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ABSTRACT 
 

Corrosion can take place as chloride ions accumulate above a critical 

concentration (CT) at the surface of a reinforcing bar inside concrete in marine service. 

The initiation of corrosion can be delayed by polarizing the steel cathodically, which is 

known to increase the value of CT. That effect is the basis of the cathodic prevention 

(CPrev) method to control corrosion of reinforcing steel in concrete. However, concrete 

cracks are a common occurrence and at cracks, the buildup of chloride ions is 

accelerated to the extent that CPrev may be less effective. The findings from an 

ongoing investigation to determine the effectiveness of cathodic prevention on cracked 

concrete exposed to a marine environment are presented. Experiments were conducted 

on reinforced concrete blocks with controlled-width cracks placed along the length of a 

central reinforcing steel bar. A ponding area on top of each specimen allowed for cyclic 

exposure to a 5% NaCl solution to imitate a marine environment. Crack widths ranging 

from 0.01 inch to 0.04 inch and polarization levels ranging from -330 mV to -540 mV 

were used. The onset of corrosion as a function of time of exposure was determined by 

measurements of the cathodic current demand needed to reach each target polarization 

level. The ranking of time to onset of corrosion was used as an indicator to determine 

how much cathodic prevention is necessary to effectively extend the life of cracked 

concrete. Results to date suggest that a minimum cathodic polarization level in the 

range of -540 mV would be needed.



1 
 

 
 
 
 
 

CHAPTER 1: INTRODUCTION 
 

1.1 The Basics of Corrosion of Steel in Concrete  

Steel is susceptible to corrosion when exposed to the atmosphere. In fact, most 

pure metals, barring a few exceptionally noble metals like gold and platinum, will 

corrode in atmospheric conditions. These metals, including iron (main element in steel) 

are found in nature as ores, combined with sulfur and oxygen and tend to return to that 

natural state as ores [1]. In engineering however, metals are used in their pure form and 

corrosion frequently causes the need for repair and replacement; and it is not cheap to 

account for corrosion damage. A study in 2002 by NACE International found that the 

direct cost of corrosion per year was approximately 3.1% of the Gross Domestic 

Product for the United States, translating to $276 billion. If indirect costs like loss of 

productivity, delays, failures, and cost of corrosion goods and services are included in 

the previous figure, the total cost of corrosion could double to $552 billion [2]. Proper 

techniques to mitigate the costly effects of corrosion are of mounting importance.  

Corrosion is an electrochemical process requiring four components: anodic 

reaction, cathodic reaction, electrolyte, and electronic path. For the case of steel in 

concrete, the anodic reaction is the dissolution of iron atoms (Fe) from the bulk of the 

steel reinforcement into iron ions (Fe2+), losing two electrons in the process. The iron 

ions are released into the concrete pore water. If the electrons left behind by the anodic 

reaction are allowed to build up, the corrosion process will cease. The electrons are 

consumed, however, by the cathodic reaction. The cathodic reaction occurs when 
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oxygen gas and water gather at the surface of the reinforcement and combine with the 

electrons left behind from the anodic reaction [1]. The cathodic reaction produces 

hydroxide ions (OH), which can later combine with Fe2+ to form rust, one of the most 

common byproducts associated with corrosion. The pore water provides the electrolyte 

and the steel itself is the electronic path.  

Iron in equilibrium in a solution containing its own ions develops a characteristic 

electrical potential (E) associated with the oxidation-reduction process of the system. In 

fact all metals, when they are in equilibrium with their own ions in a solution under 

standard conditions will have a potential value that can be represented in a table known 

as the electrochemical series of metals [3]. This table generally uses the 

hydrogen/hydrogen ion reaction as a reference point, and metals with more negative 

potentials may corrode first when they are paired with a metal that has a more positive 

potential. At any given potential the anodic reaction Fe Fe2+ + 2e occurs at a rate that 

tends to be greater for more positive values of potential. The rate q of the reaction 

(mols/unit area-unit time) can also be represented by a current density i = q n F, where 

n is the number of electrons associated with the reaction (2 in this case) and F is 

Faraday’s constant (~96,500 coul/mol of electrons). The cathodic reaction can be 

represented likewise. By convention, anodic current densities are assigned positive 

values, while cathodic current densities are assigned negative values. 

When two systems are combined (anodic reaction of a metal and a cathodic 

reaction), it is possible to represent the corrosion process with an E-log |i| graph. If steel 

were to be submerged in an electrolyte and oxygen molecules able to reach the surface 

of the steel, its E-log |i| graph for the system would resemble Figure 1. 
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E

Log |i|

Cathodic Reaction

Anodic Reaction

Mixed Potential

ECorr

iCorr  

Figure 1 E-log |i| Graph 

The potential for the intersection of the anodic and cathodic reaction is called the 

mixed potential, or corrosion potential and has a corresponding corrosion rate, icorr. This 

is indicative of steel being exposed to the atmosphere; however, a wide range of 

conditions are possible depending on factors such as E and pH [3].  

In this thesis potentials will be given in the Saturated Calomel Electrode (SCE) 

scale unless otherwise indicated.  

 

1.2 Potential-pH Relationship 

It is desirable to summarize the relationship between E and pH in graphical form. 

At various combinations of E and pH, metal can corrode, be immune to corrosion, or 

passivate. These E-pH graphs, commonly referred to as Pourbaix diagrams, consider 

common reactions that can take place for a certain metal. A simplified Pourbaix diagram 

for iron in an aqueous solution is shown below in Figure 2.  
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Figure 2 Steel Pourbaix Diagram of Iron in an Aqueous Solution (E in the Standard 
Hydrogen Electrode (SHE) scale). Note: potential vs SCE = potential vs SHE -241 mV. 

Steel is immune to corrosion at a low enough potential for all pH values.  Above 

the potential where steel is immune, corrosion may take place, though steel can 

develop a passive layer at high pH values.  A passive layer is a very thin film of metal 

oxide which forms on the surface of a metal and slows corrosion to a near standstill. 

Steel can form a passive layer at potentials in the usual range of interest, but only in a 

high pH environment.  

 

1.3 Steel Passive Layer 

Conveniently, concrete has a pH between 13 and 14 due to the alkaline solution 

in the hydrated cement paste [4]. This high pH environment is ideal for the formation of 

a passive film on steel in reinforcing steel. This passive layer consists of an iron oxide 
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which remains stable as long as the steel is embedded in concrete. In this condition, the 

corrosion rate of the reinforcing steel is negligible (<< 1 μm/y) [5], and the E-log |i| graph 

changes to account for the passive steel, as shown in Figure 3. 

E

Log |i|

Cathodic Reaction

Anodic Reaction

Mixed Potential

ECorr

iCorr  

Figure 3 E-log |i| Graph of Passive Steel 

When examining Figure 3, ECorr is an appreciably higher value while icorr is much 

lower when compared to those observed in Figure 1. The high pH environment allows 

the steel to remain passive under the right conditions. Unfortunately, the passivity is not 

permanent and the passive layer is subject to being broken down by factors like 

concrete carbonation and chloride ions.  

