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With increasing presence of electronics in modern systems and in every-day

products, their reliability is inextricably dependent on that of their electronics. We

develop reliability models for failure-time prediction under small failure-time sam-

ples and information on individual degradation history. The development of the

model extends the work of Whitmore et al. 1998, to incorporate two new data-

structures common to reliability testing. Reliability models traditionally use lifetime

information to evaluate the reliability of a device or system. To analyze small failure-

time samples within dynamic environments where failure mechanisms are unknown,

there is a need for models that make use of auxiliary reliability information. In this

thesis we present models suitable for reliability data, where degradation variables

are latent and can be tracked by related observable variables we call markers.

We provide an engineering justification for our model and develop parametric

and predictive inference equations for a data-structure that includes terminal ob-

servations of the degradation variable and longitudinal marker measurements. We



compare maximum likelihood estimation and prediction results obtained by Whit-

more et. al. 1998 and show improvement in inference under small sample sizes. We

introduce modeling of variable failure thresholds within the framework of bivariate

degradation models and discuss ways of incorporating covariates.

In the second part of the thesis we investigate anomaly detection through a

Bayesian support vector machine and discuss its place in degradation modeling. We

compute posterior class probabilities for time-indexed covariate observations, which

we use as measures of degradation. Lastly, we present a multistate model used to

model a recurrent event process and failure-times. We compute the expected time to

failure using counting process theory and investigate the effect of the event process

on the expected failure-time estimates.
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1. INTRODUCTION

The Center for Advanced Life Cycle Engineering (CALCE) at the University of

Maryland has over the past 30 years pioneered methodologies for reliability analysis

of electronic products. With increasing presence of electronics in modern systems

and in every-day products, their reliability is inextricably dependent on that of their

electronics [2]. Reliability methodology for electronics went from simple standard

based assessments, to using physics of failure (PoF) models in the late 1980s, and

more recently prognostics and health management (PHM) models.

The fundamental aim of PoF modeling is to postulate, based on the physics

and mechanics of the failure mechanisms, a set of generic functional relationships

between the mean fatigue life and the operational loads [3]. In their 1990 pa-

per, Dasgupta et al. [3] are among the first to stress the importance of modeling

failure-times in conjunction with PoF models. Pecht et al. 1990 [4], point out the

importance of considering PoF, especially for material properties, for modeling fail-

ures of electronics obtained from laboratory tests. Hu et al. 1991 [5], point out

limitations in conducting accelerated failure tests without knowledge of the failure

mechanisms. They point out the need for ensuring that accelerated failure tests

target and therefore induce the intended failure mechanism.

During use, electronics are exposed to a variety of loading conditions such as

temperature or power excursions, shock and vibration. Interconnects, such as solder

joints, printed circuit board traces, component leads, and connectors are vulnerable

to these loading conditions and are susceptible to failures by mechanisms such as

fatigue, creep, corrosion, and mechanical over-stress [58]. Life cycle loads, either



individually or in various combinations may lead to performance or physical degra-

dation and reduce its service life [7]. Table 1.1 lists life cycle loads experienced by

electronics. The extent and rate of degradation depends on the nature, magnitude,

and duration of exposure to such loads [8].

Tab. 1.1: Life Cycle Loads for Electronics
Loads Examples

Thermal Steady-state temperature, temperature ranges,
temperature cycles, spatial temperature gradients,

temperature ramp rates, heat dissipation
Mechanical Pressure magnitude, pressure gradient, vibration,

shock load, acoustic level, strain, stress
Chemical Aggressive versus inert environment, humidity level,

contamination, pollution, fuel spills
Physical Radiation, electromagnetic interference, altitude
Electrical Current, voltage, power

Failure modes, mechanisms and effects (FMMEA) analysis is a process devel-

oped at CALCE, that characterizes the product on all levels, i.e., parts, systems

and physical interfaces [9]. Failure mechanisms are the physical process by which

stresses cause damage to the elements comprising the system, ultimately leading to

failure [10]. Table 1.2 lists generic failure mechanisms which can serve as potential

agents of failure [10]. A failure mode is the means by which a failure manifests, or

by which degradation is measured. Table 1.3 lists failure modes and mechanisms

analysis for the circuit card assembly, which represents a typical electronic part or

device. Generally failures in electronics are thought to be a result of either, over-

stress, or wear-out failure mechanisms. Over-stress failures occur when the stress

exceeds the device strength, and failures occur suddenly. Wear-out failures occur

due to the accumulation of damage with repeated stress or generally usage.

Recently, with the advent of powerful and accurate sensor technology, there is

interest in real-time or in-situ reliability analysis. Device-specific degradation can

be explained and predicted, based on sensor data on individual devices, rather than

2



Tab. 1.2: Failure Mechanisms in Electronics
Over Stress Failures Wear-out Failure

Brittle Fracture Wear
Ductile Fracture Corrosion

Yield Dentritic Growth
Buckling Interdiffusion

Large Elastic deformation Fatigue crack propagation
Interfacial De-adhesion Diffusion

Radiation
Fatigue crack initiation

creep

on sample averages. There is also economic and business strategic needs that can be

solved using real-time reliability analysis results. PHM is a method that permits the

assessment of the reliability of a component (or system) under its actual application

conditions [2]. PHM aims to provide advanced warning of failures, enable optimal

maintenance actions, reduce life-cycle costs, and aid in mission critical decisions.

The key element to PHM is its prognostic element, which as we show can play

the role of fault detection, degradation estimation and failure-time prediction. The

measures provided by these predictive outcomes are central to useful implementation

of PHM technology. Pecht 2010 presents a PHM road-map and an assessment of

the state of practice for information and electronic-rich systems [17].

1.1 Problem Setting

Implementing PHM requires us to collect data and build appropriate models

for the various kinds of questions we are asking of a PHM program. In this work we

are interested in addressing questions related to failure-time prediction and all the

data and modeling assumptions necessary to get there.

Mathematically failure-time predictions can be evaluated using the conditional

probability of a future failure time given survival up until current time. Traditionally

the only data collected on tested devices were lifetime data. The survival status of

3



Tab. 1.3: Failure modes and mechanisms analysis for the circuit card assembly
Category Site Mode Mechanism Stress

Electrical open thermal Temperature
fatigue cycling

PTH Electrical short Conductive Voltage,
Printed (between PTHs) filament high RH

formation small PTH
circuit spacing
board Electrical short Electro-migration High current
(PCB) (between traces) Corrosion density

Metaliz. and degradation ionic High RH,
traces in resistance contamination electrical bias

open traces
Short between Overheating due

windings Thermal to excessive
and the core fatigue current and

prolonged use at
Compon. Inductors high temperature

Overheating due
Short between Thermal to excessive

windings fatigue current and
prolonged use at
high temperature

Open circuit Thermal Prolonged use
inside the fatigue at high
inductor temperatures

Intermittent Thermal
Inter Solder change in fatigue, Temperature

connect joints electrical creep, high- cycling and
resistance cycle fatigue vibration

the device therefore constitutes a binary process, which is equal to zero while the

device is not failed and equal to one at the failure-time.

This data-structure is deficient in detail and inference models lack predictive

power because of the following reasons:

• A model that only uses lifetime data cannot account for dynamic environments

that products are exposed to in the field. In other words, predictive inference

does not account for real-time environmental or usage conditions.
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• Often in tests we collect few failures. This can be because we do not have

many devices to test in the first place, typically because they are expensive.

This can also be a result of short test times, constrained by money and time.

• In engineering applications, lifetime data are typically collected under ”accel-

erated” conditions, which makes them sometimes inappropriate for inference

procedures in a PHM setting, as we discuss later on.

Singpurwalla [22] and Sobcyzk [12] among others motivate the use of stochastic

processes in models in order to account for the dynamic environments that fielded

devices experience. In this context, there is therefore a need for data that can

describe the evolution of the stochastic process. In this case PHM prediction models

will become a little more complicated because now they have to accommodate data

measured on the stochastic process. However, these models are presumably better

suited at capturing the changing environments.

Failure tests often result in few failure-time samples. When the failure-time

sample is small, the traditional inference and prediction models suffer because the

available data are not ample enough to fit the model parameters with adequate

precision. There is a need therefore for auxiliary reliability information. Auxiliary

reliability information can come from observing the degradation variable(s) of the

device over time, i.e, the degradation process of the device. The degradation process

consists of a collection of degradation variables indexed by time, and can be thought

of as a stochastic process of accumulating damage. Because failures in electronics

can be strongly linked to known degradation variables (failure modes), and because

the response to stress (even under constant stress) is random (due to variations in

material properties), it is not unreasonable to model degradation as a stochastic

process, and failure as its first hitting time of a threshold.

Due to ”self-healing” of materials in electronics, the damage is not generally

considered non-decreasing over time, but instead, it can ”heal” or recover. Under
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these physical conditions, a Gaussian process can be appropriate for modeling the

fluctuations in the degradation process. If we can observe this process then we

have access to valuable ”auxiliary” information that can presumably explain the

rate of degradation and therefore improve inference on failure-times. Auxiliary

reliability information can also come from covariates collected on each device, and

when degradation is latent, as we discuss, it can also come from marker variables.

• The degradation variable is a time-varying random variable that defines the

failure-time

• A marker variable is a time-varying random variable which co-varies with the

degradation variable, and assists in tracking its progress. When degradation

is latent, the marker variable forms the basis for inference about degradation

and its progress towards a threshold.

• Covariates are time-varying, possibly time-dependent deterministic variables

specific to each device, and are not assumed to follow any distribution. Co-

variates form an important part of degradation models, and we discuss them

in chapter 7.

In failure tests of engineered products or systems, failure-times are most often

attained under higher than normal stress conditions, using what are called accel-

erated life tests (ALT). The problem with such tests is that they can change the

failure mechanisms and cause the device to fail in a way that it would ordinarily

never experience under normal usage conditions. This naturally brings up the ques-

tion of what is considered normal operating/usage conditions. We assume here that

the levels of stress in ALTs will never be experience in the field. In other words

the failure-time information resulting from ALTs needs to be related to failure-time

scales in the field.
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So we see that the use of stochastic processes in modeling lifetimes is motivated

from i) an intuitive representation of degradation, ii) from a data limitation; namely

the lack of large failure-time samples, and iii) from the uncertainties generated in

using ALT lifetime data. ALTs do help increase the failure-time sample size, however

they also introduce uncertainty that is difficult to handle in models.

In conclusion, there is a need for PHM reliability models that perform ”well”

under small sample sizes, and we have above pointed out three reasons why we

would have small sample sizes:

• Not many devices to start off with

• Time/money constraints

• Accelerated test conditions are reduced in order to preserve the failure gen-

erating mechanism. Less stress means fewer samples fail in a fixed period of

time.

The first contribution in my thesis is to address the small failure-time sample

problem with a model that draws strength from surviving devices in addition to

failed ones to improve inference under smaller failure-time samples.

1.2 Reliability Models using degradation and lifetime data

It has been noted by Chown, Pullum and Whitmore 1994 [13], that reliance

on lifetime data is becoming less and less practical in engineering, and there exists

a pressing need for reliability models that capture the degradation response of a

device over time. Nair 1988 [15] states: ”... Degradation data are a much richer

source of information than time-to-failure data. The lack of statistical methods for

analyzing them prevents users from exploiting this valuable source of information

[21].

7



Degradation models are based on lifetimes, degradation and covariate mea-

surements that can be collected in the same failure-test. Failure-tests are usually

performed over a fixed time period and some devices may survive. In fact as dis-

cussed in the previous section, it is more common that most devices do survive. The

information on covariates, degradation and lifetimes, collected on both surviving and

failed devices can arguably make PHM technology possible.

1.3 First Hitting Time Degradation Models

When failure is believed to result from wearout, or damage accumulation or

as we refer to degradation, then failure-times can be defined as its first hitting time

(FHT) to a degradation threshold level, which can be known or unknown. The

class of degradation models, therefore, that we discuss we call FHT degradation

models. In FHT degradation models the definition of failure is strictly defined by

the degradation variable, which as we see next can create some ambiguity depending

on the data.

The next modeling complication therefore, is related to the definition of failure.

Under wear-out failure mechanisms, we define two categories of failure definitions:

Definition 1.1 (Direct failures). Direct failures are defined as the time when an

observable degradation variable first violates a fixed and known failure threshold, so

that the terminal level of degradation is the same for all failed devices.

Definition 1.2 (Indirect failures). Indirect failures are defined as the time when a

latent degradation variable first violates an unknown, possibly random failure thresh-

old, so that the terminal level of degradation varies across devices.

In failure-tests of electronic devices and products we observe both direct and

indirect failures. Direct failures are more commonly used for electronic devices or

components (with small number of parts), such as for power semiconductor devices
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like IGBTs, or more basic devices such as capacitors, inductors, resistors, diodes and

transistors. These devices have in common simple structures, for which there exists

an understanding of the physics of failure. Because we understand their PoF, we

know how and why they fail, and therefore can select useful degradation variables

with which to define failure-time.

In failure-tests, indirect failures, are commonly used for electronic systems

or products that are composed of many parts that can interact in complicated and

typically unknown ways. Most modern engineered products depend on sophisticated

electronics, which are housed on densely populated boards or chassis. For electronic

products there are generally no suitable PoF models, and therefore no suitable

degradation variables that can define failure. Failure instead is observed as an

external process, typically by observing the performance of the system, and failure

is defined as the lack of performance to some predefined degree. For example, a

computer freezes, a car stalls, onset of heart attack, etc. In each of these examples

there exists a complicated host system, the computer, the car the human body,

where the true health/degradation is unknown.

We are interested in reliability models that are motivated by both direct and

indirect failures. We are interested in direct failure data because at the component

level we can use PoF models to enhance the predictive power of the data-driven

models. We are interested in indirect failures because they are of greater commercial

and application level importance.

Although direct failures are based on an observable degradation variable, that

variable may not be predictive of failure, i.e., it attains the failure-threshold level

suddenly without any preceding trend. In such cases, the observable degradation

variable is called a surrogate degradation variable, and inference is based on unob-

servable (latent) degradation variables, which we also call true degradation variable.

Some examples of latent degradation variables are: the length of a crack in a solder
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joint, the surface roughness in a ball bearing fan, etc. These variables are latent

because they cannot be measured during the failure-test.

We are however, interested in the situation (experimental setup) where the la-

tent degradation variable can be measured/determined at failure, potentially through

some intrusive (postmortem or terminal) examination. Access to terminal degra-

dation measurements is important, especially when the test is designed to induce

specific failure mechanisms, and when there are known PoF models to work with. It

is difficult to observe the latent degradation variable during the test without intru-

sive and often destructive procedures, however we can measure it at the failure-time

without interfering. In the example of the solder joint, the crack length can be mea-

sured by cross sectioning and x-ray microscopy analysis, and similarly to determine

the surface roughness on the ball bearing.

Because the latent degradation is only observable at termination, a degrada-

tion model must account for its latency at any other time, motivating what we call

Latent degradation models. We believe that access to true degradation data can help

better estimate the rate and variability of degradation in fielded devices. Using the

true degradation data we gain stronger insight into the effects of the environment

and usage on the rate of degradation. The drawback of using true instead of sur-

rogate degradation data is we only have one such measurement, whereas we have

many observations on the surrogate, on each device. In this case the motivation

for a latent degradation model is only as good as the value/importance of the true

degradation data relative to the surrogate.

For indirect failure data, the need for a latent degradation model is more

obvious. The failure is assumed to occur due to wear-out, but the failure-time is

not determined based on anything we can observe. At the failure-time, however, we

are again interested in the situation where we can measure the terminal degradation

level, on one or more degradation variables.

10



Degradation models should also account for uncertain or unknown failure

thresholds. It is not uncommon in failure-tests to use arbitrary thresholds or thresh-

olds based on antiquated standards. Failure thresholds represent the strength of a

device to sustain stress, and is therefore a heterogeneous quality across devices.

Failure-thresholds may not only vary across devices, but may also vary with time.

In other words, the strength of a device can itself decay/degrade with time.

In failure tests of electronics, reliability data can be observed frequently in time

on each device, and in small failure-time sample situations, it behooves us to use

it. Longitudinal time-indexed observations on device reliability, whether observed

directly on the degradation variable or its surrogate or some higher level marker can

give strong insight on the wear-out and the strength of the device as a function of

time and therefore improve estimation. When the degradation variable is latent, as

we consider here, longitudinal measurements are made on degradation markers that

track the progress of the degradation towards a threshold, giving rise to what we

call bivariate latent degradation models.

1.4 Literature Review

Reliability models based on stochastic processes are discussed by many, and

here we mention the main references used in this thesis: Desmond 1985 [16], K.

Sobczyk 1985 and 1992, Lu and Meeker 1993 [18], Kahle 1993 [19], G. Whitmore

1995 [118], J. Lu 1995 [21], Singpurwalla 1995 [22], Doksum and Normand 1995

[117], Whitmore et al. 1998 [24], Petit and Young 1999 [25], Lee et al 2000 [26],

Lawless and Crowder 2004 [27], and more recently Lee and Whitmore 2006 [28],

Lehmann 2008, Tang and Su 2008 [29], Kahle and Lehmann 2010 [30], Wang and

Xu 2010 [31], Singpurwalla 2010 [32], and Lee et al. 2010 [33], among others. These

sources have in common the use of Gaussian processes to model measurements on,

or estimation of a degradation process leading to failure, in what are generally called
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degradation models. Few have investigated a bivariate stochastic process setting to

model lifetime and degradation data. Predominantly the bivariate structure has

been used to model latent degradation processes, and is found mostly in medical

studies, specifically in immunological and epidemiological studies. There are by far

much fewer literary references to bivariate stochastic processes in the reliability field.

We discuss some of these papers further below.

Sobczyk 1987 [34] and in his 1992 book, presents an exposition of methods

of modeling and analyzing fatigue fracture of engineering materials. He thinks of

fatigue to be random and therefore considers stochastic models for fatigue processes.

He argues that early probabilistic treatment of fatigue was mainly concerned with

the statistics of dispersed data, fitted by various probability distributions, such as

the lognormal and Weibull. He introduces the limitation that such approaches do

not provide any direct relationship to the basic fatigue mechanisms. His model-

ing approach of fatigue consists of three basic steps: (i) choosing an appropriate

stochastic model-process for fatigue accumulation; (ii) determining the probabilistic

properties of the model-process (iii) relating the model process to empirical data

and parameter estimation.

Lu and Meeker 1993 acknowledge small failure samples in engineering failure

tests, specifically in electronics systems. They motivate the need for degradation

models that can be used to define time-to-failure distributions. Based on this idea

they develop statistical methods for using degradation measures to estimate a time-

to-failure distribution for a broad class of degradation models. They use fatigue-

crack-growth data to motivate the model. For each device, they assume that degra-

dation measurements yj are available for pre-specified times tj = t1, . . . , ts, until

yj crosses the pre-specified critical level D or until a pre-specified censoring time

ts. Sample paths are modeled by a parametric general path model yj = ηj + εj,

εj ∼ N (0, σ2
ε ), and the failure distribution is written in terms of (tj, D, ηj, εj). From
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here they consider several examples where the model parameters are given specific

parametric forms, such as Weibull, Bernstein, lognormal and multivariate normal.

Kahle 1993 considers the Wiener process as a degradation model of a damage

process. He shows that for independent, not necessary identically distributed ob-

servations of process increments, for observations of lifetime-distributions and for a

mixture of these observations the assumptions of asymptotic normality of Maximum-

Likelihood-Estimations (MLE) are fulfilled. The asymptotic normality of MLEs is

used to find simultaneous confidence regions for parameters of the damage process.

Whitmore 1995 et al. model the degradation process by a Wiener process with

drift. They also model measurement errors as independent normal random outcomes

that are also independent of the degradation process. The true degradation process

is therefore separated from the observed by an error term, that they incorporate

into the model.

In her thesis J. Lu 1995 does an excellent job at motivating the need for

models that use both lifetime and degradation data for estimation and prediction.

She introduces the Wiener process as a degradation model and discusses it for a

mixed data-structure consisting of degradation observations at a set of fixed time

points 0 < t1 < t2 < . . . < tn, and failure-times si. For a failed device i, the mixed

data-structure has the following form: (xi1, xi2, . . . , xin, si), i = 1, . . . , p and for a

surviving device j: (xj1, xj2, . . . , xjn), j = p + 1, p + 2, . . . , p + q. She derives a

likelihood function L(δ, ν), and inference equations for the mixed data-structure.

She also touches on inference when the failure threshold (a) is unknown. Inference

in this case is accomplished by fixing the failure threshold level and estimating

the process parameters for many different such levels. The most suited threshold

level, given the data, can be determined by maximizing the likelihood function

L(δ̂(a), ν̂(a)) over the chosen threshold levels.

In an influential expository paper, Singpurwalla 1995, provides an overview of
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failure models, based on stochastic processes, that are suitable for describing the

lifetime of items that operate in dynamic environments.They signal a new philosophy

of life-testing experiments wherein one also monitors the environmental factors that

govern tests, and sets a tone for work in the development of models for survival

wherein the physics of failure and the characteristics of the operating environment

play a central role.

Doksum and Normand 1995, present two stochastic models that describe the

relationship between biomarker process values at random time points, event times,

and a vector of covariates. In the first model the biomarker process is a Wiener

process whose drift is a function of the covariate vector. In the second model the

biomarker process is taken to be the difference between a stationary Gaussian process

and a time drift whose drift parameter is a function of the covariates. They present

the methods principally in the context of conducting inference in a population of

HIV infected individuals.

In their 1998 paper, Whitmore et al., present a bivariate Wiener process model

for degradation processes, applied to a terminal data-structure, where degradation is

entirely unobservable. Their paper is one of the earliest sources that use a bivariate

Wiener process to model degradation. This work is the main inspiration for the

model development in part-I of my thesis. Inference is based on observations on a

marker variable that can be used to track the progress of the latent degradation.

They derive joint densities for the likelihood and apply the model to simulated

lifetime and marker data.

Pettit and Young 1999 consider both lifetime and degradation data on failure

and survived devices. They model degradation by a Wiener process, and lifetime as

its first hitting time to a fixed threshold.They extend the analysis in J. Lu 1995 by

using a fully Bayesian approach to estimation and prediction.

Lee et al. 2000, extend the bivariate Wiener process considered by Whitmore
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and co-workers 198, and model the joint process of a marker and a latent health

status. Covariates are related to the model parameters through generalized linear

regression functions.They derive formulas for predicting residual survival time and

discuss model validation on clinical trial data.

Lawless and Crowder 2004 argue that for certain types of degradation processes

a model involving independent non-negative increments is appropriate. They use,

therefore, the Gamma process as a model for degradation processes. They construct

a tractable gamma-process model incorporating a random effect and fit the model

to data on crack growth. Covariates are incorporated via an accelerated life model

by replacing process parameters with a functional of the covariates and a new set

of unknown parameters.

Lee et al. 2006 review first hitting time (FHT) models for survival data, and

introduce threshold regression for survival analysis. They argue that FHT models

can only be valuable in applications if they can include regression structures. Re-

gression structures allow effects of covariates to explain the inherent dispersion of the

data, thereby taking account of variability and sharpening inferences. Threshold-

regression refers to FHT models with regression structures that accommodate co-

variate data. The parameters of the process, threshold and time scales may depend

on the covariates.

Lehman 2008 et al. survey some approaches to model the relationship be-

tween failure time data and covariate data. In particular they consider a class of

degradation-threshold-shock models in which failure is due to the competing causes

of degradation and trauma. They express the failure time in terms of degradation

and covariates, where degradation is modeled by a process with stationary indepen-

dent increments and related to covariates through a random time scale.

Tang and Su 2008, propose to obtain the first hitting times of a degradation

process, modeled by a Wiener process with drift, over certain non-failure thresholds.
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Based on only these intermediate data, they obtain the uniformly minimum variance

unbiased estimator for the mean lifetime.

Kahle and Lehmann 2010 describe a simple degradation model based on the

Wiener process with drift. They consider the case that each realization of the degra-

dation process, both process increments and failure time are observable, and they

estimate the process parameters. They observe each sample path of the degradation

process to either a failure time or to a censoring time. They develop a likelihood

function based on the conditional distribution of the process under the condition

that the threshold level is not exceeded and the joint distribution of the conditional

process increment and lifetime variable.

Wang and Xu 2010 discuss a class of inverse Gaussian process models for degra-

dation data and associated maximum likelihood inferences. They use an expectation

maximization (EM) algorithm to obtain MLEs of the unknown parameters and the

bootstrap method to assess the variability of the MLEs.

Singpurwalla 2010 provides an interesting perspective on damage accumulation

and marker processes, a perspective and thoughts that are much related to the

ideas developed in this thesis. He talks about damage being an abstract concept,

which is not measurable, but its surrogates can be measured. With this in mind he

highlights a probabilistic architecture based on a bivariate stochastic process with

one component that is non-decreasing and the other that may fluctuate around some

mean. The non-decreasing process leads to the fluctuating observable process. He

argues that the failure threshold is random with an exponential(1) distribution, and

he calls this threshold the hazard potential of an item.

Lee et al. 2010, consider sequential observations on degradation and/or on

covariates prior to failure. They argue there is a need for simple regression methods

to handle longitudinal data, and present the use of the Markov property to do this.

They outline a model that can handle a longitudinal process with an unobservable
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health status (degradation) as well as time-varying covariates.

A large portion of the literature on degradation models in reliability is found

under accelerated degradation models. The reason as discussed earlier is due to

the need for early failures. Accelerated degradation models also use lifetime and

degradation data collected in ALTs, but differ from ”non-accelerated” degradation

models in that the data structure often includes extra complications that we address

in this work. Work on accelerated degradation models in reliability can safely find

its way back to the middle of the 20th century with early work by Epstein and Sobel

1963, Singpurwalla 1970, 1971 and 1973 [36] [37] [38], Mann et al. 1974 [39] and a

few others, then followed by Bhattacharyya and Fries 1982 [40], Nelson 1990 [41],

Carey and Koenig 1991 [42], Doksum and Hoyland 1992 [116], Meeker and Escobar

1993 [44], Whitmore and Schenkelberg 1997 [45], Lu, Park and Yang 1997 [46],

Meeker, Escobar and Lu 1998 [47], Owen and Padgett 1999 [48] ,Onar and Padgett

2000 [49], Bagdonavicius and Nikulin 2001 and 2004 [50] [51], and more recently,

Padgett and Tomlinson 2004 [52], Park and Padgett 2005 [53], Park and Padgett

2006 [54], Bae, Kuo and Kvam 2007 [55], and Meeker et al. 2009 [56].

Singpurwalla 1970 proposed to investigate the functional relationship between

parameter vector θ for the probability density function of the time-to-failure random

variable and stress vector S. With the above relationship he was interested in mak-

ing inference about the failure behavior of the device at environmental conditions

which cannot be simulated in a test. In this work, he assumes that i) the device

fails due to single failure mode and ii) that the severity of the stress level does not

change the type of life distribution, but that the stress level influences the values of

its parameters. He assumes a linear stress-failure relationship and an exponential

failure time pdf, with the hazard rate parametrized as: λi = BSi, with B unknown

parameter.

Singpurwalla 1973 discusses the problem of inference when both the location

17



and the scale parameter of the time-to-failure distribution are re-parameterized,

the former as a linear function of stress and the latter according to the Arrhenius

re-action rate model. The failure time distribution is again exponential with two

parameters λi and γi, f(t|λi, γi) = λiexp(t − γi) and λi = exp(A − B/Vi), and

γi = α − βVi, where A, B, α and β are unknown parameters. The objective is to

predict the mean time-to-failure at use conditions µu = γu + λ−1
u .

In their book Mann, Schafer and Singpurwalla 1974 discuss accelerated life

testing, models and some results. They are interested in making inference from

accelerated life tests when certain relationships between parameters of a failure

time distribution and the environmental conditions can be reasonably hypothesized.

These relationships or models are derived from an understanding of the physics of

failure (PoF) of the device under discussion. The time-to-failure random variable is

given by f(t|θ) where θ = g(S|a, b, . . .) is known except for a, b, . . . and is valid for

certain ranges of stress S. Their objective is to obtain estimates of a, b, . . . based on

life tests conducted at elevated values/levels of stress, and then use these estimates

to make inference about θ in use environment stress Su.

Bhattacharyya and Fries 1982 focus on the inverse Gaussian IG(θ, λ) as the

failure time distribution. They motivate that the genesis of the IG can be cast

in the context of cumulative fatigue, or depletion of strength. They point out

the relationship to a Wiener process crossing a fixed threshold ω, θ = ωµ−1 and

λ = ω2δ−2, where µ and δ are the Wiener process with drift parameters. In their

accelerated degradation model, the mean of the Wiener process is parameterized as

a linear function of stress as µ = α + βx, ensuring a direct relation between the

cumulative fatigue/wear/degradation and stress levels. For inference they observe

stress and failure time pairs across a range of stress settings.

Carey and Koenig 1991 describe an analysis strategy to extract reliability infor-

mation from measured degradation of devices submitted to elevated stress. Degra-
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dation is the propagation delay in an integrated logic family device, which increases

with age and temperature. The degradation model on a single device from a given

temperature group is: yn − y0 = θ(1 − exp(−
√
λtn)) + εn, where εn ∼ N (0, σ2),

θ is related to the concentration of impurities in the device and therefore to the

maximum change in propagation delay, yn − y0 is the change observed in the prop-

agation delay between times tn and t0. The effect of temperature on the maximum

degradation θ is given by log(θ) = A − (B/kT ) + η, where η ∼ N (0, σ2
η), Ti is the

absolute temperature, k the Boltzmans constant and h a random effect representing

unobserved variability.

Doksum and Hoyland 1992 consider step stress accelerated testing, where fail-

ure is modeled in terms of accumulated decay reaching a threshold ω. Accumulated

decay is assumed governed by a Wiener Process W (y). The distribution of W (y)

depends on stress level s(y). The stress level s(y), in turn, is assigned to the device

at each time point y. Time-to-failure is given by Y = IG(y|µ, λ). Their accelerated

degradation model is given by: W (y) = W0(t+ α[y − t]) if y ≥ t and W (y) = W0 if

y < t, where W0 is the Wiener process under the nominal stress level 0. This model

has two stress levels and a decay rate changing from η to αη as y crosses the stress

change point at time t. In the two stress level case, the distribution of the failure

time is IG(τ(y)|µ, λ), τ(y) = y if y ≤ t and equal to t + α(y − t) if y > t. The

model corresponds to making a monotonic transformation of time Y . They think

of Y as the true (calendar) time, and Z = τ(Y ) as the effective (non-accelerated)

time. Lastly in their model they further parameterize α as a function of stress.

Meeker and Escobar 1993 review research and issues in accelerated testing, and

make the point that there are two types of accelerated tests: i) Accelerated Life Tests

(ALT) and ii) Accelerated Degradation Tests (ADTS). In ALTs one observes time-

to-failure information and typically assumes a time-to-failure distribution. In ADTS

one observes at one or more points in time the amount of degradation for a device
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and typically assumes a model for degradation as a function of time. Traditional

accelerated test statistical models assume a relationship(s) between the constant

stress model parameters.

Whitmore and Schenkelberg 1997 consider a degradation process to be a

Wiener diffusion process with a time scale transformation. The model incorporates

Arrhenius extrapolation for high stress testing. A time transformation accommo-

dates for a time dependent Wiener process drift parameter. The time transforma-

tion depends on the particular degradation mechanism. They encode a relationship

between the parameters and stress level through a functional an Arrhenius model.

Meeker, Escobar and Lu 1998 give a review article on degradation modeling

with accelerated life and degradation data. They assume that the degradation fol-

lows a path defined by: yij = Dij+εij,i = 1, . . . , n (item) and j = 1, . . . ,mi (number

of observations). In this model y is the predicted degradation path, D is the actual

degradation path and ε ∼ N (0, σ2
ε ) the error term. They define Dij = h(tij,βi);

βi = (β1i, . . . , βki), and an Arrhenius model to describe the effect of temperature

on the rate R(temp) = fun(temp) of a simple first order chemical reaction. They

define the acceleration factor AF = R(temp)/R(tempU). The chemical reaction

model is given as D(ttemp) = D∞ × (1 − exp[−RU × AF (temp) × t]). Solving

for the failure time at temperature T (temp) = T (tempU)/AF (temp). Therefore if

T (rempU) ∼ Weib(αU , β) then T (temp) ∼ Weib(αU/AF (temp), β).

Owen and Padgett 1999 model the strength of materials with cumulative dam-

age models. They assume that at i) each increment in stress (can be thought of as

time) causes a random amount of non-negative damage D, subject to some distri-

bution function fD and ii) the system has a fixed theoretical strength (threshold)

ψ, but the initial strength W is a random quantity. The cumulative damage after

n+1 increments in stress is represented by: Xn+1 = Xn+Dng(Xn), with g(u) being

the damage model, for example g(u) = 1 gives the additive damage model. They
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let N be the number of increments of stress applied to the system until failure and

express the survival probability as: P (N > n) =
∫∞

0
Fn(w)fW (w)dw. The acceler-

ation variable in their work is the gauge length of the specimen L, knowing that

longer specimens fail faster or equivalently show smaller tensile strength. Therefore,

the distribution of the initial strength variable is parameterized with L.

Onar and Padgett 2001 consider models for the strength of systems based on

cumulative damage arguments. The models are based on a three-parameter inverse

Gaussian distribution, and incorporate system size as a known acceleration variable.

The stress level is denoted as L, the lifetime at stress level L as XL, with cdf FXL(x)

and X ∼ IG(µ, λ). Under a cumulative damage model, a system is placed under

a steadily increasing stress or load until failure occurs. It is assumed that the load

is increased in small discrete increments and that each of these increments causes a

random amount of non-negative damage D > 0, with cdf FD. The systems initial

strength is given by y, and the initial damage by X0 (due to existing flaws or

other damages). The cumulative damage is given as: Xn+1 = Xn + Dn+1h(Xn),

and consider h(·) = 1. Again the survival probability is expressed as a function

of the initial strength W , P (N > n) =
∫∞

0
Fn(w)fW (w)dw. The initial damage

represents the reduction in strength (or reduction in lifetime) due to inherent flaws

in the system. They assume that the flaw process can be described by a stationary

Gaussian process which given the theoretical strength ψ, yields truncated Gaussian

distribution function for W . They let S represent the total load after N increments

(or calendar time), then S ∼ IG(Λ(θ;L)/ζ,Λ(θ;L)/σ2).

Bagdonavicius and Nikulin (20012) consider degradation models influenced by

covariates under accelerated test conditions. They model degradation by a gamma

process Z(t) = σ2γ(t), where γ(t) ∼ Gamma(1, ν(t)) = Gamma(1,m(t)/σ2). They

consider functional forms for the mean degradation m(t) similar to Koenig and

Carey (1991), where m(t) is parameterized in some way m(t) = m(t, g), where
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g = (g0, . . . , gm)T are unknown parameters. They assume that the process has

independent increments and therefore the moments are known. A failure caused

by degradation occurs when Z(t) reaches the value z0, T = inf(t|Z(t) ≥ z0).

The stochastic process under the influence of covariates x, is given by: Zx(t) =

σ2γ
∫ t

0
exp(βTx(s))ds.

In addition to degradation models for latent degradation processes, there is also

a need as we motivate in the thesis, for degradation models on partially observable

degradation processes. In this context, there is no visible literature, and the work

in this thesis we hope can help shed some light and inspire future research.

