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Abstract 

This research focuses primary on recognition of lane-change behaviors using 

support vector machines (SVMs). Previous research and statistical results show that the 

vast majority of motor vehicle accidents are caused by driver behavior and errors. 

Therefore, the interpretation and evaluation of driver behavior is important for road 

safety analysis and improvement. The main limit to understanding driver behavior is the 

data availability. In particular, a full-scale lane-change data set is difficult to collect in a 

real traffic environment because of the safety and cost issues. Considering the data 

demands of the recognition model development and the obstacles of field data collection, 

data were collected from two aspects: simulation data and the field data. To obtain field 

data, an in-vehicle data recorder (IVDR) that integrates a Global Positioning System 

(GPS) and Inertial Measurement Unit (IMU) are developed to collect data on speed, 

position, attitude, acceleration, etc. To obtain simulation data, a lane-change simulation 

with a speed controller and a trajectory tracking controller with preview ability were 

developed, and sufficient lane-change data were generated. Proportional-Integral-

Derivative (PID) control is applied to the speed controller and trajectory tracking 

controller. 

Simulation data were divided into two classes: dual lane-change data and single 

lane-change data; field data were further divided as single lane-change and non-lane-

change data. Two-class and three-class classification SVM model are trained by 

simulation data and field data, and the model parameters were optimized by Genetic 
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Algorithm (GA). A radial basis function and polynomial kernel functions were found that 

suitable for this recognition task. The recognition results indicate that, the SVM model 

trained by simulation data and non-lane-change data can correctly classify up to 85 

percent of single lane-change field data. 
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Chapter 1 Introduction 

1.1 Background 

Road accidents are increasingly costly in the global economy and are a growing 

societal concern. In 2009, there were around 10.8 million motor vehicle accidents in 

United States, including 30,862 fatal crashes, with total fatalities of 33,883. According to 

an estimate by the Nation Highway Traffic Safety Administration (NHTSA), the cost of a 

single vehicle fatality is $6 million, and the cost of an injury is $126,000. Since the 

number of motor vehicle accidents remains at a high level and the cost is rapidly 

increasing, road safety is being pushed to the forefront of the debate related to 

transportation development priorities. 

As indicated by previous scientific research and statistical results, the vast 

majority of motor vehicle accidents are caused by driver behavior and errors. Therefore, 

the interpretation and evaluation of driver behavior is crucial for road safety analysis. 

Data availability is primarily limited to understanding driver behavior. Unlike other 

traffic data that can be collected for a specific site and period, driver behavior data have 

the characteristics of suddenness, short life span, uncertainty, etc. Thus, a desired data set 

to analyze driver behavior should cover long cycles and include vehicle operation 

parameters, roadway conditions and driver intent. Otherwise, an assessment of driver 

behavior may be conducted only at a very small scope and scale. The demands for driver 

behavior evaluation has led to the emergence of IVDR, which are on-board devices that 

track many functions such as data acquisition and recording of the movement, control and 
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performance of the vehicle. The technology was first used in event data recorders, which 

store only small fragments of crash events information for crash investigation and fault 

allocation. 

Recently IVDR has been playing an important role in promoting safe driving and 

widely used. It has been reported that the use of IVDR significantly reduces traffic 

accident rates. Many industries have shown great interest in IVDR and have applied these 

devices to improve services and solution. For example, auto insurance companies 

encourage their customers to install data recorders to monitor driving behavior, and they 

offer insurance discounts to those drivers who drive well. 

Evaluating driver behavior usually is based on the assessments of risk consulting 

experts. Most consulting methods depend on the experience of these experts, and the 

consulting process is completed manually. So, this approach is time-consuming and 

costly, and the assessment results could be subjective. Therefore, there is clearly a need 

for an automatic and efficient driver behavior evaluation method. 

As a simulator of human intelligence in learning and decision making, artificial 

intelligence (AI) has been evolving to support complex recognition in particular areas. 

This technology has already been applied to transportation areas as a core method of 

intelligent transportation systems (ITS). One of the successes of AI in transportation is 

license plate recognition systems, which are of great significance for traffic management. 

To date, some studies have been conducted on applying different AI algorithms to solve 

driver behavior recognition problems, such as rapid acceleration, frequency of rough 

braking, lane changing, etc. Better understanding the characteristics of driving data and 

AI modeling will help to improve driver behavior recognition accuracy. 
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1.2 Problem Statement 

As the foundation of driver behavior evaluation, all driving behaviors have to be 

detected and distinguished, and the related parameters of each driving maneuver also 

have to be calculated. Unfortunately, this process is obstructed not only by data 

availability, but also by driving maneuver classification methods, and it relies greatly on 

manual operation. Driving is a complex task that depends on driver habits, vehicle 

performance, and traffic environments, all of which determine the diversity and 

complexity of driving data, especially for lane-change maneuvers. Without certain 

judgment conditions, a traditional discriminate method is not a good solution for driving 

behavior recognition. Without an effective approach acquiring driving data easily and 

classifying driving maneuver quickly, the evaluation process will continue to be 

inefficient. 

1.3 Research Objectives 

This research intends to achieve three major objectives: 

(1) To develop an IVDR for collecting data on driving behavior. Based on a GPS 

and IMU, the system will have the capability of collecting a variety of operation data 

from a probe vehicle, such as longitudinal acceleration, lateral acceleration, vertical 

acceleration, distance, velocity, heading angle, pitch angle, roll angle, etc. The field data 

set is an indispensable part of modeling and verification for lane-change recognition. 

(2) To build a driving model for simulating a preview of the behavior of human 

drivers and obtaining full-scale lane-change data that are required by the recognition 

modeling. The driving model will be capable of seeing the lane-change target path 

directly ahead of the vehicle with a constant sight distance and determining how much to 
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turn the steering wheel. The driving model will also be able to keep a steady speed when 

performing lane-change movements. 

(3) To develop a lane-change recognition model using SVMs. This model will 

have the capability of discriminating lane-change behavior from other driving behaviors. 

1.4 Research Approach 

Previous studies were reviewed, and the methodologies for data collection, lane-

change models, and lane-change recognition were selected. Considering various vehicle 

operation parameters impacted by lane-change behavior, IVDR should be able to collect 

as many vehicle dynamic features as needed to exactly describe a lane-change maneuver. 

Therefore, the selection of a measurement unit is key to implement this functionality. To 

avoid the safety issues of data collection in real traffic environment, a lane-change model 

is needed to simulate lane-change maneuvers and provide a full-scale data set. The 

simulation method remedies the shortage of data in lane-change recognition modeling. 

The quality of the recognition model is under the influence of data input, data form, and 

the data processing method. A set of optimized model parameters is important to lane-

change recognition accuracy, so an optimization method needs to be applied in the 

modeling process. Detailed methodologies are discussed in Chapter 3. 

To achieve the objectives of this dissertation, adequate data of driver behavior 

was collected by an appropriate IVDR. With the advantage of cost-effective and diversity 

of data, a GPS and IMU were integrated into the IVDR proposed by this dissertation. The 

data collected by the GPS included speed over ground, course over ground (heading), 

latitude and longitude, the IMU collected vehicle roll angle, pitch angle, yaw angle, roll 

angular velocity, pitch angular velocity, yaw angular velocity, longitudinal acceleration, 
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lateral acceleration, and vertical acceleration. Since the sample rates of the GPS and IMU 

were distinctly different, a synchronization method based on linear interpolation was 

applied to combine these two sets of data sampled at different rates and provided by two 

independent hardware systems. To make the data query and verification more intuitive 

and convenient, Google Maps was embedded into the IVDR to improve the effectiveness 

of the manual lane-change data screening. 

To obtain sufficient lane-change data that was difficult to collect on a real 

roadway, a lane-change simulation model was developed to imitate drivers with diverse 

driving habits trying to follow different given lane-change paths at different speeds. To 

achieve high similarity between the simulation results and the real data, a complete lane-

change model should include as many characteristics as both human drivers and vehicles 

have in actual traffic environments. An existing full-vehicle dynamics model was 

imported into the lane-change simulation model and was controlled by a driving 

controller that had the capability of keeping a steady speed and adjusting the steering 

wheel to follow given paths. The driving controller simulated the preview behavior of 

human drivers to read the information ahead of the vehicle with a constant sight distance. 

A group of driving controllers with different preview times and corresponding driving 

parameters was found, and a full-scale lane-change dataset was generated based on the 

preview times, speeds, and target paths. 

SVM, one of the supervised machine learning models functioning as a classifier, 

was chosen to analyze driving data and recognize lane-change patterns from other driving 

behavior patterns. Thus, the recognition task was simplified as a classification task. With 

the associated learning algorithms, a well-trained SVM model can accurately classify a 
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given data set into two categories or multiple categories, for this dissertation, the 

categories are lane-change and non-lane-change. 

The first step to build an SVM classification model was data reduction. Driving 

data were divided into two datasets, a training data set and a validation dataset, formed as 

the input datasets of SVM classification model training. To increase recognition precision 

and reduce model calculation time, a time window that decided how many driving data 

samples to input into the SVM model in one computation cycle was determined, even if 

the driver behaviors did not have fixed time lengths. Generally, the major characteristics 

were covered by that fixed time window. It is important to choose only the most effective 

set of features to train the SVM model. Inputting all the possible features into the training 

process not only failed to improve the output result, but it also degraded the 

discrimination performance of the SVM. The features that show apparent differences 

during lane-change behavior against others are critical ones. Lateral acceleration, vehicle 

heading and vehicle angle were discussed in data reduction. For extracting exclusive 

feature patterns from various kinds of driving behaviors, a simple data representation that 

represents the features of lane-change behavior also was selected. 

The second step, to build a SVM classification model was to select a kernel 

function, which is a class of algorithms for data processing. However, in the theory of 

SVM, a general process for determining an appropriate kernel function is not provided. 

Usually, only a few types of kernels are available for classification tasks, and they have 

different performance for the same classification problem. Thus, to find the correct kernel 

function, the available driving dataset was tested against different types of kernel 

functions before knowing the performance of each kernel function. 
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A closed loop feedback training approach was applied to optimize the kernel 

function parameters. During the training process, a genetic algorithm (GA), was used to 

generate a new set of kernel parameters in every SVM model training cycle to decrease 

the estimate errors on validation data set. The parameters sets of the final training cycle 

were extracted and used as the parameters of the lane-change recognition model.  

Figure 1 shows the approach of this research. 

 

Figure 1 Research Approach 
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Chapter 2 Literature Review 

Previous studies and findings related to driving simulation and driving behavior 

recognition are reviewed and summarized in this chapter. 

Data availability is the primary limitation to better understanding driver behavior, 

collecting field data related to driving behavior is restricted by several factors, such as 

safety issues, cost, etc. The use of simulation can avoid these obstacles and provide 

sufficient data for lane-change recognition study. 

With the wide use of ITS, the demand for driver behavior detection or assistance 

technology has increased rapidly, and can help to evaluate and improve transportation 

safety quickly and easily. AI technologies have shown outstanding performance for 

driver behavior detection and recognition. SVM, a concept in statistics and computer 

science used for classification and regression analysis, has been widely studied and 

applied to solve practical problems. 

2.1 Driving Simulation 

Lee and Park (1994) built a driver model as a preview PID controller to adjust the 

steering wheel of a full-car model in a closed-loop control system. For efficiency in 

obtaining driver control gains, a bicycle model with a driver was first used to get the 

proper control parameters for lane-change maneuvers. The bicycle model originated from 

a full-car model, and the control parameters depended on the bicycle speed and preview 

distance. In the driving simulation, the speed was set to 100 kilometer per hour, and the 

preview distance was 15 meters. After simulation with several combinations of control 
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parameters, the researchers found the dominant parameters in the control system 

performance and applied these parameters to a full-car model. Due to the different 

characteristics between the bicycle model and a full-car model, the control parameters 

were adjusted to achieve the desired lane-change performance. Finally, a good 

combination of the control parameters was obtained for the full-car model. 

