
 

1 

THE EFFECTS OF TEACHING MATHEMATICS THROUGH PROBLEM-SOLVING 
CONTEXTS ON SIXTH-GRADE STUDENTS’ PROBLEM-SOLVING PERFORMANCE 

AND REPRESENTATION USE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By 
 

JONATHAN D. BOSTIC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL 
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 
DOCTOR OF PHILOSOPHY 

 
UNIVERSITY OF FLORIDA 

 
2011 



 

2 

 

 

 

 

 

 

 

 
 

© 2011 Jonathan D. Bostic 
 
 

 

 

 
  



 

3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my grandfather Fred Holt, EdD 
 

 



 

4 

ACKNOWLEDGMENTS 

First, I would like to thank my advisor Dr. Stephen Pape for his time, patience, and 

guidance.  His support during my doctoral studies pushed me to think deeply about 

literature, to strive to conduct high quality research, as well as publish and present 

findings.  His feedback enhanced manuscripts, presentations, research proposals, and 

this dissertation.  He is a phenomenal scholar and I am a better researcher because of 

his efforts.  I would also like to thank Dr. Tim Jacobbe for his mentoring.  I am thankful 

for his feedback and guidance throughout my doctoral work.  He is an amazing 

professor of mathematics education who has a keen ability to inspire and support 

preservice teachers as well as graduate students.  I am more thoughtful about ways to 

support my educational community and am more conscious of my instruction because 

of his influence.  Dr. Thomasenia Adams’ guidance throughout my studies helped me 

reach my full potential as a mathematics educator and that as scholars, we are 

expected to solve complex educational problems and improve education for students 

and teachers.  Dr. Walter Leite has been a tremendous help throughout my graduate 

studies and how much you care about your students has been evident since you taught 

my first educational research course.  There is no doubt that you affected my ability to 

employ and be critical of quantitative methodologies.  I would also like to offer my 

gratitude to Dr. Tracy Linderholm for serving on my qualifying committee and 

encouraging me to think about cognitive links between literacy and mathematics.  

Finally, thank you to all University of Florida faculty who prepared and encouraged me 

to persevere.  

Friendship and support from friends and colleagues truly enhanced my 

experiences as a graduate student.  First, I am especially appreciative for assistance 



 

5 

from several mathematics education graduate students.  Thank you for observing 

instruction in this study as well as scoring and coding the pilot and dissertation data.  I 

am grateful for P.K. Yonge Developmental Research School and its faculty and staff.  

Everyone welcomed me with open arms and was immensely supportive of my research.  

My content expert, Ashley, was an amazing help and provided useful feedback on the 

measures.  In sum, my dissertation could not be completed without assistance from 

each of these individuals.  I would also like to express my gratitude for my friends who 

challenge and motivate me as well as remind me to enjoy life, especially Anu, Chris, 

Dennis, Fred, Jen, Joanne, Karina, Kathryn, Kristen, Martin, Nate, Ou, Rich, Sarah, 

Sherri, Stephen, Vishal, and Yasemin.  I had the fortune to interact with amazing people 

at the University of Florida and sincerely look forward to building stronger ties with my 

College of Education colleagues after graduation.   

My deepest gratitude of all goes to my family for being such a fantastic network of 

support.  I have learned so much from every member of my family and will always keep 

you closest to my heart.  Thank you for teaching me to work hard, persevere in the face 

of adversity, love and respect others, commit to service, and enjoy every moment of life.  

Finally, I would like to end with a message to my wife, Brynn.  We all make choices and 

asking you to be my partner through life was the best choice I ever made.  



 

6 

TABLE OF CONTENTS 
 
 page 

ACKNOWLEDGMENTS .................................................................................................. 4 

LIST OF TABLES .......................................................................................................... 10 

LIST OF FIGURES ........................................................................................................ 11 

ABSTRACT ................................................................................................................... 13 

CHAPTER 

1 INTRODUCTION .................................................................................................... 15 

Statement of the Problem ....................................................................................... 23 
Purpose of the Study .............................................................................................. 27 

2 LITERATURE REVIEW .......................................................................................... 29 

Problem-Solving Process ........................................................................................ 29 
Understanding Text .......................................................................................... 33 
Situation Modeling ............................................................................................ 37 
Mathematical Modeling, Analysis, and Derivations .......................................... 39 

Representations ......................................................................................... 40 
Multiple representations ............................................................................. 43 

Interpreting and Reporting the Results ............................................................. 45 
Summary of the Problem-solving Process........................................................ 46 

Problem-solving Instruction ..................................................................................... 48 
Supplementing Daily Mathematics Instruction with Problem Solving ............... 49 
Integrating Problem Solving into Daily Mathematics Instruction ....................... 57 
Model-eliciting Activities ................................................................................... 63 
Summary of Problem-solving Instruction .......................................................... 65 
Instruction Focusing on Multiple Representations ............................................ 67 
Summary of the Problem-solving Literature ..................................................... 69 

Connections ............................................................................................................ 70 

3 METHOD ................................................................................................................ 81 

Overview ................................................................................................................. 81 
Questions and Hypotheses ..................................................................................... 81 
Pilot Study ............................................................................................................... 82 

Context ............................................................................................................. 82 
Measures .......................................................................................................... 83 

Procedure .................................................................................................. 84 
Data analysis ............................................................................................. 84 
Results ....................................................................................................... 88 



 

7 

Revisions to Measures and Protocols ........................................................ 90 
Research Design for the Dissertation ..................................................................... 91 
Context of the Study ............................................................................................... 92 
Participants ............................................................................................................. 93 
Instrumentation ....................................................................................................... 94 

Problem-Solving Measures .............................................................................. 94 
Unit Test ........................................................................................................... 95 

Procedures ............................................................................................................. 96 
Data Collection ................................................................................................. 96 

Student demographic information .............................................................. 96 
Pretest and posttest ................................................................................... 96 
Unit test ...................................................................................................... 97 

Classroom Instruction Observations ................................................................. 97 
Preparations for Implementing the Intervention ................................................ 98 

Instructional norms ................................................................................... 101 
Instructional tasks and materials .............................................................. 102 
Instructional format .................................................................................. 103 
Discourse ................................................................................................. 104 

Data Analysis ........................................................................................................ 105 
Description of Classroom Instruction .............................................................. 105 
Coding and Scoring Measures ....................................................................... 106 

Pretest and posttest ................................................................................. 106 
Unit test .................................................................................................... 107 

Analyses ......................................................................................................... 107 
Problem-solving measures....................................................................... 107 
Unit test .................................................................................................... 110 

Summary .............................................................................................................. 111 

4 RESULTS ............................................................................................................. 118 

Description of Instruction ...................................................................................... 118 
Intervention Classroom................................................................................... 118 

Week one ................................................................................................. 119 
Characterizing a lesson ........................................................................... 121 

Comparison Classroom .................................................................................. 126 
Conclusion ...................................................................................................... 129 

Assumptions for Multiple Regression .................................................................... 130 
Group Characteristics ........................................................................................... 132 
Within-Group Comparisons ................................................................................... 132 
Between-Group Comparisons ............................................................................... 133 

Problem-solving Performance ........................................................................ 133 
Representation Use ........................................................................................ 134 
Unit Test ......................................................................................................... 135 

Summary .............................................................................................................. 136 

 



 

8 

5 DISCUSSION ....................................................................................................... 140 

Summary of the Findings ...................................................................................... 140 
Instructional Comparison ................................................................................ 140 
Within-Group Comparisons ............................................................................ 149 

Problem-solving performance .................................................................. 149 
Representation use .................................................................................. 149 

Between-Group Comparisons ........................................................................ 150 
Problem-solving performance .................................................................. 150 
Representation use .................................................................................. 152 
Unit test .................................................................................................... 154 

Theoretical Implications ........................................................................................ 156 
Practical Implications ............................................................................................ 160 
Limitations of the Study and Suggestions for Future Research ............................ 164 

Research Design and Instructional Intervention ............................................. 164 
Measures ........................................................................................................ 170 
Representation Coding Protocol and Strategic Behaviors .............................. 171 
Discourse, Explanation, and Justification ....................................................... 173 
Summary ........................................................................................................ 174 

Final Thoughts ...................................................................................................... 174 

APPENDIX 

A A GUIDE TO THE SIX STAGES OF PROBLEM SOLVING ................................. 177 

B DESK-SIZED MODEL OF THE SIX STAGES OF PROBLEM SOLVING ............. 178 

C PILOT STUDY PROBLEM-SOLVING PRETEST ................................................. 179 

D PILOT STUDY PROBLEM-SOLVING POSTTEST ............................................... 187 

E SCORING PROTOCOL ........................................................................................ 195 

F REPRESENTATION CODING PROTOCOL ......................................................... 196 

G PROBLEM-SOLVING PRETEST .......................................................................... 197 

H PROBLEM-SOLVING POSTTEST ....................................................................... 202 

I UNIT TEST ........................................................................................................... 207 

J OBSERVATION PROTOCOL ............................................................................... 209 

K SOCIAL NORMS .................................................................................................. 214 

L SOCIOMATHEMATICAL NORMS ........................................................................ 215 

M SAMPLE LESSON PLAN ..................................................................................... 216 



 

9 

N SAMPLE PROBLEMS FROM INTERVENTION CLASSROOM ........................... 227 

LIST OF REFERENCES ............................................................................................. 229 

BIOGRAPHICAL SKETCH .......................................................................................... 241 

 
 



 

10 

LIST OF TABLES 

Table  page 
 
3-1 Demographic information for schools ............................................................... 112 

3-2 Mean and standard deviations of pilot study participants’ performance ........... 113 

3-3 Pilot study pretest item information ................................................................... 113 

3-4 Pilot study posttest item information ................................................................. 113 

3-5 Demographic information for participants ......................................................... 114 

3-6 Group means and standard deviations related to fifth-grade FCAT scores ...... 114 

3-7 Dissertation timeline ......................................................................................... 115 

3-8 Group means and standard deviations related to problem-solving 
performance, representation use, and unit test performance ........................... 116 

3-9 Values for categorical predictor variables ......................................................... 117 

3-10 Group means and standard deviations of type of representation used on the 
posttest ............................................................................................................. 117 

4-1 Problem-solving performance predictors .......................................................... 137 

4-2 Predictors related to representation use on the posttest .................................. 137 

4-3 Unit test performance predictors ....................................................................... 137 

 



 

11 

LIST OF FIGURES 

Figure  page 
 
2-1 A model of the problem-solving process. ............................................................ 80 

4-1 Mean problem-solving performance. ................................................................ 138 

4-2 Mean number of representations used. ............................................................ 139 

 
 



 

12 

LIST OF ABBREVIATIONS 

ANOVA Analysis of Variance 

CCSSO Council of Chief State School Officers 

CFA Confirmatory Factor Analysis 

CFI Confirmatory Factor Index 

DBR Design-Based Research 

DIF Differential Item Functioning 

DTA Direct Translation Approach  

ELL English Language Learner 

FCAT Florida Comprehensive Assessment Test 

FLDOE Florida Department of Education 

GPD Gradual Program Design 

IRT Item Response Theory 

NCTM National Council of Teachers of Mathematics 

NGSSS Next Generation Sunshine State Standards 

PCM Partial Credit Model 

RMSEA Root Mean Square Error of Approximation 

RPD Realistic Program Design 

SPSS  Statistics Package for the Social Sciences  

TIMSS Trends in Mathematics and Science Study 

TLI Tucker-Lewis Index 

VIF  Variance Inflation Factor 

 



 

13 

Abstract of Dissertation Presented to the Graduate School 
of the University of Florida in Partial Fulfillment of the 
Requirements for the Degree of Doctor of Philosophy 

 
THE EFFECTS OF TEACHING MATHEMATICS THROUGH PROBLEM-SOLVING 

CONTEXTS ON SIXTH-GRADE STUDENTS’ PROBLEM-SOLVING PERFORMANCE 
AND REPRESENTATION USE 

By 

Jonathan D. Bostic 
 

August 2011 
 

Chair: Stephen J. Pape  
Co-chair: Tim Jacobbe  
Major: Curriculum and Instruction 
 

This study examined sixth-grade students’ problem-solving performance and 

representation use as a result of an instructional intervention.  It responds to recently 

adopted mathematics standards (i.e., Next Generation Sunshine State Standards 

(Florida Department of Education, 2007); Standards for Mathematical Content and 

Standards for Mathematical Practice (Chief of Council State School Officers, 2010)) that 

indicate problem solving needs more prominence within mathematics instruction. The 

instructional intervention aims to supplement current efforts to enhance students’ 

problem-solving performance and number of representations used to solve word 

problems. 

Multiple scholars designed instructional interventions intending to improve K-8 

students problem-solving performance (e.g., Charles & Lester, 1984; Sigurdson, Olson, 

& Mason, 1994; Verschaffel et al., 1999) or their facility with representations 

(Verschaffel & De Corte, 1997; Klein, Beishuizen, & Treffers, 1998).  A literature review 

indicated that investigators have not concurrently examined students’ problem-solving 

performance and representation use.   
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Three sections of sixth-grade mathematics were sampled from a school in 

Florida; one section was randomly assigned to experience the instructional intervention.  

The author developed mathematics lessons intended to support students’ mathematics 

learning of rates, ratios, and data analysis by working on word problems and engaging 

in content-focused and problem-solving discourse.  These lessons were enacted for one 

month while two comparison classrooms received their typical instruction.  Participants 

completed a pretest, posttest, and a unit test.   

Data analyses within groups indicate that the intervention had a positive effect on 

students’ problem-solving performance (d = .48) and number of representations used on 

the posttest (d = .42) whereas the comparison group experienced no changes.  Results 

from multiple regression analyses indicate that intervention students solved more word 

problems (d = .26) and used more representations on the posttest (d = .18) than their 

peers.  The comparison group had a higher average unit test score than the intervention 

group (d = .34).  Implications for these results as well as limitations of this study and 

future research are discussed.  
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CHAPTER 1 
INTRODUCTION 

There have been recent changes in state (e.g., Next Generation Sunshine State 

Standards [NGSSS] [Florida Department of Education [FLDOE], 2007]) and national 

mathematics standards (i.e., Standards for Mathematical Practice and Standards for 

Mathematical Content [Council of Chief State School Officers [CCSSO], 2010]) that 

respond to the National Council of Teachers of Mathematics (NCTM) advocacy for 

making problem solving a priority in everyday instruction (NCTM, 1980, 1989, 2000, 

2006, 2009).  Proponents maintain that problem solving must remain part of day-to-day 

instruction because solving problems is central to doing and learning mathematics (Ball, 

Ferrini-Mundy, Kilpatrick, Milgram, Schmid, & Schaar, 2005; Kilpatrick, Swafford, & 

Findell, 2001; Lester, 1994).  

Problem solving is central to mathematics. Problem solving should be the 
site in which all of the strands of mathematics proficiency converge.  It 
should provide opportunities for student to weave together the strands of 
proficiency and for teachers to assess students’ performance on all of the 
strands (Kilpatrick et al., 2001, p. 421).  

This study aimed to investigate the effects of an instructional intervention (i.e., teaching 

mathematics through problem-solving contexts) on adolescents’ problem-solving 

performance and representation use when solving word problems.  Sixth-grade 

students’ performance on a test of word problems as well as their use of different 

representations was examined and compared to peers experiencing their everyday 

instruction from their classroom teacher.  Instruction in the intervention classroom 

emphasized student-to-student discourse and participants examined problems on a 

daily basis.  The intervention’s intent was to enhance mathematics learning by 

examining, solving, and reflecting on word problems. 
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Students need frequent opportunities to engage in problem solving so that they 

can become mathematically proficient.  Mathematical proficiency characterizes learning 

mathematics successfully in such a way that one develops (a) conceptual 

understanding, (b) procedural fluency, (c) strategic competence, (d) adaptive reasoning, 

(e) and a productive disposition toward mathematics (Kilpatrick et al., 2001).  Creating 

the next generation of educators, scientists, and researchers depends on whether K-12 

schooling promotes mathematical proficiency (NCTM, 2009; Kilpatrick et al., 2001; 

Stein, Remillard, & Smith, 2007).  Mathematically proficient students exhibit problem-

solving behaviors such as reading problems carefully and understanding them, creating 

models, and making conjectures about strategies and solutions (Kilpatrick et al., 2001).  

On the other hand, children lacking mathematical proficiency demonstrate ineffective 

mathematical behaviors such as attempting to solve problems without making sense of 

the problem’s context.  Moreover, they are less likely to use their knowledge of 

mathematics content while problem solving (CCSSO, 2010).  The Standards for 

Mathematical Practice (CCSSO, 2010) discuss problem solving at length.  This study 

heeds their call for supporting mathematics learning and problem-solving performance 

by engaging students in daily mathematics instruction that integrates problem-solving 

features.   

Problem solving goes beyond the typical thinking and reasoning students employ 

while solving exercises (Polya 1945/2004; Verschaffel, Greer, & De Corte, 2000).  It 

means thinking deeply about concepts, their associated representations, viable solution 

procedures, related context or cultural knowledge, and creating problem models 

(English & Halford, 1995; Mayer, 1992; Mayer & Wittrock, 2006; Verschaffel et al., 
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2000).  The problem-solving model constructed by Verschaffel et al. (2000) guides this 

study.  Verschaffel et al. suggest that effective problem solvers go through six stages of 

problem solving.  A brief outline of these stages follows, but the model will be fully 

described in further detail in Chapter 2.  First, individuals read the problem and work to 

understand the text.  Understanding leads to a situation model, which adequately 

characterizes the mathematical and nonmathematical elements of the problem.  It 

supports individuals to generate an appropriate representation of the problem, which 

facilitates mathematical analysis.  This analysis is the same notion as implementing a 

set of procedures (Verschaffel et al., 2000).  After employing procedures, problem 

solvers arrive at a result, termed the derivation.  Individuals interpret this derivation in 

light of their situation model to generate an interpreted result that might become part of 

the final answer and is later reported as the final answer, which completes the process.  

An incorrect situation model that does not reflect the problem may lead problem solvers 

to believe that the result is correct.  Hence, creating an accurate situation model is 

critically important.  If the interpreted result does not match the expectation of the 

situation model, an effective problem solver revisits the situation model and begins the 

process again.  Many problem solvers tend to skip steps throughout this process, which 

often leads to incorrect results (Verschaffel et al., 2000).  Superficial problem solving is 

characterized by four steps: (1) reading the problem’s text, (2) creating a mathematical 

model, (3) implementing a representation and set of procedures, and (4) reporting 

results (Verschaffel et al., 2000) and many students solve problems in this fashion 

(Anthony, 1996; Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993; Pape, 2004).  

According to Lesh and Zawojewski (2007),  
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Problem solving as viewed from a mathematics education perspective is the 
process of interpreting a situation mathematically, which usually involves 
several iterative cycles of expressing, testing and revising mathematical 
interpretations – and of sorting out, integrating, modifying, revising, or 
refining clusters of mathematical concepts from various topics within and 
beyond mathematics. (p. 782)  

It is a complex activity that requires individuals to maintain focus and both rationally and 

effectively proceed through the problem.  Students’ ineffective problem-solving 

behaviors and disengagement in the process is exacerbated by teacher-directed 

instruction that frequently uses too many exercises and not enough problems (Lesh & 

Zawojewski, 2007; Pittman, 2006).  One way to foster students’ success in the problem-

solving process is to provide them with frequent opportunities to engage in problem 

solving in a student-centered environment that scaffolds students to successfully 

complete each stage of the process (Verschaffel & De Corte, 1997; Verschaffel et al., 

1999).  Evidence from prior research indicating the benefits of problem-solving 

instruction on student-related outcomes will be discussed in detail in Chapter 2. 

Multiple studies have demonstrated that when daily mathematics instruction is 

integrated or supplemented with problem-solving activity, it enhances students’ 

problem-solving capabilities (e.g., Charles & Lester, 1984; Sigurdson, Olson, & Mason, 

1994; Verschaffel et al., 1999).  Moreover, there is some evidence that students’ 

learning in classroom environments where problem solving is a regular part of 

mathematics instruction outperform their peers in traditional learning environments on 

mathematics achievement tests (Sigurdson et al., 1994; Verschaffel et al., 1999).  

Success on problem-solving and achievement measures is also influenced by the 

degree to which students are supported to gain facility with representations and 

procedures. 
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Strategy (i.e., representation and procedure) use is a critical component of 

problem solving (Verschaffel et al., 2000). Effective problem solvers actively monitor 

their actions while implementing a strategy (Mayer & Wittrock, 2006).  They consider a 

variety of procedures and representations that are suitable for completing a task and 

monitor their progress while completing the procedures (Lesh & Doerr, 2003; Lesh & 

Zawojewski, 2007).  Instruction that allows students to consider a variety of 

representations and procedures to complete a task and share them has been shown to 

have positive effects on students’ achievement (Klein, Beishuizen, & Treffers, 1998).  

Creating an instructional context that stimulates mathematical discussions among 

problem solvers enhances their ability to solve problems and use a variety of 

representations and procedures.  The teacher is the critical factor in making such a 

learning environment (Lampert, 1990).  

The teacher is an important person in the classroom because this individual 

makes instructional decisions such as their choice of materials and instruction that 

influence students’ mathematics learning and problem-solving performance (Good & 

Grouws, 1977/2003).  Teachers decide whether to enact teacher-directed instruction or 

foster student-centered instruction.  Teacher-directed instruction is characterized by 

lecture stemming from the teacher’s knowledge and a lack of discussion about 

mathematics (Franke, Kazemi, & Battey, 2007; Good & Grouws, 1977/2003).  Children 

are expected to watch passively, listen to their teacher, and later practice what the 

teacher showed them (Boaler, 1998; Boaler & Staples, 2008; Good & Grouws, 

1977/2003).  Discourse in teacher-directed classrooms tends to follow a three-turn 

interaction termed Initiate-Respond-Evaluate (IRE) (Franke et al., 2007), which includes 
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a teacher’s inquiry, student’s response, and teacher’s evaluative statement (Doyle, 

1985).  Students in these teacher-centered classrooms tend to think that  

doing mathematics means following the rules laid down by the teacher; 
knowing mathematics means remembering and applying the correct rule 
when the teacher asks a question, and mathematical truth is determined 
when the answer is ratified by the teacher. (Lampert, 1990, p. 32) 

On the other hand, student-centered instruction involves attending to students’ 

knowledge and building on these ideas in a meaningful way that promotes learning 

about concepts and procedures (Cobb, 1994; Donovan & Bransford, 2005).   

The teacher works to orchestrate the content, representations of the 
content, and the people in the classroom in relation to one another.  
Students’ ways of being, their forms of participation, and their learning 
emerge out of these mutually constitutive relationships. (Franke et al., 2007, 
p. 227).  

The teacher in the student-centered classroom plays the role of learning facilitator and 

guide during mathematics instruction (Franke et al., 2007).  Students discuss 

mathematics, make conjectures, and construct mathematical arguments and proofs in 

student-centered classrooms (Lampert, 1990).  “Generally it [student-centered 

instruction] implies an approach in which learners are given opportunities to offer their 

own ideas and to become actively involved in their learning” (Boaler, 2008).  During an 

observation of a student-centered classroom, one might notice students in small groups 

trading ideas and making sense of a problem, a teacher and students collaborating to 

solve a problem, and there are likely established social and sociomathematical norms 

for doing mathematics in the problem-solving oriented, student-centered mathematics 

classroom (Bostic & Jacobbe, 2010; Cooke & Buchholz, 2005).   

Studies published in the previous two decades provide a good foundation for 

implementing effective mathematics instruction.  Research on mathematics instruction 
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has shown that (a) practicing procedures over and over does not develop students’ 

mathematical understanding (Carpenter et al., 1993; Hiebert & Wearne, 1992); (b) less 

time spent practicing procedures does not hinder elementary students’ ability to solve 

routine problems (Hiebert & Wearne, 1992); and (c) spending more time on one 

problem in conjunction with meaningful mathematical discourse creates an opportunity 

for reflection and analytical thinking that facilitates students’ mathematical proficiency 

(Cobb et al., 1991; Hiebert & Wearne, 1992).  With this in mind, mathematics education 

researchers seek to support students to become effective problem solvers by 

implementing instructional interventions. 

A variety of research designs have been implemented to explore how students 

solve problems and to enhance their problem-solving performance and representation 

use.  Mathematics educators such as Kantowski (1977) suggest that conducting 

problem-solving research in the classroom, with students from a variety of grade-levels, 

and focusing on instruction is needed to enhance researchers and practitioners’ 

understanding of problem solving.  Early large-scale problem-solving studies 

supplemented mathematics teaching by adding a problem-solving component to 

existing fifth- and seventh-grade instruction (Charles & Lester, 1984).  Similarly, 

Sigurdson et al. (1994) infused problem solving into eighth-grade students’ daily 

instruction.  They compared the effects of ten minutes of problem-solving work with 

instruction that promoted understanding the underlying meaning of concepts (i.e., 

problem-process teaching) and the same instruction without a problem-solving 

component (i.e., meaning teaching).  Verschaffel et al. (1999) created 20 problem-

solving oriented lessons, which were implemented over four months in multiple fifth-
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grade classrooms.  These researchers aimed to determine whether students receiving 

the intervention had better problem-solving performance and achievement, and whether 

they developed more effective problem-solving behaviors compared to their peers 

experiencing their typical instruction.  These studies characterize supplementing 

mathematics instruction with problem-solving components, but their conclusions do not 

shed light on effects of teaching mathematics through problem-solving contexts on a 

daily basis.  Moreover, these studies do not characterize daily mathematics instruction 

that teaches state- or country-wide mathematics standards through problem-solving 

contexts.  Prior investigations provide a foundation for examining teaching mathematics 

associated with the Standards (CCSSO, 2010; FLDOE, 2007) through problem-solving 

contexts on students’ problem-solving performance and representation use.  Research 

is necessary to determine whether students’ outcomes from this type of instruction differ 

from prior problem-solving interventions or everyday instruction.  One way to begin such 

investigations is for a researcher to become an instructor in the classroom.  

Lampert’s (1990) results from her teaching experiment provide insight into 

mathematics teaching and learning in the elementary classroom as a result of infusing 

problem-solving features in daily mathematics instruction.  To meet this goal, she 

became the classroom teacher in one fifth-grade mathematics classroom.  Years later, 

Verschaffel and De Corte (1997) worked with fifth-grade students over two-and-a-half 

weeks to improve their ability to create mathematical models for solving complex word 

problems.  Verschaffel became the teacher during his study and implemented five 

lessons that used nonroutine word problems as a means for teaching mathematics 

through problem solving.  These investigators set out with a goal of better 
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understanding the teaching and learning process and they also expected to improve 

students’ problem-solving performance and problem-solving behaviors.  Neither 

Lampert’s study, Verschaffel and De Corte’s, or others’ research examined how 

problem-solving instruction learning influenced students’ use of multiple representations 

or the type of representations they used.  To begin to fill this gap, two curricula were 

created by Klein and his colleagues (1998) and implemented over one academic year in 

a second-grade classroom.  One group of students learned one representation and 

procedure at a time and completed exercises to improve their efficiency.  A similar 

group of students experienced instruction that encouraged them to generate multiple 

representations and procedures to solve problems, and the teacher presented the class 

with more than one representation to solve these problems.  Together, these studies 

provide a foundation for examining the effects of teaching mathematics through 

problem-based contexts in a student-centered, discourse-rich classroom on sixth-grade 

students’ problem-solving success and students’ use of representations.  The present 

study aims to bridge the areas of problem solving and representation use. 

Statement of the Problem 

The mathematics education research and teaching community is making positive 

steps in helping students become better problem solvers.  The 2007 Trends in 

Mathematics and Science Study [TIMSS] examined fourth-grade students’ content 

knowledge as well as knowing, reasoning, and applying capabilities across 

industrialized nations (Gonzales et al., 2008).  U.S. fourth grade students’ performed 

above the median but they still lag behind peers in Hong Kong, Chinese Taipei, Japan, 

Singapore, England, and Latvia (Gonzales et al., 2008).  The upward trend during the 
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last decade is promising, but there is more that can be done to support young problem 

solvers’ mathematical development.   

Although U.S. students are improving, they tend to have difficulty completing 

problems (Greer, 1993), and little is known about problem solver’s success on problems 

drawing on students’ knowledge of out-of-classroom (i.e., realistic) contexts (English & 

Sriraman, 2010).  A problem is a task such that a path to the solution is not readily 

apparent to a problem solver (Kantowski, 1977; Mayer & Wittrock, 2006).  Most word 

problems in textbooks are verbal translations of symbolic exercises that are transparent 

and easily solved without much struggle (Grischenko, 2009), which make them routine 

translation problems (Mayer & Wittrock, 2006).  Textbooks are a significant factor 

influencing how teachers conduct their instruction (Tarr, Chavez, Reys, & Reys, 2006), 

yet teachers may not have the resources to support students’ work on complex 

problems if there are few problems within the textbook.   

The Standards for Mathematical Practice, Standards for Mathematical Content 

(CCSSO, 2010) and NGSSS (FLDOE, 2007) include learning outcomes related to 

problem solving.  Students are expected to “make sense of problems” (CCSSO, 2010, 

para. 2) and solve real-world problems (FLDOE, 2007), which are more complex than 

exercises.  Every Big Idea in the Next Generation sixth-grade Sunshine State Standards 

has at least one benchmark that includes students being able to solve problems in real-

world contexts.  These state Standards include fewer objectives overall and place more 

attention on problem solving than the prior standards (FLDOE, 1996).  Recently 

adopted standards place a larger emphasis on problem solving in mathematics 

Standards (CCSSO, 2010; FLDOE, 2007) and instructors are not provided with 
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resources indicating how to blend problem solving and mathematics into daily 

instruction so that students are prepared to solve realistic and complex problems 

drawing on current situations.  Ideas for instruction stemming from research conducted 

in classrooms may support mathematics teachers to assist students to become effective 

problem solvers who solve complex problems as part of their day-to-day instruction.   

Students are expected to “understand the approaches of others to solving 

complex problems” (CCSSO, 2010, para. 2).  Thus, learning about alternate 

representations and procedures is critical to their success.  Students learn several ways 

to solve problems over an academic year but it is not always clear whether a previously 

learned approach could be applied in a new situation or when one is more efficient than 

another.  Developing productive problem-solving behaviors during classroom 

mathematics instruction includes promoting the idea that problems can be solved in 

multiple ways (Hiebert, 2003), often times using previously learned methods.   

Representation use is a critically important element of solving problems.  

Algorithms have been and continue to be a focus in many mathematics classrooms 

(Boaler, 2008).  They are important tools for solving mathematics problems and should 

be part of mathematics instruction (National Mathematics Advisory Panel, 2008), but 

focusing mathematics instruction on learning algorithms does not orient students to 

determine the essential parts of a problem’s situation or enhance their problem-solving 

performance (Thompson, 2008).  Instruction that allows students to manipulate tasks 

into more manageable or useful representations and employ a variety of 

representations and procedures facilitates children’s development of mathematical 

proficiency (Hiebert, 2003; Packer, 2003; Van de Walle, 2003). 



 

26 

There is typically more than one way to solve a word problem (Harel, 1998; 

Schoenfeld, 1992).  Implementing pictorial, tabular, or verbal (i.e., nonsymbolic) 

representations to solve problems can often be more efficient (Preston & Garner, 2003) 

and just as effective as symbolic approaches (Bostic & Pape, 2010; Herman, 2007).  

Much of the literature on students’ representation use focuses on secondary students.  

Young students are capable of learning various ways to solve problems (Cooke & 

Buchholz, 2005; Klein et al., 1998).  They are able to recognize the limitations and 

benefits of mathematical representations (Perry & Atkins, 2002) and can develop 

strategic competence that makes them more efficient problem solvers (Klein et al., 

1998).  Unfortunately many findings from prior research that show improvements in 

students’ representation use as a result of an intervention are not linked to learning 

grade-level objectives from state or national standards.  Hence, there is a need for 

research that characterizes mathematics instruction that supports students’ use of a 

variety of representations within the context of these state-mandated standards.   

Finally, prior investigations of problem-solving interventions have shown 

inconsistent effects on students’ achievement.  Verschaffel et al. (1999) found that fifth-

grade students who experienced one lesson each week that supported mathematics 

learning through problem-solving contexts had slightly better scores on an achievement 

than their peers experiencing traditional instruction.  Conversely, incorporating problem 

solving into daily instruction resulted in negative or nonsignificant effects on some 

students’ achievement (Sigurdson et al., 1994).  That is, the instructional intervention 

may influence the depth of students’ understanding related to specific content areas 

(e.g., rates, ratios, and data analysis).  This study provides insight on students’ 
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knowledge of mathematics procedures and concepts related to rates, ratios, and data 

analysis by examining how an intervention group performs on a unit test and compares 

their outcomes to peers in a comparison group.  In conclusion, research must continue 

to explore students’ outcomes from teaching mathematics through problem-solving 

contexts.  Results from studies examining problem solving, representation use, and 

achievement may provide insight into ways to support students’ to become 

mathematically proficient problem solvers. 

Purpose of the Study 

The purpose of this study was to investigate the effects of student-centered, 

discourse-rich mathematics instruction (i.e., instructional intervention) on students’ 

problem-solving performance as well as their representation use when solving word 

problems.  Creating a supportive instructional context that used word problems as the 

focal activity was intended to support students’ opportunities for learning mathematics 

content and procedures.  A fundamental desired outcome of the instructional 

intervention was to assist sixth-grade students in becoming more effective and efficient 

problem solvers within the context of mastering mathematics content and demonstrating 

effective mathematical practices found in the Standards (CCSSO, 2010; FLDOE, 2007).  

A secondary desired outcome was to demonstrate that teaching mathematics from the 

Standards (FLDOE, 2007) through problem-solving contexts was possible in the midst 

of this critical time with new standards for mathematics content and practice.  

