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Mathematical	 Models	 of	 the	 spread	 of	 the	 Human	 Papillomavirus	 (HPV)	 and	
simulation	of	the	impact	of	an	immunisation	programme	in	Ireland	

Kathryn	Marie	Tobin	
	
It	 is	now	widely	accepted	 that	 the	Human	Papillomavirus	 is	 the	causative	agent	of	
cervical	cancer.	Disease	control	strategies	such	as	vaccination	programmes	are	often	
evaluated	using	mathematical	models,	as	the	carrying	out	of	such	experiments	in	a	
human	 population	 is	 unethical. Mathematical	 models	 can	 estimate	 the	 number	
needed	 to	 vaccinate	 in	 order	 to	 eradicate	 disease.	 Mathematical	 models	 of	 HPV	
dynamics	 and	 vaccine	 efficacy	 are	 used	 to	 project	 the	 impact	 of	 an	 immunization	
programme	on	the	future	dynamics	of	HPV	and	cervical	cancer.	The	aim	of	this	PhD	
research	was	to	evaluate	the	 impact	of	the	HPV	vaccine	on	the	future	dynamics	of	
HPV	in	Ireland.	
	
	 An	SIR	(Susceptible	–	Infectious	–	Recovered)	model	consisting	of	a	system	of	
ordinary	differential	equations	(ODEs)	was	developed	to	represent	HPV	transmission	
dynamics	 in	 Ireland.	Parameter	values	 for	 the	model	equations	were	derived	 from	
publicly	 available	 data	 on	 HPV	 prevalence,	 sexual	 behaviour	 and	 population	
statistics.	 The	 model	 was	 solved	 using	 classical	 biomathematical	 techniques,	 and	
simulated	using	 the	modelling	 software	packages	MATLAB	and	Berkeley	Madonna.	
Ethical	 approval	 was	 not	 required	 since	 this	 project	 does	 not	 involve	 human	
participants.	The	project	only	uses	publicly	available	anonymised	data.	
	
	 The	model	was	used	to	simulate	the	current	dynamics	of	HPV	 in	 Ireland,	and	
the	results	were	found	to	be	consistent	with	previously	published	models.	Analytical	
and	 numerical	 solutions	 for	 the	 transmission	 parameter	 β	 and	 the	WAIFW	matrix	
have	 been	 evaluated	 using	 available	 data.	 Analysis	 of	 the	 model	 for	 the	 natural	
history	 of	 infection	 under	 three	 possible	 sexual	mixing	 scenarios	 showed	 that	 the	
assumption	 of	 assortative	mixing	 underestimated	 the	 prevalence	 of	 infection,	 and	
the	assumption	of	proportionate	mixing	was	most	appropriate.	Upon	 introducing	a	
vaccination	 parameter	 to	 the	 model,	 and	 simulation	 of	 the	 model	 under	 various	
vaccination	 scenarios,	 it	 was	 found	 that	 a	 vaccine	 targeting	 males	 and	 females	
results	in	a	more	rapid	reduction	in	prevalence	than	a	female	only	vaccine.	Detailed	
analysis	of	the	case	where	80%	of	young	women	are	vaccinated	each	year	showed	
that	 after	 10	 years	 of	 vaccination,	 prevalence	 is	 reduced	 by	 84%	 in	 females.	 This	
reduction	increases	to	91%	as	the	population	reaches	an	endemic	equilibrium	after	
approximately	80	years	of	vaccination.	
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Summary

This summary highlights the main aims of the research presented in this thesis. The Human

Papillomaviruses (HPVs) are a group over 120 viruses known to infect humans (Moody &

Laimins 2010). Approximately 40 strains of this virus are capable of invading mucosal sur-

faces of the body (Moody & Laimins 2010) and HPV is now regarded as the most common

sexually transmitted infection (STI) (CDC 2011a). Two strains of HPV, known as HPV 16

and 18, are the cause of approximately 70% of cervical cancers (WHO 2007). Vaccination

is one of the control measures that has been developed to prevent infection with HPV 16

and 18.

Mathematical models in healthcare research have been shown to provide an extensive

platform for the advancement of the scientific understanding of infectious disease dynamics.

Through the exploration of mathematical models, we can obtain quantitative predictions of

the mechanisms of communicable diseases such as HPV. Appropriate and optimum strate-

gies of disease control can be formed from this research without the need for expensive or

ethically conflicting experiments.

This project aims to develop mathematical models to simulate the effects of a vaccina-

tion programme on the prevalence of HPV 16 and 18 in Ireland. Using classical mathemat-

ical modelling techniques a two-sex, risk structured Ordinary Differential Equation (ODE)

transmission dynamic model for HPV 16 and 18 will be developed for the Irish population.

The specific research questions to be answered in this thesis are as follows:

Which epidemiological parameters have the most significant effect on the natural history
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of HPV? Related to this are smaller research questions which must be addressed such as,

which sexual mixing patterns fit the model outcomes best? What assumptions can be made

on the gender differences in parameter values?

Another primary research question will be: What effect will a HPV vaccine have on preva-

lence in a population? Again, in answering this, smaller research questions must be an-

swered such as, what are the most appropriate assumptions to be made about the vaccine

characteristics? What effect will the vaccine have on HPV prevalence in the short term, for

example in two, five or ten years? Also, what effect will the vaccine have on HPV prevalence

in the longer term, for example in 20, 50, or 100 years?

The specific objectives of this study are:

• Study the classical techniques of mathematical modelling and develop a suitable ODE

model for HPV in Ireland.

• Explore the epidemiologically significant factors contributing to the spread of HPV

and estimate their numerical values.

• Using mathematical model simulations, explore the effects of the various contributing

factors for HPV spread such as sexual behaviour and sexual mixing patterns.

• Use calibration techniques and sensitivity analyses to strengthen the validity of pa-

rameter estimates.

• Calculate the basic reproductive number for the natural history model.

• Explore the effects of a vaccination programme on the steady state endemic prevalence

of infection.
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Chapter 1 provides the history of the Human Papillomavirus (HPV) and how the virus

affects humans. The association between HPV and cervical cancer is described. Details of

infection control strategies that are in place in Ireland, Europe and the rest of the world

are provided. This chapter also looks at how cervical cancer research has developed.

Chapter 2 is a detailed history of how the field of epidemiology developed and its pro-

gression to the analysis of sexually transmitted infections. This chapter also contains a lit-

erature review of mathematical models for sexually transmitted infections and HPV models.

In chapter 3 a simple ODE model for endemic disease is solved analytically and a sta-

bility analysis is carried out on the disease free and endemic equilibria to evaluate the

dynamics of infection. This analysis provides valuable information about disease dynam-

ics that cannot be achieved using a more complex model such as those in chapters 4, 5 and 6.

Chapter 4 introduces the first numerical simulation of the thesis. A simple homogeneous

model for the natural history of HPV infection is simulated using estimated parameters from

published data. A process of model calibration is carried out around the parameter β. A

degree of heterogeneity is added to the model in the form of two risk groups based on sexual

activity.

Chapter 5 develops the natural history endemic model from chapter 4 by analysing var-

ious sexual mixing patterns using WAIFW (Who Acquires Infection From Whom) matrices

and carrying out detailed sensitivity analyses to guide the calibration of model parameters.

An important epidemiological result in this chapter was the calculation of the basic repro-

ductive number under the three sexual mixing scenarios: assortative, disassortative and

proportionate.

And finally, chapter 6 introduces a vaccination parameter to the population which en-

ables the simulation and epidemiological analysis of numerous vaccination scenarios such

as the varying effects of a female only vaccine versus a male and female vaccine and the

13



relative reduction in HPV prevalence that could be achieved by these vaccines at various

levels of population coverage.
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Chapter 1

History of the Human

Papillomavirus and Cervical

Cancer Research

1.1 Introduction

This introductory chapter outlines the journey of discovery of the human papillomavirus

(HPV) to the development of cervical cancer research and describes the most prominent

research that has lead to the development of a life saving vaccine against the two main

cancer-causing strains of HPV. This chapter also looks at the effects of HPV worldwide and

the control measures that have been implemented in different countries.

1.2 Viruses

Viruses are infectious, non-living particles, which vary in structure and function. The

field of virology, which is the study of viruses, emerged after the invention of the electron

microscope in 1931 (Ruska 1986). Viral cells are generally smaller than 200 nm in diameter,

which is smaller than bacterial cells, and consist of at least two parts: an external protein

structure called a capsid, and an inner core of nucleic acid, either deoxyribonucleic acid

(DNA) or ribonucleic acid (RNA). The capsid of some, but not all viruses is surrounded by

15



an outer membrane called an envelope (Mader 1998). The envelope is constructed from the

structural components of the host cell, a cell that is infected with the virus.

!
Figure 1.1: Influenza virus structure. Encyclopdia Britannica (2009).

A virus is classified according to: The type of nucleic acid in its core and whether it

is single or double stranded; its size and shape; and whether it is enveloped or naked, as

shown in Figure 1.1. Viruses are obligate intracellular parasites, meaning they are non-

living and can only survive inside a living cell. They are capable of mutation, for example,

the influenza virus mutates frequently, creating new strains to evade destruction from flu

vaccines and so, new vaccines must be developed annually to combat new strains. Viruses

are host specific, that is, they only infect specific host-cells. Portions of the capsid at-

tach to host cell receptors using a lock-and-key mechanism. The viral nucleic acid then

enters the host cell. Viral function typically requires the host’s cellular enzymes, that is,

the virus utilises the host cell’s metabolic machinery for its own reproduction (Mader 1998).
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Certain animal viruses are a cause of particular concern for humans. For example the

papillomavirus, the herpes viruses, the hepatitis viruses and the adenoviruses cause disease

and are also capable of altering the host cell’s genome and creating cancerous cells (Mader

1998).

In humans, viral diseases are controlled by prevention techniques. This includes physical

barriers such as condoms which can reduce the transmission of HIV (human immunodefi-

ciency virus); frequent hand washing/ use of hand sanitisers can reduce transmission of an

influenza virus. Vaccines have been developed to induce immunity to certain viruses such

as polio, measles, mumps and more recently HPV (human papillomavirus). Antiviral drugs

are currently used to treat certain forms of the influenza virus shown in Figure 1.2.

!
Figure 1.2: Electron Microscopy Image of Influenza Virus. (Stannard 1995)
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1.3 Human Papillomavirus

Human Papillomaviruses (HPVs) are small, non-enveloped, double-stranded DNA viruses

that infect epithelial cells of the skin and mucosal membranes (WHO 2009). An electron

microscopy image of the virus is shown in Figure 1.3. The epithelium is the outer layer of

cells covering all surfaces of the body including the skin and mucous producing membranes

such as the respiratory and genital tracts. Papillomaviruses are prevalent amongst animal

species and are species-specific. HPV infections of the skin may cause the growth of warts

(verrucae) typically on the hands and feet, or genital warts, which are a contagious and

recognisable symptom of genital HPV infection (WHO 2009). Infection is often subclinical

and in most cases will resolve itself without the host knowing it existed, although less

commonly, some HPV types may progress to cancer, most notably to cervical cancer.

!
Figure 1.3: Electron Microscopy Image of Human Papillomavirus. (Stannard, 1995).

More than 120 HPV genotypes have been identified, of which approximately 40 are

capable of invading mucosal surfaces (Moody & Laimins 2010). Figure 1.4 shows the distri-

bution of these strains according to their associated mechanism of causing infection. These
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are categorised as high risk strains (oncogenic or cancer causing) and low risk strains (non-

oncogenic) relative to their association with cancer. Oncogenic HPV types are pathogeni-

cally linked to intraepithelial neoplasia (tumour growth).

HPV 

Non-genital HPV 

Warts (verrucae) 

Genital HPV 

High-Risk Low-Risk 

Figure 1.4: Division of HPV types.

Low-risk forms of HPV commonly cause genital warts or benign changes in the cells of

the cervix but are not associated with invasive cancers. The most common low-risk strains

are 6, 11, 40, 42, 43, 44, 54, 61, 72, 73 and 81 (CDC 2007). Of these low-risk strains, 6

and 11 cause between 90% and 100% of all cases of genital warts (Greer et al. 1995). The

prevalence of genital warts is highest at 20 to 29 years of age for females and males; female

incidence falls after this time, but incidence remains high in males up to approximately 40

years of age (Koshiol et al. 2004).
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The most common strains of high risk HPV are 16, 18, 31, 33, 35, 39, 45, 51, 52, 56,

58, 59 and 66 (WHO 2007). Types 16 and 18 are responsible for approximately 70% of all

cervical cancers (WHO, 2007). The body may eliminate infection with a high-risk strain of

HPV, particularly if the host has a strong immune system. However, cases of cervical cancer

and precancerous cervical states are almost exclusively related to infection with these high-

risk strains. In its early stages, the virus can cause cell changes called cervical dysplasia,

which can lead to cancer if untreated. Although less common, the virus is also associated

with cancers of the vulva, penis and anus, as well as other sites.

1.3.1 Transmission

HPV is highly transmissible and is now regarded as the most common sexually transmitted

infection (STI) (CDC 2011a). It is estimated that over half of all sexually active males and

females will be infected with HPV at some time (CDC 2007). HPV is generally transmitted

via skin-to-skin contact during sexual intercourse, and less commonly through other forms

of non-penetrative genital contact. Sexual behaviour is directly related to the probability of

acquiring a HPV infection. Prevalence of cervical HPV infection is highest amongst women

under the age of 25 (Woodman et al. 2007) and lowest amongst women who have never

had sex. Increased risk of exposure to HPV is proportionally linked to infection, therefore

abstaining from sexual activity ensures the lowest risk. A monogamous sexual relationship

with a partner who has had no or few previous partners decreases the risk of contracting

an infection, as does the correct use of physical barriers such as condoms.

It is important to emphasise that infection is usually eliminated spontaneously. Less

than 10% of cases suffer from persistent high-risk infection and are at high risk of devel-

oping neoplastic lesions (abnormal cell growth) of the anogenital tract (CDC 2007). There

are contributing factors which may increase the risk of this progression, such as smoking

cigarettes, multiparity (multiple births), long-term use of hormonal contraceptives (Castell-

sagué & Munoz 2003), immuno-suppression associated with conditions such as HIV, and
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possibly co-infection with Chlamydia trachomatis or Herpes simplex virus (WHO 2007).

However, those at highest risk, regardless of other cofactors are women who do not attend

regular screening.

1.3.2 HPV Infection in Males

Low risk HPV infection is associated with genital warts in men. Infection with high-risk

types is associated with some pre-invasive squamous lesions of the penis and anus (penile

intraepithelial neoplasia - PIN, and anal intraepithelial neoplasia AIN) and penile and anal

cancer. Invasive penile cancer is very rare, and cases of anal cancer are significantly higher

in men who have sex with men (MSM), particularly when coupled with HIV (CDC 2011b).

1.3.3 HPV Infection in Infants

It is possible for low-risk HPV infections to be transmitted from mother to baby during birth,

though this is very rare (CDC 2011a). This results in juvenile-onset recurrent respiratory

papillomatosis (JORRP) and causes warts on the respiratory tract of the infant.

1.4 HPV and Cervical Cancer

Extensive epidemiological and clinical studies have illustrated that high-risk (or oncogenic)

strains of HPV are associated with virtually 100% of cervical cancer cases, opening the

debate of whether cervical cancer may occur without HPV (Castellsagué 2008). Infection

is in general transient, about 90% are cleared within two years. The median duration for

infection is eight months (Ho et al. 1998). A persistent high-risk infection (for example
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HPV 16) is uncommon but is necessary for progression to invasive disease. According to

a Genital HPV Infection Fact Sheet published by the CDC (Centers for Disease Control

and Prevention) approximately 10% of infected women will experience persistent infection

(CDC 2007). It is possible that in cases where infection appears to be cleared from the body,

HPV is not eliminated but remains in a dormant, non-detectable state and may resume re-

production later in life. This would explain why seemingly new infections have appeared

in women who were thought to have HPV DNA clearance without being exposed to a new

strain of the virus, that is, they have remained in a mutually monogamous relationship.

Cervical carcinogenesis can be described in three stages as shown in Figure 1.5: The

majority of infections are transient, meaning they clear spontaneously. A small proportion

of infections are persistent in nature and may lead to cervical cancer if left untreated.
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Figure 1.5: Stages of HPV infection

HPV infects the innermost layer of the epidermis, the basal layer. It is thought to evade

the natural barrier of the skin by entering through micro-abrasions in the cervical epithelial

layer to reach the basal cells. Infection can then cause cellular dysplasia, a pre-cancerous

condition which can be categorised according to its severity and risk of becoming cancer-

ous. An abnormal growth of cervical squamous cells (outer surface cells of the epidermis,

which have a flattened appearance) can be classified cytologically as a low-grade squamous

intraepithelial lesion (LSIL) or a high-grade SIL (HSIL), depending on the abnormality of
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the cells and how much of the cervix is affected. Abnormal cervical cell biopsies can also be

defined by histological examination as CIN (Cervical Intraepithelial Neoplasia). CIN are

graded according to the degree of neoplasia and how much of the cervix it covers; CIN1 =

mild, CIN2 = moderate, CIN3 = severe. In general CIN1 lesions are cleared by the body

within a few months without treatment, cases of persistent infection can lead to CIN2/3

lesions and a higher risk of cancer formation.

1.5 HPV Vaccine

The HPV vaccine is designed to prevent infection from the most common strains of HPV

and acts to complement regular cervical screening rather than replace it. Vaccinated women

are advised to continue to be screened according to national guidelines since cervical cancer

can be caused from less common high-risk strains not included in the vaccine.

There are currently two prophylactic HPV vaccines on the market; Gardasil which is

manufactured by Merck (marketed in Europe by Sanofi Pasteur MSD) and Cervarix by

Glaxo Smith Kline (Health Service Executive 2010). Gardasil is a quadrivalent vaccine,

meaning it protects against four strains of the virus, the two most common low-risk strains

HPV 6 and 11, and the two most common high-risk strains HPV 16 and 18. Cervarix is a

bivalent vaccine and protects against HPV 16 and 18.

These vaccines do not contain any viral DNA and are non-infectious. They are prepared

using virus-like particle (VLP) technology. The HPV capsid which encloses the HPV genome

is made up of two proteins, L1 and L2. Purified L1 protein can self-assemble in vitro,

forming hollow shells which act very like HPV and with the aid of an adjuvant, an immune

response is initiated which produces much more antibody than would be induced during a

natural HPV infection. These vaccines are not therapeutic; they are designed to prevent
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infections from the HPV types contained in the vaccine in individuals who have not been

previously infected with these types. The vaccine is administered over a period of six

months, with three separate 0.5 ml intramuscular doses. Gardasil doses are injected at

months 0, 2 and 6, while Cervarix is administered at 0, 1 and 6 months. The duration

of immune protection is currently unknown. The longest follow-up study for HPV 16 has

been up to 9 years post-vaccination and shows lasting antibody persistence and protection

from HPV persistent infection (Jit et al. 2011). Future studies will be necessary to evaluate

the duration of protection offered by this vaccination program. Side effects of the vaccine

have been minimal, with pain at the injection site being the most common complaint (CDC

2011c). At this stage the main arguments against the vaccine are the uncertainty of duration

of immunity, the high cost of the vaccine and the fear that it may lead to a false sense of

security and encourage women to stop attending regular cervical screening.

1.6 HPV Worldwide

Cervical cancer affects about 530,000 women worldwide every year; about 275,000 women

lose their lives to the disease (Ferlay et al. 2008). More than 85% of cases occur in developing

countries where screening and treatment are extremely limited (American Cancer Society

2011). Cervical cancer is the number one cause of cancer-related death in women in the

majority of developing countries. Figure 1.6 shows the world estimates of incidence and

mortality from cervical cancer in 2002. Incidence and mortality are highest in Africa.

Incidence of cervical cancer is higher in Western Europe than in Northern America, Northern

Europe and Australia.
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Figure 1.6: Age standardised incidence and mortality rates, cervical cancer by region of the

world, 2002 estimates (Cancer Research UK 2008).

1.6.1 Australia

Australia commenced a very successful National Cervical Cancer Screening Program in

1991. At the introduction of this program the incidence of cervical cancer in women aged

20-69 was 17.1 new cases per 100,000 and mortality was at 4.0 deaths per 100,000. In

2004, the number of new cases had dropped to 8.9 per 100,000 and mortality fell to 2.0 per

100,000 in 2005 (Australian Institute of Health and Welfare 2008).

On 29th November 2006, the Australian Government announced funding for a National

HPV Vaccination Programme using Gardasil. This is funded under the National Immuni-
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sation Programme and consists of two separate projects. One is an ongoing school-based

program to vaccinate 12 and 13 year old girls and also girls in schools aged 13 up to 18

in 2007 and 2008 as part of a catch-up programme. They also funded a community-based

HPV catch-up program to vaccinate women aged 18-26. This catch-up program ended on

30th June 2009.

1.6.2 United States

The age-standardised rate of cervical cancer on the entire continent of America is about

18.8 per 100,000 with a mortality rate of 8.1. In North America the rate of incidence is 7.7

per 100,000 and mortality is about 2.3 per 100,000 (WHO/ICO, 2007). Gardasil received

FDA (United States Food and Drugs Administration) approval in June 2006. Vaccination

protocol varies from state-to-state in the U.S. Most large private insurance companies cover

the cost of recommended vaccines such as Gardasil. Children aged 18 or younger who

do not have private healthcare may be eligible for the vaccine through the Vaccines for

Children (VFC) program. Some states also provide free or low-cost vaccines at public

health department clinics for those without private health insurance.

1.6.3 Europe

Approximately 15,000 European women die each year from cervical cancer, with about

33,000 diagnosed cases. This is the second most common cancer in European women aged

15-44 years (second to breast cancer). The most common strains of HPV associated with

cervical cancer in Europe are HPV 16/18 which together account for 73% of cases. As

much as 80% of cases of this disease can be prevented by maintaining an adequate screen-

ing programme and treating precancerous lesions (ECCA 2009). This screening procedure

began in the 1960s, and brought about a significant decrease in cervical cancer cases in

many EU countries in the 1970s. However this form of prevention is not without its flaws.

Reliable results are dependent on an adequate amount of sample being taken and correct
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slide preparation and analysis by a trained laboratory technician.

Organised cervical screening programmes are in place in nine EU member states: Den-

mark, Finland, Slovenia, Sweden, the Netherlands, the United Kingdom, Ireland, Poland,

and parts of Italy. Although screening does take place in all EU member states, without an

organised program which includes the widespread provision of information on the impor-

tance of screening, uptake is opportunistic and will tend to be lower, particularly among

low socio-economic groups.