 

1.4 Chloride Ion Induced Corrosion 

A dominant factor which oftentimes disrupts the passive film on reinforcing steel 

is the presence of chloride ions. The substructures of bridges in marine service 

accumulate chloride ions from the splashing of seawater. The chloride ions accumulate 
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at the surface of the concrete due to the constant seawater spray. When the water 

evaporates, chloride containing salt is left behind, and as this process continues, the 

content of chlorides at the concrete surface increases. Chloride ions transport through 

the porous concrete to the reinforcing steel. 

One property of concrete that has a significant influence on its corrosion 

resistance is permeability [6]. Permeability is the property of concrete that allows 

ingress of gas, liquid, and dissolved ions through the pore network [7]. High quality 

concrete is known to have a low permeability, i.e. the chloride ions take longer to reach 

the steel surface, while poor quality concrete allows for the ions to ingress much more 

rapidly. The mechanism which allows for the chloride ions to travel from the surface 

toward the reinforcement of a structure is usually a combination of capillary suction and 

diffusion [4]. In sound concrete, the pore network is very tortuous and chloride ions have 

no direct path to the reinforcement. They must diffuse through the narrow, twisting 

capillary pores and when they finally reach the steel surface, the chloride ions have 

travelled a much greater distance than the actual rebar depth distance, and also 

through a narrower effective cross section as well as in the presence of chloride traps 

that bound some of the chloride in the solid concrete matrix. With this considered, and if 

high quality concrete is used, it could take many years for chloride ions to reach the 

steel surface in a significant quantity.  

 Eventually, enough chloride ions build up at the steel surface to cause a 

localized breakdown in the passive layer. The amount of chlorides needed to 

breakdown the passive layer is called the critical chloride threshold (CT). CT depends on 

many variables like concrete quality, availability of oxygen, temperature, and even the 



7 
 

potential of the steel while it is still passive [8].  CT is generally in the range of 0.4 to 1 

percent of the cement weight used in the concrete [9]. Once the passive layer breaks 

down, corrosion, specifically pitting corrosion, can initiate.  

Pitting corrosion is particularly associated with the presence chloride ions [10]. It 

often occurs in metals that have a passive layer, including steel used in reinforced 

concrete. The passive layer will experience a local break down due to chloride ions 

exceeding the CT, which lowers the pitting potential (Epitt). Above Epitt, pitting corrosion 

can initiate and propagate. Below Epitt, pitting corrosion can initiate, but will not 

propagate.  Sufficiently low potential will not allow initiation or propagation of pitting 

corrosion. See Figure 4. 

Locations on the steel surface where the passive layer has been destroyed 

generally act as an anode, while locations where the passive film will remain act as a 

cathode [9] [10]. The pit occupies a very small amount of the steel’s surface area, while 

the rest of the steel’s surface area remains in the passive condition until another 

localized pit forms [10]. This active-passive element creates a very high potential 

difference usually in the range of 0.5 to 1 Volt between anodes and cathodes [3]. This 

large potential difference may cause local accelerated corrosion of the reinforcement, 

producing a relatively large amount of corrosion product despite the very small pit. 

Epitt is not a fixed value, gradually decreasing over time. The reason for this 

decrease depends somewhat on temperature, pH, and cement type, but primarily on 

chloride content. Initially, Epitt is much greater than the potential of the steel (-100 mV 

when passive). As long as the steel’s potential is less than Epitt, the passive layer will 

remain intact. Once CT is reached, Epitt becomes less than the potential of the steel and 
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the passive layer experiences a localized breakdown. If corrosion of steel in concrete is 

to be mitigated, the relationship between steel potential and Epitt must be considered [9]. 

 

1.5 Reinforced Concrete Corrosion Damage 

The corrosion of steel in concrete, especially in marine service, can have an 

adverse effect on the service life of a structure. The area most likely to be damaged by 

corrosion is in the emerged part of the structure up to about six feet high in calm seas 

and greater in rougher seas. Though submerged parts of bridges are constantly in a 

chloride environment, the lack of oxygen is such that corrosion is less of a concern in 

these areas [11]. Oftentimes, chunks of concrete, called spalls, break off from the 

structure, where the expansive corrosion products have exerted enough tensile stress 

[4]. These spalls expose the rebar to the outside environment. As a result, the exposed 

steel no longer experiences the high pH of the concrete pore water and thus is subject 

to accelerated corrosion. Spalls must be repaired quickly as to maintain structural 

integrity, but repairing spalls is very costly. In addition, most repairs involving corrosion 

of reinforced concrete typically do not last more than five years due to what is known as 

the halo effect [12]. 

Spalls must be patched with fresh, chloride free, high pH material that is suitable 

for the formation of steel’s passive layer. Given that concrete surrounding the repair is 

still contaminated with chloride ions, the potential of the steel in that region is at a lower 

potential value than that of the steel in the repaired area. Corrosion related damage 

occurs quickly due to the large difference in potential between repaired and 

contaminated regions. The term halo effect was coined due to the ring of corrosion that 

is observed around the perimeter of the repair. In addition, a large cathode in the 
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repaired concrete in contact with a small anode in the contaminated concrete results in 

accelerated corrosion. It is desirable to increase the lifetime of a repair by employing 

additional repair techniques, like cathodic protection [13]. 

 

1.6 Cathodic Protection of Steel in Concrete 

One such technique often implemented to attain a longer lasting repair, or 

mitigate reinforcement corrosion, is to install a cathodic protection (CP) system. CP for 

concrete was applied in significant amounts by about 1973, mainly for bridge deck 

applications [9]. It works by dropping the potential of the steel to a potential where 

corrosion cannot propagate, or where the corrosion rate is minimal. CP is usually 

considered to be the only technique that can truly stop corrosion in chloride 

contaminated concrete [13]. The negative shift in potential is the main beneficial effect, 

which reduces the driving force for the anodic reaction and increases the resistance to 

the anodic process [9].  

The desired potential drop is most effectively achieved by using an outside 

voltage source to deliver current to the reinforcement, called a potentiostat. A voltage 

source is connected to permanent anodes installed inside or at the surface of the 

concrete. The current runs through the permanent anodes, which are made from an 

inactive metal, such as titanium with activated mixed metal oxide. Current is delivered 

as evenly as possible to the reinforcement and protection is achieved. Steel is 

considered to be protected if a decay of 100 mV is observed after the system is 

disconnected for a period of 4 to24 hours [9]. 
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1.7 Cathodic Prevention of Steel in Concrete 

Though CP is a viable protection method, it is costly and difficult to install, 

especially in a marine environment. Instead of repairing concrete damaged by 

reinforcement corrosion, it may be possible to prevent damage altogether. A relatively 

new technology developed in the early 1990s by Pedeferri and collaborators offers a 

promising alternative to costly corrosion repairs. Cathodic prevention (CPrev) is the 

application of cathodic currents while the steel is still in its passive condition, and has 

the ability to be installed during construction. By cathodically polarizing the steel while it 

is still passive, it is possible to delay the initiation of corrosion, improve durability of the 

concrete and reduce maintenance costs [14]. 

