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0.2 Abstract

Despite the recent interest in Pappus of Alexandria,the late antiquarian mathematician re-

mains an enigma in the history of mathematics. Only a handful of chapters and fragments

of his seminal work, the Collection have been translated into English and there has been

little effort to reveal the common mathematical threads therein. To correct this stasis and

move Pappian studies into the exploratory stage, I approached the Collection with three

questions designed to remove the historiographical biases and avoid the missteps that have

persisted over the five-hundred years since Commandino’s estate published the first Latin

translation.

The first question is whether an improved understanding of late antiquity Alexandria and

its intellectual environs offer greater insight into Pappus’ mathematical style. The second is

whether Pappus’ infamous exposition on analysis and synthesis from Book 7 of the Collec-

tion can be reconciled with propositions from the same book. My final question is that after

the reconciliation of proposition and exposition in Book 7, what are the consequences for

other books in the Collection that contain otherwise unacknowledged instances of analysis

and synthesis? More specifically, will we find consistency between Books 7, 3, and most

surprising of all, 2.

What is revealed through these questions is the problem modern scholars have with Pap-

pus was never actually about his ability but rather the interference of pedagogy in a field

where it is least desired: advanced geometry. Pappus demonstrated thoroughly in Books 2

and 3 that his knowledge of analysis and synthesis was more nuanced than he has been given

credit for, involving the social practice of mathematics in Alexandria and the application of

arithmetic within a supposedly geometrical method.
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0.3 Introduction

Pappus of Alexandria was, and still is, a popular figure within the history of mathematics.

The Collection, his signature work, has been translated in its entirety in Latin, French,

German, and modern Greek. Translations into English are somewhat more piecemeal: only

Books 7 and 8 have been officially published while scholars such as Serafina Cuomo, Alain

Bernard, Wilbur Knorr, and Sir. T. L. Heath only share fragments translated from the

rest of the Collection while their scholarship hints more involved and completed transla-

tion. It is said of Heath, one of the most prolific classicists of the 19th and 20th centuries,

that he was working on an English translation of Pappus but was dissuaded from the project.1

Of the mathematician himself, we know little. Asides from the Collection a sizable portion

of works attributed to him survive from both the Greek and the Arabic and show a man

with interests ranging from geometry to astronomy to alchemy to geography. Infrequently,

the plausibility of his actually being from Alexandria is questioned as a means to liven up

the discussion. Other than that, he appears to have lived and died a relatively quiet life

as his death failed to capture the imaginations of artists and trivia buffs as the deaths of

Archimedes, Hypatia, and Socrates have. We do have an idea of when Pappus was active. It

is deduced in his commentary on Ptolemy’s Almagest that the eclipse that he observed in

Alexandria occurred on what would be October 18th, 320 CE using the Georgian calendar.

This is the date from which Pappus’ lifespan of 290 CE to 350 CE is framed despite evidence

that states the contrary. In the Suda Lexicon, Pappus was believed to be active during the

period of Theodosius I (A.D. 379 395). However the Suda omits from posterity the work for

which Pappus has become most famous. Another source, a scholium to a Leiden manuscript

of chronological tables written by Theon of Alexandria, places Pappus at the time of Diocle-

tian (A.D. 284 305) it notes: ”In his time Pappus wrote”.2 It is felt that neither of these

dates correspond with the observation of the eclipse but that is a consequence of a lack of

discourse in the History of Mathematics about the lifespan of the mathematician versus the

1

2DSB!!
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time-span of a fruitful career.

These are the few facts independent facts about Pappus that one will find in the scholar-

ship and they are treated as little consequence to greater mathematical concerns. However,

scholarship has too easily accepted perspectives on the mathematician and his abilities that

have no basis in his corpus, the period during which he was active, and the city in which

he lived. The influence these three elements had on each other was far from subtle. Pappus

had the good foture to live in a multi-cultural city such as Alexandria- all of whom val-

ued mathematics and most supporting the inclusion of women into mathematical education

and teaching. The potential of these circumstances is met in the Collection where Pappus

seems to be a man with an active social life as an Alexandrian mathematician: students and

non-mathematicians appear through the work, wither seeking out his services or receiving

his advice. An audience of this kind, of course, requires special attention and necessitated

from effort on Pappus’ part to teach advanced mathematical concepts to people who were

obviously inexpert.

In turn, this has left modern appreciation for Pappus’ work to be a bit wanting. Instead

of accepting Pappus as a writer whose output was incredibly sensitive to the needs of the less

mathematically astute in his acquaintance, one is told that he is feeble and his mathematics

naive. To accept this portrait of Pappus is to neglect the peculiar harmony that exists in the

texts of his that have little in common except that they are grounded in geometry.

This particular harmony I write of is of the drastically different snapshots of analysis and

synthesis that are revealed in Books 2, 3, and 7. Traditionally, analysis and synthesis were a

powerful tool for problem-solving in geometry. By late antiquity, the needs of the mathemati-

cian changed as they devoted more of their study to reflection on their craft. The application

of analysis and synthesis changed with it.

What Pappus revealed about analysis and synthesis in late antiquity illustrates the breadth

of the divide between the ancients and their commentators. The emphasis on confirmation
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and what was clearly the receptive inclusion of arithmetic into analytic processes soon after

distinguished Pappus from the tradition of his predecessors.

An unexpected result of restaging Pappus’ life and practice in this way are the implica-

tions in areas that one did not anticipate. Again, analysis and synthesis were traditionally

applied to geometrical problems and theorems; even Pappus agreed with this. However,

the increased use of arithmetic in the so-called analyses of Heron of Alexandria and Pappus

demands that Book 2 of the Collection be reevaluated. the original text on which it was

based was admitted to by Pappus as being geometrical multiple times in the extant book.

As a work that is superficially treated in the scholarship, the possibilities of recasting it in a

new light are all too tempting. Only two scholars have acknowledged this truth about Book

2, Frederick Hultsch(who first translated the entire collection into Latin in the 1870s) and

Serafina Cuomo(in her 2000 work Pappus of Alexandria and the Mathematics of Late

Antiquity). Unfortunately, neither thoroughly considered the implications of arithmetic

being associated with analysis.

More serious historiographical gaffs can be found throughout modern scholarship. The most

common error is evidence in essays and articles such as J.L Berggren and Glen Van Brum-

melen’s The Role and Development of Geometric Analysis and Synthesis in Ancient Greece

and Medieval Islam. In this essay, Pappus’ exposition on analysis and synthesis is evaluated

for accuracy against proposition 4 from Archimedes’ Sphere and Cylinder. Pappus always

loses in such comparisons because his description was once an introduction directed towards

a student of his. It is the sort of correspondence in which Pappus could be forgiven for

being too general initially, but further into Book 7 Pappus’ propositions demonstrate that

the mathematician was a well-versed in analysis and synthesis, if not more so, than his his

predecessors. Most modern scholars tend not to look to the propositions and have created

an invisible divide between classical mathematicians and one of their most outspoken sup-

porters. In the few cases where the propositions are included, scholars do not venture to

acknowledge Book 3. This text contains some of the more interesting examples of analysis

and synthesis in the ancient Greek corpus. Mainly, we witness an analysis being used to
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show that a problem put forward was impossible, a rarity in a field were incorrect proofs

are only published accidently. Central to to proving the problem impossible is, as mentioned

previously, the utilization of analysis. Without this perspective, we do not the major role

analysis and synthesis played in everyday mathematics as a means for mathematicians to

evaluate the validity of their problems and to ensure the fruitfulness of the community.

In order to approach these errors and to portray Pappus’ mathematics in a more accurate

light, two thematic goals and one practical goals are put forward for this thesis. The first is

to prove that there is a significant connection between Pappus’ exposition and propositions

which is not exclusive to the rest of the Collection. Pappus would only be truly feeble

if he failed to follow his own practice. The second is to understand how Pappus’ practices

have been influenced by the cultural environs in which he operated. The practical goal is

the translation of Book 2. There are no English translations of the text for now except for

the selections Cuomo and Netz provide, particularly of proposition 17, but without too much

commentary.3 Translating a text with little external reference is a challenge few students

get to enjoy and offers much by way of reflection as to how Pappus thought and the style in

which he wrote.

3Cuomo(2000), 181-182; Netz(2008)
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Chapter 1

Setting the Scene

Pappus of Alexandria is cast as product and provocateur of late antiquity, where he alter-

nately shines and falters against the backdrop of a period widely acknowledged for its decline.

Research on Pappus, be he the star or on the periphery, rarely reflects on the mathematical

environs where Pappus conducted himself. This is unfortunate because as a historically in-

ternational port and an active multi-cultural city, Alexandria allowed for diversity within its

mathematical community that was not evidenced elsewhere in first centuries of late antiq-

uity. Bringing Alexandria to the fore depolarizes the situation as moves the audience away

from the question of feebleness versus brilliance. Instead, it focuses their attention on the

degree to which Pappus saw it necessary to educate his readers, a task that is distinct from

simply discussing mathematics with equally skilled peers. Central to this depolarization is

understanding what mechanisms and obstacles were in place for one to obtain literacy and

numeracy in fourth century CE Alexandria.

1.1 Societal Influences in Literacy

In any city, the demography of its citizens can be divvied-up along socioeconomic, geographic,

and political lines but these separations were much more significant in antiquity when the
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right to citizenship was distributed as a reward to ‘outsiders’. By the fourth century CE, the

most salient divisions in the city of Alexandria were between the native Egyptian, Greek,

Jewish, and Roman communities. These groups did not have equal rights to citizenship,

thereby creating an imbalance between the influence each could assert upon the city and vice

versa. This tension is relevant as it uncovers which culture maintained the tightest control

over the education, and consequently the mathematical practices, of the Alexandrians.

1.1.1 Egyptians

From Herodotus to Proclus, the ancient Egyptians were acknowledged as the key precursors

to Hellenistic mathematics, as well as the particular inventors of geometry.1

Any man who was robbed by the river of a part of his land would come to

Sesostris and declare what had befallen him; then the king would send men to

examine and to find out by measurement how much less the piece of land had

become, in order that for the future the man might pay less, in proportion to the

rent appointed. From this practice, to my thinking, the Greeks learned the art of

geometry. Herodotus Histories, 109.

The invention of a numerical system and complex arithmetical processes closely coincided

with the emergence of the earliest written text at the end of the fourth millennia BCE.2

Hieroglyphic writing, also dated to approximately 3200 BCE, preceded similar activity in

Greece by almost a millennia. By 1050 BCE, the Egyptians developed a hieroglyphic num-

ber system in which numbers up to and including 9, 999, 999 were represented respective of

quantity and place value through powers of 10.3 In comparison, the Greek’s utilization of

large numbers as units of 10, 000 or myriads was a creative method but quickly becomes

1Roero(1994), 41-42.
2Imhausen(2007), 13.
3Roero(1994), 31.
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clumsy with use. Knowledge of literacy and numeracy was not accessible to all Egyptians;

a person either obtained official religious training, scribal training, or private tutoring by an

educated relative.4 The scribal tradition in Ancient Egypt was nepotic and largely a career

for males of the middle-class elite.5 Scribes-to-be learnt their trade by rewriting classic texts

and form documents, bringing into question the true literacy of most members of the scribal

schools.6 The lack of opportunity for originality during their education resulted in their pri-

vate writing also being derivative and formulaic.7

The numeracy of the scribes is not under similar scrutiny as papyrical records show the

numerous calculations of bread and barley, compensation for labour, land partition, and

building dimensions providing much in the way of numerical and calculative variety.8 Such

accounts show Ancient Egyptians to be practical mathematicians rather than theoretical.

There are scholars who will argue that, at least for the Old, Middle, and New Kingdoms,

Egyptian mathematics was a pure science.9 The dearth of surviving materials and the ab-

sence of revised translations prevents one from making any further extrapolations at this

point.10

Nonetheless, it was not necessary to be literate, or male, to make transactions, conduct

affairs, or to bring complaints to the courts. Again, papyri reveal that only a small portion

of the female population was literate, but most were able to, with the assistance of a scribe,

make a record of their taxes, property brought and sold, or dictate a letter.11 Despite the

4Williams(1972), 215.
5Manchipwhite(1952), 86. Peasants could also become scribes but they would have to have promise and

be brought to the attention of the local nomarch or vizier. Hope would be that the family fortunes would
rise with the youngsters training or apprenticeship.

6Williams(1972), 215-217.
7Ibid., 219.
8Imhausen(1997), 8, 37-40, 42-43.
9Roero(1994), 43. From the text, Roero quotes A.B. Chance et al. 1927-9 Rhind Mathematical Papyri,

Vol. 1, 42-3:“..the Rhind papyri convinced me several years ago that this work is not a mere selection of
practical problems especially useful to determine land values, and that the Egyptians were not a nation of
shopkeepers...Rather I believe that they studied mathematics and other subjects for their own sakes...Thus
we can say that the Rhind papyrus, while very useful to the Egyptian, was also an example of the cultivation
of the mathematics as a pure science, even in its first beginnings.”

10Imhausen(1997), 7; Roero(1994), 43-45
11Bagnall(1993), 235-235, 246-247.
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fact that many people were unable to write their own names, the existence of the scribal class

meant that Ancient Egyptians who were not literate themselves still had access to literacy

and were not denied participation from the legal and bureaucratic aspects of Alexandrian

life. This has consequences for understanding literacy in late antiquity. Participation in an

educational system did not mean that mathematical knowledge or any knowledge for that

matter was exclusive to the elite.

1.1.2 Greeks

The Greeks made their presence first known in the port of Naukratis around 630 BCE when

merchants permanently established themselves in the port town. Alexander’s conquest of

Egypt in 332BCE and the subsequent foundation of Alexandria in honour of the Greeks

was when the authority of the Hellenes began to rise. The traditional Greek education

system shared only the slightest of similarities with the scribal tradition of the Egyptians in

their focus on the availability literacy and numeracy to men. Greeks paid more attention

to athleticism, general creativity, and civics. Scribes were still in service but not without

major changes being made to the usage of the written Egyptian language. Hieroglyphics had

given way to hieratic which in turn gave way to demotic.12 By the first century CE, Greek

became the only means of creating written records to the extent that even scribal writings

were exclusively in Greek; sometimes, with instructions for the letter to be dictated to the

recipient in Egyptian.13

1.1.3 Romans

With the inclusion of Alexandria into the Roman Empire in 30 BCE, one would expect Latin

to usurp Ancient Greek as the language of choice, but that was not the case. Serafina Cuomo

12Bagnall(1993), 235-240; Imhausen(1997), 46-47.
13Bagnall(1993), 231; P.Haun 14-15; P. Mich 679. A translation from the Greek of this papyrus inscription

from the Greek is offered by Bülow-Jacobsen and McCarren(1977): “You, whoever you are reading the letter,
make a small effort and translate to the women what is written in this letter and tell them”.
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cites several professions within the Roman Empire that required an application of mathemat-

ics in some form or another, but Latin literacy and fluency was not required for employment

in Alexandria.14 By late antiquity, fluency in Greek was still an advantage. Latin did have

increased usage but it was limited to governmental correspondence, court proceedings, etc.

Most of the Roman elite were bilingual if not literate in Greek and Latin already, thus mak-

ing it easy to switch between the two when circumstances demanded it. For the Egyptians,

the opportunities for their own language decreased. By the 2nd Century CE, there was no

written form of Egyptian in everyday use and only a handful of priests could read formal

hieroglyphs.15 Egyptian was still a spoken language in the villages whereas Greek a more

urban tongue. Monolinguists of either were able to get by without knowing the other.16

In many ways, Rome did not so much as fail to assert its own culture as it assimilated

the best practices of those nations and cities which it conquered. The Romans adopted the

Hellenic education system of body and mind training and maintained it into late antiquity,

with Latin grammar and literature being the only additions into the curriculum. On the po-

litical end, Rome’s disinterest in the running Alexandria as long as it remained the granary of

the empire makes the question of Rome’s influence on education and literacy somewhat moot.

Without an extensive presence in Alexandria and with the mechanisms within Egyptian cul-

ture that allowed people to communicate despite the language barrier, the idea of Rome and

Roman education likely never went beyond the inclusion of Latin. Such inclusion of Latin

would in any case be a minor contribution the so-called Greco-Roman education system as

the Romans merely built upon Greek methods that were already firmly established in the

city.

14Bagnall(1993), 231-232, 232n10; Cuomo(2000), 9-56; Smith(1974), 155, contends that Latin did start to
thrive at the end of the fourth century CE.

15Bagnall(1993), 234-235.
16Bagnall(1993), 255, 259.
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1.1.4 Jewish Inhabitants

The Old Testament and Jewish scriptures chronical the early presence of Jewish inhabitants

in Egypt. Excepting the bloody conflicts throughout the four centuries leading to their ex-

pulsion from the Holy Roman Empire, they are practically absent from the annals of late

antiquity. Ascertaining the standing and influence of the Jewish inhabitants of Alexandria is

difficult. The scholars who do include them in their monographs, frequently set the inhab-

itants apart from the polytheistic majority of the city.17 The philosopher Philo (20 BCE -

50 CE), wrote that this was not necessarily so. In the third century BCE, Alexandria was

divided into three districts and two of these were identified by Philo as Jewish.18 However, he

added that the entire Jewish population was distributed across the city like any other group.

In reflecting upon the justification for the discrimination and bloodshed, Josephus (37 CE -

100 CE) understood the justification of the anti-semites in light of the constitutional separa-

tions between the Jewish inhabitants and the rest of Alexandria.19 As an alien population,

they enjoyed political freedom and influence not extended to the native Egyptians at all or

to the Romans citizens until 200 CE.20

Expectations for Jewish students to be integrated into the greco-roman system were not

entirely obliterated. Further reading of Philo shows that certain Jewish youth were inte-

grated into the greco-roman education system of Alexandria.

17Smith(1974), 21; Taylor(2003), 25n15, 94. Taylor believes that while the Jewish inhabitants would
partake in the Greek education system during their childhood and teen years. On the other hand, they
would have excluded themselves from the advanced research of the Mouseion because it was the temple of
the Muses and overseen by a priest.

18Philo, Flacc. 8, Apion I : 33-35; Josephus, Contra. Ap. 55.
19Josephus, Congr. 74-76.
20Bagnall(1993), 55. During the principate of Augustus, the Jews were allowed to organized into a so-

ciopolitical unit known as a politeuma. These units were present in Hellenistic cities with significant alien
populations and allowed these populations to have a degree of self-governance and political autonomy that
was respected throughout the city. The politeuma was administered by an ethnarch and he in turn was
ruled by a council of elders, a gerousia. This was an important and uncharacteristic freedom to have in
Alexandria. At no point during the foreign occupation did the native Egyptians have a council to which
they could air their grievances and Rome did not grant a Boule to its own citizens in the city until 200 CE.
Popular assemblies, as seen throughout Greece, were never established.
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They have held them entitled to nurture and late to education of body and

soul, so that they may have not only life, but a good life. They have benefitted the

body by means of the gymnasium and the training there given, through which it

gain muscular vigour and good condition and the power to bear itself and mover

with an ease marked by gracefulness and elegance. They have done the same

for the soul by means of letters and arithmetic and geometry and music and

philosophy as a whole. Philo, Spec. 2.229-33. As translated by(add later)

In referencing the gymnasium and exact subjects taught, Philo described not just any method

of education. He lauded the Greek education of the Gymnasium and provided one of the few

pieces of proof that young Jews at least had the opportunity to receive the same mathemat-

ical education as young Greeks or young Romans. That should be more accurately phrased

as young Jews from wealthy families who had citizenship, as was the case for Philo himself.21

It is not known whether this held true for the poor or the devout, or if it even held for the

affluent after the pogrom of 38 CE or the riots of 115 - 117CE.22

Wealth did much to stave off most of the inequalities that were rampant in Alexandria

but it did not ensure that a person would enjoy full citizenship. The Greek way of life was

desired and emulated by other groups in a play for official citizenship in place of their affluent

alien status. Their labours were in some sense encouraged by Isocrates (436 - 338BCE):

...[Athens] has brought it about that the name of the Greeks is no longer

denoting a race but an intelligence, and one should call ’Greeks’ rather the ones

who participate in our culture than those who share our common nature. Isocrates

Panegyricus, 4.50 (as translated by George Norlin(1980))

21Bagnall(1993), 22, 100. Membership into the gynasmium was very special. It was typically limited to
those certified to the hereditary group entitled to it.

22Taylor(2003), 94n34. Boys at least were educated in synagogue related schools.
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The massacre of 38 CE shows that this sentiment was not always sustained.

After the Greeks, the Egyptians and the Jews clamoured to share the top spot. The achieve-

ments of their ancestors did not give the native Egyptians social leverage. They were seen

as too primitive and destitute by their neighbours.23 However, there is mention in Josephus

of an Egyptian priest named Manetho whom Josephus believed was proficient enough in

Greek to compose a history of the Egyptians in that language.24 Priests did receive the same

literacy training as the scribal classes but their numbers were in serious decline during the

early centuries of the Common Era. When only a single man is able to stand out from under

all of the writing completed during that time, all that we have is signs of an overlooked

and unacknowledged culture. Hieroglyphs and other forms of strictly Egyptian writing had

fallen out of use and without the interest in Egyptian achievements formerly held by the

Greeks, the Egyptians all but fade from the record outside of their preserved legal disputes

and correspondences. The Jewish inhabitants had a more unstable standing but they argued

vigourously for their right to citizenship. They did so either by promoting a recorded his-

tory that long preceded the Greek occupation of Egypt or by appealing to their adoption of

certain Greek practices (at least, on behalf of the wealthy). This is ironic because it was the

Romans who were alternately sympathetic and reactive to the inhabitants.

1.2 Women and Literacy

Such deference to the Greek way of life solidified the dominance of the Greeks in the ar-

eas of public education, literacy, and numeracy in Alexandria. Regardless of the inclination

towards assimilation over diversity, Alexandria cannot be treated as a typical greco-roman

city. It was seen as a city separate from the rest of Egypt, although the Roman themselves

characterized it as Greek.25 Current scholars portray the city as a microcosm of all that

23Sly(1996), 42-43, 112-114; Smith(1974), 2, 111; Taylor(2003), 26.
24Josephus, Contra Ap., I.73-74.
25Haas(1997), 7; Philo, Legat. 250; Taylor(2003), 23. According to Haas, papryologists see Alexandria as

Mediterranean. It is refereed to as Alexandria ad Aegyptum, or Alexandria by Egypt.
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happens in antiquity: what occurred in Alexandria is treated as having happened anywhere,

anytime.26 The distinct political and educational autonomy enjoyed by Alexandrian female

in the fourth century CE, however, confounds the city’s modern treatment and defies some

ancient untruths.

In drama and the scant historical evidence, classical Greek women who were able to read and

count came from families that were elite or, in the case of Pythagoras’ family, able to tutor

their own children.27 Strict moral and societal boundaries prevented women from receiving

this education outside of their homes or in the presence of men who were not family or fam-

ily friends.28 The textual and archaeological evidence indicates that literate Roman females

were a more common occurrence.29 The attitude was that an educated daughter reflected

well upon the family and would be a more desirable partner for her future husband.30 The

preference, for Romans and the Greeks, was for a curriculum of literature, poetry, music,

and language. This would be to the greater benefit of the female student. Literacy promised

political advantages; married and single women were under the guardianship of their fathers,

husbands, or some other appointed male: their kyrios. A woman could be exempt from

needing a kyrios under the roman law of ius trium liberorum, the law of three children.

(Laws have been made), most eminent praefect, which enable women who are

honoured with the right of three children to be independent and act without a

guardian in all business which they transact, especially those women who know

how to write.31

26Pomeroy(1981), 310.
27Harris(1989), 307; Pomeroy(1977), 51-52, 57; In Euripides’ Hippolytus(856-81), the plot centers around

the letter written by Phaedra.
28Pomeroy(1977), 51, 52n9, 56; Cole(1981), 223, 227. The archaeological record of vases, terracotta, and

funeral monuments suggests that Greek girls were able to avail of education of equal qualities to boys.
However, when Women are the focus of similar scenes, holding a stylus or book roll, an immortal or priestess
is likely the true subject. Women with the ability to read were scorned if they weren’t thought incapable
of the task. Still, there were many female poets and philosophers that were active in the fifth and fourth
centuries BCE.

29Harris(1989), 2,163; Pomeroy(1977), 52n10; Taylor(2003),95-96.
30Harris(1989), 263.
31P.Oxy., 1467.
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While it was the birth of the three children that granted Aurelia Thaisous freedom from

the kyrios, need for a kyrios did not prevent her from writing and submitting her own case;

it served to enhance it. As for Jewish inhabitants, there was the monastic and mystical

association of the Therapeutae in Philo’s De Vita Contemplativa. The female members

were recognized as being highly educated and embracing a life of contemplation, philosophy,

music, and meditation separate from their families.32 The case has already been made here

for an Egyptian woman’s access to literacy. During the reign of the Ptolemies, increased

rights to their own property and wealth necessitated the increased involvement of women

in the legal realm of their villages and cities.33 Emperor Caracalla’s edict in 212 CE, the

Constitutio Antoniniana, bestowed upon all free men and women under the Roman Empire

the same rights as their Roman counterparts.34 However, it was also Roman law by that

time that while women could retain control of their inheritances, they could not act without

a kyrios. Egyptian women, Alexandrian or otherwise appear to have disobeyed the edict as

many women appear in the papyrical records as representing themselves after this date.

Alexandria thus provides an intersection of societal practices and freedoms that did not

rescind or fall out of practice in the face of the increased cultural influence of the Greeks or

the laws of the Romans.35 At the very least, a woman’s access to literacy, even if for strategic

reasons, was valued and rewarded by almost every other culture except the Greeks. But this

is to only talk about reading and writing; numeracy seems to be a rarer skill amongst females.

Excluding the women of Pythagoras’ family, the recorded participation of ancient women in

science and mathematics seems to explode in Alexandria by comparison.36

32Taylor(2003), 54-73, 99-104
33Pomeroy(1981), 303-305.
34Pomeroy(1981), 312-316.
35Pomeroy(1981), 316-317. There are some unusual instances of assimilation. Under Jewish Law, Jewish

women did not need a guardian but adopted the practice as they integrated into the Greek ruling class.
36Pomeroy(1981), 311. Of these women, Hypatia is the best known. There other females on record:

Pandrosion in Book 3 of the Collection, Diophilia, who wrote a poem on astronomy, and several female
neopythagoreans.
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1.3 Affluence and Literacy vs. Mathematics

Affluence in antiquity did not always guarantee literacy and numeracy. Roger Bagnall es-

timated that families literate in Greek in Roman Egypt were less than half of one percent

and even that number may be based on the assumption that affluence always accompanied

literacy.37 Many Alexandrians only needed the technical literacy to sign their own names

and there were entire offices in the city that were manned by members of the elite who were

illiterate despite their wealth.38 Still, formal education presented a young person in antiquity

with some of the few opportunities to learn mathematics beyond simple counting. It can

be assumed from this that many mathematicians in late antiquity were members of families

with means or were lucky enough to have been educated by relatives. As the cornerstone of

greco-roman education, reading and writing were essential to the training of the mathemati-

cian even if mathematics was not similarly valuable to the education of an orator etc. It was

possible, though, to have an interest or an capacity for mathematics without being literate.

One should consider the deviations implied by the situation in Alexandria; the possibility to

be fluent but not literate in Greek, permitted one to understand the dictation of Pappus’ text

and simultaneously see the demonstrations drawn out. Those who are neither fluent nor lit-

erate still had some form of secondary literacy through the employment of scribes. Surveying

Pappus’ potential audience so far, those groups that were anticipated to be literate met those

expectations. Those that had minimal access to literacy challenge the presumption that they

would not have access to mathematics. Such a situation is illustrated in the platonic dialogue

Meno. In it, Plato related how Socrates guided and illiterate slave boy through the creation

of a square double the size of a given square. The intent of the dialogue in this vignette

was to promote the innateness of geometrical knowledge because of the immortal soul but

the boy’s interest in the proceedings and his comprehension on the drawings made offers the

37Bagnall(1993), 182-183, 255.
38Bagnall(1993) 243, 243n67-68; P.Cain.Isid. p.16, 11.75-76. Aurelias Isidoros held several liturgical offices

over the space of two or three decades. Many of these positions were as a tax collector. He left behind a sizable
archive but he himself was illiterate. In fact, when he was sitologos, the entire college of tax collectors was
illiterate. Isidoros’ personal land holdings were significantly larger than his literate peers, certainly proving
that wealth and literacy do not have to correspond in antiquity.
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hope that anyone could learn mathematics.39

But Plato harkened back to a much earlier tradition of mathematics. One may call it semi-

oral as the public performance of mathematics required the rehearsal and memorization of

hundreds of diagrams.40 The performance of mathematics is at odds with the surviving

mathematical accounts of antiquity. No diagrams are extant; the constructions that sur-

vive are just over a millennia old.41 As elegant and simple as drawing on the sand may

be, it was actually a highly literate task in which the performer had to understand the sig-

nificance of what he drew.42 This was a skill that barely existed in its own right in the

greco-roman curriculum.43 The slave-boy in Meno evinced a certain rudimentary, innate

potential but mathematics had catapulted into advanced geometry by late antiquity. If lit-

eracy was required to draw a diagram and expound on it, then the knowledge required for

advanced geometric constructions precluded any possibility of mathematical talent arise from

the lower echelons of society as it did in previous centuries.

This is the gap that ultimately exists between the largest possible audience for the Col-

lection and those who practice mathematics. An audience can accompany a wide range of

skills and abilities but amongst the mathematicians, there were certain standards of educa-

tion that had to be met. Of course, the education of a mathematician will not be the same as

that of a Doctor and within Alexandria, the Museum and the Library are believed to be the

very institutions in which the differentiations in higher learning were made. The operation of

these places as centres of advanced education is speculative and it is preferable that we look

to the efforts of mathematicians in practice to see where the divisions were between careers

in mathematics and more applied fields.

39Plato Meno, 304-320.
40Netz(1999), 58-63.
41Ibid., 12.
42Ibid., 62.
43Ibid., 58-59.
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1.4 Mathematicians in the Field

Before one can estimate the size of a potential audience for Pappus in Alexandria or elsewhere

in the Empire, the number of practicing mathematicians should be calculated first. This is

to gauge amongst the upper classes how the size of an audience of Pappus’ peers might have

compared to an audience whose mathematical interest, on average, lay on the periphery. In

his text Shaping of Deduction in Greek Mathematics, Reviel Netz estimated that the

number was quite small even at the apex of mathematics most productive period. He argued

that there was no school of mathematics per se and the death of one mathematician would

have been disruptive, shedding some light on Archimedes’ particular despondency after the

death of Conon.44 Netz noted that between anonymous and known mathematicians in his

text, he listed 144 individuals.45 He conceded that the absolute number of mathematicians

available to anyone, at any time, in late antiquity would have been over twice that, around

300 known mathematicians.46

When it comes to just the number of mathematicians that were actually active in late

antiquity, Netz believed the number of practitioners changed. During what he considers

to be busier times for mathematics, he estimates that a classical mathematician could have

about 100 contemporaries, while in Late Antiquity, one could anticipate having 12.5 so-called

‘peers’.47 However, Netz gives over in his later works to seeing late antiquity as a period of

widespread decline and in this case, it is a matter of gaps in the mathematical record between

important works and/or mathematicians. These numbers are largely based on a combina-

tion of presumption and fact. The fact is that many of the mathematicians he listed are

not known independently from the mathematicians who mention them, leading Netz to the

presumption that mathematicians were not all that numerous in the first place.48 He goes

as far as to guess that the birth rate of geometers, arithmeticians, et al. was low; one birth

44Netz(1999), 285-286. Interestingly enough, looking at the tables in section 1.6, there seems to be a few
mathematicians active during Archimedes’ intellectual lean years.

45Ibid., 285.
46Ibid., 283.
47Ibid.
48Ibid.
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every two years.49

The number 12.5 may be speculative, but it is close to the number of contemporary individ-

uals referred to by Pappus throughout the surviving parts of the Collection: Hermodorus

was the subject of two dedications, Megethion received a dedication in Book 5, Book 3 is

directed to Pandrosion and refers to three of her students, the Philosopher Hierius and ‘many

others’ known to Pappus. Furthermore, unlike Books 2 and 7, Pappus clearly had a group

of colleagues who were mathematically inclined even if they were not mathematicians like

Pappus. There was also the Greek mathematician Serenus who was active during Pappus’

lifetime. Thus, Pappus’ contemporaries are at least 8 in number plus an unknown number

of ‘many others’. And these are just individuals that Pappus directly identified as being

interested in what he was producing.

1.5 Mathematical Professions

What of the educated who did not pursue a profession in mathematics but received the same

grounding in mathematics? In Cuomo’s survey of math-related professions in antiquity, i.e.

astrology, architecture, land-surveying, mechanics etc., much of the information regarding

the practical uses of mathematics came from the writings of men who were not professional

mathematicians.50 Astrologers, land-surveyors etc., all described their skills in a quantitative

language, boasting of the necessity of calculations and measuring in their day to day prac-

tice.51 These claims were dismissed as rhetoric but if it was rhetoric, Cuomo asks, then why

would have it been effective? What would their affiliation with the likes of Pappus be and

what did they intend to gain?52

49Ibid.
50Cuomo(2000), 9.
51Ibid., 9-10.
52Ibid., 10. Bernard(2003b), 103. Bernard argues that based fragments from Plutarch (103n51) and Galen

(103n52), one cannot assume that a mathematical education sans specialization was widespread.
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Sometimes, it was professional necessity that made many proclaim their mathematical prowess.

The better their mathematical proficiency, the more an astrologer could charge for a chart;

the better that such an astrologer was with using his tools, the better horoscopes he could

create. For others, mathematical knowledge gave architects and land-surveyors an edge pro-

fessional legal disputes. There was also social advantages to having a profession associated

with mathematics. In the astrologer’s horoscopes, interaction with mathematics was a de-

sirable destiny as those careers offered much in terms of wealth as well as authority through

social clout.53 Diocletian’s 301 CE edict of maximum prices, edictum de pretiis rerum ve-

nalium, illustrated this. There was a maximum set price on what one could charge their

students per month and it awarded bigger wages to those with specialized mathematical

abilities. Teachers of Arithmetic, [magistro] calculatori, could charge 50 denarii per boy per

month whereas a teacher of Architecture could charge 100 denarii and a teacher of Greek

/or Latin literature and of Geometry could charge the same pupil 200 denarii for the same

period.54 One should not understand Diocletian’s list as a reverse correlation between the

number of practitioners and fees charged; medical doctors and philosophers do not appear on

the list whereas lawyers, orators and rhetoricians do and receive high wages for their work.55

Instead, it seems Diocletian acknowledged that mathematicians and their ilk had more of a

presence in the Empire than modern scholars believe. The edict was never enforced but the

distinction between the careers listed presents greco-roman education as being more complex

than originally believed. The embrace of the applied fields such as Architecture show how

mathematical education expands beyond arithmetic and Euclidean geometry at some point

in a student’s education.