According to a survey carried out by the European Cervical Cancer Association (ECCA

2009), only 9 countries of the 40 European countries who participated in the survey offer

the HPV vaccine free of charge to females of at least one age cohort (ECCA, 2009). These

countries are Denmark, Germany, Greece, Italy, Luxembourg, Netherlands, Portugal, Spain

and the UK, and a further three countries (Belgium, France and Sweden) offer partial fund-

ing for the vaccine. Since the publication of this report, Ireland has also introduced a fully

funded HPV vaccination programme. All of these countries are in Western Europe where

healthcare budgets are high and better able to cope with the high cost of the vaccine. Inci-

dence of cervical cancer is generally already lower in these countries than in Eastern Europe

due to successful cervical screening practices. The UK and the Republic of Ireland have

introduced school-based programmes nationally, which is known to reach a high proportion

of the target population (Health Protection Agency 2012, Health Service Executive 2011).

This is in comparison to introducing the vaccine through healthcare providers, which can

have suboptimal coverage rates as people from low socioeconomic groups and minorities

may miss out. This is also the group most likely to miss out on screening opportunities

when they are offered opportunistically.

1.6.4 Ireland

Approximately 170 new cases of cervical cancer occur annually in Ireland with about 76

deaths. Cervical Check is Ireland’s national screening programme. This is a population
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based, quality assured programme which was launched in September 2008 and is managed

by the National Cancer Screening Service (NCSS). This service is free to women aged 25-60

years and is funded by the Department of Health and Children. Screening is provided every

3 years for women aged 25-44 and every 5 years for women aged 45-60 in accordance with

guidelines set out by the World Health Organisation (WHO). The implementation of this

programme can potentially reduce the number of cervical cancer cases in Ireland by up to

80%.

According to the National Cancer Registry (2010), the age specific rate of cervical cancer

in 2009 for women aged 20-24 years was 2.56 per 100,000 and has been generally increasing

in recent years, the rate was 1.94 in the year 2000 (National Cancer Registry 2010). This

opens the debate of whether the age of screening should be reduced to 20 years of age.

However, these figures may seem low when compared to the peak incidence rate for women

aged 40-44 which was 33.55 per 100,000 in the year 2009 (National Cancer Registry 2010).

1.6.5 United Kingdom

The UK have implemented a screening programme similar to Cervical Check in Ireland.

Both of these programmes offer a population based service for women from the age of 25

years. However, in Northern Ireland, Scotland and Wales, the age at which women begin to

be screened is 20 years. This was also the case in England until 2004 when the age was raised

to 25 years in line with WHO guidelines. The WHO, International Agency for Research

on Cancer (IARC) and European guidelines recommend that screening should begin at age

25 (Ferlay et al. 2010). Evidence shows that though HPV infection is very common in

women <30 years, the number of cases developing into cancer is very low. The WHO states

that screening younger women will detect many lesions that will never develop into cancer,

which will lead to considerable over treatment and will not be cost effective. A national

vaccination program using Cervarix was introduced in the UK in September 2008 for girls

aged 12-13, funded by the government (Health Protection Agency 2012). This included a 2

year catch-up programme for young women up to the age of 18.
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Cervical cancer was the third most commonly diagnosed cancer worldwide in females

in 2008 (American Cancer Society 2011). As sections 1.6.1 - 1.6.5 show, control strategies

are being implemented in developed countries to reduce cancer incidence. The burden of

cervical cancer is greatest in developing countries mainly due to the lack of screening services

in these populations (American Cancer Society 2011).

1.7 The History of Cervical Cancer Research

1.7.1 Early Epidemiological Research

It is now a well known fact that cervical cancer is caused by an infectious agent. Many au-

thors attribute the first report of this relationship to the work of Italian surgeon Domenico

Antonio Rigoni-Stern (as noted by Griffiths 1991 and Skrabanek 2000). However, this work

is mostly misquoted (as noted by Griffiths 1991 and Skrabanek 2000). At the time of the

research, in 1842, the diagnosis of “cancer of the womb” did not differentiate between car-

cinoma of the cervix and other cancers of the uterus, meaning Rigoni-Stern could not make

any accurate observations on the incidence of deaths from cervical cancer.

The paper was written in Italian, but was translated to English and published in 1987.

Speaking on the subject of cervical cancer in 1984, Drife stated that “it is now well doc-

umented that the disease is rare in nuns and common in prostitutes” and furthermore he

claimed that “a connection between intercourse and cervical cancer was apparently first

suggested in 1842” (as cited by Griffiths 1991). These statements are false, but commonly

believed to be true. The findings of Rigoni-Stern are clearly presented in his work and do

not postulate a relationship between cervical cancer and sexual activity, a discovery he is

often credited for.
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In 1950, French-Canadian gynaecologist Fabien Gagnon produced evidence for the pop-

ular claim that cervical cancer is rare in nuns (Gagnon 1950). Gagnon provided care to

a number of Roman Catholic convents and through this position he gained access to the

medical records of a number of religious orders going back many years. He studied “medical

files of an annual average of 13,000 women, covering a twenty-year period, in the archives

of many different convents of nuns”. He found no cases of cervical cancer, but admitted

that data from 3500 files were missing (1500 had been destroyed following the death of each

individual and a further 2500 files could not be verified). Gagnon searched further using

records from pathological laboratories in the same area. These statistics identified three

cases of cervical cancer in nuns but the writer admits that some cases may have escaped

attention. Gagnon concluded that although it is rare, cancer of the cervix can occur in

virgin women.

Janet Towne, a gynaecologist based in Chicago, explored the role of childbirth in cer-

vical cancer (Towne 1955). Studying cases from a radiography unit over a twenty-one year

period, she concluded that 16.3% of cervical carcinomas occurred in nulliparous women

(women who have never given birth), 6.4% in unmarried women and 0.52% in nuns (3

cases). Towne extended her study to include analysis of medical records from convents and

found a further 3 cases. From this she concluded, “cervical malignancy can arise in women

irrespective of virginity or parity”.

A study carried out by Fraumeni et al. (1969) sought to clarify the role of marital status

in human carcinogenesis. They reviewed 5893 death certificates covering 41 religious orders

between the years 1900 and 1954. The study showed that of a total of 1021 cancer deaths,

102 were cases of uterine cancer and 11 of these cases were cancers of the cervix.

Petr Skrabanek joined the Department of Community Health in Trinity College Dublin

in 1984 where his work earned him a reputation as a convincing critic, particularly in the

field of preventative medicine. In a paper entitled “Cervical cancer in nuns and prosti-
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tutes: A plea for scientific continence” first published in 1988, Petr Skrabanek reviews the

epidemiological research carried out on the subject of cervical cancer in the 19th and 20th

centuries. In his conclusion, Skrabanek states

“The epidemiological evidence on the prevalence of cervical cancer in nuns and pros-

titutes is of very poor quality and neither supports nor contradicts the belief that cervical

cancer is a venereal disease” (Skrabanek, 2000).

These epidemiological studies were imperative to the discovery of the aetiology of cervical

cancer, but more research was needed since, as stated by Skrabanek (2000), “Epidemiolog-

ical research cannot prove causation”. Epidemiological research led to the conclusion that

cervical cancer was infectious and could be transmitted to others through sex, the next step

was to isolate and identify the infectious agent.

It is clearly evidenced here that the link between cervical cancer and sexual contact was

postulated long before strong evidence for the association became available. The studies

present here show some fundamental flaws, for example, Gagnon (1950) found three cases

of cervical cancer in nuns and concluded that although rare, cervical cancer can occur in

virgin women. He came to this conclusion without showing rigorous proof of the fact that

these were virgin women, other than stating that they were nuns.

The following section outlines the history of virological research which has helped to

develop scientific knowledge of HPV infection and associated disease.

1.7.2 Virological Research

This section describes the prominent work that lead to the discovery that HPV is the

causative agent of cervical cancer, and the development of control strategies for this disease.
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Figure 1.7: This is a picture of a mounted cottontail rabbit at the Museum of Natural

History at the University of Kansas. The animal has a severe infection of the Shope papil-

lomavirus. The picture was taken by Heather York.

Peyton Rous

Peyton Rous was born in Texas in 1879 and grew up in Baltimore. In 1909, after completing

medical school, Peyton turned his attentions to medical research. He joined the staff of

the Rockefeller Institute in New York where he was put in charge of the cancer research

laboratory. Rous won the Nobel Prize in Physiology or Medicine in 1966 for his discovery of

tumour-inducing viruses. He proved that some tumours in chickens are initiated and driven

by viruses known as Rous Sarcoma viruses (Rous 1911).

Richard Shope

In 1934, Rous was asked to work on a new virus discovered by a close friend in the Rock-

efeller Institute. Dr. Richard Shope had already achieved considerable success in the field

of virology, being the first to isolate influenza virus A from pigs (Shope 1931).
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“Our attention was recently called to a disease occurring in wild cottontail rabbits in

northwestern Iowa. Rabbits shot there by hunters were said to have numerous horn-like

protuberances on the skin over various parts of their bodies. The animals were referred to

popularly as “horned” or “warty” rabbits” (Shope, 1933) (Figure 1.7).

Shope concluded that he had found a papilloma in wild cottontail rabbits that is trans-

missible to wild and domestic animals. This virus was named the Shope papillomavirus,

which later became known as the cottontail rabbit papillomavirus (CRPV).

In a paper published from the Laboratories of the Rockerfeller Institute for Medical Re-

search, Rous states that the papillomas induced in domestic rabbits do progress to malig-

nancies under certain conditions (Rous and Beard 1935).

It is thought that the presence of these papillomas in cottontail rabbits gave rise to the

legend of the “Jackalope”; a mythical animal described as being a cross between a rabbit

and an antelope, goat or deer, as shown in Figure 1.8.

The causative link between Human Papillomavirus and cervical cancer was not postulated

until the 1970s.

!
Figure 1.8: Engraving from Tableau Encyclopedique et Methodique, 1789.
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Harald zur Hausen

German virologist Harald zur Hausen qualified as a doctor in 1960 and developed a keen

interest in infectious diseases and microbiology. After working as a researcher in Philadel-

phia, zur Hausen returned to his native Germany where he ran his own laboratory at the

Institute of Virology in Würzburg.

While working at Würzburg, he began to question the popular hypothesis that the

herpes simplex virus (HSV-2) was the causative agent of cervical cancer. As Professor of

Virology at the University of Erlangen-Nuremberg in Bavaria, zur Hausen began testing

other possible etiological agents for cervical cancer. During this process he discovered that

papilloma was a group of many viruses, not just one (McIntyre 2005).

zur Hausen took the Chair at the Institute of Virology at Freiburg in 1977. His team

successfully isolated HPV 6 and 11. They went on to isolate HPV 16, which they proved was

present in about 50% of cervical cancers and HPV 18, present in a further 18-20% of cases.

This research was viewed as very controversial at a time when most scientists favoured

herpes simplex type 2 (HSV-2) as the etiological agent for cervical cancer (Nahmias et

al. 1970). zur Hausen approached a number of drugs companies in Germany about the

possibility of creating a vaccine for this form of cancer, but his idea was rejected as the

companies did not see a market for such a vaccine. Nearly a decade passed before the

results of zur Hausen’s research were accepted and research began on the development of a

vaccine. zur Hausen won the Nobel Prize in Physiology or Medicine in 2008 for his discovery

that the human papillomaviruses are the causative agents of cervical cancer.

George Papanicolaou

Another prominent name in the history of cervical cancer research is George Papanico-

laou; a physician and researcher, born in Greece. Papanicolaou worked as a researcher in
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the pathology laboratory in Cornell Medical College for 47 years. While studying vaginal

smears from guinea pigs, he noted changes in the epithelial cells, which he related to the

menstruation cycle of the animal. In 1923 Papanicolaou began working on human vagi-

nal smears from women who had cervical cancer. He found cancer cells in these smears

and proposed that analysing smears of vaginal fluid microscopically could diagnose cancer

and reduce the need for biopsies. He published a definitive explanation of his findings in

1943 showing how cervical cancer could be diagnosed before the onset of symptoms (Thoms

1943). His work was widely accepted and the Pap smear (named after Papanicolaou) be-

came a routine screening technique saving thousands of womens lives in ensuing decades.

1.7.3 21st Century Research

The development of two prophylactic vaccines for cervical cancer has opened the door to a

new wave of research. In the field of epidemiology, work is being carried out worldwide to

establish what effect this vaccine will have on future incidence and mortality rates for this

disease. Epidemiological findings complement virological research to increase our under-

standing of the trends of this disease and make informed decisions that utilise the vaccine’s

full efficacy. For example, epidemiological research can predict the ideal age for a patient

receiving the vaccine, or analyse the cost effectiveness of vaccinating males.

1.8 Conclusion

This chapter detailed the history of HPV and cervical cancer research. It also looked at the

various control strategies being put in place around the world to reduce disease incidence

and outlined the prominent researchers involved in the development of our knowledge of
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the virology of HPV and cervical cancer. The next chapter describes the evolution of the

field of epidemiology which has become a crucial tool in the field of infectious disease. The

application of epidemiological techniques to sexually transmitted infection research is also

introduced.
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Chapter 2

Development of Mathematical

Epidemiology and its Application

to Sexually Transmitted Infections

2.1 Introduction

This chapter details the landmark studies that have shaped the evolution of the field of

epidemiology and mathematical modelling in healthcare. Some of the classical mathematical

models such as the exponential and logistic models are explored. Using all of this knowledge

as a foundation, and a review of previously published HPV models, a structure is chosen

and presented for the mathematical models which will be explored in subsequent chapters

of this thesis.

2.2 Development of the Field of Epidemiology

Numerous definitions have been proposed to accurately describe the subject of epidemiol-

ogy; one comprehensive definition states that epidemiology is
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“The study of the occurrence and distribution of health-related states or events in speci-

fied populations, including the study of the determinants influencing such states, and the

application of this knowledge to control the health problems.” (Porta M., 2008).

Epidemiology is often used as the starting point in developing and assessing treat-

ment/control programmes for infectious disease and to describe patterns of disease whether

they are endemic, epidemic or pandemic, as defined below.

A disease outbreak can be described in terms of its incidence and prevalence in a given

population. Incidence is the number of new cases of disease in a given population over

a specific time period. Point prevalence is the total number of cases of a specific disease

within a population at a given point in time. Period prevalence is calculated over a specific

period of time.

Endemic infections have a continuous, steady-state prevalence in a given population, for

example, HPV and chickenpox.

An epidemic is a single source outbreak of an infection in excess of the expected level of

incidence in a given population, for example, the mumps epidemic in 15-34 year olds in

Ireland 2009 (HSE 2009).

Pandemic is a widespread epidemic where clusters of infection occur in many populations

across a country, continent or worldwide, for example, HIV/AIDS and H1N1 (Swine) In-

fluenza.

2.2.1 Early Epidemiology

Although epidemiological research has become well known in recent decades, the origins of

the discipline date back to approximately 400 B.C. In an essay entitled On Airs, Waters,

and Places, Hippocrates suggested that the development of disease might be influenced by
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environmental and host factors such as social behaviour (Dicker et al. 2006).

John Graunt, a haberdasher from London published the first analysis of mortality data

in 1662. His work looked at patterns of births, deaths and disease occurrence and noted

inconsistencies associated with geographical location, seasonal variation and also gender

(Dicker et al. 2006).

2.2.2 Classical Epidemiology

The work of Graunt was built upon by British Epidemiologist William Farr. In 1838, as

Compiler of Extracts for the Registrar General’s Office, Farr introduced the first National

vital statistics system. Farr analysed this data on an annual basis and used it to com-

pare causes of death at different occupational levels (Page et al. 1995). The International

Classification of Diseases (ICD) used by epidemiologists and vital statisticians today was

developed from a disease classification system that Farr created to support his own work

(Lilienfeld, 2007).

In 1849, an outbreak of cholera killed about 15,000 people in London. London was an

industrialised city with a large population and the River Thames was heavily polluted with

untreated sewage. In his now famous epidemiological study of the 1854 cholera epidemic in

the Golden Square of London, British physician John Snow compiled a spot map showing

the geographical distribution of cholera cases and the local water sources, as he believed

water was a source of infection for cholera, Figure 2.1 (Dicker et al. 2006).

To confirm his theory, Snow gathered information on the water sources used by those

who had cholera and found that use of the Broad Street pump was a common factor among

these patients. The handle of this pump was subsequently removed and the outbreak of

cholera ended. Snow went on to investigate two water supply companies that served dis-

tricts with a high death rate from cholera. His investigation took the form of epidemiological

research still used today; beginning with descriptive epidemiology and progressing to the
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Figure 2.1: John Snow Broad Street Map (Snow J. 1855) Available from

http://www.ph.ucla.edu/epi/snow/html.
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generation and testing of a hypothesis, and application of a solution.

Both water supply companies took their water from the River Thames. The Southwark

and Vauxhall Company’s intake point was downstream of London city, while the Lambeth

Company’s intake came from upstream of London to avoid sewage contamination. Snow

hypothesized that water taken from the Thames downstream of London was a source of

cholera. To test this hypothesis he studied comparable districts served by both water com-

panies and gathered information about water supply from each household where a death

from cholera occurred over a 7-week period. He found an increased death rate associated

with use of the water from the Southwark and Vauxhall Company, thus strengthening his

hypothesis (Dicker et al. 2006).

The work of Snow and the evolution of germ theory by biologists such as Pasteur, Henle

and Koch revolutionised epidemiological research around the turn of the 19th century. Germ

theory was the idea that microbes such as bacteria cause disease.

2.2.3 Modern Epidemiology

Epidemiological research in the late 19th and early 20th centuries evolved concurrently with

laboratory experiments in microbiology. The field of epidemiology has developed rapidly

since World War II with the introduction of epidemiological studies for numerous health-

related outcomes and non-infectious diseases affecting communities, such as cancer and

cardiovascular disease (Page et al. 1995). Epidemiologists began investigating the concept

of risk factors associated with disease rather than the idea of single causative agents.

Shortly after the Second World War, physicians noted an increase in the incidence of

lung cancer. Cigarette smoking was presumed to be the primary cause of this increase.

The most famous study (though not the first) to examine the relationship between smoking

and lung cancer was carried out by Sir Richard Doll and Sir Austin Bradford Hill. Doll

and Hill performed two studies representative of epidemiological studies carried out today.
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One was a case-control study and the other was a cohort study (Doll and Hill, 1950, 1954,

1956). A case-control study looks at the factors associated with one or more diseases. In a

cohort study, diseases which are associated with one or more factors are determined. More

specifically, in the context of epidemiology, a case-control study looks at one sample of in-

dividuals who have a given disease, the “case” group, while the “control” group does not

have the disease. A cohort study has a longitudinal aspect in which you follow two groups

prospectively and look for characteristics such as an increased incidence of a disease.

In their case-control study, Doll and Hill aimed to determine whether lung cancer pa-

tients differed from other persons in respect to their smoking habits. The study included

patients with cancer of the lung, stomach, colon or rectum, and also patients without

cancer. Detailed information on smoking history was examined and a strong positive as-

sociation was found between smoking and lung cancer (as noted by Ahrens & Pigeot, 2004).

Convinced by the strong evidence produced from the case-control study, Doll and Hill

began a cohort study in 1951 called the British Doctors Study. They produced a prospective

study to determine the frequency with which the disease appeared, in the future, among

groups of persons whose smoking habits were already known. Twenty thousand British

male physicians were included in the study to further investigate the relationship between

smoking and lung cancer. Doll and Hill viewed lung cancer mortality data in terms of the

smoking habits of the patient and reported that.

“Though the numbers of deaths at present available are small the resulting rates reveal a

significant and steadily rising mortality from deaths due to cancer of the lung as the amount

of tobacco smoked increases” (Doll and Hill, 1954).
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2.3 Development of Mathematical Epidemiology

Mathematics is a valuable tool in epidemiology. A mathematical model is a predictive rep-

resentation of a real world situation, used to answer a specific question. In a healthcare

setting, mathematical models are used to conduct experiments that would be unethical to

carry out in a human population. These models have been used in recent years to predict

the course of epidemics such as SARS and avian influenza (Meyers, 2007). Equally, mathe-

matical models allow for the evaluation of disease control strategies such as vaccination or

quarantine.

Daniel Bernoulli, a member of the famous European family of mathematicians, created

one of the first mathematical models for an infectious disease in 1760. Variolation is an

inoculation technique whereby a healthy person is intentionally exposed to smallpox from

the scab of a person infected with a mild form of the disease. The idea was that a mild

infection of smallpox would induce immunity against further infection from the disease

(Meyers, 2007). Although variolation did reduce the probability of mortality from small-

pox, the identification of suitable strains of the virus was not an exact science and deaths

did occur when inoculation progressed to serious infection (Meyer 2007). Bernoulli devel-

oped a mathematical model to demonstrate the efficacy of this inoculation technique. This

mathematical model was probably the first used to show the advantages of a vaccination

control programme (Murray 2002). He showed that the increase in life expectancy that

would be achieved if smallpox were eradicated, far outweighed the risk associated with the

controversial procedure (Blower and Bernoulli, 2004).

Following Bernoulli’s model, deterministic mathematical models only began to appear in

epidemiological studies in the early 20th century. A deterministic model is one in which each

variable state is determined by defined model parameters rather than probability distribu-

tions. Hamer introduced the mass-action principle to infectious disease dynamics (Meyer

2007). This principle states that the rate at which infection spreads is proportional to the

product of the densities of susceptibles times infectious individuals (Anderson and May,

1991). Ross constructed a well-structured mathematical model which analyzed basic pa-
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rameters associated with transmission of malaria (Bailey 1975). He developed a differential

equation model for malaria as a host-vector disease (Hethcote 2000). Ross’ malaria model

paved the way for subsequent researchers to use mathematical theory in epidemiological

research (Bailey 1975). Pioneering work of Kermack and McKendrick had a profound influ-

ence on the development of modern mathematical models for disease spread. In their first

paper they introduced the famous compartmental model to describe disease transmission

(Kermack and McKendrick 1927). Their most outstanding result was the famous Threshold

Theorem (Kermack and McKendrick 1927), which states that for an epidemic outbreak to

occur, the density of susceptibles must exceed a certain critical value (Bailey 1957, Hethcote

2000). Briefly, this theorem applies to a closed population of size N which can be given by

the set of equations for an SIR model below:

The population N is divided into three disjoint classes x, y and z defined as follows:

The Susceptible class, x, consists of individuals who can contract infection but are not yet

infective.

