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SUMMARY 

Among all the possible missions for Unmanned Air Vehicles (UAVs), reconnaissance is 

still ranked as the most important mission, and endurance is one of the most important 

performance criteria. In recent years, a new class of small-sized UAVs, powered by fuel 

cells, has demonstrated significant endurance improvements over the conventional gas 

powered UAVs of the same weight class. Along with the development of fuel cell 

powered UAVs, the design optimization of such UAVs has been a research focus. 

However, studies on the energy management of fuel cell powered UAVs in operation 

have been mostly limited to steady state flight conditions. Trajectory analyses of 

conventional gas powered UAVs, on the other hand, have been carried out extensively in 

the literature. The trajectory optimization for fuel cell powered UAVs can be properly 

addressed only if the dynamic constraints consider the dynamics of a fuel cell system. 

Path planning that considers the characteristics of the optimal trajectories may further 

improve the mission performance. In addition, if the influence of fuel cell system 

dynamics on mission performance can be established, fuel cell system design parameters 

can be optimized for different missions. 

This dissertation progressively addresses the above research problems related to 

the trajectory optimization for fuel cell powered UAVs, from propulsion system model 

development, to optimal trajectory analyses and optimal trajectory applications. A 

dynamic model of a fuel cell powered UAV propulsion system is derived by combining a 

fuel cell system dynamic model, an electric motor dynamic model, and a propeller 

performance model. The influence of the fuel cell system dynamics on the optimal 
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trajectories of a fuel cell powered UAV is investigated in two phases. In the first phase, 

the optimal trajectories of a fuel cell powered configuration and that of a conventional 

gas powered configuration are compared for point-to-point trajectory optimization 

problems with different performance index functions. In the second phase, the influence 

of the fuel cell system parameters on the optimal fuel consumption cost of the minimum 

fuel point-to-point optimal trajectories is investigated.  

This dissertation also presents two applications for the minimum fuel point-to-

point optimal trajectories of a fuel cell powered UAV: three-dimensional minimum fuel 

route planning and path generation, and fuel cell system size optimization with respect to 

a UAV mission. The proposed method for minimum fuel route planning and path 

generation problems for a fuel cell powered UAV consists of three steps: fuel 

consumption cost estimation, route plan optimization with a genetic algorithm, and flight 

path generation with optimal trajectories. The proposed method successfully solves case 

study problems with different waypoint densities. In addition, an iterative method is 

proposed to find the optimal fuel cell system size for a given UAV mission. Case study of 

the fuel cell system size optimization for different missions suggests that the optimal fuel 

cell system sizes for different missions are expected to be different. 
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CHAPTER 1 INTRODUCTION 

1.1 Overview 

Since the first flying bomb was developed in World Word I, the capabilities of UAVs 

have been expanded to many areas, including intelligence surveillance and 

reconnaissance, communication, force protection, and signal intelligence, etc.  Many of 

these roles have been successfully demonstrated in wars [1]. It is very common for a 

single type of UAV to perform multiple missions, for which different performance 

measures are desired.  The operational aspects of UAVs have been studied in the 

literature with a focus on the optimal trajectories of conventional gas powered UAVs. 

Some of the examples are minimum fuel loitering trajectories, obstacle avoidance 

trajectories, minimum time travel trajectories, and maximum target tracking trajectories.  

 In recent years, a new type of UAVs powered by fuel cell systems has 

demonstrated significant endurance improvements due to the low fuel consumption rates 

of fuel cell systems. Since fuel cell powered UAVs are relatively new, their operational 

aspects have not been well addressed in the literature. The immediate question is whether 

studies on the optimal trajectories of conventional gas powered UAVs are still applicable 

to fuel cell powered UAVs.  If the studies for conventional gas powered UAVs are not 

applicable to fuel cell powered UAVs, how can we investigate the optimal trajectories of 

fuel cell powered UAVs? What are the differences between the optimal trajectories of a 

fuel cell powered UAV and that of a convention gas powered UAV? How can we apply 

the optimal trajectories in mission planning and path generation problems? Can we bring 
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the influence of fuel cell system dynamics to the mission level so that the fuel cell system 

design parameters can be optimized for a given mission? 

To address these questions regarding the trajectory optimization for fuel cell 

powered UAVs, the following sections of this chapter present a literature review on 

related research, beginning with an introduction to fuel cells and fuel cell powered UAVs. 

A survey on research activities on fuel cell powered UAVs summarizes the current state 

of the art in research areas related to fuel cell powered UAVs. A review of fuel cell 

performance models and dynamic models then identifies the appropriate models to be 

used in this dissertation. A review on the trajectory optimization for conventional gas 

powered UAVs reviews different formulation methods and different trajectories that have 

been studied in the literature. Next, a review of numerical methods for optimal control 

problems determines the appropriate method for solving trajectory optimization problems.  

The research objectives of this dissertation focus on trajectory optimization for 

fuel cell powered UAVs, from propulsion system model development, to optimal 

trajectory analysis and optimal trajectory applications. A dynamic model of a fuel cell 

powered UAV propulsion system is developed to facilitate the trajectory optimization 

study for a fuel cell powered UAV considering the fuel cell system dynamics. 

Subsequently, the optimal trajectories of a fuel cell powered UAV are investigated by 

comparing the optimal trajectories of a fuel cell powered configuration and that of a 

conventional gas powered configuration. Finally, this dissertation presents two 

applications of the minimum fuel point-to-point optimal trajectories: three-dimensional 

minimum fuel route planning and path generation, and fuel cell system size optimization. 
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1.2 Literature Review 

1.2.1 Introduction to Fuel Cells 

A fuel cell operates like a battery by converting chemical energy to electricity, but it 

differs from a battery in a number of ways [2]. The most significant difference is where 

the chemical energy is stored. With batteries, the chemical energy is stored in the 

substances inside the batteries. When all the stored chemical energy is converted to 

electrical energy, the batteries must be thrown away or recharged. With a fuel cell, on the 

other hand, the chemical energy is stored outside of the fuel cell. The electrical energy 

can be continuously generated as long as the fuel cell is supplied with the fuel and 

oxidant. The inputs and outputs of a fuel cell are illustrated in Figure 1.1. 

 
Figure 1.1 A fuel cell's inputs and outputs [3]. 

A fuel cell and electric motor pair is similar to a conventional reciprocating 

engine. Both are converting chemical energy to mechanical energy. One of the main 

differences is that the generation of electricity in a fuel cell does not involve very high 

temperatures. The Carnot efficiency of a heat engine does not apply to a fuel cell [4]. 
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Hence the efficiency of a fuel cell with an electric motor is higher than that of a 

conventional reciprocating engine.  

Many types of fuel cells have been developed since the creation of the first fuel 

cell prototype by W.R. Grove in 1839 [4]. Due to the differences in the electrolytes and 

fuel types that have been used, fuel cells can be categorized as shown in Table 1.1 [5]. 

Proton exchange membrane fuel cells (PEMFC) are primarily used for automotive power 

generation. Direct methanol fuel cells (DMFC) are used mainly for portable power 

generation. Alkaline fuel cells (AFC) were developed for the space programs to produce 

electricity and drinking water. Phosphoric acid fuel cells (PAFC), molten carbonate fuel 

cells (MCFC) and solid oxide fuel cells (SOFC) are often seen in stationary power 

applications.  

Among the many types of fuel cells, the proton exchange membrane (PEM) fuel 

cells are most commonly used in the aerospace industry. The first version of a PEM fuel 

cell rated at 1kW was developed by General Electric for the Gemini spacecraft program 

in the early 1960s [6]. However, in subsequent space flights, AFCs were used due to the 

fact that the membrane of the PEM fuel cells at that time was not stable enough for the 

desired power density. The breakthrough for PEMFC happened in the 1980s, when the 

perfluorinated sulfonic acid polymer, Nafion, was used as the electrolyte [7]. The 

chemical stability of Nafion greatly exceeded that of the previously known membranes. 

In recent years, due to the high demand and investment in clean energy, the specific 

power of PEM fuel cells has achieved up to 600-800 mW/cm
2
 and the lifetime is now 

several tens of thousands of hours [8]. Zero-emission vehicle prototypes powered by 

PEM fuel cells have been developed by many leading car manufactures [9,10]. 
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Table 1.1 Characteristics of the important fuel cells [5]. 

 PEMFC DMFC AFC PAFC MCFC SOFC 
Primary 

Applications 

Automotive 

and 

stationary 

power 

Portable 

power 

Space 

vehicles and 

drinking 

water 

Stationary 

power 

Stationary 

power 

Vehicle 

auxiliary 

power 

Electrolyte Polymer 

(plastic) 

membrane 

Polymer 

(plastic) 

membrane 

Concentrated 

(30-50%) 

KOH in H2O 

Concentrated 

100% 

phosphoric 

acid 

Molten 

Carbonate 

retained in 

a ceramic 

matrix of 

LiAlO2 

Yttrium-

stabilized 

Zirkondioxide 

Operating 

temperature 

50-100
 o
C 0-60

o
C 50-200

 o
C 150-200

 o
C 600-700

 o
C 700-1000

 o
C 

Charge 

carrier 

H
+
 H

+
 OH

-
 H

+
 CO3

=
 O

=
 

Primary cell 

components 

Carbon-

based 

Carbon-

based 

Carbon-

based 

Graphite-

based 

Stainless 

steel 

Ceramic 

Catalyst Platinum Pt-Pt/Ru Platinum Platinum Nickel Perovskites 

Primary fuel H2 Methanol H2 H2 H2, CO, 

CH4 

H2, CO 

Start-up 

time 

Sec-min Sec-min  Hours Hours Hours 

Power 

density 

(kW/m
3
) 

3.8-6.5 ~0.6 ~1 0.8-1.9 1.5-2.6 0.1-1.5 

Combined 

cycle fuel 

efficiency 

50-60% 30-40% 50-60% 55% 55-65% 55-65% 

 

Figure 1.2 shows the critical components of a PEM fuel cell, which consists of 

gas flow channels, gas diffusion layers, catalyst layers and electrolyte layers [3]. The gas 

flow channels provide the guided flow of hydrogen and oxygen. On the anode side of the 

fuel cell, hydrogen molecules travel through the gas diffusion layer by pressure gradient 

and concentration differences. At the interface between the catalyst layer and the 

electrolyte layer, the hydrogen molecules are broken into protons and electrons. Electrons 

travel through the external circuit, which effectively generates electricity. The protons 

travel through the electrolyte layer and arrive at the cathode side catalyst layer. Similar to 

what happens on the anode side, oxygen molecules travel through the cathode side gas 
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diffusion layer and arrive at the catalyst layer. On the cathode side, a catalyst layer, 

protons, electrons, and oxygen molecules form water molecules. 

 
Figure 1.2 The schematics of a PEM fuel cell. 

1.2.2 Fuel Cell Powered UAV Prototypes 

With many successful applications of PEM fuel cells in the automotive industry, 

researchers in the aerospace industry started to equip UAVs with PEM fuel cells. The 

first fuel cell powered UAV prototype was designed by AeroVironment and Lynntech in 

2003 [11]. As shown in Figure 1.3, the Hornet weighted only 6 ounces, and its wing span 

was 15 inches. The incorporation of the fuel cell system as the power plant was designed 

to double the endurance, but during the flight test, the Hornet was able to fly for only 

about 5 minutes. The difference between the achieved endurance and the potential 
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endurance of the Hornet suggested the need for additional research on fuel cell powered 

UAVs at that time.  

 
Figure 1.3 AeroVironment Hornet fuel cell UAV[12]. 

Since 2003, many groups have been involved in the development of fuel cell 

powered UAVs. Several prototypes have demonstrated superior flight endurances over 

conventional gas or battery powered UAVs in the same weight class. In 2007, 

AeroVironment equipped the Puma UAV with PEM fuel cells and achieved nearly five 

hours of flight endurance. That was double the flight time for the same airframe with 

standard rechargeable batteries [13]. In 2009, the first commercial fuel cell powered 

UAV, named Boomerang, was showcased at the AUVSI exhibition in Washington by 

BlueBird Aero Systems [14]. The Boomerang weighed only 9 kg and flew for more than 

nine hours. The fuel cell pack, named Aeropak, was from the Horizon Fuel Cell 

Technologies. The same fuel cell pack was used by the Israel Aerospace Industries on the 

Birdeye 650, which extended the flight endurance to 6 hours, which was more than 

double its endurance with the lithium batteries [15]. In November 2009, the Ion Tiger 

from Naval Research Laboratory achieved a flight endurance of 26 hours [16]. The Ion 

Tiger, which weighed approximately 17 kg, was equipped with a 550W PEM fuel cell 
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propulsion system from Protonex. The 26-hour flight endurance significantly 

outperformed the flight endurances demonstrated by previous small UAVs. In August 

2011, the Faucon H2 UAV, from EnergyOr, achieved 10 hours of flight endurance, which 

once again demonstrated the endurance advantage of fuel cell powered UAVs [17]. The 

key specifications of the above fuel cell powered UAVs are summarized in Table 1.2. 

Table 1.2 Fuel cell powered UAV prototypes. 

Company UAV 
Endurance 

(hr) 

Gross 

Weight 

(lb) 

Fuel Cell 

Power 

(W) 

Wingspan 

(m) 
Year 

AeroVironment Puma 9 5.7 - 2.6 2008 

BlueBird Aero 

Systems 
Boomerang 9 9 200 2.75 2009 

Naval Research 

Laboratory  
Ion Tiger 26 16.8 550 5.2 2009 

Israel Aerospace 

Industries (IAI) 

Birdeye 650 

LE 
6 11 200 3 2010 

EnergyOr 

Technology 
Faucon H2 10 9 210 3 2011 

 

1.2.3 Research Activities on Fuel Cell Powered UAVs 

Although the long endurances of fuel cell powered UAVs have been realized only 

in recent five years, the conceptual design study of fuel cell powered UAVs can be traced 

back to the 1980s. In 1984, NASA Langley Research Center published a preliminary 

performance analysis and conceptual design of an unmanned airplane with multi-day 

endurance capability [18]. In the conceptual design, a mixed-mode electric power system 

was proposed with solar cells for daytime flight and fuel cells for nighttime flight. Based 

on the fuel cell technology at that time, the conceptual design study led to a class of 

airplanes with very low wing loadings and relatively long wing spans.  
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With many successful applications of the PEM fuel cells in the automotive 

industry, the conceptual designs of fuel cell powered UAVs in the 2000s were much 

closer to realization. In 2003, Jeffery conducted an analytical feasibility and performance 

assessment of a fuel cell powered small electric airplane based on the MCR-01 two-seater 

plane [19]. The results indicated that the flight with an off-the-shelf fuel cell may be 

possible with reduced speed, climb rate, range, and payload-carrying capabilities. Jeffery 

also highlighted the need for advanced fuel cell technology to achieve comparable 

reciprocating engine aircraft performance. In the same year, researchers at Boeing 

Research & Technology - Europe initiated a fuel cell demonstrator design with a fuel 

cell/battery hybrid configuration [20]. A battery was needed for startup and takeoff 

assistance. The Boeing fuel cell demonstrator was completed in 2007, and flight was 

demonstrated in 2008 [21]. 

With the advancement of the fuel cell technology, researchers started to 

investigate the integrated design optimization of fuel cell powered UAVs. Among them, 

researchers from Georgia Tech contributed a series of papers on the multi-disciplinary 

design optimization of fuel cell powered UAVs [22,23,24]. They proposed a design 

method that optimized the design variables with respect to aircraft performance metrics. 

The mapping from the design variables to the aircraft performance metrics was based on 

subsystem level contribution analyses, in which empirical and physics-based models 

were used to model the subsystems. The design uncertainties were further reduced when 

the contribution analyses with significant contribution to the performance metrics were 

validated through the experimental data. To validate the design methodology, the Georgia 
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Tech researchers constructed and flight tested the Georgia Tech fuel cell aircraft 

demonstrator in 2008 [25].  

To improve the performance of fuel cell powered UAVs, many researchers have 

proposed a hybrid power system, in which both fuel cells and batteries are used for 

propulsion [26]. Fuel cells are known for high energy density and low power density. 

Batteries, on the other hand, have the properties of low energy density and high power 

density. The idea of hybridization allows the energy demand and power demand to be 

separated. Ref. [27] investigated the effect of such hybridization on the flight 

performance in a simulation, and concluded that the use of a fuel cell - battery hybrid 

system did not improve the endurance of a fuel cell powered UAV if the fuel cell system 

alone was sufficient to meet the power requirement. Ref. [27] also claimed that the only 

benefit of the hybrid power system was to decouple the design requirements of a climb 

flight from those of a cruise flight. 

For conventional gas powered UAVs, researchers have realized that using a 

periodic flight path pattern can improve the endurance performance as compared to using 

a steady-state flight path pattern [28]. Ref. [29] confirmed this possibility for UAVs in a 

constant wind in 2009, in which the optimal periodic flight path was partitioned into a 

boost arc and a coast arc. Ref. [27] evaluated the same flight path pattern on a fuel cell 

powered UAV to maximize the flight endurance, which claimed that the optimal flight 

path for endurance was a steady level flight and that there wasn't any benefit for a fuel 

cell powered UAV to fly in the periodic boost-coast flight path pattern. It seemed that 

trajectory optimization for a fuel cell powered UAV was not required. However, in real 

applications, many different flight paths other than steady state level flight are required to 
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complete a flight mission. In addition, the dynamics of a fuel cell system on the optimal 

trajectories was not considered in [27]. The trajectory optimization for a fuel cell 

powered UAV can be appropriately addressed only if the dynamic constraints include the 

dynamics of a fuel cell system.  

1.2.4 Fuel Cell Performance Models 

The performance of a fuel cell is represented by its polarization curve, which is also 

known as a voltage-current curve. Figure 1.4 shows the potential losses of a typical fuel 

cell as a function of the current density, where the major potential losses are illustrated 

[30]. The role of a fuel cell performance model is to accurately predict these potential 

losses. Since the research scope of this dissertation concerns only PEM fuel cells, only 

performance models for PEM fuel cells are discussed in this section.  

 
Figure 1.4 Fuel cell potential losses as a function of current density [30]. 
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While reviewing the approaches to PEM fuel cell modeling, Ref. [31] categorized 

PEM fuel cell models into three categories: analytical models, semi-empirical models, 

and mechanistic models. Ref. [32] presented an analytical fuel cell model, using an 

equivalent electric circuit with simple mathematics. In this model, the voltage current 

relationship is valid only within a limited operation range. Semi-empirical models were 

also developed by combining the theoretically derived equations with the empirically 

determined relations [31].  For example, the equations in [5] used theoretical relations for 

the activation losses and the ohmic losses, and an empirical relation for the concentration 

losses.  

The mechanistic models of PEM fuel cells can be further classified into two 

categories based on the computation scope of the model [33].  The first type of model 

deals only with a specific part of fuel cells. This model is good for representing the 

details within that particular part of a fuel cell. The second type of model includes all the 

parts of a fuel cell, where all the potential losses at different current densities can be 

obtained. Depending on the level of complexity, this type of models ranges from one-

dimensional to three-dimensional and from single phase to two-phase [33]. Figure 1.5 

illustrates the three dimensions within a fuel cell gas flow channel. In a one-dimensional 

model, gas properties are uniform in the flow channels. Only gas diffusions across the x-

direction are modeled. In a two-dimensional model, gas properties are non-uniform along 

the flow channel direction (y-direction). In a three-dimensional model, gas properties in 

the cross direction (z-direction) of the gas flow channel are non-uniform.  The terms 

“single phase” and “two-phase” refer to the forms of water in the gas mixtures. In a 
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single phase model, water is either in liquid form or in vapor form. In a two-phase model, 

water is in both liquid and vapor forms. 

 
Figure 1.5 Schematic diagram of a three-dimensional fuel cell model [34]. 

Ref. [30]  developed one of the earlier one-dimensional fuel cell models, in which 

they derived coupled differential equations to model the species transport, gas-phase 

transport and electrochemical relations. The results showed that this one-dimensional 

model could predict the fuel cell performance in the low and intermediate current density 

region. Further improvements have been achieved by the development of two-

dimensional and three-dimensional fuel cell models. Although three-dimensional models 

are capable of capturing the full picture of the gas properties in the gas flow channels, 

commercial software packages are often required to solve the coupled equations [35].  

This dissertation uses the semi-empirical fuel cell performance model discussed in 

[36] to develop the dynamic model of a fuel cell powered UAV propulsion system. 

Compared to analytical models, the semi-empirical model can predict the fuel cell 
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performance in a wide operating range. Unlike mechanistic models, the semi-empirical 

model does not require iterative procedures.  

1.2.5 Fuel Cell Dynamic Models 

Although the performance model of a fuel cell is capable of determining the steady state 

voltage-current relation, it fails to capture the transient behavior under load variations. 

Depending on the different requirements, a dynamic model of a fuel cell may include 

various transient effects such as the double-layer charging effect, the fuel cell delay 

effect, and the temperature effect. 

The double-layer charging effect of a fuel cell is similar to a capacitor effect, 

which is when positive and negative charges gather on two opposite plates [37]. In a fuel 

cell (Figure 1.2), the membrane allows only protons to pass and electrons reach the 

cathode through an external circuit. Across the boundary of the cathode and the 

membrane, two charged layers are formed by protons and electrons, which behave like a 

capacitor. The double-layer charging effect is modeled with an equivalent capacitor 

coupled with equivalent resistors, as shown in Figure 1.6. Based on the equivalent 

electric circuit model, the transient voltage of a fuel cell exhibits a first order delay when 

the current density is changed. The double-layer charging effect was considered in the 

fuel cell dynamic models in [37,38,39]. 
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Figure 1.6 Equivalent electric circuit of the double-layer charging effect [37]. 

The fuel cell delay effect is caused by the delay between the change in the load 

current and the flow of the fuel and oxidant [37]. When there is a sudden change in the 

load current, additional protons are required to travel through the membrane layer. But 

hydrogen and oxygen molecules take time to travel from the gas flow channels to the 

electrolyte layers. The delay is due to the transport process of the protons, hydrogen, 

oxygen, water vapor, and liquid water through the fuel cell membranes. Fuel cell 

dynamic models that include this effect are found in [37,40]. 

