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ABSTRACT OF DISSERTATION 

 

NONINVASIVE ASSESSMENT AND MODELING OF DIABETIC 

CARDIOVASCULAR AUTONOMIC NEUROPATHY 

              Noninvasive assessment of diabetic cardiovascular autonomic 
neuropathy (AN): Cardiac and vascular dysfunctions resulting from AN are 
complications of diabetes, often undiagnosed. Our objectives were to: 1) 
determine sympathetic and parasympathetic components of compromised blood 
pressure regulation in patients with polyneuropathy, and 2) rank noninvasive 
indexes for their sensitivity in diagnosing AN.  Continuous 12-lead 
electrocardiography (ECG), blood pressure (BP), respiration, regional blood flow 
and bio-impedance were recorded from 12 able-bodied subjects (AB), 7 diabetics 
without (D0), 7 with possible (D1) and 8 with definite polyneuropathy (D2), during 
10 minutes supine control, 30 minutes 70-degree head-up tilt and 5 minutes 
supine recovery. During the first 3 minutes of tilt, systolic BP decreased in D2 
while increased in AB. Parasympathetic control of heart rate, baroreflex 
sensitivity, and baroreflex effectiveness and sympathetic control of heart rate and 
vasomotion were reduced in D2, compared with AB. Baroreflex effectiveness 
index was identified as the most sensitive index to discriminate diabetic AN. 

               Four-dimensional multiscale modeling of ECG indexes of diabetic 
autonomic neuropathy: QT interval prolongation which predicts long-term 
mortality in diabetics with AN, is well known. The mechanism of QT interval 
prolongation is still unknown, but correlation of regional sympathetic denervation 
of the heart (revealed by cardiac imaging) with QT interval in 12-lead ECG has 
been proposed. The goal of this study is to 1) reproduce QT interval prolongation 
seen in diabetics, and 2) develop a computer model to link QT interval 
prolongation to regional cardiac sympathetic denervation at the cellular level. 
From the 12-lead ECG acquired in the study above, heart rate-corrected QT 
interval (QTc) was computed and a reduced ionic whole heart mathematical 
model was constructed. Twelve-lead ECG was produced as a forward solution 
from an equivalent cardiac source. Different patterns of regional denervation in 
cardiac images of diabetic patients guided the simulation of pathological changes. 
Minimum QTc interval of lateral leads tended to be longer in D2 than in AB. 



 
 

Prolonging action potential duration in the basal septal region in the model 
produced ECG and QT interval similar to that of D2 subjects, suggesting 
sympathetic denervation in this region in patients with definite neuropathy. 

 

KEYWORDS: blood pressure regulation, spectral power, baroreflex, twelve-lead 
ECG, forward solution 
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Part 1. Noninvasive assessment of diabetic 
cardiovascular autonomic neuropathy 

1.1 Chapter One:  Introduction 

Neuropathy is one of the complications of diabetes. Diabetic neuropathy 

affects sensory, motor and autonomic nerves. Cardiovascular autonomic 

neuropathy (CAN) is a common and serious type of neuropathy, that involves the 

damage of both sympathetic and parasympathetic branches of autonomic nerves 

innervating the heart and blood vessels, causing abnormal regulation of  heart 

rate and vascular dynamics (128).  

The pathogenesis of neuropathy in diabetic patients is still not clear. 

Current hypotheses concerning the multiple etiologies of diabetic neuropathy 

include metabolic insult to nerve fibers, neurovascular insufficiency, autoimmune 

damage and neurohormonal growth factor deficiency, resulting in nerve 

degeneration or gene-related neural damage (128, 130). The prevalence of CAN 

has been determined to be 25.3% for individuals with Type 1 diabetes and 34.3% 

for individuals with Type 2 diabetes, as diagnosed by clinical cardiovascular 

reflex tests currently in use (see below) (143).  

Cardiovascular autonomic neuropathy is associated with increased risk of 

occurrence of cardiac events including myocardial infarction, heart failure, 

ventricular tachycardia or fibrillation (128). The 5-year mortality of diabetics with 

CAN is three times higher than in diabetics without CAN  (128). The quality of life 

was decreased in diabetic patients with severe CAN due to orthostatic 

hypotension, amputation, or other symptoms. Treatment of cardiovascular 

manifestations of diabetic autonomic neuropathy includes intensive glycemic 

control to prevent the onset of diabetic autonomic neuropathy and slow the 

progression (129) . In addition, a variety of treatments are available to alleviate 

the symptoms of autonomic neuropathy (130). The onset of CAN occurs early in 

diabetes, and patients are usually asymptomatic for years and are not able to 
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sense when they are becoming hypoglycemic or having a heart attack (130). 

Early diagnosis and treatment is the key to effectively treating CAN. 

Current clinical tests of CAN rely on a battery of cardiovascular reflex tests 

called Ewing tests (39). Although useful, these tests require voluntary 

participation and the sensitivity of these tests is limited. For example, the direct 

measure of cardiac sympathetic innervation determined from 

metaiodobenzylguanidine (MIBG) scintigraphy revealed that abnormal cardiac 

sympathetic innervation occurred earlier than previously known from Ewing, and 

other, tests and, in fact, was evident in diabetic patients whose Ewing tests were 

still normal (49). However, MIBG scintigraphy is expensive, invasive and time 

consuming, and is thus not suitable for routine screening of CAN. In the last two 

decades, alterations in power spectral analysis of heart rate variability have been 

related to abnormal Ewing tests in diabetic patients, reflecting mostly 

parasympathetic dysfunction (32, 45, 60, 144).  

1.1.1 Objective 

The present study aimed to assess the function of both sympathetic and 

parasympathetic braches of the autonomic nervous system in diabetic patients, 

in order to develop indexes suitable for screening of diabetic autonomic 

neuropathy. Passive head-up tilt was used to stimulate autonomic regulation of 

cardiovascular responses to orthostatic stress. Cardiovascular variables were 

acquired from able-bodied subjects, diabetic patients without neuropathy, 

diabetic patients with mild neuropathy and diabetic patients with severe 

neuropathy. The specific goals of this study were to 1) assess dysfunction of 

autonomic regulation of cardiovascular system in diabetic patients, 2) develop 

indexes of diabetic cardiovascular autonomic neuropathy that are noninvasive, 

sensitive, cost-effective and easy to acquired and 3) further explore mechanisms 

of autonomic regulation of the cardiovascular system of normal humans by 

comparing with autonomic failure in diabetics. 
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In this study, 12-lead ECG was also acquired to assess cardiac function in 

supine diabetic patients. Because of the lack of cardiac imaging data of 

sympathetic innervation, a heart-torso computer model was developed to assess 

dysfunction of sympathetic innervation of the heart in diabetic patients. Because 

of the extended length of the content, 12-lead ECG and modeling are included in 

Part 2 of this document. Part 1 focuses on blood pressure regulation in diabetic 

and nondiabetic subjects in response to head-up tilt. 
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1.2 Chapter Two: Background 

1.2.1 Physiological Response to Orthostatic Stress 

Demands for autonomic regulation of blood pressure at supine position 

are minimum, therefore passive head-up tilt (47) was used to activate autonomic 

regulation by challenging the cardiovascular system during exposure to gravity 

while minimizing activation of postural muscles, primarily the legs. The 

hydrostatic pressure gradient along the length of the body, due to the drag of 

gravity, increases transmural pressure of the vessels below the heart, thus 

increasing venous volume by approximately 500 mL (79). In healthy subjects, 

reflexes elicited by the unloading of arterial baroreceptors and cardiopulmonary 

mechanoreceptors restore blood pressure rapidly. The reflexes act by increasing 

heart rate, contractility and vascular resistance. After the initial response, 

hormonal regulation predominates in blood pressure regulation by further 

vasoconstriction and maintaining plasma volume. These responses are 

described in detail below.  

Arterial baroreceptors and cardiopulmonary receptor are sensory stretch 

receptors, which sense arterial and cardiac filling pressures. This information is 

transmitted to the brainstem where it is integrated with information from other 

sensors. Sympathetic and parasympathetic outflows from the brainstem are 

adjusted to initiate the desired cardiovascular response. These reflexes function 

via negative feedback (79). 

The cardiac pre-ganglionic parasympathetic fibers synapse the post-

ganglionic parasympathetic fibers near the heart. Parasympathetic fibers 

innervate the sinoatrial (SA) and atrioventricular (AV) nodes. Post-ganglionic 

parasympathetic fibers release the neurotransmitter acetylcholine (ACh) from the 

nerve terminal, which acts by binding to muscarinic M2-receptors on the myocyte 

membrane (79). ACh slows the pacemaker potential decay and hyperpolarizes 

the membrane, resulting in slowing of heart rate. ACh reduces the pacemaker 

slope via an inhibitory G protein-adenylate cyclase-cAMP-PKA pathway. On the 
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other hand, the hyperpolarizing effect of ACh is mediated through a G-protein-

KACh channel pathway, which is a rapid pathway. ACh is quickly removed from 

the junctional region by the enzyme cholinesterase. These mechanisms account 

for the rapidity of the response, with which vagal stimulation slows the heart and 

the reduction of vagal activity speeds the heart, within one heart beat (79). 

The efferent cardiac pre-ganglionic sympathetic fibers arise from the 

thoracic spinal cord, segments T1 – T5, and synapse in the sympathetic chain. 

The post-ganglionic fibers innerve the SA node, the AV node, and the 

myocardium of atria and ventricles. Post-ganglionic sympathetic fibers release 

the neurotransmitter norepinephrine (NE), which binds to adrenergic
 
receptors in 

the heart. There are α-, β
1 
and β

2 
–receptors in the heart, while β

1 
receptors 

predominate. Activation of the β
1 

receptors induces the following effects over 

several beats: increased heart rate, increased AV node conduction velocity, 

shortened myocyte action potential, increased contractile force and increased 

rate of relaxation. These responses are induced by β
1 

receptors activating the 

cAMP-PKA pathway, which leads to changes in ion channel and pump activity. 

The termination of the action of NE is partly by diffusion into the bloodstream, 

which washes it away; and partly by reuptake into the sympathetic nerves. The 

slow activation and termination processes explain the slow response to, and 

recovery from, sympathetic stimulation. Epinephrine, which is secreted into the 

bloodstream by the medulla of the adrenal gland in response to preganglionic 

sympathetic fiber activity, acts in a similar way as NE at the heart  (79). 

In addition to the control of the heart, sympathetic neural activity controls 

vascular resistance by controlling the contraction and relaxation of vascular 

smooth muscle (VSM) cells. The post-ganglionic sympathetic neurotransmitter, 

NE, binds to α-adrenoreceptors on the membrane of VSM cells. Activation of α-

adrenoreceptors induces VSM contraction by increasing cytosolic free [Ca2+], 

due to 1) sustained membrane depolarization through PLC-IP3-DAG pathway in 

many arteries, 2) firing of action potentials in response to strong sympathetic 
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stimulation in arterioles, small arteries and veins, and 3) mechanisms 

independent of membrane depolarization in large arteries. Activation of 

sympathetic fiber is tonic, and reduced sympathetic activity results in vasodilation 

(79). 

Within the first few minutes of head-up tilt, healthy persons usually have 

an initial drop in blood pressure, sensed by arterial baroreceptors and 

cardiopulmonary receptors, which rapidly bring back blood pressure by 

withdrawal of parasympathetic outflow and an increase in sympathetic outflow. 

Withdrawal of parasympathetic outflow to the heart causes an increase of heart 

rate. Increased sympathetic outflow to the heart results in increases of heart rate 

and heart contractility. In addition, increased sympathetic outflow to peripheral 

vasculature causes constriction of resistance vessels and thus an increase in 

total peripheral resistance. At the capillary level, constriction of arterioles causes 

decreased hydrostatic pressure thereby increasing osmotic absorption of 

interstitial fluid in to the plasma compartment which helps to increase blood 

return. Finally, increased sympathetic outflow results in venoconstriction, which 

can displace blood from the big reservoirs in the intestinal tract, liver and skin (79, 

109).  

During longer head-up tilt, regulation by hormones predominates. The 

effective hormones at different times are epinephrine, norepinephrine, renin, 

angiotensin II, aldosterone, vasopressin, etc, to vasoconstrict and maintain 

plasma volume (109).    

It should be noted that skin is an important organ in both regulation of 

blood pressure and thermoregulation. In human, approximately 95% of the skin is 

hairy skin and the other 5% is non-hairy skin which is primarily at palmar surface 

of the hands, soles of the feet and part of the face (59). Circulations in both types 

of skin are controlled by the sympathetic nervous system: hairy skin is controlled 

by both cholinergic (active vasodilation) and adrenergic (vasoconstriction) 

branches of the sympathetic nerves and non-hairy skin is controlled by 
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adrenergic (vasoconstriction) sympathetic nerves (21). Arteriovenous 

anastomoses (AVA) are present in the non-hairy skin and are innervated by 

adrenergic sympathetic nerves which are tonically active, while in hairy skin, AVA 

rarely exist (21). It was reported that there is a reflex vasoconstriction in hairy 

skin in response to head-up tilt, while the non-hairy skin is not involved in this 

response (109). 

1.2.2 Detection of Diabetic CAN 

The damage of nerve fibers in autonomic neuropathy is believed to be 

length dependent. It occurs earliest in parasympathetic fibers which are longer 

fibers, followed by damage in shorter sympathetic fibers (128, 130). Ewing tests 

were developed several decades ago and serve as a noninvasive measure of 

cardiovascular autonomic neuropathy in both branches (39). Ewing tests consist 

of 5 reflex tests, including heart rate response to Valsalva maneuver, heart rate 

variation during deep breathing, immediate heart rate response to standing, 

(controlled predominantly by parasympathetic nerves), blood pressure response 

to standing and blood pressure response to sustained handgrip, (controlled 

predominantly by sympathetic nerves) (39). If the results of two or more of these 

tests are abnormal, the patient is diagnosed to have CAN. Although it is useful in 

detection of cardiovascular autonomic neuropathy, this battery of tests requires 

voluntary participation of patients and involves specialized operations from heath 

care providers. In addition, its manifestations lag behind abnormalities in 

spontaneous baroreflex function (44) and cardiac imaging of sympathetic 

innervation to the myocardium (49). 

A direct measure of cardiac sympathetic innervation to the myocardium 

can be performed by using a radio-labeled norepinephrine analog and 

tomography of uptake of this analog into nerve terminals. The most commonly 

used neuronal tracers are MIBG, used with single photon emission computed 

tomography (SPECT), and 11C-meta-hydroxyephedrine (HED), used with 

positron emission tomography (PET)  (63). In normal human subjects, cross 

sections of MIBG-SPECT or HED-PET images demonstrated homogeneous 
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uptake of tracer and a complete ventricular structure, while in diabetic patients, 

reduced tracer uptake in the whole left ventricle or regions of the left ventricle 

have been observed, even in those without signs of neuropathy (22, 49, 56, 75, 

91, 93, 112-115, 123). These techniques provide insight to sympathetic 

innervation of the heart, although they are not suitable for routine screening. 