1.6 Historiographical Issues

Late antiquity has always been a troublesome period for Historians of Mathematics. It was

traditionally held that late antiquity was a period of overall decline with widespread corrup-

53Ibid.,17-20. write about land surveying.
54Diocletian, 344.66-346.74.
55Cuomo(2000), 30-31.
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tion, dying cities, and over-taxed peasantry amongst the many trials that would precipitate

the fall of the Roman Empire.56 This view does not sit well with Roger Bagnall. He accuses

modern scholars of holding to an unjustified attitude of perceiving societal and economic

struggles as indicators of societal failure.57 Neither “the absence of complete security and

the presence of a high level of risk is necessarily inimical to a vital society” and that advanced

and orderly societies might even thrive in those situations.58 Indeed, a general shift in the

perception of late antiquity has occurred and is gradually swaying Historians of Mathematics

to reassess the contributions made in the period. They may find little in the way of new

mathematical developments but Reviel Netz has extensively outlined how mathematicians

and commentators in late antiquity irreversibly transformed the mathematical landscape

through practices that are still used today.

1.6.1 Deuteronomic Texts

Using a self-coined term to describe all texts that depended on earlier texts, Netz is able to

classify practically all mathematical texts produced in late antiquity as Deuteronomic, recall-

ing the book Deuteronomy or second law.59 The authors of commentaries, new editions,

epitomes, and encyclopedic collections, which form a large body of work dated to this period,

borrowed heavily from the works of one or more of their predecessors if they did not outright

copy them.60 Netz’s selection of Deuteronomic to describe the output of late antiquity is ap-

propriate. The distinction between deuteronomic texts and classical mathematics is deeper

than author and audience, teacher and students; it is about the difference in what mathe-

maticians in these periods felt was important. There was a transition in the way the former

wrote mathematics, away from original work and into scholia, marginalia, and commentaries.

56Bagnall(1993), 3.
57Bagnall(1993), 12.
58Bagnall(1993), 13.
59Netz(1998), 262. Deuteronomy will be familiar to many as the fifth book of the Hebrew bible. In it

are laws to live by. The title plays on similar words in Greek (deuteronomion) and Latin (deuteronomium);
technically these words literally mean second law but in the Septuagint translation of the Jewish scriptures
into Greek, the title Deuteronomy was borrowed from the incorrect rendering of the Hebrew phrase mishneh
ha-torah ha-zot : ”a copy of this law”.

60Netz(1998), 262-263.
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The scholastic and pedantic qualities Netz ascribed to late antiquity and medieval math-

ematics are of course modern labels. They represent the spirit of the works of these later

writers but also share in their tendency to present centuries of classical mathematic develop-

ment in a singular fashion. That is to say that irrespective of the motivations and aspirations

of individual mathematicians and the variations in the quality and quantity of their output,

they are written about as if they worked in concert towards a shared goal. This extended to

how they wrote about the practice of mathematics as later writers attempted to bring the

classical mathematicians into line with newer practices. In his commentary on the first book

of Euclid’s Elements, Proclus stated that all problems and theorems contained six parts:

protasis, ekthesis, diorismos, kataskeue, apodeixis, and sumperasma.61 This would be a help-

ful way to understand propositions in antiquity if not for the absence of such an explicit set

up written of elsewhere. It does not occur in the classical or hellenistic periods and it does

not appear in the generations immediately preceding Proclus. Normally, this would not be

problematic. One can gain from Proclus’ paragraph that by his time, mathematicians were

immersed in the structural milieu of their practice. It is not uncommon, though, for modern

scholars to apply those six parts to propositions that were written without the anticipation

of that template.62 It is anachronistic to presume that the understanding of later mathe-

maticians was shared by their predecessors.

Thus, Netz may have provided a valuable set of categories by which one can identify texts

as deuteronomic, but they require more than just a comparison between the original and the

inspired text. One must also attend to the integration of scholia and marginalia into the

preferred edition of the original. There is a great amount of interference from scholars past

and present in this regard for their participation has made them most responsible for the

canon-formation of Greek mathematics as it is known today.

Two of Netz’s first categories, vertical and horizontal pedantry, highlight the problem of

61Netz(1998), 268.
62Hintikka(1974), 24-30. Bernard(2003b), 96n17. Despite allusions to Plato in Pappus’ work, Bernard

cautions about making too strong a link between Pappus and Proclus as Proclus’ remarks are neoplatonist.
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the inclusion of later scholia into the earlier text. In these situations, the implicit is made

explicit. Vertical pedantry is recursive. A figure or relationship that was otherwise presumed

by classical mathematicians would be extracted and explicated upon by commentators.63

That is, the existence of the figure or relationship is unnecessarily discussed and affirmed.

Horizontal pedantry is repetitive. Rather than content themselves with the single case of the

classical proof, later mathematicians presented all the other cases, which only go to support

the first case.64 As before, all the additional cases were implied by classical mathematicians,

with one case believed as sufficient to demonstrate the solution to the problem or the truth

of the theorem.

The next set of categories reveal the paradoxical nature of deuteronomic texts. Pedantry

encourages there to be more objects, more cases, more steps, and ultimately more triviality

to the proof. However, deuteronomic writers actually desired the organization of mathe-

matics into a finite number of categories. The categories were based on characteristics that

classical mathematicians were indifferent towards. One such category is standardization.65

Recalling Proclus, the form of the proposition was one such area of interest. He appended

a conclusion to a proposition in his commentary so that Euclid would conform to his tem-

plate.66 Geometrical solutions were also classified according to the tools and means used.

Geometers strictly adhered to their standardizations and sometimes this led to divisions in

the manuscript tradition. The splits are sometimes minor. In the case of Euclid’s Optics,

there is a manuscript in which the lettering of the diagrams within a series of propositions

remains consistent instead of the usual practice of the points changing as new objects are

added.67 Two equally important, and related, categories are classification and erudition.

For classification, later mathematicians deliberately changed original texts by separating the

content into chapters, tying together sections they believed to share one or two main argu-

63Netz(1998), 263-265.
64Netz(1998) 265-268.
65Ibid., 268-271.
66Ibid., 270n13. Proclus’ analysis is geared towards theorems, but the first proposition of the Elements

happened to be a problem. Problems tend not to have conclusions but since Proclus was trying to create
consistency in his commentary, the problem was treated as a theorem.

67Ibid., 277. The division occurs in the one manuscript that is the only Greek mathematical work in which
a letter is consistently inscribed on an object: K denoted the center of a circle.
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ments.68 This in turn contributed to the practice of erudition. Able to reference the chapters

and propositions of the original work, a late antiquity mathematician could both show off

his learning and demonstrate that his work was deserving of a place in history.69

The transformation in the outlook on productivity and contributions affirms that there was

much development in late antiquity mathematics. Mathematicians and commentators be-

came increasingly engaged in questions of how their predecessors wrote about the mathemat-

ics they performed. Netz’s picture of mathematics in Late Antiquity is truly intriguing as

the search for unification and standardization show a growing appreciation for the differences

in methods and their intent along side the growth of practices that capture the evolution of

meta-mathematical thought.

1.6.2 The Collection

The style and culture of late antiquity mathematics establishes certain expectations of both

the Collection and its author. Netz would say that Pappus, as a mathematician of this

period, was preoccupied with the form of classical problems and would make alterations to

their presentation that would have been foreign to their authors. His corpus would consist

largely of surveys, epitomes, and commentaries and thus the Collection would be a sketch

of what is present in the corpus, with frequent reference to the original text.

By and large, these expectations are fulfilled. Outside of the Collection, much of Pappus’

work comprised of commentaries or encyclopedic collections.70 Four other works survive.

With respect to commentaries, there is one on Ptolemy’s Almagest and another on Book

10 of Euclid’s Elements. As for an encyclopedic collection, there are seventh century Arme-

nian fragments of a work mentioned in the Souda called Chorography of the Inhabited

World; it followed the arrangement of Ptolemy’s Geography but included amusing but fan-

68Ibid., 270.
69Ibid. 277, 279. Classical mathematicians did not do this.
70Jones(1986), 293-294.
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ciful descriptions of the lands. The final surviving work is known from a ninth century Arabic

translation as Introduction to Mechanics. It appears to be a stand-alone text but while

it essentially agrees with the text of Book 8 of the Collection, it includes additional material

including the conclusion that is missing from the Greek translation and constructions from

straight-edge and compass.71 Jones thought that it was possible that this was a later revision

of Book 8 that somehow did not replace the earlier version in the Collection.72 There were

three rather encyclopedic works that are now lost: The Rivers of Libya, Interpretation

of Dreams, and an unnamed astrological almanac. There were also three commentaries,

another on the Elements, on Ptolemy’s Planispherium, and Diodorus’ Analemma. Fi-

nally, there was an alchemical oath and formula that appeared under the name of Pappus,

but its authorship is questionable.

As for the Mathematical Collection itself, one is always balancing between understanding

the text as it survives today and how it once was in its complete form. It is accepted that

the text consisted only of eight books containing a variety of topics from large numbers to

mechanics. The entirety of Book 1, the first half of Book 2 and the final half of Book 8 are

lost from the Greek manuscripts.

Contents of the Collection
Book Details
[2] Multiplication of large numbers
[3] Geometrical problems: Finding two mean proportionals

between two given magnitudes, the theory of means, the
paradoxes of Erycinus, and non-Euclidean methods to
inscribe five regular solids into a sphere.

[4] Miscellaneous theorems and special curves
[5] Isoperimetry after Zenodorus, theory of solids, and the

comparison of the five platonic bodies
[6] Resolution of difficulties in the little domain of Astron-

omy
[7] Lemmas to the domain of analysis
[8] Mechanical problems, scope and divisions of mechanics

However, it is possible that the Collection is more complete than first thought. As men-

71Ibid., 9.
72Ibid.
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tioned previously, there is an Arabic translation of a work by Pappus that is a complete and

expanded update of Book 8. Jones also mentioned the papal inventories from about 1311 CE

refer to a text that is a “...Commentary of Pappus on the difficult things of Euclid and on the

rest of geometry”.73 Unless there was a another lost Pappian treatise in Europe at this time,

Jones cannot not see this commentary as being anything other than the Collection which in-

cluded Pappus’ commentary on the Elements Neither of these lost/found texts give any sign

that they were excerpts of a larger work.74 However, because the commentary on Book 10 of

the Elements is not widely accepted as the missing Book 1 of the Collection, there are still

some who believe that Book 1, by dint of preceding Book 2, was an arithmetical text.75 This

is not an unreasonable hypothesis as a mathematician with the breadth of interests clearly

seen in Pappus could hardly have excluded arithmetic from his oeuvre. It does not take into

account that, in a broader sense, the Collection is predominantly geometrical. Supposing

the topic of Book 1 on the basis of its proximity to a text that is superficially understood is

spurious at best. Yet, Books 1 and 2 may benefit from a realignment with the overall theme

of the Collection: Geometry and its application. Little more can be presumed about the

content of Book 1 here but recasting Book 2 in this light may improve one’s understanding

of the text.

73Jones(1986), see p.46 for a convincing argument for the Commentary on the Elements being the lost
Book 1 of the Collection

74Bulmer-Thomas(1997), 291, 294; Jones(1986) 16, 21. Jones evaluates Bookes 3, 5, 8 as self-standing; 2,
6, 7 as accompaniments to older texts, and Book 4 covering mostly introductory topics. It is also digressive
and Archimedean.

75Bulmer-Thomas(1997), 294.
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Demography of the Collection
Descriptors Names
[Heath’s list] Apollonius of Perga, Archimedes, Aritaeus the

Elder, Aristarchus of Samos, Autolycus, Car-
pus of Antioch, Charmandus, Conon of Samos,
Demetrius of Alexandria, Dinostratus, Diodorus,
Eratsthenes, Erycinus, Euclid, Geminus, Heracli-
tus, Hermodorus, Heron of Alexandria, Hierius,
Hipparchus, Megethion, Menelaus of Alexandria,
Nicomachus, Nicomedes, Pandrosion, Pericles,
Philon of Byzantium, Philon of Tyana, Plato,
Ptolemy, Theodosius

[Dedicatees] Hermodorus, Megethion, Pandrosion
[Unknown mathematical occupation] Hierius, Megethion, Hermodorus
[Not mentioned in Heath’s list] Sporus, Pandrosion’s three students, Pappus’ and

Hierius’ friends, Hippias, Plato, Zenodorus76

Thomas L. Heath listed 32 individuals that Pappus’ mentioned throughout the Collection.77

Most of them can be confirmed as mathematicians either by Pappus’ heavy reliance on their

works within the Collection, through their own independent works, or more frequent ref-

erence elsewhere in Greek mathematics. Heath’s list is not exhaustive: Sporus, Hippias,

Zenodorus, Plato are not on it. A handful of names are also unknown outside of Pappus.

Sometimes, there is a lack clarity in Heath’s identification of them. Often it can be difficult

to figure out where they stand in the chronology of Greek mathematics; Heath distinguished

Heraclitus of Ephesus the Philosopher from a supposed mathematician named Heraclitus in

his work, Greek Mathematics.78 If the Heraclitus mentioned was the former, then the

chronology of the works in the Collection could easily go back as far as 535 BCE, long

before Hippias, the earliest mathematician mentioned. The mathematician closest to Pappus

in terms of chronology is the commentator Sporus, easily an older contemporary of Pappus,

who is followed by the astronomer Ptolemy, who died over 150 years before the Collection.

On the other hand, while one will not call the topics in Book 3 new even for late antiquity,

Pappus does mention a rather large group of people who were active in the mathematical

scene in Alexandria either as Mathematicians or interested parties. There are indeed three

unnamed students plus Pandrosion, possibly Hierius, and an uncounted number of lovers of

mathematics, whose constructions, errors, and solutions are the subjects of Book 3. Because

77Heath(1921)ii, 358-360.
78Heath(1921),ii, 577.
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of the historical value of the problems therein take priority in the history of mathematics,

the currency of Book 3 is an aspect of the Collection that is always overlooked.
Chronology of The Collection’s Demography

Timeline Mathematician
[460-370 BCE] Hippias
[428-347 BCE] Plato
[390-320 BCE] Dinostratus
[360-300 BCE] Aristaeus
[360-290 BCE] Autolycus
[325-265 BCE] Euclid
[310-230 BCE] Aristarchus
[287-212 BCE] Archimedes
[280-210 BCE] Nicomedes
[280-220 BCE] Conon, Philon of Byzantium
[276-197 BCE] Eratosthenes
[262-190 BCE] Apollonius of Perga
[200-140 BCE] Zenodorus
[190-120 BCE] Hipparchus
[160-90 BCE] Theodosius
[First century BCE] Diodous
[10 BCE-69 CE] Geminus
[10 CE-70CE] Heron of Alexandria
[70-130 CE] Menelaus
[85-165 CE] Ptolemy
[240-300 CE] Sporus
[300 CE onward] Pappus, Pandrosion, Hierius, Megethion, Her-

modorus
[Ambiguous] Demetrius, Heraclitus
[Unknown date/pre-Collection CE] Philon of Tyana, Erycinus
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Occurrence of Names throughout the Collection
Book Authors
[2] Apollonius of Perga, possibly Euclid
[3] Pandrosion, 3 unnamed students, Hierius, Er-

atosthenes, Philon*, Heron, Nicomedes, Erycinus,
Plato

[4] Archimedes, Nicomedes, Sporus, Dinostratus,
Hippias, Demetrius of Alexandria, Philon of
Tyana, Menelaus of Alexandria, Apollonius

[5] Megethion, Zenodorus, Archimedes
[6] Ptolemy, Theodosius, Euclid, Menelaus, Autoly-

cus, Aristarchus
[7] Hermodorus, Euclid, Apollonius, Aristaeus, Er-

atosthenes
[8] Hermodorus, Archimedes, Philon, Heron, Carpus

of Antioch, Ptolemy

Therefore Books 3, 4 (mentioning Sporus and Menelaus), 6, and 8 (surveying Ptolemy’s

works) may indicate which topics that had popular interest, as in the case of Book 3, or

were venues of recent mathematical activity besides Pappus’ own contributions (books 4, 6,

and 8). There are about 150 years unaccounted for according to the final list of mathemati-

cians and Pappus does not cover every topic in mathematics. In some ways, this chronology

of mathematics in the Collection confirms the older interpretation of late antiquity as a

period of decline or, more specifically, lack of mathematical progress. One cannot say that

there was no progress whatsoever. There were still developments and gaps in the chronology

were not as long nor frequent: Diophantus (200 - 284 CE) and Porphyry (233 - 309 CE) do

fill in a large portion of that 150+ year gap between Ptolemy and Pappus, with Diophantus

producing essentially original material in the field of arithmetic and Porphyry writing ubiqui-

tous late antiquity commentaries. Erycinus may also be a name that can be placed in the gap.

The final question that remains in setting the scene concerns the audience Pappus was writ-

ing for and how one should view the structure of the Collection. The Collection is a text

of commentaries, histories, and assembled constructions. It has been established previously

in this chapter that Pappus had a significant selection of the Alexandrian population from

which he could draw his audience, but what is not known is whether the Collection was

initially a collection.
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The purported manuscripts of Book 1 and Book 8 give no sign that they were part of a

larger corpus. If the books of the surviving Greek text were likewise removed from the Col-

lection, these too would give no indication as to their placement in a larger text. The books

do not contain any of the self-references that are expected from a text that was written with

the intent of being part of a Collection or as a deuteronomic text. Late antiquity commenta-

tors often titled and subdivided works of older texts in way they felt were appropriate. One

could look at the Collection and see that maybe Pappus’ own commentators, should they

have existed, took what was once a single text and separated the material into appropriate

books. However, the existence of dedications in at least four of the surviving books, implies

that they were initially separate treatises. The disparity and isolation of their topics certainly

suggest this. Whether it was Pappus who did this or some later unnamed mathematicians

is not unimportant but it is irrelevant to this discussion. What has priority is that the Col-

lection clearly had two types of audiences regardless of the final authorial decision: Eight

individual audiences for each book and one audience for a collection.

Heath once suggested that the Collection could be a handbook, albeit one intended to

revive the classical Greek geometry. It was to be read with the original works (which were

still extant) rather than replace them.79 This is supported in Book 4 when Pappus ends with

an analysis of the neusis construction assumed by Archimedes in On Spirals, “in order that

you will not be nonplussed when you work through the book”.80

Heath admitted that this did not hold up when the history of a mathematical subject was

given. The originals would be too numerous to collect and thus the treatise would serve as

its stand in.81 It seems rather ironic that in many cases Pappus’ text has survived whereas

the indispensable texts have been lost.

Heath’s suggestion also implied authorial uniformity and involvement in the production of

79Heath(1921) ii, 358.
80Jones(1986), 7.
81Heath(1921) ii, 358.
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the Collection as a collection. As stated, it is not so much who collated a collection as it is

for whom it was collated. Support for the books originally being separate treatises presents

itself in Book 3. In setting out the historical constructions of the problem of two mean pro-

portionals, none of the solutions presented use conics even though there were several ancient

solutions that did. Jones believes that Pappus perhaps thought it too advanced for the in-

tended readers of that particular book.82 However, conic sections are mentioned in Book 4, a

part of which is devoted to special curves. Pappus was clearly knowledgable in these matters

but the discrepancy between books is inexplicable unless one believes that each book had a

separate audience.

The audience of an individual treatise would easily have larger cumulative audience than

a collection. The ability to own any sort of writing was limited to the affluent in antiquity

but in an educational setting, an enterprizing student or teacher might make their own copies

or disseminate the teachings amongst a larger group. It may thus seem that the identifica-

tion of Pappus’ audience may remain hopelessly vague and the question ultimately fruitless.

Instead, it is demonstrated that while Pappus’ audience was potentially quite large, he wrote

very specifically depending on who he was writing to, taking into account skill level and

knowledge and interests. When his audience changed, so did the level of discourse.

To briefly conclude, as both a product of late antiquity as well as the work of a man from

Alexandria, the Collection and its many influences are often not as well understood as once

believed. Standing before it was over a millennium of Egyptian advances in literacy and nu-

meracy as well as a scribal culture that enabled a form of secondary literacy to arise, allowing

illiterate citizens such as women to become heavily involved in the government, economics,

and legal system of their village. The not-so-sudden influx of Greek and Roman culture was

certainly a death knell of written Egyptian, but not so for spoken language, thus necessitating

the maintenance of the scribal class that expanded a possible, literate audience for Pappus’

work to include people other than the affluent and educated. But, the intellectual demand

of mathematics by late antiquity restricted that potential. In its midst, the Collection was

82Jones(1986), 5.
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part of a shift in writing Greek mathematics which gave priority and prominence to the lan-

guage and format of classical Greek mathematics instead of the mathematics proper. This

change influenced the opinion of modern scholars to view the mathematics of late antiquity

as vulnerable to the same decline as everything else in antiquity. Nevertheless, Pappus had

a wide range of interests, old and new, that allowed the Collection to be accessible to au-

diences with differing levels of mathematical literacy. It has also become one of the more

valuable resources in the history of ancient mathematics for the record that Pappus keeps of

important mathematical discoveries that are not found elsewhere.
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Chapter 2

The Domain of Analysis

The Collection, Books 5 and 7 in particular, was acknowledged by Descartes, Newton, and

others, as having inspired their own achievements. Unfortunately, the same people were

suspicious about the ancients recognition of similar accomplishments in their own works.1

Of course, Pappus was the most emblematic of this even though it is he who provided the

strongest case for the ancients’ capabilities with analysis and synthesis.

Apollonius, Aristaeus, Eratosthenes, and Euclid are named by Pappus as authoring the

foundational texts of analysis and synthesis. By reputation alone one would not say that

these men were inept by modern standards. But one can appreciate the difficulty that Early

Modern scholars faced when it came to obtaining multiple the manuscripts needed to verify

Pappus’ claims. Most of them are lost but Pappus’ epitomes motivated many mathemati-

cians and scholars to try and restore the original texts. Still, it is bad historical practice

to assume that a practitioner or practitioners for not know what they are doing, especially

where the extant text revels otherwise.

The Domain of Analysis thereby provides a starting point from which analysis and syn-

thesis, as Pappus knew it can be examined.

1Hintikka(1974), 7n1.

45



2.1 The Domain of Analysis

Critical to Pappus’ exposition of analysis and synthesis are the following two passages from

the introduction of the Collection. The text opens:

That which is called the Domain of Analysis, my son Hermodorus, is, taken

as a whole, a special resource that was prepared, after the composition of the

Common Elements, for those who want to acquire a power in geometry that is

capable of solving problems set to them; and it is useful for this alone. It was

written by three men: Euclid the Elementarist, Apollonius of Perge, and Aristaeus

the elder, and its approach is by analysis and synthesis. Pappus, Collection 7.1:

1-10 (as translated by Jones(1986)).

And the end of the introduction closes with a catalogue of works as followed:

The order of the books of the Domain of Analysis alluded to above is this:

Euclid, Data, one book; Apollonius, Cutting off of a Ratio, two; Cutting off of an

Area, two; Determinate Section, two; Tangencies, two; Euclid, Porisms, three;

Apollonius, Neuses, two, by the same, Plane Loci, two; Conics, eight; Aristaeus,

Solid Loci, five; Euclid, Loci on Surfaces, two; Eratosthenes, On Means [two].

These make up 33 books. I have set out epitomes of them, as far as the Conics

of Apollonius, for you to study, with the number of dispositions and diorites and

cases in each book, as well as the lemmas that are wanted in them, and there is

nothing wanting for the working through of the books, I believe, that have I left

out. Pappus, Collection 7.3: 13-25 (as translated by Jones(1986)).

The reference, in the first quote, to Hermodorus is telling as Hermodorus was not Pappus’

son. My son was used as an endearment that can also mean my student. This often occurs in
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Egyptian papyri where the ‘brothers’ and ‘uncles’ addressed in letter were not related to the

sender by any means. Somewhat more profound than this cultural nuance is the consequence

of this work being addressed to a student rather than a fellow full-fledged mathematician.

Hermodorus may have been a promising student who was deserving of a mathematical trea-

tise on several mathematical texts written just for him. The truth is likely to be less extreme.

It could have been that Hermodorus impressed Pappus enough that the older mathematician

believed that his student would understand and follow his lengthy lemmas but the youth was

early-on in his training. With his student unfamiliar with Domain of Analysis and what it

entailed, Pappus was pressed to write this text in a manner that departs from other math-

ematical commentaries and treatises. That is, Pappus needed to provide lots of technical

details about each text from the Domain that would otherwise have been omitted even by

other late antiquity mathematicians. Conversely, one must be wary of Pappus’ explanation

of analysis and synthesis. If he must tell his student what was in Apollonius’ Conics, then

one cannot anticipate Pappus to get too complicated with the lemmas he provided from that

and other Domain texts. One can only expect a summary explanation that places the essence

of analysis and synthesis ahead of its actual practice.

Pappus does not specify what form the Domain of Analysis took; whether it was a collection

of complete treatises or a selection of propositions from which Pappus only included lemmas

from Cutting off of a Ratio, Cutting off of an Area, Determinate Section, Neuses, Tangencies,

Plane Loci, Porisms, Conics : Books 1 − 3, 5 − 8, and Loci on Surfaces. Propositions from

Euclid’s Data, Aristaeus’ Solid Loci, and Eratosthenes’ On Means are not included.2 Pappus

does specify when the Domain of Analysis was compiled, on that it was after the composition

of the Common Elements that Pappus refers to in the first excerpt. According to Jones,

such a title would refer to such things that are common to all branches of mathematics.3

He also commented that Common Elements did not refer to Euclid’s Elements. This is

based on the frequency which Pappus used other words to denote Euclid’s work, i.e. First

2Jones(1986), 69. Pappus is the only substantial source of the Domain, but it was known by Marius
around 500 CE and Eutocius quoted from it (or Pappus) a century after that.

3Jones(1986), 380.
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Elements (prota stoicheia) or just Elements (Stoicheia).4 However, looking to both Jones

and the Lidell-Scott Greek-English Dictionary prove that Elements itself can refer to other

works as well. Outside of Book 7, it is used to title at least two non-Euclid texts in the

Collection.Within Book 7 itself, it was used to describe works by Aristaeus (Solid Loci),

Apollonius (Plane Loci), and Euclid (Porisms). It was a term used in a adjectival manner

and referential to whichever text was the subject of discussion. It did not necessarily refer

to a text that would have been most familiar to Greek readers.

The date when the Domain was compiled is not clear either. If one were to assume that

the Domain of Analysis was compiled by one of the mathematicians whose works were in-

cluded, the latest possible date for the Domain of Analysis would fall within the purported

year of the death of its latest contributor. This would be Apollonius, who supposedly died

in 190 BCE. One could easily add 5 years to account for students or friends taking up the

compilation and preparation the text post-humously. If Domain of Analysis was not written

by Apollonius, than the earliest it could have been produced is 242 BCE, 20 years after the

purported birth year of Apollonius, adjusting for a prodigious youth.

2.2 The Domain and Book 7

It seems that analysis and synthesis was a familiar tool long utilized by classical mathemati-

cians and their descendants. In the few places where one could compare what Pappus wrote

to the original text itself, the differences in manuscripts complicate the proper coordination

between the texts.

Pappus divided Book 7 into two sections. The first are the epitomes, which offer histori-

cal and technical details about each text in the domain. The second section is the lemmas,

which make up the majority of Book 7. For Pappus, a lemma is a statement that is used as a

4Ibid.
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stepping stone toward the proof or result of another statement. They less important than the

original proposition but are necessary for the validation of the more mundane details of the

proof or for results that are used repeatedly in the work.5 Keen eyes and minds are clearly

needed to match a lemma to its appropriate proposition or theorem. For Heath, Pappus’

lemmas were particularly problematic:

It is difficult to give any summary or any general idea of these lemmas, because

they are very numerous, extremely various, and often quite difficult, requiring

first-rate ability and full command of all the resources of pure geometry. Their

number is also greatly increased by the addition of alternative proofs, often re-

quiring lemmas of their own, and by the separate formulation of particular cases

where by the use of algebra and conventions with regard to sign we can make

one proposition cover all cases. The style is admirably terse, often so condensed

as to make the argument difficult to follow without some filling-out; the hand is

that of a master throughout. The only misfortune is that, the books elucidated

being lost... it is difficult, often impossible, to see the connexion of the lemmas

with one another and the problems of the book to which they relate. Heath,The

Handbook of Greek Mathematics ii, 404.

This is exactly the case in Jones’ commentary on Pappus’ lemmas to Apollonius’ Conics.

Excluding the Arabic texts (as the text from which they are based is of unknown prove-

nance), it is believed that Pappus likely worked from an earlier manuscript than Eutocius

(early 6th century) consulted for his commentary of Conics’ Books 1-4.6 Jones identified

numerous discrepancies between the text transmitted to us today and the text that Pappus

was responding to. At the end of the epitome, Pappus stated that:

The eight books of Apollonius’ Conics contain 487 theorems or diagrams, and

5Jones(1986), 71. Jones appraisal of Pappus’ lemmas is not promising: Dreary reading, not the most
advanced or innovative geometry.

6Jones(1986), 474-475, 474n17.
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there are 70 lemmas, or things assumed in it. Pappus, Collection 7.42:10-12 (as

translated by Jones(1986)).

Since there are only 410 propositions in the 7 extant books of the Conics, it has been pro-

pounded that there may have been an 8th book with 77 proposition. Jones disagrees because

that was simply too many propositions.7 Jones did suggest that Pappus possibly employed a

different method of counting or merely over-counted but Pappus was also known to combine

or reduce the original propositions in his other texts.8 However, given the condition of Book

7, Jones’ view is more than justified. Lemmas are either bungled (lemmas 244, 276, 279,

298), unexplained(lemmas 242), trivial (lemmas 247, 279, 281 282, 283), or, in rare cases,

useful but not otherwise present in the modern text of the Conics (lemmas 233, 234, 235,

236, 270, 280). More frequently are identifications, made by Jones and others, of lemmas

that could be attached to specific propositions but were of uncertain relevance (lemmas 240,

242, 247, 255, 257, 259, 260, 261, 277, 278, 279). Jones and others were trying to take a

text that was written in response to the Conics and expected that Pappus would conform

to the Conics. However, if Pappus is publishing lemmas he found wanting in the originals,

than matching Conics to the Collection will undoubtedly be difficult. Pappus tends to

select a single line or a simple geometrical diagram from what might have originally been a

complicated curve.

Just as the coordination and fact-checking of the differences between Pappus’ lemmas and

the Conics was out of the scope of Jones’ work of Book 7, it is also out of the scope of

this thesis, but it is important to keep some things in mind. One cannot be sure if Pappus

wrote a commentary based on a secondary source or if he followed its format and provided

Hermodorus with lemmas derived from the original material. The Collection provides more

than ample evidence that Pappus likely had the best access to the original texts than most

later commentators and thereby would be capable of achieving the latter. For Book 7 to re-

flect to the former would be somewhat unheard of and if Book 3 is any proof, Pappus would

7Ibid., 498.
8Ibid., 498.
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make it well-known if he thought there were any mistakes. He is high-handed in addressing

mathematicians who were not classical authors.

2.3 Provenance and Originality of Book 7

While the source or sources of Book 7 cannot be completely clarified, the descriptions of anal-

ysis and synthesis therein are fully attributable to Pappus. First, he made a clear distinction

between what he provided to Hermodorus and what the Domain of Analysis offered: “I have

set out three epitomes of them,... as well as the lemmas that are wanted in them, and there

is nothing wanting..”.9 The Domain of Analysis, regardless of its format, clearly motivated

Pappus’ own work. In stating that the epitomes of Book 7 were set out by him for the benefit

of Hermodorus, Pappus thereby claimed to have extensive knowledge of most of the works

in the Domain. However, the bulk of Book 7 consists of lemmas that, as mentioned above,

were added wherever Pappus thought they were wanting.

Additionally, his reverence towards classical mathematicians is maintained as long as they

were reverent to the successes of their predecessors.10 Otherwise, Pappus becomes increas-

ingly critical of their efforts.

Our immediate predecessors have allowed themselves to admit meaning to

such things, though the express nothing at all coherent when the say ‘the (thing

contained) by these’, referring to the square of this (line) or the (rectangle con-

tained) by these...They who look at these things are hardly exalted, as were the

ancients and all who wrote the finer things. When I see everyone occupied with

the rudiments of mathematics and of the material for inquiries that nature sets

before us, I am ashamed; I for one have proved things that are much more valu-

9Ibid., 7.3:20-21.
10Bernard(2003b), 100. This reverence may have been drilled into Pappus. The works of ancient philoso-

phers and mathematicians was standard fair for greco-roman education.
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able and offer much application. Pappus, Collection 7.41:24-29 (as translated

by Jones(1986)).

.

If the Domain of Analysis was anything other than a genre, Pappus would not have hesi-

tated to comment. Instead, we are told by Jones that most of the mistakes in the Collection

are due to Pappus himself, with the exception of the final set of propositions appended at

the end. And so we continue through Book 7 having learnt two things about Pappus’ take on

analysis and synthesis. First, is that he has learnt the methods from the best of the classical

mathematicians. Second, his transmission of that knowledge is hampered by his interlocutor;

a student whom Pappus presumed did not know what the Domain contained and implied.

Through the comparison between exposition and the propositions the impairment of writ-

ing an introduction to someone how is less mathematically astute has also impaired modern

scholars ability to truly understand Pappus as they are supposed to. It is in the next couple

of chapters that I hope I can begin to push Pappian scholarship into productive period once

more.
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Chapter 3

Everyone Love Archimedes: A Brief
Prelude to Pappian Analysis and
Synthesis

Having set the scene for an examination of Pappian mathematics, we will actually take a

step back and take a brief look at the analysis and synthesis of Pappus’ acknowledged prede-

cessors. The surviving texts of the Domain of Analysis are unsuitable for this task: Euclid’s

Data does not include synthesis; Apollonius’ Cutting off of a Ratio,Cutting off of an

Area, Conics, and Tangencies are too involved, or still unknown quantities, for the general

example we seek here.

It does not help that the numbers of analysis and synthesis pairs in classical mathemat-

ics that are extant are so few. Archimedean corpus has 6 pairs; Apollonius has 6 pairs;

Euclid has 5 pairs which are actually post-Euclid insertions.1. The five pairs are also theore-

matical analyses, a rare but naive type of analysis as Jones tells us; obviously not a desirable

set to work from. I have selected a problem out of Archimedes’ Sphere and Cylinder.

Although he is not named in the Domain, the immediate influence of Euclid would still have

been resonant when Archimedes was a young student and he was an older contemporary to

1Netz(2000), 140-141
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Apollonius and Eratosthenes. Archimedes is referred to elsewhere in the Collection, so this

inclusion is in keeping with what is known about Pappus’ mathematical interests. Ultimately,

it is the familiarity and accessibility of Archimedes that make him an ideal representative of

analysis and synthesis. We know that he is not a feeble mathematician and can be trusted

to sufficiently represent classical mathematical practice of analysis and synthesis.