Guo (1981) found that there were no criteria for evaluating vehicle handling 

characteristics. To solve this problem, he proposed a driver-vehicle closed loop model to 

simulate driving behavior using a preselected optimal curvature method. He first 

developed a single point preview driver-vehicle model in which it was assumed that the 

driver could pay attention only at one point with a constant sight distance. The driver-

vehicle model was required to make lane-change movements along given paths. Based on 

what the driver saw in the target path, the driver accepted the lateral position feedback 

information and adjusted the steering wheel of the vehicle model. Different parameters 

with combinations of both driver and vehicle were loaded into the model to generate a 

group of results. A driver-vehicle model with a preview time window was also built and 

was compared to the single preview time model. To verify the driver-vehicle closed loop 

models, simulations of a heavy truck making a double lane-change were conducted. The 

simulation results of both models were good. This method was developed based on the 

author‟s prior work on simulation on a preselected follower method using Taylor‟s 

expansive formulate, and the author notes that both methods had similar results. 

2.2 Diver Behavior Detection 

Toledo, Musicant, and Lotan (2008) used IVDR systems to monitor and provide 

feedback to drivers on their driving behavior. The system described in the research 
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recorded vehicle operation data and used this information to identify and classify various 

driving maneuvers. These maneuvers were then used to calculate various driving risk 

indices. The results from the research showed that these indices were correlated with the 

drivers‟ crash records. This result suggested that risk indices might be used as indicators 

to the drivers‟ rates of involvement in car crashes. A study of crash rates before and after 

system installation showed statistically significant reductions in the crash rates. It should 

be noted that these results were based on a relatively short period of time after using the 

system and, therefore, need to be further evaluated. An evaluation of the temporal 

changes in the IVDR risk indices showed that the initial exposure to the IVDR feedback 

caused a substantial reduction in risk indices, which could be further enhanced if drivers 

continued to access the IVDR feedback. Even without additional feedback, the initial 

impact was sustained for several months. Therefore, further research is needed to better 

understand the temporal and long-term impacts of the installation and to develop 

feedback management schemes to maintain driver interest in the feedback and maximize 

its impact. Finally, the researchers noted that whereas their analysis demonstrated that 

IVDR might be useful to impact driver behavior, they did not study the psychological and 

social mechanisms that underlie this change. Understanding these mechanisms is very 

important in making effective use of IVDR systems. 

Liang, Reyes, and Lee (2007) applied SVMs to build a real-time approach for 

recognizing cognitive distraction using driving performance data and driver eye 

movements. Because the use of in-vehicle information systems (IVIS) such as cell 

phones and navigation systems has increased, driver distraction has become a significant 

and growing safety concern. The researchers believe that an effective way to solve this 
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problem was to detect driver distraction and use in-vehicle systems to reduce such 

distractions. Data were collected in a driving simulation experiment in which 10 drivers 

interacted with an IVIS while driving. The simulation data were used to build both SVM 

and logistic regression models, and three different model characteristics were discussed: 

definition of distraction, input data feature, and input data representation. The results 

showed that the SVM models could detect driver distraction with an average accuracy of 

81.1 percent, which was better than traditional logistic regression models. The best 

recognition accuracy was 96.1 percent, which resulted when driving distraction was 

defined by experimental conditions (i.e., IVIS drive or baseline drive); the input data 

included both eye movement and driving measures, and these data were represented over 

a 40-second window with a 95 percent overlap of windows. These recognition results 

indicated that eye movements and simple measures of driving performance could be used 

to detect driving distraction in real time. This study provided knowledge for the design of 

adaptive in-vehicle systems and the estimate of driver distraction. 

Mandalia and Salvucci (2005) used SVM to detect vehicle lane-change 

movements. They performed an evaluation study by applying the SVM technique to lane-

change recognition and, at the same time, tested a subset of the space of possible data 

representations and feature sets. In the study, driving data were collected by four drivers, 

who were asked to drive on a Japanese multi-lane highway environment for one hour 

each through dense and smooth traffic without specific goals or instructions. The results 

for the various combinations of window size, feature sets (shown in Table 1), and non-

overlapping vs. overlapping representations are shown in Tables 2 and 3. 
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Table 1 Feature Sets 

Set Features 

1 Acceleration, Lane position 0, Lane position 30, Heading 

2 Acceleration, Lane position 0, Lane position 30, Heading, Lead Car distance 

3 
Acceleration, Lane position 0, Lane Position 20, Lane position 30, Heading, 

Longitudinal acceleration, Lateral acceleration 

4 Acceleration, Lane position 0, Lane position 30, Heading, Steering Angle 

5 Lane position 0, Lane position 10, Lane position 20,Lane position 30 

 

Table 2 Accuracy of Window Size (Non-overlapping) 

Window Set 1 Set 2 Set 3 Set 4 Set 5 

5 s 83.5 90.0 91.2 90.0 91.1 

4 s 88.1 91.3 92.5 91.5 92.2 

2 s 89.3 93.0 97.7 94.0 97.4 

1.5 s 85.2 93.7 96.3 93.2 97.7 

1.2 s 96.8 96.0 96.0 96.0 96.7 

0.8 s 86.3 91.8 90.0 86.6 94.6 

 

Table 3 Accuracy of Window Size (Overlapping) 

Window Set 1 Set 2 Set 3 Set 4 Set 5 

5 s 87.1 86.9 89.0 88.1 87.8 

4 s 89.9 90.7 91.5 89.5 91.1 

2 s 96.2 96.2 97.8 95.8 97.3 

1.5 s 94.5 94.6 97.6 93.3 97.5 

1.2 s 93.8 93.7 95.0 93.2 97.9 

0.8 s 97.0 95.5 96.0 96.4 96.7 

 

In all feature sets, the average accuracy of the SVM models on detection lane-

change movements was 95 percent, and results improved with decrease in window size. 

The overlapping representation with all the lane position features (Set 5) generated the 
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best recognition result, with 97.9 percent accuracy. The system generated a continuous 

recognition, which means it marked each sample with a positive (lane-change) or 

negative (lane-keeping) label. Thus, out of every 100 actual lane-changing samples, about 

98 were detected correctly, whereas out of every 100 lane-keeping samples, only 5 were 

incorrectly recognized. The recognition system was also analyzed for time accuracy to 

calculate how much time had elapsed from the start of a lane-change until the point of 

detection. The system was able to detect about 87 percent of all true positives within the 

first 0.3 seconds from the start of the maneuver. A richer data set with features such as 

lead-car velocity and eye movements should lead to even better accuracy. The authors 

compared their results to previous studies and found that Pentland and Liu (1999) 

achieved accuracy of 95 percent, but only after 1.5 seconds into the maneuver; Kuge et al. 

(2000) achieved 98 percent accuracy of recognizing entire lane-changes; and Salvucci‟s 

(2004) mind-tracking algorithm achieved approximately 87 percent accuracy. The SVM 

approach outperformed previous approaches in lane-change detection. 

  



14 
 

 

 

 

 

 

 

Chapter 3 Methodology 

This chapter describes the methodologies selected for driving simulation, data 

processing and lane-change recognition. In driving simulation model, a speed controller 

is used to control the throttle and brake, while a path follower is used to control the 

steering wheel. Both of these two controllers use a PID control strategy. Because of the 

noise included in the data collected by the IMU, these methodologies are used to solve 

some SVM modeling issues, such as using a SVM library, kernel selection and data 

reduction for SVM training. 

3.1 PID Controller 

In this dissertation, the vehicle model is extracted from a multi-body dynamics 

software that has the capability of simulating real world physics. The characteristics of 

this vehicle model are very close to those of a real vehicle. Therefore, a driver model is 

needed to drive the vehicle as a real driver, who is capable of controlling the steering 

wheel, throttle and brake to accomplish a driving task. Two PID controllers are applied to 

control the vehicle speed and vehicle position. The speed controller is used to adjust the 

throttle and brake to keep a steady speed when making a lane-change maneuver. The 

position controller is used to adjust the steering wheel for the attempt of following a 

given lane-change path, at any prescribed speed. 

A PID controller is a generic closed loop feedback controller widely used in 

control system. It aims to minimize the error between the controlled object output and a 

desired setpoint by adjusting the controlled object input. The PID controller algorithm 
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involves three terms: proportional (P), integral (I) and derivative (D). For each term, there 

is only one constant parameter. Usually, these three terms are interpreted in term of error 

type: P is used on the present error, I on the accumulative error and D is the current rate 

of error change. The weighted sum of these three terms is used to adjust the controlled 

object via a control element. The form of the PID is shown in Equation 1. 

𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖  𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝐾𝑑

𝑑

𝑑𝑡
𝑒 𝑡      (1) 

where, 

 𝑢 𝑡  = controller output 

 𝐾𝑝  = proportional gain 

 𝐾𝑖  = integral gain 

 𝐾𝑑  = derivative gain 

e(t) = s(t) – y(t), where s(t) is the setpoint, y(t) is the output of the controlled 

object 

 𝜏 = variable of integration. 

Figure 2 shows a block diagram of a PID controller in a closed feedback loop. 

Σ

P 

I

D

e(t)
Σ

controlled 

object
u(t) y(t)

-

s(t)
+

 

Figure 2 PID Controller in Closed Feedback Loop 

A PID controller can be classified as analog or digital type, and both can be used 

in a closed control loop. Equation 1 shows an analog PID controller. A digital PID is 

discrete and generally is used in a computer control system. In the lane-change model of 
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this dissertation, the vehicle model was built in an analog development environment but 

can be simulated only as a discrete model on computer. As one kind of digital PID, an 

incremental PID (Equation 2) algorithm is embedded into both the speed controller and 

the position controller in the lane-change simulation. 

𝑢 𝑘 = 𝑢 𝑘 − 1 +𝐾𝑝[𝑒 𝑘 − 𝑒 𝑘 − 1 ] + 𝐾𝑖𝑒(𝑘) + 𝐾𝑑 [𝑒 𝑘 − 2𝑒 𝑘 − 1 + 𝑒(𝑘 − 2)]     (2) 

where, 

 𝑢 𝑘  = controller output 

 𝐾𝑝  = proportional gain 

 𝐾𝑖  = integral gain 

 𝐾𝑑  = derivative gain 

e(k) = s(k) – y(k), where s(k) is the setpoint, y(k) is the output of the controlled 

object. 

Equation 2 indicates that the output of the incremental PID algorithm uses the last 

only three errors to generate a control increment in each computation step. A feedback 

loop control using incremental PID algorithm is different from that shown in Figure 2, 

and is shown in Figure 3. For controlling the speed of the vehicle model, both the setpoint  

 

Figure 3 Incremental PID Controller in a Feedback Loop 
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s(k) and the controlled object output y(k) are speed value, the u(k) is throttle and brake 

inputs. Similarly, in position control, the s(k) and y(k) are in a lateral position, and the 

u(k) is the steering wheel radian. 

A combination of optimum parameters is the key factor for the PID controller to 

achieve the desired control response. The incremental PID only has three parameters and 

is described in a simple equation 1; however, it is a difficult to determine three 

parameters because different controlled objects have different system properties and 

behaviors. If a precise mathematical model of the controlled object is given, the task of 

finding the PID parameters could be simple. However, a mathematical model is difficult 

to obtain, and an empirical value is set to the PID controller and adjusted according to the 

response results. An optimization method could help to improve the control effect, but 

only will be available when the numeric ranges of the PID parameters are given. 