Other techniques are being examined for their potential to provide in-depth, 

easy to administer, diagnostic tools. Comparisons of heart rate variability, low (LF) 

and high (HF) frequency components of heart rate oscillations, have been 

correlated with abnormal results of Ewing tests (32, 45, 60, 144). Diabetic 

patients with abnormal Ewing results also demonstrated reduced LF spectral 

power of systolic blood pressure compared to able bodied controls or compared 

to diabetics with normal results in Ewing tests, during one hour supine or a short 

period of standing (32, 144). In diabetics with no signs of autonomic neuropathy, 

the numbers of spontaneous baroreflex sequences were reduced and slopes of 

baroreflex sequences were smaller compared to controls (32, 44). Heart rate 

variability and baroreflex sequences, acquired during a short period of time, 

demonstrate parasympathetic dysfunction in modulating heart rate in diabetic 

patients. Longer recordings of blood pressure revealed sympathetic dysfunction 

in modulating peripheral vasculature. The ultimate goal of this study is to develop 

indexes of both sympathetic and parasympathetic function from noninvasive 

recordings taken over a short period of time. 

1.2.3 Models of Autonomic Failure 

Studies of sino-aortic denervated (SAD) animals (cats and dogs), a form of 

‘dysautonomia’, showed that not only were harmonic components (LF or HF 

peaks) of heart rate and blood pressure oscillations affected by SAD, but 

nonharmonic components were also altered over a wide frequency range (very 

low, low and high frequencies) (29, 133). In addition to the alteration in heart and 

blood pressure variability over a wide  frequency range, the baroreflex 

effectiveness index, which represents the percentage of systolic blood pressure 

(SBP) ramps followed by reflex RR interval responses to all SBP ramps, was 
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reduced by 89% in SAD cats (31). In humans with pure autonomic failure, heart 

rate and blood pressure variability have been shown to be altered at all 

frequencies (97).  Finally, we reported previously that spinal cord injury resulted 

in reduced baroreflex effectiveness index in tetraplegic patients compared to able 

bodied controls (5). Results of these previous human and animal studies 

indicated similarities between diabetic autonomic neuropathy, sinoaortic 

denervation and primary autonomic failure that appeared to be proportional to the 

level of neuropathy and observable in noninvasive indexes of autonomic function. 
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1.3 Chapter Three: Methods 

1.3.1 Subjects 

Twelve healthy able-bodied volunteers (AB) were recruited from the local 

community using word of mouth, newspaper advertisements and flyers mounted 

on boards across the university campus and hospital. Twenty-two diabetic 

subjects were recruited.  The diabetic subjects were evaluated at the day of 

study by Dr. Kevin Nelson, Department of Neurology, UK College of Medicine, for 

distal symmetrical polyneuropathy using neuropathic symptoms, depressed ankle 

reflexes, distal sensory loss, distal muscle weakness or atrophy, and nerve 

conduction studies (18). Subjects were then distinguished by consensus criteria 

that determined the likelihood of neuropathy using an ordinal scale from highest 

4 to lowest 1 (35). ‘Possible neuropathy’ was defined by a likelihood ranking of 

two or three, and ‘definite neuropathy’ by the likelihood of 4.  Diabetic subjects 

without neuropathy had no signs or symptoms of neuropathy, in addition to 

normal nerve conduction studies. Based upon the results of these evaluations 

the neuropathy of diabetic subjects was categorized as absent (D0), possible 

(D1) or definite (D2). In addition to the tests for peripheral neuropathy, and for 

fasting blood glucose levels on the day of study, all subjects underwent a 

familiarization tilt and 12 lead ECG. Medications affecting autonomic function 

were discontinued for the day of study. Demographic characteristics of the 

participants are shown in Table 1. 
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Table 1 Demographic characteristics of participants     
  Diabetic 

  

Able-
bodied 
(AB)                                     

No 
Peripheral 

Neuropathy 
(D0) 

Possible 
Peripheral 

Neuropathy 
(D1) 

Definite 
Peripheral 

Neuropathy 
(D2) 

Age, yr 48.2 ± 3.9 39.7 ± 5.6 53 ± 4.1 55.1 ± 2.7 
Weight, kg 93.0 ± 9.0 84.2 ± 8.1 110.7 ± 15.9 97.9 ± 11.4 
Height, cm 171.5 ± 3.0 164.6 ± 3.0 176.8 ± 4.6 174.2 ± 3.3 
n (Male/Female) 12 (5/7) 7 (1/6) 7 (5/2) 8 (5/3) 
n of Type 1/ Type 2  3/4 2/5 3/5 
   Values are means ± SEM    

 

1.3.2 Tilt Protocol 

We utilized passive head-up tilt to challenge the autonomic regulation of 

arterial blood pressure.  Before entering the study all subjects gave written 

informed consent and the protocol was approved by the University of Kentucky 

Institutional Review Board. Prior to head-up tilt testing, subject’s height, age, 

weight and diabetic status were recorded. Later, after blood glucose level had 

been determined, an IV cannula was placed in an antecubital vein.  Subjects 

then rested in the supine position for 30 min when instrumentation was applied 

followed by 10 minutes of supine control and 30 minutes of 70-degree head-up 

tilt. If presyncopal symptoms developed during tilt, subjects were brought back to 

supine immediately. All subjects were followed for a supine recovery period of 

five minutes. 

1.3.3  Measured Variables 

Mixed venous blood samples were drawn from the antecubital vein 

catheter at the end of control, at three and seven min of tilt, and during the 

second minute of recovery. Results of blood assays, body fluid shifts and 

impedance measures of cardiac output are not reported here, but are 

components of the next manuscript, see Future Work. 
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Lead II ECG (Pilot Colin) was acquired from three electrodes. Noninvasive 

continuous arterial blood pressure (BP, Portapres model-2) was acquired from a 

cuff placed at finger. Respiratory activity (Respitrace) was acquired by measuring 

respiratory inductance plethysmography with two bands enclosed chest and 

abdomen. Two laser Doppler probes (Perimed) were placed at two skin sites: 

one on the palm of hand (non-hairy skin) and the other on the forearm (hairy 

skin). The measuring depth of the probe was 0.5 – 1 mm with the fiber separation 

0.25 mm and the wavelength of the laser 780 nm (77, 121).  Fluid shifts between 

body segments were assessed by measuring bio-impedance (UFI THRIM) of 

thorax, abdomen, upper leg and lower leg. Tilt angle (Crossbow CXL 04LP3) was 

acquired from an accelerometer mounted on the tilt table. Recordings were 

commenced during supine control, and continued uninterrupted during the 70 

degree head-up tilt and supine recovery. The blood pressure sensor was 

maintained at heart level.  Manual blood pressure using an arm cuff was 

acquired at the end of supine control, the beginning of tilt and at the end of 

recovery. The hand with blood pressure finger cuff and laser Doppler probe was 

covered by a mitten, in order to keep the hand warm and allow for a measurable 

blood pressure signal during the whole study. A 12-lead ECG was acquired from 

supine subjects breathing at 15 breaths/min. Data acquisition of 12-lead ECG 

lasted for approximately 5 min or until at least 256 heart beats were recorded for 

signal averaging. Room temperature was maintained at 22 ± 0.25oC (mean ± 

SEM), ranging from 20.6-23.9 oC.  

1.3.4 Data Acquisition and Analysis 

Blood pressure, ECG, respiratory activity, skin perfusion, bio-impedance 

and tilt angle recordings were digitized at 1000 Hz by using a commercial data 

acquisition system (DATAQ). 12-lead ECGs were digitized at 1000 Hz and 

recorded by using a commercial device and software (Cardiax). 

Mean values. Heart rate (HR) and RR interval were computed by 

identifying R waves in the last 5 min of control, 0-3 min, 3-7 min, and 7-12 min of 

tilt and the first 3 min of recovery. Data were analyzed using custom written 



13 
 

programs in C++ and MATLAB (the MathWorks, Natick, MA). Artifacts in HR and 

BP signals, including premature beats and Portapres servo adjustments 

(approximately 5% of the beats per time series), were manually removed. The 

cleaned signals were then aligned in time. Systolic (SBP) and diastolic (DBP) 

blood pressures were determined by computing the maximum and minimum 

values of clean arterial BP for each heart beat. Beat-to-beat skin perfusion 

sequences were determined by integrating the pulsatile skin perfusion between 

two R waves. Mean values of RR interval, SBP, DBP and skin perfusions of palm 

and forearm were computed in each time segment. All subsequent data analyses 

were performed in MATLAB.  

Spectral analysis. RR interval, SBP, DBP and skin perfusions in control, 

tilt and recovery periods were resampled at 4 Hz using a cubic spline. Power 

spectral densities of RR interval, SBP and DBP were analyzed in the last 5 min 

of control, 0-3 min, 3-7 min, and 7-12 min of tilt and the first 3 min of recovery. 

Power spectral densities of skin perfusions were analyzed in 10 min of control 

and the first 10 min of tilt to acquire a better accuracy at lower frequencies. Each 

segment was then linearly detrended. Power spectral densities were estimated 

using Welch's method of averaged periodograms (480-point Hamming windows 

with 440-point overlap). Spectral powers of RR interval, SBP and DBP in the LF 

(0.04-0.15 Hz) and HF (0.15-0.4 Hz) regions were obtained using trapezoidal 

integration over the specified frequency range. Spectral power of DBP was used 

as an index of sympathetic control of vasomotion because DBP correlated better 

than did SBP with vascular resistance (13). Power spectral density of SBP, 

however, was used as an index of baroreflex-mediated buffering of blood 

pressure. Power spectral densities were plotted in a log-power vs. log-frequency 

scale, and the slope of the linear regression of this plot within the LF range was 

calculated. This power law scaling relationship was quantified for RR interval, 

SBP and DBP to determine their harmonic and nonharmonic characteristics (34, 

50). The magnitudes of the power spectral density of skin perfusions were 

determined from the mean value of the logarithm of the power spectral density in 
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specific frequency regions: very low frequency (VLF, 0.004-0.04 Hz), low 

frequency (LF, 0.04 -0.15 Hz) and high frequency (HF, 0.15-0.4 Hz).  

        Coherences. The coherences between skin perfusions and blood pressure 

were analyzed across 10 min of control and the first 10 min of tilt. The 95% 

confidence level of non-zero coherence was estimated by the following method. 

If the theoretical coherence between the input and output signals of a linear time-

invariant system is zero, then the random variable 

(𝑣 − 2)𝑟𝑥𝑦2 (𝑓)
2(1 − 𝑟𝑥𝑦2 (𝑓))

 

is approximately distributed with an F distribution 𝑓2,𝑣−2, where r2
xy is the squared 

coherence between skin perfusion and blood pressure, and 𝑣 is the degree of 

freedom associated with Hamming window, which was estimated by 

𝜈 = 2.51 𝑁
𝑀

. 

2M is the window length and N is the data length. Therefore, we have 

(𝑣−2)𝑟𝑥𝑦2 (𝑓)
2(1−𝑟𝑥𝑦2 (𝑓))

= 𝑓2,𝑣−2                    <1> 

Rearranging <1> and replacing the f function in <1> with its 95% critical value 

give the 95% confidence level of non-zero coherence as 

𝑟2 =
2𝑓2,𝑣−2(0.95)

(𝑣 − 2) + 2𝑓2,𝑣−2(0.95)
 

 

Because able-bodied subjects and diabetics without neuropathy had 

similar skin perfusion responses to head-up tilt, and diabetics with possible and 

those with definite neuropathy had similar responses, able-bodied subjects and 

diabetics without neuropathy were combined into one, non-neuropathy, group, 



15 
 

and diabetics with possible and those with definite neuropathy were combined 

into one neuropathy group. 

     Baroreflex sequences. The sequence method (12) was adopted to quantify 

the number of blood pressure ramps and baroreflex sequences, as well as 

baroreflex sensitivity. Sequences of three or more consecutive heartbeats were 

identified, in which progressively increasing (or decreasing) SBP with at least 1 

mmHg beat-to-beat change were followed within 1 heart beat by progressively 

lengthening (or shortening) of RR interval with at least 4 msec beat-to-beat 

change. A sequence was accepted as a baroreflex sequence if the correlation 

coefficient of the regression line between SBP and RR interval within the 

sequence was 0.85 or greater (12). The slope of the regression line for each 

sequence was taken as spontaneous baroreflex sensitivity (BRS). The ratio 

between the number of baroreflex sequences and the total number of increasing 

or decreasing SBP ramps determined the baroreflex effectiveness index (BEI) 

(31). Because the numbers of SBP ramps and baroreflex sequences depend on 

the number of analyzed heartbeats, which varied among and within subjects, the 

numbers of SBP ramps and baroreflex sequences were normalized by the 

number of analyzed heartbeats of each subject in each time segment. 

Arterial pulse transit time. An index of arterial compliance, arterial pulse 

transit time (PTT), was measured by adapting the technique of Foo et al. (42). 

Arterial PTT was recorded as the time interval between the R peak in ECG and 

the SBP peak in the arterial pressure measured at the finger. Average values 

from ten beats selected from clean data were taken in the last minute of supine 

control and the second minute of 70-degree head-up tilt. 

Statistical analysis.  SAS (The SAS Institute, Cary, NC) software was used 

to test a linear mixed model for differences within and among four groups (able-

bodied, diabetic without neuropathy, diabetic with possible neuropathy, diabetic 

with definite neuropathy) during supine control, at three time segments during tilt, 

and in recovery. The group factor was used to test differences among the four 
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groups. The time factor was used to test the tilt effect. The group × time factor 

was used to test for differences in tilt effects across groups. The changes from 

control to the first three minutes of tilt were tested with one-way ANOVA and two-

tail t tests. For a priori hypothesized differences between variables, for which we 

predicted a specific difference (greater or less) before we analyzed the data, 

changes from control were analyzed using one-tail t tests. Data were transformed 

by using logarithm or square root if the residual plots showed heteroscedasticity. 

Nonparametric test, the Mann-Whitney U test, was used to test the changes from 

supine control to tilt when the distribution of data did not meet the requirement of 

t test. Outliers were identified if residuals were larger than two standard 

deviations and thus were not included in the statistical testing. Differences were 

considered significant if p ≤ 0.05. Results are presented as mean ± SEM.  
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1.4 Chapter Four: Results 

Upon testing, one able-bodied subject was diagnosed with nondiabetic 

sensory and motor neuropathy; his data were not included in any group. Five 

able-bodied subjects, and three diabetics with possible neuropathy demonstrated 

symptoms of presyncope before finishing 30 min of head-up tilt and were 

returned to supine immediately. 

Typical RR interval, arterial BP, skin perfusion of palm and forearm, and tilt 

angle of an asymptomatic able-bodied subject and a diabetic patient with definite 

neuropathy during supine and during 30 min head-up tilt are shown in Figure 1.1. 

In the nonsyncopal, able bodied subject, RR interval decreased and BP 

increased modestly during head-up tilt. In the same subject, skin perfusion of 

palm increased and skin perfusion of forearm decreased during head-up tilt. In 

the diabetic patient with definite neuropathy, RRI decreased to a smaller extent 

and BP decreased during head-up tilt. In the same subject, skin perfusion of 

palm was higher than that in the able-bodied subject at control and did not 

increase during head-up tilt. Skin perfusion of forearm of this subject also 

decreased during head-up tilt. 
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Figure 1.1 Typical RR interval, arterial blood pressure and skin perfusions 
of palm and forearm during 10 min supine control, 30 min 70-degree head-
up tilt and 5 min recovery, in an able-bodied subject (left), and a diabetic 
subject with definite neuropathy (right). 