Another important parameter that affects the dynamics of a fuel cell is 

temperature. The temperature dynamics are derived based on the energy balance of a fuel 

cell as net heat gain or loss results in temperature increase or decrease. As indicated in 

the Nernst Equation [3], the temperature affects the amount of Gibbs energy that is 

available for converting into electrical energy. Hence, the fuel cell voltage drops as the 

temperature increases. However, the effect of rising temperature on the fuel cell voltage 

is dominated by the reduction on the activation resistance, resulting in improved fuel cell 

performance [4,41]. Fuel cell dynamic models that include the temperature effect can be 

found in [37,42,43]. 
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Among the various dynamic effects of a fuel cell, the double-layer charging effect 

mainly affects the fuel cell transient responses in the short-time range. This effect is 

similar to a capacitor in an electric circuit, where the short-time energy buffer smoothes 

the voltage ripples due to load variations. When the load of a fuel cell is increased 

suddenly, the delay in the fuel and oxidant results in a sudden voltage dip. The voltage 

recovers from the dip once the fuel and oxidant flows reach the steady states.  Among the 

above transient effects, the temperature effect is the slowest. As the current loading 

increases, the temperature of a fuel cell increases, resulting in additional voltage being 

recovered due to the reduction in activation losses. These dynamic effects can be seen in 

Figure 1.7 from [44], which shows the measured transient voltage of a fuel cell when the 

current increases from one level to another level. 

 
Figure 1.7 Measured transient voltage during a current step [44].  
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When deriving the dynamic model for a fuel cell powered UAV propulsion 

system, this dissertation assumes that the temperature is constant. This assumption is 

based on the fact that many commercial fuel cell systems use closed-loop controllers to 

regulate the fuel cell temperature. The double-layer charging effect and the fuel cell delay 

effect are included in the fuel cell dynamic model. 

1.2.6 Trajectory Optimization for UAVs 

A trajectory optimization problem, also known as an optimal control problem, can be 

stated as follows [45]: "Determine the control signals that will cause a system to satisfy 

the physical constraints and, at the same time, minimize (or maximize) some performance 

criterion." In a trajectory optimization problem, variables are separated into two classes, 

state variables and control variables. The evolutions of state variables are determined by 

the control variables through a set of differential equations, which represent the dynamics 

of the physical system. The solution of a trajectory optimization problem is the control 

variables that minimize (or maximize) the performance criterion and that satisfy the 

dynamic equations and other constraints.  

Applications of optimal control to UAVs for trajectory optimization are 

essentially the formulation of the performance criterion and the derivation of the dynamic 

equations. Depending on different objectives, various performance criteria and UAV 

dynamic equations have been explored in the literature. In [46], the optimal trajectories of 

UAVs to avoid multiple radars were studied, and the UAV dynamic model was a simple 

2-D planar point mass model with the heading variation only. In [47], optimal control 

problems with a similar 2-D UAV dynamic mode were formulated to find the optimal 

waypoints and control sequences to avoid threats and obstacles. A 2-D point mass 
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kinematics model including the target motion dynamics was used in [48], in which the 

optimal trajectories for tracking various types of targets were obtained. A more 

sophisticated six-state point mass UAV model including three positions, velocity, flight 

path angle, and heading angle was derived in [49] to investigate the optimal trajectories 

for extracting energy from downdraft. Similar point mass UAV models were used to 

investigate various trajectory optimization problems in [50,51,52,53].  

Trajectory optimization problems for UAVs are classified as periodic or non-

periodic depending on the time domain of the problem. In a periodic trajectory 

optimization problem, the initial states and the final states are identical.  The performance 

criteria of such problems are usually time-averaged values. This type of problem 

formulation is mostly for loitering trajectories. Examples of periodic problems are found 

in [49,50]. In a non-periodic trajectory optimization problem, some or all of the initial 

states and the final states are different. This type of problem formulation is often applied 

to point-to-point travel trajectories. Examples of such a problem are found in [46,47,54]. 

Depending on different mission objectives, trajectory optimization problems can 

be formulated for obstacle avoidance, target tracking, minimum time, and minimum fuel, 

etc. In some applications, dynamic equations or performance indices do not include the 

propulsion system characteristics. Results obtained in these studies are applicable to any 

type of UAV. In other applications, the propulsion system characteristics are embedded 

in the dynamic equations or the performance indices, and the optimal trajectories are 

strongly influenced by the propulsion system characteristics. The optimal trajectories to 

avoid multiple radars obtained in [46] and the optimal trajectories to track moving or 

stationary targets obtained in [48] are not influenced by the propulsion system 
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characteristics. The minimum fuel periodic loitering trajectories for a jet engine aircraft 

obtained in [50], on the other hand,   are highly influenced by the specific fuel 

consumption curve. Although the optimal flight patterns for extracting energy from 

downdraft to enhance endurance for a jet engine powered aircraft and a propeller 

powered aircraft obtained in [49] are similar, the corresponding engine activities are 

different. 

As compared to a conventional gas powered UAV propulsion system, a fuel cell 

powered UAV propulsion system is different in the transient response delay and the 

specific fuel consumption curve. The delay in the transient response is expected to 

influence the transient trajectories of a fuel cell powered UAV. The specific fuel 

consumption curve is expected to influence the minimum fuel optimal trajectories, but 

exactly how the optimal trajectories are influenced by the characteristics of the fuel cell 

system has not been addressed in the literature.  

1.2.7 Numerical Methods for Optimal Control Problems 

Numerical methods are widely used to solve optimal control problems, which can be 

classified into two main categories: direct methods and indirect methods [55]. In an 

indirect method, the optimal control problem is converted to a two-point boundary value 

problem by applying the calculus of variations and Pontryagin’s minimum principle [56]. 

The resulting boundary value problem is then solved by numerical methods. In a direct 

method, the optimal control problem is transcribed directly to a nonlinear programming 

(NLP) problem. The resulting NLP problem is then solved numerically by NLP solvers. 

The direct methods have the advantage that the first order necessary conditions do not 
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need to be derived. They also have larger radii of convergence than the indirect methods, 

which do not require a good initial guess [57]. 

The direct methods can be further classified into different categories based on the 

quantities (controls or/and states) to be discretized. Two common categories of direct 

methods are control parameterization and state and control parameterization [58]. In a 

control parameterization method, the control variables are approximated and the dynamic 

control equations are solved by numerical integration. A shooting method is one example 

of control parameterization. In a state and control parameterization method, both the state 

and control variables are approximated. The dynamic equations are converted to 

algebraic constraints at the discretized nodes. Most pseudospectral methods are 

categorized as state and control parameterizations.  

The differences between pseudospectral methods and other state and control 

parameterization methods are the choices of the basis functions used for parameterization. 

Since the interpolation basis functions are orthogonal at the collocation points, the 

pseudospectral methods are also referred to as orthogonal collocation methods [59]. In a 

pseudospectral method, a finite basis of interpolating polynomials is used to approximate 

the state and control trajectories at a set of collocation points. The dynamic constraints 

are approximated by the time derivative of the approximating polynomials, resulting in a 

set of algebraic constraint equations. Similarly, the integration cost is also approximated 

by integrating the approximation polynomials. The main advantage of the pseudospectral 

methods is that the approximation of the derivatives and the integrations for smooth 

functions exhibit spectral accuracy [60]. 
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In the literature of the pseudospectral methods for optimal control, several well-

known pseudospectral methods have been developed: the Chebyshev pseudospectral 

method [61], the Legendre pseudospectral method [62], the Radau pseudospectral method 

[63] and the Gauss pseudospectral method [64]. Among these methods, the Legendre 

pseudospectral method is the most well-established method with several convergence 

theorems. The Radau and Gauss pseudospectral methods, which are extensions of the 

Legendre pseudospectral method, replace the Legendre-Gauss-Lobatto points with 

Legendre-Gauss-Radau points and Legendre-Gauss points, respectively. 

Some examples of software packages based on pseudospectral methods are 

PSOPT [65], GPOPS [66], which are open source software packages, DIDO [67], and 

SOCS [68] . PSOPT is an optimal control package written in C++ that uses the Legendre 

pseudospectral method. The compatible NLP solvers are IPOPT and SNOPT. The IPOPT 

solver is an open source C++ implementation of an interior point nonlinear programming 

method [69]. The SNOPT solver is a proprietary large scale NLP solver that uses a 

sequential quadratic programming (SQP) algorithm [70]. GPOPS, (General 

Pseudospectral Optimization Software) is a software program, written in MATLAB, for 

solving multi-phase optimal control problems using the Radau pseudospectral method. 

Similar to PSOPT, GPOPS also uses the SNOPT solver to solve transcribed NLP 

problems. 

An indirect method would be very difficult to implement when solving the 

trajectory optimization problems for fuel cell powered UAVs since there are many 

nonlinear relations in the dynamic equations. Among different direct methods, 

pseudospectral methods are well-known for their approximation accuracy at relatively 
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fewer grid points. In this dissertation, different pseudospectral methods are implemented 

with one generalized framework to transcribe optimal control problems into nonlinear 

programming problems. The SNOPT solver is used to solve the transcribed NLP 

problems. The trajectory optimization problems studied in this dissertation are solved by 

the generalized framework. 

1.3 Research Objectives 

The research objectives stated in this section are progressively staged to investigate the 

trajectory optimization for fuel cell powered UAVs, from model development, to optimal 

trajectory analysis, to optimal trajectory applications. 

Research Objective 1: To derive a dynamic model of a fuel cell powered UAV 

propulsion system that can be used for the study of trajectory optimization for a fuel cell 

powered UAV. 

A fuel cell system, as a propulsion power source, has its own dynamic behavior. 

For this research, the dynamic model of a fuel cell powered UAV propulsion system is 

developed by combining a dynamic model of a fuel cell system, a dynamic model of an 

electric motor, and a performance model of a fixed-pitch propeller. The developed model 

is used to determine the influence of the fuel cell system parameters on the effective time 

constants and the step command responses.  It is also used to study the optimal 

trajectories of fuel cell powered UAVs. 

Research Objective 2: To understand the differences between the point-to-point 

optimal trajectories of a fuel cell powered UAV and those of a conventional gas powered 

UAV. 
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As optimal trajectories are often used for mission planning and path planning, it is 

beneficial to understand the differences between the optimal trajectories of a fuel cell 

powered UAV and those of a conventional gas powered UAV. Since the specific fuel 

consumption curve of a fuel cell system is different from that of a reciprocating engine, 

the minimum fuel optimal trajectories of a fuel cell powered UAV are expected to be 

different from those of a conventional gas powered UAV. First, trajectory optimization 

problems with different performance index functions are formulated for a fuel cell 

powered configuration and a conventional gas powered configuration. After this, the 

optimal trajectories of these two configurations are compared to understand the 

characteristics of the optimal trajectories of a fuel cell powered UAV. 

Research Objective 3: To develop a method for three-dimensional minimum fuel 

route planning and path generation problems for a fuel cell powered UAV. 

One of the goals of trajectory optimization is to assist the mission planning and/or 

path planning. Current mission planning methods for UAVs either do not consider the 

characteristics of the UAV propulsion system, or they are formulated based on the 

conventional gas powered UAV propulsion system. In this dissertation, significant 

differences between the optimal trajectories of a fuel cell powered UAV and those of a 

conventional gas powered UAV are observed in the minimum fuel point-to-point optimal 

trajectories. A method for three-dimensional minimum fuel route planning and path 

generation problems for a fuel cell powered UAV, considering the characteristics of 

minimum fuel optimal trajectories, is expected to generate a route plan and flight path 

that is both dynamically feasible and fuel optimal. 
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Research Objective 4: To develop a design optimization method that can bring 

the influence of the fuel cell system dynamics on UAV performance to the mission level 

so that the fuel cell system design parameters can be optimized for a given mission. 

Design optimizations for a given UAV mission are often formulated with steady 

state performance measures. In this research, the influence of a fuel cell system on the 

optimal trajectories is observed in both steady state segments and transient segments. The 

fuel cell system dynamics are expected to influence the UAV performance at the mission 

level. If the relations between the fuel cell system design parameters and the mission 

performance can be established, the fuel cell system can be optimized with respect to a 

given mission.  

1.4 Organization of Dissertation 

This chapter (Chapter 1) reviews the literature related to fuel cells, fuel cell powered 

UAVs, and trajectory optimization for UAVs. The research objectives address the 

research gaps associated with trajectory optimization for fuel cell powered UAVs, from 

dynamic model development, to optimal trajectory analysis, to optimal trajectory 

applications. 

Chapter 2 derives the dynamic model for a fuel cell powered UAV propulsion 

system, which is the combination of a fuel cell system, an electric motor, an electric 

motor controller, and a fixed-pitch propeller. The derived model is used to model both the 

steady state performance and the transient performance. Parametric studies then 

determine the influence of fuel cell system parameters on the effective time constants and 

step command responses. 
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In Chapter 3, a fuel cell powered UAV configuration is obtained by modifying the 

Aerosonde UAV with a properly sized fuel cell system. The conventional gas powered 

reciprocating engine, the conventional gasoline fuel, and the conventional fuel tank of the 

original configuration is replaced with a fuel cell system, an electric motor, compressed 

hydrogen, and a compressed hydrogen tank. The gross weight of the fuel cell powered 

configuration is the same as that of the conventional gas powered configuration. The 

performance of the fuel cell powered configuration is evaluated and compared to that of 

the conventional gas powered configuration. 

Chapter 4 proposes a generalized framework for pseudospectral methods to 

transcribe an optimal control problem to a nonlinear programming (NLP) optimization 

problem for any given set of collocation points. With this framework, different 

pseudospectral methods are compared with one NLP solver for a number of example 

optimal control problems. In addition, the proposed framework is used to evaluate a new 

pseudospectral method with a new set of collocation points. 

In Chapter 5, the influence of the fuel cell system on the optimal trajectories of a 

fuel cell powered UAV is investigated in two phases. In the first phase, the point-to-point 

optimal trajectories of the fuel cell powered configuration and that of the conventional 

gas powered configuration are compared by using different performance index functions. 

In the second phase, the optimal fuel consumption costs of the minimum fuel point-to-

point optimal trajectories with different fuel cell system parameters are compared. 

Chapter 6 proposes a method to solve three-dimensional minimum fuel route 

planning and path generation problems as an application of the minimum fuel point-to-

point optimal trajectories of a fuel cell powered UAV. The proposed method consists of 
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the development of a minimum fuel cost model, the implementation of a genetic 

algorithm for route planning, and the generation of the optimal path with optimal 

trajectories. 

In Chapter 7, an iterative method is proposed to optimize the fuel cell system size 

parameters, in other words, the number of cells and the cell area, for a given mission. 

With the fuel consumption cost model, the proposed method considers both the steady 

state cost and the transient cost associated with the optimal flight trajectories. At the end 

of the design optimization process, both the optimal fuel cell system size and the optimal 

route plan are determined for a given mission. 

Chapter 8 presents conclusions drawn from this dissertation, a summary of 

original contributions, and recommendations for future work.  
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CHAPTER 2  

DYNAMIC MODEL OF A FUEL CELL POWERED UAV 

PROPULSION SYSTEM 

2.1 Introduction 

When a fuel cell system is used to provide the propulsion power to a UAV, it is 

connected to an electric motor and a propeller. The connection between the fuel cell, 

electric motor, and propeller is similar to that of a battery powered UAV, which is shown 

in Figure 2.1 [71]. To allow the variation of the propeller rotational speed, a control 

signal (5) is fed to the speed controller (3). Depending on the control signal, a different 

amount of voltage from the battery (4) is applied to the electric motor (2) through the 

speed controller. With voltage applied to the electric motor, the electrical energy is 

converted into mechanical energy to rotate the propeller (1). The fuel cell powered UAV 

propulsion system discussed in this dissertation is a UAV propulsion system that consists 

of a fuel cell system, an electric motor, an electric motor controller, and a fixed-pitch 

propeller.  

 
Figure 2.1 A battery powered UAV propulsion system [71]. 
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In this chapter, the dynamic model of a fuel cell powered UAV propulsion system 

is developed by combining the dynamic model of a fuel cell system, the dynamic model 

of an electric motor, and the performance model of a fixed-pitch propeller. The dynamic 

model of a fuel cell system models both the steady state performance and the transient 

performance of a fuel cell system. The steady state performance model is a semi-

empirical model, which uses equations from both theoretical relations and experimental 

observations. The dynamic model includes two dynamic effects: the double-layer 

charging effect and the fuel cell delay effect. As the influence of the gas pressure 

variables on the fuel cell voltage is insignificant, these variables are reduced to steady 

state variables. In addition, the transient characteristics of a fuel cell powered UAV 

propulsion system are studied in the form of effective time constant and step command 

responses with the derived dynamic model. 

2.2 Dynamic Model of a Fuel Cell System 

As fuel cells are the most critical subjects to be studied in this dissertation, their unique 

characteristics need to be clearly understood. This section explains all the fundamental 

principles and details of a fuel cell that are needed to study the trajectory optimization for 

a fuel cell powered UAV. Fundamentals to a fuel cell are the aspects of electrochemistry 

and energy conversion. The steady state fuel cell performance curve represents the 

relation between the current density and voltage when a fuel cell is operating in steady 

states. This relation includes the energy loss that occurs when a fuel cell is used in an 

electric circuit to supply power. The dynamic model simulates the transient behavior of a 

fuel cell, which are critical when analyzing their influence on the UAV's transient 
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responses. A fuel cell dynamic model can be simplified by reducing some insignificant 

fuel cell states to steady states.  

2.2.1 Fundamentals of PEM Fuel Cells 

Chapter 1 introduced the basic operation principle of a fuel cell. In this section, the 

energy conversion aspect of a PEM fuel cell is explained. As shown in Figure 2.2, the 

PEM fuel cell is fed with hydrogen at the membrane's anode side and oxygen at the 

membrane's cathode side. The catalyst at the anode causes the hydrogen atoms to release 

their electrons and become H
+
 ions (protons).  

            (2.1)  

The core of a PEM fuel cell, the proton exchange membrane (PEM), allows only 

protons to pass through. The electrons have to travel to the cathode through the external 

circuit. The travel of these electrons from the anode to the cathode realizes the generation 

of electricity. On the cathode side, H
+
 ions, electrons, and oxygen molecules form water 

with the following reaction:  

                    (2.2)  

 
Figure 2.2 Electrochemical reactions in a PEMFC [3]. 
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The overall reaction is shown as follows, which is the same as the reaction of 

hydrogen combustion. 

               (2.3)  

Since hydrogen combustion is an exothermic process, the above equation can be 

modified as follows, where the heat is the difference between the heat of formation of the 

product (   ) and that of the reactants (   and       ).  

                    (2.4)  

The heat of formation of liquid water is       kJ/mol at    
o
C and the heat of 

formation of H2 and O2 are zeros. Therefore, the enthalpy change of the above reaction is 

-286 kJ per mole of H2 at 25 
o
C. The negative sign means that energy is released in the 

reaction. The enthalpy change from the hydrogen combustion reaction is also called the 

hydrogen's heating value [4]. 

However, there is no combustion in a fuel cell. Only a portion of the hydrogen's 

heating value can be converted into electricity. This amount corresponds to Gibbs free 

energy with the following definition: 

           (2.5)  

where   is the Gibbs free energy,   is the enthalpy,   is the temperature in Kelvin, and   

is the entropy.   refers to the changes from the reactants to the products.  

The equivalence of the Gibbs free energy to the fuel cell potential (voltage) is 

linked through Faraday's constant ( ). 

         (2.6)  

         (2.7)  

                               (2.8)  

The theoretical potential (voltage) of a fuel cell is obtained as follows: 
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 (2.9)  

At 25 
o
C, the theoretical PEM fuel cell potential cell is 1.229 Volts.  

    
    

  
 (2.10)  

At a temperature other than 25 
o
C and a pressure other than 1 atm, the Nernst 

equation [4] is used to compute the theoretical open circuit voltage. 

     
      

  
 
  

  
   

    
       

     (2.11)  

where     ,     and    are partial pressures in the unit of atm. 

However, in practice, the open circuit cell potential is significantly lower than the 

theoretical cell potential due to the losses in the fuel cell even when no external current is 

generated. The cell potential drops even further when the fuel cell is connected to an 

external circuit to provide electricity. The next section explains the fuel cell 

characteristics when it is in operation. 

2.2.2 Performance Model of a Fuel Cell 

Figure 2.3 shows the polarization curve (voltage-current curve) of a typical PEM fuel cell. 

The x-axis of the curve is the current density with the unit of A/cm
2
. The y-axis is the cell 

potential (voltage) with the unit of Volt. From the curve, the operation voltage of a fuel 

cell can be determined as a function of the current density. The polarization curve is 

commonly used to evaluate the performance of a fuel cell. It provides a graphic 

indication of the losses associated with a fuel cell, namely open circuit losses, activation 

losses, ohmic losses, and mass transportation losses. 

As shown in Figure 2.3, even when the current density is zero, which means no 

electrical load is connected to the fuel cell, the cell potential is less than the theoretical 
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voltage from Equation (2.11). This difference may be due to the fuel crossover from 

anode to the cathode, the existence of an impurity, or current leakage [38].  

 
Figure 2.3 Polarization curve of a typical PEM fuel cell [4]. 

 The activation polarization is the voltage differences that are needed to drive the 

electrochemical reactions (Equation (2.1) and (2.2)) in the direction of electron 

generation from the chemical reaction equilibrium. This behavior was observed by Tafel 

in 1905 through experiments [2]. The amount of the activation losses is given by the 

following equation, which is also known as the Tafel Equation. 

            
 

  
          (2.12)  

where   is the current density and    is the exchange current density.  

The exchange current density    is the current density at which the fuel cell starts 

to have useful cell potential that is greater than zero. 

This behavior was later explained theoretically using the Butler-Volmer Equation 

[4].  The activation losses can be expressed as follows, 
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  (2.13)  

where    is the transfer coefficient at the cathode, and    is the transfer coefficient at the 

anode.  

For a PEM fuel cell, the activation losses at the cathode are much more significant 

than the activation losses at the anode.  The activation voltage losses can be further 

simplified as follows: 

       
  

  
   

 

  
  (2.14)  

Equation (2.14) is modified to include the open circuit voltage losses due to fuel 

crossover and internal resistance [2]. 