3.2 Genetic Algorithm 

GA, as one part of AI, is a search algorithm using techniques inspired by natural 

evolution. This algorithm is usually used to solve optimization and search problems. GA 

generates a series of populations of possible solutions to an optimization problem and 

improves these solutions toward a better one. Each solution has a set of properties that 

can be updated in the optimization process. This dissertation uses GA to optimize the 

parameters of the speed controller and the trajectory tracking controller in the lane-

change simulation model and other parameters used in lane-change recognition model. 

The numerical computing software MATLAB provides functions using GA to 

determine the minimum of an objective function. The GA function used in this research is 

shown as follows. 
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[x, fval, exitflag, output] = ga(fitnessfcn, nvars, [ ], [ ], [ ], [ ], LB, UB, [ ], options) 

where, 

fitnessfcn = handle to the fitness function. The fitness function should accept a 

row vector of length nvars and return a scalar value which is aimed to minimize by GA 

nvars = positive integer representing the number of variables in the problem 

LB = vector of lower bounds of the fitnessfcn input 

LB = vector of lower bounds of the fitnessfcn input 

options = structure containing optimization options 

x = best point that GA located during its iterations 

fval = fitness function evaluated at x 

exitflag = integer giving the reason GA stopped iterating 

output = structure containing output from each generation and other information 

about algorithm performance. 

The implementation of an optimization process using GA is shown in Figure 4. 

Fitness Function 

Parameters Yes

No

Start GA
Fitness 

Fuction

Satisfied 

Result?

Data set

End

 

Figure 4 Optimization Process using GA 

3.3 Support Vector Machine 

3.3.1 Brief Overview of SVM 

SVM is a set of supervised models with related learning algorithms that analyze 

data and identify patterns, and is used for solving classification and regression problems. 
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It is capable of maximizing recognition accuracy and automatically avoiding over-fit to 

the data. SVM uses a given data set to construct a set of hyperplanes in a high-

dimensional space, which can be used for classification, pattern recognition, distribution 

estimation, etc. SVM has been an active part of AI research and has been increasingly 

used in data analysis and image recognition areas. 

In supervised learning, a machine is trained instead of preset related parameters 

by using a set of training instances of input-output pairs. The machine training aims to 

learn a combination of parameters that are used in the machine and can best describe the 

relationship between the inputs and the outputs of the training data. The SVM training in 

this dissertation can be considered as an approach of determining appropriate kernels and 

a set of parameters in Equation 3, which is used for classification. 

𝑓 𝑥 =  𝑐𝑖 ∗ 𝐾(𝑋,𝑋𝑖)
𝑙
𝑖=1        (3) 

where, 

f = category labels 

𝑋𝑖  = input instances, i = 1,2,…,l 

K = kernel, a certain definite function 

𝑐𝑖  = a set of parameters to be determined from the training data set 

Kernel functions map the instance data into higher dimensional spaces to make 

the instance data more easily separated and classified. Different kernel function have 

different for performance on reconstructing the instance data. Generally, there are two 

types of kernel functions, linear and nonlinear. The kernel function and parameters are 

discussed in the next section. 
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3.3.2 LIBSVM - A Library for SVM 

LIBSVM is a library for SVMs and has been developed and upgraded by Chih-

Chung Chang and Chih-Jen Lin at National Taiwan University since year 2000. It 

supports regression, distribution estimation, and multi-class classification. As a tool, it 

provides a simple interface and can be easily used in users‟ programs. The LIBSVM has 

been widely used in many areas. Some representative works that successfully used the 

LIBSVM are listed in Table 4. 

Table 4 Successes in LIBSVM 

Domain Representative works 

Computer vision LIBPMK (Grauman and Darrell, 2005) 

Natural language processing Maltparser (Nivre et al., 2007) 

Neuroimaging PyMVPA (Hanke et al., 2009) 

Bioinformatics BDVal (Dorff et al., 2010) 
 

 

LIBSVM provides a MATLAB interface with only four functions, two of which, 

svmtrain and svmpredict, are used for training and estimate, respectively. 

model = svmtrain(training_label_vector, training_instance_matrix [, 'libsvm_optio

ns']) 

where, 

model = the output of 'svmtrain' 

training_label_vector = an m by 1 vector of training labels with m instances 

training_instance_matrix = an m by n matrix of m training instances with n 

features 

libsvm_options = a string of training options using the format as follows. 

-s svm_type = select type of SVM (default value= 0) 

 0 -- c-support vector classification (SVC) 

http://www.csie.ntu.edu.tw/~cjlin/index.html
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 1 -- nu-SVC 

 2 -- one-class SVM 

 3 -- epsilon- support vector regression (SVR) 

 4 -- nu-SVR 

-t kernel_type = select kernel function (default value = 2) 

 0 -- linear: u'*v 

 1 -- polynomial: (gamma*u'*v + coef0)
degree

 

 2 -- radial basis function: exp(-gamma*|u-v|
2
) 

 3 -- sigmoid: tanh(gamma*u'*v + coef0) 

-d degree = set degree in polynomial kernel function (default value = 3) 

-g gamma = set gamma in non-linear kernel function (default value = 1/k, 

k is the number of attributes in one input instance) 

-r coef0 = set coef0 in polynomial and sigmoid kernel function (default 

value = 0) 

-c cost = set the parameter C of C-SVC, epsilon-SVR, and nu-SVR 

(default value = 1) 

-n nu = set the parameter nu of nu-SVC, one-class SVM, and nu-SVR 

(default value = 0.5) 

-p epsilon = set the epsilon in loss function of epsilon-SVR (default value 

= 0.1) 

-m cache size = set computation cache memory size, in MB (default value 

= 100) 

-e epsilon = set tolerance of termination criterion (default value = 0.001) 
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-h shrinking = whether to use the shrinking heuristics, 0 or 1 (default value 

= 1) 

-b probability_estimates = whether to train a SVC or SVR model for 

probability estimates, 0 or 1 (default value = 0) 

-wi weight = set the parameter C of class i to weight*C, for C-SVC 

(default value = 1) 

[predicted_label, accuracy, decision_values/prob_estimates]= svmpredict(testing_

label_vector, testing_instance_matrix, model [, 'libsvm_options']); 

where, 

predictd_label = a vector of predicted labels 

accuracy = a vector including classification accuracy, mean squared error, and 

squared correlation coefficient for regression 

decision_values/prob_estimates = a matrix containing decision values or 

probability estimates 

testing_label_vector = an m by 1 vector of prediction labels 

testing_instance_matrix = an m by n matrix of m testing instances with n features 

model = the output of 'svmtrain' 

libsvm_options = same as the one in „svmtrain‟ 
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Chapter 4 Field Data Collection 

This chapter focuses on field data collection, including IVDR, observing site 

selection, and data description. 

4.1 Data Acquisition System - IVDR 

4.1.1 GPS and IMU 

Vehicle speed, heading, and position are the basic information that should be 

collected by the IVDR. These data fields can be obtained easily by a low-cost GPS 

receiver with good precision. One of the most important technical indices of a GPS 

receiver is its update rate, which decides the frequency of acquiring data from the 

satellites and the cost of the device. Another factor of concern during selecting a GPS 

receiver is the data interface, which affects the application development period and 

reliability. As a low-cost GPS receiver board equipped with two serial ports, the RCB-4H 

GPS receiver provides up to a 4 Hz data sampling rate and is integrated into the IVDR. 

Its features are listed as follows. 

 Position accuracy: 2.5m CEP (Circular Error Probability) 

 Accuracy of timepulse signal: 99% <100ns 

 Operating temperature range: -40 to 85ºC 

 4 Hz position update rate 

 Two serial ports 

 16 channel positioning engine 

 Ultra-low power consumption 
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 Power brown-out protection 

 Wide supply voltage range: 3.15 to 5.25V 

An antenna is needed for the GPS to receive a signal from the positioning 

satellites. The output messages of RCB-4H GPS can report the condition of the antenna 

supplies. The RCB-4H supports NMEA protocol, whose structure is shown in Figure5. 

$ <Address> {,<value>} *<checksum> <CR><LF>

Start 

character
Address field Data field Checksum field End sequence

Checksum range

Includes 2 fields

Delimited by a „,‟.

Length can vary.

Consists of 2 

characters 

representing a 

hex number.

<XX> <XXX>

Talker 

Identifier

Sentence 

Formatter

Example:

          $           GP          ZDA         ,141644.00,22,03,2002,00,00                *67                  <CR><LF>

 

Figure 5 NMEA Protocol Frame 

NMEA protocol supports many NMEA messages, one of which, recommended 

minimum data (RMC) message, issued in the IVDR. The RMC message provides all the 

data fields needed by this research, such as speed, heading, latitude, and longitude. The 

RMC message is defined as follow. 

$GPRMC,hhmmss,status,latitude,N,longitude,E,spd,cog,ddmmyy,mv,mvE,mode*

cs<CR><LF> 

Table 5 shows the detail of RMC message. 
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Table 5 Recommended Minimum Data (RMC) 

Name 
ASCII String 

Units Description 
Format Example 

$GPRMC string $GPRMC 
 

RMC protocol header 

hhmmss hhmmss.sss 153559.25 
 

Time of position fix 

status character A 
 

Status 

V = navigation receiver warning 

A = data valid. See Position Fix 

Flags in NMEA Mode  

latitude ddmm.mmmm 2817.1144 
 

User datum latitude degrees, 

minutes, decimal minutes format 

N 
 

N 
 

N=north or S=south 

longitude ddmm.mmmm -8233.912 
 

User datum latitude degrees, 

minutes, decimal minutes format 

E character E 
 

E=east or W=west 

Spd numeric 30.5 knots Speed Over Ground 

cog numeric 77.52 degrees Course Over Ground 

ddmmyy ddmmyy 022813 
 

Current Date in Day, Month 

Year format 

mv numeric 
 

degrees Not being output by receiver 

mvE character 
  

Not being output by receiver 

mode 
   

See Position Fix Flags in 

NMEA Mode  

cs hexadecimal *53 
  

<CR><LF> 
   

End of message 
 

 

IMU, which measures roll angle, roll angular, pitch angle, pitch angular, yaw 

angle, yaw angular, longitudinal acceleration, lateral acceleration, and vertical 

acceleration of the vehicle, is another essential part of IVDR.VG320, an IMU from 

Crossbow Technology, is integrated into the IVDR to fulfill this data acquisition task. 

VG320 is a commercial MEMS-based IMU with a 6-DOF MEMS inertial sensor 

core, which includes three axes of MEMS angular rate sensing and three axes of MEMS 

linear acceleration sensing. This IMU is capable of acquiring various data such as attitude, 
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angular rates, and accelerations at a high sampling rate, up to 100 Hz. It uses a serial port 

for data communication and each data transmission. Table 6 shows the performance of 

VG320. 

Table 6 Performance of VG320 

Heading 

Range (°) ± 180 

Accuracy (°) relative, freely integrated 

Resolution (°) < 0.1 

Attitude 

Range: Roll, Pitch (°) ± 180, ± 90 

Dynamic Accuracy(°) < 2.0 

Resolution (°) < 0.1 

Angular Rate 

Range: Roll, Pitch, Yaw (°/sec) ± 150 

Scale Factor Accuracy (%) < 1 

Resolution (°/sec) < 0.02 

Acceleration 

Input Range: X/Y/Z (g) ± 4 

Scale Factor Accuracy (%) < 1 

Resolution (mg) < 0.5 

Environment 

Operating Temperature (°C) 

 

 

 

 

 

-40 to +85  

 Electrical 

 Input Voltage (VDC) 

 

9 to 42 

 Power Consumption (W) 

 

< 3 

 
 

 

In VG320, Angle Data Packet 2 (A2) is the default output data that will be 

generated automatically after the IMU is powered up. Its format is shown in Table 7. 