The Infective class, y, are the individuals who are infected and transmitting infection to

others.

The Removed class, z, consists of those individuals who have recovered or become immune

to infection.

dx

dt
= −bxy,

dy

dt
= bxy − gy,

dz

dt
= gy

where b is the rate of infection, g is the removal rate of infections from the population.

The structure and definitions of the SIR model are further discussed in section 2.6.

The Threshold Theorem result states that an epidemic will spread in the population only
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if x(0) > g/b, that is, if the initial proportion of susceptibles is greater than the removal

rate divided by the rate of infection.

The SIR model described above ignores births and deaths in the population. The follow-

ing section describes two classic population models which include the effects of reproduction.

2.4 Population Models

Population models are mathematical models that are applied to population dynamics. This

section describes the structure of two classic simple population models. Living organisms

must reproduce for a population to survive. Thus, a population model must include re-

production, represented in the form of birth and death rates. The well known Exponential

Model and the Logistic Model are two important models based on patterns of reproduction

and are described presently.

We begin by defining a population of size N and analyse its dynamics over a period of

time t. The rate of change of N(t) given by dN(t)
dt

, where N(t) is the population size at time

t can be expressed as

dN(t)
dt

= births− deaths + migration

Exponential Model: This model is often associated with Thomas Robert Malthus, famous

for his work on population growth models in the 19th century. The simplest form of this

model has no migration, and births and deaths are proportional to N . This takes the form
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dN

dt
= bN − dN (2.1)

where b and d are positive constants (b = births, d = deaths) and the initial population

when t = 0 is given by N(0) = N0. This has the explicit solution

N(t) = N0e
(b−d)t (2.2)

The intrinsic growth rate or Malthusian parameter, r, is equal to the birth rate, b, minus

death rate d, that is, r = b−d. This model has 3 possible outcomes which have been plotted

in Figure 2.2:

r > 0 Population exponentially increases

r < 0 Population exponentially declines

r = 0 Population does not change

This model does not take seasonality in reproduction rates into account, which is seen

in the animal kingdom. It also assumes all organisms are identical and ignores age struc-

ture. Finally, this model assumes that resources are unlimited. An example of exponential

growth is the introduction of a virus such as SARS into a population where there is no

immunisation programme in place. Each infected person can infect multiple individuals

and the rate of infection rises exponentially. Another example is human reproduction in

the absence of environmental constaints, that is, assuming resources such as food and space

are unlimited. The human population, or equivalently an animal population in the absence

of predators, rises exponentially when births are greater than deaths. However, in reality,

many populations are restricted in their rate of growth by environmental constraints. The

following model addresses this scenario.

46



!"

#!!!!"

$!!!!!"

$#!!!!"

%!!!!!"

%#!!!!"

!" !&$" !&%" !&'" !&(" !&#"

!"
#$

%&
'
"(

)*
+,
-.
)/
)

0+1-)

23#"(-('&%)4"5-%)

)"*"!"

)"+"!"

)","!"

Figure 2.2: Plot of the Malthusian parameter, r, for the Exponential Model

Belgian mathematician Pierre Verhulst modified Malthus’ model in 1838 and presented the

Logistic Model for population growth (Murray 2002).

Logistic Model: Verhulst’s logistic growth model suggested that the rate of population

increase may be self limiting and depend on population density and availability of resources.

He proposed that

dN

dt
= rN(1− N

K
) (2.3)

where r is as before and K is the carrying capacity of the environment, the maximum

population that the environment can support. Equation (2.3) has the solution

N(t) =
N0Ke

rt

[K + N0(ert − 1)]
(2.4)
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when initial condition N(0) = N0. If food supplies are plentiful, the population should grow

exponentially. As the population N grows towards the carrying capacity K, the per capita

growth rate r(1− N

K
) moves towards 0, that is, N(t)→ K as t→∞.

This model has 3 possible outcomes:

K > N0 The logistic curve. Population increases and reaches a plateau

K < N0 Population decreases and reaches a plateau

K = N0 Population does not change

These three solutions are shown in Fig 2.3.
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Figure 2.3: Plot of population size, varying the carrying capacity, K, for the Logistic Model

Model

Given that this thesis focusses on HPV, a cancer causing virus, it seems appropriate to

mention a third population model that has seen considerable success in modelling cancer

cell growth.
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Gompertzian Model: Modelling tumour growth has become a leading area of research

given the significant number of cancer related deaths. Most studies follow population growth

models consisting of differential equations (Lo 2009). The Gompertzian model has been

used to describe avascular tumour growth (Behera and O’Rourke 2008). These determin-

istic models have been successfully applied to fit experimental data (Behera and O’Rourke

2008). The model can be described as follows. If x(t) is tht evolume of the tumour at time

t, the deterministic growth is defined by the following equation:

dx = {A1x−A2x ln(x)}dt

Here A1 is the intrinsic growth rate of the tumour, A2 is the rate at which growth

decelerates. The solution of the equation is given by the following sigmoidal function. A

sigmoidal function is a type of mathematical model for a time series, where growth is slowest

at the start and end of a time period.

x(t)− exp{A1

A2
− [

A1

A2
− ln(x0)] exp(−A2t)}

The equilibrium point x(∞) = exp(A1/A2) represents the carrying capacity, which is

the largest tumour size that an organism can tolerate.

Moving on from the evolution of mathematical epidemiology and some of the classic

models, we can now focus on developing an understanding of the various model structures

that can be used to describe HPV. The following section reviews the available literature

on modelling sexually transmitted infections and HPV with the aim of selecting a model

structure for this thesis.
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2.5 Review of Sexually Transmitted Infection Modelling and

HPV Models

The process of creating a model for a sexually transmitted infection (STI) is quite different

than for other infections in a population such as measles or rubella. The epidemiology of

many STIs are influenced by social, biological and behavioural factors. Firstly, we can only

consider the sexually active individuals of a population. Papers by Hethcote and Yorke on

the transmission dynamics of gonorrhea defined the future development of mathematical

models for STIs (Hethcote and Yorke 1984). In their research they established concepts

which have become standard in STI transmission modelling. These include the notion of

tracing infectors (individuals who are infected and spreading infection) rather than infectees

which proved most effective in disease control strategies. They introduced the concept of a

“core group” which has a high partner change rate and therefore contributes a dispropor-

tionately large amount to the prevalence of infection in the population. They showed that

tracing cases of infection in the core group could effectively control an STI in a population

(Hethcote and Yorke 1984).

Epidemiologic equations for a sexually transmitted infection differ from other infectious

diseases in the general population, for example, if we consider an STI in a homogeneously

mixing population, the basic reproductive number R0, which is the average number of sec-

ondary infections that occur when one infective is introduced into a completely susceptible

population (Hethcote 2000), is given by

R0 = βcD

where c denotes the average rate of partner change, β is the probability of transmission per

partnership, and D is the average duration of infectiousness (Vynnycky and White 2010).

This equation is not affected by population density as it would with other diseases such

as measles, where an increase in population density will be likely to increase the average

number of contacts an infective individual has. In STI dynamics, increased population den-

sity would not normally result in increased promiscuity among individuals in a population.

This fact is discussed in greater detail in chapter 5, section 5.2.
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In developed countries, the persistence of an STI in a population is often dependent

on a small number of asymptomatic individuals since most symptomatic individuals seek

treatment relatively quickly. This is known as the carrier phenomenon (Anderson and May

1991). Another important feature in STI dynamics is that most STIs result in little or no

acquired immunity (Anderson and May 1991, Garnett 2002). An individual with an infec-

tion such as chlamydia or gonorrhea revert back to the susceptible class following infection.

This is not the case for hepatitis B infection, where individuals acquire immunity following

infection, HPV where the vaccine confers immunity before infection or AIDS where remis-

sion does not occur.

The HPV vaccine is a recently developed technology and its longterm effects are yet

unknown. Mathematical models are being developed to bridge the gap between the initial

administration of the vaccine today and its effects over the decades to come. A number of

models have been used to project the benefits and cost effectiveness of HPV vaccination

programmes and various questions related to cervical cancer. The models constructed so

far differ in the assumptions and parameters that are included and also the model struc-

ture, of which there are currently three types: Markov/cohort model, dynamic population

model and hybrid model. These three model structures and previously published studies

are discussed below:

Cohort Models: This type of model examines the progression of a single cohort in the pop-

ulation whose structure is typically linear and based on probability. Hughes et al. (2002)

published a cohort model which looked at the impact that a HPV vaccination program

would have on HPV prevalence and how a reduction in HPV incidence might affect the

incidence of cervical cancer . This cohort of women studied became susceptibles at time 0

(assumed individuals become sexually active at age 16). Risk of infection varied according

to age and sexual activity. In 2003, Sanders and Taira published a HPV cohort model

that attempted to evaluate the effectiveness and cost effectiveness of a prophylactic vaccine

(Sanders and Taira 2003). The hypothetical cohort comprised of 12 year old girls. The

51



cohort was divided into girls who received the vaccine at age 12, about 70 percent of the co-

hort, and girls who did not receive the vaccine but received standard care. Vaccine efficacy

was set to 75 percent with ten years protection. Other cohort models include Kulasingam

and Myers (2003) and two models by Goldie et. al (2003, 2004).

Population Dynamic Models: Dynamic models track a changing population over time.

These models include vital dynamics, that is, individuals are allowed to enter and leave the

model in the form of births and deaths. Dynamic models include the force of infection, λ,

the rate at which susceptibles become infected, which changes over time. A similar parame-

ter is used in a cohort model, but it is a fixed rate and does not change as the prevalence of

infection is reduced over time which results in herd immunity. Cohort models do not take

account of the benefits of herd immunity.

Hughes et al. (2002) published the first dynamic model for HPV. They concluded that

HPV prevalence could be reduced by 44 percent in women by vaccinating males and fe-

males (a vaccine of 75% effectiveness, 10 years duration). In 2005, Elbasha and Galvani

modelled the changes in HPV type distribution in a population where mass vaccination was

implemented (Elbasha and Galvani 2005). They used a system of ordinary differential equa-

tions and simulated progression of infection using a nine-compartment model. The model

considered synergistic versus antagonistic interactions between two HPV strains and the

resulting effect on HPV prevalence. They considered an imperfect vaccine that can protect

against one or both HPV strains. Other models include Barnabas et al. (2007) and Jit et

al. (2008) who carried out an economic evaluation of vaccination strategy in the UK and

sorted the population by HPV strain, age, sex and sexual activity based risk group. They

also included three groups for HPV type (16, 18 and other) and a further two groups for

anogenital warts (6, 11). Usher et al. (2008) constructed a transmission dynamics model

for the cost effectiveness of a vaccination program in Ireland.

Hybrid models: These are a combination of cohort and dynamic models. Taira et al.

(2004) created a hybrid model where they combined a transmission model with their previ-

ous cohort model. The main advantage of a hybrid model is that the transmission dynamics
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estimates the HPV infection rate over time (λ) for the cohort of interest.

After reviewing the available literature, the decision was made to create a population

transmission dynamic model for HPV in Ireland. A transmission dynamic model, though

perhaps more labour intensive in terms of computation and returning results, offers more

advantages over a static cohort model. With the inclusion of vital dynamics, the herd

immunity effect can be assessed. A dynamic model does require more information about

behaviour in a population and history of infection, therefore is subject to greater uncertainty

than a static model. The next section outlines the crucial structures of a deterministic model

for an endemic disease, defines the key parameters and describes the phase plane portrait

for the model system.

2.6 General Deterministic Model for Endemic Disease

We begin as before with a population of size N which we divide into disjoint classes which

change with time t. Following Hethcote’s influential papers on the mathematical biology of

sexually transmitted disease (Hethcote 1989, 2000) we consider an infection which divides

N into three classes whose dynamics can be analysed in the widely discussed SIR model

(Anderson and May 1991, Vynnycky and White 2010). The three classes are defined as

follows:

The Susceptible class, S, consists of individuals who can contract infection but are not yet

infective.

The Infective class, I, are the individuals who are infected and transmitting infection to
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others.

The Removed class, R, consists of those individuals who have been removed from S − I

interactions as a result of recovery with conferred immunity, isolation or death.

This SIR model can be represented by the following compartmental diagram, Figure 2.4,

showing the direction of movement of individuals in the population through time.

S(t)
✲ ✲

I(t) R(t)

Figure 2.4: Compartmental diagram for an SIR Model

This model is confined by some epidemiological assumptions.

• We allow N to be sufficiently large such that each class can be considered continuous

variables.

• The population mixes homogeneously. This means that for a model of a sexually

transmitted infection, individuals choose sexual partners completely randomly.

Since HPV is an endemic disease which will remain present in a population over a long

time period, the model must include vital dynamics, allowing births into the susceptible

class and natural deaths to leave the population.

• Rates of natural births and deaths are equal so the population remains stationary and

newborns entering the population are all susceptible.

• The latent period for the infection is assumed to be 0. The latent period is the time

between exposure to infection and subsequent illness. A mechanism for HPV latency
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has not been established (Woodman et al. 2007). Therefore it is unknown whether

individuals can infect others when they are in a state of latency. To overcome this

uncertainty it is assumed here that an individual is capable of spreading HPV infec-

tion as soon as they have contracted HPV, thus the latent period is set to zero.

• β is the contact rate, the average number of adequate contacts of a person per unit

time. An adequate contact is sufficient for the transmission of infection to occur if

the recipient is susceptible to the infection.

• Individuals move from I to R at the rate Iγ, where γ is the recovery rate per unit

time.

• Individuals are removed from each class by death at the removal rate per unit time,

µ, which is proportional to the class size.

• The contact number σ is the average number of adequate contacts of a typical infective

during the infectious period. This value remains constant throughout the infectious

period and is equal to the basic reproductive rate, defined below.

• The basic reproductive rate, R0 = β

γ+µ
is the average number of secondary infections

that occur when one infective is introduced into a completely susceptible population

(Hethcote 2000). This value is equal to the contact number, R0 = σ, and is calculated

as the contact rate β times the average death-adjusted infectious period 1
γ+µ

(Hethcote

2000).

The Initial Value Problem (IVP) for this model is given by the following system of

equations (2.5). An IVP is a differential equation with a specified value, the initial condition.
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dS

dt
= µN − βIS

N
− µS, S(0) = S0 ≥ 0

dI

dt
=

βIS

N
− γI − µI, I(0) = I0 ≥ 0

dR

dt
= γI − µR, R(0) = R0 ≥ 0

S+I + R = N

(2.5)

where S, I and R represent the number of individuals in each class and N is the total

number of individuals in the population. This system of equations is similar to that for an

epidemic model except for the inclusion of births given by the term µN in the first equation

of the system, and natural deaths µS, µI, µR, the last term in each equation. Dividing

each equation in (2.5) by N , the IVP becomes

ds

dt
= −βis + µ− µs, s(0) = s0 ≥ 0

di

dt
= βis− (γ + µ)i, i(0) = i0 ≥ 0

(2.6)

Here, s, i and r represent the proportion of the total population in each group, and

n is the total population and has a value of 1. So, all three classes sum to n, that is,

s + i + r = n = 1.

To investigate infection dynamics in the population, it is sufficient to analyse the

IVP in the si plane since r(t) can be found easily from s(t) and i(t) by the equation

r(t) = 1− s(t)− i(t).

A phase plane portrait is a graphical display of the characteristics of a differential

equation. The interaction between the variables s and i through time, t, can be displayed

in a phase plane plot and the analysis of this plot is used to determine the stability of the

solutions to the system.
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Phase Plane Analysis: We define a triangle in the si plane to be the region of

epidemiological significance

T = {(s, i)|s ≥ 0, i ≥ 0, s + i ≤ 1}

Theorem 2.0: Let (s(t), i(t)) be a solution of (2.6) in T . If σ ≤ 1 or i0 = 0, then the

solution paths starting in T approach the disease-free equilibrium given by s = 1 and i = 0.

If σ > 1, then all solution paths with i0 > 0 approach the endemic equilibrium given by

se = 1
σ

and ie = µ(σ−1)
β

. (Hethcote 2000)

This theorem says that if the contact number σ is less than one, or if the initial pro-

portion of infected individuals in the population is zero, then the disease will not survive

in the population, and will approach the disease-free equilibrium through time, t. If the

contact number is greater than one, σ > 1 and the initial proportion of infected individu-

als in the population is greater than zero, i0 > 0, then the infection will be maintained in

the population. The solution path will spiral towards the endemic equilibrium through time.

Figures 2.5 and 2.6 are phase plane portraits for the cases described in theorem 2.0.

The susceptible class, s, is plotted against the infective class, i, through time. The phase

plane plot shows how s changes with respect to i through time.

If the contact number σ, which is the threshold quantity is < 1, the disease will die

out, since each infective infects less than 1 susceptible. Over time as the infective class

approaches 0, the recovered class slowly dies off and the susceptible class increases and

approaches 1 due to new births, until the population is full of susceptibles at the disease-

free equilibrium with s = 1 and i = 0. If R0 = σ > 1 and the initial infective fraction

i0 > 0, then s(t) will decrease as i(t) increases to a peak, followed by a decrease as would
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be seen in epidemic dynamics. However, the susceptible fraction grows again after the

infective fraction reaches a low level. New births increase the susceptible fraction to a level

which induces another smaller epidemic. This cycle continues and results in a spiral path

toward the equilibrium point. At this endemic point the replacement number σse = 1, this

is the actual proportion of secondary cases from a typical infective individual, and disease

is neither increasing nor decreasing.

Figure 2.5: Phase portrait for the case when i > 0 and σ < 1

Figure 2.5 shows the disease free case. Although i is initially greater than zero, the con-

tact number, σ, is less than one and therefore is not large enough to maintain the infection

in the population, and the prevalence of infection, i declines to zero.

Figure 2.6 is the endemic equilibrium case. The infective proportion of the population

is greater than zero, and the contact number, σ, is greater than one, which means that the

rate at which individuals acquire infection, given by β, is greater than the combined removal
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rate of γ + µ infection and the infection maintains a constant presence in the population.

The prevalence of infection, i, spirals towards the endemic equilibrium with time.

Figure 2.6: Phase portrait for the case when i > 0 and σ > 1

2.6.1 Limitations of the Endemic Model

This model assumes that the population size, N , remains constant, that is, births = deaths.

This is perhaps an oversimplification of a typical population for endemic disease. The

assumption of homogeneous mixing is not an accurate reflection for all endemic diseases in

all populations, for example, in sexually transmitted infection analysis we cannot assume

homogeneous sexual mixing patterns across all age groups. Contact rates may also differ

across different geographical regions and among socioeconomic groups (Layte et al. 2006,

p 174).
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2.7 Conclusion

This chapter explored classical mathematical models and various model types used to de-

scribe HPV dynamics. Following this review of the literature, the deterministic ODE model

for endemic disease was chosen as the model structure for this thesis. The model was then

presented and will be built upon in subsequent chapters. This model takes births and deaths

into account through the parameter µ, and also contains the parameter β representing the

probability of transmission. Infected individuals recover at the rate γ. Preliminary assump-

tions for these model parameters will be made in chapter 3 and developed in subsequent

chapters.

As outlined in the study objectives at the beginning of this thesis, chapter 2 studies classical

mathematical modelling theory. The following chapter describes the structure of a simple

transmission dynamic model for HPV. The model is initially outlined and defined. The

system of equations is then solved analytically and a stability analysis is carried out on the

equilibrium points of the model.
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Chapter 3

Simple Homogeneous Model:

Analytical Solutions and Stability

Analysis

3.1 Introduction

This chapter introduces a simple unstructured model to describe HPV dynamics. This

model is over-simplified and does not accurately represent a real population, but acts as a

good starting point to explore the prominence of each parameter contributing to disease dy-

namics. The model presented in sections 3.2 - 3.4 is a simple SIR model for endemic disease

with vaccination. An analytical solution for the system and stability analysis is provided in

section 3.5 to determine whether small changes in Ordinary Differential Equation (ODE)

conditions (initial conditions and parameter values) lead to changes in the solution.
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3.2 SIR Model with Vaccination

The basic model illustrated in Figure 3.1 represents a deterministic model for an endemic

disease such as HPV. The model consists of three distinct compartments which sum to give

the total population. These compartments represent groups of the population with specific

characteristics.

These are:

s(t) : The proportion of the population who are susceptible to infection at time t. For this

HPV model, individuals entering the sexually active population are assumed to be suscep-

tible unless they have become immune through vaccination.

i(t) : The proportion of the population who are infected with HPV at time t and can spread

infection to others.

r(t) : The proportion of the population who are recovered or immune from HPV at time

t. Immunity can be achieved in one of two ways; by moving to the immune class following

vaccination, or from the infective class to the recovered class upon recovery from infection.

The model has five key parameters. They are defined as follows:

µ : The birth/removal rate. To keep the population size stationary, births are assumed to

equal deaths in the population. Individuals enter the susceptible class at a rate µ. Indi-

viduals are removed from the population through death or by cessation of sexual mixing.

Individuals are removed at a rate proportional to the class size given by the terms µs, µi, µr.

β : The probability of transmission per partnership.

c: The average annual partner change rate. This parameter ignores many influential factors

which affect HPV transmission. For example, c does not take account of different levels of

sexual activity in the population.
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v : The vaccination rate. The rate at which individuals entering the model are vaccinated

and moved into the immune class. In the case of a HPV vaccination, a proportion of 12-13

year old females are vaccinated each year before they become susceptible. Therefore, when

they enter the sexually active population, the vaccinated proportion move straight to the

immune/recovered class given by the term µv in Figure 3.1, and the remainder (individuals

who did not receive the vaccine) move into the susceptible class, given by the term µ in

Figure 3.1.

γ : The rate of recovery. This parameter represents the rate at which infected individuals

recover and achieve conferred immunity. Its reciprocal, 1/γ, represents the duration of

infection.

❄

µv

✲
µ

s(t)
✲βcis ✲

γi

i(t)

µs

r(t)

❄ ❄
µi

❄
µr

Figure 3.1: SIR model for endemic disease with vaccination

3.3 Model Equations

The following set of Ordinary Differential Equations (ODEs) (3.1) represent the compart-

mental model illustrated in Figure 3.1.
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ds

dt
= µ(1− v)− βcis− µs,

di

dt
= βcis− γi− µi,

dr

dt
= γi + µv − µr,

(3.1)

s(0) = s0 ≥ 0, i(0) = i0 ≥ 0, r(0) = r0 ≥ 0

3.4 Assumptions of the Basic Model

The model described by the system of equations (3.1) makes the following assumptions:

• n = s + i + r, where n is the total population and s, i and r represent the proportion

of the population in each class.

s + i + r = n = 1

• The population size remains constant such that

ds

dt
+

di

dt
+

dr

dt
= 0

• This is a deterministic model, therefore it is assumed that the population size is large

enough such that stochastic effects can be ignored.

