
FRAMEWORK FOR ROBUST DESIGN:
A FORECAST ENVIRONMENT USING INTELLIGENT

DISCRETE EVENT SIMULATION

A Thesis
Presented to

The Academic Faculty

by

Elise K. Beisecker

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
May 2012

FRAMEWORK FOR ROBUST DESIGN:
A FORECAST ENVIRONMENT USING INTELLIGENT

DISCRETE EVENT SIMULATION

Approved by:

Professor Dimitri Mavris, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Professor David Goldsman
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Vitali Volovoi
School of Aerospace Engineering
Georgia Institute of Technology

Mr Steve Anderson
Principal Scientist
Naval Surface Warfare Center,
Dahlgren Division

Dr. Santiago Balestrini
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: 28 March 2012

To my great grandfather, Walter Schiebe

for sharing his love of airplanes and engineering.

iii

ACKNOWLEDGEMENTS

I want to thank my family for their support throughout this process. Thanks to my

Dad for teaching me to always have a vision. Thanks to my Mom for her emotional

support. To my sisters, Ling and Kaitlyn, for understanding my nerdiness. And my

extending family for not asking when I was going to graduate too often.

Thanks to all of my friends for understanding how busy grad school keeps you.

Especially all the co-worker I consider close friends. Thanks for giving feedback on

conceptual ideas, presentations, and whole sections of this thesis. They helped keep

me motivated and on track to graduate.

I want to thank my advisor Dr. Mavris for providing the motivation and insight

to make this journey. I would also like to thank Dr. Kirby for getting me involved

in research as an undergrad. Thanks to Dr. Nixon for introducing Naval logistics as

an exciting area of research and Dr. Balestrini for serving as a technical expert and

letting me explore the research options. I would also like to thank Ms Kelly Cooper

from ONR for her continued support of my research.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xii