3.1 Sphere and Cylinder, Book 2, Proposition 3

Figure 3.1: Proposition 3, Book 2, Sphere and Cylinder from Heiberg

The enunciation of the analysis declares that on is to cut a given sphere with a plane so that

the surfaces of the segments may be in a given ratio to one another. The figure is constructed

first, with AB∆Γ representing the great circle of the sphere. AB is the diameter and DE

is the plane that cuts it perpendicularly, but the position of the intersection is unknown. A

and B are connected at point ∆.2

The ( given) ratio is the surface of segment ∆AE to the surface of segment

∆BE[1] but the surface of segment ∆BE is equal to a circle that has a radius

equal to A∆[2]; the surface of segment ABE is equal to a circle with a radius

equal to ∆B[3]. Thus the pronounced circles are to each other[4]. The square of

AD is to the square of ∆B[5]; this is as AΓ is to ΓB[6]. Therefore the ratio of AΓ

to ΓB is given[7]. Thus point Γ is given[8]. And DE is perpendicular to AB[9].

2Archimedes Sphere and Cylinder i, 206.5-206.9
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Therefore ∆E is given in position[10].

Archimedes, Sphere and Cylinder 2.3, 184.10-184.20.

[1]-∆AE:∆BE.

[2]-∆BE= circle with rad. of A∆.

[3]-∆AE= circle with rad. of ∆B.

[4]-A∆:∆B.

[5]-A∆2:∆B2.

[6]-A∆2:∆B2=AΓ:ΓB.

[7]-AΓ:ΓB is given.

[8]-Γ is given.

[9]-∆E is perpendicular to AB.

[10]-∆E is given in position.

An analysis, as completed by Archimedes, appears to proceed like so. Once the figure

is established as having been established, the reader is given a ratio that is by no means

supportable from the information they have been given about the diagram. However, since

∆AE:∆BE is in a given ratio. If this is the goal determined by the enunciation, then the

Archimedes will have completed a problem before it even started. Instead, he continues on.

Using a proposition that was proven in Propositions 42 and 43 of the first book of Sphere

and Cylinder, Archimedes knows that he can manipulate ratios and the segments to create

an equivalent ratio between the circles that are formed from the hypotenuses of the right-

angled triangles BΓ∆ and ∆ΓA, which then become similar triangles.

He performs one final manipulation in step [6]. He uses a variation of Book 5, definition

10 from Euclid’s Elements: when four magnitudes are in continuous proportion, the first is

said to be the cubed ratio of the fourth i.e. if αβ=βγ=γδ then α:δ=a3:δ3. Using only three

magnitudes, a duplicated result can be achieved i.e. αβ=βγ then αγ=α2β2. Archimedes

uses the latter. Since the BΓ∆ and ∆ΓA are similar, the ratio BΓ:Γ∆=Γ∆:ΓA as per the
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duplicate result shown above becomes BΓ:ΓA=BΓ2:Γ∆2. Again, due to similar triangles

BΓ2:Γ∆2 can be substituted with A∆2:∆B2.

Archimedes then switches focus. No particular reason is provided as to why Archimedes

preferred AΓ:ΓB as the given ratio over other possible ratios but it is implicitly obvious by

the sequence of the objects given in steps [7], [8], [9], and [10] that Archimedes desired to have

the existence of the intersecting plane of ∆E verified. This is unusual since the figure was

provided, but all that is given is the given ratio. It seems that in a general sense, Archimedes

is using analysis in this case to validate that every point in the diagram can be justified from

the given ratio.

Lets see how the analysis compares to the synthesis:

The synthesis is thus. Let there be a sphere, of a great circle AB∆E and

diameter AB. The given ratio is Z to H[1] and let AB be cut at Γ. Thus AΓ is

to BΓ, as is Z is toH[2], and let the sphere be cut through plane Γ perpendicularly

and at right angles to line AB and let ∆E be the cut. And let A∆, ∆B be joined

at the top and let the two circles Θ and K be taken: Θ contains a radius equal to

A∆[3]; K has a radius equal to ∆B[4]. Therefore circle Θ is equal to the surface of

segment ∆AE[5] and K to segment ∆BE[6]. This was shown by the example in

the first book. Since A∆B makes a right-angle triangle and Γ∆ is perpendicular

to it, AΓ is to ΓB[7], this is Z to H[8] and A∆ squared to ∆B squared[9], this

is also the square of the radius of circle Θ to the square of the radius of circle

K[10], this is the surface of segment ∆AE to the surface of segment ∆BE[11].

Archimedes, Sphere and Cylinder 2.3, 184.21-185.13.

[1]-Z:H.

[2]-AΓ:BΓ=Z:H.

[3]-Θ rad.=A∆.
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[4]-K rad.=∆B.

[5]-Θ=∆AE.

[6]-K=∆BE.

[7]-AΓ:ΓB.

[8]-AΓ:ΓB=Z:H.

[9]-[8]=A∆2:∆B2.

[10]-Θ rad.2=K rad.2.

[11]-∆AE:∆BE

Archimedes does quite a few things differently. Instead of revealing the given ratio imme-

diately, it is symbolized by Z:H. This is no less of a given ratio than the ratios given in the

analysis but because Z and H are not part of the figure, what they represent is speculative

until Archimedes allows there to be an equivalency between Z:H and AΓ:BΓ. Recall that in

the analysis that final ratio was carefully derived from the given ratio between the surfaces

of the two segments at the end of the analysis; here, it is easily provided. This is due to the

intersection of planes AB and ∆E, point Γ being provided unlike the analysis. It is easier to

presume the existence of a ratio of AΓ:BΓ when the existence of each point can be accounted

for.

Once A∆ and ∆B are joined at ∆, Archimedes again invokes the equivalency between the

surfaces of sphere and the surfaces of segments by introducing circles Θ and K to represent

circles with radii equal to the hypotenuses of the similar triangles in the segments. As one

can see, in moving through the synthesis, we retrace the steps of analysis, albeit in less than

perfect order. The introduction of Θ and K may seem redundant insofar as that in the

analysis, the reference to the circle allowed for the lines A∆ and ∆B to fall into the given

ratio of the segments. However, since the ratio of the segments is not determined circles Θ

and K provide something of a mental bookmark until they are no longer needed to be place-

holders for the given ratio. In the conclusion of the synthesis, Pappus works back through

the equivalencies that were worked out in the analysis first and is finally able to manipulate

Θ and K until ∆AE:∆BE.
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3.2 Thoughts on Archimedean Analysis

Archimedes understood the connection between analysis and synthesis as one in which the

start of analysis and the conclusion of the synthesis were one and the same regardless of

how they are achieved or what one derives from it. By the same token, the end of analysis

and the beginning of synthesis may also be one and the same but they, and the steps that

preceded or are derived from it, are expressed in different ways. The use of Z, H, Θ, and K

show how in synthesis one can be provided with a figure but if a desired ratio is not evident,

auxiliary figures must be introduced so that the proposition can move from step to step i.e.

without Z:H, we would not have the ratio AΓ:ΓB, without Θ and K, A∆2:∆B2 could not

be equivalent to ∆AE:∆BE.

With regards to analysis, the selection of the objects that are given seems to be arbitrarily

chosen by the mathematicians. If a particular point or line is not fully determined in the

enunciation but shown in the figure, it is one way Archimedes let the reader know what

they would have to find in the analysis. When the reader switches over to the synthesis, the

relevancy of the given objects diminishes to a degree. They may be important for a step or

two but quickly become a mundane part of the proposition.

It should also be noted that Pappus is approaching analysis and synthesis as a tool for

discovery. He may have relied on previous propositions but they were often propositions that

he could claim as his own. We know as much because later mathematicians, such as Pappus,

would turn to his work as source text. In the previous chapter, we see that Pappus does

include his own lemmas but they are based on the original works of earlier mathematicians.

Analysis and synthesis clearly had transformed by Pappus’ time into something mundane

but still essential for mathematical practice.
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Thus concludes this brief section on classical analysis and synthesis. At the end of the

next chapter, both Pappus’ method and practice will be measured against Archimedes to

see where Pappus departs from tradition, if he does, and where he falls in line with it, if he

does.
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Chapter 4

Hermodorus’ New Power: Analysis in
Book 7

The introduction of Book 7 has been viewed as the most detailed discussion of analysis and

synthesis from antiquity.1 However, in its evaluation, modern scholars are quite disappointed

by what they see as a very poor and inaccurate description of those methods. It is forgotten

that Book 7 was addressed to an individual probably unfamiliar with analysis and synthesis

so that Pappus had to write about it and summarize the key texts on the subject. In the

first instance, one sees Pappus engaged in correspondence with someone he viewed as a

pupil rather than a peer or colleague. The extent of the rudimentary information about a

mathematical method, and one that was associated with classical mathematicians by late

antiquity, should serve as an indication of the pedagogical nature of this particular book in

the Collection. The language that Pappus brought into play did not have the exactness

expected of a dialogue between scholarly equals. Instead, it is vague and confusing. This

is not because Pappus was incompetent but it is necessarily simplified for the benefit of the

supposedly less mathematically adept Hermodorus.

1Mäenpää(1997), 201.

60



4.1 Pappus in Theory

Although I am building up to the new discoveries that are possible when propositions are

included, we cannot leave the exposition can be left untouched. Our knowledge of the in-

troduction to Book 7 is imperfect and navigation between what Pappus simplified and what

he left under-determined is key to making the most of the propositions that will appear in

the following sections. By refining the interpretations of the exposition, more can be made

about Pappus’ true connection to past efforts by mathematicians such as Archimedes and,

of course, his understanding of the method when it is finally challenged by new scenarios in

Books 3 and 2.

4.1.1 Analysis

ἀνάλυσις τοίνυν ἐστὶν ὁδὸς ἀπὸ τοῦ ζητουμένου ὡς ὁμολογούμενου διὰ τῶν ἑξῆς

ἀκολούθων ἐπί τι ὁμολογούμενον συνθέσει.

Now, analysis is the path from what one is seeking, as if it were established,

by way of its consequences, to something that is established by synthesis.

Pappus, Collection 7.1:11-13 (as translated by Jones(1986), 82).

.

Pappus began by giving analysis the priority of place in his introduction. However, his

brief sketch left it under-specified. The term Pappus invoked to refer to what one is seeking

is ᾿ζητούμενον and this is the beginning of the analysis. It is not sought, but treated as if it

were already established. The profile of the ᾿ζητούμενον as something that was once sought

was clearly provided from somewhere other than by the analysis. Pappus may have antici-

pated the change of the nature of the established ᾿ζητούμενον into just the ᾿ζητούμενον but if

analysis did truly have the priority of place, than the first step in the beginning of the path
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should have been introduced in a different manner. Indeed, all Pappus needed to write was

that analysis was the movement from what was given to what was sought.

However, Pappus chose to terminate the path with something that is established or given by

synthesis, thereby bracketing analysis with two objects that have their nature, existence, and

identity provided for them prior to analysis. The first step is from an unknown source as of

yet and the final step is from synthesis. However, Pappus did not yet state anything explicit

about the relation between these steps prior to analysis. All that is revealed about synthesis

is that what is given in that method is the true ᾿ζητούμενον of analysis insofar that it is what is

sought in that technique.2 There remains no indication that the relationship is reversed dur-

ing synthesis, with the established ᾿ζητούμενον of analysis serving as the final step of synthesis.

The third object that Pappus introduced between the first and final step is a series of yet

undiscernible consequences or ἀκολουθος . All that is known of them is that during analysis,

they must be arranged in analysis to follow from the given ᾿ζητούμενον to something that is

given by synthesis.

Without clearly defining what he wanted when he asked for both the established ᾿ζητούμενον

and for what was established in synthesis, Pappus left much available for interpretation.

First, with no expansion on what synthesis is at this stage, the connection to analysis is

tenuous as the reciprocal appearance of the brief sketch is not elaborated upon as being

necessary. There is only the implication that such a relationship exists. At this part Pappus

could have otherwise discussed analysis without referring to outside sources. Second, it is

unknown if analysis and synthesis are intended to be representative of an entire proof or is

only applied to just a part of it. Analysis and synthesis, as it appears in Book 7, is applied

to lemmas which are only concerned with parts of a proof but that in no way precludes an

analysis or synthesis from being conducted on an entire proof. Finally, there are many parts

of a problem or theorem that can be understood to be established. Pappus provided no ad-

vice to his protege as to when or what it is in the synthesis that is acceptable as established.

2Hintikka(1974), 11-12. This would be analysis in a downward movement.
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Granted, this is more of a question of how the established object is identified. Nonetheless,

problems and theorems can proceed any number of ways and, in the setting up of the proof,

can contain one or many objects which could pass for established.

Thankfully, Pappus was quick in offering more insight:

ἐν μὲν γὰρ τῇἀναλύσει τὸ ζητούμενον ὡς γεγονὸς ὑποθέμενοι τὸ ἐξ οὗ τοῦτο

συμβαίνει σκοπούμεθα καὶ πάλιν ἐκείου τὸ προηγούμενον, ἕως ἂν οὕτως ἀναποδίοντες

καταντήσωμεν εἴς τι τῶν ἤδη γνωριζομένων ἢ τάξιν ἀρχῆς ἐχόντων · καὶ τὴν τοιαύτην

ἔφοδον ἀνάλυσιν καλοῦμεν, οῖον ἀνάπαλιν λύσιν.

That is to say, in analysis we assume what is sought as if it has been achieved,

and look for the thing from which it follows, and again what comes before that,

until by regressing in this way we come upon some one of the things that are

already known, or that occupy the rank of a first principle. We call this kind of

method ‘analysis’, as if to say anapalin lysis (reduction backward).3

Pappus, Collection 7.1:13-18 (as translated by Jones(1986), 82).

The path of analysis remained unchanged nor was the definitive source of the ᾿ζητούμενον

identified but Pappus conceded that the path from the ᾿ζητούμενον to the final step was

slightly more complicated than he initially let on. Hintikka and Jones offer differing trans-

lations for the line ψνωριζομένων ἢ τάξιν ἀρχῆς ἐχόντων. The former wrote it as “...already

known and being first in order” (emphasis mine) whereas the latter “...already known, or

occupy the rank of first principle”.4 Both attempt to convey that the final step in analysis

is important early on in the synthesis. Objects and relations can become known at any time

in a proof. Therefore, the position of first rank was significant to, as well as undermined

3Mäenpää(1997), 205-206. Heath translated this line in his translation of Book 1 of Euclid’s Element
and translated it as “backward solution”. Hintikka follows Heath’s precedent but Mäenpää(1997) prefers
Jones’ translation because Pappus included theorems in his writing, not just problems.

4Hintikka(1974), 8.14.
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by, Pappus; he still had not admitted if there was any cohesiveness between analysis and

synthesis insofar that the prior source of ᾿ζητούμενον and other elements of analysis were ac-

cessible through synthesis too. Jones used an unfortunate translation of first principles which

confuses Pappus’ intent to indicate rank with elements that are more in the philosophical

realm of mathematics. The annoyance with both translations of the line is that neither fully

represent what is in the text. Hintikka is perhaps too liberal by translating the η as an AND.

It is actually an OR, as Jones translated, but that OR unintentionally gives the idea that

something other than what was established in synthesis could be the final step in analysis.

An accurate translation in spirit, if not the word, would replace OR with WHICH, as in

“...things that are already known WHICH occupy the rank of first principle”. Alternatively,

the OR can be removed, leaving THAT to demonstrate the same intention. The blame is

firmly on Pappus here as he previously stated how the final step in analysis related to syn-

thesis but only now firmly declared that there is some reciprocal nature between analysis and

synthesis; what is sought in analysis serves as one of the first steps in synthesis.

One is still set up to see analysis as the first process now that any reference to synthesis

has been removed. Pappus lost no time in placing the responsibility for the progress of anal-

ysis on the ability of the reader to determine the correct order of steps that best move one

from the ᾿ζητούμενον to the τάξιν ἀρχῆς, (or things of first order). By recommending that

one systematically look for the steps that preceded from the established ᾿ζητούμενον, Pappus

left little room for misstep. The particular relationship of the ᾿ζητούμενον to the τάξιν ἀρχῆς

called upon a specific series of step that connected these objects. In this sense, analysis is

comparable to many games of strategy in which the mathematicians must look for the steps

that follow from the established ᾿ζητούμενον with an eye a few steps ahead to the so-called first

principles. Such an analogy fails because analysis is more than just a ’reduction backwards’;

it is an infallible immediacy that must exist between steps. If the first step of analysis suf-

ficiently determined the sequence of the subsequent steps, room for mathematical discovery

is eliminated as there is little need for the mathematician to look in the first place.
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4.1.2 Synthesis

ἐν δὲ τῇσυνθέσει ἐξ ὑποστροφῆς τό ἐν τῇἀναλύσει καταληφθὲν ὕστατον ὑποστη-

σάμενοι γεγονὸς ἤδη, καὶ ἑπόμενα τὰ ἐκεῖ προηγούμενα κατὰ φύσιν τάξαντες καὶ

ἀλλήοις ἐπισυνθέντες, εἰς τέλος ἀφικνούμεθα τῆς τοῦ ζητουμένου κατασκευῆς · καὶ

τοῦτο καλοῦμεν σύνθεσιν. .

In synthesis, by reversal, we assume what was obtained last in analysis to have

been achieved already, and, setting now in natural order, as precedents, what

before were following, and fitting them to each other, we attain the end of the

construction of what was sought. This is what we call ‘synthesis’.

Pappus, Collection 7.1: 11-23 (as translated by Jones(1986), 82).

Synthesis, Pappus claimed, was the reversal of analysis. This is certainly a fair assump-

tion as Pappus had just established a reciprocal link between the final step of analysis and

the first step of the synthesis. This line is at the core of the prevalent expectations that

Pappus intended for his readers to accept the convertibility of analysis and synthesis.5 One

moves through the consequences like before but the roles and directional relationship of the

objects to one another have changed: In analysis the ἀκολουθος were consequences of the

established ᾿ζητούμενον whereas in synthesis, one is to approach them as precedents of the

synthetic ᾿ζητούμενον . The description of the precedents is muddled but it is plausible to

interpret it as a reference to his earlier phrasing about the ἀκολουθος in relation to the

established ᾿ζητούμενον than as an adherence to any order. For this reason, Hintikka and

Remes wanted to translate ἀκολουθος as concommitants instead of consequences with re-

spect to the relationship that these secondary objects have with one another.6 The focus

Pappus placed in synthesis was not on the connection of the precedents to each other but

rather how the direction of synthesis differed from that of analysis. The only two objects

5Hintikka(1974), 18-39.
6Hintikka(1974), 15; Mäenpää(1997), 206. Hintikka’s argument for this translation is based on their

position that the direction of analysis moves from the desired result to the premisses from which it can be
deduced. Mäenpää thinks concommitants are implausible because in the deductive tradition of analysis, one
must talk of consequences.
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that maintain a stable existence despite the change in roles are the first principles and the

synthetic ᾿ζητούμενον . The former ἀκολουθος appear to be re-conceptualized to reflect the

position of the synthetic ᾿ζητούμενον .

The lack of grounding in Pappus’ first attempt at describing analysis has already been noted

as the ᾿ζητούμενον first being sought was left undetermined. Then, in the final step of syn-

thesis, another ᾿ζητούμενον is mentioned. While this chapter has tried to absolve Pappus

for writing pedagogically, to have the first step of analysis and the last step of synthesis

understood as two different objects would be the move of a truly feeble mathematician if

no specifications are offered. It is not impossible but, as it will be demonstrated later, un-

characteristic in terms of Pappus’ mathematical rhetoric; when Pappus introduces a word,

he sticks to its first usage. Conversely, the ἀκολουθος /precedents are juxtaposed in analysis

and synthesis in relation to the established and synthetic ᾿ζητούμενον respectively. Should

these objects refer to a single object, than Pappus merely adjusted his analytical description

around the changed status of the synthetic ᾿ζητούμενον . For all intents and purposes, Pappus

arranged synthesis thusly: The synthetic ᾿ζητούμενον is the established ᾿ζητούμενον of analysis

and the final step of analysis holds the first rank in synthesis.7

Pappus gradually established analysis and synthesis as cohesive methods but he did not

commit to them being convertible. It is so far only implied through Pappus’ manipulation of

objects and vocabulary. But while moving through the now-precedents, three things occur:

First, the precedents are set into their natural order; second, fitting them into each other;

finally, attaining the construction of what is sought.

What remains to be established is the order of the ἀκολουθος during the transition. Pappus

allowed lots of flexibility - natural order from first rank only guaranteed natural order, not

a reverse order. The instruction to fit the precedents to each other only makes this purpose

more prominent for Pappus never explicitly stated that convertibility was mandatory. The

requirements for synthesis being the reverse of analysis were never all that strong. All that

7Panza(1997), 384.
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is admitted is that the beginning and end points of analysis and synthesis were common

to both, just reversed. If strict convertibility was desired, would it be necessary to fit them

together if all that was needed was a quick flip of the order? Clearly not. There seems to be a

recognition that the movement in synthesis was not quite the same as the movement in anal-

ysis, requiring different relations to be made explicit at different times in contrast to analysis.8

The sudden appearance of the construction or κατασκευή over the course of synthesis is

intriguing as no mention is made of it in analysis. Here, it is attached to the synthetic

᾿ζητούμενον. With these two objects entwined as Pappus shows, the construction may po-

tentially be something that is presumed alongside the established ᾿ζητούμενον in analysis.

Maybe Hermodorus should be given more credit. Just as he was to understand the source of

the first and final steps of analysis before synthesis was even approached based on Pappus’

choice of words, he might have been expected to understand the presence of the construction

throughout the analysis. Ironically, this is a sound suggestion. A criticism frequently leveled

at synthesis as a problem solving method is that the movement between steps appears arbi-

trary whereas analysis, as previously mentioned, the movement is deemed more sensible.9 It

is easier to find to find a line on a rhombus if the construction is already provided for in full

than it is to find that same line when the synthesis only gradually leads one to create that

same form. With one of the goals of synthesis being the κατασκευή , it is reasonable to claim

that it is upon the completed construction that the analysis can be followed and upon which

the analytic connections are examined.

4.1.3 Loose Threads

By the end of the introduction, there are some unresolved issues. While the circular nature

of analysis and synthesis can now be accepted, Pappus remained aloof about whether one

8Hintikka(1974), 18. Ideally, Hintikka believed that analysis should be reversible but convertibility was
only hoped for at that point. It was in synthesis that the problem or theorem would prove convertible.

9Hintikka(1974), 12; Knorr(1986), 9. In Knorr’s words, analysis had advantages for exegesis because
the analysis of a problem exposed in a natural and well motivated way the rational behind each step in a
construction. This does not occur in synthesis.
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or both methods fully encompassed a problem or theorem and its ultimate direction. One

is told that synthesis is the natural order but it is unknown what that order is relative to.

Nor does one know how anything that is given or sought can be decided from a proof. This

is the setback of relying on literal reading of the text when all Pappus attempted to do was

give a brief overview before proceeding immediately into numerous propositions where his

definition would be fleshed out in much more detail. This is most relevant to the concerns for

convertibility. The reversal that Pappus referred to could be very simple and free, all that

was required was the reversal of the first and last steps while everything in between ordered

itself as needed. It could also be simple but stringent in which all steps maintain their order

between the established ᾿ζητούμενον and the first principles when the direction reversed. By

examining some sample problems later in the chapter, one will see why Pappus chose not to

endorse one or over the other.

It is obvious from the outset that analysis would be the focus, but since synthesis is given

equal representation early in the introduction, Pappus at least acknowledged that analysis

was connected to a method of equal utility if not equal activity. Still, there is the question

of whether analysis and synthesis were part of a single method or two separate methods

that are reversals of one another in Pappus’ mind. Given the predominance of analysis, the

answer may actually be just a matter of preference. The description of analysis was written

in such a way that implies that the process of synthesis had to occur first in order for the

analysis to be completed. Pappus did this through the identification of the ᾿ζητούμενον . This

᾿ζητούμενον , however, cannot be obtained elsewhere as the sequence of synthesis, according to

Pappus, was due to natural order. If, then, one is to believe that synthesis is the very process

that organically occurs in the normal course of the proof then the necessity of there to be

something that was once sought but now admitted for the purposes of analysis proves that

although synthesis is essential for the operation of analysis, a reciprocal connection cannot

be made. There is little room for the ᾿ζητούμενον to be mistaken for an intermediary step as

the intermediary steps are not the things that were originally sought but merely the links

that join the premisses to conclusions and vice-versa.
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It should be no surprise that Pappus was not nearly as verbose about synthesis as he al-

ready labeled its the main objects in his method of analysis. There are two processes that

occur: The arrangement of the ᾿ζητούμενον and the προηγούμενον into their natural order,

κατὰ φύσιν, and the production of a construction, κατασκευή. It is expected that a construc-

tion towards what is sought is produced to coincide with the reading of the proof. Netz has

already written much about the role played by diagrams in Greek mathematics and without

restating too much of what he already accomplished, the investigation into Pappus’ use will

be to the point. It is intriguing that Pappus did not declare the role of the κατασκευή in

analysis. The text and the diagram, Netz stated, are interdependent.10 While the diagram

cannot be considered as having truth in and of itself, it borrows on what truth the text gives

it.11 In return, the diagram organizes the text in a ways that can clarify underspending point

or instructions.12 Despite being interdependent, the partnership between these two elements

is not equal. The creation of a diagram almost relies more on what mathematical sense de-

mands than on the text and in turn, one will find that the text is often not recoverable from

the diagram.13 The text, on the other hand, can provide both the diagram and sometimes

offer much needed elucidation.

The κατασκευή inadvertently straddles both analysis and synthesis. Borrowing its truth from

the text, the construction (presumed with the ᾿ζητούμενον) is established in analysis with all

of its truth inherent. Without the directions recoverable from the synthesis, the construction

would not truly be understood until the final step of analysis. Moreover, the strength of

analysis is based on the sensible and demonstrable relationships between steps and to this

end, the κατασκευή does not add to the legitimacy of the analysis for its movement is so nar-

rowly guided that it appears Pappus recognized that the analytical connection could stand

for themselves.14 In contrast, the goal of synthesis is the discovery of a thing sought, which

is heavily reliant on the corresponding κατασκευή to uphold the relations between steps.15

10Netz(1999), 19.
11Ibid.
12Ibid., 30.
13Ibid., 25.
14Panza(1997), 385.
15Panza(1997), 384-385.
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Analysis is based on a complete, but unseen, diagram being provided. Even if, logically, one

is suppose to assume that the synthesis was completed first, this is nonetheless inconvenient

for modern readers. Our command of all the resources of pure geometry, to use Heath’s

words, is not nearly as implicit or as masterful as that of ancient mathematicians’.

4.1.4 Division of Analysis

Although κατασκευή was the last thing that Pappus said about the method of synthesis in

exposition, there was still much that was said indirectly about synthesis through the two

kinds of analysis:

There are two kinds of analysis: one of them seeks after truth, and is called

’theorematic’; while the other tries to find what was demanded, and is called

’problematic’. In the case of the theorematic kind, we assume what is sought

as a fact and true, then, advancing through its consequences, as if they are true

facts according to the hypothesis, to something established, if this thing that

has been established is a truth, then that which was sought will also be true,

and its proof the reverse of the analysis; but if we should meet with something

established to be false, the thing that was sought too will be false. In the case

of the problematic kind, we assume the proposition as something we know, then,

proceeding through its consequences, as if true, to be something established, if

the established thing is possible and obtainable, which is what mathematicians

call ‘given’, the required thing will also be possible, and again the proof will be

the reverse of the analysis; but should we meet with something established to be

impossible, then the problem too will be impossible.

Pappus, Collection 7.2: 24-12 (as translated by Jones(1986), 82-83).

In the end, the actual differentiation of analysis is somewhat irrelevant. In order for there

to be ‘problematic’ and ‘theorematic’ analysis, the source would be a problem or a theorem

70



respectively.16 The forms of the validation by analysis would already be determined without

further specification. The distinction between problems and theorems was hardly relevant to

Pappus’ lemmas either. Book 7 mostly contained theorems and passed no comments other

than when the theorem was proven. The word ‘given’ is frequently used in these cases as well.

This final description of analysis is unusual because it informs one of the scenarios in which

analysis can be used and the proper terminology of its results. It does not, on the other

hand, tell one anything new about the technique of analysis. For the most part, theorematic

and problematic are indistinguishable from each other for both take what was sought as true,

given, known, or fact and proceed through the consequences until it reaches something estab-

lished. Differences lie in how we describe a successful analysis. If we go through a successful

theorematic analysis, one can say that the ᾿ζητούμενον is true and if the ᾿ζητούμενον is true,

then is follows that the reverse of the analysis is true; as of yet, Pappus did not inform the

reader of any other reversal of analysis other than synthesis so one would be safe in accepting

that the synthesis is likewise true. For the problematic, a successful case could be called

possible.17 An unsuccessful analysis can be seen as false or impossible, by reductio ad ab-

surdum, respectively. The attribution of possibility/impossibility and truth/falsehood to the

method of analysis brings the problem of the convertibility between it and synthesis to the

fore as Pappus finally provided a defining difference between analysis and synthesis, thereby

possibly offering an explanation as to why analysis was a preferred method. For analysis to

be valuable it had to provide something, it must perform a function that cannot be promised

nor accomplished by synthesis. There has to be some way for analysis to be utilized beyond

being the reverse of synthesis. If one was intended accept a correct synthesis intrinsically,

there would be little point for analysis. In assigning analysis the role of final validation,

there is an attraction to skip the preliminary work that synthesis requires and to jump into

16Jones, 67. Theorematically analysis is rare in ancient texts: The first five propositions in Book 13 of
Elements and in lemmas 225, 226, 231, and 321 in Book 7 of the Collection. It shared the same steps as
synthesis and did not guarantee correctness or possibility.

17Mäenpää(1997), 206. Mäenpää understood Pappus here as saying that an impossible analysis precluded
synthesis. My reasons for disagreeing are printed early in this chapter. Pappus did give analysis a priority
of place but that does not means that the synthesis was unnecessary in the first instance. The whole point
of analysis by late antiquity was to serve as a confirmation tool; it was possible to have a possible synthesis
and an impossible analysis.
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verifying propositions. Synthesis can easily be constructed afterwards from the information

from the analysis, even if it does not accurately reflect the actual practice of mathematics.

However, there is a catch to having a built-in proof-check. By allowing analysis to determine

ultimate possibility or truth, Pappus did not outline what would transform something that

was possible in synthesis to impossible in analysis. Should one look to simply having the

᾿ζητούμενον in the expected positions or the exact reversal of the steps in analysis in synthesis

and reverse? It also entails that convertibility is merely another possible result, a desired

one definitely but the failure to obtain would never prevent analysis from occurring. Finding

false or impossible propositions is the other point of analysis, it just does not seem that

way because the examples proffered are frequently convertible and always seen by Pappus to

be correct. There is little evidence from Pappus’ efforts of what a failed analysis looks like

until later in the Collection when there is finally an opportunity to examine one in Book 3.18

Diorite is the preliminary distinction of when, how, and how many ways the

problem will be possible. So much, then, concerning analysis and synthesis. Pap-

pus, Collection 7.2:10-12 (as translated by Jones).

Diorite was in the right place logically for Pappus’ description but the line still looks like

it was tacked on in comparison to the thoughtful discussion of analysis and synthesis that

preceded it. Diorites are important because, as Pappus informs use, there may be more

than one solution and the mathematician is required to find and know all such possibilities.

Knorr found their significance in what they can tell us about the outcome of the analysis.19

He claimed that the reversal of the logical order is possible only when additional conditions

are satisfied and diorites determine what the appropriate conditions are. Within Book 7,

their quantity is noted in the epitomes of each Domain text when needed, but Pappus rarely

mentions diorites directly. The diorites of the original problems are sometimes turned into

18Knorr(1986), 9. An analysis can still be fruitfully applied, even if the problem/theorem is impossi-
ble/false.

19Knorr(1986), 110.
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propositions in their own right. Diorites are otherwise unimportant to the search for the

solution but they are necessary for the presentation of that solution.

4.2 A Modern Opinion

The difficulty with bringing modern scholars into this particular discussion and interpretation

of Pappus is due to the want of a scholarly standard about pappier analysis and synthesis.

Differences in translations aside, the introduction of Book 7 is hardly studied in its own

context. Instead, it is forced to conform to the so-called traditional practices of antiquity

(Knorr and Panza), to anticipate Descartes and Vente (Panza and many others), or to be

amenable to modern logic (Hintikka and Mäenpää). These themes are not wrong in and

of themselves but they often bring beliefs and expectations that are not in simpatico with

Pappus circumstances.

The preferential theme of the three listed above endeavoured to place Pappus within the

ancient tradition of analysis and synthesis. One would be foolish to think that Pappus’

method was uninfluenced by the method of the very mathematicians he mentioned: Euclid,

Apollonius, etc. However, Pappus did not completely conform to those traditions; indeed, he

was educated about them, but as demonstrated previously, mathematics in his time had a

new direction and form. Pappus’ method was more likely to embody the new practice than

old ways. Pappus’ pedagogy also inhibits scholars from making the mathematician fit with

the history they created, but Pappus is subsequently characterized as inaccurate and naive

rather than necessarily oblique.20 Again, the theme itself is legitimate, but the direction of

the censure is not.

The second and third themes sometimes meld together because their assessments of Pap-

pus bring with them the same consequences. It is easy to fall into anachronistic judgements

about Pappus. The requirement for convertibility was essential to 18th century philosophers

20Knorr(1986), 354-360; Panza(1997), 385.
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and mathematicians; that it was not as important to the ancients should not held against

them nor should one read convertibility into Pappus simply to make a stronger connection

to later writers.21 The initiation of modern symbolic logic is much more bothersome because

it makes huge presumptions about Pappus’ approach to analysis and synthesis that are more

compatible with Aristotle.

Sometimes, modern scholarship will introduce problems that have no bearing on the heuristic

bearing on the mechanism of analysis and synthesis. Sometimes these problems become so

integrated into the academic tradition of the subject that it is arduous work to separate Pap-

pus actual problems from those of scholars. An example of this sort of textual interference

is the outstanding debate about the direction of analysis. It began innocuously enough in

1958 when Norman Gulley suggested that rather than the usual downward interpretation of

analysis (deduction of consequences from the desired conclusion/initial assumption), Pappus’

analysis was actually upwards (movement from desired result to premises from which it could

be deduced).22

Analysis as a downward movement is the deduction of consequences from the desired con-

clusion. If A is the ᾿ζητούμενον and B is the first principle the movement of analysis can

be represented like this: A←−A1←−...←−An←−B.23 Therefore the synthesis written in the

following way: B−→An−→...−→A1−→A.24 Proponents of analysis as an upwards movement

say that analysis is the movements from the achieved ᾿ζητούμενον to the premisses from which

it could be deduced. It is said to be a more intuitive method.25. With A and B still repre-

senting the same objects, analysis would look something like this: A−→A1−→...−→An−→B.

Synthesis is the same as the downward movement.