       
  

  
   

       
  

  (2.15)  

Ohmic losses, which are due to the resistance to the flow of ions in the electrolyte 

and the flow of the electrons through the conductive components of a fuel cell, can be 

expressed by the Ohm's law, which states that the voltage losses are proportional to the 

internal resistance of a fuel cell. 

            (2.16)  

where the    is the area specific resistance, with the unit        . 

Concentration losses are significant when the reactants are consumed rapidly to 

deliver high current density. When a fuel cell is operating at high current density, the 

reactions at the anode and cathode cause a pressure drop for the hydrogen and oxygen at 

the gas flow channel. The reduction in gas pressure leads to a reduction in voltage. 

However, an analytical solution to model this behavior is absent from the literature.  

Equation (2.17) is a commonly used empirical equation, which fits the experimental 

results very well [36].  
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                (2.17)  

With the above voltage losses, the cell potential of a fuel cell in operation can be 

obtained as follows: 

                        (2.18)  

      
  

  
   

       
  

                  (2.19)  

Figure 2.4 shows a comparison of the experimental data and the numerical model 

using Equation (2.19). The experimental data was obtained from a PEM fuel cell system 

with 50 cm
2
 active area with low platinum loading and a Nafion® 115 membrane [36]. 

The fuel cell model parameters,   ,      ,   ,     ,  , and   are obtained through 

nonlinear programming optimization software that minimizes the differences between the 

model and the experimental data.  

 
Figure 2.4 Model validation for the polarization curve of a fuel cell. 
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2.2.3 Dynamic Model of a Fuel Cell 

The polarization curve of a fuel cell addresses only the steady state relationship between 

the current density and the cell potential. Dynamic modeling of a fuel cell is needed to 

understand the transient behavior when its current density is changed from one level to 

another level. An electric circuit model of a fuel cell is commonly used to model the 

dynamic behavior of a fuel cell [3].  

As shown in Equation (2.11), the ideal voltage of a fuel cell depends on the partial 

pressure of the reactants, which is determined by the number of reactants inside the gas 

flow channel, which are influenced by the supply and consumption of the reactants. The 

reactant consumption is determined by the current at the electric circuit. The partial 

pressures of the reactants can be determined through the following ideal gas equations: 

   
  

    
  

         
 

  
 (2.20)  

   
  

    
  

         
 

  
 (2.21)  

   
        

  
 

 

  
         

(2.22)  

   
        

  
 

 

  
         

(2.23)  

where     is the partial pressure of hydrogen,    is the partial pressure of O2,    is the 

volume of the anode flow channel,    is the volume of the cathode flow channel,   is the 

universal gas constant,   is the temperature,   is the current,   is the Faraday constant, 

        is the net molar flow rate of hydrogen, and         is the net molar flow rate of 

oxygen. 

At a steady state condition, the net flow rate of hydrogen and oxygen is balanced 

with the current delivery in the electric circuit. 
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(2.24)  

Another important transient behavior of a fuel cell is the double-layer charging 

effect [37]. The membrane of a PEM fuel cell allows only the flow of protons, while the 

electrons have to travel through the external circuit. At the surface of the membrane, the 

electrons and protons form two charged layers of opposite polarity. The charged double-

layer behaves like a super capacitor. The equivalent circuit of a fuel cell with this double-

layer charging effect is shown in Figure 2.5, which is modeled with an equivalent 

capacitor. 

 
Figure 2.5 Equivalent electric circuit model of a fuel cell. 

The corresponding mathematical equations can be obtained as follows:  

        
   
  

             
(2.25)  

                  (2.26)  

where the      and      are the equivalent resistances for activation losses and 

concentration losses. 
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Although Equations (2.20) to (2.23) consider the effect of reactant dynamics on 

the partial pressure, there is an additional transient voltage drop due to the fuel cell delay 

effect [37]. The fuel cell delay, which is the delay between the load current and the 

change in the flow of fuel and oxidant, is caused by the transport process of proton, 

hydrogen, oxygen, water vapor and liquid water within the fuel cell membranes [72]. The 

simplified model from [37] is used to model the fuel cell delay effect and is shown as 

follows: 

 
   
  

  
 

  
        

  

  
 (2.27)  

The dynamic equations of a fuel cell system, which is formed by connecting many 

fuel cells in series, are summarized as follows: 

   
  

    
  

         
 

  
 (2.28)  

   
  

    
  

         
 

  
 (2.29)  

 
        

  
 

 

  
 
 

  
          (2.30)  

 
        

  
 
 

  
 
 

  
          (2.31)  

 
   
  

  
 

            
   

 

 
 (2.32)  

 
   
  

  
 

  
        

  

  
 (2.33)  

where 

       
  

  
   

    
       

        
  

  
          

     (2.34)  

      
  

  
   

       
  

                  (2.35)  

                        (2.36)  

   
 

  
 (2.37)  
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  (2.38)  

      
   

  
 (2.39)  

      
  

  
   

       
  

  
 

    
  (2.40)  

                
 

     
  (2.41)  

2.2.4 Model Reduction 

From Equations (2.29) to (2.33), it can be observed that the states,    ,    ,         and 

        are isolated from other dynamic states. These states are influenced only by the 

current. Figure 2.6 shows the dynamic responses of the partial pressures and the 

corresponding theoretical open circuit voltage (  ). It can be observed that the magnitude 

of the change in the partial pressure (   ) from one operating point to another operating 

point is very small. The calculation of the corresponding theoretical open circuit voltage 

is given by Equation (2.34). The term 
  

  
 , which is very small, leads to very little 

influence observed in the theoretical open circuit voltage. Due to the insignificant 

influence of these four dynamic states on the fuel cell theoretical open circuit voltage, 

these states are reduced to steady states.  
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Figure 2.6 Transient responses of the partial pressures in a fuel cell. 

With the gas states reduced to steady states, there are two dynamic effects to be 

included in a fuel cell dynamic model, the double-layer charging effect (Equation (2.32)) 

and the fuel cell delay effect (Equation (2.33)). Figure 2.7 shows the transient response of 

a fuel cell system, whose performance curve is shown in Figure 2.8, when the current is 

changed from one level to another level. It can be observed in Figure 2.7 that the fuel cell 

output voltage (    ) drops to the lowest level immediately after the current step and then 

slowly reaches another steady state value. When there is a sudden change in the current, a 

voltage drop is expected due to the fuel cell delay effect. This voltage drop slowly 

recovers back to zero. The associate operating points in the fuel cell performance curve 

are shown in Figure 2.8. The delay in the fuel cell output voltage directly translates to a 

delay in the power available from the fuel cell system, which is expected to lead to 

additional delay in the propeller rotational speed. 
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Figure 2.7 Fuel cell transient response for a step change in the current. 
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Figure 2.8 Fuel cell operating points for a step change in the current. 
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Brushless Direct Current (BLDC) motors, which are electronically commutated instead 

of using brushes for commutation, are widely used in the appliance, automotive, 

aerospace, and automation industries [73]. Their advantages are high dynamic response, 

high efficiency, long operation life, and noiseless operation, etc [73]. These advantages 

make BLDC motors excellent for UAV applications.  

Figure 2.9 shows the equivalent electric circuit of a BLDC motor. When a DC 

voltage is applied to a BLDC motor, there is current in the windings due to Ohm's law. 

The electric current in the windings, together with the magnetic field around the windings, 

generates mechanical forces (torque) due to the electromotive effect. When the motor 
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rotational current in a magnetic field. The rotational speed of the BLDC motor reaches a 

constant level when the torque of the motor is equal to the torque of the load. 

 
Figure 2.9 BLDC motor equivalent circuit [74].  

Figure 2.10 illustrates the working principle of a BLDC motor with a propeller. 

The control signal of the speed controller determines the voltage (   ) applied to the 

motor circuit. An increase in     leads to an increase in the current (Equation (2.42)). The 

increase in the current leads to an increase in the motor torque (Equation (2.43)). The 

rotational speed of the propeller increases due to the difference in the driving torque and 

the loading torque (Equation (2.44)). The increase in the motor rotational speed results an 

increase in the BEMF (  ) due to the electromotive effect (Equation (2.45)). The 

increase in the BEMF (  ) limits the increase of the current. The whole system reaches a 

steady state when the driving torque of the motor (  ) is the same as the aerodynamic 

torque of the propeller (  ).  
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Figure 2.10 Diagram of a BLDC motor connected with a propeller.  

The mathematical relations of the above process are summarized in Equations 

(2.42) to (2.45).  

               
   
  

    (2.42)  

    
       

  
 (2.43)  

 
  

  
 
     

 
 (2.44)  

    
 

  
 (2.45)  

where   ,   ,     ,    are motor specific parameters. 

2.4 Performance Model of a Fixed-Pitch Propeller 

A propeller produces thrust force by rotating its lifting surfaces about a shaft [75]. The 

rotation of the lifting surfaces, the propeller blades, leads to several relative motions of 

the air. As shown in Figure 2.11,   is the axial velocity due to free stream air velocity, 

    is the rotational velocity of the propeller, and     and     are the induced velocities 

caused by the propeller disturbances.  
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Figure 2.11 Velocity of a blade element [75]. 

The fundamental relations for a propeller are derived from the Kutta-Joukowsky 

theorem and the two-dimensional airfoil theory [75].  The equations from [75] are 

summarized as follows: 

             (2.46)  

where    is the lift force on a blade element,   is the air density,    is the resultant total 

velocity,   is the bound circulation, and    is the blade element radial dimension. 

                 (2.47)  

                  (2.48)  

where    is the sectional thrust,    is the sectional torque, and     and     are the 

induced velocities. 

From the two-dimensional airfoil theory, the sectional lift force is determined by 

the local angle of attack of the blade element. 

    
 

 
  
        

 

 
          

      (2.49)  

where    is the lift curve slope,   is the local angle of attack,    is the zero-lift angle of 

attack, and   is the blade chord. 

The local angle of attack is computed as      , where   is the geometric 

blade angle and   is the angle of the resultant velocity to the plane of the propeller.  
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  (2.50)  

The link between the bound circulation and airfoil lift can be obtained from 

Equation (2.49) and (2.51).  

   
 

 
            (2.51)  

The above equations define the fundamental relations of a propeller, but the 

relations among the bound circulation, the blade geometry, and the induced velocities are 

difficult to determine. The investigation of the propeller theories for these relations can 

be dated back to the early 1900s [76,77,78]. 

The non-dimensional propeller performance parameters, the thrust coefficient (  ), 

the power coefficient (  ), and the efficiency of a propeller, are defined as follows: 

    
      

     
 (2.52)  

    
     

     
 (2.53)  

   
        

     
 (2.54)  

 

Studying the dynamic behavior of a fuel cell powered propeller requires that the 

propeller's performance data be obtained either from a comprehensive propeller inflow 

model or from the experimental measurement data. The thrust coefficient and torque 

coefficient can be determined based on the rotational speed and the free stream air 

velocity. The resulting thrust force and required power are computed using Equations 

(2.52) and (2.53). 
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2.5 Dynamic Model of a Fuel Cell Powered UAV Propulsion System 

The dynamic model of a fuel cell powered UAV propulsion system is obtained by 

combining the dynamic model of a fuel cell system, the dynamic model of an electric 

motor, and the performance model of a fixed pitch propeller. The electric circuit 

illustration of a fuel cell powered UAV propulsion system is shown in Figure 2.12. The 

left portion of the diagram represents a fuel cell system, where both the steady state 

performance and the transient performance are modeled. The right portion of the diagram 

represents an electric motor and a propeller. The electric motor is modeled with an 

inductor and a resistor, and the thrust and power of the propeller is calculated from its 

aerodynamic performance data. The center portion represents an electric motor controller, 

which controls the amount of voltage from the fuel cell system to be applied to the 

electric motor according to the input signal. 

The dynamic equations of a fuel cell powered UAV propulsion system are derived 

with the following assumptions: 

 Both the performance model and dynamic model of the fuel cell system 

are based on one-dimensional treatment. 

 The gases inside the fuel cell systems are assumed to be uniformly 

distributed.  

 The temperature of the fuel cell system is assumed to be constant as it is 

regulated by the fuel cell system controller. 

 The partial pressures of the hydrogen and oxygen are assumed to be 

constant as their influence on the open circuit voltage is insignificant. 

 The electric motor is modeled with a lumped resistor and inductor. 



47 

 

 Both the back-EMF and the driving torque of the electric motor are linear 

functions of the motor constant (  ). 

 The delay between the propeller rotational speed and the thrust generated 

is assumed to be negligible. 

 The propeller performance model is simplified with one-dimensional 

treatment, and the thrust coefficient and power coefficient are functions of 

the inflow ratio only. 

The equations for a fuel cell powered UAV propulsion system model are shown 

in Equations (2.55) through (2.58), in which    is the voltage of the equivalent capacitor, 

   is the voltage drop associated with the fuel cell delay effect,    is the electric motor 

current and   is the propeller rotational speed. The transient behavior of a fuel cell 

system is modeled in Equations (2.55) and (2.56). The electric motor current as function 

of input voltage, motor resistance, and BEMF are modeled in Equation (2.57). The 

propeller rotational speed is governed by the torque difference between the electric motor 

and the propeller aerodynamic loading, as shown in Equation (2.58). 

Equations (2.59) to (2.69) are derived based on physical relations. Equation (2.59) 

determines the fuel cell voltage as a function of load current density. The current density 

( ) is defined as current per unit area as shown in Equation (2.61). Equation (2.59) also 

models the steady state performance of a fuel cell system. The parameters,      ,   ,     ,  

 , and  , in Equation (2.59) are obtained by validating the fuel cell performance curve 

against the manufacturer's performance data. The output voltage of the fuel cell system 

(    ) is computed using Ohm's Law, as shown in Equation (2.60). The three types of 

losses associated with a fuel cell system in operation, the activation losses (    ), the 
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ohmic losses (    ) and the concentration losses (    ), are calculated using Equations 

(2.63) to (2.65). Equation (2.66) is the amount of voltage from the fuel cell system that is 

applied to the electric motor as a linear function of the input signal ( ). Equation (2.67) is 

the back EMF voltage from the electric motor. Equation (2.68) is the torque available 

from the electric motor, which is proportional to the current of the electric motor. 

Equation (2.69) is the aerodynamic torque from the propeller, whose torque coefficient 

(  ) is obtained from the propeller performance model. 

 
Figure 2.12 Electric circuit illustration of the fuel cell powered UAV propulsion system. 

 
   
  

  
 

            
   

 

 
 (2.55)  

 
   
  

  
 

  
        

  

  
 (2.56)  

 
   
  

 
 

  
               (2.57)  

   

  
 
     

 
 (2.58)  

where, 

      
  

  
   

       
  

                (2.59)  



49 

 

                         (2.60)  

   
 

  
 (2.61)  

      
  
 
  (2.62)  

      
   

  
 (2.63)  

      
  

  
   

       
  

  
 

    
  (2.64)  

                
 

    
  (2.65)  

             (2.66)  

    
 

  
 (2.67)  

    
       

  
 (2.68)  

    
 

 
            (2.69)  

 

2.6 Transient Characteristics of a Fuel Cell Powered UAV Propulsion System 

In this section, the dynamic model for a fuel cell powered UAV propulsion system is 

used to study the influence of the model parameters on the transient response 

characteristics of a fuel cell powered UAV propulsion system in the form of effective 

time constants and step command responses. The effective time constants are obtained by 

computing the eigenvalues of the linearized model at a specific operating point. The step 

responses are obtained by computing the time history of the state variables when the 

input signal is stepped from one value to another value.    
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The fuel cell powered UAV propulsion system sized for the Aerosonde UAV is 

used as the nominal model. The nominal values of the model parameters,   ,  ,   ,   , 

and  , are shown in Table 2.1.  

Table 2.1 Nominal values of the model parameters. 

Model Parameters Nominal Values 

Electric motor inductance (  )        

Fuel cell capacitance ( )        

Fuel cell delay time constant (  )         

Fuel cell delay gain constant (  )            

Propeller Inertial ( )              

 

2.6.1 Trim and Linearization 

The nonlinear model of a fuel cell powered UAV propulsion system is implemented in 

MATLAB as shown in Figure 2.13, where the MATLAB function block is the nonlinear 

equations shown in Equations (2.55) to (2.69). The model is trimmed at different input 

signal (  ) values (from 0.4 to 0.9), and at an air speed of 20 m/s. The steady state 

propeller rotational speed at different input values is shown in Figure 2.14. 

 
Figure 2.13 MATLAB implementation of the nonlinear model of a fuel cell powered 

UAV propulsion system. 
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Figure 2.14 Propeller rotational speed at different input values at 20 m/s. 

As shown in Figure 2.14, the propeller rotational speed increases with the input 

value when the input value is less than 0.7. The propeller rotational speed decreases with 

the input value when the input value is more than 0.7. This can be explained by the fuel 

cell performance curves shown in Figure 2.15 and Figure 2.16. When the input value 

increases, more power is required from the fuel cell system, but there is a limit on the 

maximum power that can be delivered by the fuel cell system. When the operating 

current of the fuel cell is more than the value that corresponds to the maximum power 

(marked as * in Figure 2.16), the power available from the fuel cell system drops as the 

current increases. The drop in the power from the fuel cell system leads to a decrease in 

the propeller rotational speed. 
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Figure 2.15 Fuel cell operating points on the voltage performance curve.  

 
Figure 2.16 Fuel cell operating points on the power performance curve. 

0 5 10 15 20 25 30
20

25

30

35

40

45

Current (A)

V
o
lt
a
g
e
 (

V
)

Fuel cell operating points (Voltage) at 20 m/s

 

 

Trim points

Max. power point

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

Current (A)

P
o
w

e
r 

(W
)

Fuel cell operating points (Power) at 20 m/s

 

 

Trim points

Max. power point



53 

 

When a fuel cell powered UAV propulsion system is integrated with a UAV, the 

input signal is similar to that of the throttle signal in a conventional gas powered UAV, in 

which an increase in the throttle signal is expected to lead to an increase in the propeller 

rotational speed. Hence, the range of the input signal is set between 0.4 and 0.7.  

The linearized model of a fuel cell powered UAV propulsion system is obtained 

by linearizing the nonlinear model shown in Figure 2.13 at different operation points. The 

time constants (  ) of the linearized model are computed by using the eigenvalues (  ) as 

shown in Equation (2.70). The time constants of the nominal system are shown in Table 

2.2 at different input values. Among the four time constants, the third time constant,   , is 

the largest. 

     
 

  
 (2.70)  

Table 2.2 Time constants of the nominal system. 

Input 

( ) 

Time Constants (sec) 

            

0.4 0.0018 0.0956 2.3421 0.2888 

0.5 0.0014 0.0758 2.3455 0.2244 

0.6 0.0012 0.0451 2.3053 0.2675 

0.7 0.0010 0.0271 2.2336 0.3234 

 

2.6.2 Parametric Study on Time Constants 

In the parametric study on the time constants of the fuel cell powered UAV propulsion 

system, the value of each model parameter,   ,  ,   ,    and   , varies between 20% and 

500% of the nominal value listed in Table 2.1. The time constants at input value of 0.5 

are used in this study.  
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Table 2.3 Time constants for different motor inductance. 

  
      

 
Time Constants (sec) 

            

0.2 0.0003 0.0766 2.3455 0.2244 

0.5 0.0007 0.0763 2.3455 0.2244 

1.0 0.0014 0.0758 2.3455 0.2244 

2.0 0.0036 0.0745 2.3456 0.2241 

5.0 0.0075 0.0722 2.3458 0.2237 

 

Table 2.3 shows the time constants of the linearized model of the fuel cell 

powered UAV propulsion system for different values of the motor inductance (  ). The 

first time constant,     is significantly influenced by the motor inductance. This suggests 

that    is associated with the electric motor current. Since the magnitude of    is much 

smaller than that of other time constants, the influence of the motor inductance is 

insignificant. 

Table 2.4 Time constants for different fuel cell capacitance. 

 

    
 

Time Constants (sec) 

            

0.2 0.0015 0.0181 2.3485 0.1834 

0.5 0.0014 0.0433 2.3474 0.1952 

1.0 0.0014 0.0758 2.3455 0.2244 

2.0 0.0014 0.1155 2.3390 0.3705 

5.0 0.0014 0.1316 2.3583 0.7248 

 

Table 2.4 shows the time constants of the linearized model of the fuel cell 

powered UAV propulsion system for different values of the fuel cell capacitance ( ). 

Both the second and the fourth time constants are influenced by the fuel cell capacitance. 

The influence of the fuel cell capacitance is similar to that of an RC circuit, where higher 

capacitance leads to longer time constants.  
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Table 2.5 Time constants for different propeller inertial. 

 

    
 

Time Constants (sec) 

            

0.2 0.0015 0.0243 2.3823 0.1336 

0.5 0.0014 0.0530 2.3690 0.1577 

1.0 0.0014 0.0758 2.3455 0.2244 

2.0 0.0014 0.0900 2.2607 0.4927 

5.0 0.0014 0.0938 2.0191 1.0599 

 

Table 2.5 shows the time constants of the linearized model for different values of 

the propeller inertia. Similar to the fuel cell capacitance, both the second and fourth time 

constants are influenced by the propeller inertia. The influence of the propeller inertia to 

the propeller rotational speed is due to the aerodynamic drag of the propeller, where 

higher propeller inertia leads to larger time constants.  

Table 2.6 Time constants for different fuel cell delay time constants. 

  
      

 
Time Constants (sec) 

            

0.2 0.0014 0.0809 0.4038 0.2447 

0.5 0.0014 0.0769 1.1443 0.2268 

1.0 0.0014 0.0758 2.3455 0.2244 

2.0 0.0014 0.0752 5.9403 0.2232 

5.0 0.0014 0.0750 11.9291 0.2229 

 

Table 2.6 shows the time constants of the linearized model for different values of 

the fuel cell delay time constant (  ). It can be seen that the third time constant,   , is 

significantly influenced by the fuel cell delay time constant. This suggests that    is 

associated with fuel cell delay voltage (  ). The magnitude of   is slightly larger than 

that of    . Since   is the largest among the four time constants, the transient response of 
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the propeller rotational speed is expected to be highly influenced by the fuel cell delay 

time constant.  