LIST OF FIGURES . xiv

LIST OF ACRONYMS . xviii

SUMMARY . xxi

I MOTIVATION . 1

1.1 Shift in Naval Operational Concept 1

1.2 Challenges of a Sea Base . 3

1.3 Importance of Modeling . 5

1.4 Observations . 6

1.5 Research Goals . 7

II LITERATURE REVIEW AND BENCHMARKING 10

2.1 Traditional Methods . 10

2.1.1 Classification of Problem 11

2.1.2 Gaps in Traditional Methods 12

2.2 Simulation Based Methods . 13

2.2.1 Expected Value . 14

2.2.2 Agent Based . 15

2.2.3 Discrete Event Simulation 16

2.2.4 Existing DES Models . 17

2.3 Hybrid Methods . 21

2.4 Need for a New Method . 22

III PROBLEM DEFINITION . 24

3.1 Problem Decomposition . 24

v

3.2 Parametric Scenarios . 25

3.3 Fleet Size and Interactions . 25

3.4 Loading Problem . 26

3.5 Routing Problem . 26

3.6 Analysis to Identify Design Drivers 26

3.7 Proposed Contributions . 27

IV CHALLENGES OF HYPOTHESES 28

4.1 Scenario Definition . 28

4.2 Augmenting DES for Large Models 28

4.2.1 Limitations of Traditional Resource Management 29

4.2.2 Incorporating Marix Manipulation 29

4.3 Challenges of Loading Problem . 32

4.3.1 Loading as a Knapsack Problem 33

4.4 Challenges of Routing Problem . 34

4.5 Robustness and Sensitivity Analysis 36

4.5.1 Feasible Scenario Robust Analysis 39

V RESEARCH PLAN . 42

5.1 Parametric Scenarios . 43

5.1.1 Assertion Requirements . 43

5.2 Model Development . 43

5.2.1 Experiments . 45

5.2.2 Validation and Verification 45

5.3 Dynamic Loading . 46

5.3.1 Experiments . 47

5.4 Dynamic Routing . 47

5.4.1 Experiments . 47

5.5 Robust Design . 48

5.5.1 Experiments . 49

vi

5.6 Research Objectives . 49

VI SCENARIO DEFINITION . 51

6.1 Use of Scenarios . 51

6.1.1 Military Application . 51

6.2 Scenario Development . 52

6.2.1 Scenario Selection . 54

6.3 Necessary Information . 61

6.3.1 Generic Cargo Vector . 61

VII MATRIX FORMULATION . 63

7.1 Traditional vs Matrix Formulation 63

7.1.1 Difference in Formulation 64

7.2 Use of SimPy . 67

7.3 Penalty for Expansion . 67

7.3.1 Vessel Matching Existing Class 68

7.3.2 Vessel Requiring New Class 68

7.3.3 Run Time Penalty . 70

7.4 Validation and Verification . 71

VIII DYNAMIC LOADING . 72

8.1 Algorithms to Address Loading . 72

8.1.1 Prioritized Loading . 72

8.1.2 Mixed Integer Linear Program (MILP) 74

8.2 Prioritized Loading vs Knapsack 75

8.3 Shortcoming of MILP . 76

8.4 Incorporating Cargo Locations . 77

8.4.1 Formulation of MILP . 78

8.5 Selection of Loading Algorithm . 79

IX DYNAMIC ROUTING . 82

9.1 Dynamic Routing in Traditional Vehicle Routing 82

vii

9.1.1 Critical Routing Considerations 83

9.2 Routing from Computer Science Perspective 84

9.2.1 Call Centers . 84

9.2.2 Packet Routing . 85

9.2.3 Network-on-Chip . 85

9.3 Routing Algorithms . 86

9.3.1 No Dynamic Routing . 87

9.3.2 Routing with Current States 87

9.3.3 Routing with Predicted States 88

9.3.4 Routing with Predicted States and Retesting 89

9.3.5 Predicted States with Current State Corrections 90

9.4 Comparison of Routing Algorithm 90

9.4.1 Basis for Comparison . 91

9.4.2 Comparison 1 . 91

9.4.3 Comparison 2 . 93

9.4.4 Comparison 3 . 95

9.4.5 Comparison 4 . 97

9.4.6 Comparison 5 . 99

9.4.7 Stochastic Tests . 101

9.5 Scalability . 105

9.6 Selection of Routing Algorithm . 108

9.7 Special Case - Multiple Unload Points 109

9.7.1 Objective Function . 110

9.7.2 Formulation of Linear Program 110

9.7.3 Small Example . 113

9.7.4 Modification to Overall Routing Algorithm 114

X DETAILED MODEL DESCRIPTION 115

10.1 Notes about Modeling using DES 115

viii

10.2 Object Properties . 116

10.3 Generic Process . 117

10.4 Abstracted Processes . 119

10.5 Example Mathematical Construct 122

10.6 Processes for Different Types of Vessels 134

10.6.1 Connector . 136

10.6.2 Sea Base Cargo Ships . 140

10.6.3 Mobile Landing Platform 140

10.6.4 Shore . 141

XI COMPARISON TO EXISTING MODEL 147

11.1 Description of CDM Work . 147

11.1.1 Scenarios . 148

11.1.2 Timing Assumptions . 149

11.1.3 Loading Assumptions . 151

11.1.4 Scheduling Assumptions . 151

11.2 Comparison of Assumptions . 152

11.3 Results Comparison . 154

11.4 Discussion of Results . 159

XII CAPABILITIES SUMMARY . 162

12.1 Addressing Gaps in Previous Models 162

12.2 Increased Capabilities . 163

12.2.1 Matrix Formulation . 164

12.2.2 Dynamic Loading . 165

12.2.3 Dynamic Routing . 166

12.3 Scalability . 167

12.4 Full Scale Application Example . 168

12.5 Performance Comparison and Trade-offs 171

ix

XIII ROBUST DESIGN PROCESS . 178

13.1 Concept of Robust Design . 178

13.1.1 Use of Robustness in Ship Design 179

13.2 Robust Design Process . 180

13.2.1 Select the Performance Measures 180

13.2.2 Specify Loss Function . 181

13.2.3 Identify the Factors . 183

13.2.4 Plan the Experiment . 184

13.2.5 Analyze the Results and Select the Design Drivers 186

XIV FEASIBLE SPACE DEFINITION 187

14.1 Theory of Feasible Space . 187