 

1.4.1 Mean Values 

Figure 1.2 shows group averaged (± SEM) RR interval and SBP for able-

bodied (AB; blue line) subjects, diabetics without neuropathy (D0; pink line), 

diabetics with possible neuropathy (D1; red line) and diabetics with definite 

neuropathy (D2; dark red line). Data are given for supine control, three stages of 

tilt and supine recovery. All groups decreased RR interval (Figure 1.2A) in 

response to head-up tilt. The magnitudes of SBP responses to the first three 

minutes of head-up tilt (Figure 1.2B2) were significantly different between able-

bodied subjects and diabetics with definite neuropathy (one-tailed t-test); for 

able-bodied, SBP increased from 124 ± 5.8 mmHg in supine control to 132 ± 7.9 

mmHg; for diabetics with definite neuropathy, SBP decreased from 128.7 ± 7.8 
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mmHg in supine control to 119.2 ± 10.7 mmHg. Supine control values of RR 

interval and SBP were not different between the groups.  

 

Figure 1.2 Average ± SEM RR interval (Figure A) and systolic blood 
pressure (Figure B1) for able-bodied subjects (AB; n=11), diabetics without 
neuropathy (D0; n=6), diabetics with possible neuropathy (D1; n=5) and 
diabetics with definite neuropathy (D2; n=8) in response to head up tilt. 
Figure B2 shows changes of SBP from supine control to the first 3 min of 
tilt. Δ, significantly different from control (same group); •, significantly 
different from AB (same time segment); *, significantly different from D0 
(same time segment). 

Figure 1.3 shows group averaged (± SEM) skin perfusion of the forearm 

for combined groups of subjects without neuropathy (able-bodied and diabetics 

without neuropathy) and those with neuropathy (diabetics with possible and 

definite neuropathy). Skin perfusion of forearm decreased in both groups (tilt 

main effect, p = 0.0078) during all time segments of head-up tilt compared to 
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control and recovery. The neuropathy group tended to have higher skin perfusion 

of forearm than the non-neuropathy group (group main effect, p = 0.189, Figure 

1.3). We interpret this tendency to be due to the larger number of male subjects 

in the neuropathy group compared to the non-neuropathy group (Figure 1.4). 

Male subjects had higher skin perfusion than did females in both groups at 

control (gender main effect P<0.05 in two-way ANOVA with the factors of gender 

and presence of neuropathy). 

 

 

Figure 1.3 Average ± SEM skin perfusion of the forearm in the non-
neuropathy group [able bodied (AB), diabetics without neuropathy (D0)], 
and the neuropathy group [diabetics with possible neuropathy (D1) and 
diabetics with definite neuropathy (D2)] during 5 min of supine control, 0-3 
min, 3-7 min, 7-12 min and the last 3 min of head-up tilt and during 3 min of 
supine recovery. 
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Figure 1.4 Gender differences in average ±SEM skin perfusion of the 
forearm in non-neuropathy (AB+D0, left) and neuropathy (D1+D2, right) 
groups during 5 min of supine control, 0-3 min, 3-7 min, 7-12 min and the 
last 3 min of head-up tilt and during 3 min of supine recovery. 

 

Figure 1.5 shows group averaged (± SEM) skin perfusion of the palm for 

combined non-neuropathy and neuropathy groups. Skin perfusion of palm was 

significantly higher in the neuropathy group than in the non-neuropathy group 

during supine control. Skin perfusion of the palm of the non-neuropathy group 

increased significantly after the third minute of head-up tilt, while skin perfusion of 

the palm of the neuropathy group decreased during the first 3 min of head-up tilt. 

During recovery, palmar skin perfusion of the non-neuropathy group was higher 

than control, while that of neuropathy group was not different from control. Group 

differences in response to head-up tilt are easier to see, when palmar skin 

perfusion is plotted as tilt-induced changes from control (Figure 1.6). The 

changes of palmar skin perfusion in the neuropathy group were significantly 

different from those in the non-neuropathy group after the third minute of head-up 

tilt and during recovery. When each group was further divided into male and 

female subjects, gender differences were not significant either in the control 

values or in the responses to head-up tilt (Figure 1.7). 
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Figure 1.5 Average ± SEM skin perfusion of the palm of the hand in the non-
neuropathy (AB and D0) and neuropathy (D1 and D2) groups during 5 min 
of supine control, 0-3 min, 3-7 min, 7-12 min and the last 3 min of head-up 
tilt and during 3 min of supine recovery. ●, significantly different between 
groups in the same time segment. Δ, significantly different from control in 
the same group. 

 

Figure 1.6 Average ± SEM changes from control of palmar skin perfusion 
for non-neuropathy (AB and D0) and neuropathy (D1 and D2) groups during 
0-3 min, 3-7 min, 7-12 min and the last 3 min of head-up tilt and during 3 
min of supine recovery. ●, significantly different between groups in the 
same time segment. Δ, significantly different from the first 3 min of tilt in 
the same group. 
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Figure 1.7 Gender differences in average ±SEM skin perfusion of the palm 
in non-neuropathy (AB+D0, left) and neuropathy (D1+D2, right) groups 
during 5 min of supine control, 0-3 min, 3-7 min, 7-12 min and the last 3 min 
of head-up tilt and during 3 min of supine recovery. 

 

1.4.2 Spectral Power 

Figure 1.8 gives average high frequency spectral power of RR interval 

(HFRRI, Panel A, left) and low frequency spectral power of diastolic blood 

pressure (LFDBP, Panel B1, upper right) for each of the four groups. In Figure 

1.8A, HFRRI decreased during head-up tilt for all groups. In addition, able-bodied 

subjects and diabetics without neuropathy had higher HFRRI than did diabetics 

with definite neuropathy (group main effect).  Figure 1.8B1 shows that diabetics 

with possible neuropathy and those with definite neuropathy tended to have 

lower LFDBP than did able-bodied subjects and diabetics without neuropathy 

during head-up tilt (group × time, p=0.06). The change in LFDBP during the first 

3 min of tilt, Figure 1.8B2, differed significantly (p<0.05) between able-bodied 

(2.1 ± 0.4 mmHg2 supine, to 4.9 ± 1.6 mmHg2) and diabetics with definite 

neuropathy (2.1 ± 0.5 mmHg2 supine, to 1.6 ± 0.7 mmHg2).  
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Figure 1.8 Panel A: Average ± SEM spectral power of RR interval in the 
high-frequency region for able-bodied subjects (AB; n = 11), diabetics 
without neuropathy (D0; n = 6), diabetics with possible neuropathy (D1; n=5) 
and diabetics with definite neuropathy (D2; n =8) at rest and in response to 
head-up tilt. Panel B1: The spectral power of DBP in the low-frequency 
region for the four groups in response to head-up tilt.  These group 
differences in response to the first 3 min of tilt are shown in Figure B2. •, 
significantly different from AB; *, significantly different from D0. 

 

Figure 1.9 shows group averaged log of power spectral density of SBP 

(PSD SBP; Figure 1.9A and Figure 1.9B, top) and log of RR interval (PSD RRI; 

Figure 1.9D and Figure 1.9E bottom) versus log of frequency for able-bodied 

subjects (left panels) and diabetics with definite peripheral neuropathy (middle 

panels).  The analyses are from recordings taken during five minutes of supine 

control. Data shown are means (solid lines) ± SEM (shaded area above and 

below the mean). Spectral power of SBP was significantly greater (four fold, 
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which is not immediately evident on logarithmic scales) in diabetics with definite 

neuropathy than in able-bodied subjects (Figure 1.9B vs. Figure 1.9A) across the 

very low frequency (0.003 - 0.04 Hz) and high frequency (0.15 - 0.4 Hz) regions. 

However, in contrast to able-bodied subjects, the SBP spectral power of 

diabetics with definite neuropathy dipped at frequencies around 0.1 Hz (Figure 

1.9B). In addition, the slope of the linear portion of this SBP curve in the low 

frequency region tended to be steeper in diabetics with definite neuropathy (-2.64 

± 0.44) than in able-bodied subjects (-1.54 ± 0.37) (Figure 4C). SBP powers for 

diabetics without, and those with, possible neuropathy, were similar to that of 

able-bodied subjects (not shown). In contrast to SBP, the variability of RR 

interval for diabetics with definite neuropathy was significantly (four fold) lower 

than that of able-bodied subjects over the range of frequencies (0.003 - 0.4 Hz) 

(Figure 1.9D vs. Figure 1.9E). Log-log plots of RRI for diabetics without 

neuropathy and diabetics with possible neuropathy were intermediate between 

able-bodied subjects and diabetics with definite neuropathy (not shown). Slopes 

of the log-log RR interval/frequency curve were significantly steeper in the low 

frequency region (0.04 - 0.15Hz) in diabetics with possible (-2.19 ± 0.35) and 

definite neuropathy (-2.77 ± 0.24) than slopes of able-bodied (-1.05 ± 0.35) and 

diabetics without neuropathy (-1.15 ± 0.4), Figure 1.9F.  
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Figure 1.9 Average ± SEM logarithm of power spectral density of systolic 
blood pressure (PSD SBP) and RR interval (PSD RRI) taken from 5 min 
supine control (means shown in solid lines and SEM shown in shaded area 
above and below the mean in A, B, D and E). Plots A and B show log (PSD 
SBP) vs log (f) for AB (n = 11) and D2 (n=8) respectively. Plot C shows the 
average value of the slopes of the linear portion  of log (PSD SBP) vs log (f) 
curves in the low frequency (0.04 - 0.15 Hz, LF) region for all four groups.  
Plots D and E show log (PSD RRI) vs log (f) for AB and D2 respectively. Plot 
F shows the average value of the slopes of log (PSD RRI) vs log  (f) curves 
in the low frequency. •, significantly different from AB; *, significantly 
different from D0. 

Figure 1.10 shows power spectral density (PSD) of diastolic blood 

pressure (DBP) on a logarithmic scale, during 10 min supine control (left panel) 

and the first 10 min of tilt (right panel) in non-neuropathy (blue) and neuropathy 

(red) groups. The PSD of DBP demonstrated similar response to that shown in 

Figure 1.8B, but with a more obvious difference between the two groups. During 

head-up tilt the mean magnitude of PSD in the low frequency region increased in 

the non-neuropathy group but did not change in the neuropathy group. In 

addition, mean LF PSD was lower in the neuropathy group than in the non-
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neuropathy group. High frequency PSD of DBP decreased from control to tilt in 

the neuropathy group. 

 

Figure 1.10 Average ± SEM logarithm of power spectral density of diastolic 
blood pressure taken from10 min supine control and the first 10 min of 
head-up tilt. ●, significantly different between groups in the same time 
segment. Δ, significantly different from control in the same group. 
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Figure 1.11 shows PSD of skin perfusion of the forearm on a logarithmic 

scale, during 10 min supine control (left panel) and the first 10 min of tilt (right 

panel) in non-neuropathy and neuropathy groups. Low frequency PSD 

decreased during tilt in the neuropathy group but did not change in the non-

neuropathy group (group × time interaction p=0.03). The changes of mean LF 

PSD of skin perfusion of the forearm from control to tilt are shown in Figure 1.12. 

The change of LF PSD was significantly different between the non-neuropathy 

and neuropathy groups (Mann-Whitney Test, p = 0.05). The group difference was 

more obvious in the frequency range between 0.075 and 0.1 Hz (time × group 

interaction, p= 0.02; the non-neuropathy group tended to be greater than the 

neuropathy group during tilt, p = 0.1). In the high frequency region, mean PSD in 

the neuropathy group was higher than that in the non-neuropathy group in control 

and decreased during tilt (Figure 1.11, group × time interaction, p=0.012). 

 

 

Figure 1.11 Average ± SEM logarithm of power spectral density of skin 
perfusion of forearm taken from10 min supine control and the first 10 min 
of head-up tilt. ●, significantly different between groups in the same time 
segment. Δ, significantly different from control in the same group. 
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Figure 1.12 Change of mean low frequency PSD of skin perfusion of the 
forearm from control to the first 10 min of head-up tilt. P = 0.05, Mann-
Whitney Test. 

Figure 1.13 shows the power spectral density of skin perfusion of palm on 

a logarithmic scale, during 10 min supine control and the first 10 min of tilt in non-

neuropathy and neuropathy groups. Mean magnitude of PSD in the very low 

frequency region decreased in both groups from control to tilt (main tilt effect). 

High frequency PSD tended to decrease in the neuropathy group but did not 

change in the non-neuropathy group (group × time interaction p=0.06). 
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Figure 1.13 Average ± SEM logarithm of power spectral density of skin 
perfusion of palm taken from10 min supine control and the first 10 min of 
head-up tilt. 

1.4.3 Coherences 

Coherences between skin perfusion of the forearm and SBP during 10 min 

supine control and 10 min tilt for non-neuropathy and neuropathy groups are 

shown in Figure 1.14. At control, coherences between skin perfusion and SBP in 

the low frequency region were significant in the non-neuropathy group and were 

at the borderline of significance in the neuropathy group. In response to tilt, 

coherences in the low frequency region increased in the non-neuropathy group 

but decreased in the neuropathy group. At respiratory frequencies, coherences 

were significant in the neuropathy group in control and tilt. In the non-neuropathy 

group, coherences at respiratory frequencies were not significant during control, 

but approached significance during tilt.  The responses were similar in the 

coherence between skin perfusion of forearm and DBP (Figure 1.15).  
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Figure 1.14 Average ± SEM coherence of skin perfusion of forearm and 
systolic blood pressure during 10 min supine control and the first 10 min of 
head-up tilt. Horizontal lines: 95% confidence level of non-zero coherence. 

 

 

Figure 1.15 Average ± SEM coherence of skin perfusion of forearm and 
diastolic blood pressure during 10 min supine control and the first 10 min 
of head-up tilt. Horizontal lines: 95% confidence level of non-zero 
coherence. 

The LF coherence between skin perfusion of the palm and SBP was not 

significant during supine control in both groups, but increased during tilt in the 
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non-neuropathy group. The LF coherence did not change in the neuropathy 

group (Figure 1.16). At respiratory frequencies, coherences were significant in 

the neuropathy group in control and tilt. In the non-neuropathy group, coherences 

at respiratory frequencies were not significant during control, but approached 

significance during tilt.  The responses were similar in the coherence between 

skin perfusion of palm and DBP (Figure 1.17). 

 

 

Figure 1.16 Average ± SEM coherence of skin perfusion of palm and 
systolic blood pressure during 10 min supine control and the first 10 min of 
head-up tilt. Horizontal lines: 95% confidence level of non-zero coherence. 
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Figure 1.17 Average ± SEM coherence of skin perfusion of palm and 
diastolic blood pressure during 10 min supine control and the first 10 min 
of head-up tilt. Horizontal lines: 95% confidence level of non-zero 
coherence. 