A sixth-grade mathematics teacher and her students from three sections of sixth-

grade mathematics volunteered to participate in this study.  Two sixth-grade classrooms 

continued to experience their instruction with the classroom teacher (i.e., comparison 

condition) while the researcher became an instructor to one section (i.e., intervention 
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condition).  Instruction in the intervention classroom encouraged individual work, small-

group collaboration, and whole-class discussions of mathematics content and 

procedures within the context of problem solving.  Participants in both groups completed 

a word problem pretest and posttest as well as a unit test.  The pre- and posttest were 

scored for accuracy and students’ solution methods were coded based on the 

representation employed.  The unit test measured students’ understanding of content 

taught during the month (i.e., rates, ratios, and data analysis) and was also scored for 

accuracy.  Within-group and between-group differences were examined as well as 

whether there was an association between nonsymbolic representation use on the 

posttest and membership in the intervention condition. 
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CHAPTER 2 
LITERATURE REVIEW 

Problem-Solving Process 

The pathways individuals use to solve problems have been investigated 

extensively and various models of the problem-solving process have been proposed 

(Mayer, 1992; Polya, 1945/2004; Verschaffel et al., 2000).  Verschaffel and his 

colleagues (2000) created a model of the problem-solving process that builds upon prior 

frameworks and identifies both appropriate and superficial pathways for solving 

problems (Figure 2-1).  A brief description of the appropriate problem-solving process is 

provided below.  This is followed by a description of the superficial pathway students 

often employ.  Finally, a detailed description of the problem-solving stages is provided.  

The problem-solving process begins with an individual reading and 

understanding a problem’s text (i.e., first stage).  The text indicates the task and 

provides the reader with information about the problem.  At times, the task is unclear 

from an initial reading of the problem so an individual reread the problem.  This requires 

being metacognitively active about his/her understanding so he/she can maintain 

engagement in the task.  Understanding includes decoding the text into more 

manageable chunks in order to create a situation model (Verschaffel et al., 2000).   

This situation model is the second stage in the problem-solving process.  It is 

typically an internal representation encompassing mathematical, contextual, and other 

non-essential aspects of the problem, but some problem solvers create external 

representations of their models (Ainsworth, 1999).  This model is an intermediate model 

that links the problem’s text and mathematical analysis phase of problem solving.  As 

students discuss the problem, they form relational representations connecting internal 
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and external representations.  An example might clarify how situation models may be 

internal, external, or relational.  Imagine a circumstance where an individual is given a 

text with an embedded problem.  This person understands the text and creates a 

representation in his/her mind.  In order for this individual to share his/her situational 

model with another, the internal representation must be transformed into an external 

representation (e.g., words), which requires a relational representation (Ainsworth, 

1999; Goldin, 2002).  Regardless of whether an individual uses an internal, relational, 

and/or external representation to model the situation, effective problem solvers 

subsequently develop a more mathematically-focused model called a mathematical 

model and move to the third problem-solving stage.   

The mathematical model contains only mathematical aspects that can be acted 

on using mathematical analysis techniques (Verschaffel et al., 2000).  Some examples 

of mathematical models include graphs and pictures, symbolic expressions, tables, and 

verbal statements (Lesh & Doerr, 2003).  Representation use during problem solving is 

crucially important if a student expects to find the correct solution (Greeno & Hall, 1997).  

Effective problem solvers recognize that some representations are more appropriate or 

lead to the solution quicker than others, depending on the task (Greeno & Hall, 1997; 

Preston & Garner, 2003; Verschaffel et al., 1999).  Furthermore, factors that might 

impact the mathematical model are more obvious to problem solvers who fully engage 

in the problem-solving process.  Those who take the necessary time and energy to 

understand the text and develop a situation model are likely to solve the problem 

(Verschaffel et al., 2000), but that does not guarantee success.  The present study 

examines students’ representation use (i.e., mathematical modeling) within the context 
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of the problem-solving process.  Mathematical modeling is a critical step in the process 

because it leads to the mathematical analysis technique (i.e., procedures) used to 

answer the problem.  

The analysis procedures are dependent upon the mathematical model’s 

representation.  After implementing an analysis technique, the individual arrives at the 

fourth stage, derivations from analysis.  This is not the final answer, but rather the 

outcome from carrying out a set of procedures on a mathematical representation.  The 

derivation is just a number or another representation that has not had meaning ascribed 

to it by the problem solver.  The result is important yet it needs to be interpreted within 

the problem’s context.  For example, word problems and real-life problems require units 

in order to make sense of the result.  Effective problem solvers evaluate their result with 

the situation model, judge their alignment, and the outcome is the interpreted result.  

This evaluation requires a learner to self-monitor his or her mathematical thinking, being 

careful to consider whether the result aligns with the situation model and if not, to return 

to the appropriate problem-solving stage and reevaluate his or her work (De Corte, 

Verschaffel, & Op’t Eynde, 2000).  Interpreting a problem’s result is the fifth problem-

solving stage (Verschaffel et al., 2000).  Problem solvers who externalize their situation 

models have something visible to verify their interpreted result whereas others have to 

revisit their working memory for the situation model.  If the result aligns with the situation 

model then the problem solver communicates the answer.  Reporting a solution is the 

sixth and final problem-solving stage.  It occurs when a student effectively answers the 

questions such as by writing a summary statement or sharing the final solution with a 
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peer.  There are many steps to solving a mathematics problem and each stage is 

critically important to the learner’s success.    

Successful problem solvers typically go through all six stages of the problem-

solving process whereas unsuccessful problem solvers typically take at least one 

shortcut.  Shortcuts are more likely to lead to inappropriate mathematical models, 

incorrect use of procedures, and reporting the wrong answer to the problem 

(Verschaffel et al., 2000).  Some of the common missteps are discussed here.  At the 

first stage of the superficial problem-solving process, students read the text and create 

a mathematical model.  This leap in the problem-solving process does not facilitate 

adequately understanding the text or determining the key aspects of the problem.  At 

the third problem-solving stage, some learners employ mathematical representations 

that are inappropriate for a problem’s context.  For example, Santos-Trigo (1996) 

noticed that high school students often tried using symbolic representations and 

algorithms to solve complex word problems.  They were frequently unsuccessful and 

Santos-Trigo argued that if they had better facility with multiple representations then 

they might have shown better problem-solving performance.  The role of mathematical 

representations is critically important for problem solver’s success and it is a focus of 

this study.   

During mathematical analysis, learners often combine numbers inappropriately 

because they do not consider alternate representations or their situation model is 

inaccurate (Verschaffel et al., 2000).  Another common mistake is that problem solvers 

employ a representation, conduct procedures, and report the result as the problem’s 

solution without interpreting it.  For example, an individual might indicate 16 as a word 
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problem’s solution; however, the correct response requires meaningful units such as 

dollars, blocks, or people.  This expedited problem-solving process takes less time but it 

also leads to far more incorrect answers (Verschaffel et al., 2000).  A common error that 

can be made at any stage of the problem-solving process is not devoting the necessary 

cognitive energy to each stage of the process.  One error made by many students is not 

taking time and cognitive energy to sufficiently understand a problem’s text (Pape, 

2004).   

Understanding Text  

Actively reading a problem supports individuals to make sense of it; however, the 

depth and quality of students’ decoding and subsequent understanding of the text 

impacts their success (Pape, 2004).  To solve a word problem, individuals must manage 

both the text and the mathematics encoded within the text (Vilenius-Tuohimaa, Aunola, 

& Nurmi, 2008).  One’s reading ability influences how likely an individual will solve a 

word problem (Vilenius-Tuohimaa et al., 2008) and similarly, one’s knowledge of 

mathematics influences how well an individual deciphers mathematics texts (Pape, 

1998).  Consequentially a subset of one’s mathematical knowledge is one’s ability to 

make sense of mathematics text.  The depth and quality of understanding the text are 

two factors influencing how problem solvers approach a word problem (Okamoto & 

Case, 1996).  It is essential to sufficiently decode a problem’s text into meaningful 

representations so that the task’s elements are clear (Staulters, 2006; Verschaffel et al., 

2000).  Text difficulty can also impact how efficiently an individual solves a word 

problem.  More difficult texts require more cognitive energy to decode, which may 

influence students’ problem-solving behaviors (Staulters, 2006).   
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Prior studies have examined the influence of a problem’s language on students’ 

problem-solving behaviors and performance and provide evidence of students’ troubles 

with word problems (e.g., Lewis & Mayer, 1987; Pape, 1998, 2004).  Pape (2004) 

examined 98 sixth- and seventh-grade students’ problem-solving behaviors and drew 

on a reading comprehension perspective for his analyses.  Eight word problems were 

presented to participants during a think-aloud interview.  The problems varied in type 

and used different types of language (i.e., consistent and inconsistent).  Participants 

were reminded to think and read aloud and occasionally asked questions during the 

interview such as “What are you doing right now?” (Pape, 2004, p. 195).  The 

interviewer also asked participants to share their struggles when they could not solve a 

problem.  Data were analyzed using a constant-comparative method to investigate 

students’ problem-solving behaviors as well as the types of errors committed.   

Two-thirds of the students used a direct translation approach (DTA), which 

included (1) reading the problem, (2) executing a strategy, and (3) reporting the result.  

This approach did not foster success among participants with multistep and inconsistent 

language problems, but some were able to solve straightforward consistent language 

problems in this fashion.  DTA may suffice for simple word problems or translation tasks 

(e.g., symbolic expressions written as verbal statements) but it is insufficient for solving 

nonroutine or multi-step word problems (Pape, 2004).  When tasks contain unfamiliar 

terminology or more words than typically seen in translation problems, students using 

DTA may not adequately read and make sense of the problem. 

Reading and understanding a text influences which schemata are activated to 

solve the problem; hence this initial step in the problem-solving process is important 
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(Pape, 2004; Verschaffel et al., 2000).  Pape’s (2004) results describe students’ 

struggle with solving word problems, regardless of the problem’s language and the 

representation and procedure employed.  They often used ineffective approaches, 

which includes insufficiently reading and understanding a problem’s text.  Mathematics 

instruction should teach students to completely understand the problem before moving 

forward in the problem-solving process.  Pape’s study provides an essential piece of the 

foundation for investigating students’ problem-solving behaviors. 

There are other factors that contribute to problem-solving ability such as 

familiarity with mathematical terminology (Cummins, Kintsch, Reusser, & Weimer, 1988) 

and contexts (Verschaffel & De Corte, 1997; Verschaffel et al., 1999; Verschaffel et al., 

2000).  Students with a sufficient understanding of conventional mathematics 

terminology are apt to solve problems because they understand the meaning of the 

words they read (Ball & Bass, 2003).  Mathematics is a language that relies on symbols 

but it also includes graphs, charts, and texts to decode.  “Reading completely depends 

on being able to understand the structures of texts and nuances of language; to 

interpret authors’ ideas; and to visualize, evaluate, and infer meanings” (Ball & Bass, 

2003; p. 29).   

Only recently has evidence begun to quantify the relationship between students’ 

reading comprehension and problem-solving performance.  One study investigated the 

relationship between achievement on a test of word problems and reading 

comprehension (Vilenius-Tuohimaa et al., 2008).  Two hundred and five 9-10 year old 

students from heterogeneous classes completed reading comprehension tests that 

assessed their understanding of an expository and a narrative passage.  The simplified 
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word problems found on the mathematics test were similar to translation problems 

found in most textbooks.  Data related to students’ gender were gathered as well to 

facilitate analyses that examined the effects of reading ability (i.e., good readers and 

poor readers) on problem-solving performance.  

The fairly strong positive correlations suggested that students’ success on each 

type of word problem (i.e., compare, change, combine, and focus) were associated with 

most aspects of reading comprehension as well as students’ technical reading ability.  

Individuals with good reading comprehension skills were more likely to solve word 

problems than poor readers and there were no gender-related differences in problem 

solving (Vilenius-Tuohimaa et al., 2008).  Clearly, reading comprehension and 

mathematics knowledge are woven together, but further explorations with word 

problems that are not translation tasks are necessary.   

Such investigations might verify whether students’ reading comprehension 

impacts their ability to read and interpret word problems that do not follow “word 

problemese” (Lave, 1993, p. 77).  Word problemese is a problem structure that uses 

cuing language indicating how to work toward the solution thus making the problem 

more like an exercise.  Many word problems in textbooks use this type of structure 

(Grischenko, 2009).  If reading comprehension influences students’ ability to solve 

simplified problems then it likely might impact students’ ability to solve word problems.  

Investigations and analyses are necessary to confirm this hypothesis.  Successfully 

solving a word problem depends on a problem solver’s ability to initially read a 

problem’s text, decode it, and understand the task.  If problem solvers effectively read 

and understand the text, which is the first problem-solving stage, then they are more 
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likely to move to the second problem-solving stage, which involves creating an effective 

situation model.   

Situation Modeling 

The situation model is a representation of the text that characterizes the problem 

in a way that makes sense to the problem solver (English & Halford, 1995; Verschaffel 

et al., 2000).  It contains the mathematical and nonmathematical elements in a 

manageable representation that facilitate creating the mathematical model (Verschaffel 

et al., 2000) and clarifies the task (Case, 1996; English & Halford, 1995).  Adequate 

models support efficient and appropriate mathematical thinking leading towards a 

solution.  These models are often internal representations, but sometimes learners 

formulate external representations such as drawing a picture of the situation or 

reconstructing the text using simpler words (Goldin, 2002; Lesh & Doerr, 2003).  

Problem solvers need these representations to solve word problems because they 

clarify the task and necessary elements of the problem.   

Effective problem solvers often reread texts and make and revise their situation 

models before settling on one (Verschaffel et al., 2000).  Critical thinking skills and 

active online cognitive monitoring support problem solvers to decipher text and make 

effective situation models (Verschaffel et al., 2000).  Critical thinking helps individuals 

make decisions about the text and decode it into useful representations (English & 

Halford, 1995).  More specifically, it is “reasonable and reflective thinking that is focused 

on deciding what to believe or do, and is an important part of problem solving” (Ennis & 

Norris, 1990, p. 1).  Critical thinking requires students to reflect on how well they 

understand information and act on the information to create a model of the situation (De 

Corte et al., 2000).  Active online cognitive monitoring of task completion helps students 
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make strategic adjustments toward reaching a desirable goal (De Corte et al., 2000).  

Self-monitoring is also important while students create and refine their situation models 

(Verschaffel et al., 2000).   

Students are apt to skip creating a situation model when they perceive it as 

unnecessary, especially for routine problems (Verschaffel et al., 2000).  Nonroutine 

word problems typically do not follow the typical language and structure associated with 

textbook word problems (Grischenko, 2009).  They require students to read the text 

carefully and decode it into an adequate situation model.  Instruction should encourage 

model creation regardless of the question’s simplicity.  Students may need assistance 

deciphering the text and determining what parts of the problem are important as well as 

what representations might be appropriate.  The instruction in this dissertation study 

was intended to benefit problem solvers by encouraging them to create adequate 

representations of the situation so that they could generate appropriate mathematical 

models.   

Representations are absolutely necessary for any mathematical activity to occur 

because mathematics typically uses sequences of symbolic characters that convey 

shared meanings among individuals (Kaput & Educational Technology Center, 1989).  

They provide a means to link two or more configurations of an idea or concept (Goldin, 

2002).  In the context of word problems, students create representations that “(a) 

reproduce the action of a story problem; (b) strip away the context, attending only to 

numerical aspects of the problem; or (c) combine some of both approaches” (Smith, 

2003, p. 263).  Furthermore, “as individuals or groups work on problems, they may 

make drawings, write notes, or construct tables or equations.  These representations 
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help them keep track of ideas and inferences they have made and also serve to 

organize their continuing work” (Greeno & Hall, 1997, p. 361).  They are one of the 

initial steps taken by problem solvers to proceed toward a solution.  After carrying out 

the second problem-solving stage, effective problem solvers arrive at the third stage 

(i.e., mathematical modeling) and the subsequent fourth stage (i.e., derivations from 

analysis).  

Mathematical Modeling, Analysis, and Derivations   

This next section combines two stages and an important process because the 

representation of the mathematical model influences what procedure is employed, 

which in turn impacts the derivation from analysis.  A strategy includes the mathematical 

model (i.e., representation) and computational steps (i.e., procedures) hence it is 

necessary to characterize these stages and process together.  The present study 

explicitly focused on students’ use of representations to solve word problems.  

Students’ mathematical modeling has been studied extensively for decades 

(Charles & Lester, 1984; English, 2009; Lesh & Harel, 2003; Verschaffel et al., 1999; 

Webb, 1979).  Solving word problems requires thinking about possible mathematical 

models, selecting an appropriate representation for the situation, and determining the 

mathematical elements (English & Halford, 1995).  Individuals with well-developed 

mathematical proficiency often consider multiple mathematical models before 

proceeding with one (English & Halford, 1995).  Adequately describing problems in 

precise terms using mathematical models may take several iterations and practice but 

the payoff is worth the effort (Lesh & Doerr, 2003).  Careful reexamination of previous 

mathematical models leads to more efficient problem solving on future tasks 

(Chamberlin & Moon, 2008; Lesh & Zawojewski, 2007; Polya 1945/2004; Schoenfeld, 
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1985).  Students’ beliefs about doing mathematical activity influence their representation 

use (Herman, 2007; Lampert, 1990; Schoenfeld, 1992).  At times these beliefs and 

students’ dispositions hinder their success or efficiency (Herman, 2007; Perry & Atkins, 

2002).   

Generating a mathematical model relies on several factors including an 

individual’s comfort with different ways to represent the mathematical elements of a 

problem.  Many young children use picture-oriented mathematical models (Case, 1996) 

but at some point during their elementary school career they begin to employ symbolic-

oriented representations more frequently (Perry & Atkins, 2002).  This change may 

develop into a preference for symbolic representations that continues into middle school 

(Preston & Garner, 2003), then into high school (Bostic & Pape, 2010), and later into 

students’ college-age years (Herman, 2007).   

Representations  

Representations include (a) experience-based scripts, (b) manipulative models, 

(c) pictures and diagrams, (d) graphs (e) verbal or spoken language, (f) written symbols, 

and (g) tables (Lesh & Doerr, 2003; Lesh, Post, & Behr, 1987).  Learners should be able 

to transform each type of representation into another one that is similar in 

representation but unique in other ways.  Problem solvers can also translate a 

representation into another one (e.g., symbolic expression into verbal statement) (Lesh 

et al., 1987).  Teachers can support problem solvers working on word problems by 

scaffolding students during the translation process.  While many teachers use 

representations to help children learn mathematics, it is important that these instructor-

generated representations are developmentally appropriate (Murphy, 2004).  Overly 

complex representations beyond a learner’s developmental grasp are likely to be 
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confusing or inhibit future growth hence a teacher’s scaffolding is a critical to facilitating 

an individual’s cognitive growth (Dufour-Janvier, Bednarz, & Belanger, 1987; Murphy, 

2004).  

Students who simply produce mathematical models and use representations 

without reflecting often misinterpret a task’s goal or create insufficient mathematical 

models that fail to account for the key components of the problem (Lesh & Doerr, 2003; 

Verschaffel et al., 1999; Verschaffel et al., 2000).  From a young age, students can 

develop the misconception that solving mathematics problems should occur quickly and 

without having to reexamine the task or their models (Lampert, 1990; Mayer, 1992; 

Schoenfeld, 1985, 1992).  Effective problem solvers select a representation and 

implement procedures based on their appropriateness for the context and efficiency 

(Lesh & Zawojewski, 2007; Mayer & Wittrock, 2006; Schoenfeld, 1985; Verschaffel et 

al., 2000).  

In Preston and Garner’s (2003) study, a mathematics educator and middle 

school teacher partnered to examine students’ representation use to solve an open and 

complex word problem.  Garner, a classroom teacher, asked her seventh-grade 

students to solve a word problem that drew on students’ real-life experiences.  Groups 

of three to five students worked collaboratively and then reported their result to the 

class.  Garner indicated that the goal of the task was to give her students an opportunity 

to try different representations to mathematically model the problem and consider the 

benefits and limitations of each representation.  Students used equations, graphs, 

charts, and wrote verbal statements that characterized the mathematical elements of 

the problem.  The first three representations were more likely to help students solve it.   
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During a whole-class discussion, students shared their mathematical models and 

offered their rationales for selecting their model.  Preston and Garner’s (2003) analysis 

of students’ work and engagement in the discussion indicated that students understood 

the text, crafted situation models, and created mathematical models.  As a result of the 

task and instruction, students ”began to explicitly express connections and offer their 

opinions as to the best representations for this activity” (p. 42).  Participants recognized 

that choosing to employ one mathematical model over another gave them slight 

advantages in solving the problem.  Allowing students to choose their own 

representation to solve a complex word problem provided a context for the entire class 

to examine ways of solving problems by using different mathematical models.  This brief 

investigation into one teaching episode provides evidence that students are creative 

problem solvers, and when given rich tasks they are able to generate approaches that 

answer the question.  Instruction should support students to learn nonsymbolic 

representations and require them to give a mathematically appropriate rationale for 

using a specific representation to mathematically model a situation (Preston & Garner).   

Many students think that representations are useful for a specific problem-type 

and rarely consider employing one representation to another problem-type (Murphy, 

2004; Pittman, 2006).  Furthermore, many children learn representation but do not 

necessarily know which one to implement unless cues or clues make it obvious 

(Kilpatrick et al., 2001; Schoenfeld, 1992).  Students need to learn when to employ a 

representation, set of procedures, and gain strategic competence, to become effective 

and efficient problem solvers. 
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Strategic competence is critical to a problem solver’s success.  Students need to 

know representations, suitable procedures for each representation, as well as when to 

use the representation (Kilpatrick et al., 2001).  Specifically, it is “the ability to formulate 

mathematical problems, represent them, and solve them” (Kilpatrick et al., 2001, p. 

124).  Problem solving helps to develop an individual’s strategic competence because 

nonroutine or authentic tasks require a learner to consider multiple perspectives of the 

problem, select a viable representation, and perform the necessary steps to sufficiently 

carry out the procedures (Lambdin, 2003; Van de Walle, 2003).  Knowing multiple viable 

ways of solving a class of problems leads to individuals becoming more efficient and 

effective problem solvers (Kilpatrick et al., 2001; Polya 1945/2004).  An individual who 

has developed strategic competence typically has a flexible approach for solving word 

problems (Kilpatrick et al., 2001).  Students with well-developed knowledge of 

representations, procedures, and a robust conceptual understanding are likely to know 

how to solve problems using more than one representation, which includes employing 

the same mathematical model but using a different and perhaps more efficient set of 

procedures. 

Multiple representations   

Students who know more than one way to solve a word problem are more likely 

to give the correct answer to a word problem (Bostic & Pape, 2010).  Schoenfeld (1985) 

cautions that this knowledge of multiple approaches is useful only if individuals 

recognize the limitations of each method and have an understanding of when a 

representation and set of procedures are appropriate.  To that end, one must develop 

strategic competence in order to efficiently solve problems (Kilpatrick et al., 2001).   
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Many students are unsure how to proceed when presented with word problems 

(Pittman, 2006; Santos-Trigo, 1996).  Santos-Trigo (1996) investigated tenth-grade 

students’ facility with multiple representations to solve word problems using think-aloud 

interviews.  Thirty-five 10th-grade students from two schools volunteered to participate in 

semi-structured interviews.  Students were asked to think aloud while solving five word 

problems.  A content validation team consisting of one mathematics education professor 

(i.e., the author) and two graduate students determined that the problems could be 

solved using multiple representations.  Interviews were audiotaped and the interviewer 

occasionally asked students clarifying questions similar to those used by Pape (2004). 

Santos-Trigo (1996) noticed that participants did not spend much time trying to 

understand the problem’s text and typically used a symbolic representation.  After 

quickly scanning the text, they immediately created a symbolic-oriented mathematical 

model without considering alternative representations.  Similar to Pape’s (2004) 

participants, they seemed to employ DTA fairly often.  They lacked adequate facility with 

multiple representations and struggled to produce more than one symbolic approach.  

Several participants alluded to an inability to solve a problem because they could not 

remember the necessary algorithm or formula.  Participants indicated nonsymbolic as 

well as other symbolic approaches might exist but were reticent to explore this 

possibility.   

Implementing a strategy requires knowledge about procedures and 

representations.  Many students need opportunities to learn about alternatives to 

algorithms and formulas (Santos-Trigo, 1996; Schoenfeld, 1985), the rationale for using 

various representations, and their associated limitations (Pittman, 2006; Preston & 
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Garner, 2003).  An investigation such as the present study could help teachers foster 

effective problem-solving behaviors among students, including developing knowledge 

related to mathematical models, and improving students’ problem-solving performance.  

Interpreting and Reporting the Results 

Interpreting results implies examining the outcome from an implemented 

strategy, thinking about what it means, and reflecting on the result’s reasonableness 

given the problem’s context (Verschaffel et al., 2000), yet many ineffective problem 

solvers offer the outcome from a completed strategy as the final solution without 

interpreting it or reflecting on its appropriateness (Cummins et al., 1988; Greer, 1993).  

This critical fifth stage can be accomplished by considering the accuracy of the result 

and asking questions about it (e.g., Does this make sense?  Is this possible?).  Effective 

problem solvers are metacognitively active throughout the problem-solving process and 

typically decide whether the situation model and interpreted result align before reporting 

it (De Corte et al., 2000; Verschaffel et al., 2000).  Active cognitive self-monitoring helps 

learners make these judgments and successfully answer problems (De Corte et al., 

2000; Verschaffel et al., 2000).  Common errors such as reporting an incorrect response 

that is impossible given the context of the problem could be remedied by attention to 

this near final stage (Greer, 1993).  

Greer (1993) explored students’ responses to word problems that focused on the 

topic of proportionality and division.  He asked 100 thirteen and fourteen year-old 

students to solve eight word problem pairs.  Each pair had one problem with a feasible 

solution without adjusting for realistic constraints whereas another had a solution that 

needed adjustment because of an unrealistic answer (e.g., “If there are 14 pizzas for 4 

children at a party, how should they be shared out? If there are 14 balloons for 4 
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children at a party, how should they be shared out?”) (Greer, 1993, p. 243).  Students’ 

performance was examined and nearly every child solved the straightforward problem 

but the majority did not adjust for realistic conditions with the second one thus 

demonstrating a lack of attention to interpreting the results.  Greer explained that some 

students answered both of the example items because they drew on their contextual 

knowledge about an inability to give each child three and a half balloons thus 

highlighting the importance of contextual knowledge.  A goal of the present study was to 

support adolescents to interpret their results with the problem’s context and accurately 

communicate their solution to others.  Reporting the solution links both 

nonmathematical and typical mathematical language and facilitates the development of 

mathematically proficient students.  It is the sixth and final problem-solving stage 

(Verschaffel et al., 2000). 

Summary of the Problem-solving Process   

The present study was guided by a cognitive problem-solving framework.  It 

characterizes the effective pathway for solving a problem as well as the superficial 

approach typically used by students.  During the problem-solving process, individuals 

must also continue to be metacognitively active and pay attention to each stage of the 

process (De Corte et al., 2000; Verschaffel et al., 2000).   

The first phase of work toward solving a nonroutine word problem is reading and 

understanding the text (Verschaffel et al., 2000).  This stage means more than merely 

reading the text and moving to the next phase (Pape, 2004).  It includes making sense 

of the problem’s text and understanding the task (Verschaffel et al., 2000).  This leads 

to developing a situation model, which contains the mathematical and nonmathematical 

elements of the problem in more manageable problem representations such as pictures, 
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diagrams, or verbal texts.  After reflecting on the situation model and task, effective 

problem solvers construct and subsequently refine their mathematical models.  This 

model captures the essential mathematical elements needed to solve the problem and 

facilitates working towards a solution (Preston & Garner, 2003; Verschaffel et al., 2000).  

These models may appear in a variety of representations including symbolic, verbal, 

pictorial, graphical, and tabular (Lesh & Doerr, 2003) and are the initial step of 

implementing a strategy.  Effective problem solvers construct and reflect on their 

mathematical models, which facilitate efficiently working toward the solution, and 

eventually a result (Preston & Garner, 2003).  Moreover, they choose efficient 

representations that facilitate the development of situation and mathematical models 

during problem solving.  Others rely on algorithms, heavy-handed approaches that may 

require significant cognitive effort, or know only one way to solve a problem (Santos-

Trigo, 1996; Schoenfeld, 1985).  Interpreting the result requires reexamining the 

situation model and determining the solution’s reasonableness given the problem’s 

context (Greer, 1993).  If the solution seems appropriate, then the result should be 

reported in a clear statement that responds to the question (Verschaffel et al., 2000).  

Research has shown that students have difficulty at many of these stages and often 

perform poorly on word problems (Lesh & Zawojewski, 2007; Mayer & Wittrock, 2006; 

Pape, 2004). 

There is evidence that students can learn to develop productive problem-solving 

behaviors through instructional interventions, thus improving their problem-solving 

performance.  Problem-solving instruction provides support to children so that they 

develop appropriate problem-solving behaviors (Charles & Lester, 1984; Verschaffel & 
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De Corte, 1997; Verschaffel et al., 1999), solve more exercises and word problems 

correctly (Charles & Lester, 1984; Klein et al., 1998; Sigurdson et al., 1994; Verschaffel 

& De Corte, 1997; Verschaffel et al., 1999), and consider a wide range of possible 

representations to use during the mathematical analysis phase (Klein et al., 1998; 

Lampert, 1990).  Tasks are a critical element of effective problem-solving instruction.  

Model Eliciting Activities (MEAs) have the potential to help students develop appropriate 

mathematical models and collaborate while solving open, complex, and realistic 

problems (Chamberlin & Moon, 2008; English, 2009; Lesh & Harel, 2003).  The next 

section describes evidence from studies that implemented instruction aimed at 

improving students’ problem-solving performance and representation use, which was 

the aim of the present study.   

Problem-solving Instruction 

Effectively engaging in the problem-solving process requires individuals to 

maintain their focus on a number of factors and work through each stage (Pape, 2004; 

Verschaffel et al., 2000).  Mathematics instruction that contains problem-solving 

elements can support students to engage in each stage of the process (Lambdin, 2003; 

Verschaffel et al., 1999).  Teachers often model the process or pathways to solve 

problems during instruction (Boaler & Staples, 2008; Lampert, 1990; Smith, 2003).  

Students generate valuable intuitive or idiosyncratic processes for solving problems 

(Gravemeijer & van Galen, 2003).  Effective teachers push their students to try 

alternative mathematical models while problem solving (Bostic & Jacobbe, 2010; Perry 

& Atkins, 2003; Preston & Garner, 2003), and discuss successful and unsuccessful 

representations and procedures (Klein et al., 1998; Lampert, 1990; Preston & Garner, 

2003).   
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Instruction should encourage students to understand the problem, create models, 

and consider multiple ways to solve problems (Cooke & Buchholz, 2005; Charles & 

Lester, 1984; English, 2009; Klein et al., 1998; Lampert, 1990; Verschaffel & De Corte, 

1997).  It should build upon students’ prior knowledge and experiences and facilitate 

creating a network of mathematical topics, skills, and strategies (Kilpatrick et al., 2001; 

Schoenfeld, 1985).  Problem-solving practice during mathematics instruction enhances 

students’ mathematical understanding and in turn, well-developed mathematical 

understanding supports individuals to become more efficient and effective problem 

solvers (Lambdin, 2003).  The next section characterizes how instruction can enhance 

students’ problem-solving performance as well as their representation use during 

problem solving.  Discussion of problem-solving instruction begins with investigations 

that supplemented everyday instruction with problem solving and transition to studies 

that blended problem solving and mathematics instruction to positively impact students’ 

representation-use and problem-solving performance and behaviors.  One instructional 

intervention that enhanced students’ use of multiple representations is discussed.  

Finally, one recent investigation that used MEAs is examined in order to provide a 

context for the type of problems used in the present study.  

Supplementing Daily Mathematics Instruction with Problem Solving 

A number of instructional interventions supplemented mathematics instruction 

with problem-solving elements in order to give students an opportunity to practice 

applying their mathematics knowledge to problems; hence word problems have been 

called application problems at times (e.g., Charles & Lester, 1984).  Charles and Lester 

designed an instructional program for fifth- and seventh-grade mathematics students 

intending to improve students’ problem-solving performance and behaviors.  Twelve 
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fifth-grade and ten seventh-grade mathematics teachers implemented the Mathematical 

Problem Solving program (MPS) over 23 weeks while a similar number of teachers 

conducted their usual instruction in comparison classrooms.  The MPS program focused 

on each stage of Polya’s (1945/2004) four-stage problem-solving process (i.e., 

understand the problem, devise a plan, implement the plan, and look back), 

emphasized extensive experiences with solving word problems, provided experiences 

related to different ways to solve problems, and implemented an instructional format for 

teaching problem solving.  

Teachers gave students problem-solving activities for approximately 10-25 

minutes each day.  Some examples were designing a word problem given a context, 

solving a problem, and examining a complex translation problem.  These translation 

problems required a learner to effectively move from one representation to another 

during the problem solving process.  Teachers posted a problem-solving guide on the 

wall that mirrored Polya’s (1945/2004) four steps, were told to follow a before-during-

after teaching format, and to sufficiently discuss students’ work during whole-class 

discussions.  A typical lesson began with the teacher giving a problem and orchestrating 

a discussion focused on understanding the problem followed by students sharing 

possible ways to solve the problem.  Next, students worked independently or in small 

groups and finally, they shared their representations, procedures, and solutions with the 

class.  Participants gave each other feedback, reflected on the problem-solving process, 

and shared these reflections during the whole-class discussion.  Skill activities and 

simple translation problems were completed individually whereas problem-solving 

activities were typically done in small-group interactions.   
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Students completed a pretest and posttest 23 weeks later.  Intermediate tests 

were given to the intervention classrooms after eight and sixteen weeks of problem-

solving instruction.  The tests consisted of two problems and two complex translation 

tasks.  Charles and Lester (1984) scored students’ work on three dimensions using a 

three-point rubric: understanding of the problem, planning, and performance.  Pretest 

scores were used as a covariate in the analyses and each class was the unit of 

analysis.  During the study, researchers conducted classroom observations and teacher 

interviews. 