14.2 Experimental Designs . 188

14.2.1 Control Factors Design of Experiments 188

14.2.2 Single Scenario . 190

14.2.3 Discrete Scenarios . 190

14.2.4 Full Coverage . 190

14.2.5 Feasible Design Space . 192

XV ROBUST DESIGN RESULTS . 196

15.1 Single Scenario . 196

15.2 Discrete Scenarios . 199

15.3 Full Coverage . 205

15.4 Feasible Design Space . 209

15.5 Selection of Design Drivers . 212

15.5.1 Additional Analysis . 215

15.5.2 Robust Design Conclusions 221

XVI CONCLUSIONS . 223

16.1 Summary of Work and Contributions 223

16.1.1 Sub-Problem Abstraction 224

x

16.1.2 Scenario Definition . 227

16.1.3 Matrix Formulation . 228

16.1.4 Dynamic Loading . 229

16.1.5 Dynamic Routing . 230

16.1.6 Modeling Contribution . 231

16.1.7 Robust Design . 232

16.1.8 Design Recommendations 233

16.2 Future Work . 235

16.3 Recommendations and Lessons Learned 236

APPENDIX A — TRADITIONAL SIMPY FORMULATION . . 238

APPENDIX B — DELAS MODEL 247

REFERENCES . 359

xi

LIST OF TABLES

1 Potential Design and Noise Factors 49

2 Future Marine Expeditionary Brigade (MEB(F)) 55

3 Marine Expeditionary Unit (MEU(SOC)) 58

4 Humanitarian Cargo Assumptions . 60

5 Generic Cargo Vector . 62

6 Run Time Comparison - Traditional vs Matrix 67

7 Run Time Comparison . 70

8 Run Time Comparison - MILP . 80

9 Summary Comparison Results - Time to Complete 92

10 Run Time Comparison - With and without Helicopters 139

11 Timing Assumptions . 150

12 Carrying Capacity per Container . 153

13 Assumed Weights . 153

14 Demand per Population Center . 153

15 CDM Results . 155

16 DELAS Results . 156

17 Vessels and Vehicles . 168

18 Beach Landing Zones . 169

19 Demand Schedule per Beach Group 169

20 Vessels and Vehicles . 169

21 Total Trips per Type of Asset . 171

22 Predicted Routing Results . 172

23 Actual Routing Results . 173

24 MEC Candidate Designs . 174

25 Control Variables and Ranges . 183

26 Noise Variables and Ranges . 185

27 Scenario Based Noise Variable Settings 191

xii

28 Scenario Based Noise Variable Ranges 194

29 Design Driver Comparison - MCO . 198

30 Design Driver Comparison - Scenarios 201

31 Design Driver Comparison - Full Space 207

32 Design Driver Comparison - Feasible Space 211

33 Summary of Key Thesis Points . 225

xiii

LIST OF FIGURES

1 Seabasing Concept [65] . 3

2 Joint Seabasing Components [126] . 4

3 NPS Model Flow . 18

4 Routing without Dynamic Algorithm 35

5 Routing with Dynamic Algorithm . 36

6 Feasible Scenario Sampling . 40

7 Range of Military Operations [5] . 44

8 Additional Army Assets for JLOTS Assessment 45

9 Participation in JLOTS [3] . 46

10 Concept of Shortfall . 48

11 Future Marine Expeditionary Brigade (MEB(F)) 56

12 Marine Expeditionary Unit (MEU(SOC)) 57

13 Traditional vs Matrix Resources . 65

14 Run Time per Connector . 71

15 Prioritized vs Knapsack Loading . 76

16 Knapsack With and Without Extra Cargo 77

17 Knapsack with Additional Constraints 80

18 Example Problem Formulation . 92

19 Comparison 1: Time History . 94

20 Comparison 1: Shortfall . 94

21 Comparison 1: Difference between Predicted and Actual Trip Times . 95

22 Comparison 2: Time History . 96

23 Comparison 2: Shortfall . 96

24 Comparison 2: Difference between Predicted and Actual Trip Times . 97

25 Comparison 3: Time History . 98

26 Comparison 3: Shortfall . 98

27 Comparison 3: Difference between Predicted and Actual Trip Times . 99

xiv

28 Comparison 4: Time History . 100

29 Comparison 4: Shortfall . 100

30 Comparison 4: Difference between Predicted and Actual Trip Times . 101

31 Comparison 5: Time History . 102

32 Comparison 5: Shortfall . 102

33 Comparison 5: Difference between Predicted and Actual Trip Times . 103

34 Distribution of Time to Complete . 104

35 Distribution of Shortfall . 104

36 Distribution of Difference between Predicted and Actual Trip Times . 105

37 Distribution of Time to Complete . 106

38 Distribution of Shortfall . 106

39 Distribution of Difference between Predicted and Actual Trip Times . 107

40 Mission Selection Process . 120

41 Connector Process . 143

42 Helicopter Process . 144

43 Air Cushion Vehicle Process . 145

44 MLP Process . 146

45 Example Load-Outs . 148

46 Scheduling Shortcoming . 151

47 Scheduling Contrast Between Models 154

48 CONUS with LVS . 157

49 CONUS with Tractor-Trailer . 157

50 International with LVS . 158

51 International with Tractor Trailer . 158

52 Additional Scheduling Shortcoming 159

53 CDM Scheduling Option 2 . 160

54 DELAS Scheduling Option 2 . 160

55 Matrix without and With Loading . 165

56 Set Routing vs Predictive Routing . 166

xv

57 One vs Multiple Unload Points . 167

58 Time History Results . 170

59 Shortfall Results . 171

60 Radar Plot for 1 MEC . 175

61 Radar Plot for 10 MECs . 176

62 Radar Plot for 10 MECs - Scenario Definition Change 177

63 Loss Function . 181