Table 2.7 Time constants for different fuel cell delay gain constants. 

  
      

 
Time Constants (sec) 

            

0.2 0.0027 0.0491 2.0677 0.2114 

0.5 0.0020 0.0606 2.1707 0.2162 

1.0 0.0014 0.0758 2.3455 0.2244 

2.0 0.0009 0.0962 2.7047 0.2406 

5.0 0.0004 0.1216 3.8262 0.2802 

 

Table 2.7 shows the time constants of the linearized model for different values of 

the fuel cell delay gain constant (  ). As indicated in Equation (2.56),    determines the 

amount of voltage drop corresponding to the rate of change in the current during the 

transient. This parameter influences all four time constants.   

In summary, the correspondence between the time constants of the linearized 

model and the four dynamic states is identified. Among the four time constants, the delay 

due to electric motor current is insignificant, and the delay due to fuel cell delay effect is 

most significant.  

2.6.3 Parametric Study on Step Responses 

When the input signal is in the range of 0.4 to 0.7, an increase in the input signal leads to 

an increase in the propeller rotational speed. Due to the delay in the fuel cell system, a 

delay in the transient response of the propeller rotational speed is expected. The 

variations of the model parameters in the parametric study on step responses are the same 

as those presented in the previous section. In this study, the input signal is stepped from 

0.4 to 0.6, and the corresponding propeller rotational speed is increased from 412 rad/s to 
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521 rad/s. The step response of the propeller rotational speed with ideal voltage supply is 

also presented for reference.  

 
Figure 2.17 Step response variations due to electric motor inductance. 

Figure 2.17 shows the propeller rotational speed step responses for different 

values of the motor inductance, where    
  

      
. There are no observable differences in 

the step responses. This agrees with the study on time constants that the influence of 

motor inductance is expected to be insignificant. 
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Figure 2.18 Step response variations due to fuel cell capacitance. 

Figure 2.18 shows the propeller rotational speed step responses for different 

values of fuel cell capacitance, where    
 

    
. A capacitor is an energy storage device 

that stores or releases energy when there is a change in the current. When the input signal 

is increased from 0.4 to 0.6, energy stored in the fuel cell due to the double-layer 

charging effect is released. Higher fuel cell capacitance corresponds to more energy 

storage, which leads to a faster response in the propeller rotational speed. 
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Figure 2.19 Step response variations due to the fuel cell delay time constant. 

Figure 2.19 shows the propeller rotational speed step responses for different 

values of the fuel cell delay time constant, where    
  

      
. The fuel cell delay time 

constant determines the time delay in the voltage drop associated with the rate of change 

in the current. Additional delay due to the fuel cell delay time constant is observed in the 

propeller rotational speed. However, the impact of the fuel cell delay time constant 

appears only after the initial delay due to the propeller aerodynamic drag. 
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Figure 2.20 Step responses variations due to propeller inertia. 

Figure 2.20 shows the propeller rotational speed step responses for different 

values of the propeller inertia, where     
 

    
. Due to aerodynamic drag, higher 

propeller inertia leads to a longer time delay in the propeller rotational speed. If time 

constant    is smaller than time constant   , the step response of the propeller rotational 

speed is mainly caused by the fuel cell delay effect. If time constant    is larger than time 

constant    , the step response of the propeller rotational speed is mainly due to the 

aerodynamic drag. 
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Figure 2.21 Step response variations due to fuel cell delay gain constant. 

Figure 2.21 shows the propeller rotational speed step responses for different 

values of the fuel cell delay gain constant, where    
  

      
. The fuel cell delay gain 

constant is proportional to the magnitude of the voltage drop due to the rate of change in 

the current, which influences the magnitude of the propeller rotational speed delay due to 

the fuel cell delay effect. When the fuel cell delay gain constant is sufficiently large, the 

delay in the propeller rotational speed due to the aerodynamic drag becomes insignificant. 

In summary, the five model parameters influence the transient response of the 

propeller rotational speed in different ways. Changes in these parameters may reduce the 

delays in the propeller rotational speed, which may improve the transient performance of 

a fuel cell powered UAV. 
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2.7 Summary 

In this chapter, a dynamic model of a fuel cell powered UAV propulsion system was 

derived by combining the dynamic model of a fuel cell system, the dynamic model of an 

electric motor, and the performance model of a propeller. In the dynamic model of a fuel 

cell system, the steady state performance is modeled with a semi-empirical polarization 

curve, and the transient performance is modeled with a double-layer charging effect and 

the fuel cell delay effect. The partial pressures of the hydrogen and the air were reduced 

to steady states, as their variations were insignificant. The influence of the fuel cell 

system parameters on the transient characteristics of a fuel cell powered UAV propulsion 

system was investigated through the effective time constants and step command 

responses, and the influence of the fuel cell delay constants was the most significant. 
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CHAPTER 3  

A FUEL CELL POWERED UAV CONFIGURATION 

3.1 Introduction 

The Aerosonde UAV (Figure 3.1), developed by Aerosonde Pty Ltd, Australia, is one of 

the few commercial UAVs in its weight class that offers an endurance of more than 24 

hours [79]. It was also the first unmanned aircraft that crossed the Atlantic Ocean with a 

flight distance of 3,270 kilometers [79].  Its small scale, light weight, and high efficiency 

engine contribute to its excellent endurance performance. The AeroSim aeronautical 

simulation blockset is a set of MATLAB Simulink based tools that provide rapid 

development of nonlinear 6-dof aircraft dynamic models [80]. The Aerosonde UAV 

model is one of the examples from the AeroSim blockset, which provides open loop 

simulation of the Aerosonde UAV.  

In this chapter, the performance data of the Aerosonde UAV is extracted from the 

AeroSim blockset to define the benchmark conventional gas powered configuration. Next, 

the Aerosonde UAV model is modified with a fuel cell propulsion system, where the 

reciprocating engine with fuel tank is replaced with a fuel cell system, an electric motor 

and a compressed hydrogen tank. The gross weight of the fuel cell powered configuration 

remains the same as that of the conventional gas powered configuration. The associated 

fuel cell specification data needed for the adaptation is listed in this chapter. Towards the 

end of the chapter, the performance of the fuel cell powered configuration is compared 

against those of the conventional gas powered configuration. 
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Figure 3.1 Aerosonde UAV from AAI Corporation [79].  

3.2 Aerosonde UAV Specifications 

The key geometric data of the Aerosonde UAV, extracted from the AeroSim blockset 

[80], is listed in Table 3.1. The overall lift and draft coefficient as a function of angle of 

attack is listed in Figure 3.2. The propeller performance data, shown in Figure 3.3, is 

presented as the non-dimensional thrust coefficient and power coefficient with respect to 

the propeller inflow ratio. The definitions of the inflow ratio, thrust coefficient, torque 

coefficient, and power coefficient are given in Equations (3.1) to (3.4). Since the original 

data from the AeroSim blockset are in the form of discrete data points, polynomial 

functions have been used to fit the data points to obtain smooth functions for the 

propeller performance curves.   

Inflow ratio:  

      
   
  

 (3.1)  

Thrust coefficient: 

   
 

  
        (3.2)  

Torque coefficient: 
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        (3.3)  

Power coefficient: 

   
 

  
        (3.4)  

where    is the free stream air velocity (m/s),    is the propeller rotational speed (rad/s), 

  is the propeller radius (m), and   is the air density (kg/m^3). 

Table 3.1 Specifications of the Aerosonde UAV [80]. 

Empty Weight: 8.5 kg 

Gross Weight: 13.5  kg 

Wingspan: 2.9  m 

Length: 1.74  m 

Wing Area: 0.55  m
2
 

 
Figure 3.2 Cl, Cd of the Aerosonde UAV model. 
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Figure 3.3 Propeller performance data of the Aerosonde UAV. 
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the weight, size and power is required. Horizon Fuel Cell Technologies offers a wide 
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mass model is developed so that fuel cell systems at other sizes can be used in the 

analysis. In this study, the cell area is defined as the cross-sectional area ( ) of a fuel cell 

system instead of the active area (  ). The relation between the cross-sectional area ( ) 

and the active area (  ) is shown in Equation (3.5), where the coefficients   and    are 

derived from the manufacturer's data. 

           (3.5)  

Table 3.2 shows the physical specifications of the fuel cell systems available from 

Horizon Fuel Cell Technologies [82], ranging from 100W to 1000W. The weights of 

different fuel cell system with respect to the number of cells (N) and cell area (A) are 

used to determine the coefficients in Equation (3.6), and the coefficients are listed in 

Table 3.3. Figure 3.4 shows the fuel cell weight as a function of the number of cells and 

the cell area, together with the manufacture's reference data points.  

                                    (3.6)  

 

Table 3.2 Specifications of fuel cell systems from 100W to 1000W [82]. 

Model 
Power 

(W) 

Weight 

(g) 

Cell N     

(-) 

Cell A 

(cm
2
) 

Cell 

Volume 

(cm
3
) 

Length 

(mm) 

H-100 100 865 16 108.46 976.14 90.00 

H-200 200 1485 32 108.46 1648.59 152.00 

H-300 300 2070 48 108.46 2315.62 213.50 

H-500 500 2520 24 328.30 5252.80 160.00 

H-1000 1000 4000 48 328.30 7189.77 219.00 

Table 3.3 Parameters for fuel cell mass model. 

   (g)    (g/N)    (g/cm^2)      (g/(N-cm^2) ) 

-112.4 25.81 3.51 0.11 
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Figure 3.4 Fuel cell system weight model with respect to N and A. 

Besides the weight of a fuel cell system, the polarization curve (voltage-current 

curve) is required to choose an appropriate fuel cell system size. Since the power 

requirement for the Aerosonde UAV is in the range of 500W to 1000W, for the current 

research, voltage-current curves of the Horizon H-500 and H-1000 fuel cell systems are 

used to validate the mathematical model of the fuel cell system. Figure 3.5 shows 

performance curves of the H-500 and H-1000 fuel cell systems, where the H-500 fuel cell 

system is rated at 500W maximum power and the H-1000 is rated at 1000W maximum 

power. Figure 3.6 shows a comparison of the voltage-current curve computed using 

Equation (2.59) and that of the manufacturer's data. The validated fuel cell performance 

model is applied to scale the fuel cell system for selecting the appropriate fuel cell system 

size for the fuel cell powered UAV configuration. 
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Figure 3.5 Performance curves of H-500 and H-1000 fuel cell systems. 

 
Figure 3.6 Fuel cell performance model validation. 
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With the fuel cell system mass model (Equation (3.6)) and fuel cell system 

performance model (Figure 3.6), a few candidate fuel cell systems are selected with the 

number of cells ranging from 36 to 64 and the cell area from 200 cm
2
 to 300 cm

2
. The 

calculated weight and maximum power for the candidate fuel cells are listed in Table 3.4 

and Table 3.5. As shown in Figure 3.7, the power capability of a fuel cell system 

increases with an increase in it weight. The power to weight ratio of the reciprocating 

engine of the Aerosonde UAV is also shown in Figure 3.7. It can be observed that the 

power densities of the fuel cell systems are much lower than that of the reciprocating 

engine.  

The same gross weight for the conventional gas powered configuration is 

maintained for the fuel cell powered configuration. The weight breakdowns are shown in 

Table 3.6. The weight of the hydrogen tank is referenced from the Ion Tiger fuel cell 

powered UAV [83]. The weight allowance for the fuel cell system and the electric motor 

is 3.6 kg, where 0.6 kg is allocated to the electric motor [71]. The corresponding 

maximum power is less than 700W. The performance of the fuel cell configuration is 

expected to be poorer than that of the conventional gas powered configuration. The detail 

performance comparisons of the two configurations are presented in the next section. 

Table 3.4 Weight information of candidate fuel cell systems. 

Fuel cell system 

weight (kg) 
A=200 cm

2
 A=250 cm

2
 A=300 cm

2
 

N=36 2.3 2.7 3.0 

N=48 2.9 3.3 3.8 

N=64 3.6 4.2 4.7 

 

 



71 

 

Table 3.5 Maximum power rating of candidate fuel cell systems. 

Fuel cell system 

Max. Power (W) 
A=200 cm

2
 A=250 cm

2
 A=300 cm

2
 

N=36 469 586 703 

N=48 625 781 937 

N=64 833 1041 1250 

 

 
Figure 3.7 Fuel cell system maximum power with respect to weight. 

Table 3.6 Weight breakdowns of the conventional gas powered configuration and the fuel 

cell powered configuration. 

 Conventional Gas 

Powered Configuration 

Fuel Cell Powered 

Configuration 

Airframe 3.6 kg 3.6 kg 

Avionics/Payload 2.1 kg 2.1 kg 

Power Plant 2.2 kg 3.6 kg  

(motor and fuel cell) 

Fuel + Tank Weight 5.6 kg (5 kg fuel) 4.2 kg (600 gm H2) 

Gross Weight 13.5 kg 13.5 kg 
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3.4 Steady State Performance Evaluation 

After the Aerosonde UAV model is modified with a fuel cell system, its flight 

performance is evaluated and compared to that of the conventional gas powered 

configuration. During the fuel cell adaptation process, the airframe and the gross weight 

of both configurations are kept identical. It is observed that the two propulsion system of 

these two configurations differed in both maximum available and specific fuel 

consumption rate.  

The fuel consumption rate of the Aerosonde UAV is obtained from both the 

AeroSim blockset [80] and the engine development report [84]. The data from both 

sources are shown in Figure 3.8, where a curve fitting model in the form of Equation (3.7) 

is applied. It can be observed that the specific fuel consumption rate of the conventional 

reciprocating engine decreases as the power increases, which reaches to almost constant 

when the engine power is more than 400W. 

                 
 

 
 (3.7)  

The polarization curve of the selected fuel cell system is shown in Figure 3.9, and 

the fuel consumption rate is shown in Figure 3.10. Different from that of the conventional 

reciprocating engine, the specific fuel consumption rate of a fuel cell increases when the 

power increases. Because the energy density of hydrogen is much higher than that of 

gasoline, the fuel consumption rate of the fuel cell system is only a fraction of that of the 

conventional reciprocating engine. For example, at 400W, the fuel consumption rate of 

the conventional reciprocating engine is about 140 g/hr. The fuel consumption rate of the 

fuel cell system at 400W is only 20 g/hr. 
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The endurance estimations of both the conventional gas powered configuration 

and the fuel cell powered configuration are presented in Figure 3.11 and Figure 3.12. 

Although the fuel consumption rate of the fuel cell powered configuration is significantly 

lower than that of the conventional gas powered configuration, its endurance performance 

is inferior to that of the conventional gas powered configuration. This is due to the 

constraint that only 600 grams of fuel (compressed hydrogen) is carried for the fuel cell 

powered configuration, as compared to 5 kg of fuel for the conventional gas powered 

configuration.  

Since the airframes for both configurations are identical, both the maximum speed 

and the maximum rate of climb are determined only by the maximum available power. 

The reciprocating engine of the conventional gas powered configuration is rated at 

1000W, and the maximum power of the selected fuel cell system is only 672W. The 

differences in the maximum speeds for both configurations are shown in Figure 3.13. The 

comparisons of their maximum rate of climb at different speeds are shown in Figure 3.14. 

Both the maximum speed and maximum rate of climb of the fuel cell powered 

configuration are inferior to those of the conventional gas powered configuration. 

Due to the lower available power from the fuel cell system, the flight trajectories 

of the fuel cell powered configuration are more likely to be constrained by the maximum 

available power. Optimal trajectories that do not consider the propulsion system 

characteristics are likely to be unfeasible. For example, if the fuel cell powered 

configuration is to travel from point A to point B and the height difference between these 

two points is significant, the minimum fuel optimal trajectory obtained for the 

conventional gas powered configuration is most likely not feasible for the fuel cell 
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powered configuration. Trajectory optimization considering the fuel cell system 

dynamics is required to minimize the fuel consumption for a fuel cell powered UAV. 

 
Figure 3.8 Fuel consumption rate and specific fuel consumption rate of the original gas 

powered internal combustion engine. 
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Figure 3.9 Polarization curve of the selected fuel cell system. 

 
Figure 3.10 Fuel consumption rate and specific fuel consumption rate of the selected fuel 

cell system. 
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Figure 3.11 Endurance estimation for the conventional gas powered configuration. 

 

0 100 200 300 400 500 600 700 800 900 1000
15

20

25

30

35

A
ir
s
p
e
e
d
 (

m
/s

)

Power (W)

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

350

Power (W)

F
u
e
l 
F

lo
w

 R
a
te

 (
g
/h

r)

0 100 200 300 400 500 600 700 800 900 1000
15

20

25

30

35

40

45

Power (W)

E
n
d
u
ra

n
c
e
 (

h
r)



77 

 

 
Figure 3.12 Endurance estimation for the fuel cell powered configuration. 
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Figure 3.13 Performance comparison (maximum speed). 

 
Figure 3.14 Performance comparison (maximum rate of climb). 
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3.5 Summary 

In this chapter, a fuel cell powered UAV configuration was obtained by modifying the 

Aerosonde UAV with a fuel cell powered propulsion system, where a fuel cell system 

was sized based on the fuel cell system performance and weight data. The gross weight of 

the fuel cell powered configuration was kept the same as that of the conventional gas 

powered configuration. The performance of both configurations was compared, including 

the specific fuel consumption rates, endurances, maximum speeds, and maximum rates of 

climb. The performance of the fuel cell configuration was inferior to that of the 

conventional gas powered configuration due to the lower available power of the fuel cell 

system. Due to the lower available power, trajectory optimization is more likely required 

to find feasible flight trajectories.   
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CHAPTER 4  

A GENERALIZED FRAMEWORK FOR  

PSEUDOSPECTRAL METHODS 

4.1 Introduction 

An optimal control problem (or a trajectory optimization problem) is to find the control 

variables that satisfy the dynamic constraints and, at the same time, minimize the 

performance index function. For a fuel cell powered UAV, the dynamic constraint 

equations are obtained by combining the point mass UAV model and the dynamic model 

of a fuel cell powered UAV propulsion system. Due the nonlinearities in these dynamic 

equations, it is very difficult to find analytic solutions. Instead, numerical methods are 

used to solve the trajectory optimization problems.  

Among the different numerical methods for optimal control problems, 

pseudospectral methods are a class of state and control parameterization methods, where 

a finite basis of interpolating polynomials is used to approximate the states and controls. 

The main difference between a pseudospectral method and other state and control 

parameterization methods is that the interpolating polynomials are orthogonal at the 

discretization points. The main advantage of pseudospectral methods is that the 

approximation of the derivatives and the integrations for smooth functions exhibit 

spectral accuracy [60]. 

The first application of spectral methods to optimal control problems was 

introduced by [85] in 1988, where Chebyshev polynomials were used as the interpolating 

polynomials. In 1995, Ref. [62] proposed the Legendre pseudospectral method (LPM), 
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where Lagrange polynomials collocated at the Legendre-Gauss-Lobatto (LGL) points 

were used as the interpolating polynomials. In 2001, Ref. [86] extended the Legendre 

pseudospectral method to generate costate estimates. Around the same time, Ref. [61] 

introduced the Chebyshev pseudospectral method (CPM), where Lagrange polynomials 

collocated at the Chebyshev-Gauss-Lobatto (CGL) points were used. In 2005, Ref. [87]  

proposed another pseudospectral method for infinite-horizon nonlinear optimal control 

problems based on Lagrange polynomials collocated at the Legendre-Gauss-Radau (LGR) 

points [87]. The Gauss pseudospectral method (GPM) was proposed by [57] in 2005, and 

the Radau pseudospectral method (RPM) for finite-horizon problems was proposed by 

[88] in 2011. 

Among different pseudospectral methods, there are four pseudospectral methods 

that are based on Lagrange polynomials, namely, the LPM [62], the CPM [61], the GPM 

[57], and the RPM [88]. Due to the similarities in these pseudospectral methods, several 

comparisons and unified frameworks have been discussed in the literature.  In [89], the 

LPM, GPM and RPM were compared with continuous Mayer problems. In [90], a unified 

view of the LPM, GPM, and RPM was presented to show the similarities and differences 

in these methods. In [91], pseudospectral methods on arbitrary grids were proposed to 

unify the LPM and CPM. In [63], a unified framework was presented for the GPM and 

RPM, where the collocation points of these two methods do not include all the end points. 

A pseudospectral method converts an optimal control problem to an NLP problem 

which requires an NLP solver to find the solution. Software packages based on 

pseudospectral methods are often available in paired packages of one pseudospectral 

method and one NLP solver. For example, the PSOPT [65] is a pair package of the 
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Legendre pseudospectral method and the IPOPT solver, the GPOPS [66] is a paired 

package of the Radau pseudospectral method and the SNOPT solver, and the DIDO [67] 

has its own proprietary NLP solver. The solution of an optimal control problem, which is 

also the solution of a transcribed NLP problem, is highly influenced by the choice of the 

NLP solver. In addition, the performances of different pseudospectral methods are 

different for different problems [63]. A generalized framework for different 

pseudospectral methods with the same NLP solver is desired to evaluate different 

pseudospectral methods.  

This chapter proposes a generalized framework for the four pseudospectral 

methods based on the Lagrange polynomials. Different from other unified frameworks, 

the generalized framework includes all four pseudospectral methods, where only the 

collocation points are required to define a pseudospectral method. The equivalences 

between the pseudospectral methods implemented with the proposed framework and the 

original pseudospectral methods are verified through comparisons on the differentiation 

matrices and the quadrature weights for integration. Example problems are used to 

compare the performance of different pseudospectral method defined by different 

collocation points. The proposed framework is also used to evaluate a new 

pseudospectral method that is based on Lagrange polynomials collocated at new set of 

collocation points.  

4.2 Approximation with Lagrange Polynomials 

Lagrange polynomials [92] are commonly used for interpolation. For a given set of 

  distinct pairs of data points                            , the interpolation 
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polynomial in the Lagrange form,      , is a linear combination of Lagrange basis 

polynomials,      , as follows: 

                                      

 

   

 (4.1)  

         
      

          
     

 (4.2)  

It is the polynomial of the least degree that has exact function values at the given 

data points. 