Support for the upward-movement interpretation comes from the second description of anal-

ysis where Pappus writes that me begin with what is sought as if it has been achieved and

21Mäenpää(1997), 201.
22Gulley(1958), 1-14.
23Behboud(1992), 56; Hintikka(1974), 13-15.
24Ibid.
25Behboud(1992), 56
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then look for the thing from which it follows, and so on until we reach the first principles.

However, it is argued the synthesis is made redundant because the perspective of analysis now

is to recreate the proposition by moving backwards through the proof. Hintikka and Remes

wrote an entire book based on analysis being an upward movement.26 Both they and Gulley

agreed at first that the two movements are compatible, if all steps are convertible, but they

do not let Pappus have it both ways because Pappus would then be contradicting himself,

thus they side with an upward movement.27 Hintikka and Remes disclose that the question

is not relevant to the operation of analysis and synthesis but that has not stopped many

scholars from roundly refuting it.28 Knorr posits that ancient writers (especially those in the

later editorial tradition) understood analysis in this was: the desired figure is assumed to

have already been effected and one is then to deduce properties of this figure until an element

of it emerged which is known from prior results to be constructible.29 This is the downward

movement and one that is very much clear from Pappus introduction. Petri Maenpaa found

the Hintikka and Remes description, out of sync with the deductive examples typical of Greek

mathematics; reductive examples were emblematic of the work of commentators rather than

mathematicians with original contributions.30

Neither the upwards or downwards-movements do justice to analysis and synthesis but the

downwards movements is better reconciled to Pappus’ text than the upwards movement. In-

deed, Pappus does write about the direction of analysis in the second description as though

one was to find premisses that led to the first principles. What is missing from the upwards

movement is recognition that the movement from A to B does not involve intuition but

rather an ability to do so with geometrical assumptions that avoid the auxiliary figures that

are necessary for synthesis. However, Hitikka himself admits often that the direction of anal-

ysis doesn’t matter in the long run.31Thus, the crux of the problem of dealing with modern

scholarship. The direction may be irrelevant but the problem is still treated as a critical one.

26Hintikka(1974), J; Remes, U. The Method of Analysis. D.Reidel Publishing: Dodrecht, 1974.
27Hintikka(1974), 14-19
28Ibid., 19.
29Knorr(1986), 9.
30Mäenpää(1997), 201, 206.
31Hintikka(1974), 38.
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Of the few things that can be taken away from modern scholarship, knowledge that analysis

and synthesis in antiquity lack its modern connotations and usages is key. Without it, one

could run headlong into yet another historiographical tar pit.

4.3 Pappus in Action

In the final section of this chapter, the promise to survey Book 7 will be fulfilled. Only

14 propositions out of a total of 253 have both an analysis and synthesis. Here, two such

propositions will be examined.

Proposition 21 is the first proposition in Book 7 that includes analysis and synthesis to-

gether. The original proposition from Apollonius’ Cutting off of a Ratio, but it provides

little assistance in understanding the proposition as Pappus presents it. 32

4.3.1 Proposition 21

The square brackets refer to the order of the statement in Jones’ commentary.

Figure 4.1: Proposition 21, Book 7 of the Collection from F. Hultsch.

Given two straight lines AB, BΓ, and producing line A∆, to find a point ∆

that makes the ratio B∆ to ∆A the same as that of Γ∆ to the excess by which

32Jones(1986), 412, 511-512, 616-619. These pages will provide all the necessary background about the
original and it’s transmission into Pappus
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ABΓ together exceeds the line that is equal in square to four times the rectangle

contained by AB, BΓ.

The combination cannot be made any other way unless ∆E, AΓ together are

equal to the excess EA, and all ∆A to all AB, and furthermore (it is not possible

otherwise?) that EA, AB, ΓB have the ratio to one another of a square number

to a square number, and that ΓB is twice ∆E.

Let it be accomplished, and let the excess be AE[1]; for we have found this in

the forgoing lemma. Then as is B∆ to ∆A, so if Γ∆ to AE[2]. And alternando[3]

and separando[4] and area to area, it follows that the rectangle contained by BΓ,

EA equals the rectangle contained by Γ∆, ∆E[5]. But the rectangle contained

by BΓ, EA is given[6]; hence the rectangle contained by Γ∆, ∆E too is given[7].

And it lies along ΓE, given,[8] exceeding by a square. Hence ∆ is given[9].

The synthesis will be made thus. Let the excess be EA, and along ΓE let there

be applied the rectangle contained by ΓE, ∆E, exceeding by a square, and equal

to the rectangle contained by BΓ, EA. I say that ∆ is the point sought. For

since the rectangle contained by BΓ, EA equals the rectangle contained by Γ∆,

∆E,[10] therefore putting in ratio[11] and componendo[12] and alternando as is

B∆ to ∆A, so is Γ∆ to EA,[13] which is the excess. The same also if we try to

take a point making, as B∆ to ∆A, so Γ∆ to the line comprising ABΓ together

and the line equal in square to four times the rectangle contained by AB, BΓ.

Q.E.D. Pappus Collection 7.64:12-36 (as translated by Jones(1986), 138).

Jones’ Commentary:

Analysis [1]-AE=AB+BΓ−x, x2=4(AB·BΓ)

[2]-B∆ :∆A =Γ∆ : AE

[3]-Thus B∆:∆Γ=∆A : AE

[4]-Thus BΓ:Γ∆=∆A : AE

[5]-Thus BΓ·EA=Γ∆·∆E
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[6]-BΓ·EA given

[7]-Thus Γ∆·∆E given

[8]-ΓE given

[9]-Thus ∆ given

Synthesis [10]-Γ∆·∆E=BΓ·EA

[11]-Thus BΓ:Γ∆=∆E:EA

[12]-Thus B∆:∆Γ=∆A:AE

[13]-Thus B∆:∆A=Γ∆:EA

Jones(1986), Collection 412:64.

In the analysis, we are given B∆ :∆A =Γ∆: AE and told to find ∆ so that the ratio may

be possible. The synthesis, on the other hand starts with the last ratio listed in the analysis

and concludes with the ratio listed above. The proposition began with the enunciation of

the existence of a line AB, BΓ. Then we extend the line to a point ∆ and the goal is to find

the ∆ that makes the ratio B∆:∆A=Γ∆: the excess by which ABΓ together exceeds the line

that is equal in square to four time the rectangle contained by AB·BΓ.

The establishment of AE as the excess is determined in a previous proposition, proposi-

tion 19 but the carry-over of that particular result between two propositions that have only

share minimal similarities in terms of their ratios and construction requires explanation. The

relationship between propositions 19 and 21 in terms of the original text has already been

discussed, however, their cohesion within the Collection is suspect until Jones switched the

connections between the original text and Pappus’.

Figure 4.2: Proposition 19, Book 7 of the Collection from F. Hultsch
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In order for the minimum given ratio to be solvable in the fourteenth disposition to for

it to be a ratio of a determined line segment to another determined magnitude. Heath and

Jones mentioned this relation in some form of c=a+b−2
√

(a · b) where, in proposition 19,

a and b are AB, BΓ respectively.33 In that lemma, AE comes to represent c insofar that

Pappus provided the relationships such as B∆2 = AB·BΓ and ∆E=Γ∆ that in the context

of that particular lemma allow for the logical calculative progression to AE = (AB+BΓ)−x.

Proposition 21, on the other hand, was constructed in a way that does not allow those steps

and the application of AE is further complicated when Jones declared that proposition 21

actually furnishes a second point of intersection for the first case of the fourteenth disposition

and is unnecessary unless one wished to draw a figure for the Apollonius’ summation of that

disposition.

The validity of AE is unsettled but if it is expected that AE or similar segment is essential

to maintaining the relationship between ABΓ and the line that, squared, is equal to four

time the rectangle contained by ABΓ then it must be treated as every much a given as the

ratio of B∆:∆A=Γ∆: to the excess of ABΓ to what have you. The identification of the value

or identity of x is not essential to the resolution of point ∆ in 21; in the previous proposi-

tions the declaration of a possible x is important to determining AE but nothing else happens.

There are differences in the language Pappus utilized in his lemmas compared to his outline of

analysis/synthesis in the introduction. The reader is not provided with the acknowledgement

of the ᾿ζητούμενον or whatever would occupy the rank of first order but if one were to use

Pappus’ definitions, those objects are possible to identify. It is not until the conclusion of the

synthesis that the ratio of B∆:∆A=Γ∆:EA is understood as the ᾿ζητούμενον of synthesis as

well as the established ᾿ζητούμενον of analysis. But, the application of this ratio in these roles

is quite different. In synthesis, the ᾿ζητούμενον plays a passive role; the mathematician may

know that the construction built and the proof conceived must bear the ratio out but the

ratio itself must be the product of the preceding steps where as in analysis, the established

᾿ζητούμενον comes into play as soon as it is introduced and all the consequences are drawn

33Heath(1921), ii, 405;Jones, 412. Both are likely to be inspired by Hultsch’s Latin translation.
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from it. In this case, all subsequent ratios are drawn from the original ratio alone without

the need for stating additional products and equalities. The identification of the ᾿ζητούμενον

in synthesis is also accompanied by its construction. The existence of the lines AB, BΓ is

made clear before the beginning of analysis and nowhere else. This is a departure from the

introduction where constructions received no mention during analysis and come only at the

end of synthesis. There is no indication here that the line ∆B is being constructed, although

all points on the line were named and given in synthesis after the first ratio. Since 21 is an

exercise in geometrical algebra, disinterest in the creation of a straight line on Pappus’ behalf

might be forgiven but it heightens the expectation of the integration of complex constructions

into analysis/synthesis later in Book 7

The next object needed is something that is established in synthesis. Jones’ commentary

for the synthesis begins with Γ∆·∆E=BΓ·AE but omitted two things that are given: AE

as the excess and ΓE as the line upon which the rectangles lie. Also, Pappus says that ∆ is

the point sought in synthesis. If one were to follow Pappus’ definitions strictly, on the basis

of it being the last step in analysis, thereby being the true zetoumenon for the analysis, one

would expect ∆ to be the given in the first instance in synthesis before ΓE. Instead, ∆ is

said to be sought just after the relationship of the rectangles contained by Γ∆E and BΓ,EA

is stated. Pappus may have wanted ∆ assumed given after the conclusion of the analysis

for how else could the rectangle contained by Γ∆E be possible to construct if ∆ did not

have the same giveness as ΓE. ∆ is nonetheless not named by Pappus as the object that

is both established in synthesis and sought in analysis; that title might be best claimed by ΓE.

Were one to evaluate the analysis and synthesis in 21 in terms of its strict adherence to

the guidelines Pappus laid out in the introduction of Book 7, it is possible to argue that

Pappus was exceptionally consistent; the analysis was followed by its complete and exact

reversal by synthesis while a broad interpretation would only require the reversal first and

last steps of analysis in synthesis. In Jones’ commentary one can see how precise Pappus is

in the reversal of the ἀκολουθος into their expectant order in synthesis. The only obstacle

to the method being a complete reversal is the difference between the final steps of analysis
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and the first step of synthesis. If, as one sees in the analysis that the given-ness of ∆ and

ΓE is based on the giveness of the rectangles that contain them, then Γ∆·∆E=BΓ·AE can

sufficiently satisfy the condition of what is sought in analysis is considered given in synthesis.

Still, ∆ was specifically invoked by Pappus as that which analysis sought, not AE nor ΓE nor

the rectangles. Thus one must be warned against anticipating a strict adherence to the intro-

duction on Pappus’ behalf on the basis of what is otherwise an excellent example of Pappian

analysis/synthesis. It is clear Pappus may have considered analysis and synthesis to have

begun with different steps, after certain pieces of information was provided. To complete this

survey of Book 7, one can look to proposition 72 of Pappus’ selections from the first book

of Apollonius’ Neuses for an example of analysis/synthesis that does not proceed as expected.

4.3.2 Proposition 72

A neusis is the fitting of a line of given length into a diagram, usually between two other

lines, such that it passes through a given point. In deference to his predecessors, Pappus

cannot but help to mention their discoveries in the epitome he provides for Neuses. Some of

the applications of the neusis by the ancients were linear, solid, and curvilinear. From the

planar uses, the ancients demonstrated many problems but the one relevant to proposition

72 involves a rhombus. Given a rhombus with one side extended, the ancients sought to fit

into the outside angle a straight line given in magnitude to make a neusis on the opposite

angle.

Problem, as Heraclitus.

A∆ being a square (given) in position, to place a given (line) EZ, making a neusis

on B Let it be accomplished, and from point E let EH be drawn at right angles

to BE; for (BZE) is a straight line. Then since the squares of Γ∆ and ZE equal
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the square of H∆ [1], while the squares of Γ∆ and ZE are given[3], because both

are given in magnitude[2], therefore also the square of ∆H is given[4]. Therefore

∆H is given in magnitude[5]. And therefore all BH is given in magnitude[6].

But is it also (given) in position[7]. Therefore the semicircle on BH is given in

position[8]. And it passes through E[9], and hence E is on an arc (given) in

position. But (it is) also (on) AE (which is given) in position[10]. Hence it is

given[11]. but B too is given[12]. Therefore BE is (given) in position[13].

Figure 4.3: Proposition 72, Book 7 of the Collection from F. Hultsch

The synthesis of the problem will be made thus. let the square be A∆, the

given straight line Θ, and let the square of ∆H be equal to the squares of Γ∆

and Θ.

Then H∆ is greater than ∆Γ[14]. Hence the rectangle contained by H∆, ∆B is

greater than the square of ∆Γ[15]. Therefore the semicircle on BH when drawn

will fall beyond point Γ[16]. Let it be drawn, and let it be BKEH, and let AΓ

be produced to E, and let BE,EH be joined. Then the squares of Γ∆ and EZ

equal the square of H∆[17]. But the squares of Γ∆ and Θ were set equal to the

square of ∆H[18]. Therefore the squares of Γ∆ and Θ equal the squares of Γ∆

and EZ[19]. Hence the square of Θ equals the square of EZ[20]. Therefore Θ

equals EZ[21]. And EZ is given. This EZ solves the problem.

Pappus, Collection 7.128-129:1-24 (as translated by Jones(1986)).
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Jones’ Commentary:

Analysis [1] - Γ∆2+ZE2=∆H2

[2] - Γ∆,ZE given mag.

[3] - Thus Γ∆2,ZE2 given mag.

[4] - Thus ∆H2 given mag.

[5] - Thus ∆H given mag.

[6] - Thus BH given mag.

[7] - BH given pos.

[8] - Thus semicircle BH given pos.

[9] - E on semicircle BH

[10] - E on AE, AE given pos.

[11] - Thus E given

[12] - B given

Synthesis [13] - Thus BE given pos.

[14] - H∆>∆Γ

[15] - H∆ · ∆B >∆Γ2

[16] - E is not between A, Γ

[17] - Thus Γ∆2+EZ2=H∆2

[18] - ∆H2=Γ∆2+Θ2

[19] - Thus Γ∆2+Θ=Γ∆2+EZ2

[20] - Thus Θ2=EZ2

[21] - Thus Θ=EZ

Jones(1986), Collection 437.

Initially, the achieved ᾿ζητούμενον is the relationship Γ∆2+ZE2=∆H2 while B is the point

that is sought. In the synthesis, a different story comes out in which the first principle is BE

but the synthetic ᾿ζητούμενον is EZ. As with many of the propositions in Book 7, proposition

72 is closely connected to the proposition before it. Both propositions demonstrate the

construction of a neusis into a rhombus that is a square. 71 is Apollonius’ method and 72
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is attributed to the otherwise unknown geometer Heraclitus, who accomplished the same

with a semicircle. However, the analysis of 72 takes for granted the pythagorean relationship

between line segments it requires which is only explained in 71, not unlike the issue with AE

in propositions 19 and 21. In the Apollonian version, the rhombus is gradually constructed

as if it was in three parts: Square, rectangle, and a right angle triangle are divided from each

other by a determined line segment.

Figure 4.4: Proposition 71, Book 7 of the (Collection) from F. Hultsch

The neusis cuts through the bottom left-hand corner of the square, intersects the line that

separates the square from the rectangle, and terminates at the upper right-hand corner of

the rectangle. Because each section is clearly defined by the line segments between them,

similar angles and triangles are easy to designate. In the end, one is left with the equation of

Z∆2=Γ∆2+HE2. In Heraclitus’ version, the partition between the rectangle and the right-

angled triangle is removed and additional neusis for another case is added, necessitating the

reexpression of the equation to reflect the named points of the new proposition. It is thus

transformed into H∆2=Γ∆2+ZE2. Also similar to proposition 21 is how Pappus made the

conduction of the analysis and synthesis possible without the validity of the equation coming

into play; all that mattered was that whatever was proven in proposition 71 could be applied

as a desired case in 72.

Thus, the analysis with several objects from the construction being given: The square of

A∆ means that the lines AΓ, Γ∆, ∆B, BA are also given in magnitude while B is given in
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position when another given line, EZ, makes a neusis on that point. This is followed by the

construction of a right angle between EH and BE. There is little reason within the propo-

sition itself as to why they should believe Pappus when he wrote that H∆2=Γ∆2+ZE2.

None of these segments actually form a triangle within the construction and without the

stated equality between EH and BZ, like EZ and BH in 71, it is difficult to see how a

similar equation would just as easily be found. Regardless, given that this is an analysis,

such relations can be presumed as fully given until Pappus neglects to provide an explanation.

From the equation, Pappus proceeded through some of the possible positions and magni-

tudes that are given because of it, with the position of BE the last thing given. If one were

to follow a broad reading of the introduction so far, the synthetic ᾿ζητούμενον could be any of

the seven objects given and the analytic ᾿ζητούμενον (and possible object to occupy first rank),

is the straight line BE. The best choice for the synthetic ᾿ζητούμενον is the given line EZ.

Recall in proposition 21 that in the analysis, the ᾿ζητούμενον that was treated as established

had an immediate impact on the proposition and EZ accomplishes this by bringing a second

given quantity to the equation that permits H∆2 to be given.

In this particular demonstration, any expectations for a strict reading of analysis/synthesis

must be dashed when starting the synthesis as the order of the objects referenced has changed.

All the reader is told upon beginning their construction of the rhombus is that there is a

square, a given line Θ, as well as the equation with EZ replaced for Θ. None of these objects

is present in the final steps of the analysis or were identified as the analysis ᾿ζητούμενον, with

the exception of H∆ in the equation. Moreover, the inclusion of the equation so early in

the proof may appear to be cheating by Pappus but it was a legitimate move in a problem

that is centered around the fitting in a the neusis; it confirms that EZ will be the synthetic

᾿ζητούμενον as much as one can tell that Θ is standing-in for EZ as the given line in an-

ticipation for the substitution that will be conducted later. Furthermore, Pappus included

some unusual steps about the equivalency between H∆ and ∆Γ that are not present in the

analysis: If the former is larger than the latter, it should not be surprising that the square

of the latter would be smaller than a rectangle that is contained by a segment equal to the
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latter and H∆. Continuing onward, Pappus also focuses on the semicircle which had little

influence on the analysis outside of making the intersection of AE on it a given. In the

synthesis, the semicircle is important for establishing BKEH, thereby extending AΓ and H

to E. The joining of BE,EH into a right angle allows for the reintroduction of the equa-

tion as the original equation in proposition 71 began with the pythagorean relationship of

Z∆2=Γ∆2+HE2; this is work saving measure for Pappus and from here it is confirmed that

EZ is the synthetic ᾿ζητούμενον

σελεςτλανγυαγεενγλιση.

Τηερε ις νοτ μυςη γρουνδ φορ αν ινιτιαλ βροαδ ρεαδινγ ηερε ειτηερ. Τηε αναλψτις ᾿ζητούμενον

and that which holds first rank in synthesis appear to be two or more different things. It was

argued with the last proposition that Γ∆·∆E=BΓ·AE should sufficiently embody all of the

given objects and relations derived from it to compensate for Pappus not incorporating into

the synthesis the individual objects that were acknowledged. In this case, that explanation

does not work so well. Some of the individual objects actually are used but their relation-

ships sometimes exceed what is established in the analysis. Indeed, with so many objects

that could be perceived as given in the context of synthesis, how is one best to approach

such a list. Hinktikka and Remes argued that the ἀκολουθος should be called concomitants

rather than consequences as many of these steps occur simultaneously and sometimes inde-

pendently of one another. This may not be the best term to use as there is some logical order

to the progression through the givens, it does encapsulate the idea that whatever is given in

analysis might not necessarily be order in terms of priority but rather as a single package

that is assumed at the beginning of analysis. For proposition 72, such a hypothesis works as

much of what is discovered to be given through analysis is given with the initial construction

of the synthesis in the place of first principles.

86



4.4 Analysis and Synthesis: An Evaluation Thus Far

Two lemmas are hardly enough to let one firmly pin down Pappus’ transition from analysis

to synthesis but they do allow for a sufficient demonstration of some of the discrepancies

between his theory and practice. One is slightly better off in practice than in theory. The

best way find the synthetic ᾿ζητούμενον in an analysis is to find that given object from which

most, if not all, the consequents are in some way derived. The difficulty of correlating the

final steps of analysis to the object(s) that are considered given in synthesis, makes a broad

reading of Pappian analysis/synthesis as difficult as a strict one if the first and final steps of

analysis are unable to be reversed.

One of the first things that Pappus did write about synthesis was that it was organized

through natural order and the fitting of objects into one another; the arrangement of the

precedents cannot be much looser than that, although proposition 21 does show that the

arrangement can be incredibly strict if the proposition lends itself to such treatment.

Through the proposition, Pappus introduced the concept of an object or relationship be-

ing given. It is first introduced in Euclid’s Data; a collection of propositions from which

show how it one object or relationship is given, so are the objects and relationships associ-

ated with it. The propositions often take a form like “If any number of given magnitudes

are added together, the magnitude composed of them will also be given”.34 Their form is

analytic; Euclid does not provide syntheses for these propositions.

This is the rare occasion where Pappus forgot his usual attachment to his lexicon and used

a word for more than one context.35 Given has more pull in analysis, where one must

prove the existence of objects or relationships that are presumed at the start , but not yet

34Euclid Data, 3.
35Knorr(1986), 110. Pappus use of given and its derivatives would have been another ahistorical strike

against the mathematician from Knorr. Knorr stated that givens separated terms with distinct logical
purposes. What was given in analysis was only known conditionally if the construction was assumed. The
true givens are known by virtue of the definition of the construction which one is to produce, i.e. the synthetic
givens
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verified. Therefore every step after the established ᾿ζητούμενον is deemed given on the ba-

sis of the established ᾿ζητούμενον being established. In proposition 72, from the ᾿ζητούμενον

Γ∆2+ZE2=∆H2, any object, position, or magnitude that could be pulled from it would be

considered given on the basis that in analysis, such relationships are presumed given at the

beginning of the proposition. Everything is given by dint of being possible to derive it from

the achieved ᾿ζητούμενον. This is not so in synthesis where only the ᾿ζητούμενον is considered

given.36 Depending on the proposition, only select objects and relationship are automatically

given because of the synthetic ᾿ζητούμενον . Such a scenario is seen in proposition 72, where

Θ is given because it served as a placeholder for a desired ratio that was no yet found.

What is truly missing from Book 7 are examples of propositions where the analysis find

an false or impossible proof. The distinction between theorematic and problematic analy-

sis may be fairly irrelevant but for analysis to have a purpose akin to fact-checking hints

that the paths through the consequences and given objects might not have been so clear.

Hintikka and Remes believe that convertibility was a process that could only be hoped for

despite what Pappus said. This is a careless statement to make as Pappus, however trivially,

did attempt to capture the methods of analysis and synthesis as two interconnected meth-

ods which shared common elements opposite to each other. Complete convertibility might

not have been Pappus’ goal but he did want it understood that certain objects and relations

appeared at certain times in both methods, regardless of some exceptions in his own practice.

One finds Pappus ultimately clumsy in his efforts but he did try to stay true to the placement

of the synthetic ᾿ζητούμενον and to a lesser extent, the established ᾿ζητούμενον . Expectations

are mixed; simple linear problems allow for near-complete convertibility while more complex

problems made it difficult for Pappus to adhere to his own theory. Recalling the example

analysis/synthesis from Archimedes, I agree with scholars such as Berggren when they say

that there is a dissonance between Pappus and earlier analyses.37 But only if one is talking

about the exposition only. Pappus omits mention of givens but he does attempt to include

36Jones, 67. Disagreed with Knorr. The given is essential but has a lot of connotations.
37Berggren(2000), 5.
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the reality that the order of objects between the achieved ᾿ζητούμενον and the first principles

changes depending on the demands of the proposition. When the propositions are included,

Pappus is in harmony with the earlier mathematician. Moreso, Pappus seems more consci-

entious by comparison. He is clear about where the analysis starts and ends as well as and

for many propositions he does out of his way to make the ᾿ζητούμενον , and the first principle

obvious.

Pappus and Archimedes are in sync about analysis and synthesis, but what about within

Book 7? The difference between the proposition and the exposition is as such that the

propositions do not benefit from the exposition. The exposition on the other hand improves

with the practical knowledge of what happens in the propositions. It is transformed from

being a vague piece of prose into as meaningful a summation of analysis and synthesis one

could write. However, we already know why there difference are so. Pappus composed Book

7 for the benefit of a student with less mathematical skills than he. His is exposition is

quite simple but the number of propositions would easily show the student how analysis and

synthesis is completed full on.

In Books 2 and 3 of the Collection, a somewhat different picture of Pappus’ ability to wield

the techniques of analysis appears for not only will one see Pappus conduct a failed analysis

and accurate analysis/synthesis on complex figures, Pappus presented a non-geometrical way

of analysis that may change the way we look at Book 2.
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Chapter 5

Dear Pandrosion: Mathematical
Etiquette and Analysis

The preceding chapters present many reasons as to why the characterization of Pappus as

a feeble mathematician are groundless. The supposed Deuteronomic writing was becoming

common practice and the second-order mathematics that developed from it was compatible

with Pappus’ pedagogical style. This make Pappus increasingly vulnerable to being misun-

derstood and his presentation of analysis and synthesis in Book 7 does little dissuade modern

criticism.

In Book 3 of the Collection Pappus redeemed himself both in his theory and in his prac-

tice. He offered insight into the social practice of mathematics. Analysis and synthesis is

applied to an impossible problem. In accomplishing this, valuable analytical techniques are

introduced in Book 3 that were unmentioned in Book 7.

In the second part of this chapter, Pappus’ mathematical capabilities are revisited and reeval-

uated in light of Pappus’ insight about the value of analysis and synthesis to the mathematical

community.

Book 3 can be divided into approximately six sections, five of them geometrical. Pappus
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opened the text was an admonishment towards a named Pandrosion and her students, but

while he absolved the students for their mistakes due to the student’s own errors, a much

stronger rebuke was indirectly made towards Pandrosion for not instilling the value of anal-

ysis into her students.

The second section follows the problem posed by one of the students.1 The student claimed

to have discovered a way to find two mean proportionals in continued proportion between

two given straight lines by linear means. The mistakes present both in the student’s so-

lution and Pappus’ correction are the subject of discussion later in the chapter. Pappus

also provided a history of the problem with solutions proffered Eratosthenes, Heron, and

Nicomedes which, in reference to the classification of geometric problems that he provided,

are essentially ’solid’ or mechanical. Also included is a fourth solution that is described as

being “discovered by us all”, but was specifically attributed to Sporus by Eutocius much later.

The third section is spurred by the failings of a second geometer to present the three means

in a semicircle.2 The definitions of arithmetic, geometric, and harmonic means are first,

followed by seven more means (three are ancient, four are recent) and conclude with a series

of problems in which these means are calculated through varying relations between given

extremes.

The fourth section contains propositions from a lost work, Paradoxes, by the otherwise

unknown Erycinus.3 The fifth section includes problems of inscribing five solids within a

sphere and does so in analysis/synthesis pairs4 and the 6th section is a variant on Pappus’s

solution for the mean proportionals examined in section two.

This particular chapter is itself divided into two parts. The first covers the implication

of Pappus’ demands for analysis on the social practice of mathematicians from the first sec-

1Heath(1921) ii,363. Pappus Collection 3, 68.
2Heath(1921) ii,365. Pappus Collection 3, 103.
3Heath(1921) ii,365. Pappus Collection 3, 103.
4Heath(1921) ii,368. Pappus Collection 3, 131.
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tion of Book 3. The second and third parts focus on Pappus’ use of analysis and synthesis

outside of Book 7, but with departures in style. The second part takes on the impossible

problem from the second section; a rare opportunity as Pappus only examined possible or

true propositions elsewhere in the Collection.

5.1 Rules for being a Mathematician

Book 3 begins with a lengthy exposition on how a mathematician must conduct his or her-

self, with respect to peers and superiors, when sharing problems and theorems. In this social

practice of mathematics, Pappus found himself pressed to respond to the efforts of a young

man who had been rather careless with the problem he distributed. This carelessness had

consequences that Pappus deemed important enough to reiterate not just to the youth, but

to his teacher.

Those wishing to discriminate more precisely between the things sought in

geometry, my dear Pandrosion, think it fit to call a problem that which one

casts forward something to do or to construct, and a theorem that in which,

when certain things are being supposed, one observes what follows from these

presupposed things and in general everything that accompanies them; among the

ancients some said all things are problems, while others said that all things are

theorems.

Pappus, Collection 3.1:1-8 (as translated by Bernard(2003b), 118-119)

Pappus informed his female interlocutor, Pandrosion, of the past and present turmoil over

the distinction between problems and theorems. The division sounds familiar. Indeed, it

is reminiscent of the two forms of analysis, problematical and theorematical, described in

the introduction of Book 7. The differences between the passages, however, are acute. In
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Book 3, the description casts the mathematician as a key participant in the observation and

construction of whatever it is that he or she has put forward. The origin of the objects of

analysis is vague in Book 7. The ancients did not share Pappus’ division and although they

themselves are invoked later, the arguments alluded to here were not followed-up. Reliance on

the ancients in this text usually serves to provide historical support for Pappus’ arguments.

Here, they are meant to illuminate for Pandrosion that the differences between problems and

theorems were even acknowledged by earlier mathematicians regardless of their inclination.5

The presence of Pandrosion herself is not insignificant. Her visibility in the manuscript

tradition is rather shaky. It is accepted that Pandrosion was a female but previous transla-

tions and transcriptions have either masculinized her name or eliminated her altogether.6 As

in Setting the Scene, Alexandrian women had a better chance of receiving not only a basic

education, but one that included mathematics. Thus, it is not impossible for an individual

such as Pandrosion to be the recipient of the mathematically-tinged epistle. Still, he likely

had enough regard for her abilities to have expected her to be capable of reading the entirety

of Book 3.7

Now the person who puts forward the theorem, supervising in one way or

another what follows, thinks it fit to search in this way and would not sanely put

it forward in another way. On the other hand, he who puts forward a problem, in

the case he is ignorant and totally inexpert, even if he prescribed something which

was somehow impossible to construct, it is understandable and he should not be

blamed. Indeed, the task of the person who is searching is to determine also this:

the possible and the impossible, and, if possible, when and how and in how many

ways possible. But should he, at the same time, pretend to know something in

mathematics and so to speak cast forward something in an inexperienced way, he

is not without blame. Pappus, Collection 3.1:9-17.

5Knorr(1986), vii.
6Cuomo(2000), 127n2; Jones(1986), 4n8.
7Jones(1986), 16. It makes no sense to only dedicate part of a treatise to a recipient with no explanation.
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It is now revealed that Pappus only wished to discuss problems in their present construct,

but he does so in a peculiar way. The activity of the theorem is portrayed as restricted due

to its disposition towards general cases in encompassing all possibilities. Theorems are not

likened to analysis but what Pappus wrote here, again, sounds quote similar in their mutual

adherence to sequence of objects. Problems, on the other hand, can lead one astray. Moral

judgement is introduced here. The onus is placed on the possibility that a proposed problem

is constructible, and if it is possible, the conditions and number of those possibilities (much

like a diorism).

However this was evaluated, an individual who is “ignorant and totally inexpert” would

not know how he was to go about ensuring that his problem was possible nor how he was

to present his solution. Such a case could easily describe anyone who was ever a student

of mathematics and maybe this is why Pappus allowed them leniency; if sharing problem

and theorems were the foundation of an active mathematics community, there must be room

for newcomers to make mistakes. Contrast this with where Pappus does place the blame.

It could just be a word of caution towards humility but Pappus is harshest towards the

pretenders. One will soon see why; it is not so much about boasting as it is about how

one cannot completely disavow the traditions and practices of mathematics simply because

they think they are clever. One may call Pappus conservative because of it, but Pappus was

referring to more than just the history of problem-solving. It is about using tools and proofs

already proven ineffective over ones that do work; it is about not checking one’s own work

for fallacies and circular arguments. If one truly knew mathematics as they claimed, there is

no excuse for sharing impossible problems.

One who has read Book 7 will see in allusions to it in Pappus’s prescription to prevent

impossible problems. There is no explicit reference in either books to the other but it does

seem that Pappus recommended the use of problematical analysis. The best that can be

presumed at this point is that the use of analysis was implied between Pappus and Pan-

drosion and will be demonstrated, or that Pappus was referring to something else and a

demonstration of that method will be made.
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Well, recently some who professed to know something in mathematics thanks

to you determined for us in an inexperienced manner the enunciations of some

problems. About these and some other close subjects, it was necessary to expound

some demonstrations in order to help you as well as those who love learning in

this third book of the Collection.

Pappus, Collection 3.1:17-22 (as translated by Bernard(2003b) 119).

Pappus, presented with several students claiming to know mathematics, resolved to deal

with these inexperienced students by dealing with the source: Pandrosion. The revelation

that she was their teacher instead of a student changes the perspective of the previous para-

graphs. She was a peer of Pappus’ but now, he addressed her in a manner different from

Hermodorus, as someone who should be grateful for Pappus’ corrective measures. His demon-

strations are directed to her first of all, but his admonishment of her will benefit lovers of

mathematics as well, so that they too avoid copying her methods or those of her students.

That man gave this to us in writing without including the proof of the proposed

problem. And since Heirus the Philosopher and many others of those compan-

ions known to me deemed it worthy that I determine this through the proposed

diagram, I have waited up to this point for the promised proof to be put forward.

Pappus, Collection 3.3:1-6 (as translated by Bernard(2003b), 120-121).

Pappus’ attentions were first directed towards an intriguing problem of one student of

Pandrosion’s. The problem itself will be thoroughly examined in the next section, but for the

time being one can skip past it to the exposition that follows it. Besides all the mathematical

crimes Pappus accused the student of committing early, Pappus might not have necessarily

been motivated to respond as he did had the student not committed what was a final faux

pas. As a novel solution to a well-known problem, the claims of the student couldn’t help

but stir interest amongst Pappus’ acquaintances. Furthermore, the student distributed his
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construction, sans proof, to a number of individuals besides Pappus. Enough additional

information was provided so that Pappus was able to understand what the student attempted.

Taking Pappus at his word, he was pushed to finally respond to the problem despite its

incomplete state. Granted, the sharing of constructions without the accompanying proof

was a common practice but given the nature of the problem and the student’s promise

of a forthcoming proof, the student was being disrespectful towards the social mores of

mathematics.