Bivariate degradation models have predominantly been used to analyze termi-

nal data observations, mostly because degradation is latent. For longitudinal data,

the bivariate model has not been extensively studied. Longitudinal treatment of

markers in the context of bivariate Wiener models can be found in Sy et al. 1997,

Henderson et al. 2000, and Guo and Carlin 2004, among a few selected others,

and predominantly in HIV AIDS studies. No visible literature exists on bivariate

longitudinal degradation models in reliability.

Failure thresholds in most of the work in bivariate degradation models are

considered known and fixed for a given sample of devices. It is however desirable,

and indeed a relevant topic in reliability analysis today, to accommodate random or

uncertain failure thresholds. Literature on random failure thresholds within Wiener

process degradation models, can be found in J. Lu 1995, Singpurwalla, 2010, Wang

and Coit 2007. For bivariate degradation models, however, this is still an open area

of research.

1.5 Contributions

We develop a new degradation model that extends the bivariate Wiener process

model introduced by Whitmore et al. 1998 and allows us to incorporate:
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1. Terminal degradation observations

2. Longitudinal marker observations

3. Variable failure thresholds

With the above extensions, we contribute to the improvement of bivariate

latent degradation models, and more broadly to the field of reliability. Our new

model draws strength from data on surviving devices in addition to failed ones and

shows improved inference under a terminal data-structure. Results obtained in this

thesis show that our model is suitable for:

1. Small failure-time samples

2. Reduced accelerated stress conditions

3. Non-predictive observable degradation data
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2. DATA STRUCTURE AND NOTATION

The common characteristic in failure-tests of electronics is the generally latent

degradation variable. This is why as discussed earlier, failure-test designs for elec-

tronics consider direct failures based on observable variables. Test centers typically

invest in sophisticated failure analysis equipment that can be used to destructively

and non-destructively examine the device. Typically destructive tests are used to

determine the mode of failure and validate hypothesis regarding the targeted failure

mechanism. Often when the there exists PoF models and identifiable degradation

variables, these destructive tests can be used to measure the degradation, which

ordinarily is latent.

Not all failure analysis tests are destructive. Non-destructive tests typically

rely on more sophisticated and expensive equipment, and are therefore not used

often. Generally, pre-failure tests are not common because they interfere too much

with the controlled test environment and add undesirable unexplainable levels of bias

and variation. The main idea is that modern failure testing facilities are equipped to

be able to measure degradation, and we argue here that this information should be

used in modeling lifetimes in electronics and overall for developing PHM technology.

2.1 Failure and degradation data in electronics

Next we present three examples of different types of direct failures observed

in electronics during failure tests, and two examples of indirect failures. Definitions

for direct and indirect failures are given in chapter 1.



Fig. 2.1: Crack formation in a solder joint

2.1.1 Examples of direct failures

Direct failures are characteristic of electronics, in that although they are de-

fined by an observable degradation variable, that variable is not predictive of failure.

Therefore, through FMMEA and experimentation, more valuable degradation vari-

ables are determined. We consider in the following material, three types of failures

in electronic components:

1. Interconnect failures due to solder joint crack formation,

2. Dielectric failures due to growth of tin whiskers

3. Insulated gate bipolar transistor (IGBT) failures due to die-attach or gate-

oxide damage

1. Interconnect failures typically occur due to the formation of a cracks in

solder joints, printed circuit board traces and connectors. Often the crack starts

at the surface of the joint, and propagates inwards [57] (see figure 2.1). Failure is

defined by a DC open circuit, which occurs when the solder joint first ruptures and

current stops flowing. The DC resistance of the material is typically used as the

degradation variable.
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According to Kwon et al. [58], however, DC resistance, often responds too lit-

tle (for example, changes in DC resistance are often obscured by the environmental

noise in a real life situation) or too late (for example, after the crack is large enough

to result in a DC open circuit). Therefore, they argue, DC resistance measurements

would not be expected to provide early indications of interconnect degradation.

Instead, they propose using RF impedance as the degradation variable. They ar-

gue that due to the skin effect, a phenomenon wherein signal propagation at high

frequencies is concentrated near the surface of a conductor, RF impedance exhibits

increased sensitivity to small cracks initiated at the surface of an interconnect. Time

domain reflectrometry (TDR) is a method used to measure RF impedance.

2. A dielectric (or insulator) is a material that resists the flow of electric charge,

and they fail when they collapse (typically due to high voltage) and start to conduct.

The collapse of insulator is sometimes caused by the growth of protruding material

called whiskers, that can grow to create a conductive path between two differently

biased conductors. Tin whiskers are electrically conductive, crystalline structures of

tin that sometimes grow from surfaces where tin (especially electroplated tin) is used

as a final finish. Electronic system failures may occur due to short circuits caused

by tin whiskers that bridge closely-spaced circuit elements maintained at different

electrical potentials. Failure is defined by a DC open circuit, and the degradation

variable used is again DC resistance.

DC resistance, is again not useful for failure prediction since it suffers from the

same effects as in the previous example. Instead, degradation is explained in terms

of the growth of whiskers, for example, the average length of all whiskers larger than

a predefined nominal length (threshold), or the number of whiskers larger than a

predefined threshold, etc. The density and length of whiskers can be measured in a

laboratory setting [59].
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Fig. 2.2: Whisker growth, seen at initial stage

3. IGBTs are used in many modern appliances to regulate DC voltage. The

failure modes for the IGBT include short circuits, increased leakage current, or loss

of gate control. The identified failure mechanisms are the gate-oxide damage and

the die-attach delamination. The potential failure causes are high electric fields

and/or high temperatures. Failure is defined by latch-up, a term used for integrated

circuits (ICs) to describe a particular type of short circuit which can occur in an

improperly designed circuit. Failure is defined by a DC open circuit, or equivalently

low DC resistance.

Patil et al. [60], found alternative degradation variables in the threshold volt-

age believed to be a response to gate-oxide damage and the collector-emitter-on

voltage believed to be a response to die-attach damage. Both these variables show

a trend as a function of time. In addition, a third degradation variable, can be

determined using scanning acoustic microscopy (SAM) analysis. SAM is a non-

destructive analysis technique that can be used to detect delaminations and voids

in microelectronic packages. Figure 2.3 shows the SAM analysis on a pre and post

aged IGBT part, with visible degradation. In the images, bright areas indicate in-

creased reflection due to degradation. In this case, the amplitude of the reflected

signal can be used as a measure of degradation.
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Fig. 2.3: Pre and post aging of an IGBT part. Increased reflectivity picked up by SAM
indicates degradation

The above examples motivate the need for degradation variables better suited

for failure-time prediction. In all three cases failure analysis methods are used to

measure more useful degradation variables, which theoretically are more faithful to

the underlying failure mechanism(s). Some failure analysis methods, like SAM, can

only be performed after failure has been determined, while others, like TDR can be

performed more frequently. In this thesis, we consider only terminal measurements

on degradation and longitudinal observations on markers.

2.1.2 Examples of indirect failures

Computers, observed from the system level, which includes both hardware

and software functionality, exhibit indirect failures. Examples of indirect failures in

computers are: sudden shut-down or freeze (blue screen). Hardware variables, like

the motherboard temperature, %CPU throttle, the fan speed, and many more are
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readily measurable in most personal computers. Software variables are also readily

available, specifically, event indicator variables that flag the occurrence of various

types of programmed errors and warnings. Event processes can be used to model

either the degradation or a marker to degradation over time.

Observed from the system level, Gas-Turbine engines, also exhibit indirect

failures, like when the engine unexpectedly stops producing power. Before engines

stop producing power, they exhibit other intermediate events, that are typically

used as failures. One such event is called compressor surge or stall, which results

when the compressor can no longer compress the incoming air. Typically most

turbine engine failures result from blade degradation due to fatigue and creep of the

materials.

2.2 Data-Structures

In chapter 1 we discussed the possible modeling complications that can arise

due to the type of data and its structure. We talked about the lack of adequate

failure time samples observed in failure-tests. We also discussed data situations

where the degradation variable is unobserved and has to be tracked by a marker. In

this chapter we present three data structures:

1. Terminal-marker only, abbreviated as (TM)

2. Terminal-marker and degradation, abbreviated as (TMD)

3. Longitudinal and terminal-marker with k intermediate marker-measurements,

plus terminal degradation, abbreviated as (TMDL)

The TM data structure is based on Whitmore et al. 1998, and forms the basic

data-structure to which we augment terminal degradation and longitudinal marker

data. We consider one and two marker observations as separate cases. Table 2.1

summarizes the variables used under each data-structure.
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Tab. 2.1: Summary of variables, their names, description and realizations, under each
data-structure

Terminal Longitudinal
Variable Structure Structure
Name Description TM TMD TMDL
T Event time s ∧ τ s ∧ τ s ∧ τ

= S ∧ C
S Failure-time s s s
C Censored-time τ τ τ
∆ Failure indicator (0,1) (0,1) (0,1)

=I[S≤C]

Y Marker y(T ) y(T ) y = (y(t0), . . . , y(T ))
Z Covariate z(T ) z(T ) z = (z(t0), . . . ,z(T ))
X Degradation x(s) x(T ) x(T )

2.2.1 Terminal Structure

A cohort of n independent devices are monitored over a fixed time period [0, τ ],

where the end of testing at τ is considered nonrandom, and known, and typically

chosen as a cost and time constraint. The number of devices that fail by time τ is

denoted by q =
∑

i=1,...,n I(si < τ), a binomial random variable that describes the

natural proportion of failed to survived devices in a fixed test period [0, τ ]. The

number of devices that survive by time τ is denoted by p, such that p+ q = n. The

failure threshold is again represented by a scalar a, and is assumed known and fixed.

Under the TM data structure, for each device we observe the lifetime T =

min(S, τ), the marker Y (T ) and the degradation X(T ) at T . For failed devices

we observe T = s, Y (s) and X(s) = a. For surviving devices we observe T = τ ,

and Y (τ). The TM data-structure is a subset of the data available under the TMD

data-structure. In the TMD data structure we also observe terminal degradation

on surviving devices, that is X(τ). In both TM and TMD we assume that the

degradation process starts at time t = 0 is equal to zero, X(0) = 0.
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2.2.2 Longitudinal Structure

Similarly, a cohort of n independent devices are monitored over a fixed time

period [0, τ ], where the end of testing at τ is considered nonrandom, and known,

and typically chosen as a cost and time constraint. The number of devices that fail

by time τ is again denoted by q, and the number that survive by p, p + q = n.

The failure threshold is again represented by a scalar a, and is assumed known and

fixed. For each device we collect information on a fixed covariate process Z(t), and

a marker process Y (t) correlated with the latent degradation process X(t), at a

succession of scheduled increasing times t = t1, t2, .... Equal spacing of the times tj

is not necessary; indeed, these times could be different for each device, but if random

must be assumed independent of the processes X(t), Y (t), Z(t). These observations

can be made only up to the terminal observation time T , where T = min(S, τ) and

the failure-time variable S is defined as the first (random) time at which the process

X(t) hits the threshold a.

For failed devices, vectors Y = (Y (t1), . . . , Y (tK)), z = (z(t1), . . . , z(tK)) and

the degradation variable X(S) at time S are observed, where tK = max{tj : tj ≤ T},

and K is the number of observations on the marker (random) before the failure. The

degradation level for failed devices (those with S < τ) is by definition equal to the

failure threshold, that is, X(S) = a.

For surviving devices, vectors Y = (Y (t1), . . . , Y (tm)), z = (z(t1), . . . , z(tm))

and the degradation variable X(τ) at time τ are observed, where m is the total

number of scheduled marker measurements in a test. The degradation level for

surviving devices is expected to vary and be less than the threshold level, that is,

X(τ) < a.
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3. ESTIMATION THEORY

3.1 Maximum Likelihood Estimators

Let θ = (θ1, . . . , θk) be a set of estimator and X = (X1, . . . , Xn) be a sample of

size n with an assumed pdf or pmf f(X|θ). Then, knowledge of θ yields knowledge

of the entire population. Hence, it is natural to seek a method of estimating θ, i.e.

a point estimator.

Definition 3.1 (Point Estimator). A point estimator of a parameter θ, is a

function W (X1, . . . , Xn) of a sample, that is, any statistic is a point estimator of

the same dimension as θ.

In many cases, there is an obvious candidate for a point estimator, for example,

a sample mean is a natural estimator of a population mean. However, when we leave

a simple case like this, intuition will often lead us astray. Therefore, it is useful to

have techniques of arriving at reasonable candidates for consideration.

The method of maximum likelihood is by far the most popular technique for

deriving estimators. The following are some of the advantages of this estimation

technique. Maximum likelihood provides a consistent approach to parameter esti-

mation problems. This means that maximum likelihood estimates can be developed

for a large variety of estimation situations. For example, they can be applied in

reliability analysis to censored data under various censoring models. Also, it is well

known that maximum likelihood methods have desirable mathematical and opti-

mality properties. We will discuss these properties in the next section.



The disadvantages of maximum likelihood estimation include the following.

The likelihood equations need to be specifically worked out for a given distribution

and estimation problem. The mathematics is often non-trivial, particularly if confi-

dence intervals for the parameters are desired. The numerical estimation is usually

non-trivial. Maximum likelihood estimates can be heavily biased for small samples

and can be sensitive to the choice of starting values. Maximum likelihood estimation

requires the adoption of strong assumptions about the joint density of the data, if

the assumptions fails, MLEs may be inconsistent.

Consider the likelihood function L(θ|X) = L(θ1, . . . , θk|X1, . . . , Xn).

Definition 3.2 (Maximum Likelihood Estimator). For each sample point X,

let θ̂(X) be the value of the parameter vector at which L(θ|X) attains its maximum

(over a neighborhood of the true parameter) as a function of θ, with X being held

fixed. A maximum likelihood estimator (MLE) of the parameter vector θ based on a

sample X is θ̂(X).

3.2 Methods of Evaluating Estimators

For ease of exposition, in this section we assume that the parameter vector

consists of a single parameter θ. All of the results presented here extend to the case

of a multi-parameter distribution.

3.2.1 Finite Sample Measures

We first discuss finite sample measures of the quality of an estimator, beginning

with its mean squared error.

Definition 3.3 (Mean Squared Error). The mean squared error (MSE) of an

estimator W of a scalar parameter θ is the function of θ defined by: Eθ(W − θ)2.
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Other distance measures between the parameter and its estimator can be used

as a measure of performance of an estimator. In general, any increasing function

of the absolute difference |W − θ| can be considered, but the MSE has at least two

advantages over other distance measures. First, it is quite tractable analytically

and, second, it has the interpretation:

Eθ(W − θ)2 = V arθW + (EθW − θ)2 = V arθW + (BiasθW )2

where we define bias of an estimator as follows:

Definition 3.4 (Bias of an Estimator). The bias of a point estimator W of

a parameter θ is the difference between the expected value of W and θ, that is

BiasθW = EθW − θ. An estimator whose bias is identically (in θ) equal to 0

is called unbiased and satisfies EθW = θ ∀ θ.

Thus, the MSE incorporates two components, one measuring the variability

of an estimator and the other its bias (accuracy). To find an estimator with good

MSE properties, we need to find estimators that control both variance and bias.

Definition 3.5 (UMVUE Estimator). An estimator W ∗ is the best unbiased

estimator of θ if it is unbiased and for any other unbiased estimator W , we have

V arθW
∗ ≤ V arθW ∀ θ. W ∗ is also called a uniform minimum variance unbiased

estimator (UMVUE) of θ.

Theorem 3.1 (Cramer-Rao Inequality). Let X1, . . . , Xn be a sample with pdf

f(x|θ) and let W (X1, . . . , Xn) be any estimator satisfying:

d

dθ
EθW (X) =

∫
∂

∂θ
[W (x)f(x|θ)]dx (3.1)

and V arθW (X) <∞, then
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V arθ(W (X)) ≥

( d
dθ
EθW (X)

)2

Eθ

(( ∂
∂θ
logf(X|θ)

)2
) (3.2)

This theorem specifies the lower bound on V arθW , thus an estimator W which

attains this variance is UMVUE. Such an estimator is also referred to as finite-

sample efficient. The quantity Eθ((∂/∂θlogf(X|θ))2) is called the Information

number or Fisher information of the sample. As the information number gets

bigger and we have more information about θ, we have a smaller bound on the

variance of the best unbiased estimator.

Remark 3.1. If the estimator W (X1, . . . , Xn) is unbiased, the Cramer-Rao lower

bound is simply the reciprocal of the Fisher Information.

Remark 3.2. In the multi-parameter case, where θ = (θ1, . . . , θk), we have a matrix

analogue of the Fisher Information, which we call the Information Matrix. The

elements in the matrix are defined as follows:

(
I(θ)

)
i,j

= E

[(
∂

∂θi
logf(X|θ)

)(
∂

∂θj
logf(X|θ)

) ∣∣θ] (3.3)

The Cramer-Rao lower bound for θi is then the ith diagonal element of the

inverse of the Information Matrix.

Remark 3.3. A sample-based estimate of the Fisher Information is the Observed

Fisher Information, which is defined as −∂2/∂θ2logL(θ|X)|θ=θ̂.

Notice that the estimation of the Fisher information is a two-step process,

first we approximate the expression for the Fisher information with the sample-

based analogue and then we estimate the resulting approximation by replacing θ

with θ̂. A computation result which aids in the application of the theorem is stated

in the lemma below.
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Lemma 3.1. If f(x|θ) satisfies

d

dθ
Eθ

(
∂

∂θ
logf(X|θ)

)
=

∫
∂

∂θ

[(
∂

∂θ
logf(x|θ)

)
f(x|θ)

]
dx

then

Eθ

((
∂/∂θlogf(X|θ)

)2
)

= −Eθ
(
∂2

∂θ2
logf(X|θ)

)
Suppose we have two estimators W1 and W2 of θ. W1 is said to dominate W2 if

Eθ(W1−θ)2 ≤ Eθ(W2−θ)2 holds for all θ, with strict inequality holding somewhere.

3.2.2 Asymptotic Evaluations

Asymptotic properties of estimators describe the behavior of estimators as the

sample size becomes infinite. The power of asymptotic results is that when we let

the sample size become infinite, calculations simplify. On a practical level, these

results can be thought applicable to large, as opposed to infinite samples.

Definition 3.6 (Consistent Sequence of Estimators). A sequence of estimators

Wn = Wn(X1, . . . , Xn) is a consistent sequence of estimators of the parameter θ if,

for every ε > 0 and every θ ∈ Θ,

limn→∞Pθ(|Wn − θ| < ε) = 1

Informally, this says that as the sample size becomes infinite, the estimator

will be arbitrarily close to the parameter with high probability. Equivalently, we

can say that the probability that a consistent sequence of estimators misses the true

parameter is arbitrarily small (or converges to 0).

Theorem 3.2 (Asymptotic Normality). An asymptotically normal sequence of

estimators Wn(X1, . . . , Xn) of θ is a consistent sequence whose distribution around

the true parameter θ approaches a normal distribution with standard deviation shrink-
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ing in proportion to 1/
√
n as the sample size n grows. Using

D−→ to denote conver-

gence in distribution, Wn is an asymptotically normal sequence of estimators if

√
n(Wn − θ)

D−→ N (0, V )

for some V , which is called the asymptotic variance of the estimator.

In the spirit of the Cramer-Rao lower bound, there is an optimal asymptotic

variance.

Definition 3.7 (Asymptotic Efficiency). A sequence of estimators Wn is asymp-

tomatically efficient, if it is asymptotically normal and the asymptotic variance is

identical to the Cramer-Rao lower bound.

In practice, we do not deal with infinite samples and therefore it makes sense

to talk instead of ”large-sample efficiency”. Informally, an estimator Wn of θ is

large-sample efficient if, for a large enough sample size n, its empirical distribution

is centered around the true value of θ and it’s empirical variance is equal to V/n plus

a remainder of smaller order than 1/n, where V is the approximated Cramer-Rao

lower bound. To approximate the Cramer Rao lower bound for a given sample size

n, we approximate the expected information number with the observed information

number, −∂2/∂θ2logL(θ|X)|θ=θ̂.

Large-sample efficiency of a sequence of estimators Wn(X1, . . . , Xn) can be

checked via simulation by sampling k independent vectors (X1
n, . . . ,X

k
n) of size n,

computing Wn= (W 1
n , . . . ,W

k
n ) and studying the sampling distribution of Wn as n

grows. For an asymptotically efficient sequence, we expect the sampling distribu-

tion to look more and more normal, centered around the true parameter, with the

empirical estimate of the variance asymptotic to V/n where V is the approximated

(via observed information number) Cramer Rao lower bound for large n.
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Definition 3.8 (Asymptotic Relative Efficiency). If two estimators Wn and Vn

satisfy
√
n[Wn − g(θ)] → N [0, σ2

W ], and
√
n[Vn − g(θ)] → N [0, σ2

V ] in distribution,

the asymptotic relative efficiency (ARE) of Vn with respect to Wn is:

ARE(Vn,Wn) =
σ2
W

σ2
V

(3.4)

Definition 3.9 (Estimated Asymptotic Relative Efficiency). Estimated asymp-

totic relative efficiency is defined as the ratio of asymptotic variance estimates as

follows:

ÂRE(W1,W2) =
σ̂W

2

σ̂V
2 (3.5)

By Definition 3.9, the asymptotic variances are estimated by the Cramer-Rao

lower bound.

3.3 Asymptotic Properties of Maximum Likelihood Estimators

Theorem 3.3 (Consistency of MLEs). Let X1, X2, . . . , be iid f(x|θ), and let

L(θ|x) =
∏n

i=1 f(xi|θ) be the likelihood function. Let θ̂ denote the MLE of θ. Under

regularity conditions [61] on f(x|θ) and, hence, L(θ|x), for every ε > 0 and every

θ ∈ Θ,

limn→∞Pθ(|θ̂ − θ| ≥ ε) = 0

Theorem 3.4 (Asymptotic Efficiency of MLEs). Let X1, X2, . . . , be iid f(x|θ),

let θ̂ denote the MLE of θ. Under the regularity conditions [61] on f(x|θ), and,

hence, L(θ|x),
√
n[θ̂ − θ]→ N [0, V (θ)]

where V (θ) is the Cramer-Rao Lower Bound. That is, θ̂ is a consistent and asymp-

totically efficient estimator of θ.
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Note that asymptotic efficiency is defined only when the estimator is asymp-

totically normal and, asymptotic normality implies consistency.

3.4 Computing

3.4.1 Observed Fisher Information Matrix

The Cramer-Rao lower bound is approximated by the observed Fisher Infor-

mation given by:

Î(θ)i,j = − 1

n

n∑
i=1

5⊗2logf(X|θ̂(X)) (3.6)

The matrix of second partial derivatives is approximated by the Hessian matrix

H , which is computed using finite difference schemes to numerically evaluate first

and second order derivatives of the log-likelihood function.

3.4.2 Multivariate Integration using Gaussian Quadratures

Likelihood functions for longitudinal data as discussed in chapter 5, require

the evaluation multivariate integrals. Specifically we are interested in numerically

integrating analytically intractable joint densities. For smooth functions, however,

like those formed by the products of smooth functions by jointly Gaussian densi-

ties, where smoothness is used to ensure that the integrands are well approximated

by polynomials over most of the range of the density, Gaussian Quadrature rules

are generally preferred. This is because the integrand is well approximated by a

polynomial function.

We approximate the integral of a function f by the sum of its functional values

at a set unequally spaced points xi (nodes), multiplied by appropriately chosen

weighting coefficients wi, i = 1, . . . , N , where is fixed and known. The basic idea

of Gaussian quadratures is to allow flexibility in not only choosing the weighting

coefficients, but also the location of the location of the nodes.
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We calculate nodes x1, . . . , xn and coefficients w1, . . . , wn such that

∫ b

a

f(x)dx ≈
N∑
i=1

wif(xi) (3.7)

The theory behind Gaussian quadratures is closely tied to that of orthogonal

polynomials. We consider the most common and useful case: Legendre polynomials

P (x).

Theorem 3.5 (Fundamental theorem of Gaussian Quadratures). The nodes

of the N-point Gaussian quadrature formula given by equation (3.7) are precisely

the roots of the orthogonal polynomial P (x) for the same interval and weighting

function.

Given the nodes xi, i = 1, . . . , N one can find the weights wi by solving a set

of linear equations for the weights such that the quadrature (3.7) gives the correct

answer for the integral of the first N − 1 orthogonal polynomials. There are more

efficient ways of computing weighting coefficients, such as through the eigenvalue

decomposition of the symmetric, tridiagonal Jacobi matrix. For further details we

point to the following references [62].

We implement Gaussian quadratures by first selecting N , and computing xi

and wi, i = 1, . . . , N , and storing the vectors into memory. When integration is

required we apply (3.7) using the stored nodes and corresponding nodes.

3.4.3 Nonlinear Optimization

Maximum likelihood estimation involves finding the maxima of the multidi-

mensional log-Likelihood function, constrained by the range of the parameter values

θ. To find the maxima we need to solve a nonlinear constrained optimization prob-

lem. In this section we simply define the optimization problem we face, without any

exposition of the relevant theory.

40



4. WIENER PROCESS AS A DEGRADATION MODEL

Degradation is typically thought to act on a device over time, either as a

series of adverse events or as a continuous process. Degradation is also associated

with failure or other intermediary health related events. In this work we model the

evolution of degradation as a stochastic process, namely through Wiener process

with drift {X(t)}, which is defined later in this chapter. The idea is that such a

process has properties useful for modeling the accumulation of damage, represented

by degradation, which starts at some nominal low level at the start of life and reaches

a failure-threshold at end of life. In this chapter we work with a fixed and known

failure-threshold, and later in chapter 8 investigate a variable failure-threshold.

A Wiener process model is not always appropriate as a degradation model,

especially for strictly monotonically increasing degradation. However, due to the

possibility of healing, the fluctuations of the Wiener process, are appropriate for

modeling degradation in electronics. We extend Whitmore’s bivariate Wiener model

to accommodate a new data-structure that includes degradation, in addition to

terminal marker observations. In chapter 5, we utilize this extension to model

longitudinal marker observations.

4.1 Mixed-Type Densities

The joint densities in the Whitmore and our extended model are of mixed

type. They require the joint relationship between continuous and discrete random

variables. Degradation and marker variables are considered continuous type ran-



dom variables, while the failure-indicator variable is considered a discrete random

variable. In this section we define some of the machinery for specifying mixed type

joint densities.

Let U be a continuous random variable with density f(u) and let V be a

discrete random variable taking values vi, i = 1, 2, . . . , n, with probabilities P (vi).

To characterize the relationship between U and V we specify the conditional density

f(u|vi) or the conditional probability P (vi|u). For any a ≤ b the conditional density

f(u|vi) must satisfy:

∫ b

a

f(u|vi)dx = P (a ≤ U ≤ b|V = vi)

Assuming that all continuous-variable densities and joint densities are contin-

uous functions of their arguments u, the conditional probability P (vi|u) is defined

as the limit of P (vi|u ≤ U ≤ u+ ε) as ε goes to zero.

P (vi|u) = limε→0 P (V = vi|u ≤ U ≤ u+ ε)

= limε→0
P (V = vi, u ≤ U ≤ u+ ε)

P (u ≤ U ≤ u+ ε)

= limε→0
P (u ≤ U ≤ u+ ε|V = vi)P (V = vi)

P (u ≤ U ≤ u+ ε)

= limε→0

∫ u+ε

u
f(q|vi)dqP (V = vi)∫ u+ε

u
f(q)dq

If f(u) and f(u|vi) are all continuous function of u, then by the mean value

theorem:

P (vi|u) =
f(u|vi)P (vi)

f(u)
(4.1)

The joint distribution of U and V is specified through function ψ(u, vi) such

that P (a ≤ U ≤ b, V ∈ V) =
∫ b
a

∑
i∈I ψ(u, vi)du, where I is a subset of integers
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(1, 2, . . . , n) and V = {vi|i ∈ I}.

∫ b
a

∑
i∈I f(u|vi)P (vi)dx =

∑
i∈I P (a ≤ U ≤ b|V = vi)P (V = vi)

=
∑

i∈I P (a ≤ U ≤ b, V = vi) = P (a ≤ U ≤ b, V ∈ V)

The product f(u|vi)P (vi) plays the role of the bivariate function ψ(u, vi).

Hence by equation (4.1) so does P (vi|u)f(u). Material on mixed-type densities

is taken from [71].

4.2 Degradation Model

The basic degradation model used in this work is given by the Wiener process

with drift:

X(t) = x0 + νXt+ σXWX(t) (4.2)

A Wiener process X(t) with drift νX and variance σ2
X has stationary and

independent Gaussian increments with probability density given by:

fX(t)(x) =
1

σX
√
t
φ

(
x− x0 − νXt

σX
√
t

)
(4.3)

It is assumed that each device experiences its own degradation process which

is independent of other devices. Devices from the same ”family”, having the same

design, are assumed to have the same drift and variance parameters. Covariates can

be used to model the heterogeneous drift in the degradation process as a function

of some other parameters α, β, . . .. In electronics, accelerated lifetimes are most

common, induced by higher than normal experimental stress factors z, such as

temperature, humidity and pressure. It becomes important to model the influence

of such stressors on the rate of degradation. We discuss this further in chapter 7.
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4.3 Definition of a Wiener Process

The treatment of the Wiener process starts by defining it as a process on a

probability space (Ω,F , P ). Assume also that for every t ∈ [0,∞) we are given a σ-

algebra Ft ⊂ F such that Fs ⊂ Ft for t ≥ s. We call such a collection of σ-algebras

an (increasing) filtration of σ-algebras.

Definition 4.1. A process Wt on a probability space (Ω,F , P ) is called a Wiener

process if:

• Sample paths Wt(ω) are continuous function of t for almost all ω.

• For any k ≥ 1 and 0 ≤ t1 ≤ . . . ≤ tk, the random vector (Wt1, . . . ,Wtk) is

Gaussian with covariance matrix Σ(ti, tj) = E(Wti,Wtj) = ti∧ tj, where 1 ≤ i,

j ≤ k, and where s ∧ t = min(s, t)

[63]

Lemma 4.1. A process Wt on a probability space (Ω,F , P ) is a Wiener process if

and only if:

• Sample paths Wt(ω) are continuous function of t for almost all ω

• W0(ω) = 0 for almost all ω

• For 0 ≤ s ≤ t, the increment Wt −Ws is a Gaussian random variable with

mean zero and variance t− s

• Random variables Wt0 ,Wt1 −Wt0 , . . . ,Wtk −Wtk−1
are independent for every

k ≥ 1 and 0 = t0 ≤ t1 ≤ . . . ≤ tk.

[63]
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Remark 4.1 (Distribution). Since Wt −Ws ∼ N (0, |t − s|), it follows that ξ :=

(Wt −Ws)|t − s|−1/2 ∼ N (0, 1) for t 6= s and the distribution of Wt −Ws has the

density:

f(x) =
1√

2π|t− s|
exp

(
− x2

2|t− s|

)
(4.4)

Definition 4.2 (Independence of sigma-algebras). In the probability space

(Ω,F ,P ), let F1, . . . ,Fk be sub-sigma algebras of F . We say that these sigma-

algebras are independent if:

Pr

(
k⋂
i=1

Ai

)
=

k∏
i=1

Pr(Ai)

for all Ai ∈ Fi.

Definition 4.3 (Independence of random variables ). If {W1, . . . ,Wn} is some

collection of random variables, we say that they are independent if {σ{Wi}} are

independent.

Theorem 4.1. Let W = (W1, . . . ,Wn) be an absolutely continuous random vector.

Then, W1, . . . ,Wn are independent if and only if the joint and marginal densities

are related through the equation: fW (w1, . . . , wn) =
∏n

i=1 fWi
(wi) [64].

Definition 4.4 (Independent Random Vectors). The random vectors W1 and

W2 are independent if for any Borel set B1 and B2, which are subsets of the respective

value spaces of W1 and W2, P (W−1
1 (B1)∩W−1

2 (B2)) = P (W−1
1 (B1))P (W−1

2 (B2)) [65].

Definition 4.5 (Uncorrelated Random Vectors). The random vectors W 1 and

W 2 are uncorrelated if Cov(W 1,W 2) = 0 [65].

According to lemma 4.1, there always exists a filtration with respect to which

Wt is a Wiener process.
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Definition 4.6. Let Wt be a {Ft}-adapted Wiener process; assume that for any t,

h ≥ 0 the random vector Wt+h−Wt and σ-algebra Ft are independent. Then we will

say that Wt is a Wiener process with respect to {Ft}, or that (Wt,Ft) is a Wiener

process.

Theorem 4.2 (The Markov Property). Let (Wt,Ft) be a Wiener process. Fix

t, h1, . . . , hn ≥ 0. Then the vector (Wt+h1 −Wt, . . . ,Wt+hn −Wt) and the σ-algebra

Ft are independent. Furthermore, Wt+s −Wt, s ≥ 0, is a Wiener process [67].

Theorem 4.2 says that, for every fixed time t ≥ 0, the process Wt+s−Wt starts

fresh as a Wiener process ”forgetting” everything that happened before time t. For

a Wiener process, this property has a natural extension when t is replaced with

a random time s, provided that s does not depend on the future in any way. To

describe exactly what we mean by this, we continue with the following definition:

Definition 4.7 (Stopping time). A stopping time is defined as a nonnegative

random variable s such that for each (nonrandom) t ≥ 0 the event s ≤ t is an

element of the σ-algebra Ft.

Theorem 4.3 (Strong Markov Property). Let (Wt,Ft) be a Wiener process and

s an Ft stopping time. Assume that P (s <∞) = 1. Let

FW≤s = σ{{ω : Wu∧s ∈ B}, u ≥ 0, B ∈ B}

FW≥s = σ{{ω : Ws+u −Ws ∈ B}, u ≥ 0, B ∈ B}

Then the σ-algebras FW≤s and FW≥s are independent in the sense that for every A ∈

FW≤s and B ∈ FW≥s we have P (AB) = P (A)P (B). Furthermore, Ws+t − Ws is a

Wiener process [67].

The strong Markov property gives justification to one of the most important

properties of Wiener processes, a property that forms the basis for the likelihood
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equations to follow; the Reflection Principle. The Reflection principle helps simplify

otherwise complicated probability expressions related to the Wiener process.

Proposition 4.1 (The Reflection Principle for a Wiener process with zero

drift). Let W (t) be a Wiener process with νX = 0, a > 0, and sa = inf{t : W (t) ≥

a}, then:

fW (t),I(S<t)(w, 1) = fW (t)(2a− w)

The argument for proposition 4.1 is made by noticing that if sa < t, then W (t)

is conditionally just as likely to be above or below level a by the same distance.

Proposition 4.2 (The Reflection Principle for Wiener process with drift).

Let X(t) be a Wiener process with X(0) = 0, νX 6= 0, a > 0, and sa = inf{t :

X(t) ≥ a}, then:

fX(t),I(S<t)(x, 1) = exp

(
2νX(x− a)

σ2
X

)
fX(t)(2a− x) (4.5)

The joint density in equation (4.5) is a building block for constructing like-

lihood equations under the longitudinal data-structures. We call this density the

complimentary Wiener term, and we derive it in section 4.7.3.

4.4 The Inverse Gaussian Distribution - Lifetime Model

Like the Weibull and logNormal distributions the Inverse Gaussian distribu-

tion is used to model lifetime data. Chhikara and Folks 1977 [68] study the use of

the inverse Gaussian distribution for a lifetime model and suggest its application for

studying reliability aspects when there is a high occurrence of early failures. Unlike

the Weibull and log Normal, the inverse Gaussian distribution is also physically

justified as the first hitting time of a Wiener process to a threshold, which implies a

natural applicability in studying degradation processes which lead to failure events.
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This means that the lifetime distribution described by the inverse Gaussian density

function depends on the drift and the variance of the degradation process. This re-

lationship facilitates the development of degradation models that use mixed lifetime

and degradation data and provide a natural framework of incorporating covariates.

