 1.339509 1.23524 

3 0.839828 1.176887 1.529635 0.755776 0.64089 

4 1.095263 1.462463 1.552125 0.918245 0.607555 

  Normal Stress (Maximum) 

lv. BL TL BW TW/BW H 

1 1.496979 -43.155 -41.431 -42.448 -47.7905 

2 0.568482 -44.2735 -42.6163 -42.117 -45.0618 

3 0.839828 -42.602 -42.8693 -43.6943 -41.628 

4 1.095263 -42.6448 -45.7588 -44.416 -38.195 

  Average Shear Stress on Bottom 

lv. BL TL BW TW/BW H 

1 11.3986 10.21018 10.3274 11.54409 13.04086 

2 12.77293 10.90919 11.26919 14.465 12.0688 

3 13.28565 12.02495 13.25735 12.61046 11.10611 

4 10.23286 14.54573 12.8361 9.070488 11.47426 

 

The gray areas in Table 4-3 indicate that the factors have consistent impact on the 

related stress in RRPMs. Specifically, height is the dominating factor that influences the 

von Mises stress, minimum principal stress, normal stress and one direction shear stress 

on the bottom surface of RRPM; ratio of bottom width to top width influences the von 

Mises stress, and both principal stresses in the RRPM body; Bottom width also can 

individually influence the maximum principal stress, bottom normal stress and o shear 

stresses; Top length is independent of normal stress and shear stress on the bottom 

surface of RRPM; Bottom length has no main effect on any type of stress.  
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These consistency relations are also shown in Figure 4-7 through Figure 4-12. 

The impacts of each factor are plotted to suggest the developing trends. It is worth 

pointing out that, although the average shear stress at the bottom surface has no 

consistent trends in terms of bottom width and height, the negative shear stress at the 

bottom surface is significantly influenced by the bottom width and the positive one has 

consistent relationship with height. In this case, these three factors (TL, BW and H) are 

all found to significantly influence the shear stress on RRPM bottom. Moreover, because 

the sign of minimum principal stress only represents stress direction, for better 

observation of magnitude trend, its negative sign is converted into positive one in Figure 

4-9. 

 

Figure 4-7 Von Mises Stress vs. Height and Ratio of Top Width and Bottom Width 

 

Figure 4-8 Maximum Principal Stress vs. Bottom Width and Ratio of Top Width and Bottom Width 
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Figure 4-9 Minimum Principal Stress vs. Height 

 

Figure 4-10 Minimum Normal Stress vs. Height, Top Length, and Bottom Width 

 

Figure 4-11 Maximum Normal Stress vs. Bottom Width and Height 
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Figure 4-12 Shear Stress vs. Bottom Width, Top Length and Height 

The results from Figure 4-7 through Figure 4-12 are listed in Table 4-4. In this 

table, “+” means positive relation and “–” stands for negative relation. Table 4-4 shows 

that decreasing height can reduce von Mises stress and minimum principal stress in 

RRPM body. However, decreasing height also causes the increase of normal stress and 

shear stress on RRPM bottom. The enlarged bottom width makes maximum principal 

stress, normal stress and shear stress increase. The same relation is found between top 

length, with minimum normal stress and shear stress. Moreover, the less the ratio of top 

width and bottom width is, the less the von Mises stress and maximum principal stress 

are. 

Table 4-4 Trends of Stress Magnitudes in Terms of Geometric Factors 
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4.3 Full Factorial Design Results 

The results of orthogonal design illustrates that the bottom length has no 

consistent influence on stresses. However, it is also possible that the length and width 

have some interactions, which cause the inconsistent results from orthogonal design. To 

check these main effects and possible existing interactions of the two geometric factors, a 

4×5 full factorial design was conducted. In this full factorial design, height, the slope of 

lens, the ratio of bottom width and top width are constant. Two factors, length and width, 

are defined respectively at four and five levels, as shown in Table 4-5.  