1.4.4 Baroreflex Sequences 

Figure 1.18 provides the normalized number of SBP ramps (A), 

normalized number of baroreflex sequences (B), baroreflex effectiveness index 

(BEI; C), baroreflex slope (D) and high frequency spectral power of systolic blood 

pressure (HFSBP; E) for each of the four groups. In supine control, both 

diabetics with possible, and those with definite, neuropathy had greater numbers 

of SBP ramps than did able-bodied subjects (Figure 1.18A). During head-up tilt, 

diabetics with definite neuropathy also had more SBP ramps than did diabetics 

without neuropathy during all three time segments, most clearly illustrated at 7-12 

min of tilt. However, diabetics with definite neuropathy had a significantly smaller 

number of baroreflex sequences than did able-bodied subjects and diabetics 

without neuropathy (group main effect; Figure 1.18B). As a result, BEI values for 

diabetics with possible, and for those with definite, neuropathy were significantly 

lower than those for able-bodied subjects and diabetics without neuropathy 

during head-up tilt (Figure 1.18C). One able-bodied subject had BEI residuals 

larger than 2 standard deviations at all time segments. When this subject’s data 

were excluded from the analysis, the group x time interaction became significant. 
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Other factors remained significant with or without exclusion of this subject, with 

no effect on the direction of the results. In addition, baroreflex slope significantly 

decreased in all groups in response to head-up tilt (Figure 1.18D). Diabetics with 

possible neuropathy had significantly lower baroreflex slopes than able-bodied 

subjects, and diabetics with definite neuropathy had significantly lower slopes 

than both able-bodied subjects and diabetics without neuropathy (group main 

effect). Finally, the diminution of baroreflex activity to buffer breathing frequency 

blood pressure oscillations in diabetics with definite neuropathy is illustrated in 

Figure 1.18E indicating a four fold greater magnitude of HFSBP oscillations in 

those subjects compared to the other groups (similar to the results illustrated in 

Figure 1.9 A and B).  
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Figure 1.18 Baroreflex regulation: Average ± SEM normalized number of 
SBP ramps (A), normalized number of baroreflex sequences (B), baroreflex 
effectiveness index (C), baroreflex slope (D), and high frequency spectral 
power of SBP (E) for AB (n = 11), D0 (n=6), D1 (n=5) and D2 (n=8) at rest and 
in response to head-up tilt. Δ, significantly different from control (same 
group); •, significantly different from AB (same time segment); *, 
significantly different from D0 (same time segment). 
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1.4.5 Gender 

Because of known gender differences in autonomic regulation of heart 

rate (parasympathetic dominance in high frequency power of heart rate in women 

compared to men) and peripheral vasculature (sympathetic dominance in control 

of vascular regulation in men)  (7, 37, 52, 80), we examined heart rate, blood 

pressure and baroreflex variables for gender differences. The results of these 

analyses indicated that, for these groups, gender effects were obscured by 

effects of diabetes (data not shown).   

1.4.6 Arterial Pulse Transit Time (PTT) 

Arterial PTT was not significantly different among the four groups in supine 

or during the second minute of tilt, nor the tilt-induced increases of PTT were 

significantly different among the four groups. 
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1.5 Chapter Five: Discussion 

1.5.1 Mean Values of Blood Pressure and RR Interval 

The inability of diabetics to increase, or even maintain, blood pressure 

during tilt (Figure 1.2), indicated that sympathetic pathways to cardiovascular 

effectors were impaired in diabetics with peripheral neuropathy compared to 

able-bodied subjects. In healthy humans, orthostatic stress induces 

vasoconstriction at the arteriolar level, which increases absorption of fluid into the 

plasma. The drop of blood pressure in diabetic patients with definite neuropathy, 

and the lack of increase of blood pressure in diabetic patients without or with mild 

neuropathy during the first three minutes of tilt, may reflect impairment of normal 

orthostatic vasoconstriction (109). Moreover, the importance of the baroreflex in 

regulating blood pressure over longer time periods is illustrated in the very low 

frequency region of Figure 1.9. These results also support the comment made by 

many of the patients that they had learned to move slowly into the upright 

position and if they move slowly they are okay. The slow speed (approximately 

38 seconds to move from supine to 70 degrees head up) of our tilt was probably 

responsible for the fact that presyncopal symptoms were relatively rare in our 

diabetic subjects.    

1.5.2 Mean Values of Skin Perfusion 

In all subjects, the skin perfusion of the palm was higher than that of the 

forearm as expected (62), an effect related to the presence of arteriovenous 

anastomoses in the microcirculation of the non-hairy skin (79). A higher 

evaporation rate from the skin of the palm of hand than that from the forearm at a 

thermoneutral environment has also been reported (57). 

In the current study, in response to head-up tilt, the skin perfusion of the 

forearm decreased in the subjects without neuropathy, as expected (4, 62, 84, 

109, 111, 117).  The neuropathy group had similar responses to head-up tilt 

compared to the non-neuropathy group, indicating a normal reflex adrenergic 

control of cutaneous vasoconstriction, or the withdrawal of cholinergic control of 
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vasodilation in the forearm, in the neuropathy group (58). However, the 

neuropathy group tended to have a greater skin perfusion of the forearm at all 

time segments. This was probably due to a larger number of male subjects in this 

group compared to the non-neuropathy group, since men tended to have higher 

skin perfusion than did women in both groups as shown in Figure 1.4.   

In the palm, the mean skin perfusion in the non-neuropathy group did not 

change during the first 3 min of head-up tilt (Figure 1.1), supporting the absence 

of vasoconstriction in the hand during orthostasis (109). It was also reported that 

direct baroreflex stimulations on carotid sinus nerve did not have discernible 

effect on the outflow of the skin sympathetic nerve (134). In the present study, 

the unchanged skin perfusion of the palm during the first 3 min of head-up tilt 

may be due to a lack of increase in sympathetic outflow during orthostasis. After 

the first 3 min of head-up tilt, skin perfusion of the palm increased in the non-

neuropathy group (Error! Reference source not found., Figure 1.6). We 

interpret this increase to be due to an increase of core temperature, previously 

observed in both men and women during graded head-up tilt to 60 degrees (84). 

Therefore, vasoconstriction of hairy skin during head-up tilt (Figure 1.3) appears 

to be acting to prevent heat loss (109).  If core temperature increases, as a result 

of hairy skin vasoconstriction to preserve blood pressure,  the vasomotor drive to 

AVAs from the hypothalamus could be reduced and thereby provide a 

mechanism to shunt blood to the skin for cooling through AVA dilation, increasing 

blood flow and allowing heat dissipation (109). This hypothesis is consistent with 

our observations from the non-neuropathy group. Alternatively, or in addition to 

prevention of heat loss, metabolic rate has been shown to rise during head up tilt 

(20). 

Johnson et al. (65) have shown that adrenergic blockade by bretylium 

increased baseline palmar skin blood flow. In patients with familial dysautonomia, 

baseline skin blood flow at finger pulp tended to be higher than that in healthy 

subjects (121). This study also reported that sinusoidal neck suction at 0.1 Hz 

caused reduction in skin blood flow at finger pulp in healthy control subjects, 



39 
 

while the reduction of pulpar finger blood flow was much smaller in patients with 

familial dysautonomia (121). In our study, elevated control values of palmar skin 

perfusion in the neuropathy group, compared to the non-neuropathy group, may 

reflect impaired tonic sympathetic control of vasoconstriction of palmar skin in 

patients with neuropathy. During head-up tilt, the different palmar skin perfusion 

responses between the two groups appears to indicate an abnormal function of 

heat dissipation via opening AVAs in the neuropathy group. It is known that 

palmar skin lacks active vasodilation (65). In our study, the absence of tilt-

induced increase of skin perfusion of the palm in the neuropathy group 

suggested a loss of tonic vasoconstriction at rest and an impaired ability to 

increase blood flow by withdrawal of vasoconstriction of the palmar skin. 

1.5.3 RR Interval Spectral Power Indexes of Sympathetic and 
Parasympathetic Control of Heart Rate 

The magnitude of the RR interval harmonic component at respiratory 

frequencies (HFRRI) is a marker of vagal control of the SA-node (101). The rapid 

decline of HFRRI in response to head-up tilt and rapid recovery of HFRRI when 

AB subjects were returned to supine (within a minute of the change in posture, 

Figure 1.8A) supports neural, reflex- mediated modulation of HR at respiratory 

frequencies in these people. During supine rest and head-up tilt, diabetics with 

definite neuropathy had lower HFRRI than did able-bodied subjects or diabetics 

without neuropathy, indicating impaired parasympathetic control of HR in 

diabetics with signs of peripheral neuropathy (124). The reduced reserve of 

parasympathetic control of HR in response to head-up tilt in diabetics with 

possible or definite neuropathy also confirmed a diminished orthostatic response 

and progressive loss of parasympathetic control of heart rate with increasing 

neuropathy (97). 

A previous study of sino-aortic denervated (SAD) cats determined that the 

wide band spectra of pulse interval was significantly lower in SAD cats than that 

in controls (29). In our study, the decreases of wide band RR interval spectra in 

diabetics with definite neuropathy may be due to diminished baroreflex function, 
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or perhaps more specifically, to cardiac parasympathetic neuropathy. Moreover, 

the LF RRI component was different in diabetics with definite neuropathy:  a 

steeper slope of the 1/f relationship was evident at the LF range of diabetics with 

definite neuropathy. This 1/f relationship of power spectrum exists in dynamic 

systems that have multiple control mechanisms with different time constants and 

the steeper slope of the 1/f relationship suggests a less complex control system 

(15, 16, 50, 133) in diabetics with definite neuropathy.  If so, the complexity of the 

sympathetic regulation of heart rate in diabetics with definite neuropathy was 

diminished, possibly reflecting a diminution of sympathetic regulation of the SA 

node, perhaps secondary to diabetic sympathetic neuropathy. In patients with 

Chagas disease, which damages autonomic neurons, the slope of the linear part 

of the log-log plot of PSD RRI was significantly steeper than that of controls, 

indicating dysautonomia in these patients (27, 107). Therefore, the slope of log-

log plot of heart rate power spectral density of resting diabetic subjects calculated 

from a five-minute measurement appears to be a sensitive discriminator of 

autonomic neuropathy in the LF region. 

1.5.4 Blood Pressure Spectral Power Index of Sympathetic Control of 
Peripheral Vasculature 

Significant coherence between low frequency spectral power of diastolic 

blood pressure (LFDBP) and muscle sympathetic nerve activity has been 

reported in able-bodied humans (25). In particular, muscle sympathetic nerve 

activity increased with head-up tilt and remained elevated during tilt in able-

bodied subjects (46).  In our study, LFDBP increased in response to tilt and 

remained high in able-bodied and in diabetic subjects without neuropathy (Figure 

1.8B). Conversely, in diabetics with possible, and those with definite, neuropathy, 

LFDBP did not change indicating that reflex-mediated sympathetic pathways to 

peripheral vasculature were impaired in diabetics, including those with milder 

symptoms of neuropathy.  

The log-log plot (Figure 1.9A, B) of the power spectral density of systolic 

blood pressure (PSD SBP) taken during five minutes of supine rest, showed a 
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significant elevation of harmonic and nonharmonic components of blood pressure 

variability in the VLF and the HF regions but not in the LF range (presumably 

because of a loss of the harmonic component) in diabetics with definite 

neuropathy compared to able bodied subjects. These findings confirm the 

previously reported reduction of sympathetically mediated harmonic vasomotion 

in diabetic autonomic neuropathy (32, 144).    

1.5.5 Dynamics of Skin Perfusion 

The measured skin perfusion using laser Doppler technique is mainly from 

capillaries and post-capillary venules of the upper horizontal plexus. These 

vessels exhibit little variation in their diameter and thus have little contribution to 

the rhythmic change in skin perfusion. Oscillations in skin perfusion are probably 

related to constriction/dilation of upstream arterioles (23). The origin of the 

vasomotion of skin blood flow was believed to be a combination of central/neural 

and local/myogenic mediated mechanisms (119). The known impairment of 

vasomotion of skin perfusion in diabetics was considered to be due to nerve 

dysfunction, vascular abnormalities, or both (119). In the current study, the 

comparison of the dynamics of skin perfusion between diabetics without and 

those with neuropathy during supine control and head-up tilt in a thermoneutral 

environment, allowed us to explore neural origins of skin perfusion oscillations 

and effect of diabetic neuropathy on reflex control of skin perfusion under 

orthostatic stress. 

It was reported that  passive change in posture increased the cross-

correlation between skin blood flow (volar surface of the forearm) and heart rate, 

in which the maximum correlation during upright posture was always due to 

oscillations in the range of 0.1 Hz (10). In the same study, sympathetic blockade 

reduced the cross-correlation between skin blood flow and heart rate (10).  Our 

study support the influences of central autonomic control on skin blood circulation 

via demonstrating significant coherence between skin perfusion of the forearm 

and blood pressure in the LF region in subjects without neuropathy. The LF 

coherence increased in response to tilt in the subjects without neuropathy, but 
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decreased in those with neuropathy. This group difference indicated an impaired 

central autonomic control of skin perfusion in diabetics with neuropathy.  

In our study, the group difference in LF power spectral density of skin 

perfusion of the forearm was not significant during supine control, but became 

significant during head-up tilt, supporting the reduction of vasomotion in diabetic 

patients with neuropathy (85). Bernardi et al reported that, when supine, there 

was a significant difference in the LF skin blood flow oscillations in the forearm 

between diabetic patients and able-bodied subjects, with the magnitude of 

oscillations smaller in diabetics (11). However, in our study, the group difference 

was significant during tilt but not during supine control, which may due to an age 

difference between our able-bodied subjects and those in the study by Bernardi 

et al (48 vs. 38 yrs),  which had a known effect on the dynamics of skin perfusion 

(11).  

At the respiratory frequencies, the mean PSD of skin perfusion of the 

forearm was greater in the neuropathy group than in the non-neuropathy group, 

at supine control. It has been reported that respiratory oscillations is passively 

transmitted from blood pressure to skin blood flow (9). In our study, the elevated 

PSD of skin perfusion of forearm at respiratory frequencies in subjects with 

neuropathy may be due to elevated blood pressure oscillations in these subjects.  

Bernardi et al have reported that HF PSD of the skin perfusion of the forearm 

was not different between diabetics and able-bodied subjects (11). This 

discrepancy of HF PSD of skin perfusion between our and their studies may, 

again, be due to a difference in age (~10 yrs older in our study) or breathing 

patterns (spontaneous in our study vs. controlled breathing in that of Bernardi et 

al). Controlled breathing may have effects on HF PSD of skin perfusion, since 

controlled breathing reduced cardiac parasympathetic influences (102). 

Similar to the skin blood flow of the forearm, in the palmar skin, 

sympathetic nerve stimulation caused high-power peaks in the palmar skin blood 

flow oscillations in healthy human, between 0.025 to 0.1 Hz, with the maximum 

response within 0.075 - 0.1 Hz (120).  In our study, the LF coherence between 
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palmar skin perfusion and blood pressure became significant during head-up tilt 

confirming a central sympathetic control of skin blood circulation (8, 9). In our 

diabetics with neuropathy, the tilt-induced increase in LF coherence was not 

observed, indicating an impaired central sympathetic control of peripheral 

vasomotion. Significant LF coherences between skin blood flow (volar surface of 

the finger) and blood pressure during supine was reported (8, 9). However, in our 

study, the coherence between palmar skin perfusion and blood pressure at LF 

was not significant during supine control in the non-neuropathy group. This may 

due to the difference in the age of subjects (26 and 31 yrs in the previous studies 

vs. 45 yrs in our able-bodied subjects and diabetics without neuropathy), or the 

difference in the location of skin (finger vs. palm).  