64 Loss Function Minimization . 182

65 Distribution of Distances to ISB . 184

66 Design Space Coverage . 189

67 Complete Design Space Coverage . 193

68 Design Space Coverage . 195

69 Pareto Plot for Shortfall - MCO . 197

70 Pareto Plot for Loss - MCO . 197

71 Prediction Profiler - MCO . 200

72 Prediction Profiler 2 - MCO . 200

73 Pareto Plot for Shortfall - Scenarios 202

74 Pareto Plot for Loss - Scenarios . 202

75 Prediction Profiler - Scenarios . 204

76 Prediction Profiler 2 - Scenarios . 204

77 Pareto Plot for Shortfall - Full Space 206

78 Pareto Plot for Loss - Full Space . 206

79 Shortfall Prediction Profiler - Full Space 208

80 Loss Prediction Profiler - Full Space 208

81 Pareto Plot for Shortfall - Feasible Space 210

82 Pareto Plot for Loss - Feasible Space 210

83 Shortfall Prediction Profiler - Feasible Space 213

84 Shortfall Prediction Profiler 2 - Feasible Space 213

85 Loss Prediction Profiler - Feasible Space 213

xvi

86 Contour Profiler - Full Coverage . 214

87 Contour Profiler - Feasible Coverage 214

88 Pareto Plot for Shortfall - Full Coverage, All Variables 217

89 Pareto Plot for Fuel - Full Coverage, All Variables 218

90 Pareto Plot for Shortfall - Feasible Space, All Variables 219

91 Pareto Plot for Fuel - Feasible Space, All Variables 220

xvii

LIST OF ACRONYMS

ABM Agent Based Model

ARG Amphibious Ready Group

BAA Broad Agency Announcement

CONUS Continental United States

CSG Carrier Strike Group

DELAS Discrete Event Logistics Advanced Simulation

DES Discrete Event Simulation

DoE Design of Experiments

ESG Expeditionary Strike Group

INLS Improved Navy Lighterage System

ISB Intermediate Staging Base

JHSV Joint High Speed Vessel

JLOTS Joint Logistics Over the Shore

LCAC Landing Craft Air Cushion

LCAC-R Landing Craft Air Cushion - Replacement

LCU-1600 Landing Craft Utility 1600 class

LCU-2000 Landing Craft Utility 2000 class

LHA/LHD Landing Helicopter Deck

xviii

LMSR Large Medium-Speed Roll-on/Roll-off

LPD Landing Platform/Dock

LSD Dock Landing Ship

LSV Logistics Support Vessel

LVS Medium Tactical Vehicle Replacements

MCO Major Combat Operation

MEB Marine Expeditionary Brigade

MEC Medium Exploratory Connector

MEU(SOC) Marine Expeditionary Unit Special Operations Capable

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Non-Linear Programming

MLP Marine Manding Platform

MoE Measure of Effectiveness

MoP Measure of Performance

MPF Maritime Pre-Positioning Force

MRE Meal Ready to Eat

MTVR Medium Tactical Vehicle Replacements

NOLH Nearly Orthogonal Latin Hypercube

NPS Naval Postgraduate School

OMFTS Operational Maneuver From the Sea

xix

ONR Office of Naval Research

ROMO Range of Military Operations

RSM Response Surface Methodology

SB Sea Base

SoS System-of-Systems

SSC Ship to Shore Connector

T-AKE Dry Cargo/Ammunition Ships

T-Craft Transformable Craft

TEU Twenty-foot Equivalent Unit

TSP Traveling Salesman Problem

xx

SUMMARY

The US Navy is shifting to power projection from the sea which stresses the ca-

pabilities of its current fleet and exposes a need for a new surface connector. The

design of complex systems in the presence of changing requirements, rapidly evolving

technologies, and operational uncertainty continues to be a challenge. Furthermore,

the design of future naval platforms must take into account the interoperability of a

variety of heterogeneous systems and their role in a larger system-of-systems context.

To date, methodologies to address these complex interactions and optimize the sys-

tem at the macro-level have lacked a clear direction and structure and have largely

been conducted in an ad-hoc fashion. Traditional optimization has centered around

individual vehicles with little regard for the impact on the overall system. A key

enabler in designing a future connector is the ability to rapidly analyze technologies

and perform trade studies using a system-of-systems level approach.

The objective of this work is a process that can quantitatively assess the impacts

of new capabilities and vessels at the systems-of-systems level. This new method-

ology must be able to investigate diverse, disruptive technologies acting on multiple

elements within the system-of-systems architecture. Illustrated through a test case

for a Medium Exploratory Connector (MEC), the method must be capable of cap-

turing the complex interactions between elements and the architecture and must be

able to assess the impacts of new systems). Following a review of current methods,

six gaps were identified, including the need to break the problem into subproblems in

order to incorporate a heterogeneous, interacting fleet, dynamic loading, and dynamic

routing. For the robust selection of design requirements, analysis must be performed

xxi

across multiple scenarios, which requires the method to include parametric scenario

definition.