5.2 Pappus’ Practice in Book 3

The problem posed by the geometer is to find the two mean proportions between two lines

in continuous proportion using only a ruler and compass. This is a reduction of the famous

Delian problem of doubling the volume of a cube. Geometrically, one wants to find a cube

whose ratio to a given cube equals the ratio of two given lines. The reduction, stated above,

can be presented algebraically like so by Archytas, Menaechmus, or, originally, by Hippocrates

of Chios:8

Given line a, b find x, y such that a : x = x : y = y : b

This equation can be applied to the cube just so

a3 : x3 = (a : x)3 = (a : x)(x : y)(y : b) = a : b

This is the same equation Archimedes uses in Sphere and Cylinder. It refers to definition

10 from Book 5 of Euclid’s Elements but with the duplication of the cube, this solution clearly

predates Euclid. Nevertheless, in this format the problem makes a bit more sense. Since we

8Heath(1921), i, 245-252.
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are looking for a ratio between two cubes, a3 : x3 instantly produces two cubes that can be

manipulated into the desired ratio. The Delian problem was notorious in antiquity for being

solvable by many methods except ruler and compass as it was possible to apply curves and

mechanical means to meet the ends of

a : x = x : y = y : b

The problem Pappus writes about is the only recorded attempt at a ruler and compass

solution.

To appreciate Pappus’ critique, one must do two things: To accept that Pappus’ repre-

sentation of the original construction is faithful and that it is not about whether Pappus is

just or fair in his criticism but rather how his techniques are representative of the rest of the

Collection and of late antiquity in general. One can also appreciate the interesting position

Pappus is in. Without the proposition, he proved himself able to complete an analysis by

taking sections of the diagram he knew he could derive a desired relationship or object from.

5.3 The Student’s Problem

Figure 5.1: A Planar way to solve the Delian Problem, Book 3 of the Collection from F.
Hultsch
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Here is summary of the construction set out by the student. Beginning with making the

lines B∆ and AB perpendicular, the first ideal case is made by making AΓ ‖ B∆. A is then

extended vertically to E and E∆ are connected. BE ‖ ∆H.

AB = B∆ = ∆N = NΛ = ΛΞ = ΞK = Kµα

Through points N , Λ, Ξ, K

BE ‖ NO ‖ ΛM ‖ ΞΠ ‖ KΘ

KP = BA = ΞX = Γ′N

KP is cut in two at Σ, therefore KΣ = ΣP .

Then

KΘ : ΘΣ = ΘΣ : ΘT = TΦ

There are what seems to be four separate cases original to the student’s problem: EB∆,

EH∆, OMNΛ, and ΠΘΞK. Starting from point Φ, a process of approximation is expected

to occur, repeating with increasing accuracy with B′ and finally Θ′, thereby proving M ′K ′,

N ′A′ are the mean proportionals desired in the problem described above. Exactly what was

being approximated and how the contributed to the determination of mean proportions by

planar means is unknown and consequently the logic of the rest of the construction, while

simple to explain in terms of parallels, is a mystery without more detail. All that can be said

is that the case held within ΘKµα are an addition of Pappus’ which apparently takes the

approximation to its faulty conclusion. Luckily enough, Pappus’ objections are encapsulated

by the comparison between cases EB∆ and ΠΘΞK and this chapter will focus on those two

cases.9

The design of the construction is reminiscent of Eratosthenes solution to the Delian prob-

lem.10

Three rectangles are inscribed between two parallel lines, and each rectangle is further

inscribed with a diagonal line, creating several triangles. A point, D, is placed on the outside

9Bernard(2003), 122; Cuomo(2000), 130-131; Heath(1921), 269. In the few translations and discussions
of Book 3, the case included by Pappus, and the subsequent argument are excluded.

10Heath(1921), i, 259.
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Figure 5.2: Eratosthenes Ruler, Handbook of Greek Mathematics from Heath

of the triangle on the extreme right, NQH, creating the two parallel lines between which the

means can be found. The two triangles NQH and MNG are shifted to the left as their hy-

potenuses overlap the sides of the triangles in front of them. The shifting ceases when a line

can be construct from point A to the point on the extreme right, through the intersections

of both hypotenuses.11. The validity of the desired case EB∆ in the student’s construction

can thus be proven by mechanical means but the student claimed his solution was not me-

chanical. Still, the visual similarity cannot go unnoticed by modern scholars regardless of

Pappus’ silence about whether this similarity was significant or superficial.12

Pappus does have much to say about the mistakes made by his main interlocutor, but the

fairness of his criticism is questionable. Providing constructions or problems without proofs

was a common practice in antiquity but it is important to remain cognizant that all of Pap-

pus’ criticisms were on the basis of what he has reconstructed for his own readers. There is

the possibility that the student and Hierius provided Pappus with more information about

the problem in their correspondence but the value of that eventually becomes moot because

what is being examined here are the analytical techniques, not the ultimate accuracy of Pap-

pus’ critique. The critique can be without merit but that does not necessarily mean that the

results of the analysis are incorrect in and of itself. When it comes to this problem, Pappus

is usually accused by modern scholars of being overly vitriolic and unfairly using analysis

11Heath(1921) i, 259.
12Knorr(1989), 63-72. Both of Knorr’s volumes cover the Delian problem and analysis and synthesis

extensive but he never brings them together under Pappus.
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against someone whose work he may have misrepresented; the use of analysis itself has yet

to be deemed incorrect or inappropriate to the problem.

The first objection of Pappus is the movement of point Φ along line ΘK depending on

the ratio KΘ : ΘP .

Necessarily neither that man nor us find such point of intersection of the

third ratio, being Φ. Since confusion of following this kind (of problem) is the

responsibility of the man himself, without comprehending these consequences.

Being unable to determine the point of intersection of Φ of the third ratio, having

not previously establishing the ratio of KΘ : ΘP , that is the ratio in which

BE : EA[1],

Not only does that man try to investigate the impossible, but he deemed it

worthy that we investigate the impossible. What with that ratio having been

established, namely that one which KΘ : ΘP = BE : EA, and KΘ having been

given, the shortest line of the third ratio (ΘΦ) is also given and the point Θ is

given. Therefore the other limit of the smallest line is given. It is clear that (the

point) falls between either ΘP or PT . For we will prove that T falls between

PΣ and then that Φ sometimes falls between ΘP and other times between P and

T according to hypothesis of the ratio given for KΘ : ΘP . Pappus, Collection

3.3:34.9-36.3.

[1]KΘ : ΘP = BE : EA

Before examining the analysis it is essential to understand the ratio Pappus selected. Taking

into account that the geometer was applying a method of approximation to his problem, it

would be desired that the ratio of the first case, KΘ : ΘP , would be equal to the goal ratio

of BE : EA. However, that ratio was not declared and for some reason it has lead Pappus

to curiously see point Φ as being undetermined and the problem consequently impossible.
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Pappus did not explain how he found Φ undetermined without making the ratio of the first

case equal to the desired ratio but it seems that the point would first draw Pappus’ interest

as a majority of the points in the first case are established in magnitude and position except

for T and Φ, which are established by ratios; the T is ignored for now because it is irrelevant

to the goal of the desired ratio BE : EA. Secondly, Φ would necessarily need to be unde-

termined in a problem that used approximation. Its relationship to BE : AE is equivalent

to the other two cases but yet remain adjustable. For Φ to be fixed would undermine the

geometer’s attempt to find the mean proportionals.

Thus, the grounds for an analysis: Accepting that the relationship KΘ : ΘP = BE : EA

is established, find Φ. Why analysis when it seems that synthesis is as legitimate a format?

Recall proposition 21 in the previous chapter in which the setup of the problem as almost

exact to this. Analysis began with a ratio and proceeded to prove that a point, presumed

established in synthesis, was given. In the setting up of a proof, a point such as Φ should

be properly established but the similarities should be somewhat less superficial or at least

better supported. The set-up of proposition 72 also supports this ordering of mathematical

facts; the analysis began with the ratio established and proceeded to line BE being given

but the synthesis proceeded in an unexpected way. The only other evidence that can be

provided for this being an analysis rather than a synthesis is because Pappus set it up that

way. The construction is already provided and if the proof is directed towards finding the

two mean proportions, the synthesis could very well be also oriented to the ᾿ζητούμενον being

the desired ratio of the approximate cases.

So moving on,

If

KΘ : ΘP = BE : EA

And using a : x = x : y = y : b,

Then
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BE : EA = BE : EN ′ = N ′E : EM ′ = M ′E : EA

Therefore

KΘ : ΘΣ = ΘΣ : ΘT = TΘ : ΘP

In order to find Φ,Pappus tried to resolve its position arithmetically using ratios larger

than 1 : 1. Since the method of approximation is being used, P replaces Φ in the ratio given

by the student because Φ and its equivalents in the other cases aim to have the ratio shared

between KΘ : ΘP = BE : EA.

Figure 5.3: A representation of what is going on in Pappus’ criticism of the Delian problem.
At a ratio of 4 : 2, PK is found by subtraction of ΘP from KΘ. The remainder is split
evenly between PΣ and Σκ. From here, Pappus can calculate the values of his first set of
equivalent ratios.

The first ratio Pappus tested was 2 : 1 or 4 : 2 = KΘ : ΘP . If the ratios are applied to

the length of KΘ, then

KΘ = 4,ΘP = 2; KΘ−ΘP = PK or 2

ΘP also equals 2’. Thus

KP = KΣ + ΣP or 2 = 1 + 1
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So, in the ratio to find the two means between two lines,

KΘ : ΘΣ = 4 : 2 + 1, 4 : 3

For ΘΣ : ΘT ,

4 : 3 = 3 : x, x = 9
4

= 21
4

Finally, for TΘ : ΘP ,

21
4

: 133
48

.

The desired ratio was 4 : 2 and the expectation is that ΘP = 2. Instead, it is less than

that, approximately 1.7. Lengthwise, if P = Φ, Φ falls between ΘP .

The next ratio Pappus used was 8 : 2. Using the same sequence, the ratio will be as follows:

8 : 5 = 5 : 31
8

= 3a
8

: 1[61
64

]. Again, ΘP is less than the projected 2, but it is very close: 1.95.

The final ratio is 10 : 2, as above:

10 : 6 = 6 : 3[3
5
] = 3[3

5
] : 2[ 4

25
]. This time, the fraction exceeds 2. Two-fold and four-fold, Φ

will fall between Θ and P and for a ratio of five-fold, Φ falls between P and T .

This is extraordinary not only because Pappus foregoes the geometrical analysis but that

the error of finding two mean proportionals via approximation is displayed so simply and ele-

gantly. Nowhere in Book 7 does Pappus imply that arithmetic could be used in analysis and

here it is used to great pomp elsewhere in the second section as well: “Everyone who wants to

be convinced of this can do it by following the analysis through the numbers themselves...”13

This application of arithmetic has serious implications for Book 2, which will be discussed in

the next chapter, but for now the use of numerical ratios efficiently outlines what would be

lengthy and difficult to demonstrate geometrically: KΘ : ΘP = BE : AE will remain that

relationship regardless of the numerals inserted and multiple constructions will be of little

use because all such cases are meant to be held within it.14 Furthermore, by not stating what

13Pappus, Collection3, 48:12-18.
14Knorr(1986), 340. There was a shift from problem-solving towards spherics, trigonometry, and numerical
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the ratio was, the student failed to uphold the diagram he proposed.

Pappus fumbled here. He did not use any examples that allow Φ to fall as it does in the

diagram. There are ratios that let Φ intersect KΘ at P ; the four-fold ratio came vet close.

The warning from Pappus here is, however, that one must be clear and correct in specifying

their constructions. A ratio alone is insufficient for determining a point.

Cuomo is slightly confused about what Pappus is doing in this objection.15 At one point,

Pappus placed full blame upon the geometer for not taking the responsibility to fix his error

in the ambiguity of Φ but in the next moment he allows BE : EA to be given. Cuomo is

surprised at the concession but understand that it allows Pappus to prove that the position

of Φ is problematic. As one of the few writers on Pappus to overlook the issue of analysis

and synthesis in the Collection, Cuomo missed the significance of such an action as it was

outlined above.

The second objection of Pappus’ is that the process of approximation that the geometer ap-

pears to have utilized relied upon a circular demonstration.Pappus tells Pandrosion why the

location of Φ was so important. Undetermined, the ratio of KΘ : ΘΣ = ΘΣ : ΘT = TΘ : ΘP

will not exist. KΘ : ΘP is already established as the desired ratio through its equality with

BE : EA. Pappus then assumed, for arguments sake, that Φ was where the student wanted

and the ratio therefore existed. A new case, represented by triangle ΘKµα, shows what would

happen should the approximation process actually achieve its goal. The argument on Pappus’

side is that the student takes for granted that he already knows the desired ratio to find the

two means and is therefore manipulating the construction to coincide with that knowledge.

The student’s argument is circular because the ratio of KΘ : ΘΣ = ΘΣ : ΘT = TΘ : ΘP is

what he is trying to find as well. The last of the three objections raised by Pappus has to do

with the geometer’s ignorance of his mathematical forbears.16 The Delian problem was a well

methods which dramatically altered geometric and computational astronomy. Regardless of the shift away,
the innovations could have also influenced simple analysis.

15Cuomo(2000), 129-130.
16Cuomo(2000), 132.
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known, traditional problem rooted in classical mathematics and it was long recognized that

the problem could only be solved using solid methods, not planar as the student proposed.

This prejudice, along with Pappus’ general reverence for the ancients, might have predisposed

Pappus to disapprove of the problem. The classification of geometrical problems in this was

an invention of late antiquity, likely beginning with Heron of Alexandria, but Pappus claims

that these divisions were discovered by the ancients.17 Problems can be one of three types:

Planar, linear, and solid. The first are problems that can be solved by straight lines and the

arc of a circle; the second have a much more complex origin, such as spirals, quadratrices,

conchoids, and cissoids; the third employs the surfaces of solid figures, namely conics. The

ancients freely used those methods and discovered by planar methods did not work:

What with the difference of the problems being of this kind, the ancient ge-

ometers were unable to construct the aforementioned figure on the problem of

two straight lines from nature in the following geometrical method. Since the

intersection of the cone is not easy to draw planarly [ what with having given two

unequal lines it is necessary to take the means of two proportional lines together

in proportion] cleverly substituting for instruments they drew in the execution

and the diagram fittingly, as it is shown from the arrangement being set out by

them... these men agreeing that the problem was solid they made the construc-

tion of it only instrumentally...

Pappus Collection 3, 54.22-30.

This is followed by a survey of historical solutions proffered for this problem by Eratos-

thenes, Nicomedes, Heron, and finally, ‘the discovery by us’. The fourth solution, as men-

tioned in the previous chapter, was attributed to Sporus elsewhere but Pappus may have been

using the royal We in the sense of the contribution of contemporary mathematics rather than

classical mathematicians, but that is a stretch.

17Knorr(1986), 342; Panza(1997), 385-387.
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Pappus’ complaint can be summarized as being less about the math and more about the

history of mathematics. The student committed two wrongs by proposing to solve the Delian

problem in a way that was already determined to be impossible, thereby completely disregard-

ing the methods of his more expertly predecessors. One finds, however, that Pappus does a

less than convincing job in upholding the ’solid method’ only argument. Two of the solutions

provided are mechanical (Eratosthenes and Heron) while the other two are linear (Nicomedes

and Pappus/Sporus).18 There is another solution alluded to, a truly solid one that uses conic

sections, but it does not appear in Book 3.19 It does appear in Books 4 and 5 and there is a

lemma in Book 7 that refers to the appropriate proposition in the Conics (5.52).20 For Wilbur

Knorr, Pappus stumbled here by neither acknowledging that there was a planar aspect to the

problem of the means of two straight lines.21 Nor did Pappus satisfactorily demonstrate that

the discovery of a solid construction justified the strict classification of the Delian problem as

’solid’ when there were solutions that were not solid. Pappus forgot that the only judgement

he directly attributed to the ancients is that they could only solve the problem instrumen-

tally, otherwise, they were at odds about what constituted planar, solid, and linear problems.

Alain Bernard agreed with Knorr but for different reasons. It was not so much to teach

the student why solid methods work but rather to chastise the student for, as noted, not

learning from his mathematical forebears.22 However, Bernard’s view of Pappus’ criticism is

that the mathematician was working blind; without the proof, Pappus’ criticism is baseless,

unsupported and is largely used to serve Pappus’ rhetorical purposes. Reference to classical

mathematicians allows him to link his criticism to the classification of problems but doing

so requires him to presume the intentions of the student that, according to Bernard, are

not expressed anywhere. This is a rather fuzzy argument because, if we take Pappus’ word

for it, the student provided the construction with the known goal of solving the problem

of two mean proportionals by ruler-and-compass. This statement of purpose was sent not

18Knorr(1986), 347.
19Jones(1986), 5. Perhaps Pappus thought it too advanced for his audience. A fair decision in light of all

the basic mistakes Pandrosion and her students made.
20Pappus, 7.276-278.
21Knorr(1986), 347.
22Bernard(2003), 126. Bernard’s concerns about Knorr go a bit deeper. He accuses Knorr of borrowing

heavily from Pappus’ philosophical cache while denying that there were any such influences in Pappus’ work.

106



only to Pappus, but shared with many others. Even if one excludes the external influence of

Hierius and company, those are still very explicit intentions that eliminate any expectations

of mechanical, solid, or linear constructions. Without further clarification as to why he feels

Pappus was too eager to speculate, Bernard’s interpretation can only be half-right: Pappus’

deference to the ancients remains the cornerstone of his works but how he went about his

mathematics was in no way aberrant to mainstream practice.23

5.4 Book 3: A Renewed Look At Analysis and Synthe-

sis

The contributions of Book 3 can be slotted into one of two types: The enhancement of ana-

lytical and synthetic techniques and the clarification of the role played by analysis/synthesis

in regular problem solving. The incorporation of arithmetic into analysis as a substitute for

the geometrical method elegantly resolved the ambiguity of the ratio for the Delian problem

that would have been clumsily done by geometry. It is not the only time in Book 3 that

numbers are used to elucidate a demonstration of Pappus; section 3 uses numbers to allow

readers to work out and confirm the arithmetic, geometric, harmonic means described.

As for the role in regular problem solving, Pappus finally cemented the confirmation ele-

ment of analysis. Failure to check for all impossibilities can bring censure upon an individual

who claimed to have mathematical knowledge. One indeed had a responsibility to pursue

mathematics and to treat it and its practitioners with a respect that goes unuttered in Book

7, save for the hero worship of the classical mathematicians. As far as the Delian problem is

relevant, the confirmation aspect is the only use of analysis that it pertinent to Pappus.

23Bernard(2003), 130; Jones(1986), 24-26. Bernard is willing to cut Pappus a break. He finds himself
inline with Jones in seeing much of the Collection as foul papers. That is, works that were not meant to
be distributed. Jones notes examples of this in the Conics section in Book 7. Bernard sees Pappus being
a bit more mathematically cunning than that in Book 3. The incompletion here is deliberate; breaks in the
demonstration are there for the audience to fill in. Audience participation allowed Pappus to enhance his
argument.
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There is more than just a successful analysis and synthesis needed to make a problem com-

pletely ‘right’. The classification of geometrical problems into linear, planar and solid, when

necessary, is preeminent in this decision for. In Pappus’ mind using the wrong geometric

tools could only come back to haunt you. Dismissing the work that came before your efforts

meant one missed out on the nuances of why certain methods do not work as well as others.

The geometer created a fuss about finally finding a way to solve the Delian problem using

only ruler and compass. By failing his only reward was an invalid proof and a reputation for

being unfamiliar with his classical mathematics

In the final chapter, this new vision of analysis will be used with Book 2. This text is

often maligned but it has yet to be extensively studied. It is seemingly dismissed for its sim-

plistic subject matter of multiplying large numbers. It is hoped that by slightly re-imagining

this book as a geometrical text, the arithmetic analysis introduced here can be fully evalu-

ated to the benefit of gaining more information about both Book 2 and Pappus’ practice of

analysis/synthesis.
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Chapter 6

Sing the Wrath of Demeter: Analysis
and the Underworld of Arithmetic

In this final chapter, Book 2 will be the grounds for an experiment on Pappian analysis and

synthesis. This is an unlikely book to use because its traditional subject matter has been

judged as strictly arithmetical, and therefore incompatible with geometrical analysis and

synthesis. The unveiling of numbers in Book 3 encourages a re-evaluation of Book 2 that

was first suggested in Setting the Scene. The outstanding historiographical issues must be

considered first.

6.1 The Style of Book 2

The standard description of Book 2 of Collection remains unchallenged since T. L. Heath

published the following in The History of Greek Mathematics:

The first 13 propositions of Book II evidently, like the rest of the Book,

dealt with Apollonius’ method of working with very large numbers expressed in

successive powers of the myriads, 10, 000. Heath,ii, 361.
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Heath’s succinct summation captured both the essence of Book 2 as well as propagated

major misconceptions about the text that continue today. Only the second half of Book

2 has survived, including propositions 14 to 25. The leitmotif of this book is a method of

multiplying several numbers that are either divisible by a hundred, divisible by ten, and

less than ten. However, the product must be expressed in units and powers of 10, 000 or

myriads. This is not an arbitrary demand. Despite the expansion in vocabulary evident in

some Greek texts, 10, 000 was the single highest individual number that the Greeks named.

Therefore, large numbers are represented either as values between 10, 000 and 1, 000×10, 000

or myriads squared, cubed etc. 100, 000, 1, 000, 000 nor 10, 000, 000 are ever directly applied.

Representation of such whole numbers without necessitating measures by means of myriads

has yet to be revealed in contemporaneous language.

The first few propositions required the units Pappus provided to be multiplied indirectly.

In order to accomplish this method, Pappus took each unit and separated their parts col-

lectively into two categories; the πυθμήν and the multitudes. Take the numbers 50 and 400,

five and four would be the πυθμήν while ten and a hundred are the multitudes. Pappus then

multiplied the πυθμήν together separately from his multiplication of the multitudes and then

united the two products to create a new product, which in this case is 20, 000. Sometimes,

Pappus would include single digits numbers that are less than ten into the series of numbers

he wished to see indirectly multiplied. These numbers are not πυθμήν and they appear in

propositions where there is no restriction of indirect multiplying. Complex whole numbers

like 99 or 73 were not used by Pappus. He avoided numbers that prevented him from getting

products that were perfectly representable by myriads or, for smaller numbers, divisible by

a thousand without remainders.

Interestingly enough, by challenging the reader not to multiply the numbers directly, Pappus

hinted that the linguistic limitation might not entirely impeded some expression of numbers

larger than 10, 000. Akin to the use of powers of 10 in the Chinese large number system, the

Greeks preferred myriads as their place holders. While this is just as evident in the earlier
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propositions as in the later propositions, it is not until the second half of proposition 25, when

the numerical products derived from the so-called ’word game’ repeatedly pushes the sets of

myriads to their thousandths limit, that the myriads most clearly take on this additional role.

Almost every proposition from 14 to the first half of 25 begins with a series of unlabeled

and undetermined numbers, of a singular or combination of quantities that are less than a

thousand and are divisible by ten, with the exception of those numbers that are less than

ten in the beginning. The goal of finding the product without multiplying the numbers is

then stated. Proposition 14 is the only proposition where the numbers are immediately in-

troduced. In the proceeding proposition, letters are increasingly used in alphabetical order

to represent the units Pappus desired to have multiplied. For example, the units that Pappus

wanted multiplied in proposition 15 are never stated but are symbolized as a whole by series

B and Γ. The identity of these units is not completely unknown because Pappus does give

their product as well their quantity and the degree of the multitudes. Still, it is different from

a proposition such as 20 in which every letter is assigned a number before being multiplied

together.

Pappus repeated the process of multiplying long after the desired method of multiplying

was sufficiently demonstrated. Propositions 17 contains an unusual addition to the proposi-

tion that is repeated word for word in proposition 21:

But the multitude of (the numbers) from which (we get) series A, multiplied

with the square of the multitude of (the numbers) from which (we get) series B

and divisible by four, let it leave, as previously, one, and Apollonius inferred that

together with the product from the numbers of series A (and) B is just as many

myriads to the power of Z, this is ten times as many as E, thus as said beforehand

as many of the multitudes divisible by four leaves behind two, the product of (the

numbers) from which (we get) series A and B are just as many myriads to the

power of Z, which is one hundred times the numbers of E, and whenever it might

have left three, the product from the numbers is just as many myriads to the
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power of Z, which is one thousand times the numbers of E. Pappus, Collection

2.5:16-28.

The units given by Pappus do not allow for such an expansion but, for the sake of the example,

this passage further demonstrated Pappus’ tendency for repetition. If each of the smaller

units were gradually increased to being divisible by a hundred, the final product would also

increase respect to the increase in the quantity of the multitudes. The product will only go

as high as a thousand times a myriad to the nth power because, obviously, the next step is

a myriad and would thereby bring the product up to a myriad to the nth+ 1 power.

So, when Pappus says:

A ·B
4

= 1,

he means

105

104 = 101 or 100,000
10,000

= 10

Therefore,
A ·B

4
= 2,

he means

106

104 = 102 or 1,000,000
10,000

= 100

and
A ·B

4
= 3,

he means
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107

104 = 103 or 10,000,000
10,000

= 1, 000

Thus,
A ·B

4
= 0,

he means

108

104 = 104 or 100,000,000
10,000

= 10, 000 or 10, 0002

In the preceding propositions, letters did not take on the numerical representations that

they do in arithmetic: A did not represent 1 and so on. The second half of proposition 25

does just this in a lengthy fashion by calculating the product of the numerical equivalent of

all the letters in two sentence. Thus an A does equal 1, K does equal 20, etc. What this

proposition borrows mathematically from the previous propositions is the separation and

multiplication of the πυθμήν and the multitudes before multiplying the products together

again into multiple steps of myriads.

6.2 Concerns about Heath

Book 2 has not been the subject of as much scrutiny as the rest of the books in the Collection.

Its arithmetical content is seemingly out of place amidst the advanced geometry of the other

texts and even appears somewhat out of sync with the rest of Pappus’ works. If it receives

any attention at all, it is fairly brief and takes on a form similar to Heath’s. Sometimes a

brief translation is added, proposition 17 usually.1 The translation however, is only used to

show the quirkiness of the text and little else as the contribution of Book 2 to the thesis of

these current works is inconsequential. With Book 2 only receiving a perfunctory treatment

by scholars past and present. Heath’s succinct summation has since become fact while the

1Cuomo(2000), 181-182; Netz(2008), unpublished. It is unclear why proposition 17 is an appealing example
of Book 2 over other propositions..
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text offers strong suggestions that one must admit that the so-called facts of Book 2 are not

as definite as they appear.

There are three common presumptions when it comes to Book 2. The first is that the

first thirteen propositions were taken from the same text as the other twelve. The second

is that of the twelve propositions that do survive, that Apollonius of Perga was necessarily

the author of all of them; finally, that Book 2 is an arithmetical text. Each of these can

be resolved but at the cost of acknowledging that the facts of Book 2 have as of yet to be

properly examined.

The first is a fairly minor concern, but it is important in light of the texts previously discussed.

Pappus’ penchant for jumping from text to text, problem to problem, and mathematician

to mathematician should make one less willing to believe that the missing propositions have

the same provenance as the surviving ones, not more. Nor can one assume that the previous

propositions were of the same nature. If all that survived were propositions 14 to 24, one

could not predict that proposition 25 would include three multiplication problems of two

different types under Heath’s suggestion. In Heath’s favour is Pappus’ dedication to erudi-

tion in this text. The original theorems upon which Book 2 is based in a numerical order

that are one higher than the propositions he assigned them i.e. theorem 26 is proposition 25.

Pappus intermittently neglects to refer to the main text but even in their sequencing, it is ac-

ceptable to assume that much of that scene setting occurred early in the missing propositions.

On the other hand, it is not entirely set in stone that the propositions in Book 2 were written

by a single author. Apollonius of Perga is often awarded complete authorship of the original

text without explanation.2 Seven of the eleven propositions reference a previous source and

two of those propositions list a source that does not name Apollonius. Propositions 21 and 22

state their source as from the stoicheiou, or the Elements. Jones suggested that Elements

is the title of the lost arithmetical text by Apollonius, as it is the title of other works by lesser

known Greek mathematicians. But, this reasoning does not acknowledge that any reference

2Jones(1986), 3.
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to Elements is predominantly accepted to refer to Euclid’s work nor that the other uses are

adjectival in nature. What makes this suggestion valid is that the term has a self-referential

use, in that within the discussion of the text, the author might refer to a particular text as

the Elements, as if to say the, “the elementary text of which we are discussing”. The self-

referential usage cannot be turned on Pappus because the phrasing would be too awkward

even for Pappus; it would be too easy to confuse it with the Apollonian text. So, it refers

either to Apollonius or to some other work.

Attributing the original text to Apollonius is appealing for many reasons. Book 7 alone

shows how much Pappus engaged Apollonius when it came to advanced geometry. The in-

tent and verifiable source metrical may have long disappeared, but the major advantage of

Book 2 is its provision of an Apollonian work in a subject matter he is not associated with.

Unified authorship is a desirable quality in an otherwise incomplete text.

If the reference is to Euclid’s Elements, then there is recourse to a text that survives in its

entirety to provide assistance as to what the original text might have looked like. However,

identifying the exact propositions in Elements that Pappus might have alluded to is difficult.

It requires the propositions to be stripped of the arithmetic and reinterpreted in geometric

terms with serious consideration as to the original proof. Looking at the straight forward

multiplication for the πυθμήν and the multitudes, it is possible to recast the arithmetic of

Book 2 into the comparison of ratios, which alone make room for comparisons between Books

2 and 5 of the Elements, all for only two of the surviving propositions.

By following Heath’s statement, this effort is unnecessary as Apollonius was suppose to

have written an arithmetical text, making the task of turning the arithmetical into the ge-

ometrical avoidable. However, while Pappus’ calculations are unarguably numerical and his

methods are noted to be through arithmetical processes, Pappus always stated that several of

the arithmetical propositions of Book 2 were previously proven by Apollonius. This should

not be overlooked and brings one to the final issue brought up by Heath. For all of the

errors Pappus makes in his criticisms to Pandrosion’s student in Book 3, one does witness

115



how strict Pappus was against what he saw as a violation of essential mathematical truths.

In that case, it was the use of planar means to solve a solid problem; in Book 2, the same

care can be seen when Pappus distinguished between what he does, by αριθμος and what

happened in the original text, γραμμικον.

Γραμμικον alternately can translate into linear or geometrical, although the form from this

dual translation is taken from sways more to it being understood as linear. Nonetheless,

Pappus was clear that what he did was much different than the original. This differentiation

justifies the existence of Book 2: The γραμμικον source of the propositions is an afterthought

to the αριθμος of Pappus. If the source written with αριθμος rather than γραμμικον, one must

ask what the point of Book 2 would be. The purpose of the Collection was to collect and

give context to works that were forgotten or difficult to get together in one place. The Col-

lection was not intended to be a replacement, only time made it that way. Both Books 3

and 7 are significantly derivative of the original texts but Pappus never failed to make it clear

that his contributions could be set apart from the rest. In Book 3, it was his criticism and

in Book 7, most of the lemmas were his. If Apollonius really did deal with large numbers

arithmetically, then what was Pappus doing that would make his multiplication different

than Apollonius’? This is the wrong question as Pappus wrote that Apollonius originally

conducted his missing work in metrical analysis.

As it appears in Pappus’ text,γραμμικον ad its derivative δια των γραμμων are very impor-

tant in the area of spherical astronomy, or, more specifically, ancient spherical trigonometry-

how the arcs of great circles form a concave quadrilateral. Nathan Sidoli believes that Hiap-

parchus, in Commentary and Ptolemy, in the Almagest and Analemma use the word to

similar effect.3 In the Almagest it is interpreted as metrical analysis; in the Analemma it is

metrical analysis applied to problems of plane trigonometry. In Hipparchus’ Commentary,

which is the earliest occurrence of δια των γραμμων , simply refers to a calculation completed

by geometrical analysis i.e. tracking the co-ordinates of principal points with relation to a

3Sidoli(2004), 72-73.
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setting star.4 Hipparchus and other who use γραμμικον include data tables so that the reader

is spared the effort of conducting the same analyses. Pappus would not have been ignorant

to such application of and the precedent set by Ptolemy and others when using γραμμικον for

analytical purposes. Pappus referred to Hipparchus in Book 3 and one of his extant texts

was a commentary on Ptolemy’s Almagest. One can only assume that such influences were

behind Pappus’ repeated reminders that his αριθμος was distinct from Apollonius’ γραμμικον.

None of this is to say that Apollonius’ text was related to trigonometry but with the evidence

inclining to that direction, it is open to pursuit. The real question now is what motivated

Pappus to take a linear text and represent it arithmetically.

The marriage of arithmetic and geometry is an uneasy one. When he speculated as to

the original Apollonian text, Netz believed the theorems were initially vague and entirely

geometrical, even though any vagueness in the text would have been clarified by a separate

diagram.5 Cuomo called this process arithmetization: The application of numbers to a gen-

eral proposition that has been established and then reformulating the proposition again.6

This reformulation would be valuable as a method to convince the reader that a proof does

or does not work; Pappus used this particular piece of rhetoric to great effect twice in Book

3. First, when he tried to prove that the position of Φ was under-determined and second

when, after repeatedly demonstrating to the reader how the proof presented by the student

is circular, he did not conclude his argument but leaves it to the readers to complete the cal-

culations using analysis through numbers and see for themselves that he was correct. When

present elsewhere, ‘arithmetization’ is not so abstract. For instance, in Hero of Alexandria’s

Metrica

First, let there be an equal-sided triangle, each of its sides equals 10[1]. Let it

be ABΓ[2]. Let A∆ be perpendicular to BΓ[3]. Since BΓ, which is equal to AB,

is equal to twice B∆[4], therefore AB2 is equal to four times B∆2[5]. Thus, A∆2

equals thrice times ∆B2[6]. Thus ∆B2 equals 1
4
BΓ2[7]; and BΓ2 = 3

4
A∆2[8]. The

4Sidoli(2004), 80.
5Netz(2008)(unpublished)
6Cuomo(2000), 180-183.
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ratio of BΓ2 to A∆2 is 4 : 3[9]. All is multiplied by BΓ2; BΓ2 is multiplied to

itself and multiplied to A∆2[10]. Therefore the ratio of BΓ4 to A∆2 times BΓ2 is

4 : 3, which is 16 : 12[11]. However, BΓ2 times A∆2 is like (BΓ times A∆)2[12]:

This is two triangles multiplied to one another. Therefore the ratio between BΓ4

to the double triangles squared is 16 : 12[13]. The double triangles squared are

four times larger than a triangle squared. Therefore the ratio of BΓ4 to one

triangle squared is 16 : 3[14]. Since BΓ4 is given, BΓ is given[15]. Therefore the

area of the squared triangle is given and the triangle is given[16]. This has been

calculating according to the following analysis. Square 10, this is 100[17]. Square

100, this is 10,000[18]. Multiply that by 3
16

, that is 1, 875[19]. Since this does

not have a root, it should be estimated with the difference. The area is 431
3
[20].