• Probability of transmission is constant, that is, transmission from infected males to

susceptible females equals transmission from infected females to susceptible males.

• HPV infection leads to conferred immunity
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• The vaccine is a perfect vaccine which means that susceptibles who are vaccinated

have life-long immunity. The assumption of a perfect vaccine is a simplification of the

model. However studies show lasting antibody persistence and protection from HPV

persistent infection 9 years post-vaccination (Jit et al. 2011). Vaccinating infected

individuals is assumed to have no effect.

• This is a homogeneously mixing population and all members are assumed to be equally

susceptible to contracting a HPV infection.

3.5 Solving the Basic Model

To determine the stability of the system of equations (3.1), we must first evaluate the equi-

libria or steady state points of the system of ODEs. An equilibrium or equilibrium point of

a system of ODEs is a solution that does not change with time. The system of equations

(3.1) has two equilibria. These points are the disease-free equilibrium where i = 0 and the

endemic equilibrium where i �= 0.

We set ds

dt
and di

dt
equal to zero and solve for s and i. An expression for r can be calcu-

lated from s and i since we know that s + i + r = 1.

Setting di

dt
= 0 we obtain

βcis− γi− µi = 0,

i(βcs− γ − µ) = 0
(3.2)

There are two possible solutions:
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i = 0 or s = γ+µ

βc
= 1

R0

where R0 is the Basic Reproductive Number, which is defined as the expected number

of secondary infections caused by a single infectious individual in an entirely susceptible

population.

• for i = 0,

from ds

dt
in equation (3.1)

µ(1− v)− βc(0)s− µs = 0,

s =
µ(1− v)

µ

s = 1− v

This solution gives the Disease-Free Equilibrium:

(s, i) = (1− v, 0) (3.3)

• for s = γ+µ

βc
= 1

R0
,

from ds

dt
in equation (3.1)

µ(1− v)− βci(
1

R0
)− µ(

1

R0
) = 0,

−βci(
1

R0
) = µ(1− v)− µ(

1

R0
),

i = R0
µ(1− v)

βc
− µ

βc
,

=
µ(1− v)

γ + µ
− µ

βc
,

=
µ

γ + µ
− µv

γ + µ
− µ

βc
,
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This solution gives the following Endemic Equilibrium:

(s, i) = (
γ + µ

βc
,

µ

γ + µ
− µv

γ + µ
− µ

βc
) (3.4)

3.5.1 Stability Analysis of the Disease-Free Equilibrium

Having found a solution to the model, a stability analysis can be carried out to test whether

small changes in the defined ODE conditions such as parameter values or initial conditions

have a large effect on the model solution. In general, if small changes to ODE conditions

have only a small effect on the model solution, we conclude that the solution is stable.

To carry out a stability analysis of the disease-free equilibrium, the system of ODEs (3.1)

must be linearised at (s, i) = (1 − v , 0) by forming the Jacobian matrix. The stability

of typical equilibria of ODEs is determined by the sign of the real part of the eigenvalues

of the Jacobian matrix. These eigenvalues are often referred to as the eigenvalues of the

equilibrium. In order to determine stability we must re-define the system of ODEs (3.1) as

f(s, i) = µ(1− v)− βcis− µs

g(s, i) = βcis− γi− µi (3.5)

The Jacobian of f and g with respect to s and i is given by the following first-order

partial derivatives:
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J =




∂f

∂s

∂f

∂i

∂g

∂s

∂g

∂i





J =



 −βci− µ −βcs

βci βcs− γ − µ





J0 at the disease free equilibrium (s, i) = (1− v , 0) is

J0 =



 −µ −βc(1− v)

0 βc(1− v)− γ − µ





This is an upper triangular matrix, which means that all entries below the main diagonal

are zero. The eigenvalues of an upper triangular matrix are the diagonal entries. Therefore

the eigenvalues are:

λ1 = −µ , λ2 = βc(1− v)− γ − µ.

λ2 has the largest magnitude, we call this the dominant eigenvalue.

An equilibrium is asymptotically stable if all eigenvalues have negative real parts (Braun,

1975).

From the Jacobian, we can see that λ1 < 0,
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The second eigenvalue, λ2, is less than zero under the following conditions:

λ2 < 0 when

βc(1− v)− γ − µ < 0

βc(1− v) < γ + µ

1− v <
γ + µ

βc

−v < −1 +
1

R0

v > 1− 1

R0

or equivalently λ2 < 0 when

βcs− γ − µ < 0

βcs < γ + µ

s <
γ + µ

βc

s <
1

R0

where s = 1− v

These results can be interpreted as saying that the disease free equilibrium is stable

when the vaccination rate v is greater than 1− 1
R0

. Disease cannot invade the population

when s <
1

R0
.

3.5.2 Stability Analysis of the Endemic Equilibrium

To carry out a stability analysis of the endemic equilibrium, the Jacobian matrix at the

endemic equilibrium point must be constructed. As in section 3.5.1, we re-define the system
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of ODEs from equation (3.1) as

f(s, i) = µ(1− v)− βcis− µs

g(s, i) = βcis− γi− µi (3.5)

The Jacobian of f and g with respect to s and i is given by the following first-order

partial derivatives:

J =




∂f

∂s

∂f

∂i

∂g

∂s

∂g

∂i





J =



 −βci− µ −βcs

βci βcs− γ − µ





JE at the endemic equilibrium (s, i) = (γ+µ

βc
,

µ

γ+µ
− µv

γ+µ
− µ

βc
) is

JE =



 −βc( µ

γ+µ
− µv

γ+µ
− µ

βc
)− µ −βc(γ+µ

βc
)

βc( µ

γ+µ
− µv

γ+µ
− µ

βc
) βc(γ+µ

βc
)− γ − µ





=



 βcµ( v

γ+µ
− 1

γ+µ
) −γ − µ

µ(−βcv+βc

γ+µ
− 1) 0
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The eigenvalues of the Jacobian matrix can be found by solving for λ in the following

equation, known as the characteristic equation for JE .

(βcµ(
v

γ + µ
− 1

γ + µ
)− λ)(0− λ)− (−γ − µ)(µ(

−βcv + βc

γ + µ
− 1)) = 0

λ
2 − βcµ(v − 1)

γ + µ
λ +

(1− v)(γβcµ + βcµ
2)

γ + µ
− µ(γ + µ) = 0

The solution of the characteristic equation was found using the standard formula

for solving quadratic equations. The complexity of the solution does not allow any

simple conclusion to be drawn on the qualitative significance of the stability of the

endemic equilibrium.

We have

λ1,2 =
βcµ(v − 1)

γ + µ
±

�
(βcµ(v−1)

γ+µ
)2 − 4( (1−v)(γβcµ+βcµ2)

γ+µ
− µ(γ + µ))

2

3.6 Natural History Model with Heterogeneity

The model presented in equation (3.1) is a general, unstratified SIR model for endemic

disease with vaccination. This model makes the assumption that the entire population
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mixes homogeneously. This simplification permitted the detailed exploration of the

dynamics of the equilibria of the system, which is applicable to a more complex,

stratified model, but is easier to interpret through an unstructured model such as the

one presented in equation (3.1).

In order to assess the impact that a vaccination programme will have on the endemic

prevalence of a population, it is appropriate to initially analyse a natural history

model. In chapters 4 and 5, the model presented in equation (3.1) will be developed

to include host heterogeneity. The model will initially introduce two genders, and

will be further developed to include heterogeneity in sexual mixing. In these next

two chapters, the vaccination parameter included in equation (3.1) will be set a value

of zero, representing the case where nobody in the population is vaccinated. This

scenario is the natural history of infection.

3.7 Conclusion

This chapter detailed the analytical analysis of a simple unstructured model for a

general endemic disease such as HPV. The model parameters were introduced and

defined along with the basic assumptions of the model. The birth/removal rate µ

and recovery rate γ initially introduced in chapter 2 were re-introduced in this chap-

ter along with a newly defined transmission parameter β, which is accompanied by

the parameter c the partner change rate. The vaccination parameter v is also intro-

duced here. These parameter definitions carry through to the more complex models

presented in subsequent chapters. The model presented here assumes a homoge-

neously mixing population and does not differentiate between genders. This limiting

assumption will be explored in chapters 4 and 5. This chapter takes an initial step to

achieving the first objective outlined in the thesis summary. A suitable ODE model

for HPV in Ireland will continue to be developed in subsequent chapters.
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Given that the model in this chapter was unstructured, it was possible to solve the

system of equations analytically. Solutions for the disease free and endemic equilibria

were found, along with the Jacobian matrices and eigenvalues.

In Chapter 4, model (3.1) is developed in two stages and analysed numerically to

simulate the natural history endemic prevalence of infection. A vaccination parameter

will be re-introduced into the model in chapter 6.
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Chapter 4

Analysis of a Simple Homogeneous

Model and the Introduction of

Heterogeneity and Model

Calibration

4.1 Introduction

This chapter provides a numerical analysis of the simple model presented in chapter

3 using Irish specific data. Analytical solutions of a simple SIR model for HPV were

explored in section 3.5. As previously stated, analytical solutions of ODE models are

generally very complicated and provide little insight into disease dynamics and popu-

lation behaviour. These trends are explored through numerical analyses of the model.

This chapter details the analysis of two models. The first model (4.6) introduces

the numerical analysis of the simple homogeneous model presented in chapter 3 equa-

tion (3.1) and demonstrates how the simplicity of this model leads to an error in

finding a numerical estimate for β. The second model, introduced in section 4.3, in-

troduces heterogeneity in sexual behaviour, and following on from the lesson learned
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in model (4.6) concerning the calibration of β, a sensitivity analysis is carried out

on the model parameters related to R0. This analysis was carried out to overcome

validity issues surrounding the parameter values, and to discover which parameters

have the greatest effect on the simulated population prevalence, and hence, which

parameters require the greatest level of precision in estimation.

The following section introduces the model equations and key assumptions. The

data sources for each model parameter and the rationale behind the assumptions

relating to the selection of model inputs are explored.

4.2 Simple Homogeneous Model

The following sections describes the model equations and assumptions, the definitions

and initial estimates for the epidemiological parameters and the process of calibrating

the model around the parameter β.

4.2.1 General Model Equations

The general model is given by,
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dsk

dt
= µnk − βkckskik� − µsk,

dik

dt
= βkckskik� − γik − µik,

drk

dt
= γik − µrk,

(4.1)

where the subscript k represents gender, k = f or m representing females and males

respectively. The subscript k
� represents the opposite gender, for example when k = f ,

k
� = m.

nk is the proportion of the population in group k and nk + nk� = n = 1.

sk is the proportion of the population who are susceptible and in group k.

ik is the proportion of the population who are infectious and in group k.

rk is the proportion of the population who are immune/recovered and in group k.

The total population can be given by n where:

sk + ik + rk = nk

sk� + ik� + rk� = nk�

nk + nk� = 1 = n

(4.2)

The model parameters are defined as follows:

µ: The birth/removal rate. This parameter consists of two components, the natural

death rate in the population and the rate at which individuals leave the sexually

active population. µ is assumed to be constant in the population and universal for

all individuals. The birth rate is set equal to the removal rate to maintain a constant
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population size. This is a standard assumption in deterministic mathematical mod-

elling. This parameter µ is not gender specific.

γ: The recovery rate from HPV infection. The average rate of recovery is calculated

as 1/duration of infection, where time is measured in years. For simplicity, the dura-

tion of infection is assumed to be equal for both genders.

β: The probability of transmission of HPV 16 and/or 18 per partnership. The term

βf represents the probability of transmission per partnership from males to females,

while βm is the probability of transmission per partnership from females to males.

c: The average number of sexual partners per year.

4.2.2 Full System of Equations

The equations for the female population are:

dsf

dt
= µnf − βfcfsf im − µsf ,

dif

dt
= βfcfsf im − γif − µif ,

drf

dt
= γif − µrf ,

(4.3)

The equations for the male population are:
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dsm

dt
= µnm − βmcmsmif − µsm,

dim

dt
= βmcmsmif − γim − µim,

drm

dt
= γim − µrm,

(4.4)

The total population can be given by,

sf + if + rf = nf

sm + im + rm = nm

nf + nm = 1

(4.5)

The model simulates an open, constant population. That is, individuals are al-

lowed to enter and leave the model through birth, death or recovery/immunity from

infection. Births are assumed to be equal to the death/removal rate such that the

population remains constant.

This is a simple model that does not take into account an individual’s age or sex-

ual activity class and the impact these sub-divisions have on parameter values in the

model. Although this is a simple model, many insights can be gained from studying

its dynamics, which will prove useful in the more complex model presented in chapter

5.

In the following section, some simplifying assumptions are applied to model 4.1

to facilitate numerical analysis. Based on these assumptions, no distinction is made

between sexes in terms of sexual dynamics, infection transmission, or population

distribution. This is a limitation of the model, but will facilitate closer investigation
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of infection dynamics in the population. Gender differences will be re-introduced

in chapter 5. This renders the subscript k unnecessary and results in a new set of

equations (4.6).

Specifically, the following simplifying assumptions are applied to model (4.1):

• All individuals in the population are assumed equal in terms of sexual behaviour,

that is, we assume that the partner change rate is equal for males and females,

ck = ck� , or cf = cm. These parameters are replaced by the global parameter c.

• Virulence of HPV is assumed to be independent of gender allowing for the

relation βf = βm. The transmission parameter for HPV is simply β.

• In terms of population distribution, the proportion of males is set equal to the

proportion of females, that is nf = nm, which is replaced by n.

Similarly, sf = sm, if = im and rf = rm. These variables are replaced by s, i

and r, respectively.

These assumptions reduce the system from two groups and six equations (equations

(4.4) and (4.5)), to one group with just three equations given by:

ds

dt
= µ− βcsi− µs,

di

dt
= βcsi− γi− µi,

dr

dt
= γi− µr,

(4.6)

The total population for the model can now be given by equation (4.7) and compared

to equation (4.5).
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s + i + r = n = 1 (4.7)

4.2.3 Epidemiological Parameters

Prevalence rates for HPV are from the ARTISTIC study (Kitchener et al. 2006), a

randomised trial of HPV testing carried out in the UK and published in 2009. Al-

though Irish specific data would have been preferable for the model, it was decided

that the sample size used in Ireland’s HPV prevalence study published by Keegan et

al. (2007) was too small and not statistically reliable, as noted by Usher et al. (2008).

It is worth noting however, that the results from the Keegan et al. study were quite

similar to the ARTISTIC trial, providing some confidence in the assumption that the

Irish and UK populations are comparable in terms of prevalence.

The epidemiological parameters inputted to the model are as follows:

µ: The removal rate/birth rate. Individuals enter the model at age 18 and are

removed at age 64, which coincides with the study age range of Layte et al. (2006).

This is a limitation of the model since it assumes that all individuals are sexually

inactive until age 18. According to the ISSHR (Layte et al. 2006) 21% of males

and 12% of females first experienced vaginal sex before the age of 17. However there

is currently no detailed information on the average annual partner change rates for

individuals who are sexually active before age 18. Also, the age range of the study

populations for the two HPV prevalence studies comparable to the Irish population

does not include those under the age of 18, hence we do not know the prevalence of

infection in this age group, or have detailed information of their sexual behaviour.

Therefore, rather than make an unfounded assumption about the average annual
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partner change rate for the fraction of individuals under the age of 18 who are sexu-

ally active, the model presented here, and those in subsequent chapters assume that

all individuals are sexually inactive until age 18, and have at least one partner per

year from the age of 18. The study by Layte et al. (2006) provided the data for

the parameter c and also for the proportions of the population in each risk group.

Individuals remain in the sexually active population for 40 years (Elbasha, Galvani

2005). So, µ = 1
46 + 1

40 = 0.047. The birth rate is set equal to the removal rate to

maintain a constant population size.

As mentioned in chapter 1, there are over 120 strains of HPV, and about 15 are

known to cause cervical cancer. Of these 15 strains, just two (HPV 16 and 18) are the

causative agents of approximately 70% of cervical cancers. To limit complexity, only

these two strains are included in the model and are treated as one infection. Individu-

als can be infected with either, or both strains. The prevalence rate published by the

ARTISTIC trial for HPV 16 and/or 18 in the female population is 4.4% (Kitchener

et al. 2006). This study estimated prevalence of infection in females. Large scale

studies on HPV prevalence such as the ARTISTIC trial are generally confined to the

female population. For this reason, and to limit model complexity, the prevalence of

infection in males is assumed to equal 4.4%.

γ: The recovery rate from HPV infection. The prevalence of HPV 16 is approximately

two and a half times that of HPV 18 (Kitchener et al. 2006). Since this model limits

complexity by not differentiating between these two strains, the published rate of

recovery for the more prevalent HPV 16 was used in the model to represent recovery

from HPV 16 and/or 18. The average duration of HPV 16 infection is 20 months

(Insinga et al., 2010). The average rate of recovery is calculated as 1/duration of

infection, therefore γ = 1/1.667 = 0.599 given that time is measured in years.

c: The average number of sexual partners per year. International comparisons show

that Irish people have fewer partners on average, over all age groups than people
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in other countries (Layte et al. 2006). The average annual partner change rate is

approximately 1.2 (Layte et al. 2006).

4.2.4 Threshold Estimates and Calibration of β

An analytical solution for the endemic equilibrium for the model presented in equa-

tion (3.1) was found in section 3.5.

We had,

(se, ie) = (γ+µ

βc
, ( µ

γ+µ
− µv

γ+µ
− µ

βc
))

Following Hethcote’s seminal work (Hethcote 2000), the contact number, σ, in an

infectious disease model is defined as the average number of adequate contacts of

a typical infective individual during the infectious period, as previously defined in

section 2.5. In an endemic HPV model, σ = R0 = βc

γ+µ
throughout time since there is

no change in the infectivity of the virus after the initial invasion to the population,

as previously discussed in section 2.5. The replacement number, R, is the actual

number of secondary cases from a typical infective. At the endemic equilibrium,

R = σse = ( βc

γ+µ
)(γ+µ

βc
) = 1. This is an intuitive result since, if R were greater than

1, infection would increase, if R = 1, the population remains at a stable equilibrium.

The parameter R0 is the threshold value for the model. If R0 < 1, the model

approaches the disease free equilibrium, as shown in Figure 2.5. If R0 > 1, the model

approaches the endemic equilibrium, as shown in Figure 2.6. Since HPV is a sexually

transmitted virus, transmission is based on β and c, as discussed in section 2.5.
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Model (4.6) was initially solved in Berkeley Madonna (Macey et al. 2000) using the

parameter values defined above. Appendix A outlines the method used by Berkeley

Madonna to solve the system of equations. All parameter values were set as described

above. In simulating the model it was found that varying the initial conditions for s,

i and r had no effect on the model solution. All simulations where i was not equal

to zero resulted in the solution reaching the same endemic equilibrium. Therefore,

it was unnecessary to define an initial condition. The model was calibrated around

the unknown transmission parameter β. The process of model calibration involved

simulating the model for a range of 30 values for the input parameter β, while all

other parameters were held constant. A parameter plot of these simulations was pro-

duced which showed the output result, the prevalence of infection, plotted against its

associated estimate of β. The aim of this process was to find a value for β that would

produce the known prevalence of infection of 4.4% when all other parameters were

held at the values described above. Figure 4.1 depicts this process and was produced

using the Parameter Plot feature in Berkeley Madonna, which plots the final value

of the selected variable, β as a function of the prevalence, i. The plot shows how the

prevalence of infection, i, on the y-axis increases as β increases.
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Figure 4.1: Beta parameter plot
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The value for β which matches the prevalence rate of 4.4% was approximately 1.5.

This value is considerably higher than those published in the literature, which set β

at a value of 0.7 - 0.8 (Hughes et al. 2002). This value of β = 1.5 is also illogical

since it represents the probability of transmission of infection per partnership, and

the maximum possible value for a probability is 1. The effect we are seeing here

is due to the fact that the prevalence of infection is determined by the previously

defined Basic Reproductive Number for the infection, R0, given by βc

γ+µ
. The model

is forced to produce a known prevalence rate for the population and R0 is the key

parameter in producing this result. The unusually high value for β produced by the

model calibration is brought about as a result of the necessity to balance R0 with the

infection prevalence. All parameters making up R0 were held constant in the calibra-

tion, except for β, so this variable β contains the short-fall of the other parameters in

the equation, namely c, µ and γ in keeping R0 at a value which produces the known

prevalence of infection. So, reducing β to a logical value less than 1, for example

0.8, would require the other parameters to change, either c must in turn increase,

or the denominator of R0 must decrease by decreasing either parameters γ or µ, or

an equivalent change in a combination of two or all three of these parameters that

produces a value for R0 that results in the known prevalence of infection.

It is also likely that this model is too simple to accurately estimate the epidemiolog-

ical parameters for this infection, and so a more complex, risk-structured model is

more appropriate. This idea will be explored in the following section, 4.3.

The value of R0 may change as the parameter values are altered to produce the preva-

lence value, since the parameters are multiplied by prevalence and the proportion of

susceptibles, given by s and i within the model equations, thus increasing a parameter

within the equation for R0 results in a change in the prevalence of infection, i, and this

change is not proportional for the parameters making up R0. Further investigation of

the possible values for R0 and its associated parameters is disregarded for this simple

model, further analysis is carried out in subsequent sections on more complex models.

The value for R0 is typically higher in an SIR model than it would be in an SIS
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(Susceptible - Infectious - Susceptible) model for the same infection dynamics. This

is due to the fact that some of the contacts made by an infectious individual will

be essentially “wasted” in terms of the spread of infection, on individuals who are

already infectious or those who are immune (Garnett et al. 2006). This reduces R0 to

an effective reproductive rate, which only considers contacts with susceptible individ-

uals. The effective reproductive rate is given by Rt = R0x, where x is the proportion

of the population who are susceptible (Garnett et al. 2006). Thus, R0 will be higher

in an SIR model than if the same infection was described by an SIS model, to account

for the proportion of contacts “wasted” on immune individuals. This situation arises

in constructing a model for HPV since there is uncertainty as to whether infection

with HPV leads to conferred immunity or not.