The intervention groups in both fifth- and seventh grade had better outcomes 

than their respective comparison groups.  In both grade levels, students performed 

better on word problems, p < .05, and demonstrated improved understanding and 

planning related to problem solving.  Teachers said they liked having the problem-

solving process posted in the classroom and daily problem-solving activities.  Some 

instructors commented that students were more frequently drawing a picture while 

problem solving, working backwards, creating a list of known information, and 

discussing problems with a peer during problem solving.  This study provides evidence 

that problem-solving instruction enhances students’ problem-solving behaviors and 

performance.  It is the foundation for feasibility and other efficacy studies that examined 

students’ outcomes from supplementing typical mathematics instruction with problem-

solving components.  

Ten eighth-grade mathematics classrooms were part of a yearlong study 

investigating the effects of three instructional methods (Sigurdson et al., 1994).  In 

earlier research (Sigurdson & Olson, 1992), students’ outcomes from two instructional 
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methods called algorithmic teaching and meaning teaching were examined.  Algorithmic 

teaching was “an attempt to articulate traditional, textbook teaching prevalent in 

schools” (Sigurdson & Olson, 1992, p. 38).  It deemphasized the rationale behind 

procedures and representations unlike the other two instructional methods: meaning 

and problem-process.  Meaning teaching emphasized that students needed to fully 

understand concepts and procedures and instruction attempted to facilitate students’ 

cognitive connections between these two areas.  Participants learned representations 

and procedures, but there were many more mathematically relevant student-to-teacher 

and student-to-student discussions in the meaning teaching classrooms than the 

algorithmic group.  In the earlier study, students’ performance in the meaning teaching 

group was vastly higher than their peers experiencing algorithmic teaching.  The third 

approach used by was termed the problem-process approach (Sigurdson et al., 1994).  

It incorporated ten minutes of daily problem-solving work into meaning teaching.  The 

purpose of the later study was to determine whether there were any improvements in 

students’ outcomes after supplementing meaning teaching.  The three features of the 

problem-process instructional approach were “(1) simple, content-related problems, (2) 

interactive discussions of solutions, and (3) a focus on the processes used to solve the 

problem” (p. 368).  Students were frequently encouraged to create models, craft 

explanations of their results, and provide multiple solution ways of problem solving.   

Ten teachers from each group adequately implemented the assigned 

instructional program.  A mathematics achievement test was administered as a pretest 

and again five months later near the end of the intervention.  Students in both meaning-

teaching and problem-process groups outperformed peers in the algorithmic-process 
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group on the achievement test.  Average-achieving students in the problem-process 

and meaning-teaching group performed similarly.  Low-achieving students in the 

problem-process group had a ten percent increase in their achievement over the 

algorithmic-practice teaching group whereas similar students in the meaning-teaching 

group made only a two percent increase.  These results informed the present study as 

well as others with ways to implement problem-solving instructional interventions as well 

as areas for improvement. 

These explorations provide a substantial foundation for problem-solving research 

intending to use an instructional intervention, but several unanswered questions and 

gaps remain.  One aspect that supports the present study was the lesson plan format 

implemented with participants.  It included use of small group discussions to foster 

mathematical thinking, scoring scheme, and analysis techniques for the dissertation 

study.  One of the unanswered questions; however, is whether students’ background 

characteristics or prior knowledge impacted their problem-solving performance.  A 

second question stems from the idea of maintaining only ten minutes of problem-solving 

instruction (Sigurdson et al., 1994).  This surely limited the adequacy of influencing 

students’ problem-solving behaviors and performance.  Finally, this study uses work by 

researchers (Charles & Lester, 1984; Sigurdson et al., 1994) to examine problem-

solving performance and students’ representation use during problem solving as 

measured by a test of word problems.  The previous investigations offer evidence of 

participant’s performance as measured by achievement tests and simple word 

problems, yet students’ performance on open, complex, and realistic word problems is 

uncertain.  Again, the research provides information about critical aspects for designing 
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instructional interventions that focus on improving problem-solving performance and 

more insight about such interventions is provided in the discussion of the next study. 

Verschaffel and his colleagues (1999) hoped to improve Dutch fifth-grade 

students’ use of modeling and performance on word problems.  They employed a 

similar research design as others (Charles & Lester, 1984; Sigurdson et al., 1994).  The 

Dutch investigators developed, piloted, and implemented an instructional program that 

was conducted by fifth-grade classroom teachers.  The word problems used in the 

present study were adapted from this investigation.  The intervention group was 

composed of four classes while seven control classes followed their typical mathematics 

instruction.  The researchers believed they might influence students’ development of 

effective problem-solving behaviors by supplementing current instruction with problem-

solving lessons.   

The purpose of the intervention was to make students (a) more aware of the 

different phases of the problem-solving process, (b) develop an ability to monitor and 

evaluate oneself during problem solving, and (c) master eight ways to solve problems  

(Verschaffel et al., 1999).  These problem-solving approaches were (1) draw a picture, 

(2) make a list or table, (3) distinguish necessary information from irrelevant material, 

(4) use real-word knowledge, (5) make a flowchart, (6) guess and check, (7) look for a 

pattern, and (8) simplify the numbers.  Researchers designed 20 lessons that were 

implemented over a four-month period.  Lessons were guided by three “pillars” to 

construct a successful mathematics learning environment (Verschaffel et al., 1999, p. 

202). 
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The first pillar was that problem-solving instruction should use realistic, complex, 

and open problems.  Problems related to students’ real-life experiences so that solving 

these problems might feel meaningful.  Complex problems facilitated engagement in the 

problem-solving process.  Open problems permitted a variety of problem-solving 

approaches including multiple representations.  For example, a simple translation task 

does not satisfy the first pillar.  The second pillar was the use of a variety of instructional 

techniques including (a) short, whole-class introductions to the problem, (b) small-group 

collaborative problem solving, (c) individually completed independent work, and (d) 

concluding whole-class discussions to wrap up instruction and reflect on the concepts 

and skills learned that day.  The final pillar was establishing a classroom culture with 

social and sociomathematical norms for teaching and learning mathematics and 

problem solving.  The authors describe the classroom culture as one that used (a) 

stimulating activities, (b) holding discussions with students about what counts as a good 

mathematics problem and response, as well as (c) appropriate mathematical 

procedures.  Another feature of this culture was repositioning the role of teacher and 

students so that the teacher was not perceived as the holder of knowledge but rather a 

guide and mentor (Verschaffel et al., 1999).  The teacher was the driving force in 

developing these classroom norms for mathematics teaching and learning but the 

students were involved in making decisions as well.  

A before-during-after format similar to Charles and Lester’s study (1984) was 

employed.  Lessons activated students’ prior knowledge, engaged them in a problem-

solving activity, and ended with an opportunity for reflection and synthesis.  

Researchers administered reliable versions of a pretest, posttest, and retention test 
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composed of ten word problems that had similar problems across all three measures.  

The word problems were designed to be open, complex, and realistic.  Two raters 

scored each test; responses were denoted as correct, incorrect, technical error, or no 

answer.  A technical error meant that a student conducted the appropriate steps but 

made a mistake in procedures during problem solving.  Because the aim of the study 

was students’ engagement in the problem-solving process, technical error responses 

were considered to be correct.  Students also completed an achievement test.  Finally, 

a sample of four lessons from intervention classrooms was selected to determine 

treatment fidelity.   

Students in both groups improved their problem-solving performance but the 

intervention group made greater gains.  The intervention group also outperformed the 

control group on the achievement test.  The addition of twenty problem-solving lessons 

enhanced students’ mathematics learning and problem-solving behaviors.   

Problem-solving investigators offer advice for researchers who plan to conduct 

problem-solving research in classrooms.  “Presumably, the results would have been 

better . . . if we could have integrated the learning environment better within the regular 

mathematics lessons” (Verschaffel et al., 1999, p. 226).  That is, more consistent 

exposure to problem solving might have improved students’ outcomes on the problem-

solving measures.  Students frequently encounter complex real-world problems, and 

solving exercises as well as problems will prepare them for these challenges.  A 

concern with separating problem-solving instruction from everyday instruction as it had 

been done in the three previous studies is the connotation that it presents to students: 

problem solving is distinct from mathematics.  This issue informs the decision to 
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thoroughly integrate problem-solving instruction into typical daily mathematics 

instruction.   

Integrating Problem Solving into Daily Mathematics Instruction 

The previous studies (i.e., Charles & Lester, 1984; Sigurdson et al., 1994; 

Verschaffel et al., 1999) supplemented typical mathematics instruction with components 

of problem-solving instruction.  Results were fairly positive except for one finding 

(Sigurdson et al., 1994) that the additional problem-solving instructional component did 

not necessarily support average-achieving and above average-achieving students’ 

achievement.  Evidence did not indicate students’ outcomes as a result of continuous 

mathematics instruction delivered through problem-solving contexts.  To more fully 

integrate problem-solving instruction within typical mathematics teaching, Verschaffel 

and De Corte (1997) aimed to determine the value of teaching mathematics in problem-

solving contexts during a two-and-a-half week investigation.  In an earlier study, 

Lampert (1990) immersed herself in the classroom to better understand the teaching 

and learning process.  She integrated components of problem solving into her daily 

mathematics instruction.  Verschaffel and De Corte as well as Lampert’s study provide a 

foundation for becoming the instructor during an investigation as well as ideas for 

implementing effective mathematics and problem-solving instruction on a daily basis.   

Verschaffel and De Corte (1997) examined whether 10-12 year old children 

might develop positive dispositions towards mathematical modeling as a result of 

experiencing mathematics instruction through problem-solving contexts.  They 

encouraged students to think about problem solving as a multistage process 

(Verschaffel et al., 2000) and used word problems during instruction.  The instructional 

intervention lasted approximately two-and-a-half hours each day over two-and-a-half 
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continuous weeks at an elementary school in the Netherlands.  One fifth-grade 

classroom was the intervention group while two similarly sized sixth-grade classrooms 

were the comparison group.  

Verschaffel became a fifth-grade teacher during the study and taught five lessons 

that drew on students’ knowledge of real-world situations such as purchasing comic 

books and going to a swimming pool.  The student-centered instruction typically 

incorporated discussion during its multiple phases.  There was a “central role of 

interactive and cooperative learning through small-group work and whole-class 

discussions” (Verschaffel & De Corte, 1997, p. 582).  In phase one, students worked on 

a problem in mixed-ability groups of three to four students and then responded to a 

reflection question (e.g., “What did you learn from solving this problem?” [Verschaffel & 

De Corte, 1997, p. 582]).  In phase two, Verschaffel and the students discussed the 

problem-solving process and the result from working on the problem.  Students’ 

misconceptions and ideas were explored so that the students could learn from each 

other.  Students returned to their original groups and worked on approximately four 

similar problems during phase three and then engaged in another whole-class 

discussion during phase four.  During phase five, students solved one nonroutine word 

problem for homework that encouraged them to engage in the problem-solving process.  

A final whole-class discussion allowed students to share their reactions to the 

assignment and reflections completed the instructional process.  With so many 

discussions, Verschaffel had to establish new social and sociomathematical norms in 

the classroom if they were going to be effective. 
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Norms are critically important for mathematical discourse to be productive 

(Lampert & Cobb, 2003; Yackel & Cobb, 1996).  Relevant mathematical discourse 

among participants makes group activities during instruction worthwhile (Franke et al., 

2007; Stigler & Hiebert, 1999/2009).  It allows individuals to convey mathematical ideas 

and helps them to make sense of mathematical notions (Cobb, Yackel, & Wood, 1992; 

Yackel & Cobb, 1996).  Mathematically relevant communication “helps build meaning 

and permanence for ideas and makes them public” (NCTM, 2000, p. 60).  Norms for 

discourse that encourage and perpetuate meaningful mathematics discussions must be 

established before it can have a lasting and meaningful impact on students’ learning 

(Franke et al., 2007; Yackel & Cobb, 1996).  Teachers influence students’ use and type 

of communication based on the classroom norms and their behaviors (Williams & 

Baxter, 1996; Yackel & Cobb, 1996).  Those who behave as the holder of knowledge or 

fail to allow students to justify solutions contribute to a learning environment where 

students are not responsible for their own learning (Boaler & Staples, 2008; Huang, 

Normandia, & Greer, 2005).  In Verschaffel and De Corte’s study (1997), Verschaffel 

explained to students that his role and actions in the classroom might appear different 

than they had previously experienced, such as becoming a co-problem solver during 

lessons.  He enacted norms that he believed might facilitate productive mathematical 

behaviors and dispositions.  These sociomathematical norms included determining what 

counts as (a) a good mathematical word problem, (b) a reasonable solution way to 

solve a problem, (c) an appropriate response, and (d) a satisfactory explanation 

(Verschaffel & De Corte).  It was expected that students would show dramatic 

improvement in their problem-solving performance after learning in this environment. 
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A pretest with ten word problems and five simpler translation tasks was 

administered, and participants completed a similarly constructed posttest.  Participants 

in the intervention and comparison groups also completed a retention test one month 

following the study.  Students’ responses were classified as realistic, nonrealistic, 

technical error, no answer, or other answer.  A realistic response indicated a correct 

answer whereas no answer was an incorrect response, likely attributable to using the 

problem’s information in an inappropriate manner.  A technical error indicated that 

students’ answered the problem correctly except for a slight error such as forgetting a 

decimal point or accidentally adding an extra zero when previous work indicates the 

correct answer (e.g., 100 instead of 10).  The other answer category was applied when 

a student’s response could not be classified.  To complement the data from the 

measures, one videorecording of each classroom was made yet the tapes were not 

analyzed.  

Participants from the intervention group responded with realistic responses the 

fewest number of times on the pretest but the most often on the posttest (i.e., 7% and 

51% respectively).  Students in the intervention group improved but the higher 

performing students experienced the greatest benefits.  Those who experienced these 

novel lessons continued to outperform their peers on the retention test one month 

following the intervention.  Students in the intervention group also developed positive 

dispositions towards nonroutine word problems whereas the control groups did not.  

This study provides evidence that students can learn to solve word problems, effectively 

engage in the problem-solving process, and develop positive dispositions towards word 

problems after a brief intervention.  The short time period informs the dissertation 
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research because it indicates that students quickly learn to adapt to a potentially novel 

learning environment and experience positive benefits from engaging in daily problem-

solving instruction.  This investigation also demonstrates that students can behave like 

mathematicians who regularly engage in problem solving.  Feasibility studies like 

Verschaffel and De Corte (1997) and Lampert (1990) provide a context for mathematics 

education researchers to better understand the teaching-learning process.  

Lampert (1990) immersed herself in one fifth-grade mathematics classroom for 

an academic year, hoping to make students’ understanding of mathematics more 

aligned with how mathematicians perceive understanding mathematics.  She 

established appropriate norms for classroom discourse that facilitated mathematics 

learning.  For example, encouraging students to use concept-oriented language meant 

shifting students’ comments from an individual (e.g., I don’t agree with you) to the 

individual’s idea (e.g., I don’t agree with your idea).  Similarly, “I think” (p. 54) 

statements were encouraged because they are powerful indicators of student’s 

demonstrating ownership of learning and indicate whether students have made sense of 

mathematical ideas rationally.  Students in her classroom routinely discussed their 

thinking in small-group and whole-class discussions.  Lampert asked students to 

continually revise their thinking and share these revisions during whole-class 

discussions.  She frequently questioned students and used their justifications of their 

solution as an opportunity to assess their thinking.  Through these discussions, students 

were expected to become more comfortable using proof and conjecture-oriented 

language.  To ensure that students had opportunities to engage in mathematics like 

mathematicians, she planned and enacted lessons around tasks that required 
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concerted effort, thinking about a concept and its essential skills, and building upon prior 

knowledge. 

She chose problems that encouraged students to think carefully and investigate 

multiple representations of a mathematical model and frequently reflect on the accuracy 

and appropriateness of the result from mathematical analysis.  Students were 

encouraged to write their solutions on the board and the class was asked whether 

anyone wanted to “question so-and-so’s hypothesis” (Lampert, 1990, p. 40).  Solutions 

were hypotheses until they had been mathematically justified using mathematical 

language.  Lampert’s interactions with students were intended to promote that the 

teacher was a model of what it means to think like a mathematician.  She co-explored 

problems with students, engaged in mathematical discourse, and encouraged them to 

challenge her ideas and ask for justification.  

She used several instructional methods and often implemented a think-pair-share 

type of instruction.  She posed a problem and took time to make certain each student 

understood the task and its text.  Next, she observed students working independently 

and then listened to their peer-to-peer discourse about the problem.  Finally, she 

initiated a whole-class discussion that clarified terms, symbols, and definitions for 

students, followed by collaborative problem exploration.  Lampert (1990) examined 

teaching episodes individually and then looked for patterns of change in students’ 

outcomes.  As a result of her instruction, students developed effective problem-solving 

behaviors, indicated more positive feelings about doing mathematics, and learned to 

work collaboratively to solve challenging problems. 
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Lampert’s (1990) study provides clarity on a number of issues relating to the 

teaching and learning of mathematics.  First, students are able to think and behave like 

mathematicians when given the opportunity.  To attain this goal, the teacher must 

choose rich problems that require concentrated thinking and revising of ideas, and 

encourage collaboration and discourse that focuses on mathematics topics.  Second, 

focusing on a few concepts provides a foundation for examining multiple ways to solve 

problems.  When students master a few concepts during an academic year, they have 

opportunities to learn a wide variety of representations and procedures that likely will 

benefit their achievement and problem-solving performance in the long term.  Lampert 

described students’ thinking about the viability of multiple ways to solve problems as a 

result of her instruction.  Her study delineates a rationale for making rich problems a 

focus of instruction as well as utilizing discourse to promote mathematics learning and 

effective problem-solving behaviors.  

Model-eliciting Activities 

Model-eliciting activities (MEAs) are related to the types of activities used in this 

dissertation study.  These tasks are ill-structured, open-ended, complex, realistic tasks 

(Chamberlin & Moon, 2008; English & Sriraman, 2010).  They are typically small-group 

activities meant to support students’ mathematical modeling for the present and future 

problems (Lesh & Doerr, 2003; Lesh & Harel, 2003).  An MEA differs from a traditional 

word problem in three ways: (1) the process and product are both important elements 

instead of the product only, (2) problem solvers can judge the adequacy of their 

mathematical model and solution by its relevancy and appropriateness for a problem’s 

context whereas it may not be feasible with a word problem, and (3) the mathematical 

model is usually employed for other similarly structured problems whereas problem 
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solvers might use the mathematical model for a word problems once (Lesh & Harel, 

2003).  MEAs also precede formal mathematics instruction (Lesh, Cramer, Doerr, Post, 

& Zawojewski, 2003).  Investigations have drawn on MEAs as a means to explore their 

effect on students’ higher order thinking skills (Lesh et al., 2003) and metacognition 

(Lesh, Lester, & Hjalmarson, 2003).  Furthermore, MEAs often connect students’ 

knowledge of mathematics, other disciplines, and outside of school (English, 2009; 

English & Sriraman, 2010).   

English (2009) investigated students’ outcomes as a result of implementing an 

MEA with one class of seventh-grade students.  The activity’s purpose was to support 

students to extend, explore, and refine ideas gained while solving previous modeling 

problems.  Students were presented with a situation about a summer reading program 

for secondary students as well as a data set, asked to determine an appropriate 

solution, and finally explained and justified their response in a verbal statement.  

Problem solvers worked in groups of three to four students over three consecutive 50-

minute class periods.  Participants created pictorial models, which helped them develop 

symbolically-oriented mathematical models.  They also showed an ability to quantify 

elements of a context in order to solve the problem.  The problem’s aspects included 

the length of a text and the text’s readability level.  Students solved the open, complex, 

and realistic problem and the lesson provided evidence that it is possible to weave 

problem solving, mathematics, and other subject areas.  English (2009) advocates that 

MEAs and other similar problem-solving activities “should not be viewed as additional 

activities that add further load to an already crowded curriculum and overburdened 

teacher… they should be used to introduce, develop, consolidate, and enrich core 
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concepts and processes” (p. 172-173).  The present study heeded this message and 

participants experienced MEA-type activities as part of their daily mathematics 

instruction rather than as a supplement.   

Summary of Problem-solving Instruction 

Several studies have shown that supplementing mathematics instruction with 

problem-solving aspects enhanced students’ problem-solving performance and assisted 

with developing productive problem-solving behaviors (Charles & Lester, 1984; 

Sigurdson et al., 1994; Verschaffel et al., 1999).  Supplementing mathematics 

instruction looked slightly different across studies.  In Charles and Lester’s (1984) 

investigation, intervention group teachers devoted five to twenty-five minutes of 

instruction to problem solving.  A subsequent study indicated that dedicating 10 

instructional minutes each day was also sufficient for improving eighth-grade students’ 

problem-solving performance (Sigurdson et al., 1994).  Results from this study also 

indicated that outcomes are not necessarily positive for all students.  More specifically, 

average-achieving and above average-achieving participants from the problem-process 

group had lower achievement scores than their peers in the other groups.  Finally, 

Dutch fifth-grade students provided more correct responses to word problems after 

experiencing 20 problem-solving lessons over the course of an academic year than their 

peers in comparison classrooms (Verschaffel et al., 1999).  Furthermore, the 

intervention participants had better achievement scores than their peers, contrary to 

earlier findings (Sigurdson et al., 1994).  These studies provide evidence that problem-

solving interventions generally produce positive problem-solving outcomes but 

achievement-related effects are more uncertain. 
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There is also some evidence that integrating problem solving into daily 

mathematics instruction positively influences adolescents’ problem-solving 

performance.  Lampert (1990) encouraged her students to discuss and critique each 

other’s ideas about solving complex problems.  Moreover, she incorporated problems 

into daily instruction so that students had rich problems that could be solved in multiple 

ways.  Similarly, Verschaffel and De Corte (1997) employed complex, open, and 

realistic problems as part of their mathematics instruction.  Both investigations provide 

evidence that teaching mathematics through problem-solving contexts on a regular 

basis supports students’ problem-solving performance.   

Several researchers have explored students’ experiences with MEAs 

(Chamberlin & Moon, 2008; English, 2009; English & Sriraman, 2010; Lesh & Harel, 

2003).  MEAs provide experience working with open, complex, and realistic problems 

and support students’ problem-solving development (English & Sriraman, 2010; Lesh & 

Harel, 2003).  English (2009) indicates that MEAs can be used as the central 

component of mathematics instruction, precede formal explicit instruction, and are not 

intended to supplement typical mathematics instruction.  These rich activities when 

implemented in the context of discourse-rich, student-centered mathematics instruction 

lead to improving students’ problem solving, engagement in mathematical modeling, 

and a number of other positive outcomes (Chamberlin & Moon, 2008; English, 2009; 

Lesh & Zawojewski, 2007).  

As indicated in the introduction, changes in students’ representation use were 

examined in the present study.  Detailed analyses are necessary to convey to the 

research and teaching communities what changes occurred in students, possible 
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explanations for the changes, and any differential effects of these changes.  Students’ 

representation use is an indicator of whether students are engaging in effective 

problem-solving behaviors and thinking (Verschaffel et al., 2000).  None of the studies 

described thus far aimed to improve the number and types of representations used by 

elementary or middle-grades students.  The next section discusses the limited research 

conducted in elementary and middle-grades classrooms within the area of instruction 

promoting multiple ways to solve problems. 

Instruction Focusing on Multiple Representations 

Students who are able to implement more than one representation to solve a 

word problem are more likely to solve it than peers who know only one way (Bostic & 

Pape, 2010; Herman, 2007).  Knowing multiple ways to solve a class of problems also 

indicates that a learner has developed strategic competence in an area (Kilpatrick et al., 

2001).  Two instructional programs were created around the empty number line 

representation, implemented them in matched second-grade classrooms, and examined 

student-related outcomes (Klein et al., 1998).  Empty number lines are an excellent 

representation for teaching students about addition and subtraction with whole numbers 

up to 100 (Klein et al., 1998).  One instructional program called the Realistic Program 

Design (RPD) was created so that students were encouraged to share their ideas and 

investigate multiple representations and procedures for adding and subtracting 

numbers.  Participants learned about the strengths and weaknesses of these 

representations in a discourse-rich, student-centered instructional environment.  Word 

problems used during instruction drew on contexts relevant to students.  The RPD 

program featured whole-class instruction and discussion about representations and 

procedures to solve word problems during approximately one third of the instructional 



 

68 

period.  In the other instructional program, Gradual Program Design (GPD), the teacher 

taught students how to use one representation and procedure at a time.  There was less 

discussion in the GPD classroom and students spent more time completing exercises 

than problems.  Word problems were a part of the GPD program but were treated as 

opportunities to practice applying a known representation and set of procedures.  It was 

hypothesized that the GPD program might benefit the entire class’ achievement more 

whereas the RPD program might improve low-ability students’ achievement. 

The programs were implemented in 10 second-grade classrooms at nine 

comparable primary schools.  Classes were matched based on their prior achievement 

and randomly assigned to GPD and RPD conditions.  An arithmetic test composed of 21 

total tasks was administered on two occasions approximately two months apart.  

Students were asked to solve each problem and show their work.  Paired t-tests were 

used to determine whether there were any differences between students’ outcomes on 

the tests.   

The interventions did not necessarily result in differential performance but there 

were differences in students’ problem-solving behaviors.  Students in the RPD program 

“changed their use of procedures according to the characteristics of the problem” (Klein 

et al., 1998, p. 457) whereas participants in the GPD group tended to use the taught 

representation and procedure, indicating that RPD participants developed greater 

strategic competence as a result of the instruction.  “There were almost no differences 

in procedural competence between the two groups of pupils.  When significant 

differences were found, they were mostly in favor of RPD pupils, especially in the case 

of subtraction problems” (Klein et al., 1998, p. 460).  At the end of the academic year, 
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children in the GPD program “still lagged far behind the RPD pupils in [strategic] 

flexibility” (p.460) and “the RPD pupils attained and sustained a higher level of flexible 

problem solving than did the GPD pupils” (p. 461).  This investigation provides evidence 

that instruction encouraging multiple ways to solve tasks leads to young students 

development of effective problem-solving behaviors. 

Summary of the Problem-solving Literature  

Problem-solving instruction can enhance students’ problem-solving performance 

and encourage developing effective problem-solving behaviors (Klein et al., 1998, 

Lampert, 1990; Verschaffel et al., 1999).  This instruction is best characterized by (a) 

problems that encourage critical thinking and reflection (Chamberlin & Moon, 2008; 

Lampert, 1990; Verschaffel & De Corte, 1997; Verschaffel et al., 1999), (b) small-group 

and class-wide mathematical discussions (Charles & Lester, 1984; Lampert, 1990), (c) 

opportunities for students to try different representations and talk about possible 

methods of analysis (English, 2009; Klein et al., 1998; Lampert, 1990; Lesh & Harel, 

2003), (d) a teacher who behaves more like a facilitator and co-problem solver than 

someone who disseminates mathematical ideas (Lampert, 1990; Preston & Garner, 

2003; Verschaffel & De Corte, 1997), and (e) students frequently justifying their ideas to 

one another rather than waiting for the teacher’s confirmation (English, 2009; Lampert, 

1990).  Many of these studies described establishing sociomathematical norms in the 

classroom, which are crucially important to educators who expect their students to 

discuss mathematics and make sense of new ideas from this peer-to-peer discourse.   

Discussions about the tasks and possible representations involved in working 

towards a solution supported students’ use of multiple representations (Klein et al., 

1998), improved participants’ mathematics achievement (Sigurdson et al., 1994; 



 

70 

Verschaffel et al., 1999), and enhanced how students solve problems (Charles & Lester, 

1984; Lampert, 1990; Verschaffel & De Corte, 1997; Verschaffel et al., 1999).  These 

studies provide evidence that it is feasible to implement instruction that teaches 

mathematics content and problem solving while also supporting learners to develop 

strategic competence and become comfortable with using multiple representations to 

solve word problems.  A necessary step forward for this type of research is conducting 

this type of instruction and drawing on the Standards (CCSSO, 2010; FLDOE, 2007).  

Students in classrooms where instruction encouraged multiple representation use were 

more efficient problem solvers, and at times more effective than their peers 

experiencing traditional instruction (Klein et al., 1998).  The review of relevant literature 

informs the present study that aims to improve sixth-grade students’ problem-solving 

performance and representation use. 

Connections  

This section will address the connections between prior literature and the present 

study, gaps and limitations of problem-solving research, and ways the present research 

managed these issues.  Investigations into problem solving often draw on several 

aspects of the problem-solving process.  For instance, Pape’s (2004) examination 

includes several steps of the problem-solving process, albeit his research greatly 

informs the research and teaching community about how students read and understand 

a problem’s text.  Reading and understanding text is important; however, most studies 

did not collect students’ reading comprehension scores, including Pape (2004) and 

Greer (1993).  A strong correlation between reading comprehension and problem-

solving performance (Vilenius-Tuohimaa et al., 2008) justifies including reading 

comprehension as a covariate in future problem-solving performance analyses.  A 
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similar argument can be constructed for including prior mathematics achievement and 

free-and-reduced lunch status based on the literature (Pape; Vilenius-Tuohimaa et al., 

2008).  As a result of their work, several covariates were included in the regression 

analyses. 

The focus of the present investigation is to implement an instructional 

intervention to enhance sixth-grade students’ problem-solving performance and 

representation use.  The literature informs ways to maintain high quality research as 

well as areas for improvement.  First, prior research suggests that approximately 20 

lessons are sufficient to improve students’ problem-solving performance and behaviors 

(Verschaffel & De Corte, 1997; Verschaffel et al., 1999).  Verschaffel & De Corte (1997) 

were successful after two-and-a-half weeks of consecutive problem-solving instruction 

that lasted two-and-a-half hours, yet their study did not include teaching mathematics 

content required by their national standards and their instructional approach is not 

feasible in most classrooms in the United States because of the lessons’ duration.  The 

present study demonstrates ways to align mathematics standards and mathematics 

instruction with a problem-solving focus.  There were positive outcomes after twenty 

lessons that were periodically delivered to students over four months (Verschaffel et al., 

1999).  Fifth- and seventh-grade students improved their problem-solving behaviors 

fairly quickly as well (Charles & Lester, 1984), even when problem-solving instruction 

was limited to ten minutes each day and separated from everyday instruction.  As a 

result, there is some evidence that brief and/or limited interventions support students’ 

problem-solving performance. 
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Second, rich tasks that support problem solving and mathematical discourse 

provide a context for learning mathematics (English, 2009; English & Sriraman, 2010; 

Lesh & Harel, 2003).  MEAs have been used in middle-grade classrooms to enhance 

students’ conceptual and procedural understanding (English, 2009).  The present study 

builds upon prior research by developing and implementing MEA-type activities linked to 

the Standards (CCSSO, 2010; FLDOE, 2007) as the focus of classroom instruction.  

Instruction in several studies employed a before-during-after-type lesson plan 

format (Charles & Lester, 1984; Lampert, 1990; Verschaffel et al., 1999).  Lampert’s 

(1990) think-pair-share format aligns with the before-during-after format and provides 

structure for delivering problem-solving instruction.  Lessons for the present study 

followed this format and included opportunities for students to think independently, 

engage peers in small groups or pairs, and discuss ideas as a class.  It has been 

suggested that reflection should be added to any lesson because it enhanced students’ 

synthesis from the tasks and was integral to fostering effective problem-solving 

behaviors (Verschaffel et al., 1999).  The choice to use one representation over another 

while problem solving should be guided by the effectiveness of the representation for 

solving the problem as well as its efficiency and this was a part of discussions with 

participants in this study.   

Children are capable of learning multiple ways to solve problems, discussing 

mathematics and problem solving, and developing effective problem-solving behaviors 

(Klein et al., 1998; Lampert, 1990).  Some have employed word problems as well as 

exercises in their research (Klein et al., 1998).  Tasks were not necessarily problematic 

enough for second-grade students and more like simple translation problems that use 
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“word problemese” (Lave, 1993, p. 77).  A translation problem typically requires a 

student to translate from one representation into a symbolic expression and then 

execute algebraic or arithmetic computations. For example, a symbolic expression 

written as a verbal statement without the complexity usually associated with the 

characterization of a problem is a translation problem.  Lampert’s (1990) study did not 

make word problems a central component of instruction, albeit her results suggest that 

rich tasks, including word problems, combined with discourse-rich student-centered 

instruction are likely to facilitate students’ mathematics learning and problem-solving 

behaviors, which includes learning multiple ways to solve problems.  Two studies 

indicate that students benefit when instruction uses word problems (Klein et al., 1998; 

Lampert, 1990). 

Instruction that facilitates learning mathematics and problem solving aligns with 

recent expectations for learning mathematics, specifically the Standards of 

Mathematical Practice (CCSSO, 2010) and recently adopted Next Generation Sunshine 

State Standards (FLDOE, 2007).  Prior investigations where a researcher immersed 

him/herself in the study’s setting as an instructor have been successful at improving 

instructional outcomes for students and provide a context for this investigation’s 

intervention.  One drawback to work such as Lampert (1990) and Verschaffel and De 

Corte’s (1997) is that it can be more difficult to generate conclusions that impact 

classrooms with grade-level or content teachers who manage a multitude of factors and 

make several instructional decisions during one academic period.  Although this seems 

like a limitation, it is an essential step because feasibility research like this dissertation 

study may eventually lead to scaling up to a larger group of students and include 



 

74 

providing professional development to classroom teachers so that they might enact an 

intervention similar to this one. 