Definition 4.8 (First Hitting Time). Define Sa, the first time at which the

process X(u), starting from x0 = 0, with drift νX ≥ 0 reaches level a, by: Sa =

inf{u ≥ 0 : X(u) ≥ a}, a > x0. If a 6= 0, then the distribution of Sa has the density

f(s) = 0, for s ≤ 0, and , ∀ s > 0.

fSa(s) = (2πσ2
X)−1/2|a|s−3/2exp

(
−(a− νXs)2

2σ2
Xs

)
(4.6)

The density in equation (4.6) is called the Wald density or the inverse-Gaussian

density. The inverse-Gaussian density can also be expressed in terms of its scale and

shape parameters µ and λ.

fSa(s;µ, λ) =

(
λ

2πs3

)1/2

exp

(
−λ(s− µ)2

2µ2s

)
(4.7)

As λ tends to infinity, the inverse-Gaussian starts to look more like a normal

density. We know that in the case of positive drift νX > 0 and x0 < a, that:

µ = (a− x0)/νX and λ = (a− x0)/σ2
X [68]

4.5 Marker Model

With failure-time data samples drawn in dynamic environments where precise

failure mechanisms are unknown, there is a need for degradation models that make

use of auxiliary reliability information. Typically in electronics, failure-time data

samples are small, and failure mechanisms are not well understood due to their

complexity [77]. Auxiliary reliability information can be obtained in the laboratory
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by measuring variables which characterize the degradation (aging) of each observed

device over time.

In practice, degradation variables in electronics are typically latent (unobserv-

able). For this reason, lifetime predictions are typically based on information from

observed marker variables that track degradation. Markers, unlike covariates are

random variables related to degradation through a parametric model with unknown

parameters. For example, in printed circuit boards, the degradation variable for

a degrading solder joint can be the length of a crack. It is impractical and often

impossible to measure the length of a crack, and we depend therefore on markers

to the crack-length, such as resistance and capacitance across the joint. From a

cost perspective, degradation information is seen as being expensive, and Marker

information as being cheap.

Our basic Marker model is given by a Wiener process with drift. The mo-

tivation for a Wiener marker process is mathematical convenience in expressing a

bivariate marker-degradation relationship. The critical component of the marker-

degradation model is the correlation coefficient, made available through the joint

Gaussian relationship. Our basic marker model, like the degradation model, is

given by a Wiener process with drift:

Y (t) = y0 + νY t+ σYWY (t) (4.8)

fY (t)(y) =
1

σY
√
t
φ

(
y − y0 − νXt

σY
√
t

)
(4.9)

4.6 Bivariate Wiener Model

Following [24] and [26], the basic analytical framework for a degradation-

marker process is an independent-increments bivariate process, in which all paired

increments X(t)−X(s) and Y (t)− Y (s) have correlation coefficient ρ, which does
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not vary over time.

The vector {X(t1), Y (t2)} has a bivariate normal distribution with mean vector

(νXt1, νY t2)′ and variance covariance matrix ΣXY .

ΣXY =

 t1σ
2
X t1 ∧ t2ρσXσY

t1 ∧ t2ρσY σX t2σ
2
Y

 (4.10)

We assume that ΣXY is positive definite, νX ≥ 0 and |ρ| > 0 and close to

1. Weak correlation between the marker and the degradation variables will reduce

the predictive efficiency of the model. With c = ρσY /σX , the conditional density of

Y (t) given X(t) is:

fY (t)|X(t)(y|x) =
1

σY
√

(1− ρ2)t
φ

(
y − y0 − νY t− c(x− νXt)

σY
√

(1− ρ2)t

)
(4.11)

Proposition 4.3 (Multivariate Normal). Define vectors X = (X(t1), X(t2), . . .

, X(tm)) and Y = (X(r1), X(r2), . . . , X(rn)), evaluated at times t = (t1, t2, . . . , tm)

and r = (r1, r2, . . . , rn), ri ≥ 0, ti ≥ 0. The joint density function of the vector

(X,Y ) is multivariate normal of the form:

 X

Y

 ∼ N


 µX
µY

 ,
 ΣXX ΣXY

ΣY X ΣY Y




where

µX ∈ Rm, µY ∈ Rn, and the matrix blocks ΣXX , ΣXY , ΣY X and ΣY Y . are

respectively of size m×m, m× n, n×m, n× n.

Proposition 4.4 (Conditional Multivariate Normal). Using results from [70],

the general formula for the conditional multivariate normal distribution of Y given

X = x is given by:

Y |X ∼ N
(
µY |X ,ΣY |X

)
(4.12)
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where, for x0 = 0, y0 = 0 we have:

µY |X = νY r + ΣXY Σ−1
XX(x− νXt)

ΣY |X = ΣY Y − ΣXY Σ−1
XXΣY X

We are interested in a data-structure that we argue will provide sharper infer-

ence and more accurate lifetime predictions. The TMD data-structure introduced

in section 2 uses degradation information on surviving devices. With the TMD

data-structure, inference is based on the triplet of lifetime, marker, and degradation

observations on each device. From now on the thesis we assume that x0 = 0, y0 = 0.

4.6.1 Conditional Independence in the Bivariate Wiener Model

In this section we define notation to prove conditional independence between

sets of random vectors, and between random vectors and survival events, under a

bivariate Wiener model. The results from this section will serve to simplify joint

conditional densities in derivations to follow for parametric and predictive inference

equations.

Definition 4.9. Define vector t = (tj)
∞
j=1 to be a discrete subset of R+

Definition 4.10. Let Q(tj) = Y (tj)− cX(tj), with c = ρσy/σx ∀i

Within the bivariate-Gaussian case (X(tj), Y (tj)), Q(tj) ∼ N (µQ(tj),ΣQ(tj))

where µQ(tj) = tj(νY − cνX), and ΣQ(tj) = σ2
Y tj(1− ρ2)

Definition 4.11. Let vector tl ⊂ t. Define Ql = {Q(u) : u ∈ tl} and X l = {X(u) :

u ∈ tl}

Lemma 4.2. Let vectors tj, ti ⊂ t. Then Qj ⊥Xj.
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Proof. Let Σj,i = Cov(Qj,X i). With c = ρσY /σX , Σj,i = 0. Therefore, Qj ⊥ X i

due to the fact that a zero covariance implies independence for jointly Gaussian

vectors.

Corollary 4.2.1. The entire process Q(·) is independent of the entire process X(·)

The corollary 4.2.1 of lemma 4.2 is stated in a more general way so that the

finite number of evaluation points for Q are not necessarily the same as the finite

number of evaluation points for X.

Lemma 4.3. Process Q(·) ⊥ (X(·), I(S ≥ t)) where I(S ≥ t) = I(X(u) ≤ a, u ≤ t)

Proof. By definition, I(S ≥ t) is σ(X(·)) measurable. Therefore, by corollary 4.2.1

σ(X(·)) ⊥ σ(Q(·)), and therefore I(S ≥ t) ⊥ Q(·). This implies Q(·) ⊥ (X(·), I(S ≥

t)).

Lemma 4.4. Let tj, ti ⊂ t. Let Sa = inf{u ∈ ti : X(u) ≥ a}. Then Qj ⊥ Sa

Proof. This follows from corollary 4.2.1 and measurability of Sa with respect to X i

Lemma 4.5. Let S̃a be a shifted first-hitting time defined as S̃a(u) ≡ Sa(u − tj),

then, fSa|X(tj),I(S≥tj)(u|x, 1) = fS̃a−x(u), u ≥ tj, where

fS̃a−x(u) =
a− x√

2πσ2
X(u− tj)3

exp

(
−(a− x− νX(u− tj))2

2σ2
X(u− tj)

)
(4.13)

Proof.

Sa|(X(tj) = x, I(S ≥ tj) = 1) =

= inf{u ≥ tj : X(u) ≥ a|X(tj) = x, S ≥ tj}

= inf{u ≥ tj : X(u− tj) ≥ a− x|X(tj) = x, S ≥ tj} (1)

= inf{v ≥ 0 : X(tj + v)−X(tj) ≥ a− x|X(tj) = x, S ≥ tj}
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By theorem 4.3, because X(tj + v) − X(tj) is FX≥tj measurable, it is independent

of (X(tj), I(S ≥ tj)) which is FX≤tj measurable. Therefore we can simplify (1) to

inf{u ≥ tj : X(u− tj) ≥ a− x} = inf{u− tj ≥ 0 : X(u− tj) ≥ a− x} ∼ S̃a−x.

4.6.2 An Extended Bivariate Wiener Model

Generalizing Y away from being Wiener, is also of interest, especially when the

relationship between X(·) and Y (·) is non-Gaussian. Such a generalization is rea-

sonable as long as Y (·)−cX(·) is selected to be any independent-increments process,

independent of X(·), with X(·) Wiener with drift, but Y (·)− cX(·) distributionally

unspecified. We propose this extension as part of future research.

4.6.3 The Likelihood Function

LetX = (X1, . . . , Xn) be a random vector and {fX(x|θ) : θ ∈ Θ} a statistical

model parametrized by θ = (θ1, . . . , θk), the parameter vector in the parameter space

Θ.

Definition 4.12 (The Likelihood Function). The likelihood function is a map

L(θ) = fX(X(ω),θ) : Θ → L0(X, P ), where L0(X, P ) is the space of all σ(X)-

measurable random variables

4.7 Parametric Inference for the TMD Data-Structure

Parametric inference is based on observations on q failed and p surviving de-

vices. To simplify exposition, covariates are not included in the following derivations.

The unknown parameter is the vector θ = (νX , νY , σX , σY , ρ), and the likelihood
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function is given by:

Lθ =

q∏
i=1

fYSa ,XSa ,T,I(Sa<τ)(Yi(Si), a, Si, 1)×
p∏
j=1

fYτ ,Xτ ,T,I(S<τ)(Yj(τ), Xj(τ), τ, 0)

(4.14)

For a given realization of the random variables above, the likelihood be-

comes a function of parameter vector θ. For failed devices we observe (Yi(Si) =

yi, Si = si;Xi(Si) = a), i = 1, . . . , q and for surviving devices we observe (Yj(τ) =

yj, Xj(τ) = xj), j = 1, . . . , p.

Tab. 4.1: Conditional-density terms under TMD for ith device, s < τ
Failed devices: fYS ,XS ,T,I(S<τ)(y, a, s, 1) =

=fYS |XS ,S(y|a, s)fS(s)
=fQs(y − ca)fS(s)

Surviving devices: fYτ ,Xτ ,T,I(S<τ)(y, x, τ, 0) =
=fQτ (y − cx)fXτ ,I(S<τ)(x, 0)

where fXτ ,I(S<τ)(x, 0) = fXτ (x)− fXτ ,I(S<τ)(x, 1)
and fXτ ,I(S<τ)(x, 1) = (4.5) by proposition 4.2

In the following sections we derive analytical equations for the joint density

terms required for the likelihood function. Table 4.1 summarizes the required terms

for failed and surviving devices. For short we use the notation S in place of Sa.

4.7.1 Contribution to likelihood from failed devices

The joint density for a failed device is given by:

fYS ,XS ,S,I(S<τ)(y, a, s, 1) = fQs(y − ca)fS(s) (4.15)
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with the probability density function of S given by equation (4.6), and the proba-

bility density of Qs given by:

fQs(u) =
1

σY
√

(1− ρ2)s
φ

(
u− y0 − c(a− x0)− (νY − cνX)s)

σY
√

(1− ρ2)s

)
(4.16)

Proof. For failed devices, the terminal time random variable T and lifetime random

variable Sa are equal, with values denoted si < τ . Therefore, for s < τ ,

fYS ,XS ,T,I(S<τ)(y, a, s, 1) = fYS |XS ,S,I(S<τ)(y|a, s, 1)fXS ,S,I(S<τ)(a, s, 1) (4.17)

For S = s < τ , I(S < τ) = 1 is a degenerate random variable, the first term above

can therefore be written as:

fYS |XS ,S,I(S<τ)(y|a, s, 1) = fYS |XS ,S(y|a, s)

With definition 4.8, we have:

fYS |XS ,S(y|a, s) = fQS |XS ,S(y − ca|a, s) = fQS |S(y − ca|s)

Due to lemma 4.4,

fQS |S(y − ca|s) = fQS(y − ca)

The second term in equation (4.17) can be simplified through the observation that

on the event (S < τ), (XS, I(S < τ)) is a degenerate random-variable pair equal by

definition to (a, 1), and therefore the density fXS ,S,I(S<τ)(a, s, 1) can be replaced by

fS(s)

fXS ,S,I(S<τ)(a, s, 1) = fS(s)
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Finally, the contribution to the likelihood from a failed device is given by:

fYS ,XS ,T,I(S<τ)(y, a, s, 1) = fQS(y − ca)fS(s)

4.7.2 Contribution to likelihood from surviving devices

The contribution to the likelihood from data on surviving devices is given by:

fYτ ,Xτ ,T,I(S<τ)(y, x, τ, 0) = ABC (4.18)

A = fQτ (u) =
1

σY
√

(1− ρ2)τ
φ

(
u− y0 − c(xτ − x0)− (νY − cνX)τ)

σY
√

(1− ρ2)τ

)

B = fXτ (u) =
1

σX
√
τ
φ

(
u− x0 − νXτ

σX
√
τ

)

C =

(
1− exp

(
2νX(xτ − a)

σ2
X

))
Proof. For surviving devices, the non-degenerate observables are (yj, xj). Therefore,

variable T = τ can be dropped from the density.

fYτ ,Xτ ,I(S<τ)(y, x, 0) = fYτ−cXτ+cXτ |Xτ ,I(S<τ)(y|x, 0)fXτ ,I(S<τ)(x, 0) =

by lemma 4.3

= fQτ |Xτ ,I(S<τ)(y − cx|x, 0) = fQτ (y − cx)

therefore,

fYτ ,Xτ ,I(S<τ)(y, x, 0) = fQτ (y − cx)fXτ ,I(S<τ)(x, 0) (4.19)

The first density factor on the right-hand side of equation (4.19) is normal,

with s replaced by τ . The second, is the probability density function at x (necessarily

56



< a) of the terminal value X(τ) for a device surviving at time τ . Any degradation

sample path starting at X(0) = x0 < a and terminating at X(τ) = x < a either

does or does not cross the failure threshold at a > 0 in the interval (0, τ). By the

law of total probability:

fXτ ,I(S<τ)(x, 0) = fXτ (x)− fXτ ,I(S<τ)(x, 1) (4.20)

Equation (4.20) says that the probability of reaching a terminal value x for a

device surviving at time τ is equal to the probability of a Wiener process with drift

reaching a value of x at time τ minus the probability of reaching x and crossing the

threshold at some time earlier.

Using equation (4.5) for the complimentary Wiener term, fXτ ,I(S<τ)(x, 1), we

get:

fXτ ,I(S<τ)(x, 0) = fXτ (x)

(
1− exp

(
2νX(x− a)

σ2
X

))
(4.21)

Plugging in equation (4.21) into equation (4.18) we get the final expression for

the likelihood contribution from data on surviving devices:

fYτ ,Xτ ,I(S<τ)(y, x, 0) = fQτ (y − cx)fXτ (x)

(
1− exp

(
2νX(x− a)

σ2
X

))
(4.22)

4.7.3 Derivation of the Complimentary Wiener Term

We present two approaches to derive the complimentary Wiener term, one

based on the definition of probability, and the other on the reflection principle for a

Wiener process with drift.

Lemma 4.6 (Derivation of complimentary Wiener density based on defi-

nition of probability). The probability density function of fXτ ,I(S<τ)(x, 1) is given

57



by:

fXτ ,I(S<τ)(x, 1) =

∫ τ

0

fXτ−Xs(x− a)fS(s)ds (4.23)

fXτ−Xs(x− a) =
1√

2πσ2
X(τ − s)

exp

(
−(x− a− νX(τ − s))2

2σ2
X(τ − s)

)

fS(s) =
a√

2πσ2
Xs

3
exp

(
−(a− νXs)2

2σ2
Xs

)
Proof. By definition, fXτ ,I(S<τ)(x, 1)dx is the probability the degradation level be-

longs to a small interval (x, x+dx) at time τ , and that it crossed the failure threshold

some time earlier.

fXτ ,I(S<τ)(x, 1) = P (Xτ ∈ (x, x+ dx), S ≤ τ)/dx

=

∫ τ

0

P (Xτ ∈ (x, x+ dx), S = s)

dx
ds (4.24)

The integrand in equation (4.24) can be expressed as:

fXτ ,XS ,S(x, a, s)

= fXτ |XS ,S(x|a, s)fXS ,S(a, s)

= fXτ−Xs|Xs,S(x− a|a, s)fS(s) (4.25)

By theorem 4.3, because Xτ − Xs is FX≥s measurable, it is independent of

(X(s), S) which is FX≤s measurable. Therefore, we can simplify as follows:

= fXτ−XS(x− a)fS(s) (4.26)

Plugging in equation (4.26) into (4.24) we get the final analytical expression
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for the complimentary Wiener density term:

fXτ ,I(S<τ)(x, 1) =

∫ τ

0

fXτ−Xs(x− a)fS(s)ds (4.27)

Lemma 4.7 (Derivation of proposition 4.2). The probability density function

of fXτ ,I(S<τ)(x, 1) is given by:

fXτ ,I(S<τ)(x, 1) = exp

(
2νX(x− a)

σ2
X

)
fXτ (2a− x) (4.28)

Proof.

fXτ ,I(S≤τ)(x, 1) =

∫ τ

0

fXτ |S(x|s; νX)fS(s; a)ds (4.29)

By theorem 4.3, the first factor in equation (4.29) is given by:

fXτ |S(x|s; νX) = fXτ−Xs(x− a; νX) =

= fXτ−Xs−νX(τ−s)(x− a− νX(τ − s); 0) = exp

(
−(x− a− νX(τ − s))2

2σ2
X(τ − s)

)
We take the ratio of the last expression at νX over the same expression with

νX replaced by 0.

C1(x, s) =

exp

(
−(x− a− νX(τ − s))2

2σ2
X(τ − s)

)
exp

(
− (x− a)2

2σ2
X(τ − s)

) = exp

(
2νX(x− a)− ν2

X(τ − s)
2σ2

X

)

Therefore,

fXτ |S(x|s; νX) = exp

(
2νX(x− a)− ν2

X(τ − s)
2σ2

X

)
fXτ |S(x|s; 0)

Above, by theorem 4.3, fXτ |S(x|s; 0) = fXτ−Xs(x− a; 0), which by proposition
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4.1 is equal to fXτ |S(2a− x|s; 0). Then,

fXτ |S(x|s; νX) = exp

(
2νX(x− a)− ν2

X(τ − s)
2σ2

X

)
fXτ |S(2a− x|s; 0) (4.30)

Similarly we continue with

fXτ |S(2a− x|s; 0) = C2(x, s)fXτ |S(2a− x|s; νX) (4.31)

where

C2(x, s) =
fXτ |S(2a− x|s; 0)

fXτ |S(x|s; νX)
=

exp

(
− (a− x)2

2σ2
X(τ − s)

)
exp

(
−(a− x− νX(τ − s))2

2σ2
X(τ − s)

)

Plugging in C2 into (4.30) and the resulting (4.30) into (4.29) by direct calculations

we get:

fXτ |S(x|s; νX) = exp

(
2νX(x− a)

σ2
X

)
fXτ |S(2a− x|s; νX) (4.32)

By plugging in (4.32) into (4.30) we get

fXτ ,I(S<τ)(x, 1) = exp

(
2νX(x− a)

σ2
X

)∫ τ

0

fXτ |S(2a− x|s; νX)fS(s)ds (4.33)

The integral in equation (4.33) is equal to: fXτ ,I(S<τ)(2a − x, 1). Since 2a − x > a

we get finally the expression in equation (4.5):

fXτ ,I(S<τ)(x, 1) = exp

(
2νX(x− a)

σ2
X

)
fX(τ)(2a− x) (4.34)

The exponential factor in equation (4.34) can be interpreted as the likelihood

ratio of the Wiener process with drift on [0, τ ] for a path with Xτ = 2a − x versus
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a Wiener process path which is reflected symmetrically around the level a after the

instant S of hitting a.

The likelihood function in equation (4.14) is computed with factors given by

equation (4.15) for devices failing before τ , and by equation (4.18) for devices sur-

viving past τ .

4.8 Predictive Inference

We aim to predict the degradation level and failure-time for a device surviving

at time t, and whose marker and covariate vector are known at time t. The condi-

tional density of the degradation variable at time t and of the failure-time density

at future time s ≥ t are given by:

h(x|y;θ) = fXt|Yt,I(S<t)(x|y, 0) (4.35)

and

g(s|y;θ) = fS|Yt,I(S<t)(s|y, 0) (4.36)

Related, are more complex expressions for density functions of X given a vec-

tor observation on Y . Some of this material is discussed in chapter 5. For now

we derive analytical expressions for the above density functions given one marker

observation. Predictive inferences are based on MLEs of the process parameters,

and should therefore consider sampling error and predictive uncertainty. Neverthe-

less, useful insights are obtained by considering predictive inference when process

parameters are assumed known. By varying the response variable across its domain

we can compute the density at each discrete sample point. For example, we evaluate

function g(s|y;θ), for a given θ on the range 0 ≤ s ≤ ∞ to get an understanding of

the distribution of g(·).
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Lemma 4.8 (Predicted degradation density). The probability density function

of the degradation random variable conditioned on the marker and survival at time

t is given by:

h(x|y;θ) =

fQt(y − cx)fXt(x)

(
1− exp

(
2νX(x− a)

σ2
Xt

))
∫ a
−∞ fQt(y − cu)fXt(u)

(
1− exp

(
2νX(u− a)

σ2
Xt

))
du

(4.37)

Proof. From Bayes rule equation (4.35) is expressed as:

fXt|Yt,I(S<t)(x|y, 0) =
fXt,Yt,I(S≥t)(x, y, 1)

fYt,I(S≥t)(y, 1)
(4.38)

The numerator in equation (4.38) can be further expanded by conditioning on

Xt = x and the device surviving at time t

fXt,Yt,I(S≥t)(x, y, 1) = fYt|Xt,I(S≥t)(y|x, 1)fXt,I(S≥t)(x, 1) (4.39)

The first factor is given by equation (4.11) due to lemma 4.4, and the second

factor by equation (4.21). The denominator in equation (4.38) is the joint density

of the marker and survival at time t, and is computed by integrating out X(t).

fYt,I(S≥t)(y, 1) =

∫ a

−∞
fY (t)|X(t),I(S≥t)(y|x, 1)fXt,I(S≥t)(x, 1)dx (4.40)

then we have

h(x|y;θ) =

fQt(y − cx)fXt(x)

(
1− exp

(
2a(x− a)

σ2
Xt

))
∫ a
−∞ fQt(y − cu)fXt(u)

(
1− exp

(
2a(u− a)

σ2
Xt

))
du

(4.41)

Lemma 4.9 (Predicted failure-time density). The probability density function
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of the future failure-time random variable, conditioned on the marker and survival

at time t is given by:

g(s|y;θ) =

∫ a
−∞ fS(s− t; a− u)fQt(y − cu)fXt(u)

(
1− exp

(
2a(u− a)

σ2
Xt

))
du

∫ a
−∞ fQt(y − cu)fXt(u)

(
1− exp

(
2a(u− a)

σ2
Xt

))
du

(4.42)

fS(s− t; a− x) =
a− x√

2πσ2
X(s− t)3

exp

(
−(a− x− νX(s− t))2

2σ2
X(s− t)

)
Proof. From Bayes rule we have:

fS|Yt,I(S<t)(s|y, 0) =
fS,Yt,I(S≥t)(s, y, 1)

fYt,I(S≥t)(y, 1)
(4.43)

The numerator can be conditioned on X(t) to get

∫ a

−∞
fS,Yt,Xt,I(S≥t)(s, y, x, 1)dx =

=

∫ a

−∞
fS|Xt,Yt,I(S≥t)(s|x, y, 1)fXt,Yt,I(S≥t)(x, y, 1)dx (4.44)

In the first factor in equation (4.44), the marker Y is dropped because S is

only a function of X.

fS|Xt,Yt,I(S≥t)(s|x, y, 1) = fS|Xt,I(S≥t)(s|x, 1)

Due to the conditioning on X(t) we can invoke lemma 4.5 to get:

fS|Xt,I(S≥t)(s|x, y, 1) = fS̃a−x(s− t; a− x) (4.45)

where S̃a−x is given by equation (4.13)

The second term in equation (4.44) is given by equation (4.39)
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5. LONGITUDINAL MARKER MODEL

Under a bivariate latent degradation process, an extension to the terminal

data-structure is the inclusion of longitudinal observations on the marker variable.

The longitudinal data-structure is more representative of information collected in

reliability tests. In electronics, for example, one can monitor the resistance, capac-

itance and current level on individual components on a printed circuit board over

time. In addition, temperature, humidity, and other environmental variables can

also be monitored. Longitudinal marker information can help explain the marker

variability across devices and across time, and in turn help improve inference and

event-time predictions.

The primary interest of longitudinal data analysis lies in the mechanism of

change over time, including growth, aging, time profiles or effects of covariates [72].

Longitudinal studies allow researchers to investigate how the variability of the re-

sponse varies in time with covariates. For instance, in a clinical trial that presumably

aims to investigate the effectiveness of a new drug treating a disease, it is often of

interest to examine pharmacokinetic behavior of the drug when it is applied to ex-

perimental animals or patients. Most drugs do not have constant efficacy over time,

possibly due to drug resistance. Such time-varying effectiveness can be examined

through a longitudinal study in which responses to the drug are monitored over

time. Some features of longitudinal data:

1. The presence of repeated measurements for each device implies that the ob-

servations from the same device are autocorrelated or serially correlated. This



requires us to develop statistical methodology that takes the serial correlation

into account.

2. In practice it is often true that at a given time, a multi-dimensional mea-

surement is recorded, giving rise to data of repeated response vectors. The

complication associated with such data arises from the fact that there exists

two levels of correlation to be accounted for, namely the serial correlation and

the correlation across the components of the response vector

3. Most longitudinal data from practical studies contain missing data. Dealing

with missing data, when the missing data mechanism is informative, is gen-

erally nontrivial. To make proper statistical inference, one has to rely on the

information that is supposed to be, but actually not, observed.

5.1 Modeling Correlated Data

A parametric modeling framework assumes that response observations are

drawn from a certain population with a certain form, with a parameter set θ. The

primary objective is to estimate and infer the model parameters θ. Explicitly spec-

ifying such a parametric distribution for nonnormal data is not trivial. When we

have more than one response variable at each time point, we need to consider their

joint distribution. Note that the multivariate normal is the distribution that can

be fully determined when the first and second moments are given. In nonnormal

distributions, it is generally difficult to determine a joint distribution based only on

few low-order moments.

One way to overcome the difficulty of directly specifying the joint distribution

is to consider conditional distributions, which are essentially one dimensional [73].

When one of the response variables is latent, like the degradation variable X(t) in

this work, the distribution of the observed response variable is obtained by inte-
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grating out the latent variable. With the availability of the joint distribution, the

full maximum likelihood estimation and inference can be developed. Albert (1999)

points out that this modeling approach is particularly useful for analyzing longitu-

dinal data in which there is a sizable number of missing observations either due to

missed visits, loss to follow-up, or death. Conditional modeling via a latent variable

can pose some challenges:

1. If the dimension of the latent variable is high, numerical evaluation of the joint

distribution in the likelihood function can be intricate, which typically leads

to computational problems.

2. The conditional approach relies on the conditional independence assumption,

which needs to be validated.

In this data setting, time plays a more important role in the likelihood func-

tion and contributes therefore more strongly to parameter estimation. With highly

reliable manufactured products, like modern electronic components, for example,

very few failures are observed in tests. On the other hand, rich longitudinal covari-

ate histories are typically collected and stored during the test. Longitudinal marker

models, are therefore becoming increasingly more relevant and in demand in the

area of reliability.

The intuition and hypothesis is that additional information on degradation

markers will improve the accuracy of parametric and predictive inference as com-

pared to inference in the terminal data-structure case, discussed in chapter 4. We

derive the joint densities for failed and surviving devices under TMDL, just as in

the TMD data-structure. In this case, however, the joint density must account for

the dependency between marker observations in time. After all, the value of the

marker at a certain time point is certainly dependent on the history of the marker

process up until that time.
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5.2 Scheduling Longitudinal Measurements

Typically marker variables are monitored using appropriate sensors, that can

collect data at very high frequencies. When marker observations are cost or time

prohibitive, failure-tests must be designed accordingly. One of the natural questions

that arises is: ”How many marker observations are needed for this test?”. This

question assumes there exists a minimum number of necessary marker observations,

after which any additional marker observations do not improve parametric inference.

This is an important question in many fields. From a medical stand point,

in designing clinical trials, for example, practitioners may ask patients to make

scheduled return visits to the hospital in order to collect marker data over a certain

period of time. Complications arise when patients don’t return on schedule, or miss

their scheduled appointments. In addition, data on markers can require complicated,

intrusive and expensive procedures. It is therefore of interest to intelligently plan

for the minimum number of scheduled visits. In reliability tests the idea is very

similar. Data on degradation markers can also require complicated, intrusive and

expensive measurement procedures, and examples abound in various applications.

In electronics, however, although marker measurements are typically easy to collect,

there is still interest in reducing the size of the collected data in order to expedite

computations.

Another important question is when to schedule marker measurements. For

a given device, is it better to collect data on the marker(s) with a fixed frequency,

or given a fixed number of possible observations, is it better to observe the marker

more frequently later or earlier in the device’s life?
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5.3 Parametric Inference

In this section we develop parametric inference for three longitudinal data-

structures:

1. With 1 intermediate marker observation at time t1. This data-structure is

called TMDL1.

2. With 2 intermediate marker observations at times t1, t2. This data-structure

is called TMDL2.

3. With m scheduled or K random marker observations on surviving or failed

devices respectively. This data-structure is called GENL, which stands for

general longitudinal. Table 5.1 illustrates this structure.

We show that expressions for the joint density between marker observations

have the same form for both failed and survived items. What differs is only the

last term, which accounts for the lifetime observation T = min(S, τ). Table 5.1

summarizes the key density terms used in the likelihood function for the TMDL1

data-structure.

Tab. 5.1: Key conditional-density terms under TMDL1

For both failed and surviving: tj < ti < τ
fYi,Yj |Xj ,Xi,I(S≥tj)(yi, yj|xj, xi, 1) = fQi,Qj(yi − cxi, yj − cxj) ∼MVN

For failed devices: t1 < s < τ
fY1,YS ,XS ,S(y1, ys, a, s) fXS ,I(S≥t1)|X1(a, 1|x1) =

fS̃a−X1
(s− t1; a− x1) =(4.13)

fX1,I(S≥t1)(x1, 1)=(4.21)
For surviving devices: t1 < τ
fY1,Yτ ,Xτ ,I(S≥τ)(y1, yτ , xτ , 1) fXτ ,I(S≥τ)|X1,I(S≥t1)(xτ , 1|x1, 1)

=(4.21)
fX1,I(S≥t1)(x1, 1)=(4.21)
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5.4 One Intermediate Marker Observation - TMDL1

Parametric inference under TMDL1, is again based on observations on q

failed and p surviving devices. The unknown parameter vector is the vector θ =

(νX , νY , σX , σY , ρ), and the likelihood is given by:

Lθ =

q∏
i=1

fYS ,Y1,XS ,T,I(Sa<τ)(Yi(Si), Yi(t1), a, Si, 1)×
p∏
j=1

fYτ ,Y1,Xτ ,T,I(S<τ)(Yj(τ), Yj(t1), Xj(τ), τ, 0)

5.4.1 Contribution to likelihood from failed devices

In the TMDL1 data-structure, for a failed device we observe (y1, ys, xs, s),

where y’s are the observations on the marker at times t1 and s respectively, (t1 < s),

xs = a, and s is the failure-time observation. Time t1 is treated as a fixed and

known scheduled time-point. Devices that fail before the scheduled intermediate

marker observation, that is for cases where s ≤ t1, the joint density reduces to the

TMD case. Under the TMDL1 data-structure, the joint density for a failed device

is given by:

fY1,YS ,XS ,T,I(S≤τ)(y1, ys, a, s, 1) =

∫
x1

E1E2 {E3 − C1E4} dx1 (5.1)

where

E1 = fQ1,Qs(y1 − cx1, ys − ca) =
1

(2π)−(k+1)/2|Vf |−1/2
exp

{
−1

2
qcV

−1
f q′c

}

k=1, the number of marker observations

qc =

 y1 − cx1 − t1(νY − cνX)

ys − ca− s(νY − cνX)

 Vf =

 σ2
Y t1(1− ρ2) σ2

Y t1(1− ρ2)

σ2
Y t1(1− ρ2) σ2

Y s(1− ρ2)


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E2 = fS̃a−X1
(s−t1; a−x1) =

(a− x1)

(2πσ2
X(s− t1)2)1/2

exp

(
−(a− x1 − νX(s− t1)2)

2σ2
X(s− t1)

)

E3 = fX1(x1) = (2πσ2
Xt1)−1/2exp

(
−(x1 − νXt1)

2σ2
Xt1

)

E4 = fX1(2a− x1) = (2πσ2
Xt1)−1/2exp

(
−(2a− x1 − νXt1)

2σ2
Xt1

)

C1 = exp

(
2νX(x1 − a)

σ2
X

)
Proof. Using arguments from chapter 4, for failed devices we can drop the indicator

variable. The joint density can then be expressed as:

fY1,YS ,XS ,T,I(S≤τ)(y1, ys, a, s, 1) = fY1,YS ,XS ,S(y1, ys, a, s) =

Integrate out X1, the degradation level at time t1

=
∫
x1
fY1,YS ,X1,XS ,S(y1, ys, x1, a, s) =

=
∫
x1
fY1,YS |X1,XS ,S(y1, ys|x1, a, s)∗

fX1,XS ,S(x1, a, s)dx1

(5.2)

The first factor in (5.2) is the term E1, and is equal to fQ1,Qs(y1− cx1, ys− ca)

by lemma 4.3 and lemma 4.4. The second factor is given by:

fX1,XS ,S(x1, a, s) = fX1,I(S≥t1),XS ,S(x1, 1, a, s)

= fS|X1,I(S≥t1)(s|x1, 1)fX1,I(S≥t1)(x1, 1)
(5.3)

The first factor in equation (5.3) represents the term E2 in equation (5.1), and

is given by equation (4.13). The second factor in equation (5.3) is given by equation

(4.21), and represents the term {E3 − C1E4} in equation (5.1).
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5.4.2 Contribution to likelihood from surviving devices

For surviving devices we observe (y1, yτ , xτ ), where y’s are the observations on

the marker at times t1 and τ respectively, (t1 < τ), and xτ < a. Time t1 is again

fixed and known. Under the TMDL1 data-structure, the joint density for a survived

device is given by:

fY1,Yτ ,Xτ ,I(S>τ)(y1, yτ , xτ , 1) = (5.4)

∫
x1
fQ1,Qτ (q1, qτ )

{
fX(τ−t1)(xτ − x1)− fX(τ−t1)(2a− xτ − x1)exp

(
2νX(xτ − a)

σ2
X

)}
×{

fX1(x1)− fX1(2a− x1)exp

(
2νX(x1 − a)

σ2
X

)}
dx1

(5.5)

where

fQ1,Qτ (q1, qτ ) =
1

(2π)−(k+1)/2|Vs|−1/2
exp

{
−1

2
qcV

−1
s q′c

}
q1 = y1 − cx1

qτ = yτ − cxτ

and, k=1, is the number of marker observations, Vs is the variance covariance matrix.