In our study, the mean LF power spectral density of palmar skin perfusion 

in the non-neuropathy group did not increased in response to head-up tilt, in 

contrast to the standing-induced increase in LF power of skin at fingertip in a 

previous study (9). This discrepancy may due to the difference in the location of 

the skin (fingertip vs. palm). The location of the measured skin may also explain 

the absence of group difference in LF PSD of palmar skin perfusion during 

supine control in our study, contrary to the reduction of oscillation below 0.1 Hz in 

skin blood flow at pulpar surface of the index finger, in diabetics with neuropathy 

(119).  

Altered skin blood flow in diabetic patients could interfere with nutrient 

supply, causing ulcers and gangrene (131). Our diabetic subjects did not 

demonstrate these symptoms. However, autonomic regulation of skin perfusion 

was impaired in these subjects. Manifestation of dysfunction in skin perfusion 

regulation could occur earlier than symptoms of skin diseases in diabetic patients. 

1.5.6 Baroreflex 

The greater numbers of blood pressure ramps at rest and during tilt in 

diabetics with definite and suspected autonomic neuropathy (Figure 1.18A), was 

an unexpected finding of the present study. The combination of increased 
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numbers of BP ramps with reduced numbers of baroreflex sequences (44, 144), 

suggests that diabetics with neuropathy experience diminished effectiveness of 

the baroreflex in driving the sinus node. As is clearly illustrated in Figure 1.18C: 

BEI was significantly increased compared to supine control in able-bodied 

subjects during all phases of head-up tilt and in diabetics without neuropathy 

during 7-12 min of tilt, but remained unchanged in diabetics with possible, or 

definite, neuropathy. Further, Figure 1.18 clearly illustrates the ability of this 

measure to differentiate diabetics with neuropathy (definite or possible) from 

diabetics without neuropathy. Therefore, in our study, BEI was the most sensitive 

discriminator of neuropathy. Other studies have proposed LF power of SBP (32) 

as a sensitive discriminator of AN, but for our study, BEI was significantly better 

at discriminating differences, perhaps because this measure combines loss of 

sympathetic modulation of vasomotion with loss of parasympathetic control of 

heart rate into one parameter. Previous studies showed a severe impairment of 

baroreflex effectiveness in diabetic chronic renal failure patients compared with 

non-diabetic patients at supine rest (64). However, as far as we can determine, 

the present study is the first to demonstrate a reduction in baroreflex 

effectiveness in diabetics with neuropathy, without the simultaneous complication 

of chronic renal failure. 

Baroreflex sequences may reflect physiological activities in a portion of 

these sequences. Baroreflex effectiveness index was 33% in intact cats and 4% 

in sinoaortic denervated cats (31). Therefore, in cats, the number of sequences 

due to physiological mechanisms was 29% of that of SBP ramps. Similarly, in our 

study, BEI was 26% in healthy subjects, and 9.4% in diabetics with severe 

neuropathy, during supine control. Therefore, in human, the number of 

sequences due to physiological mechanisms was 16.6% of that of SBP ramps. In 

addition, BEI increased in healthy subjects in response to head-up tilt, but did not 

change in diabetics with neuropathy in our study. Therefore, baroreflex may be 

engaged in a part of blood pressure regulation if it is measured by using the 

baroreflex sequences technique. Baroreflex may be important in maintaining 

homeostasis because the VLF and HF PSD of SBP were four fold higher, while 
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the VLF, LF and HF PSD of RRI was four fold lower in diabetics with severe 

neuropathy, compared to able-bodied subjects during supine control. Therefore, 

BEI may reflect a fast response, while baroreflex is engaged at all frequencies. 

      Baroreflex sensitivity has been proposed to reflect the strength of the 

baroreflex when it is effective (31). In our study, all groups demonstrated 

decreased baroreflex slope in response to head-up tilt (Figure 5D) as expected 

(67, 95, 96).  However during both supine control and head-up tilt, diabetics with 

definite neuropathy had significantly smaller BRS than did able-bodied subjects 

and diabetics without neuropathy. During supine rest, diabetics without 

neuropathy tended to have smaller BRS than able-bodied subjects and larger 

BRS than diabetics with definite neuropathy. These findings support the widely 

held notion that diabetes reduces BRS and that reduced BRS is an early sign of 

AN (44, 104, 144). When we compared our significant reduction of BRS and BEI 

to the trend towards greater arterial pulse transit time in diabetics with definite 

neuropathy, we conclude that, for our study, baroreflex impairment was a more 

sensitive indicator of neuropathy than alterations in arterial stiffness (110). 

      Increased BP variability has been shown to predict nephropathy and 

retinopathy (71), and to correlate with endothelial and cardiovascular damage (28, 

141) and higher mortality (70). Blood pressure variability, measured by standard 

deviation over 24 h, has been reported to be significantly higher in diabetic 

patients (43, 61, 87, 135) and was highest in those with cardiovascular 

autonomic neuropathy (24). In our study, we further explored the specific 

frequency ranges of increased BP variability and determined that diabetics with 

definite neuropathy had significantly higher VLF and HF power spectral density of 

SBP compared with able-bodied subjects.  In addition, in all frequency ranges, 

our able bodied subjects demonstrated an ability to engage heart rate to buffer 

SBP fluctuations while diabetics with neuropathy demonstrated a reduced ability.  

       Arterial baroreflex buffering at respiratory frequencies may be more 

dominant in older persons. The fact that HF power of SBP was greater in our 

diabetics with neuropathy than in able-bodied subjects, but has been shown to 
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be smaller in diabetic children and adolescents than in healthy controls (72), may 

be a matter of age, but may, more accurately,  reflect the presence of neuropathy 

in our subjects. In addition, in middle-aged to older diabetics, HF power of SBP 

was reported to be smaller than in able-bodied during conditions of controlled 

breathing (32). The act of controlling breathing itself, however, may be 

responsible for this effect since it was previously determined that controlled 

breathing reduced cardiovascular parasympathetic influence (102). 

      An important indicator of impaired baroreflex-buffering of BP lies in the four-

fold increase in the harmonic and nonharmonic components of VLF power 

spectral density of SBP in diabetics with definite neuropathy compared with able-

bodied subjects (Figure 1.9A, B). Although enhanced VLF SBP has been 

reported to result from SAD in animals (19, 30), VLF SBP power in humans is 

believed to reflect renin-angiotensin system activity, endothelial factors and 

thermoregulation (101). However, in patients with primary autonomic failure, 

enhanced VLF oscillations of SBP have been documented (97). Our study’s 

enhanced VLF SBP power and decreased VLF RR interval power in diabetics 

with definite neuropathy, indicated that intact baroreflex function is important for 

normal BP regulation in the VLF range for both harmonic and nonharmonic 

components in able-bodied humans. Finally, in our study, VLF SBP was similar 

between able bodied and diabetics without neuropathy. This phenomenon has 

been reported previously in children and adolescents with Type 1 diabetes 

mellitus who have not developed other signs of neuropathy (72). These results 

suggest that in addition to BEI, increased VLF SBP spectral power may be a 

strong, early, indicator of diabetic neuropathy. 

      Our study did not show significantly increased standard deviation of SBP in 

diabetics with neuropathy. Similar to the finding of Frattola et al.(44), this may be 

due to the relatively short period of time over which the standard deviation was 

calculated (3 - 5 min in our study and 15 min in the study by Frattola et al.) 

compared to the greater standard deviation measured from  24h recordings (24, 

43, 61, 87, 135).   
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      At frequencies centered around 0.1 Hz (Figure 4B), the log-log power 

spectral density curve of SBP of diabetics with definite neuropathy demonstrated 

a dip, indicating that the loss of the harmonic component at LF (Fig 3B) is 

apparent in the log-log plot of SBP. This loss of power in the LF region is similar 

to that  previously reported following sino-aortic denervation in animals (29, 132) 

and total autonomic failure in humans (97). Sympathetic nerve activity (SNA) with 

a frequency around 0.1 Hz in man is similar to the 0.4 Hz rhythm in rat and, at 

this frequency, there is a tight coherence in unanesthetized rat between changes 

in SNA and changes in arterial BP (14). We conclude that the dip in oscillations 

of SBP in the LF region of diabetics with definite neuropathy is consistent with 

effects of neuropathy on sympathetically mediated vasomotion.  This change is 

exposed by the corresponding loss of parasympathetically (baroreflex) -driven 

changes in heart rate in subjects with definite neuropathy. In addition, altered BP 

and RR interval power spectral densities over the range of frequencies between 

0.003 and 0.45 Hz in diabetics with neuropathy indicate that an intact baroreflex 

is an important component of  healthy human BP regulation at all frequencies. 

Each of these measures is relatively easy to determine from a short (five minute) 

recording of continuous blood pressure and heart rate from resting subjects. 

1.5.7 Limitations 

The time of onset, the prevalence and the development of diabetic 

neuropathy, and treatment effects have been reported to be different between 

Type 1 and Type 2 diabetes (130, 142). Because of our limited number of 

subjects, diabetic patients were not separated based on the type of diabetes. 

Therefore the relative ability of our indices of autonomic dysfunction to identify 

autonomic neuropathy in Type 1 vs. Type 2 diabetes is unknown. Direct 

measures of sympathetic autonomic function (like MIBG SPECT imaging) were 

not performed, thus comparisons between direct measures and our indices are 

not available. Again, because of the limited numbers of subjects in each group, 

we were not able to establish age effects on the autonomic indices we report. 

The D0 group was younger than the D2 group; however, major differences in this 
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study lay between AB and D2 groups where there was no meaningful difference 

in age. Greater numbers of subjects would be required to establish significant 

interactions of study variables with gender and age.  

      The rate of presyncope (5 of 11) in the able-bodied subjects of the present 

study was similar to the able-bodied subjects that have reported by our lab in the 

past (78). In that study, 8 of 16 controls had symptoms within 30 minutes of 

head-up tilt. In another recent study of subjects who underwent 70-degree head-

up tilt, 56% (9 of 16) had presyncopal symptoms during the 30 min tilt (36). 

Results from a third study of head-up tilt-mediated presyncope in healthy humans 

suggested that unexplained syncope was a result of altered cardiorespiratory 

interaction involving cerebral hemodynamics but with a normal neural control 

system (73). Similar to our results, other investigators have determined that the 

initial response to head-up tilt was similar between patients with vasovagal 

syncope and nonsyncopal subjects, and sympathetic nerve activity withdrawal 

did not occur until symptoms began (88). We do not believe that the incidence of 

presyncopal events in the AB subjects is remarkable, nor does it call into 

question any aspect of the interpretation of our findings.  

      Finally,  abnormal findings in the battery of Ewing tests have been reported in 

13% of the normal population (99). In our study, two able-bodied subjects with 

tingling of hands and/or feet were found to be free of peripheral neuropathy by 

standard clinical tests. Both subjects, however, decreased their BEI to near 0% in 

response to tilt while other able-bodied subjects increased or maintained their 

BEI at greater than 10%.  In the group of diabetics with definite neuropathy, 6 of 

8 subjects had BEI smaller than 10%. The similar behavior of the two able-

bodied subjects to the behavior of the six diabetics with definite peripheral 

neuropathy suggests that BEI during tilt may be an index of autonomic 

neuropathy that is more sensitive, and/or more selective for autonomic 

involvement than are standard sensory/motor neuropathy findings. Also for other 

variables, when we removed these two subjects from the able-bodied group, the 

statistical significance of the group differences reported here were dramatically 
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increased, but without a physiological reason to remove them, the results 

reported here include these subjects with the able-bodied group.  
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1.6 Chapter Six: Conclusions 

The much reduced ability to regulate blood pressure, characterized by 

decreased RRI buffering of an increased number of SBP ramps, the four-fold  

increases in VLF and HF SBP power spectral densities and the four-fold 

decrease in VLF, LF and HF RR interval power spectral densities indicated 

serious deficits in maintenance of cardiovascular homeostasis in diabetics with 

neuropathy. The major contributor to this loss of blood pressure regulation 

appeared to be the combination of a loss of sympathetically mediated control of 

vasomotion, with a reduced contribution from parasympathetically mediated 

responses of heart rate to buffer these changes in blood pressure. Our results 

indicate that preservation of baroreflex function needs to become a focus of 

diabetic neuropathy treatment. The present study also indicates that, in healthy 

subjects, baroreflex function is an important component of blood pressure 

regulation in all (very low, low and high) frequency regions and pertains to both 

self-similar as well as harmonic components. In addition, sympathetic control of 

skin perfusion was impaired in diabetic patients with neuropathy, which 

manifested earlier than signs of skin diseases.  Finally, the results of our study 

indicate that noninvasive indexes of autonomic regulation were able to 

discriminate diabetics with autonomic neuropathy from subjects with reduced, or 

no, neuropathic damage. 
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1.7 Chapter Seven: Future Work 

The measurement of plasma volume and hormone levels from blood 

samples, as well as stroke volume from bio-impedance will give further indication 

of blood pressure regulation by fluid shift, hormones and cardiac function. In 

addition, phase analysis of the time relationship between oscillations of skin 

perfusion and blood pressure will provide further information on mechanisms of 

reflex control of skin blood flow. These data are available for analysis and 

therefore will be included in the next manuscript which will be focused on group 

differences in distribution of blood flow and hormonal responses during the 

orthostatic stress. 

In order to compare our noninvasive indexes with standard tests, 

comparisons to Ewing tests and MIBG-SPECT image need to be made to 

correlate these indexes with current clinical diagnoses of autonomic neuropathy 

and the gold standard method of detection of autonomic neuropathy to the 

myocardium. These comparisons have been, and will be, the topic of proposals 

submitted to extramural funding agencies.  
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Part 2. Four-dimensional multiscale model of ECG 
indexes of diabetics with autonomic neuropathy 

2.1 Chapter One: Introduction 

Prolongation of heart-rate corrected QT (QTc) interval of the ECG is well 

known in diabetic patients with autonomic neuropathy, and is correlated with the 

extent of autonomic neuropathy (51, 69, 83, 100, 125). Prolongation of QTc is 

associated with the risk of dying unexpectedly in diabetic patients with autonomic 

neuropathy (38) , and predicts long-term cardiac death in patients with non-

insulin dependent diabetes mellitus (17, 81, 90, 106), and insulin dependent 

diabetes mellitus (108, 127). However, the mechanism of QTc prolongation in 

diabetic patients with autonomic neuropathy is still unknown. QTc interval 

prolongation does reflect an alteration of myocardial repolarization (137). Direct 

comparison of maximal QTc interval and global or visual defects in patterns of 

myocardial MIBG uptake in diabetic patients demonstrated a relationship 

between QTc interval and regional cardiac sympathetic denervation (74). The 

aims of this part of the study are to 1) verify that the QT interval prolongation in 

our diabetic patients were similar to the prolongation reported in previous studies 

and 2) link QT interval prolongation to regional cardiac sympathetic denervation, 

at the cellular level using a computer heart-torso model. 
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2.2 Chapter Two: Background  

2.2.1 Cellular Basis of Autonomic Control of Ventricular Repolarization  

Sympathetic stimulation increases the contractility and rate of relaxation of 

the heart (79). In normal heart ventricles, postganglionic sympathetic fibers 

release the neurotransmitter norepinephrine which binds to β-adrenergic receptor 

on the cell membrane of myocytes.  One subtype of β-adrenergic receptor, the 

β1-receptor dominates in ventricular myocytes (79). β1-receptor stimulation 

activates the cAMP-dependent PKA pathway, resulting in an increase in L-type 

calcium current through Cav1.2 channels and a faster rate of closure of the 

channels through negative feedback (145). In addition, β1-receptor stimulation 

augments potassium current through the slowly activating, delayed-rectifier, 

potassium channel. This activation results in the shortening of cardiac action 

potential in order to maintain adequate diastolic filling between beats, in the face 

of an increase in heart rate that occurs upon sympathetic nerve stimulation (145). 