Heron, Metrica A 46.23− 48.29.

[1] AB = BΓ = ΓA = 10
[2] ABΓ
[3] A∆ bisect BΓ
[4] BΓ = AB = 2B∆
[5] AB2 = 4B∆2

[6] A∆2 = 3∆B2

[7] ∆B2 = 1
4
BΓ2

[8] BΓ2 = 3
4
A∆2

[9] BΓ2 : A∆2 = 4 : 3
[10] BΓ4 : A∆2 ·BΓ2

[11] 4 : 3 = 16 : 12
[12] BΓ2 · A∆2 = (BΓ · A∆)2

[13] BΓ4 : (BΓ · A∆)2 = 16 : 12
[14] BΓ4 : A∆ · AΓ = 16 : 3
[15] BΓ4 is given; BΓ is given
[16] Area of the squared triangle is given and the triangle is given
[17] 102 = 100 (BΓ2)
[18] 1002 = 10, 000 (BΓ4)
[19] 10, 000 · 3

16
= 1875 (BΓ4 : A∆ · AΓ)

[20]
√

1875 = 431
3

The geometrical problem is not opaque at all. Heron uses a technique to calculate the area of

a triangle without using the length from height to base in arithmetical or geometrical ways.

Its use above is purely symbolic, a way to represent a single triangle in a visually familiar

form. Heron assigned a numerical value to the segments he was interested in calculating and,
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in conjunction with the proof and the diagram, completed arithmetical products of relations

that were easy to express geometrically anyways. In the following set of problems, the ge-

ometry is second to the arithmetical method that Heron elucidates here for the reader: It is

a technique that one is expected to use repeatedly as one calculates the area of ever-growing

polygon with the triangle above inscribed in the center.

The presence of analysis will be discussed later, but what is relevant at the moment in

the confirmation of Cuomo’s assumption. Arithmetic can even enhance proofs that are the

easiest to comprehend. Heron’s method of calculating the area was a bit unusual an likely

needed numerical assistance to confirm his formula. Now that it is confirmed, Heron did not

need to be explicit about it throughout the next set of problems. After a couple of iterations,

Heron quickly assumed that one no longer needs the triangle formula offered because it was

memorized. The numbers, on the other hand, remained.

6.3 Arithmetic and Geometric

If one accepts arithmetization as the technique Pappus utilized in Book 2, it does make sense

of some of the quirks in the text. Propositions 17, 21, and 25 contain additional information

about how the magnitude of the product will increase when the degree of the remainder

increases. Where this increase will come from is not stated but by understanding arithmeti-

zation as being in action, the increases are then given a rather complicated origin. It might

possibly be a consequence of the arbitrary nature of the numbers Pappus assigned. Should

the reader want to try out Pappus’ method on Apollonius’ theorems using different com-

binations of large numbers, the increases would occur as acknowledged even when Pappus’

numbers do not allow such products. This is supported in propositions 21 and 23, wherein

the numbers are included for the sake of example or λογου χαριν.7

Arithmetization does not reveal anything about the original text. Its presence means only

7Cuomo(2000), 18on27. It is significant that this phrase is not seen alongside numbers in Metrica
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that it is a method, typically available to geometers and commentators, to enhance some

demonstrations and to disprove others. Nonetheless, its use elsewhere in the Collection and

by other mathematicians does offer reason that the original text of Book 2, and by extension

Book 2 itself, should be treated as a geometrical text. There are risks to arguing that Book 2

is a geometrical text. Pappus and other mathematicians made the difference between geom-

etry and arithmetic clear. If the original propositions were arithmetical, Pappus would have

written that they were arithmetical. However, he did not. All but one of the propositions

linked to Apollonius, the original theorems were noted to have been linear. The linearity of

the original problems is in no way a barrier for analysis and synthesis to be conducted on

the proof. Many of the lemmas in Book 7 were linear propositions, especially Cutting off of

a Ratio. The only consequence is that the analyses and syntheses are slightly different than

those of more complicated lemmas.

The reconceptualizing of Book 2 as a geometric text is another matter as the text neces-

sarily lacks much of the information that would guide a construction. The numerical values

are assigned to individual letters whereas in a linear problem the value could be assigned to

a line segment or to an area, as Heron does in the Metrica. This weakens the argument for

a geometrical text of course but in this book, it is the arithmetic that is on for show. The

reader was expected to have the Apollonian text on them, just as it was hoped that they

would have some of the texts from the Domain of Analysis in Book 7, thereby freeing Pappus

from the responsibility of rewriting everything that was in the original proposition.

A.P. Treweek does offer a diagrammatic representation of Book 2’s propositions.8 The con-

struction are taken from Book 2’s fragmentary manuscript tradition. Their provenance can

only be assumed from the small collection of manuscripts that do have diagrams. The dia-

gram for proposition 14 takes the grammikon to the extremes.

The focus on arithmetician is great for Pappus’s proposition but it does not seem to be

8Treweek(1950),1-6 trans. For more about Treweek and the manuscript tradition of the Collection see
the Commentary section of this work as well as Treweek(1958).
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Figure 6.1: Proposition 14, Book 2 of the Collection from A. P. Treweek

working here. In the diagram, the proposition is explained like so. B represents all number

being hypothesized. N represents the product of the multitudes. (πυθμήν are represented

by Γ and their own product is represented by an O. The grammikon and arithmos have

been combined to create an abacus-like diagram. This is not sensitive to the nuances of the

text. Proposition 17 shows just how convoluted this method can be. In the later series of

Figure 6.2: Proposition 17, Book 2 of the Collection from A. P. Treweek

diagrams, the multitudes are no longer represented; the task of calculating their products is

left for mental mathematics. As the groupings become larger, numbers that are not assigned

specific a letter in the text happen to be assigned them anyways, complicating the ones abil-

ity to understand the construction as the symbolism of the place-holders is inconsistent.

It must be conceded that the best proof one can provide of Book 2 as a geometrical text in

spirit is the discovery of the constructions that inspired Pappus. As much as the previous

diagrams best represent what Pappus intended. Constructions must be sensitive towards the
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text. In this case, only a few corrections are needed to bring Treweek’s drawing in line with

the text.

A minor setback to Book 2 being a geometrical text is the second half of proposition 25.

In it, both Apollonius and Pappus play a lengthy word game where each letter of a hexam-

eter verse is converted into their numerical values and the product of all the numbers are

then multiplied. The Apollonius completed this game arithmetically as per the lost notice at

the beginning of Book 2, initially challenges the presumption that the lost text was entirely

geometrical. But, it does not change the fact that Pappus continually separated his arith-

metical work from the linear efforts of his predecessor. If the Collection has proven anything,

it is that a text does not have to be limited to one subject matter and the place most like

for that change to occur will be at the end of a text.

6.4 Analysis and Synthesis and Book 2

The appearance of numbers in Book 3 promised to reinvigorate discussion about a text that

is widely misunderstood. If the arithmetic of Book 2 was a means to demystify one or more

geometric proofs, was it there as a technique of analysis or something else?

One needs more than numbers to conduct an analysis. They are used in Book 3 to emphasize

a point about the nature of ratios. It is possible, as the example in Book 3 illustrates, to

isolate the arithmetic from the diagram and just calculate the ratios. On its own, this would

not be an analysis. As per Book 7, analysis requires an established ᾿ζητούμενον , ἀκολουθος

, and things that would hold the rank of first principle in synthesis. In the context of the

proposition, these things are provided in the form of the desired ratio, the ratios in between,

and the position of Φ respectively. The numbers are set to these objects, not the opposite.

Book 2 was not laid out in that way. Due to its arithmetical nature, the text has to be

understood synthetically first and foremost. This means that the proposition must move
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from first principles to objects that are sought. Of course, there is nothing preventing Book

2 from being read analytically. Many of the proposition display the individual numbers

immediately, and they are easy enough to calculate without Pappus’ restrictions. In ideal

analytical-type of proposition in this case would begin with the product first and seeks the

existence of a desired multiplicand. The closest proposition to this ideal is proposition 15.

The product and multitudinous value of the multiplicands are the only quantities given.

Then it is possible to identify the sets of four or five multiplicands by working backwards

from the possible products of the (πυθμήν and the multitudes. As for the other propositions,

too much information is usually given and the order favours the calculation of the (πυθμήν

first.

The case is stronger for the analytic use of numbers in the Metrica. There are a cou-

ple of instances where Heron used the phrase “συντηήσεται δὲ ἀκολούθως τ,ῆ ἀναλύσει οῦτως.

”.9 The problem itself is not set up as a typical analysis. Heron took the reader through the

creation of the construction and proceeded through the steps in a synthetic way. Heron’s

goal, to find the area of the triangle, is not the sort of goal used in analysis. As in propositions

21 and 72, are usually a single point or a line. Like many analysis, Heron declared the givens

at the end of his proof whereas in synthesis these are identified first. Another thing that hap-

pens in Metrica that also happened in Book 3 was the order in which arithmetic was used.

In both propositions, the numbers are applied after the construction and the relationships

were completed. Then, the arithmetic would proceed through the proof in the sequence that

it was established. For example, Metrica’s arithmetic follows the order of the geometrical

identities introduced. The analysis is completed not once, but twice.

Of course, Metrica’s analysis does have some very synthetic qualities.10 The main set-

back of synthesis has been the arbitrariness of the sequence of steps. Metrica demonstrated

how sequences become comprehensible when numbers are applied to a construction. It make

9Heron, 38.26-27, 48.24.
10Cuomo(2000), 180. Indeed, Metrica’s analysis is deceptive this way. Cuomo is right in that Heron’s

use of numbers is not just an example but it seems she mistranslated..... and interpreted Heron’s method as
pseudo-synthetic.
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the comparison, addition, ratios et al. of objects sensible. Still, there is more support for

the use of numbers to be analytical. Heron’s propositions all have figures provided and the

first step in an Heronian proposition is often not to start constructing a figure but to assign

numbers to what is already there. In the same vein, the arithmetic in the Metrica is formed

upon the geometry but there is some confusion between the analysis and synthesis proper

when he begins his calculations. The technique may have been nascent in Heron’s time and

by Pappus’ mathematicians had become more confident in using it. This is the same for

Pappus’ first objection in Book 3. Book 2 is the exception. Pappus has stripped his proposi-

tions of their geometry, leaving behind only the arithmetic. This could be a point for Book

2 being synthetic at least, but only if one had not seen Pappus do this before. Book 7 also

minimally referenced the original propositions because a reader of Book 7 was expected to

have his own copy of the original texts accompanying him. From what can be gleaned from

this text, the expectation were not likely to be that different.

For what it is worth, Book 2 benefits from this change from an arithmetical text to one

more inline with the Collection as a whole. Heron and Pappus may coincide on many

points but the evaluation must always return to Pappus’ adherence to his own rules. One

can imagine how a construct would be compatible to any of the propositions in Book 2, but

it would be little more than conjecture. Analysis and synthesis may not have had the same

impact as in Books 3 and 7 but many of Pappus’ decisions and behaviours in those books

are reflected in Book 2. Again, the numbers themselves are not the synthesis, but merely

are a technique, just as they were for the analyses in Book 3. At the heart of analysis and

synthesis is the order in which the geometrical objects fall when the ᾿ζητούμενον and the first

principle alternate their positions. These are objects that Book 2 does not explicitly have

but at the same time, it does not need them. In maintaining that Book 2 is based on the lost

Apollonian text, the arithmetic of Book 2 is merely a technique of analysis, not the analysis

itself.
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Chapter 7

Epilogue

Recently a mathematician, glad to meet another who was familiar with Pappus, commented

to me that he through Pappus was the intellectually loneliest individual in Greek mathe-

matics. The mathematicians agree that Pappus certainly was active but that his correspon-

dents such as Hermodorus were engaged in mathematics at a much lower level than Pappus.

Pappus, on the other hand, was burdened with the monumental task of revitalizing Greek

mathematics during a period of intellectual and social decline.

As I have previously argued, the mathematics of late antiquity was not subject to the same

decline witnessed elsewhere. Instead it entered an epoch of intense reflection about how their

predecessors transmitted mathematics and how they did the same by text. The mathemati-

cian did highlight what I see as the mode in which Pappus wrote, which was at odd with

the vast knowledge he clearly possessed. Scholars, however, approach Pappus as if he was

in his true mathematical element rather than in his more frequent role of pedagogue. As a

consequence, Pappus has been accused of many mathematical crimes that do not hold up

after a careful reading of the text.

Chief amongst these has been Pappus’ clumsiness with the methods of analysis and syn-

thesis. In chapters 3, 4, and 5 Pappus proved that in the structure of analysis and synthesis,
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he was a conformist to the practice of the classical mathematicians. His motivation was

framed by the need to instruct rather than share an interesting theorem, thereby necessitat-

ing language and exposition that leave more advanced mathematicians put out.

In chapter 6, we see that Pappus’ practice, in comparison to the expositions and propositions

of Book 7, is much more involved that previously recognized. Analysis and synthesis is here

treated by Pappus as central to the social practice of mathematics. They serve as a pub-

lic check against impossible problems and theorems accidently becoming accepted practice.

The inclusion of arithmetic as a technique within that application of analysis and synthesis

is stunning and unexpected. It does not, however, set a precedent: Heron of Alexandria used

a nascent method centuries earlier.

Indeed, how can one understand Book 2 know that we have seen the application of arithmetic

to geometrical problems? It is a significant discovery, supported by Nathan Sidoli and Ser-

afina Cuomo, that Apollonius’ original text was originally geometrical and not arithmetical

as presumed by scholarly tradition. It is to this end that Book 2 becomes deserving of more

serious treatment.

Pappus has been reborn several times over in this thesis: as a mathematician, in his methods

of analysis and synthesis, and in the reevaluation of Book 2.
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Part III

Translation and Commentary

127



128



Chapter 8

Book 2 Text, Translation, and
Commentary

8.1 Greek Numbers

Provided below is the listing of numerals and their alphabetical equivalent

1 - α΄; 2 - β ΄; 3 - γ ΄; 4 - δ΄; 5 - ε΄; 6 - ς ΄; 7 - ζ ΄; 8 - η΄; 9 - θ΄; 10 - ι΄; 11 - ια΄; 20 - κ΄; 30 - λ΄; 40 -

µ΄; 50 - ν ΄; 60 - ξ΄; 70 - o΄; 80 - π΄; 90 -[ ]
1; 100 - ρ΄; 200 - σ΄; 300 - τ ΄; 400 - υ΄; 500 - φ΄; 600 -

χ΄; 700 - ψ΄; 800 - ω΄; 900 -[ ]; 1000 - α;

ϝ

1Due to the particulars of this language package used, 90 and 900 are manually inserted where necessary
as is the subprime for 1000. There are further difficulties with the number 6000. It typesets as a diagramma
when it should be an outside sigma with a subprime. The correction has been made were possible.

129



8.2 Greek Text, with translation and commentary of

Book 2 from Pappus of Alexandria’s

Mathematical Collection

** γὰρ αὐτοὺς ἐλάσσονας μὲν εἶναι ἑκατοντάδος μετρεῖσθαι δὲ ὑπὸ δεκάδος, καὶ δέον ἔστω τὸν

ἐξ αὐτῶν στερεὸν εἰπεῖν μὴ πολλαπλασιάσαντα αὐτούς.

῎Εστωσαν οὖν οἱ ἀριθμοὶ ν΄ ν΄ ν΄ μ΄ μ΄ λ΄· ἔσονται ἄρα οἱ πυθμένες ε΄ ε΄ ε΄ δ΄ δ΄ γ΄· ὁ ἄρα

ἐξ αὐτῶν στερεὸς γίνεται μονάδων ς. καὶ ἐπεὶ τὸ πλῆθος τῶν δεκάδων ἐστὶν ς΄ καὶ μετρούμενον

ὑπὸ τετράδος λείπει δύο, ἔσται ὁ ἐξ αὐτῶν στερεὸς [τῶν δεκάδων] μυριάδων ἁπλῶν ἑκατόν. καὶ

ἐπεὶ ὁ ἐκ τῶν δεκάδων στερεὸς ἐπὶ τὸν ἐκ τῶν πυθμένων στερεὸν ποιεῖ τὸν ἐκ τῶν ἐξ ἀρχῆς

στερεόν, αἱ ἄρα μυριάδες ρ΄ ἐπὶ τὰς μονάδας ς γενόμεναι ποιοῦσιν μυριάδας ξ΄ διπλᾶς, ὥστε ὁ ἐκ

τῶν ν΄ ν΄ ν΄ μ΄ μ΄ λ΄ στερεός ἐστιν μυριάδων ξ΄ διπλῶν.

130



[Proposition 14] (Let there be howeversomany numbers and let the numbers be) less than one

hundred and divisible by ten, and let it be necessary to give the product from them without

multiplying them (directly).

Let the numbers be 50, 50, 50, 40, 40, 30[1]. Therefore the puthmenes (of that series) will

be 5, 5, 5, 4, 4, 3[2]. Consequently the product of these same (numbers) will be 6,000 units[3].

And since the multitude of tens is 6[4] and dividing (the number of zeroes) by four leaves

(a remainder) two[5], the product from these same (numbers) is 100 straight myriads[6].

And since the product of the tens (multiplied with) the product of the puthmenes makes the

product from (the numbers) from the beginning, consequently the 100 myriads (multiplied

with) the 6,000 units make 60 myriads squared[7], so that the product of 50, 50, 50, 40, 40,

30 is 60 myriads squared.
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ιε΄. ῎Εστωσαν δὴ πάλιν ὁσοιδηποτοῦν ἀριθμοὶ ἐφ᾿ ὧν τὰ Β, ὧν ἕκαστος ἐλάσσων μὲν χιλιάδος

μετρείσθω δὲ ὑπὸ ἑκατοντάδος, καὶ δέον ἔστω τὸν ἐξ αὐτῶν στερεὸν εἰπεῖν μὴ πολλαπλασιάσ-

αντα τοὺς ἀριθμούς.

Γεγονέτω, καὶ ὁ διπλάσιος τοῦ πλήθους αὐτῶν μετρείσθω πρότερον ὑπὸ τετράδος, καὶ ὑποκείσθω

ὑπὸ ἕκαστον τῶν Β ἑκατοντὰς ἡ α΄, καὶ καθὸ μετρεῖται ἕκαστος τῶν Β ὑπὸ τῆς ἑκατοντάδος

ἔστωσαν οἱ ἐφ᾿ ὧν τὰ Γ· πυθμένες ἄρα εἰσὶν οἱ ἐφ᾿ ὧν τὰ Γ τῶν ἐφ᾿ ὧν τὰ Β. ὁ δὲ διὰ τῶν

πυθμένων στερεὸς ἔστω ὁ Ε [τουτέστιν μονάδες ρκ΄]. δείκνυται οὖν διὰ τῶν γραμμῶν ὁ διὰ τῶν

ἐφ᾿ ὧν τὰ Β στερεὸς μυριάδων διπλῶν ρκ, ἐπειδὴ καὶ ὁ διὰ τῶν ἐφ᾿ ὧν τὰ Β στερεὸς ἴσος ἐστὶν

τῷ. ὁ διὰ τῶν ἑκατοντάδων στερεῷ ἐπὶ τὸν ἐκ τῶν πυθμένων στερεόν, τουτέστιν διπλῆ μυριὰς

α΄ ἐπὶ τὰς ρκ΄ μονάδας.

Ἀλλ᾿ ὁ διπλάσιος τοῦ πλήθους τῶν ἐφ᾿ ὧν τὰ Β μὴ μετρείσθω ὑπὸ τετράδος· μετρούμενος ἄρα

λείψει δυάδα ἐξ ἀνάγκης (τοῦτο γὰρ προδέδεικται), ὥστε καὶ ὁ διπλάσιος τοῦ πλήθους τῶν ἑκα-

τοντάδων μετρούμενος ὑπὸ τετράδος· τὸ ἄρα πλῆθος τῶν ἑκατοντάδων μετρούμενον ὑπὸ δυάδος

λείψει μίαν ἑκατοντάδα. ὁ τοίνυν διὰ τῶν ἑκατοντάδων στερεὸς ἔσται μυριάδων ρ΄ ὁμωνύμων

τῷ Ζ, τουτέστι διπλῶν, ὥστε δῆλον ὅτι ὁ διὰ τῶν ἐφ᾿ ὧν τὰ Β μυριάδες εἰσὶν ρ΄ ὁμώνυμοι τῷ Ζ

γενόμεναι ἐπὶ τὸν Ε [τὰς ρκ΄ μονάδας]. γίνονται μυριὰς μία δισχίλιαι διπλῶν μυριάδων.
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[Proposition 15] Again, let there be however so many numbers from which we get series B

of which each are less than one thousand and let them be divisible by a hundred[1], let it be

necessary to give the product from out of these without multiplying the numbers (directly).

Let this be done: Let the square of the multitude (of those numbers) be divided by 4

[2]as before and let a hundred be placed below each (number) of B, and insofar as each

number of B is divided by a hundred[3], Let them be (the numbers) from which we get

series Γ[4]. Consequently the puthmenes which we get from series B are (the numbers) for

which we get series Γ[5]. Let the product of the puthmenes be E[6]. The product of (the

numbers) from which we get series B is 120 myriads squared proven through workings[7],

and since the product of (the numbers) from which we get series B is equal to the product

obtained through the hundreds (multiplied with) the product of the puthmenes, this is 1

myriad squared (multiplied with) 120 units[8].

But let the square of the multitude (of the numbers) from which we get series B not be

divisible by four (without remainder)[9]. Consequently, (the multitude) having divided (by

four) will leave two necessarily (for this have been brought forth)[10], so that the square

of the multitude from the hundreds has been divided by four. Thus the multitude of the

hundreds having been divided by two will leave one of the hundreds[11]. Then the product

of the hundreds will be 100 myriads to the power of Z, that is squared[12], consequently it

is clear that (the product of the multitude of the numbers) from which we get series B gives

100 myriads to the power of Z (multiplied with) E becomes one myriad and two thousand

(multiplied with) a myriad squared[13].
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ις΄. ῎Εστωσαν δύο ἀριθμοὶ οἱ Α Β, καὶ ὁ μὲν Α ὑποκείσθω ἐλάσσων μὲν χιλιάδος μετρούμενος

δὲ ὑπὸ ἑκατοντάδος, οἷον μονάδες φ΄, ὁ δὲ Β ἐλάσσων μὲν ἑκατοντάδος μετρούμενος δὲ ὑπὸ

δεκάδος, οἷον μονάδες μ΄, καὶ δέον ἔστω τὸν ἐξ αὐτῶν ἀριθμὸν εἰπεῖν μὴ πολλαπλασιάσαντα

αὐτούς.

῎Εστι δὲ φανερὸν διὰ τῶν ἀριθμῶν· οἱ γὰρ ε΄ δ΄ πυθμένες αὐτῶν ὄντες [μο. ε΄ καὶ μο. δ΄]

πολλαπλασιασθέντες ποιοῦσι μονάδας κ΄, χιλιάκις δὲ ὁ κ΄ ἀριθμὸς ποιεῖ μυριάδας δύο ποιούσας

τὸν ὑπὸ τῶν Α Β γινόμενον. τὸ δὲ γραμμικὸν δῆλον ἐξ ὧν ἔδειξεν Ἀπολλώνιος.
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[Proposition 16] Let there be two numbers A and B and let A be established as less than

one thousand and divisible by a hundred, for example 500[1], let B be established as less

than a hundred and divisible by ten, for example 40[2], and let it be necessary to give the

number from these without multiplying them (directly)

It is clear through arithmetical procedures. For the puthmenes 3 and 4[3] from those

numbers having been multiplied makes 20[4] and the number 20 a thousand times makes

two myriads[5], making the result from (multiplying) A (and)B[6]. Apollonius proved the

metrical analysis clearly from (his works).
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ιζ΄. ᾿Επὶ δὲ τοῦ ιη΄ θεωρήματος. ῎Εστω πλῆθος ἀριθμῶν τὸ ἐφ᾿ ὧν τὰ Α, ὧν ἕκαστος ἐλάσσων

μὲν ἑκατοντάδος μετρούμενος δὲ ὑπὸ δεκάδος, καὶ ἄλλο πλῆθος ἀριθμῶν τὸ ἐφ᾿ ὧν τὰ Β, ὧν

ἕκαστος ἐλάσσων μὲν χιλιάδος μετρούμενος δὲ ὑπὸ ἑκατοντάδος, καὶ δέον ἔστω τὸν ἐκ τῶν ἐφ᾿

ὧν τὰ Α Β στερεὸν εἰπεῖν μὴ πολλαπλασιάσαντα αὐτούς.

΄Εστωσαν γὰρ πυθμένες τῶν μὲν ἐφ᾿ ὧν τὰ Α οἱ ἐφ᾿ ὧν τὰ Η, μονάδες α΄ καὶ β΄ καὶ γ΄ καὶ δ΄,

τῶν δὲ ἐφ᾿ ὧν τὰ Β οἱ ἐφ᾿ ὧν τὰ Θ, μονάδες β΄ καὶ γ΄ καὶ δ΄ καὶ ε΄, καὶ ληφθέντος τοῦ ἐκ τῶν

πυθμένων στεροῦ [τῶν β΄ γ΄ δ΄ β΄ γ΄ δ΄ ε΄], τουτέστιν τοῦ Ε, μονάδων ὄντος ͵βωπʹ, τὸ πλῆθος τῶν

ἐφ᾿ ὧν τὰ Α προσλαβὸν τὸν διπλασίονα τοῦ πλήθους τῶν ἐφ᾿ ὧν τὰ Β μετρείσθω πρότερον ὑπὸ

τετράδος [κατὰ τὸν Ζ, μετρεῖ δὲ αὐτούς]. καὶ δείκνυσιν ὁ Ἀπολλώνιος τὸν ἐκ πάντων τῶν ἐφ᾿

ὧν τὰ Α Β στερεὸν μυριάδων τοσούτων, ὅσαι εἰσὶν ἐν τῷ Ε μονάδες, ὁμωνύμων τῷ Ζ ἀριθμῷ,

τουτέστιν τριπλῶν μυριάδων ͵βωπʹ.

Ἀλλὰ δὴ τὸ πλῆθος τῶν ἐφ᾿ ὧν τὰ Α, προσλαβὸν τὸν διπλασίονα τοῦ πλήθους τῶν ἐφ᾿ ὧν

τὰ Β, μετρούμενον ὑπὸ τετράδος καταλειπέτω πρότερον ἕνα. καὶ συνάγει ὁ Ἀπολλώνιος ὅτι ὁ

ἐκ τῶν ἀριθμῶν ἐφ᾿ ὧν τὰ Α Β στερεὸς μυριάδες εἰσὶν τοσαῦται ὁμώνυμοι τῷ Ζ, ὅσος ἐστὶν ὁ

δεκαπλασίων τοῦ Ε, ἐὰν δὲ τὸ προειρημένον πλῆθος μετρούμενον ὑπὸ τετράδος καταλείπῃ δύο,

ὁ ἐκ τῶν ἀριθμῶν στερεὸς τῶν ἐφ᾿ ὧν τὰ Α Β μυριάδες εἰσὶν τοσαῦται ὁμώνυμοι τῷ Ζ, ὅσος

ἐστὶν ὁ ἑκατονταπλάσιος τοῦ Ε ἀριθμοῦ, ὅταν δὲ τρεῖς καταλειφθῶσιν, ἴσος ἐστὶν ὁ ἐξ αὐτῶν

στερεὸς μυριάσιν τοσαύταις ὁμωνύμοις τῷ Ζ, ὅσος ἐστὶν ὁ χιλιαπλάσιος τοῦ Ε ἀριθμοῦ.
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[Proposition 17] In the case of Theorem 18. Let there be a multitude of numbers from

which (we get) seriesA, each being less than a hundred and divisible by ten[1], and the another

multitude of numbers from which (we get) series B, each being less than one thousand and

divisible by a hundred[2], and let it be necessary to give the product from A (and) B without

multiplying them (directly).

Let the puthmenes of the numbers from which (we get) series A be the numbers for which

(we get) series H, the units 1, 2, 3, 4[3], and (let the puthmenes) of the numbers from which

(we get) series B be the numbers for which we get Θ, the units 2, 3, 4, 5[4], and the product of

the puthmenes having been taken, this is E[5], being 2880 monades[6], let the multitude (of

the numbers) from which (we get) series A take the square of the multitude (of the numbers)

from which (we get) series B [7] be divided first by four[8]. And Apollonius shows that the

product from all of (the numbers) from A (and) B will be just so many myriads, as many as

are equal in units to E, with to the power of Z[9], which is 2880 myriads cubed[10].

But the multitude of (the numbers) from which (we get) series A, multiplied with the square

of the multitude of (the numbers) from which (we get) series B and divisible by four[11], let

it leave, as previously, one. And Apollonius inferred that together with the product from the

numbers of series A (and) B is just as many myriads to the power of Z, this is ten times as

many as E[12], thus as said beforehand as many of the multitudes divisible by four leaves

behind two, the product of (the numbers) from which (we get) series A and B are just as

many myriads to the power of Z, which is one hundred times the numbers of E[13], and

whenever it might have left three, the product of the numbers is just as many myriads to the

power of Z, which is one thousand times the numbers of E[14].
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ιη΄. ᾿Επὶ δὲ τοῦ ιθ΄ θεωρήματος. ῎Εστω τις ἀριθμὸς ὁ Α ἐλάσσων μὲν ἑκατοντάδος μετρούμενος

δὲ ὑπὸ δεκάδος, καὶ ἄλλοι ὁσοιδηποτοῦν ἀριθμοὶ ἐλάσσονες δεκάδος οἷον οἱ Β Γ Δ Ε, καὶ δέον

ἔστω τὸν ἐκ τῶν Α Β Γ Δ Ε στερεὸν εἰπεῖν.

῎Εστω γὰρ καθ᾿ ὃν μετρεῖται ὁ Α ὑπὸ τῆς δεκάδος ὁ Ζ, τουτέστιν ὁ πυθμὴν τοῦ Α, καὶ

εἰλήφθω ὁ ἐκ τῶν Ζ Β Γ Δ Ε στερεὸς καὶ ἔστω ὁ Η· λέγω ὅτι ὁ διὰ τῶν Α Β Γ Δ Ε στερεὸς

δεκάκις εἰσὶν οἱ Η.

Καὶ ἔστι φανερὸν διὰ τῶν ἀριθμῶν· τοῦ γὰρ Α ὑποκειμένου, φέρ᾿ εἰπεῖν, μονάδων κ΄ καὶ

τοῦ Β μονάδων γ΄ καὶ τοῦ Γ μονάδων δ΄ καὶ τοῦ Δ μονάδων ε΄ καὶ τοῦ Ε μονάδων ς΄, ὁ ἐξ αὐτῶν

στερεὸς γίνεται μονάδες ͵ζσ΄. ἀλλὰ καὶ τοῦ Ζ ὄντος μονάδων β΄, ὅς ἐστι πυθμὴν τοῦ Α, ὁ ἐκ

τούτου καὶ τῶν Β Γ Δ Ε στερεὸς δεκάκις γενόμενος ἔσται μονάδες ͵ζσ΄, ἴσος τῷ ἐκ τῶν Α Β Γ

Δ Ε στερεῷ . τὸ δὲ γραμμικὸν ὑπὸ τοῦ Ἀπολλωνίου δέδεικται.
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[Proposition 18] In the case of Theorem 19. Let A be some number less than a hundred

and divisible by ten[1] and let however so many other number less than ten, for example B

Γ ∆ E and let it be necessary to give the product from A B Γ ∆ E.

For let there be Z, which is A divided by 10, that is the puthmenes of A[3], and let the

product of Z B Γ ∆ E be taken and let it be H[4]. I say that the product of A B Γ ∆ E is

ten times H[5].

And it is clear through the arithmetical procedures: with A lying bunder 20, easy to say, and

B under 3 and Γ under 4 and ∆ under 5 and E under 6[6], the product from these will be

7200 monades[7]. But with Z being 2 monades[8], which is the puthmenes of A, the product

of that and BΓ∆E ten times will be 7200[9], equal to the product of A B Γ ∆ E. The

metrical analysis has been shown by Apollonius.
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ιθ΄. Ἀλλὰ δὴ ἔστωσαν δύο ἀριθμοὶ οἱ Α Β, ὧν ἑκάτερος ἐλάσσων μὲν ἑκατοντάδος μετρούμενος

δὲ ὑπὸ δεκάδος, τῶν δὲ Γ Δ Ε ἕκαστος ἐλάσσων δεκάδος ἔστω, καὶ δέον ἔστω τὸν ἐκ τῶν Α Β

Γ Δ Ε στερεὸν εἰπεῖν.

῎Εστωσαν γὰρ τῶν Α Β πυθμένες οἱ Ζ Η· λέγω ὅτι ὁ ἐκ τῶν Α Β Γ Δ Ε στερεὸς τοῦ

ἐκ τῶν Ζ Η Γ Δ Ε στερεοῦ ἑκατονταπλάσιός ἐστιν.

Φανερὸν δὲ καὶ τοῦτο διὰ τῶν ἀριθμῶν, τοῦ Α ὄντος μονάδων κ΄ καὶ τοῦ Β μονάδων λ΄

καὶ τοῦ Γ μονάδων β΄ καὶ τοῦ Δ μονάδων γ΄ καὶ τοῦ Ε μονάδων δ΄ καὶ τοῦ Ζ μονάδων β΄ καὶ τοῦ

Η μονάδων γ΄.

ὁ γὰρ ὑπὸ τῶν Α Β Γ Δ Ε στερεός ἐστιν μα ͵δυʹ, ὁ δὲ ὑπὸ Ζ Η Γ Δ Ε μονάδες ρμδ΄, οὗ-

τος δὲ γενόμενος ἑκατοντάκις ποιεῖ μα ͵δυʹ. τὸ δὲ γραμμικὸν ἐκ τῶν Ἀπολλωνίου.
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[Proposition 19] But let there be two numbers A B, each being less than a hundred and

divisible by ten[1], let each of Γ ∆ E be less than ten[2], and let it be necessary to give the

product from out of A B Γ ∆ E.

Let Z H be the puthmenes of A B[3]; Let it be said that the product of A B Γ ∆ E is a

hundred times of the product of Z H Γ ∆ E[4].

This is clear through the arithmetical procedures, of A under 20 monades, of B under 30

monades, of Γ under 2 monades, of ∆ under 3 monades, of E under 4 monades[5] and of Z

under 2 monades, of H under 3 monades[6].