For example, the upper right element of Vs is given by:

cov(Q1, Qτ ) = cov(Y1 − cX1, Yτ − cXτ ) =

cov(Y1, Yτ )− ccov(Y1, Xτ )− cov(X1, Yτ ) + c2cov(X1, Xτ ) =

= ρσXσY t1 − ρ2σ2
Y t1 − ρ2σ2

Y t1 + ρ2σ2
Y t1

∴ cov(Q1, Qτ ) = cov(Qτ , Q1) = σ2
Y t1(1− ρ2)

Vs =

 σ2
Y t1(1− ρ2) σ2

Y t1(1− ρ2)

σ2
Y t1(1− ρ2) σ2

Y τ(1− ρ2)



qc =

 y1 − cx1 − t1(νY − cνX)

yτ − cxτ − τ(νY − cνX)


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fXτ−t1 (xτ − x1) = (2πσ2
X(τ − t1))−1/2exp

(
−(xτ − x1 − νX(τ − t1)2

2σ2
X(τ − t1)

)
fXτ−t1 (2a− xτ − x1) = (2πσ2

X(τ − t1))−1/2exp

(
−(2a− xτ − x1 − νX(τ − t1)2

2σ2
X(τ − t1)

)
fX1(x1) = (2πσ2

Xt1)−1/2exp

(
−(x1 − νXt1)2

2σ2
Xt1)

)
Proof.

fY1,Yτ ,Xτ ,I(S≥τ)(y1, yτ , xτ , 1) =

=
∫
x1
fY1,Yτ |X1,Xτ ,I(S≥τ)(y1, yτ |x1, xτ , 1)fX1,Xτ ,I(S≥τ)(x1, xτ , 1)dx1

(5.6)

It follows directly from lemma 4.4 that the first factor in equation (5.6) is

equal to fQ1,Qτ (q1, qτ ) ∼MVN . The second factor is given by:

fX1,Xτ ,I(S>τ)(x1, xτ , 1) =

= fXτ ,I(S≥τ)|X1,I(S≥t1)(xτ , 1|x1, 1)fX1,I(S≥t1)(x1, 1)

By theorem 4.2, both factor above have the form of equation (4.21), each given by:

fXτ−t1 ,I(S>τ−t1)(xτ − x1, 1) =

= fXτ−X1(xτ − x1)− fXτ−X1(2a− xτ − x1)exp

(
2νX(xτ − a)

σ2
X

)
fX1,I(S>t1)(x1, 1) = fX1(x1)− fX1(2a− x1)exp

(
2νX(x1 − a)

σ2
X

)

For both failed and survived devices, the joint density between marker obser-

vation time-points should have the same form, as we see in the proof above. The

only contributing factor that should differ (in the likelihood) is the one between

the last marker observation time and the failure-time. This term, as we showed

is a re-started Inverse-Gaussian factor. This repetitive structure will help set the

framework for later deriving the more general longitudinal joint densities. Figure

5.1 illustrates this result.
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Fig. 5.1: Illustration of an observation on the degradation process under a longitudinal
data structure. Rectangular boxes represent density factors given by equation
(4.21), and the oval shape the factor given by equation (4.13)

5.5 Two Intermediate Marker Observations - TMDL2

Parametric inference under TMDL2, is again based on observations on q

failed and p surviving devices. The unknown parameter vector is the vector θ =

(νX , νY , σX , σY , ρ), and the likelihood is given by:

Lθ =

q∏
i=1

fYS ,Y2,Y1,XS ,T,I(Sa<τ)(Yi(Si), Yi(t2), Yi(t1), a, Si, 1)×
p∏
j=1

fYτ ,Y2,Y1,Xτ ,T,I(S<τ)(Yj(τ), Yj(t2), Yj(t1), Xj(τ), τ, 0)

We now consider the situation of two scheduled marker observations. In this

case we observe (y1, y2, ys, a, s) on each failed device and (y1, y2, yτ , xτ ) for each

surviving device. For a failed device, the marker is observed in total three times:

t1 < t2 < s. Similarly for a surviving device, the marker is observe at times:

t1 < t2 < τ . If s < t1 or t1 < s < t2, we rely respectively on previously established
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expressions under the TMD and TMDL1 data-structures.

The derivation of the joint densities in the TMDL1 data-structure call for

integration over latent variable X1. When more than one intermediate marker is

observed, higher dimensional nested integrals will be needed. High dimensional in-

tegration is not only undesirable from an approximation perspective, it also poses a

serious computational problem. In this section, therefore, we derive a computation-

ally more efficient alternative.

5.5.1 Contribution to likelihood from failed devices

Under the TMDL2 data-structure, the joint density for a failed device is given

by:

fY1,Y2,YS ,XS ,S(y1, y2, ys, a, s) =

=
∫
x2

∫
x1
E(s)G1(x2)G2(x1)H1(x2)H2(x1, x2)H3(x1)dx1dx2 =

= E(s)
∫
x2
G1(x2)H1(x2)

(∫
x1
G2(x1)H3(x1)H2(x1, x2)dx1

)
dx2

(5.7)

In equation (5.7), the terms E, G and H represent density terms introduced

next. To solve for the joint density in this case we need to integrate over x1 and x2.

To simplify computations, we factor out terms from the nested integral, as shown in

equation (5.7) above. In this case, factor E(s) is not a function of either x1 or x2 so

its taken outside of both integrals. Factors G1(x2) and H1(x2) are not functions of x1

so they are taken out of the second integral. Factors G2(x1), H3(x1) and H2(x1, x2)

are functions of both x1 and x2 and therefore need to be integrated over twice.

Definition 5.1. Let the correlation coefficient between Qi and Yj as ρQY , given by:

ρQiYj = ((ti ∧ tj)(1− ρ2))1/2(ti ∨ tj)−1/2 (5.8)
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E(s) ∼ N
(
µQs + ρQsY2

σQs
σY2

(y2 − µY2), (1− ρ2
QsY2

)σ2
Qs

)
µQs = E(Ys − cXs) = s(νY − cνX)

µY2 = νY t2

σQs =
√
V ar(Ys − cXs) =

= (V ar(Ys) + c2V ar(Xs)− 2cCov(Ys, Xs))
1/2

= (σ2
Y s(1− ρ2))

1/2

σY2 = σY
√
t2

ρQsY2 =
Cov(Qs, Y2)

σQsσY2
=
Cov(Ys, Y2)− cCov(Xs, Y2)

σQsσY2
=

=
t2σ

2
Y (1− ρ2)

σY
√
s(1− ρ2)σY

√
t2
⇒ ρQsY2 = (t2(1− ρ2))1/2s−1/2

Then,

F (s) ∼ N (s(νY − cνX) + (1− ρ2)(y2 − νY t2), σ2
Y (1− ρ2)(s− t2(1− ρ2)))

G2(x1) ∼ N
(
µQ1 , σ

2
Q1

)
µQ1 = t1(νY − cνX)

σQ1 = t1σ
2
Y (1− ρ2)

G1(x2) ∼ N
(
µQ2 + ρQ2Y1

σQ2

σY1
(y1 − µY1), (1− ρ2

Q2Y1
)σ2

Q2

)
⇒

G1(x2) ∼ N (t2(νY − cνX) + (1− ρ2)(y1 − νY t1), σ2
Y (1− ρ2)(t2 − t1(1− ρ2)))

H1(x2) = fS̃a−x2
(s− t2; a− x2) given by equation (4.13)

H2(x1, x2) = fXt2−t1 ,I(S>t2−t1)(x2 − x1, 1) =

= fXt2−t1 (x2 − x1)− exp {2νX(x2 − a)/σ2
X} fXt2−t1 (2a− x2 − x1)

where

fXt2−t1 (x2 − x1) ∼ N
(
µXt2−t1 , σ

2
Xt2−t1

)
µXt2−t1 = νX(t2 − t1)

σ2
Xt2−t1

= σ2
X(t2 − t1)
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and similarly,

H3(x1) = fX1(x1)− exp {2νX(x1 − a)/σ2
X} fX1(2a− x1)

fX1(x1) ∼ N (νXt1, σ
2
Xt1)

and similarly for fX1(2a− x1)

Proof.

fY1,Y2,YS ,XS ,S(y1, y2, ys, a, s) =∫
x2

∫
x1
fYS |Y2,Y1,XS ,X2,X1,S(ys|y2, y1, a, x2, x1, s) ∗ (1)

∗ fY2|Y1,XS ,X2,X1,S(y2|y1, a, x2, x1, s) ∗ (2)

∗ fY1|XS ,X2,X1,S(y1|a, x2, x1, s) ∗ (3)

∗ fXS ,X2,X1,S(a, x2, x1, s)dx1dx2 (4)

Due to theorem 4.2, in equation (1), Y1 can be dropped, so

(1) = fYS |Y2,XS ,X2,X1,S(ys|y2, a, x2, x1, s) =

Due to lemma 4.3 we get:

(1) = fQs|Y2(qs|y2) = E(s)

where Qs = Ys−cXs = Ys−ca, and c = ρσY /σX . Note that Q(·) is not independent
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of Y (·). By the same logic, we have:

(2) = fQ2|Y1(q2|y1)=G1(x2), where Q2 = Y2 − cX2

(3) = fQ1(q1)=G2(x1), where Q1 = Y1 − cX1

(4) = fXS ,X2,X1,I(S≥t2),I(S≥t1),S(a, x2, x1, 1, 1, s) =

= fXS ,S|X2,X1,I(S≥t2),I(S≥t1)(a, s|x2, x1, 1, 1)∗

∗ fX2,I(S≥t2)|X1,I(S≥t1)(x2, 1|x1, 1)fX1,I(S≥t1)(x1, 1) =

= fS̃a−x2
(s− t2; a− x2)fX2−X1,I(S≥t2−t1)(x2 − x1, 1)fX1,I(S>t1)(x1, 1)

First factor above is given by H1(x2), the second by H2(x1, x2) and third by

H3(x1).

5.5.2 Contribution to likelihood from surviving devices

For a surviving device we observe (y1, y2, yτ , xτ ) at times t1, t2, and at the

end-of-test time τ for any known and fixed t1 < t2 < τ . Under the TMDL2 data-

structure, the joint density for a surviving device is given by:

E(τ)

∫
x2

G1(x2)H1(x2)

(∫
x1

G2(x1)H3(x1)H2(x1, x2)dx1

)
dx2 (5.9)
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The factors in (5.9) are expressed as follows:

F (τ) ∼ N
(
µQτ − ρQτY2

σQτ
σY2

(y2 − µY2), (1− ρ2
QτY2

)σ2
Qτ

)
µQτ = E(Yτ − cXτ ) = τ(νY − cνX)

µY2 = νY t2

σQτ = (σ2
Y τ(1− ρ2))

1/2

σY2 = σY
√
t2

ρQτY2 =
Cov(Qτ , Y2)

σQτσY2
=
cov(Yτ , Y2)− cCov(Xτ , Y2)

σQτσY2
=

=
t2σ

2
Y (1− ρ2)

σY
√
τ(1− ρ2)σY

√
t2

⇒ ρQτY2 = (t2(1− ρ2))1/2τ−1/2

and,

E(τ) ∼ N (τ(νY − cνX) + (1− ρ2)(y2 − νY t2), σ2
Y (1− ρ2)(τ − t2(1− ρ2)))

G1(x2) ∼ N (t2(νY − cνX) + (1− ρ2)(y1 − νY t1), σ2
Y (1− ρ2)(t2 − t1(1− ρ2)))

G2(x1) ∼ N (t1(νY − cνX), σ2
Y t1(1− ρ2))

H1(x2) = fXτ−t2 (xτ − x2)− exp {2νX(xτ − a)/σ2
X} fXτ−t2 (2a− xτ − x2)

H2(x1, x2) = fXt2−t1 (x2 − x1)− exp {2νX(x2 − a)/σ2
X} fXt2−t1 (2a− x2 − x1)

H3(x1) = fX1(x1)− exp {2νX(x1 − a)σ2
X} fX1(2a− x1)

Proof.

fY1,Y2,Yτ ,Xτ ,I(S≥τ)(y1, y2, yτ , xτ , 1) =

=
∫
x2

∫
x1
fY1,Y2,Yτ ,Xτ ,X1,X2,I(S≥τ)(y1, y2, yτ , xτ , x2, x1, 1) =

=
∫
x2

∫
x1
fYτ |Y2,Xτ ,X2,X1,I(S≥τ)(yτ |y2, xτ , x2, x1, 1) ∗ (1)

∗ fY2|Y1,Xτ ,X2,X1,I(S≥τ)(y2|y1, xτ , x2, x1, 1) ∗ (2)

∗ fY1|Xτ ,X2,X1,I(S≥τ)(y1|xτ , x2, x1, 1) ∗ (3)

∗ fXτ ,X2,X1,I(S≥τ)(xτ , x2, x1, 1)dx1dx2 (4)
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Due to theorem 4.2 and lemma 4.3 we get:

(1) = fQτ |Y2(qτ |y2) = F (τ)

(2) = fQ2|Y1(q2|y1) = G1(x2)

(3) = fQ1(q1) = G2(x1)

In factor (4) we condition respectively on survival past times t1 and t2 to get:

fXτ ,X2,X1,I(S≥τ)(xτ , x2, x1, 1) =

= fXτ ,I(S≥τ),X2,I(S≥t2),X1,I(S≥t1)(xτ , 1x2, 1, x1, 1) =

= fXτ ,I(S≥τ)|X2,X1,I(S≥t2)(xτ , 1|x2, x1, 1) ∗ (a)

fX2,I(S≥t2)|X1,I(S≥t1)(x2, 1|x1, 1) ∗ (b)

fX1,I(S≥t1)(x1, 1) (c)

In factor (a) above, we drop I(S ≥ t1), because I(S ≥ t1) = 1 ⊂ I(S ≥ t2) = 1.

Due to theorem 4.2 we drop X1 in factor (a), and we can then show that it reduces

to the term given by H1(x2). Factors (b) and (c) above are of the same form given

respectively by H2(x1, x2) and H3(x1).

5.6 General Longitudinal Case - GENL

In the general case we are interested again in scheduled marker observations

made at t1, t2, . . .. We will present similar derivations for the joint densities of failed

and survived devices.

5.6.1 Contribution to likelihood from failed devices

For a failed device we observe: (y1, y2, . . . , yk, ys, xs, s, k), where k is random,

and represents the number of total marker observations before the failure-time. The

marker is observed at times t1, t2, . . . , tk, s, where t1 < t2 < . . . < tk < s.
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In a general case, under the GENL data-structure, for a failed device, the joint

density is given by:

fY1,...,YK ,YS ,XS ,T,I(S<τ),K(y1, . . . , yk, ys, a, s, 1, k) =

∫
xk
. . .
∫
x1
fQ1,...,Qk,Qs(q1, . . . , qk, qs)fS(s− tk; a− xk)∗

∗
k∏
j=1

[
fXj−Xj−1

(xj − xj−1)− exp
(

2νX(xj − a)

σ2
X

)
fXj−Xj−1

(2a− xj − xj−1)

]
(5.10)

Proof.

fY1,...,YK ,YS ,XS ,T,I(S<τ),K(y1, . . . , yk, ys, a, s, 1, k) =

=
∫
. . .
∫
fY1,...,YK ,YS |X1,...,XK ,XS ,S,K(y1, . . . , yk|x1, . . . , xk, a, s, k) ∗ −(a)

∗ fX1,...,XK ,XS ,S,K(x1, . . . , xk, a, s, k)dx1 . . . dxk − (b)

(5.11)

Factor (a) can be expressed as:

(a) = fQ1,...,QK |X1,...,XK ,XS ,S,K(q1, . . . , qk|x1, . . . , xk, a, s, k) (5.12)

Due to lemma 4.3 and lemma 4.4, we have {Q1, . . . , QK} ⊥ K because K is a

function of S. For a given K = k, we factor (a) simplifies to:

(a) = fQ1,...,Qk,Qs(q1, . . . , qk, qs) ∼MVN (5.13)

Let Xk−1 = {X1, . . . , Xk−1}, then factor (b) in (5.11) is written as:

(b) = fXk−1,Xk,Xs,S,K
(x, xk, a, s, k)
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The randomness of K = k is entirely captured by S = s. Therefore

(b) = fXk−1,Xk,XS ,S
(x, xk, a, s) =

= fXk−1,Xk,XS ,I(S≥t1),I(S≥t2),...,I(S≥tk),S(x, xk, a, 1, 1, . . . , 1, s) =

= fS|Xk,I(S≥tk)(s|xk, 1) ∗ (b1)

∗
∏k

j=1 fXj ,I(S≥tj)|Xj−1,I(S≥tj−1)(xj, 1|x, 1) (b2)

where Xj−1 = {X1, . . . , Xj−1}. Due to lemma 4.5

(b1) = fS̃a−xk
(s− tk; a− xk)

Take one term in factor (b2). Due to theorem 4.2 we only condition on the last

observation on X at time tj−1. Then,

(b2) = fXj ,I(S≥tj)|Xj−1,I(S≥tj−1)(xj, 1|xj−1, 1) =

= fXj−Xj−1,I(S>tj−tj−1)(xj − xj−1, 1) =

= fXj−Xj−1
(xj − xj−1)− exp (2νX(xj − a)/σ2

X) fXj−Xj−1
(2a− xj − xj−1)

Therefore, putting things together, and plugging in factor (b1) and (b2) into

(b) we get:

(b) = fS̃a−xk
(s− tk; a− xk)∗

∗
∏k

j=1{fXj−Xj−1
(xj − xj−1)− exp

(
2νX(xj − a)

σ2
X

)
fXj−Xj−1

(2a− xj − xj−1)}

where x0 = 0, t0 = 0.

5.6.2 Contribution to likelihood from surviving devices

For surviving devices we observe (y1, . . . , yn, xn) at scheduled n time points

t1 < . . . < tn. The last scheduled observation is made at the end-of-test time τ ,

that is tn = τ , and n is the total number of scheduled observations, and is known,
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fixed and non-random. In the general case, under the GENL data-structure, the

joint density for surviving device is given by:

fY1,...,Yn,Xn,I(S>τ)(y1, . . . , yn, xn, 1) =∫
xn−1

. . .

∫
x1

fQ1,...,Qn(q1, . . . , qn)
n∏
j=1

[fXj−Xj−1
(xj − xj−1)−

fXj−Xj−1
(2a− xj − xj−1)exp

(
2νX(xj − a)

σ2
X

)
]dx1 . . . dxn−1

(5.14)

Proof.

fY1,...,Yn,Xn,I(S≥τ)(y1, . . . , yn, xn, 1) =

=
∫
xn−1

. . .
∫
x1
fY n|Xn,I(S≥τ)(y|x, 1) ∗ (a)

∗ fXn,I(S≥τ)(x, 1)dx1 . . . dxn−1 (b)

where Y n = {Y1, . . . , Yn} and Xn = {X1, . . . , Xn}. By lemma 4.4, we have:

(a) = fQn(qn) ∼MVN

Qn = {Q1, . . . , Qn}

Factor (b) is expanded like before, using theorem 4.2 we can proceed as follows:

(b) = fX1,...,Xτ ,I(S≥t1),...,I(S≥τ)(x1, . . . , xτ , 1, . . . , 1) =

=
n∏
j=1

fXj ,I(S≥tj)|Xj−1,I(S≥tj−1)(xj, 1|xj−1, 1) =

=
n∏
j=1

fXj−Xj−1,I(S≥tj−tj−1)(xj − xj−1, 1)

Therefore, finally factor (b) can be written as the following product:

(b) =
n∏
j=1

[
fXj−Xj−1

(xj − xj−1)− fXj−Xj−1
(2a− xj − xj−1)exp

(
2νX(xj − a)

σ2
X

)]
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5.7 Summary and Conclusions

We were able to identify the two density factors needed to analytically express

the joint densities for both failed and surviving devices in the likelihood function.

These are namely, (1) the re-started inverse-Gaussian fS̃a−X(tj)
(s− tj; a− xj), given

by equation (4.13) and (2) fXj ,I(S≤tj)(xj, 0), given by equation (4.21) .

Although the analytical structure is simple, larger multidimensional marker

observations require an equal number of integrations, a fact that will burden com-

putations. Some simplification can be achieved, as we show, by factoring out terms

that are not functions of the space over which we integrate. However, high dimen-

sional nested integrals still remains a computational limitation.
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6. CASE STUDIES - TERMINAL AND LONGITUDINAL

In chapters 4, 5 and later in chapter 8 we present extensions to Whitmore’s

basic first hitting time model. The first extension augments the Whitmore data-

structure with terminal degradation observations for surviving devices. The second

extension incorporates longitudinal measurements on the marker variable. In chap-

ter 8 we present a third extension that uses a variable instead of a fixed failure-

threshold. All three extensions build on the Whitmore data structure, and each one

adds a level of complexity to the likelihood function.

In this chapter we apply the degradation models with the first two extensions

to: i) simulated lifetime and degradation data, and ii) Aircraft Gas-Turbine Engine

degradation data. The objectives of the case studies are to:

• Confirm the likelihood-based calculations for MLEs

• Compare inference results with and without extended data-structures

• Validate the model on simulated and real data

Table 6.1 presents the MLE notations under the four data-structures we ex-

amine in this chapter.

Tab. 6.1: MLEs under four data-structures
TM θ̂TM = G1({Yi(T )}ni=1)

TMD θ̂TMD = G2({Yi(T )}ni=1, {Xj(τ)}pj=1)

TMDL1 θ̂TMDL1 = G3({Y i}ni=1, {Xj(τ)}pj=1) Y i = (Yi(t1), Yi(T ))

TMDL2 θ̂TMDL2 = G4({Y i}ni=1, {Xj(τ)}pj=1) Y i = (Yi(t1), Yi(t2), Yi(T ))



The likelihood-based calculations of MLEs are confirmed on simulated and

a real data set as we discuss next. With simulated data, the ML estimates are

compared against the true parameter values using ML theory for them. In the real

data, MLEs are compared to simpler method-of-moments parameter estimates. For

example, in a real data set, we may compute an empirical estimate of the drift by

dividing the threshold level over the average lifetime of a sample of tested devices:

na/
∑

i Ti

Specifically under each of the TM and TMD data-structures, we expect ML

parameters to be consistent and asymptotically efficient [Section 3.3]. We first com-

pare inference under the TM and TMD data-structures. Typically the comparison

is made using distance measures such as the MSE [Definition 3.3]. Given that

both TM and TMD MLEs are asymptotically unbiased up to o(1/
√
n) remainders,

for large sample sizes [Theorem 3.5], the improvement in estimation can be evalu-

ated based on comparing their large-sample variances. Under both data-structures,

MLEs are expected to be asymptotically efficient and thus their large sample em-

pirical variances should approach the corresponding Cramer Rao lower bounds [Def

3.9]. However, for a fixed sample size, the Cramer Rao lower bounds for TM and

TMD may differ, making one model more efficient than the other. We would like to

examine the following points:

• At what sample sizes are estimators under the two-data-structures finite sam-

ple efficient? In other words, at what sample size does the empirical variance

approach the Cramer Rao lower bound? Is this sample size different for the

two data-structures?

• What is the Asymptotic Relative Efficiency (ARE) between the two data-

structures? In other words, for a large enough sample size, what is the ratio

of the variances for the corresponding data-structures.
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• Even though we do not expect MLEs to be efficient under small samples, the

relative performance of the two estimators for small sample sizes is of interest.

We calculate therefore, and analyze the ARE for small samples

Because the TM data-structure is a subset of the TMD data-structure, we

expect that MLEs under TMD will outperform those under TM on all three criteria

above because ML estimation improves with enhanced data, when sample sizes are

large. MLEs from the TMD data-structure are represented by vector θ̂TMD, and

from the TM data-structure by θ̂TM . The TM data-structure is a subset of the

TMD data-structure, where X(τ) is observed at τ under TMD but not under TM.

Therefore the TMD data is considered enhanced in comparison to TM.

We compute the ARE of MLE’s from the two data-structures in estimating

the expected failure-time parameter µ. Parameter µ is a function of θ̂. According

to Chhikara and Folks 1989, for a Wiener process with positive drift, the scale

parameter µ = g(νX) = (a− x0)/νX . The scale parameter µ of an inverse-Gaussian

density function represents the expected first hitting time of the degradation process

to a. Therefore, since a, x0 are fixed, the ARE for estimating µ is the same as that

for estimating νX .

As per definition 3.8 the ARE is defined as the ratio of asymptotic variances

of the estimators for µ̂: V (µ̂2)/V (µ̂1), and the the estimated ARE, ÂRE, as per

definition 3.9 is defined as the ratio of estimated asymptotic variances: V̂ (µ̂2)/V̂ (µ̂1).

The asymptotic variance of µ̂, V (µ̂), is derived through the Delta method, which

says that if
√
n(νX − ν̂X)

D−→ N (0, σ2), where νX and σ2 are finite valued constants

and
D−→ denotes convergence in distribution, then

√
n(g(νX)− g(ν̂X))

D−→ N (0, g′(νX)2σ2)

V (g(ν̂X)) = V (µ̂) = g′(νX)2σ2

In the ratio defined by the ARE, the term g′(νX)2 cancels out, and we are left with
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the ratio of asymptotic variances for νX of TMD vs TM.

For the MLE’s obtained under each data-structure, the estimated asymptotic

variance nV̂ (ν̂X) is the upper-left element (I−1
obs)1,1 of the inverse of the observed

information matrix [Remarks 3.2 & 3.3], averaged over R simulations to obtain the

estimated asymptotic relative average efficiency ÂRER, with ν̂rX the MLE for νX ,

obtained under the rth simulated data-set.

ÂRE(ν̂TMD
X , ν̂TMX ) =

1

R

∑R
r=1 V̂ (ν̂TMX )r

1

R

∑R
r=1 V̂ (ν̂TMD

X )r

(6.1)

The ARE estimate in (6.1) is the ratio of averages of ML variances estimated

from each of R replicated simulations, under each of the TM and TMD data-

structure, computed from R different estimators νrX , r = 1, . . . , R. The asymptotic

variance of the MLE θ̂ is equal to the inverse of the observation matrix [Remark

3.1], and this information matrix is estimated consistently by the observed Fisher

information Iobs matrix. In turn, the Iobs matrix is computed under the numerically

approximated Hessian matrix, in which finite-difference methods estimate the first

and second order derivatives of the likelihood function.

6.1 Lifetime and Degradation Simulation Model

Following Whitmore et al. 1998, we simulate sample observations for n devices

with the parameter set θ = (νX , νY , σX , σY , ρ) = (0.1, 1.0, 0.4, 0.1, 0.75). Lifetimes

were generated by adding correlated normally distributed increments (∆x,∆y) over

small time increments ∆t=0.01 or ∆t=0.005, with a=1, and τ=10. To capture

the causal relationship between degradation and marker at each time point, marker

samples are are drawn through the process Q = Y − cX defined in section 4.5.1,

which is independent of the degradation process X. We are simulating the follow-
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ing phenomena: degradation of the device causes changes in the marker variable

distribution. Our inference model, however, works in the other direction: it takes

marker observations and infers the distribution of the degradation variable at each

time point. Next we describe the simulation model.

Physically the rationale behind the selected parameter values can be motivated

from the degradation of solder joints. Solder joints hold electronic components (like

a capacitor, or a resistor) to a printed circuit board, and can, with use (abuse),

develop micro-cracks, which in time can grow and cause reliability problems. These

cracks can grow or shrink depending on usage or environmental conditions. Then,

X(t) in the model can be thought of as the length or size of the crack. It is not

unreasonable to have high variance in this process, especially since the crack can

entirely close ”heal” (given the right conditions), and then snap back to a fully

”opened” state. So the signal to noise ratio (νX/σX) is reasonably less than 1.

The drift and variability of the marker process are not as important (at least in its

physical interpretation), but the correlation coefficient ρ of course is. We see the

influence of varying ρ in studying the ARE of TMDL1 vs TMD. We also consider

other parameter combinations to study more general patterns in estimation.

6.2 Simulation Design

Before getting to the simulation results, we first define the simulation design.

We discuss the method of generating the degradation, marker and lifetime data

for the TM data-structure. We start by partitioning the total time-on-test [0, τ ]

into N = 200 equally sized time intervals ∆t, and construct a time vector ts =

(ts1, . . . , t
s
N), such that

∑
∀i ∆t

s = tsN = τ , i = 1, . . . , N . We then generate an

N -dimensional increments vector ∆X = (∆X(ts1), . . . ,∆X(tsN)), each distributed,
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with common parameters, as:

∆X(ti) ∼ N
(
νX∆ts, σ2

X∆ts
)

(6.2)

A degradation vector X = (X(1), . . . , X(N)) is constructed by adding up

the increments ∆X(tsi ). For example, X(ts1) = X(ts0) + ∆X(ts1) = ∆X(ts1), and

X(ts2) = X(ts1)+∆X(ts2) = ∆X(ts1)+∆X(ts2), etc. The degradation vector represents

a degradation path with drift νX and variance σ2
X , starting at time 0 and ending

at time τ . The marker samples are drawn conditionally given degradation based on

equation (4.11) to generate a marker vector Y = (Y (ts1), . . . , Y (tsN)), evaluated at

the same time points as the degradation process.

Devices are determined to fail if their discrete-time degradation paths hit a

before censoring at τ . Specifically the crossing-time is determined as the last time-

point ti where X(ti) < a. The choice of discrete spacing ∆ts is chosen small enough

that estimation is not improved when re-done with smaller spacings ∆ts. In this

simulation we compared results under ∆ts = 0.01 and ∆ts = 0.005. The proportion

of failed to surviving devices is random, and vary in each simulation. A larger

proportion of failed to survived devices can be achieved if the censoring time or drift

parameter are increased. This is because longer test periods give more time for the

degradation variable to reach a, and higher drift parameters drive the degradation

process to a faster.

6.3 Simulation Results

6.3.1 Simulation 1 - TM vs. TMD

We simulated R=2000 independent data sets D, for each sample size n =

(20, 40, 80, 160, 320, 640, 1280, 2560), and computed the MLEs θ̂
r
, r = 1, . . . , R for

each. Table 6.2 reports the average asymptotic standard errors for νX computed
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from Iobs compared to the empirical sample variance, under both the TM and

TMD data-structures. The close agreement between the Iobs-derived and empiri-

cal columns, especially for large samples, is predicted by asymptotic MLE theory.

As expected the uncertainty in the drift parameter estimates are consistently smaller

under the TMD data-structure. In particular the large-sample Cramer-Rao lower

bound is smaller for the TMD than it is for TM. Both TM and TMD seem to attain

efficiency, up to the accuracy of the simulation, at around a sample size of 100 (This

can be seen by comparing Cramer Rao lower bound to the empirical variances).

Tab. 6.2: Asymptotic Standard Errors for νX under TM and TMD, from Observed Infor-
mation vs. Empirical

Obtained from Iobs Empirical
Sample Size (n) TM TMD TM TMD

20 0.01495 0.01207 0.01604 0.0127
40 0.01052 0.00866 0.01053 0.00889
80 0.00750 0.00616 0.0077 0.00616
160 0.00530 0.00437 0.00554 0.00446
320 0.00377 0.00309 0.00383 0.00317
640 0.00266 0.00219 0.00262 0.00219
1280 0.00188 0.00155 0.0019 0.00157
2560 0.00133 0.00110 0.00138 0.00108

Table 6.3 tabulates the central limit theorem based confidence intervals (CI)

for the empirical asymptotic variances in table 6.2, and provides a measure of how

precise the agreement is between Iobs-derived and empirically-derived columns in

table 6.2. MLE’s ν̂rX , r = 1, . . . , R, are independent and asymptotically normal, or

we can say approximately normal for large enough n. For large enough n, therefore,

we have that ν̂rX ∼ N (νX , V (νX)), where V (νX) is the asymptotic variance of νX .

The estimated asymptotic variance is given by: V̂ (νX) =
∑

r(ν̂
r
X − ¯̂νX)2/(n − 1),

where ¯̂νX is the empirical average of ν̂X over R samples, and (n−1)V̂ (νX)/V (νX) ∼

χ2
n−1. Therefore, a 100(1− α)% CI for V (νX) is given by:

n− 1

χ2
α/2,n−1

V̂ (νX) < V (νX) <
n− 1

χ2
1−α/2,n−1

V̂ (νX)
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We are interested in the CI for the standard deviations (SD), so we take the

square root of the upper and lower limit of the CIs for the variance. Therefore we

have: √
n− 1

χ2
α/2,n−1

ŜD(νX) < SD(νX) <

√
n− 1

χ2
1−α/2,n−1

ŜD(νX) (6.3)

where ŜD(νX) =

√
V̂ (νX)

Tab. 6.3: Central Limit Theorem-based confidence intervals for asymptotic empirical Stan-
dard Deviations under TM and TMD

TM TMD
Sample
Size (n) Upper Lower Upper Lower

20 0.01219 0.02342 0.00965 0.0185
40 0.00862 0.01352 0.00728 0.01141
80 0.00666 0.00912 0.00533 0.00729
160 0.00499 0.00622 0.00401 0.00501
320 0.00355 0.00415 0.00294 0.00343
640 0.00248 0.00277 0.00207 0.00231
1280 0.00182 0.00197 0.00151 0.00163
2560 0.00134 0.00141 0.00105 0.00111

In failure tests, engineers are often interested in reducing test durations and

accelerating factors/conditions. Longer test durations cost more money and re-

sources, and overly accelerating conditions can change targeted failure mechanisms.

Failure test-designs that use low or no accelerating conditions are preferred. In

addition, correlation between degradation X and the marker Y is often weaker

than expected. There is interest, therefore, to investigate the efficacy of the TMD

data-structure when τ is small and correlation ρ is weak. A simulation experi-

ment computes ÂRE(ν̂TMD
X , ν̂TMX ) for pairs of (ρ, τ) from ρ = (0, 0.3, 0.6, 0.9) and

τ = (5, 10, 15, 20). The correlation ρ is varied from weak to strong and τ from short

to long.

For each pair (ρ, τ), and fixed n = 500, we simulated R = 100 data-sets and

computed MLEs θ̂
∗
r = (νX , νY , σX , σY )r, and their asymptotic variance estimates
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Tab. 6.4: Asymptotic relative efficiency of µ̂TMD versus µ̂TM for different (ρ, τ) combina-
tions, with θ = (0.1, 1.0, 0.2, 0.1)

ρ/τ 4 7 10 13
0 5.9614 2.1593 1.4759 1.2488

0.3 5.6893 2.1465 1.4505 1.2336
0.6 5.4270 2.0464 1.4106 1.2088
0.9 4.0123 1.6320 1.2355 1.1262

V̂ (θ̂
∗
r), r = 1, . . . , R, under both TM and TMD data separately. We calculate

ÂRE(·), according to equation (6.1) by averaging V̂ (·)r. Table 6.4 shows the ARE

results from an experiment with θ∗ = (0.1, 1.0, 0.2, 0.1). In table 6.4 we point out

the improvement in inference for low (ρ, τ) combinations. This result indicates

that under the bivariate Wiener model the TMD data-structure improves inference

under smaller sample sizes and weaker correlation coefficients. This result is very

promising because it gives preliminary justification for a TMD data-structure.