Table 4-5 Full Factorial Design 

Tests No. BL TL BW H TW 

1 53.13 21.83 80.2 17.5 80.2 

2 64.515 33.215 80.2 17.5 80.2 

3 75.9 44.6 80.2 17.5 80.2 

4 87.285 55.985 80.2 17.5 80.2 

5 53.13 21.83 75.2 17.5 75.2 

6 64.515 33.215 75.2 17.5 75.2 

7 75.9 44.6 75.2 17.5 75.2 

8 87.285 55.985 75.2 17.5 75.2 

9 53.13 21.83 70.2 17.5 70.2 

10 64.515 33.215 70.2 17.5 70.2 

11 75.9 44.6 70.2 17.5 70.2 

12 87.285 55.985 70.2 17.5 70.2 

13 53.13 21.83 65.2 17.5 65.2 

14 64.515 33.215 65.2 17.5 65.2 

15 75.9 44.6 65.2 17.5 65.2 

16 87.285 55.985 65.2 17.5 65.2 

17 53.13 21.83 60.2 17.5 60.2 

18 64.515 33.215 60.2 17.5 60.2 

19 75.9 44.6 60.2 17.5 60.2 

20 87.285 55.985 60.2 17.5 60.2 

 

The stress conditions of RRPM in these tests are also calculated using the FEM 

software, ANSYS. The simulation results and variables can be fed into SPSS program to 
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analyze the interactive effects by building regression model. Because the changes of top 

length and top width are identical to those of bottom length and bottom width, only 

bottom length and bottom width are considered in the regression model.  

The results obtained from the full factorial design can be used in two different 

regression models. One is termed as two-factor interaction model for getting interactive 

relationships between variables. The other is named as simple additive model, which is 

used to check main effects of variables if the interaction is insignificant.  

4.3.1 Two-Factor Interaction Model 

A linear regression model as shown below is used for data analysis. In this model, 

BL*BW represents the interaction between bottom length and bottom width.  

0 1 2 3ES BL BW BL BW           

The adjusted R squared, coefficient of each variable, and t-value can be calculated 

by SPSS program to check whether there are statistically significant impacts of 

interactions between length and width on the specific stresses. 

Table 4-6 Statistical Analysis Results of Two Factor Interaction Model by SPSS 

Model 1 

  
Adjusted R 

Squared 
df F 

Coefficients 

Variables 
Standardized  

t Sig. 
Coefficients 

Equivalent 

0.382 

3 4.92 BL 1.184 0.658 0.52 

Stress 16   BL*BW -1.986 -0.966 0.348 

  19   BW 1.351 1.336 0.2 

Maximum 

0.314 

3 3.898 BL 1.841 0.971 0.346 

Principal 16   BL*BW -2.758 -1.273 0.221 

Stress 19   BW 1.555 1.46 0.164 

Minimum 

0.371 

3 4.73 BL 3.187 1.755 0.098 

Principal 16   BL*BW -4.169 -2.009 0.062 

Stress 19   BW 2.392 2.344 0.032 
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Table 4-6 Continued 

Maximum 

0.323 

3 4.017 BL 2.531 1.343 0.198 

Normal 16   BL*BW -2.481 -1.153 0.266 

Stress 19   BW 1.695 1.602 0.129 

Minimum 

0.858 

3 39.121 BL 0.261 0.302 0.766 

Normal 16   BL*BW -1.19 -1.206 0.246 

Stress 19   BW 1.094 2.253 0.039 

Average 

0.571 

3 9.43 BL -0.616 -0.411 0.687 

Shear 16   BL*BW 1.217 0.71 0.488 

Stress 19   BW 0.068 0.081 0.937 

 

The gray area in Table 4-6 shows that the significant interaction only exists 

between width and length on minimum principal stress. The signal of this interactive 

factor is negative, which means increasing width can decrease the effect of length on 

minimum principal stress. On the contrary, enlarging length causes the reductions of the 

effect of width on minimum principal stress. One concept should be pointed out is that, 

although the interactive effect is the multiplicative relation between width and length, it 

does not represent the bottom or top area.  

4.3.2 Simple Additive Model 

After checking interactions between width and length, a simpler model, namely 

simple additive model, is built to check the main effects of width and length in some 

scenarios without interactions. 

0 1 2ES BL BW        

The statistical analysis results, obtained using SPSS, are shown as Table 4-7. 

Table 4-7 shows that enlarging length makes von Mises stress, maximum 

principal stress, and minimum normal stress to decrease. It also causes the increase of 
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shear stress. Table 4-7 also indicates that a smaller width can reduce von Mises stress, 

both normal stresses, and shear stress.  