The identified gaps are investigated and methods recommended to address these

gaps to enable overall operational analysis across scenarios. Scenarios are fully defined

by a scheduled set of demands, distances between locations, and physical character-

istics that can be treated as input variables. Introducing matrix manipulation into

discrete event simulations enables the abstraction of sub-processes at an object level

and reduces the effort required to integrate new assets. Incorporating these linear

algebra principles enables resource management for individual elements and abstrac-

tion of decision processes. Although the run time is slightly greater than traditional

if-then formulations, the gain in data handling abilities enables the abstraction of

loading and routing algorithms.

The loading and routing problems are abstracted and solution options are devel-

oped and compared. Realistic loading of vessels and other assets is needed to capture

the cargo delivery capability of the modeled mission. The dynamic loading algorithm

is based on the traditional knapsack formulation where a linear program is formulated

using the lift and area of the connector as constraints. The schedule of demands from

the scenarios represents additional constraints and the reward equation. Cargo avail-

able is distributed between cargo sources thus an assignment problem formulation is

added to the linear program, requiring the cargo selected to load on a single connector

to be available from a single load point.

Dynamic routing allows a reconfigurable supply chain to maintain a robust and

flexible operation in response to changing customer demands and operating environ-

ment. Algorithms based on vehicle routing and computer packet routing are compared

across five operational scenarios, testing the algorithms ability to route connectors

without introducing additional wait time. Predicting the wait times of interfaces

based on connectors en route and incorporating reconsideration of interface to use

xxii

upon arrival performed consistently, especially when stochastic load times are intro-

duced, is expandable to a large scale application. This algorithm selects the quickest

load-unload location pairing based on the connectors routed to those locations and

the interfaces selected for those connectors. A future connector could have the ability

to unload at multiple locations if a single load exceeds the demand at an unload loca-

tion. The capability for multiple unload locations is considered a special case in the

calculation of the unload location in the routing. To determine the unload location

to visit, a traveling salesman formulation is added to the dynamic loading algorithm.

Using the cost to travel and unload at locations balanced against the additional cargo

that could be delivered, the order and locations to visit are selected. Predicting the

workload at load and unload locations to route vessels with reconsideration to handle

disturbances can include multiple unload locations and creates a robust and flexible

routing algorithm.

The incorporation of matrix manipulation, dynamic loading, and dynamic routing

enables the robust investigation of the design requirements for a new connector. The

robust process will use shortfall, capturing the delay and lack of cargo delivered, and

fuel usage as measures of performance. The design parameters for the MEC, including

the number available and vessel characteristics such as speed and size were analyzed

across four ways of testing the noise space. The four testing methods are: a single

scenario, a selected number of scenarios, full coverage of the noise space, and feasible

noise space. The feasible noise space is defined using uncertainty around scenarios of

interest. The number available, maximum lift, maximum area, and SES speed were

consistently design drivers. There was a trade-off in the number available and size

along with speed. When looking at the feasible space, the relationship between size

and number available was strong enough to reverse the number available, to desiring

fewer and larger ships. The secondary design impacts come from factors that directly

impacted the time per trip, such as the time between repairs and time to repair. As

xxiii

the noise sampling moved from four scenario to full coverage to feasible space, the

option to use interfaces were replaced with the time to load at these locations and

the time to unload at the beach gained importance. The change in impact can be

attributed to the reduction in the number of needed trips with the feasible space. The

four scenarios had higher average demand than the feasible space sampling, leading

to loading options being more important. The selection of the noise sampling had an

impact of the design requirements selected for the MEC, indicating the importance of

developing a method to investigate the future Naval assets across multiple scenarios

at a system-of-systems level.

xxiv

CHAPTER I

MOTIVATION

1.1 Shift in Naval Operational Concept

Sea Power 21, the Navy’s operational vision for the 21st century, identifies three

fundamental concepts for continued operational effectiveness: Sea Strike, Sea Shield,

and Sea Base. Sea Strike is the ability to project precise and persistent offensive power

from the sea; Sea Shield extends defensive assurance throughout the world; and Sea

Base enhances operational independence and support for the joint force [64]. The

intent of the Sea Base is to develop a maneuverable, scalable collection of platforms

that enable power projections from the sea [16]. Seabasing is defined in the DoD

Dictionary as the deployment, assembly, command projection, reconstitution, and

reemployment of joint power from the sea without reliance on land bases within the

operational area [96].