6.3.2 General Patterns for ARE of µ̂

To ascertain general patterns of ARE’s as a function of ρ and τ , we ran the sim-

ulation experiment for different combinations of θ∗ = (νX , νY , σX , σY ). We expect

patterns of inference-improvement in TMD over TM to be insensitive to changes in

θ∗. Table 6.5 shows AREs from an experiment using the same (ρ, τ) combinations,

Tab. 6.5: Asymptotic relative efficiency of µ̂TMD versus µ̂TM for different (ρ, τ) combina-
tions, with θ = (0.1, 1.0, 0.4, 0.1)

ρ/τ 4 7 10 13
0 2.44236 1.68550 1.43906 1.31727

0.3 2.40830 1.67795 1.41769 1.31341
0.6 2.29307 1.59947 1.394463 1.29086
0.9 1.80918 1.40500 1.263771 1.19975

and with a different θ∗ = (0.1, 1.0, 0.4, 0.1). We can see that the pattern of AREs

across the (ρ, τ) grid is qualitatively similar. However, because the variance of the
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simulated Wiener process is larger, now σX = 0.4, it causes a larger proportion of

devices to fail, which increases the ARE for each (ρ, τ) combination.

The above results in tables 6.4 and 6.5 can be explained as follows. With

small τ ’s there are more censored lifetime observations in each simulated dataset,

which means there are more observations on the terminal degradation in the TMD

data-structure. With more observations on degradation, in turn, we expect im-

proved inference under the TMD data-structure, and therefore higher AREs. AREs

greater than 1 indicate the efficacy of the TMD data-structure, and AREs close to

1 indicate that the two data-structures provide the same inference power. When

θ∗ = (0.1, 1, 0.2, 0.1), the percentage of failed devices is: 11%, 34%, 74%, and 97%,

respectively for the four τ levels. When θ∗ = (0.1, 1.0, 0.4, 0.1) the percentage of

failed devices is: 33%, 68%, 89%, and 99%, respectively for the four levels of τ . We

see that with higher variance in the process, we have more failures under each τ , and

therefore, access to less degradation information on surviving device, and therefore,

as expected, lower AREs.

Tab. 6.6: Combinations of parameter vector θ∗

No. νX νY σX σY No. νX νY σX σY
1 0.1 0.9 0.2 0.1 12 0.1 1.0 0.2 0.4
2 0.1 0.5 0.2 0.1 13 0.1 1.0 0.2 0.8
3 0.1 0.1 0.1 0.1 14 0.1 1.0 0.2 1.0
4 0.1 2.0 0.2 0.1 15 0.1 1.0 0.2 1.5
5 0.1 4.0 0.2 0.1 16 0.1 1.0 0.2 2.0
8 0.1 1.0 0.2 0.1 17 0.4 1.0 0.2 0.1
6 0.1 1.0 0.4 0.1 18 0.8 1.0 0.2 0.1
7 0.1 1.0 0.8 0.1 19 1.0 1.0 0.2 0.1
9 0.1 1.0 1.0 0.1 20 1.5 1.0 0.2 0.1
10 0.1 1.0 1.5 0.1 21 2.0 1.0 0.2 0.1
11 0.1 1.0 2.0 0.1

More generally, we compute the AREs for the same set of (ρ, τ) pairs, failure

threshold level a = 1, and time increment ∆t = 0.01, using various combinations of
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Fig. 6.1: General ARE patterns of µ̂TMD versus µ̂TM , under increasing σX

θ∗ as listed in table 6.6. Each parameter θi in vector θ∗ is varied separately, keeping

the others fixed. Parameter values are chosen to be reasonable in relationship to a

and ∆t. For example for values of νX > 2 the mean path of the simulated Wiener

process reaches the threshold at t = 0.5. Larger values of drift would simply cause

all simulations to result in failure. As we already showed in table 6.5, an increase in

the variance of the degradation process, decreases the AREs across all (ρ, τ) pairs.

Figure 6.1 (left) plots the general ARE patterns for ρ = 0, under increasing

σX , as a function of τ . As expected, for increasing τ the AREs attenuate to 1,

showing the diminishing efficiency of the TMD data-structure against the TM data-

structure for longer test durations. We also see that for each fixed τ , larger σX

generate lower ARE. On the right, we see similar general patterns under higher

correlation ρ = 0.6. Figure 6.2 (left) plots the general ARE patterns for ρ = 0,

under increasing σY , as a function of τ . As τ increases, the ARE attenuates to 1.

For each fixed τ , larger σY generate higher ARE. With stronger correlation ρ = 0.6,

the variance in the ARE is larger under each τ , however, for increasing τ , the AREs

again attenuate to 1.

Increasing the drift of the marker process νY does not seem to effect the ARE

under the same conditions. Figure 6.3 plots the AREs for νY = (0.1, 0.4, 0.8, 1.6, 3.2),
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Fig. 6.2: General ARE patterns of µ̂TMD versus µ̂TM , sunder increasing σY

for ρ = 0 (left) and ρ = 0.6 (right). Here we see that under fixed τ , νY does not

influence estimation. The results from figures 6.2 and 6.3, indicate that inference

is not affected by the marker magnitude at termination, but rather its variance.

Although both data-structures include terminal marker observations, inference suf-

fers more under TM than TMD because, under the TM data-structure, inference

is only based on the marker observations, whereas under the TMD data-structure,

inference is based on both marker and degradation data.

Increasing the drift of the degradation process on the other hand has more

prominent consequences on AREs. Figure 6.4 plots the general ARE patterns for

ρ = 0 (left) and ρ = 0.6 (right), under increasing νX , as a function of τ . As expected,

under each fixed τ , larger νX , increases the ARE. This is highlighted especially for

small values of τ . These results make sense, because under high drifts, we expect

a larger proportion of failed devices, and therefore as per our hypothesis, improved

inference under the TMD as opposed to the TM data-structure.

6.3.3 How can general ARE patterns be used in a practical setting?

Generally, these results validate our hypothesis that inference improves with

enhanced data, and that the TMD data-structure is more efficient at ML-estimation

under small failure-time samples. These results can be used to justify reducing
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Fig. 6.3: General ARE patterns of µ̂TMD versus µ̂TM , under increasing νY
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Fig. 6.4: General ARE patterns of µ̂TMD versus µ̂TM , under increasing νY

96



accelerating conditions in accelerated failure tests. By reducing the accelerating

conditions, and keeping the test-duration τ fixed, we are likely to observe fewer

failed devices by time τ . However, based on the above results, we need a smaller

failure-time sample in the TMD data-structure to get the same predictive power

as the TM data-structure, and therefore we can ”afford” to reduce the designed

accelerating conditions in the planned failure-test. From an engineering perspective,

reducing accelerating conditions in failure tests is a welcomed option, because, we

we discuss in the introduction, highly accelerated test conditions may alter targeted

failure-mechanisms.

These results can also be used to justify shorter test-durations for planned

failure-tests. Typically, failure-tests are conducted over a time-period long enough

to see enough devices fail. Shorter test-durations are not only less costly, they are

sometimes required due to short product life-cycles.

High values of ρ make the marker data more closely associated to the failure

mechanism, and therefore we expect lower AREs when ρ approaches 1. When

the marker is perfectly correlated to the degradation variable, any observations on

the degradation should not enhance inference. This argument is validated in the

simulation results.In general we notice that for stronger correlations we get smaller

ARE. For long test-times, most devices fail, and the TMD data-structure, therefore,

looses valuable degradation information from surviving devices.

The improvement in estimation under the TMD data-structure is due to obser-

vations on terminal degradation. In tests where degradation is latent, as motivated

in this thesis, we argued and proved with the results above that access to termi-

nal degradation data reduces estimation variance in a bivariate Wiener model. In

failure-test laboratories, terminal degradation is often measured using expensive

equipment or proprietary techniques, and is therefore valuable information. Un-

der latent degradation conditions, the above results show the efficacy of terminal
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degradation data in reducing estimation variance. These results therefore, suggest

investing in failure-analysis equipment capable of measuring terminal degradation.

6.3.4 Predictions on the failure-time distribution under TMD

Predictions are computed using the predictive inference equations (4.35) and

(4.36) and the MLEs as plug-in estimators. Given survival and a marker obser-

vation at a sequence of time points ti, Figure 6.5 plots the predicted conditional

degradation (left) and future failure-time densities (right). The probability density

function of the degradation variable at time ti is plotted by connecting probabilities

computed for a range of degradation values. Similarly the probability density func-

tion of the failure-time variable at time ti is plotted by connecting the probabilities

computed for a range of future failure-times. Predictions qualitatively capture the

behavior/trend of the latent degradation process, and the decreasing uncertainty in

failure-time predictions.

The shape of the density is plotted by connecting point probabilities evaluated

for a vector-valued dependent variable. For example, we vary the level of degrada-

tion from -1 to 1 in small increments and evaluate the probability specified by the

predictive inference equations for each xi

6.3.5 Simulation 2 - TMD vs. TMDL1

We simulate R = 250 independent data-sets D, for a range of sample sizes n,

and compute the MLEs θ̂ for each. MLEs from the TMD data-structure are rep-

resented by vector θ̂TMD, and from the TMDL1 data-structure by θ̂TMDL1. Under

TMDL1, for failed devices we observe Y = (Y (t1), Y (s)), and for surviving devices

Y = (Y (t1), Y (τ)), and as always 0 ≤ s ≤ τ . The improvement in estimation

from observing Y (t1) can again be seen by comparing standard errors of estimated

parameters.
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Fig. 6.5: Predicted degradation and survival density as a function of time

For each sample size n, we simulate sample observations with the parameter

set θ = (νX , νY , σX , σY , ρ) = (0.1, 1.0, 0.4, 0.1, 0.75). Lifetimes were generated in

the same way as before (see section 6.1), with ∆t=0.01, a=1, and τ=10. In each

simulation run j, the intermediate marker observation is made at time-point t1 =

τ/2. This way the marker observation time is independent of the failure-time and

always less than the end-of-test time. When t1 > s the contribution of that failed

device to the likelihood is made through the TMD data-structure.

Table 6.7 reports the asymptotic standard errors for νX computed from Iobs

compared to the empirical sample variance-covariance matrix, under both the TMD

and TMDL1 data-structures. We observe again a close agreement between the

Iobs-derived and empirical columns. We observe, contrary to our expectation no im-

provement in estimation results under the TMDL1 data-structure in comparison to

the TMD data-structure. This result is likely a result of simulation errors. However,

under TMDL2 we actually see improvement in estimation as we discuss in the next

section.

Asymptotic relative efficiency is used to test the efficacy of TMD vs TMDL1.
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Tab. 6.7: Asymptotic Standard Errors for νX under TMD and TMDL1, from Observed
Information vs. Empirical

Obtained from Iobs Empirical
Sample Size (n) TMD TMDL1 TMD TMDL1

20 0.00711 0.00621 0.00729 0.00828
40 0.00511 0.00533 0.00536 0.0058
80 0.00366 0.00369 0.00354 0.00354
160 0.00261 0.00263 0.00272 0.00272
320 0.00185 0.00187 0.00201 0.00201
640 0.00131 0.00131 0.00127 0.00127

Tab. 6.8: Central Limit Theorem-based confidence intervals for asymptotic empirical vari-
ances under TMD and TMDL1

TMD TMDL1
Sample size (n) Lower Upper Lower Upper

20 0.00554 0.01064 0.00629 0.01209
40 0.00439 0.00688 0.00475 0.00744
80 0.00306 0.00419 0.00306 0.00419
160 0.00245 0.00305 0.00245 0.00305
320 0.00186 0.00217 0.00186 0.00217
640 0.00120 0.00134 0.00120 0.00134

We compute the ARE for estimating µ in an inverse-Gaussian lifetime density func-

tion for pairs of (ρ, τ), ρ = (0, 0.3, 0.6, 0.9), and τ = (4, 7, 10, 13). For each pair of

(ρ, τ) we simulated R=500 data-sets and computed θ̂
∗
r, r = 1, . . . , R, for TMD and

TMDL1 data, treating TMD as a subset of the data available under TMDL1. Table

6.9 presents the ARE’s for all (ρ, τ) pairs.

From table 6.9 we see that the TMDL1 data-structure is more efficient for

combinations of (ρ, τ) where ρ is strong, and τ is small. The rationale behind

this results, can be arguably related to the model specifications. Both TMD and

TMDL1 ”benefit” from long test-times because more information on the degrada-

tion is revealed in surviving devices. Presumably information on the degradation

variable, is more valuable than information on the marker variable, no matter how

strongly correlated it is to degradation. When test-times are short, however, fewer

failures are observed, and therefore little information is gained on the actual degra-
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dation. In this case it matters how strongly correlated the marker variable is to the

degradation, and table 6.9 verifies this hypothesis.

Once again, we have grounds to advertise the TMDL data-structures in ap-

plication areas with few failure observations. Although direct information on the

degradation variable is shown here to ”outweigh” information on the marker vari-

able (under certain conditions), it remains to be seen if there comes a point when

this is no longer the case. In other words, for estimation purposes, does access to

terminal degradation information become irrelevant when we have a lot of longitu-

dinal marker information? One must also consider computational complexity and

computational efficiency to make the comparison fair, after all, multivariate longitu-

dinal marker observations require more complex multivariate (nested) integration.

Tab. 6.9: Relative efficiency of µ̂TMDL1 versus µ̂TMD, for different (ρ, τ) combinations

ρ/τ 4 7 10 13
0 1.00053 0.99984 0.99974 0.99983

0.3 1.01364 1.00681 1.00269 0.99854
0.6 1.07101 1.04112 1.01713 0.99849
0.9 1.24527 1.16814 1.06883 1.01328

6.3.6 Simulation 3 - TMD vs. TMDL1 vs TMDL2

In effort to gain further insight into the contribution that additional marker

observations have on estimation, we investigate the TMDL2 data-structure. We

again simulate R=250 independent data-sets D, for n = (20, 40, 80, 160), and

computed the MLEs θ̂ for each. MLEs from the TMD data-structure are repre-

sented by vector θ̂TMD, from the TMDL1 data-structure by θ̂TMDL1, and from the

TMDL2 data-structure by θ̂TMDL2. Under TMDL2, for failed devices, we observe

Y = (Y (t1), Y (t2), Y (s)), and for surviving devices Y = (Y (t1), Y (t2), Y (τ)), and

as always 0 ≤ s ≤ τ , and t1 < t2 < τ . Devices that fail before t2 contribute to the

101



likelihood function using the TMDL1 data-structure, and devices that fail before t1

contribute through the TMD data-structure.

The same parameter set θ = (0.1, 1.0, 0.4, 0.1, 0.75) is used, and lifetimes are

generated in the same way as before, with ∆t=0.01 and a=1. In each simulation

run j, the intermediate marker observations are made at t1 = τ/3 and t2 = 2τ/3.

Table 6.10 reports the asymptotic standard errors for νX computed from Iobs. The

TMDL2 data-structure, on average, results in smaller asymptotic standard errors,

than the TMDL and TMD structures, indicating therefore, without the aid of AREs,

improved estimation. Further higher dimensional longitudinal data-structures are

not investigated in this work, due to lack of computing power for evaluating higher

dimensional integrals. Using the results in table 6.10 however, we can assume that

inference will improve with more marker observations. It is not clear from these

results if the influence of additional marker observations will attenuate.

Tab. 6.10: Asymptotic Standard Errors for νX under TMD, TMDL1 and TMDL2 from
Observed Information

Obtained from Iobs
Sample Size TMD TMDL1 TMDL2

20 0.00612 0.00612 0.00604
40 0.00483 0.00483 0.00466
80 0.00365 0.00365 0.00360
160 0.00270 0.00270 0.00193

6.4 Degradation data on Aircraft Gas-Turbine Engines

In this section we present analysis of degradation data collected on aircraft

gas-turbine engines. Multivariate time series observations on m = 21 covariates are

made on a cohort of n = 218 independent engines. Each engine is randomly stressed

under 8 usage conditions (settings): ST − 0, 20, 40, 60, 80, 100. We observed that

multivariate projections of the 21 covariates from each setting form distinct clusters.

Therefore, we consider data collected only under setting ST3 − 0 for our analysis.
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We chose ST3− 0 arbitrarily amongst the 6 settings.

One of the key features in the data is a latent degradation variable, which

reflects the fact that the degradation variable is not observed. Because each device is

tested to failure, however, we can assume that for each failed device, the degradation

variable reached a fixed known threshold at the failure time. This assumption allows

us to apply the FHT models presented in this thesis. In the simplest case, we

simulate degradation to be linear in cycles, with heterogeneous drift and variance

across devices. In the analysis we make the following assumptions:

• The degradation variable starts at level 0, and reaches a=1 at failure-time

• Degradation paths are assumed linear and proportional to the device’s lifetime

• Censoring of failures is made at τ=200 cycles

Degradation is simulated proportional to each device’s lifetime under all usage

settings. The data is then filtered for setting ST3 − 0. Notice that the occurrence

of setting ST3 − 0 is non-deterministic, that is the device is exposed to the usage

condition defined by ST3 − 0 in a random way. In the filtered data we observe a

nonlinear progression of cycles for each observation. This means that not every sur-

viving device will have have its last observation made at 200 cycles. For consistency,

therefore, we adopt the following rule for data collection on surviving devices, under

setting ST3− 0:

• If the device is not observed on the 200th cycle, then collect data on the cycle

closest to cycle 200

For example, if under setting ST3 − 0 device i is observed on cycles 191 198

205 and 223, then we collect data associated with cycle 198. We augment simulated

degradation values to the covariate data under setting ST3 − 0 , as illustrated in

table 6.11
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Tab. 6.11: Illustration of ST3-0 data-structure with augmented degradation data
Usage Setting ST3-0

Device Cycles z1 z2 . . . z21 Deg
1 4 491 601 . . . 0.22 0.002
1 6 491 607 . . . 0.19 0.03
1 23 490 607 . . . 0.24 0.009
...

...
...

...
...

...
...

1 31 491 607 . . . 0.24 0.012
1 45 490 608 . . . 0.24 0.018
1 75 496 607 . . . 0.29 0.023

To fit this data into the TM and TMD data-structures, we are interested in

suitable marker variables that can be used. As a first data-cleaning step, variables z1,

z5, z18 and z19 with zero standard deviation are removed from the data-set, leaving

17 covariates. Figure 6.6 plots a colormap surface of the empirical correlation matrix

between each of the 17 covariates and the degradation variable. From examining the

correlation matrix we see that variables 9,13, and 14 are strongly correlated with

each other and therefore redundant. From the remaining variables, only four show

considerable correlation to the degradation variable. We continue our analysis using

covariates z4, z8, z11 and z15.

Using principal component analysis (PCA), we reduce the dimensionality fur-

ther, and ultimately derive one variable that can be used as the marker variable.

PCA forms a new set of uncorrelated (not necessarily independent) variables that we

denote by z′. The PCA scores on the most dominant eigenvector show the strongest

correlation to the degradation variable (∼ 0.42), and therefore this variable is used

as the marker variable.

Table 6.12 compares the asymptotic standard errors for TM vs TMD under

increasing sample sizes n = (20, 40, . . . , 218). In these results we observe and val-

idate that under the TMD data-structure, parameters are consistently estimated

with lower uncertainty. Also its interesting to observe that under both models the

estimates for ρ are in close agreement to the empirical correlation between marker

104



s2 s3 s4 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s20 s21 deg

s2 1 0.547 0.643 0.45 0.554 0.515 0.273 0.335 0.674 0.578 0.517 0.18 0.642 0.547 0.557 0.484 0.498 0.612

s3 0.547 1 0.619 0.433 0.537 0.5 0.264 0.323 0.649 0.558 0.495 0.176 0.62 0.509 0.533 0.483 0.481 0.583

s4 0.643 0.619 1 0.496 0.647 0.528 0.235 0.374 0.775 0.676 0.528 0.127 0.729 0.617 0.636 0.565 0.569 0.68

s6 0.45 0.433 0.496 1 0.43 0.373 0.18 0.231 0.525 0.456 0.374 0.109 0.492 0.344 0.428 0.38 0.381 0.502

s7 0.554 0.537 0.647 0.43 1 0.434 0.172 0.322 0.673 0.575 0.435 0.076 0.633 0.545 0.545 0.497 0.495 0.586

s8 0.515 0.5 0.528 0.373 0.434 1 0.87 0.369 0.534 0.436 0.945 0.818 0.569 0.49 0.515 0.411 0.412 0.653

s9 0.273 0.264 0.235 0.18 0.172 0.87 1 0.244 0.217 0.161 0.87 0.948 0.29 0.261 0.275 0.189 0.188 0.44

s10 0.335 0.323 0.374 0.231 0.322 0.369 0.244 1 0.389 0.335 0.371 0.191 0.387 0.338 0.346 0.298 0.284 0.381

s11 0.674 0.649 0.775 0.525 0.673 0.534 0.217 0.389 1 0.716 0.533 0.101 0.764 0.654 0.671 0.593 0.6 0.706

s12 0.578 0.558 0.676 0.456 0.575 0.436 0.161 0.335 0.716 1 0.438 0.057 0.666 0.562 0.576 0.511 0.519 0.613

s13 0.517 0.495 0.528 0.374 0.435 0.945 0.87 0.371 0.533 0.438 1 0.819 0.571 0.494 0.514 0.414 0.41 0.656

s14 0.18 0.176 0.127 0.109 0.076 0.818 0.948 0.191 0.101 0.057 0.819 1 0.183 0.17 0.185 0.102 0.102 0.348

s15 0.642 0.62 0.729 0.492 0.633 0.569 0.29 0.387 0.764 0.666 0.571 0.183 1 0.622 0.635 0.554 0.563 0.688

s16 0.547 0.509 0.617 0.344 0.545 0.49 0.261 0.338 0.654 0.562 0.494 0.17 0.622 1 0.544 0.479 0.481 0.604

s17 0.557 0.533 0.636 0.428 0.545 0.515 0.275 0.346 0.671 0.576 0.514 0.185 0.635 0.544 1 0.497 0.498 0.608

s20 0.484 0.483 0.565 0.38 0.497 0.411 0.189 0.298 0.593 0.511 0.414 0.102 0.554 0.479 0.497 1 0.433 0.533

s21 0.498 0.481 0.569 0.381 0.495 0.412 0.188 0.284 0.6 0.519 0.41 0.102 0.563 0.481 0.498 0.433 1 0.53

deg 0.612 0.583 0.68 0.502 0.586 0.653 0.44 0.381 0.706 0.613 0.656 0.348 0.688 0.604 0.608 0.533 0.53 1

Fig. 6.6: Correlation matrix between covariates (1 through 17) and degradation (18)

and degradation (∼ 0.42 ). Similarly we observe that the MLE for νX is in close

agreement with the empirical rate, which is calculated by 1/(average number of cy-

cles to failure) ∼ 200 = 0.005. Table 6.13 compares the asymptotic standard errors

and MLEs for ρ across the same range of sample sizes. Here again we observe an

improved inference under the TMD data-structure. For larger n, although the vari-

ance is reduced (under both data-structures) the MLE for ρ seems to be relatively

biased to the empirical correlation.

The proportion of failed to survived devices in each sample size is random and

approximately equal to 50% as noted in Table 6.11. This is a result of constructing

a sample by adding records from subsequently observed censored and failed devices,

starting from the 1st device. For example, for a sample of size n = 20, we construct

the data set by adding an additional row to the data-set for each device number,

starting from device 1. In this way, the proportion of devices out of n = 20 that fail
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Tab. 6.12: Asymptotic Standard Error for νX under TM and TMD from Observed Infor-
mation. Empirical drift ∼ 0.005

MLE SE
Sample Size TM TMD TM TMD Prop. Failed

20 0.00511 0.00526 0.0003445 0.000244 0.55
40 0.005 0.00505 0.0002116 0.0001598 0.525
60 0.00483 0.00497 0.0002000 0.0001305 0.466
79 0.00486 0.00501 0.0001757 0.0001150 0.482
99 0.00483 0.00499 0.000153 9.91E-05 0.484
119 0.00481 0.00498 0.0001385 8.79E-05 0.478
139 0.00485 0.00502 0.0001279 8.18E-05 0.489
159 0.00483 0.005 0.0001228 7.81E-05 0.484
179 0.00482 0.00498 0.0001128 7.22E-05 0.48
199 0.00481 0.00499 0.0001099 6.94E-05 0.482
218 0.0048 0.00499 0.000108 6.75E-05 0.481

or survive is random.

Tab. 6.13: Asymptotic Standard Error for ρ under TM and TMD from Observed Infor-
mation. Empirical correlation = 0.42

MLE SE
Sample Size TM TMD TM TMD

20 0.42394 0.44558 0.18111 0.16280
40 0.39581 0.44455 0.13869 0.11626
60 0.40546 0.41031 0.11424 0.09983
79 0.43247 0.42076 0.09574 0.08643
99 0.43147 0.41128 0.08417 0.07767
119 0.43723 0.40441 0.07613 0.07194
139 0.41361 0.38366 0.07177 0.06783
159 0.40293 0.38431 0.06872 0.06307
179 0.40918 0.39213 0.06449 0.05918
199 0.36231 0.35231 0.06408 0.058395
218 0.35679 0.33982 0.06128 0.056277

We are also interested in studying the ARE of the TM vs TMD data-structures

when ρ is kept fixed and known and sample size is decreased. We are again ex-

pecting, based on the asymptotic standard errors presented in Tables 6.11 and

6.12 that the TMD with outperform the TM model. For each pair (ρ, n), ρ =

0, 0.052, 0.104, . . . 0.99, n = (20, 40, . . . , 218), we computed θ̂, for TM and TMD

data, treating again TM as a subset of the data available under TMD.
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Fig. 6.7: Relative efficiency of µ̂ from G2 vs. G1 for different (ρ, n) combinations evaluated
with gas-turbine engine degradation data

Figure 6.4 plots the results of the ARE experiment, and tells a different

story from the ARE results in the simulations. In this case, the proportion of

failed to surviving devices remains the same for all sample sizes. We observe that

the efficacy of the TMD data-structure decreases with increasing ρ and decreasing

sample size n. The rationale behind these results can be explained in terms of

information content. When ρ is high it favors the TM data-structure because it can

draw more information on surviving devices from the marker observations. From

the TMD perspective, when ρ is high, therefore the marker information becomes

more valuable, it takes away the advantage of observing terminal degradation. On

the other hand, with large sample sizes the TMD data-structure slowly regains its

advantage.
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7. COVARIATES AND REGRESSION STRUCTURES

Emphasis in this thesis has been given to the development of parametric infer-

ence procedures for the bivariate Wiener model under various extensions to the TM

data-structure. The effect of covariates still remains to be incorporated into these

models. Covariates are measurable variables that contain information about device

specific performance and environment. Covariate data in an engineering setting

are usually collected from sensors embedded onto or near the device, and designed

to measure targeted information related to the health/degradation of the device.

Reliability models that incorporate covariate data together with lifetime data are

anticipated to improve reliability predictions.

Much literature has been devoted to reliability models for lifetime data with

covariates. This is especially true in what are known as accelerated failure time

models, with early work by Epstein and Sobel 1963, Singpurwalla 1970, and many

others, some of which we discuss later in this chapter. The main purpose of this

chapter is to discuss the relevance of using covariates in degradation models, and

specifically in FHT models.

Lee and Whitmore 2006 introduce Threshold Regression models, which are

FHT models that include regression structures. Regression structures allow effects

of covariates to explain some or all of the dispersion of the data, thereby taking

account of variability ad sharpening inferences [Whit, Lee 2006]. The idea of using

covariates to aid estimation and inference can be found in a broad range of literature

in survival and reliability analysis. The main idea is that unknown distribution or

process parameters are reparameterized as functions of covariates.



In FHT models, one can think about reparameterizing the drift parameter νX

as νX = α − βZ, where Z is a vector valued covariate, and α, β are new unknown

parameters that need to be estimated. In electronics reliability experiments, ac-

celerated lifetimes are most common, induced by higher than normal experimental

stress conditions, such as high temperature, humidity and pressure. It becomes

important to model the influence of covariates that measure the stresses and other

environmental conditions, on the rate of degradation. In other words, they include

the effect that covariate information has on the drift of the degradation process.

This relationship is especially important during predictive inference calculations on

test devices. In the example used above, instead of using the MLE ν̂X as a plug-in

estimator in predictive inference equations, we can use α̂− β̂Zi for device i, there-

fore explaining the drift accounting for heterogeneous covariate observations across

the training sample.

One question that arises is what regression structure to use that best captures

the functional relationship between covariates and the dependent variable of interest,

like, drift or more generally, degradation. In cases where failure-mechanisms are well

understood, then PoF models can motivate the appropriate regression structure.

PoF models typically relate covariates at a point in time to either the degradation

level or to the lifetime scale parameter. In case where lifetimes are attained under

what are called accelerated test conditions, PoF models also try to account for

the acceleration. When failure-mechanisms are not well understood, then data-

driven approaches can help identify the statistical relationship. In the remainder of

the chapter we discuss various regression structures that can be considered in the

context of FHT models.
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7.1 Multiplicative Hazards Regression Models

In survival analysis the hazard rate λ(t) captures the instantaneous probability

of failure at time t, and forms the basis for multiplicative hazard regression models:

λi(t) = λ0(t)r(zi(t))

where λ0(t) is a baseline hazard function and r(zi(t)) is a positive valued device-

specific relative-risk multiplier. Typically, the relative-risk is specified by r(zi(t)) =

exp(θTzi(t)) with parameter vector θ. The hazard ratio between any two devices,

λi(t)/λj(t) = exp(θT (zi(t) − zj(t))), is constant if the difference in covariates is

constant in time, specifying therefore a proportional hazard model.

In Cox’s proportional hazard regression model λi(t) = λ0(t)exp(θTzi(t)) ,

the baseline hazard is left unspecified. Its semi-parametric form can help reduce

estimation bias of covariate effects. The parameter vector θ can be estimated using

the partial likelihood [74].

7.2 Accelerated Failure Time Regression Models

Accelerated tests are typically used to collect information on the life distribu-

tion or performance over time of products. Meeker and Escobar 1993 provide an

excellent review of research and issues in accelerated testing. In their 2002 book,

Bagdonavicius and Nikulin present a comprehensive review of univariate accelerated

life models, Nelson 1990 describes accelerated life models and life-stress relationships

such as the Arrhenius, the inverse-power, and the fatigue relationships.

Accelerated failure time regression models, provide an alternative to the com-

monly used proportional hazards models. AFT regression models assume that the

effect of a covariate is on the failure-time itself. AFT regression models are typi-

cally based on log transformations of the failure-time. For example, in a log-linear
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failure-time model log(si) = µi + βTzi + ε, with −∞ < µi < ∞, β > 0 and ε is a

normally i.i.d. error variable. The survival function and hazard rate are then given

by:

S(t|zi) = S0(texp(−βTzi))

λ(t|zi) = λ0(texp(−βTzi))exp(−βTzi)

where S0, the baseline survival function is given by:

S0(t) = Pr(exp(µi + ε) > t)

The conditional survival function above, provides a mapping of survival func-

tion between baseline functions and functions at any given covariate level. Interest-

ingly, when the baseline is Weibull, then λi(t) = λ0(t)(t exp(−αβTzi)), where α is

the Weibull probability density function shape parameter. This is equivalent to the

multiplicative hazard form λi(t) = λ0(t)r(zi(t)). When certain covariates are not

observable, heterogeneity also leads to unexplained variation. Frailty models can be

used to represent unobserved heterogeneity as a random variable.

7.3 The Marker Variable as a Special Covariate

In FHT models, marker variables, as discussed earlier, form the basis for in-

ference in bivariate latent degradation models. Maker variables are generally chosen

from the available covariates available on a device, making the bivariate model a

type of regression model. The marker is considered to be a ”special” covariate in

that we attribute greater importance to it, because we believe it is more closely

correlated to the degradation variable. At a fixed time point, markers, unlike co-

variates are treated as random variables related to degradation through a parametric

model with unknown parameters. Indexed by time, therefore, a collection of marker
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variables forms a stochastic process.

Markers, often are taken as functions of several covariates, so called composite

markers. Composite markers can be derived, for example, from principal component

analysis (PCA), factor analysis (FA), or more generally from generalized linear mod-

els. Covariate data scores onto the principal eigenvectors, or latent factors, in PCA

and FA respectively, can be used to represent the composite marker. As another

example, a composite marker can be constructed using the time-dependent cox-

proportional hazards model. In this case, the composite marker variable represents

the instantaneous risk of failure or the hazard rate.

Next we present two less traditional regression structures, that we argue, can

be made available through machine learning methodology.

7.4 Gaussian Process Regression

Gaussian processes provide a computationally practical and tractable frame-

work to deal with high dimensional covariate observations. We show that because

a Gaussian process can be completely specified by its mean and covariance func-

tion, it can explain the variability of a dependent variable, such as degradation.

Gaussian processes can be used when we are interested in making inference about

the relationship between covariates and a dependent variable, i.e. the conditional

distribution of the dependent variable given the covariates [75]. From a machine

learning perspective Gaussian process regression is approached as an unsupervised

learning problem, where the task is to find suitable properties for the covariance

function. Many covariance functions, such as the squared exponential (SE), radial

basis function (RBF), rational quadratic (RQ), mattern, can be used, among others,

and each have parameters that need to be inferred or learned from the data.

Linear regression, where the output is the linear combination of inputs is

simple and easy to interpret. It is, however, inflexible when the output cannot
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reasonably be approximated by a linear function, like for example degradation or its

drift. It is reasonable, for example, to assume that under higher stress conditions

the degradation drift will increase, but not necessarily linearly.

Consider a cohort of n independent devices tested over a period [0, τ ] as dis-

cussed in chapter 2. The training set D consists of n observations D = [(zi,xi)|i =

1, . . . , n], where zi = (zi1, zi2, . . .) denotes the input vector (covariates) and xi =

(xi1, xi2, . . .) denotes the output vector for the ith device. In matrix form we can

write D = (Z,x). Note as discussed in chapter 2 the number of input/output ob-

servations made on a device depends on whether it survives or fails in the period

[0, τ ].

7.4.1 Linear Model

The standard linear model with Gaussian noise is given by:

x = zTw + ε (7.1)

where w is the parameter vector of the linear model, f(z) = zTw, and ε ∼ N (0, σ2
ε )

is the assumed error distribution between x and f(z) and is assumed i.i.d across

devices. The likelihood of the data given the parameters is given by:

L(x|Z,w) =
n∏
i=1

fX(xi|zi,w) = N (ZTw, σ2
ε ) (7.2)

In a Bayesian fashion we put a prior on the parameters w ∼ N (0,Σz), where

Σz is the covariance matrix on the parameters, which we discuss further in section

7.8. Inference in the Bayesian linear model is based on the posterior distribution over

the parameters. The posterior distribution of the parameter vector is proportional
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to the likelihood times the prior, given by:

fw(Z,x) ∼ N
(

Zx

σ−2
ε ZZT + Σ−1

z

,
1

σ−2
ε ZZT + Σ−1

z

)
(7.3)

To make predictions at an unobserved output vector (test vector) x∗ condi-

tioned on inputs z∗, we average over all possible parameter values weighted by their

posterior probability:

fX∗(x∗|z∗,Z,x) =

∫
fX∗(x∗|z∗,w)fw(w|Z,x)dw (7.4)

To overcome the limited expressiveness of linear models, we project covariates

into a selected feature space. In summary, the covariates are transformed through a

mapping function φ into some high dimensional space where the relationship between

the covariates and the dependent variable is more linear. As long as the mapping is a

fixed function, such as φ(z) = (1, z, z2, z3, . . . )T , i.e. independent of the parameters

w the model is still linear inw. The function φ(z) maps anm−dimensional covariate

vector z into an M−dimensional feature space. The transformed model is now given

by: f(z) = φ(z)Tw, where and the predictive distribution becomes:

fX∗(x∗|z∗,Z,x) ∼ N
(
φT∗ΣzΦ(K + σ2

ε I)−1x, φT∗Σzφ∗ − φT∗ΣzΦ(K + σ2
ε I)−1ΦTΣzφ∗

)
(7.5)

where φ∗ = φ(x∗), Φ(Z) is a matrix of columns φ(z). and K = ΦTΣzΦ.