Table 4-7 Statistical Analysis Results of Simple Additive Model by SPSS 

Model 2 

  Adjusted R Squared df F 

Coefficients 

Variables 
Standardized  

t Sig. 
Coefficients 

Von Mises 

Stress 
0.385 

2 6.941 BL -0.545 -3.031 0.008 

17   BW 0.39 2.167 0.045 

19           

Maximum 

Principal 

Stress 

0.288 

2 4.852 BL -0.561 -2.9 0.01 

17   BW 0.22 1.137 0.271 

19           

Maximum 

Normal 

Stress 

0.31 

2 5.26 BL 0.371 1.944 0.069 

17   BW 0.495 2.597 0.019 

19           

Minimum 

Normal 

Stress 

0.854 

2 56.449 BL -0.775 -8.836 0 

17   BW 0.518 5.902 0 

19           

Average 

Shear 

Stress 

0.584 

2 14.309 BL 0.443 2.993 0.008 

17   BW 0.656 4.434 0 

19           

 

The results obtained by full factorial experiment are shown in Table 4-8, which is 

described in the same format of Table 4-4. 

Table 4-8 Tendency of Stress Magnitudes with Bottom Width and Length 

  Stress 

Geometric 

Factor 

Equivalent 

Stress 

Maximum 

Principal 

Stress 

Minimum 

Principal 

Stress 

Maximum 

Normal 

Stress 

Minimum 

Normal 

Stress 

Shear 

Stress 

Width + +   + + + 

Length - -     - + 

Interaction     -        
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4.4 Relations between RRPM Profile, Stress, and Failure Mode 

Section 4.1.5 shows the relationship between stress and failure mode, and Section 

4.2 discusses connection between stress and RRPM profile. This section combines the 

former two sections together and suggests some measures to mitigate failure potentials of 

RRPMs. 

Table 4-9 RRPM Failure Location and Possible Geometric Improvement 

Location of potential failure mode Stress Possible countermeasure 

1. On the corner of RRPM top shell 

Compressive stress Reduce height 

Von Mises stress 

Reduce height, or make top width 

much shorter than bottom width, or 

shorten bottom width, or extend 

bottom length. 

2. On the non-lens side of RRPM top 

shell 

Compressive stress Reduce height 

Von Mises stress 

Reduce height, or make top width 

much shorter than bottom width, or 

shorten width, or extend length. 

Tensile stress 

Makes top width much shorter than 

bottom width, or shorten width, or 

enlarge length, or shorten only bottom 

width  

3. Closed to middle of RRPM top shell Tensile stress 

Makes top width much shorter than 

bottom width, or shorten width, or 

enlarge length, or shorten only bottom 

width  

4. On the slope of non-lens curve side 

Compressive stress Reduce height 

Von Mises stress 

Reduce height, or make top width 

much shorter than bottom width, or 

shorten width, or extend length. 

5. RRPM bottom (detach the marker 

from pavement) 

Shear stress 

Increase height, or shorten width, or 

shorten length, or shorten only bottom 

width, or shorten only top length 

Normal stress 

Increase height, or shorten width, or 

extend length, or shorten only bottom 

width, or shorten only top length 

6. RRPM bottom (sinking into asphalt) Normal stress 
Increase height, or shorten width, or 

shorten only bottom width  

 

In Table 4-9, the compressive stress and tensile stress represent the minimum 

principal stress and maximum principal stress, respectively. It is worth pointing out that, 

for the issue of sinking, the elastic and plastic properties of pavement are not considered. 
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Thus, the possible countermeasures for mitigating sinking in Table 4-9 just serve as 

references. 

4.5 Validation by Survey Results 

Section 4.1 to Section 4.3 indicate that, typically, shorter bottom width and top 

length, longer bottom length, lower height, and lower ratio of top width over bottom 

width can mitigate RRPM body damages. However, for the sinking and detachment on 

RRPM bottom, the lower RRPM height and the longer RRPM length may deteriorate 

both of these failure modes.  

Chapter 2 already lists the estimated rank of RRPMs in Florida as: 3M 290> 

Rayolite RS >Ennis 980>Ennis C80>Apex 921AR.  Their geometric characteristics are 

shown as follows. 

Table 4-10 Geometric Characteristics of RRPM Types 

Type Height 
Bottom 

Length 

Bottom 

Width 

Top 

Length 

Top 

Width 

Ratio of Top Width 

over Bottom Width 

3M 290 15.7 88.9 72.3 44.9 69.8 0.97 

Ennis 

C80/980 
17.5 80.8 86.3 39.2 78 0.9 

Apex 

921AR 
18.1 101 101 40.1 85.8 0.85 

Rayolite 

RS 
17.3 99.3 100.2 48.8 57.5 0.57 

 

On the perspective of body damage, Table 4-10 illustrates that 3M 290 has two 

best designed geometric factors, and each of other three types individually has one best 

profile factor. Moreover, for Rayolite RS, although its bottom width is widest and its 

height is highest, its extreme lowest ratio of top width over bottom width makes this 

RRPM type retain excellent performance. This phenomenon is validated by the results of 

surveys: 3M 290 is best, and Rayolite RS is slightly better than the rest.  
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For failure mode, field survey shows that the middle of 3M 290 top shell seems 

much weaker than the other types of RRPMs. It can also be explained by Table 4-9 and 

Table 4-10: the highest ratio of top width and bottom width and the low bottom length 

both can produce high tensile stress, and then induce cracks in the middle of RRPM shell. 