The product of A B Γ ∆ E is 14,400[7], the (product) of Z H Γ ∆ E (is) 144[8]. This

being a hundred-fold makes 14,400[9. This has been shown from the metrical analysis from

(the works) of Apollonius.
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κ΄. Ἀλλὰ δὴ ἔστωσαν τρεῖς ἀριθμοὶ οἱ Α Β Γ, καὶ ἔστω ἕκαστος αὐτῶν ἐλάσσων μὲν ἑκατον-

τάδος μετρούμενος δὲ ὑπὸ δεκάδος, ἕκαστος δὲ τῶν Δ Ε Ζ ἔστω ἐλάσσων δεκάδος, καὶ ἔστωσαν

τῶν Α Β Γ πυθμένες οἱ Η Θ Κ, καὶ εἰλήφθω ὁ ἐκ τῶν Η Θ Κ Δ Ε Ζ στερεὸς καὶ ἔστω ὁ Ξ·

ὅτι ὁ ἐκ τῶν Α Β Γ Δ Ε Ζ στερεὸς ἴσος ἐστὶν χιλίοις τοῖς Ξ.

῎Εστι φανερὸν διὰ τῶν ἀριθμῶν, τοῦ Α ὄντος λόγου χάριν μονάδων κ΄ καὶ τοῦ Β μονάδων λ΄

καὶ τοῦ Γ μονάδων μ΄ καὶ τοῦ Δ μονάδων β΄ καὶ τοῦ Ε μονάδων γ΄ καὶ τοῦ Ζ μονάδων δ΄, τοῦ δὲ

Η μονάδων β΄ καὶ τοῦ Θ μονάδων γ΄ καὶ τοῦ Κ μονάδων δ΄· ὁ γὰρ ὑπὸ Α Β Γ Δ Ε Ζ στερεός

ἐστιν μυριάδων νζ΄ ἁπλῶν καὶ μονάδων ς, ὁ δὲ ὑπὸ τῶν Η Θ Κ πυθμένων καὶ τῶν Δ Ε Ζ ἔσται

μονάδων φοʹς ΄, αὗται δὲ χιλιάκις γενόμεναι, τουτέστιν ὁ ἐκ πάντων στερεός, γίνεται μυριάδων

ἁπλῶν νζ΄ καὶ μονάδων ς.
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[Proposition 20] But let there be three numbers A B Γ, and let each of these be less than

a hundred and divisible by ten[1], Let each of ∆ E Z be less than ten[2] and Let H Θ K be

the puthmenes of A B Γ[3] and let the product of H Θ K ∆ E Z be taken and let it be Ξ[4].

I say that the product of A B Γ ∆ E Z is equal to a thousand-fold Ξ[5].

It is clear through the arithmetical procedures, for the sake of example, of A under 20

monades, of B under 30 monades, of Γ under 40 monades, of ∆ under 2 monades, of E

under 3 monades, of Z under 4 monades[6], of H under 2 monades, of Θ under 3 monades,

of K under 4 monades[7]. The product of A B Γ ∆ E Z is 57 straight myriads and 6000

monades[8] and the (product) of the puthmenes H Θ K and of ∆ E Z is 576 units[9], these

being a thousand-fold, this is the product of all (numbers) becomes 57 straight myriads and

6000 units[10].
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κα΄. Ἀλλὰ δὴ ἔστωσαν πλείους τριῶν οἱ Α Β Γ Δ Ε, καὶ ἕκαστος ἐλάσσων μὲν ἑκατοντάδος

μετρούμενος δὲ ὑπὸ δεκάδος, τῶν δὲ Ζ Η Θ ἕκαστος ἔστω ἐλάσσων δεκάδος.

Τὸ πλῆθος τῶν Α Β Γ Δ Ε πρότερον μετρείσθω ὑπὸ τετράδος κατὰ τὸν Ο. καὶ ἔστωσαν

τῶν Α Β Γ Δ Ε πυθμένες οἱ Κ Λ Μ Ν Ξ· ὅτι ὁ ἐκ τῶν Α Β Γ Δ Ζ Η Θ στερεὸς ἴσος ἐστὶν

μυριάσιν ὁμωνύμοις τῷ Ο ὅσαι μονάδες εἰσὶν ἐν τῷ στερεῷ τῷ ἐκ τῶν Κ Λ Μ Ν ἐπὶ τὸν ἐκ τῶν

Ζ Η Θ.

῎Εστι δὲ φανερὸν διὰ τῶν ἀριθμῶν, τοῦ Α ὑποκειμένου λόγου χάριν μονάδων ι΄ καὶ τοῦ Β

μονάδων κ΄ καὶ τοῦ Γ μονάδων λ΄ καὶ τοῦ Δ μονάδων μ΄, καὶ τῶν Κ Λ Μ Ν πυθμένων ὄντων

μονάδων α΄ καὶ β΄ καὶ γ΄ καὶ δ΄· ὁ ἄρα ἐκ τῶν Α Β Γ Δ στερεός ἐστιν ἁπλῶν μυριάδων κδ΄, ὁ δὲ

ἐκ τῶν Α Β Γ Δ Ζ Η Θ μυριάδων ἁπλῶν ρμδ΄, ὁ δὲ ἐκ τῶν Κ Λ Μ Ν πυθμένων μονάδων κδ΄·

οὗτος δὲ γενόμενος ἐπὶ τὸν ἐκ τῶν Ζ Η Θ, ὄντα μονάδων ς΄, ποιεῖ μονάδας ρμδ΄, ὅσαι μυριάδες

ἁπλαῖ εἰσιν τοῦ ἐκ τῶν Α Β Γ Δ Ζ Η Θ στερεοῦ, διὰ τὸ καὶ τετράδα ἅπαξ μετρεῖν τὸ πλῆθος

τῶν Α Β Γ Δ.

Ἀλλὰ δὴ τὸ πλ῀ήθος τῶν Α Β Γ Δ Ε μὴ μετρείσθω ὑπὸ τετράδος· μετρούμενον δὴ ῆτοι

α΄ ἢ β΄ ἢ γ΄ λείψει. εἰ μὲν οὖν ἕνα λείψει, ἔσται ὁ ἐκ τῶν Α Β Γ Δ Ε Ζ Η Θ στερεὸς μυριάδων

ὁμωνύμων τῷ Ο, ὅσος ἐστὶν ὁ ἐκ τῶν Κ Λ Μ Ν Ξ στερεὸς ἐπὶ τὸν ἐκ τῶν Ζ Η Θ γενόμενος

δεκάκις, εἰ δὲ δύο λείψει, ἑκατοντάκις [γενόμενος ὁ εἰρημένος στερεός]. εἰ δὲ τρεὶς λείψει, ὅσων

ὁ ἐκ τῶν Κ Λ Μ Ν Ξ ἐπὶ τὸν ἐκ τῶν Ζ Η Θ χιλιάκις γενόμενος ἔσται μονάδων, τοσούτων

μυριάδων ὁμωνύμων τῷ Ο. τὸ δὲ γραμμικὸν ἐκ τοῦ στοιχείου δῆλον.
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[Proposition 21] But let there be more than three numbers A B Γ ∆ E and each being

less than a hundred and divisible by ten[1], let each of Z H Θ be less than ten[2].

Let the multitude of A B Γ ∆ E be first divided by four measured by O[3] and let K Λ

M N Ξ be the puthmenes of A B Γ ∆ E[4]. I say that the product of A B Γ ∆ Z H Θ,

(which) is myriads to the power of O[5], is equal to the units from out of the product of K

Λ M N multiplied with the product of Z H Θ[6].

It is clear from the arithmetical processes, what with assuming, for the sake of example, A

under 10 monades, B under 20 monades, Γ under 30 monades, ∆ under 40 monades[7], what

with the puthmenes K Λ M N being 1, 2, 3, 4[8]. Consequently, the product of A B Γ ∆

is 24 straight myriads[9], the (product) of A B Γ ∆ Z H Θ is 144 straight myriads[10], the

product of the puthmenes K Λ M N is 24[11]. The result being multiplied with the product

of Z H Θ, being 6[12], it makes 144 monades[13], which is as many as the straight myriads

of the product of A B Γ ∆ Z H Θ[14], because the multitude of A B Γ ∆ E measures by

four once[15].

But let the multitude of A B Γ ∆ E not be divided by four, when dividing it shall leave

a certain 1, 2, or 3[16]. If it leaves 1, the product of A B Γ ∆ E Z H Θ of myriads to the

power of O, it is equal to the product of K Λ M N Ξ multiplied with (the product) of Z H

Θ ten-times the result[17], if it leaves 2, a hundred-times [the product created above]. If it

leaves 3, of so many myriads the product of K Λ M N Ξ multiplied with the product of Z

H Θ is a thousand-times the monades, the result is as many as many myriads to the power

of O. The metrical analysis from the elements is clear.
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κβ΄. ῎Εστω ὁ μὲν Α ἐλάσσων μὲν χιλιάδος μετρούμενος δὲ ὑπὸ ἑκατοντάδος, ἕκαστος δὲ τῶν Β

Γ Δ ἐλάσσων δεκάδος, καὶ δέον ἔστω τὸν ἐκ τῶν Α Β Γ Δ στερεὸν εἰπεῖν.

Κείσθω γὰρ τοῦ μὲν Α πυθμὴν ὁ Ε, ὁ δὲ ἐκ τῶν Ε Β Γ Δ ὁ Ζ· ὅτι ὁ ἐκ τῶν Α Β Γ Δ

στερεὸς ἑκατοντάκις ἐστὶν ὁ Ζ.

Φανερὸν δὲ καὶ τοῦτο διὰ τῶν ἀριθμῶν, τοῦ Α ὑποκειμένου, φέρ᾿ εἰπεῖν, μονάδων τ΄ καὶ

τοῦ Β μονάδων γ΄ καὶ τοῦ Γ μονάδων δ΄ καὶ τοῦ Δ μονάδων ε΄· ὁ μὲν γὰρ ὑπὸ τῶν Α Β Γ Δ

ἐστὶν μα ͵η, ὁ δὲ ὑπὸ τῶν Ε Β Γ Δ ἐστὶν μονάδων ρπ΄· οὗτος δὲ γενόμενος ἑκατοντάκις ἔσται μα

͵η. τὸ δὲ γραμμικὸν ἐκ τοῦ στοιχείου δῆλον.
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[Proposition 22] Let A be less than a thousand and divisible by a hundred[1], each of B Γ

∆ is less than ten[2] and let it be necessary to give the product of A B Γ ∆.

Let E be made the puthmenes of A[3], Z is the product from out of E B Γ ∆[4]. (I say)

that the product of A B Γ ∆ is Z times a hundred[5].

It is clear from the arithmetical procedures, what with A being assumed to be, for the

sake of example, under 300 monades and of B under 3 monades, of Γ under 4 monades, of ∆

under 5 monades[6]. The (product) of A B Γ ∆ is 18,000[7]. Thus the (product) of E B Γ ∆

is 180[8]. This result a hundred times is 18,000[9]. The metrical analysis from the elements

is clear.
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κγ΄. ᾿Επὶ δὲ τοῦ κδ΄ Θεωρήματος. Τοῦ Α ὑποκειμένου λόγου χάριν μονάδων σ΄ καὶ τοῦ Β

μονάδων τ΄ καὶ τοῦ Γ μονάδων β΄ τοῦ δὲ Δ μονάδων γ΄ καὶ τοῦ Ε μονάδων δ΄, ὁ στερεὸς ἐξ αὐτῶν

ἔσται μυριάδων ἁπλῶν ρμδ΄, ἐπεὶ τὸ διπλάσιον τοῦ πλήθους τῶν Α Β μετρεῖται ὑπὸ τετράδος ἅπαξ

[κατὰ τὸν Κ],

ὁ δὲ ὑπο τῶν Ζ Η πυθμένων καὶ τῶν Γ Δ Ε ἐστιν μονάδων ρμδ΄.

᾿Εὰν δὲ τὸ διπλάσιον τοῦ πλήθους τῶν Α Β μὴ μετρῆται ὑπὸ τετράδος, δῆλον ὅτι μετρού-

μενον κατὰ τὸν Κ λείψει δύο· τοῦτο γὰρ ἀνώτερον ἐδείχθη. διὰ δὴ τοῦτο [ἐκ τοῦ λείπεσθαι

δύο] μυριάδες εἰσὶν ἑκατὸν ὁμώνυμοι τῷ Κ, καὶ ἔστιν ὁ ἐκ τῶν Α Β Γ Δ Ε στερεὸς ὁ Θ ἴσος

τῷ ἐκ τῶν Ζ Η Γ Δ Ε στερεῷ ἐπὶ τὰς ἑκατὸν μυριάδας ὁμωνύμους τῷ Κ. τὸ γραμμικὸν ὡς

Ἀπολλώνιος.
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[Proposition 23] In the case of theorem 24. What with A being assumed, for the sake

of example, to be under 200 monades, of B being under 300 monades, of Γ being under

2 monades, of ∆ being under 3 monades, of E being under 4 monades[1], the product of

these (numbers) will be 144 straight myriads[2]. Since the square of the multitude of A B is

divisible [exactly] by four [measured by K][3].

The (product) of the puthmenes Z H and of Γ ∆ E is 144[4].

If the square of the myriads of A B is not divisible by four, if it is clear that division

(by) K will leave 2, for this was proven above. Because of this [from the two remaining], a

hundred myriads is to the power of K[5], and Θ is the product of A B Γ ∆ E[6], which is

equal to the product of Z H Γ ∆ E multiplied by a hundred myriads to the power of K[7].

The metrical analysis (as per) Apollonius.
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κδ΄. ᾿Επὶ δὲ τοῦ κε΄ θεωρήματος. ῎Εστω τῶν μὲν Α Β ἑκάτερος ἐλάσσων μὲν ἑκατοντάδος

μετρούμενος δὲ ὑπὸ δεκάδος, ἕκαστος δὲ τῶν Γ Δ Ε [ἔστω] ἐλάσσων δεκάδος, καί δέον ἔστω

τὸν ἐξ αὐτῶν στερεὸν εἰπεῖν.

῎Εστωσαν γὰρ τῶν Α Β πυθμένες οἱ Θ Κ, καὶ τῷ ἐκ τῶν Θ Κ Γ Δ Ε στερεῷ ἴσος ἔστω

ὁ Λ· ὅτι ὁ ἐκ τῶν Α Β Γ Δ Ε στερεὸς ἴσος ἐστὶν ἑκατὸν τοῖς Λ.

῎Εστι δὲ φανερὸν διὰ τὼν ἀριθμῶν, τοῦ Α ὄντος μονάδων κ΄ καὶ τοῦ Β μονὰδων κ΄, καὶ τοῦ Γ

μονάδων ε΄ καὶ τοῦ Δ μονάδων ς΄ καὶ τοῦ Ε μονάδων ζ΄, καὶ τῶν Θ Κ πυθμένων ὄντων μονάδων Β΄·

ὁ γὰρ ὑπὸ τῶν Θ Κ Γ Δ Ε γίνεται στερεὸς μονάδων ωμ΄, οὗτος δὲ ἑκατοντάκις γενόμενος

ἔσται μυριάδων η΄ μονάδων ͵δ, ἴσος τῷ ἐκ τῶν Α Β Γ Δ Ε στερεῷ ἀριθμῷ.
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[Proposition 24] In the case of theorem 25. Let each of A B be less than a hundred and

divisible by ten[1], Let each of Γ ∆ E be less than ten[2]. Let it be necessary to give the

product from these (numbers).

Let Θ K be the puthmenes of A B[3], and let Λ be equal to the product of Θ K Γ ∆ E[4];

(I say) that the product of A B Γ ∆ E is equal to a hundred Λs[5].

It is clear from the arithmetical procedures, of A being under 20 monades, of B being

under 20 monades, of Γ being under 5monades, of ∆ being under 6 monades, of E being

under 7 monades[6] and what with the puthmenes Θ K being under 2 monades[7].

The product of Θ K Γ ∆ E is going to be 840[8]. This result a hundred times is 8 myriads

and 4000 monades[9], which is equal to the product of A B Γ ∆ E in number[10].
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κε΄.α. Τὸ δ᾿ ἐπὶ πᾶσι θεώρημα κς΄ πρότασιν ἔχει καὶ ἀπόδειξιν τοιαύτην. ῎Εστωσαν δύο ἀρ-

ιθμοὶ ἢ πλείους οἱ Α Β, ὧν ἕκαστος ἐλάσσων μὲν χιλιάδος μετρούμενος δὲ ὑπὸ ἑκατοντάδος,

καὶ ἄλλοι ἀριθμοὶ ὁσοιδήποτε οἱ Γ Δ Ε, ὧν ἕκαστος ἐλάσσων μὲν ἑκατοντάδος μετρούμενος δὲ

ὑπὸ δεκάδος, καὶ ἄλλοι πάλιν ὁσοιδηποτοῦν ἀριθμοὶ οἱ Ζ Η Θ, ὧν ἕκαστος ἐλάσσων δεκάδος,

καὶ δέον ἔστω τὸν ἐκ τῶν Α Β Γ Δ Ε Ζ Η Θ στερεὸν εἰπεῖν.

῎Εστωσαν γὰρ τῶν Α Β Γ Δ Ε πυθμένες οἱ Λ Μ Ν Ξ Ο. ὁ δὴ διπλάσιος τοῦ πλήθους

τῶν Α Β μετὰ τοῦ τῶν Γ Δ Ε ἁπλοῦ ἀριθμοῦ ἤτοι μετρεῖται ὑπὸ τετράδος ἢ οὔ.

Μετρείσθω πρότερον ὑπὸ τετράδος κατὰ τὸν Κ, καὶ ὑποτετάχθωσαν τοῖς μὲν Α Β ἑκατον-

τάδες αἱ Π Ρ, τοῖς δὲ Γ Δ Ε δεκάδες αἱ Σ Τ Υ .

καὶ φανερὸν ὅτι ὁ ἐκ τῶν Π Ρ Σ Τ Υ ἐπὶ τὸν ἐκ τῶν Λ Μ Ν Ξ Ο ἴσος ἐστὶ τῷ ἐκ τῶν Α

Β Γ Δ Ε στερεῷ . εἰλήφθω δὴ ὁ ἐκ τῶν Λ Μ Ν Ξ Ο Ζ Η Θ στερεὸς καὶ ἔστω ὁ Φ· ὅτι ὁ ἐκ

τῶν Α Β Γ Δ Ε Ζ Η Θ στερεὸς μυριάδες εἰσὶν τοσαῦται ὁμώνυμοι τῷ Κ ὅσαι μονάδες εἰσὶν ἐν

τῷ Φ. τοῦτο δὲ γραμμικῶς Ἀπολλώνιος ἀπέδειξεν.

᾿Εὰν δὲ ὁ διπλάσιος τοῦ πλήθους τῶν Α Β μετὰ τοῦ πλήθους τῶν Γ Δ Ε μὴ μετρῆται ὑπὸ

τετράδος, μετρούμενος ἄρα κατὰ τὸν Κ λείψει ἢ ἕνα ἢ δύο ἢ τρεῖς. εἰ μὲν οὖν ἕνα λείψει, ὁ

ἐκ τῶν Π Ρ Σ Τ Υ στερεὸς μυριάδες εἰσὶν δέκα ὁμώνυμοι τῷ Κ, εἰ δὲ δύο, μυριάδες ἑκατὸν

ὁμώνυμοι τῷ Κ, εἰ δὲ τρεῖς, μυριάδες χίλιαι ὁμώνυμοι τῷ Κ.

καὶ δῆλον ἐκ τῶν γεγραμμένων ὅτι ὁ ἐκ τῶν Α Β Γ Δ Ε Ζ Η Θ στερεὸς μυριάδες εἰσὶν τοσαῦται,

ὅσος ὁ δεκαπλάσιος τοῦ Φ, ὁμώνυμοι τῷ Κ ἀριθμῷ , ἢ ὅσος ὁ ἑκατονταπλάσιος τοῦ Φ, ὁμώνυμοι

τῷ Κ, ἢ ὅσος ὁ χιλιαπλάσιος τοῦ Φ, ὁμώνυμοι τῷ Κ.

152



[Proposition 25. Part 1] The 26th Theorem contains this theorem and the following

proof. Let A B be two or more numbers, each being less then a thousand and divisible by

a hundred[1], and let however so many of the other numbers Γ ∆ E, each being less than a

hundred and divisible by ten and again[2], however so many number Z H Θ, each being less

than ten[3]. And let is be necessary to give the product of A B Γ ∆ E Z H Θ.

Let Λ M N Ξ O be the puthmenes of A B Γ ∆ E[4]. The square of the multitude of A B

plus the straight numbers of Γ ∆ E will either be divisible by four or not[5].

Let them be divided first by four, measured by K[6], and let Π P substitute the hundreds

of A B[7], Let Σ T Y (substitute) the tens of Γ ∆ E[8].

It is clear that the (product) of Π P Σ T Y multiplied with (the product) of Λ M N Ξ

O[9], which is equal to the product of A B Γ ∆ E[10]. Let the product of Λ M N Ξ O Z H

Θ be taken and let that be Φ[11]. (I say) that the product of A B Γ ∆ E Z H Θ is so many

myriads to the power of K is as many as the monades that are in Φ[12]. Apollonius proved

this metrically.

If the square of the multitudes of A B is added with the multitude of Γ ∆ E, the sum

should not be divisible by four, thus dividing as measured by K will leave either 1, 2 or 3[13].

If one is left, the product of Π P Σ T Y is ten myriads to the power of K[14], if two is left, a

hundred myriads to the power of K[15], if three is left, 1000 myriads to the power of K[16].

It is clear from the metrical analysis that the product from A B Γ ∆ E Z H Θ is so many

myriads equal to ten-fold Φ to the power of the number of K or equal to a hundred-fold Φ

to the power of K or equal to a thousand-fold Φ to the power of K[17].
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κε΄.β. Τούτου δὴ [τοῦ θεωρήματος]προτεθεωρημένου πρόδηλον, πῶς ἔστιν τὸν δοθέντα

στίχον πολλαπλασιάσαι καὶ εἰπεῖν τὸν γενόμενον ἀριθμὸν ἐκ τοῦ τὸν πρῶτον ἀριθμὸν ὃν εἴληφε

τὸ πρῶτον τῶν γραμμάτων ἐπὶ τὸν δεύτερον ἀριθμὸν ὃν εἴληφε τὸ δεύτερον τῶν γραμμάτων

πολλαπλασιασθῆναι καὶ τὸν γενόμενον ἐπὶ τὸν τρίτον ἀριθμὸν ὃν εἴληφε τὸ τρίτον γράμμα καὶ

κατὰ τὸ ἑξῆς περαίνεσθαι μέχρι τοῦ διεξοδεύεσθαι τὸν στίχον, ὃν εἶπεν Ἀπολλώνιος ἐν ἀρχῇ

[κατὰ τὸν στίκον] οὕτως.

Ἀρτέμιδος κλεῖτε κράτος ἔξοχον ἐννέα κοῦραι

(τὸ δὲ κλε`ῖτέ φησιν ἀντὶ τοῦ ὑπομνήσατε).

᾿Επεὶ οὖν γράμματα ἐστιν λη΄ τοῦ στίχου, ταῦτα δὲ περιέχει ἀριθμοὺς δέκα τοὺς ρ΄ τ΄ σ΄ τ΄

ρ΄ τ΄ σ΄ χ΄ υ΄ ρ΄, ὧν ἕκαστος ἐλάσσων μέν ἐστιν χιλιάδος μετρεῖται δὲ ὑπὸ ἑκατοντάδος, καὶ ἀριθ-

μοὺς ιζ΄ τοὺς μ΄ ι΄ ο΄ κ΄ λ΄ ι΄ κ΄ ο΄ ξ΄ ο΄ ο΄ ν΄ ν΄ ν΄ κ΄ ο΄ ι΄, ὧν ἕκαστος ἐλάσσων μέν ἐστιν ἑκατοντάδος

μετρεῖται δὲ ὑπὸ δεκάδος, καὶ τοὺς λοιποὺς [σὺν ταῖς μονάσιν] ια΄ τοὺς α΄ ε΄ δ΄ ε΄ ε΄ α΄ ε΄ ε΄ ε΄ α΄ α΄,

ὧν ἕκαστος ἐλάσσων δεκάδος, ἐὰν ἄρα [τοὺς δέκα ἀριθμοὺς διπλασιάσωμεν καὶ τοὺς γενμένους

κ΄ προσθῶμεν τοῖς εἰρημένοις ἁπλῶς ἀριθμοῖς ἑπτακαίδεκα, τὰ γενόμενα ὁμοῦ λζ΄ ἕξομεν τῶν

ὑπ᾿ αὐτοῦ γενομένων ἀναλόγων,

κἄν] τοῖς μὲν δέκα ἀριθμοῖς ὑποτάξωμεν ἰσαρίθμους δέκα κατὰ τάξιν ἑκατοντάδος, τοῖς δὲ ιζ΄

ὁμοίως ὑποτάξωμεν δεκάδας ιζ΄, φανερὸν ἐκ τοῦ ἀνώτερον λογιστικοῦ θεωρήματος ιβ΄ ὅτι δέκα

ἑκατοντάδες μετὰ τῶν ιζ΄ δεκάδων ποιοῦσι μυριάδας ἐνναπλᾶς δέκα. [αἱ γὰρ δέκα ἑκατοντάδες

δὶς γενόμεναι, τουτέστιν κ΄, καὶ προσλαβοῦσαι τὰς ιζ΄ δεκάδας γίνονται λζ΄ ἀναλόγων ὄντα·

μερισθέντα δὲ τὰ λζ΄ εἰς τὸν δ΄ ποιεῖ τὸν᾿ εκ τοῦ μερισμοῦ θ΄ καὶ καταλείπεται α΄, ὡς εἶναι

μυριάδας ἐνναπλᾶς δέκα τὰ ἐκ τῶν ἑκατοντάδων δέκα καὶ δεκάδων ιζ΄.] ᾿Επεὶ δὲ καὶ πυθμένες

ὁμοῦ τῶν μετρουμένων ἀριθμῶν ὑπὸ ἑκατοντάδος καὶ τῶν μετρουμένων ὑπὸ δεκάδος εἰσὶν οἱ

ὑποκείμενοι κζ΄: α΄ γ΄ β΄ γ΄ α΄ γ΄ β΄ ς΄ δ΄ α΄ δ΄ α΄ ζ΄ β΄ γ΄ α΄ β΄ ζ΄ς΄ ζ΄ ζ΄ ε΄ ε΄ ε΄ β΄ ζ΄ α΄, ἀλλὰ καὶ τῶν

ἐλασσόνων δεκάδος εἰσὶν ια΄, τουτέστιν ἀριθμοὶ οἱ α΄ ε΄ δ΄ ε΄ ε΄ α΄ ε΄ ε΄ ε΄ α΄ α,
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[Proposition 25. Part 2] What with this previous contemplation of how the given line is

multiplied and to give the desired number from the first number which is taken from the first

letter and multiplied with the second number which is taken from the second letter and the

result is multiplied with the third number which is taken from the third letter and so forth

to continue until the verse ends, which Apollonius gives in the beginning.

Celebrate the excellent power of Artemis 9 maidens (Celebrate, they say, for the sake of

memory).

Since there are 38 letters in the line (in Greek), this contains about 10 letters; ρ, τ, σ, τ, ρ, τ, σ,-

χ, υ, ρ, each being less than a thousand and divisible by a hundred and 17 numbers; µ, ι, ø, κ, λ,-

ι, κ, ø, ξ, ø, ø, ν, ν, ν, κ, ø, ι, each being less than a hundred and divisible by ten, and the re-

maining 11; α, ε, δ, ε, ε, α, ε, ε, ε, α, α, are each less than ten. [If we should double the tens (of

the hundreds) and if we added (the quantity of) the resulting 20 (multitudes) to the afore-

mentioned 17 straight numbers, together the result we have is 37 of the desired proportion

by those (numbers)]

We substitute for ten (numbers) ten equivalent numbers to the order of a hundred, we

likewise substitute the 17 (numbers) with 17 tens. It is clear from the 12 previous theorems

that the ten hundreds added with the 17 tens makes nine and ten myriads [for ten hundreds

multiplied by two, this is 20, and taking the 17 tens becomes 37 equivalently; dividing 37

by four makes 9 from the division and leaves behind 1, thus nine and ten myriads to be

from ten hundreds and 17 tens] (numbers) divided by ten, there are 27 digits laid down;

α, γ, β, γ, α, β, ς, δ, α, δ, δ, ζ, β, γ, α, β, ζ, ς, ζ, ζ, ε, ε, ε, β, ζ, α, but there are 11 (numbers) less

than ten, there numbers are α, ε, δ, ε, ε, α, ε, ε, ε, α, α.
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ἐὰν τὸν ἐκ τούτων τῶν ια΄ καὶ τὸν ἐκ τῶν κζ΄ πυθμένων στερεὸν δι᾿ ἀλλήλων πολλαπλασιάσωμεν,

ἔσται ὁ στερεὸς μυριάδων τετραπλῶν ιθ΄ καὶ τριπλῶν ςλς ΄ καὶ διπλῶν ͵ηυπʹ

[῎Ισος δὲ τούτῷ συνάγεται καὶ ὁ διὰ τῶν τοῦ στίχου πυθμένων ἅμα ταῖς μονάσιν

Ἀρτέμιδος κλεῖτε κράτος ἔξοχον ἐννέα κοῦραι,

οἵ εἰσιν α΄ α΄ γ΄ ε΄ δ΄ α΄ δ΄ ζ΄ β΄ β΄ γ΄ ε΄ α΄ γ΄ ε΄ β΄ α΄ α΄ γ΄ ζ΄ β΄ ε΄ ς΄ ζ΄ ς΄ ζ΄ ε΄ ε΄ ε΄ ε΄ ε΄ α΄ β΄ ζ΄

δ΄ α΄ α΄ α΄.

ἕν γὰρ ἐπὶ α΄ γίνεται α΄

ἐπὶ γ΄ γίνεται γ΄

ἐπὶ ε΄ γίνεται ιε΄

ἐπὶ δ΄ γίνεται ξ΄

ἐπὶ α΄ γίνεται ξ΄

ἐπὶ δ΄ γίνεται σμ΄

ἐπὶ ζ΄ γίνεται ͵αχπʹ

ἐπὶ β΄ γίνεται ͵γτξʹ

ἐπὶ β΄ γίνεται ςψκʹ

ἐπὶ γ΄ γίνεται μα β΄ καὶ μο ρξ΄

ἐπὶ ε΄ γίνεται μα ι΄ καὶ μο ω΄

ἐπὶ α΄ γίνεται μα ι΄ καὶ μο ω΄

ἐπὶ γ΄ γίνεται μα λ΄ καὶ μο ͵βυʹ

ἐπὶ ε΄ γίνεται μα ρνα΄ καὶ μο ͵β

ἐπὶ β΄ γίνεται μα τβ΄ καὶ μο ͵δ

ἐπὶ α΄ γίνεται μα τβ΄ καὶ μο ͵δ

ἐπὶ α΄ γίνεται μα τβ΄ καὶ μο ͵δ
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If we might multiply the product from out of the 11 with the product of the 27 puthmenes,

the product will be 19× 10,0004, 6, 036× 10,0003 and 8, 480× 10,0002 When the puthmenes

from the numbers divided by a hundred are added with those from the.

[From those taken together and the product through the puthmenes of the verse and the

units Celebrate the excellent power of Artemis nine maidens

The (numbers are) α, α, γ, ε, δ, α, δ, ζ, β, β, γ, ε, α, γ, ε, β, α, α, γ, ζ, β, ε, ς, ζ, ς, ζ, ε, ε, ε, ε, ς, α,-

β, ζ, δ, α, α, α.

for one multiplied by 1 produces 1

multiplied by 3 produces 3

multiplied by 5 produces 15

multiplied by 4 produces 60

multiplied by 1 produces 60

multiplied by 4 produces 240

multiplied by 7 produces 1680

multiplied by 2 produces 3360

multiplied by 2 produces 6720

multiplied by 3 produces 2× 10, 000 and 160

multiplied by 5 produces 10× 10, 000 and 800

multiplied by 1 produces 10× 10, 000 and 8, 000

multiplied by 3 produces 30× 10, 000 and 2, 400

multiplied by 5 produces 151× 10, 000 and 2, 000

multiplied by 2 produces 302× 10, 000 and 4, 000

multiplied by 1 produces 302× 10, 000 and 4, 000

multiplied by 1 produces 302× 10, 000 and 4, 000
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ἐπὶ γ΄ γίνεται μα ϡζʹκαὶ μο ͵β

ἐπὶ ζ΄ γίνεται μα ςτνʹκαὶ μο ͵δ

ἐπὶ β΄ γίνεται μβ α΄ καὶ μα ͵βψʹκαὶ μο ͵η

ἐπὶ ε΄ γίνεται μβ ς΄ καὶ μα ͵γφδʹ

ἐπὶ ς΄ γίνεται μβ λη΄ καὶ μα ͵ακδʹ

ἐπὶ ζ΄ γίνεται μβ ςξʹς΄ καὶ μα ͵ζρξηʹ

ἐπὶ ς΄ γίνεται μβ ͵αχʹκαὶ μβ ͵γηʹ

ἐπὶ ζ΄ γίνεται μγ α΄ καὶ μβ ͵ασβʹκαὶ μα ρʹνς΄

ἐπὶ ε΄ γίνεται μγ ε΄ καὶ μβ ςι΄ καὶ μα ͵εσπʹ

ἐπὶ ε΄ γίνεται μγ κη΄ καὶ μβ νβ΄ καὶ μα ςυ΄

ἐπὶ ε΄ γίνεται μγ ρμ΄ καὶ μβ σξγ΄ καὶ μα ͵β

ἐπὶ ε΄ γίνεται μγ ψ΄ καὶ μβ ͵ατιʹς΄

ἐπὶ ε΄ γίνεται μγ ͵γφʹκαὶ μβ ςφπʹ

ἐπὶ α΄ γίνεται μγ ͵γφʹκαὶ μβ ςφπʹ

ἐπὶ β΄ γίνεται μγ ͵ζαʹκαὶ μβ ͵γρξʹ

ἐπὶ ζ΄ γίνεται μδ δ΄ καὶ μγ ͵θθʹκαὶ μβ ͵βρκʹ

ἐπὶ δ΄ γίνεται μδ ιθ΄ καὶ μγ ςλς΄ καὶ μβ ͵ηυπʹ]

Αὗται δὴ συμπολλαπλασιαζόμεναι ἐπὶ τὸν ἐκ τῶν ἑκατοντάδων καὶ δεκάδων στερεόν, τουτέστι

τὰς προκειμένας μυριάδας ἐνναπλὰς δέκα, ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς π;ς΄, δωδεκαπλᾶς

τξη΄, ἑνδεκαπλᾶς ͵δωʹ. [ἐνναπλαῖ γὰρ μυριάδες ἐπὶ μὲν τετραπλᾶς ποιοῦσι τρισκαιδεκαπλᾶς, ἐπὶ

δὲ τριπλὰς γενόμεναι ποιοῦσιν δωδεκαπλᾶς, καὶ ὁμοίως ἐπὶ διπλᾶς πολλαπλασιασθεῖσαι γίνονται

ἑνδεκαπλαῖ] ταῦτα γὰρ πάντα προδέδεικται.