                        (4.3)  

The basis function       has the following property:  

         
            
             

  (4.4)  

Figure 4.1 shows an example of Lagrange polynomials with four collocation 

points. 

 
Figure 4.1 Basis functions of Lagrange polynomial. 
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With a polynomial approximation of     , the integration of function           

can be approximated by summation of the function values evaluated at collocation points, 

           , weighted by the corresponding quadrature weights for integration [93]. 

             
 

  

                

 

   

 (4.5)  

            
 

  

 (4.6)  

The differentiation of      with respect to time       is approximated as follows: 

                 

 

   

 (4.7)  

                   

 

   

           

 

   

 (4.8)  

 

        

            
   

     

    
     

           
     

 
(4.9)  

 

                

            
   

     

    
     

           
     

 

(4.10)  

In summary, for a given set of data points,                            , the 

function      can be approximated by the summation of a set of Lagrange polynomials. 

The integration of the function           can be approximated by weighted summation 

of the function values. The differentiation of the function with respect to time       can be 

approximated by the product of the differentiation matrix and the associated function 

values. The quadrature weight (Equation (4.6)) and the differentiation matrix (Equation 

(4.10)) for an arbitrary grid are computed by using the MATLAB functions developed in 

[94] and [95]. 
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The data point locations           determine the exact Lagrange polynomial 

being used for the approximations. The data points           are also known as the 

collocation points. In the literature of pseudospectral methods for optimal control, there 

are four sets of well-known collocation points, the Legendre Gauss-Lobatto (LGL) points, 

the Chebyshev-Gauss-Lobatto (CGL) points, the Legendre-Gauss (LG) points and the 

Legendre-Gauss-Radau (LGR) points. The LGL, LG, and LGR points are defined based 

on the zeros of different forms of the Legendre polynomials      . 

The Legendre polynomials                   are the eigenfunctions of the 

singular Sturm-Liouville problem [93]. 

          
     

 
                (4.11)  

The Legendre polynomial       satisfies the following recursive relation: 

 
        

    

   
       

 

   
        

         
         

(4.12)  

The grid locations for the four pseudospectral methods are defined as follows: 

 Legendre-Gauss-Lobatto (LGL) points: 

                           are zeros of   
  (4.13)  

Chebyshev-Gauss-Lobatto (CGL) points: 

 
         

 

 
           (4.14)  

Legendre-Gauss (LG) points: 

              are zeros of      (4.15)  

Legendre-Gauss-Radau (LGR) points: 

              are zeros of         (4.16)  
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Figure 4.2 shows the collocation points for the four methods and the uniform grid 

points. Both the CGL and the LGL points, which include both end points at    and  , are 

defined in        The LG points, which do not include any of the end points, are defined 

in        . The LGR points, which include only the end point at    , are defined 

in       . As compared to the uniformly distributed points, all the other collocation 

points are denser toward the two ends at    and  . 

 
Figure 4.2 Collocation points for different pseudospectral methods. 
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  (4.17)  

Figure 4.3 shows the improvement of interpolation error with respect to the 

number of collocation points. Except the approximation with uniformly distributed points, 

the interpolation errors for all other methods are close to machine zero (     ) with more 

than 15 collocation nodes. The differentiation error shows a similar trend. When the 

number of the collocation points is more than 13, the results from the uniform grid fails 

to improve further. This phenomenon is referred to as the Runge phenomenon [96]. From 

this, it can be concluded that uniformly distributed points are not suitable for a 

pseudospectral method. The integration error does not achieve machine zero when the 

interpolation error achieves machine zero. This is due to the numerical error in the 

computation of integration weights.  

 
Figure 4.3 Interpolation error trend with respect to number of nodes. 
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Figure 4.4 Differentiation error trend with respect to number of nodes. 

 
Figure 4.5 Integration error trend with respect to number of nodes. 
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4.3 Transcription Equations for the Generalized Framework 

The proposed generalized framework transcribes an optimal control problem to an NLP 

problem. The corresponding transcription equations are the same as those for the 

Legendre pseudospectral method [62]. 

Consider an optimal control problem where the objective is to find states      

   and controls         on the interval           that minimize a cost in the Bolza 

form [56]. The cost is  

                                 
  

  

 (4.18)  

where           is the terminal cost and              is the integral cost. 

The states are subject to the differential dynamic constraints, 

   

  
                (4.19)  

where              . The states are also subject to the boundary conditions in 

the form,  

                        (4.20)  

where                 . 

The standard grid points are defined on the interval       . The first step is to 

change the time interval of the optimal control problem from           to         . 

This is done by the linear mapping 

   
     

 
  

     

 
 (4.21)  

With this mapping, the optimal control problem can be replaced as follows: 

Minimize the cost 

              
     

 
                  
 

  

 (4.22)  
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subject to dynamic constraints 

   

  
  

     

 
                (4.23)  

and boundary conditions 

                       (4.24)  

Discretizing the dynamic constraints requires the states and controls to be 

approximated by using a set of Lagrange interpolating polynomials at the N collocation 

points. 

                       

 

   

 (4.25)  

                       

 

   

 (4.26)  

where           , are the grid points and       are the Lagrange polynomials of 

degree N-1.  From the property of the Lagrange polynomials,           , it follows 

that 

             (4.27)  

             (4.28)  

The time derivatives of the states are approximated by the time derivatives of the 

interpolation polynomials. The derivatives at the grid points are evaluated as follows: 

   

  
     

  

  
               

 

   

           (4.29)  

The derivative matrix   is defined by the derivative of the Lagrange polynomials 

at the grid points. 

     
   
  

     
(4.30)  

The derivative matrix allows the dynamic equations to be collocated at the grid 

points. The resulting algebraic constraints are  
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         (4.31)  

The boundary constrains are enforced as follows: 

                  (4.32)  

The integration in the cost function is discretized using the quadrature rule as 

follows: 

            
       

 
               

 

   

 (4.33)  

where    are the integration weights. 

In summary, the continuous optimal control problem is discretized to an NLP 

problem, where the objective is to find the variables,      ,      ,         

and         that  

minimize the cost 

            
       

 
               

 

   

 (4.34)  

subject to 

  

       
                   

 

   

 (4.35)  

                  (4.36)  

 

4.4 Generalization of Different Pseudospectral Methods 

The four pseudospectral methods, the Legendre pseudospectral methods (LPM), the 

Chebyshev pseudospectral method (CPM), the Gauss pseudospectral method (GPM), and 

the Radau pseudospectral method (RPM), are based on Lagrange polynomials at different 
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collocation points. The transcription equations of each method are compared in [97]. In 

all four pseudospectral methods, the states and controls in the continuous domain from    

to    are mapped to the discrete domain from   to     , where       and       . 

The transcription equations for the differential constraints and the performance index 

function are summarized below. In addition, the transcription equations of the proposed 

generalized framework (GFW) are also presented with the same collocation index as in 

[97]. 

Discretization of states: 

 

 
 
 
 
 
     
 
 
 

      
 
 
 
 

  

 
 
 
 
 
     
     

 
     

        
 
 
 
 

 (4.37)  

Differential constraints approximation: 
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 (4.38)  
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 (4.39)  

GPM 

 
      
 

      
         

     

     
 

     

  
     

 

 
 
 
 
 
                 

                 

 
                  

 
 
 
 

 (4.40)  

              
     

 
        

                 

 
                 

  (4.41)  
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RPM 

 
 
 
 
      

      
 

       
 
 
 
       

 
 
 
 
 
     
     

 
     

        
 
 
 
 

 
     

 

 
 
 
 
 
 

                 

                 

 
                 

                        
 
 
 
 
 

 (4.42)  

GFW 

 
 
 
 
 
      

      
 

      

         
 
 
 
 

       

 
 
 
 
 
     
     

 
     

        
 
 
 
 

 
     

 

 
 
 
 
 
 

                 

                 

 
                 

                        
 
 
 
 
 

 (4.43)  

 

Performance index function approximation: 
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4.4.2 Generalization of the Legendre and Chebyshev Pseudospectral Methods 

The collocation points of both the Legendre pseudospectral method and the Chebyshev 

pseudospectral method are defined in       . These points include both end points at    

and  . The collocation points for the proposed framework are also defined in        and 

include both end points at    and  . When the proposed framework is supplied with the 

Legendre-Gauss-Lobatto points and the Chebyshev-Gauss-Lobatto points, the proposed 

framework is exactly the same as both the Legendre pseudospectral method and the 

Chebyshev pseudospectral method.  

4.4.3 Generalization of the Gauss Pseudospectral Method 

The collocation points of the Gauss pseudospectral method are defined in        and do 

not include the end points at    and  . The differential matrix is derived based on the 

points at -  and the interior points, as shown in Equation (4.40). This means the states at 

final time are not related to the states at other times. An additional equation (Equation 

(4.41)) is used to ensure that the states at final time satisfy the dynamic constraint. When 

this additional equation is used, it is equivalent to using both the end points and the 

interior points to compute the differential matrix. In this way, Equation (4.40) and 

Equation (4.41) are equivalent to Equation (4.43) if the Legendre-Gauss points, together 

with the two end points, are supplied to the generalized framework, as shown in Equation 

(4.49). 

       

  
    

    

  (4.49)  

Due to the distribution of the Legendre-Gauss points, the associated integration 

weights at -1 and 1 are exactly zeros, as shown in Equation (4.50). This means the 
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quadrature approximation of the generalized framework and that of the original Gauss 

pseudospectral method are the same. 

       
 

    

 
  (4.50)  

4.4.4 Generalization of the Radau Pseudospectral Method 

The collocation points of the Radau pseudospectral method are defined in        do not 

include the end point at  . The differential matrix is derived based on the LGR points and 

the point at  , as shown in Equation (4.42). The LGR points, together with the point at  , 

are in the same form as the collocation points used in the proposed framework, and 

include both the end points at    and  . Equation (4.42) is equivalent to Equation (4.43) 

if the LGR points, together with the end point at 1, are supplied to the generalized 

framework, as shown in Equation (4.51). 

       
    

    
  (4.51)  

Similar to the Legendre-Gauss points, the associated quadrature weight for the 

collocation point of the generalized framework at 1 is exactly zero (as shown in Equation 

(4.52)). This means the quadrature approximation for the generalized Radau 

pseudospectral method and that of the original Gauss pseudospectral method are the same. 

        
   

 
  (4.52)  

4.4.5 Discussion on the Generalized Framework 

With the proposed generalized framework, a pseudospectral method is obtained by 

supplying a set of collocation points defined in       , where the differentiation matrix 

and the quadrature weights are computed numerically. Since the collocation points of the 

Legendre pseudospectral method and the Chebyshev pseudospectral method are also 
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defined in       , these two methods are naturally included with the proposed framework. 

If the original collocation points of the Gauss and Radau pseudospectral methods, 

together with the end points, are supplied to the proposed framework, the resulting 

generalized Gauss pseudospectral method and Radau pseudospectral method are the same 

as the original Gauss pseudospectral method and Radau pseudospectral method, 

respectively. With the end points included, both the differentiation matrix and quadrature 

weights for integrations from the proposed framework are the same as those of the 

original Gauss and Radau pseudospectral methods. In this way, all four pseudospectral 

methods have been generalized with the proposed framework. 

4.5 Comparison of Different Collocation Points with Examples 

To solve the transcribed nonlinear programming problems from the proposed generalized 

framework, the SNOPT NLP solver from [70] is used. Since each pseudospectral method 

is defined by the corresponding collocation points, which can be supplied to the 

generalized framework for implementation, the performance of each pseudospectral 

method can be compared with one NLP solver. For a fair comparison, the initial guesses 

are kept the same for all the pseudospectral methods. The comparison is based on the 

ability to find the optimal solution and the NLP execution time. Besides the four sets of 

collocation points defined in Equations (4.13) to (4.16), a new set of collocation points, 

based on geometric series, is included in this comparison. 

4.5.1 Geometric Collocation Points 

One of the motivations for the generalized framework for pseudospectral methods is to 

evaluate new pseudospectral methods that use different collocation points. Similar 

motivation was presented in [91], which formulated pseudospectral methods on arbitrary 
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grids. As highlighted in [91], the collocation points of all the pseudospectral methods 

share the common property of dense distribution around the end points. In this section, a 

new set of collocation points, named Geometric Collocation (GC) points, is defined as 

shown in Figure 4.6 and Figure 4.7. The distance between two consecutive collocation 

points decreases at a rate of  . In this way, more points are distributed around the end 

points.  

 
Figure 4.6 Definition for the Geometric Collocation points (      ) 

 
Figure 4.7 Definition for the Geometric Collocation points (     ) 

4.5.2 Example 1: Brachistochrone Problem 

Consider the following optimal control problem, the Brachistochrone problem, originally 

formulated by Johann Bernoulli in 1696 [98].
 

Minimize the cost function  

      (4.53)  
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subject to dynamic constraints 

  

          

          

          

  (4.54)  

and boundary conditions 

  
                               

                    
   (4.55)  

  
Figure 4.8 Optimal state trajectories for the Brachistochrone problem. 
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Figure 4.9 Optimal control trajectories for the Brachistochrone problem. 

Table 4.1 NLP execution time for the Brachistochrone problem. 

Collocation Points NLP Execution Time (second) 

LGL 0.5304 

CGL 0.7304 

LG 0.6311 

LGR 0.9518 

GC (     ) 0.5928 

 

Figure 4.8 and Figure 4.9 show the optimal state and control trajectories from the 

generalized framework with different sets of collocation points for the Brachistochrone 

problem, and Table 4.1 shows the corresponding NLP execution time. All the 

pseudospectral methods defined by the five sets collocation points are able to converge to 

the optimal solution. The NLP execution time of the LGL points is the shortest and that 

of the LGR points is the longest. 
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4.5.3 Example 2: Trajectory Optimization for a Dubins Airplane 

The three-dimensional Dubins airplane model [99] is often used to study the optimal 

trajectories for UAVs. A minimum distance point-to-point trajectory optimization 

problem for a given initial configuration and final configuration is shown as follows: 

Minimize the cost function 

        
  

  

 (4.56)  

subject to dynamic constraints 

 

 
 
 

 
 
            
            

        

     
     

  (4.57)  

and boundary conditions 

 

 
 
 

 
 

            

                           

                                

               

               

  (4.58)  
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Figure 4.10 Optimal trajectories of the example trajectory optimization problem. 

Table 4.2 NLP Execution time of the example trajectory optimization problem. 

Collocation Points NLP Execution Time (second) 

LGL 8.51 

CGL 8.68 

LG 1.71 

LGR 1.28 

GC (      ) 8.60 

 

Figure 4.10 shows the optimal trajectories from different pseudospectral methods 

for the example minimum distance trajectory optimization problem, and the 

corresponding NLP execution time is shown in Table 4.2. All the methods are able to 

converge to the optimal solution. The NLP execution time of the pseudospectral methods 

defined by the LG and LGR points is significantly shorter than that of the methods 

defined by the LGL, CGL, and GC points. 
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Through examples, the proposed generalized framework provides an easy tool for 

comparing the performance of different pseudospectral methods. In general, a problem 

that can be solved by one pseudospectral method can also be solved by another 

pseudospectral method. However, the NLP execution time for the same problem is 

usually different depending on the pseudospectral method that is used. An efficient 

method for one problem may not be efficient for another problem.  

4.6 Summary 

This chapter proposed a generalized framework for pseudospectral methods to transcribe 

an optimal control problem as a nonlinear programming (NLP) optimization problem, 

where only the collocation points were required to define a pseudospectral method. The 

four pseudospectral methods, namely the Legendre pseudospectral method, the 

Chebyshev pseudospectral method, the Gauss pseudospectral method, and the Radau 

pseudospectral method were implemented by supplying the corresponding collocation 

points to the proposed framework, and the differentiation matrix and quadrature weights 

for integration were computed automatically for all four methods. With the proposed 

framework, different pseudospectral methods were compared with the same NLP solver 

through examples.  
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CHAPTER 5  

TRAJECTORY OPTIMIZATION FOR  

A FUEL CELL POWERED UAV 

5.1 Introduction 

This chapter attempts to demonstrate an understanding of the influence of a fuel cell 

system on the optimal trajectories of a fuel cell powered UAV by formulating the 

trajectory optimization problems for a fuel cell powered UAV as optimal control 

problems, where the dynamic equations of a fuel cell powered UAV propulsion system 

are included as part of the dynamic constraints. The generalized framework for 

pseudospectral methods presented in the previous chapter is used to transcribe the 

optimal control problems to nonlinear programming (NLP) problems, which are then 

solved by using the SNOPT solver [70]. In this chapter, the optimal trajectories of the 

fuel cell powered configuration and that of the conventional gas powered configuration 

are compared for point-to-point optimal trajectories with different performance index 

functions. Among different trajectory optimization problems, the most significant 

differences are those between the minimum fuel point-to-point optimal trajectories of the 

fuel cell powered configuration and that of the conventional gas powered configuration. 

Due to the specific fuel consumption curve of the fuel cell powered configuration, there 

is an optimal flight path angle when the height difference between the initial position and 

the final position is significant.  

The influence of the fuel cell system model parameters on the minimum fuel 

point-to-point optimal trajectories is studied here through their influence on the optimal 
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fuel consumption cost. The influence of the transient parameters (the fuel cell capacitance 

( ) and the fuel cell delay gain constant (  )) on the optimal fuel consumption cost is 

insignificant, and the influence of the fuel cell delay time constant (  ) is only slightly 

more significant. These transient parameters are caused by design parameters at the 

membrane level of the fuel cell system. However, the influence of the fuel cell system 

size parameters (the number of cells ( ) and the cell area ( )) on the optimal fuel 

consumption cost is significant.  This is because the efficiency of a fuel cell system 

increases as its size increases.  

5.2 Trajectory Optimization Problem Formulation 

One of the most essential steps in formulating a trajectory optimization problem is the 

derivation of the dynamic constraint equations. In this section, the dynamic constraint 

equations for a trajectory optimization problem are obtained by combining the dynamic 

model of a fuel cell powered UAV propulsion system and the dynamic equations of a 

point mass UAV model.  

The UAV dynamic behavior at the trajectory level can be approximated by a 

three-dimensional point mass model and the corresponding assumptions are summarized 

as follows: 

 The earth is assumed to be flat. 

 The UAV performs coordinated turns. 

 The bank angle and the angle of attack of the UAV can be changed 

instantaneously. 

 The lift and drag of the UAV changes instantaneously with respect to the 

angle of attack. 
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 The mass of the UAV is assumed to be constant during the time interval of 

the trajectory optimization problems, as the fuel weight is very small 

relative to the gross weight of a fuel cell powered UAV. 

Figure 5.1 shows the forces in a UAV point mass model are shown in where the 

UAV is flying at a flight path angle of   with an air speed of  . The kinematic equations 

for the three-dimensional point mass model are Equations (5.1) to (5.6). Equations (5.7) 

to (5.11) are the dynamic equations of a fuel cell powered UAV propulsion system. The 

link between the UAV states and the propulsion system states is the propeller rotational 

speed. The complete set of equations, Equations (5.1) to (5.11), is the dynamic constraint 

equations when formulating the trajectory optimization problems for a fuel cell powered 

UAV. This set includes both the UAV dynamics and the fuel cell powered propulsion 

system dynamics. 

 
Figure 5.1 Forces in a UAV point mass model. 

              (5.1)  

              (5.2)  

          (5.3)  

    
                  

 
       (5.4)  
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 (5.5)  

    
                  

   
 
 

 
     (5.6)  

      
 

            
   

     
 
 

 
 (5.7)  

      
 

  
               (5.8)  

     
 

  
               (5.9)  

    
     

 
 (5.10)  

where       are the UAV positions in inertial axis,   is the air speed,   is the heading 

angle,   is the flight path angle,   is the propeller rotational speed,    is the fuel cell 

capacitance voltage,    is the fuel cell voltage drop due to the fuel cell delay, and    is 

the electric motor current. The other parameters were explained in Chapter 4.  

In addition to the dynamic constraint equations, the performance index function 

and the terminal constraints are required to formulate a trajectory optimization problem. 

The performance index function is determined by the mission requirements. Examples of 

the performance index functions are total flight time, total fuel consumption, time 

average fuel consumption, and total flight distance. The UAV states at the initial time and 

final time are determined by the terminal constraints. The objective of a trajectory 

optimization problem is to minimize the performance index function, subject to the 

dynamic constraints, terminal constraints, and path constraints (if applicable). 

5.3 Optimal Trajectory Comparisons 

As compared to a conventional gas powered UAV, a fuel cell powered UAV has two 

unique aspects: the transient response delay and the specific fuel consumption curve. The 
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study of the transient characteristics of a fuel cell powered UAV propulsion system 

discussed in Chapter 2 has indicated that response delays at the UAV level can be 

expected due to the delay in the fuel cell system. In the performance comparison of a fuel 

cell powered configuration and a conventional gas powered configuration presented in 

Chapter 3, it can be observed the trend of the specific fuel consumption curve of the fuel 

cell powered configuration is significantly different from that of the conventional gas 

powered configuration. In this section, the influence of these two aspects is then studied 

by comparing the optimal trajectories of the fuel cell powered configuration and that of a 

conventional gas powered configuration of different trajectory optimization problems 

with different performance index functions. 

5.3.1 Model Comparison 

The dynamic constraints of the fuel cell powered configuration and that of the 

conventional gas powered configuration are compared in Table 5.1. The UAV dynamic 

equations for UAV states (           ) are identical for both configurations. The 

differences in the propulsion systems are reflected by the differences in computing the 

driving torque. In the fuel cell powered configuration, the driving torque is provided by 

an electric motor, whose dynamics are coupled with the fuel cell system’s dynamics, as 

discussed in Chapter 4. The driving torque of the conventional gas powered configuration, 

on the other hand, is provided by a reciprocating engine, and the power available from 

the reciprocating engine (   ) is modeled as the input parameter. 
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Table 5.1 Model comparison between the fuel cell powered configuration and the 

conventional gas powered configuration. 