The emphasis has shifted to a need for the Navy to project power ashore, deriving

from a movement away from land based operations. The United States has already

run into difficulties securing bases on foreign soil and political factors may continue

to reduce the availability, strengthening the drive toward sea based projection [180].

Political pressures against granting basing rights to U.S. forces is strong, such as

the inability to obtain permission from Saudi Arabia or Turkey leading up to the

invasion of Iraq [51]. Admiral Moore and General Hanlon stated ”Sea Basing exploits

the operational shift in warfare from mass to precision and information, employing

the 70 percent of the earth’s surface that is covered with water as a vast maneuver

area in support of the joint force” [183].

The Sea Base construct provides a potential framework for projecting power ashore

1

with minimal forces ashore, minimizing the need to build up logistical stockpiles

ashore. This includes the ability to assemble, equip, project, support, and sustain

those forces without reliance on land bases within the Joint Operations Area [16].

The concept for Seabasing is shown in Figure 1. Removing the need for diplomatic

arrangements to assure forward basing coupled with forward positioning enables im-

mediate employment [52]. The potential benefits of Seabasing include [15]:

1. Assuring access worldwide for military operations

2. Enhanced forward-defense posture

3. Improvement in immediate response capability

4. Rapid initiation of joint command and control

5. Very rapid transition from crisis to joint forcible entry

6. A greater degree of force tailorability and scalability

The composition of the Sea Base is not established and is intended to be tailorable,

but will include distributed forces including carrier strike groups (CSGs) , expedi-

tionary strike groups (ESGs), combat logistics force ships, Maritime Pre-Positioning

Force (MPF) platforms, and potentially, high-speed support vessels [51]. Potential

vessels seen as part of the Sea Base are given in Figure 2. The Sea Base’s contributing

elements do not operate in isolation but are part of a logistical chain from production

in the continental United States (CONUS) to use by the warfighter in theater. The

Sea Base connectors are contributing elements to the logistical function and need to

be analyzed as part of a larger throughput process [79]. This leads to the recommen-

dation by the National Research Council that a comprehensive systems analysis of

Seabasing ships and connectors needs to be undertaken at a macro level to validate

the requirements, such as range, speed, and capacity for cargo and personnel [15].

2

Figure 1: Seabasing Concept [65]

1.2 Challenges of a Sea Base

The Defense Science Board identified Seabasing as a critical capability. One of the

greatest challenges to the Seabasing architecture is the transfer of cargo, troops, and

equipment from the Sea Base to the objective [9]. The traditional iron triangle, man-

dating a trade off between speed, range and payload, limits the current alternatives

such that no one craft can meet all of the objectives of the Sea Base. The major

stressers in meeting the objectives are the required stand-off distances, high sea state

transfer capabilities, desire for insertion during one period of darkness, and the need

for over-the-beach (feet dry) delivery [79]. These stressers should drive the selection

of technologies.

A new long range, medium lift connector needs to be developed to address breaking

the iron triangle and be designed to meet the requirements in order to capitalize on

the promised Seabasing capabilities. To meet the needs of the Seabasing concept, it

3

Figure 2: Joint Seabasing Components [126]

has been suggested that future surface connectors must be able to operate in three

modes [14]:

1. Fuel efficient, good sea-keeping mode

2. High-speed shallow water mode

3. Amphibious mode to traverse sand bars and mud flats

These three modes cannot be achieved by any existing vessel and formed the start-

ing requirements outlined in the Office of Naval Research’s (ONR) Broad Agency

Announcement (BAA) soliciting proposals for a prototype demonstrator of a Trans-

formable Craft (T-craft) . The basic requirements highlight an inportant gap in

existing connectors. A new type of connector is needed based on the need for a self

deployed asset that can deliver intact units with options for interface and transfer

of cargo. This thesis will explore the modeling needs and requirements definition for

4

this Medium Exploratory Connector (MEC).

The Sea Base has been identified as a complex system-of-systems (SoS) by the

Defense Science Board [9]. A SoS is defined by the Defense Acquisition Guidebook

as ”a set or arrangement of systems that results from independent systems integrated

into a larger system that delivers unique capabilities” [19]. The Systems Engineering

Guide for Systems of Systems recognizes the importance of incorporating system

interdependencies in systems acquisition [139].

To measure the capabilities of the future Navy fleet, the conceptual connector

must be modeled as it will operate together with the future legacy fleet. To evaluate

the capabilities of the MEC as it operates in a Seabasing operation, a model must

be flexible enough to incorporate the ability to vary the scenario variables since the

Seabasing scenario is not fixed. Any proposed model must incorporate performance

and operations of the future legacy fleet and the interactions between these vessels

and the MEC, including which vessels can interface with each other and the methods

of cargo transfer. Legacy simulations are generally not capable of representing a

nonlinear battlespace or one filled with a variety of operating units and lack the

flexibility to integrate new elements on short notice at reasonable cost [12].