The problem-solving process as written is too complex for students to manage 

(Verschaffel et al., 1999) hence students need versions with simplified language that 

makes sense.  Polya’s (1945/2004) seminal text How to Solve it discusses appropriate 

ways to scaffold students engaged in problem solving at great length.  “Text  Situation 

Model” does not give students enough information to know what to do.  Students need a 

better context in order to engage in these stages of problem solving.  Characterizing the 

process in more descriptive terms along with questions such as “What is this problem 

asking you to find? What do you know?” provide students scaffolding necessary to 

successfully complete the problem-solving process and solve nonroutine word problems 

(Polya, 1945/2004).  Students need assistance at times so that the process and finding 

a problem’s solution are within their developmental grasp (Charles & Lester, 1984; 

Lampert, 1990).  Charles and Lester (1984) recommend that students have visible 

reminders such as posters and desk-sized models of the process while problem solving.  

In line with these recommendations, students in the intervention group were provided 

with a poster-sized and desk-sized model of the problem-solving process (Appendix A 

and Appendix B, respectively) and guiding questions were a part of everyday 

instruction.  A discussion of how the questions and model were developed and 

implemented in the intervention classroom is provided in Chapter 3.  

Adequately capturing the instruction during an instructional intervention is critical 

for framing what influenced participants’ outcomes.  One study videotaped a few 

lessons (Verschaffel et al., 1999) whereas in another one an observer took fieldnotes 
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about instruction in the control classrooms (Sigurdson et al., 1994).  Many authors 

share that a limitation of their research was that not enough observations of the 

instruction were made in intervention and control classrooms (Verschaffel et al., 1999; 

Charles & Lester, 1984).  In the present study, evidence from frequent recordings of 

instruction as well as a trained observer facilitated accurately characterizing 

instructional differences between the intervention and comparison classrooms and 

ascertained treatment fidelity in the intervention classroom.  Furthermore, multiple 

cameras were used to capture classroom activities.  Observations and recordings of the 

present study indicated how much instructional time was typically dedicated to 

individual, small-group, and whole-class discussions, which was an improvement over 

the very rough estimates provided by previous researchers (e.g., Charles & Lester, 

1984; Sigurdson et al., 1994; Verschaffel et al., 1999).  Furthermore, observations and 

videorecordings assisted in making comparisons between instruction in intervention and 

control classrooms.  An observer enhanced this study because her fieldnotes captured 

the instruction through the eyes of a trained mathematics educator.   

Research related to elementary and middle school students’ use of 

representations in conjunction with problem-solving performance still needs to be 

conducted.  Studies that examined problem solvers’ representation use provide insight 

into students’ problem solving, yet there are still gaps in this area specifically related to 

whether young students could learn to successfully implement alternate representations 

to solve word problems.  This study aims to examine whether students from the 

intervention group use more representations and if there is a relationship between using 
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nonsymbolic representations (i.e., pictorial, tabular, graphical, or verbal) and 

membership in the intervention group.   

Some studies used valid sampling techniques (i.e., purposeful or representative) 

when studying students’ behaviors so that results would be generalizable.  Only one 

study (i.e., Santos-Trigo, 1996) examined students’ multiple representation use, yet 

convenience sampling from two schools was used, which limited the generalizability of 

the results.  The current investigation improved upon Santos-Trigo’s work by 

convenience sampling students from one school rather than convenience sampling from 

two schools.  Furthermore, classrooms were selected so that differences (e.g., reading 

achievement, mathematics achievement, and free-and-reduced lunch status) between 

the intervention and comparison group were minimized.  Nearly every student from the 

three selected classrooms volunteered, which provided a better representative sample 

than self-selected volunteers from two schools as in Santos-Trigo’s research (1996). 

Prior analyses considered strategies that were representationally unique to be 

different (i.e., Bostic & Pape, 2010; Santos-Trigo, 1996).  This dissertation study 

followed this approach by coding students’ strategy use based on its representation.  

One category was added, which had not been examined by the previous investigators: 

mixed representations.  Employing two distinct representations that drew on the same 

type of representation were counted as two unique representations (i.e., mixed).  Thus, 

in the present study, the focus was on the number and types of representations used.  

Every investigation discussed here focused on problem solving, but the way 

students’ problem-solving performance was measured is somewhat concerning.  Mayer 

and Wittrock (2006) suggest that a learner cannot readily solve a problem, but instead 
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the individual needs to think deeper than usual, hence routine word problems (i.e., word 

problems with cuing and scaffolding-type language) as well as verbal translations of 

exercises, do not satisfy Mayer and Wittrock’s characterizations of a problem.  

Exercises have their place in instruction: to increase students’ efficiency while problem 

solving and to improve procedural competence (Kilpatrick et al., 2001; Mayer & 

Wittrock).  Routine problems and translation tasks were prevalent on instruments 

measuring students’ problem-solving performance (e.g., Charles & Lester, 1984; Klein 

et al., 1998; Sigurdson et al., 1994).  Complex and nonroutine word problems 

characterize the same types of tasks.  Items on the measures in the current study are 

open, realistic, and complex word problems and meant to be similar to prior measures 

(Verschaffel et al., 1999).  Thus, the question of whether a problem-solving oriented 

instructional intervention improves students’ performance on a test of word problems 

was addressed.  

Another issue with word problem tests comes up in Greer’s (1993) study.  The 

problem pairs on his instrument frequently used different language, and the second item 

in the pair typically had more complex sentence structures, which would be more 

problematic for students.  In one item pair, the first problem had 20 words whereas the 

second one had 40 words.  Problems were also not examined for their readability.  In 

the present study, readability of the pre- and posttest problems was examined and 

results indicated that measures were appropriate for middle school students.  Finally, 

students’ contextual knowledge and reading comprehension were not measured, which 

may contribute to the variance in results.  Improvements were made upon these studies 
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by using word problems, making certain that problem pairs are similar in readability and 

content, and an expert panel examined the items prior to their administration. 

A comprehensive expert panel is able to judge whether the tasks on the 

instruments are grade-level appropriate, problematic, realistic, allow for multiple 

representations, and that item pairs on the pretest and posttest are similar.  The expert 

panel consisted of two mathematics educators and one experienced classroom teacher.   

Finally, studies (i.e., Klein et al., 1998; Sigurdson et al., 1994; Verschaffel et al., 

1999) examined the effect of the intervention on students’ achievement.  Klein and his 

colleagues (1998) used an arithmetic test given annually to Dutch elementary students 

whereas others designed reliable achievement tests (Sigurdson et al., 1994; Verschaffel 

et al., 1999).  In these studies, the problem-solving interventions enhanced some or all 

students’ achievement but no study used prior mathematics achievement scores as a 

covariate when analyzing problem-solving performance.  Further studies are necessary 

to confirm whether the effects of interventions like those discussed here impact 

students’ content-specific achievement as measured by a unit test.  Considering that 

there is a positive correlation between mathematics achievement and problem-solving 

performance (Verschaffel et al., 1999), including prior mathematics achievement as a 

factor might improve the explanatory power of this study’s results.   

The literature provided a foundation for exploring ways to enhance students’ 

problem-solving performance and representation use.  A number of investigators 

constructed and implemented instructional interventions and some conducted the 

instruction themselves.  Prior investigations supported further exploring approaches to 

support students’ outcomes after experiencing problem-solving oriented mathematics 
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instruction.  Research also provided a foundation for conducting a study with such aims 

as theirs. 
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Figure 2-1. A model of the problem-solving process.   

Each textbox represents a stage of the problem-solving process.  Black lines indicate 
the pathways followed by effective problem-solvers whereas the dashed lines indicate a 
superficial pathway.  Adapted from Making Sense of Word Problems (p. xi), by L. 
Verschaffel, B. Greer, and E. De Corte, 2000, Lisse: Swetz & Zeitlinger.   
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CHAPTER 3 
METHOD 

Overview 

The goal of the present study is to examine the effects of an instructional 

intervention on sixth-grade students’ problem-solving performance and representation 

use.  The intervention involves teaching mathematics through problem-solving contexts.  

There are six research questions for this study.  

Questions and Hypotheses 

(1) Does the intervention influence students’ performance on a test of word problems? 

(1H) Students in the intervention group will show improved performance on a test of 
word problems after one month of the intervention. 

(2) Does the intervention influence the total number of representations students use on 
a word problem test? 

(2H) Students in the intervention group will use more total representations on the 
posttest than the pretest.  

 
(3) Does performance on a test of word problems differ between students from the 

intervention and comparison groups? 
 
(3H) Students in the intervention group will perform better on a word problem test than 

their peers in the comparison group. 
 
(4) Does the total number of representations used on a test of word problems differ 

between students from the intervention and comparison groups? 
 
(4H) Students from the intervention group will use more representations on a word 

problem test than their peers in the comparison group. 
 
(5) Is there a relationship between intervention status and students’ use of nonsymbolic 

representations on the problem-solving posttest? 
 
(5H) There is a relationship between intervention status and use of nonsymbolic 

representations (i.e., pictorial, tabular, and mixed) on the problem-solving 
posttest. 

 
(6) Does performance on a unit test differ between students from the intervention and 

comparison group? 
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(6H) There will be no differences between groups related to students’ performance on 

the unit test.  
 

Pilot Study 

In order to gather data to answer these questions, several steps were taken to 

create problem-solving tasks for two measures (i.e., pretest and posttest).  Measure 

construction followed the steps for test development outlined by Gall, Gall, and Borg 

(2007), which adhere to the Standards for Educational and Psychological Testing 

(American Educational Research Association, American Psychological Association, & 

National Council on Measurement in Education, 1999).  Those steps are (1) define the 

construct of interest, (2) define the target population, (3) review related instruments, (4) 

develop a prototype, (5) pilot the prototype and review results of analysis, (6) revise the 

instrument, and (7) collect data related to reliability and validity (Gall et al., 2007).  A 

thorough review of the problem-solving literature was conducted after deciding to 

investigate sixth-grade students’ (i.e., target population) problem solving (i.e., construct 

of interest).   

A pilot study was conducted in November 2010 to determine how prototype 

problem-solving measures might function with sixth-grade students in the United States, 

to confirm each measure’s dimensionality, explore item parameters, and investigate 

measure reliability (i.e., internal consistency and alternate-forms reliability).  Analyses of 

students’ responses led to revising the measures for the dissertation study.   

Context 

The pre- and posttest were administered in a school district in Florida different 

from the school selected for the dissertation study.  This school was purposefully 

selected because its students had similar achievement compared to the school selected 



 

83 

for the dissertation study.  The pilot and dissertation school 2009-2010 demographic 

information are provided in Table 3-1.  There were ten sections of sixth-grade 

mathematics.  Tests were administered during students’ mathematics period.   

Participants. All sixth-grade mathematics students except for English Language 

Learners (ELLs) and children with a learning disability were asked for their assent as 

well as their parent’s consent to participate.  A total of 169 sixth-grade students 

completed both measures, which was 77% of the sixth-grade population at the school.   

Measures  

Problem-solving measures administered to Dutch fifth-grade students 

(Verschaffel et al., 1999) best fit the parameters of this investigation.  An individual who 

is fluent in both Dutch and English translated the measures.  Each measure had eight 

items.  For example, one of the problems that was translated from the Dutch 

instruments was 

A group of 150 tourists wants to take a cable car to the top of a mountain. 
Each time a maximum of 9 tourists and a driver can go up. How many times 
will the cable car need to go up to the top of the mountain to take everyone 
there? (translated task from Verschaffel et al., 1999) 

The translated items were then modified for readability, cultural relevance, and realistic 

contexts.  The problems were intended to be complex in nature and it was expected that 

a problem solver could solve each task using a variety of representations.  The sample 

item shown above was revised to create the following item: 

A group of 150 tourists were waiting for a shuttle to take them from a 
parking lot to a theme park’s entrance.  The only way they could reach the 
park’s entrance was by taking this shuttle.  The shuttle can carry 18 tourists 
at a time.  After one hour, everyone in the group of 150 tourists reached the 
theme park’s entrance.  What is the fewest number of times that the shuttle 
picked tourists up from the parking lot? 



 

84 

This resulted in eight open-ended, items on the pre- and posttests that covered a 

variety of topics such as combinations and ratios (Appendices C and D).  A Flesh-

Kincaid grade-level readability analysis (Kincaid, Fishburne, Rogers, & Chissom, 1975) 

was conducted on both measures.  Values to the left of the decimal point indicate 

grade-level appropriateness.  The average readability score for the pre- and posttest 

was 5.81 and 7.01, which provides evidence that the items are fairly appropriate for 

sixth-grade students.  A mathematics teacher from a school not participating in the pilot 

or dissertation verified that items were sufficiently complex for sixth-grade students, 

could be solved in multiple ways, and drew on realistic contexts.   

Procedure 

All participants completed the posttest one week after they completed the 

pretest.  Participants were directed to solve each problem using multiple approaches, if 

known.  The directions were read aloud to students.  The teacher or researcher did not 

answer any questions related to the tasks.  Students completed each measure during 

their mathematics period.  A small group (i.e., less than 10% of the sample) was 

provided additional time during their lunch period to complete each measure.   

Data analysis 

Scoring protocol.  Students’ performance was scored as correct or incorrect 

using a scoring protocol (Appendix E).  Since the focus of the analysis was on accurate 

representation rather than accurate computation, responses that contained an 

arithmetic error or other slight error were scored as correct.  This is similar to prior 

analyses of students’ problem-solving performance (Verschaffel & De Corte, 1997; 

Verschaffel et al., 1999).   
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Representation coding protocol.  The representation coding protocol was 

created after reviewing prior research with students in this age range (Preston & 

Garner, 2003).  A representation was counted when the student made a distinct and 

successful attempt at solving the problem.  Lesh and Doerr’s (2003) strategy 

categorization scheme influenced the decision to code the ways students solved a task 

based on the representations used.  Students were expected to employ one of the 

following types of representations: (a) symbolic, (b) pictorial, (c) tabular, and (d) verbal.  

Employing a unique representation but committing an arithmetic error was counted as 

successful use of a representation.  The number of representations within a category a 

student employed and the total number of representations was calculated.   

Scoring and coding procedures.  Students’ responses were analyzed similarly 

for accuracy and representation use.  A second coder assisted the researcher in scoring 

and coding students’ responses to the tasks.  Initially, one coder and the researcher 

practiced analyzing tests together in order to ensure calibration.  After scoring ten tests, 

the pair agreed that they were familiar with the protocol and the process.  Next, the 

researcher randomly selected 20% of the tests and each person scored or coded the 

tests individually.  Interrater agreement was calculated using the rwg function (James, 

Demaree, & Wolf, 1984).  Interrater agreement is more appropriate for this study than 

interrater reliability because it is beneficial to show that two raters’ decisions are similar 

and that ratings would be identical for the rest of the tests (LeBreton & Senter, 2008).   

The minimum value suggested for interrater agreement is rwg = .90 (James et al., 1984).   

Analyses.  To examine the test and item properties, three analyses were 

conducted: Confirmatory Factor Analysis (CFA), Item Response Theory (IRT) analysis, 
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and internal consistency and alternate-forms reliability analyses.  CFA was conducted 

using Mplus version 6.0 (Muthén & Muthén, 2006) to determine whether one latent 

factor (i.e., problem-solving ability) accounted for the collinearity among multiple 

variables (Bryant & Yarnold, 1995/2005).  Several criteria must be met for a CFA to 

converge: (a) the number of observations must be greater than or equal to the number 

of free parameters, (b) the factor must have a scale, and (c) there must be at least three 

indicators (Kline, 1998).  Bryant and Yarnold (1995/2005) suggest a minimum of ten 

participants per item for conducting a factor analysis.  The number of participants (i.e., 

observations) was larger than the total number of variances, covariances, and number 

of factor loadings because 169 students completed both pilot measures.  Weighted 

least squares with adjusted means and variances was selected for the CFA.  The factor 

loadings and variances were set to one for simplicity.  Finally, there were eight items on 

the pre- and posttest thus the criteria for convergence were met in the present study.  

CFA was conducted to determine whether a one-factor model was appropriate, and IRT 

analyses were employed to calculate and examine item parameters.  

Model fit was measured using the chi-square statistic, Root Mean Square Error 

of Approximation (RMSEA), Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI). 

Nonsignificant chi-square values (Ullman & Bentler, 2009), RMSEA less than or equal 

to .06 (Bryant & Yarnold, 1995/2005), and CFI and TLI greater than .90 provide 

evidence of good fit (Ullman & Bentler, 2009).  Good fit indicates that the covariance 

matrix sufficiently aligns with the structure of the model under examination (Ullman & 

Bentler, 2009).  
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Next, IRT analysis was conducted using R.  Two R programs, eRm (Mair & 

Hatzinger, 2007) and ltm (Rizopoulos, 2006), were employed.  IRT methods provide 

more useful approximations of item difficulty and discrimination than Classical Testing 

Theory approaches (de Ayala, 2009; Embretson & Reise, 2000).  Item difficulties and 

discrimination were examined using the 1-PL model with unconstrained discrimination 

(i.e., discrimination varies freely).  Item difficulty characterizes the necessary ability level 

needed to have a 50% likelihood of correctly answering an item (de Ayala, 2009).  Item 

difficulties typically fall within a six-unit interval (i.e., [-3.0,3.0]), but items located below -

2.0 or above 2.0 are characterized as easy and hard items, respectively (de Ayala, 

2009).  Item discrimination was not fixed initially.  The fit of 1-PL logistic and 2-PL 

logistic model was compared using a likelihood ratio test and results indicated that the 

1-PL logistic model sufficiently fit the data as well as a 2-PL model.  Furthermore, a 1-

PL model was appropriate because of sample size limitations.  Other models (i.e., 2-PL 

or 3-PL) are not necessarily suitable for samples with fewer than 500 participants (de 

Ayala, 2009).  As item discrimination increases, the problem provides more precise 

information over narrower range of abilities (Embretson & Reise, 2000).  Finally, item 

information was found by calculating the product of the probability of a correct and 

incorrect response (Embretson & Reise, 2000).  The sum of item information on each 

test determined the test information (Embretson & Reise, 2000).  

Finally, internal consistency and alternate-forms reliability were calculated using 

a covariance structure model (Raykov, 2001) and the Pearson correlation, respectively.  

The covariance structure approach is a better internal consistency measure than 

Cronbach’s alpha, which typically underestimates reliability (Raykov, 2001).  To 
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calculate internal consistency reliability, ρ, factor loadings, factor variance, and error 

variances are needed.  Factor loadings of the items are summed and then this sum is 

squared.  The result is multiplied by the variance of the scale’s factor.  This product is 

divided by the quantity of the same value plus the sum of the error variances of the 

scale’s items.  The alternate-forms reliability indicates the degree to which two forms of 

a test are equivalent (Ary, Cheser-Jacobs, Sorenson, & Razavieh, 2009).  The minimum 

criterion for linking scores across tests measuring the same latent trait is .60 (Ary et al., 

2009).  Modest reliability (i.e., ρ = .60; r = .60) is sufficient for exploratory studies using 

newly developed tests and measures with few consequences for participants (Ary et al., 

2009).  Researchers should strive, however, for reliability near ρ = .80 and r = .80 or 

higher (Gall et al., 2007).   

Results 

Interrater agreement.  After scoring the pretest and posttest, the pair had rwg  = 

.99 and rwg  = 1, respectively.  Interrater agreement related to coding students’ 

representations was rwg = .96 for both measures.  The interrater agreement exceeded 

the minimum criterion.  

Descriptive information.  Mean performance on the pre- and posttest are located 

in Table 3-2.  Scores were slightly lower on the pretest than the posttest, but they were 

not significantly different.  Students were most successful at solving question one on the 

pretest (i.e., 104 students) and posttest (i.e., 111 students).  On average, students used 

symbolic representations on most pre- and posttest tasks with one exception.  There 

were roughly an equal number of symbolic and pictorial representations for responses 

to question one on both measures.  In total, there were 29 and 39 tabular 

representations on the pre- and posttest, respectively.  Participants tended not to use 
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verbal representations.  There were a total of 11 and 14 verbal representations on the 

pre- and posttest, respectively.  No participant employed a graphical representation.   

Model fit.  Results from the CFA for the pretest revealed a nonsignificant chi-

square value χ2(20) = 21.07, p = .39 and the RMSEA indicated close fit, RMSEA = .03.  

CFI and TLI were both .99.  Similarly, the factor analysis for the posttest resulted in a 

nonsignificant chi-square value, χ2(20) = 21.42, p = .37, RMSEA = .02, and CFI and TLI 

were both .99.  There was sufficient evidence of good fit for one latent variable on both 

measures.  CFA parameter estimates and thresholds are provided in Tables 3-3 and 3-

4.  After gathering evidence of good fit, item parameters for the pre- and posttest were 

examined. 

Item parameters.  Pre- and posttest item difficulties and discriminations were 

estimated using the 1-PL model with unconstrained discrimination.  These values as 

well as item information are presented in Tables 3-3 and 3-4.  The pretest items’ 

difficulty ranged from -0.49 to 2.82.  Standard error related to item difficulty was greater 

than 0.17 and less than 0.39.  The first item had a negative item difficulty, which 

suggests an easier item.  Items two and three had larger item difficulties, indicating fairly 

difficult tasks.  Items four, five, six, seven, and eight had fairly similar item difficulties 

and might be characterized as somewhat difficult items.  The discrimination for each 

item on the pretest was constrained by the program to 1.24, indicating that the items 

provide adequate information over a fairly wide range of abilities.  Pretest item 

information ranged from 0.03 to 0.23 and test information was 0.93.  

The results from analyses of the posttest were similar to those from the pretest 

for some items: item difficulties ranged from -0.66 to 3.47 and standard errors were as 
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small as .17 and as large as .51.  Item one on the posttest was the only task that had a 

negative item difficulty.  Items two and three had fairly large item difficulties, indicating 

that most students were unable to solve them.  Items five, six, seven, and eight had 

fairly similar item difficulties.  Item discrimination for the posttest was 1.28, which was 

similar to the pretest.  Posttest item information ranged from 0.01 to 0.21 and test 

information was 1.16.  These results from the pretest and posttest informed instrument 

construction for the dissertation study. 

Reliability.  Internal consistency for the pre- and posttest was .79 and .88, 

respectively.  Alternate-forms reliability was calculated using participants’ overall 

performance on each test, which was r = .60.  

Revisions to Measures and Protocols 

Decisions related to final problem-solving measures were guided by four factors: 

improving (1) internal consistency and (2) alternate-forms reliability; (3) creating shorter 

instruments; and (4) maintaining items with item difficulties between negative one and 

two.  The tests were shorter than the originals and provided sufficient information 

resulted from a pre- and posttest with five problems each.  Items one, five, six, seven, 

and eight were retained for the dissertation measures.  The internal consistency for the 

five-item pre- and posttest was estimated to be .79 and .72, respectively.  The 

justification for the five-item measures used in the dissertation study is provided below. 

Tasks with item difficulty greater than two were perceived to be too difficult for an 

average-achieving sixth-grade student.  Items two and three on both measures were 

above 2.0 and were not retained for the dissertation measures.  Item difficulty for the 

fourth task on the pretest indicated that only exceedingly above-average students 

solved it whereas slightly above-average students were able to solve the fourth item on 



 

91 

the posttest.  The fourth item was deleted from both measures since they did not have 

similar item difficulties.  After deleting items two, three, and four from both the pre- and 

posttest, each measure had five items.  

Results from this pilot study also supported refining how students’ 

representations were coded.  There were occasions where students employed multiple 

representations (e.g., a picture and a symbolic expression).  As a result of the analyses, 

the representation coding protocol was modified so that it contained a category for a 

mixture of representations.  This new category (i.e., mixed) contained several 

subcategories indicating which representations were used during problem solving.  For 

example, the symbolic-pictorial code might be applied when a student used an 

approach that included elements of a symbolic- and pictorial-orientation.  There was no 

pictorial-symbolic code because it was indeterminable whether the student used the 

pictorial or symbolic representation first.  The Representation Coding Protocol 

(Appendix F) used in the dissertation study was identical to the one used in the pilot 

study except for the addition of the mixed category.   

Research Design for the Dissertation 

This study employed a nonequivalent control-group quasi-experimental research 

design (Gall et al., 2007).  Quasi-experimental designs are necessary when participants 

cannot be randomly assigned to an intervention thus there are multiple potential threats 

to internal validity (Gall et al., 2007).  The researcher who designed the instructional 

intervention was also the instructor in that classroom therefore “the researcher” or “the 

instructor” describe the same person.  
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Context of the Study 

Sixth-grade students were chosen as the population of interest because of 

developmental and academic-related reasons as well as prior investigations conducted 

with students of approximately this age (e.g., Charles & Lester, 1984; Verschaffel & De 

Corte, 1997; Verschaffel et al., 1999).  Early adolescence has been theorized as an 

important developmental time for students because many children develop academic-

related beliefs that are maintained throughout their K-12 academic career (Zusho & 

Pintrich, 2002).  Students at this age-level have developed sufficient content knowledge 

that allows them to solve a variety of problems using multiple representations (Preston 

& Garner, 2003).  The sixth-grade mathematics standards provide ample opportunities 

to solve word problems and explore representation use (FLDOE, 2007).  Four sixth-

grade benchmarks from the NGSSS (FLDOE, 2007) were the focus of instruction during 

the study: 

• MA.6.A.2.1 Use reasoning about multiplication and division to solve ratio and rate 
problems 

• MA.6.A.2.2 Interpret and compare ratios and rates   

• MA.6.S.6.1 Determine the measures of central tendency (mean, median, and 
mode) and variability (range) for a given set of data 

• MA.6.S.6.2 Select and analyze the measures of central tendency or variability to 
represent, describe, analyze and/or summarize a data set for the purposes of 
answering questions appropriately.  

A K-12 school located in Florida was selected for the dissertation study using 

convenience sampling.  The participating school has roughly 1,100 students and its 

student body represents the diversity in the state of Florida (Public School Review, 

2010).  Its students tend to perform well on high-stakes tests but the school did not 

make Adequate Yearly Progress in the year prior to this study (FLDOE, 2010b).  The 
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student population at the school level is approximately 51% Caucasian, 25% African-

American, 16% Hispanic, 5% Multiracial, 3% Asian/Pacific Islander, and less than 1% 

are American Indian (FLDOE, 2010a).  Roughly 17% of the students are eligible for the 

free-or-reduced lunch program and there are no ELLs at this school.  About 10% of the 

student body are identified as having a disability and receive accommodations.   

Layout in the Classroom.  All sixth-grade students received mathematics 

instruction in the same classroom resulting in identical classroom layout across 

sections.  There were two whiteboards approximately ten feet in length located along 

the front and side of the classroom.  A projector and document camera were situated 

near the front of the classroom.  There were six clusters of three or four desks spread 

around the room.  Each desk had an empty name placard that contained multiplication 

tables for the numbers zero through twelve as well as a ruler with inch and centimeter 

markings.  Homework assignments were located on the front whiteboard.  Copies of 

mathematics textbooks and workbooks were located in the back of the classroom.  

Each child had his/her own workbook and could use a textbook from the class set 

during class.  Mathematical manipulative materials (e.g., bi-color counters) and four-

function calculators were located in the back of the classroom.  

Participants  

The sixth-grade mathematics teacher teaches five sections of sixth-grade 

mathematics with approximately 22 students in each class.  Students from three sixth-

grade mathematics classrooms and their mathematics teacher were invited to 

participate in the study.  Three sections that met on the same day were selected.  One 

section was randomly assigned to receive the intervention.   
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Twenty students from each comparison classroom and eighteen students from 

the intervention classroom volunteered for the study.  None of the participants received 

services for a disability.  Tables 3-5 and 3-6 provide participants’ demographic and prior 

achievement data.  More than half of students from each group were white and most 

students were not receiving free-or-reduced lunch.  There were more female than male 

participants and this was most participants’ first year at the school.  On average, 

students from the comparison group scored ten points higher than their peers in the 

intervention group on the reading FCAT and four points higher on the mathematics 

FCAT, but there were no significant differences in prior achievement between the 

comparison and intervention group.  Chi-square analyses were also conducted to 

determine whether there were differences between groups’ gender, ethnicity, and free-

and-reduced lunch status prior to the intervention.  Results indicated that the groups 

had similar demographics. 

Instrumentation  

Three instruments facilitated data collection during this study including a 

Problem-Solving Pretest (Appendix G), Problem-Solving Posttest (Appendix H), and a 

unit test (Appendix I).  The two problem-solving measures were designed to capture 

students’ problem-solving performance and their representation use during problem 

solving.  The unit test was used to collect data about students’ learning of rates, ratios, 

and data analysis. 

Problem-Solving Measures 

Development of the problem-solving pre- and posttest for this study resulted from 

the process described earlier.  The pre- and posttest had five items each.  Items were 
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presented individually on separate sheets of paper.  Participants were asked to solve 

each problem and provide additional solution methods, if known.  

Unit Test 

The unit test was adapted from the assessment materials that accompanied the 

class textbook: Big Ideas: Math 6 (Larson & Boswell, 2010).  The test was two pages 

long and focused on (1) ratios, (2) rate, and (3) mean, median, mode, and range.  The 

test had sixteen items total, five of those items required two or more correct responses 

in order to receive full credit.  For example, one item asked students to find the mean, 

median, mode, and range of a nine-item data set as well as explain which measures 

best represent the data set.  Three items required students to explain or justify their 

response.  There was no available reliability information for the unit test.  Therefore, 

internal consistency was calculated using data collected during the dissertation study.   

Reliability.  The internal consistency of the problem-solving measures was 

calculated using the data from the dissertation study.  It was ρ = .79 for the pretest and 

ρ = .72 for the posttest.  The alternate forms reliability was r = .77.  This value satisfies 

the requirement to link participants’ problem-solving performance scores across tests 

(Ary et al., 2009). 

All participants’ overall scores on the unit test were collected; however, 

responses to individual items from students in the comparison group were not gathered 

during data collection.  Responses from students in the intervention group were used to 

calculate the unit test’s internal consistency, which was ρ = .82.  The first item was 

excluded from analysis because it had zero variance since every student gave the 

correct response.  
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Procedures  

A timeline for the dissertation study is presented in Table 3-7.  The researcher 

approached faculty and administrators at the school about the study in October 2010.  

Classroom instruction in three sections of sixth-grade mathematics was regularly 

observed November 29 – December 14 to give students an opportunity to become more 

familiar with the researcher’s presence in their classroom.  On January 3, 2011, the 

classroom teacher and the researcher briefly discussed the study with students in three 

sixth-grade classrooms.  Consent paperwork for students’ parents or guardians was 

sent home following this visit.  Students completed the pretest January 5 and the 

instructor took over instruction in the intervention classroom following test 

administration.  The researcher became the instructor in one classroom while the 

classroom teacher continued her instruction in two comparison classrooms.  This 

instruction is characterized as the teaching, learning environment, and instructional 

actions that occurred in the absence of the intervention.  The classroom teacher was 

not present in the intervention classroom during the study.   

Data Collection 

Student demographic information 

Students’ gender, ethnicity, fifth-grade mathematics and reading FCAT scores, 

free-and-reduced lunch status, and years attending this K-12 school were collected from 

students’ records by school faculty.   

Pretest and posttest 

The pretest and posttest were administered during students’ regular mathematics 

class on January 5 and 26, respectively.  The teacher did not participate in test 

administration.  The researcher read the directions aloud to students and then students 
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began working on the measure.  When students asked for assistance the researcher 

said, “I’m sorry, I cannot answer any questions about the problems.  I encourage you to 

reread the problem and answer the question.”  Participants across all sections were 

given one hour to complete each measure.  Students in every section completed the 

pretest in approximately 20 minutes.  Students in the comparison classrooms took 

approximately 30 minutes to complete the posttest whereas participants from the 

intervention group took approximately 45 minutes.  Those absent on test administration 

days completed the measures during their lunch period when they returned to school.   

Unit test 

Participants in every section were administered a unit test by the classroom 

teacher on January 28.  Students received 90 minutes to complete the test.  Most were 

done within 60 minutes.  The classroom teacher gave students a copy of the test and 

asked them to show all of their work.  During test administration, she answered 

students’ questions about items but did not give them the answer.  The classroom 

teacher indicated that her responses were meant to provide scaffolding.  Students were 

instructed to quietly work on an unrelated mathematics assignment when they finished 

the test.   

Classroom Instruction Observations 

Instruction was videotaped in the intervention and one comparison classroom 

everyday.  Multiple cameras were placed around the classroom in order to capture 

small-group and whole-class discourse.  A third-year graduate student observed 

instruction and took fieldnotes in these classrooms one day during the second, third, 

and fourth week for a total of three observations in each classroom.  She had completed 
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one course in qualitative research methods and had a background in mathematics 

education.   

A review of the literature was conducted to locate an instrument to focus her 

observations on specific facets of instruction.  The Reformed Teaching Observation 

Protocol (Sawada et al., 2002) was selected because it provided the observer an 

opportunity to rate aspects of the instruction (e.g., teaching for conceptual and 

procedural understanding as well as classroom culture) as well as make comments.  It 

was slightly modified for this study, for example one item was modified from “The lesson 

involved fundamental concepts of the subject” (Sawada et al., 2002) to “Lesson involved 

fundamental concepts of mathematics” so that the protocol focused exclusively on 

areas pertaining to mathematics classrooms and instruction.  The protocol’s purpose 

was to (a) focus the graduate student’s observations on key facets of the classroom and 

instruction as well as (b) provide another perspective that would inform 

characterizations of mathematics instruction in each classroom.  A copy of the 

Observation Protocol used in this study is located in Appendix J.  Besides having 

measures and protocols for the study, other preparations were made to conduct this 

study.  