Fuel Cell Powered Configuration Gas Powered Configuration 

                          

                          

                  

   
                  

 
          

                  

 
       

   
                  

       
    

                  

       
 

   
                  

   
 
 

 
        

                  

   

 
 

 
     

   
     

 
    

        

 
 

     
 

            
   

     
 

 
 

     
 

  
               

 

    
 

  
                

 

 

5.3.2 Minimum Fuel Point-to-point Optimal Trajectory Comparison 

One of the most commonly studied trajectories is the point-to-point minimum fuel 

trajectory, where a UAV flies from point A to point B with minimum fuel consumption. 

In this problem, the UAV states (           ) at the initial time and the final time are 

known. The states associated with the fuel cell propulsion system, 

                           and                            are determined from the 

rate terminal constraints, where the time derivatives of these variables are zeros at the 

initial time and the final time. In addition,                      and                      are 

zeros to ensure that the UAV starts from a steady-state flight condition and finishes at a 

steady-state flight condition. 
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To minimize the fuel consumption, the performance index function is defined as 

the total fuel consumption from the initial time to the final time. The differences in the 

specific fuel consumption curve of the fuel cell powered configuration and that of the 

conventional gas powered configuration are illustrated in Figure 3.8 and Figure 3.10. The 

performance index function and the terminal constraints are summarized as follows: 

Minimize: 

             
  

  

 (5.11)  

Terminal Conditions: 

 

 
 
 
 
 

 
 
 
 

        
                              

           

        

       
                                 

                        

                                  

  (5.12)  

 

 
 
 
 
 

 
 
 
 

       

                               

            

        

       

                         

                                  

  (5.13)  

 

Height variations are included between the initial positions and the final positions 

to demonstrate the influence of the specific consumption rate on the flight trajectory. 

Figure 5.2 shows the point-to-point minimum fuel optimal trajectories at different height 

variations for the fuel cell configuration. Only when the height variations are small are 

the optimal trajectories similar to a straight line flight path. In this dissertation, a straight 
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line flight path is defined as the flight path that directly connects the initial position and 

the final position. When the height variation is increased, more power is required to fly at 

a straight line flight path. As shown in Figure 3.10, the specific fuel consumption rate of 

the fuel cell system increases significantly in high power regions. This indicates that the 

minimum fuel optimal trajectory needs to avoid high power regions. Hence, the optimal 

trajectories are similar to S-shaped flight paths, where lower power is required as 

compared to the straight line flight paths, which require more power. 

Figure 5.3 shows the point-to-point minimum fuel optimal trajectories at different 

height variations for the conventional gas powered configuration. For most values of the 

height variations, the optimal trajectories are similar to straight line flight paths. Only 

when the power requirement of the straight line flight path is more than the capacity of 

the reciprocating engine do the optimal trajectories are S-shaped flight paths. This can be 

explained by the specific fuel consumption curve of the reciprocating engine (Figure 3.8). 

The specific fuel consumption rate is almost constant when the reciprocating engine is 

running at a power of more than 400W. However, no fuel consumption penalty is 

experienced for straight line flight paths.  
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Figure 5.2 Minimum fuel point-to-point optimal trajectories (fuel cell powered 

configuration). 

 
Figure 5.3 Minimum fuel point-to-point optimal trajectories (conventional gas powered 

configuration). 
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The optimal fight path angle with respect to the straight line flight path slope for 

the fuel cell powered configuration is shown in Figure 5.4. The optimal fight path angle 

for the conventional gas powered configuration increases linearly with the straight line 

slope until the maximum available power from the reciprocating engine is reached. For 

the fuel cell powered configuration, the optimal flight path angle increases linearly with 

the straight line slope until 3.7 degrees. When the straight line slope is more than 3.7 

degrees, the UAV needs to climb using S-shaped flight paths to minimize fuel 

consumption. The fuel consumption in a steady state ascend flight condition can be 

approximated by Equation (5.14). For a given    , the function 
      

     
 determines the 

minimum fuel optimal flight path angle. Figure 5.5 shows the variation of the function 

      

     
 with respect to the flight path angle.  When the straight line slope is less than 3.7 

degrees, the minimum fuel flight path angle is the straight line slope. When the straight 

line slope is more than 3.7 degrees, the minimum fuel flight path angle is at 3.7 degrees. 

This is the reason for the minimum fuel point-to-point optimal trajectories to show S-

shaped patterns when the height differences between the initial positions and the final 

positions are significant. 

             
  

     
  

      

     
    (5.14)  
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Figure 5.4 Optimal flight path angles at different height variations. 

 
Figure 5.5 Steady state fuel consumption characteristics of the fuel cell powered 

configuration at different flight path angles. 
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5.3.3 Minimum Time Point-to-point Optimal Trajectory Comparison 

Another commonly used performance index function for point-to-point trajectories is the 

final time. Figure 5.6 and Figure 5.7 show the minimum time point-to-point optimal 

trajectories for the fuel cell powered configuration and the conventional gas powered 

configuration, respectively. The optimal flight trajectories of both configurations are 

constrained by the maximum power available from their propulsion systems. Since the 

maximum available power of the fuel cell system is much lower than that of the 

reciprocating engine, the fuel cell powered configuration needs to use the S-shaped flight 

paths to reach the final position at much lower flight path angles.  

  
Figure 5.6 Minimum time point-to-point optimal trajectories (fuel cell powered 

configuration). 
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Figure 5.7 Minimum time point-to-point optimal trajectories (conventional gas powered 

configuration). 

5.3.4 Minimum Distance Point-to-point Optimal Trajectory Comparison 

Minimum distance point-to-point trajectory optimization problems are also commonly 

studied. If the flight speed of the UAV is fixed, the minimum distance optimal 

trajectories are the same as the minimum time optimal trajectories. Figure 5.8 and Figure 

5.9 show the minimum distance point-to-point optimal trajectories for the fuel cell 

powered configuration and the conventional gas powered configuration, respectively. 

Similar to the minimum time optimal trajectories, the minimum distance optimal flight 

trajectories of both configurations are constrained by the maximum power available from 

their propulsion systems. The optimal fight path angle is the straight line slope until 

maximum powered is reached, and the speed is determined by the spare power.  
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Figure 5.8 Minimum distance point-to-point optimal trajectories (fuel cell powered 

configuration). 

 
Figure 5.9 Minimum distance point-to-point optimal trajectories (conventional gas 

powered configuration). 
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5.3.5 Discussion on Point-to-point Optimal Trajectories 

As point-to-point optimal trajectories are often used for flight path planning for UAVs, 

the differences in the optimal trajectories of different performance index functions for 

each configuration are discussed in this section. Figure 5.10 shows the optimal flight path 

angles for the point-to-point flight trajectories of the conventional gas powered 

configuration with different performance index functions at different straight line slopes. 

As highlighted in the previous section, for all three performance index functions, the 

optimal flight path angle is the straight line slope until the maximum power is reached. 

The differences due to the different performance index functions are the flight speeds 

associated with the optimal trajectories. As shown in Figure 5.11, the optimal flight speed 

for the minimum time optimal trajectories and that of the minimum distance trajectories 

are similar, since both are determined by the spare power available from the propulsion 

system. The optimal flight speeds for the minimum fuel optimal trajectories, on the other 

hand, are determined by the specific fuel consumption curve.  
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Figure 5.10 Optimal flight path angles for the point-to-point flight trajectories with 

different performance index functions (conventional gas powered configuration). 

  
Figure 5.11 Optimal flight speeds for the point-to-point flight trajectories with different 

performance index functions (conventional gas powered configuration). 
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The optimal flight path angles of the point-to-point optimal trajectories of the fuel 

cell powered configuration with different performance index functions at different 

straight line slopes are shown in Figure 5.12, and the optimal flight speeds are shown in 

Figure 5.13. The optimal flight path angles of the minimum fuel optimal trajectories are 

lower than that of the minimum time and minimum distance optimal trajectories. This is 

due to the specific fuel consumption curve of a fuel cell system, which increases 

drastically with respect to the operating power when the fuel cell system operates in the 

region around the maximum power. For the same reason, the optimal fight speeds of 

minimum fuel optimal trajectories are always the minimum allowable speed, and the 

optimal flight speeds of both minimum time and minimum distance optimal trajectories 

are determined by the available spare power. 

 
Figure 5.12 Optimal flight path angles for the point-to-point flight trajectories with 

different performance index functions (fuel cell powered configuration). 
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Figure 5.13 Optimal flight speeds for the point-to-point flight trajectories with different 

performance index functions (fuel cell powered configuration). 
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5.4 Influence of Fuel Cell System Parameters on Optimal Trajectories 

The previous section demonstrated that the minimum fuel point-to-point optimal 

trajectories of a fuel cell powered UAV are significantly different from those of a 

conventional gas powered UAV. Both the steady state performance and the transient 

performance of a fuel cell system are reflected in the minimum fuel point-to-point 

optimal trajectories. In this section, the influence of fuel cell system model parameters on 

the minimum fuel point-to-point optimal trajectories is studied. These parameters are the 

fuel cell capacitance ( ), the fuel cell delay time constant (  ), the fuel cell delay gain 

constant (  ), the number of cells ( ) of the fuel cell system, and the cell area ( ) of the 

fuel cell system. Since the optimal trajectories are different for problems with different 

height variations, trajectory optimization problems with two height variations are used to 

study the influence of the model parameters on the total fuel consumption cost. The 

optimal trajectories of these two cases with nominal parameters are shown in Figure 5.14 

and Figure 5.15. 
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Figure 5.14 Optimal trajectories for nominal parameters at       . 

 
Figure 5.15 Optimal trajectories for nominal parameters at       . 

The influence of model parameters on the fuel consumption cost associated with 
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in the model parameters at different flight path angles is shown in Table 5.2 to Table 5.6. 

For all cases, the influence of all the parameters on the total fuel consumption cost is 

more significant at a higher flight path angle. Among the five model parameters, the 

influence of the fuel cell capacitance ( ) and the fuel cell delay gain constant (  ) is 

insignificant. The influence of the fuel cell delay constant (  ) is significant when its 

magnitude is more than 10 seconds, which is 500% of the nominal value.  The fuel cell 

delay effect, which is the delay between the change between the load current and the flow 

of fuel and oxidant in the fuel cell system, is caused by the transportation process for the 

molecular species across the fuel cell membrane. This parameter is influenced by the 

physical design of each cell of a fuel cell system. The influence of the size of the fuel cell 

system, the number of cells ( ) and the cell area ( ), is within 10% of the baseline values. 

As the size of the fuel cell system increases, either by increasing the number of cells ( ) 

or by increasing the cell area ( ), the efficiency of the fuel cell system improves. High 

efficiency leads to lower total fuel consumption cost, which is illustrated in the results 

shown in Table 5.5 and Table 5.6. 

Table 5.2 Effect of the fuel cell capacitance ( ) on the fuel cost of the minimum fuel 

optimal trajectories. 

 
              

 

    
 

Fuel 

Consumption 

(gram) 

Difference 

(%) 

Fuel 

Consumption 

(gram) 

Difference 

(%) 

0.2 0.6222 -0.05% 1.1477 -0.07% 

0.5 0.6225 0.01% 1.1481 -0.03% 

1.0 0.6225 0.00% 1.1485 0.00% 

2.0 0.6246 0.34% 1.1536 0.44% 

5.0 0.6257 0.52% 1.1608 1.07% 
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Table 5.3 Effect of the fuel cell delay time constant (  ) on the fuel cost of the minimum 

fuel optimal trajectories. 

 
              

  

      
   

Fuel 

Consumption 

(gram) 

Difference 

(%) 

Fuel 

Consumption 

(gram) 

Difference 

(%) 

0.2 0.6149 -1.22% 1.1331 -1.34% 

0.5 0.6177 -0.76% 1.1401 -0.73% 

1.0 0.6225 0.00% 1.1485 0.00% 

2.0 0.6340 1.86% 1.1637 1.32% 

5.0 0.6808 9.38% 1.2119 5.52% 

 

Table 5.4 Effect of the fuel cell delay gain constant (  ) on the fuel cost of the minimum 

fuel optimal trajectories 

 
              

  
      

 
Fuel 

Consumption 

(gram) 

Difference 

(%) 

Fuel 

Consumption 

(gram) 

Difference 

(%) 

0.2 0.6222 -0.05% 1.1495 0.09% 

0.5 0.6223 -0.03% 1.1505 0.18% 

1.0 0.6225 0.00% 1.1485 0.00% 

2.0 0.6228 0.06% 1.1492 0.06% 

5.0 0.6242 0.28% 1.1521 0.31% 

 

Table 5.5 Effect of the number of cells ( ) on the fuel cost of the minimum fuel optimal 

trajectories 

 

              

  

Fuel 

Consumption 

(gram) 

Difference 

(%) 

Fuel 

Consumption 

(gram) 

Difference 

(%) 

44 0.6383 2.55% 1.1898 3.60% 

46 0.6286 0.98% 1.1874 3.39% 

48 0.6225 0.00% 1.1485 0.00% 

50 0.6187 -0.61% 1.1336 -1.29% 

52 0.6164 -0.97% 1.1217 -2.33% 
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Table 5.6 Effect of the cell area ( ) on the fuel cost of the minimum fuel optimal 

trajectories 

 
              

  
(cm

2
) 

Fuel 

Consumption 

(gram) 

Difference 

(%) 

Fuel 

Consumption 

(gram) 

Difference 

(%) 

185 0.6646 6.77% 1.2401 7.98% 

200 0.6370 2.34% 1.1864 3.31% 

215 0.6225 0.00% 1.1485 0.00% 

230 0.6151 -1.18% 1.1210 -2.39% 

245 0.6116 -1.75% 1.1011 -4.13% 

 

Among the three parameters that have observable influence on the total fuel 

consumption cost, the fuel cell delay time constant (  ) is not easily improved without 

significant design changes. Both the number of cells ( ) and the cell area ( ) are 

variables at the fuel cell system level that determine the size of a fuel cell system. The 

efficiency of a fuel cell system improves as its size is increased. At the same time, an 

increase in the fuel cell system size also increases the gross weight of a fuel cell powered 

UAV, which consumes more fuel for the same flight trajectory. There may exist an 

optimal fuel cell size for a given flight trajectory. 

5.5 Summary 

In this chapter, trajectory optimization problems were formulated as optimal control 

problems and solved by the proposed generalized framework for pseudospectral methods 

with the SNOPT NLP solver. The influence of the fuel cell system on the optimal 

trajectories of a fuel cell powered UAV was investigated in two phases. In the first phase, 

the point-to-point optimal trajectories of the fuel cell powered configuration and that of 

the conventional gas powered configuration were compared with different performance 

index functions. Most significant were the differences in the minimum fuel point-to-point 
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optimal trajectories. In the second phase, the optimal fuel costs of the minimum fuel 

point-to-point optimal trajectories were compared with regard to different fuel cell 

system model parameters. Among different fuel cell system model parameters, the fuel 

cell delay time constant (  ), the number of cells ( ) of the fuel cell system, and the cell 

area ( ) of the fuel cell system had significant influence on the optimal fuel consumption 

cost. 
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CHAPTER 6  

3-D MINIMUM FUEL ROUTE PLANNING  

AND PATH GENERATION 

6.1 Introduction 

Since endurance is one of the most important performance criteria for UAVs, minimizing 

fuel consumption is often desired to be incorporated into the route planning process. As 

the minimum fuel optimal trajectories of conventional gas powered UAVs are similar to 

their minimum distance optimal trajectories, route planning problems for conventional 

gas powered UAVs are usually formulated to minimize the distance.  Several examples of 

route planning problems for UAVs are formulated as Traveling Salesman Problems for 

the Dubins vehicle (DTSP) [100,101,102,103], where the objective is to find the 

minimum distance tour that satisfies the Dubins vehicle's curvature constraints.  

In a route planning problem, a UAV is expected to visit each waypoint exactly 

once and return to the starting point, and the objective is to find the optimal sequence of 

waypoints. This problem is similar to the well-known Travelling Salesman Problem 

(TSP), which is one of the most widely studied combinatorial optimization problems 

[104]. In [105], various methods for solving TSPs are classified into two categories: exact 

methods and approximate methods. With an exact method, the solution found is always 

optimal. Examples of exact methods are the integer programming method [106] and the 

dynamic programming method [107]. The main disadvantage of an exact method is that 

the computation time increases significantly when the size of the problem increases. An 

approximate method, on the other hand, tries to find a solution close to the optimal 
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solution. Common examples of approximate methods are heuristic methods, which 

construct an initial solution and improve the solution through iterative procedures such as 

k-opt algorithms, tabu search algorithms, or genetic algorithms [108]. K-opt algorithms 

are local optimization techniques that find the optimal solution near the initial solution. 

Tabu search algorithms perform repeated runs of local optimization algorithm with 

randomized initial solutions. Genetic algorithms are global optimization techniques that 

iteratively improve the solutions through crossover and mutation operators. 

The purpose of a Euclidean Traveling Salesman Problem (ETSP) is to find the 

minimum-distance tour for a given set of points in two dimensions. Paths obtained from 

ETSPs are usually not feasible for UAVs due to the kinematic constraints [109]. The 

route planning problem for UAVs is often formulated as a TSP for the Dubins vehicle 

(DTSP). Different from conventional TSPs, DTSPs require the UAV's heading angles at 

the intermediate waypoints to determine the tour cost. With this additional variable at 

each waypoint, exact methods for TSPs are very difficult to construct as the costs 

between the waypoints cannot be calculated when the heading angles at the intermediate 

waypoints are not yet determined. Hence, almost all the methods for solving the DTSPs 

are classified as heuristic methods [103,109,110,111]. One of the main differences among 

different algorithms for DTSPs is the treatment of the UAV heading angles at the 

intermediated waypoints. In [109], an alternating algorithm was proposed to find the 

feasible tour for a DTSP based on the optimal solution of an ETSP. In [110], a random 

heading algorithm was proposed to determine the heading angles at the intermediate 

waypoints. In [103], the heading angle at each waypoint was encoded as a free variable, 

which was optimized using a genetic algorithm. The optimal route plans from different 
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heading algorithms were highly influenced by the density of the waypoints 

[103,109,110,111].   

The minimum fuel point-to-point optimal trajectories and the Dubins curves [112] 

are similar in some aspects, and they are different in other aspects. The Dubins curves in 

two dimensions and three dimensions are calculated using closed-form equations. The 

minimum fuel point-to-point optimal trajectories are obtained by solving trajectory 

optimization problems, for which much greater computing resources are required. 

However, a trajectory optimization method can handle more complex UAV dynamic 

constraints, and it can solve problems with different performance index functions. Since 

the Dubins curves are optimized only for a minimum distance, the optimal route plan for 

a DTSP is optimized only for a minimum distance. For a fuel cell powered UAV, a 

minimum distance route plan may not be fuel optimal when there are height variations 

between the waypoints. Additional research efforts are required to address the minimum 

fuel route planning and path generation problems in three dimensions.   

This chapter proposes a new method to solve three-dimensional minimum fuel 

route planning and path generation problems for a fuel cell powered UAV. The problem 

statement and proposed method are discussed in Section 6.2. In Section 6.3, a fuel 

consumption cost model for the minimum fuel point-to-point optimal trajectories is 

developed. In Section 6.4, a genetic algorithm with different heading algorithms is 

implemented to find the minimum fuel route plan, which is improved by using crossover 

and mutation operators iteratively. In Section 6.5, optimal fight paths from one waypoint 

to another waypoint are generated by connecting the waypoints with minimum fuel 

optimal trajectories, and a simplified model for path generation at negative flight path 
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angles is proposed due to the nonlinearities in the fuel cell performance model at low 

current levels. Finally, the proposed method with different heading algorithms is used to 

investigate a case study with a high waypoint density problem and a low waypoint 

density problem.  

6.2 Problem Statement and Proposed Method 

A three-dimensional minimum fuel route planning problem (as shown in Figure 6.1 ) is 

defined as follows: For a given set of waypoints {P1, P2, ..., PN}, a given initial heading 

angle (  ), and a given final heading angle (    ) at P1, what is the optimal sequence of 

waypoints that a fuel cell powered UAV should fly so that the associated fuel 

consumption is minimal? The sequence of waypoints must start from P1 and end at P1. 

The waypoints P2 to PN are to be visited exactly once. The position of each waypoint (Pi) 

is specified by its three-dimensional coordinates (xi, yi, zi). 

 
Figure 6.1 Route planning problem definition. 
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A path generation problem is defined as follows: For a given sequence of 

waypoints {P1, P2, ..., PN, P1} , a given initial heading angle (  ), and a given final 

heading angle (    ) at P1, what is the optimal flight path for a fuel cell powered UAV 

that is both dynamically feasible and fuel optimal? 

Figure 6.2 shows the proposed method to solve three-dimensional minimum fuel 

route planning and path generation problems for a fuel cell powered UAV. The minimum 

fuel route planning problem is treated as a variant of the Traveling Salesmen Problem 

(TSP), where the cost between the waypoints is the corresponding fuel consumption. The 

first step in the proposed method is to develop a fuel consumption cost model for the 

point-to-point minimum fuel optimal trajectories so that the fuel consumption cost for 

each segment {Pi to Pi+1} can be computed directly without solving a trajectory 

optimization problem. The cost model is developed by consolidating the fuel 

consumption characteristics of the minimum fuel point-to-point optimal trajectories. The 

second step is to find the optimal sequence of waypoints {P1, P2, ..., PN, P1} using a 

genetic algorithm, where the segmental cost is computed from the developed cost model. 

The final step is to generate the minimum fuel flight path by connecting the waypoints 

with minimum fuel point-to-point optimal trajectories. In this step, the point mass model 

of a fuel cell powered UAV, including the fuel cell dynamics, is formulated as the 

dynamic constraints. 
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Figure 6.2 Proposed method for a three-dimensional minimum fuel route planning and 

path generation problem.  