Increased variance in risk between groups within a model population can also

allow for a higher value of R0 (Garnett et al. 2006) since, as will be shown in section

4.3.5 the basic reproductive number in a heterogeneous population model combines

the basic reproductive numbers for each group. The following section develops model

(4.6) by introducing two risk groups based on annual partner change rates.

4.3 Risk Heterogeneity in Sexual Behaviour

Results from the ISSHR report (Layte et al. 2006) show that over a period of time,

most people have relatively low numbers of sexual partners, but a small fraction have

much higher numbers of partners. This heterogeneity of sexual behaviour has been

well documented in the literature, most notably by Hethcote and Yorke (1984) who

introduced the concept of a small “core group” of individuals in the sexually active

population. This core group have a higher average annual partner change rate than

the population average. This variation in sexual behaviour within the population
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may have a profound effect on STI spread and control as demonstrated by Hethcote

and Yorke (1984) in their model for the spread of gonorrhea. Though the core group

only represents a small proportion of the population, their high partner change rate

can contribute a disproportionate amount to the spread of infection when compared

to the non-core group who have fewer partners per unit time.

Model (4.6) was adapted to demonstrate heterogeneous sexual behaviour, giving

a new system of equations (4.8).

The population is split into two groups based on the frequency at which individuals

change their partners. Mixing between groups is assumed to be completely propor-

tionate for now (partners are chosen with a probability that is proportional to the

number of partnerships that they generate). Low risk individuals can infect/become

infected by other low risk individuals or by high risk individuals. A high partner

change rate is associated with high risk of infection. The adapted model equations

are given by:

dsj

dt
= µnj − λjsj − µsj,

dij

dt
= λjsj − γij − µij,

drj

dt
= γij − µrj,

(4.8)

where j can be L or H representing Low and High partner change rates respectively.

nj is the proportion of the population in group j and
�

nj = 1.

sj is the proportion of the population who are susceptible and in group j.

ij is the proportion of the population who are infectious and in group j.

rj is the proportion of the population who are immune and in group j.

The full set of equations for the above system of equations (4.8) is as follows:
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Low Risk Group:

dsL

dt
= µnL − λLsL − µsL,

diL

dt
= λLsL − γiL − µiL,

drL

dt
= γiL − µrL,

(4.8a)

λL = cL β p

p = gL × iL + gH × iH

High Risk Group:

dsH

dt
= µnH − λHsH − µsH ,

diH

dt
= λHsH − γiH − µiH ,

drH

dt
= γiH − µrH ,

(4.8b)

λH = cH β p

p = gL × iL + gH × iH

The force of infection is given by λj = cj β p. The parameter p is the probability

that a chosen partner is infectious and is calculated as the sum of the probabilities
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that a partner chosen according to proportionate mixing is in either the low activity

or high activity group (Vynnycky and White, 2010). This is given by:

p = gL × iL + gH × iH

Here, gL and gH are the probabilities that a partner chosen according to proportionate

mixing is in either the low activity or high activity group respectively (Vynnycky and

White, 2010) and iL and iH are defined as ij above.

The probabilities gL and gH are given by:

gL =
cL × nL

cL × nL + cH × nH

, gH =
cH × nH

cL × nL + cH × nH

(4.9)

Model Assumptions:

• The model simulates an open, continuous population

• As in model (4.6), the model shown in equations (4.8a and 4.8b) makes the

simplifying assumption that there is no differences in sexual behaviour between

genders. Therefore the parameters nj, sj, ij, rj and cj are assumed to be equal

for males and females. Hence, both genders will have the same infection dynam-

ics and it is only necessary to model one gender.

• Mixing is assumed to be entirely proportionate.

• It is assumed that all individuals have at least one sexual partner in their lifetime.

This assumption is a simplification of the model. However, data published in
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the ISSHR (Layte et al. 2006 - appendix 5, table 5.1) shows that 93.7% of

males and 94.2% of females have at least one sexual partner in their lifetime.

Therefore, although this is a simplifying assumption, it is close in representing

the model population.

4.3.1 Parameter Input Values

Stratifying the population by risk group requires more detailed data on sexual be-

haviour. Table 4.1 contains data published in the ISSHR (Layte et al. 2006) which

was used to calculate parameter values for the distribution of partnerships formed in

the model population.

Partners/year % Males % Females %Total

0 15.4 19.7 17.5

1 70.3 74.9 72.6

2 6.2 3.3 4.8

3-4 5.1 1.5 3.3

5-9 2.2 0.5 1.4

10+ 0.8 0.1 0.4

Mean 1.3 0.9 1.1

Table 4.1: Number of Partners per year, by gender. Data taken from Appendix Table 5.3,

page 330 in the ISSHR Report (Layte et al. 2006).

Data in Table 4.1 shows the gender specific distribution of the number of partners

in one year taken from the ISSHR report (Layte et al. 2006).
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Based on the data displayed in Table 4.1, the population was separated as follows:

Low Activity: The low activity group consists of those individuals having the popu-

lation mean number of partners in one year, or less. The percentage of the population

in this group is the cumulative proportions of those with zero or one partners in the

last year. We have, 17.5 + 72.6 = 90.1%. The average annual partner change rate for

this low activity group is taken as the population mean number of partners, which

gives c = 1.1.

This calculation is based on the final assumption defined in section 4.3, that all indi-

viduals have at least one partner in their lifetime. This means that although 17.5%

of the study population had no partners in the past year, it is assumed that they

have at least one partner in their lifetime. This is a reasonable assumption given that

the ISSHR study reports that 94% of participants had at least one partner in their

lifetime (Layte et al. 2006). This figure would also be expected to increase as the

younger participants get older.

High Activity: The high activity group consists of the cumulative proportions of

individuals having an annual partner change rate that is greater than the population

average. That is, the proportion of the population having two or more partners per

annum. The proportion of the population is calculated as 4.8 + 3.3 + 1.4 + 0.4 =

9.9% . The average annual partner change rate for the high activity group is taken

as the median number of partners represented in this group, which is six, c = 6.

This median value is based on the assumption that the max partner change rate

per annum in the population is ten. Table 4.1 shows that the proportions of males

and females having ten or more partners in one year are quite low, 0.8% and 0.1%

respectively. In calculating c for the high activity group, it was assumed that any

outliers in the data, that is, a small proportion of individuals having a comparatively

high partner change rate to the rest of the population, had a minimal effect on the
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population mean and could therefore be neglected from calculations.

Using these parameters, we can now calculate the previously defined probabilities gL

and gH from equation (4.9).

gL =
1.1× 0.901

1.1× 0.901 + 6× 0.099
= 0.625, gH =

6× 0.099

1.1× 0.901 + 6× 0.099
= 0.375

(4.10)

4.3.2 Effective Contact Rate, ĉ

In contrast to the homogeneous model (4.6) where the partner change rate, c, was

simply the mean number of partners per unit time, this heterogeneous model incor-

porates a measure for the variance of c in the population. The appropriately adjusted

effective partner change rate, developed by Anderson and May in 1979 (Anderson

and May 1991, Vynnycky and White 2010) is given by

ĉ = m +
σ

2

m
(4.11)

where m is the mean number of contacts per unit time and σ
2, the variance of sexual

behaviour is

σ
2 =

�
ωj(mj − µc)2

Vj

(4.12)
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where µc in this case is the population average contact rate per unit time, ωj is the

proportion of the population in group j, and Vi = 1 for normalised weights. For

normalised weights the weighted means sum to one, that is,
�

n

j=1 ωj = 1.

Estimating c as simply the mean number of partners in a group can lead to an

underestimate of R0 if variance is high since R0 = βc

γ+µ
. It follows from the definition

of the basic reproductive number R0, that the smaller this value is, the easier it will

be to eradicate the disease.

Using the above formulae, 4.11 and 4.12, the variance in sexual behaviour in the

population, σ
2 was calculated as 2.39 and the appropriately adjusted effective partner

change rate ĉ = 1.1 + 2.39/1.1 = 3.27

4.3.3 Estimating the Transmission Parameter, β

The process of model calibration, as described in section 4.2.4 was repeated for the

heterogeneous model to obtain an estimate for β which corresponds to a population

prevalence of infection of 4.4%. The parameter plot in Figure 4.2 shows that the

optimum value for β is 1.17. This value is lower than the estimate obtained in section

4.2.4, and is considerably higher than the previously published estimates of 0.7 - 0.8

for this transmission parameter (Hughes et al. 2002). Also, as was the case in section

4.2.4, a value > 1 for the parameter β is illogical since β represents a probability,

which can never be > 1. The model was simulated using this β estimate and all other

parameter values previously defined in sections 4.2 and 4.3.

This value for β is invalid as previously discussed in section 4.2.4, since the max-

imum possible value for probability is 1. Therefore, previously defined parameter
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Figure 4.2: Beta Calibration

values which make up the basic reproductive number R0 must be re-evaluated to al-

low for a reasonable value for β which will match the known prevalence of infection .

As discussed in section 4.2.4, the transmission parameter β is closely related to

R0, the basic reproductive rate. R0 is sensitive to changes in the rate of transmission

of infection, duration of infectiousness, the removal rate and also the partner change

rate. Given that the model is calibrated around the known population prevalence

of infection of 4.4%, changing any of the parameters contained in the equation for

R0 must be compensated for by the other parameters to keep the population preva-

lence of infection at the same value. For example increasing the variance in sexual

behaviour between the risk groups such that cH is higher will result in an increase

in the effective partner change rate, ĉ since we saw in equation (4.11) that ĉ takes

account of the variance in partner change rates among risk groups. In order to keep

the population prevalence at the same level, either β must be decreased, or one or

both of γ and µ must increase.

Again, as was seen in the previous model in section 4.2.4, setting the duration

of infection, contact rate and removal rate as constants and calibrating the model

94



around the known prevalence of infection (4.4%) has led to an invalid result for the

probability of transmission, β = 1.17.

4.3.4 Sensitivity Analysis

In order to decide which of the previously defined parameters should be adjusted in

order to rectify the invalid result for β, a sensitivity analysis was carried out on the

model. A sensitivity analysis evaluates how the variation or uncertainty in the output

of a model can be attributed to variations in model inputs. This method involves

systematically changing variables and evaluating the effects of these changes on the

model output. The model was tested for its sensitivity to the parameters β, cL, cH , γ

and µ. A detailed example of the method for calculating the model sensitivity to

changes in the parameter µ is given as follows:

• The model was run in Berkeley Madonna with all parameters set as described

above, specifically µ = 0.047. The prevalence produced by this parameter set is

referred to as Prev1(t).

• The parameter µ is amended slightly by adding an amount ∆ which equals

0.001 × µ to test the sensitivity of the model output to a small adjustment in

the variable µ.

• The model was run again using the amended value for µ, the results of this

simulation are referred to as Prev2(t).

• The sensitivity Sen(t) is calculated using the equation

Sen(t) =
Prev2(t)− Prev1(t)

∆
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Parameter Sen(t) (+ 0.1%)

µ 0.8400

β 0.0197

γ -0.1043

cH 3.38e
−4

cL 0.0191

Table 4.2: Sensitivity Analysis. These values for Sen(t) show the change in equilibrium

prevalence per year divided by 0.1% of the value of the relevant parameter.

The value Sen(t) represents the change in the equilibrium prevalence rate divided

by the change in the value of the relevant parameter. Table 4.2 shows the result of

the sensitivity analysis for the previously mentioned parameters.

The results in Table 4.2 show the sensitivity of the model output to a 0.1% increase

in each parameter. For example, increasing µ by 0.1% increases prevalence by 0.8400.

The sensitivity analysis revealed that the model is most sensitive to changes in the

removal rate, µ. The model was re-simulated using appropriately adjusted values for

the parameters µ, β and γ, based on the results of the sensitivity analysis. The value

for β was reduced to 0.8, matching the estimate for the probability of transmission

from males to females used by Hughes et al. (2002). The parameters µ and γ were also

adjusted to make up for the reduction in β to achieve the end result of a prevalence

of infection of 4.4%. As described in section 4.2.1, µ is the product of two rates, the

death rate and the duration in the sexually active and mixing population, that is, the

number of years for which the parameter c > 0. The average number of years in the

sexually active and mixing population is not a well defined variable, and an estimate

for this variable is not available within the sexual mixing data published by Layte et

al. (2006) used to populate the model. It is likely that the average length of time

spent in the sexually active and mixing population is less than the previous estimate

of 40 years, and so it was decided to allow this rate to be reduced from 40 years
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Parameter Previous Estimate New Estimate

µ 0.045 0.058

β 1.3 0.8

γ 0.599 0.58

cH 6 6

cL 1.1 1.1

Table 4.3: Adjusted Parameter Set

to 27 years. The parameter γ was adjusted by a small amount, since this estimate

was not well defined given that this value represents the duration of infectiousness

for two separate strains of HPV, HPV 16 and 18 as discussed in section 4.2.3. The

initial estimate of 20 months for the duration of infectiousness was taken from the

published duration of infection for HPV 16 infection by Insinga et al. (2010). This

value was adjusted following the sensitivity analysis to a value of 20.6 months, which

is still in line with the published value which had a 95% confidence interval of 18.4 -

22 months. The new set of parameter values are given in Table 4.3. The model was

run in Berkeley Madonna using the new parameter values and successfully predicts a

prevalence of 4.4%.

4.3.5 Basic Reproductive Number, R0

Following on from the sensitivity analysis on the model and subsequent adjustment

of the parameters related to the basic reproductive number R0 = βc

γ+µ
, it is possible

to calculate R0 for this simple heterogeneous mixing model. The Basic Reproductive

Number, R0, for the system can be calculated using the following formula:

R0 = gHRH + gLRL

where RH is the number of secondary infections caused in a totally susceptible pop-
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ulation by an infected high-activity individual and RL is the number of secondary

infections caused in a totally susceptible population by an infected low-activity indi-

vidual. These parameters are given by:

RH =
βcH

γ + µ
, RL =

βcL

γ + µ

So, using the new parameter estimates from Table 4.3 we have

RH = 0.8×6
0.58+0.058 = 7.52 and RL = 0.8×1.1

0.58+0.058 = 1.38

Hence, R0 is calculated as

R0 = 0.375× 7.52 + 0.625× 1.38 = 3.68

The correct interpretation of this Basic Reproductive Number is, the average number

of secondary infections caused by a single infective individual in an entirely susceptible

population is 3.68. This is an important epidemiological parameter as it gives an

indication as to how rapidly an infection can spread in a population. The effects of

heterogeneity on R0 will be explored in the following chapter.
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4.4 Conclusion

This chapter explored the limitations of a simple homogeneous model for HPV which

led to the development of a heterogeneous model with proportionate mixing. This

model was simulated and calibrated for the parameter β, and a sensitivity analysis

was carried out on the model parameters. Although the introduction of risk structure

increases the validity of the model in representing a real population, the assumptions

made are still over-simplified and a more complex model is required before any con-

clusions about the natural history of HPV infection in the Irish population can be

made. This chapter introduced gender structure to model dynamics. Parameters c

and n were estimated using gender specific values taken from Layte et al. (2006).

Estimates for the prevalence of infection were taken from the ARTISTIC trial (Kitch-

ener et al. 2006). This is a study carried out in the UK. Statistically reliable Irish

specific data was not available, but the UK study population was determined to be

comparable to the Irish sexually active population as noted by Usher et al. (2008).

Large scale studies on HPV prevalence have so far focussed on females. Hence no

estimate for male prevalence currently exists. For this reason, this model makes the

limiting assumption that prevalence of HPV in males is equal to that of females. In

the absence of relevant data, assuming that prevalence is equal for both genders is

more appropriate than making an unfounded estimate for male prevalence. A further

limiting assumption in the model is the grouping of HPV 16/18. The model considers

these strains as one infection, thus an assumption must be made about the recovery

rate of infection. Given that HPV 16 is much more prevalent than HPV 18, the re-

covery rate was set to equal the published rate for HPV 16 (Insinga et al. 2010). This

data is difficult to collect and there is considerable uncertainty around the true value

for the rate of recovery from HPV, thus, although grouping HPV 16 and 18 is a limit-

ing factor for the model, a consistent estimate for the parameter is currently unknown.

This chapter further developed the ODE model for HPV in Ireland as outlined

in the first objective in the thesis summary. Here, the next four objectives were
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also addressed and will be looked at in a more complex model in the next chapter.

Specifically, the significant effects of β on the spread of HPV and numerical estimates

of model parameters were investigated. The effects of sexual risk groups within the

population were explored through model simulations. Calibration techniques and

sensitivity analyses were used to strengthen model validity and the basic reproduc-

tive number for the natural history model was calculated. These objectives will be

repeated in chapter 5 for a more complex model structure. The model presented here

is still relatively simple in structure. For this reason, no application of the simulation

results will be made to real-world infection dynamics. These conclusions will be drawn

following the analysis of the complex model in chapter 5. In the next chapter, model

(4.8) is developed to include a more complex gender structure, as well as exploring

various sexual mixing patterns which will strengthen the validity of the model and

allow for a more detailed exploration of HPV dynamics.
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Chapter 5

Analysis of a Two Sex,

Risk-Structured Model with

Various Patterns of Sexual Mixing

and Calculation of R0

5.1 Introduction

Chapter 4 introduced a heterogeneous model with a high and low risk group which

assumed proportionate mixing. In this chapter model (4.8) is developed further to

analyse the effects of various possible sexual mixing patterns in the population. The

model is also stratified by gender, allowing for different values for β between males

and females.
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5.2 Modelling sexual mixing patterns

Generally, the transmission of an infection can be classified as being either “density

dependent” or “frequency dependent” according to the relation between the number

of cases of infection and population size. Density dependent transmission or “pseudo

mass action” refers to a situation where an increase in population size results in a lin-

ear increase in the number of cases of infection, for example measles, influenza or many

respiratory infections. The force of infection is given by the equation λ(t) = βI(t),

where β is the rate at which two specific individuals come into effective contact per

unit time and I(t) is the number of infectious individuals at time t.

However, in the case of a sexually transmitted infection, a sudden rise in population

size is unlikely to increase the number of sexual contacts an individual has. Thus,

transmission of infection is dependent on the frequency of contacts with infected in-

dividuals, termed “frequency dependent” transmission, or “true mass action”. The

force of infection is given by λ(t) = ce

I(t)
N(t) , where ce is the average number of individ-

uals effectively contacted by each person per unit time (Vynnycky and White 2010)

and I(t)
N(t) is the prevalence of infection at time t.

When modelling an STI, the transmission parameter is usually expressed as the prod-

uct of two components affecting transmission of infection, c and β. The specific defi-

nition of the parameters c and β depends on whether the infection is modelled at the

per-partnership or per-act level. The force of infection is written as λ(t) = cβ
I(t)
N(t)

Sexually transmitted infections are commonly modelled at the per-partnership level

where c represents the partner change rate and β is the transmission probability per-

partnership. At the per-act level, c represents coital frequency per unit time and β

is the probability of transmission per sex-act.

The following section introduces various sexual mixing matrices, which are de-

scribed by WAIFW (Who Acquires Infection From Whom) matrices.
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5.3 WAIFW Matrices

In Chapter 4, a natural history model (4.8) with two risk groups was presented. This

model assumed random or proportionate mixing between risk groups. In this chap-

ter, the appropriateness of this sexual mixing assumption is investigated through the

introduction of mixing matrices which allow various mixing patterns between the two

risk groups ranging from assortative to disassortative, which are defined below. The

influence that these mixing patterns have on endemic prevalence of infection will also

be explored.

In contrast to equation (4.6) and (4.8) this model is stratified by gender and risk

class. The term k represents gender and is either f or m representing female and

male individuals respectively, i and j represent the risk classes Low and High which

are dependent on an individual’s sexual behaviour. Patterns of sexual mixing between

the strata are described by the mixing matrix, ρkij, i and j represent the “chosen”

and “choosing” individuals respectively.

The mixing matrix is given by:

ρij =





H L

H ρHH ρHL

L ρLH ρLL





where for example, ρLH represents the proportion of the total contacts made by

high risk individuals that were with low risk individuals.

Model (4.8) assumed proportionate mixing, but this is only one possible scenario.

Mixing between strata can vary between two extremes, fully assortative mixing where

individuals mix purely with other individuals in the same risk class as themselves, or

the opposite situation where mixing is fully disassortative and individuals only mix

with individuals not in their own risk group. These two scenarios can be represented
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in matrix form as:

Assortative





H L

H 1 0

L 0 1





Disassortative





H L

H 0 1

L 1 0





This model will be simulated under the assumption of fully assortative mixing,

fully disassortative mixing and will also be simulated under the assumption of propor-

tionate mixing as in chapter 4. By the definition of proportionate mixing, individuals

randomly choose sexual partners in proportion to the number of partnerships that

the group generates.

The matrix is given by:

Proportionate





H L

H gHH gHL

L gLH gLL





where gij represents the probability that someone in group j forms a partnership

with someone in group i (Vynnycky and White, 2010).
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Given this assumption of proportionate mixing, the structure of the WAIFW ma-

trix is such that the probability of an individual forming a partnership with an indi-

vidual from either the low or high risk group is equal. Therefore gHH = gHL = gH

and gLL = gLH = gL.

Also, the sum of the probabilities in each column must equal one since a chosen

partner must be either from the high or low risk group. This is written as

�

j

gjk = 1

The matrix for proportionate mixing requires the calculation of two probabilities, gH

and gL. These probabilities are given by:

gH =
cH × nH

cH × nH + cL × nL

, gL =
cL × nL

cH × nH + cL × nL

(5.0)

As previously stated, the proportions of the population in each risk group, ni are

gender specific. Table 5.1 shows the values for the partner change rates, cki and the

proportion of the population in each gender specific risk group, nki. As in chapter 4,

data was taken from the ISSHR study (Layte et al. 2006).

Here, c = cHnH + cLnL for each gender.