Moreover, because the height of 3M 290 is lowest, the detachment and sinking occur 

more probably. 

For Rayolite RS, its high height, high bottom width and top length also generate 

high compressive stress around its top corner and non-lens sides, and cause cracks more 

probably. The lowest ratio of top width and bottom width prevents Rayolite RS from 

cracking on the middle of its top shell. 
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CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH 

 

5.1 Conclusions 

This research conducts literature review, field surveys and questionnaire surveys 

of various types of RRPMs and compares their current performances. The rank of the 

RRPM performances in Florida is as: 3M 290> Rayolite RS >Ennis 980>Ennis 

C80>Apex 921AR. This rank is used to validate the simulation results from FEMs. 

Based on the tire/marker/pavement FEM system built in ANSYS, the general 

distributions and magnitudes of stresses are observed and obtained. The von Mises stress 

and compressive stress are mainly distributed on the edge and corner of marker’s top and 

the sides with no lens. The main tensile stress is near the middle of shell and 

symmetrically distributed. Moreover, the magnitude of tensile stress is much less than 

that of the compressive stress. For shear stress, maximum one occurs on the non-lens 

bottom sides of the RRPM, which are extended by curves. Compared to other stresses, 

shear stress distributes at RRPM bottom with more irregularity, but symmetrically. The 

upward normal stress also exists at the bottom, and is mainly concentrated on the edge of 

lens side and in the middle of the curve edge. 

To obtain the relationship between stress and RRPM profile, one 5 3

16 4 
L ( )

orthogonal design and one 4 5  full factorial design with a statistical significance level 

of 10% are conducted. The findings are summarized as follows. 
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1) Decreasing height can reduce von Mises stress and minimum principal stress 

on RRPM body. However, decreasing height also leads to the increase of normal stress 

and shear stress at RRPM bottom.  

2) For the profile of RRPM bottom surface, the enlarged bottom width causes 

tensile stress (on RRPM body), normal stress and shear stress (at RRPM bottom) to 

increase. Only changing bottom length cannot determine the stress developing tendency.  

3) For the shape of RRPM top shell, increasing top length has no significant 

influence on most stresses, except for increments of the tensile stress and shear stress at 

RRPM bottom.  

4) The less ratio of top width and bottom width can mitigate the von Mises stress 

and tensile stress on RRPM body.  

5) The significant interactive effect between bottom width and length exists on 

minimum principal stress, with the significance level of 10%.  This interactive effect 

means increasing bottom width can decrease the effect of bottom length on minimum 

principal stress. 

6) Keeping the RRPM height, the slope of lens, the ratio of bottom width and top 

width as constants, the RRPM width has positive and significant influence on von Mises 

stress, tensile stress on RRPM body, and normal stresses and shear stress at RRPM 

bottom. On the contrary, the RRPM length affects von Mises stress, tensile stress (on 

RRPM body), and compressive stress (at RRPM bottom) negatively and significantly. 

However, shortening RRPM length can efficiently mitigate the detachment failure mode 

through decreasing shear stress (at RRPM bottom). 
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According to the relationship between stress location, potential failure mode, and 

RRPM profile, some possible countermeasures are suggested and listed in Table 4-9 to 

improve the geometric designs of RRPMs. Specifically, for Rayolite RS, its low ratio of 

top width and bottom width strengthens the middle of RRPM top shell significantly. 

However, if Rayolite RS can decrease its bottom width and top length, the cracks which 

are produced frequently on the rims can be prevented efficiently. For 3M 290, although 

its height and bottom width are more optimal than those of other RRPM types, the cracks 

often occur on the middle of RRPM shell. For mitigating this type of structural damage, 

3M 290 can shorten its top width.     

5.2 Future Research 

The full factorial experiment in this thesis is only about two factors. The 

improved full factorial experiment shall be conducted. The RRPM height, top width and 

length need to be considered in the improved full factorial experiment.  

The RRPM model in this thesis is simple, without any fillet and chamfer. These 

RRPM geometric characteristics can also be considered for affecting stress conditions. 
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