CPrev aims to increase the CT value and keep the steel in a passive condition, 

even when chloride levels in the concrete reach well above the CT for steel that has not 

utilized CPrev. Since CPrev is applied while the steel is still passive, the steel potential 

remains less than Epitt even as Epitt drops with increasing chloride levels [13]. CPrev 

maintains the potential of the steel in this regime, where corrosion can propagate, but 

cannot initiate. Steel that has already experienced corrosion initiation and had CP 

applied will tend to corrode in this regime. Typical cathodic current density needed to 

achieve CPrev conditions is reported to be between 0.5-2 mA/m2 for laboratory and field 

tests for atmospherically exposed concrete. Under more aggressive environments, a 

current density of 2-5 mA/m2 is required [14]. To achieve CP conditions, much higher 

current densities are required: 15 mA/m2 to achieve the 100 mV decay criterion, and 20 

mA/m2 to achieve repassivation [9].  
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Figure 4 Potential vs Chloride Content Effect on Epitt [13] 

In a normal situation where steel is simply embedded in concrete without CPrev, 

corrosion in an aggressive marine environment is almost unavoidable. This situation is 

shown by the path 1-4 in Figure 4 and demonstrates how Epitt becomes less than the 

potential of the steel over time and corrosion is initiated. In order to mitigate corrosion in 

this situation, the potential of the steel must be lowered enough so corrosion can no 

longer propagate, or the corrosion rate is minimal. These two CP situations are 

represented by paths 4-5 and 4-6, respectively.  

If steel is embedded in concrete with the application of CPrev, path 1-2-3 applies. 

It is evident that a marked increase in time to corrosion initiation is achieved by 

negatively polarizing the passive steel so that pitting corrosion cannot initiate. This is 

achieved by the initial cathodic polarization, which puts the steel in zone B, where 

corrosion can propagate, but not initiate. The level of polarization used in CPrev 

determines how beneficial the effects are: a slight polarization may not be beneficial, 
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while a larger cathodic polarization can have great benefits. It has been found by 

Sánchez et al [8] that polarizing to a level of -600 mV SCE can increase the CT by as 

much as three times compared to the CT of non-polarized specimens in the same 

condition.   

CPrev is most commonly applied to the reinforcing steel of a concrete structure 

by using a potentiostat to deliver electronic current into the steel through permanent 

anodes. In many laboratory tests, it is desirable to maintain a fixed level of potential for 

CPrev by application of the necessary amount of cathodic current. Current demanded 

by steel in CPrev is almost entirely equal to that needed to support the cathodic 

reaction, since the current corresponding to the anodic reaction on passive steel is 

negligible in comparison. As the passive film begins to break down, the anodic reaction 

begins to release electrons into the metal in considerable amounts, thus decreasing the 

demand for cathodic current from the external circuit.  When the current demand 

eventually becomes zero, the point has been reached where the open circuit potential of 

the system is equal to the fixed potential level used for CPrev. This condition is a good 

indication that the passive film has experienced a local breakdown and pitting corrosion 

has initiated. If the potential of the system were to become even more negative than in 

that condition, as is often the case, then the potentiostat would begin to deliver a net 

anodic current, which would expedite corrosion instead of mitigating it. In Figure 5 these 

different scenarios are illustrated for a hypothetical case where CPrev was being 

applied to achieve a fixed potential of -400 mV SCE. It is noted that this situation would 

not develop if the CPrev system were operated instead under galvanostatic control.  
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Figure 5 CPrev Effect on Anodic and Cathodic Current. Figure 5a represents CPrev 
application (potentiostatic control) on passive steel. Figure 5b represents the condition 
of zero current demand that could be reached if steel became active . Figure 5c 
represents a later stage where the anodic reaction would be actually accelerated if 
applied potential were kept at the initial level. 
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Figure 5 continued. 
 

 Though the application of CPrev may be a means for controlling steel corrosion, 

it may induce other undesired consequences that can affect concrete and steel-

concrete bond, and may cause hydrogen embrittlement of high strength steel. The 

application of CPrev can excessively increase pH of the pore solution near the 

reinforcement and thus enhance alkali-silica reaction in concretes which use aggregates 

susceptible to this phenomenon.  Bond between the concrete and reinforcement could 

be compromised if very negative potentials in the order of -1.1 V (SCE) or more 

negative are used. Hydrogen embrittlement can also occur at potentials more negative 

than -950 mV (SCE) [9]. The very negative potentials induce hydrogen formation, which 

could cause sudden brittle failure in some cases. It is noted that only high strength steel 

is susceptible to hydrogen embrittlement. Low strength carbon steel, used in many 

reinforced concrete structures, is generally considered not to be at risk of hydrogen 

embrittlement. However, concrete structures which use prestressed or post-tensioned 
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concrete contain high strength steels, and therefore may be subject to hydrogen 

embrittlement at very negative potential levels [15]. 

 

1.8 Concrete Cracking 

Unfortunately, cracks prior to any corrosion damage often occur in concrete, and 

are of particular interest to corrosion when formed in the substructure of bridges. In field 

observations by Lau [16], the Sunshine Skyway Bridge (SSK) and Howard Frankland 

Bridge (HFB) were found to have crack with widths as large as 0.6 mm (0.024 in) and 1 

mm (0.04 in), respectively. The cracks in SSK, along with four additional bridges 

surveyed, were concluded to be preexisting cracks due to the lack of corrosion 

observed.  In HFB, the large-width cracks were observed and documented in past 

bridge inspections. The cracks were confirmed to extend to a depth that exceeded the 

reinforcing steel cover. Cracks in HFB were likely a result of differential temperature 

conditions during curing of the concrete [16]. These cracks in concrete structures can 

cause major localized durability problems. For structures in marine environment, these 

preexisting cracks can cause rapid chloride ion transport to the reinforcement. When 

compared with sound concrete, cracked concrete had a significantly higher local 

chloride concentration at the depth of the reinforcement [16]. Chloride concentrations of 

about 2.4 kg/m3 were found at the steel/concrete interface in cracked concrete locations 

in SSK and HFB, compared to about 0.24 kg/m3 or less at the steel/concrete interface in 

sound concrete locations. It has been found that concrete quality plays a larger role in 

corrosion of the reinforcement than does crack width [17]. Paradoxically, high 

performance concrete is more susceptible to relative acceleration of corrosion due to 
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cracking when compared with low quality concrete. In high quality concrete, the chloride 

concentration at the rebar depth at cracked areas is observed to be comparatively very 

high compared with chloride levels at the rebar depth at sound portions of the structure. 