Using the above information, we obtain the numerical values for the two gender

specific WAIFW matrices representing proportionate mixing in the population. They

are:
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Gender and Risk Class

Male Female

Parameter H L H L

ni : the proportion of the population in each sub-group 0.143 0.857 0.054 0.946

ci : the average annual partner change rate of each sub-group 6 1.1 6 1.1

c : the average annual partner change rate for each gender 1.8 1.4

Table 5.1: Parameter Values

Male





H L

H 0.48 0.48

L 0.52 0.52



 , Female





H L

H 0.24 0.24

L 0.76 0.76



 (5.1)

Row-wise inspection of these matrices shows that high risk partnerships account

for almost half of the total number of partnerships formed in the male population

and account for about one quarter of the total partnerships formed in the female

population. This is due to the fact that a higher proportion of males have a high

average annual partner change rate. So, although only a small proportion of the

population practise high risk sexual behaviour, for example 14.3% of males as shown

in Table 5.1, they account for almost half of the total partnerships formed in the male

population. This may have an impact on disease transmission and will be explored

in the simulation analysis.
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5.4 Model Equations and Assumptions

The heterogeneous model equations are given by:

dski

dt
= µnki − skiλki − µski,

diki

dt
= skiλki − γiki − µiki,

drki

dt
= γiki − µrki,

(5.2)

where λki = βkcki

�
n

j=1(ρkij)(
i
k�j

n
k�j

)

The full set of equations for this system are as follows:

Female, Low Risk Model

dsfL

dt
= µnfL − sfLλfL − µsfL,

difL

dt
= sfLλfL − γifL − µifL,

drfL

dt
= γifL − µrfL,

(5.2a)

where λfL = βf cfL (ρLL
imL

nmL

+ ρLH
imH

nmH

)

Female, High Risk Model

dsfH

dt
= µnfH − sfHλfH − µsfH ,

difH

dt
= sfHλfH − γifH − µifH ,

drfH

dt
= γifH − µrfH ,

(5.2b)

107



where λfH = βf cfH (ρHL
imL

nmL

+ ρHH
imH

nmH

)

Male, Low Risk Model

dsmL

dt
= µnmL − smLλmL − µsmL,

dimL

dt
= smLλmL − γimL − µimL,

drmL

dt
= γimL − µrmL,

(5.2c)

where λmL = βm cmL (ρLL

ifL

nfL

+ ρLH

ifH

nfH

)

Male, High Risk Model

dsmH

dt
= µnmH − smHλmH − µsmH ,

dimH

dt
= smHλmH − γimH − µimH ,

drmH

dt
= γimH − µrmH ,

(5.2d)

where λmH = βm cmH (ρHL

ifL

nfL

+ ρHH

ifH

nfH

)

Parameter definitions remain as previously defined in section 4.2.1 with the rele-

vant subscripts for different gender and risk group combinations. Parameter values

are as outlined in Table 5.1, all other parameter values are given below in Table 5.2:

where βm is the probability of transmission per partnership from females to males,

and βf is the probability of transmission per partnership from males to females. In

line with published literature (Hughes et al. 2002), βf is assumed to be higher than
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Parameter Estimate

βm 0.7

βf 0.8

µ 0.057

γ 0.58

Table 5.2: Parameter Estimates

βm. For simplicity, the birth/removal rate µ, and recovery rate γ, are assumed to be

equal for both genders, and are initially set equal to the values calculated following

the sensitivity analysis in chapter 4, these are given in section 4.3.4, Table 4.3.

This model is constrained by the following assumptions:

• The model is assumed to have a constant population, that is, births are equal

to deaths. To satisfy this condition the following terms from the set of ODEs

(Ordinary Differential Equations) 5.2 must be equal: µnki = µski + µiki +

µrki.

• Individuals enter the sexually active population at age 18 into either the low or

high risk group and remain in that risk group until they leave the model at age

64.

• The model assumes exclusively heterosexual mixing.

• The following model parameters are not gender specific: cLm = cLf, cHm =

cHf, γ, µ.

• The population is 50% females and 50% males.

• HPV is a non-fatal disease. Deaths in the model are not HPV-related.

• This is a natural history model for HPV, and it assumes that no control strate-

gies are in place in the population. Therefore, there is no cervical screening

programme or vaccination programme.
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5.5 Preliminary Results of Numerical Simulation and Sensi-

tivity Analysis

The model was simulated using MATLAB software under the three sexual mixing sce-

narios outlined in section 5.3, using the parameter values as outlined above. Appendix

B outlines the method used by MATLAB to solve the model. Table 5.3 shows the

endemic prevalence of infection in males and females for the three mixing scenarios

produced by the model simulations. The model was run for a sufficient time to allow

the population to reach the endemic equilibrium. This occurred after approximately

150 years.

Prevalence in Males Prevalence in Females

Assortative 0.014 0.012

Disassortative 0.024 0.024

Proportionate 0.022 0.026

Table 5.3: Total Prevalence of Infection in Males and Females

All three of these simulations underestimate the prevalence of infection in the pop-

ulation, which is known to be approximately 4.4% or a proportion of 0.044. So, these

parameter values do not accurately represent HPV infection in the irish population

and need to be adjusted. As in chapter 4, a sensitivity analysis was carried out to

deduce which parameters have the most profound influence on the model outcome,

the prevalence of infection. The results of the sensitivity analysis are outlined in

Tables 5.4, 5.5 and 5.6 below and are graphically depicted in Figures 5.1, 5.2 and 5.3.

As was the case in the previous sensitivity analysis in section 4.3.4, varying the

parameter µ has a large impact on the prevalence of infection in the population un-

der all three mixing scenarios. This rate, µ, measures the rate of natural death in

the population, which is assumed to be age 64 for this model,which corresponds to

the study age range of the sexual behaviour data and HPV prevalence data used to
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populate the model (Layte et al. 2006, Kitchener et al. 2006), and also the average

number of years spent in the sexually active population, which is not well defined

in the literature. Given these facts, it is appropriate that the model is calibrated to

match the known prevalence of infection using an adjusted value for the parameter

µ.
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Parameter Sen(t)(+0.1%) - Males Sen(t)(+0.1%) - Females

βm 0.025 0.021

βf 0.016 0.024

cmL 0.015 0.014

cmH 1.38e
−4 7.15e

−6

cfL 0.012 0.017

cfH 1.86e
−5 4.8e

−5

nmL 0.044 −8.67e
−5

nmH 0.076 0

nfL −6.65e
−5 0.021

nfH 0 0.077

γ -0.069 -0.072

µ 0.176 0.139

Table 5.4: Sensitivity Analysis for the Assortative Mixing Case
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Figure 5.1: Bar Chart of Sensitivity Analysis for the Assortative Mixing Case
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Parameter Sen(t)(+0.1%) - Males Sen(t)(+0.1%) - Females

βm 0.017 0.004

βf 0.004 0.015

cmL 0.0098 2.14e
−4

cmH 2.10e
−4 4.49e

−4

cfL 5.53e
−4 0.011

cfH 3.84e
−4 7.6e

−5

nmL 0.044 0

nmH 0.069 0

nfL 0 0.046

nfH 0 0.070

γ -0.061 -0.061

µ 0.354 0.355

Table 5.5: Sensitivity Analysis for the Disassortative Mixing Case
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Figure 5.2: Bar Chart of Sensitivity Analysis for the Disassortative Mixing Case
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Parameter Sen(t)(+0.1%) - Males Sen(t)(+0.1%) - Females

βm 0.006 0.017

βf 0.015 0.005

cmL 0.002 0.009

cmH 2.64e
−4 2.67e

−4

cfL 0.010 0.002

cfH 3.36e
−4 2.01e

−4

nmL 0.04 0

nmH 0.072 0

nfL 0 0.051

nfH 0 0.062

γ -0.066 -0.060

µ 0.383 0.326

Table 5.6: Sensitivity Analysis for the Proportionate Mixing Case
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Figure 5.3: Bar Chart of Sensitivity Analysis for the Proportionate Mixing Case
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5.6 Calibration of the Model, adjusting µ

The model was calibrated using Berkeley Madonna. A parameter plot was produced

for a range of appropriate values of µ, under all three mixing scenarios, while all other

parameters were held constant. For each mixing scenario, the model was simulated 30

times, each time varying µ along a range of values from 0.05 to 0.15. A parameter plot

for each group of 30 simulations was produced which plotted µ on the x-axis against

the associated prevalence of infection for each gender on the y-axis. The following

plots show the results of these investigative simulations.
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Figure 5.4: Calibration of µ under the assumption of Assortative Mixing

Under the assumption of assortative mixing, varying µ from 0.05 to 0.15 failed

to reach the known prevalence of infection in the population of 0.044, or 4.4% as
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depicted in Figure 5.4. This was not an unexpected result, since preliminary results

for the model shown in Table 5.3 showed that the assumption of assortative mixing

underestimated prevalence by a large amount. Therefore, no new estimate for µ can

be taken from this calibration attempt.
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Figure 5.5: Calibration of µ under the assumption of Disassortative Mixing

In the case of disassortative mixing, prevalence increases linearly as µ increases,

with no difference between genders, as shown in Figure 5.5. The value of µ = 0.126

accurately predicts the known prevalence of infection of 0.044 in the population.

This data value, labelled in Figure 5.5, equates to an average duration of 9.6 years in

the sexually active population for all individuals, that is, an average duration of 9.6

years during which the partner change rate c > 0. The parameter µ is calculated as

1
46 + 1

9.6 = 0.126, which takes account of the two aspects of the the birth/removal rate

which are: individuals entering the model aged 18 and leaving aged 64 which equates
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to a removal rate of 1
64−18 , and secondly, these individuals are allowed to remain in

the sexually active and mixing population for 9.6 years.
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Figure 5.6: Calibration of µ under the assumption of Proportionate Mixing

Finally, under the assumption of proportionate mixing, the prevalence of infection

increases approximately linearly as µ increases as shown in Figure 5.6. For females,

the prevalence of infection is known to be 0.044, which is predicted by the model

when µ is equal to 0.112, as shown in the labelled data point in Figure 5.6. This

value corresponds to an average duration of 11.1 years, or µ = 1
46 + 1

11.1 = 0.112.

As discussed in section 4.2.3, the prevalence of HPV infection in males is assumed to

equal that of females, thus we use the associated estimate for µ.

From these investigative plots, a more mathematically appropriate value for µ

was found for the model. Under the assumptions of disassortative and proportionate

mixing, the prevalence of HPV infection in the Irish population is accurately simulated
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when µ is approximately 0.114. This equates to an average duration of about 11 years

in the sexually active population, Hughes et al. (2002) estimated this value at 15 years

for a risk structured model in a general population.

In the following section, the model is simulated under the three sexual mixing

assumptions using the previously defined parameter values from Tables 5.1 and 5.2

and the new estimate for µ = 0.114.

5.7 Numerical Analysis of a Heterogeneous Model with Var-

ious Sexual Mixing Patterns

The model was simulated three times under each of the sexual mixing scenarios de-

scribed in the previous sections using MATLAB. For each of the three simulations

the prevalence of infection, i, was plotted against time in years. The total prevalence

for both genders was plotted, and was further stratified by risk class. All simulations

resulted in the population reaching a stable endemic equilibrium after approximately

100 years. The model is assumed to be at an endemic equilibrium when the preva-

lence rate remains unchanged to six decimal places for a period of 20 years (Garnett

and Anderson 1996). The prevalence of infection at the stable endemic equilibrium

is representative of the prevalence of HPV 16 and 18 in the Irish population in recent

years, that is, before the introduction of a vaccination programme against these two

strains. The validity of these results is constrained by the model assumptions and

limitations outlined in section 5.4. Figure 5.7 shows the results of these three model

simulations.
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Figure 5.7: Prevalence Plots under Three Sexual Mixing Scenarios

Table 5.7 shows the predicted prevalence of infection at the endemic equilibrium

for males and females under the three mixing scenarios, as presented in Figure 5.7.

Mixing Pattern Prevalence in Males Prevalence in Females

Assortative 0.021 0.016

Disassortative 0.041 0.041

Proportionate 0.04 0.044

Table 5.7: Prevalence in Males and Females under various Mixing Scenarios

As was the case in the preliminary simulation of the model presented in Table 5.3,

the assumption of fully assortative mixing largely underestimates the prevalence of

infection in the population, with an average population prevalence of about 0.019, or
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1.9%.

In the case of fully disassortative mixing, male and female prevalence is 4.1% a

proportion of 0.041, which is relatively close to the known prevalence of 4.4% in the

Irish female population, given the level of parameter uncertainty associated with a

HPV model, as shown in the parameter sensitivity analysis in section 5.5.

The assumption of proportionate mixing provides the most accurate simulation

of HPV infection in Ireland. Prevalence is at 4.4% in the female population, which

matches the known prevalence rate. This rate is slightly lower in the male population,

at 4%, which is to be expected since the probability of transmission per-partnership

is higher from males to females than from females to males, that is, βf > βm.

Therefore, these three model simulations show that disassortative mixing and propor-

tionate mixing provide accurate estimates of the prevalence of infection in Ireland.

However, this does not assure confidence in the validity of these assumptions. Further

analysis of the dynamics of the model under these assumptions is necessary before

any conclusions can be drawn on the most appropriate mixing scenario to represent

the Irish sexually active population.

Figure 5.7 clearly displays the variation in population prevalence of HPV infection

under the three mixing scenarios, assortative, disassortative and proportionate. How-

ever, greater insight into the effects that these mixing assumptions have on male and

female prevalence can be achieved by comparing prevalence at the risk sub-group

level. For example, Figure 5.7 shows that under the assumption of disassortative

mixing, prevalence is almost equal for males and females. What this figure cannot

demonstrate is whether high risk individuals contribute equally to this prevalence

rate in both genders. The following section shows results taken from the same three

simulations that produced Figure 5.7. They show greater detail of the dynamics be-

tween risk groups and gender and allow for in depth analysis of the mixing scenarios
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and how they affect prevalence in each sub-group of the population.

5.7.1 Effects of Mixing Patterns on Sub-group Prevalence

The following graphs show the proportion of infected individuals in the high and low

risk groups under the three different mixing scenarios. In each case, adding together

the prevalence in the high and low risk groups gives the total prevalence of infection

for each gender, as presented in Figure 5.7 and Table 5.7.
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Figure 5.8: Risk group prevalence, with Assortative Mixing

As discussed in section 5.5, assortative mixing in the model results in an under-

estimate of endemic prevalence. Analysis of the disease dynamics at the sub-group

level, as shown in Figure 5.8, shows that although prevalence of infection is slightly
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higher in the high risk group than for the other two forms of sexual mixing, as shown

in Figures 5.9 and 5.10, infection levels are low in the low risk group. This is because

low risk individuals are only being infected by other low risk individuals, and since the

partner change rate is low amongst all individuals available for partnerships, infection

is unable to reach a high endemic equilibrium in the population. This leads to the

question of whether fully assortative mixing, whereby individuals choose partners in

the same risk group as themselves, is likely to occur in the Irish population?
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Figure 5.9: Risk group prevalence, with Disassortative Mixing

In the case of disassortative mixing, where individuals choose partners in the op-

posite risk group to themselves, prevalence in the high risk population is similar to

that seen in the assortative mixing case, but the total prevalence in the population is

considerably higher as infection reaches a higher endemic equilibrium in the low risk

group. This shows the importance of the high risk group in the population. Although

the proportion of the population in the high risk group is small (5.4% of females and

14.3% of males), they have a large influence on endemic prevalence. When low risk

individuals mix exclusively with other low risk individuals, endemic prevalence is low,

as was shown in Figure 5.7. But, when low risk individuals mix exclusively with high
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risk individuals, endemic prevalence in the low risk group is more than doubled (3.2%

in Males and 3.8% in females).

It is also worth noting that although total prevalence in the disassortative mixing

model is equal for both genders, when the dynamics are analysed at the sub-group

level as in Figure 5.9, it is clear that there is greater diversity in the female population

than in males. Infection is more prevalent in low risk females than in low risk males,

but the opposite is true of the high risk group, even though the average annual part-

ner change rate is equal for both genders, that is cHm = cHf = 6 and cLm = cLf = 1.1.

This disparity in results is directly related to the distribution of males and females

into high and low risk groups. Females have a larger proportion of low-risk individuals

than the males and this directly affects the prevalence of infection in the each gender.

Re-simulating this scenario and allowing nfL = nmL and nfH = nmH results in both

genders having almost the same prevalence, with females having a marginally higher

prevalence in both sub-groups as a result of the transmission probability being higher

from males to females, than from females to males, that is, βf > βm.

The final simulation assumes proportionate mixing in the population. As in the

previous two simulations, prevalence in the high risk group is ≤ 1%. The overall

distribution of infection is quite similar to that of the disassortative case. Again, in-

fection is more prevalent in low risk females than in low risk males, but the opposite is

true of the high risk group. This is a result of the WAIFW matrices for proportionate

mixing, calculated in section 5.3, equation (5.1). From these matrices, low risk part-

nerships form a larger percentage of the total partnerships in the female population

due to the fact that a higher proportion of females practise low risk behaviour than

in the male population. This relation, where low risk prevalence is higher in females

than in males, holds true when the scenario is re-simulated under the condition where

βf = βm and nfL = nmL, nfH = nmH . This shows that the influencing factor is the

terms in the WAIFW matrices.
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Figure 5.10: Risk group prevalence, with Proportionate Mixing

Tables 5.8 and 5.9 show the exact values of the prevalence of infection shown by

the sub-group plots Figures 5.8, 5.9 and 5.10. These exploratory plots highlight the

disproportionate role played by the risk groups in males and females and investi-

gate the influence of model parameters such as ρkij and nki on sub-group prevalence.

Within-group sexual mixing, as shown in Figure 5.8 results in a low endemic preva-

lence of infection in the low-risk proportion of the population. The following section

shows that within-group mixing also equates to a high R0.
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Mixing Pattern Low Risk High Risk

Assortative 0.011 0.01

Disassortative 0.032 0.009

Proportionate 0.033 0.007

Table 5.8: Endemic Prevalence in High and Low Risk Males under various Mixing Scenarios

Mixing Pattern Low Risk High Risk

Assortative 0.013 0.004

Disassortative 0.038 0.003

Proportionate 0.041 0.002

Table 5.9: Endemic Prevalence in High and Low Risk Females under various Mixing Sce-

narios

5.8 Basic Reproductive Number

As discussed above, the existence and activities of the “core group”, or the high risk

group, contributes a disproportionate amount to the persistence of infection in the

population. (Hethcote and Yorke 1984). Since model (5.2) is stratified by gender and

risk group, the definition of the basic reproductive number, R0, must be extended

to take account of the the different activity levels in the population subgroups (Gar-

nett and Anderson, 1993). As defined previously, the basic reproductive number is

the average number of infections caused by an infective individual in an entirely sus-

ceptible population. When we assume that sexual mixing is not random, then the

number of secondary infections caused by an individual is dependent on the activity

group they are in. Therefore, the basic reproductive number must be calculated in

terms of the average basic reproductive numbers for each subgroup in the population

(Vynnycky and White 2010). The following equations lead to the calculations of R0

for males and for females under the three previously defined sexual mixing scenarios,

assortative mixing, disassortative mixing and proportionate mixing.
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5.8.1 Basic Reproductive Number for the General Case

In the general case for a heterosexually mixing population, the basic reproductive

number for each subgroup of the population is given by the following equation (Gar-

nett and Anderson, 1993)

R(0)ij =
βi ci ρij

γ + µ
(5.3)

where,

βi is the probability of the transmission of infection per partnership,

ci is the average annual partner change rate for group i,
1

γ+µ
is the average duration of an infection,

and ρij is the proportion of partnerships made by group j that are with individuals

from group i, and is given by the WAIFW matrix previously defined in section 5.3,

where

ρij =





H L

H ρHH ρHL

L ρLH ρLL





Given that the population is stratified by gender and risk group, two Next Gen-

eration Matrices have been calculated, one for each gender. The Next Generation

Matrix is a summary of the number of infections caused by an infectious individual

in the population. The general form of these matrices is as follows:
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Male





H L

H R(0)HH R(0)HL

L R(0)LH R(0)LL



 , Female





H L

H R(0)HH R(0)HL

L R(0)LH R(0)LL



 (5.4)

A value for the Basic Reproductive Number for the male population can be found

from the Next Generation Matrix by solving for the eigenvalue which is subtracted

from the diagonal of the matrix and is set as R0 (Vynnycky and White, 2010). See

definitions for this process in section 3.5.1. The eigenvalues can be found by solving

the characteristic equation which is found from the determinant of the matrix M,

equation (5.4a)

We have,

Male





H L

H R(0)HH −R0 R(0)HL

L R(0)LH R(0)LL −R0



 (5.4a)

The determinant of this matrix is given by solving for R0 in the following equation.

The basic reproductive number is taken to be the largest value which satisfies the

following equation (Vynnycky and White, 2010). The characteristic equation is given

by:

det|M − λI| = 0

where λ represents the eigenvalues of matrix M and is equal to R0, and I is the

identity matrix. The characteristic equation for matrix M is:

(R(0)HH −R0)(R(0)LL −R0)−RLHRHL = 0 (5.4b)
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Parameter Estimate

βm 0.7

βf 0.8

µ 0.114

γ 0.58

cL 1.1

cH 6

Table 5.10: Parameter values for the Basic Reproductive Number

This equation reduces to a quadratic equation of the form ax
2 + bx + c = 0

In the next section, the values of R0 from equation (5.4b) for each sexual mixing

scenario are calculated using the technique described above.

5.8.2 Basic Reproductive Number for the Male Population, Assuming

Assortative Mixing

In the case of assortative mixing, the term ρij will be given by the previously defined

WAIFW matrix for males and females as defined in section 5.3,

Assortative





H L

H 1 0

L 0 1





Given the above definitions and setting all other parameters as in Table 5.10 below,

the basic reproductive numbers for the male subgroup of the population are:
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R(0)HH =
βm cH ρHH

γ + µ
=

0.7× 6× 1

0.58 + 0.114
= 6.05

R(0)HL =
βm cL ρHL

γ + µ
=

0.7× 1.1× 0

0.58 + 0.114
= 0

R(0)LH =
βm cH ρLH

γ + µ
=

0.7× 6× 0

0.58 + 0.114
= 0

R(0)LL =
βm cL ρLL

γ + µ
=

0.7× 1.1× 1

0.58 + 0.114
= 1.11

The Next Generation Matrix for the male population follows the format of matrix

(5.4). Under the assumption of assortative mixing the Next Generation Matrix for

the male population is given by:

Male





H L

H 6.05 0

L 0 1.11





A value for R0 in the male population can be found from the determinant of the

following matrix:

Male





H L

H 6.05−R0 0

L 0 1.11−R0





The determinant of this matrix is given below, and its eigenvalue is our parameter of

interest, R0.
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(6.05−R0)(1.11−R0)− 0 = 0

Multiplying out the brackets gives the following quadratic equation:

R
2
0 − 7.16R0 + 6.72 = 0

Solving for R0,

R0 =
7.16 ±

�
7.162 − 4(1)(6.72)

2(1)

The basic reproductive number for the males under the assumption of assortative

mixing is

R0 = 6.05

Under the assumption of assortative mixing, R0 for the female subgroup of the

population was calculated as 6.92, details of these calculations can be found in Ap-

pendix C.