Table 7 Angle Data Packet 2 

Preamble Packet type Length Payload Termination 

0x5555 0x4132 0x1E <A2 payload> <CRC> 

 

Table 8 shows the A2 payload contents. 
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Table 8 Payload Contents 

Byte 

Offset 
Name Scaling Units Description 

0 rollAngle 2*pi/2
16

 radians Roll angle 

2 pitchAngle 2*pi/2
16

 radians Pitch angle 

4 yawAngle 2*pi/2
16

 radians Yaw angle 

6 xRate 7*pi/2
16

 rad/s Roll angular rate 

8 yRate 7*pi/2
16

 rad/s Pitch angular rate 

10 zRate 7*pi/2
16

 rad/s Yaw angular rate 

12 xAccel 20/2
16

 g X accelerometer 

14 yAccel 20/2
16

 g Y accelerometer 

16 zAccel 20/2
16

 g Z accelerometer 

18 xRateTemp 200/2
16

 deg C X rate sensor temperature 

20 xRateTemp 200/2
16

 deg C Y rate sensor temperature 

22 ZRateTemp 200/2
16

 deg C Z rate sensor temperature 

24 timeITOW 1 ms DMU ITOW 

28 BITstatus - - Master BIT and Status 
 

 

The coordinate system of the VG320 is shown in Figure 6. It is an orthogonal 

right-handed coordinate system. Accelerations are positive when they are oriented 

towards the positive side of the coordinate axes. The angular rate sensors are aligned with 

these same axes and measure angular rotation rate around a given axis. The direction of a 

positive rotation is defined by the right-hand rule. 

X

Y

Z

Roll

Pitch

Yaw

+

+

+

 

Figure 6 Coordinate System of VG320 
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The measurement data are provided by the GPS and IMU at different update rates 

and in different formats. These two sets of data have to be integrated inside the IVDR to 

attain uniform data that are acceptable for the database. Data synchronization and data 

linear interpolation were applied to merge the data. Figure7 shows the simplified working 

procedure of the GPS/IMU. 

Start

Start sampling

Read serial ports

Check GPS/IMU status

GPS/IMU connected

and GPS signal available?

Decoding GPS/IMU data streams

GPS/IMU data synchronized?

Data synchronized

IMU data initial calibrated?

Data linear interpolation

Save data in IVDR Send data to sever computer

Sampling end?

Output *.csv data file

End

Yes

No

Yes

No

Yes

No

Yes

No

IMU data initial calibration

 

Figure 7 Working Procedure of GPS/IMU 
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4.1.2 Network Socket Application 

A User Datagram Protocol (UDP) socket was deployed for the communication 

between the IVDR and server computer. The socket application links the IVDR to the 

database installed in the server computer and realizes real-time data transmission from 

the IVDR to the server computer. The in-vehicle computer can focus on data collection 

while the SVM model computation and the website demonstration are distributed on the 

server computer. 

As a core member of the Internet protocol suites, UDP enables the computer 

application to send datagrams to an objective computer on the Internet without prior 

communication to set up a connection. These two computers are known as the UDP client 

and the UDP server.UDP is a simple and transaction-oriented transmission model that can 

be used for purposes where checking datagram loss and reporting error is either not 

necessary or a user-defined data format is needed in the application. Although there is no 

guarantee of data delivery over unreliable Internet media, the lack of retransmission 

delays makes UDP suitable for real-time application as the IVDR in this research. For a 

data transmission task, the IP address and port number of the UDP sever have to be set to 

the UDP client, and a user-defined data coding method is used for coding and decoding 

the datagram transmitted between the UDP client and server. In this project, the diagram 

format includes 18 data fields delimited by a comma. The first data field is a “#” as a 

beginning flag; the last one is a “$” as an ending flag; and the other 16 data fields include 

15 collected by the IVDR and 1 time index, which is used for sorting data according to 

collected time in the UDP server. Figure 8 presents how the UDP socket works between 

the IVDR and the server computer. 
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IVDR (UDP Client)

Open a socket

Data 

coding

Set IP and port

Close the socket

    Exit？

Yes

No

    Data available？
Yes

No

Server computer (UDP Server)

Open a socket

Data 

decoding

Close the socket

    Exit？

Yes

No

    Data available？
Yes

No

#,Pos,…,Time,$

Database

 

Figure 8 UDP Socket Flow Diagram 

4.1.3 Website and Map 

To dynamically output the recognition result and track the instrumented vehicle, a 

Google Map API-based website driven by Asynchronous JavaScript and XML (AJAX) 

was deployed on the server computer. 

AJAX is a group of Web development technologies used on the client side for 

exchanging data asynchronously with a website server and updating parts of a Web page 

without reloading the entire page. It provides an XMLHttpRequest object to send the 

request to a website server for retrieving data. The Web page developed in this project 

retrieves data from the server computer once per second. The server responds to every 

request with a data string, whose format is the same as the one used in the UDP. The data 

string is decoded on the client browser and updated to a corresponding field of the Web 

page. 

Google Maps provides rich functional APIs that allow users to embed the various 

functionality and usefulness of Google Maps into their own website and applications and 

overlay their own data on top of them. The Google Maps API is a free service, available 
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for any website that is free to consumers. The latitude and longitude data acquired by 

GPS can locate the probe vehicle on Google Maps or show its history location. With 

AJAX, the location of the probe vehicle is updated dynamically on the map. Compared to 

presenting the raw data or simple charts, introduction of a dynamic electronic map 

increases the intuition of data and improves user experience of IVDR significantly 

4.1.4 IVDR 

The structure of the system is shown in Figure 9.The IVDR consists of a GPS, a 

GPS antenna, an IMU, a DC/AC converter, a computer, data acquisition application 

software, a two-serial PCMCIA adapter (if necessary), and a wireless network card.  

 

Figure 9 IVDR and Information System 

According to the GPS manual, a GPS antenna is required to be placed on top of 

the vehicles to ensure exposure to as many satellites in the sky as possible. A 5V DC car 

power supply was converted into a 110V AC by the DC/AC converter to power the 

GPS/IMU and onboard computer. 
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Figure 10 IVDR Installation 

Data acquisition application software was developed to provide a set of friendly 

user interfaces that facilitate system parameter setting, data calibration, data sampling, 

and analysis. The sampling interface that integrates the calibration function and the real-

time data curve display is shown in Figure 11. 

 

Figure 11 Sampling Interface 
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IMU 
Antenna 
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Figure 12 shows the socket application and database deployed on the server 

computer. The socket application is able to decompose the datagram retrieved from the 

IVDR and store the data to the database in a time sequence. 

 

Figure 12 Socket Application and Database on Server Computer 

On the server computer, a website server was set up to manage the deployment 

and publishing of Google Maps API-based website. Figure 13 shows a launched website 

server that continuously sends GPS/IMU data to a connected user browser. 

 

Figure 13 Website Server 
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In the users‟ browsers, a dynamic website shows both an animated bubble and 

constantly updated data, which demonstrates the data acquisition process in real time. 

 

Figure 14 Website Based on Google Maps API 

4.2 Site Selection and Data 

4.2.1 Site Selection 

The exact number of instances that are needed to train a lane-change recognition 

model is still in question. A large amount of lane-change data is not easily collected in 

real traffic, especially at high speeds. Inappropriate and frequent lane-change movements 

can significantly affect the traffic environment and cause safety issues. Multiple-lane 

roads with low traffic volumes are ideal data collection sites. 

Therefore, roadway sections on I-75, E. Fowler Ave., E. Fletcher Ave., and 56
th

 St. 

in Tampa (in Figure 15) were selected for data collection. The operation speeds are from 

60 km/h to 100 km/h on these roadway sections. Some roadway sections with lower 

speed limits on the USF campus were also selected for lane-change data collection. Lane-
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change data should be collected by experienced drivers during the day with good weather 

conditions and low traffic volumes. 

 

Figure 15 Selected Roadway Sections 

4.2.2 Driving Data 

Vehicle movement data collected by the GPS/IMU reflect driver behaviors. 

Multiple instances of a specific type of driver behavior are of similar patterns. Some 

featured data are as following. 

A set of deceleration data for a vehicle is shown in Figure 16. The vehicle slowed 

down until it stopped for a red light on a straight roadway. In the data fragment, the 

vehicle traveled 236 meters in 19 seconds. Harder braking was applied in the last 5 

seconds than the previous 10 seconds. The changes in vehicle speed and pitch, except for 

pitch angular velocity, are strongly correlated with longitudinal acceleration. 
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Figure 16 Deceleration 

Figure 17 shows a vehicle accelerating from 0 to 60 km/h after waiting for a green 

light at the stop line of an intersection. During acceleration, the vehicle traveled 174 

meters forward on a straight roadway in 17 seconds. Acceleration increased to peak value 

and lasted for 1.5 seconds at the beginning, and then decreased gradually to 0. As a result 

of longitudinal acceleration variance, the pitch angle of the vehicle rose significantly in 
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the first 8 seconds and then declined slowly. There is no obvious relevance between pitch 

angular velocity and longitudinal acceleration. 

 

 

Figure 17 Acceleration 

Figure 18 shows the result of a vehicle passing over a hump. The lateral 

acceleration pattern in this instance is completely different from the ones of other 

movements. The hump obviously influenced the pitch angle and pitch angular velocity of 

T

ime 

(s) 
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the vehicle. The size of the hump and the speed of vehicle are the major factors for 

generating such patterns. 

 

 

Figure 18 Hump Passing Over 

Figure 19 shows a left-turn movement completed within 7.4 seconds. In the first 4 

seconds, the brakes were applied before entering the intersection, with the steering wheel 



39 
 

 

pulled slightly to the left. The most obvious changes in the curves happened in the last 3 

seconds. Pitch angle and roll angle were significantly affected by the changes of speed 

and yaw angular velocity. In the whole process, the changes of lateral acceleration and 

yaw angular velocity were strictly synchronous. The fluctuations of pitch angular velocity, 

roll angular velocity, and lateral acceleration were caused by the uneven pavement. 

 

 

Figure 19 Left Turn 
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Lane-change patterns will be discussed in Chapter 6. 

In summary, this chapter shows some correlations between features and normal 

driver behaviors; nevertheless, some defects of data collected by the IVDR can be easily 

found follows. 

 The change of speed detected by the GPS lags behind that of longitudinal 

acceleration detected by IMU. 

 The change of angle lags behind that of corresponding angular velocities. 

 Yaw angle, roll angle and pitch angle take a while to attain stability after the 

driver behavior is completed. 

 Raw data include high-frequency noise. 

 Yaw angle sometimes changes unreasonably and unpredictably. 
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Chapter 5 Lane-Change Simulation 

Sufficient lane-change data are essential to build a lane-change recognition model. 

Although an IVDR is developed in this dissertation, it is hard to collect a full-scale data 

set that includes lane-change data in different conditions, such as various speeds and 

distances. The most restrictive data collection issue in real traffic is safety. Frequently 

lane-change behavior comes with high risk, not only for the probe vehicle but also for 

other vehicles nearby. To avoid this, simulation is the best way to obtain sufficient lane-

change data. A lane-change simulation model can imitate a human driver performing 

lane-change movement with given conditions. This chapter introduces a lane-change 

model that consists of a vehicle model, a speed controller, and a trajectory tracking 

controller. 