Corrosion in poor quality concrete is relatively less affected by cracks because chloride 

concentrations at the reinforcement surface and at sound portions of the structure 

(where chloride penetration is relatively fast anyway) are comparable to chloride 

concentrations at the reinforcement at cracked portions [16]. In other ways, corrosion 

development is relatively fast everywhere. In contrast, early corrosion in high 

performance concretes is likely to develop only at crack locations.  For this reason, 

performance in cracked concrete is becoming a dominant concern in modern design 

with high performance concrete [16] [17].  

In view of the above considerations, it would be desirable to apply a corrosion 

control method like CPrev to concrete with preexisting cracks. However, up to this point 

in time, laboratory studies investigating the efficacy of CPrev seem to have been limited 

to only sound concrete; the author is unaware of an investigation on the efficacy of 

CPrev for reinforcing steel embedded in cracked concrete.  

It is thus important to establish whether it is feasible to apply CPrev to rebar in 

cracked concrete to extend service life, as well as to determine what level of cathodic 

polarization is needed to make a CPrev system viable for cracked concrete in marine 

service. In case CPrev provided insufficient corrosion control, it could be advantageous 

to convert the CPrev system already in place to operate in a conventional CP regime to 

further extend service life. The issues mentioned above merit experimental investigation 
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in order to establish if they are achievable and work toward that end is described in the 

following chapters. 
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CHAPTER 2: OBJECTIVES AND METHODOLOGY 
 

2.1 Objectives 

This research was aimed at investigating the efficacy of utilizing a cathodic 

prevention system in cracked concrete in marine service, and the objectives are as 

follows: 

1. Determine the feasibility of applying successful cathodic prevention to 

cracked concrete in a marine environment.  

2. Establish cathodic polarization levels required for a cathodic prevention 

system to be effective in cracked concrete in a marine environment.  

3. Investigate the effectiveness of cathodically polarizing specimens into a 

conventional CP regime if the extent of CPrev application was insufficient.  

 

2.2 Approach 

The above objectives were addressed by creating an experiment which applied 

various levels of CPrev to cracked reinforced concrete specimens. Polarized and non-

polarized, open circuit (OC) specimens were monitored throughout the duration of the 

experiment for signs of corrosion activation over a period of >200 days. The absence of 

activation during that period was considered to be indicative of promising CPrev 

effectiveness. By applying various levels of CPrev by means of a multiple channel 

potentiostat, it was possible to determine the required amount of polarization to make 
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CPrev feasible. For specimens that reached activation during that period, the length of 

time required to reach activation was considered to be an inverse indicator of the 

efficacy of CPrev for the exposure conditions of the specimen.  

In addition, after specimens experienced corrosion activation, they were put into 

a conventional CP regime to determine if corrosion could be mitigated by that means. 

Depolarization tests were then conducted to test for 100 mV decay which is an 

indication that CP is effectively mitigating corrosion. 

30 concrete prisms were created to enable a range of experimental conditions 

with appropriate reproducibility. Prisms contained three reinforcing steel bars, two 

activated titanium mesh anodes, and one activated titanium reference electrode 

embedded. Cracks were induced parallel to the central rebar to simulate the worst case 

scenario. CPrev was then applied to the reinforcement of 24 concrete prisms at 

predetermined values of potential representing various levels of CPrev application. The 

remaining six specimens were used as controls without any applied CPrev, with their 

potential evolving in the natural open circuit condition. To simulate a severe marine 

environment exposure, each specimen was exposed to 2 week wet and 2 week dry salt 

water cycles for ~170 days. After that, all specimens were subjected to a permanent wet 

condition starting after cycle 6. The wet cycle used a 5% NaCl solution to introduce 

chlorides to the reinforcing steel.  
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2.3 Methodology 

2.3.1 Experimental Setup 

30 wood molds, with interior dimensions of 15.75 in x 14.25 in x 5 in were 

assembled to cast concrete prisms (Figure 6). Figure 7 shows the general specimen 

arrangement and dimensions. The prisms consisted of 3 reinforcing steel bars, size #4 

(1/2 in nominal diameter) running the length of each specimen. The molds each 

contained three slots for the reinforcing steel bars. The steel was 18 in long with about 3 

in at each end coated with Sikadur® 32 Hi-Mod epoxy so as to protect from any 

corrosion in the part of the bar where it emerged from the concrete surface. The steel 

length in contact was concrete was 12 in. The rebar was inserted so that is was 

centered in the mold as shown in Figure 6.  

In addition to the reinforcing steel, two anodes and a reference electrode were 

placed into each mold prior to pouring concrete. The anodes were 0.5 in wide activated 

titanium mesh strips made by Siemens. The activated titanium mesh was sufficiently 

long to enable exterior connections after concrete was poured. A 1.5 in long activated 

titanium rod was inserted horizontally in the mold and served as a reference electrode 

[18] and assisted in potential measurements and adjustments when specimens strayed 

from their desired potential level.  

In order to successfully initiate cracks parallel to the direction of the steel 

reinforcement, a crack initiator was included in the wood mold. The crack initiator was 

simply a thin strip of wood which protruded a short distance from the bottom of the wood 

mold and is shown in Figure 7. Thus, upon removal from the mold, each prism 

contained a small notch that promoted the formation of a longitudinal crack. Two  ¼ in 
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diameter fiberglass reinforcing bars (non conducting and hence not interfereing with the 

flow of applied current) were placed as shown in Figure 6 to offer some crosswise 

reinforcement and preventing splitting of the specimen during crack formation. 

 

Figure 6 Wood Mold and Steel Reinforcement Configuration 
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Figure 7 General Specimen Arrangement 
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After all 30 molds were prepared, concrete was poured. The concrete formulation 

used was a FDOT class IV concrete mix, with 590 pcy ordinary Portland cement with 

20% fly ash replacement, w/c = 0.39 and limestone coarse aggregate with  #67 

gradation. The concrete was left to wet cure for 28 days. After curing, the concrete 

prisms were cracked. It was predetermined that crack widths of 0.01 in, 0.02 in and 0.04 

in would be used to represent a typical range of cracks that may be found in a structure 

in service. Cracks were created using a three point bending procedure. The specimen 

was arranged in the three point bending procedure so that the surface containing the 

crack initiator experienced a tensile force large enough to form a crack. Once the crack 

formed,  stainless steel shims sized to the desired crack widths were inserted in the 

crack opening to a depth of ½ in before the tensile force was relieved and the fiberglass 

reinforcement restoring force would act. The shims kept the crack open to the desired 

surface width after the three point bending procedure was completed, and were left in 

place for the duration of the investigation. The three point bending procedure 

configuration is shown in Figure 8. 