Details of the calculations for R0 in the female population, and all subsequent

calculations for both genders under the assumptions of disassortative mixing and

proportionate mixing are given in Appendix C.
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5.8.3 R0 Assuming Disassortative Mixing

In the case of disassortative mixing, the term ρij will be given by the previously

defined WAIFW matrix for this case as defined in section 5.3,

Disassortative





H L

H 0 1

L 1 0





For the male subgroup of the population, R0 was calculated as 2.59, details of

these calculations can be found in Appendix C.

Under the assumption of disassortative mixing, R0 for the female subgroup of the

population was calculated as 2.96, details of these calculations can be found in Ap-

pendix C.

5.8.4 R0 Assuming Proportionate Mixing

In the case of proportionate mixing, the term ρij for the male and female subgroups

of the population will be given by the previously defined WAIFW matrices as defined

in section 5.3,

Male





H L

H 0.48 0.48

L 0.52 0.52



 , Female





H L

H 0.24 0.24

L 0.76 0.76
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Under the assumption of proportionate mixing, R0 for the male subgroup of the

population was calculated as 3.48, details of these calculations can be found in Ap-

pendix C.

For the female subgroup of the population, R0 was calculated as 2.62, details of

these calculations can be found in Appendix C.

Mixing Scenario R0 for Males R0 for Females

Assortative 6.05 6.92

Disassortative 2.59 2.96

Proportionate 3.48 2.62

Table 5.11: Basic Reproductive Number under various Mixing Scenarios

Table 5.11 shows a summary of the calculations described in this section. Com-

paring these values allows us to evaluate the effects of sexual mixing on the spread of

infection, as R0 is a measure of how rapidly an infection will invade a population. In-

creasing the degree of within-group mixing generally results in a higher R0 value and

a lower endemic prevalence (Vynnycky & White 2010). This effect is clear from the

results in Table 5.11. As was shown in Table 5.7, under the defined set of parameter

values, the prevalence of HPV infection in females under the assumption of assorta-

tive mixing was 0.016, with an R0 value of 6.92. Under the same set of parameters,

when within-group mixing is reduced to zero for the dissassortative mixing scenario,

prevalence rises to 0.041 with an R0 value of 2.96. Similarly, under the assumption of

proportionate mixing which has some within-group mixing prevalence of infection is

0.044 in females with an R0 value of 2.62. The equilibrium prevalence of infection is

higher in scenarios with less within-group sexual mixing because more transmission

has to occur in the low activity group to maintain a given R0 (Vynnycky & White
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2010). Because prevalence is lower in the low risk group, within-group mixing in the

low-risk group results in a greater transmission of disease, since contacts are not being

‘wasted’ on high-risk individuals who are already infected. Therefore prevalence in

the low-risk group increases.

As discussed in section 5.6, the assumption of assortative mixing underestimates

the known prevalence of infection in the population. Table 5.11 shows that under

the assumptions of disassortative mixing and proportionate mixing, R0 for males and

females is approximately equal to three, that is, a typical infected individual will

infect three individuals per year if they are introduced into an entirely susceptible

population. Successfully controlling HPV in a population is dependent on R0. Know-

ing the basic reproductive number for HPV infection is useful for shaping vaccination

policies. A high R0 value implies that infection will rise rapidly in the population,

since each infected individuals infects a large number of susceptibles.

5.9 Discussion

The results of the three simulations presented here (sections 5.8.2 to 5.8.4) provide

valuable insight into the dynamics of the sexually transmitted infection, HPV. In

general, the pattern of mixing has a great effect on population prevalence (Garnett &

Anderson 1996). Assortative mixing usually increases the spread of infection in the

high risk group and results in a lower endemic prevalence compared with proportion-

ate or disassortative mixing (Garnett & Anderson 1996), as was demonstrated in the

simulations above.

This effect is the influence of the commonly referred to “core group” dynamics

pioneered by Hethcote and Yorke (1984) whereby infection persists in a population
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due to the high partner change rate of a small proportion of the population.

5.10 Conclusion

The simulations presented in this chapter have provided many insights into the gen-

eral dynamics of HPV infection in Ireland. However, the next logical step is to further

develop this natural history model and investigate the effects of vaccination on the

prevalence of infection.

This chapter explored heterogeneity in sexual behaviour and its effect on HPV preva-

lence. This heterogeneity can be taken a step further by introducing a third risk class

which could create an intermediate risk group and a new high-risk group who would

have a higher partner change rate, and be made up of a lower proportion of the popu-

lation. Although this would provide insight into the prevalence of infection in specific

sub-groups of the population, it would add very little to our knowledge of overall level

of infection in the population already explored in this chapter. A paper published

by Garnett and Anderson (1996) which explores the dynamics of sexual behaviour

on sexually transmitted diseases showed that increasing the number of risk groups

in a general STI model from three to four groups had a minor effect on population

prevalence, but retained a similar relation with the mixing parameter in the model.

Thus, adding a third risk group to the model presented in this chapter would increase

reliability in the model, but is unlikely to provide new insight.

A possible area of development for the model is to stratify the population by age. As

previously stated, sexual behaviour in the Irish population is changing. Younger age

groups have a higher partner change rate than the older generation of the population

(Layte et al. 2006). Assuming this trend continues, Ireland could hypothetically see

a rise in prevalence of STIs and related diseases such as cervical cancer (if no control
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strategy was put in place) in the coming decades.

In terms of thesis objectives, this chapter addressed a number of the aims outlined

at the beginning of the thesis. This chapter looked in detail at the effects of sexual

mixing patterns on HPV dynamics and used calibration techniques and sensitivity

analyses to refine parameter estimates. This chapter showed the development of a

suitable mathematical model for HPV in Ireland. The significant parameters con-

tributing to parameter spread were explored. The parameter n was found to have

a significant effect on HPV spread. The effects of sexual behavior and mixing pat-

terns were explored and it was found that the assumption of proportionate mixing

was the most appropriate assumption for the model population. The Basic Repro-

ductive Number for the natural history model was calculated to be approximately

three. This coincides with previous estimates by Elbasha et al. (2010) who estimated

R0 for HPV 16 as 2.63 (Range: 2.00-3.49), and HPV 18 as 2.68 (Range: 1.80-4.27).

This also provides confidence in the simplifying assumption made here to group HPV

16 and 18, since estimating them separately resulted in similar ranges for R0. The

only remaining objective to be addressed is to explore the effects of a vaccination

programme on the steady state endemic prevalence of infection, which is addressed

in chapter 6.

Having explored the dynamics of the natural history of HPV infection in the Irish

population, we now introduce a control measure in the form of a prophylactic vaccine.

The following chapter explores the effects of a vaccination program on the prevalence

of HPV 16 and 18 in Ireland.
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Chapter 6

Analysis of a HPV Vaccination

Model

6.1 Introduction

The model presented in chapter 5 represents a model for HPV 16 and 18 infection

in the Irish population with two risk groups and varying levels of sexual activity and

patterns of mixing. This is a natural history model for infection, the case before any

control strategies have been implemented.

There are currently two licensed HPV vaccines in Ireland, Cervarix and Gardasil,

as mentioned in Chapter 1.

In 2010 the Minister for Health Mary Harney added the HPV vaccine Gardasil into

the national immunisation programme. This quadrivalent vaccine induces immunity

to HPV types 16 and 18 and also the two most prevalent low risk HPV strains HPV 6

and 11. This is a prophylactic vaccine and not designed as a form of therapy. There-

fore a programme that targets individuals before they become sexually active will be

most effective. In line with this fact, Ireland’s HPV vaccination programme currently

targets young women in their first year of secondary school, aged 12-13 years. A sec-

ond control strategy against HPV infection was introduced in 2008, called Cervical
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Check. This is a national cervical screening programme targeting females aged 25 -

60, as discussed in chapter 1.

Given that the HPV vaccine has been introduced into the population, an obvious

question one might ask is, what effect will the vaccine have on the prevalence of in-

fection in the population over time? This, and many other questions regarding the

relationship between vaccine efficacy and disease dynamics can be answered through

the analysis of a transmission dynamic model, such as the model presented in section

5.4.

Thus, this chapter presents a differential equation model for HPV infection in the

Irish population under various vaccination scenarios. The population is stratified by

gender and risk class and assumes proportionate mixing.

6.2 Vaccination Model Development and Analysis

6.2.1 Vaccination Model Assumptions, Equations and Parameter Esti-

mates

Results so far have concentrated on the natural history of HPV 16 and 18 infection

in the Irish population. The model presented in section 5.4 can be further developed

to investigate the effects of an infection control strategy on the population endemic

prevalence.

A vaccination parameter was added to the previously defined model in section 5.4

to evaluate the effect of a prophylactic vaccine on infection prevalence. The value of

this parameter is allowed to vary, to represent different levels of vaccination coverage,
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and also to investigate the difference between a female-only vaccination programme

and a programme vaccinating males and females.

As discussed in section 4.2.3 individuals are born into the model aged 18 years,

that is, they commence sexual activity at age 18. It is assumed that a proportion

of these individuals are vaccinated before entering the model population. This sim-

ulates the case where individuals are vaccinated at the age of 12 or 13, and do not

commence sexual activity until the age of 18. This is a simplification of the model

and was discussed in section 4.2.3.

Chapter 5 investigated the effects of sexual mixing on the endemic prevalence

of infection. Following detailed analysis of the various population subgroups under

the three mixing scenarios, assortative, disassortative and proportionate mixing, it

was concluded that the assumption of proportionate mixing yielded the most reliable

results. Therefore, in this chapter, the effects of a national vaccination programme

is investigated under the assumption of proportionate mixing in the sexually active

population.

The vaccination parameter is defined as:

v: A proportion of individuals are vaccinated at birth, before they enter the sexually

active population. The vaccine is assumed to be fully effective and provide lifelong

immunity to infection with HPV 16 and/or 18. The longest followup study on

vaccination against HPV 16 shows lasting antibody persistence and protection from

HPV persistent infection 9 years post vaccination (Jit et al. 2011).

The model equations are:
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dski

dt
= µnki(1− vk)− skiλki − µski,

diki

dt
= skiλki − γiki − µiki,

drki

dt
= γiki + µnkivk − µrki,

(6.0)

where λki = βkcki

�
n

j=1(ρkij)(
i
k�j

n
k�j

)

As previously defined in chapter 4, section 4.2.1, the model parameters are as

follows:

µ: The birth/removal rate. This parameter consists of two components, the natural

death rate in the population and the rate at which individuals leave the sexually

active population. µ is assumed to be constant in the population and universal for

all individuals. The birth rate is set equal to the removal rate to maintain a constant

population size. This parameter µ is not gender specific.

γ: The recovery rate from HPV infection. The average rate of recovery is calculated

as 1/duration of infection, where time is measured in years. For simplicity, the dura-

tion of infection is assumed to be equal for both genders.

β: The probability of transmission of HPV 16 and/or 18 per partnership. The term

βf represents the probability of transmission per partnership from males to females,

while βm is the probability of transmission per partnership from females to males.

c: The average number of sexual partners per year.
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ρ: Patterns of sexual mixing between the strata are described by the mixing matrix,

ρkij, i and j represent the “chosen” and “choosing” individuals respectively.

λ: The force of infection, the rate at which susceptibles become infected.

As in chapter 5, the model is stratified by gender, which is denoted by the sub-

script k, which can be either f or m, for females and males respectively. The model

is also stratified according to risk group, based on an individual’s average annual

partner change rate. There are two risk groups, given by the subscripts L for low risk

individuals, and H for high risk individuals.

All parameter definitions remain as previously defined in section 4.2.3 with the rel-

evant subscripts for different gender and risk group combinations. The full set of

equations for this system are as follows:

Female, Low Risk Model

dsfL

dt
= µnfL(1− v)− sfLλfL − µsfL,

difL

dt
= sfLλfL − γifL − µifL,

drfL

dt
= γifL + µvnfL − µrfL,

where λfL = βf cfL (ρLL
imL

nmL

+ ρLH
imH

nmH

)

Female, High Risk Model

dsfH

dt
= µnfH(1− v)− sfHλfH − µsfH ,

difH

dt
= sfHλfH − γifH − µifH ,

drfH

dt
= γifH + µvnfH − µrfH ,
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where λfH = βf cfH (ρHL
imL

nmL

+ ρHH
imH

nmH

)

Male, Low Risk Model

dsmL

dt
= µnmL(1− v)− smLλmL − µsmL,

dimL

dt
= smLλmL − γimL − µimL,

drmL

dt
= γimL + µvnmL − µrmL,

where λmL = βm cmL (ρLL

ifL

nfL

+ ρLH

ifH

nfH

)

Male, High Risk Model

dsmH

dt
= µnmH(1− v)− smHλmH − µsmH ,

dimH

dt
= smHλmH − γimH − µimH ,

drmH

dt
= γimH + µvnmH − µrmH ,

where λmH = βm cmH (ρHL

ifL

nfL

+ ρHH

ifH

nfH

)

Parameter values are as outlined in Table 5.10.

The model was simulated using Berkeley Madonna software. In the initial phase

of the simulation, the vaccination parameter, v, was set equal to 0, this simulated the

natural history case as in chapter 5. The model reached the endemic equilibrium after

100 years. This value matched the equilibrium point reached in chapter 5 , which is
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to be expected since, when v = 0, the model presented in equation (6.0) reduces to

the exact equations used in model 5.2. As in chapter 5, the endemic equilibrium has

been reached when the prevalence of infection remains constant correct to six decimal

places for a period of 20 years (Garnett & Anderson 1996).

Following this initial phase, once the endemic equilibrium was reached, the vacci-

nation parameter was given a non-zero value. The value of v represents the proportion

of births vaccinated at each time step. For example, the annual birth rate into the

model per annum is 0.114, as defined in chapter 5. This is the proportion of the

model population that begins sexual activity each year. If v = 0.6, we are saying that

60% of the population entering the sexually active population are immunised each

year. So, every year, more and more of the total population will be immunised as

people are vaccinated before they become sexually active and remain immune until

they leave the model through death or cessation of sexual activity.

6.2.2 Vaccination Scenario Analysis

The vaccination parameter was introduced with a time delay of 100 years to allow the

population to reach the natural endemic equilibrium. After approximately 80 years,

the model reaches a new endemic equilibrium.

The value for v was allowed to vary to investigate the effects of vaccination for var-

ious levels of population coverage. Various vaccination proportions were tested for

two different vaccination scenarios, one where the vaccine was given to a proportion

v of both genders, and the second scenario was a female-only vaccine, which is the

current case in the Irish population.

The results of the various vaccination scenarios are summarised in Table 6.2 below.

Figures 6.1 - 6.4 illustrate some of the vaccination scenarios reported in Table 6.2. In

each of these four figures, the x-axis represents time in years. The first 100 years of
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each simulation is the natural history case, as analysed in chapter 5. The population

is allowed to reach a stable endemic equilibrium before the vaccine is introduced at

year 100. The model is simulated under the chosen vaccination scenario and after

approximately 80 years a new stable endemic equilibrium is reached. This represents

the prevalence of infection in the population following vaccination.

Male Female

Endemic

Prevalence

Percentage

Reduction

Endemic

Prevalence

Percentage

Reduction

No Vaccine - Natural History 3.79% - 4.44% -

Vaccinate 50% of 12-13 year old

males and females annually

0.7% -82% 0.9% -80%

Vaccinate 60% of 12-13 year old

males and females annually

0.3% -92% 0.3% -93%

Vaccinate 70% of 12-13 year old

males and females annually

4.66e
−9 % -100% 5.9e

−9 % -100%

Vaccinate 80% of 12-13 year old

males and females annually

1.40e
−30 % -100% 1.78e

−30 % -100%

Vaccinate 50% of 12-13 year old

females annually

2.3% -39% 1.8% -60%

Vaccinate 60% of 12-13 year old

females annually

1.9% -50% 1.3% -71%

Vaccinate 70% of 12-13 year old

females annually

1.4% -63% 0.9% -80%

Vaccinate 80% of 12-13 year old

females annually

0.7% -82% 0.4% -91%

Vaccinate 90% of 12-13 year old

females annually

2.57e
−5 % -100% 1.03e

−5 % 100%

Table 6.1: Vaccination scenarios and associated reduction in prevalence
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Each percentage vaccinated value represents the new endemic equilibrium for

prevalence of infection, reached by the model after approximately 80 years of the

relevant vaccination scenario, for example, a female only vaccination programme that

vaccinates 60% of 12-13 year old females annually. The “No Vaccine” results repre-

sent prevalence of infection in the natural history model. These results show that

vaccinating both genders causes a greater, more rapid reduction in prevalence under

all levels of population coverage when compared to vaccinating females alone.

As Table 6.2 shows, eradication of HPV 16 and 18 can be achieved by vaccinating

at least 70% of males and females. For a female only vaccine, eradication of these

HPV strains in males and females is achievable by vaccinating 90% of females. This

is the most important result in the table, since it represents the current vaccination

strategy in Ireland, with the assumption that the vaccine is 100% effective and pro-

vides lifelong immunity to infection with HPV 16 and 18.
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Figure 6.1: Endemic prevalence of infection for a female only vaccine at 70% coverage
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Figure 6.2: Endemic prevalence of infection for a female only vaccine at 80% coverage
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Figure 6.3: Endemic prevalence of infection for a female and male vaccine at 70% coverage
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Figure 6.4: Endemic prevalence of infection for a female and male vaccine at 80% coverage

The concluding point from these results is that, under the current vaccination

programme in Ireland, at least 90% of the target female population need to be vac-

cinated annually for a period of approximately 80 years in order to eradicate HPV

16 and 18 in the total sexually active population. Although the results in Table 6.2

are important and act as a predictive guide for policy makers as to what results can

be expected in the future under each vaccination scenario, a more urgent question

is, what results can be expected in the shorter term, that is, before the population

reaches a new endemic equilibrium.

The following plot, Figure 6.5, shows the expected annual prevalence for males

and females under the assumption of proportionate mixing, for a female only vaccine

targeting 80% of females aged 12-13 each year with a catch up programme which tar-

gets females under the age of 18 for the first three years of the immunisation schedule.

This means that from the time of the initialisation of the programme, 80% of females

entering the sexually active population at age 18, will be vaccinated against infection
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with HPV 16 and 18. The vaccine is introduced at year 0. These proposed parameters

closely emulate those proposed for the Irish population. Ireland’s HPV vaccination

programme targets young women aged 12-13 and aims to achieve an uptake of more

than 80% for this subgroup of the population (Health Service Executive 2012b). This

programme was well received with an uptake rate of 82% in its first year, with 97%

of cases receiving the full three doses. (Health Service Executive 2012a). The plot

shows 10 years pre-vaccine. This scenario is the natural history case, and results

match those presented in chapter 5. The vaccine is implemented at year 0, and its

effects are evident from year 1.
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Figure 6.5: Annual prevalence of infection assuming 80% vaccination coverage

The plot shows that although prevalence is higher in the female population prior

to the introduction of the vaccine, females see a sharper decline in population preva-

lence per annum. This is to be expected since 80% of births into the population each
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year have induced immunity from infection as a result of vaccination, and the decline

in male prevalence is dependent on the accumulation of “wasted contacts”, whereby

males form partnerships that do not result in the spread of infection since their female

partners are already immune.

Male Female

Vaccine

(Years)

Infected Reduction Infected Reduction

0 3.79% - 4.44% -

1 3.74% -1.3% 4.20% -5.4%

2 3.53% -6.9% 3.69% -17%

3 3.20% -16% 3.09% -30%

4 2.80% -26% 2.52% -43%

5 2.40% -37% 2.02% -55%

6 2.03% -46% 1.61% -64%

7 1.72% -55% 1.29% -71%

8 1.45% -62% 1.04% -77%

9 1.23% -68% 0.85% -81%

10 1.06% -72% 0.71% -84%

Table 6.2: Annual reduction in prevalence for a female only vaccine at 80% coverage

Table 6.3 shows the exact data presented in Figure 6.5, the annual reduction in

prevalence following the implementation of a vaccination programme. As shown in

Figure 6.2 the endemic equilibrium for the prevalence of infection of 0.4% for females

and 0.7% for males is not reached until approximately 80 years after the introduction

of this vaccination programme. The endemic equilibrium is the final rate of preva-

lence of infection under the defined conditions and it will remain constant assuming

all previously defined parameters remain the same. Table 6.3 shows the effect this

vaccine has on population prevalence in the short term. We can see that after 10
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years, the prevalence of infection in males under these vaccination conditions will be

reduced by 72% from the natural history endemic prevalence which was 3.79% of the

male sexually active population. This reduction in prevalence continues beyond the

10 years shown in Figure 6.5 as the population moves towards the endemic equilib-

rium, shown in Figure 6.2.

A similar result is achievable in the female population. After 10 years, this vaccina-

tion programme reduces female prevalence by 84%. At the endemic equilibrium the

prevalence of infection is reduced by 91% of the natural history prevalence rate.

In terms of the Irish population, the exact number of cases of infection in the female

population can be estimated using census data (Central Statistics Office 2006). In

2006, the total number of females in the Irish population aged between 18 and 64 was

1,324,056. This is the same age range as simulated in the model presented in equation

(6.0). If we ignore the effects of migration and emigration, then this proportion of

the population will be expected to increase to 1,418,927 in the year 2022, which is

10 years after the introduction of the HPV vaccine. With the inclusion of a catch-

up programme for this vaccine targeting females up to the age of 18 in 2011, and

under the assumption that the vaccine achieves an 80% coverage for each year of the

vaccination programme, then as shown in Table 6.3, the prevalence of infection in

females is expected to decrease from 4.4% to 0.71%. This equated to a reduction in

cases from 58,258 in 2006 to approximately 10,074 in the year 2022, 10 years after

the introduction of the vaccine. This population prevalence will continue to decrease

towards the endemic equilibrium, as shown in Figure 6.2 and reported in Table 6.2,

to a percentage of 0.4%, or approximately 5676 cases. These results are constrained

by the model assumptions on which they are based, such as the assumption that

the vaccine is fully effective and immunity is lifelong, or a booster vaccination is

administered before immunity begins to wane, all individuals begin sexual activity at

the age of 18, and sexual mixing is proportionate.
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6.3 Reduction in Cervical Cancer Cases

The primary reason for investigating the dynamics of HPV and the HPV vaccina-

tion programme is to infer the relative reduction in cervical cancer cases that can be

expected from a such a programme. As mentioned in chapter 1, HPV is the cause

of cervical cancer, and two strains HPV 16 and 18 are responsible for approximately

70% of cervical cancer cases annually.