5.1 Simulation Software and Vehicle Model 

Appropriate simulation software can reduce the model development period and 

provide high quality simulation data efficiently. Simulink, a block diagram environment 

for multi-domain modeling and simulating, was used to develop the lane-change model. 

Its major interfaces are a graphical block diagramming tool and abundant block libraries. 

It is one of the most popular simulation tools widely used in control system design and 

digital signal processing. It provides a series of complete function tools for data input, 

data output and observation. The appearance of the Simulink development environment is 

shown in Figure 20. The PID control is quite easy to implement in the friendly interface 

of Simulink. 
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Figure 20 Simulink Interface 

The vehicle model used in the lane-change simulation model was extracted from 

the Automated Dynamic Analysis of Mechanical System (ADAMS). ADAMS is a 

multibody dynamics software used for studying the dynamics of moving parts and how 

forces and loads are distributed in mechanical systems. It is capable of simulating real 

world physics. ADAMS provides a full-car model perfectly to meet the requirements of 

developing the lane-change model. Unfortunately, there is no trajectory tracking 

controller in ADAMS, so the full-car model was exported to the Simulink development 

environment and integrated with a control system. Figure 21 shows the full-car model in 

ADAMS, indicating four wheels, front and rear suspensions, an engine, a steering system, 

and a body. A brake system is also integrated into the full-car model. 
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Figure 21 ADAMS Full-car Model 

In Simulink, the imported full-car vehicle model is shown as a block diagram, 

with multiple inputs and multiple outputs. In Figure 22, the five elements on the left side 

of the model are full-car model inputs, similar to the five parts controlled by a human 

driver in a real manual vehicle; the elements on the right side are the sensors integrated 

into the full-car model, which provide accurate vehicle operation information, such as 

displacements, velocities, accelerations, etc. The coordinate system comforts to the right 

hand rule, and the x axis points to the advance direction of the straight road along the 

horizontal plane. The data collected from this full-car model are similar to the field data 

collected by the IVDR developed in this dissertation. 
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Figure 22 Full-Car Model in Simulink 

According to the input features of the full-car vehicle model, a speed controller is 

designed to control the brake and throttle, and a trajectory tracking controller allows for 

steering input. These two controllers have the capabilities of tracking target lane-change 

paths and keeping a steady speed as the setpoint. 

5.2 Speed Controller 

The lane-change model should simulate lane-change movements at different 

given speeds. The initial speed of the full-car vehicle is fixed in this case, but it can be 

adjusted to the given speeds and kept steady by the speed controller. In actual driving 

tasks, a lane-change movement can last longer than 10 seconds. Considering that most 
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lane-change behaviors are completed in 10 seconds and the precision of the GPS/IMU is 

not good enough to detect small signal changes in slow lane-change movements, this 

dissertation focuses only on the lane-change data collected in 10 seconds. However, 

speed could change significantly without any speed control measures, even in a period 

less than 10 seconds. That will affect the lane-change data quality that should be 

collected at different speeds, other conditions remaining the same. 

5.2.1 PID Speed Controller 

To achieve a speed as a setpoint, the speed controller adjusts the throttle and 

brake of the full-car model, according to the computation results on speed error. The 

speed control loop is shown in Figure 23. 

 

Figure 23 PID Speed Controller 
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In the block diagram,  is a delay unit used to output the value calculated in 

the last computation cycle, and  is used for limiting the input signal to the upper and 

lower saturation values. The vehicle is assumed to run on a zero grade pavement to 

ignore the vertical velocity of the vehicle, and the impacts on vehicle velocity from roll 

angle and pitch angel are also ignored. The control purpose is to stabilize the magnitude 

value of synthetic speed of the velocities in x and y directions (Vx and Vy). 

The input ranges of the throttle and brake are between 0 and 100 percent, 0 

indicates no input and100 is the other extreme. For the control value u(k), a negative 

value indicates deceleration, and a positive value indicates acceleration. Although the u(k) 

is connected to two inputs of the vehicle, only one input is available at the same time. 

Three parameters, Ki, Kp, and Kd, have to be determined for future implementation. 

5.2.2 Speed Controller Parameters Tuning 

The full-car model allows the user to set an initial speed and the simulation will 

starts at the given speed. Using a high initial speed will decrease the time length before 

the speed becomes steady. Decelerating takes less time than accelerating to achieve the 

same speed difference, and starting at zero speed require shifting the gear which makes 

the simulation more complicated. In this case, the initial speed was set at 20 meters per 

second (m/s). The simulation step is the time interval between each computation cycle; a 

large interval saves simulation time with lower control quality, and a small interval helps 

the controller to frequently read the error and adjust the controlled object. To achieve a 

balance, the simulation step was set to 0.025 seconds. 

First, the valid value ranges of the PID parameters had to be determined. Usually, 

the lower bounds for all PID parameters are 0. PID parameters in different orders of 
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magnitude have to be set on the controller, and the upper bounds are decided according to 

the response of the vehicle speed. The following figures show the speed responses upon 

different combinations of PID parameters. 

Comparing the actual speed curves in Figure 24 and Figure 25, the second one 

does not have overshoot at 1 second but oscillates below the given value in the last 4 

seconds. The first keeps a steady speed after a few overshoots. The first response is 

preferred, and the upper bounds of the PID parameters should be less than 1. 

 

 

Figure 24 Speed Response, Kp=0.1, Ki=0.1, Kd=0.1 
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Figure 25 Speed Response, Kp=1, Ki=1, Kd=1 

The next step is to tune the PID parameters around (0.1, 0.1, 0.1) and determine if 

there are any responses better than the ones shown in Figure 24. For convenience, GA 

was used to optimize PID parameters in the speed controller. The GA optimization 

process requires two basic inputs in this case the number of parameters and the range for 

each of them and also needs an evaluation index for each combination of parameters 

generated by the GA. The evaluation index was calculated in each simulating cycle 

according to the simulation result, and the GA aims to minimize the evaluation index. 
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In academic journal papers and simulation studies, the control measures are used 

to measure the controlled system performance for comparing different control schemes or 

different groups of controller parameters. They are also very useless for assessing the 

performance of real control system. One of the most commonly used measures is Integral 

Time-weighted Absolute Error (ITAE), and is defined in Equation 4. 

𝐼𝑇𝐴𝐸 =   𝑒(𝑡) 
𝑡1

0
𝑡𝑑𝑡        (4) 

where, 

e = error 

t1 = upper limit of integral 

Equation 4 indicates that the ITAE index is the integral of time multiplied by the 

absolute magnitude of the error. The errors that exist after a long time are weighted more 

heavily than those at the beginning of the response. The features of the ITEA meet the 

requirement of tuning the PID parameters to keep steady speeds in lane-change 

movement. Because the lane-change movement is accomplished only after the vehicle 

speed is adjusted to the setpoint, ITAE emphasizes the errors occurring later in the speed 

response. 

In the tuning process, shortening the simulation time and eliminating the impact 

of the errors occur before the vehicle speed reaches the setpoint, so the initial speed of the 

vehicle was set as 25m/s and the setpoint was 26m/s, and the simulation time was set to 2 

seconds. A full-throttle input was applied to investigate if the setting as reasonable for 

parameter tuning; the results are shown in Figure 26. As indicated in the figure, it takes 

only about 0.25 seconds to reach 26m/s from 25m/s by 100 percent throttle input, so the 

PID controller takes only about 0.5 seconds to accelerate the speed to 26m/s The 
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remaining 75 percent of the simulation time is enough for ensuring that later errors 

dominate the ITAE result. 

 

Figure 26 Speed Response, Throttle=100% 

For the GA setting, the number of undetermined parameters is 3, and the lower 

and upper bounds of all the parameters are 0 and 1. GA searches only for a good 

combination, not the best one, so it was not necessary to set a large generation parameter 

to the algorithm, which would result in a long optimization period, so only 1 generation 

was set the GA. The ITAE integral range was set from 0 to 2 seconds as the full 

simulation period. The GA optimization result is shown in Figure 27. The best ITAE  

 

Figure 27 GA Result on PID Speed Controller 
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generation 0 and generation 1 were 2.06; the corresponding combination of parameters 

was the best and was used in the PID speed controller. 

GA also lists all 40 combinations of parameters generated in the optimization 

process. The last outputs are presented as follows. 

 Kp=0.10, Ki=0.06, Kd=0.74, ITAE=8.72 

 Kp=0.72, Ki=0.42, Kd=0.55, ITAE=11.71 

 Kp=0.82, Ki=0.40, Kd=0.95, ITAE=22.79 

 Kp=0.89, Ki=0.52, Kd=0.29, ITAE=8.33 

 Kp=0.50, Ki=0.97, Kd=0.43, ITAE=7.09 

 Kp=0.24, Ki=0.66, Kd=0.34, ITAE=2.18 

 Kp=0.71, Ki=0.43, Kd=0.11, ITAE=2.06 

 Kp=0.06, Ki=0.13, Kd=0.49, ITAE=5.96 

 Kp=0.18, Ki=0.15, Kd=0.66, ITAE=3.39 

 Kp=0.98, Ki=0.45, Kd=0.17, ITAE=7.45 

 Optimization terminated: maximum number of generations exceeded. 

 Bestresult : Kp=0.71, Ki=0.43, Kd=0.11, best ITAE=2.06 

In the list content, the combination Kp=0.24, Ki=0.66, Kd=0.34 has a small ITAE 

value, which is close to the best one. The combinations that have small ITAE values are 

already good enough for the speed controller in this case. GA makes the optimization 

much easier than the manual method which is a time consuming process. 
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5.2.3 Speed Controller Performance 

The three parameters with the best combination were applied to the PID speed 

controller. The throttle inputs, brake inputs, and speed responses of the acceleration and 

deceleration process are shown in Figure 28 and Figure 29. 

 
 

 

Figure 28 Acceleration, Kp=0.71, Ki=0.43, Kd=0.11 



53 
 

 

 
 

 

Figure 29 Deceleration, Kp=0.71, Ki=0.43, Kd=0.11 

Figure 28 indicats that the vehicle speed is pushed by the 100 pecent throttle input 

in the first 0.4 seconds and rapidly climbs to the setpoint. Once the vehicle speed gets 

close but is a little slower that 26m/s, the PID controller reduces the throttle input to 

avoid a large overshoot, and then adjusts the throttle input within a small range to keep 

the vehicle speed steady. At about 0.8 seconds, the adjustment gets smaller, and the 

vehicle speed is remained by a stable throttle input. 

Figure 29 shows the deceleration process with the same parameters as those in the 

acceleration process. The speed controller takes about 1.5 seconds to reduce 60 percent of 
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the initial speed with a 100 percent brake input. A large overshoot is eliminated in this 

process, but both brake and throttle are used to adjust the vehicle speed during the period 

between 1.5 - 1.9 seconds. 

5.3 Trajectory Tracking Controller 

For tracking the given lane-change path, there are two essential capabilities that 

the trajectory tracking controller must have: one is sensing the path information ahead of 

the vehicle, the other one is controlling the steering wheel according to sensed 

information. These two capabilities are also two basic skills that a good human driver has. 

The most ideal controller should be able to drive exactly along the given path. 