Finally, sympathetic signaling modulates the rapidly activating, delayed-rectifier, 

potassium channel in a highly complex manner, resulting in opposite effects on 

current amplitude (145).  

Sympathetic denervation by β-blockers exerts opposite effects on 

repolarization of cardiac myocytes. For example, administration of β-blockers 

such as atenolol and sotalol caused action potential duration (APD) prolongation 

(66, 103), while esmolol caused APD shortening by inhibiting L-type calcium 

current (40). Similarly, sympathetic denervation by stellate  ganglionectomy 

(dogs) or phenol (rabbits) resulted in prolongation of repolarization (139, 140) , 

while bilateral sympathetic ganglionegtomy resulted in shortening of APD in a 

study of rats (136). 

2.2.2 Autonomic Innervation of Ventricles 

Sympathetic stimulation improves synchrony of excitation and contraction 

(3). Stimulation of individual cardiac nerve induces highly localized and 

differential changes in automatic, conductile and contractile function (3). For 
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example, right stellate ganglionectomy in dogs resulted in larger prolongation of 

functional refractory period at the anterior surface of the heart than at the 

posterior surface, while additional left stellate ganglionectomy resulted in larger 

prolongation of functional refractory period at the posterior surface than at the 

anterior surface (139). In addition, a single sympathetic nerve modulates finer 

myocardial segment. For example, electrical excitation of distal ventrolateral 

cardiac nerve induces increased contraction of posterior papillary muscle without 

noticeable alteration in the anterior papillary muscle of the same ventricle (3); 

comparable stimulation of ventromedial cardiac nerve increases anterior papillary 

muscle contraction without affecting the posterior muscle (3). 

Distribution of sympathetic nerves in epicardium, endocardium and 

midmyocardium of animal heart has been reported (26). Percentage stained area 

of tyrosine hydroxylase- and neuropeptide Y-immunoreactive nerves 

(sympathetic nerves) are largest in epicardium, smaller in endocardium and 

smallest in midmyocardium (26).  

2.2.3 Cardiac Autonomic Dysfunction in Diabetes  

Direct measure of cardiac sympathetic innervation can be performed by 

MIBG-SPECT and HED-PET imaging (54, 63). The measures of cardiac 

autonomic neuropathy by MIBG-SPECT and HED-PET (122) have revealed 

inhomogeneous sympathetic innvervation of the left ventricle in diabetic patients 

(22, 56, 91, 92, 113-116). Low uptake of tracer has been observed in the 

posterior, inferior, or dorso-septal areas of the left ventricle in diabetic patients. 

The region with low uptake of MIBG extended to other areas in patients with 

autonomic neuropathy. A recent study, using MIBG-SPECT imaging, showed 

that in patients with innervation defects, 46% of the innervation defects were 

located at the inferior region, 18% were located at more than one region, 16% 

showed diffuse diminished uptake, 14% were located at the apex and 6% were 

located at the anterior region (115). Proximal hyperinnervation complicating distal 

denervation in diabetic patients with normal myocardial perfusion has also been 

reported (123).  
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2.2.4 Previous Simulation Studies 

The forward problem and inverse problem of electrocardiography have 

been the focus of simulation studies attempting to locate the site of abnormal 

electrical activity of the heart in patients with myocardial infarction (41), Wolff-

Parkinson-White syndrome (48), long-QT syndrome (68) and bundle branch 

block (2). The forward problem estimates the body surface potential from an 

equivalent source of cardiac electrical activity while the inverse problem 

approximates the electrical properties of the heart from measured body surface 

potential (53). The relationship between increases in QTc interval and the extent 

of diabetic autonomic neuropathy, diagnosed by clinical methods, implies that the 

change in ventricular repolarization of myocardium may be a result of alterations 

in cardiac innervation. To our knowledge, this study is the first to describe 

possible mechanisms of QTc interval prolongation in diabetics with autonomic 

neuropathy by using a priori changes in membrane potentials at the cellular level 

directly to predict changes in body surface potentials. This study aims to link the 

QT interval prolongation observed in diabetic patients with autonomic neuropathy 

to the patterns of regional cardiac sympathetic denervation. 
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2.3 Chapter Three: Methods 

2.3.1 Experimental Study 

2.3.1.1 Subjects 

The subjects of this part of study were the same as in Part 1, which 

consisted of 12 able-bodied subjects, 7 diabetics without neuropathy, 7 with mild 

neuropathy and 8 with severe neuropathy. 

2.3.1.2 Data acquisition 

Twelve-lead ECG was acquired from supine subjects breathing at15 

breaths/min. Data acquisition of 12-lead ECG lasted for approximately 5 min or 

until at least 256 heart beats were recorded for signal averaging.      

2.3.1.3 Signal Preprocessing 

Before performing QT interval measurement, ECG signals were 

processed to remove baseline wander (< 1Hz), power line noise (~60 Hz) and 

muscle noise for accurate characteristic wave detection (1). Baseline wander and 

power line noise were removed by two digital filters, a highpass and a lowpass 

filter, designed to meet American Heart Association (AHA) recommendations for 

minimizing distortion: amplitude response should be flat to within 6% (0.5 dB) 

over a range of 1.0-30 Hz; the 3 dB points should be less than or equal to 0.67 

Hz (6). A butterworth filter is known to have a flat response at pass band and was 

therefore applied in this study. The MATLAB command ‘buttord’ was used to 

determine the order and cutoff frequency with these specifications. A highpass 

filter with 3 dB point at 0.67 Hz, and 60 dB point at 0.025 Hz, required a minimum 

order of 3, rendering the response at 1 Hz to be -0.38 dB. A lowpass filter with 3 

dB point of 40 Hz, and 60 dB point of 250 Hz, required a minimum order of 4, 

rendering the response at 30 Hz to be -0.41dB. Then, filter coefficients were 

generated by using the MATLAB command ‘butter’, and signals were filtered 

forward and then backward to give a response with zero phase shift, by using the 

MATLAB command ‘filtfilt’.  
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After filtering, ECG waveforms of multiple beats were coherently averaged 

to remove muscle noise in the signal and improve signal-to-noise ratio (1, 76). 

Before averaging, the R peak of each beat was determined by setting a 

magnitude threshold manually, from which RR intervals (RRI) were calculated. 

Only beats having an RRI with the difference from the mean RRI less than 10%, 

were accepted for averaging (76). Segments which started 400 msec before the 

R peak and ended at the end of the P wave of the next beat (accepted beats) 

were aligned at the R peak, summed point by point, and then divided by the 

number of beats. QT interval was measured from the averaged waveform in each 

lead. 

2.3.1.4 QT Interval Measurement 

QT interval was measured by observing the signal and clicking in the 

graph of the signal at the Q wave onset and T wave end (Figure 2.1). The 

measurement was done without knowing the classification of subjects. The Q 

wave beginning was determined at the first deflection from baseline after the P 

wave. The T wave end was determined at the time when the signal went back to 

the TP baseline. If the T wave went asymptotically to the baseline, then the T 

wave end was determined as the intercept of the slope of the fastest decreasing 

segment of the T wave and the TP baseline. If a T wave was followed by a U 

wave, the T wave end was taken as the nadir between the T wave and the U 

wave. Merging of T wave with U/P wave, low T wave amplitude and various T 

wave morphologies have been reported to cause measurement error (82). If any 

of these features was present, the measurement was abandoned for that lead. 

Seventeen subjects had 1~3 leads abandoned. QT interval was not measured for 

one subject because of the presence of these features in most leads. QT interval 

was averaged from three measurements at different times. The heart rate 

corrected QT interval (QTc) was computed with Bazett’s equation  

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑄𝑇 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑄𝑇𝑐) =  
𝑄𝑇 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
√ 𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
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Maximum and minimum QTc of all leads were determined from the 12 leads. 

Minimum QTc of inferior leads (leads II, III and aVF), septal leads (leads V1 and 

V2), anterior leads (leads V3 and V4) and lateral leads (leads I, aVL, V5 and V6) 

were also determined (94). 

Figure 2.1 Typical averaged ECG complexes and manual QT interval 
measurement. 

2.3.2 Simulation Study 

2.3.2.1  Structure of Ventricles 

The geometry of the ventricles was constructed by forming 90 cross-

sections along planes perpendicular to the base to apex axis. Each cross-section 

contained a ring with 9 concentric circles with different radiuses, constructing the 

transmural layers of left ventricle, and 3 concentric partial circles with different 

radiuses, constructing the transmural layers of right ventricle. This was done by 

the following steps:  
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1) Construct a 90mm*60mm*90mm cubic consisting of a rectangular grid of 

discrete points with 1mm distance between points.  

2) Determine the centers of the circles of left ventricle at all cross-sections, which 

was a vertically straight line consisting of points with the same x and y 

coordinates at all cross-sections.  

3) Determine the radiuses of the circles of the left ventricle of all cross-sections, 

which was determined by an ellipse equation representing the curved shape of 

the ventricular walls.  

4) Recruit elements in the cubic, one cross-section by one cross-section, and 

one transmural layer by one transmural layer, with every transmural layer 

determined by their distances to the center of the circles. An ID of the transmural 

layer was assigned to every element ranging from 1 to 9 (Figure 2.2).  

5) Determine the centers of partial circles of right ventricles as points along the 

right side of the septum. Because the centers of right ventricle formed a curve, 

the lateral wall of right ventricle was more curved than that of the left ventricle.  

6) Determine the radiuses of the partial circles of the right ventricle, one cross-

section by one cross-section, which decreased from base to apex, according to 

an ellipse equation.  

7) Recruit the elements in the cubic to form the right ventricle, one cross-section 

by one cross-section, and one transmural layer by one transmural layer, with 

every transmural layer determined by their distances to the center of the partial 

circles, which are equal to the radiuses. An ID of each transmural layer was 

assigned to every elements ranging from 1 to 3 (Figure 2.2). 
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Figure 2.2 Transmural layers of left and right ventricles, from endocardium 
to epicardium. 

8) In addition to the ID of transmural layers, the ID of endo-, mid- or epi- 

myocardium was also assigned (Figure 2.3).  

 

 

Figure 2.3 Determination of endocardium (orange), midmyocardium (green) 
and epicardium (blue). 

9) A region ID was also assigned to every element (Figure 2.4). The regions 

were divided according to the polar map of the left ventricle in MIBG-SPECT 

imaging (55): apical, distal/basal anterior, distal/basal inferior, distal/basal septal 

and distal/basal lateral regions.  
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Figure 2.4 Division of the regions of left ventricle (3D view, left; top view, 
right). 

 

These resulted in a three-dimensional array of 129,826 points 

representing the ventricles of the heart. The construction of the model and 

following simulations were performed in MATLAB. 

2.3.2.2 Normal Electrical Activity of Heart – Activation Sequence 

Production of Normal Activation. Clinical endocardial excitation map of 

human left ventricle showed that the site with the earliest excitation of the left 

ventricle was located in an area between the middle and anterior septum near 

the apex (personal communication with Dr. Morales). Therefore, at the left side of 

the septum, one point between middle and anterior area near the apex was 

assigned with the earliest activation time (Figure 2.5). In the right ventricle, two 

points at the free wall and the septum near the apex were assigned an activation 

time 5 msec later than that of the left ventricle, as indicated by the activation 

sequence of an isolated human heart (33). 
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Figure 2.5 Production of normal electrical activities of left and right 
ventricles (3D view, top; front view, bottom left; top view, bottom right). 

 

Electrical Excitation Propagations to Six Nearest Neighbors. When one 

element was activated, the excitation propagated to its six nearest neighbors at 

the next time step or in the next few time steps, according to the conduction 

velocity. With 1mm distance between elements and the largest conduction 

velocity of 4 m/s, the smallest time step was set to be 0.25 msec. The activation 

propagation to neighbors was delayed in regions with a slower conduction 

velocity. The transmural velocity ranged from 0.222 m/s to 0.45 m/s (33). The 
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slowest transmural velocity speed was at the septum, and the transmural velocity 

increased gradually from 0.25 m/s, at the apex, to 0.45 m/s, at the base of the 

free walls. This difference in velocity was adopted from the excitation isochrone 

of the isolated human heart, in which transmural velocity was slower in the area 

where excitation occurred earlier (33). Therefore, in this model, the transmural 

velocity described above was assigned to make the earlier excitation area have 

slower transmural velocity. Faster conduction velocities were assigned to 

endocardia to simulate the Purkinje network. As shown in Figure 2.6, the 

endocardia had a fast conduction velocity 4 m/s in a fan pattern, and other 

endocardia between the lines of the fan had conduction velocity of 2 m/s. This 

arrangement of conduction velocity between endocardial cells led the 

propagation of excitation from apex to base.  

 

Figure 2.6 Propagation speed of electrical activation to six neighbors (3D 
view, left; top view, right). 

The resultant activation sequence is shown at a series of horizontal cross-

sections, a middle-front cross-section (Figure 2.7), endocardial layers and 

epicardial layers (Figure 2.8). 
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Figure 2.7 Activation sequence at horizontal cross-sections (left) and 
middle frontal cross-section (right). 

 

 

Figure 2.8 Activation map of endocardium (left) and epicardium (right). 

2.3.2.3 Normal Electrical Activity of Heart – Repolarization 

Distribution of Action Potential Duration (APD). The length of APD was 

different in the three types of myocardium: midmyocardium longest, endocardium 

shorter and epicardium shortest (138). The APDs increased gradually from 

endocardium to midmyocardium, and decreased sharply from subepicardium to 
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epicardium transmurally (138). In addition, APDs at the apex were slightly longer 

than those at the base (118). In the septum, APDs progressively lengthened from 

right ventricular to left ventricular endocardium (89). In this model, the normal 

APD distribution had a transmural gradient and an apex-to-base gradient. At the 

apex, APDs of the elements from epicardium layer to endocardium layer at the 

free wall of the left ventricle were 216, 222, 246, 252, 258, 264, 270, 264, 258 

msec, at the septum were 224, 227, 230, 233, 236, 239, 242, 245, 248 msec, 

and at the free wall of right ventricle were 206, 230 and 224 msec. The APD 

decreased gradually from apex to base, so that APDs were 10 msec shorter at 

the base than those at the apex. The distribution of APD is shown in Figure 2.9. 