7.4.2 Function Space View

Before we looked at the weight space point of view, which keeps closer with the

linear model perspective. An equivalent way to think about things is the function

space perspective. Here, the weight vector becomes latent and the important concept

is the function itself. So instead of trying to estimate the best posterior w, we
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Fig. 7.1: Function space view. Left: nine functions drawn at random from a GP prior,
and the dot plots a single observation x. Right: Nine random functions drawn
from the posterior. In both plots the shaded area represents point wise mean
plus and minus two times the standard deviation.

directly estimate the posterior distribution over the functions themselves. This is

possible in GPs where the function is determined by its mean and variance, where

the variance is also known as kernel function and is specified by the user. In the

context of the GP, all random variables, including the r.v. at test data points are

jointly Gaussian, and this means that there are an infinite number of functions

(derived by a specific GP) that can be used to fit the data.

Here we use an example to illustrate the function-space inference process. In

Figure 7.1 observations on x are generated by sampling from a sine function. The

first tier in 7.1 shows the prior and the posterior generated after only one observation

on x, the second tier after 4, and the third after many observations on x. With more

covariate information in the third tier, we observe that the uncertainty in estimation

is reduced.

Definition 7.1 (Gaussian Process). A Gaussian process is a collection of random

variables, any finite number of which have a joint Gaussian distribution

A Gaussian process is completely specified by its mean function m(z) and

covariance function, (or kernel function) k(z, z′) of a real process f(z). From the
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Bayesian linear regression model we can write f(z) = φ(z)Tw with prior w ∼

N (0,Σz). Then

E[f(z)] = φ(z)TE[w]

E[f(z)f(z′)] = φ(z)TE[wwT ]φ(z′) = φ(z)TΣzφ(z′) (7.6)

The covariance function specifies the covariance between pairs of random vari-

ables, for example, cov(f(zp), f(zq)) = k(zp, zq) = exp(−1/2|zp − zq|2). The spec-

ification of the covariance function implies a distribution over functions. This can

be seen in Figure 7.1, the prior as mentioned earlier is sampled from:

f(z∗) ∼ N (0, K(Z∗, Z∗)) (7.7)

where K is the matrix of kernel functions k(·). The posterior predictive distribution

at test covariates Z∗, i.e. the prior conditioned on training covariate observations

Z and new test covariate observations Z∗, is given by:

f(z∗)|Z∗,Z,x ∼ N
(
K(Z∗,Z)K(Z,Z)−1x,

K(Z∗,Z∗)−K(Z∗,Z)K(Z,Z)−1K(Z,Z∗)
) (7.8)

The expected value of the dependent variable, conditioned on training and

test covariate observations, is given by: K(Z∗,Z)K(Z,Z)−1f(z), where K(Z∗,Z)

is the kernel matrix whose elements define the the covariance between each test

observation z∗ and each training covariate observation z, and x is the vector of ob-

servations on the dependent variable. The conditional mean is a linear combination

of observations x:

m(z∗) =
n∑
i=1

αik(zi, z∗) (7.9)

where α = K−1x.

116



Fig. 7.2: GP mean function m(z∗). The blue dots are the training data (x, z).

7.4.3 Connection to FHT models

In the context of FHT models, we are interested in explaining heterogeneous

drift conditioned on device specific covariate observations. In the case where degra-

dation is observed we can examine the regression structure between it and the ob-

served covariates. In this case the influence of the covariates is incorporated by re

parameterizing the drift νX with the conditional mean m(z∗). Maximum likelihood

optimization will be therefore performed over the parameter set α instead of νX .

Although covariates are empirically correlated to the degradation variable in this

case, we stipulate, because degradation is a linear function of drift, then we can

safely extend the relationship to exist between covariate and drift parameter.

Figure 7.2 plots the mean function of a GP regression model applied to a

time series of a dependent variable and its associated covariates. We can see that

covariates motherboard temperature and fan speed together with dependent variable

observations are used to predict the functional dependency at other data combi-

nations within the bivariate covariate range. Specifically, in this example, the de-
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pendent variable represents the health probability of the device under observation.

The health probability, is an output from the Support Vector Degradation model,

discussed in chapter 10.

Because GPs are computationally very tractable and easy to compute, they

can be used to handle large multivariate covariate observations. Typically covariates

and dependent variables are indexed by time, and therefore, GP regression models

can also be used later for event-time prediction, and we discuss this in more detail

in chapter 10.

7.5 Support Vector Machines

Support vector machines (SVM) are based on the idea of large-margin linear

discriminants that seek to find a function f(data) to separate two or more classes

of data by maximizing what is called the hyperplane margin. In this section we

consider linear SVMs, and their possible connection to FHT models.

Consider a cohort of n independent devices tested over a period [0, τ ], and

define training data as: (Z,y) where Z is a collection of r covariate vector ob-

servations on n healthy devices and l covariate vector observations on q failed or

severely degraded devices, such that Z = (z1, . . . ,zr, zr+1, . . . ,zr+l). Typically the

healthy training data are collected by observing all n devices early in their life, up

until some predefined time. The degraded training data are collected on all q failed

devices from some predefined time before their observed failure time.

The class label of each zi is given by yi ∈ (+1,−1), where +1 indicates the

membership of zi into the degraded/failed class. The training class label vector y

consists of r healthy covariate observations and l degraded. We assume that Z can

be separated by a decision function f(z;w, b) with appropriate parameters w and
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b, given by:

f(z) = (wTz) + b =
m∑
i=1

wizi + b (7.10)

subject to

yi(w
Tz + b)− 1 ≥ 0

where w = [w1, . . . , wm]T is the weight vector and z = [z1, . . . , zm]T . Training

covariate observations z with yi = +1 will fall into f(z;w, b) > 0 while the others

with yi = −1 will fall into f(z;w, b) < 0. A new (non-training) covariate vector

measurement z∗ is evaluated using:

f(z∗) =
n∑
i=1

yiαiz
T
i z∗ + b (7.11)

where
n∑
i=1

αiyi = 0

and

b =
1

n

n∑
i=1

yi

(
1−

n∑
j=1

Hjiαj

)
(7.12)

where H is the Hessian matrix: H = yiyjz
T
i zj. The decision function f(z∗) uses

training covariate vector data and their class label to evaluate the test observation

z∗.

7.5.1 Connection to FHT models

The drift parameter of the degradation process X(t) can be reparametrized

as a function of the distance of z∗ to the decision boundary f specified by w =∑n
i=1 αiyiz

T
i . The perpendicular distance of z∗ to f is given by:

d(z∗) =
f(z∗)

||w||
(7.13)
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The drift parameter νX , can therefore, be expressed as a function z∗ and its

perpendicular distance to the decision boundary f that best linearly separates the

two classes of covariate observations in the training set. One possible configuration

is given by:

νX = β + d(z∗) (7.14)

In equation (7.14) we see that when the distance d(z∗) is close to zero, νX is

not influenced strongly by the covariate observation. For large positive and negative

covariate observations however, νX increases or decreases respectively, and propor-

tionally to d(·). This formulation therefore, incorporates the effects of covariates on

drift, via a non-parametric classification function that discriminates between healthy

and unhealthy/degraded covariate observations. In our opinion, this approach to

including covariates in degradation models is useful in the case of large multivari-

ate covariate data-sets. We anticipate further work on this area as part of future

research.
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8. VARIABLE THRESHOLD MODEL

Beyond the fixed-threshold model of Whitmore, there is also a need for models

that account for uncertain failure thresholds, which arise in reliability data when fail-

ure is not defined deterministically from the degradation variable. Random thresh-

olds can occur when failure is observed as the result of:

1. an externally observed process reaching a nominal state

2. a surrogate degradation variable X first hitting a threshold a

In either case, at the failure-time, the ”true” degradation variable X∗ will

vary across devices. Some examples of (1) are: failure of electronics when system

performance decreases, death due to illness, bankruptcy, etc. Some examples for

(2) are: fan bearings fail when acoustic noise, X, first reaches a fixed threshold,

however at this time, X∗, the bearing surface roughness, will vary from one failed

device to another. A capacitor fails when resistance, X, reaches a fixed threshold

level, but at this time (failure-time), X∗, the length of a micro-crack in its solder

joint is observed to vary across devices.

Using data in case (2) setting, inference is based on the conditional true degra-

dation estimate, fX(t)|Y (t),X∗(t),A(x|y, x∗, a). The threshold variable is denoted by A

and takes a distribution of values that vary across devices. In the simplest case,

A ∼ N (µA, σ
2
A) ⊥ X(·), Y (·), and is random but constant over time. The failure-

time random variable is then given by S = inf(t : X(t) = A). More general cases the

threshold level is modeled by stochastic process with drift A(t) ∼ N (a0 + νAt, σ
2
At),



where a0, νA, σA are unknown parameters, and the failure-time is given by: S =

inf(t : X(t) = A(t)).

8.1 Uncertain Failure Thresholds

In this chapter, we derive the parametric inference equations for the TMD

data-structure using a variable failure threshold. The model is therefore misspeci-

fied, because it assumes degradation at failure can vary, when in fact its fixed and

equal to a. It is however of practical interest to investigate the efficiency of a variable

threshold model applied to TMD type data-structures. The reason is that failure

thresholds are often arbitrarily chosen, or based on antiquated standards, or more

generally not known. Sometimes engineers can know the range of failure thresholds,

and can prescribe beliefs for the most likely thresholds. In such cases parametric

models for the failure threshold are needed, eg., Gaussian as mentioned earlier.

8.2 Parametric Inference

Parametric inference is based on observations on q failed, and p surviving

devices. To simplify exposition, covariates are not included in the following deriva-

tions. The parameter space is given by vector θ = (νX , νY , σX , σY , ρ, νA, σA), and

the likelihood function is given by:

Lθ =

q∏
i=1

fY (S),X(S),T,I(S<τ)(yi, xi, si, 1)

p∏
j=1

fY (τ),X(τ),T,I(S<τ)(yj, xj, τ, 0) (8.1)

8.2.1 Contribution to likelihood from failed devices

The joint density for a failed device is given by:

fYS ,XS ,T,I(S<τ)(y, x, s, 1) = C1C2C3 (8.2)
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C1(y, x, s) =
1√

2πσ2
Y (1− ρ2)s

exp

(
−(y − cx− (νY − cνX)s)2

2σ2
Y (1− ρ2)s

)

C2(x, s) =
x√

2πσ2
Xs

3
exp

(
−(x− νXs)2

2σ2
Xs

)

C3(x) =
1√

2πσ2
A

exp

(
−(x− νA)2

2σ2
A

)
Proof.

fYS ,XS ,T,I(S<τ)(y, x, s, 1) = fYS ,XS ,S,I(S<τ)(y, x, s, 1)

Because s ≤ τ , fS,I(S<τ)(s, 1) = fS(s), therefore

fYS ,XS ,S,I(S<τ)(y, x, s, 1) = fYS ,XS ,S(y, x, s) = fYS |XS ,S(y|x, s)fXS ,S(x, s)

Due to lemmas 4.3 and 4.4, fYS |XS ,S(y|x, s) = fQS(y − cx). Therefore,

fYS ,XS ,S(y, x, s) = fQS(y − cx)fXS ,S(x, s) (8.3)

For failed items, the level of degradation x at the failure-time s is equal to the

threshold a. Because both X(.) and A are Gaussian, we can replace X(S) with A.

From equation (8.3) we get:

fYS ,XS ,S(y, x, s) = fQS(y − cx)fA,S(x, s) = fQS(y − cx)fS|A(s|x)fA(a)

In the last expression above, fQS(y− cx) is given by term C1, fS|A by term C2

and fA(a) by C3.
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8.2.2 Contribution to likelihood from surviving devices

For each surviving device we observe the pair (y(τ), x(τ)), and the joint density

for a surviving device is given by:

fY (τ),X(τ),T,I(S<τ)(y, x, τ, 0) = C4

{
C5 −

∫ ∞
−∞

∫ τ

0

C6C7C8dsda

}
(8.4)

C4 =
1√

2πσ2
Y (1− ρ2)τ

exp

(
−(y − cx− τ(νY − cνX))2

2σ2
Y (1− ρ2)τ

)
C5 =

1√
2πσ2

Xτ
exp

(
−(x− νXτ)2

2σ2
Xτ

)
C6 =

1√
2πσ2

X(τ − s)
exp

(
−(x− a− νX(τ − s))2

2σ2
X(τ − s)

)
C7 = a(2πσ2

Xs
3)−1/2exp

(
−(a− νXs)2

2σ2
Xs

)
C8 =

1√
2πσ2

A

exp

(
−(a− νA)2

2σ2
A

)
Proof.

fYτ ,Xτ ,T,I(S<τ)(y, x, τ, 0) = fYτ |Xτ ,I(S<τ)(y|x, 0)fXτ ,I(S<τ)(x, 0)

Due to lemma 4.3 the first factor above is given by fQτ (y − cx). Then,

fYτ ,Xτ ,T,I(S<τ)(y, x, τ, 0) = fQτ (y − cx)fXτ ,I(S<τ)(x, 0) (8.5)

The probability density function of the degradation process {X(t), t ≥ 0}

terminating at level x at time t is given by fXt(x) and illustrated in figure 8.1. Figure

8.1 illustrates the relationship between the degradation and threshold variable at

the end of test-time τ . This relationship holds for all times t ≥ 0.

fXτ ,I(S<τ)(x, 0) = fXτ (x)− fXτ ,I(S<t)(x, 1) (8.6)

Equation (8.6) represents the probability density function of a complimentary

Wiener term as discussed in chapter 4. By definition, fX(τ),I[S≥τ ](x, 0)dx is the
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Fig. 8.1: Relationship between threshold and degradation variables at time τ

probability the degradation level belongs to a small interval (x, x + dx) at time τ ,

and that it crossed the failure threshold some time earlier.

fXτ ,I(S<τ)(x, 1) = P (Xτ ∈ (x, x+ dx), S ≤ τ)/dx

We condition the event (Xτ = x, I(S < τ) = 1) on the threshold random

variable, A. We integrate the resulting joint density over the measure of A. Figure

8.1 illustrates the relationship between the degradation and threshold variables for a

surviving device, and the degradation path taken to reach an observed degradation

level of x by time τ . The mixed joint density of the degradation and survival

indicator variables is defined by integrating over a latent threshold variable A as

follows:

fXτ ,I(S<τ)(x, 1) =

∫ ∞
−∞

fXτ ,I(S<τ),Aτ (x, 1, a)da

We integrate over the measure of the failure-time variable S conditioned on
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the threshold variable A.

fXτ ,I(S<τ)(x, 1) =
∫∞
−∞

∫ τ
0
fXτ |S,A(x|s, a)fS,A(s, a)dsda

fXτ |S,A(x|s, a) =

= fXτ |S,Xs,A(x|s, a, a)

= fXτ−Xs|S,Xs,A(x− a|s, a, a)

Due to theorem 4.3 because Xτ − Xs is FX≥s measurable it is independent of

(S,Xs, A) which is FX≤s measurable. Note, as mentioned earlier, the entire process

A(·) is assumed independent of the entire process X(·). Therefore, we can continue

as follows:

fXτ ,I(S<τ)(x, 1) =

∫ ∞
−∞

∫ τ

0

fXτ−Xs(x− a)fS|A(sa)fA(a)dsda (8.7)

and then from equation (8.6) we get:

fXτ ,I(S<τ)(x, 0) = fXτ (x)−
∫ ∞
−∞

∫ τ

0

fXτ−Xs(x− a)fS|A(s|a)fA(a)dsda (8.8)

By plugging in equation (8.8) into equation (8.5) we get the joint density for a

surviving device under a variable failure-threshold. The density fQτ (y− cx) is given

by term C4, fXτ (x) by C5, fXτ−Xs(x− a) by C6, fS|A(s|a) by C7 and fA(a) by C8 in

equation (8.4).

The likelihood function in equation (8.1) is given by:

Lθ =
∏q

i=1 C1(yi, xi, si)C2(xi, si)C3(xi)
∏p

j=1 C4(yj, xj, sj)×

{
C5(xj)−

∫∞
−∞

∫ τ
0
C6(xj)C7(xj)C8dsda

}
Maximization of the log-likelihood function provides the maximum likelihood
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estimates of the process parameters θ̂.
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9. SUPPORT VECTOR DEGRADATION MODEL

9.1 Introduction

Reliability is defined as the ability of a product to perform as intended (without

failure, and within specified performance limits) for a specified time in its life cycle

application environment. The accuracy of any reliability prediction depends upon

both the prediction methodology used, and accurate knowledge of the product, gen-

erally including the structural architecture, material properties, fabrication process,

and product life cycle conditions [76]. With the increasing functional complexity

of on-board electronic systems and products, there is a growing demand for early

system-level health assessment, failure diagnostics, and prognostics for electronics

[77].

In this chapter, we analyze the reliability of a product from a health monitoring

perspective, which allows a methodology that permits the reliability of a product

to be evaluated in its actual application conditions [78]. We develop an algorithm

in effort to evaluate the reliability of a system in the context of a prognostics and

health management (PHM) framework. The value obtained from PHM can take

the form of advance warning of failures; increased availability through extensions

of maintenance cycles, or timely repair actions; lower life cycle costs of equipment

from reductions in inspection costs, downtime, inventory, and no-fault-founds; or

the improvement of system qualification, design, and logistical support of fielded,

and future systems [79].

A product’s health is defined as the extent of deviation or degradation from



its expected typical operating performance. Typical operation refers to the physical

or performance-related conditions expected from the product [80]. We use this

definition of ”health” later in the chapter, and we see it applied in a case study

of simulated degradation data. In the absence of suitable physics of failure (PoF)

models, there is a need for data-driven approaches that can detect when electronic

systems are degrading, or have sustained a failure that could be critical. In this

chapter, we consider a data-driven approach for anomaly detection for electronic

systems based on nonlinear classification. We argue that this approach can also be

used to determine suitable marker variables for FHT models.

The resulting classifier gives the best estimate of the functional dependency

of the system input data, X, such as resistance, capacitance, temperature, etc., on

their class label, Y , a categorical variable that indicates the presence of an anomaly,

through a mapping function, D(X). The mapping function separates two classes of

data, and is constructed from a sample of training data. If the training data only

consists of examples from one class, and the test data contains examples from two

or more classes, then the classification task is called novelty detection [81].

A critical part of novelty detection, and of health monitoring in general, is the

evaluation of uncertainty in every decision. Due to incomplete training data, there

is no mapping function that can be applied universally to all possible test data,

and therefore decisions are not always completely correct. Incomplete training data

refers to data that do not contain all possible healthy system performance states.

Mapping functions, as we discuss in this chapter, constructed from larger, more

densely distributed training sets convey greater confidence in their classification

decisions as opposed to low population, and sparse training data.

We approach the problem of novelty detection and health evaluation based

on support vector machine (SVM) classifiers. We use their connection to Bayesian

linear models (BLM) to model the posterior class probability for future test data.
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The Bayesian SVM algorithm is trained in the absence of failure data (negative class

data), as is the case in many mission-critical systems. The contribution of this work

to the field of reliability are the following:

1. It interprets reliability from a data-driven, machine-learning perspective.

2. It introduces a methodology that connects machine-learning analysis to FHT

models by helping determine suitable marker variables that can track degra-

dation

3. It solves a novelty detection problem with a one-class classification algorithm,

and a Bayesian framework for uncertainty analysis

4. It connects SVM, BLM, and minimum volume sets (mvs).

9.2 Data Notation and Algorithm Overview

Consider the positive-class training data matrix, Z = [X,Y ], where X =

[X1, . . . ,Xm] is the input data matrix. Each column j = 1, . . . ,m in X contains

data collected on separate covariates, and each row i = 1, . . . , n contains covariate

measurements made at a specific time point ti. Vector Y is the response vector

which represents the class membership of row observations in X, Y = [Y1, . . . , Yn],

where Yi = (+1,−1).

Fig. 9.1 illustrates the detection algorithm, from left to right. The multivari-

ate training data, Z, is first pre-processed through a principal component analysis

(PCA). The decomposition (projection) of the training data, X, into more than two

subspaces, as illustrated in Fig. 9.1, constructs m orthonormal subspaces, which can

be used to estimate the joint posterior class probability, Jp, discussed later in this

chapter. The benefit of the multiple models is that they separately capture a unique

identifiable subset of information related to the covariance of the random variables
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in X. The dimension for each model can be chosen to be as low as 1, and as high

as m−1, with m potential models for each, respectively, considering all the possible

combinations. Here, for expositional simplicity, only two models are considered, [M ]

and [R], each of which is two-dimensional.

PCA was chosen to preprocess the original data to extract features related

to changes in the variance of the data. In the context of statistical control theory,

the variance and its changes are strong features indicating the onset of anomalies in

multivariate systems [82]. Other options for this step include blind source separation

(BSS), and independent component analysis (ICA), or, more generally, generalized

linear models (GLMs). PCA is a special case of GLM, and although it suffers from

the assumption of linearity and normality of the data (situations that are arguably

not often encountered in real data sets), transformations can apply to the original

data to approximate normality [83].

When failure data (negative class) are not available, a kernel density estimate

(KDE) is computed for the projected (positive class) training data in the two sub-

spaces [M ], and [R] to estimate the likelihood of the projected data, and from it

to construct the negative class. The SV classifier constructs two predictor mod-

els, D1 and D2, for each subspace. A soft decision boundary is constructed by

fitting the training data with a model for posterior class probabilities using a lo-

gistic distribution that maps classified data to posterior classification probabilities:

PM , PR1, . . . , PRM , respectively. The joint class probability Jp from the subspaces is

used for the decision classification.

Support vectors produce an uncalibrated value that is not a probability. There-

fore, the algorithm uses the support vector decision function, D, to produce a

posterior probability, P (class|input), according to a Bayesian formulation. Fi-

nally, the joint posterior class probability can be weighted with a weight vector

W = [w1, . . . , wm] to emphasize some models as opposed to others. This weighting
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Fig. 9.1: Algorithm flow diagram showing the processing of the data.

could be beneficial for emphasizing the results from models, usually the principal

model [M ], which captures more of the data covariance information. In this paper,

all models are weighted equally (W = I).

9.3 Data Pre-Processing - Principal Component Projections

In this chapter, we decompose the training data into two lower dimensional

subspace models: the principal model [M ], and the residual model [R]. We use

singular value decomposition (SVD) of the input data, X [84], [85], [86], [87]. The

SVD of data matrix X is expressed as X = USV T , where S = diag(s1, . . . , sd) ∈

Rn×d, and s1 > s2 > . . . > sd are the ordered singular values. The two orthogonal

matrices U , and V are called the left, and right eigen matrices of X. Based on the

SVD, the subspace decomposition of X is expressed as:

X = UM × SM × V T
M + UR × SR × V T

R (9.1)

The diagonal matrix, SM , are the singular values (s1, . . . , sk), and (sk+1, . . . , sd)

belonging to the diagonals of SR. Any vector X can then be represented by a

summation of two projection vectors as shown in equation (9.2), where PM = UUT ,

and PR = I−UUT are the projection matrices for the principal, and residual model
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subspaces, respectively. Both subspaces comprise the total data dimension. In this

framework, we can apply a SV classifier, having oriented the data such that we

can better capture system failures that are reflected in changes in variance, and so

that we can ”break down” the effects of multivariate data into separate models,

each examining a different effect of the data on changes in variance. Then we can

envision combining the results in the end to achieve a ”global” detection result, as

we demonstrate later in this paper.

X = PM ×X + (I − PR)×X (9.2)

9.4 Two-Class Classifier

SVMs alleviate the need for algorithms with statistically grounded frameworks,

algorithms that require knowledge of the distribution of the random variables. SVMs

are based on the idea of large-margin linear discriminants that seek optimum margin

hyperplanes where the separating plane is chosen to minimize a risk bound moti-

vated by structural risk minimization. Nonlinear extensions were introduced by the

authors in [88], and [89] with a generalization often referred to as the ”kernel trick”,

which builds on a direct consequence of Hilbert’s space theory. Here, we review the

linear SVMs to highlight certain concepts that we will use in this chapter. Given

the data structure defined earlier, linear SVMs apply a linear model f that maps a

m-dimensional real valued vector to a binary scalar as shown in equation (9.3).

f(x) = sign(wTSVMx+ ε(x)) (9.3)

wSVM =
n∑
i=0

αiyixi (9.4)

In (9.3), wTSVMx = D(x), and its weights wSVM are given by equation (9.4),

are normal to D; b/||w|| is the perpendicular distance from D to the origin, and
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||wSVM || is the Euclidean norm of wSVM . The margin in classification is the distance

between the nearest positive and negative labeled data points. For linearly separable

cases, training the SVM is performed by solving the following optimization problem:

argmin ||wSVM ||, and the constraints are combined into a set of inequalities ∀ i:

yi(xiw + b)− 1 ≥ 0.

Training the SVM becomes an optimization problem given by equation (9.5),

and constrained by equation (9.6).

(α1, . . . , αn, b) = argmin(1/2||w||2 + C
n∑
i=1

ξi) (9.5)

yi(w
Txi + b) + ξi ≥ 1 (9.6)

Lastly, in the case where a linear decision function is not suitable for the data,

the above methods can be generalized using a transformation to another Euclidean

space using a map function called Φ, where the training data are linearly separable.

More reviews of SVMs can be found in [90], [91], [92], and [93].

9.5 Statistical Properties of SVMs and Their Connection to the

Evidence Framework

From a Bayesian representation, D(x) can be shown to be a relaxed maximum

a posteriori solution (MAP) of the weights wMAP in a Bayesian linear model, y =

f(x)+ε discussed in detail by the authors in [94], [95], [96], and [97]. This connection

is important because it motivates the use of a function centered on D(x) to model

the posterior class probabilities of test data.

This result is motivated under relaxed conditions that are based on the fol-

lowing assumptions. a) The functional dependency of Y on X is mapped through

an unknown kernel function. b) The errors, and weights in the linear model are
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normally distributed around zero with a certain variance, therefore modeling the

conditional density of Y |X also as normal. c) Because of assumption b), we can

express the posterior class density as a function of an SVM related term, namely ξi.

To see this result, we consider the training data Z, assume that the joint P (Z, w)

exists, and assume that the conditional P (w|Z) can be expressed as

P (w|Z) =
P (Z|w)P (w)

P (Z)
∝ P (Z|w)P (w) =

= P (y|X, w)P (X, w)P (w) (9.7)

The posterior on the weights can be expressed as the product of three dis-

tributions, as shown above. The probability density over observations given the

parameters is modeled through a binomial distribution to account for the possible

states of the response random variable Y , and is given by (9.8) with 0≤ q(x,w) ≤ q1,

and q(x,w) = Prob(y = +1|X,w).

P (y|X, w) =
n∏
i=1

q(xi, w)

1 + yi
2 (1− q(xi), w))

1− yi
2 (9.8)

If the errors are modeled to be statistically independent of x and w, and drawn

from a Gaussian distribution, ε ∼ N (0, σε
2), then Prob(y = +1|X, w) = Probε(ε ≥

q − wTx)=

P (y|X, w) =

∞∫
−wT x

1√
2πσε

e

− u2

2σε2


du (9.9)

If we further assume that the density of X is not parameterized by the model

weights P (X|w) = P (X), and that the prior on the weights is drawn from a Gaus-

sian distribution, P (w) = C exp(φ/2||w||2), then the posterior conditional density

for the weights can be expressed proportional to the product of the error function

given by (9.10). Taking the logarithm gives an expression that resembles the objec-
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tive function for an SVM, and is given by (9.11).

P (w|Z) ∝
n∏
i=1

(ρa(1− ρ)b)e
(−
φ

2
||w||2)

(9.10)

−log(P (w|Z)) =C −
n∑
i=1

alogρ−
n∑
i=1

blog(1− ρ) (9.11)

ρ = erfc(−wTxi)

C =
φ

2
||w||2

a =
1 + yi

2

b =
1− yi

2

By considering the asymptotic expansions for the error functions above, and if

it can be shown that the expansions of the two sums reduce to a function of ξi, the

log posterior on the weights of the linear model has an equivalent form to that of

the SVM optimization in equation (9.5). This connection is useful because it effec-

tively lays down a strong informative prior for modeling posterior class probabilities

of future test data. This prior is implemented by treating D(x) as the optimum

classifier for the given training data. This fact will be used later in the chapter to

provide rationale for the design of a posterior classification probability given D(x).

9.6 One-Class Classifier

In many real world systems, especially mission critical systems, and compo-

nents for which failures are not known, training data consists only of the positive

class. To obtain estimates for the failure space (negative class), novelty detection
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as discussed in [98], [99], [100], [101], and [102] among others (see [103], and [104]

for more general review) is approached primarily as a data-versus-density problem,

where the negative data are assumed to be generated from an unknown distribu-

tion, say Q(X). The density of Q is intentionally left uninformative, and usually

uniformly distributed to reflect the lack of any prior knowledge about anomalies.

Authors in references such as [98], and [102] discuss sampling schemes for Q

that optimize supervised function estimation techniques (e.g., SVM) to best infer

a general classification boundary for the given positive class training data. The

sampling approaches depend on the choice of a prior for Q, which in the absence of

any evidence is measured on the entire metric space spanned by the positive class

training data, and suffers from high dimensionality. In [102], the authors discuss a

negative class selection algorithm for data collected from various Internet sites. In

this work, unlabeled data was made available by sampling the Internet, which is

different from the situation we describe here. In this paper, there are no unlabeled

data, and we cannot sample from a universal set (the Internet, for example).

Other approaches, as mentioned earlier, use the origin as the negative class in

the applied feature space induced by some kernel function [105]. Others [106] extend

this idea, and assume that all data points close enough to the origin are also con-

sidered as candidates for the negative class. Some of the critiques, however, of the

one-class classification approach motivated by [105] focus on its sensitivity to specific

choices of representation and kernel in ways that are not very transparent [106]. Fur-

ther, its assumed homogeneous input feature space relies on comparable distances

between data, which can lead to inaccurate classifications with non-Gaussian dis-

tributed data [83]. The authors of [83] propose a rescaling of the data in the kernel

feature space to make it robust against large-scale differences in scaling of the input

data. The data are rescaled such that the variances of the data are equal in all

directions using kernel PCA.
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The primary approach to one-class classification has been largely based on the

work discussed above. In essence, the problem reduces to making the most of the

information at hand, the positive class training data. As such, it becomes impor-

tant to extract features from these data that can improve inference about potential

anomalies. An important feature of the training data is its density, which can be

estimated computationally, although this is an expensive task in high dimensions.

Therefore, on a practical level, the estimate of the negative class is seen as a

conservative representation of a potential system failure space, an assumption that

could lead to poor generalization of the algorithm in situations where the predictor

model is not updated to reflect changes in the system performance characteristics.

Such changes are plausible, for example, in a reliability setting in which the system

has aged so that its performance signature has changed, but it is still functioning in a

”healthy” state. Another example is a case where the original training data were not

complete enough to represent the global system performance regimes (universal set),

and in such situations the predictor model will naturally fall victim to large numbers

of false alarms. Therefore, a one-class-classifier approach to novelty detection must

be subject to complete, updated training data.

To utilize SVMs for classification, the negative class must be estimated first

by considering the density of the positive class (training data) following similar

reasoning as the authors of [107]. This work can be accomplished in several ways,

one of which is to use a kernel density estimate (KDE) of the training data through

the use of Gaussian kernel functions. For this work, the negative class was estimated

based on assumptions on the failure space, summarized in 9.1

Definition 9.1. The failure space is a) not linearly separable from the healthy train-

ing data, b) prevalent in the space not occupied by the healthy training data, and

therefore c) assumed to conform to the distribution of the healthy training data.

Through this definition, we aim to achieve minimum volume sets (mvs), similar
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to work discussed in [108], [109], [110], and [105], that find sets of density functions

that correspond to regions with the minimum volume or Lebesgue measure for a

given error 1 − α [109]. An mvs in a class of measurable sets C for an error α is

defined in reference [110] as

Mc(α) = argmin(λ(B) : B ∈ Fα),∀α ∈ [0, 1] (9.12)

where Fα = {B : B ∈ C, P (B) ≥ α}, P is a probability measure, B is the positive

class training set, and λ is the Lebesgue measure. For example, if P is a multivariate

Gaussian distribution, and λ is the Lebesgue measure, then the mvs are ellipsoids.

The parameter α is chosen by the user, and reflects a desired false alarm rate of

1− α.

The mvs in our approach is implemented with an SVM given the positive

and estimated negative training data. Therefore, the negative class training data

are sampled from the subspaces in Bc (failure space), and designed to adhere to

Definition I. Knowledge of the density of the positive training data should tell us

something about where the most conservative boundary should exist. The inference

of test data in areas of high density of positive training samples should have higher

confidence, as opposed to areas with low density, and sparse information.

To estimate the negative class data, Xn ∈ Rm×2, in each subspace, we used

the marginal kernel density estimate of the positive class, X ∈ Rn×2. This approach

first partitions the data space Rm×2 into a grid of small square 2-dimensional blocks

R2, of length size h. A general parzen windowing approach with Gaussian kernels

(among other alternatives, see reference [111]) was used to compute the density

of each data point by centering a Gaussian kernel function, φ, on each point, xi,

with a bandwidth equal to the size of the grid length, h. All neighboring data xi

were evaluated against the Gaussian kernel centered at x, and their corresponding
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influence weighted according to their Euclidean distance from x. One choice for a

smooth φ is the standard normal distribution N (0, 1).

To overcome over-parameterized density estimates that do not generalize well,

the bandwidth, h, is determined through a nearest neighbor approach in which h is

selected as the value that produces a volume around xi containing
√
n neighbors.

This approach personalizes the value of h to each data point xi, and effectively

smoothes out the density in areas with sparse training data information.

The negative class data are constructed by selecting grid coordinates where

the likelihood ratio ρ of the training data is below a threshold, τ , which is a grid

center, and is labeled as a member of the negative class if ρ ≥ τ . The likelihood

ratio is the ratio of negative to positive posterior class probabilities, as shown in

(9.13). The denominator is computed by the KDE, and the numerator is modeled

as a function of the gradient of the likelihood function.

In (9.13), we use P (Y = −1|X = xi) as p−i , and P (Y = +1|X = xi) as

p+
i . We note that the model favors the numerator proportional to the square of the

likelihood function gradient, ∇L. Practically, this means that, in areas where the

likelihood function changes faster, the negative class is more similar to the positive

class.

ρ =
P (Y = −1|X = x)

P (Y = +1|X = x)
(9.13)

p−i = (1− p+
i ) + (1− p+

i )∇2L (9.14)

Once the D(x) is constructed through an SVM using the positive and esti-

mated negative training data, the argument is, as motivated earlier by its statistical
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properties, that D(x) is the optimal classifier.

D(x) = arga={−1,+1}minP (Y = a|X = x) = (9.15)

=

 −1 if P (Y = +1|X = x) < 0.5

+1 if P (Y = +1|X = x) ≥ 0.5


9.7 Posterior Class Probabilities

The objective is to classify data X = xi by comparing the probability that the

class membership of xi is +1, versus the probability that the class membership of

xi is -1. The larger probability classifies xi into the corresponding class. Due to its

connection to a Bayesian linear model (as discussed earlier), D(x) can be thought of

as a boundary, where classifications close to it will be associated with probabilities

close to 0.5, and classifications far from it will be associated with probabilities closer

to 1 or 0. Data that fall exactly on the boundary are randomly and fairly classified

as either +1 or -1 with a classification probability of 0.5.