6.3 Cost Model for Minimum Fuel Point-to-point Optimal Trajectories 

Although the trajectory optimization method discussed in the previous section is capable 

of finding the minimum fuel optimal trajectory for a given initial position and final 

position, a significant amount of computing time is required to converge to the optimal 

solution. It is impractical to solve the segmental optimal cost using the trajectory 

optimization method during the route planning process. One of the key elements in the 

proposed method for solving three dimensional minimum fuel route planning problems is 

the development of a fuel consumption cost model for minimum fuel point-to-point 

optimal trajectories. This model includes both the steady-state fuel consumption cost and 

the transient fuel consumption cost. The steady-state fuel consumption cost is calculated 

from the steady state performance of the UAV and the transient fuel consumption cost is 

calculated by using an empirical equation derived from the characteristics of the transient 

cost associated with the optimal trajectories. 
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6.3.1 Proposed Fuel Consumption Cost Model 

A minimum fuel point-to-point trajectory optimization problem is defined by the initial 

position (  ), initial heading angle (  ), final position (  ), and final heading angle (  ). 

A typical minimum fuel point-to-point optimal trajectory, as shown in Figure 6.3, 

consists of three phases: the transition from the initial level flight state to an 

ascend/descend flight state, the steady ascend/descend flight state, and the transition from 

the ascend/descend flight state to the final level flight state. The first and final phases are 

transient flight conditions, and the second phase is a steady state flight condition. The 

fuel consumption cost associated with the optimal trajectories is estimated separately for 

the transient flight states and the steady state flight state. Equations (6.1)-(6.3) show the 

proposed fuel consumption cost model, which consists of the steady state fuel 

consumption cost (       ) and the transient fuel consumption cost (       ). The steady 

state fuel consumption cost is determined using Equation (6.2), in which the fuel 

consumption rate as a function of flight path angle ( ) is obtained by trimming the UAV 

model at different flight path angles. The transient fuel consumption cost is estimated 

using Equation (6.3) with a second order polynomial function of the heading angle 

changes,        and       .  
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Figure 6.3 A typical optimal trajectory for the minimum fuel trajectory optimization 

problem. 

                                     (6.1)  

                   
  

     
 (6.2)  

                    
             

 
       

(6.3)  

 

6.3.2 Transient Fuel Consumption Cost at Different Azimuth Angles 

The transient fuel consumption cost, shown in Equation (6.3), is a quadratic function of 

the heading angle change required from the initial position to the final position. Only two 

variables, c0 and c1, are required to determine the transient fuel consumption cost. The 

variable c1 is associated with the heading angle changes, (    ) and (    ). The 

variable c0 represents the discrepancy between the steady state cost (       ) and the 

actual fuel consumption cost (     ).  
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Figure 6.4 to Figure 6.7 show the comparisons between the transient fuel 

consumption cost from Equation (6.3) and that from the optimal trajectories at different 

azimuth angles ( ) and different final heading angles (  ). In Figure 6.4, the transient 

fuel consumption cost is calculated with the coefficients, c0 and c1, derived from the 

optimal trajectories at one azimuth angle (    ). In Figure 6.5, the transient fuel 

consumption cost is calculated with coefficients derived from the optimal trajectories at 

two azimuth angles (      and      ). The transient fuel consumption costs 

calculated with coefficients from optimal trajectories at three azimuth angles and four 

azimuth angles are shown in Figure 6.6 and Figure 6.7. As illustrated in these 

comparisons, Equation (6.3) accurately predicts the transient fuel consumption cost of the 

optimal trajectories. Since there are only two variables in Equation (6.3), only a small 

number of optimal trajectories at each flight path angle are required to determine these 

two coefficients. 
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Figure 6.4 Transient fuel consumption cost calculated with coefficients derived from 

optimal trajectories at one azimuth angle. 

 
Figure 6.5 Transient fuel consumption cost calculated with coefficients derived from 

optimal trajectories at two azimuth angles. 
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Figure 6.6 Transient fuel consumption cost calculated with coefficients derived from 

optimal trajectories at three azimuth angles. 

 
Figure 6.7 Transient fuel consumption cost calculated with coefficients derived from 

optimal trajectories at four azimuth angles. 
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6.3.3 Transient Fuel Consumption Cost at Different Flight Path Angles 

As shown in Equation (6.3), the coefficients c0 and c1 are functions of flight path angles. 

The transient fuel consumption costs as a function of heading angle changes (    ) 

and (    ) at different flight path angles are shown in Figure 6.8 to Figure 6.13. At 

low flight path angles, the transient fuel consumption cost associated with heading angle 

change is more significant. At high flight path angles, the transient fuel consumption cost 

is mostly caused by the discrepancy between the steady state cost (       ) and the actual 

fuel consumption cost (     ). When the flight path angle is small, the optimal 

trajectories are similar to straight line flight paths. The transient fuel consumption cost 

associated with the heading angle change dominates the total transient cost. When the 

flight path angle is high, the optimal trajectories are S-shaped flight paths. Cost 

associated with heading angle change is not significant. Instead, the transient cost is 

dominated by the flight path angle changes. This trend is shown Figure 6.14 and Figure 

6.15. In Figure 6.14, the coefficient    approaches zero when the flight path angle is more 

than six degree. In Figure 6.15, the coefficient    is almost zero when the flight path 

angle is less than two degrees.  
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Figure 6.8 Transient fuel consumption cost at        . 

 
Figure 6.9 Transient fuel consumption cost at       . 
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Figure 6.10 Transient fuel consumption cost at       . 

 
Figure 6.11 Transient fuel consumption cost at       . 
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Figure 6.12 Transient fuel consumption cost at       . 

 
Figure 6.13 Transient fuel consumption cost at       . 
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Figure 6.14 Coefficient c1 at different flight path angles. 

 
Figure 6.15 Coefficient c0 at different flight path angles. 
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6.4 3-D Minimum Fuel Route Planning 

As defined in Section 6.2, the solution of a three-dimensional minimum fuel route 

planning problem is the optimal sequence of waypoints that a fuel cell powered UAV 

should fly for a given set of waypoints. For any given initial position (  ), initial heading 

angle (  ), final position (  ), and final heading angle (  ), the cost for the minimum 

fuel optimal trajectory can be directly computed using Equations (6.1) to (6.3). As 

compared to exact methods, genetic algorithms have the advantage of finding near 

optimal solutions with relatively fewer iterations, and as compared to other approximate 

methods, genetic algorithms find the near optimal solutions globally [113]. In this section, 

a genetic algorithm is implemented to solve three-dimensional route planning problems. 

Different from conventional combinatorial problems, the three-dimensional minimum 

fuel route planning problem requires the heading angles at the intermediate waypoints. 

Different heading algorithms from the literature are implemented in this section. Also 

discussed in this section is the influence of the transient fuel consumption cost on the 

optimal route plan.  

6.4.1 Genetic Algorithm for 3-D Minimum Fuel Route Planning 

Genetic algorithms are evolutionary algorithms that attempt to mimic some of the 

processes that take place in natural evolution [114]. The first genetic algorithm was 

introduced by John Holland in 1975, in which he used a string of binary numbers to 

represent a candidate solution [115]. Since then, many variations of genetic algorithms 

with different representations and operators have been studied in the literature. Most of 

these have been comprehensively reviewed in [116]. In this chapter, a string of integer 

numbers is used to represent a candidate route plan. The ordered crossover operator [117] 
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and the mutation swap operator [118] are used to generate new route plans during the 

evolution processes. 

The genetic algorithm for minimum fuel route planning problems is shown in 

Figure 6.16. As defined in Section 6.2, a route plan is a sequence of waypoints, where 

each waypoint is visited exactly once. A string with integer numbers representing the 

waypoints is used to encode the candidate route plan. The population is a collection of 

candidate solutions. The initial population is randomly generated. Different from a 

conventional TSP, in the genetic algorithm here, the cost between waypoints for a 

minimum fuel route planning problem can be calculated only when the UAV heading 

angle at the each waypoint is determined. Hence, a heading algorithm is inserted before 

the computation of the fitness value of each individual solution. In this paper, the fitness 

value is the total fuel cost, which is calculated using Equations (6.1) to (6.3). During the 

evolution process of the genetic algorithm, new populations are generated by applying 

the crossover and mutation operators to the previous population. Similar to the initial 

population, the new population also needs to go through a heading algorithm before the 

fitness value can be calculated. At the end of each iteration, only the individuals with best 

fitness values are stored in the new population. When the number of iterations reaches the 

maximum iteration number (    ) the iteration process stops, and the genetic algorithm 

outputs the best solution as the optimal route plan.  
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Figure 6.16 Genetic algorithm for a minimum fuel route planning problem. 

There are two important steps to generating new populations: the crossover 

operation and the mutation operation. In the crossover operation, two new strings (N1 

and N2) are generated from two parent strings (P1 and P2). A route plan is coded with 

integer numbers, each of which, except for the first and last number, must appear exactly 

once. The ordered crossover [117] operator ensures the new individuals are always valid. 

An ordered crossover operator works in the following steps. In the first step, two random 

numbers are generated to determine the locations of the crossover points. In the second 

step, the numbers between the crossover points are kept unchanged. The remaining 

numbers to fill the first new individual (N1) are from the second parent (P2), as are the 

remaining numbers to fill the second new individual (N2). In the third step, the remaining 

numbers are filled in each new individual from the second crossover point onwards by 

omitting the numbers that have already appeared. For example, number 4 and 5 have 

already appeared in N1, only the numbers (7 6 3 2) from (7 6 3 4 5 2) are filled in N1. 
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The second new individual (N2) is generated in the same manner. After the crossover 

operation, two new individuals (N1 and N2) are generated from the parents (P1 and P2) 

and are always valid. 

 

Step 1: 
P1: (1) 2 3 4 5 6 7 (1) 

P2: (1) 3 4 5 2 7 6 (1) 

             ^     ^ 

Step2: 
N1: (1) * * | 4 5 | * * (1) Remaining numbers: 7 6 3 4 5 2 

N2: (1) * * | 5 2 | * * (1) Remaining numbers: 6 7 2 3 4 5 

Step 3: 
N1: (1) 3 2 | 4 5 | 7 6 (1) 

N2: (1) 3 4 | 5 2 | 6 7 (1) 

 

In the mutation operation, one new individual (N1) is generated from one parent 

(P1) and the mutation swap operator [118] is used in this chapter.  Similar to a crossover 

operation, a random number is also generated to determine the mutation location. The 

mutation swap generates a new individual by swapping the numbers before and after the 

mutation location as follows: 

P1:  (1) 2 3 4 | 5 6 7 (1) 

N1:  (1) 5 6 7 2 3 4 (1) 

 

There are two parameters governing the probabilities of the crossover and 

mutation processes: crossover rate (      ) and mutation rate (    ). Both the crossover 

rate and the mutation rate are in the range of 0 to 1. The crossover rate used in this 

chapter is 0.85, and the mutation rate used in this chapter is 0.10. These two values are 

determined by comparing the results obtained for some example route planning problems 

at different crossover rates and mutation rates. The values of these two parameters are 

similar to the values used in [103]. 



147 

 

6.4.2 Different Heading Algorithms 

Similar to a DTSP, computing the fuel consumption cost of a candidate solution for a 

minimum fuel route planning problem requires the heading angle at each waypoint. In 

this section, three heading algorithms are presented, the random heading algorithm [110], 

the alternative heading algorithm [109] and the leg heading algorithm. In the random 

heading algorithm [110], the heading angle at each waypoint is randomly generated (as 

shown in Figure 6.17(a)). In the alternative heading algorithm [109], the heading angle at 

each waypoint is arranged in such a way that the flight path between two alternative 

segments is perfectly straight (as shown in Figure 6.17(b)).  The leg heading algorithm 

uses the leg direction as the heading angle at each waypoint (as shown in Figure 6.17(c)).  
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Figure 6.17 Different heading algorithms:  

(a) Random heading algorithm, (b) Alternative heading algorithm, (c) Leg heading 

algorithm. 
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In the genetic algorithm implemented in this chapter, the heading angles at the 

intermediate waypoints are determined after the sequence of waypoints is generated. The 

influence of the random heading algorithm and the alternative heading algorithm on the 

optimal route plan is different from that in the original implementation in [109] and [110]. 

In [109] and [110], the heading angles at the intermediate waypoints are computed after 

the sequence of waypoints is obtained from the ETSP optimization process, in which the 

heading angles do not influence the sequence of the waypoints. In this chapter, the 

candidate solutions are sorted after the heading angles are determined. As the fitness 

values of the same sequence of waypoints with different heading angles are different, the 

decision of whether a sequence of waypoints is the best solution is influenced by the 

heading angles at the intermediate waypoints. A similar heading algorithm 

implementation is presented in [103], in which the heading angles at the intermediate 

waypoints are formulated as free variables, which are optimized through iterations. 

With the proposed fuel consumption cost model (as shown in Equations (6.1) to 

(6.3)), the heading angles at the intermediate waypoints influence only the transient fuel 

consumption cost (Equation (6.3)). In the random heading algorithm, both    and    are 

randomly varied to minimize the function         for each segment. In the alternative 

heading algorithm, the alternative segments are straight segments. This means      

  and        at the alternative segments. In the leg heading algorithm, the final 

heading angle at each segment is the same as the leg direction. This means        

for each segment for the leg heading algorithm. Among the three heading methods, only 

the random heading algorithm requires an iterative procedure to find the optimal heading 
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angles. Both the alternative heading algorithm and the leg heading algorithm compute the 

heading angles at the intermediate waypoints deterministically. 

6.4.3 Effect of Transient Fuel Consumption Cost 

The transient fuel consumption cost model, as shown in Equation (6.3), is an empirical 

function derived from the minimum fuel point-to-point optimal trajectories. The 

parameters that influence the cost are the heading angle changes required from the initial 

position to the final position, (    ) and (    ). The transient fuel consumption cost 

can also be viewed as a penalty function for sharp turn trajectories. The resulting optimal 

route plan is expected to avoid sharp turn trajectories. Figure 6.18(a) shows the optimal 

route plan from for an example route planning problem that considers the transient fuel 

consumption cost, and Figure 6.18(b) shows the optimal route plan that does not consider 

the transient fuel consumption cost. The route plan shown in Figure 6.18(b) has a very 

sharp turn, which should be avoided to minimize the fuel consumption. The genetic 

algorithm with the proposed cost model is expected to find a minimum fuel optimal route 

plan with less aggressive turning maneuvers. 
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Figure 6.18 Influence of the transient fuel consumption cost on the optimal route plan: (a) 

with transient fuel consumption cost, (b) without transient fuel consumption cost. 

6.5 3-D Minimum Fuel Path Generation 

The three-dimensional minimum fuel route planning process presented in the previous 

section finds the minimum fuel route plan for a given set of waypoints. To ensure the fuel 

consumption is minimized in the actual flight, a three-dimensional minimum fuel flight 

path for visiting all the waypoints is required. In this section, the minimum fuel flight 

path for a given minimum fuel route plan is generated by connecting the waypoints with 
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the minimum fuel point-to-point optimal trajectories. The fuel consumption cost from the 

proposed cost model is verified against that of the minimum fuel optimal trajectories. 

6.5.1 Path Generation and Fuel Consumption Cost Verification 

The three-dimensional minimum fuel flight path of a route plan is generated by 

connecting the waypoints with minimum fuel optimal trajectories. Figure 6.19(a) shows 

the optimal route plan obtained using the genetic algorithm with the leg heading 

algorithm. Figure 6.19(b) is the minimum fuel flight path generated using the minimum 

fuel point-to-point trajectory optimization methods when the fuel cell powered propulsion 

system dynamics is considered. If the fuel cell powered UAV follows the fight path 

shown in Figure 6.19(b) when visiting the waypoints, the fuel consumption is minimized. 
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Figure 6.19 Three-dimensional minimum fuel path generation process: (a) minimum fuel 

route plan, (b) minimum fuel flight path. 

Table 6.1 shows the fuel consumption cost for each segment of the minimum fuel 

flight path shown in Figure 6.19(b). Table 6.1 also shows the fuel consumption cost 

calculated by using the proposed cost model during the route planning process. A 

comparison of these two sets of data is shown in Figure 6.20. For the segments with 

positive flight path angles, the fuel consumption cost calculated using the proposed cost 

model matches well with the fuel consumption cost from the trajectory generation 
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between the fuel consumption cost calculated using the proposed cost model and that 

from the trajectory generation process is more significant. This is due to the nonlinearity 

in the fuel cell performance curve at low current, in which the fuel cell output voltage is 

very sensitive to the current at low current. This is the main contributing factor to the 

discrepancies shown in Table 6.1. In the next section, a simplified model for path 

generation at negative flight path angles is presented in order to ensure successful flight 

path generation at negative flight path angles. 

Table 6.1 Fuel consumption cost for each segment of the minimum fuel flight path. 

(* segments with large negative flight path angles) 

Segments 
Gama 

(degree) 
Cost Model 

Optimal 

Cost 

1 3.58 0.509 0.513 

2 -1.72 0.131 0.131 

3 0.00 0.862 0.863 

4 2.50 1.197 1.201 

5 3.62 0.719 0.724 

6* -6.58 0.021 0.031* 

7 -2.74 0.086 0.090 

8 0.98 0.289 0.287 

9* -3.93 0.059 0.077* 
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Figure 6.20 Fuel consumption cost model verification. 

6.5.2 Path Generation at Negative Fight Path Angle 

Since the optimal trajectories of a fuel cell powered UAV at negative flight path angles 

are similar to minimum distance optimal trajectories, this section uses the Dubins 

airplane model from [99], which considers only the geometric constraints, for path 

generation at negative flight path angles. The minimum distance performance index 

function is shown in Equation (6.4). Equations (6.5) to (6.9) are the three-dimensional 

kinematic equations of a Dubins airplane, where the flight speed is fixed and the flight 

trajectory is controlled by the heading angle rate (  ) and flight path angle rate (  ).  
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              (6.6)  

          (6.7)  

       (6.8)  

       (6.9)  

 

The optimal trajectories obtained by using the Dubins airplane model and the full 

model (Equations (5.1) to (5.10)) are compared at different flight path angles (as shown 

in Figure 6.21 (a) to (f)). In Figure 6.21 (a) to (c), the optimal trajectories of the Dubins 

airplane model are very similar to that of the full model when the flight path angle is 

small or negative. When the flight path angle is high (as shown in Figure 6.21 (d)-(f)), the 

optimal trajectories of the Dubins airplane model are very different from those of the full 

model. This highlights the importance of minimum fuel trajectory optimization using the 

full model. 
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Figure 6.21 (a)-(f) Trajectory optimization using the Dubins airplane model at negative 

flight path angles. 

6.5.3 Case Study with Different Waypoint Densities 

Several studies of DTSPs have highlighted that the waypoint density influences the 

optimal route plan differently for different heading algorithms [103,109,110]. In this 

section, the proposed method for three-dimensional route planning and path generation 

problems is used to solve a low waypoint density problem and a high waypoint density 

problem. The genetic algorithm parameters are summarized in Table 6.2. Since there are 
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many random elements in the evolution process of a genetic algorithm, the results from a 

genetic algorithm may be different for different instances of executions. In this section, 

the best route plan from five different executions of each route planning problem is used 

for flight path generation. 

Table 6.2 Genetic algorithm parameters. 

Genetic Algorithm Parameters  

Population Size 10 

Maximum Iteration 400 

Crossover Rate 0.85 

Mutation Rate 0.10 

No. of Executions 5 

 

Figure 6.22 (a) to (c) show the optimal flight paths of a route planning problem of 

a fuel cell powered UAV with different heading algorithms, when the distances between 

the waypoints are far relative to the UAV turning radius. This represents a typical route 

planning problem in which the waypoint density is low. When the distances between the 

waypoints are far relative to the UAV turning radius, the transient fuel consumption cost 

is less significant as compared to the steady state fuel consumption cost. The minimum 

fuel route plan is dominated by the influence of the distances between the waypoints. For 

this reason, the influence of different heading algorithms on the resulting optimal route 

plans is insignificant. This can be observed in the optimal route plan shown in Figure 

6.22 (a) to (c), where the sequences of waypoints from different heading algorithms are 

the same. Among the three optimal flight paths, the fuel consumption cost associated 

with the random heading algorithm is the minimum.  
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Figure 6.22 Example of a low waypoint density problem:  

(a) Random heading algorithm, (b) Alternative heading algorithm, (c) Leg heading 

algorithm. 
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Figure 6.23 (a) to (c) show the optimal flight paths from different heading 

algorithms, in which the distances between the waypoints are short relative to the UAV 

turning radius. This represents a typical route planning problem in which the waypoint 

density is high. When the distances between the waypoints are short, the transient fuel 

consumption cost is significant as compared to steady state fuel consumption cost. The 

minimum fuel route plan is significantly influenced by the heading angles at the 

intermediate waypoints. The optimal route plans from the three heading algorithms 

shown in Figure 6.23 (a) to (c) are different in both the sequences of the waypoints and 

the heading angles at the intermediate waypoints.  Similar to the low density waypoint 

example, the fuel consumption cost associated with the random heading algorithm is the 

minimum among the three heading algorithms. 
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Figure 6.23 Example of a high waypoint density problem:  

(a) Random heading algorithm, (b) Alternative heading algorithm, (c) Leg heading 

algorithm. 

-300

-200

-100

0

100

200

0

100

200

300

0
25
50

East

UAV Routing Problem: costID=1, headID=1, fullID=1 [0.4896]

North

U
p

-300

-200

-100

0

100

200

0

100

200

300

0
25
50

East

UAV Routing Problem: costID=1, headID=2, fullID=1 [0.4827]

North

U
p

-300

-200

-100

0

100

200

0

100

200

300

0
25
50

East

UAV Routing Problem: costID=1, headID=3, fullID=1 [0.4794]

North

U
p

(a) 

(b) 

(c) 



162 

 

From the above examples, it can be concluded that for a low waypoint density 

route planning problem, the fuel consumption cost is dominated by the steady state fuel 

consumption cost and the resulting sequences of waypoints from different heading 

algorithms are likely to be the same. However, for a high waypoint density route planning 

problem, the transient fuel consumption cost is significant, which results different 

sequences of waypoints from different heading algorithms. The random heading 

algorithm minimizes the transient fuel consumption cost by a random search method. The 

alternative heading algorithm minimizes the transient fuel cost at the alternative segments. 

The leg heading algorithm minimizes the transient fuel cost at the end of each segment. 

With sufficient iterations, the fuel consumption cost associated with the route plan from 

the random heading algorithm is the minimum among the three heading methods.  