1.3 Importance of Modeling

The difficulty in assessing the impact of a new vessel’s capabilities at the SoS level is

that the effects of said vessel are truly complex. Systems-of-Systems tend to qualify as

complex systems because (1) they are composed of a large number of interdependent

systems, whose (2) interactions are nonlinear, and (3) their overall behavior cannot be

predicted by studying the parts in isolation. It is not the goal of this research to join

the extensive list of references in which a definition of complexity is attempted, but

simply to illustrate the fact that when studying large-scale architectures, or Systems-

of-Systems and in particular, how individual capabilities impact their overall behavior,

5

the exercise becomes a study in complexity.

Looking at a variety of fields of study: telecommunications, logistics, comput-

ers, transportation, work flows, information systems, or production, the global effects

caused by a local decision are unknown due to the large number of parts and connec-

tions. The overall architecture, connection, and local behaviors of the components are

easily described but the global behavior requires a model based evaluation method

[202].

The overall challenges of Seabasing when viewed in the context of expeditionary

maneuver warfare and the evolving strategies of Operational Maneuver from the Sea,

the Ship to Objective Maneuver, and Marine Corps Distributed Operations, exhibits

a multiplicity of requirements which are often contradictory. Numerous solutions

have been proposed as physical elements of a future Sea Base, however, these solu-

tions rely upon a particular vision making a comparison across uniform Measures of

Effectiveness (MoE) difficult. To perform a fair comparison of adding new vessels or

other elements to a Sea Base, it is necessary to examine MoEs at the SoS level.

1.4 Observations

The following list distills observations about the challenges and gaps of modeling a

Sea Base concept and designing a new connector such as the MEC.

• Due to the large number of interacting assets (ships, aircraft, helicopters, ports,

landing spots etc.) in a realistic simulation of a Sea Base, many system level

models must be created and managed. The development of these models and

the simulation of multi-system interactions will require new methods in data

handling and system modeling.

• Traditional ship design has been based on required performance metrics. A

system-of-systems level focus introduces the capability to investigate factors

6

such as interfaces between assets and logistics chain, in conjunction with doc-

trine, policy, and tactics. These factors may have more impact on the design

than traditional measures of effectiveness but could not be explored with current

methods.

• The design of a system-of-systems involves the interaction of a large number of

heterogeneous systems, requiring an approach that addresses the modeling of

large-scale problems with both continuous and discrete design variables. The

complexity of systems that consist of a variety of heterogeneous subsystems

demands a decomposition of the task into a set of smaller, more manageable

design problems.

• Campaign-level simulations are traditionally hard-coded for an example scenario

and are rarely parametric, flexible, or transparent to the user. While these

demonstrations are helpful for visualizing the given scenarios, this format is not

conducive to trades at the system and subsystem level across multiple scenarios.

• The significant amount of data generated by the design of multiple assets in

diverse vehicle classes is nearly impossible to comprehend. An approach is

needed that captures the physics of the problem, allows the decision maker to

visualize the results, and facilitates real-time design in a cross scenario, system-

of-systems framework.

1.5 Research Goals

The design of complex systems such as ships, submarines, aircraft, and missiles, in

the presence of changing requirements, rapidly evolving technologies, and operational

uncertainty continues to be a challenge. Furthermore, the design of future naval

platforms must take into account the interoperability of a variety of heterogeneous

systems and their role in a larger system-of-systems context. To date, methodologies

7

to address these complex interactions and optimize the system at the macro-level have

lacked a clear direction and structure and have largely been conducted in an ad-hoc

fashion. Traditional optimization has centered around individual vehicles with little

regard for the impact on the overall system. A key enabler for reduced cost and cycle

time is the ability to rapidly analyze technologies and perform trade studies using a

system-of-systems level approach.

The objective of this work is a framework that can quantitatively assess the

impacts of new capabilities and vessels at the systems-of-systems level. This new

methodology must be able to handle a diverse fleet of vessels and vehicles while

capturing technological developments acting on multiple elements within the system-

of-systems architecture. It must also be capable of capturing the complex interactions

between elements of the architecture and must be able to assess the impacts of new

systems such as the MEC.

For this new quantitative assessment, the research has been broken into two por-

tions. The first is to evaluate existing processes and benchmark their strengths and

weaknesses. This will require the evaluation of tools and techniques that can be

leveraged in this new methodology and will serve to determine the feasibility of a

proposed new solution. The second portion will be the implementation and testing

of the proposed methodology on an example system.