 

Figure 2.9 Distribution of action potential durations (3D view, top; middle 
horizontal cross section, bottom left; middle front cross section, bottom 
right). 
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Cellular Action Potential Model. The intracellular action potential model 

consisted of a step change from resting potential -90 mV to 10 mV simulating 

depolarization, followed by six linear lines changing from 10 mV to -90 mV 

simulating repolarization. Similar to a previous study (86), the differences of APD 

were accomplished by proportionally changing the lengths of the first two lines of 

repolarization (Figure 2.10). In the abnormal model, the prolongation or 

shortening of APD was accomplished by proportionally prolonging or shortening 

the lengths of the first two lines of repolarization. 

 

Figure 2.10 Model of intracellular action potential with different durations. 
 

2.3.2.4 Heart-Torso Model 

Position of Heart in Torso. The torso was modeled as an homogeneous 

volume conductor. The torso has a cylinder shape with maximum length 300 mm 

from left to right, maximum length 200 mm from front to back and 350 mm from 

top to bottom (Figure 2.11). The heart model, located inside the torso model, was 

surrounded by the point elements on the torso surface. The position of the heart 

inside the torso was determined by first setting the center of the heart model the 

same with that of the torso model except 50 mm higher than the torso model. 
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This resulted in the anterior side of both ventricles facing the front side of the 

torso model. Then the heart model was rotated by 45 deg along the longitudinal 

axis of the torso and then 45 deg along the mediolateral axis of the heart model. 

After the rotations, the heart model was displaced to the left side of the torso by 

90 mm and the front side by 45 mm. This resulted in the heart model being closer 

to the left and front side of the torso model and the apex pointing towards the left 

down side. The locations of the electrodes of 12-lead ECG were determined on 

the body surface according to the standard placement. 

 

 

Figure 2.11 Views of heart inside torso, heart rotation and positions of 
electrodes (3D view, top left; lateral view from left, top right; top view, 
bottom left; front view, bottom right). 
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Body surface potential: solution of forward problem. The computation of 

surface potentials was similar to that of Miller et al. (86) except that this study 

calculated the current dipole at each point of the heart model, instead of dividing 

the heart model into 23 regions. Considering a three dimensionally distributed 

myocardia network, if the gradient of the intracellular potential exists, there will be 

a current flow from high intracellular potential to low intracellular potential as 

𝐽�̅� = −𝜎𝑖∇∅𝑖 

where 𝐽�̅� is intracellular current density,  𝜎𝑖 is the effective conductance of 

intracellular network (set to equal to 1 in the model) and ∅𝑖 is the intracellular 

potential.  

In this model, the individual myocardial segments were discrete points in a 

rectangular grid, therefore the gradient function at one point can be approximated 

as the potential differences of it six neighbors as 

∆∅𝑙,𝑚,𝑛 =
∅𝑙+1,𝑚,𝑛 − ∅𝑙−1,𝑚,𝑛

2∆𝑙
𝑙 ̅+

∅𝑙,𝑚+1,𝑛 − ∅𝑙,𝑚−1,𝑛

2∆𝑚
𝑚� +

∅𝑙,𝑚,𝑛+1 − ∅𝑙,𝑚,𝑛−1

2∆𝑛
𝑛� 

where ∅𝑙,𝑚,𝑛 is the intracellular potential at point 𝑙,𝑚,𝑛 in the three dimensional 

grid, ∆𝑙 is the distance between two points and 𝑙 ̅is the unit vector along the 𝑙 axis. 

The directions of the unit vectors are shown in Figure 2.12. The unit vectors were 

fixed three-element arrays acquired by scaling the length of the three vectors. 
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Figure 2.12 Directions of unit vectors of the heart coordinates along the 
dimension of the cell grid in the directions of the l, m and n axes (green, 
red and purple lines). 

The volume integral of the current density 𝐽�̅� at the small space around a 

point can be approximated as following and is equivalent to a current dipole (105) 

𝑃�𝑙,𝑚,𝑛 = −𝜎𝑖(∇∅𝑙,𝑚,𝑛)𝑑𝑙𝑑𝑚𝑑𝑛 

The simulation sources are thus a set of 129,826 time-varying current dipoles. 

The electrical field of one observation point on the body surface (xp, yp, zp) can 

be calculated as follows 

dxdydz
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where 𝑢�𝑥,𝑦,𝑧,𝑥𝑝,𝑦𝑝,𝑧𝑝 is a three-element array, representing the unit vector pointing 

from an element at (x, y, z) of the heart model towards an electrode on the body 

surface at (xp, yp, zp). r is the distance between the element at (x, y, z) of the 

heart model and the electrode on the body surface at (xp, yp, zp). ε0 is the 

permittivity of free space. In the model, the permittivity was set to be 1 according 

to the assumption that the torso was an homogenous conductor. 
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Twelve-lead ECG is calculated from the 9 body surface potentials at the 

locations of the electrodes RA, LA, LL, V1, V2, V3, V4, V5 and V6 as the 

following: 

1) limb leads 

LALLIII
RALLII

RALAI

−=
−=
−=

 

2) augmented limb leads 
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3) precordial leads 
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where VW is the Wilson's central terminal used as the negative electrode for the 

precordial leads. 

QT interval measurement of modeled ECG. The T wave end of modeled 

ECG was determined by using a voltage threshold method. The peak of the T 

wave was identified at the time when the ECG arrived at its maximum absolute 

value after the QRS complex. The end of the T wave was identified when the 

absolute voltage of the T wave decreased to ten percent of the voltage of the T 

peak (Figure 2.13). The QT interval was computed as the time difference 

between first activation and the T wave end. 
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Figure 2.13 Twelve-lead ECG generated from normal model and the 
detection of the T peak and the T wave end. 

Regional dipoles and 12-lead ECG. The activities of the heart model with 

all parts integrated are shown in the movie ‘Heart Model and ECG.wmv’. Dipoles 

were estimated at every cell element as a source of the electrical field of the 

extracellular space, which were proportional to the differences of the intracullular 

potentials of its six neighbors. In order to visualize the contribution of the dipoles 

of all regions, the dipoles of one region were averaged and ploted as a green 

quiver located at the average of the coordinates of the cell elements in that 

region. The direction of the quiver corresponds to the direction pointing from the 

negative charge to the positive charge of the dipole. In order to visualize the 

major force of the heart model, which is reflective of the general morphology of 

the ECG, the average dipole of all cell elements of the heart was plotted as a red 

quiver located at the average of the coordinates of all cell elements. The 

intracellular potentials and dipoles changed with time during the processes of 

depolarization and repolarization of the heart, generating the QRS complex and 

T wave in ECG (see movie). 

2.3.2.5 Diabetes Effects on Normal Heart 

Prolongation and Shortening of Action Potential. In two previous animal 

studies, cardiac sympathetic denervation by stellate ganglionectomy or phenol 

resulted in prolongation of the functional refractory period (139) or activation-
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recovery interval (140), while in another animal study, cardiac sympathetic 

denervation by bilateral sympathetic ganglionegtomy resulted in shortening of the 

APD (136). In this study, both prolongation and shortening of the action potential 

were simulated. 

Transmural differences of APD changes. It has been shown that the 

stained area of tyrosin hydroxylase- and NPY- immunoreactive nerves 

(sympathetic nerves) was largest in epicardium followed by endocardium, and 

was smallest in midmyocardium in pig heart (26). The ratio of the stained areas 

was approximately 5:3:1 in epicardium, endocardium and midmyocardium, 

respectively (26). In this study, APD changes applied in epicardium, endocardium 

and midmyocardium in the heart model were set accordingly with this ratio. 

Regions in the heart model being affected. Four patterns of abnormal 

cardiac sympathetic innervation have been reported in studies of diabetic cardiac 

autonomic neuropathy, shown by MIBG-SPECT or HED-PET images: 1) low 

tracer uptake in one region, 2) low tracer uptake in more than one region, 3) 

reduced uptake in the whole heart, and 4) denervation in distal regions 

complicated by hyperinnervation in basal regions. In the heart model, regions of 

the left ventricular walls and septum were divided according to the polar map, 

which was used previously in a MIBG-SPECT study (55). Hyperinnervation was 

simulated by applying the opposite APD changes of denervation. Figure 2.14 and 

Figure 2.15 show examples of prolonging and shortening of APD at one region, 

the basal anterior region. 
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Figure 2.14 Example of simulation of possible effects of diabetic 
neuropathy to the heart: prolongation of APD at basal anterior region. 
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Figure 2.15 Example of simulation of possible effects of diabetic 
neuropathy to the heart: shortening of APD at basal anterior region. 
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Matching procedure. In order to link clinically observed QT interval 
changes, to cardiac sympathetic denervation or hyperinnervation seen in cardiac 
imaging studies, the following procedure was followed:  

1) In experimental ECG, QT interval changes in diabetic patients with neuropathy, 
compared to those of able-bodied subjects were characterized.  

2) In the model, simulations of abnormal heart with different patterns of cardiac 
sympathetic denervation or hyperinnervation were performed.  

3) Within the results of simulation, the pattern that generated 12-lead ECG and 
QT intervals which best matched the characteristics of experimental QT intervals 
of diabetics with neuropathy was chosen as an inverse solution. 

4) In the model, abnormal patterns were further modified to determine whether 
the characteristics of experimental QT intervals could be better matched. 

2.4 Chapter Four: Results 

2.4.1 Experimental ECG 

Group mean RR intervals of supine able-bodied subjects, diabetics 

without neuropathy, diabetics with mild neuropathy and diabetics with severe 

neuropathy are shown in Figure 2.16. RR interval tended to be different among 

groups (p=0.0829, ANOVA).  

 

Figure 2.16 Five-minute, resting, average ± SEM RR interval of able-bodied 
subjects (AB), diabetics without neuropathy (D0), diabetics with mild 
neuropathy (D1) and diabetics with severe neuropathy (D2). 
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Group mean QT intervals and heart rate-corrected QT interval (QTc) of 12 

leads are shown in Figure 2.17. QT intervals of able-bodied subjects did not differ 

from those of diabetics with severe neuropathy. QTc of able-bodied subjects 

tended to be shorter than diabetics with severe neuropathy (p=0.051 for lead aVL, 

p=0.104 for lead I, using two-tail t test between able-bodied subjects and 

diabetics with severe neuropathy). QTc intervals of diabetics without neuropathy 

tended to be the longest in the four groups. 

 

 

Figure 2.17 Average ± SEM QT interval (top) and heart rate-corrected QT 
interval (QTc, bottom) of 12-lead ECG of four groups. 
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Maximum and minimum QTc of all leads measured over supine control 

period are shown in Figure 2.18. Maximum QTc was not different between able-

bodied subjects and diabetics with severe neuropathy. Minimum QTc was not 

different between able-bodied subjects and diabetics with severe neuropathy, but 

demonstrated a tendency to be different. 

 

Figure 2.18 Individual maximum QTc (left) and minimum QTc (right) of all 
leads in the four groups. 

  

Minimum QTc of septal leads, anterior leads, lateral leads and inferior 

leads for all subjects are shown in Figure 2.19. Minimum QTc of lateral leads 

tended to be different between able-bodied subjects and diabetics with severe 

neuropathy (p = 0.095, two-tail t test between able-bodied subjects and diabetics 

with severe neuropathy). 
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Figure 2.19 Individual minimum QTc of septal leads (top left), anterior leads 
(top right), lateral leads (bottom left) and inferior leads (bottom right) of the 
four groups. 

 

Two characteristics were identified in QTc interval to be matched by the 

model. First, diabetics with severe neuropathy tended to have longer QTc interval 

in all leads than did able-bodied subjects. Second, minimum QTc interval from 

lateral leads demonstrated greater group difference between able-bodied 

subjects and diabetics with severe neuropathy when compared to other leads. In 

addition, a third characteristic of ECG, morphology, needed to be matched. 

Specifically, the T waves of lateral leads V5 and V6 should be positive which was 

observed in the ECG of all subjects. 
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2.4.2 Modeled ECG – Normal Model 

QT intervals of 12-lead ECG from the model of the normal heart are 

shown in Figure 2.20. Compared to the QTc interval of 12-lead ECG from able-

bodied subjects, there was a similar dip at lead V2. The lack of a dip at aVL in 

the model, compared to the able-bodied subjects, did not appear to be an 

important factor in model function, perhaps due to the anatomy of the model vs. 

real heart. In the subsequent simulation of abnormal heart, changes from normal 

QT intervals were computed. 

 

Figure 2.20 QT interval of 12 leads generated from normal model. 

 

2.4.3 Modeled ECG - Diabetic Effect on Normal Model 

Determination of the amount of APD changes in simulation. In order to 

determine the amount of APD changes, the effects of changing APD on 12-lead 

ECG and QT interval were assessed, by prolonging and shortening APD to 

different extent at one region (Figure 2.21, Figure 2.22). The shape of ECG 

showed that shortening APD at one region, for example, in the distal inferior 

region, primarily modified the ST segment and the ascending part of the T wave 

(blue lines in Figure 2.21). Conversely, prolonging APD in the distal inferior 

region primarily modifed the descending part of the T wave (red lines in Figure 

2.21). Greater APD prolongation generated greater changes in QT interval 
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(Figure 2.22). In subsequent simulations, a 60 msec change in epicardial APD, 

36 msec endocardial and 12 msec midmyocardial generated changes of QT 

interval by the desired amount of  20 msec, as observed in the QTc interval of 

lateral leads. Some exceptions occurred; 1) at the septum, 36 msec change was 

applied at both sides of the endocardium; 2) to simulate diffuse reduction of 

innervation, 20 msec change in APD at the epicardium, 12 msec at the 

endocardium and 4 msec at the midmyocardium were applied to the whole 

septem and left ventricular walls, in order to correspond to the definition of diffuse 

uptake of MIBG observed in a previous study that reported reduced global heart-

to-mediastinum ratio without obvious regional defect in SPECT polar map (115). 

Although shortening APD in the distal inferior region did not produced QT interval 

prolongation in most leads, as did prolonging APD (Figure 2.22), it did prolong 

QT interval in several leads. Therefore, both prolonged and shortened APD were 

applied, respectively. 

 

Figure 2.21 Twelve-lead ECG of normal model and abnormal models by 
prolonging or shortening APD to different extent in the distal inferior region. 
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Figure 2.22 QT interval of 12 leads of normal model and abnormal models 
by prolonging or shortening APD in the distal inferior region, when 
applying different magnitudes of APD changes. 

 
QT interval from simulation of regional abnormalities of cardiac 

sympathetic innervation. Action potential durations were prolonged or shortened 

by 60 msec at the epicardium, 36 msec at the endocardium and 12 msec at the 

midmyocardium in the following single regions respectively: distal inferior, basal 

inferior, distal lateral, basal lateral, distal anterior, basal anterior, distal septal, 

basal septal regions and apex. QT intervals were computed in every trial. QT 

interval changes due to prolonging APD at these regions are shown in Figure 

2.23. QT interval changes due to shortening APD at these regions are shown in 

Figure 2.24. The patterns that prolonged APD in the distal lateral or basal septal 

regions were selected because these modifications generated increases in QT 

intervals of all leads. 
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Figure 2.23 Delta of QT interval of 12 leads from normal model, resulting 
from prolonging APD in one region. 

 

Figure 2.24 Delta of QT interval of 12 leads from normal model, resulting 
from shortening APD in one region. 