Preparations for Implementing the Intervention 

The teacher and instructor discussed the standards that needed to be taught 

during the month-long intervention.  The sixth-grade mathematics classes that 

participated in the study met for 45 minutes on Mondays and 90 minutes on 

Wednesdays and Fridays.  The content in the intervention and comparison classrooms 

focused on the same content from four sixth-grade mathematics standards:   
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• MA.6.A.2.1 Use reasoning about multiplication and division to solve ratio and rate 
problems 

• MA.6.A.2.2 Interpret and compare ratios and rates   

• MA.6.S.6.1 Determine the measures of central tendency (mean, median, and 
mode) and variability (range) for a given set of data 

• MA.6.S.6.2 Select and analyze the measures of central tendency or variability to 
represent, describe, analyze and/or summarize a data set for the purposes of 
answering questions appropriately.  

Students in both groups had equal access to mathematical manipulatives as well 

as other materials during the intervention.  This school uses the Everyday Mathematics 

(Bell et al., 2004) series in elementary classrooms, and Big Ideas: Math 6 (Larson & 

Boswell, 2010) in sixth grade.  Students in the comparison group continued to 

experience their instruction from their classroom teacher.  Instructional materials in the 

intervention classroom typically included one or two word problems that built upon 

students’ prior knowledge and supported learning new ideas as well as discussions 

about ways to solve problems.  Students were expected to spend most of the 

instructional time exploring and discussing problems.   

Classroom instruction with the intervention group drew on the cognitive model of 

problem solving (Verschaffel et al., 2000) and encouraged students to (1) read and 

understand the problem, (2) make sense of the task’s situation with a model, (3) craft a 

mathematical model, (4) use a strategy, (5) check to see whether their result matches 

their model of the situation presented in the task, and (6) finally report their solution.  A 

poster-sized version of the “Guide to the six stages of problem solving” (Appendix A) 

was displayed on the intervention classroom’s walls.  Index-card sized versions of the 

“Six stages of problem solving” (Appendix B) were placed on students’ desks and 

served as reminders to students receiving the intervention.  The six problem-solving 
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steps found in each guide were adapted from the problem-solving model (Verschaffel et 

al., 2000).  The poster-sized guide included questions intended to stimulate students’ 

ideas while problem solving and focus their attention on critical aspects at each 

problem-solving stage.  Questions were adapted from ideas discussed by Verschaffel et 

al. (2000) and Polya (1945/2004).  Two mathematics educators and one classroom 

teacher examined the guides for their appropriateness with sixth-grade students.  The 

poster and index-card sized descriptions were removed after each lesson so that 

comparison group students and their teacher did not have access to them during 

instruction.   

Students in the intervention group had homework regularly that was assigned by 

the instructor.  The purpose of the homework was for students to master content 

through solving problems and to gain efficiency by completing exercises.  Students 

typically had assignments based on content seen during class that involved three to six 

exercises as well as one word problem.  Homework assignments were designed with 

the intention that students might spend more time working on the problem rather than 

exercises.  Homework tasks were drawn from the classroom textbook, other 

instructional resources, and instructor-created materials.  It was expected that students 

might complete homework assignments in 20-30 minutes.   

The instructor developed and administered two quizzes to students in the 

intervention group using the quiz given to students in the comparison group as a 

template.  These quizzes evaluated students’ learning related to the mathematics 

standards and informed instruction.  Students did not receive grades from the instructor, 
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yet assignment completion was recorded for each child and submitted to the classroom 

teacher.   

One feature of the instructional intervention was that mathematical discourse was 

intended to support mathematics learning through problem-solving contexts.  During the 

study, the instructor attempted to establish social and sociomathematical norms in the 

intervention classroom with the aim of creating a student-centered, discourse-rich 

learning environment. 

Instructional norms   

On the second instructional day, students and the instructor discussed 

expectations for mathematics learning, including appropriate social and 

sociomathematical norms.  Some examples of social norms are to (a) actively listen to 

each person’s contribution, (b) speak after an individual has finished talking, (c) give 

each person your attention, and (d) not participate in side conversations while someone 

is speaking (Lampert, 1990; Lo & Wheatley, 1994).  Some sample sociomathematical 

norms include (a) giving explanations followed by a mathematical justification, (b) using 

“I think” statements, and (c) commenting on individual’s ideas rather than the individual 

(Cobb, Boufi, McClain, & Whitenack, 1997; Yackel & Cobb, 1996).  These social and 

sociomathematical norms were established by the instructor and transcribed onto 

posters, which were placed in a prominent location in the classroom and removed at the 

end of the intervention group’s mathematics period.  Copies of these posters are found 

in Appendices K and L.   When these norms were first brought to students’ attention, 

they practiced following them through role play and students were asked to practice 

adhering to them while working on their first problem that day.  Students who were 

doing an exceptional job of following the norms were pointed out during class as being 
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good models for others to follow.  Students were reminded to adhere to these 

expectations while working on classwork and at times the class convened to review the 

expectations in class.   

During the second week of the study, students asked to revise the norms.  A 

student suggested that no electronics except calculators should be permitted in class.  

Another student added that students should not sit on desks during class.  Students and 

the instructor agreed that the revisions were fair and appropriate.  There were no visible 

reminders of class expectations in the comparison group.   

Instructional tasks and materials   

Teaching mathematics through problem-solving contexts does not necessarily 

require tasks that are very different from the textbook (Russell, Esten, Rook, Scott, & 

Sweeney, 2003).  Kilpatrick (1987) suggests that selecting “structured problems 

requiring productive thinking” facilitates procedural and conceptual understanding of 

mathematics (p. 134).  The process related to creating problems for each lesson began 

by examining the benchmarks, searching for a model task in one of the resource 

materials, and reflecting on ways to turn the task into an open and complex problem 

that drew on realistic contexts.  

Modifications were made to textbook problems and supplemental materials so 

that problem solving became a more prominent focus during instruction.   A sample 

lesson that includes problems about movies, pizza, local weather, and keyrings is 

provided in Appendix M.  For instance, the idea of solving a problem that involved 

examining the pizza prices of local restaurants came from the class’ textbook.  The 

problem in the textbook was originally structured so that students were expected to 

translate a verbal statement (i.e., “You pay $27 for 3 pizzas” (Larson & Boswell, 2010, 
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p. 198) into a symbolic expression describing this ratio and unit rate.  A picture of three 

pizzas accompanied the verbal statement.  Informal discussions with students at the 

school prior to the study suggested that many students were familiar with purchasing 

pizza from many local establishments.  Next, tasks such as this one were modified so 

that they became problems.  A description of this process is provided.  First, the data 

from the old task was augmented with additional information such as the prices of 

various types of pizza (e.g., cheese only, pepperoni, and any five toppings) as well as 

each restaurant’s dimensions of a large pizza.  The original textbook task required 

students to interpret the verbal statement and respond to one question with two parts.  

Next, additional questions were added to the task that required students to think about 

multiple issues related to data analysis as well as rates and ratios.  This revised 

problem asked students to find the smallest ratio describing the cost of one slice of 

cheese pizza and to think about appropriate ways to describe the data set (i.e., what is 

the typical value for a large pepperoni pizza?).  Third, names of restaurants in the 

original problem were updated to simulate a realistic context.  With these changes to the 

original task, students might draw on their feelings about pizza from each restaurant as 

a determining factor for ordering pizza.  Problems were meant to be complex, open, and 

relevant to students’ experiences.  Additionally, critical components of the instruction 

included time for students to analyze the problems on the their own, in small groups, 

and as a class.    

Instructional format  

The instructional goals in the intervention classroom were to (a) support students 

to become more effective problem solvers; (b) enhance their facility with multiple 

representations; and (c) teach mathematics required by the NGSSS.  Lessons in the 
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intervention classroom conducted during block scheduled periods tended to follow this 

order: (1) check homework, (2) complete warm-up task, (3) discuss issues related to 

homework, (4a) individual work on one problem, (4b) examine the problem with a 

partner or in a small group, (4c) discuss the problem with the entire class, and (5) and 

complete a concluding activity meant to stimulate reflection.  Roughly 35-50 minutes in 

total were spent discussing a problem in small groups and as class. 

Discourse  

Conversations about mathematics were a noticeable feature in the intervention 

classroom.  Questions promoted and initiated mathematical discussions.  A list of 

general questions is provided in the problem-solving guide (Appendix A), but it was 

augmented during instruction.  General questions such as those provided by 

Schoenfeld (1987) assisted students to reflect on their thinking, “What (exactly) are you 

doing? (Can you describe it precisely?), (b) Why are you doing it? (How does it fit into 

the solution?), (3) How does it help you? (What will you do with the outcome when you 

obtain it?)” (p. 206).  Some questions posed to students by the instructor during the 

study that are related to problem solving are “What is this problem telling you?”, “What 

are you picturing in your mind after reading this problem?”, “Why do you think that way 

helps you to solve the problem?”, “How do you know that’s the answer?”, “Is there 

another way to solve this problem?”, and “What new ideas did you learn that connect to 

what you learned earlier?”.  These questions and others were projected onto the 

classroom’s whiteboard during problem-solving activity as a way to stimulate dialogue 

and students were encouraged to ask each other questions while collaborating.  

Discourse was intended to support students’ learning mathematics content through 

problem solving and foster greater facility with representations. 
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Data Analysis  

Description of Classroom Instruction 

Two sources of data were used to describe the classroom instruction: videotapes 

of the instruction and the observer’s fieldnotes from the protocol.  The following 

procedures facilitated describing classroom instruction in the intervention classroom and 

one section from the comparison group.   

First, the researcher felt that lessons in the intervention classroom occurring 

during the initial week might differ from others because students and the instructor 

needed to become familiar with new norms, tasks, and instruction.  Thus, descriptions 

of instruction in the intervention classroom during the first and subsequent weeks were 

constructed separately.  Since instruction in the comparison classroom was a 

continuation from prior class meetings, there was no expectation that instruction during 

the first week might differ from the others.  Next, data collected using the videorecorder 

were reviewed and the researcher made notes about aspects of instruction in both 

classrooms.  These notes were intended to be descriptive rather than analytic.  

Following this, the researcher examined the completed protocols and integrated ratings 

and the observer’s descriptions into the instructor’s notes.   

Then, the researcher developed an outline that broadly characterized 

instructional format and activities (e.g., station work) in each classroom.  It also 

facilitated keeping track of the amount of time that was spent on each activity.  After 

creating the outline, three observations from the 90-minute periods were randomly 

selected and examined, again.  The decision to view 90-minute classes excluded 

Mondays, which were only 45 minutes.  
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While viewing the videorecorded data, the researcher counted the amount of 

time spent on an activity and described it within the outline.  Discourse was an important 

element in the classroom.  Hence, the researcher also attended to the ways that 

discourse occurred in both groups.  Broad descriptions of common discourse patterns 

were added to the outline as well.  An instructional summary for each classroom was 

created after examining three observations.  Regardless of the attempts made to be 

objective and fair during this process, the instructional summaries were colored by the 

researcher’s perspective.  In order to maintain a fair and appropriate description of each 

classroom, the summaries of instruction in both classrooms were sent to the observer, 

and the classroom teacher read and provided feedback on the description of her 

instruction.  Revisions were discussed with the observer and classroom teacher, and 

modified summaries were created using their feedback and descriptions of the 

instruction are provided in the results section.  These summaries provide a context for 

understanding the effects of the intervention on students’ problem-solving performance 

and representation use.   

 Coding and Scoring Measures 

Pretest and posttest 

Students’ performance was scored as correct or incorrect and procedures 

followed the same format as the pilot study.  Appendix E contains the Scoring Protocol.  

The sum of students’ scores indicated their overall performance on the test.  The 

maximum score on either test was five points.  The researcher and a second coder 

scored 20% of the tests and interrater agreement was calculated using the results.  The 

interrater agreement for scoring students’ performance on each measure was rwg = 1. 
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A second coder assisted the researcher in coding students’ representation use.  

The number of representations each participant employed on the pre- and posttest was 

coded using identical procedures to the pilot study.  The number of representations 

within a category and total number of representations employed on each test were 

calculated.  The Representation Coding Protocol (Appendix F) facilitated coding 

students’ approaches for solving problems.  Students’ responses were coded using the 

following five representation categories: symbolic, pictorial, tabular, verbal, and mixed.  

The mixed category had six subcategories to characterize the two representations used 

to solve a problem.  Again, 20% of the tests were randomly selected and interrater 

agreement was calculated using the results.  The researcher and coder had high 

interrater agreement coding students’ representation use on the pretest and posttest 

(rwg = 1).  These statistics provide evidence that the pairs agreed on every score and 

code applied during the independently coded sample of the pre- and posttests. 

Unit test 

The classroom teacher scored the unit tests for the three participating sections of 

sixth-grade mathematics.  Each response was scored as correct or incorrect and was 

equally weighted.  The maximum possible score was 25 points. 

Analyses 

Problem-solving measures 

Data analyses were conducted using Statistics Package for the Social Sciences 

(SPSS) 18.0.  Descriptive statistics of students’ demographic information as well as 

performance and representation use on the problem-solving measures and scores on 

the unit test are presented in Table 3-8.  Data were examined for their distribution and 
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homogeneity of variance (Shavelson, 1996).  The degree to which assumptions of the 

tests were met is discussed in the results section.   

Initially, a repeated measures t-test was employed to determine whether the 

intervention was effective at improving problem-solving performance and total number 

of representations used within each group.  Next, students’ performance and 

representation use on the posttest were investigated using Poisson regression.  

Poisson regression is appropriate when the dependent variable is a count rather than a 

continuous variable (Agresti & Finlay, 2009).  The pretest score, number of 

representations employed on the pretest, students’ free-and-reduced lunch status, 

gender, ethnicity, years attending the school, and students’ scale scores from the fifth-

grade mathematics and reading FCAT served as covariates for multiple regression 

analyses.  Verschaffel et al. (1999) found significant interaction effects between 

students’ prior problem-solving performance and intervention status thus an interaction 

effect containing pretest performance and intervention status was added to the 

regression model.  Categorical variables were given values or dummy coded to facilitate 

regression analyses (Table 3-9).  Prior evidence showed that mathematics and reading 

achievement were correlated (Vilenius-Tuohimaa et al., 2008) thus issues with 

multicollinearity were explored using the Variance Inflation Factor (VIF) statistic.  VIF is 

a measure that represents the increase in variance due to an independent variable 

being correlated with other predictors thus causing multicollinearity (Agresti & Finlay, 

2009).  Multicollinearity exists if VIF > 10 (Agresti & Finlay).   

Model building examining the influence of the predictor variables on the 

outcomes was conducted by using backwards elimination, which sequentially deletes 
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variables one at a time from the model that contains all of the variables (Agresti & 

Finlay, 2009).  This procedure is best for creating a good set of predictors that explain a 

significant amount of variance in students’ outcome (Agresti & Finlay, 2009).  

Furthermore, backwards elimination procedures support investigations for a 

parsimonious model and also attend to statistical and theoretical implications (Hamilton, 

2009).  The criterion to drop a variable was set at .05.  A focus of this study was to 

explore whether the instructional intervention and other covariates impacted students’ 

outcomes and not necessarily make strong causal claims.  Therefore, automated 

procedures such as those found in SPSS are permissible (Agresti & Finlay, 2009).  The 

initial model containing intervention status, all covariates, and the interaction effect is 

shown below. 

Posttest performance = a + β1(Pretest Performance) + β2(Intervention Status x Pretest  
Performance) + β3(Total Representation Use_Pretest) + β4(Intervention Status) + 
β5(Reading Scale Score) + β6(Mathematics Scale Score) + β7(Free-and-Reduced 
Lunch Status) + β8(Gender) + β9(Years of Attendance) + β10(Hispanic) + β11(African 
American) + β12(Multiracial) + β13(Asian American) 
 

Analyses were examined to make certain that main effects were not removed if the 

interaction effect was significant.  Covariates that were not significant at p = .05 were 

deleted and the model was re-estimated.  This process continued until only significant 

covariates remained in the model.  Finally, a chi-square test was performed to 

determine whether the final model was significant compared to an intercept-only model.  

A similar set of analyses was conducted using total number of representations 

employed on the posttest as the outcome variable.  The initial model shown below 

characterizes the number of representations students used on the posttest as a function 

of their pretest outcomes, intervention status, and background.  Covariates were 
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eliminated and the model was subsequently reanalyzed until only significant regression 

coefficients remained.   

Total Representation Use_Posttest = a + β1(Total Representation Use_Pretest) +  
β2(Pretest Performance) + β3(Intervention Status x Pretest Performance + 
β4(Intervention Status) + β5(Reading Scale Score) + β6(Mathematics Scale Score) + 
β7(Free-and-Reduced Lunch Status) + β8(Gender) + β9(Years of Attendance) + 
β10(Hispanic) + β11(African American) + β12(Multiracial) + β13(Asian American) 
 

When there was a significant difference between groups, Cohen’s d was used to 

explain the size of the difference in terms of standard deviations.  Each group’s mean 

was calculated from the multiple regression equation (i.e., regression coefficients).  

Measures of effect size were compared to the average annual gains in effect size 

associated with sixth-grade students’ performance on nationally normed tests (Bloom, 

Hill, Black, & Lipsey, 2008) and mean effect size on achievement measures for students 

in fourth- through sixth-grade (Hill, Bloom, Black, & Lipsey, 2008).  These types of 

comparisons provide a more appropriate context for interpreting effect size rather than 

Cohen (1988) or Lipsey’s (1990) context-free benchmarks.  

A chi-square analysis was conducted using two categorical variables: 

intervention status and students’ use of nonsymbolic representation (i.e., pictorial, 

tabular, and mixed) on the posttest.  Table 3-10 shows the means and standard 

deviations for each group’s posttest representation use.  Verbal representations were 

omitted from the chi-square analyses because participants did not use them on the 

posttest.   

Unit test 

The mean and standard deviation for each group’s performance on the unit test 

were calculated and are located in Table 3-8.  Next, the residual plots and spread of the 

data were examined to provide evidence that the normality assumption had been met.  



 

111 

A Levene’s test was conducted to determine whether the variance of scores in each 

group were equal.  Scores are nested within a section, yet students’ performance was 

being treated as independent of others within the section.  After exploring whether the 

assumptions were met, differences between the intervention and comparison students’ 

scores were analyzed using ordinary least squares multiple regression.  Prior 

mathematics achievement was included as the only covariate. 

Summary 

The design of this study was based on prior problem-solving research conducted 

in classrooms with adolescents (i.e., Verschaffel et al., 1999).  A pilot study was 

conducted to construct the pre- and posttest measures for the dissertation study.  The 

responses to the tasks were scored and coded with respect to the type of 

representation used during problem solving.  After scoring and coding, the data were 

analyzed to examine whether there were within-group and/or between-group differences 

on the measures following a four-week intervention.  Secondary analyses were 

conducted to explore the relationships between intervention status and type of 

representation used on the posttest.   
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Table 3-1. Demographic information for schools  

School 
Overall 
Grade 

% Meeting 
High 

Standards in 
Reading 

% Meeting 
High 

Standards in 
Math 

% Making 
Learning 
Gains in 
Reading 

% Making 
Learning 
Gains in 

Math % Minority  

% Receiving 
Free-and-
Reduced 

Lunch 
Pilot Study Ab 87 82 69 63 39 50 
Dissertation Ab 78 85 66 79 50 15 

a (FLDOE, 2010b) b Florida schools are graded each year using a number of factors.  The majority of students at “A” 
schools earned a passing grade on the FCAT and the bottom quartile of students made adequate scholarly progress. 
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Table 3-2. Mean and standard deviations of pilot study participants’ performance 
  Mean Std. Dev.  

Pretesta 1.68 1.52 
Posttesta 2.11 1.68 

a N = 169 
 
 
Table 3-3. Pilot study pretest item information 
Test Parameters Item 
  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 
CFA  

Estimate 0.22 0.72 0.59 0.65 0.59 0.83 0.70 1.12 
Std. Error 0.22 0.10 0.13 0.09 0.12 0.06 0.09 0.05 
Threshold 1.80 1.38 1.02 0.67 0.97 0.97 0.88 0.64 
Std. Error 0.26 0.20 0.17 0.15 0.16 0.16 0.16 0.15 

IRT         
Difficulty -0.49 2.82 2.47 1.74 0.99 1.65 1.69 1.53 
Std. Error 0.17 0.39 0.34 0.25 0.19 0.24 0.24 0.23 
Discrimination 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 
Std. Error 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
Item Information 0.23 0.03 0.05 0.10 0.18 0.11 0.11 0.12 

 
 
Table 3-4. Pilot study posttest item information 
Test Parameters Item 
  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 
CFA  

Factor Loading 0.38 0.37 0.38 0.78 0.65 0.56 0.52 0.83 
Std. Error 0.13 0.23 0.16 0.08 0.09 0.10 0.11 0.07 
Threshold -0.40 1.98 1.39 0.80 0.49 0.55 0.70 0.57 
Std. Error 0.10 0.21 0.14 0.11 0.10 0.10 0.11 0.10 

IRT        
Difficulty -0.66 3.47 2.34 1.32 0.80 0.91 1.15 0.94 
Std. Error 0.17 0.51 0.31 0.21 0.17 0.18 0.20 0.18 
Discrimination 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 
Std. Error 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
Item Information 0.21 0.01 0.05 0.14 0.20 0.19 0.16 0.18 
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Table 3-5. Demographic information for participants 
  Intervention Group Comparison Group 

 
N = 18 N = 40 

  Number (Percent) Number (Percent) 
Ethnicity 

  
White 11 (.61) 20 (.50) 
Hispanic 3 (.17) 11 (.28) 
African-American 3 (.17) 6 (.15) 
Multiracial 1 (.03) 2 (.05) 
Asian-American 0 (0) 1 (.02) 

Gender   
Male 7 (.39) 18 (.45) 
Female 11 (.61) 22 (.55) 

Free-or-Reduced Lunch   
Yes 5 (.28) 7 (.18) 
No 13 (.72) 33 (.82) 

Years Attending School   
Zero 8 (.44) 19 (.48) 
One 1 (.06) 0 (0) 
Two 2 (.11) 5 (.12) 
Three 0 (0) 0 (0) 
Four 2 (.11) 0 (0) 
Five 0 (0) 0 (0) 
Six 5 (.28) 16 (.40) 

 
 
Table 3-6. Group means and standard deviations related to fifth-grade FCAT scores 
 Intervention Group Comparison Group 
 N = 18 N = 40 
 Mean (SD) Mean (SD) 

Reading Scale Scorea 330 (36) 340 (45) 
Mathematics Scale Scorea 350 (32) 354 (33) 

a N = 53 
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Table 3-7. Dissertation timeline 
Date Procedure Instrumentation 
Week of November 1 Administer pretest to 169 

participants during pilot 
study 
 

Pretest with eight word 
problems 

Week of November 8 Administer posttest to 169 
participants during pilot 
study 
 

Posttest with eight word 
problem 

Week of November 15 Score pretest and posttest 
and conduct factor 
analysis 
 

Pretest and Posttest 

Week of December 1 Submit instruments to IRB 
for approval 

Pretest and posttest with 
five items each  
 

January 5 Administer pretest to 
three sections of sixth-
grade mathematics 
 

Pretest with five items 

January 5 – 26 Conduct instruction in one 
sixth-grade mathematics 
classroom 
 

Intervention 

January 26 Administer posttest to 
three sections of sixth-
grade mathematics 
 

Posttest with five items 
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Table 3-8. Group means and standard deviations related to problem-solving 
performance, representation use, and unit test performance 

  Intervention Groupa Comparison Groupb 
Factor Mean Std. Dev. Mean Std. Dev. 
Pretest  

    Performance 2.22 1.17 1.66 1.51 
Total Representation Use 2.78 1.73 1.66 1.92 

Posttest 
    Performance 2.83 1.34 1.73 1.28 

Total Representation Use 3.50 1.69 2.20 1.64 
Unit Test 17.11 3.69 19.88 3.07 
a N = 18; b N = 40 
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Table 3-9. Values for categorical predictor variables 
Covariate Code 
Gender 

 Girls 0 
Boys 1 

Free-or-Reduced 
 No 0 

Yes 1 
Years Attending School 

Zero 0 
One 1 
Two 2 
Three 3 
Four 4 
Five 5 
Six 6 

 

 

Table 3-10. Group means and standard deviations of type of representation used on the 
posttest  

Representation  Interventiona Comparisonb 
  Mean (SD) Mean (SD) 

Symbolic 2.78 (1.35) 1.45 (1.15) 
Pictorial 0.44 (0.62) 0.48 (0.64) 
Tabular 0.17 (0.38) 0.23 (0.42) 
Verbal 0 (0) 0 (0) 
Mixed 0.11 (0.32) 0.08 (0.27) 

a N = 18, b N = 40 
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CHAPTER 4 
RESULTS 

A description of instruction in the intervention and comparison classroom is 

provided before quantitative analyses are discussed.  Results from repeated measures 

t-tests examined differences in the outcome variables within each group.  Assumptions 

related to normality, homoscedasticity, linearity, and multicollinearity were investigated.  

Results from examining the residual plots and statistical analyses are provided to justify 

use of multiple regression.  This type of analysis supports investigations that explore 

pre-intervention differences between groups and explore possible interaction effects.  

The results from chi-square tests indicated whether there was a relationship between 

intervention status and nonsymbolic representation use on the posttest.  Finally, 

outcomes from regression analysis with one covariate are provided to characterize the 

intervention’s impact on students’ achievement. 

Description of Instruction  

The descriptions of instruction that are provided were created after examining 

multiple instructional days.  Most students were present for every lesson during the 

study.  The characterizations are not intended to describe one single lesson; instead 

they depict instruction that typically occurred in each classroom.  Examples within each 

description may come from different days and are provided to support the reader’s 

understanding of the instruction in each classroom.   

Intervention Classroom 

Initial lessons in the intervention classroom differed somewhat from the others 

because the participants needed time to adjust to the new instructor and the 
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expectations for problem solving therefore descriptions of instruction during the first 

week and the rest of the intervention are provided separately.   

Week one  

During the first class meeting, participants completed the pretest and the 

remaining time was allocated for examining expectations for class and co-exploring a 

word problem.  During the second meeting, the instructor modeled the social and 

sociomathematical norms by offering examples and demonstrations of appropriate 

problem-solving behaviors and discourse.  Furthermore, he pointed out students during 

class who were doing an excellent job of following them so that others might be more 

likely to adhere to the expectations.  The instructor and students also co-solved word 

problems and became familiar with the problem-solving model (Appendix A) during the 

first week.   

The instructor initiated a discussion about problem solving and encouraged 

students to think about how the problem-solving guide with six steps might support them 

when they worked on word problems during the second class.  Next, students were 

provided with a word problem and individually used the model as a guide.  The co-

solving process was initiated when the instructor handed out a problem, asked students 

to read the text on their own, and to describe their understanding, which provided a 

context in which they externalized their situation models to a peer (i.e., “Describe what’s 

going on in this problem to a classmate.”).  Occasionally students were asked to pause 

their work and reconvene as a class to discuss their progress and clarify each stage of 

the process.  Students who seemed to grasp the intent of the problem-solving model 

were asked to share their thinking periodically as a model for others to follow.  After 

listening to students discussing their situation models, students were informed that 
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descriptions of the mathematical task and a problem’s context were “situation models”, 

which facilitated effective problem solving.  Unsuccessful students had another 

opportunity to develop a situation model.  During a whole-class discussion, selected 

students were asked to share their situation models, comment on the model’s 

appropriateness for the task, and describe how situation models differ from a 

mathematical model.  Some students described perceiving the situation model as a 

diagram, which included various features of the problem whereas others preferred to 

create a simplified version of the problem, which contained only the relevant information 

for solving the problem.  After students engaged in small-group discussions, the class 

reconvened and the instructor led a discussion focusing on the mathematics topics, 

problem-solving process, and lessons learned from the task.  The mathematics was 

decontextualized, but during the first week the instructor explicitly examined each step 

of the problem-solving process with students. 

Mathematics content was the foundation for these discussions and provided a 

context to discuss problem solving.  The idea of teaching mathematics content fueled 

lesson implementation, yet during the first week, the discussion tended to focus on the 

process that students employed while working on word problems (e.g., understanding 

the text, examining the problem’s context, and interpreting the result).  This was 

different from the other weeks when each stage of the problem-solving process was not 

an explicit topic of conversation.  Problem solving was the focus of instruction and the 

instructor did not explicitly teach mathematics concepts and procedures on a regular 

basis during the intervention.   
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During mathematical discussion in the first week, students collaboratively 

scanned the text for difficult or unfamiliar mathematics terminology and explored 

alternative representations that might lead to a solution.  Incorrect representations of the 

problem were taken up for discussion as well so that students were clear why these 

methods were not feasible or appropriate.  As a result of establishing norms in the 

classroom, instruction in the intervention classroom during the rest of the study tended 

to look fairly similar.  

Characterizing a lesson 

The expectations for class were hung on the sidewall (Appendices K and L) and 

the problem-solving poster (Appendix A) was placed near the front whiteboard on top of 

the classroom teacher’s word wall.  Desk-sized descriptions of the six stages of problem 

solving were attached to each desk using Velcro.  Bells signaled the start and end of 

class at 10:55 am and 12:25 pm, respectively.  A copy of one lesson is located in 

Appendix M.  

An agenda was projected on the front whiteboard, which indicated tasks to 

accomplish during the first five minutes of class as well as the benchmarks that were 

the focus for that day.  Tasks were highlighted on screen in yellow and the homework 

solutions were displayed just below them.  Students usually checked homework first 

and then began a warm-up task.  Students were typically asked to examine their 

homework on their own and consider tasks, procedures, or concepts for discussion. 

After five minutes the instructor asked students whether they wanted to review any 

homework tasks.  Multiple students usually raised their hands.  The teacher gathered 

students’ questions before any were explored.  Students often had similar queries.  

Following the collection, the instructor invited students to resolve each other’s inquiries, 
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“Does someone have ideas about this problem?”  Several students usually raised their 

hands and one was selected who proceeded to explain his or her thoughts and/or 

approaches for solving the problem.  Students frequently described noticing aspects of 

the problem as critical features necessary for solving the problem.  After the 

explanation, the instructor asked the student who originally posed the question whether 

the uncertainty was resolved, “Does that make sense?” or ”Would you like him/her to 

describe it in another way?”.  It was typical for students to indicate their peer’s response 

was sufficient.  Students’ acceptance of a response was influenced by their pre-

intervention mathematical discussions in the classroom as well as the novel social and 

sociomathematical norms.  The instructor followed up by probing students for other 

ways to solve that same problem - usually one student shared an alternate 

representation.  This process continued until students’ questions about the homework 

were resolved, which took ten to fifteen minutes. 

Following the homework discussion the instructor reminded students to complete 

the warm-up task, which was projected on the front whiteboard.  Students usually 

completed the warm-up task in ten minutes or less.  On one occasion, students 

examined a list of statistical terms and were directed to think about whether they could 

define each word and provide an accurate example.  Students had a few minutes to 

work independently and then the instructor led a discussion aimed at exploring 

terminology that was relevant to the unit.  In the sample lesson, the instructor asked 

students to share terms that were unfamiliar and whether others might offer their 

(mis)conceptions.  The instructor validated correct ideas and indicated that the class 

would re-examine the list at the end of class.   
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Following the warm up, the instructor posed a question related to the context of a 

problem students would examine during class, such as “What was the name of the last 

restaurant where you purchased a pizza?”.  Multiple students mentioned restaurants 

from the problem and some shared their pizza preferences.  The instructor elaborated 

that the problem of the day involved investigating pizza prices from various local 

establishments and he distributed individual copies of the typed problem to students.   

Initially, the instructor encouraged students to work independently for a few 

minutes.  Students were reminded that they could work together on the problem after 

they worked independently.  Students usually spent five to ten minutes on their own 

before forming small groups. 

When the instructor announced that independent work time was over, students 

formed pairs or triads on their own.  Some students were reticent to form groups so the 

instructor facilitated collaboration by encouraging these participants to form their own 

group.  During the second week, students worked with peers at their group of desks. 

They formed new groups during the third and fourth weeks.  Some sat in chairs while 

others worked on the floor.  Small-group work among students typically began with 

peer-to-peer questions, such as “What do we need to do?” and “What do you think 

about this [problem]?”.  After chatting about the problem’s context and goal of the task, 

students discussed how to solve the problem and at times, challenged each other to 

justify their ideas, “Why are you doing that?”.  After agreeing on a representation, they 

carried out a set of procedures and talked about interpreting the result.  For instance, 

two students discussing the pizza problem mentioned earlier reexamined the problem’s 

context and later included appropriate units with the result.  Students continued to share 
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ideas in small groups for 15-25 minutes, depending on the problem’s complexity.  The 

mathematics content was still the foundation of mathematics learning, yet the instructor 

did not make the problem-solving process as explicit as he did during the first week.  

The instructor used questions to encourage students to think about various steps of the 

problem-solving process when students had trouble.  During small-group work, the 

instructor walked around the classroom, observing students’ work and responding to 

requests for assistance with questions such as “What do you think you’re supposed to 

do?” and “What do you think is important in the problem?”.  The class reconvened to 

discuss the problem when most students were finished 

The instructor began the whole-class instruction by posing an open-ended inquiry 

such as “What is going on in this problem?” or “What do we need to find?”.  The 

discussion involved multiple children, albeit one of four students usually was the first to 

speak.  Of these four students, two were boys and two were girls.  The instructor 

encouraged other students to share their answers and representations during the 

whole-class discussion by asking one of the usual initial speakers to hold his/her 

comments until others had a chance to think and share their ideas.  Some transcribed 

their work onto the whiteboard whereas others used the document camera to project 

their work.  Presenters typically discussed their representation, procedures necessary to 

solve the problem, thoughts during problem solving, and the result.  The instructor 

asked whether students had questions about the student’s presentation, which usually 

resulted in a couple of student-initiated inquiries.  Some asked for assistance such as 

“Can you explain it again?” whereas others posed more probing questions, “Why did 

you do it that way?”.  Students were encouraged to share their representations and 
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there was at least one alternate representation presented for each problem.  Discussion 

ended when students’ questions were answered and the problem was solved.  The 

whole-class discussion usually took 20-25 minutes. 