 

Figure 8 Three Point Bending Test Configuration 
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After cracking and shimming, a ponding area was established on the cracked 

concrete surface. The ponding, as shown in Figure 7, was created to simulate splash-

evaporation conditions found in marine environments by containing a 5% NaCl saltwater 

solution during the wet cycle. Each cycle consisted of 2 weeks 5% NaCl solution 

exposure followed by 2 weeks dry. After cycle 6, specimens were permanently exposed 

to 5% NaCl solution to create a severe long term regime. In order to avoid leaks due to 

cracks, epoxy (same as that used to cover the steel bar ends) was used to completely 

cover any areas susceptible to leaking. After epoxy was sufficiently applied, each 

specimen was leak tested. If leaks were observed, additional epoxy was applied until 

there were no observable leaks. 

Per the plan described in the Approach section, six specimens were evaluated as 

controls at the open circuit (OC) potential, with no connection to the potentiostat. The 

remaining 24 specimens were polarized using a multiple potentiostat to obtain instant-

off potentials (with the procedure described subsequently) of -330 (9 specimens), -430 

(9 specimens) and -540 mV SCE (6 specimens). The behavior at each potential was 

evaluated with specimens having each of the three chosen crack widths. Table 1 shows 

the crack width and instant-off potential assigned to each specimen, and the degree of 

replication for each experimental condition.  
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Table 1 Exposure Conditions Indicating Crack Width and Potential for each Specimen 

 
 

The three rebar were externally interconnected via a stainless steel wire. This 

array is shown as W in Figure 9. The wire was attached between stainless steel 

washers, nuts and screws inserted into tapped ends of each rebar. This rebar assembly 

is representative of a reinforcement mat in a concrete structure, where tie wires that are 

used in rebar placement also create rebar connectivity throughout the structure [14]. In 

order to obtain the desired cathodic polarization, a multiple-channel adjustable 

potentiostat was built to maintain the correct polarization level supplied to each 

specimen. Current runs through the anode and is approximately evenly distributed to 

the steel reinforcement, aided by the half-way placement of the anodes.  

The two anodes are coupled via a stainless steel wire. This arrangement is 

labeled as C in Figure 9. The anode was connected to the positive end of the 

potentiostat, which delivered cathodic current to the rebar assembly. Anodes were 
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equipped with a 1N914 or comparable silicon switching diode. The diode function was 

to ensure the rebar assembly received only cathodic current at all times. When 

activation occurred, the diode prevented the rebar assembly from receiving a net anodic 

current, which would occur if the open circuit potential of the steel dropped below the 

initial polarization potential (shown in Figure 5). This also allowed for specimens 

polarized to -330 mV and -430 mV to be switched to a more negative potential after 

activation.  

Switches were installed between potentiostat and anodes on polarized 

specimens. The rebar assembly during the polarization can exhibit capacitor-like 

behavior and store charge on its surface, which can interfere with potential 

measurements. It is advisable to release this charge; by turning off the switch, the 

charge dissipates and a drop in potential is experienced. This change in potential is 

known as the ohmic drop and is a function of the resistance of the concrete and the 

current applied to the rebar assembly. The difference between the on potential and the 

ohmic drop is referred to as the instant off potential. The switches allowed for the 

current to be interrupted for one second to obtain the instant off potential, which is a 

close indication of the actual value of the steel potential against its immediately 

surrounding concrete. Figure 10 shows a typical specimen and Figure 11 shows the 

testing arrangement. 
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Figure 9 Specimen Connection to Potentiostat. C is the counter electrode, W is the 
working electrode, and R is the reference electrode terminal respectively of the 
potentiostat. C and W complete the circuit and allow for current to flow, and the potential 
difference between W and R is the potentiostat control signal. The diode ensures that 
only net cathodic current is supplied to the rebar assembly.  

 

 

Figure 10 Typical Specimen Setup 
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Figure 11 Testing Arrangement 

 

2.3.2 Monitoring of OC Specimens  

Before exposure to the NaCl solution, OC specimens were monitored for 

corrosion activity to ensure no activation had occurred by means of potential 

measurements.  

Monitoring of OC specimens for corrosion activation by half-cell potential 

measurements was routinely performed. Potential measurements are conducted using 

a voltmeter, SCE/embedded titanium electrodes, and rebar assembly.  The reference 

electrode, connected to the negative terminal of the voltmeter, represents one half of 

the cell and the rebar assembly, connected to the positive end, represents the other half 

of the cell. The full cell is formed when the SCE is placed on the surface of the concrete 

(when the permanent embedded reference electrode is used in place of the SCE the 

corresponding full cell is already formed). The concrete pore water serves as an 

electrolytic path between the rebar assembly and reference electrode.  
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Figure 12 displays the half-cell potential measurement performed for this 

experiment. Half-cell potential measurements were conducted differently for wet and dry 

cycles. During the wet cycle, a uniform potential is observed across the entire surface of 

the ponding area, and subsequently, only one potential is recorded for this condition. 

Under dry conditions, potentials were measured at three locations, equidistance apart 

spanning the central rebar in the ponding area with a wet sponge between reference 

electrode and concrete to ensure electrolytic path. 
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Figure 12 Half Cell Potential Reading for Specimen 

ASTM C876 [19] gives guidelines which are used to estimate the likelihood of 

corrosion activity based on the measured potential. Table 2 shows these guidelines for 

copper copper-sulfate (CSE) and SCE. It should be noted that the values in Table 2 are 

representative of bridge deck service conditions, so they may be considered to be 
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useful only as a first approximation of determination of corrosion activity in the present 

case. 

Table 2 Likeliness of Active Corrosion per Measured Potential 

Measured Potential (mV/CSE) Measured Potential (mV/CSE) Corrosion Risk 

>-200 > -126 Low (10% Risk) 

-200 - -350 -126 - 276 Intermediate (uncertain) 

<-350 < -276 High (90% Risk) 

Note: potential vs SCE = potential vs CSE +77 mV 

Macrocell currents are the total current delivered to the central rebar from the two 

outer rebars. The central bar (anode) sends electrons to the outer bars (cathode) once 

active corrosion initiates. Macrocell currents were measured to determine the amount of 

current being transferred from outer bars to the central bar., shown as a positive 

current. These measurements were conducted using a Fluke 27 multimeter (configured 

as ammeter in the A/mA range, with an effective resistance of 5 ohm) with the negative 

end connected to the central rebar 2, and the positive end connected to outer rebar 1. 

Referring to Figure 9, rebar 1 was disconnected from the rebar assembly by loosening 

the nut on the stainless steel screw at rebar 1 and removing the stainless steel wire so 

that rebar 1 is isolated from rebars 2 and 3. Current was then recorded at rebar 1 and 

referred to as current 1-2. The stainless steel wire was reconnected to rebar 1 and 

measurements were conducted in the same manner for rebar 3 and referred to as 

current 3-2. With that configuration, currents resulting from rebar 2 actively corroding 

and rebars 1 and 3 in the passive condition were >0.  
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2.3.3 Monitoring of Polarized Specimens 

 Before energizing and 5% NaCl solution exposure to specimens, potentials were 

measured to confirm initially passive condition of the steel reinforcement.  