5.3.1 PID Trajectory Tracking Controller 

The trajectory tracking controller is a classic PID controller similar to the speed 

controller. There are two important features in the tracking controller that are not in the 

speed controller: a preview function and position feedback. The throttle and brake can be 

adjusted by the controller from 0 to 100 percent in one simulation step, simulating an 

actual situation. But for both the full-car model and a real vehicle, the steering wheel 

cannot be changed much in a short period, especially in 0.025 second. Compared to speed, 

the position of the vehicle cannot be adjusted so rapidly, because it involves other 

variables more than position, such as acceleration, speed, heading, etc. Thus, it requires 

that the controller be able to perceive the information in front of the vehicle similar to the 

preview capability of a human driver. The other difference from the speed controller is 

that the tracking controller needs information about car position, speed and acceleration. 

With more valid and necessary information are sent to the controller, the performance of 

the controller adjusting the vehicle will be better. 
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In Figure 30, a driver is attempting to reach point B at time 𝑡 + ∆𝑡. At point A, 

the vehicle has an initial acceleration in y direction 𝑎𝑦  and an initial speed in y direction 

𝑣𝑦 . If the driver keeps the same steering wheel angle, the vehicle only can reach point C 

at time 𝑡 + ∆𝑡, so the driver has to turn the steering wheel to the left a little more to force 

the vehicle to the left. The adjustment of the steering wheel generates an extra 

acceleration in y direction 𝑎𝑦1, which helps the vehicle reach point B. The adjustment 

depends on the driver‟s experience, which can reduce the position error. In this case, the 

driver sees the destination in his sight distance, then adjusts the steering wheel based on 

the vehicle position, velocity and acceleration (by vehicle heading). Base on this analysis, 

the tracking controller should be able to detect point B early enough and provide a lateral 

acceleration difference value by adjusting the steering wheel. The difference between a 

human driver and a controller is that a human driver can determine when to respond to a 

destination ahead of the vehicle, but a controller adjusts the steering wheel once it detects 

the feedback information. The feedback to the tracking controller is defined in Equation 5. 

𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑘 = 𝑦 𝑘 + 𝑣𝑦(𝑘) ∙ ∆𝑡 +
1

2
𝑎𝑦(𝑘) ∙ ∆𝑡

2    (5) 

where, 

Feedback = input of the tracking controller 

y = vehicle position in y direction 

vy = vehicle speed in y direction 

ay = vehicle acceleration in y direction 

∆𝑡 = track controller preview time 
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Figure 30 Feedback Information 

To drive along a given path, the controller should at least have a constant sight 

distance. By a given preview time, a sight distance that is too long will make the 

controller act early, and the driving path will occur before the given path; if it is too short, 

the driving path will occur behind the given path. The best way to couple the preview 

time with the sight distance is to use vehicle speed multiplied by preview time. 
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Figure 31 Sight Distance 

The trajectory tracking controller is shown in Figure 32. The preview detector 

reads the given path and generates a preview path as a setpoint. The vehicle position, 

speed and acceleration in y direction are combined in Equation 5 as one part of the PID 



57 
 

 

controller input. Because the units of feedback information and steering input are at 

different scales, the output of the controller has to be multiplied by a conversion value. 

 

Figure 32 Trajectory Tracking Controller 

5.3.2 Trajectory Tracking Controller Parameters Tuning 

Usually, a controller that is capable of handling a severe situation has good 

performance in general, but not vice versa. A severe lane-change movement should be 

considered first in PID parameter tuning. 

British Standard ISO 3888 provides a standard method of using a double lane-

change to evaluation vehicle dynamics. The dimensions of a double lane-change track are 

shown in Figure 33. This standard suggests that vehicle speed on a double lane-change 

track is (80±3) km/h; higher or lower speeds may be used. In Florida, the speed limit for 

freeways in suburban and rural areas is higher than 110km/h and 88 km/h for highways. 

Field data may come from these roadways, so the highest speed for the lane-change 

simulation model is set to 110km/h. 
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Figure 33 Double Lane-Change Track 

For a double lane-change track, the second single lane-change is the most severe. 

Thus, in parameter tuning, the tracking controller must control the vehicle to accomplish 

a lane-change movement on the second lane-change track at 110km/h. The probe vehicle 

was a 1999 Corolla with a 1694mm body width, which is defined as the overall width of 

a vehicle without rear view mirrors. To simplify, all the tracks for the PID data tuning 

were 3.5m in lane offset and 25m in x direction, without lane width restrictions, as shown 

in Figure 34. The controller preview time was one second in the tuning process. 

3.
5m

d=25m

Driving direction

 

Figure 34 Lane-Change Track for Parameters Tuning 

As with the speed PID parameter tuning, the first step was to determine the upper 

bounds of the three PID parameters. The test results are shown in the following figures. 
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Figure 35 shows a successful lane-change movement. Symbol d is defined as that 

in Figure 34, v is speed and pt is preview time. Because of the preview behavior of the 

PID controller, the vehicle attempts to move to the right lane at time=1s, although the 

target path has the first change at time=2s. A smaller preview time may force the actual 

path closer to the target path. There is a little overshoot between t=4s and t=5s; the 

vehicle still runs inside the lane. There is a small oscillation, showing only on the speed 

curve. The steady speed means the speed controller performed well in the severe lane-

change movement. 

 

Figure 35 Lane-Change Simulation, Kp=Ki=Kd=0.1 
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Figure 36 Lane-Change Simulation, Kp=Ki=Kd=0.118 

When the parameters were all 0.118, the steering wheel input had obvious 

oscillations, which means the parameters were close to the upper bounds. 

Three parameters will make the optimization more complicated than fewer 

parameters. The next step was to check if there were one or two parameters that dominate 

the controller performance. Base on the case shown in Figure 35, two of the three 

parameters were set to 0; the effect of the remaining parameter was observed through the 

simulation response. The actual path in Figure 38 is very similar to the one in Figure 35 

and the vehicles in Figure 37 and 39 are failure to tracking the given paths. The 

parameter Ki dominates the trajectory controller to make a lane-change, and the 

remaining two parameters impact only the steering pattern. In the remainder of the PID 
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tuning, the Ki is the only parameters needed to be optimized. The upper boundary of Ki 

was determined again. 

 

Figure 37 Lane-Change Simulation, Kp=0.1 

 

Figure 38 Lane-Change Simulation, Ki=0.1 

 

Figure 39 Lane-Change Simulation, Kd=0.1 
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When Ki=0.7, oscillations occur on the steering input and apparently impact the 

acceleration on y direction. The best value for Ki should be less than 0.7. The other 

simulation results show that the upper bound of Ki is 0.64 when the preview time is one 

second. 

 

Figure 40 Lane-Change Simulation, Ki=0.7 

The same optimization process used on the speed controller was applied to 

determine the PID parameters for the trajectory tracking controller. GA with only one 

generation was used to optimize only parameter Ki, and the setting of simulation was the 

same as in the preview case. A total of 40 Ki values generated by the optimization 

algorithm were attempted. The results are shown in Figure 41 
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Figure 41 GA Result for Trajectory Tracking Controller 

Fitness value in the figure is the ITAE result, the best one was 260.718 with 

Ki=0.04. The last 10 optimization results are as follows. 

 Ki=0.24 ITAE=329.11 

 Ki=0.04 ITAE=260.72 

 Ki=0.22 ITAE=327.71 

 Ki=0.31 ITAE=331.76 

 Ki=0.06 ITAE=294.26 

 Ki=0.04 ITAE=260.72 

 Ki=0.15 ITAE=320.43 

 Ki=0.04 ITAE=260.72 

 Ki=0.00 ITAE=2727.12 

 Ki=0.06 ITAE=294.26 
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 Optimization terminated: maximum number of generations exceeded. 

 Bestresult Ki=0.04, best ITAE=260.72 

The optimization process produced the best result of the 40 Ki at 0.04, which has 

good performance at 110km/h. Its performance at low speed is shown in Figure 42. 

 

Figure 42 Lane-Change Simulation, Ki=0.04 

The tracking controller with a small Ki value failed to make the lane-change 

movement at low speed. Compare to Ki=0.04, the upper limit value, 0.64 enabled the PID 

controller to perform much better lane-change movements at the same condition, as 

shown in Figure 43. The other optimization results with different preview times indicated 

that upper limit values at high speed assure that the trajectory tracking controller has the 

capability of controlling the vehicle to track reasonable given lane-change paths at a wide 

range of given speeds with one second preview time. Therefore, only the upper limit 

values were used in the lane-change simulation model. 
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Figure 43 Lane-Change Simulation, Ki=0.64 

Finally, 36 preview times, between 0.5 second and 4 seconds with an equal 

interval 0.1 second, were applied to the PID controller, and the corresponding Ki values 

were determined, as shown in Figure 44. 

 

Figure 44 Ki vs. Preview-Time 

The parameter tuning results indicate that the upper bound of the Ki parameter 

attenuates as the power function against the increase of the preview time. The Ki value 
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reflects the sensitivity of the trajectory tracking controller on position error in y direction. 

The controller with a large Ki value is more sensitive than the one with a smaller Ki 

value. Therefore, the Ki can be considered as an indicator that describes the quickness of 

driving controller. 

5.3.3 Lane-Change Simulation Model and Results 

In summary, the lane-change simulation model is a multi-input and multi-output 

model including two PID controllers and a full-car model (Figure 45). In the tracking 

controller, Ki is determined by a given preview-time using the relationship described in 

Figure 44. 

1. Preview-time

2. Expected speed

3. Lane width

4. Lane length

Speed Controller

Kp=0.71, Ki=0.43, Kd=0.11

Tracking Controller

Ki=f(previewtime)

Brake/Throttle

Steering wheel

Driver Model 1. Attitude

2. Accelerations

3. Speed

4. Displacements

OutputInput FeedbackSpeed

Position

 

Figure 45 Lane-Change Simulation Model 

Two lane-change simulations with different preview times are shown in Figures 

46 and 47. For the same given lane-change path, the controller with a 0.5s preview time 

takes only 2 seconds to finish the movement, while the other takes about 8 seconds; the 

different preview times lead to totally different driving tracks. As shown in Figure 46, the 

change of the steering wheel input between t=1s - 1.9s is much quicker than the other 

time periods, because the target path switch to the right lane is between t=4s - 4.8s and is 

perceived by the driver with a 3-second preview time. After t=1.9s, the error input to the 

controller decreases as the target path is fixed and the vehicle gets closer the right lane. 
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Figure 46 Lane-Change Simulation, Preview-Time=3s 

 

 

Figure 47 Lane-Change Simulation, Preview-Time=0.5s  
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Chapter 6 Lane-Change Recognition 

This chapter presents the process of using SVM to develop a lane-change 

recognition model. Different features of both simulation data and field data were used to 

build the recognition model. Comparisons and analysis were performed on the 

recognition results for a better understanding of improvement methods. 

6.1 Lane-Change Data Preparation 

The first step for modeling the lane-change recognition system was selecting 

appropriate data features as the input elements of the recognition model; only those 

features that showed strong correlation to the lane-change maneuver were considered. 

Because the simulation data and the field data are all time series sampled in different 

rates, the data was processed and reorganized for obtaining new data sets with the same 

sample rates. For both modeling and recognition, it was not necessary to input every 

sample point and a long period data into the recognition model, which could increase the 

computation time and have little effect on accuracy improvement. A good input series 

should be able to represent lane-change behavior characteristics within a small timing 

window and a large time interval. 

6.1.1 Field Data Noise Elimination 

Unlike simulation data generated in an ideal situation, field data were collected in 

a real traffic environment by measurement units with finite precision. Without handling, 

noises can significantly influence computation accuracy. As shown in Figure 48, many 

noises are superimposed on the lateral acceleration and yaw angular rates, and the 
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amplitude of the noises is larger than 10 percent of the peak-to-peak value of both two 

curves. To eliminate the noises, a moving average filter was used to smooth the data. 