Given that this model does not predict the future of cervical cancer, and the like-

lihood is that the number of cases seen today is not an accurate representation of the

incidence expected in the coming decades, perhaps a more appropriate method for

assessing the impact of the HPV vaccine on cervical cancer cases would be to report

a predicted percentage reduction in cases, as opposed to the number of lives saved,

or number of cases prevented.

Thus, we can say, as Table 6.2 shows, a female vaccine targeting 80% of young

women annually will lead to a 91% reduction in female HPV prevalence over time.

Given that the HPV strains described by this model account for 70% of cervical

cancer cases in Ireland, we can infer that this vaccination programme will lead to an

approximate reduction of 91% × 0.70 = 64% in cases of cervical cancer in Ireland.

It is important to note again, that this figure is based on the model reaching an

endemic prevalence of infection after approximately 80 years and is not age specific.

It also assumes that immunisation against HPV 16 and 18 has no effect on any other

strains of HPV. Thus it does not reduce the prevalence of other oncogenic strains,

and conversely it does not force the evolution of other oncogenic strains which would

have the potential to increase cervical cancer cases.
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6.4 Conclusion

This chapter looked at the further development of the natural history model presented

in chapter 5. A vaccination parameter v was introduced, which conferred immunity

to a varying proportion of individuals entering the susceptible class each year. This

represents the current vaccination strategy in Ireland where young girls are being vac-

cinated before they become sexually active. Vaccination scenarios combining various

population coverages with a female only vaccine or a male and female vaccine were

simulated to investigate the effects of an immunisation programme on the prevalence

of infection. Results from these simulations show that vaccinating males and females

results in a greater decrease in population prevalence than vaccinating females alone.

Table 6.1 shows that eradication of these two cancer causing strains could be achieved

by vaccinating males and females before they become sexually active at a coverage

of 70%. This is clearly much more effective in terms of reducing infection prevalence

when compared to vaccinating females alone which eradicates infection at a coverage

of 80%. However, these figures give no indication of the cost-effectiveness of these

scenarios. Applying a cost-effectiveness analysis to this model data would help to

determine whether it would be more cost-effective to vaccinate both genders at a rate

0f 70%, or females only at a rate of 80%. A contributing factor which would need

to be considered would be the cost associated with disease treatment for both genders.

Based on the government’s target coverage of 80% for a female only vaccine,

the model presented in this chapter predicts that after 10 years of the vaccination

programme, prevalence of HPV 16 and 18 will be reduced by 84% in females and 72%

in males. After approximately 80 years of this vaccination programme, the prevalence

of infection will reach an endemic equilibrium which will see female prevalence being

reduced by 91% from the natural history rate of prevalence, and males by 82%, giving

a new endemic prevalence of 0.4% in females and 0.7% in males.
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Chapter 7

Conclusions

7.1 Introduction

Using classical mathematical modelling techniques a two-sex, risk structured ODE

transmission dynamic model for HPV 16 and 18 was developed for a vaccinated Irish

population. This chapter highlights the main findings of this thesis and reflects on

the initial aims of the project as outlined in the preliminary summary chapter and at

the beginning of each chapter and how these aims were achieved.

This project applied classical mathematical modelling techniques to evaluate a

vaccination programme for the sexually transmitted infection, HPV. The model pop-

ulation followed the classic SIR structure whereby individuals were divided into one

of three groups based on their disease status. Individuals were either susceptibles who

were capable of contracting infection, infectives who were infected and could trans-

mit the disease to others, or recovered individuals who are immune from infection as

a result of conferred immunity, vaccination, or death. The population was further

divided by gender and sexual behaviour risk group, based on the average number of

sexual partners an individual has per year. The model was simulated and analysed

under three sexual mixing scenarios with varying levels of within-group mixing.

Chapter 1 explored the history of the Human Papillomavirus (HPV) and the mech-
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anisms by which the virus affects humans. Comparisons were made between Ireland

and the rest of Europe and the world in terms of infection control strategies such as

vaccination. This chapter also looked at the landmark research that has shaped our

knowledge of HPV and cervical cancer.

Chapter 2 studied classical mathematical modelling theory. The deterministic

ODE model for endemic disease was chosen as the model structure for this thesis

and was subsequently presented and defined. The threshold estimates of the model

were discussed and the solution paths for the equilibrium points of the system were

illustrated using phase plane portraits.

In chapter 3 a simple Ordinary Differential Equation (ODE) model for endemic

disease was introduced. The key parameters and model assumptions were defined.

These are: µ, γ, β, c and v. These parameter definitions carry through to the more

complex models presented in subsequent chapters. Model equations were solved an-

alytically to find solutions to the steady state or equilibrium points of the model. A

stability analysis was carried out on the model solutions to evaluate the dynamics of

infection. This chapter took an initial step to achieving the first objective outlined

in the thesis summary which was to study the classical techniques of mathematical

modelling and develop a suitable ODE model for HPV in Ireland. A suitable ODE

model for HPV in Ireland was developed in subsequent chapters.

Chapter 4 introduced the first numerical simulation of the thesis. A simple ho-

mogeneous model for the natural history of HPV infection was defined and estimates

for each parameter were taken from published data. The model was simulated in

Berkeley Madonna and a calibration of the model was used to estimate the prob-

ability of the transmission of infection per partnership, given by the parameter β.

The calibration of β showed that this homogeneous model was over-simplified. To

add a degree of complexity to the model, heterogeneous sexual mixing was added.

The population was divided into two risk groups based on an individual’s average
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annual partner change rate, c. The significant effects of β on the spread of HPV and

numerical estimates of model parameters were investigated. The effects of sexual risk

groups within the population were explored through model simulations. This model

does not consider different sexual mixing patterns, this is addressed in chapter 5.

Chapter 5 continued the development of the natural history endemic model intro-

duced in chapter 4. The model was initially developed to simulate the natural history

of infection in the population and explore the population dynamics associated with

the contributing factors for disease such as gender, sexual behaviour and patterns of

sexual mixing. Three WAIFW (Who Acquires Infection From Whom) matrices were

introduced to represent three sexual mixing scenarios: assortative, disassortative and

proportionate mixing. A sensitivity analysis of the model parameters showed that

the system was most sensitive to changes in the parameter µ. This model was sub-

sequently calibrated around µ and re-simulated using the new parameter set under

the three sexual mixing scenarios. These simulations revealed that the assumption of

assortative mixing underestimated the known prevalence of infection, while the other

two sexual mixing scenarios with varying degrees of between-group mixing closely

estimated the known prevalence of 4.4% in the female population. The epidemiologi-

cally significant parameter R0, the basic reproductive number, was calculated for this

model under the three sexual mixing scenarios: assortative, disassortative and pro-

portionate. Detailed analysis of the effects of sexual mixing on sub-group prevalence

in the population was carried out. It was found that increasing within-group mixing

resulted in a higher R0 but lower overall endemic prevalence than a sexual mixing sce-

nario that assumed a degree of between-group mixing. This analysis and the results

of the sensitivity analysis also showed that the proportion of the population in each

risk group, given by n, has a greater impact on the prevalence of HPV infection than

the probability of the transmission of infection β. Therefore, the sexual behaviour

of a population is an important catalyst in the transmission of HPV. This chapter

concluded that the assumption of proportionate mixing was the most appropriate of

the three mixing scenarios for the Irish population and this assumption was carried
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into chapter 6 which re-introduced the vaccination parameter, v, from chapter 3.

Given that a HPV vaccination programme has now been introduced in the Irish

population, the structured natural history model (5.2) was further developed to in-

clude a vaccination parameter and subsequently the effects of various vaccination

strategies were explored to investigate their effect on the prevalence of infection in the

population. The vaccine was assumed to provide life-long immunity to infection with

HPV 16 and 18 and was administered to young people before they became sexually

active. The effects of the vaccination programme on the prevalence of infection was

evaluated for two separate scenarios: a female-only vaccine, and a vaccine targeted

to males and females. Simulation of these scenarios at varying levels of population

coverage allowed for the evaluation of the varying effects of a female only vaccine

versus a male and female vaccine and the relative reduction in HPV prevalence that

could be achieved by these vaccines at various levels of population coverage. The

annual reduction in prevalence of HPV for a female-only vaccine was presented in

Figure 6.5 and Table 6.3. After 10 years of vaccinating females at a coverage of 80%,

the prevalence of HPV 16 and 18 will be reduced by 72% in males and 84% in females

from the current natural history prevalence as simulated in chapter 5. Under the

same vaccination assumptions, based on Irish census data (Central Statistics Office

2006) the prevalence of HPV 16 and 18 in Irish women will be reduced from approx-

imately 58,258 in 2006, to approximately 10,074 in the year 2022. This chapter also

provided an estimate for the reduction in cervical cancer cases. Vaccinating females

at 80% population coverage could lead to a reduction of 64% of cervical cancer cases.

This figure is based on the model reaching an endemic prevalence of infection after

approximately 80 years and is not age specific.

The mathematical models presented in this thesis are the first ODE models for

HPV 16 and 18 infection in the Irish population. In contrast to previously published

models on HPV dynamics (Usher et al. 2008, Jit et al. 2008) these models focussed

specifically on HPV infection and does not stratify infection by severity. The simplic-
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ity of this assumption allowed for the in-depth analysis of the effects of behavioural

parameters on HPV prevalence. Analysis of the effects of various sexual mixing sce-

narios on the sub-group prevalence of infection demonstrated the impact of sexual

mixing and the proportion of the population in each risk group on HPV prevalence.

These results show that the rate of infection is high across all sub-groups of the popu-

lation and is not concentrated in the high risk group, as is the case for other sexually

transmitted infections, such as gonorrhea (Hethcote & Yorke 1984). The structure of

the models presented in this thesis are easily adaptable, meaning the models can be

modified as new data becomes available on the factors that influence HPV infection.

Data for these models were taken from two primary sources. Data on sexual be-

haviour patterns in the Irish population were taken from the ISSHR (Layte et al.

2006) and HPV prevalence data were taken from the ARTISTIC trial (Kitchener et

al. 2006). These models assume the population has a constant population, that is,

births are equal to deaths. Individuals enter the sexually active population at age

18 into either the low or high risk group and remain in that risk group until they

leave the model at age 64. The models assume exclusively heterosexual mixing.The

population is 50% females and 50% males. HPV is a non-fatal disease. Deaths in

the model are not HPV-related. The natural history model for HPV, presented in

chapter 5 assumes that no control strategies are in place in the population. Therefore,

there is no cervical screening programme or vaccination programme. The vaccina-

tion programme introduced in chapter 6 assumes that a proportion of individuals are

vaccinated at birth, before they enter the sexually active population. The vaccine is

assumed to be fully effective and provide lifelong immunity to infection with HPV 16

and/or 18.

The natural history model from chapter 5 demonstrated the significant effect that

the parameter n, the proportion of the population in each risk group, has on HPV

spread. This result satisfies the second thesis objective which was to explore the

epidemiologically significant factors contributing to the spread of HPV and estimate

their numerical values. The assumption of proportionate mixing was found to be the
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most appropriate mixing scenario to fit the model population, in line with the third

objectives. The basic reproductive number for the natural history case was calculated

as approximately three, which satisfies the fifth thesis objective. Chapter 6 explored

the effects of a vaccination programme on the steady state endemic prevalence of

infection, the final objective of this thesis. Results from these simulations showed

that under the current vaccination scenario in Ireland which aims to achieve an 80%

vaccination coverage in young women, we can expect the prevalence of HPV to be

reduced by 84% in 10 years of the vaccination programme and will continue to de-

crease to 91% as the prevalence approaches a new endemic equilibrium. This is a

significant result, since a significant reduction in HPV prevalence will in turn result

in a significant decrease in cervical cancer cases.

The next section highlights some aspects of the project which could be developed

in future work.

7.2 Further Work

As with any mathematical model for infectious disease, epidemiological results are

subject to variability based on the assumptions made when constructing the model.

The models presented in this thesis could be further developed by stratifying the

population by age. Data shows that HPV incidence peaks in females aged 20-29

(Kitchener et al. 2006), and Irish data shows that cervical cancer incidence peaks

between the ages of 40-45 (National Cancer Registry 2010). Hence, there is a consid-

erable time delay between the initial contraction of HPV and progression to cervical

cancer. Also, data from the ISSHR study shows that patterns of sexual behaviour in

Ireland are changing with time (Layte et al. 2006). HPV incidence is on the rise in

the younger population as a result of their increased levels of sexual activity when

compared to the same age group in previous decades. Logically, a rise in HPV inci-

dence may lead to a rise in cervical cancer incidence in the coming decades for this
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subgroup. Patterns in sexual behaviour also vary with time across social, economic

and geographical groups, (Layte et al. 2006; p174), which means that stratifying

the population according to these factors may provide further insight. As discussed

in section 4.2.3, these models assume that all individuals are sexually inactive until

age 18. As data on the prevalence of HPV in people under the age of 18 becomes

available, this sector of the population could be analysed and added to the current

model to explore the effects of the commencement of sexual activity before the age

of 18.

The model could also be improved by adding parameters to represent the annual

proportion of females who have a hysterectomy, which removes them from the sus-

ceptible class for contracting HPV infection. As previously stated, HPV 16 and 18

account for approximately 70% of cervical cancer cases, which means that a further

30% of cases are caused by strains that are not contained in the current vaccines. A

model which simulated these strains in addition to HPV 16 and 18, and explores the

possible synergistic or antagonistic effects of the vaccine on the prevalence of these

strains would be beneficial to policy makers. Also, the inclusion of the two most

prominent low-risk strains, HPV 6 and 11 which are known to cause between 90%

and 100% of genital warts cases would provide further insight into the effects of the

currently licenced vaccine, Gardasil, on HPV prevalence in Ireland. Adding in the

effects of cervical screening would also add accuracy to the model. The models pre-

sented here focus on sexual behaviour as a risk factor for contracting HPV infection.

A model which considered persistent HPV infection and progression to cervical cancer

would need to consider other known risk factors for the progression of disease such as

smoking and long-term use of the oral contraceptive pill (Castellsagué & Munoz 2003).

HPV is the known cause of cervical cancer. The specific mechanisms by which this

virus causes cervical neoplasia and the risk factors associated with developing cancer

are currently being investigated by researchers around the world. The application of

this knowledge using mathematical models is a crucial asset to policy makers in the
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fight against cervical cancer deaths.
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Appendix A

Berkeley Madonna RK4 method

Berkeley Madonna is a differential equation solver that uses the Runge-Kutta 4

method as its default solver for systems of differential equations. The RK4 method

is described in Appendix B. This software was used to plot solutions of the model.

Other features of this software that were used include:

Parameter sliders to explore the effects of various parameter values on the model

solution.

Parameter plots were used to plot a variable as a function of a parameter.

Sensitivity Analyses plotted the partial derivative of a variable with respect to a

parameter.
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Appendix B

MATLAB ode45 solver method

MATLAB is a computational software that supports both numeric and symbolic

modelling approaches for solving Ordinary Differential Equations (ODEs). MATLAB

provides a number of solvers for approximating solutions to initial value problems of

ordinary differential equations. All solvers solve systems of equations in the form

y
� = f(t, y). The ode45 solver used throughout this thesis was the ode45 solver. It

is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is

a one-step solver in computing y(tn), it needs only the solution at the immediately

preceding time point, y(tn − 1). This Runge-Kutta works as follows:

Given the initial value problem y
� = f(t, y), y(tn) = yn

We compute,

k1 = hf(tn, yn)

k2 = hf(tn +
h

2
, yn +

k1

2
)

k3 = hf(tn +
h

2
, yn +

k2

2
)

k4 = hf(tn + h, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

Thus, yn+1 is determined by the present value yn plus the weighted average of
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k1, k2, k3, k4 where ki is the product of the size of the interval h and an estimated

slope. The fourth-order method has an error per step of the order of h
5, while the

total accumulated error has order h
4.

164



Appendix C

Calculations for R0 under various

gender and sexual mixing scenarios

A1. R0 for the Female Population, Assuming Assortative Mixing

Females:

R(0)HH =
βf cH ρHH

γ + µ
=

0.8× 6× 1

0.58 + 0.114
= 6.92

R(0)HL =
βf cL ρHL

γ + µ
=

0.8× 1.1× 0

0.58 + 0.114
= 0

R(0)LH =
βf cH ρLH

γ + µ
=

0.8× 6× 0

0.58 + 0.114
= 0

R(0)LL =
βf cL ρLL

γ + µ
=

0.8× 1.1× 1

0.58 + 0.114
= 1.27

The Next Generation Matrix for the female population, under the assumption of

assortative mixing is given by:

Female





H L

H 6.92 0

L 0 1.27





A value for R0 in the female population can be found from the determinant of the

following matrix:
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Male





H L

H 6.92−R0 0

L 0 1.27−R0





The determinant of this matrix is given below, and its eigenvalue is our parameter of

interest, R0.

(6.92−R0)(1.27−R0)− 0 = 0

Multiplying out the brackets gives the following quadratic equation:

R
2
0 − 8.19R0 + 8.79 = 0

Solving for R0,

R0 =
8.19 ±

�
8.192 − 4(1)(8.79)

2(1)

R0 = 6.92 or 1.27

A2. R0 for the Male Population, Assuming Disassortative Mixing

Males:

R(0)HH =
βm cH ρHH

γ + µ
=

0.7× 6× 0

0.58 + 0.114
= 0

R(0)HL =
βm cL ρHL

γ + µ
=

0.7× 1.1× 1

0.58 + 0.114
= 1.11

R(0)LH =
βm cH ρLH

γ + µ
=

0.7× 6× 1

0.58 + 0.114
= 6.05

R(0)LL =
βm cL ρLL

γ + µ
=

0.7× 1.1× 0

0.58 + 0.114
= 0

The Next Generation Matrix for the male population, under the assumption of as-

sortative mixing is given by:
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Male





H L

H 0 6.05

L 1.11 0





A value for R0 in the male population can be found from the determinant of the

following matrix:

Male





H L

H 0−R0 6.05

L 1.11 0−R0





The determinant of this matrix is given below, and its eigenvalue is our parameter of

interest, R0.

(0−R0)(0−R0)− (6.05)(1.11) = 0

Multiplying out the brackets gives the following equation:

R
2
0 − 6.72 = 0

Solving for R0,

R0 = ±
√

6.72

R0 = 2.59

A3. R0 for the Female Population, Assuming Disassortative Mixing

Females:

R(0)HH =
βf cH ρHH

γ + µ
=

0.8× 6× 0

0.58 + 0.114
= 0

R(0)HL =
βf cL ρHL

γ + µ
=

0.8× 1.1× 1

0.58 + 0.114
= 1.27

R(0)LH =
βf cH ρLH

γ + µ
=

0.8× 6× 1

0.58 + 0.114
= 6.92

R(0)LL =
βf cL ρLL

γ + µ
=

0.8× 1.1× 0

0.58 + 0.114
= 0
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The Next Generation Matrix for the female population, under the assumption of

Disassortative mixing is given by:

Male





H L

H 0 6.92

L 1.27 0





A value for R0 in the female population can be found from the determinant of the

following matrix:

Male





H L

H 0−R0 6.92

L 1.27 0−R0





The determinant of this matrix is given below, and its eigenvalue is our parameter of

interest, R0.

(0−R0)(0−R0)− (6.92)(1.27) = 0

Multiplying out the brackets gives the following equation:

R
2
0 − 8.79 = 0

Solving for R0,

R0 = ±
√

8.79

R0 = 2.96
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A4. R0 for the Male Population, Assuming Proportionate Mixing

Males:

R(0)HH =
βm cH ρHH

γ + µ
=

0.7× 6× 0.48

0.58 + 0.114
= 2.90

R(0)HL =
βm cL ρHL

γ + µ
=

0.7× 1.1× 0.48

0.58 + 0.114
= 0.53

R(0)LH =
βm cH ρLH

γ + µ
=

0.7× 6× 0.52

0.58 + 0.114
= 3.15

R(0)LL =
βm cL ρLL

γ + µ
=

0.7× 1.1× 0.52

0.58 + 0.114
= 0.58

The Next Generation Matrix for the male population, under the assumption of as-

sortative mixing is given by:

Male





H L

H 2.90 0.53

L 3.15 0.58





A value for R0 in the male population can be found from the determinant of the

following matrix:

Male





H L

H 2.90−R0 0.53

L 3.15 0.58−R0





The determinant of this matrix is given below, and its eigenvalue is our parameter of

interest, R0.

(2.90−R0)(0.58−R0)− (0.53)(3.15) = 0

Multiplying out the brackets gives the following quadratic equation:

R
2
0 − 3.48R0 + 0.01 = 0

Solving for R0,
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R0 =
3.48 ±

�
3.482 − 4(1)(0.01)

2(1)

R0 = 3.48 or 0.01

A5. R0 for the Female Population, Assuming Proportionate Mixing

Females:

R(0)HH =
βf cH ρHH

γ + µ
=

0.8× 6× 0.24

0.58 + 0.114
= 1.66

R(0)HL =
βf cL ρHL

γ + µ
=

0.8× 1.1× 0.24

0.58 + 0.114
= 0.30

R(0)LH =
βf cH ρLH

γ + µ
=

0.8× 6× 0.76

0.58 + 0.114
= 5.26

R(0)LL =
βf cL ρLL

γ + µ
=

0.8× 1.1× 0.76

0.58 + 0.114
= 0.96

The Next Generation Matrix for the female population, under the assumption of

Disassortative mixing is given by:

Male





H L

H 1.66 0.30

L 5.26 0.96





A value for R0 in the female population can be found from the determinant of the

following matrix:

Male





H L

H 1.66−R0 0.30

L 5.26 0.96−R0





The determinant of this matrix is given below, and its eigenvalue is our parameter of

interest, R0.

(1.66−R0)(0.96−R0)− (0.30)(5.26) = 0
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Multiplying out the brackets gives the following quadratic equation:

R
2
0 − 2.62R0 + 0.01 = 0

Solving for R0,

R0 =
2.62 ±

�
2.622 − 4(1)(0.01)

2(1)

R0 = 2.62 or 0.01
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