Measurements for polarized specimens differed from the measurements for OC 

specimens. Since OC specimens were not polarized, it was possible to use half-cell 

measurements to gauge how likely corrosion activity was. Instead, current demanded 

by the rebar assembly from the potentiostat was used to determine if active corrosion 

had been initiated for polarized specimens as explained in Chapter 1.7. When current 

demand reached zero (it could not be negative due to the diode) it was deemed that 

significant active corrosion was in progress in the rebar assembly.  

Half cell potential measurements of polarized specimens in the “on” condition 

were conducted in the same manner as the half-cell potential measurements of OC 

specimens when the switch was on, utilizing both SCE and embedded titanium 

reference electrodes. Half-cell “on” measurements were also conducted immediately 

after activation to aide in switching to a CP regime. However, an instant-off-potential 

was measured as well in all cases. The voltmeter was closely observed as the switch 

was moved to the off position for approximately one second. After one second 

interruption, the value displayed by the voltmeter was recorded and considered to be 

the instant-off-potential. The instant off potential was representative of the actual 

potential of the rebar assembly with respect to the concrete immediately adjacent to the 

steel surface. If the instant-off-potential was more than 5 mV away from the intended 

polarized potential of the specimen, an adjustment was needed and performed. 
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The adjustments were made by manually turning the control screw of the 

potentiostat channel controlling a given specimen, depending on the instant-off-potential 

value measured. For example, if a specimen that should be polarized to -540 mV was 

found to have an instant-off-potential of -520 mV SCE, the potentiostat would be 

manually adjusted so that the potential of the rebar assembly against the embedded 

reference electrode experienced a 20 mV shift in the negative direction. The new setting 

was maintained until the next scheduled data acquisition date, when it was newly 

adjusted or left unchanged depending on whether or not the potential had drifted 

outside the 5 mV desired bandwidth.  

 

 2.3.4 Determination of Feasibility of CPrev 

In order to determine the efficacy of CPrev application, the time to corrosion 

activation was compared with the time to corrosion activation for the OC specimens. If a 

significant increase in time to corrosion activation was observed between polarized and 

OC specimens, it may be appropriate to suggest CPrev is feasible. The various levels of 

polarization would give different times to corrosion activation, and depending on those 

times, it could be determined which polarization levels were sufficient or insufficient for 

CPrev feasibility. 

 

2.3.5 Cathodic Polarization after Activation 

 If a polarized specimen experienced activation (indicative that CPrev was no 

longer effective, as outlined in the previous section), the potentiostat channel for the 

specimen was adjusted to obtain a higher level of polarization (to either -430 mV or -540 
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mV) to determine if the steel could now be protected under CP conditions. Potential and 

current measurements were conducted as per pre-activation conditions. The 

potentiostat continued to be monitored and adjusted to maintain the new desired 

potential level. 

As mentioned before, in conventional cathodic protection applied to steel in 

concrete, steel is considered to be protected if a 100 mV depolarization decay (toward 

more positive values)  is achieved after 4 hours of current interruption [9].  It is noted 

that it is possible to regenerate with the application of CP the steel’s passive film which 

had previously experienced breakdown due to chloride ion ingress [20]. In such cases 

over time, the current demanded by the rebar assembly decreases if active zones on 

the rebar repassivate, which can make the depolarization decay more pronounced. The 

100 mV criterion is used nevertheless even if the steel does not achieve passivity [20]. 

The depolarization tests were thus conducted for selected specimens, and applied only 

to specimens that experienced corrosion initiation and subject to CP. The depolarization 

tests were conducted during the dry condition. Instant-off potentials were conducted by 

first placing the SCE tip at nine locations on the surface of the concrete (three along 

each of the three rebars) before current interruption. Switches were then turned to the 

off position and remained in the off position, allowing the specimen to depolarize. The 

recorded depolarization for a given time was the measured “off” potential minus the 

initial instant-off potential. Potentials were measured at 1, 4, and 24 hours after current 

interruption. After 24 hours, switches were turned back to the “on” position.  
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CHAPTER 3: RESULTS AND DISCUSSION 

 
3.1 Unpolarized (OC) Control Specimens 

3.1.1 Potential Measurements 

 Initial potential values, before exposure to 5% NaCl solution, were in the order of 

-50 mV SCE. As indicated earlier, potentials of this order are usually deemed to indicate 

[19] that the steel was in the passive condition before exposure to NaCl, as expected.  

After exposure to the NaCl solution, a significant drop in the potential readings 

was observed for all specimens in this OC regime within 8 days, regardless of crack 

width, as shown in Figure 13. This indicates very early corrosion activation for all crack 

widths.  Also as expected the largest crack width (0.04 in) showed signs of activation a 

few days before the smaller crack widths (0.01 in and 0.02 in) and exhibited the most 

negative potentials.  
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Figure 13 Average Potential for the OC Specimens. Legend shows crack width. The 
average potential range in potential measurements from replicate specimens was 14 
mV, 30 mV, 27 mV for 0.01 in, 0.02 in, and 0.04 in crack widths, respectively.  
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3.1.2 Macrocell Current Measurements 

 Small macrocell current values were observed shortly after starting exposure to 

the 5% NaCl solution, but quickly increased with time. The increase in macrocell current 

is indicative of corrosion activity. Figure 14 shows the current density v. Time, averaged 

for each crack width. Following the work of Sanchez [8] the criterion for corrosion 

initiation adopted here was a current density greater than 0.2 µA/cm2. In less than a 

week’s time, all specimens exhibited current density greater than the 0.2 µA/cm2 

criterion. Notably, and as expected, the largest crack width (0.04 in) corresponded to 

the highest macrocell current indicating more corrosion activity.  
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Figure 14 Average Macrocell Current Density for OC Specimens. Legend shows crack 
width. The average current density range in current measurements from replicate 
specimens was 0.04 for 0.01 in crack widths, 0.12 for 0.02 in crack widths, and 0.13 for 
0.04 in crack widths. 
 
3.1.3 Discussion of Results from Unpolarized Specimens 
 

The increases in current density coincided with the sharp decreases in potential 

noted earlier, so both indicators consistently suggested an early onset (8 days or less, 

first wet cycle) of corrosion activity for the unpolarized control specimens. Corrosion 
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severity was greater for the greatest crack width (0.04 in), also as expected. The results 

indicated that with no form of corrosion protection or prevention, in the presence of 

cracks (even at the smallest width investigated, 0.01 in) in a simulated marine 

environment reinforcing steel was liable to corrode quickly. Such early onset of 

corrosion would be clearly detrimental to achieving the desired service life in the part of 

the structure affected by the cracks.  