 

Figure 48 Lane-Change Field Data 

The filter is defined in Equation 6. 

𝑛 𝑘 =
1

𝑠
 𝑦(𝑗)

𝑘+(𝑠−1)/2
𝑗=𝑘−(𝑠−1)/2        (6) 

where, 

n = smoothed data series 

y = raw data series 

s = data span, an odd constant value 

A large span value will drag the smoothed data series to the average of the whole 

original data set; a small one will not be able to eliminate the noise. Tests showed that the 
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smoothed series kept the features of the raw data with small noise to a 25 span value. 

Figure 49 shows a smoothed data generated by the data shown in Figure 48. 

 

Figure 49 Smoothed Data 

Comparing the curves of the raw data and the smoothed one, the peak-to-peak 

magnitudes are almost the same if the contribution of the noise in the raw data is ignored, 

and both curves have the same zero crossing points. The smoothed data could substitute 

for the raw data as the element input to the recognition model. 

In Figure 49, the lateral acceleration values before and after a lane change 

movement are not zero. The whole curve is pulled down by a -0.25 m/s
2
 bias value, 

which is caused by IVDR installation deviation or vehicle body sway. These bias values 

do not occur in simulation data because lane change movements are simulated on 

horizontal ground and the measurement sensors are installed perfectly. For increasing 

recognition accuracy, the bias value has to be removed. In a short period, the bias value 

can be assumed to be equal to the average value of the lateral acceleration. The values 
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input into the recognition model are the results of smoothed values minus their average 

value. 

6.1.2 Dual Lane-Change Movement 

To better understand the performance of the SVM model on the lane-change 

model and determining the most effective input data features and formats, dual lane-

change movement were simulated by the lane-change simulation model with the same 

controller parameters. In this dissertation, dual lane-change is defined as a driving 

behavior that drives the vehicle directly to the second right or left lane, show as Figure 50. 

The width of each lane is 3.5m. 

 

Figure 50 Dual Lane-Change 
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The trajectory tracking controller had good performance on dual lane-change 

control, as good as on single lane-change control. The actual path approached the target 

path with only a small overshot which still kept the vehicle driving in the lane. 

6.1.3 SVM Input Data Reduction 

A single data row in the training and validation data sets is known as a feature 

vector and includes two parts: instance data and label. Instance data contain one or more 

driving data features in a uniform form, and label indicates the category of each instance. 

The length, representation format and driving data features of the instance data have to be 

determined. 

Like a human observing lane-change behavior, the SVM also needs a time 

window that includes the main information of the lane-change to classify the driving 

behavior. The input instance data length depends on the time window size and the time 

interval. One basic issue with using SVM for lane-change recognition is that the lane-

change movements are not accomplished in a fixed time length. A longer lane-change 

shows a smooth and small change in the features values, such as steering input, heading 

angle, lateral acceleration, etc. It is difficult to detect the driving patterns of the instance 

data with small changes and collect them within the limit precision measurement units. 

This dissertation focuses on lane-changes completed in 10 seconds; most simulation data 

and field data of lane-changes are shorter than this, between 4 and 7 seconds. The field 

data were recorded at a 50Hz sampling rate, and the simulation at 40Hz, so the time 

interval of the input instance data was set to 0.1 second. Various window sizes and time 

interval were analyzed and compared to obtain the best one for this recognition task. 



73 
 

 

There are three data features that change as a sinusoidal function in lane-change 

movements-lateral acceleration, heading and yaw angular rate,. These features can be 

used to build the model, but they are related to each other and have similar patterns, so 

only lateral acceleration whose value is easily acquired and stable was used in this 

research. In addition to the previous features, speed is a feature that significantly affects a 

driver performing a lane-change movement. Thus, speed was considered as one of the 

input features included in the instance data. In the simulation data set, the maximum 

values of the lateral acceleration in some lane-change instances were larger than 4 m/s
2
 

and went far beyond the maximum value of the field data. These instances were removed 

from the simulation data set. All the lateral acceleration values of both the simulation 

data set and the field data set were scaled to the range [-1, 1] by multiplying a scaling 

factor of 0.25. The magnitude of speed value in km/h was as high as 120. To prevent the 

large value from reducing the effect of the other features and dominating the recognition 

model; the speed values were also scaled to the range [0, 1] by multiplying a scaling 

factor of 0.008.The data instance combinations and formats are defined as follows. 

 [𝐴𝑐𝑐 𝑡1 ,𝐴𝑐𝑐 𝑡2 ,…𝐴𝑐𝑐 𝑡𝑁 ] 

 [𝐴𝑐𝑐 𝑡1 ,𝐴𝑐𝑐 𝑡2 ,…𝐴𝑐𝑐 𝑡𝑁 ,𝑆𝑝𝑑 𝑡1 ,𝑆𝑝𝑑 𝑡2 ,…𝑆𝑝𝑑 𝑡𝑁 ] 

where, 

Acc = scaled lateral acceleration value 

Spd = scaled speed value 

The input data of the recognition model not only included single lane-change data 

and dual lane-change data, but also non-lane-change data. Non-lane-change data were 

chosen from the field data, which contain several irregular patterns on the input features, 
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as shown in Figure 51. The total number of the classes is three, and different labels are 

assigned to each class; 0 for non-lane-change, 1 for single lane-change and 2 for dual 

lane-change. There are 4,030 instances in the single lane-change simulation data set, 

2,921 in the dual lane-change simulation data set, 41 in the single lane-change field data, 

and 92 in the non-lane-change field data. The field data sizes were doubled by adding the 

reverse value of all the field data instances. 

 

Figure 51 Non-Lane-Change Data 

6.2 SVM Training and Results 

6.2.1 SVM Model Training 

Lane-change recognition model is shown in figure 52. Its input is an instance 

array, and its output is one of the three category labels. 
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Figure 52 Lane-Change Recognition Model 

A kernel function was chosen before training the SVM model. For classification, 

LIBSVM provides four types of kernel-linear, polynomial, radial basis function (RBF), 

and sigmoid. Unfortunately, the SVM theory does not provide a direct approach for 

selecting good kernels. To choose a correct kernel for this lane-change recognition task, 

the available data were tested against all the four types of kernel functions in LIBSVM to 

determine the performance of each of them experimentally. 

Different kernels have different combinations of parameters. In LIBSVM, these 

parameters can be easily calculated by the training function with any input data, but 

without optimization. GA, a good method for solving both constrained and unconstrained 

optimization problems, is suitable to determine the kernel parameters. The SVM training 

flowchart is shown in Figure 53. 
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Figure 53 SVM Training Flowchart 

As shown in the flowchart, GA generates the kernel parameters for SVM model 

training. Only the training data set was needed in this step to attain a set of model 

parameters. The model parameters and the validation data set were the inputs of the SVM 

model validation. The error rate was calculated based on a one-to-one comparison 

between the outputs of SVM model validation and the known results given in the 

validation data set. The model parameters were the output for the lane-change recognition 

model if GA stops the computation; otherwise, a new optimization cycle was started. In 

this process, GA attempted to minimize the average error rate of all data groups: single 

lane-change simulation data, dual lane-change simulation data, single lane-change field 

data, and non-lane-change field data. This data grouping and error minimization strategy 

prevented the large instance size groups from dominating the optimization process. 

Previous observations indicate that the value ranges for each parameter could be set as 

Table 9. 
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Table 9 SVM Parameter Ranges 

              Parameters 

 

Kernel type 

c 

default 1 

gamma 

default 0.05 

coef0 

default 0 

degree 

default 3 

range range range range 

Linear (0, 5)    

Polynomial (0, 5) (0, 5) (-5, 5) (2, 4) 

Radial basis function (0, 5) (0, 5)   

Sigmoid (0, 5) (0, 5) (-5, 5)  

 

Figure 54 shows GA optimization results of training a three-class SVM 

classification model.  

 

Figure 54 SVM Training with GA 

In this training, there were more than 7,000 instances in the training data set, and 

the validation data set was the same as the training data set. It was a C-SVC type SVM 

training using a RBF kernel, and two parameters were needed to be determined. The 

optimization process had 10 generations with the best error rate as low as 0, which means 

that a well trained model could recognize all the training instances. The whole 

computation process took about 7 minutes, included 200 GA optimization iterations. 
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6.2.2 Lane-Change Recognition Results 

This research aims to build a lane-change recognition model primarily using 

simulation data and expects that model will have the capability of recognizing field data. 

To find appropriate kernels, all available kernel types were used in the model 

training to find out if any of them was suitable for the recognition task. The capability of 

recognizing training data set was the direct basis for judging the quality of kernel. All the 

available data were put into the training data set, and the trained models were used to 

classify all of the training data to check if it had high accurate outputs, which indicates 

that the kernel type were good in this program. It is unnecessary to try to improve the 

models that trained by the whole data set but still show bad results. 

Kernel performances are compared in Table 10, which indicates that the trained 

models with polynomial and RBF kernels recognize almost all the instances in the 

training data set. The two models with a linear kernel completely failed to classify the 

Table 10 Kernel Test 

           

           Input 

 

 

Kernel 

Input Feature: Lateral Acceleration 

Time Window Length: 6s 

Number of Sample Points: 15 

Recognized Percentage/Number of Instances 

 S1 (4030) 
a 

S2 (2921) 
b 

F1 (82) 
c 

F0 (194) 
d 

Linear 
Training 100%  100% 0% 

Training 100% 0% 100% 0% 

Polynomial 
Training 100%  100% 95.87% 

Training 100% 100% 100% 95.87% 

RBF 
Training 100%  100% 94.33% 

Training 100% 100% 97.56% 91.24% 

Sigmoid 
Training 100%  100% 9.27835% 

Training 84.3921% 89.0448% 97.561% 8.24742% 
a
: 4,030 instances of single lane-change simulation data 

b
: 2,921instances of dual lane-change simulation data 

c
: 82 instances of single lane-change field data 

d
: 194 instances of non-lane-change field data 
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non-lane-change and the dual lane-change data. The models with a sigmoid kernel well 

classified the lane-change data but could not recognized non-lane-change movements. 

To better understand the dominant inputs and how to improve the recognition 

model performance, training and validation data sets with different number of instances 

were provided to build the recognition model, and all the trained models were used to 

recognize all the available instances. The following tables show selected recognition 

results of lane-change recognition models using RBF and polynomial kernel functions 

trained by various data combinations. 

Tables 11 and 12 show performances of two-class classification and three-class 

classification models trained by lateral acceleration data, respectively. The time window 

lengths of the input data are 6 seconds, the total number of sample points in the fixed-

length time window is 15. Without including any single lane-change field instance in the 

training or validation data sets, up to 85 percent of the single lane-change field data could 

be correctly recognized by the SVM models. 