The classification problem defined by P (y = +1|X = x) can now be expressed

as P (y = +1|D(x)), where D(x) is the sufficient statistic to classify data X = x

into class +1 or -1. Intuitively, because D(x) is the optimal classifier on which the

probability of interest is exactly 0.5, distances to it can be calibrated to probabili-

ties. The distribution of these posterior class probabilities is modeled by a logistic

distribution [112], [113], [114] centered at D(x) = 0; see Fig. 9.2. The shape param-

eter for the distribution, as we discuss later, reflects the confidence in D(x), and

is a statistic dependent on the data. The positive posterior class probability for

X = xi is given by (9.16), and the intuition that the distances of data X = xi to

D(x) can be calibrated to probabilities leads to the justification for using a logistic-

type distribution to model these probabilities. From Bayes’ rule, and the law of
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D(x)D(x)

Fig. 9.2: Logistic distribution model for posterior class probabilities.

total probability, re-expressing the sum in the denominator, we get a function with

parameter β that is a logistic-type distribution.

P (Y = +1|X = xi) =
P (X = xi|Y = +1)P (Y = +1)∑

a=−1,+1

P (X = xi|Y = a)P (Y = a)

=
1

(1 + exp(βi))

(9.16)

βi = log
P (X = xi|Y = +1)P (Y = +1)

P (X = xi|Y = −1)P (Y = −1)
(9.17)

The distribution scale parameter β affects the shape of the distribution by

compressing it around D(x) = 0 with large values of β, and stretching it for small

values. The shape of the distribution reflects the level of uncertainty in the classifier,

and should be estimated from the training data. From the resulting expression for

β, all terms except for one are known, namely the probability P (X = xi|Y =

+1), which was estimated previously. The unknown quantities are P (X = xi|Y =

−1), and the priors P (Y = +1) and P (Y = −1). Replacing β by its intuitive

interpretation, namely the data’s relationship to D(x) = 0 through their Lebesgue

measure, we can evaluate the objective probability as:

P (Y = +1|X = xi) = P (Y = +1|λ(xi|D(x))) ≡ pi (9.18)
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pi = P (Y = +1|X = xi) =
1

1 + e(−a1g(xi)+a2)

In equation (9.18), λ(xi|D(X)) ≡ g(xi) is the Lebesgue measure of xi in refer-

ence to D (or simply the perpendicular Euclidean distance to D). The parameters

a1, and a2 are used to optimize the posterior class distribution [113] of the logistic

form, and are estimated by maximizing the likelihood of class given the data over

the parameter space a1, a2. The classification probability of a sequence of n data X

into a binary classification c = {1, 0} is given by a product Bernoulli distribution

P (c1, . . . , ck) =
n∏
i=1

pcii (1− pi)1−ci (9.19)

Here, pi is the probability of classification when c = 1(y = +1), and 1 − π is

the probability of classification when c = 0 (y = −1). The evaluation of sign(D(xi))

gives the class label for xi, and g(xi) the distance to D(x) = 0.

The last step of the algorithm is to compute a joint posterior class probability

based on the separate, statistically independent (assumed) results from each lower

dimensional model (subspace), here the principal model [M ], and the residual model

[R]. The joint result will provide a final classification with associated final positive,

and negative posterior class probabilities. This result is anticipated to give a more

accurate estimate of the classification of the data X = xi as compared to a treatment

of the data in its original data space. The conditional joint posterior class probability

is expressed in (9.20), with the assumption that the random variables XM , and XR

are statistically independent, and uncorrelated. Due to PCA, the random variables

can be shown to be uncorrelated, but not necessarily statistically independent.

P (XMXR|y) = P (XM |y)P (XR|y) (9.20)
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According to Bayes’ rule, the conditional class probability is given by

P (Y |XM , XR) =
P (XM , XR|Y )P (Y )

P (XM , XR)
=

=
P (XM |Y )P (XR|Y )P (Y )∑

y={−1,+1}
P (XM , XR|Y )P (Y )

=
P (Y |XM)P (Y |XR)P (Y )∑
y

P (Y |XM)P (Y |XR)P (Y )
(9.21)

where XR = [XR1, XR2, . . . , XRn] ∈ Rn×2, and XM = [XM1, XM2, . . . , XMn]. In

the joint probability model, P (y = a|XM) is the probability that data point xM

is classified as class a in [M ], P (Y = a|XR) is the probability that data point xR

is classified as class a in [R], and P (Y = a|XM , XR) is the final conditional joint

probability that X = x is classified as class a, where a ∈ A = {−1,+1}. The

main assumption is that the random variables in each subspace are statistically

independent, which allows formulating the final joint probabilities of positive and

negative classification, given by (9.22), and (9.23). Note that the same calculations

apply for a sequence of test data.

Π(+) =
P (Y = +1|XM)P (Y = +1|XR)P (Y = +1)∑
y

P (Y = y|XM)P (Y = y|XR)P (Y = y)
(9.22)

Π(−) =
P (Y = −1|XM)P (Y = −1|XR)P (Y = −1)∑
y

P (Y = y|XM)P (Y = y|XR)P (Y = y)
(9.23)

9.8 Posterior Class Probabilities as a Marker Variable

The joint posterior class probability assigned to each test observation is a

measure of health of the system, and can therefore be considered a marker to degra-
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dation. In section 7.3 and 7.3.1 we consider SVMs as a potential regression structure

in FHT models, here we argue that the posterior class probability (a direct result

of SVM classification) can be used as a marker.

145



10. CASE STUDIES

The anomaly detection algorithm developed in chapter 10 is coded into a

prototype called CALCEsvm. In this chapter we apply CALCEsvm in three case

studies:

1. Anomalies in Lockheed Martin data

2. Simulated degradation data

3. Gas-turbine engine degradation data

Through the case studies we were interested in evaluating CALCEsvm on

detecting anomalies and also in capturing the degradation process. Anomalies are

flagged when the posterior class probability falls under a certain threshold, and the

trend in degradation is captured by considering the resulting time series of posterior

class probabilities outputed by CALCEsvm.

10.1 Lockheed Martin Data

To test the proposed algorithm, we used a data-set extracted from Lockheed

Martin servers, X ∈ Rn×d, where n=2471 observations, and d=22 covariates (p1

through p22). The first 800 observations were used as the positive training class,

during which no failures occurred. The remaining data were used as the test data,

which included three periods of failures. The failure periods were identified (by

Lockheed) to occur during observations 912-1040, 1092-1106, and 1593-1651.
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Fig. 10.1: Joint posterior class probability vs. observation for Lockheed Martin test data
set
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Fig. 10.2: Joint posterior class probabilities for CALCEsvm, and the open source support
vector classification software called LibSVM.

CALCEsvm was used on these data. Fig. 10.1 shows the detection results.

The algorithm detected the first two periods of anomalies, namely those between

912 and 1040, and between 1092 and 1106.

CALCEsvm was compared to the open source support vector classification

software called LibSVM [93]. The setup for LibSVM used its two-class C-SVC
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setting with input, the training data used in CALCEsvm. Because the one-class

SVM in LibSVM does not provide posterior class probabilities for test data, we

compared the two-class classification between CALCEsvm and LibSVM. For this

comparison, the negative class training data were taken from the output estimate

of CALCEsvm, and used as the negative class in LibSVM. Therefore, the actual

comparison was made between the two-class SVM algorithms of CALCEsvm, and

LibSVM. The option settings used for LibSVM are listed below with the margin

penalty parameter, and tolerance setting of the termination criterion parameter

chosen arbitrarily, and kept the same for both CALCEsvm and LibSVM.

1. s svm type : 0 – C-SVC

2. t kernel type : 2 – radial basis function

3. d degree : 1, degree in kernel

4. c cost : 150, margin penalty parameter

5. ε : setting for tolerance of termination criterion

6. b probability estimates: 1, outputs the class probabilities

The accuracy comparison was performed through three tests: 1) a direct com-

parison of the quadratic optimization results: the objective function, the sum of

the Lagrange multipliers, and the number of support vectors; 2) detection accu-

racy based on class index only; and 3) detection accuracy based on the range of

probabilities.

In Table 10.1, b0 is the bias term, w2 is the objective function equal to αTHα

where α ∈ R1×n is the Lagrange multiplier vector, and H ∈ Rn×n is the Hessian

matrix, where n is the length of the SVM training data. The parameter ε is the

tolerance of the termination criterion, and nSV is the total number of support

vectors. The results in table 10.1 show that the performance of the software is
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Tab. 10.1: SVM Optimization Results

Principal Model Residual Model
CALCEsvm LibSVM CALCEsvm LibSVM

b0 0.181 181 0.099 0.099
w2 15.40 7.70 14.70 5.60
ε 0.0001 0.0006 0.0001 0.0005
nSV 24 23 14 14

comparable to the difference found in the objective function. The number of support

vectors, and the bias term were found to be the same.

The second, and third tests compared their detection accuracy against the

known periods of anomaly. Each test file was coded with a column variable z ∈

{−1,+1}, indicating the known class of each observation, an index of +1 for the

healthy data, and -1 for the anomalous data. LibSVM counted the number of

misclassified observations based on the coded variable z. Table 10.2 shows the results

comparing LibSVM to the CALCEsvm output. The first column in the table shows

the detection accuracy based only on the class index, whereas the second column

shows the detection accuracy based on a probability index. In the first comparison,

both performed almost identically (see first column in table 10.2), but the second

comparison (second column) clearly favors CALCEsvm. This result can be seen by

comparing the accuracy of 98.1% for CALCEsvm vs. 30.5% for LibSVM given the

criteria that the posterior class probability for a test observation should lie within

the range specified in the algorithm, here 0.8 to 1.

The second comparison was performed based on a probability index reflecting

an ”expert” knowledge of system ”health”. This index therefore pertains to a belief,

and is subjective to the user. Nonetheless, this index is based on an intuitive argu-

ment: because the posterior class probabilities reflect the certainty/uncertainty of

the classification/detection, a known ”healthy”, and or known ”unhealthy” observa-

tion should be associated with high, and low probabilities (or ranges of probabilities),
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Tab. 10.2: Comparison of CALCEsvm and LibSVM Detection Accuracy Against Lockheed
Data

Detection Accuracy Results Based On
Class Index Probability Probability Index Range

CALCEsvm
100.0% 98.1% 0.8-1.0

100.0% 0.0-0.4
LibSVM

99.6% 30.5% 0.8-1.0
100.0% 0.0-0.4

respectively.

In the Lockheed data set, there are two system levels: ”healthy” and ”failed”.

Both system levels are known for the whole data set. The ”healthy” level is set to

be represented by posterior class probabilities between 0.8 and 1, and the anoma-

lous level by probabilities between 0 and 0.4. Stronger restrictions can be modeled

by expanding the range for the anomalous level, and shrinking the range for the

”healthy” level. In light of these explanations, CALCEsvm had a 1.9% error rate in

its detection accuracy as opposed to 69.5% for LibSVM. The reason LibSVM per-

formed at 30.5% accuracy is because two out of three periods with ”healthy” level

operation were captured (by LibSVM) with a posterior class probability at around

0.75 to 0.78, therefore falling short of the user-defined ”healthy” range of 0.8 to 1.0,

and failing to correctly classify the healthy periods. LibSVM, as did CALCEsvm,

captured the failed periods with 100% accuracy.

10.2 Simulated Degradation Data

A second case study was performed using simulated correlated data consist-

ing of three random variables from three different but s-dependent distributions to

construct the training data set. The objective in this case study was to test the

algorithms on a system that was degrading, and in which the degradation took
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place in the presence of considerable noise. Copulas were used to build a simulation

model consisting of three random variables: Gamma(2, 1), Beta(2, 2), and t(5). The

family of bivariate Gaussian copulas is parameterized by ρ = [1 ρ; ρ1], the linear

correlation matrix. The random variables U1, and U2 approach linear s-dependence

as ρ approaches +/-1, and approach complete statistically independence as ρ ap-

proaches zero. The Gaussian, and t copulas are known as elliptical copulas, and

can generalize higher numbers of dimensions. Here we simulate data from a trivari-

ate distribution with Gamma(2, 1), Beta(2, 2), and t(5) marginals using a Gaussian

copula.

Test data were generated from the trivariate distribution of Gamma, Beta,

and t random variables; and were set up such that three degradation periods were

generated. The first period was designed to be ”healthy”, the second introduced

a shift in the mean for each variable separately while maintaining the correlation

structure, and the third period introduced a larger shift in the mean.

The CALCEsvm results are shown in Fig. 10.3, with the four periods identified

by breaking perforated lines and an index P1 through P4, where P1 is the identifier

for the ”healthy” period, with mean equal to nominal, and P2 through P4 having

successively increasing changes in the mean.

The results of the algorithm show the ability to capture the trend of simulated

degradation in the presence of noise. The beginning period that shows a dip in the

probability estimate is a direct result of an initial over-smoothing (implementation

of the exponential smoothing), and can be ignored for practical purposes. The larger

result is the algorithm’s ability to correctly classify the data for each period of oper-

ation, and to capture the expected trend. CALCEsvm results were compared to the

results obtained from LibSVM, and are tabulated in table 10.3. The probabilities,

as in the Lockheed Martin case study, again reflect a belief about the interpretation

of the posterior class probabilities. In this case, posterior class probabilities between
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Fig. 10.3: Joint positive posterior class probability for simulated data set.

Tab. 10.3: LibSVM Accuracy Results for Simulated Data

LibSVM Output Based on
Class Index Probability Probability Index Range
100.0% 100.0% 0.8 - 1.0
3.8% 14.0% 0.7 - 0.85
29.0% 46.0% 0.3 - 0.7
88.0% 79.0% 0.0 - 0.4

0.8 and 1 are acceptable for a ”healthy” system, probabilities between 0.7 and 0.85

are acceptable for the next level of ”health” allowing for some overlap, and so on

until the range between 0 and, say 0.5 for example, are used to classify the system

as failed.

The comparison of accuracy results based only on the class index shows that

both algorithms performed virtually identically for the given probability ranges.

Both CALCEsvm, and LibSVM had a detection accuracy rate of 100% in P1; in

P2, both algorithms performed noticeably poorly; and both improved in P3 and

P4 to 88% when the degradation became more distinct. A comparison of accuracy

results based on the posterior class probabilities shows a slight improvement in the
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Tab. 10.4: CALCEsvm Accuracy Results for Simulated Data

CALCEsvm Output Based on
Class Index Probability Probability Index Range
100.0% 81.2% 0.8 - 1.0
3.8% 31.7% 0.7 - 0.85
29.0% 31.0% 0.3 - 0.7
88.0% 84.0% 0.0 - 0.4
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Fig. 10.4: Joint positive posterior class probability for simulated data set in P2.

performance of each algorithm for P1, and about the same performance for the

other periods. Fig. 10.4 plots the detection accuracy of CALCEsvm and LibSVM

vs. the start value for the probability index for levels 1, 2, and 3. For example,

from the plot, it can be seen that when the lower bound on the probability index

is 55%, and the upper limit is fixed at 100%, CALCEsvm has a detection accuracy

of 96% vs. approximately 89% for LibSVM. This is a very liberal bound, as it says

that any posterior class probability above 55% can be used to classify a test point

as ”healthy” instead of anomalous to some degree.

In Fig. 10.4, the x-axis shows the varying lower bound for period 2 (P2), and in

Fig. 10.5 the varying lower bound for period 3 (P3). The y-axis shows the accuracy

of the algorithms in classifying test data. As the lower bound on our belief becomes
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Fig. 10.5: Joint positive posterior class probability for simulated data set in P3.

more stringent (that is, we require higher certainty in the prediction), the accuracy

of the algorithms falls. Because the anomalies are more distinct (due to stronger

outliers, and reflected by lower posterior class probability values) in P2 than in P3,

as the lower bound is ”tightened” similarly for both periods, both CALCEsvm, and

LibSVM perform better in P3. Here, for example, when the lower bound on the

probability index was 70%, and the upper held at 100%, CALCEsvm had lower than

94% detection accuracy, whereas LibSVM had an accuracy of 89%.

10.3 Degradation Data on Gas-Turbine Engines

The last set of data that we used to test and validate the BSVM algorithm

came from the NASA data repository of degradation data. The data was and is still

available as part of a competition. The data is composed of training data and test

data. The training data consists of multivariate time series of covariate observations

from different enginesa total of 218 engines, which we call units. Each engine de-

graded due to wear based on the usage pattern of the engines and not necessarily due
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to any particular fault mode. Each unit started with different unknown degrees of

initial wear and failed at an unknown level of wear. Noise was injected into the data

to represent manufacturing variation, process noise, and measurement noise. The

engines were exposed to six operational settings that provided information about

the operational mode and environmental conditions of the engine. The objective

was to predict remaining life given a sequence of covariate measurements for a test

engine.

Modeling degradation using a classification approach (as discussed here) we

need to address some potential limitations (lessons learned). The classifier becomes

inaccurate: 1) if the variance of the initial wear is large, and 2) if the difference in

performance measurements between healthy and unhealthy engines is not significant.

This is especially true with this algorithm, which is based on a binary classifier, i.e.,

one that discriminates on the basis of two classes. The data was first grouped

according to the operational setting number 3 into six sets, each representing data

collected at each setting respectively. Setting number 3 takes six possible levels: 0,

20, 40, 60, 80, 100 and represents some type of stress condition. To account for

the six settings (stress levels), six classifiers were used based on the training data

obtained from each group respectively, and each units level of health was estimated

for each setting separately. For each setting the healthy training set was taken as a

percentage of the initial observations, and the unhealthy/degraded data were taken

as a percentage from the final observations across all units. The test data were

similarly partitioned.

To get predictions, we first trained a classifier based on CALCEsvm. We used

the output of CALCEsvm, the joint posterior class probability, to make predictions.

As discussed above, CALCEsvm reduces the dimensionality and outputs a univariate

time series of health estimates. In this case, CALCEsvm was used as a two-class

classifier, using both healthy and unhealthy training data. Figure 10.6 plots the
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Fig. 10.6: Distribution of projected multivariate data on to first two principal components

distribution of the healthy, unhealthy, and test data for setting 0 projected onto the

first two principal components. In Figure 10.6 we see that the two sets are suitable

for classification-based detection approaches. We also see the trajectory of the test

data, starting in the healthy set and moving towards the unhealthy. This pattern

presents a time series of health estimates that exhibits a trend which is suitable for

prediction.

CALCEsvm was applied to the training data for each setting and gave a se-

quence of health estimates indexed by a unique cycle number associated with each

observation. By combining the health estimates from each setting into one vector

and sorting by the cycle number, we got the final time series of health estimates

for each unit. For example, figure 10.7 plots the probability of health for each test

observation across all settings for training unit 200. In figure 10.7 we get the desired

and expected drift in the health estimate as the unit ages. Health estimates close

to 0 indicate a failing or failed unit.

A similar time series was estimated for each test unit from 1 to 218. There

156



H
ea

lt
h

 P
ro

b
ab

il
it

y

Cycle #

Fig. 10.7: Estimate of unit health as a function of time

were some test units with very short histories that had not started to degrade in

health by last observation. For these units we did not get clear downward trends,

and prediction in these cases was difficult. To predict the expected time to failure,

we fit a GP model to the resulting time series. To account for health estimate

variability, we fit the GP multiple times, each time perturbing the estimates with

Gaussian noise with a mean and variance estimated from the training data across

all units (cross unit variation). The cross unit variation for all test units is shown

in figure 10.8. We see that the variance increases towards the end of life, validating

the simulation design [38]. The drop in the expected variance, as seen in the lower

plot of figure 10.8, is a result of a decreasing sample size during those time points

(some test units survived longer than others).

Similar results were obtained for the training units. Using this variation profile,

we injected noise into the original health estimates and fit the GP model multiple

times. Each fit will give us the mean and the 2 standard deviation paths. We mod-

eled the failure-time as the first time the mean path hit some fixed threshold; for

example, a health level of 0. Figure 10.10 plots an example of such a procedure; it

shows the GP fit to the health estimates for unit 200. It also overlays the empirical

distribution of the 50 first hitting times to a threshold level set at 0. The expected
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Fig. 10.8: Variation in estimated health probability across all training units
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Fig. 10.9: Cross unit variation in the estimated health probability
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Fig. 10.10: GP model fit to the health estimate time series of a test unit

time to failure is computed by fitting a Weibull probability density function to the

resulting n=50 first hitting times and computing its maximum likelihood parame-

ters. Maximum likelihood estimates were obtained in the usual way, and we do not

provide a discussion of this topic here. The expected time to failure estimates for all

430 test units are tabulated in Appendix A, together with the MLE confidence inter-

val. The MLE confidence interval is estimated based on the asymptotically normal

properties of MLEs. In this case the estimated expected time to failure is denoted

by m, and the estimated variance by V. The confidence interval is calculated using:

CI = m+ 1.96/
√
nV .
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11. MULTISTATE MODELS AS DEGRADATION MODELS

11.1 Introduction

In contrast to a continuous degradation process, where the degradation vari-

able can take any real value, there is also interest in degradation variables that take

on only discrete finite values. For example, computers often exhibit intermittent

faults before failure. Intermittent faults may occur when the level of a performance

variable exceeds a certain threshold and then recovers. Performance variables in

electronics include variables such as resistance, voltage, current, etc. In computers,

intermittent faults can take the form of discrete events, such as, error messages. In-

termittent faults can be useful in tracking a latent (unobserved) degradation process

[24], [136], [32], [137].

A degradation process in an electronic system is the process of degradation-

wear-out that the system undergoes and that eventually causes it to fail. In general,

a degradation process is a collection of degradation variables over time. A degrada-

tion process is considered latent when the degradation variable cannot be measured,

or when it defines some unknown effect that we are interested in modeling. From

chapter 1, recall, degradation variables in an electronic PCB can be, for example,

the length of a crack in a solder joint, the level of corrosion on an inter-metallic

lead, or the level of electro-migration of metal in a transistor. Due to the scale of

electronic devices and their inaccessibility within larger host systems, such degra-

dation variables are typically unobserved. Computers are a typical example of such

host systems.



A degradation process, latent (unobservable) or not, typically also defines the

time of failure, usually as a result of the degradation variable crossing a threshold.

For example, in reliability studies of solder joints, material fatigue might be consid-

ered to be one of the failure mechanisms, and solder cracks as a failure mode. In this

case, the degradation variable will be the crack length, which is usually unobserv-

able, and time to failure will be the time at which the length of the crack reaches a

certain threshold level. Thresholds for these variables are typically set based either

on experience, industry standards, or estimations from past failures. In computers,

for example, more general definitions of failure mechanisms and modes may apply.

For example, failure might be defined from the user perspective, in which case fail-

ure is seen as the loss of functionality of the computer (Indirect failure, see Chapter

1). In this case, the degradation variable is unknown and therefore again considered

latent.

Stress factors or covariates can be used to track the progress of the latent

degradation variable, giving insight into the forces driving degradation. Covariates

are typically collected from sensors that measure performance and/or environmental

variables such as temperature, pressure, humidity, resistance, current, etc. We can

also consider discrete event types as covariates; for example, the occurrence of an

intermittent failure, or event. An intermittent failure can be thought of as a discrete

event that can also help track the degradation process. When we assume that

a covariate can be a stochastic time-varying variable, like the occurrence of an

intermittent failure, then we can call that covariate a marker or precursor. When

the marker is collected over time it forms a stochastic marker process. Together,

the marker and degradation processes form a joint stochastic process that can be

used in a model to predict the time-to-failure in new devices under observation.

In this chapter we present a degradation model that exploits information in

a marker process to estimate 1) the expected time-to-failure, and 2) the survival
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probability of an device given its marker process up until time t. Doksum and Hoy-

land (1992) [116], Doksum and Normand (1995) [117], Whitmore (1995) [118], and

Whitmore et al (1998) [24], among others, model degradation by a Wiener diffusion

process. Lee, Degruttola and Schoenfel (2000) [26], Henderson (2000) [120] consider

extensions to the bivariate Wiener diffusion models with time-varying longitudinal

marker processes. Longitudinal data are collected for each marker process not only

at failure but also throughout the lifetime of the device. Satten and Longini (1996)

and Hendriks (1996) use Markov models to combine a longitudinal trajectory with a

survival event. In this work the authors develop parametric and predictive inference

models that are generally analytically solvable. They make predictions of time to

failure, expected time to failure, and other functionals of time by using the maxi-

mum likelihood estimates (MLEs) of the model parameters and plugging them into

the predictive equations.

Meeker and Escobar (1998) [121], Commenges (1999) [122], Commenges (2002)

[123], Bagdonavicius et al (2002) [124], Putter et al. (2006) [125], Pena (2006) [126],

Machado et al. (2008) [128], Andersen and Perme (2008) [129], Cook, Lawless,

Lakhal-Chaieb and Lee (2009) [130], Aalen, Borgan and Gjessing (2008) [131], Cook

and Lawless (2007) [132] consider multistate models for survival and event history

analysis based on counting processes. An excellent exposition, review and applica-

tion of counting processes are given by Andersen, Borgan, Gill and Keiding (1993)

[133], and Aalen and Johansen (1978) [134]. The counting process framework pro-

vides a non-parametric approach to inference and prediction, most famously through

the Kaplan Meier (KM), Nelson Aalen and Aalen-Johansen (AJ) estimators. The

AJ estimator or product-integral as it is otherwise known, estimates the transition

probability matrix of a nonhomogeneous Markov process. This theory is useful to us

in developing a simple markov multistate model to compute 1) the expected time-

to-failure, and 2) the survival probability, for a surviving device given its marker
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process up until time t.

The multistate model is a natural and simplifying representation of the bivari-

ate marker-degradation process. With the multistate model, the multivariate state

space of the marker and degradation processes is re-parameterized to a univariate

Markov chain by expressing the state space as a list of all possible points of the

marker-degradation vector pairs. Longitudinal marker observations are naturally

incorporated into the model by directly contributing to the estimate the transition

probability matrix, making predictions dependent on the process history. The time

to failure is modeled as the FHT of the degradation variable to the failure threshold.

As discussed earlier, because degradation variables that define failure are typ-

ically not observable in computer systems, we examine the situation in which the

degradation variable is unknown and unobservable. This might be the case in most

complex electronic systems, such as computers, that can exhibit intermittent events

indicating failure, but the underlying mechanism and therefore degradation variable

is unknown. In this case predictive inference is based only on marker observations.

In this work inference and prediction are based on data from one computer, and each

failure time is modeled as independent and identically distributed. In our proposed

model we assume that the system is as good as new after each failure. Critical error

messages generated by internal performance monitoring software are considered as

intermittent failure events correlated to failure.

Traditionally failure time models do not accommodate dynamic model pa-

rameters. In other words, most failure time models assume unknown but fixed

parameters that are not influenced by changing environments. The focus in current

literature is to incorporate information about the environment and or about the

performance level of the system or device under observation, in order to model time

dependent model parameters. Typically separate models are embedded into the

time to failure probability density function to express the dependence on covariates
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(sensor information) or markers like is the case in this study. Validating models and

assumptions in such approaches becomes important and can be a limitation.

11.2 Failure Criteria and Degradation Model

Computer failures are defined from a user perspective, in which failure is seen

as the loss of functionality of the computer. Failures are defined as automatic or

forced restarts of the system. Automatic restart is triggered by the computer while

forced restart is performed by the user. The failure time is defined as the time at

which one of these events occurs. Once the computer is restarted, the process starts

from time zero again, until the next failure. The time to the next failure can also

be considered the time between failures.

The hypothesis is that each computer will fail (as defined above) as a result

of usage and environment stresses. The hypothesis, therefore, is that there exists a

measurable variable whose values correlate to the failure time, in other words, that

there exists a marker/precursor to failure. Error messages generated by internal

monitoring software are believed to be precursors to failure in computers. Fault

events are simply called errors in the remainder of the chapter.

Lifetime and covariate data are only collected from one computer system. As

mentioned earlier, the computer is assumed to be as good as new after each failure,

and therefore we also assume that each failure-time is independent and identically

distributed. For expositional simplicity, in this chapter, we use the term ”device” to

represent the information associated with the computer between each failure. For

example, device 1 represents the computer between time zero and the time of the

first failure. device 2 represents the computer from right after the first failure up to

the second failure, and so on. Note also that this formulation is valid in the case

when we have failure-time and covariate data from a sample of computer systems,

in which case the assumption of independence is stronger, and the modeling holds
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the same.

11.3 Data Structure and Notation

Internal computer software collects hardware data from a set of hardware

variables indexed by time, and we denote the hardware variables by Xij, i = 1, . . . , p,

j = 1, . . . , n, where p is the total number of hardware variables, and n the total

number of observations made on each variable. In other words, each hardware

variable is observed n times. The hardware variables being monitored are: the Fan

speed, CPU temperature, video temperature, memory temperature, motherboard

temperature, %CPU usage, %CPU throttle, among other.

The computer also records information about background processes internal

to each computer, also indexed by time. This information is observed in messages

that are generated by the pre-installed Event Viewer program, and refer to errors,

warnings or simply information about tasks that the computer succeeds or fails

to accomplish. Events are represented by the binary variable Yij, i = 1, . . . ,m,

j = 1, . . . , k with each Yi representing a different event type. Each event variable

Yij can take a value of 1 to indicate the occurrence of event j or 0 otherwise.

Failure time data are collected as lifetimes Tq, defined as the time between failures,

q = 1, . . . , r, where r is the total number of failures observed in a test for a single

computer.

As mentioned above, the Event Log Service records application, security, and

system events in the Event Viewer. The Event Viewer records all events that occur

into log files called event logs. Each event in a log can be classified into one of

the following types: a) information, an event that describes the successful or failed

operation of a task, such as an application, driver, or service. For example, an In-

formation event is logged when a network driver loads successfully. b) Warning, an

event that is not necessarily significant, however, may indicate the possible occur-
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Fig. 11.1: Illustration of sample paths from a bivariate stochastic process {X(t), Y (t)}

rence of a future problem. For example, a Warning event message is logged when

disk space starts to run low. c) Error, an event that describes a significant problem,

such as the failure of a critical task. Error events may involve data loss or loss of

functionality. For example, an Error event is logged if a service fails to load during

startup. Examples of error events are: Application Hang, Memory Access Denied,

etc.

11.4 The Multistate Model

A FHT model can describe the relationship between marker, degradation and

lifetime variables. Typically, lifetimes are modeled by the FHT of the degradation

process to a given threshold level a, namely T = min(t|X(t) = a), in other words the

minimum time at which the degradation process reaches the threshold level. Typi-

cally, the fht model for a joint stochastic process {X(t), Y (t)} (degradation/marker)

needs to condition on observations on Y (t). Each stochastic process is defined on a

state space S and time space T . The state space of the marker variable is the set

of all natural numbers, which record the cumulative number of errors.

Figure 11.1 illustrates the bivariate stochastic process X(t), Y (t) with a
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Fig. 11.2: Multistate model representation of a bivariate stochastic process

threshold level for X(t) at a, and two possible paths, one resulting in a failed device

and the other a surviving device. Because the state space of Y (t) takes discrete

states, the bivariate process looks like a step function. Later, we present a case

study where we generate observations on Y (t) by modeling it as a Poisson process.

The discrete state space of Y (t) can be expressed as a multistate representation as

illustrated in figure 11.2.

Each state in the multistate model represents the cumulative number of er-

rors experienced by the device, and the devices latent degradation level, with the

exception of the last state which represents the cumulative number of errors and

a degradation level of a. At any moment in time, therefore, the multistate model

accounts for two possible events; the occurrence of an error or a failure. There are

three possible transitions at any moment in time: a) to the failure state F , b) to the

right adjacent state from 0 to 1 or from 1 to 2, etc., and c) remain in the same state,

i.e., via p11(t) from state ”1” to state ”1”. The characteristic probability transition

matrix for this model is a sparse banded symmetric matrix P with elements along

the primary and upper adjacent diagonal and along the last column of the matrix

as illustrated in figure 11.3. Further description of the resulting matrix is given in

section 12.6.

Although in principle there may not be a maximum number of states for the
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marker variable, in this model a maximum number of states is used based on the

sample data. For example, k in figure 11.2 is equal to the maximum number of

errors across all devices for the computer under test. We assume that all devices

begin in state 0 at t = 0, that state 0, . . . , k are transient, and that state F is

absorbing. With the multistate model, the bivariate state space {X(t), Y (t)} is

reparametrized to a univariate Markov chain by expressing the state space as a list

of all possible points in the bivariate space. In other words, each state represents

the cumulative number of observed errors and the associated state of health. A

univariate representation of the state space allows for a model to treat the latent

state of health (degradation) abstractly, without making any assumptions about the

joint distribution of degradation and marker, and make predictions therefore about

degradation purely through the marker.

11.5 Multistate Markov Chain

Consider a Markov chain Yn for the multistate model, with state space Ω =

{ω ∈ N} and transition probability matrix P = {pij} i, j ∈ Ω, with pij ≤ 0,Σk∈Ω

pik = 1 for all states i, j, pij = P (Yn+1 = j|Yn = i). The transition probability ma-

trix is a sparse banded matrix with elements along the primary and upper adjacent

diagonals and along the last column of the matrix as illustrated in Fig. 11.3.

Each element in the transition probability matrix represents the probability

of transitioning into the corresponding state in the multistate model. Elements

in row i represent states j 6= i that the system transitions to from state i. For

example, if we consider row i = 1, then element (1,2) of the matrix represents the

probability of transitioning from state 1 to state 2, and element (1,1) the probability

of transitioning from state 1 to state 1, in other words remaining in the same state.

The matrix is sparse because most of it is populated with zero elements. Zero entries

in the transition matrix are used to model a zero probability of transition into the
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corresponding state. For example, in our model, element (1,3) is a zero element

because the system cannot transition from state 1 to state 3; physically it cannot

experience the third error before it experiences the second error. The diagonal

entries then are the probabilities of transitioning along the marker states and the

last column the probabilities of failure from each respective state. The multistate

model is also an absorbing Markov chain.

Definition 11.1. A state si of a Markov chain is called absorbing if it is impossible

to leave it (i.e., pii = 1). A Markov chain is absorbing if it has at least one absorbing

state, and if from every state it is possible to go to an absorbing state (not necessarily

in one step)

Definition 11.2. In an absorbing Markov chain, a state which is not absorbing is

called transient. The one-step transition probability matrix P is decomposed into the

following block partitioned form, Bremaud (1998) [135], called the canonical form of

P .

P =

 Q U

0 I

 (11.1)

Component Q is an k-by-k matrix of transition probabilities among the set of

transient states T called the transient state matrix, U is a nonzero k-by-1 vector of

transition probabilities from transient states to the failure state (absorbing state) F ,

and I a diagonal matrix of ones, in our case I=1, because we have only 1 absorbing

state. The probability of being in state j after n steps, when the chain starts in

state i is given by:

P n =

 Qn U

0 I

 (11.2)

where E is a matrix written in terms of Q and U , but its expression is not needed

here. The form P n shows that the entries of Qn give the probabilities of being in

each transient state after n steps.
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Fig. 11.3: Shape of probability transition matrix

Theorem 11.1. In an absorbing Markov chain, the probability that the process will

be absorbed is 1 (i.e., Qn → 0 as n→∞).

The results from equation (11.2) concern the probability of remaining forever

in the transient set, or alternatively, the probability of never being absorbed by the

absorbing set. It is of interest to compute the probability of being absorbed by

a given absorbing set when starting from an initial state i ∈ T . For this we use

the idea of the fundamental matrix, which is related to the number of visits to a

particular state j when starting from a state i.