 

3.2 Polarized Specimens 

3.2.1 Potential Measurements  

 The steel assembly of each specimen was cathodically polarized to maintain a 

certain level of potential, regardless of corrosion behavior. Figure 15 displays the time-

averaged potential distribution for all polarized specimens in the pre-activation 

condition, showing that specimens were generally polarized and maintained near the 

target potential level. 
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Figure 15 Cumulative Distribution of Instant-off Potentials. The potentials are averaged 
over the exposure period for all polarized specimens in the pre-activation condition. 
Legend indicates the target potential (mV SCE) for each group.  
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3.2.2 Current Measurements 

Figure 16 summarizes evolution of current demand for specimens polarized to     

-330 mV SCE. Time is counted from the day of energizing (same as for the first wet 

cycle). After a period of a few days, current demand stabilized. Eight of the 9 specimens 

polarized to -330 mV exhibited corrosion initiation after 50 days of being energized. 

Specimens with 0.04 in crack widths activated within 10 days, before specimens with 

0.01 and 0.02 in crack widths. There was no correlation between crack width and time 

to corrosion activation for specimens with 0.01 in and 0.02 in crack widths. Activated 

specimens were afterwards polarized to a more negative potential (either -430 mV or     

-540 mV) as shown in Figure 17. The increase in time to corrosion activation of the -330 

mV group compared to those of the OC specimens was minimal.  

Figure 18 summarizes the evolution of current demand for specimens polarized 

to -430 mV SCE. Current demand stabilized within a few days of being polarized. Seven 

of the 9 specimens activated within 190 days of being energized. Two specimens 

polarized to -430 mV have not activated after >200 days of exposure. Specimens with 

0.04 in crack widths all activated within 90 days of being energized. Again, there was no 

distinction between crack width and time to initiation for specimens with crack widths of 

0.01 in and 0.02 in. Activated specimens were afterwards polarized to -540 mV as 

shown in Figure 19. Though specimens polarized to -430 mV showed an increase in 

time to corrosion activation when compared to those for specimens polarized to -330 

mV, the increase was not substantial. 

Figure 20 summarizes the current demand for specimens polarized to -540 mV 

SCE. Current demand stabilized within a few days of being energized. After > 200 days 
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since energizing and exposure to chloride, no specimen polarized at -540 mV has 

activated. The results hence indicate a significant increase in time to corrosion 

activation when compared to OC specimens and specimens polarized to -330 mV and   

-430 mV.  

Figure 21 shows the nominal average current density with respect to rebar area 

(0.4 ft2) and concrete area (1.15 ft2)1, derived from Figure 16, Figure 18Figure 20. To 

account for high values of current soon after polarization and low values soon before 

activation, the range of values from 14 days after polarization up until 5 days before 

activation are averaged. As expected, current density was lowest for specimens 

polarized to -330 mV and highest for those polarized to -540 mV. The current density 

values are nominal averages recognizing that currents to center and side rebars were 

different.  
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Figure 16 Cathodic Current Demand for -330 mV Specimens. Specimens are organized 
by crack width. 

                                                 
1
 Assuming 3 rebars with exposed length 12 inch, diameter 0.5 in, on a footprint of 3 spaces 4.6 inch wide 

each based on center-center distance shown in Figure 7. 
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Figure 17 Timeline for Specimens Initially Polarized to -330 mV. Indicated is the day 
each specimen activated and the potential level it was subsequently switched to. Arrows 
indicate the specimen is still polarized to the specified potential level. 
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Figure 18 Cathodic Current Demand for -430 mV Specimens. Specimens are organized 
by crack width. 
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Figure 19 Timeline for Specimens Initially Polarized to -430 mV. Indicated is the day 
each specimen activated and the potential level it was subsequently switched to. Arrows 
indicate the specimen is still polarized to the specified potential level. 
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Figure 20 Cathodic Current Demand for -540 mV Specimens. Specimens are organized 
by crack width. 
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Figure 21 Nominal Average Current Density for each Potential Level Before Activation. 
White dashes represent the average current density during wet cycles. Black dashes 
represent the average current density during dry cycles.  

 

 
3.2.3 Discussion of Results from Polarized Specimens 
 

Specimens polarized to -330 mV containing 0.04 in crack widths met the zero 

current demand criterion for corrosion activation within 10 days, notably before those 

with 0.02 and 0.01 in crack widths, as expected. This finding indicates that large-width 

cracks may require greater levels of CPrev to increase time to activation compared to 

those for 0.02 and 0.01 in crack widths. Eight of 9 specimens polarized to -330 mV 

activated within 50 days, regardless of crack width. The increase in time to corrosion 

activation for specimens polarized to -330 mV is minimal compared to OC specimens. 

From the data obtained, it appears that CPrev at -330 mV is likely not a feasible means 
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of providing marked service life increase for reinforced concrete structures in marine 

service in the part of the structure affected by the cracks.  

Specimens polarized to -430 mV containing crack widths of 0.04 in met the 

corrosion activation criterion within 90 days, noticeable before specimens with 0.02 in 

and 0.01 in crack widths did. This finding, along with the similar result for -330 mV 

specimens mentioned above, indicates that large-width cracks may require greater 

levels of CPrev to increase time to activation compared to those required for 0.02 and 

0.01 in crack widths. After 190 days, 7 of 9 specimens polarized to -430 mV, regardless 

of crack width, had activated, with 2 specimens still operating in the CPrev regime after 

>200 days. Though specimens polarized to -430 mV showed an increase in time to 

corrosion activation when compared to those for specimens polarized to -330 mV, the 

increase is not substantial, especially considering that some specimens containing large 

width cracks activated before specimens polarized to -330 mV. From these data, it 

appears that applying CPrev at -430 mV is not an effective means of providing marked 

service life increase for reinforced concrete structures in marine service in the part of 

the structure affected by the cracks. 

All specimens polarized to -540 mV, regardless of crack width, are still in a CPrev 

regime, with no well defined activation after >200 days since exposure. This finding is 

significant considering the early activation of specimens polarized to -330 mV and -430 

mV, as mentioned above. In particular, all specimens with 0.04 in crack widths polarized 

to -430 mV and -330 mV activated within 90 days, while specimens with 0.04 in crack 

widths polarized to -540 mV are still in CPrev after >200 days. A detailed summary of 

each specimen’s time to activation arranged by potential level and crack width is shown 
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in Figure 22. All specimens polarized to -540 mV have endured 7 exposure cycles to 

NaCl solution with no activation, whereas OC specimens and specimens polarized to -

330 mV activated in the first wet cycle. This suggests a considerable increase in the 

steel’s CT is possible in cracked concrete in a simulated marine environment. This 

increase in the steel’s CT may translate to a marked increase in service life for a 

cracked reinforced concrete structure in marine service in the part of the structure 

affected by the cracks, suggesting that CPrev application at -540 mV may be feasible as 

an effective corrosion control measure. 