Φατέον οὖν τὸν ἐξ ἀρχῆς στίχον
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multiplied by 3 produces 907× 10, 000 and 2, 000

multiplied by 7 produces 6, 350× 10, 000 and 4, 000

multiplied by 2 produces 1× 10,0002 and 2, 700× 10, 000 and 8, 000

multiplied by 5 produces 6× 10,0002 and 3, 504× 10, 000

multiplied by 6 produces 38× 10,0002 and 1, 024× 10, 000

multiplied by 7 produces 266× 10,0002 and 7, 168× 10, 000

multiplied by 6 produces 1, 600× 10,0002 and 3, 008× 10, 000

multiplied by 7 produces 1× 10,0003 and 1, 202× 10,0002 and 1, 056× 10, 000

multiplied by 5 produces 5× 10,0003 and 6, 010× 10,0002 and 5, 280× 10, 000

multiplied by 5 produces 28× 10,0003 and 52× 10,0002 and 6, 400× 10, 000

multiplied by 5 produces 140× 10,0003 and 263× 10,0002 and 2, 000× 10, 000

multiplied by 5 produces 700× 10,0003 and 1, 316× 10,0002

multiplied by 5 produces 3, 500× 10,0003 and 6, 580× 10,0002

multiplied by 1 produces 3, 500× 10,0003 and 6, 580× 10,0002

multiplied by 2 produces 7, 001× 10,0003 and 3, 160× 10,0002

multiplied by 7 produces 4× 10,0004 and 9, 009× 10,0003 and 2120× 10,0002

multiplied by 4 produces 19× 10,0004 and 6, 036× 10,0003 and 8, 480× 10,0002

]

These things being multiplied together with the product of the hundreds and the tens, this is

to say nine and ten myriads makes 196× 10,00013, 368× 10,00012, 4, 800× 10,00011 [for nine

straight myriads multiplied by four makes 13 straight myriads, multiplied by three makes 12

and when multiplying proportionals by two, it makes 11 straight myriads.

It is necessary to explain the verse from the beginning;
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Ἀρτέμιδος κλεῖτε κράτος ἔξοχον ἐννέα κοῦραι

πολλαπλασιασθέντα δι᾿ ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρ;ς΄, δωδεκαπλῶν

τξη΄, ἑνδεκαπλῶν ͵δωʹ, συμφώνως τοῖς ὑπὸ Ἀπολλωνίου κατὰ τὴν μέθοδον ἐν ἀρχῇ τοῦ βιβλίου

προγεγραμμένοις. Πάλιν δεδόσθω στίχος ὁ ὑποκείμενος

Μῆνιν ἄειδε θεὰ Δημήτερος ἀγλαοκάρπου, καὶ εἰλήφθω τά τε ἀνάλογα καὶ οἱ πυθμένες ἅμα

ταῖς μονάσιν ὥσπερ ὑπόκεινται

δ΄ η΄ ε΄ α΄ ε΄ α΄ ε΄ α΄ δ΄ ε΄ θ΄ ε΄ α΄ δ΄ η΄ δ΄ η΄ γ΄ ε΄ α΄ ζ΄ β΄ α΄ γ΄ γ΄ α΄ ζ΄ β΄ α΄ α΄ η΄ ζ΄ δ΄,

καὶ πεπολλαπλασιάσθωσαν δι΅ ἀλλήλων οἱ ἀριθμοί· γίνονται τετραπλαῖ μυριάδες δύο, τριπλαῖ

͵αωμθʹ, διπλαῖ ͵δυβʹ, ἁπλαῖ ͵εχʹ.

Τέσσαρες γὰρ μο ἐπὶ η΄ γίνεται λβ΄

ἐπὶ ε΄ γίνεται ρξ΄

ἐπὶ μίαν γίνεται ρξ΄

ἐπὶ ε΄ γίνεται ω΄

ἐπὶ α΄ γίνεται ω΄

ἐπὶ ε΄ γίνεται ͵δ

ἐπὶ μίαν γίνεται ͵δ

ἐπὶ ε΄ γίνεται μα α΄ καὶ μο ς

ἐπὶ ε΄ γίνεται μα η΄

ἐπὶ θ΄ γίνεται μα οβ΄

ἐπὶ ε΄ γίνεται μα τξ΄

ἐπὶ α΄ γίνεται μα τξ΄

ἐπὶ δ΄ γίνεται μα ͵αυμʹ

ἐπὶ η΄ γίνεται μβ α΄ καὶ μα ͵αφκʹ

ἐπὶ δ΄ γίνεται μβ δ΄ καὶ μα ςπʹ

ἐπὶ η΄ γίνεται μβ λς΄ καὶ μα ͵ηχμʹ

ἐπὶ γ΄ γίνεται μβ ρι΄ καὶ μα ͵εϡκʹ

160



Celebrate the excellent power of Artemis nine maidens

multiplying (each letter) respectively (to one another) produces a multitude of myriads

196 × 10,00013, 368 × 10,00012, 4, 800 × 10,00011, in harmony with the works of Apollonius

according to the method in the beginning of the book. Again, let an established line be given

Sing, Goddess, the wrath of Demeter, bearer of beautiful fruit

Let both the proportion be taken and the puthmenes be made like the units simultaneously;

δ, η, ε, α, ε, α, ε, α, δ, ε, θ, ε, α, δ, η, δ, η, γ, ε, α, ζ, β, α, γ, γ, α, ζ, β, α, α, η, ζ, δ

and the numbers having been multiplied through each other make 2×10,0004, 1, 849×10,0003,

4, 402× 10,0002, 5, 600× 10, 000.

four multiplied by 8 makes 32

multiplied by 5 produces 150

multiplied by 1 produces 160

multiplied by 5 produces 800

multiplied by 1 produces 800

multiplied by 5 produces 4,000

multiplied by 1 produces 4,000

multiplied by 4 produces 1× 10, 000 and 6, 000

multiplied by 5 produces 8× 10, 000

multiplied by 9 produces 72× 10, 000

multiplied by 5 produces 360× 10, 000

multiplied by 4 produces 1, 440× 10, 000

multiplied by 8 produces 1× 10,0002 and 1, 520× 10, 000

multiplied by 4 produces 4× 10,0002 and 6, 080× 10, 000

multiplied by 8 produces 36× 10,0002 and 8, 640× 10, 000

multiplied by 3 produces 110× 10,0002 and 5, 920× 10, 000
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ἐπὶ ε΄ γίνεται μβ φνβ΄ καὶ μα ͵θχʹ

ἐπὶ α΄ γίνεται μβ φνβ΄ καὶ μα ͵θχʹ

ἐπὶ ζ΄ γίνεται μβ ͵γωοʹκαὶ μα ͵ζσ΄

ἐπὶ β΄ γίνεται μβ ͵ζψμαʹκαὶ μα ͵δυʹ

ἐπὶ α΄ γίνεται μβ ͵ζψμαʹκαὶ μο ͵δυʹ

ἐπὶ γ΄ γίνεται μγ β΄ καὶ μβ ͵γσκδ΄ καὶ μα ͵γσ΄

ἐπὶ γ΄ γίνεται μγ ς΄ καὶ μβ ͵θχοβʹκαὶ μα ͵θχʹ

ἐπὶ α΄ γίνεται μγ ς΄ καὶ μβ ͵θχοβʹκαὶ μα ͵θχʹ

ἐπὶ ζ΄ γίνεται μγ μη΄ καὶ μβ ͵ζψιʹκαὶ μα ͵ζσ΄

ἐπὶ β΄ γίνεται μγ ϙζʹκαὶ μβ ͵ευκαʹκαὶ μα ͵δυʹ

ἐπὶ α΄ καὶ πάλιν ἐπὶ ά γίνεται μγ ϙζʹκαὶ μβ ͵ευκαʹκαὶ μα ͵δυʹ

ἐπὶ η΄ γίνεται μγ ψπ΄ καὶ μβ ͵γτοαʹκαὶ μα ͵εσ΄

ἐπὶ ζ΄ γίνεται μγ ͵ευξβʹκαὶ μβ ͵γχʹκαὶ μβ ςυʹ

ἐπὶ δ΄ γίνεται μδ β΄, τριπλαῖ ͵αωμθʹ, διπλαῖ ͵δυβʹ, ἁπλαῖ ͵εχʹ.

τῶν δὴ ἀναλόγων κβ΄ καὶ μετρουμένων ὑπὸ τετράδος [καὶ δυάδος ὑπολειπομένης] ὅσαι μονάδες

γεγόνασιv [μέτρῳεἰς ε΄], τοσαυτάκις αὐξήσομεν τὸν ἐκβάντα διά τε τῶν μονάδων καὶ [διὰ τῶν πε-

πολλαπλασιασμένων] πυθμένων ἀριθμόν (λέγω δὲ τοσαυτάκις κατὰ μυριάδων αὔξησιν), ὥστε

γίνεσθαι τὸν πρότερον ὑπάρχοντα μυριάδων τετραπλῶν δύο, τριπλῶν ͵αωμθʹ, διπλῶν ͵δυβʹκαὶ

ἁπλῶν ͵εχʹ, νῦν ἐνναπλῶν β΄, ὀκταπλῶν, ͵αωμθʹ, ἑπταπλῶν ͵δυβʹ, ἑξαπλῶν ͵εχʹ.

῞Οτι δὲ περιλέλειπται τῶν ἀναλόγων δύο, ἅπερ ἐστὶ τῆς ἑκατοντάδος, τοςαυτάκις αὐξὴσομεν

τὸν εἰρημένον ἀριθμόν, ὥστε εἶναι μυριάδων ἐνναπλῶν σιη΄, ὀκταπλῶν ͵δϡμδʹ, ἑπταπλῶν σνς΄.

῾Ρητέον οὖν τὸν ἐξ ἀρχῆς στίχον

Μῆνιν ἄειδε θεά Δημέτερος ἀγλαοκάρπου

πολλαπλασιασθέντα δύνασθαι μυριάδων πλῆθος ἐνναπλῶν σιη΄, ὀκταπλῶν ͵δϡμδʹ, ἑπταπλῶν σνς΄.
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multiplied by 5 produces 552× 10,0002 and 9, 600× 10, 000

multiplied by 1 produces 552× 10,0002 and 9, 600× 10, 000

multiplied by 7 produces 3, 870× 10,0002 and 7, 200× 10, 000

multiplied by 2 produces 7, 741× 10,0002 and 4, 400× 10, 000

multiplied by 1 produces 7, 741× 10,0002 and 4, 400× 10, 000

multiplied by 3 produces 2× 10,0003 and 3, 224× 10,0002 and 3, 200× 10, 000

multiplied by 3 produces 6× 10,0003 and 9, 672× 10,0002 and 9, 600× 10, 000

multiplied by 1 produces 6× 10,0003 and 9, 672× 10,0002 and 9, 600× 10, 000

multiplied by 7 produces 48× 10,0003 and 7, 710× 10,0002 and 7, 200× 10, 000

multiplied by 2 produces 97× 10,0003 and 5, 421× 10,0002 and 4, 400× 10, 000

multiplied by 1 produces 97× 10,0003 and 5, 421× 10,0002 and 4, 400× 10, 000

multiplied by 8 produces 780× 10,0003 and 3, 374× 10,0002 and 5, 200× 10, 000

multiplied by 7 produces 5, 462× 10,0003 and 3, 600× 10,0002 and 6, 400× 10, 000

multiplied by 4 produces 2× 10,0004, 1, 849× 10,0003, 4, 402× 10,0002, 5, 600× 10, 000

What with 22 proportionals being divided by four [and leaving a remainder of two] as many

units result [divisible by 5], so many we increase that which comes from the number of units

[and through multiplication] the number of puthmenes. (I call so may time the increases

according to the myriads) so that the previous result was 2 × 10,0004, 1, 849 × 10,0003,

4, 402 × 10,0002, 5, 600 × 10, 000 is now 2 × 10,0009, 1, 849 × 10,0008, 4, 402 × 10,0007,

5, 600× 10,0006

I say that two remainders from the proportion which indeed is 100, increasing so many

time the aforementioned number. Let it be 218× 10,0009, 4, 944× 10,0008, 256× 10,0007

It is necessary to say the verse from the beginning

Sing the wrath of the Goddess Demeter, bearer of the beautiful fruit.

Having been multiplied, a multitude of myriads is produced; 218× 10,0009, 4, 944× 10,0008,

256× 10,0007
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8.3 General Commentary

[Notes on the Translation] The translation provided is based on the ancient Greek

transcribed by Frederick Hultsch in Volume 1 of Pappus: Collection. Some of the inter-

polations which he noted have been removed.

The manuscript tradition of the Collection in Europe is well documents in Treweek’s Ph.D

Thesis A Critical Edition of the Text of the Collection of Pappus of Alexandria,

his article Pappus of Alexandria: The Manuscript Tradition of the Collectio Mathematica,

Sabetai Unguru’s Pappus in the Thirteenth Century in the Latin West, and Alexander Jones’

Book 7 of the Collection.

There are approximately 40 manuscripts in Europe and America that include a portion

of the Collection2 The Vaticanus Graecus 218 is the earliest of these, dating between the

9th and 10th centuries.3 It consists of 202 folia of parchment but five folia of paper from the

16th-18th centuries. The manuscript begins with an incomplete 6th century work on trick

mirrors by Anthemius of Tralles. The rest of the surviving manuscript has been discussed

in Setting the Scene but there are some addition details to add. When the Vaticanus was

first produced, Book 8 is believed to have lost.4 However, the impression left on the first

page of the extant Pappus manuscript supports the hypothesis that the rest of Book 2 was

originally copied into the Vaticanus and was lost sometime later due to water damage.

An an exemplar, the Vaticanus is very useful for following the transmission and transla-

tion of Book 2. Book 2 is included in 18 of the 44 manuscripts listed by Jones and Treweek.

These are listed below. The sigla follow the standard of Treweek, who followed Hultsch. The

listing of the date, exemplars, and presence of diagrams follows Jones’ style, although it is

based on Treweek.

2Jones(1986), 30.
3Jones(1986), 206.
4Jones(1986), 35.
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A-Vaticanus: 9th-10th century with inset diagrams.

R-Argentoratensis: < 1544. Exemplar was A but was lost in the bombing of Strasbourg.

P-Oxon Savile: 6th century. Exemplar was R and does not contain diagrams.

E-Escorial T ill, y 17: 1547-1548. Exemplar is A but has no diagrams.

B-Paris gr. 2440: < 1554. Exemplars are R and E. Contains marginal diagrams

Y-Vind Sup. gr. 40: > 1574. Exemplar is B and contains no diagrams.

x: ¡1554. Exemplar was A but is lost. We know it exists because John Wallis referred to in

in his 1680s translation of Book 2.

V-Leifen Voss. F. 18: 16th century. The exemplar appears to have been x. Contains inset

diagrams.

C-Paris gr. 2368: 1562. Also has x as an exemplar and contains inset diagrams.

S-Leiden Scal.3: > 1562. C is the exemplar and contains inset diagrams.

K-Neap.III c 14: 16th century. E is the exemplar. Contains inset diagrams.

M-Amber.C 266 inf.: 16th century. R is one of many exemplars. No diagrams.

Z-Bn. Burney 105: < 1588. M one of two exemplars. Contains a set of diagrams that

does not include a set for Book 2.

I-Laur.Plut. 28,17: 16th century. M is an exemplar. No diagrams.

-Oxon. Chch 86: 1688-1710. P is one of two exemplars. Contains inset diagrams.

-Oxon. Savile 60A: 1772. C is the exemplar. No diagrams.

Wa-Oxon Savile 60B: 1680s. P is one of two examplars. No diagrams. This is the

manuscript Wallis created for his translation.

Hultsch used manuscripts ABVS for his translation of Books 2 to 7 but it was not until

late in his translating that he came across manuscript A. He also included the emendations

from John Wallis’ translation. In the 1680s, John Wallis was the first person to translate

Book 2 in its extant form. Treweek’s translation is also based on Hultsch’s but increases the

manuscripts for Book 2 to included PMCK as well as ABVS. Hultsch and Wallis’ emendations.

For all of his extensive research into the Vaticanus and its descendants, Treweek was vague

about the content and accuracy of the diagrams, both in his thesis and in his later mono-
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graphs. With regards to the relevant manuscripts, there is no detail beyond inset, marginal,

or no comment on the matter. There is no insight as to whether all Books in the manuscript

contained diagrams or merely a few propositions. This is a relevant concern because Hultsch

made the editorial decision to omit the diagrams from his translation because of the confu-

sion between the diagram and the text, as introduced in Sing the Wrath of Demeter.

Treweek makes some criticisms as to the confusion between the diagrams but never about

their connection to the text. It would be valuable to know if these diagrams originated in

the Vaticanus or from a later manuscript. For the reasons listed in the chapter named above,

these diagrams are not included here.

As seen through numerous mathematical examples in this text, the style of the translation

and mathematical commentary emulates that of Jones. Sections of the Greek are followed

by the English translation. Inset within the English are numbers that refer the reader to

the relevant mathematical information in the commentary, as determined by the proposition.

There are also some comments about editorial and translation choices.
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Order and Content of Book 2 Propositions
Proposition Details
[14] Multiplication of complete numerical series in which each of the six

numbers is divisible by ten.
[15] Multiplication of several within a series, in which each of the num-

bers is divisible by a hundred. First instance where myriads are
used to organized the multitudes. First instance in which the most
numbers are represented alphabetically.

[16] Multiplication of two numbers, one divisible by a hundred and
another divisible by ten. First reference to Apollonius.

[17] Multiplication of two separate series of numbers, one series divisible
by a hundred and the other divisible by ten. Refers to Apollonius.
Unlike proposition 15, demonstrates how the magnitude of the re-
sult increases with each possible remainder. Labeled as Theorem
18.

[18] Theorem 19. Multiplication of five numbers, one divisible by ten
and four less than ten.

[19] Multiplication of five numbers, two divisible by ten and three less
than ten. Refers to Apollonius.

[20] Multiplication of six numbers, three divisible by ten and three less
than ten.

[21] Multiplication of eight numbers, five divisible by ten and three less
than ten. First instance of reference to Euclid’s Elements.

[22] Multiplication of four numbers, one divisible by a hundred and
three less than ten. Reference made to Elements.

[23] Theorem 24. Multiplication of five numbers, two divisible by a
hundred and three less than ten. Reference made to Apollonius.

[24] Theorem 25. Multiplication of five numbers, two divisible by ten
and three less than ten.

[25] Theorem 26. Part 1) Multiplication of eight numbers, two divisible
by a hundred, three divisible by ten and three less than ten. Ref-
erence made to Apollonius. Part 2) Each letter contained within a
hexameter line, attributed to Apollonius, is multiplied in a series
by its corresponding number. This is repeated a second time with
a verse selected by Pappus.
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8.4 Mathematical Commentary

[Proposition 14]

[1]Five numbers: 50, 50, 50, 40, 40, 30

[2]Puthmenes : 5, 5, 5, 4, 4, 3

[3]Product of puthmenes: 5× 5× 5× 4× 4× 3 = 6000

[4]Number of multitudes: 6 (10, 10, 10, 10, 10, 10)

[5]6÷4 = 2 as in 106 ÷ 104 = 2 [6]Product of multitudes: 10×10×10×10×10×10 = 1, 000, 000

or 100× 10, 000

[7]Multitudes × puthmenes: (100× 10, 000× 6000) = 60× 10, 0002

[1.1] Divisible (μετρέω) - In mathematics, the more precise definition is ‘to measure’.

However, Aristotle, Euclid and Nicomachus apply it was a term for dividing or specifically

measuring magnitudes. In Nicomachus especially, it comes to mean the number of times a

number is expressed and produced.5

[1.2] Product (ὁ στερεός) - In his translation of proposition 17, Netz translates this as a ‘solid

number’; Cuomo, instead, also translates this as product.6 In Lidell-Scott, the precedent is

for the translation to be ’solid’ but can also refer to sums and quantities.

[1.3] Give (λέγω) - Cuomo and Netz keep to the more familiar definition of ‘to say’. The

selection of ‘to give’ is for aesthetic reasons.7

Multiply (πολλαπλασιάζω) -

[1.4] Numbers (ὁ αριθμός) - A natural,positive numbar consisting of one or more digits

[1.5] Puthmenes (ὁ πυθμήν) - The puthmenes are quotients, without remainder, of the num-

bers that are divisible by ten or hundred. The exact translation of puthmenes is unclear.

Thomas Heath calls such numbers ‘bases’, as they are factors of smaller numbers which are

5Nicomachus(1938), 301
6Netz(2008): Cuomo(2000), 181-182
7Cuomo(2000), 181-182
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less than ten.8 Netz also calls them ‘base numbers’, while Cuomo translates the word as ‘ba-

sic numbers’.9 However, I feel the word base rather understates the specificity of the numbers

Pappus discusses. It is sufficient until one must deal with numbers less than ten that can be

broken down into smaller while numbers, ie. 6 = 3 × 2, would 3 or 2 be also described as

’base’ numbers? Puthmenes is elegant and specifically labels what Pappus intended for the

reader to organize in all numerical cases.

[1.6] Units (μοναδόν) - Used when letters are assigned numerical values and parts of products

that are less than 10,000

Multitude (πλθος) - The quantity of 10s and 100s that remain when all the puthmenes in a

series or a number is removed.

[1.7] By four (῾Υπὸ τετράδος) - In this case, since there are six numbers that are divisible by

ten, the product of the six tens will be 1,000,000. If this is divided by four, 104 or 10, 000, it

will leave two, 102 or 100. The product of the multitudes can be reexpressed as 100×10, 000.

[1.8] Straight Myriad (μυριάδων ἁπλῶν) - A single 10, 000 unit. Straight, later, is used in

proposition 25 to denote a series of three numbers that were divisible by ten. The variation

in usage might be due to the ’straight’ set of zeroes present.

[1.9] Multiply (ἐπί) - A shorthand used outside the preamble of most propositions. The

context of this preposition in the sentence supports this interpretation. Netz also applied

this usage to this brief translation of proposition 25.10

[1.10] Make (ποιέω) - While Pappus does not abandon the use of ‘to make’ to not the result

in later chapters, he does transition to terms that better express equality in the sense of

1 + 2 = 3. The connotation here is more of a construction.

From the start(εξ ἀχῆς) - Despite the lengthy explanation that proceeds from the limitations

Pappus places on multiplication, this line establishes that direct method of multiplication did

occur. It is also possible that in the previous, but lost, propositions, Pappus had built up to

this combination of number, thereby the new product would be easily deduced if a three was

substituted for a thirty or an additional fifty was added. The former scenario is most probable.

8Cuomo(2000), 181-182; Heath(1921)i, 54-57
9Netz(2008): Cuomo(200), 181-182

10Netz(2008)
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[Proposition 15]

[1]-SeriesB = B1,... , Bn; < 1000, divisible by 100

[2]-When n=number of multitudes, Multitudes = 100n, (100n)2÷104=100.

[3]-SeriesB ÷100=B1÷100,... , Bn÷100

[4]-SeriesΓ=SeriesB ÷100

[5]-Puthmenes =SeriesB ÷100 therefore Puthmenes=SeriesΓ

[6]-Γ1,... ,Γn=E

[7]-B1×... ×Bn=120× 10, 0002

[8]-B1×... ×Bn=100n×E=10, 0002120 therefore 100n=10, 0002 and n = 4.Thus SeriesB=B1B2B3B4

[9]-Suppose (100n)2 is not divisible by 4

[10]-(100n)2÷104=102

[11]-(100n)2÷(104)2=102

[12]-100n=100×10, 000z, z=2

[13]- B1,... , Bn=100×10, 000z×E=12, 000×10, 0002

In the first case, if E = 120, then G1 = 2, G2 = 3, G3 = 4, G4 = 5 and B1 = 200,B2 = 300,

B3 = 400, B4 = 500.

However, in the second case there is a remainder of 2 or 102,

Therefore Series B contains 5 quantities, B5 = 100

Thus, B1× ... ×B5 = 1, 200× 10,0002.

[2.14] Again(πάλιν) - This is not a reference to proposition 14 as the arrangement of num-

bers in 15 is different from 14. Thus, this is likely a reference to a now lost proposition that

was similar in its treatment of numbers within a series as 15.

From which we get series B(ἐφ᾿ ὧν τὰ Β) - A read-through reveals that B does not represent a

single number, as subsequent propositions, but a series of numbers. Cuomo translates this as

’series labelled by the As’; Netz, ’That on which are the As’.11 Again, I feel my translation,

from which we get series..., both stays true to the mathematical integrity of the proposition

11Cuomo(2000), 181-182: Netz(2008)
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and clarifies what was written in the Greek.

[2.15] Series B - 100, 200, 300, 400, 500

[2.19] Let it be put below(ὐποκεισθω) - It seems Pappus expected the reader to write out

the equation as they were solving it. This is just a place-holding instruction

[2.1] Series G - 1, 2, 3, 4, 5. Since 100 contributed to the magnitude of the result only, it is

temporarily removed until the end and expands the result a hundredfold.

[2.4] Workings(ἡ γραμμή)

[3.15] (Power(ὁμωνυμος) - In this section, Pappus establishes a pattern for writing out large

results, as demonstrated later; E × 10,000Z. The use of Z in particular is random and is

replaced by other letter as the quantity of numbers multiplied increases.
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[Proposition 16]

[1]-A is < 1000, ÷10; A = 500

[2]-B is < 100, ÷10. B = 40

[3]-Puthmenes: Ap=5; Bp=4. Therefore multitudes: Am=100; Bm=10

[4]-Ap×Bp=20

[5]-20×1000=20, 000; 1000=Am×Bm

[6]-A×B=500×40=20, 000

[4.1-4.5] It is clear through the arithmetic...linear description(τῶν ἀριθμῶν ... δὲ γραμ-

μικὸν) - The difference between arithmetical and linear demonstrations depends on how one

chooses to interpret how Pappus utilizes those differences. In Netz’s opinion, Greeks only

used numbers when the presentation was opaque.12 When he speculated as to the original

Apollonian text, he believes the proofs were initially vague and entirely geometrical. The

vagueness in the text would have been clarified by a collection of lines in a separate diagram.

The arithmetic also served another purpose, as a climax to the ’word game’ that concludes

proposition 25. That much is fairly clear from the text itself. Cuomo interprets Book 2

as containing several examples of arithmetizations, the assignation of specific numbers to a

general proposition, which already had been established.13 This reformulation is useful as a

method to convince the reader that a proof does or does not work (ie. Book 3). Moreover, it

is the exercise of the arithmetic that was as important to this persuasion as the proof itself.

Cuomo does not attempt to recreate Apollonius’ possible diagrams.

[Proposition 17]

[1]-Series A = A1, ..., An; < 100, ÷10

[2]-Series B = B1, ..., Bn; < 1000, ÷100

12Netz(2008)
13Cuomo(2000), 180-184
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[3]-Series A÷10=SeriesH; Series H=1, 2, 3,4 therefore Series A=10, 20, 30, 40

[4]Series B÷100=SeriesΘ; Series Θ=2, 3, 4,5 therefore Series B=200, 300, 400, 500

[5]-SeriesH× SeriesΘ=E

[6]-E=2880

[7]-(Multitude of Series A)×(Multitude of Series B)=104×1004=104×108=1012 or 10, 0003

[8]-Multitude of Series A)×(Multitude of Series B) is evenly divisible by 4

[9]-A×B=E×10, 000z

[10]-2800×10, 0003

[11]-Multitude of Series A)×(Multitude of Series B)÷4=1

[12]-A×B=10, 000z×(E×10)

[13]-If remainder is 2, A×B=10, 000z×(E×100)

[14]-If remainder is 3, A×B=10, 000z×(E×1000)

[5.6] Behold, Theorem 18(᾿Επὶ δὲ τοῦ ιη΄ θεωρήματος) - Book 2 is largely seen as a commen-

tary of a lost text by Apollonius. However, there are two propositions that are drawn from

Euclid’s Elements as well: Propositions 21 and 22. Proving that Pappus based his work on

more than one text. Still, since the propositions that refer to Euclid do so explicitly as do

all propositions that refer to Apollonius, it is more than reasonable to say that the theorem

more the likely was derived from Apollonius.
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[Proposition 18]

[1]-A< 100,÷10

[2]-BΓ∆E < 10

[3]-A÷10=Z

[4]-Z×B×Γ×∆×E=H

[5]-10×H=ABΓ∆E

[6]-A = 20; B = 3; Γ=4; ∆=5; E=6

[7]-ABΓ∆E=7200

[8]-Z=2

[9]-ZBΓ∆E×10=7200

[10]-ABΓ∆E=7200

[Proposition 19]

[1]-A,B < 100, ÷10

[2]-Γ∆E < 10

[3]-A÷10=Z; B÷10=H

[4]-ABΓ∆E=100×ZHΓ∆E

[5]-A = 20; B = 30; Γ=2; ∆=3; E = 4;

[6]-Z = 2; H = 3

[7]-ABΓ∆E=14, 400

[8]-ZHΓ∆E=144

[9]-ZHΓ∆E×=14, 400

[Proposition 20]

[1]-ABΓ < 100, div10
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[2]-∆EZ < 10

[3]-A÷10=H; B÷10=Θ; Γ÷10=K

[4]-HΘK∆EZ=Ξ

[5]-ABΓ∆EZ=1000×Ξ

[6]-A = 20; B = 30; Γ=40; ∆=2; E = 3; Z=4

[7]-H = 2; Θ=3; K = 4 [8]-ABΓ∆EZ=(57×10, 000)+6000

[9]-HΘK∆EZ=576

[10]-HΘK∆EZ×1000=576×1000=(57×10, 000)+6000

[Proposition 21]

[1]-ABΓ∆E < 100, ÷10

[2]-ZHΘ < 10

[3]-Multitude of ABΓ∆E ÷4=o

[4]-A÷10=K; B÷10=Λ; Γ÷10=M ; ∆÷10=N ; E÷10=Ξ

[5]-ABΓ∆EZHΘ=n×10, 000o

[6]-n=KΛMN×ZHΘ

[7]-A = 10; B = 20; Γ=30; ∆=40

[8]-K = 1; Λ=2; M = 3; N = 4

[9]-ABΓ∆=24×10, 000

[10]-ABΓ∆ZHΘ=144×10, 000

[11]-KΛMN=24

[12]-ZHΘ=6

[13]-KΛMNZHΘ=144

[14]-KΛMNZHΘ∼=ABΓ∆ZHΘ

[15]-Multitude of ABΓ∆E ÷4=100

[16]-But 4 does not evenly divide into the multitudes of ABΓ∆E. Remainders are 1,2, or 3

[17]-If 1, ABΓ∆EZHΘ=n×10, 000o∼=KΛMNΞZHΘ×10, 000o×10

[18]-If 2, KΛMNΞZHΘ×10, 000o×100
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[19]-If 3, KΛMNΞZHΘ×10, 000o×1000

[11.3] Propositions 21 and 22 both refer to Euclid’s Elements as the source of the proof

in the proposition.

[Proposition 22]

[1]-A < 1000, ÷10

[2]-BΓ∆ < 10

[3]-A÷100=E

[4]-EBΓ∆=Z

[5]-ABΓ∆=Z×100

[6]-A = 300; B = 3; Γ = 4; ∆ = 5; E = 3

[7]-ABΓ∆=18, 000

[8]-EBΓ∆=180

[9]-EBΓ∆×100=18, 000

[Proposition 23]

[1]-A = 200; B = 300; Γ = 2; ∆ = 3; E = 4

[2]-ABΓ∆=144×10, 000

[3]-Multitude of AB÷4=10, 000K=10, 000

[4]-ZHΓ∆E=144

[5]-If multitude of AB is not divisible by 4, if it leaves 2,ABΓ∆E=n×100×10, 000K

[6]-Θ=ABΓ∆E

[7]-Θ=ZHΓ∆E×100×10, 000K
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[Proposition 24]

[1]-A, B < 100, ÷10

[2]-Γ, ∆, E < 10

[3]-A÷10=Θ; B÷10=K

[4]- [4]-ΘKΓ∆E=Λ

[5]-ABΓ∆E=100×Λ

[6]-A = 20; B = 20; Γ = 5; ∆ = 6; E = 7

[7]-Θ=2; K=2

[8]-ΘKΓ∆E=840

[9]-840×100=84, 000

[10]-84, 000=ABΓ∆E

[Proposition 25]

Part 1

[1]-A, B < 1000, ÷100; could be more than two quantities

[2]-Γ, ∆, E < 100, ÷10

[3]-ZHΘ < 10

[4]-A÷100=Λ; B÷100=M ; Γ÷10=N ; ∆÷10=Ξ; E÷10=O

[5]-Multitudes of ABΓ∆E may be divisible by 4

[6]-ABΓ∆E÷=10, 000K

[7]-Multitude of A=Π; Multitude of B=P ; Π, P =100

[8]-Multitude of Γ=Σ; ∆=T ; E=U ; Σ, T , U=10

[9]-ΠPΣTUΛMΞO

[10]-ΠPΣTUΛMΞO=ABΓ∆E

[11]-ΛMΞOZHΘ=Φ

[12]-ABΓ∆EZHΘ=Φ×10, 000K :Φ
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[13]-(Multitudes of AB)+(Multitudes of Γ∆E) is not divisible by 4; 103×104=107. Then

107÷104=103

[14]-If 1 remainder, ΠPΣTU=10×10, 000K

[15]-If 2 remainder, 100×10, 000K

[16]-If 3 remainder, 1000×10, 000K

[17-ABΓ∆EZHΘ=Φ×10, 000K and × either 10, 100, or 1000

Part 2 This part of the proposition is straightforward.

[16.12] Addition(μετα)

[23.3] Proportional(ἀνάλογα) - Alternate way of describing multitudes.
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Celebrate the excellent power of Artemis 9 maidens. Calculations of the line organized by

myriads

Multiplied by 10, 0004 10, 0003 10, 0002 10, 000 units
5 15
4 60
4 240
7 1680
2 3360
2 6720
3 2 0160
5 10 0800
3 30 2400
5 151 2000
2 302 4000
3 907 2000
7 6350 4000
2 1 2700 8000
5 6 3504 0000
6 38 1024 0000
7 266 7168 0000
6 1600 3008 0000
7 1 1202 1056 0000
5 5 6010 5280 0000
5 28 0052 6400 0000
5 140 0263 2000 0000
5 700 1316 0000 0000
5 3500 6580 0000 0000
2 7001 3160 0000 0000
7 4 9009 2120 0000 0000
4 19 6036 8480 0000 0000

179



Sing the wrath of the Goddess Demeter, Bearer of the beautiful fruit.

Multiplied by 10, 0004 10, 0003 10, 0002 10, 000 units
8 32
5 160
5 800
5 4000
4 1 6000
5 8 0000
9 72 0000
5 360 0000
4 1440 0000
8 1 1520 0000
4 4 6080 0000
8 36 8640 0000
3 110 5920 0000
5 552 9600 0000
7 3870 7200 0000
2 7741 4400 0000
3 2 3224 3200 0000
3 6 9672 9600 0000
7 48 7710 7200 0000
2 97 5421 4400 0000
8 780 3371 5200 0000
7 5462 3600 6400 0000
4 2 1849 4402 5600 0000
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