Theorem 11.2. For a homogenous Markov Chain with transition probability matrix

P , the probability of absorption by the absorbing set starting from transient state i

is

PF = HU (11.3)

where H is the fundamental matrix and U is as in the canonical form.

Definition 11.3. For an absorbing Markov Chain P , the matrix H = (1−Q)−1 is

called the fundamental matrix of P . The entry ij of H gives the expected number

of steps the chain takes to reach state j if it starts in the state i. Then the expected
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time to absorption, or time to failure, is taken from the definition of the expectation

of the discrete random variable T ; E(T ), which is given by:

Te = E[TiF ] =
∞∑
0

nP (TiF = n) (11.4)

In matrix form, equation (11.4) is given by (11.5), where, H is defined above,

and c is a column vector all of whose entries are 1.

Te = Hc (11.5)

11.6 Estimator for the Transition Probability Matrix

Our task is to model the marker history and lifetime for each device by a

stochastic process with a countable number of states represented in a multistate

model. In general, the future state transitions of a multi-state model may depend

in a complicated way on past events. However, for the special case of a Markov

chain the past and future are independent given its present state. Therefore the

future transitions of a Markov chain depend only on its present state as described

by the transition probabilities Pij(s, t) = P (Y (t) = j|X(s) = i); s < t. We will show

that an estimator for the transition probability matrix can accommodate historical

information, and overcome the apparent limitation inherent to Markov chain models.

Corresponding to the hazard rate for survival, we may for a Markov chain

define the transition intensities

αij(u) = lim∆u→0P (Y (u+ du) = j|Y (u) = i)/du (11.6)

where Y (t−) denotes the value of the marker Y ”just before” time t. Note that

αij(t)dt is the probability that an device that has experienced i intermittent faults
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(so is in state i) ”just before” time t, will make a transition to state j in the small

time interval [t, t+ dt).

Only for simple Markov chains, is it possible to give explicit expressions for the

probability transition matrix in terms of the transition intensities. For example in

the case of a two-state model, the components of the probability transition matrix

are simply the KM survival and failure estimates. More generally we can express

the (k + 1) × (k + 1) transition probability matrix P (s, t) = {Pij(s, t)} in terms of

the matrix of transition intensities. To see how this is done, we partition the time

interval (s, t] into a number of time intervals s = t0 < t1 < t2 < . . . < tk = t and

use the Markov property to write the transition probability matrix as the product:

P (s, t) = P (t0, t1)× P (t1, t2)× . . .× P (tk−1, tk) (11.7)

If the number of time points increases, while the distance between them goes

to zero uniformly, the matrix product approaches a limit termed a (matrix-valued)

product-integral. The product-integral is written in terms of the (k + 1) × (k +

1) matrix α(u) of transition intensities, that is the matrix where the off-diagonal

elements equal the transition intensities αhj(u), h = j, and the diagonal elements

αii(u) = −
∑
j=i

αij(u)

are chosen so that all row sums are zero. Since the transition intensities describe the

instantaneous probabilities of transitions between states, P (u, u + du)I + α(u)du,

where I is the (k + 1) × (k + 1) identity matrix. This explains why we may write

the limit of equation (11.7) in product-integral form as: P (s, t) =
∏

(s,t] I + α(u)du.

Alternatively, if we let A(t) denote the cumulative transition intensity matrix with
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elements Aij(t) =
∫ t

0
αij(u)du we have:

P (s, t) =
∏
(s,t]

{I + dA(u)} (11.8)

In the discrete case, the cumulative transition intensity takes the form
∑

u≤t

∆A(u), where ∆A(u) = A(u)−A(u−). Then the product-integral in equation (11.8)

becomes the ordinary matrix product
∏

s<u≤t{I + ∆A(u)}. We may derive an es-

timator for P (s, t) using the Nelson-Aalen (NA) estimator Â as a non-parametric

estimate for the cumulative transition intensity matrix A. In a counting process

framework, the NA estimator is constructed by counting the devices that are ob-

served to experience a transition from state i to state j in [0, t]. The NA estimator

is given by:

Âij(t) =

t∫
0

dNij(s)

Rh(s)
(11.9)

where dNij(t) = Nij(t + dt)−Nij(t), is the increment in the number of transitions

from state i to state j observed over a small time interval [t, t + dt), and R(t) =

{#devices : Ti > t} is the risk set; the number of surviving devices at time t.

Furthermore we introduce Âii(t) = −
∑

j 6=i Âij. The relation in equation (11.8)

suggests that we estimate the matrix of transition probabilities by the k× k matrix

P (s, t), called the Aalen-Johansen (AJ) estimator, Â = {Âij}

P̂ (s, t) =
∏
(s,t]

(I + dÂ(u)) (11.10)

The NA estimators are step-functions with a finite number of jumps on (s, t].

Therefore, the AJ estimator given in (11.10) is a finite product of matrices. If one or

more transitions are observed at any time u, then the contribution to (11.10) from

this time point is a matrix I + ∆Â(u), where ∆Â(u) is the k× k matrix with entry

(i, j) equal to ∆Nij(u)/Ri(u) for h 6= j and entry (i, i) equal to −∆Nio(u)/Ri(u)
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with Nio =
∑

j 6=iNij. The transition probability matrix defines the instantaneous

probability that an intermittent fault or failure may occur and is estimated using

observations on the marker variable, in this case the event of an error message.

11.6.1 Evaluating the Probability Transition Matrix

In this section we present a ”worked out” example for evaluating the probabil-

ity transition matrix. We assume that the life-history of the system is described by

a Markov process with a finite number of states Ω = 1, . . . , K. The transition prob-

ability is denoted, as before, by pij(s, t) and describes the probability that a system

in state i at time s transitions into state j by time t. The K × K matrix P (s, t)

summarizes the transition probabilities of the Markov process. We next define the

transition probability matrix in terms of the AJ estimator.

Definition 11.4. We define the following quantities:

1. t1 < t2 < . . . are times when transitions are observed to occur

2. dijk is the number of items that transfer from state i to j at time tk

3. dik =
∑

i 6=j dijk is the number of items that transition out of statei at time tk

4. Rik is the number of devices in sate i just prior to time tk

The AJ estimator for the transition matrix P (s, t) is given in equation (11.10).

The interpretation of equation (11.10) is given by equation (11.11), which is the

product over transition matrices between times s and t.

P̂ (s, t) =
∏

k:s<tk≤t

(I + α̂k) (11.11)

Here,α̂k is a K×K matrix with entry (i, j) equal to α̂ijk = dijk/Rik, entry (i, i)

equal to α̂iik = −dik/Rik, and all other entries are zero. I is the indentity matrix.
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The product is taken over increasing tk’s. In the case of a two-state model, where

state 1 represents the healthy state and state 2 the failure state, the transition and

intensity matrices are two dimensional. In this case the AJ estimator can be seen as

a matrix version of the KM estimator: Ŝ(t) = P̂ [1, 1]. The square brackets indicate

the AJ matrix as opposed to the parenthesis which denote the time components.

11.6.2 Example of a two-dimensional multistate model

To demonstrate the computations, consider the following example:

Suppose we have a sample of 16 devices observed to failure and censoring.

Out of these 16 devices 12 fail at times tk (0.75, 0.91, 1.32, 1.7, 2.15, 2.76, 2.88,

2.98, 4.51, 6.23, 8.57, 10.23) and four are censored at times cj (0.5, 0.8, 1.7, 2.08),

where times are measured in hours. Table 11.1 summarizes the data and gives

the survival probability estimates at each observation time tk. Column 1 shows the

device ID, column 2 the event time, column 3 shows the failure indicator, which

is 1 if a failure is observed and 0 if the failure is censored. Column 4 shows the

states that the device transitions from and column 5 the state the device transitions

into. In this case, state 1 represents a healthy state and state two the failure state.

Column 7 shows the at-risk population at time tk, and the last two columns show

the estimated survival and failure probabilities at that time, respectively.

In this case the AJ estimator reduces to the KM estimator as mentioned earlier.

Here we show the steps involved in evaluating the AJ estimator, starting from its

definition in equation (11.11) and the properties in definition 11.4

P̂ (0, t) =
∏
k:tk≤t

(I + α̂k) =

=
∏
k:tk≤t


 1 0

0 1

+

 − dikRik

dijk
Rik

0 0


 =
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Tab. 11.1: Lifetime data and survival probability estimates

ID tk dijk From To Rik Ŝ(tk) F̂ (tk)
13 0.5 0 1 1 16 1 0
1 0.75 1 1 2 15 0.933 0.066
14 0.8 0 1 1 14 0.933 0.066
2 0.91 1 1 2 13 0.861 0.138
3 1.32 1 1 2 12 0.789 0.21
4 1.7 1 1 2 11 0.717 0.282
15 1.7 0 1 1 11 0.652 0.347
16 2.08 0 1 1 9 0.652 0.347
5 2.15 1 1 2 8 0.571 0.428
6 2.76 1 1 2 7 0.489 0.51
7 2.88 1 1 2 6 0.407 0.592
8 2.98 1 1 2 5 0.326 0.673
9 4.51 1 1 2 4 0.244 0.755
10 6.23 1 1 2 3 0.163 0.836
11 8.57 1 1 2 2 0.081 0.918
12 10.23 1 1 2 1 0 1

=
∏
k:tk≤t

 1− dik
Rik

dijk
Rik

0 1

 =

=


∏

k:tk≤t

(
1− dik

Rik

)
1−

∏
k:tk≤t

(
1− dijk

Rik

)
0 0

 =

=

 Ŝ(t) 1− Ŝ(t)

0 1


Using the above data one can show that the following results hold

P̂ (0, t1) = (I + α̂1) =

 14

15

1

15

0 1

 =

 0.933 0.066

0 1



P̂ (0, t2) = P̂ (0, t1)(I + α̂2) =

 14

15

1

15

0 1


 12

13

1

13

0 1

 =
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=

 56

65

9

65

0 1

 =

 0.861 0.138

0 1



P̂ (0, t3) = P̂ (0, t2)(I + α̂3) =

 56

65

9

65

0 1


 11

12

1

12

0 1

 =

=

 154

195

41

195

0 1

 =

 0.789 0.21

0 1


The AJ survival probability estimates are plotted in Fig. 11.4. The survival

probability is based on the (1,1) element of the AJ estimator at each time step tk,

as seen from the results above. The resulting survival probability plot in figure

(Fig. 11.4) is a step function which drops at each observed failure time. From figure

11.4 we can infer the survival probability of a new device surviving at time t∗. For

example, a new device, surviving at t∗ = 4, has a 65% chance of failing in the

next time instance. To summarize, the AJ estimator, non-parametrically estimates

the survival probability as a function of time by taking a product of the transition

intensities of a Markov chain at each of the observed event times. Because here we

only have two types of events, there is only one transition: from healthy to failure.

To see the usefulness of this model, we next present a case study that generalizes

these computations to higher dimensions to accommodate recurrent intermittent

faults.

The expected time to failure is computed using Markov chain theory on ab-

sorbing chains as discussed in section 12.4. Specifically, we are interested in the

fundamental matrix of the transition probability matrix H. As stated in 11.3, the

ij entry of H gives the expected number of steps the chain takes to reach state j

if it starts in the state i. Consider for example, the transition probability matrix

given by the AJ estimator at time t3, in this case the transient state matix Q is
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Fig. 11.4: Survival probability estimates from the AJ estimator

a scalar Q = 0.789, then H = (1 − 0.789)( − 1) = 4.74 and the expected time to

absorption Te(t3) = 4.74(1) = 4.74. Repeating the above calculation at all failure

and censoring times we get the following expected time to failure vector, which is

plotted in figure 11.5. Again, figure 11.5 can be used to infer the expected time to

failure for a new device surviving at some time t∗. Continuing the example above,

for an device surviving at t∗ = 4, its expected time to failure is just over an hour.

Te = (NA, 12.75, 12.75, 7.22, 4.74, 3.54, 2.88, 2.88,

2.33, 1.96, 1.69, 1.48, 1.32, 1.19, 1.08, 1.00)

The first entry in the expected time to failure vector is the survival estimate

at the earliest lifetime measurement t1 = 0.5, which is a censoring time. Because at

this time, no failures have previously been observed, this censored lifetime does not

contribute to the survival probability estimate. The AJ estimate at time t3, is the

survival probability estimate at the third failure time, or including censored times,

its the fifth lifetime measurement, as seen in the vector above.

In a higher dimensional multistate model, we need to take the inverse of Q
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Fig. 11.5: Expected time to failure

matrices, which becomes a computational problem when there are many states to

account for. Difficulties may arise in taking the inverse of anon-singular matrix. Here

we assume that computational techniques for matrix inverse evaluation are available

(LU decomposition, Singular Value decomposition, Gauss-Jordan elimination, etc.).

In the following case study the same calculations are used but in matrix form.

11.7 Case Study

In tests, failures are repeatedly induced by stressing the computer with sim-

ulated usage. Failures are defined as unwanted/automatic restarts or shutdowns.

Computer usage is simulated by running intensive programs that consume compu-

tational resources, and cause the computer to freeze or trigger a shutdown. It is

believed that errors are correlated to failure and can therefore be used as precur-

sors/markers in our multistate model. Table 11.2 shows a sample of failure times

observed for a computer under test. The first column shows the start time after a

restart/reboot of the computer. The second column is the time the computer was

observed to fail: time to failure (TTF). The third column records the calendar time
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Tab. 11.2: Sample of failure times for collected from a computer
Start Stop TTF TBF
2/23/2010 7:53 2/24/10 11:05 4:33 27.19
2/24/2010 11:05 2/25/10 7:26 12:57 20.35
2/25/2010 7:26 2/25/10 8:09 6:14 0.73
2/25/2010 8:09 2/26/10 13:28 13:55 29.32
2/26/2010 13:28 2/26/10 23:16 9:07 9.79

Tab. 11.3: Life Table
ID Time If Y
1 23.1 0 1
1 27.19 1 0
2 18.61 0 1
2 20.01 0 1
2 20.35 1 0
3 0.73 1 0

in hours from the start of the experiment (t=0). The last column shows the time in

hours between each failure (TBF). This is the lifetime of an device as discussed in

section 3.

In addition to failure time information, we also collect error event times. This

data is collected in a similar way. Lifetimes and error event times are collected into a

”life table”, which contains all the data: lifetimes and error event times in one table

structure. Table 11.3 gives an example of a life table. Each row in the life table

represents the occurrence of an event: failure or error. In Table 11.3, the failure

ID represents an device in the computer. There may be multiple error events prior

to each failure; therefore, the same failure ID can appear multiple times. When a

failure is observed, the failure indicator If = 1, otherwise If = 0 to indicate an error

event.

We simulated lifetime and error data. The main objective of this case study is

to test and validate the proposed multistate model. Our simulation design hypothe-

sis is: 1) that with each error, the probabilities of another error or failure occurring

increase and 2) with each failure the probability that an error occurs increases. In
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other words, devices that experience more errors typically fail earlier, and a com-

puter which has seen many failures is more likely to generate more errors than a

computer which has not seen as many failures.

In our simulation, random lifetimes and error times are generated based on

the FHT model discussed in section 12.4. Lifetimes Tq, therefore, are modeled as

the first hitting time of a degradation process X(t) to a fixed failure threshold a,

namely, T = inft : X(t) = a. We modeled the degradation process by a Wiener

process with drift given by:

X(t) = x0 + νXt+ σXW (t) (11.12)

In equation (11.12), x0 is the initial degradation of an device, νX is the degra-

dation drift parameter, σX the degradation variance and W (t) is a standard normal

Wiener process W (t) ∼ N(0, t). The degradation process is conditioned on the error

events represented by the marker variable Y (t), which is modeled by a homogeneous

Poisson process with arrival rate parameter λ, Y (t) ∼ Poisson(λ), where Y (t) ∈ N
1. Its probability mass function is given by:

P (Y (t2)− Y (t1) = k) =
λexp (−λ(t2 − t1)) (t2 − t1)

k!
(11.13)

The drift of the Wiener process is parameterized as a function of the number

of errors observed before failure, νX(t) = cY (t) where c > 0 is a positive constant.

In other words, the drift of the Wiener process is simulated to increase each time

an error occurs. An increase in the drift of the Wiener process in turn means that

the degradation is more likely to reach the threshold faster. We model the effect of

ageing in computers by parameterizing the rate of arrival of errors as a function of

cumulative number of failures and errors up until time t, λ(t) = bY (t)C(t) where

1 All natural numbers 0,1,2,. . .
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Fig. 11.6: Simulation of the degradation process conditioned on an error event process

C(t) is the cumulative number of failures.

The simulated data consists of 40 simulated lifetimes and 45 event times sum-

marized in table 11.4. The degradation and event processes are generated using

starting parameter values: (νX , σX , λ) = (0.01, 0.035, 0.009) and an arbitrarily

threshold level of a=1. Fig. 11.6 plots the simulated degradation process condi-

tioned on an event process. Specifically it plots the degradation process of an device

conditioned on two error events, one that occurs at 6.32 hours and the second at

19.56 hours. This device fails at 39.73 hours. In this data set (40 devices), the

expected time to failure for devices that do not experience errors is 70.58 hours, for

devices that experience 1 error 47.05 hours, and for devices that experience 2 errors

30.87 hours.

The simulation is repeated many times, in our case 1000, to get an empirical

estimate for the convergence of the expected time to failure given a sample of 40

devices. Figure 11.7 plots the empirical distribution of the expected time to failure

for 1000 experiments, each time considering only 40 devices. We can see that the ex-

pected time to failure for devices that do not experience errors is on average greater

than that for devices that experience 1 or 2 errors. Similarly the expected time

to failure for devices that experience 1 error is again on average greater than that
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Fig. 11.7: Expected time to failure distribution for devices with 0,1 and 2 error events

for devices that experience 2 errors. Using random lifetime and error times gener-

ated from our statistical model this result validates the simulation design discussed

earlier.
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Fig. 11.8: Transition probability matrix used in case study

The multistate model, in this case, consists of two marker states and a failed

state. In this model only two errors occurrences are considered prior to failure

for each device, but this need not be the case, any discrete number of errors can

be accommodated. State 0 represents the state in which the computer has not

experienced any errors, state 1 the state in which the computer experiences its first

error and state 2 its second and last error. States 0 through 2 represent the transient

states in a Markov chain. State 3, the failure state, represents the absorbing state.

Fig. 11.8 shows the structure of the transition probability matrix used in this case

study for a three state multistate model.

In a three state multistate model, each device under observation has a maxi-

mum of three possible event times, two for the errors and one for the devices failure.

For example, ID=4 experiences its first error at 29.89 hours, its second at 32.82

hours and fails 41.37 hours. Time is measured from t=0 for all devices. For ID=1,

it does not experience any errors and it fails at 59.63 hours.

The time considered in this experiment starts at t= 0 and ends at the time

of the last observed failure across the 40 lifetimes, which for this data set is t=

83.36 hours. The AJ estimator is applied over a time increment of r= 0.00018 hours

which is equal to the smallest time difference between any two error events in the

data set. This guarantees that at any time, at most, only 1 error event can occur.

The transition probability matrix therefore is estimated at every time step, in total

4631 times, to generate a three dimensional matrix k × k × m, with k = 4 and

m = 4631. Each slice of this matrix along m, gives the non-parametric estimate of

the transition probability matrix at a particular time.
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Fig. 11.9: Aalen-Johansen survival probability estimate starting from states 0, 1 and 2

Figure 11.9 shows the AJ estimator results for the survival probabilities start-

ing from states 0, 1 and 2. These plots are generated based on a Matlab code

developed at CALCE to implement the AJ estimator (equation (11.10)). The eval-

uation of the AJ estimator is performed at discrete times, similar to example 5.1.

Survival probability from state 0 is based on element (1,4) in the transition proba-

bility matrix (see figure 11.6), from state 1, based on element (2,4), and from state

2 based on element (3,4).

From the results in figure 11.9 we observe that the AJ estimator detects the

design conditions in the simulated data. We can see that devices that experience

an increasing number of errors before failure have increasingly lower chances of

surviving, and this result validates the simulation design discussed earlier.

Therefore, for a new computer, if we know how long it’s been running since

last shutdown, and we know the number or errors in any (errors of some predeter-

mined type) it experienced, we can get point estimates of its remaining life. For

example, for a test computer that is surviving at time t, its expected time to failure

is plotted in Fig. 11.10, for times t ranging from 0 to 84 hours. Using equation

(11.5), figure 11.10 plots the expected failure-time as the first hitting time of the
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Fig. 11.10: Expected time to failure starting from state 0,1 and 2 respectively

absorbing state against time, starting in states 0, 1 and 2 respectively.

Here we see that occurrence of errors reduce the life expectancy of the devices.

More specifically, for example, consider a device that is surviving at 30 hours, in

other words, a computer that has not failed after 30 hours of operation. In this

case, if the computer has not experienced any errors, its expected time to failure is

just under 20 hours. If it experienced one error, then its expected time to failure is

about 5 hours, and if it experienced two errors then its expected time to failure is

about 1 hour. The exact times can be found in the data, here we are summarizing

visually, based on figure 11.10.

11.8 Summary and Conclusions

Using a multistate model, we have developed a methodology to model fail-

ure time data together with event time data (errors). Event time data are used as

auxiliary information to failure time data, with the aim to improve remaining life

estimates. Failure times are modeled as the first hitting times to a failure state in

a multistate model. The multistate model re-parameterizes the bivariate degrada-

tion/marker process to a univariate Markov chain by expressing the state space as
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a list of all possible points in the bivariate state space. Each state represents the

joint degradation/marker values indexed by time. The marker value is observable

and represents the cumulative number of errors experienced by the device, while

the degradation variable is unobservable and therefore unknown. In this approach,

inference is based on the progress of the marker variable which is assumed correlated

to the degradation variable.

Inference of the transition probability matrix is approached non-parametrically

using the AJ estimator over small time increments spanning the life time of the

device. A reducible absorbing time homogeneous Markov chain is used to compute

the expected first hitting times to estimate the expected time to failure. A case

study simulates a sample of 40 lifetimes and 45 error event times. The simulation

generates failure times and event times according to a design hypothesis discussed

in the chapter, and used to emulate experimental data. In the simulation, the

marker variable is modeled as a Poisson random variable, and the degradation as

a Gaussian random variable. The degradation process is conditioned on the event

process; its drift parameter increases with increasing number of errors and failures in

the computer. From the results we see, as anticipated, the expected time to failure

decreases given an increasing number of errors experienced by an device.

This chapter contributes to the literature on degradation models on the fol-

lowing levels:

1. A recurrent event process is interpreted as a marker variable observed as a

stochastic process and is used to relate observable events to the underlying

degradation process of the system. In doing so, this work casts a degradation

model as a multistate model that can be solved using Markov Chain theory,

with a transition probability matrix that can be parameterized to accommo-

date covariates.

2. Complex multivariate relationships between covariates and the degradation
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process are summarized using a multistate representation which is simple and

intuitive to use for prediction.

3. Using counting process theory, time dependent covariates (in this case the

occurrence of an error) influence the estimation of transition probabilities.

This is perhaps the most useful aspect of the model because it can naturally

accommodate a large number of covariates (in this thesis we use one) without

burdening computations and complicating predictive inference equations.

4. By taking a non-parametric approach, the model avoids making some assump-

tions necessary in parametric modeling of degradation.

5. Connects the model with PHM, a methodology that requires real-time health

assessment and predictions. Extensions to this model can include a parametric

model to describe the relationship between the marker and a degradation vari-

able. In this case, to achieve a valuable model, the degradation variable must

represent the mode of a known failure mechanism, and the marker variable

should be correlated to the degradation variable.
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Tab. 11.4: Simulated Data for Case Study

ID Time FI From To ID Time FI From To
1 59.63517 1 1 4 21 11.27847 0 2 3
2 3.667432 0 1 2 21 25.95885 1 3 4
2 13.66344 0 2 3 22 51.24407 0 1 2
2 26.62085 1 3 4 22 59.72076 1 2 4
3 29.51897 0 1 2 23 2.429111 0 1 2
3 37.05257 0 2 3 23 7.054876 0 2 3
3 38.69994 1 3 4 23 20.9028 1 3 4
4 29.89073 0 1 2 24 5.408587 0 1 2
4 32.82195 0 2 3 24 22.50397 0 2 3
4 41.3729 1 3 4 24 24.87877 1 3 4
5 2.82899 0 1 2 25 76.71006 1 1 4
5 22.96408 1 2 4 26 38.15745 0 1 2
6 79.5193 1 1 4 26 47.78758 1 2 4
7 32.28822 0 1 2 27 63.9671 0 1 2
7 47.3686 1 2 4 27 68.86442 1 2 4
8 49.65221 0 1 2 28 78.15233 1 1 4
8 53.49254 1 2 4 29 59.02685 0 1 2
9 67.14219 1 1 4 29 62.04048 1 2 4
10 17.60471 0 1 2 30 14.99896 0 1 2
10 31.23497 0 2 3 30 33.22369 1 2 4
10 36.27443 1 3 4 31 37.53772 0 1 2
11 2.525531 0 1 2 31 45.39904 0 2 3
11 22.69991 1 2 4 31 46.38308 1 3 4
12 65.67164 1 1 4 32 51.42378 0 1 2
13 2.554267 0 1 2 32 56.89857 1 2 4
13 17.68143 0 2 3 33 83.3691 1 1 4
13 21.86692 1 3 4 34 19.6774 0 1 2
14 4.869203 0 1 2 34 37.02043 1 2 4
14 27.16367 1 2 4 35 62.75821 1 1 4
15 62.26681 1 1 4 36 58.52609 0 1 2
16 68.14045 0 1 2 36 66.74907 1 2 4
16 68.50191 1 2 4 37 1.388588 0 1 2
17 31.1752 0 1 2 37 5.06764 0 2 3
17 44.50559 0 2 3 37 25.84599 1 3 4
17 45.78031 1 3 4 38 23.16686 0 1 2
18 57.07051 0 1 2 38 32.39662 1 2 4
18 60.75794 1 2 4 39 15.58235 0 1 2
19 15.35275 0 1 2 39 24.34467 0 2 3
19 32.28841 1 2 4 39 34.84539 1 3 4
20 0.352023 0 1 2 40 10.13809 0 1 2
20 15.44168 0 2 3 40 20.75748 0 2 3
20 18.1696 1 3 4 40 24.69688 1 3 4
21 9.604934 0 1 2

189



12. SUMMARY AND CONCLUSIONS

In order to predict the remaining life of a device we need to know when other

similar devices failed, as well as how they responded to stress over time. To get

this information we must conduct tests, and expose a sample of devices to stress

and measure their responses. Only then can we take information from a new fielded

device and make any inference on its reliability. In this work the au The impetus for

degradation models in PHM stems from the need to explain heterogeneous reliability

qualities across a sample of devices used in dynamic stress environments. This need

is further exacerbated by the requirement in PHM to predict failure-times when

failure-time samples are small, and when degradation data are not predictive of fail-

ure. Small failure-time samples are common in highly reliable products or products

with short product-cycles. Small failure-time samples also result from reduced ac-

celerated test conditions, aimed to preserve the failure generating mechanisms for

devices put through failure-tests.

Degradation data are collected for each device and used as auxiliary reliability

information to improve reliability models. Heterogeneous degradation data, col-

lected from degradation variables, can provide valuable insight into device-specific

reliability. First hitting time models use degradation variables to define the failure-

time, implicitly enforcing a causality between the underlying failure mechanism,

degradation and the failure-time. Degradation variables play another important

role in enhancing reliability and PHM models, because, they represent responses to

stress or usage, which varies across devices. In this way degradation variables allow

us to model the effect of dynamic environments on our failure-time predictions.



Central to the thesis are so called non-predictive degradation variables. These

are known, typically observable, degradation variables that attain the failure -

threshold level suddenly without any preceding trend, a trend useful for making

predictions on lifetimes. In such a case, as we discuss in this thesis, we use latent

degradation models with terminal observations on an otherwise latent true degra-

dation variable and longitudinal measurements on observable marker variables. We

provide justification for using bivariate latent degradation models for data collected

in failure-tests, and through our model we address key data-limitations encountered

in such settings.

Our baseline analytical framework is Whitmore’s bivariate Wiener model for

terminal degradation and marker data-observations. In chapter 1 we introduce the

problem and motivate a direction of research. In chapter 2 we present the data-

structures used in the thesis and examples taken from failure-tests of electronics

conducted at CALCE. In chapter 3 we present main theorems and lemmas on es-

timation theory. In chapters 4, 5 and 8 we present extensions to Whitmore’s first

hitting time model. In chapter 6 we present case studies that compare the perfor-

mance of our degradation model on various data-structures, the results of which

form the basis of our contributions. In chapter 7 we consider the effect of covariates

on estimation under the same degradation model.

The first extension and first contribution of this work is to address and provide

a simple solution to the ”small failure-time sample” problem. We developed para-

metric and predictive inference equations based on Whitmore’s first hitting time

model, for a data-structure that augments terminal degradation measurements to

a terminal data-structure. With terminal degradation observations on both failed

and surviving devices we were able to use, in contrast to Whitmore, terminal degra-

dation information on surviving devices. In other words, in our approach, surviving

devices become much more valuable for estimation and inference.
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We compared the mean failure-time parameter of an IG lifetime distribution,

and we showed that our approach under the TMD data-structure consistently re-

duces the asymptotic variance of MLEs. More importantly, our experimental results

indicate that our approach performs increasingly better under smaller failure-time

sample sizes. As expected, from a statistical point of view, the efficacy of the TMD

over the TM data-structure is explained because ML estimation improves with en-

hanced data, when sample sizes are large.

The improvement in inference under the TMD data-structure also has broader

commercial implications. The results show that we can ”afford” to reduce designed

accelerating conditions, and test durations in planned failure-tests. From an engi-

neering perspective, reducing accelerating conditions is a welcome option, because,

as we discuss in the introduction, highly accelerated test conditions may alter tar-

geted failure-mechanisms. Typically, failure-tests are conducted over a time-period

long enough to see enough devices fail. Shorter test-durations are not only less

costly, they are sometimes required due to short product life-cycles. Under latent

degradation conditions, our results suggest investing in failure-analysis equipment

capable of measuring terminal degradation.

The second contribution of the thesis lies in our treatment of longitudinal

marker observations in a latent degradation model for both parametric and predic-

tive inference. We develop parametric inference for a general longitudinal marker

data-structure and show in our results improved estimation starting from two in-

termediate marker observations. The efficacy of the longitudinal data-structure

depends on the strength of correlation between the marker and the degradation

variable. In our simulations and analysis, we use a strong correlation coefficient.

Further work is needed to test estimation improvement under weaker correlations.

The third contribution of the thesis incorporates a variable failure-threshold

to Whitmore’s bivariate Wiener model. We develop parametric inference equations
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with the failure-threshold variable modeled as a Gaussian random variable and in-

dependent of the degradation process. More realistically, as part of future work,

the failure-threshold variable may also be dependent upon the degradation process,

and can itself be modeled, more generally as a stochastic process. We are currently

working on code to evaluate AREs under the TMD data-structure for fixed vs vari-

able threshold models. These results are not availabe in the thesis, but are however

anticipated to be part of subsequent publications.

In chapter 7, in addition to presenting covariates as part of FHT models, we

present machine learning approaches as part of degradation models. Specifically,

we consider Gaussian process regression and support vector machine classification

as methods for including covariates. Our introduction, and justification of SVMs in

this context constitutes our fourth and last contribution in part-I of the thesis.

In part-II of the thesis we investigate degradation models based on nonpara-

metric models. In chapter 9 we analyze the reliability of a product from a health

monitoring perspective in the context of PHM. In the absence of failure training-

data, anomaly detection is approached through a one-class learning algorithm based

on SVM classification. This is also used in a Bayesian framework to estimate the

posterior class probabilities of test data with unknown class. In this work we make

a contribution to the field of reliability by interpreting health as the outcome of a

classifier. We introduce a methodology that connects machine-learning analysis to

FHT models by helping determine suitable marker variables that can be used to

track latent degradation. We solve a novelty detection problem with a one-class

classification algorithm, and a Bayesian framework for uncertainty analysis. The

results of our Bayesian classifier, we argue and show through case studies, are suited

for further trending and event-time predictions.

In chapter 11 we consider degradation variables that take-on discrete values,

and use computer reliability as a working example. Specifically we are interested
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in modeling the occurrence of intermittent errors that lead to failure. Here we use

a multistate Markov model to develop a methodology to model failure-time data

together with event-time data (errors). Failure-times are modeled as the FHT to

a fixed failure state in a multistate model. The marker value is observable and

represents the cumulative number of error experienced by the device, while the

degradation variable is unobservable and therefore unknown. In this approach,

inference is based on the process of the marker variable which is assumed correlated

to the degradation variable.

Inference on the transition probability matrix is approached using the non-

parametric Aalen-Johansen estimator over small time increments spanning the life-

time of the device. A reducible absorbing time-homogeneous Markov chain is used to

compute the expected first hitting times. A simulation case-study is used to generate

failure-times an event times. From the results we observe, that as anticipated, the

expected failure-time decreases given an increasing number of errors experienced by

a device. This part of the thesis contributes to the literature on degradation models

on the following levels: (i) it casts a degradation model as a multistate model, (ii) it

accommodates covariates using counting process theory, (iii) it avoids making many

parametric assumptions and (iv) it connects the model with PHM.
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[116] Doksum, K.A. and Hóyland, A., ”Models for variable-stress accelerated life

testing experiments based on Wiener processes and the inverse Gaussian dis-

tribution”, Technometrics,no. 1, 74–82,1992

[117] Doksum, K.A. and Normand, S.L.T., ”Gaussian models for degradation

processes-Part I: Methods for the analysis of biomarker data”,Lifetime Data

Analysis, Vol. 1,no. 2, pp. 131–144,1995

[118] Whitmore, GA, ”Estimating degradation by a Wiener diffusion process subject

to measurement error”, Lifetime data analysis, Vol. 1, no. 3, pp. 307–319,1995

208



[119] Satten, G.A. and Longini Jr, I.M., ”Markov Chains With Measurement Error:

Estimating theTrue’Course of a Marker of the Progression of Human Immun-

odeficiency Virus Disease”, Applied Statistics, vol. 45,no. 3,pp. 275–309, 1996

[120] Henderson, R. and Diggle, P. and Dobson, A., ”Joint modelling of longitudinal

measurements and event time data”, Biostatistics, vol. 1, no. 4,pp. 465–480,

2000

[121] Meeker, W.Q. and Escobar, L.A., ”Statistical methods for reliability data”,

Wiley New York, 1998

[122] Commenges, D., ”Multi-state models in epidemiology”, Lifetime data analysis,

vol. 5, no. 4,pp. 315–327, 1999

[123] Commenges, D., ”Inference for multi-state models from interval-censored

data”, Statistical Methods in Medical Research, vol. 11, no. 2, pp. 167–182,

2002

[124] Bagdonaviius, V. and Bikelis, A. and Kazakeviius, V. and Nikulin, M., ”Non-

parametric estimation from simultaneous degradation and failure time data”,

Comptes Rendus Mathematique, vol. 335, no. 2, pp. 183–188, 2002

[125] Putter, H. and van der Hage, J. and de Bock, G.H. and Elgalta, R. and van de

Velde, C.J.H., ”Estimation and Prediction in a Multi-State Model for Breast

Cancer”,Biometrical journal, vol. 48,no. 3, pp. 366–380, 2006

[126] Peña, E.A., ”Dynamic modelling and statistical analysis of event times”, Sta-

tistical science: a review journal of the Institute of Mathematical Statistics,

vol. 21,no. 4, pp. 487–500, 2006

209
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