Nominal current density values were higher than typical for CPrev application 

[14] in sound concrete, but within the range of current density values for CP in sound 

concrete [9]. This may be attributed to the presence of cracks in the concrete. Current 

densities during wet cycles were noticeably lower than current densities during dry 

cycles. It should be recalled that the system was under potentiostatic control so the 

difference does not necessarily reflect differences in overall concrete resistance 

between the wet and dry conditions. Rather, the effect is likely to involve the relative 

resistance distribution in bulk and crack between both conditions, as well as variations 

in the extent of junction potentials developed at the reference electrode / concrete 

contact zone which may have influenced the set point used for the potentiostat. This 

issue, together with a more detailed interpretation of the distribution of current between 

center and side rebars, should be examined in follow up research.  
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Figure 22 Detailed Summary of each Specimen’s Time to Activation. Specimens are 
arranged by potential level and crack width plotted and against days since energizing. 

 

3.2.4 Cathodic Protection Depolarization Results  

Six specimens which had previously activated were tested, with samples from 

CP levels of -430 mV and -540 mV. Figure 23-25 summarize the 1 hour, 4 hour, and 24 

hour depolarization for each of the six specimens, respectively. The averaged 

depolarization value along each rebar is tabulated (locations 1,2,3 for the left rebar, 

locations 4,5,6 for the central rebar, and locations 7,8,9 for the left rebar). The specimen 

number, crack width and the time in days the specimen has been under CP are 

displayed beneath each set of data. All specimens polarized to -540 mV surpassed the 

100 mV decay required within 4-24 hours of depolarization to be considered protected. 

1 of 2 specimens polarized to -430 mV surpassed the 100 mV decay required after 4-24 

hours. Despite being polarized for 134 days, specimen 23 did not experience a 100 mV 

decay for all three rebars after 24 hours of being switched off.  
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 Figure 26-28 show the current demand for all specimens switched into a CP 

regime. Specimens 3 and 25 appear in both Figure 26 and Figure 28 (yellow fill) 

because they were originally moved from -330 mV to -430 mV, activated and were 

switched to -540 mV. The current demand fluctuated for all specimens due to wet and 

dry cycle conditions but then remained relatively constant for the remainder of the 

experiment. Specimens switched from -330 mV to -540 mV show a decrease in current 

demand of a few tenths of a mA after stabilizing at about day 30, but is likely due to 

initially over-polarizing these specimens. 

Figure 29 shows the nominal average current density after activation with respect 

to rebar area (0.4 ft2) and concrete area (1.15 ft2) and is derived from Figure 26-28. 

Nominal average values are calculated after from data obtained after specimens are 

polarized to their new potential level.  As expected, current density was lower for 

specimens switched to -430 mV and higher for specimens switched to -540 mV. Current 

densities were also higher during the dry condition when compared with current 

densities during the wet condition, the same as findings from specimens in the CPrev 

regime. Notably the nominal current densities were actually somewhat smaller than 

those shown in Figure 21 for the corresponding CPrev conditions. 
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Figure 23 1 Hour Depolarization Test. Depolarization values shown are the average of 
three points measured along each rebar. Specimen number and days under CP noted 
above data. 
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Figure 24 4 Hour Depolarization Test 
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Figure 25 24 Hour Depolarization Test 
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Figure 26 Current Demand for Activated Specimens Switched from -330 mV to -430 
mV.  
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Figure 27 Current Demand for Activated Specimens Switched from -330 mV to -540 
mV. 
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Figure 28 Current Demand for Activated Specimens Switched from -430 mV to -540 
mV. 
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Figure 29 Average Current Density for each Potential Level After Activation. White 
dashes represent the average current density during wet cycles. Black dashes 
represent the average current density during dry cycles.  

 
3.2.5 Discussion of Results from Depolarization Test 

After activation, cathodically polarizing specimens to -540 mV and into a 

conventional CP regime seems to be effective in achieving the desired 100 mV 

depolarization decay protection criterion for cracked concrete exposed to a simulated 

marine environment. This finding is supported by the depolarization test results whereby 

all four specimens tested at -540 mV CP achieved a 100 mV decay after 1 hour of 

current interruption. In contrast, polarizing to -430 mV did not always provide a 100 mV 

depolarization decay for cracked concrete exposed to a simulated marine environment. 

Current demand remained relatively stable for specimens put into a CP regime after 

activation, suggesting that the passive layer did not regenerate [20]. 
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 Nominal current density values for specimens in the CP regimes were 

comparable, or slightly lower, than those for specimens in the CPrev regimes applied at 

the same potential level. The result is seemingly intriguing as CPrev in sound concrete 

is usually considered to require less current than CP, because CPrev is generally 

expected to be applied to a much lower polarization level. However, the present results 

indicated that to prevent corrosion in cracked concrete a fairly high level of cathodic 

polarization (down to about -540 mV) would be needed. That corresponds to more than 

400 mV below a typical open circuit potential, and in that case nearly all of the current is 

demanded by the cathodic reaction.  Hence in these conditions the benefit of CPrev 

would appear to fully avoid any corrosion initiation event, and not a decrease in current 

demand compared to a CP system. The CP current demand may be somewhat lower 

than for CPrev because at -540 mV there may still be an appreciable residual amount of 

anodic reaction taking place in the previously corroding system. If that proves to be the 

case in follow up research, the results would in that event be to some extent still 

supportive of CPrev as the more strict corrosion control method, albeit  without much 

benefit from the standpoint of lowered current needs.  
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CHAPTER 4: CONCLUSIONS 

 With no form of corrosion protection or prevention, in the presence of cracks ranging 

from 0.01 in to 0.04 in width in a simulated marine environment, reinforcing steel 

was liable to corrode quickly. Such early onset of corrosion would be clearly 

detrimental to achieving the desired service life in the part of the structure affected 

by the cracks.  

 The increase in time to corrosion activation for specimens polarized to -330 mV and 

-430 mV (SCE) was not substantial compared to OC specimens. These results 

suggest that CPrev with these levels of cathodic polarization may be of limited or no 

benefit in the case of cracks aligned lengthwise to the rebar. 

 The observation  that no specimen polarized to -540 mV (SCE), regardless of crack 

size, has activated after >200 days of exposure to NaCl solution, suggests that 

CPrev with cathodic polarization levels of -540 mV (SCE) may be considered 

effective for steel in cracked concrete in a marine environment. Longer term test 

confirmation is needed. Average nominal cathodic current density values required to 

achieve -540 mV (SCE) were high, in the order of 1.5 mA/ft2 of steel surface near 

the crack zone. 

 The results indicated that the 100 mV depolarization decay [9] criterion for protecting 

already corroding steel may be satisfied for cracked concrete conditions by applying 

-540 mV (SCE) of conventional CP. 
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Appendix A Permission for Use of Figure 

 The subject license applies to Figure 4. 
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