The instructor rarely made mathematics procedures an explicit topic of 

conversation.  When it did occur, there was usually disagreement in the room among 

several students and they were unable to reach a consensus.  Typically, the instructor 

confirmed one or more students’ suggestions for carrying out a procedure and moved 

on with instruction.  Explicit mathematics instruction, on the rare occasions when it did 

occur, was focused on mathematics procedures and lasted about one minute.   

Finally the instructor briefly synthesized students’ work and offered a summary of 

concepts and procedures that came up while solving the word problem.  Mathematics 

topics were often the focus of the synthesis.  For example, the instructor discussed how 

range provides different information about a data set than measures of central 

tendency.  Students raised their hands on occasion to add to the instructor’s synthesis 

and share what they learned from solving the problem.  The individual, small-group 

work time, and whole-class discussion usually lasted 40-65 minutes.  

Students received an instructor-created worksheet for homework near the end of 

class.  Closure activities such as exit slips, reexamining warm-up tasks, and writing 

summaries of the lesson were completed during the last five minutes of class.  

Summaries stayed in students’ notebooks whereas exit slips were handed to the 

instructor as students left the room.  Materials attached to desks and walls were taken 

down at the end of class and the whiteboard was erased. 
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Comparison Classroom 

As a result of reviewing the observer’s notes and examining videotapes of 

classroom instruction, the following description of instruction in the comparison 

classroom was created to provide a context for students’ outcomes.  Unfortunately, 

lesson plans for this unit were not available.  

The teacher took roll and made class-related announcements during the first five 

minutes of class.  Announcements usually indicated the necessary materials for class 

and instructions to check homework from the previous class and to copy the homework 

assignment from the board.  Students gathered the necessary materials for the start of 

class from the back of the room (e.g., workbook) and began comparing answers to 

homework with the answers posted on the whiteboard.  After students settled down, the 

teacher read most of the answers aloud from the board and briefly explained how to 

solve each task.  She typically spent about ten seconds describing one solution strategy 

for each homework task.  There were usually a couple of student-initiated questions 

about the homework, which were answered by the teacher.  Preparing for class and 

checking homework usually took about fifteen minutes.  Next, the teacher posed a 

warm-up task for students.   

Warm-up activities were usually exercises taken from the textbook or resource 

materials associated with the textbook Big Ideas: Math 6 (Larson & Boswell, 2010).  For 

example, during one class meeting students examined a data set with seven values and 

found the mean.  After one student shared his idea, the teacher confirmed the solution 

and asked whether this value was appropriate for the data set.  Another student 

responded that it was, the teacher verified her response, and moved on with the lesson.  
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This was typical when students provided the correct response, which occurred most of 

the time.  The warm-up task generally lasted approximately seven minutes.  

Vocabulary instruction was part of one class meeting each week.  There was a 

word wall near the front of the room, which contained terms from previous units.  The 

teacher started vocabulary instruction by asking students to open their textbooks to a 

page in the textbook that defined terms pertaining to the lessons for the week.  She 

chose a student to read the definition from the textbook, and then she provided an 

explanation of the term.  The teacher usually asked comprehension questions after 

each term (e.g., “How do you find the median?”).  If a student answered the question, 

she evaluated their response (e.g., “that’s correct”) and continued with the lesson. 

When a student offered an incorrect result, she evaluated the student’s statement (e.g., 

“not quite”) and selected another volunteer.  This process continued until the solution 

was stated.  She frequently drew on realistic scenarios to facilitate students’ 

understanding of the term.  For example, while discussing the term “range” she 

mentioned that the range of students’ ages in the classroom would be small whereas 

the range of ages across the school would be larger.  Vocabulary instruction typically 

lasted five to ten minutes.   

Next, the teacher conducted a lesson focusing on one benchmark from the 

NGSSS.  Instruction typically involved (1) a teacher-led demonstration, (2) students co-

solving one task with the teacher, and (3) students working independently on a few 

exercises as practice.  During the second stage of the lesson, the teacher assigned a 

task and asked students to work on it briefly.  She walked around the room examining 

students’ work and eventually returned to solving the problem.  She answered students’ 
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questions directly when they asked for assistance.  After three to five minutes, one 

student was selected to give his/her answer to the task.  The teacher affirmed the 

response and proceeded to offer insights into solving similar tasks for five to ten 

minutes.  When a student offered an incorrect result to the task, she indicated that 

his/her response was incorrect and asked for another volunteer to provide the answer.  

The third stage was characterized by the teacher assigning a series of exercises for 

students to complete on their own.  After five minutes, the teacher selected students to 

report their answers.  Students’ responses to the tasks were correct most of the time.  

There were typically one or two student-initiated questions during this part of the 

instruction and the teacher answered students’ inquiries.  This portion of the lesson 

typically lasted 15 – 30 minutes.  The next phase of the lesson provided students with 

opportunities to complete activities at stations in the room. 

The teacher dedicated 40-50 minutes to small-group work, which was completed 

at stations.  She divided the class into groups of four to five students and indicated the 

order for rotating through stations.  Stations typically involved (1) laptop computers, (2) 

working on homework, (3) completing pages from the mathematics workbook, and (4) 

solving exercises with the teacher.  Students had 10-15 minutes at each station.  Music 

played through her computer marked the end of activity at a station and students had 

one to two minutes to move to the next station. The laptop station involved web-based 

software (i.e., FCAT Explorer) that provided opportunities for students to practice 

solving a variety of tasks that were similar to ones students might see on the sixth-grade 

mathematics FCAT.  Students occasionally asked each other mathematics-related 

questions while working at the homework and workbook stations.  The workbook had 
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word problems and exercises.  A preliminary review of it suggests there were more 

exercises than word problems.  There was no penalty for not finishing the classwork 

that day but students had to complete all of it (i.e., workbook pages) by the date of the 

test.  The teacher-directed station usually involved personal-sized whiteboards (i.e., 

slates) and exercises selected or adapted from the textbook.  The teacher posed a task 

and asked students to solve it; they showed her their slates when they arrived at the 

solution and she verified their solutions.  If a student did not have the correct answer, 

he/she was told it was incorrect and encouraged to reexamine the problem.  If the 

correct answer was shown then the student’s response was confirmed and the teacher 

asked the individual to erase the whiteboard and wait for others to finish.  The tasks 

posed by the teacher at this station, exercises from the workbook, as well as the 

examples used during direct instruction tended to feature a similar problem structure.  

Students could usually solve these tasks using the same procedures.  

During the last ten minutes of class, students returned materials used during 

class to their original locations and the teacher made announcements about future 

assignments or assessments.  The announcements also included a brief summary of 

the topics covered that day.  She encouraged students to do their homework and to see 

her outside of class if students needed extra help.  If there was any remaining time after 

the announcements, students were allowed to socialize until the end of the period.  

Conclusion 

The goal of providing the descriptions of instruction in the intervention and 

comparison classrooms was to briefly characterize the format and activities of a lesson, 

how time was used during the lesson, and the student-to-teacher and student-to-student 
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interactions.  The descriptions provide a background for exploring students’ outcomes 

as a function of their classroom instruction and background.  

Assumptions for Multiple Regression 

A brief discussion related to assumptions necessary for conducting multiple 

regression analyses is shared followed by the relationship between students’ outcomes 

and the independent variables that were further explored using multiple regression.  

There are four assumptions for multiple regression: (a) a participant’s outcome is 

randomly sampled and independent of all other participants’ outcomes, (b) the residuals 

are normally distributed for each potential combination of independent variables, (c) the 

residuals have equal variances for every possible combination of predictors (i.e., 

homoscedasticity), and (d) there is a linear relationship between the dependent and 

independent variable when all other independent variables are held constant (i.e., 

linearity) (Shavelson, 1996).  Students’ outcomes are nested within each classroom 

(Raudenbush & Bryk, 2002) thus without conducting multilevel analyses, the degree to 

which the independence assumption was met is uncertain.  Evidence indicating that the 

remaining assumptions were met comes from examining residual plots.  Residual plots 

of the outcome variable were examined to determine whether normality, 

homoscedasticity (i.e., variances of the dependent variable for each possible 

combination of the independent variables are equal), and if a polynomial term might be 

necessary to accurately model the data.  Violations of normality look like unequal 

spread of data around the mean whereas violations of homoscedasticity might appear 

as a fan- or trumpet-like appearance within the scatterplot (Shavelson, 1996).  If a 

polynomial term is necessary then there is usually curvature in the scatterplot.  
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The independence assumption has been met in good faith and multilevel 

analysis was not appropriate because there were only two teachers.  Levene’s test was 

not significant for problem-solving performance, p = .75 and number of representations 

used on the posttest, p = .61.  These nonsignificant findings suggest that the variances 

in students’ outcomes were equal.  Furthermore, there was no fan-like shape in the 

scatterplot.  The frequency distribution had a normal curve appearance, thus the data 

were roughly normal.  Finally, the scatterplot did not have any curvature thus polynomial 

terms were not added to the model.  In conclusion, the assumptions for multiple 

regression analyses using problem-solving performance and representation use had 

been met.  

The independence assumption for multiple regression analyses using 

participants’ unit test scores assumed that scores were independent from others and 

multilevel analyses were not performed for the same reasons described earlier.  Visual 

inspections of residual plots indicated that (a) most data were within two standard 

deviations of the mean and there was roughly the same number of data above and 

below the mean, (b) there was no fanning, and (c) no curvature.  The frequency 

distribution showed that 72% and 85% of the unit test scores from the intervention and 

comparison group, respectively, were within one standard deviation of their respective 

group’s mean.  Levene’s test was not significant, p = .50, which provided evidence that 

there was homoscedasticity.  There was also no curvature in the scatterplot.  There was 

sufficient evidence for conducting a multiple regression analysis with the unit test data.  

Results from these analyses suggest that there was that assumptions necessary to 

conduct multiple regression had been met.  
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Group Characteristics 

Descriptive information related to students’ demographic information was 

provided in the Chapter 3, in Tables 3-5 and 3-6.  The minimum and maximum possible 

scale scores on the fifth-grade FCAT were 100 and 500, respectively.  There was no 

difference between the intervention and comparison groups’ mean FCAT reading, F(1, 

51) = .62, p = .44, or mathematics scores, F(1, 51) = .17, p = .68.  Six academic years 

was the maximum number of years that participants attended this school.  The 

maximum score on the pretest was five points.  There was no difference between 

groups’ pretest performance, F(1, 56) = 2.01, p = .16 or representation use, F(1, 56) = 

1.42, p = .24.   

Within-Group Comparisons 

To answer the first research question, results from a paired samples t-test 

indicated that the students in the intervention group had better performance on the 

posttest than the pretest, t(17) = 2.65, p = .02, d = .48 whereas their peers did not 

improve, t(39) = 0.52, p = .61.  The intervention group’s problem-solving growth is 

approximately 17% greater than the finding related to annual gains in mathematics 

achievement (Bloom et al., 2008).  Analyses related to the second research question 

revealed that intervention participants employed more representations on the posttest 

compared to the pretest, t(17) = 2.60, p = .02, d = .42.  This is a slight improvement over 

the average annual gain in mathematics achievement, approximately 2%.  There were 

no significant changes in their peers’ total representation use, t(39) = 0.22, p = .83.  

Thus, students in the intervention group improved their performance and used more 

representations on the posttest than the pretest, but their peers in the comparison group 

did not demonstrate changes related to their problem solving.  
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Between-Group Comparisons 

Problem-solving Performance 

Backwards selection procedures were conducted with the regression equations 

to explore factors that best predicted students’ outcomes.  The following results 

answered research questions three and four.  Figures 4-1 and 4-2 characterize each 

group’s growth over time.   

Backwards selection in SPSS was employed for creating a model that explained 

the intervention’s impact on the outcomes, problem-solving performance and total 

number of representations used on the posttest.  First, a model examining the 

relationship between problem-solving performance, group status, all of the covariates, 

and the interaction terms was entered into SPSS, which is shown here.   

Posttest performance = a + β1(Pretest Performance) + β2(Intervention Status x Pretest  
Performance) + β3(Total Representation Use_Pretest) + β4(Intervention Status) + 
β5(Reading Scale Score) + β6(Mathematics Scale Score) + β7(Free-and-Reduced 
Lunch Status) + β8(Gender) + β9(Years of Attendance) + β10(Hispanic) + β11(African 
American) + β12(Multiracial) + β13(Asian American) 
 

Nonsignificant coefficients were deleted until only significant coefficients 

remained, which were pretest performance and intervention status.  After iterative 

analyses, it was determined that pretest performance and intervention status alone best 

predicted students’ posttest performance, χ2(2) = 33.06, p < .001.  Pretest performance 

and intervention status explained 64% of variance in students’ performance on the 

posttest.  Moreover, 5% of the total variance in posttest performance was uniquely 

associated with intervention status.  The squared semi-partial correlation associated 

with pretest performance was approximately 0.50.  VIF for both pretest performance 

and intervention status were approximately one, well below the threshold suggested by 

Agresti and Finlay (2009).  Table 4-1 provides detailed information about the 
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relationship between the variables.  The difference in expected posttest performance 

was 0.37 log units higher for intervention participants than their peers.  Another finding 

was that two participants in the same group with a one-unit difference in problem-

solving pretest performance had a 0.32 log unit difference in their problem-solving 

posttest score.  The intervention’s effect size was d = .26.  This is not quite as large as 

the average annual sixth-grade student gains in effect size for nationally normed 

mathematics tests, d = .41, yet it is 18% larger than the mean effect size on 

achievement measures for students in fourth- through sixth-grade (d = .22) (Hill et al., 

2008). 

Representation Use 

A similar procedure was conducted to determine the influence of intervention 

status, covariates, and an interaction effect on the total number of representations 

employed on the posttest.  Again, all covariates were entered into SPSS to create a 

complex model and variables that were not significant were deleted one-by-one until 

only significant ones remained.  The model with all predictor variables is shown below.  

Total Representation Use_Posttest = a + β1(Total Representation Use_Pretest) +  
β2(Pretest Performance) + β3(Intervention Status x Pretest Performance) + 
β4(Intervention Status) + β5(Reading Scale Score) + β6(Mathematics Scale Score) + 
β7(Free-and-Reduced Lunch Status) + β8(Gender) + β9(Years of Attendance) + 
β10(Hispanic) + β11(African American) + β12(Multiracial) + β13(Asian American) 
 

Analyses revealed that pretest performance and intervention status explained the 

most variance in students’ posttest representation use, χ2(2) = 44.00, p < .001.  The 

independent variable and two covariates explained 66% of the variance in the total 

number of representations employed on the posttest.  Furthermore, 4% and 54% of the 

variance in students’ posttest representation use is uniquely explained by intervention 

status and pretest performance, respectively.  VIF for both pretest performance and 
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total number of representations employed on the pretest were near two and intervention 

status was approximately one, which suggest there was no multicollinearity issue.  

Detailed information related to the independent variable and covariates is located in 

Table 4-2.  Results from this analysis indicate that controlling for pretest performance, a 

participant from the intervention group used more representations (i.e., 0.31 log units) 

compared to his/her matched peer.  Furthermore, one-unit differences in pretest 

performance were associated with 0.25 log unit differences in participants’ posttest 

representation use.  Intervention status was associated with an effect size of d = .18.  

This is lower than the average annual sixth-grade student gain in effect size for 

nationally normed mathematics tests and also smaller than the mean effect size 

associated with achievement gains in grades four through six.   

Finally, a chi-square test was used to answer the fifth research question: whether 

there was a relationship between intervention status and students’ use of nonsymbolic 

representations on the posttest (i.e., pictorial, tabular, and mixed).  Table 3-10 provides 

the means and standard deviations of each group’s posttest representation use.  There 

was no relationship between intervention status and students’ nonsymbolic 

representation use, χ2(1) = 0.62, p = .43.  These results suggest that membership in the 

intervention group was not associated with use of nonsymbolic representations on the 

posttest.  

Unit Test 

Analyses were performed using data from the unit test to examine the 

intervention’s effect on students’ unit test performance.  Results from multiple 

regression with the unit test data and students’ prior mathematics achievement provided 

insight into the sixth research question (Table 4-3).  There was a significant difference in 
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the groups’ mean scores on the unit test, F(2, 50) = 17.45, p < .001.  The average of the 

intervention group on the unit test was lower than the comparison group (Table 3-8).  

Intervention status and prior mathematics achievement explained 41% of the variance 

in students’ unit test performance.  Approximately 12% of the variance in students’ unit 

test performance was uniquely associated with intervention status.  The effect size (d = 

.34) is smaller than the annual gain in mathematics achievement but 55% larger than 

the mean effect size related to fourth- through sixth-grade students’ achievement gains.  

A comparison participant experienced a 0.34 standard deviation unit advantage over 

his/her equally matched peer in the intervention group.  A one-unit difference in prior 

mathematics achievement between participants from the same group resulted in a 0.53 

standard deviation unit advantage.  In short, students in the comparison group had 

higher unit test scores than their peers experiencing the intervention and prior 

mathematics achievement influenced this relationship. 

Summary 

Four of the six hypotheses presented in Chapter 3 were confirmed.  Students in 

the intervention group had higher scores on the posttest than the pretest.  They also 

used more representations on the posttest than they did on the pretest.  There was a 

statistically significant difference in students’ performance and the total number of 

representations used on the posttest, favoring the intervention group.  There was no 

relationship between intervention status and use of nonsymbolic representations on the 

posttest.  Finally, there was a difference in groups’ scores on the unit test favoring the 

comparison group.  The results are discussed further in relation to the conclusions of 

the study, including implications, limitations, and directions for further research in 

Chapter 5.   
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Table 4-1. Problem-solving performance predictors 
Variable    Coefficient 

  
 

B Std. Error Wald Chi-Square Sig. Wald CI 
Constant 0.26 0.22 1.40 0.237 [-0.17, 0.68] 
Intervention Status 0.37 0.19 3.90 0.048 [0.01, 0.73] 
Pretest Performance 0.32 0.06 27.14 0.001 [0.20, 0.44] 

       
 
Table 4-2. Predictors related to representation use on the posttest 
Variable    Coefficient 

  
 

B Std. Error Wald Chi-Square Sig. Wald CI 
Constant 0.44 0.19 2.82 0.093 [0.06, 0.82] 
Intervention Status 0.33 0.17 4.02 0.045 [0.01, 0.66] 
Pretest Performance 0.33 0.05 36.44 0.001 [0.22, 0.44] 

       
 
Table 4-3. Unit test performance predictors 
Variable        Coefficient 

    B Std. Error β Sig. CI 
Constant 0.45 4.05 -- 0.913 [-7.69, 8.58] 
Intervention Status -2.55 0.81 -0.34 0.003 [-4.18, -0.91] 
Prior Math Achievement 0.55 0.01 0.53 0.001 [0.03, 0.08] 
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Figure 4-1.  Mean problem-solving performance. 
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Figure 4-2.  Mean number of representations used. 
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CHAPTER 5 
DISCUSSION 

Summary of the Findings 

The primary purpose of this study was to examine students’ problem-solving 

performance and representation use as a result of an instructional intervention.  This 

investigation was guided by prior research indicating that students learning mathematics 

through problem-solving contexts might demonstrate enhanced problem-solving 

performance (e.g., Charles & Lester, 1984; Sigurdson et al., 1994; Verschaffel et al., 

1999) as well as improved representation use while problem solving (Klein et al., 1998) 

compared to their peers experiencing their typical instruction.  The open, complex, and 

realistic word problems were critical to the instructional intervention.  The instructor in 

the intervention classroom aimed to maintain a student-centered, discourse-rich 

classroom with the goal of supporting students’ problem solving as well as their mastery 

of concepts and procedures associated with the sixth-grade Standards (FLDOE, 2007).  

Data related to several predictor variables were collected and later investigated in 

relation to students’ outcomes.   

Instructional Comparison 

There are some critical differences between the instruction in the intervention 

and comparison group that likely influenced students’ outcomes.  Researchers have 

used rich problems that could be solved in multiple ways and offered multiple entry 

points for learners and found beneficial results (Lampert, 1990; Verschaffel & De Corte, 

1997; Verschaffel et al., 1999).   

First, the types of materials used during instruction were different (Appendix N).  

Open, complex, realistic problems were the main focus of instructional materials for 
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intervention participants.  These students completed a few exercises for homework, but 

the assignments were structured so that they were expected to spend more time solving 

one or two problems than the other tasks.  The materials in the comparison classroom 

tended to focus on correctly completing procedures and solving verbal translations of 

exercises.  For example, the workbook associated with the textbook was always a part 

of students’ station work.  The directions preceding workbook tasks usually encouraged 

students to solve multiple similar exercises.  The classroom teacher also gave students 

exercises to solve using whiteboards and markers.  The comparison classroom tasks 

were usually exercises and problems were the focus in the intervention classroom. 

A second difference between the intervention and comparison classroom was the 

social and sociomathematical norms.  Creating a learning environment that promotes 

mathematical discourse and encourages students to exchange ideas does not happen 

overnight (Yackel & Cobb, 1996).  Prior research has shown that establishing social and 

sociomathematical norms that support effective mathematics learning are critical 

components (Verschaffel et al., 1999).  Much like the Dutch classrooms in the study 

conducted by Verschaffel and his team (1999), the instructor in the intervention 

classroom established and reminded students about social and sociomathematical 

norms.  These adolescents learned quickly to adhere to these norms and were able to 

engage in sustained, focused mathematical discussions during instruction.  For 

example, one student posed a question during a whole-classroom discussion, which led 

to a sustained student-to-student discussion about a way (i.e., representation and 

procedure) to solve a problem.  The instructor did not intervene in the discussion except 

to remind interrupting students to hold their comments until the speaker was done.  
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Students seemed to take these norms seriously, as evidenced by the fact that they 

asked to add more expectations to the list after a few days of instruction.  There were 

no visible indications of social or sociomathematical norms in the comparison 

classroom.  The observer noted that discourse in the comparison classroom tended to 

involve responding to the teacher’s questions and occasionally asking or responding to 

a peer’s question during station activities.  It appeared that this discourse pattern was 

expected during instruction.  As a result, it seemed that the expectation for doing 

mathematics was to complete work assigned by the teacher and answer 

comprehension and recall questions.  Similarly, the social norms in the comparison 

classroom were not obvious during the month-long observation.  As a result of 

establishing norms in the intervention classroom, students were more engaged in 

mathematical discourse compared to their peers in the comparison classroom. 

A third difference between classrooms was the discussions during instruction.  

Cameras were placed throughout the room during instruction to capture some of the 

small-group discussions.  In the intervention group, these discussions tended to focus 

on mathematics, appropriate mathematical representations to solve problems, and 

content and procedures while problem solving.  They frequently chatted about their 

interpretations of the problem, realistic constraints within the problem’s context, and 

useful representations to support problem solving.  During the small-group discussions, 

some participants worked independently on a problem and then talked about their 

solution(s) and representations.  Other small groups co-solved problems and students 

worked together to complete a problem.  This type of instruction is similar to that 

described by others (Lampert, 1990; Verschaffel & De Corte, 1997; Verschaffel et al., 
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1999).  These authors stress the critical importance of discourse for promoting 

mathematics understanding and results from the present study provide further evidence 

related to the positive effects of discourse-rich learning environments.  A discourse-rich 

learning environment is characterized by frequent student-to-student mathematical 

discussions about procedures and content.  An example from the intervention 

classroom is provided followed by a nonexample from the comparison classroom. 

The average (i.e., mean) number of letters in students’ and instructor’s first 

names was examined during the second week.  Students thought about the task 

independently for a couple minutes and then discussed it for seven minutes in small 

groups.  Next, participants presented their representations, procedures, and answers.  

During the whole-class discussion, one student explained from the front of the 

classroom how she arrived at the result (e.g., six remainder three).  Another participant 

asked her to explain her answer further because he felt her arithmetic was incorrect.  

The student thought about her answer and stated that he was right and her answer was 

incorrect.  She added that her problem-solving approach was appropriate for this task 

even though a slight mistake was made.  Students continued to offer their 

representations, procedures, and solutions, and their peers proceeded to critique each 

other’s ideas.  At times, the instructor asked students to clarify (e.g., “What do you 

mean by that?” and “Can you explain that?”) and justify their response (e.g., “How can 

the average number of letters be 22 when there is no one in the room with that many 

letters in their first name?”).  The whole-class discussion lasted for thirteen minutes and 

was largely led by students.  This specific student-led discussion lasted for 

approximately four minutes and was not interrupted by the instructor except to ask 
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students to speak louder and clarify their responses.  This is one instance of the type of 

rich discourse that was part of the intervention classroom.   

On the same day, the classroom teacher conducted instruction focused on rates 

and unit rates.  Students worked at six stations for approximately ten minutes each.  

Students completed exercises found in their workbooks or on worksheets at five of the 

six stations.  At the teacher-led station, students completed FCAT practice problems.  

The teacher showed a task using the LCD projector and asked students to respond with 

the unit rate by showing their white boards with the solution.  She provided students 

with a couple minutes to respond with the answer and then proceeded to complete the 

task.  Occasionally, she asked students for their input (e.g., “What is five times thirty?”).  

Multiple students responded with the correct answer.  She acknowledged that they were 

correct and continued to solve the problem.  Later, she worked another task and posed 

a similar question to one individual (i.e., “What does four feet nine seconds represent?  

Distance, speed, or time?”).  The student hesitated and the teacher immediately called 

on another student, who gave the correct answer (i.e., “Speed.”).  The teacher 

evaluated the student’s response (i.e., “Yes, speed.”) and continued solving the 

problem.  These types of conversations were frequent during the classroom teacher’s 

instruction and were nonexamples of rich discourse.  

The small-group discussions during station activities in the comparison 

classroom tended to lack focus on mathematics or problem solving.  Students generally 

asked each other procedural-oriented questions about exercises and spent much of the 

small-group time talking about material that was unrelated to mathematics.  The tasks at 

each station provided a context for students’ discourse, but the discourse did not 
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develop in such a way that might lead to in-depth discussions.  The teacher was also a 

factor in the degree to which mathematical dialogue supported students’ mathematics 

learning.  The intervention instructor was a discussion facilitator whereas the classroom 

teacher gave the expectation that the purpose of students’ mathematical discourse was 

to provide a problem’s solution.  In other words, discourse patterns and the focus of the 

conversations was different between groups. 

The intervention instructor also asked students to explain and justify their 

responses after offering a mathematical model, solution, set of procedures, or idea.  A 

cursory review of the classroom videotapes indicates that this type of discourse was not 

common in the comparison classroom.  The teacher in the comparison group conducted 

direct instruction about mathematics topics or procedures during each class and also 

led one of the stations.  A preliminary review of the three randomly sampled videos from 

each group suggests mathematical discussions were typically shorter than those in the 

intervention classroom and teacher initiated.  Students did not work collaboratively or 

discuss the exercises following the station activities.  The teacher usually asked a recall 

or comprehension question, called on a student to respond, and evaluated the students’ 

comment.  If the student gave an incorrect response, then the teacher indicated it was 

wrong and the student returned to working the task.  If the student gave a correct 

response, then the student erased his/her work and solution, and sat quietly waiting for 

the others to finish.  Initiate-Respond-Evaluate (Franke et al., 2007) discourse patterns 

have been found frequently in US classrooms (Hiebert et al., 2005; Hiebert et al., 2003).  

This type of discourse conveys the perception that the teacher is responsible for 

students’ learning (Franke et al., 2007).  The comparison group teacher verified 



 

146 

students’ responses thus the teacher was central in determining correct solutions and 

representations for problem solving.  On the other hand, the intervention instructor 

asked students to make these types of decisions.  The present study provides some 

evidence that a teacher’s role as discussion leader can support positive student 

outcomes, and more detailed analyses of classroom interactions will support this 

conclusion. 

A fourth difference was the instructor and classroom teacher’s prior knowledge of 

students, unit test, and Standards (FLDOE, 2007).  The instructor had been a middle 

grades mathematics teacher in another state previously and became familiar with 

participants prior to the study by spending time in the classroom with them and asking 

questions before, during, and after class.  Also, the instructor closely examined the 

NGSSS and Common Core State Standards and discussed them with the classroom 

teacher prior to the study.  These experiences helped to frame the instructor’s lessons 

and instructional behaviors.  The classroom teacher had more knowledge from prior 

interactions with students, the unit test, and content that may have impacted students’ 

outcomes.  She spent the present and prior academic year with this group of students. 

Thus, she had a more robust understanding of her students than the instructor who 

spent 15 instructional days prior to the study with students.  The teacher was also more 

familiar with the unit test, which was not examined by the instructor until after the third 

week of the intervention.  This familiarity likely guided her instruction, and she was able 

to frame her instruction to support students’ unit test performance.  Finally, the instructor 

was not as familiar with the NGSSS and students’ prior knowledge as the classroom 

teacher.  The classroom teacher was more aware of students’ understanding of 
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mathematics content and procedures from summative and formative assessments 

during the prior year as well as the first four-and-a-half months of sixth-grade 

mathematics instruction.  This knowledge may have guided the classroom teacher’s 

implementation of instruction aimed to develop students’ mathematics knowledge as 

measured by the unit test.  Evidence from this study indicates that a teacher’s prior 

knowledge of Standards, students, and the unit test may have impacted students’ 

performance on unit test.  

A fifth critical difference was the role of the instructor in each learning 

environment.  This contributes to characterizing the comparison instruction as teacher-

directed (i.e., weakly student-centered) and intervention classroom’s learning 

environment as decidedly student-centered.  The intervention instructor took on the role 

of discussion facilitator and directly answered students’ questions only when 

participants did not agree on how to correctly carry out a mathematical procedure.  For 

example, the instructor called on students during a whole-class discussion to answer 

peers’ questions rather than explicitly answering a student’s question.  Lampert (1990) 

describes her role similarly, “I did not explain how to get the answers…I also expected 

them to answer questions about mathematical assumptions and the legitimacy of their 

strategies” (p. 38).  The intervention instructor in the present study did not explicitly give 

answers or tell students how to solve a problem and instead was a problem solver while 

students worked in small groups.  There was usually a brief summary of students’ 

comments following each problem.   

The classroom teacher’s role was to disseminate content knowledge by providing 

students’ opportunity to practice solving exercises.  Her instruction tended to focus on 
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correctly applying procedures and finding the problem’s solution.  For example, she 

confirmed students’ responses at the whiteboard station.  Students did not validate each 

other’s work and did not determine for themselves whether they were correct.  

Furthermore, she made the mathematics content and procedures much more explicit 

than the instructor in the intervention classroom.  Evidently the instructor and classroom 

teacher played different roles during instruction thus contributing to the instructional 

environment and students’ outcomes.  

Four critical differences between the intervention and comparison learning 

environments were (1) materials, (2) norms for the mathematics classroom, (3) the 

way(s) that discourse was a part of everyday mathematics instruction, and (4) role of 

the teacher and the learning environment.  The intervention materials were mostly 

problems that were modified tasks from the curricular materials whereas students in the 

other classroom tended to spend more time solving exercises.  The learning 

environment in the intervention classroom fostered student-to-student discourse 

because there were visible reminders as well as discussions of social and 

sociomathematical norms.  Students in the intervention group were expected to talk to 

each other, ask questions, consider alternative representations and procedures and 

justify their response.  There were no reminders or indications regarding the social or 

sociomathematical norms in the comparison classroom.  Finally, the classroom teacher 

attempted to disseminate knowledge frequently, but the instructor sought ways for 

students to construct their own ideas.  These differences contributed to the disparities 

between students’ outcomes. 
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Within-Group Comparisons 

Problem-solving performance 

The intervention group improved their problem-solving performance after the 

intervention whereas the comparison group did not.  These findings are consistent with 

Sigurdson and Olson (1992) and provide information about the impact of problem-

solving interventions.  The effect size (d = .48) associated with the pre- and posttest 

differences gives an indication of the intervention’s positive effect.  As seen in Figure 4-

1, the comparison group participants’ problem-solving performance did not increase 

significantly between test administrations.  The results indicate that the intervention 

supported students’ problem-solving performance. 

Representation use 

Similarly, the intervention supported participants from the intervention group to 

use more representations on the posttest than the pretest.  More specifically, they 

provided approximately one additional representation on the posttest.  The comparison 

group participants did not use more representations after four weeks of their usual 

instruction.  The effect size (d = .42) suggests that the intervention somewhat impacted 

students’ representation use.  The statistic provides an initial result, which could be 

confirmed by future research.  Prior research has shown that teaching through problem-

solving contexts supports students’ ability to create appropriate mathematical models to 

solve word problems  (Verschaffel & De Corte, 1997).  The evidence from the present 

study and Verschaffel and De Corte tell a similar story: Using open, complex, and 

realistic problems with adolescents in student-centered discourse-rich instructional 

contexts enhances the number of representation used to solve problems whereas 

traditional instruction does not.   
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This finding related to adolescents’ representation use from the present study is 

also consistent with explorations with younger children in the Netherlands (Klein et al., 

1998).  Second-grade students who experienced instruction that encouraged them to 

utilize a variety of representations were more likely to successfully employ more 

representations to solve exercises and problems than their peers in comparison 

classrooms.  Drawing on evidence from these three studies, there is a growing body of 

evidence indicating that student-centered, discourse-rich instruction positively impacts 

students’ use of representations on problem-solving tasks.   