 

Simulations of hyperinnervation in the basal region complicated by the 

loss of innervation in the distal region were simulated by prolonging APD in the 

distal region and shortening APD in basal region. Results of QT interval changes 

due to this simulation are shown in Figure 2.25. QT interval changes due to 

shortening APD in the distal region and prolonging APD in the basal region are 

shown in Figure 2.26. The pattern of prolonging APD in the distal, and shortening 
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APD in the basal septal region was selected because this modification generated 

increases in QT interval of all leads. 

 

 

Figure 2.25 Delta of QT interval of 12 leads from normal model, resulting 
from prolonging APD in  distal, and shortening APD in basal regions. 
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Figure 2.26 Delta of QT interval of 12 leads from normal model, resulting 
from shortening APD in distal,  and prolonging APD in basal regions. 
 

Finally, because the distal inferior region has frequenty been reported to 

be the first region affected, and an extension from this region has been observed 

in patients with more severe neuropathy, simulations of loss of innervation in two 

regions, extending from distal inferior to basal inferior, distal septal,distal lateral 

or apical regions were performed. In addition, diffuse denervation was also 

simulated by changing APD in the whole left ventricle. QT interval changes due 

to prolonging APD in these regions are shown in Figure 2.27. QT interval 

changes due to shortening APD in these regions are shown in Figure 2.28. The 

pattern that prolonged APD at distal inferior and distal lateral regions was 

selected because this pattern generated increases in QT interval of all leads. 
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Figure 2.27 Delta of QT interval of 12 leads from normal model, resulting 
from prolonging APD in two regions or prolonging APD diffusely. 

 

 

Figure 2.28 . Delta of QT interval of 12 leads from normal model, resulting 
from shortening APD in two regions or shortening APD diffusely. 
 

Twelve-lead ECG of selected patterns were then plotted against normal 
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this region resulted in changes in the morphology of ECGs and generated an 

inverted T wave in leads V5 and V6. 

 

Figure 2.29 Twelve-lead ECG of the simulation that prolonged APD in the 
distal lateral region, plotted against normal ECG. 

Figure 2.30 shows ECGs of the simulation that prolonged APD in the 

basal septal region. Prolonging APD in the basal septal region preserved the 

morphology of ECG. 
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Figure 2.30 Twelve-lead ECG of the simulation that prolonged APD in the 
basal septal region, plotted against normal ECG. 

 
Figure 2.31 shows ECGs from the simulation that prolonged APD in the 

distal lateral region and shortened APD in the basal lateral region. Prolonging 

APD in the distal lateral region with shortening APD in the basal lateral region 

resulted in changes in the morphology of ECG and generated inverted T wave in 

leads V5 and V6. 
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Figure 2.31 Twelve-lead ECG of the simulation that prolonged APD in the 
distal lateral region and shortened APD in the basal lateral region, plotted 
against normal ECG. 

Figure 2.32 shows ECGs of the simulation that prolonged APD at distal 

inferior and distal lateral regions. Prolonging APD at distal inferior and distal 

lateral regions resulted in changes in the morphology of ECG and generated 

inverted T wave in leads V5 and V6. 
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Figure 2.32 Twelve-lead ECG of the simulation that prolonged APD in the 
distal inferior and distal lateral regions, plotted against normal ECG. 

Determination of the pattern with the best match. From the comparison of  

the change in QT interval and morphology of ECGs, the pattern of prolonging 

APD in the basal septal region yielded the best match to experimental data. 

Specifically, 1) QT interval increased in all leads, and 2) the morphology of ECG 

was preserved. In addition, the minimum QT interval of lateral leads increased by 

15 msec, 2 msec longer than from all leads.  

Further modifcations. Because in diabetic patients with more severe 

autonomic neuropathy, the loss of tracer activity in the same region is more 

pronounced and the affected region extends to other regions (91, 93, 113, 123), 

the simulations of longer prolongation of APD (60 msec at endocardium and 20 

msec at midmyocardim) in the basal septal region, and prolonging APD in 

regions near the basal septal region were performed, respectively. QT interval 

changes due to prolonging APD in two regions (basal septal and distal septal 
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regions, basal septal and basal inferior regions, basal septal and basal anterior 

regions) are shown in Figure 2.33. Compared to changing APD in a single basal 

septal region, extension of regions did not alter QT intervals of lateral leads 

(leads I, aVL, V5 and V6), but other leads. Prolonging APD in the single basal 

septal region was chosen to be the pattern that best matched observed results. 

 

Figure 2.33 Delta of QT interval of 12 leads from the normal model, 
resulting from prolonging APD in two regions, extended from the basal 
septal region. 

 

QT interval changes due to longer prolongation of APD in the basal septal 

region are shown in Figure 2.34. Additional prolongation of APD generated larger 

changes in QT interval in most leads. 
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Figure 2.34 Delta of QT interval of 12 leads from thenormal model, resulting 
from prolonging APD with larger prolongation in the basal septal region. 

 
Intracellular potential and dipoles in normal model and abnormal model. In 

order to verify the changes in the forward solution, the cardiac source of modified 

model with the chosen pattern was plotted against that of the normal  model. The 

intracellular potentials of the nine transmural layers (from epicardium to 

endocardium) of the left ventricle of the normal model were shown at the top left 

side of Figure 2.35, Figure 2.36 and Figure 2.37, for different times. In order to 

show the septum, the right ventricle is not included. At the end of the QRS of the 

normal ECG, all cell elements were activated and intracellular potentials were 

homogeneous (Figure 2.35). At the peak of the T wave, intracellur potentials 

were inhomogenous, representing different stages of repolarization (Figure 2.36). 

At the end of the T wave, all cell elements were back to resting potentials (Figure 

2.37). The intracellular potentials of the left ventricle of the abnormal model, 

obtained by prolonging APD in the basal septal region, are shown at the top right 
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side of Figure 2.35, Figure 2.36 and Figure 2.37, for different times. At the time of 

the end of the QRS of the normal ECG (Figure 2.35), all cell elements were 

activated, similar to those of the normal model. At the peak of the T wave (Figure 

2.36), repolarizations were more heterogeneous, due to higher potentials in the 

basal septal region (red and orange areas). Unlike the normal model, the cell 

elements in the basal septal region were still repolarizing at the end of the T 

wave (Figure 2.36). 

Dipoles and ECG of lateral leads of the normal heart model are also 

shown at the bottom of Figure 2.35, Figure 2.36 and Figure 2.37 for different 

times. Dipoles were estimated at every cell element as a source of the electrical 

field of the extracellular space, and were proportional to the differences of the 

intracullular potentials of its six neighbors. Similar to the dipoles shown in the 

movie ‘Heart Model and ECG’, the dipoles of one region were averaged and 

plotted as a green quiver located at the average of the coordinates of the cell 

elements in that region. The average dipole of all cell elements of the heart was 

plotted as a red quiver located at the average of the coordinates of all cell 

elements. The time at which these plots were made was marked on the ECG of 

the four lateral leads.  

At the end of QRS, in the normal heart model, the dipoles were small in 

amplitude and almost invisible (Figure 2.35, bottom left). It was similar in the 

abnormal model (Figure 2.35, bottom right).  

In the normal heart model, at the peak of the T wave, the major force of 

the heart model, reflected by the red quiver, pointed toward the lateral wall of left 

ventricle, generating positive T waves in lateral leads (Figure 2.36, bottom left). 

In the abnormal model, although the amplitude of the red quiver was larger, the 

direction was similar to that of the normal model, generating a more positive T 

wave (Figure 2.36, bottom right). 

At the end of the T wave, in the normal heart model, the dipoles again 

were small in amplitude and almost invisible (Figure 2.37, bottom left). The 
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voltages of normal ECGs were close to zero. In the abnormal model, the major 

force was larger than that of the normal model, due to the repolarizing cell 

elements at the basal  septal region (Figure 2.37, bottom right). The voltages of 

the abmormal ECGs were greater than zero. 

   

 

Figure 2.35 Intracellular potentials of nine transmural layers (from 
epicardium to endocardium), dipoles and the ECGs of lateral leads of the 
normal model (a, b, c, left) and the abnormal model, obtained by prolonging 
APD in the basal septal region (d, e, f, right) at the end of the QRS of 
normal ECG. 
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Figure 2.36 Intracellular potentials of nine transmural layers (from 
epicardium to endocardium), dipoles and the ECGs of lateral leads of the 
normal model (a, b, c left) and the abnormal model, obtained by prolonging 
APD in the basal septal region (d, e, f, right) at the peak of the T wave of 
normal ECG. 
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Figure 2.37 Intracellular potentials of nine transmural layers (from 
epicardium to endocardium), dipoles and the ECGs of lateral leads of the 
normal model (a, b, c left) and the abnormal model, obtained by prolonging 
APD in the basal septal region (d, e, f, right) at the end of the T wave of 
normal ECG. 
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2.5 Chapter Five: Discussion 

2.5.1 QT Interval Changes in Diabetic Patients with Autonomic 
Neuropathy. 

In this study, diabetic patients with severe neuropathy tended to have 

longer QTc intervals in lateral leads of 12-lead ECG, compared to those of able-

bodied subjects.  

It has been reported that diabetic patients with cardiovascular autonomic 

neuropathy, diagnosed by two abnormal results in cardiovascular reflex tests, 

had longer QTc interval than the control group (51, 83, 125). The association 

between QTc interval and the severity of autonomic neuropathy has also been 

reported (69, 83, 100). However, Gonin et al reported that 57% of the patients 

with cardiovascular autonomic neuropathy had a normal QTc interval (51). In 

those studies, the numbers of subjects were greater than that in our study, with 

the number of diabetic patients ranging from 73 to 266 patients. In addition, QTc 

interval was measured in one ECG lead in those studies. In contrast, in the 

present study, QTc intervals were also compared in regional leads recorded in 

the 12-lead ECG. This resulted in a more significant group difference in the 

minimum QTc interval of lateral leads when comparing diabetic patients with 

severe neuropathy to able-bodied subjects. Therefore, minimum QTc interval of 

lateral leads in 12-lead ECG may be more diagnostic that that of a single lead. 

Veglio et al reported that, in 3,250 insulin-dependent diabetic patients, 

prolonged QTc interval, measured on V5 lead of resting ECG, was more 

prevalent in female subjects, resulting in longer QTc in female, than in male, 

subjects (126). However, in the same study, the relation between QTc 

prolongation and autonomic neuropathy was not observed among females 

although it was observed among males. In our study, diabetes without 

neuropathy were dominated by female subjects (5 of 6 subjects were female). 

Therefore, the tendency for diabetics without neuropathy to have longer QTc 

interval than diabetics with neuropathy may be due to this gender difference 

(Figure 2.38). 
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Figure 2.38 Gender differences in QTc interval of lead V5 for able-bodied 
subjects (AB), diabetics without neuropathy (D0), diabetics with mild 
neuropathy (D1) and diabetics with severe neuropathy (D2). 

 

Conversely to prolongation of QTc interval, Ong et al reported a higher 

heart rate and shorter QTc interval in diabetic patients with autonomic 

neuropathy, diagnosed by reduced heart rate variability (98). However, different 

from our study, they recorded a much longer data record, one that lasted for 24 

hours.  

2.5.2 Regional Sympathetic Denervation to Left Ventricle in Diabetic 
Patients 

In studies of MIBG-SPECG or HED-PET images, which reveal 

sympathetic innervation to the left ventricle, diabetic patients without or with mild 

autonomic neuropathy demonstrate low uptake of tracer in the posterior wall (112, 

113), posterior-inferior wall  (91), inferior wall (56, 93), distal inferior wall  (123) 

and to a less extend, septal wall (114).  In diabetic patients with autonomic 

neuropathy, the defects in these regions were more pronounced and extended to 

other areas (91, 93, 113, 123). It has also been reported that reduced uptake of 

tracer was observed in anterior, lateral and apical regions (75, 115). In addition, 
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Claus et al reported a lack of tracer activity in dorso-septal region in diabetic 

patients, within whom 79% had somatic polyneuropathy (22). The finding of a 

defect in the dorso-septal region agreed with the simulations of the present study. 

The similarity between the defect region in the study of Claus et al and this study 

may be due to a similar stage of neuropathy in both studies of diabetic patients 

with polyneuropathy.  

2.5.3 Mechanisms of QT Interval Prolongation in Diabetic Neuropathy 

This simulation study suggested that different patterns of regional 

prolongation of APD in the left ventricle caused changes in QT intervals of 12-

lead ECG. It has been reported that regional defects in MIBG uptake was not 

correlated with QTc interval in diabetic patients (22, 112-114). However, in those 

studies, ECG was recorded in one lead. In fact, in the current simulation study, 

there were relatively smaller increases or even decreases in QT interval of lead II 

when prolonging APD. These results were seen in many patterns (for example, 1) 

those involving  distal inferior, basal inferior, distal anterior, basal anterior, or 

basal lateral regions, 2) with complications of hyperinnervation in inferior, anterior 

or septal regions, and 3) in two regions involving distal inferior, basal inferior, 

distal anterior and distal septal regions). Therefore, QTc interval of lead II may 

not be reflective of most patterns of regional denervation. Another possibility is 

that QTc interval of lead II is reflective of a more severe autonomic neuropathy, 

since QT interval was correlated with abnormal results in cardiovascular reflex 

tests, which is known to represent a more severe neuropathy (49). In this 

simulation study, increases in APD prolongation led to increases in QT interval 

prolongation of lead II (Figure 2.34), although extension of affected area did not 

have an effect on lead II ECG (Figure 2.33). 

2.5.4  Limitations 

Movement of the heart during contraction and relaxation was not 

considered in this model, which may influence the results of the morphology of 

the modeled ECG. In addition, the lack of effects of muscle orientation on the 
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propagation of excitation, the simplicity of the structure of the ventricles, and the 

assumption of an homogeneous conductor in the torso may also explain 

differences in the detail of the morphology of the ECG and the QT interval pattern 

of 12 leads, between the model and able-bodied subjects. In addition, the lack of 

direct comparison of simulation results with individual cardiac denervation pattern 

from cardiac images limits the interpretation of results. However, this model 

demonstrates the feasibility of using forward and inverse solutions to detect 

cardiac sympathetic denervation. 
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2.6 Chapter Six: Conclusions 

Diabetic patients with severe neuropathy tended to have longer QTc 

intervals in 12-lead ECG. The minimum QTc interval of lateral leads was more 

diagnostic than that from other leads. The change of QTc interval in diabetic 

patients with severe neuropathy compared to able-bodied subject may be due to 

a mechanism involving prolongation of APD at the basal septal region, due to 

cardiac sympathetic denervation. 

  



101 
 

2.7 Chapter Seven: Future Work 

Validation studies need to be performed by collecting MIBG-SPECT images 

and QT intervals in 12-lead ECG in diabetic patients. Results from these data 

sets would be used to verify the model. In addition, the inverse solution from 

body surface potential acquired from more electrodes could provide the potential 

to locate cardiac sympathetic denervation, and thus provide a time efficient and 

cost effective method to detect cardiac denervation in diabetic patients. Finally, 

refining the model by adding complexity (for example, inhomogeneity of the torso 

or orientation of muscle fibers) may improve the similarity between the model and 

a real heart.  
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