Table 11 Lateral Acceleration Two-Class 

           

           Input 

 

 

Kernel 

Input Feature: Lateral Acceleration 

Time Window Length: 6s 

Number of Sample Points: 15 

Recognized Percentage/Number of Instances 

 S1 (4030)
 

S2 (2921)
 

F1 (82)
 

F0 (194)
 

RBF 

Training 
396/404   185/194 

98.0198%   95.3608% 

Test 99.0074%  70.7317%  

Training 
997/1008   181/194 

98.9087%   93.299% 

Test 99.0323%  81.7073%  

Training 
4030/4030   178/194 

100%   91.7526% 

Test   85.3659%  
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Table 11 (Continued) 

           

           Input 

 

 

Kernel 

Input Feature: Lateral Acceleration 

Time Window Length: 6s 

Number of Sample Points: 15 

Recognized Percentage/Number of Instances 

 S1 (4030)
 

S2 (2921)
 

F1 (82)
 

F0 (194)
 

RBF 

Training 
4030/4030  6/6 178/194 

100%  100% 91.7526% 

Test   90.2439%  

Training 
396/404  6/6 185/194 

98.0198%  100% 95.3608% 

Test 98.4615%  80.4878%  

Polynomial 

Training 
396/404   188/194 

98.0198%   96.9072% 

Test 98.4367%  71.9512%  

Training 
1008/1008   186/194 

100%   95.8763% 

Test 100%  73.1707%  

Training 
4030/4030   183/194 

100%   94.3299% 

Test   81.7073%  

Training 
4030/4030  6/6 184/194 

100%  100% 94.8454% 

Test   89.0244%  

Training 
396/404  5/6 187/194 

98.0198%  83.3333% 96.3918% 

Test   79.2683%  

 

Table 12 Lateral Acceleration Three-Class 

           

           Input 

 

 

Kernel 

Input Feature: Lateral Acceleration 

Time Window Length: 6s 

Number of Sample Points: 15 

Recognized Percentage/Number of Instances 

 S1 (4030)
 

S2 (2921)
 

F1 (82)
 

F0 (194)
 

RBF 
Training 

399/404 293/293  188/194 

98.7624% 100%  96.9072% 

Test 98.536% 100% 70.7317% 96.9072% 
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Table 12 (Continued) 

           

           Input 

 

 

Kernel 

Input Feature: Lateral Acceleration 

Time Window Length: 6s 

Number of Sample Points: 15 

Recognized Percentage/Number of Instances 

 S1 (4030)
 

S2 (2921)
 

F1 (82)
 

F0 (194)
 

RBF 

Training 
996/1008 731/731  183/194 

98.8095% 100%  94.3299% 

Test 98.9082% 100% 81.7073% 94.3299% 

Training 
4030/4030 2921/2921  176/194 

100% 100%  90.7216% 

Test   84.1463%  

Training 
4030/4030 2921/2921 6/6 183/194 

100% 100% 100% 94.3299% 

Test   90.2439%  

Training 
396/404 293/293 6/6 184/194 

98.0198% 100% 100% 94.8454% 

Test 98.3127% 100% 80.4878%  

Polynomial 

Training 
395/404 293/293  188/194 

96.9072% 100%  96.9072% 

Test 97.9404% 99.1099% 70.7317%  

Training 
997/1008 730/731  187/194 

98.9087% 99.8632%  96.3918% 

Test 99.0074% 99.1099% 73.1707% 96.3918% 

Training 
4030/4030 2919/2921  180/194 

100% 99.9315%  92.7835% 

Test   79.2683%  

Training 
4030/403 2917/2921 6/6 184/194 

100% 99.8631% 100% 94.8454% 

Test   89.0244%  

Training 
398/404 293/293 6/6 187/194 

98.5149% 100% 100% 96.3918% 

Test 98.933% 99.3495% 80.4878%  

 

The performance of lane-change models that were trained by lateral acceleration 

data and speed data is shown in Table 13 and Table 14. With one more feature input, the 
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lane-change models did not perform much better than the ones in the previous two tables, 

although it took more time to train the model. 

Table 13 Lateral Acceleration, Speed Two-Class 

           

           Input 

 

 

Kernel 

Input Feature: Lateral Acceleration, Speed 

Time Window Length: 6s 

Number of Sample Points: 15+15 

Recognized Percentage/Number of Instances 

 S1 (4030)
 

S2 (2921)
 

F1 (82)
 

F0 (194)
 

RBF 

Training 
396/404   185/194 

98.0198%   95.3608% 

Test 98.4367%  73.1707%  

Training 
997/1008   183/194 

98.9087%   94.3299% 

Test 99.0323%  81.7073%  

Training 
4030/4030   178/194 

100%   91.7526% 

Test   84.1463%  

Training 
4030/4030  6/6 177/194 

100%  100% 91.2371% 

Test   90.2439%  

Training 
396/404  6/6 185/194 

98.0198%  100% 95.3608% 

Test 98.4367%  79.2683%  

Polynomial 

Training 
398/404   188/194 

98.5149%   96.9072% 

Test 98.8586%  73.1707%  

Training 
1008/1008   188/194 

100%   96.9072% 

Test 100%  75.6098%  

Training 
4030/4030   180/194 

100%   92.7835% 

Test   76.8293%  

Training 
4030/4030  6/6 184/194 

100%  100% 94.8454% 

Test   89.0244%  

Training 
396/404  5/6 187/194 

98.0198%  83.3333% 96.3918% 

Test 98.4367%  79.2683%  
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Table 14 Lateral Acceleration, Speed Three-Class 

           

           Input 

 

 

Kernel 

Input Feature: Lateral Acceleration, Speed 

Time Window Length: 6s 

Number of Sample Points: 15+15 

Recognized Percentage/Number of Instances 

 S1 (4030)
 

S2 (2921)
 

F1 (82)
 

F0 (194)
 

RBF 

Training 
395/404 289/293  180/194 

97.7723% 98.6348%  92.7835% 

Test 96.9231% 98.973% 81.7073%  

Training 
1005/1008 729/731  180/194 

99.7024% 99.7264%  92.7835% 

Test 96.8734% 99.7946% 84.1463%  

Training 
4025/4030 2921/2921  170/194 

99.8759% 100%  87.6289% 

Test   90.2439%  

Training 
1006/1008 729/731 5/6 175/194 

99.8016% 99.7264% 83.3333% 90.2062% 

Test 96.8238% 99.7946% 87.8049%  

Training 
395/404 289/293 6/6 181/194 

97.7723% 98.6348% 100% 93.299% 

Test 96.6749% 99.1099% 86.5854%  

Polynomial 

Training 
401/404 288/293  190/194 

99.2574% 98.2935%  97.9381% 

Test 98.4367% 97.9801% 73.1707%  

Training 
1008/1008 728/731  187/194 

100% 99.5896%  96.3918% 

Test 99.7519% 98.9387% 75.6098%  

Training 
4030/4030 2920/2921  192/194 

100% 99.9658%  98.9691% 

Test   75.6098%  

Training 
1008/1008 728/731 6/6 187/194 

100% 99.5896% 100% 96.3918% 

Test 99.9007% 99.3838% 91.4634%  

Training 
398/404 288/293 4/6 189/194 

98.5149% 98.2935% 66.6667% 97.4227% 

Test 98.3871% 97.7405% 78.0488%  
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Tables 11-14 indicate that the recognition models had high accuracy for 

recognizing the simulation instances, even if only 10 percent of the simulation instances 

were used to train the model. However, these models had much lower accuracy for 

recognizing a real single lane-change. Including a small amount of single lane-change 

field instances can improve the capability of reorganizing the single lane-change field 

instances. The SVM has parallel performances in the two-class and three-class 

classifications. The RBF kernel showed better performance than the polynomial kernel, 

especially in those SVM models that were trained without the single lane-change field 

data, although the models with the polynomial kernel had better classification rates than 

the others. Compared to those models trained by unique feature, the models trained by 

lateral acceleration data and speed data did not show significantly different recognition 

accuracy. 

Instances with different sample point numbers and time window size were used to 

train the SVM models, and the results are shown in Table 15. Large time window size or 

too many sample points did not improve the recognition accuracy, and vice versa. An 

appropriate time window size and number of sample points can be determined 

experimentally; the basic principle is that the time window must include the most 

important pattern information of the lane-change movement and the sample points in the 

time window can represent the trends of the original pattern. The table indicates that for 

the three-class model using an RBF kernel, 6 seconds is a good length for the time 

window, and the number of sample points can be less than 15. 

 

 



85 
 

 

Table 15 Different Sample Point Number and Time Window Size 

          

        Input 

 

 

Kernel 

Input Feature: Lateral Acceleration 

Time Window Length: TWL 

Number of Sample Points: NSP 

  Recognized Percentage/Number of Instances 

TWL NSP  S1 (4030)
 

S2 (2921)
 

F1 (82)
 

F0 (194)
 

RBF 

8.8s 

44 
Training 

4030/4030 2921/2921  181/194 

100% 100%  93.299% 

Test   73.1707%  

22 
Training 

4030/4030 2921/2921  179194 

100% 100%  92.268% 

Test   76.8293%  

11 
Training 

4030/4030 2921/2921  183/194 

100% 100%  94.3299% 

Test   78.0488%  

6s 

30 
Training 

4030/4030 2921/2921  181/194 

100% 100%  93.299% 

Test   82.9268%  

15 
Training 

4030/4030 2921/2921  176/194 

100% 100%  90.7216% 

Test   84.1463%  

7 
Training 

4018/4030 2921/2921  176/194 

99.7022% 100%  90.7216% 

Test   85.3659%  

4s 

20 
Training 

4030/4030 2921/2921  167/194 

100% 100%  86.0825% 

Test   54.878%  

10 
Training 

4030/4030 2921/2921  160/194 

100% 100%  82.4742% 

Test   50%  

 

This chapter introduced the data preparation process for model training and 

presents recognition performance of the SVM models trained by different data sets. 

These SVM models have high accuracy for recognizing simulation data for both two-

class and three-class classification, but lower accuracy for field data. The performance of 
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lane-change recognition models is affected by various aspects, such as training data 

feature, length, time widow size, etc.  
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Chapter 7 Conclusion and Future Work 

This study focuses on development of lane-change recognition model using SVM. 

To achieve data preparation for recognition modeling, an IVDR that integrates a GPS and 

an IMU was built for field data collection, and a lane-change simulation model was 

developed to avoid safety issues in field data colleting and generating a full-scale lane-

change data set. Both field data and simulation data were used to build a lane-change 

recognition model. Comparison and analysis were completed for the whole process. 

Conclusions and results are summarized as follows. 

 An IVDR that integrated a GPS and an IMU is capable of capturing lane-

change patterns. The IVDR also provides non-lane-change data for training 

recognition models. Recognition results indicate that most field data can be 

successfully classified by a well trained lane-change recognition model. 

 The lane-change simulation model consists of three essential elements: a full-

car model, a speed controller, and a trajectory tracking controller. PID 

strategies were applied to these two controllers and their parameters were 

tuned with the assistance of GA. The speed controller can keep steady speeds 

by adjusting the brake and throttle of the full vehicle model. By imitating the 

preview behavior of real driving, the trajectory tracking controller is capable 

of controlling the steering wheel to follow a given lane-change path. The lane-

change simulation model performed more than 7,000 lane-change movements 

at different speeds, on different given paths. 
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 GA is an appropriate for optimizing the model training. A well trained lane-

change recognition model can effectively classify up to 85 percent of the real 

lane-change data not included in the training and validation data sets, better 

results can be achieved by including a small number of real lane-change 

instances in the model training process. Both field data and simulation data 

have great contribution to training lane-change recognition models, whose 

recognition accuracies can be increased by using more data in training and 

validation. The RBF kernel and polynomial kernel showed good recognizing 

performance in both the two-class and three-class classifications. 

Future work includes the follows. 

 More field data should be collected at different speeds, which will 

significantly improve lane-change recognition accuracy. 

 The trajectory tracking controller could be upgraded by adjusting the feedback 

variables and their combinations to obtain lane-change patterns that are closer 

to real ones. 

 In SVM modeling, more data features, data representations, and optimization 

methods should be used and analyzed to find better solutions for improving 

lane-change recognition capability. 

 The method using simulation data to estimate field data can be used to 

develop other driver behavior recognition models. 
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