Between-Group Comparisons 

Problem-solving performance 

Results supported the hypothesis that the intervention group would show better 

problem-solving performance than the comparison group after one month of the 

instructional intervention.  More specifically, controlling for pretest performance students 

experiencing the intervention solved more word problems on the posttest than their 

peers.  The effect size (d = .26) was not greater than the average annual gain in 

mathematics achievement but it was greater than typical effect sizes associated with 

achievement tests administered to students in grades four through six.  The difference 

in the two groups’ problem-solving performance confirmed previous findings that 

students who experienced instruction that includes problem-solving features have better 

problem-solving performance than their peers in classrooms with traditional instruction 

(Charles & Lester, 1984, Sigurdson et al., 1994; Verschaffel et al., 1999).  

The results from the present study are an extension and confirmation of prior 

problem-solving research.  Charles and Lester (1984) noted that adolescents’ problem-

solving related outcomes were enhanced when problem-solving instruction was a piece 
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of overall daily mathematics instruction (i.e., 10 - 25 minutes).  Similarly, eighth-grade 

students who experienced 10 minutes of problem-solving activity had better 

performance on a test that included problem-solving oriented questions than their peers 

receiving instruction that typically involved algorithmic practice and exercises 

(Sigurdson et al., 1994).  The present study along with others provides evidence that 

students experiencing mathematics instruction that draws on problem-solving 

components are likely to solve more problems than their peers experiencing their usual 

instruction.   

The specific mechanism (i.e., materials, instructor, instructional actions, and 

mathematical discourse) that produced the desirable effect of improving students’ 

problem-solving performance unfortunately cannot be determined, but each component 

likely impacted students’ outcomes.  It is hypothesized that several components may 

have impacted students’ outcomes.  These components (e.g., tasks, norms, discourse) 

have been discussed as critical instructional elements prior literature as factors 

impacting students’ outcomes.  Thus, manipulating multiple components within 

classroom contexts such as was done in this study, likely affected students’ problem-

solving performance and representation use.  For example, the materials in the 

intervention classroom provided a context for students to discuss mathematics content 

and procedures whereas the workbook exercises were fairly straightforward and did not 

offer complexities that students might need to co-examine with a peer.  The norms in 

the intervention classroom created a learning environment for sustainable mathematical 

discourse.  A number of investigators (e.g., Cobb et al., 1992; Lo & Wheatley, 1994; 

Yackel & Cobb, 1996) have argued that social and sociomathematical norms are 
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important factors that influence students’ outcomes.  Lampert (1990) noted that fifth-

grade students engaged in student-centered, discourse-rich mathematics instruction 

had opportunities to learn mathematics with understanding.  Intervention participants 

from the present study were able to solve more word problems compared to their peers 

following the instructional intervention.  The benefits of having positive instructional 

components are demonstrated in the present study.  

Fifth-grade students who experienced lessons similar to those from the 

dissertation study approximately once each week for four months had significantly 

better performance on a test of word problems than their peers who were provided with 

more traditional instruction (Verschaffel et al., 1999).  The intervention in the present 

study generated a positive effect on students’ problem-solving performance (i.e., d = 

.26), which verified previous findings (d = .31) (Verschaffel et al., 1999).  It is possible 

that daily mathematics instruction using problem-solving contexts might lead to stronger 

effects if the intervention took place over a longer period of time, but this hypothesis 

must be further examined in efficacy studies.  Following the intervention, students 

showed better problem-solving performance than their comparison group peers.  

Representation use 

Prior to the intervention, there was no difference between groups’ pretest 

representation use.  After one month of the instructional intervention, participants used 

approximately one more representation on the posttest than their peers in the 

comparison group (d = .18).  Similar to problem-solving performance differences, it was 

a mixture of several instructional aspects that likely led to this result.   

The first aspect was the use of open, complex, and realistic word problems.  

Drawing on realistic problems may foster links between students’ prior knowledge 
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including their mathematical knowledge and knowledge gained from experiences in the 

community (Boaler, 2002).  For example, problems about pizza prices from local 

restaurants, movie watching habits of local households, and sports-related statistics 

from a famous athlete provide a context for students to use their knowledge of real life 

in conjunction with their mathematics knowledge.  Boaler (2002) has argued that 

realistic problems encourage children to draw on their knowledge from nonacademic 

situations, which may help them solve problems using novel approaches.  Tasks such 

as those from the present study align with prior research and led to improving students’ 

representation use on problem-solving tasks. 

The second factor was a student-centered, discourse-rich learning environment 

with supportive social and sociomathematical norms.  Students in student-centered, 

discourse-rich learning environments tended to be more effective with their 

representation use as well as use more representations during problem solving than 

their peers experiencing more teacher-directed instruction that focused on appropriately 

employing specific approaches to solve tasks in both the present study and one 

conducted by Klein and his et al. (1998).  Teaching students to choose the “most 

appropriate and efficient strategy or procedure given the (number) characteristics of the 

problem at hand” (RPD) (Klein et al., 1998, p. 449) resulted in better representation and 

procedure use than their peers in the GPD condition.  Boaler (2002) suggested that 

instruction similar to that employed in this dissertation study, (i.e., use of student-

centered, discourse-rich mathematics instruction that employs reform-oriented 

materials) creates a context for learning that supports all learners.  Lampert (1990) 

noted a similar finding: Students who engaged in discourse while problem solving 
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recognized the strengths and limitations of representations.  Participants in the present 

study employed viable representations to solve problems and tended not to use 

ineffective representations.  Encouraging students to share their representations while 

problem solving resulted in their ability to implement more representations on a 

problem-solving test than their peers who experienced fairly teacher-directed 

instruction. 

There was no significant relationship between nonsymbolic representation use 

on the posttest and intervention status.  Instruction in the intervention classroom 

typically encouraged students to think about whether there were alternate 

representations and procedures to solve a problem.  This nonsignificant finding may be 

influenced by several factors including students’ ability to use nonsymbolic 

representations (Preston & Garner, 2003) as well as their perceptions related to 

employing nonsymbolic representations to solve word problems (Bostic & Pape, 2010; 

Herman, 2007).  Herman noticed that Algebra students perceived pictorial and tabular 

representations as backup methods to verify a symbolic-oriented representation.  

Further research is necessary to explain why no significant relationship was produced 

by the intervention.  

Unit test  

In the present study, a unit test was selected from the assessment materials 

accompanying the textbook and administered to all participants.  All items were 

constructed response and some asked students to provide an explanation of their 

response.  The average unit test score from the comparison group was approximately 

two points higher than the intervention group (i.e., d = .34).  This study builds upon 

others by providing evidence related to students’ achievement for specific mathematics 
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topics after experiencing mathematics instruction in problem-solving contexts.  Most 

investigations (Sigurdson et al., 1994; Verschaffel et al., 1999) used summative 

mathematics achievement tests to measure students’ overall mathematics 

understanding and results have been inconsistent.  

There were differential effects of incorporating problem-solving contexts into daily 

mathematics instruction on eighth-grade students’ achievement (Sigurdson et al., 1994).  

That is, “except for low-achievement students, the 10 minutes devoted to problems 

each day appears, simply, to detract from students’ achievement” (p. 380).  It is unclear 

why all students from their study did not benefit equally; however, it is possible that 

explicit mathematics teaching that focuses on procedures and content may be a critical 

element linked to students’ unit test performance.  For example, comparison 

participants in the dissertation study routinely practiced exercises similar to those on the 

unit test during their time at each station.  Their homework was also intended to provide 

opportunities to practice solving these types of problems.  In a previous study, 

participants who experienced both explicit mathematics instruction as well as lessons 

focused on problem solving had better achievement scores than those in comparison 

classrooms (Verschaffel et al., 1999).  “Greater attention on mathematical problem 

solving in the experimental classes (at the expense of the other subject-matter topics in 

mathematics) had no negative side effect and even a small positive (transfer) effect on 

pupil’s mathematical knowledge and skills” (Verschaffel et al., 1999, p. 218).  The 

present investigation offers evidence that teacher-led instruction may be a necessary 

component of teaching mathematics through problem-solving contexts.  Thus, further 
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research is needed to understand the impact of incorporating explicit teacher-led 

mathematics instruction into problem-solving interventions on students’ achievement. 

The current study extends problem-solving research by examining sixth-grade 

students’ outcomes following a one-month instructional intervention that supplanted the 

typical classroom instruction.  Students’ problem-solving performance and number of 

representation used on a word problem test was enhanced by the intervention.  

Participants in the intervention group had lower performance on the unit test than their 

peers.  The results of this study have both theoretical and practical implications, which 

are discussed further.  

Theoretical Implications 

The goal of this study was to examine sixth-grade students’ outcomes as a result 

of teaching mathematics through problem-solving contexts.  Findings have more 

implications for practice but there are a few theoretical implications.  First, teaching 

mathematics through problem-solving contexts was linked to both negative and positive 

outcomes for sixth-grade students.  This study confirms previous findings that 

interventions such as this one support students’ problem-solving performance whereas 

the comparison classroom instruction was not linked with such gains in problem solving.  

Moreover, tasks on the problem-solving measures were not explicitly constructed to 

focus on the instructional topics (i.e., rates, ratios, and data analysis).  This finding 

provides evidence that this type of instruction supports students’ problem-solving 

outcomes, regardless of the grade-level content embedded within problem-solving 

tasks.  There may be limits to the positive effects of mathematics instruction that 

primarily draws on open, complex, and realistic word problems.   
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Teaching through problem-solving contexts may not necessarily lead to greater 

achievement outcomes.  The intervention appeared not to support students’ 

achievement on the unit test.  It is possible that this type of instructional intervention that 

places little emphasis on solving exercises might not support students’ mathematics 

achievement as measured by a unit test.  Another potential explanation of this finding is 

that mathematics procedures were not synthesized for students or made explicit during 

instruction in the intervention classroom.  The classroom teacher provided explicit 

instruction focusing on applying mathematical procedures, which might explain 

comparison students’ performance.  Below-average performing students benefitted from 

discussions, syntheses, and explicit examination of mathematics content and 

procedures that were part of the problem-process instructional program (Sigurdson et 

al., 1994).  Abstracting mathematics from word problems may be a crucial aspect for 

supporting students’ academic growth in classrooms employing instruction similar to this 

intervention.  The findings provide some confirming evidence about teaching through 

problem-solving contexts and a need for explicit mathematics instruction.  

Second, the findings confirm prior research (i.e., Verschaffel et al., 1999) that 

students’ background characteristics were not a significant factor in predicting students’ 

problem-solving outcomes.  Analyses revealed that students’ demographics (e.g., 

ethnicity, gender, and free-and-reduced lunch status) were not significantly related to 

problem-solving performance or representation use.  Moreover, students’ prior FCAT 

reading and mathematics achievement were also not significant predictors of problem-

solving outcomes.  Another set of multiple regression models were examined to provide 

more evidence that these covariates were not significant predictors when added to the 
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final models examining problem-solving performance and posttest representation use.  

Specifically, a predictor (e.g., gender) was placed in the final model and its significance 

was examined.  This procedure was conducted for both models of the dependent 

variable and each covariate.  None of the covariates were significant when entered into 

the model in this fashion.  In an era when investigators (e.g., Gonzales et al., 2008) 

frequently examine the relationship between students’ performance and covariates such 

as these, there is a growing body of evidence suggesting that students’ ability to solve 

open, complex, and realistic problems is dependent on their prior problem-solving 

related outcomes (i.e., performance and representation use), but not necessarily other 

factors.   

Third, this feasibility study characterizes one way that teaching mathematics 

through problem-solving contexts might occur.  Prior investigations similar to this one 

(e.g., Verschaffel & De Corte, 1997; Verschaffel et al., 1999) provided guidance for 

teaching mathematics through problem-solving contexts but instruction was not 

conducted on a regular basis or drawing on state or national standards.  This 

exploratory study demonstrates that teaching mathematics through problem-solving 

contexts is feasible during this critical era with new Standards (CCSSO, 2010; FLDOE, 

2007).  This feasibility study provides one possible way to create and implement such 

an intervention that teaches state-mandated mathematics standards, which supports 

future investigators seeking to conduct similar types of research. 

Fourth, Cohen (1988) and Lipsey’s (1990) guidelines for interpreting d provide 

are unit-free and “there is no inherent practical or substantive meaning to standard 

deviation units” (Bloom et al., 2008, p. 2).  Thus, it is more helpful to interpret effect 
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sizes within a meaningful context, such as usual growth over time (Bloom et al., 2008) 

or typical effect size estimates of an educational intervention on students’ achievement 

(Hill et al., 2008).  Data from 13 standardized assessments and estimated the annual 

growth in effect size for fifth- and sixth-grade students to be approximately 0.41 (Bloom 

et al., 2008).  Seventy-six research reports and publications contributed to calculating 

the mean effect size on achievement measures for students in grades four through six 

(Hill et al., 2008).  The intervention’s impact on students’ problem-solving performance 

(d = .26) was somewhat lower than the average annual gain in effect size for nationally 

normed mathematics tests (d = .41), but it was slightly larger the mean effect size 

related to achievement differences as a result of educational interventions in grades 4-6 

(d = .22) (Hill et al., 2008).  The effect sizes from the present study may suggest “what 

might be attainable” (Hill et al., 2008, p. 176) is different for an intervention’s impact on 

problem-performance than achievement.  It is possible that the mean effect size of an 

intervention’s impact on problem-solving performance is slightly larger than those 

associated with achievement.   

In conclusion, the findings have some implications for theory.  There is a growing 

body of evidence suggesting the strength and limitations of teaching through problem-

solving contexts.  This study confirms prior results suggesting that students’ 

characteristics and prior achievement as measured by a standardized test have no 

significant influence on students’ problem-solving outcomes.  The description of 

teaching mathematics through problem-solving contexts offers the research community 

a classroom-based instructional intervention that might be improved.  Finally, the effect 

of the intervention may encourage others to further examine mean effect sizes related 
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to problem-solving performance and compare them to achievement-related outcomes.  

A useful metanalysis might indicate the average gains in problem-solving performance 

over several grade levels or age-ranges.  As mentioned at the beginning of this section, 

there are few theoretical implications but far more consequences for teacher’s and 

teacher educator’s practices.  

Practical Implications 

This study supports classroom teachers as well as researchers.  First, the 

instructional intervention may be a model for conducting mathematics instruction that 

teaches the middle-grades mathematics Standards (CCSSO, 2010; FLDOE, 2007) in 

problem-solving contexts.  The intervention was not as successful as the comparison 

teaching with respect to unit-test performance, yet students demonstrated 

understanding content and procedures fairly well.  Teachers might consider allowing 

some instructional time for explicit mathematics instruction as part of teaching 

mathematics through problem-solving contexts.  Findings provide evidence that this 

type of instruction (i.e., intervention instruction conducted in the dissertation study) 

benefits students’ problem-solving ability and the number of representations used to 

solve word problems.  Furthermore, instruction from the intervention classroom led to 

greater problem-solving outcomes compared to typical instruction.  If a goal of 

mathematics instruction is to develop competent problem solvers who are able to solve 

realistic problems (CCSSO, 2010), then teachers might consider teaching mathematics 

through problem-solving contexts. 

The findings also indicate a problematic issue related to teaching mathematics 

through problem-solving contexts.  One study indicated that participants experiencing 

mathematics instruction through problem-solving contexts had better achievement, as 
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measured by a comprehensive test, than their peers experiencing business-as-usual 

instruction (Verschaffel et al., 1999).  Participants in the present study who experienced 

the intervention did not perform as well on the unit test as their peers who received their 

usual instruction.  Considering the present study’s findings and those from prior 

research (i.e., Sigurdson et al., 1994), it appears that teaching mathematics through 

problem-solving contexts as it was done in this study has limited effects on students’ 

achievement.  As mentioned earlier, classroom teachers might consider allowing for 

some instructional time, albeit limited, to conduct explicit instruction focusing on 

mathematics skills, procedures, and concepts.  One way to provide explicit instruction 

might be to make skills, procedures, or concepts an explicit topic of discussion as part 

of a synthesis after students finish working on an open, complex, realistic word problem.  

Teachers should be cautious about implementing this intervention as constructed as an 

aim to enhance students’ content learning until further research is conducted.   

Students who experienced the intervention were able to implement more than 

one representation to solve at least one of the word problems on the posttest.  This 

somewhat meager increase provides evidence that students were gaining mathematical 

proficiency because they were able to represent and solve problems in multiple ways, 

which is an indicator of strategic competence (Kilpatrick, 2001).  This result has two 

practical implications.  First, few traditional commercially published textbooks use 

problems, as they were defined in this study (Grischenko, 2009).  Grischenko’s (2009) 

analyses indicated that many textbooks’ word problems are exercises translated from 

symbolic to verbal representations.  Tasks meant to encourage comparison participants 

to problem solve were selected from textbook materials and not adapted or made 
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complex, open, or realistic.  Hence, the comparison participants might have had limited 

exposure to problems.  Teachers and mathematics coaches might notice that 

participants from this study were able to solve challenging problems and consider 

adding problems such as those used with the intervention group to mathematics 

instruction.  Instructional materials should also provide tasks that can often be solved in 

multiple ways, that is, representationally- and procedurally different strategies.  Pittman 

(2006) argued that many curricular materials provide insufficient support for students to 

develop an ability to solve problems in multiple ways and she advocated for changes in 

the types of tasks that are presented to students.  To that end, teachers and 

mathematics coaches might incorporate open problems like those from this study as a 

context for mathematics-related dialogue about solving problems using different 

representations.    

The findings may not necessarily influence mathematics instruction district- or 

state-wide but after presenting preliminary findings to the school faculty, a discussion 

was sparked among middle-grades teachers about ways to incorporate problem solving 

into their mathematics instruction.  The process of developing a student-centered, 

discourse-rich classroom environment as well as constructing lessons suited for 

problem-solving contexts must be shared with the practitioner community.  For instance, 

evidence from videotapes could provide a context to initiate discussions about 

classroom practices.  The classroom teacher from this study indicated that she 

appreciated the opportunity to learn how others perceived her instruction and how her 

instruction influenced students’ problem solving.  The videotapes need to be formatted 

before showing them to other teachers but after such editing, they may become 
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materials to use during professional development with mathematics teachers in order to 

support reflection that leads to changes in their classroom practices aimed at improving 

students’ problem-solving performance and representation use. 

This research offers examples of teaching mathematics through problem-solving 

contexts, which might stimulate others to create and enact lessons for other grade 

levels and/or with different content.  The lessons may provide a context for pre- and 

inservice teachers to learn about teaching through problem-solving contexts and how it 

differs from more traditional mathematics instruction.  This may support their thinking 

about ways to (a) foster mathematics learning and effective problem-solving behaviors 

in the classroom, (b) create a student-centered learning environment, and (c) initiate 

and sustain problem-solving discourse among students.  Tapes of the intervention 

classroom (1) show classroom instruction conducted in a nontraditional way and (2) 

students engaging in collaborative problem solving.  These videos need refining before 

showing them to pre- and inservice teachers, but there is potential that such video 

evidence, within the context of professional development or undergraduate or graduate 

coursework, might support mathematics teacher education development.  They could 

reflect on the extent to which instructional decisions impact student outcomes as part of 

their undergraduate coursework.  There is an abundance of research indicating that 

these facets of reform-oriented instruction positively impact students’ outcomes yet still, 

mathematics teaching is typically not characterized this way (Hiebert et al., 2005).  The 

tapes, used as part of a comprehensive teacher education program, might support 

preservice teachers’ growth as practitioners.   
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This study offers suggestions for K-12 instructional practices and has the 

potential to positively affect inservice teacher’s professional development as well as 

preservice mathematics teacher education.  Limitations of the present study impact the 

validity and generalizability of the results.  More problem-solving investigations are 

needed, which effectively manage issues that arose in this study.   

Limitations of the Study and Suggestions for Future Research 

Research Design and Instructional Intervention  

This study has some limitations that affect the generalizability of the results.  

First, a limitation of any quasi-experimental study is the inability to randomly assign 

individual participants to each group.  Furthermore, participants were not randomly 

selected from the greater population of sixth-grade students.  A group of participants 

(i.e., one section of sixth-grade mathematics) was randomly assigned to the 

intervention, and the comparison group consisted of the other two sections that met on 

the same day.  The intervention and comparison groups had similar problem-solving 

performance and representation use prior to the study thus differences between groups 

prior to the intervention were controlled.  However, there is the possibility that the 

groups were significantly different in other ways.   

This sample represented a wide variety of students with different backgrounds, 

yet a larger and more diverse sample might provide more evidence about students’ 

outcomes.  The sample size may have limited the statistical power to produce 

statistically significant coefficients for any variable related to students’ background (e.g., 

ethnicity, free-or-reduced lunch status, and gender).  Therefore, large-scale explanatory 

(i.e., efficacy) research is necessary to confirm findings from the present study 

indicating that students’ background characteristics (e.g., ethnicity and gender) and 
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prior reading and mathematics achievement do not account for a significant amount of 

variance in their problem-solving outcomes.  With two comparison classrooms and one 

intervention classroom, it was not possible to separate the effects of the instructor, 

intervention, and classroom.  Future researchers might consider two instructors 

conducting instruction in two classrooms each in order to better separate the classroom 

and intervention effects.  The instructor is a critical aspect of the intervention and it is 

not feasible to distinguish between the instructor and intervention effects without a 

different research design.  Finally, results cannot be generalized to ELLs and 

exceptional learners since they were not part of the participant sample that completed 

the measures.  Future research should heed the suggestions provided later in this 

section and consider using a larger and more diverse sample.  

Another limitation of the study was that the intervention was not tested and 

refined and content experts (i.e., mathematics education researchers and classroom 

teachers) did not examine the lessons prior to their implementation in the dissertation 

study.  Pilot testing the intervention and refining it may have enhanced the effectiveness 

of the intervention.  It is possible that the intervention’s capacity to improve students’ 

achievement as well as problem-solving performance and representation use has not 

reached its full potential.  Statistical power of the intervention may be lower than its 

potential because it was not implemented and improved based on a pilot study.  

Examining the strengths and weaknesses of the lessons using a lesson study approach 

improves a lesson’s effectiveness (Fernandez & Yoshida, 2004) and might benefit 

future explorations similar to this one.  With support and guidance from classroom 
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teachers, a future study might have better lessons that lead to supporting students’ 

problem-solving outcomes and unit test performance.  

As mentioned in the methods section, the study lacks some ecological validity 

because it does not describe how a classroom teacher might enact the instructional 

intervention.  The researcher was the instructor in the intervention classroom.  The 

differences in the teacher and instructor’s mathematical and pedagogical content 

knowledge (Hill, Ball, & Schilling, 2008; Shulman, 1986) likely influenced the format and 

content of the instruction.  This weakness could be resolved through an efficacy trial 

with similar teachers. 

This study is a feasibility study that might lead to conducting a subsequent 

efficacy trial with classroom teachers delivering a revised instructional intervention.  

“Efficacy trials assess the value or worth of a treatment or instructional program” 

(Sloane, 2008, p. 625) whereas “effectiveness trials provide tests of whether the 

formally tested and efficacious treatment does more harm than good when it is 

delivered under real-world conditions” (Sloane, 2008, p. 625).  The intent of the 

intervention was to create an instructional environment that facilitated student 

collaboration while problem solving, share their representations, and to engage them in 

mathematics through open and complex word problems, which draw on realistic 

contexts.  In a previous study, researchers (Klein et al., 1998) perfected their 

instructional intervention over the course of a year-long pilot study before it was 

implemented as an efficacy trial.  A team of mathematics education researchers and 

classroom teachers collaborated to develop, implement, and refine lessons based on 

students’ feedback.  This likely increased the overall effectiveness of their intervention.  
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Investigators might consider refining the intervention and scaling it up for the next round 

of implementation as an efficacy trial.  Results from an efficacy trial using an improved 

instructional intervention might reveal why students in the intervention group did not 

have similar performance on the unit test to their peers in the comparison group.  

Furthermore, investigators ought to consider having a similar number of comparison 

and intervention classrooms and again randomly assign groups to each condition.   

Future researchers might also consider drawing on design-based research 

(DBR) methods (Design-Based Research Collective, 2003) to refine and implement the 

intervention.  A DBR methodology requires iterative cycles of planning, implementation, 

and data collection and analysis (Barab & Squire, 2004).  “The goal of DBR is to use the 

close study of a single learning environment…and as it occurs in naturalistic contexts, to 

develop new theories, artifacts, and practices that can be generalized to other schools 

and classrooms” (Barab, 2006, p. 153).  Interventions meant to enhance instructional 

practices and support students’ outcomes best fit this methodology (Barab, 2006; Cobb, 

Confrey, diSessa, Lehrer, & Schauble, 2003; Design-Based Research Collective, 2003).  

This is a methodology for revising and implementing the current instructional 

intervention as part of a future study.  Teaching experiments that are enacted, revised, 

and re-enacted are an example of design-based research (Cobb et al., 2003).  A 

research team composed of educational researchers, classroom teachers, and 

curriculum specialists might facilitate developing and conducting a stronger study.  One 

logical next step for this study is to refine the measures and intervention and invite one 

classroom teacher to implement the intervention.  If the results confirm prior findings 

then more teachers should be invited to participate and a district-wide efficacy study 
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might be implemented.  By appropriately scaling up classroom-based research and 

going through the iterative process of DBR (Barab & Squire, 2004), it is possible to 

reach the goal of developing “usable knowledge” (Lagemann, 2002, p. 8) for 

researchers, practitioners, policymakers, and other educational stakeholders.   

For too long, problem solving has been treated “as an isolated topic akin to 

algebra or geometry.  We need better integration of problem solving within all topic 

areas across the mathematics curriculum, and ... across disciplines” (English & 

Sriraman, 2010, pp. 267-268).  An aim of this study was to heed this message and 

provide an example of one way to teach mathematics through problem-solving contexts.  

The mathematics concepts were de-emphasized during instruction and learning to solve 

problems and apply mathematics concepts and procedures to complete problems were 

an important aspect of each lesson.  As a result, students learned mathematics, albeit 

not as well as their peers, and developed effective problem-solving behaviors.  This is a 

foray into teaching mathematics content and procedures required by the Standards 

(FLDOE, 2007) through problem-solving contexts, drawing on open, complex, and 

realistic word problems.  It provides a foundation for conducting similar instructional 

intervention using the Standards for Mathematical Content (CCSSO, 2010).  

Furthermore, this study demonstrates ways to develop the varieties of expertise that 

mathematics educators should develop in their students (i.e., Standards for 

Mathematical Practice) (CCSSO, 2010).  It is possible that interventions similar to this 

the one may implicate other issues besides achievement.  For example, Boaler (2000) 

and Lubienski (1998) suggest that some reform-oriented interventions might promote 

equity.   
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Equity is a critically important principle of mathematics education (Boaler, 2002; 

NCTM, 2000).  A future direction for research similar to this one is to co-examine 

students’ problem-solving outcomes in conjunction with equity issues.  Lubienski 

examined students’ outcomes as a function of teaching with Connected Mathematics 

Project materials in a student-centered learning environment and found that reform 

curriculum alone does not support equity in the classroom.  She noted that educators 

must consider “how to adapt instruction to meet lower SES students’ needs” (Lubienski, 

2000, p. 480).  In another equity-focused study, Boaler (2002) examined the positive 

effects of reform-oriented materials used in conjunction with student-centered and 

content-focused instructional practices.  Instructional format, classroom setting, as well 

as task’s contexts have the propensity to (a) support students of color as well as (b) 

children living in poverty and (c) foster greater mathematical proficiency for all learners 

(Boaler, 2002).  Boaler and Lubienski have differing perceptions of reform curricula’s 

impact on equity in the classroom.  More specifically, their findings show a difference in 

marginalized students’ outcomes as a result of instruction using non-traditional 

instruction.  Both agree though, that realistic contexts are critically important for 

supporting students’ learning and positively impact students’ instructional outcomes.  

More specifically, Lubienski (2000) advocated that students’ outcomes as a result of 

using “open, contextualized problems” (p. 479) need more examination through 

classroom-based research, especially in classrooms with a high number of students of 

color and/or students living in poverty.  There is tentative evidence suggesting that 

students of color living in poverty benefit from teaching mathematics through problem-

solving contexts (Bostic & Jacobbe, 2010), but explanatory research is needed.  
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Investigators might revise and implement the intervention as part of an efficacy trial in a 

school with a large number of students of color and/or who are living in poverty and 

compare outcomes to peers receiving their usual instruction.  Data from the present 

study could also be further investigated to determine the extent of equity promotion 

within the classroom.  In conclusion, problem-solving researchers who are keenly aware 

of equity issues should consider the possibly positive effects of interventions like the 

one from this study.  

Measures  

The measures also limit generalizations about students’ problem-solving 

performance and representation use.  No demographic information was collected during 

the pilot study.  Therefore, Differential Item Functioning (DIF) analyses could not be 

conducted.  The differences between the tests’ parameters are attributed to random 

variance (Embretson & Reise, 2000), but it is also possible that there was uniform or 

nonuniform DIF.  DIF analyses with the dissertation data are inappropriate considering 

the sample size and number of participants representing each category (e.g., African-

American, Hispanic, male, female, etc.) (de Ayala, 2009; Embretson & Reise, 2000).  

DIF should be investigated with a larger sample in future studies.  It is uncertain 

whether DIF was an issue with the pilot measures therefore no definitive statement can 

be made about DIF on the dissertation measures.  

There is also the potential for the tasks on the problem-solving measures to have 

uneven step difficulties.  As an example, it is possible that arriving at the mathematical 

modeling stage of problem solving might be more difficult than carrying out procedures 

and interpreting the result.  Students earned full credit when they carried out procedures 

appropriately but made a minor arithmetic error while working with their representation.  
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More than one minor error committed during problem solving was coded as an incorrect 

solution and the representation was not counted.  A dichotomous scoring procedure 

was employed for two reasons: (1) there was evidence from the pilot study that few 

students’ responses fit a partially-correct category and (2) Partial Credit Models (PCMs) 

from IRT are complex and require that every task have identical item parameters 

(Embretson & Reise, 2000).  For these reasons it was not possible to use PCMs with 

the data.  Future investigators ought to revise the measures and consider PCMs.  

As mentioned previously, investigators might consider conducting a longer 

investigation (e.g., one semester or one academic year) and administering multiple unit 

tests as well as an overall achievement test.  The unit tests might come from a 

textbook’s assessment materials and the achievement test might be composed of items 

from sources such as the National Assessment for Educational Progress (National 

Center for Education Statistics, 2009).  Results might explain the degree to which 

instructional interventions such as this one impacts students’ specific content 

knowledge and overall mathematics achievement.  Researchers might also investigate 

the strength of correlations between students’ scores on unit tests and an overall 

achievement test.  This type of investigation would provide confirming or contradictory 

evidence about the effects of teaching mathematics through problem-solving contexts 

on students’ achievement.   

Representation Coding Protocol and Strategic Behaviors 

Coding students’ strategies by their representations was another limitation.  

Mixing representations during problem solving was coded generally (e.g., symbolic-

pictorial), which did not characterize whether a participant used the symbolic or pictorial 

representation first.  Retrospective interviews with participants may be necessary to 
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determine which representation was used initially.  Furthermore, only representations 

were coded, but procedures were not examined.  A different coding scheme that 

combines the representations as well as the procedures might shed light on students’ 

strategy use rather than their representation use.  An emergent protocol that stems from 

students’ solution procedures might lead to a more robust and comprehensive coding 

scheme.  The representation coding protocol may be an area to further explore with 

these data and in the future. 

Think-aloud data were collected as part of this study but were not analyzed for 

this dissertation.  These data will provide evidence related to students’ strategic 

behaviors while problem solving.  Moreover, these data will supplement the present 

study because participants were selected from both comparison and intervention groups 

based on their prior fifth-grade mathematics FCAT score.  Researchers noticed that 

incorporating problem solving into mathematics instruction appeared to benefit below-

average performing students more than others, but more evidence is needed to confirm 

their findings (Sigurdson et al., 1994).  Future investigators might compare students’ 

outcomes and also conduct in-depth investigations into the effects of the intervention on 

students’ strategic behaviors using the think-aloud data.  Think-aloud data may offer 

insights into the ways students solve problems and the degree to which the intervention 

changed how students solved problems.  Participants’ think-aloud data were not 

analyzed in time for this dissertation, but these data will be examined and explored in 

relation to students’ outcomes on the problem-solving measures and unit test.  

Students’ explanations and externalized thoughts during the think aloud also provide 

substantial data for future analyses.  
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Discourse, Explanation, and Justification 

Participants’ outcomes were likely influenced by the mathematical discourse 

during instruction.  The descriptions and comparisons were based on analyses of 

videorecordings and the observer’s ratings and fieldnotes, but a more systematic 

discourse-coding procedure is necessary.  Discourse analysis methods such as Gee’s 

(2011) provide one possible means to analyze classroom discourse.  Another approach 

requires coding teacher/instructor’s and students’ discourse and examining frequency of 

types of discourse during an instructional episode (Pape et al., 2010).  Both approaches 

would add rigor to the way that discourse was examined.   

Students in the intervention classroom frequently discussed problem solving, 

ways to solve problems, potential issues related to solving problems, and mathematics 

content.  Video evidence was collected from several perspectives in the classroom, 

which might facilitate examining problem-solving discourse between two students as 

well as whole-classroom dialogue.  Researchers might carefully examine the tapes and 

conduct discourse analyses as well as investigate students’ cooperative learning 

behaviors.  Further research is needed to examine the ways in which mathematical 

discourse supported and/or limited mathematics learning in the two classrooms. 