6.6 Summary 

Due to the specific fuel consumption curve of a fuel cell powered UAV, the minimum 

fuel point-to-point optimal trajectories are different from the minimum distance point-to-

point optimal trajectories. To solve three-dimensional minimum fuel routing planning 

and path generation problems for a fuel cell powered UAV, this chapter proposed a  new 

method, consisting of the development of a fuel consumption cost model, the 

implementation of a genetic algorithm with different heading algorithms, and the 

generation of optimal flight paths.  The developed fuel consumption cost model for the 

minimum fuel point-to-point optimal trajectories included both the steady state fuel 

consumption cost and the transient fuel consumption cost. The minimum fuel route plan 

was optimized by a genetic algorithm with different heading algorithms. The minimum 

fuel flight path for a minimum fuel optimal route plan was generated by connecting the 
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waypoints with minimum fuel point-to-point optimal trajectories. As compared to the 

literature, this chapter extended the route planning problems from two dimensions to 

three dimensions. The optimization objective was extended from minimum distance to 

minimum fuel. The dynamic constraints were extended from the Dubins vehicle's 

dynamics to a three-dimensional point mass UAV model dynamics including the 

dynamics of a fuel cell powered UAV propulsion system. 
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CHAPTER 7  

FUEL CELL SYSTEM SIZE OPTIMIZATION 

7.1 Introduction 

Design optimization is one of the keywords that frequently appear in the UAV literature, 

as the design of almost every single UAV and its sub-systems needs to be optimized to 

maximize the design objective and satisfy the design constraints. The design of a UAV 

involves many disciplinary areas, including aerodynamics, structure, and electronics, etc. 

Multidisciplinary Design Optimization (MDO) techniques are often applied to handle 

complex design optimization problems which involve many design variables. Examples 

of such optimization techniques applied to UAVs can be found in [119,120,121,122]. 

Several design optimization studies have been conducted to optimize certain 

performance aspects of a fuel cell powered UAV. In [123], qualitative assessment 

techniques were used to determine the class of vehicles that would benefit most from the 

fuel cell technology. In [124], an algorithmic approach was proposed to integrate the fuel 

cell system design environment to an aircraft sizing framework. In [25], a fuel cell 

powered UAV prototype was developed from a multidisciplinary design optimization that 

included the contribution analysis model of a fuel cell power plant. In [125], a validated 

multidisciplinary analysis was used to find the optimal design of both the UAV and the 

fuel cell propulsion system for a surveillance mission. Among all of the above design 

optimization studies, the contributions of various fuel cell system design parameters to 

the design objectives were studied in steady state flight conditions. However, in none of 

them was the influence of the transient performance of fuel cell systems included.  
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As highlighted in [1], a single type of UAV is often deployed for several different 

missions that require different flight trajectories. A UAV design that is optimal for one 

mission may not be optimal for another mission. In this chapter, the fuel cell system size 

parameters and the number of cells ( ) and the cell area ( ), are optimized with respect 

to a mission, where the mission is defined as a list of waypoints that a UAV needs to visit 

exactly once. The fuel cell system size optimization problem for a given mission is stated 

in Section 7.2, and an iterative method for finding the optimal fuel cell size for a given 

UAV mission is proposed in the same section. The building blocks of the proposed 

method are presented in Section 7.3. Example fuel cell system size optimization problems 

for missions with both high waypoint density and low waypoint density are solved with 

the proposed method in Section 7.4. It is observed that the optimal fuel cell sizes for 

different missions are different.  

7.2 Problem Statement and Proposed Method 

The efficiency of a fuel cell system improves as the system size increases. An increase in 

the fuel cell system size leads to an increase in the overall weight of a fuel cell powered 

UAV, which, in turn, increases the power consumption for a given UAV mission. There 

may be an optimal fuel cell system size for a given UAV mission. The fuel cell system 

size optimization problem with respect to a given mission is stated as follows. 

For a given list of waypoints (whose route plan is to be optimized for minimum 

fuel consumption) and a given range of fuel cell system size parameters, the number of 

cells ( ) and the cell area ( ), what is the optimal fuel cell system size and the associated 

minimum fuel optimal route plan?  
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For a given list of waypoints, the total fuel consumption is a function of the fuel 

cell system size, and the sequence of the waypoints. The influence of the fuel cell system 

size parameters on the total fuel consumption is a continuous function. However, the 

influence of the sequence of waypoints is a discrete function. An optimization method for 

a continuous function cannot be used to optimize the sequence of the waypoints, and an 

optimization method for finding the optimal sequence of the waypoints is very inefficient 

for a continuous function. To optimize the fuel cell system size parameters with respect 

to a given mission, this chapter proposes an iterative method, which uses a genetic 

algorithm to find the optimal sequence of waypoints for a given fuel cell system size, and 

uses a nonlinear programming method to find the optimal fuel cell system size for a given 

sequence of waypoints. 

The proposed method for the fuel cell system size optimization is shown in Figure 

7.1. For a given fuel cell system, there is an optimal flight path angle for minimum fuel 

point-to-point trajectories. The minimum fuel optimal flight path angle (    ) as a 

function of the number of cells ( ) and the cell area ( ) is empirically modeled as a 

quadratic function. With the optimal flight path angle determined, the database of the fuel 

consumption data as a function of the number of cells ( ) and the cell area ( ) at 

different flight path angles can be generated by trimming the dynamic equations of the 

fuel cell powered UAV. With an initial guess regarding the fuel cell system size, an 

optimal route plan is obtained by using the genetic algorithm presented in the previous 

chapter. For a given route plan, the optimal fuel cell system size is determined by using a  

nonlinear programming solver, where the fuel consumption cost is minimized within the 

given ranges of the design parameters. The optimal route plan for the optimal fuel cell 



167 

 

system size is obtained and compared with that from the previous iteration. If the optimal 

route plan for the optimal fuel cell system size in the current iteration is the same as that 

of the previous iteration, the iterative procedure stops, and both the optimal fuel cell 

system size and the optimal route plan are obtained. 

 
Figure 7.1 Proposed method for fuel cell system size optimization. 
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7.3 Fuel Cell System Size Optimization Building Blocks 

7.3.1 Fuel Consumption Rate Database 

The fuel consumption rate               is a function of the flight path angle, the 

number of cells, and the cell area, and trimming the UAV at any given flight path angle 

requires iterative procedure. In addition, both the genetic algorithm for route planning 

and the nonlinear programming method for fuel cell size optimization require iterative 

procedures. It is very inefficient to use one iterative procedure inside another iterative 

procedure. Hence, the database for the steady state fuel consumption rate,              , 

at different fuel cell sizes (  and  ) is required for fast computation of the steady state 

fuel consumption cost. 

The study of the characteristics of the minimum fuel point-to-point optimal 

trajectories presented in Chapter 7 concludes that there is an optimal fight path angle for 

such flight trajectories for a given fuel cell powered UAV. If the straight line flight path 

angle from the initial position to the final position is more than the optimal flight path 

angle, the UAV will ascend with an S-shaped flight path to minimize the total fuel 

consumption cost. As shown in Figure 7.2, the optimal flight path angle is a function of 

the fuel cell system size, the number of cells ( ) and the cell area ( ), which can be 

modeled with a quadratic function, shown in Equation (7.1). The comparison between the 

optimal flight path angle obtained by trimming the UAV model and that calculated using 

Equation (7.1) is shown in Figure 7.2. The optimal flight path angles (    ) determines 

the ranges of flight path angles to be trimmed to generate the fuel consumption database. 

                                       (7.1)  
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 (7.2)  

 
Figure 7.2 Optimal flight path angle as a function of fuel cell system size. 

The database for the steady state fuel consumption rate,              , at 

different fuel cell sizes (  and  ) is generated by trimming the UAV model with 

different fuel cell system sizes at different flight path angles. Figure 7.3 shows fuel 

consumption rate with 48 cells and various cell areas at different flight path angles.  
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Figure 7.3 Fuel consumption rate database at N=48. 

7.3.2 Optimal Fuel Cell System Size for a Given Route Plan 

For a given route plan, which is a sequence of waypoints and heading angles at the 

intermediate waypoints, the total fuel consumption cost is calculated using the proposed 

cost model from the first segment to the last segment. Since the fuel consumption rate is a 

function of the number of cells ( ) and the cell area ( ), the total fuel consumption cost 

for a given route plan is also a function of the number of cells ( ) and the cell area ( ). 

For a given range of the design parameters (  and  ), the optimal fuel cell size is found 

by using the following formulation, which is solved by using the SNOPT solver [70]. 
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7.4 Case Study on Fuel Cell System Size Optimization 

In this section, fuel cell system size optimization problems for missions with both high 

waypoint density and low waypoint density are solved by using the proposed method 

shown in Figure 7.1. Since different missions have different optimal fight trajectories, the 

optimal fuel cell system size for one mission is expected to be different from that of 

another mission.  

7.4.1 Example 1: A Low Waypoint Density Mission 

The list of waypoints to be visited by a fuel cell powered UAV is shown in Figure 7.4, 

where the UAV is expected to start from the first waypoint at a given initial heading 

angle, and visit each of the remaining waypoints exactly once, and return to the first 

waypoint at a given final heading angle. The optimal route plan obtained using the 

genetic algorithm with the leg heading algorithm for the initial guessed fuel cell system 

size (    ,       cm
2
) is shown in Figure 7.5. The optimal fuel cell system size 

(       ,         cm
2
) is shown in Figure 7.6 together with complete fuel 

consumption cost map for the given range of fuel cell system size parameters. The 

optimal route plan for the optimal fuel cell size is shown in Figure 7.7, which is the same 

as the optimal route plan for the initial guessed fuel cell size. In addition, the minimum 

fuel optimal flight path is shown in Figure 7.8.  
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Figure 7.4 Fuel cell system size optimization for a low waypoint density mission: list of 

waypoints. 

 
Figure 7.5 Fuel cell system size optimization for a low waypoint density mission: optimal 

mission plan with initial guess fuel cell system size. 
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Figure 7.6 Fuel cell size optimization for a low waypoint density mission: optimal fuel 

cell system size. 

 
Figure 7.7 Fuel cell system size optimization for a low waypoint density mission: optimal 

mission plan with optimal fuel cell system size. 
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Figure 7.8 Fuel cell system size optimization for a low waypoint density mission: 

minimum fuel optimal flight path. 

7.4.2 Example 2: A High Waypoint Density Mission 

The list of waypoints for the fuel cell system size optimization problem for a high 

waypoint density mission is shown Figure 7.9. The optimal route plan obtained using the 

genetic algorithm with a leg heading algorithm for the initial guessed fuel cell system size 

(    ,       cm
2
) is shown in Figure 7.10. The optimal fuel cell system size 

(       ,          cm
2
) is shown in Figure 7.11 together with a complete fuel 

consumption cost map for the given range of fuel cell system size parameters. The 

optimal route plan for the optimal fuel cell size is shown in Figure 7.12, which is the 

same as the optimal route plan for the initial guessed fuel cell size. The minimum fuel 

optimal flight path for the optimal route plan is shown in Figure 7.13.  
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Figure 7.9 Fuel cell system size optimization for a high waypoint density mission: list of 

waypoints. 

 
Figure 7.10 Fuel cell system size optimization for a high waypoint density mission: 

optimal mission plan with initial guess fuel cell system size. 
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Figure 7.11 Fuel cell size optimization for a high waypoint density mission: optimal fuel 

cell system size. 

 
Figure 7.12 Fuel cell system size optimization for a low waypoint density mission: 

optimal mission plan with optimal fuel cell system size. 
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Figure 7.13 Fuel cell system size optimization for a low waypoint density mission: 

minimum fuel optimal flight path. 

From these two examples, it is observed that the optimal fuel cell system size for 

different missions is different. In addition, the fuel cell system size does not seem to 

influence the optimal route plan for a given list of waypoints. As shown in Figure 7.3, for 

different fuel cell system sizes, the trend of the fuel consumption curves is the same in 

that the fuel consumption rate increases monotonically with the flight path angle. A flight 

trajectory that is fuel optimal for one fuel system size is also optimal for another fuel cell 

system size.  

7.5 Summary 

In this chapter, an iterative method was proposed to find the optimal fuel cell system size 
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plan for one fuel cell system size was also optimal for another fuel cell system size, the 

optimal fuel cell system size for a given mission was found after only one iteration. 
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CHAPTER 8   

CONCLUSIONS, CONTRIBUTIONS AND RECOMMENDATIONS 

8.1 Conclusions 

This dissertation has extensively investigated research questions related to trajectory 

optimization problems for fuel cell powered UAVs considering the fuel cell system 

dynamics. A dynamic model for a fuel cell powered UAV propulsion system has been 

developed to understand the influence of the fuel cell system dynamics on the dynamic 

behavior of a fuel cell powered UAV. This model has been also used as the dynamic 

constraints of trajectory optimization problems to study the characteristics of the optimal 

trajectories. Based on the characteristics of the minimum fuel point-to-point optimal 

trajectories of a fuel cell powered UAV, a method has been proposed to solve the three-

dimensional minimum fuel route planning and path generation problems, and the 

obtained flight paths are both fuel optimal and dynamically feasible. Finally, an iterative 

method has been proposed to find the optimal fuel cell system size for any given mission. 

Through examples, it has been observed that the optimal fuel cell system sizes for 

different UAV missions will vary.   

The conclusions drawn from the studies presented in this dissertation are given as 

follows: 

1) In a fuel cell powered UAV propulsion system, the fuel cell delay effect 

from the fuel cell system causes additional delay in the propeller rotational 

speed.  Among different fuel cell system parameters, the fuel cell delay 

time constant has the most significant influence on the effect time 
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constants and the step command responses of a fuel cell powered UAV 

propulsion system. 

2)  The maximum speed and maximum rate of climb of a fuel cell powered 

UAV are inferior to those of a conventional gas powered UAV with the 

same gross weight and airframe. This is due to the lower power density of 

a fuel cell system as compared to that of a conventional reciprocating 

engine. The absolute fuel consumption rate of a fuel cell powered UAV is 

significantly lower than that of a conventional gas powered UAV. This 

means the flight endurance of a fuel cell powered UAV can be extended 

easily with only a very small increase in the gross weight. 

3) Different pseudospectral methods based on different sets of collocation 

points can be generalized as one framework, despite differences in the 

collocation points. With the proposed generalized framework, many new 

pseudospectral methods based on new sets of collocation points can be 

more easily evaluated. 

4) The optimal flight path angles of the minimum time and minimum 

distance point-to-point optimal trajectories are constrained by the 

maximum available power for both the conventional gas powered UAV 

configuration and the fuel cell powered UAV configuration. However, the 

optimal flight path angles of the minimum fuel point-to-point optimal 

trajectories are not determined by the maximum available power for the 

fuel cell powered UAV configuration.  
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5) For conventional gas powered UAVs, minimum distance, minimum time, 

and minimum fuel point-to-point optimal trajectories are similar. However, 

the minimum fuel optimal trajectories of a fuel cell powered UAV are 

different from the minimum time and minimum fuel point-to-point 

optimal trajectories. Simplified minimum distance route planning methods 

based on the Dubins vehicle cannot generate a minimum fuel optimal 

route plan and flight path for a fuel cell powered UAVs. However, the 

method proposed in this dissertation is able to find the optimal route plan 

and flight path that are both dynamically feasible and fuel optimal for fuel 

cell powered UAVs. 

6) In a route planning and path generation problem, the heading angles at the 

intermediate waypoints influence only the transient fuel consumption cost. 

The optimal route plans obtained by using different heading algorithms for 

a high waypoint density problem are different in both the sequence of the 

waypoints and the heading angles at the intermediate waypoints. However, 

for a low waypoint density problem, the sequences of waypoints of the 

optimal route plans obtained by using different heading algorithms are 

likely the same. Among the fuel consumption costs of the optimal flight 

paths from different heading algorithms, the one from the random heading 

algorithm is minimal. 

7) The influence of fuel cell system size parameters (the number of cells and 

the cell area) on the fuel consumption cost of a minimum fuel point-to-

point optimal trajectory is significant. The influence of other design 
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parameters on the fuel consumption cost is insignificant. With the 

proposed method for fuel cell system size optimization with respect to a 

mission, the impacts of both the steady state performance and the transient 

performance of the fuel cell system can be brought to the mission level. It 

is expected that the optimal fuel cell system sizes for different missions 

will be different. 

8.2 Summary of Contributions 

While investigating the research questions related to the trajectory optimization problems 

for fuel cell powered UAVs, the current research has made several original contributions 

to the literature. These contributions are summarized as follows: 

1) A dynamic model of a fuel cell powered UAV propulsion system 

 This research develops a dynamic model of a fuel cell powered UAV 

propulsion system by combining the dynamic model of a fuel cell system, 

the dynamic model of an electric motor and the performance model of a 

propeller. Although each element in the developed model is not new, the 

overall developed model for a fuel cell powered UAV propulsion system 

is the first of its kind in the literature. This model can be used for different 

applications. It can be used to conduct transient response analysis, as a 

linearized model for control synthesis, and as a comprehensive simulation 

model, etc. 

 

 



183 

 

2) A generalized framework for pseudospectral methods 

 The generalized framework for pseudospectral methods proposed in this 

dissertation transcribes an optimal control problem to a nonlinear 

programming (NLP) optimization problem with any set of collocation 

points. Different from other unified frameworks in the literature, the 

proposed framework generalizes all four pseudospectral methods, the 

Legendre pseudospectral method, the Chebyshev pseudospectral method, 

the Gauss pseudospectral method, and the Radau pseudospectral method, 

with one set of transcription equations. With the proposed framework, 

different pseudospectral methods can be compared with the same NLP 

solver. This feature is important as optimal control solvers available in the 

literature are often in the form of paired packages of one pseudospectral 

method and one NLP solver. It is difficult to compare two pseudospectral 

methods with two different NLP solvers. In addition, with the proposed 

framework, a pseudospectral method with a new set of collocation points 

can be readily evaluated.  

3) A method for 3-D minimum fuel route planning and path generation 

 Route planning problems for UAVs in the literature are often formulated 

as minimum distance problems subject to the path curvature constraint of 

a UAV. In a three-dimensional minimum fuel route planning and path 

generation problem, the effects of both the dynamic constraints and the 

fuel consumption cost on the optimal route plan are embedded in the 

problem formulation. With the cost model extracted from the minimum 
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fuel point-to-point optimal trajectories, the proposed method successfully 

utilized the trajectory optimization results to the route planning process. 

As a trajectory optimization problem can be formulated with different 

dynamic constraints and different performance index functions, the 

proposed method can be extended to route planning and path generation 

problems to different UAVs or different objectives. 

4) A method for propulsion system size optimization with respect to mission 

 The design optimization method presented here, with respect to a given 

mission, and considering both the steady state cost and the transient cost, 

is the first in the literature. With the proposed method, the impacts of the 

propulsion system design parameters are brought to the mission level. This 

design optimization method is important in that a single UAV is often 

used in many different missions, and the optimal trajectories of different 

missions are usually different. As the proposed method for propulsion 

system optimization is developed by extracting the results from trajectory 

optimization analysis, design optimization with respect to missions with 

different performance measures can be handled by using the proposed 

method with different trajectory optimization analyses.  

8.3 Recommendations for Future Work 

Although the research problems around the trajectory optimizations for fuel cell powered 

UAVs were studied extensively in this dissertation, there are several extensions that 
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could be applied to the models, methods, or problems presented... The recommendations 

for future work are listed as follows. 

1) Validation of the transient parameters of the dynamic model of a fuel cell 

powered UAV propulsion system 

 The dynamic model of a fuel cell powered UAV propulsion system 

derived in this dissertation models both the steady state performance and 

transient performance. In this dissertation, the steady state parameters 

were validated against the manufacturer’s data. The transient parameters 

were referenced from similar systems from the literature. The validation of 

the transient parameters against experimental data would certainly 

increase the confidence level of the derived model. In addition, transient 

experimental data can also be used to validate the study on the transient 

characteristics of a fuel cell powered UAV propulsion system.  

2) Extension to real-time route planning and path generation 

 In the proposed method for three-dimensional route planning and path 

generation problems discussed in this dissertation, a genetic algorithm was 

implemented with different heading algorithms to find the optimal route 

plan, and the optimal flight path was generated using the trajectory 

optimization method. The cost estimation of a given route plan with the 

derived cost model is not computationally expensive. A genetic algorithm 

modified with smaller number of iterations may be able to meet the real-

time requirement. The most computationally expensive and time 

consuming process in the proposed method is the flight path generation 
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with optimal trajectories, where the dynamic equations of a fuel cell 

powered UAV propulsion system and the point mass UAV model are 

formulated as dynamic constraints. These ten dynamic constraint 

equations are the main barriers for path generation in real-time. However, 

these equations are required to ensure that the flight paths generated are 

both dynamically feasible and fuel optimal. If the desired optimal flight 

path can be generated directly without solving the trajectory optimization 

problems, the route planning and path generation process can be extended 

to real-time applications. 

3) Extension to terrain collision avoidance 

 The proposed method for route planning and path generation, and the 

proposed method for fuel cell system size optimization are based on the 

fuel consumption cost model of the minimum fuel point-to-point optimal 

trajectories in a collision free environment. This certainly limits the 

capability of the proposed model. Including appropriate path constraints 

with respect to a terrain database can extend the trajectory optimization 

problems to terrain collision avoidance. If the characterization of such 

optimal trajectories can be obtained, the proposed method can then be 

extended to terrain collision avoidance, which can be used to address more 

practical practical path planning problems. 

4)  Extension to fuel cell system size optimization for multiple missions 

 The case study on fuel cell system size optimization has concluded that the 

optimal fuel cell system sizes for different missions are different. 
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However, it may not be possible to optimize the fuel cell system size for 

every mission. One of the alternative options is to find the optimal fuel 

cell system size with respect to multiple missions. In this dissertation, 

UAV routes are optimized by a genetic algorithm, in which the route plan 

is represented by a sequence of numbers. Such integer representation of 

waypoints can be extended to multiple missions. Special crossover and 

mutation operators, considering the routing constraints for multiple 

missions, can be used to generate the optimal route plan for multiple 

missions. In such way, the proposed iterative method for fuel cell system 

size optimization can be extended to multiple missions. 
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