Intervention students frequently provided explanations and justifications during 

instruction, as suggested by the graduate student observer’s notes.  Students’ 

explanations are descriptions of their problem solving whereas justifications constituted 

comments related to a rationale for engaging in specific problem-solving actions and 

behaviors (NCTM, 2000).  Justification and reasoning are critical elements of problem 

solving (NCTM, 2000).  Researchers should consider examining whether the 

instructional intervention influenced students’ explanations and justifications of their 
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problem-solving approaches and solutions.  The way that discourse was used to 

facilitate students’ learning within problem-solving contexts should be examined further.  

Summary 

In summary, future researchers might explore four potential areas that stem from 

this investigation and its limitations.  First, an improved research design and refined 

instructional intervention as well as one delivered over a longer time period might 

provide further understanding of the effects of such instruction.  Specifically, findings 

might elucidate the positive and negative outcomes associated with teaching 

mathematics through problem-solving contexts.  Second, employing a variety of 

achievement measures in a longer study might clarify the link between an instructional 

intervention and achievement.  Next, explorations into the ways that students solve 

problems ought to consider coding schemes that consider students’ representation and 

procedure use.  Think-aloud data and classroom data as well as a new protocol will 

support explorations into students’ strategic behaviors and whether the intervention 

affected students’ problem solving.  Finally, data from this study also support 

investigations into discourse as well as the ways that students engaged in explanations 

and justified their mathematical thinking.  There are assuredly other research 

trajectories but those discussed here are four possible areas for future researchers to 

explore.   

Final Thoughts 

The central aim of this study was to explore whether the intervention enhanced 

students’ performance and representation use on word problem tests.  In summary, 

intervention participants had better problem-solving performance and representation 

use between test administrations.  Similarly, they also performed better on the 
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measures than their peers in the comparison group.  There was no relationship between 

nonsymbolic representation use and intervention status.  Finally, comparison 

participants had better achievement on the unit test than their intervention peers.  This 

investigation demonstrates that it is possible to teach mathematics from the Standards 

(FLDOE, 2007) through problem-solving contexts and in ways that develop effective 

mathematical practices (CCSSO, 2010).   

This study is an extension of multiple studies, most specifically one conducted by 

Verschaffel and his research team (1999).  It improves upon Verschaffel and De Corte’s 

(1997) feasibility study and provides suggestions for a future investigation.  The study 

offers implications for theory and practice.  Multiple studies including this one show that 

including problem solving in everyday instruction benefits students’ problem-solving 

performance.  There are greater benefits to problem-solving outcomes when instruction 

such as the type implemented in this study is delivered on a regular basis.  Similarly, 

results from the present study confirm findings from prior research (Klein et al., 1998) 

that rich discussion about strategy (i.e., representations and procedures) use during 

instruction benefits students’ outcomes.  Future researchers ought to employ several 

videorecorders during instructional interventions so that various instructional aspects 

can be closely examined.  The videotapes are a rich data source that will be further 

explored for intervention students’ discourse, engagement in problem solving, strategic 

behaviors, and compared to their peers in the comparison classroom.  This investigation 

also offers multiple aspects that might inform teacher’s instructional practices.  For 

example, a description of teaching mathematics content from the Standards (FLDOE, 

2007) through problem-solving contexts is provided, which may be a model for future 
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implementers working with different mathematics standards.  This description might 

inform the ways that teacher’s deliver mathematics instruction focusing on other 

Standards (e.g., CCSSO, 2010).  Furthermore, the process of creating materials 

intended to support students’ learning that are similar to the ones used from this study 

will be shared so that teachers have more ideas for teaching mathematics content.  

Data from this study will continue to be examined to enhance both theory and practice.    
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APPENDIX A 
A GUIDE TO THE SIX STAGES OF PROBLEM SOLVING 

 
1. Reading the problem.  

a. Did you read the entire problem?  
b. Were there any words that you need help understanding? 
c. Do you understand what you are supposed to find? 

 
2. Describing the situation 

a. What is happening in this problem?  
b. Can you represent the situation presented in the problem?  

 
3. Creating a mathematical model 

a. What information is necessary to solve the problem? 
b. What information is unnecessary to solve the problem? 
c. Think about whether this problem is similar to others you have seen 

before.  
d. Is there more than one way to begin solving this problem? 

 
4. Using a strategy and finding the result. 

a. Think about some possible strategies and choose one that will work with 
what you created in the previous stage. 

b. Look at your work thus far. Did you make any mistakes with your 
arithmetic or carrying out the strategy? 

c. Does your result make sense when you look at your mathematical model? 
 

5. Interpreting your result 
a. What are the units for your result? 
b. Does your result answer the original question?  
c. Does your result fit with your situation? Is it a realistic answer? 

 
6. Reporting your answer 

a. Did you write a sentence that clearly answers the question with the final 
solution? 

 
** Is there another strategy that might answer the problem? Does your strategy use 
different steps to calculate the result? ** 
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APPENDIX B 
DESK-SIZED MODEL OF THE SIX STAGES OF PROBLEM SOLVING 

The six stages of problem solving 
1. Reading the problem 
2. Describing the situation 
3. Creating a mathematical model 
4. Using a strategy and finding the result 
5. Interpreting your result 
6. Reporting your answer 
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APPENDIX C 
PILOT STUDY PROBLEM-SOLVING PRETEST  

 
Directions: Please answer each question and show all of your work.  If you are 
able to show other ways to solve the problem, there is space below each one to 
show your work.  If you need more space, you are welcome to use the back of 
each paper or additional sheets of paper. 
 
1) Ruth is planning to serve ice cream sundaes to guests at her birthday party.  She 

purchased 3 flavors of ice cream: vanilla, chocolate, and strawberry, 2 different sauces: 

chocolate and caramel, and 4 different toppings: bananas, nuts, sprinkles, and whipped 

cream.  How many different types of sundaes can be made if every guest selects only 

one ice cream flavor, one type of sauce, and one topping? 

 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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2) Jerome needs 1 gallon of paint in order to paint a bedroom ceiling that is shaped like 

a square and measures 12 feet on each side.  How many gallons of paint would he 

need to paint a living room ceiling that is shaped like a square and each side measures 

24 feet? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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3) Bill is making a gate for a wooden fence to keep his dogs in his yard.  He bought four 

boards of wood from the home improvement store.  Each board measures 10 feet in 

length.  He needs 3 foot 6 inch pieces of wood to build the gate.  How many pieces can 

Bill make from his four boards? 

 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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4) A youth group and their adult chaperones want to visit a water park. The admission 

fees for this water park are listed below: 

Children: $6.00   
 
Adults: $10.50 
 

The total cost for all 17 people in the group to enter the park is $129.00.  How many 

children were in this group? 

 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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5) A group of 150 tourists were waiting for a shuttle to take them from a parking lot to a 

theme park’s entrance.  The only way they could reach the park’s entrance was by 

taking this shuttle.  The shuttle can carry 18 tourists at a time.  After one hour, everyone 

in the group of 150 tourists reached the theme park’s entrance.  What is the fewest 

number of times that the shuttle picked tourists up from the parking lot? 

 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below.  
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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6) Aunt Marie purchased 80 Silly Bandz for her two nephews Elijah and Jordan.  She 

gave Elijah 10 more Silly Bandz than Jordan.  How many Silly Bandz did Elijah and 

Jordan each receive? 

 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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7) A family is planning a camping trip to a national park and receives the following 

information about the costs per day:   

Camping Fee  
     Children 12 years and younger  $3.00 per day 
     All others  $7.00 per day 
  
Parking for trailer $9.00 per day 
  
Use of common areas  $1.50 per person per day 
 
The family will camp for 10 days and need to park their trailer each day.  The family 

consists of 4 people including a father, mother, 8 year-old child, and a 14 year-old child.  

Each person will need to use the common areas on a daily basis.  How much will they 

pay for their camping trip? 

 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below.  
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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8) Maria wanted a bicycle so she started saving all of her money.  For every $6.00 that 

Maria saved, her mother gave her $2.00.  Maria had $56.00 after three months.  How 

much money did Maria’s mother give her?  

 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
 
 
 
 
 
 
 
 
 
 
 

*** Please review your test and make certain you respond to every problem.  If 
you can show another way to solve any problem, please show it.  Please raise 
your hand after you have completed the test and reviewed your responses. *** 
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APPENDIX D 
PILOT STUDY PROBLEM-SOLVING POSTTEST  

 
Directions: Please answer each question and show all of your work.  If you are 
able to show other ways to solve the problem, there is space below each one to 
show your work.  If you need more space, you are welcome to use the back of 
each paper or additional sheets of paper. 
 

1) Students at Sandhill Elementary School purchase their lunches from the cafeteria. 

There are 3 choices for a main dish: hamburger, slice of pizza, or a turkey sandwich, 4 

different fruit options: apple, banana, orange, or peach, and 2 drink options: milk or 

juice.  How many different types of lunches can be made if every student selects only 

one main dish, one piece of fruit, and one drink?  

 

 

 

 

 

 

Can you show another way to solve the same problem?  If so, please show it in 
the space below. 

 
 
 
 
 
 
 
 
 
 

Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper.
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2) It takes Jeff 1 hour to mow a lawn that is shaped like a square and is 200 feet on 

each side.  How many hours would it take him to mow a lawn that is shaped like a 

square if each side measures 400 feet? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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3) Mr. Lee wants to make jump ropes for his students to use on the playground.  He 

purchases four packages of rope from the home improvement store.  Each package 

contains one piece of rope that measures 25 feet.  Each jump rope needs to measure 8 

feet 6 inches.  He can cut the rope but cannot join pieces together.  How many jump 

ropes can Mr. Lee make? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
 



 
 

190 

4) A youth group and their chaperones want to visit the Butterfly Rainforest exhibit at the 

museum.  The admission fees for the Butterfly Rainforest exhibit are listed below:  

Children: $6.00 
 
Adults:  $10.50 
 

The total cost for all 17 people in the group to enter the museum is $129.00.  How many 

adults were in this group? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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5) A group of 150 people were waiting for a glass bottom boat to take them on a trip 

through a nature preserve.  The boat can carry 18 people on each trip.  After several 

hours, everyone in the group of 150 people had gone through the nature preserve.  

What is the fewest number of trips made by the boat? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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6) Natasha and Marianne went to a theme park.  Together, they spent $80.00.  Natasha 

spent $10.00 more than Marianne.  How much money did Natasha and Marianne each 

spend? 

 

 

 

 

 

 

 

 

Can you show another way to solve the same problem?  If so, please show it in 
the space below. 

 

 

 

 

 

 

 

Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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7) A family is planning to leave their pets at Animal Day Care while they are on 

vacation.  They receive the following information about costs per day: 

Kennel costs 
      Dog 
      Cat 
 
Food 
Walk  

 
$11.00 per day  
$9.00 per day  
 
$1.50 per animal per day  
$3.00 per dog per day  

 
The family will need to leave their pets at Animal Day Care for 10 days.  They have 1 

dog and 3 cats.  All of the animals need to receive food on a daily basis and the dog 

must be walked each day.  How much will the family pay for their pets’ stay at Animal 

Day Care? 

 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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8) Janice went shopping at the grocery store and saw the following special offer.  “If you 

buy 6 oranges, you get 2 free.”  She purchased her groceries and left the grocery store 

with 56 oranges.  How many oranges did she get for free? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
 
 
 
 
 
 
 
 

*** Please review your test and make certain you respond to every problem.  If 
you can show another way to solve any problem, please show it.  Please raise 
your hand after you have completed the test and reviewed your responses. *** 
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APPENDIX E 
SCORING PROTOCOL 

 
Score Score description Description 

1 Correct Solution answers the problem.  
Representation(s) support the solution.  
Solutions with slight rounding or arithmetic 
errors are scored as correct. 
 

0 Incorrect/No Response Solution is not correct or provided, 
representation(s) led to an unrealistic solution, 
or an incorrect representation or set of 
procedures produced the solution by chance.  
 

 



 

196 

APPENDIX F 
REPRESENTATION CODING PROTOCOL 

Category Representation Description 

A Symbolic Expressions that utilize 
numeric, symbolic or a 
combination of numeric and 
symbolic characters 

B Pictorial Drawings that represent 
values, symbols, or real-life 
objects 

C Tabular Stem-and-leaf plots, 
frequency tables, or charts 
that categorize and 
organize data 

D Verbal Written statements that use 
words to represent 
numbers and mathematical 
operations 

E Mixed A combination of 
representations from two or 
more categories was 
employed. One 
representation might lead 
to utilizing a second 
representation. Further 
code cases using subcases 
shown below 

Note: Mixed representations should be coded using one of the subcases. 
 

F1 Symbolic-Pictorial 
F2 Symbolic-Tabular 
F3 Symbolic-Verbal 
F4 Pictorial-Tabular 
F5 Pictorial-Verbal 
F6 Verbal-Tabular 
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APPENDIX G 
PROBLEM-SOLVING PRETEST 

 
Directions: Please answer each question and show all of your work.  If you are 
able to show other ways to solve the problem, there is space below each one to 
show your work.  If you need more space, you are welcome to use the back of 
each paper or additional sheets of paper. 
 
1) Ruth is planning to serve ice cream sundaes to guests at her birthday party.  She 

purchased 3 flavors of ice cream: vanilla, chocolate, and strawberry, 2 different sauces: 

chocolate and caramel, and 4 different toppings: bananas, nuts, sprinkles, and whipped 

cream.  How many different types of sundaes can be made if every guest selects only 

one ice cream flavor, one type of sauce, and one topping? 

 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 



 

198 

2) A group of 150 tourists were waiting for a shuttle to take them from a parking lot to a 

theme park’s entrance.  The only way they could reach the park’s entrance was by 

taking this shuttle.  The shuttle can carry 18 tourists at a time.  After one hour, everyone 

in the group of 150 tourists reached the theme park’s entrance.  What is the fewest 

number of times that the shuttle picked tourists up from the parking lot? 

 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below.  
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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3) Aunt Marie purchased 80 Silly Bandz for her two nephews Elijah and Jordan.  She 

gave Elijah 10 more Silly Bandz than Jordan.  How many Silly Bandz did Elijah and 

Jordan each receive? 

 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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4) A family is planning a camping trip to a national park and receives the following 

information about the costs per day:   

Camping Fee  
     Children 12 years and younger  $3.00 per day 
     All others  $7.00 per day 
  
Parking for trailer $9.00 per day 
  
Use of common areas  $1.50 per person per day 
 
The family will camp for 10 days and need to park their trailer each day.  The family 

consists of 4 people including a father, mother, 8 year-old child, and a 14 year-old child.  

Each person will need to use the common areas on a daily basis.  How much will they 

pay for their camping trip? 

 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below.  
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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5) Maria wanted a bicycle so she started saving all of her money.  For every $6.00 that 

Maria saved, her mother gave her $2.00.  Maria had $56.00 after three months.  How 

much money did Maria’s mother give her?  

 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
 
 
 
 
 
 
 
 
 
 
 
*** Please review your test and make certain you respond to every problem.  If 
you can show another way to solve any problem, please show it.  Please raise 
your hand after you have completed the test and reviewed your responses. *** 
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APPENDIX H 
PROBLEM-SOLVING POSTTEST 

 
Directions: Please answer each question and show all of your work.  If you are 
able to show other ways to solve the problem, there is space below each one to 
show your work.  If you need more space, you are welcome to use the back of 
each paper or additional sheets of paper. 
 

1) Students at Sandhill Elementary School purchase their lunches from the cafeteria. 

There are 3 choices for a main dish: hamburger, slice of pizza, or a turkey sandwich, 4 

different fruit options: apple, banana, orange, or peach, and 2 drink options: milk or 

juice.  How many different types of lunches can be made if every student selects only 

one main dish, one piece of fruit, and one drink?  

 

 

 

 

 

 

Can you show another way to solve the same problem?  If so, please show it in 
the space below. 

 
 
 
 
 
 
 
 
 
 

Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper.
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2) A group of 150 people were waiting for a glass bottom boat to take them on a trip 

through a nature preserve.  The boat can carry 18 people on each trip.  After several 

hours, everyone in the group of 150 people had gone through the nature preserve.  

What is the fewest number of trips made by the boat? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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3) Natasha and Marianne went to a theme park.  Together, they spent $80.00.  Natasha 

spent $10.00 more than Marianne.  How much money did Natasha and Marianne each 

spend? 

 

 

 

 

 

 

 

 

Can you show another way to solve the same problem?  If so, please show it in 
the space below. 

 

 

 

 

 

 

 

Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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4) A family is planning to leave their pets at Animal Day Care while they are on 

vacation.  They receive the following information about costs per day: 

Kennel costs 
      Dog 
      Cat 
 
Food 
Walk  

 
$11.00 per day  
$9.00 per day  
 
$1.50 per animal per day  
$3.00 per dog per day  

 
The family will need to leave their pets at Animal Day Care for 10 days.  They have 1 

dog and 3 cats.  All of the animals need to receive food on a daily basis and the dog 

must be walked each day.  How much will the family pay for their pets’ stay at Animal 

Day Care? 

 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
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5) Janice went shopping at the grocery store and saw the following special offer.  “If you 

buy 6 oranges, you get 2 free.”  She purchased her groceries and left the grocery store 

with 56 oranges.  How many oranges did she get for free? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below. 
 
 
 
 
 
 
 
 
 
 
Can you show another way to solve the same problem?  If so, please show it in 
the space below or on the back of this paper. 
 
 
 
 
 
 
 
 

*** Please review your test and make certain you respond to every problem.  If you 
can show another way to solve any problem, please show it.  Please raise your hand 
after you have completed the test and reviewed your responses. ***  
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APPENDIX I 
UNIT TEST 

1. For a class trip, the teachers would like to have one adult for every 10 students.  
There are 190 students on the trip.  How any adults should go on the trip? 
 

2. The ratio of cement to water when mixing concrete is 4 : 1. 
a. Write the ratio in two other ways. 

 
b. How much water should you add to 12 cubic feet of cement? 

 
Write the ratio in the simplest form. 

3.  18 
 12 
 

4.    2 
   6 
 

5. You buy a sandwich and a fountain drink for lunch. The ratio of the cost of the 
drink to the cost of the sandwich is 1 : 3. The total cost of the sandwich and drink 
is $8.  What is the cost of the sandwich?  Explain how you found your answer 
 

Write a unit rate for the situation. 
6. 12 goals in 3 hours 

 
7. 1200 calories in 3 liters 

 
8. A pint of strawberries costs $2.25. For a sale, the store offers a third pint free if 

you buy two pints at the regular price. Find the unit price of a pint of strawberries 
when you buy three on sale. 
 

9. An alligator can run at 13 feet per second on land.  At this rate, how far can it run 
in 3 seconds? 
 

10. A bat flies 180 feet in 20 seconds.  At this rate, how far can it fly in 30 seconds? 
 

11. You run at a pace of 1 mile every 9 minutes.  At this rate, how far can you run in 
45 minutes? 
 

12. You read 16 pages of an assignment in 20 minutes.  At this rate, how many 
pages can you read in 45 minutes? 
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13. The table gives the number of students in a homeroom of 32 who brought a 
lunch from home each day. 
 
Day Mon Tues Wed Thurs 
Brought Lunch 18 14 20 16 

 
a. Find the mean of the data. 

 
b. Friday is a class field trip and all 32 students bring their lunch.  Will the 

mean for the whole week be greater than or less than the mean for 
Monday through Thursday?  Explain.  Then find the new mean. 
 

Find the median and mode(s) of the data. 
14.  4, 6, 5, 4, 4, 5, 4, 8 

 
15.  95, 90, 80, 90, 85, 95, 75 

 
16. Find the mode(s) of the data. 

 
 

Favorite Elective 
Music Computers Art 
Music Art Computers 

Computers Music Art 
Art Music Music 
Art Music Art 

 
 

17. The data are the number of minutes students spend studying for a test. 
35, 32, 38, 34, 36, 69, 32, 25, 41 
 

a. Find the mean, median, mode and range. 
 

b. Does the mean, the median, or the mode represent the data best? Explain 
your reasoning. 
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APPENDIX J 
OBSERVATION PROTOCOL  

Name of teacher: ______________________  Topic: ________________ 
 
Date of observation: ___________________ Start time: ______ End time: _____ 
 
Lesson Design and Implementation 

1. The instructional strategies and activities respected students’ prior knowledge 
and their preconceptions. 

Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

2. The lesson was designed to engage students as members of a learning 
community. 

 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 
 

3. Students’ exploration preceded formal presentation. 
 

Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 
 

4. The lesson encouraged students to seek and value alternative modes of problem 
solving. 
 

Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 
 

5. The focus and direction of the lesson was often determined by ideas originating 
with students. 
 

Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4  
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Content - Conceptual Knowledge 
 

6. Lesson involved fundamental concepts of mathematics. 
 

Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 
 

7. Lesson promoted strongly coherent conceptual understanding. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
8. Teacher had a solid grasp of mathematics content inherent in the lesson. 

 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
9. Elements of abstraction (i.e., symbolic representations and theory building) were 

explored and valued as part of the lesson. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
10. Connections with other disciplines and/or real world phenomena were explored 

and valued. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 
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Content – Procedural Knowledge 
 

11. Students used a variety of means (i.e., models, drawings, graphs, concrete 
materials, and manipulatives) to represent phenomena. 

 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
12. Students made predictions, estimations, and/or hypotheses and devised means 

for testing them. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
13. Students were actively engaged in thought-provoking activity that often involved 

the critical assessment of procedures. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 
 

14. Students were reflective about their learning 
 

Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
15. Intellectual rigor, constructive criticism, and the challenging of ideas were 
valued. 

 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 
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Classroom Culture – Communicative Interactions 
 

16. Students were involved in the communication of their ideas to others using a 
variety of means and/or media. 

 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 
 

17. The teacher’s questions triggered divergent modes of thinking. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
18. There was a high proportion of mathematically-oriented student talk and a 

significant amount of it occurred between and among students. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
19. Student questions and comments often determined the focus and direction of 

classroom discourse. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 
 

20. There was a climate of respect for what others had to say. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 
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Classroom Culture – Student/Teacher Relationships 
 

21. Active participation of students was encouraged and valued. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
22. Students were encouraged to generate conjectures, alternative solution 

strategies, and ways of interpreting evidence. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
23. In general, the teacher was patient with students. 

 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
24. The teacher acted as a resource person, working to support and enhance 

student investigations/thinking. 
 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
25. The metaphor “teacher as listener” was characteristic of this classroom. 

 
Comments 
 
 

Not at All    Somewhat   Very Descriptive 
0   1   2  3   4 

 
Additional comments about this lesson  
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APPENDIX K 
SOCIAL NORMS 

 
Expectations for behavior in class 

 
We will be respectful of each other’s time and space and work efficiently.  
  
We will actively listen to each other by giving others our attention and not speaking 
when someone else is talking. 
  
We will ask questions when we don’t understand.  
  
We will work at our desk and may earn the privilege to work where we feel comfortable 
but will be respectful if asked to move. 
  
We will not sit on desks.  
 
We will not use electronics except for calculators while in the classroom. 
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APPENDIX L 
SOCIOMATHEMATICAL NORMS 

 
Expectations for doing mathematics 

 
We may use calculators when we check our work. 
  
We will make an educated guess about the result after reading and understanding the 
problem. 
  
We will use pictures, graphs, tables, symbols, numbers, manipulatives, and words to 
assist us while doing mathematics. 
  
If we disagree with someone, we will ask a question about his or her idea and describe 
why we disagree.  
  
We will look for more than one way to answer a problem. 
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APPENDIX M 
SAMPLE LESSON PLAN 

Lesson Plan Day 7, January 19 (100 minutes) 
 

• Complete the warmup. 
• Check your solution to the BAND problem.  

 
AFTER CHECKING YOUR WORK, PLACE IT IN THE FOLDER NEAR THE 

PROJECTOR. 
FCAT Standard 
MA.6.S.6.1 Determine the measures of central tendency (mean, median, and mode) 
and variability (range) for a given set of data 
 
MA.6.S.6.2 Select and analyze the measures of central tendency or variability to 
represent, describe, analyze and/or summarize a data set for the purposes of answering 
questions appropriately.  
 
 

Agenda 
Warm-up 

PROBLEM: Viewing habits of Gainesville residents! 
PROBLEM: Pizza in Gainesville (if time) 

Reflection 
Homework 

♦ Page. 228 #1, 4, 7, 9, 13  
♦ Weather and Kwikset Problems 
♦ Quiz on Monday covering data analysis  
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Complete the warmup. 
• Check your solution to the BAND problem with five people. AFTER CHECKING YOUR 

WORK, PLACE IT IN THE FOLDER NEAR THE PROJECTOR. 

 
Warmup 

Each of these words has a meaning related to 
statistics and data representations. Write down the 
words that are unfamiliar to you and ask someone for 
an example or description. Write down their 
description. 

i. Clusters/Groups and gaps (in data) 
ii. Distribution of data 

iii. Outlier (within a data set) 
iv. Range (of a data set) 
v. Symmetry (of a data set) 

vi. Line Plot 
vii. Bar Graph 

viii. Mean, Median, Mode (of a data set) 
ix. Stem-and-leaf plot  
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218 

 
 
 

Reflection 
What terms are still unfamiliar to you? Write down the 
terms you want to discuss on Monday and give it to 
Mr. Bostic as you leave.  
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Problem       NAME: __________________ 
Directions: Complete each question and then share your ideas with someone else. 
Write down their ideas below yours if they are different.  
Netflix is interested in knowing the viewing habits of residents in Gainesville, Florida. 
The company randomly collects data during one week in December 2010.  The data are 
shown below.  

 
 
1. What can you say about Gainesville residents’ viewing habits during this week? Write 
down as many things as you can.  
___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Someone else said____________________________________________________ 

___________________________________________________________________ 

2. What are some questions that cannot be answered using these data? Write 
down as many things as you can. 
 
___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 
 

Someone else said____________________________________________________ 

___________________________________________________________________ 

  

0 5 10 15 20

Horror

Comedy

Animation

Musical

Romance

Science Fiction

Adventure

Programs watched in Gainesville 
December 2010 on Netflix

Number of programs watched 
(hundreds)
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3A. Which type(s) of average (i.e., mean, median, and mode) is/are appropriate? 
Justify your response with 1-2 sentences. 
___________________________________________________________________ 

___________________________________________________________________ 
___________________________________________________________________ 

___________________________________________________________________ 

Someone else said____________________________________________________ 

___________________________________________________________________ 

 

3B. Which type(s) of average (i.e., mean, median, and mode) is/are NOT 
appropriate? Justify your response with 1-2 sentences. 
___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Someone else said__________________________________________________ 

_________________________________________________________________ 

 

4. What does the spread of the data tell us?  
___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Someone else said____________________________________________________ 

___________________________________________________________________ 

 
5A. What other data displays are appropriate?  
___________________________________________________________________ 

___________________________________________________________________ 

Someone else said____________________________________________________ 

___________________________________________________________________ 

 
5B. What data displays are NOT appropriate? 
___________________________________________________________________ 

___________________________________________________________________ 

Someone else said____________________________________________________ 
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HWK: Page. 228 #1, 4, 7, 9, 13   NAME: ____________________ 
Weather and Kwikset Problems   DATE: January ____, 2011 
1) The average temperatures in for Ocala, Florida are listed below.  
 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Max 70.4 72.8 78.3 82.9 88.2 92.2 91.6 89.6 83.9 77.4 71.7 82.5 
Min 45.7 47.0 52.3 56.0 63.1 69.2 71.1 70.8 68.7 61.0 53.4 47.3 
Average             
Create a (1) bar graph or (2) line plot using these data on the grid below.  

 
 
B) What version of average is MOST appropriate? __________ 
Calculate the average that is most appropriate and fill in the boxes.  
 
C) How spread out are the max and min temperatures?  
___________________________________________________________________ 
___________________________________________________________________ 
 
D) What month has the largest spread in its temperature?  
___________________________________________________________________ 
___________________________________________________________________ 
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2) Kwikset manufactures keyrings and wants to know whether they should change their 
current key ring design.  The current design holds 20 keys comfortably.  Survey 10 
adults about the number of keys on their key ring.  
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A) Create a tally chart (also called a frequency chart) or display for your survey data 
such as bar graph or pictograph in the box below.  

 
B) Next, think about these terms as you analyze your data: 
 Are there any outliers
 What are the 

? 
extreme values

 What is the 
? 

mean
 What is the 

? ___________  Is it useful? (Yes/No)____________ 
median

 What is the 
? __________ Is it useful? (Yes/No)____________ 

mode
 What is the 

?____________ Is it useful? (Yes/No)_____________ 
range

 Are the data clustered or grouped? (Yes/No)____________ 
? ___________  Is it useful? (Yes/No)____________ 

 
C) What measure (or measures) of average is/are appropriate for your data set?  
____________________________________________________________________ 
Write a paragraph (minimum of 3 sentences) (1) describing your analysis and (2) tell 
Kwikset whether they should change their keyring design.  
___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

  

 



 

224 

Problem       NAME: __________________ 
        DATE: __________________ 
Directions: Complete the problem below using the problem-solving template. 
Every step must be carried out.  Use your knowledge of ratios, rates, unit rates, 
data representations, and data analysis to answer the questions below.  
 
The city of Gainesville has many places to purchase a pizza.  Jeremy decides to create 
a website to provide residents with information that may help them decide where to 
purchase their pizza.  The following data provide the cost of a cheese pizza, a 
pepperoni pizza, a large pizza with five toppings, the diameter of a large pizza, and the 
number of slices on a large pizza: 
 

Pizza 
Restaurant 

# of Slices 
on Large 
pizza 

Diameter of 
Large Pizza 
(in.) 

Cost of 
Large 
Cheese 
Pizza 
(dollars) 

Cost of 
Large 
Pepperoni 
Pizza 
(dollars) 

Cost of Large 
Pizza with 5 
Toppings 
(dollars) 

Pizza Hut 8 14 10.00 10.00 10.00 
Papa Johns 8 14 8.99 9.99 12.99 
Domino’s 8 14 9.99 7.99 15.06 
Five Star 8 14 8.99 10.49 12.99 
Leonardo's 8 14 8.75 10.95 16.50 
Hungry 
Howie’s 8 14 10.55 12.95 16.05 
Pizza Vito 8 14 10.95 12.70 19.95 
(The questions are also listed later on the worksheet.) 
 
What is the best value for one slice of cheese pizza?  
What is the average value for a large pepperoni pizza? 
Are there any outliers that influence your results? 
Is there an average price for any of the pizza types? 
What data are most important for consumers?   
Create a data representation that Jeremy might display on his website. 
 

1. READ AND UNDERSTAND THE PROBLEM  
a) What information is needed to complete each question? Write it here. 

 
I need to 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 
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2. DESCRIBE THE SITUATION  

a) Highlight or underline the important parts of the problem. 
• CREATE A MATH MODEL AND USE A STRATEGY TO FIND THE RESULT FOR 

EACH QUESTION.  
a. Carry out your work here and use the back of the paper.  

 
Q1: What is the best value for one slice of cheese pizza?  
 
 
 
 
 
 
 
Q2: What is the average value for a large pepperoni pizza? 
 
 
 
 
 
 
 
Q3: Are there any outliers that influence your results? 
 
 
 
 
 
 
 
Q4: Is there an average price for any of the pizza types? 
 
 
 
 
 
 
 
Q5: What data are most important for consumers?  Why?  
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Q6: Create a data representation that Jeremy might display on his website.  
(The grid may help you if you want to create a bar graph.) 

 
• INTERPRET THE RESULT 

b. Do your results match what you might expect to find?  If so, write YES. If not, go back 
and review your work. _______ 
 

• REPORT YOUR ANSWER 
c. Write 2 or more complete sentences describing the best value for a pizza that your 

family might be interested in purchasing.  Write in a way that a 6th grade student might 
understand.  

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

***Check your work with one other person. If they have something different, write it in 
pen near your answer because we will discuss them later.*** 
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APPENDIX N 
SAMPLE PROBLEMS FROM INTERVENTION CLASSROOM 

1. Mr. Lee wants to make jump ropes for his students to use on the playground.  He 

purchases four packages of rope from the home improvement store.  Each package 

contains one piece of rope that measures 25 feet.  Each jump rope needs to measure 

8 feet 6 inches.  He can cut the rope but cannot join pieces together.  How many jump 

ropes can Mr. Lee make? 

2. The Domino’s Pizza on 13th Street that delivers to P.K. Yonge has three 

employees who make pizzas during the lunch hours.  Jane works Mondays and 

Fridays, Thomas works Tuesdays and Thursdays, and Sandra works on Wednesdays. 

On Monday, Mrs. Flavin orders 3 pizzas and it takes Jane 19 minutes 30 seconds to 

make them.  It takes the same amount of time to make a pizza of any size and any 

number of toppings.  On Wednesday, the ninth grade class orders 14 pizzas, which 

takes Sandra 1 hour and 24 minutes to make them.  The middle school faculty orders 

5 pizzas, which takes Thomas 35 minutes to make them.  The store manager wants to 

know who is the fastest at making one pizza.  What do you tell the manager? 

3. The quarterback for the University of Florida in 2008 was Tim Tebow.  The table 

below shows the total number of yards he earned for running and passing the ball 

during each game.   

A. On average, how many running yards did Tim Tebow gain per game?  
 
B. On average, how many passing yards did Tim Tebow gain per game? 
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Opponent Running Yards Passing Yards 
Hawaii 37 137 
Miami 55 256 
Tennessee 26 96 
Ole Miss 7 319 
Arkansas 32 217 
Louisiana State University 22 210 
University of Kentucky 48 180 
University of Georgia 39 154 
Vanderbilt 88 171 
University of South Carolina 39 173 
The Citadel 34 201 
Florida State 80 185 
University of Alabama 57 216 
University of Oklahoma 109 231 
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