In Chapter 2, a brief exploration of logistic modeling techniques is presented. This

includes methods and techniques that have been applied to large logistics systems and

the strengths and shortcomings of these options. Chapter 3 develops the gaps iden-

tified in the previous chapter and develops observations and research questions that

lead to assertions and hypotheses. The challenges associated with these hypotheses

are discussed in Chapter 4 including the connection between the research questions

and hypotheses. The research plan and experiments to demonstrate the hypotheses

are given in Chapter 5. Chapters 6 through 9 detail the development and testing

8

of the model elements followed by a detailed model description and validation of a

portion of the model capabilities. Chapters 13 through 15 describe the application to

the example system. This work concludes with a summary of interesting observations

and contributions.

9

CHAPTER II

LITERATURE REVIEW AND BENCHMARKING

2.1 Traditional Methods

Vehicle routing has been an area of study since 1959 when Danzig and Ramser pub-

lished ”The Truck Dispatching Problem” [67]. The traditional vehicle routing problem

is a fleet of identical vehicles with set demand for each node which does not exceed the

capacity of a single vehicle and where each customer is visited once by a single vehicle

[106]. Many solution algorithms exist for solving this class of problems directly and

some work has been done to expand the types of systems modeled.

The traditional supply chain problem defines a network of facilities that procure

materials, transform, and distribute them with the aim to optimize locations, includ-

ing site and number, production, products to be produced at locations, inventory

levels, and transportation [184]. Mixed Integer Non-Linear Programming (MINLP)

has been used to optimize these problems, such as selecting the number and location

of facilities in a closed loop manufacturing process (manufacture, distribute, consume,

recycle, usable part remanufactured) [71]. These problems aim to minimize the overall

cost and are developed using mean production rates. The behavior of the system can

be fully captured by a set of constraints and flow description equations. Changing the

network or constraints involves redeveloping the set of equations and rerunning the

optimization thus uncertainty can only be handled by generating solutions to distinct

scenarios. Many MINLP or Mixed Integer Linear Program (MILP) problems of real-

istic size are too large to be solved exactly. Problems handling production planning,

which includes solving selection, batching and loading problems simultaneously, can

be decomposed into submodels, pooling machines to solve the selection and batching

10

and isolating the loading problem [97].

Another limitation of using MILP or MINLP is the difficulty in handling a het-

erogeneous fleet. Teypaz, Schrenk, and Cung [178] explored application to a hetero-

geneous fleet with the demand at each node being equal. They used a non-limited set

of vehicles to satisfy a demand in a set period of time by choosing the transportation

network of the most profitable vehicle first moving to the least profitable. Each type

of vehicle was filled as a max flow problem. The limitation of this approach is that

each type of vehicle was considered independently in the construction of routes and

schedules.

The Sea Base concept is a time domain problem beyond the setting of a time

period to complete the delivery. The assault phase could have a set constraint, but

resupply is a continual process. Each phase could be considered to have the goal to

minimize the time required (make span), such as the work by Zegordi, which considers

a two-stage supply chain where suppliers are located in different geographical regions

and products are transported from suppliers to a manufacturing company [199]. This

problem has been shown to be an NP-hard structure with distribution in a single area

using one type of vehicle. NP-hard problems can not be solved exactly but a large

number of heuristics such as genetic algorithms, evolutions strategies, and partical

swarms can be applied [195, 148]

2.1.1 Classification of Problem

The Sea Base problem discussed in this work exceeds the capabilities of traditional

supply route and vehicle loading problems. Larson discusses enhancements to tradi-

tional vehicle routing that can be used to model dynamic problems such as just-in-time

logistics with the focus on time-dependent data [109]. A problem can be classified as

dynamic using the following criteria [149]:

1. Time dimension is essential

11

2. Problem may be open-ended

3. Future information may be imprecise or unknown

4. Near-term events are more important

5. Information update mechanisms are essential

6. Resequencing and reassignment decisions may be warranted

7. Faster computation times are necessary

8. Indefinite deferment mechanisms are essential

9. Objective function may be different

10. Time constraints may be different

11. Flexibility to vary vehicle fleet size is lower

12. Queuing considerations may become important

The Sea Base problem meets all of these criteria, especially the open-ended nature

of the problem, the focus on near-term events, and queuing considerations. The

suggested solving method for this type of problem is to use traditional optimization

algorithms for short term prediction and repeat the optimization at set time intervals

[150].

2.1.2 Gaps in Traditional Methods

A model of the Sea Base could be developed using traditional methods and the time

domain considerations could be included using a dynamic vehicle routing method,

but there are gaps that remain in the type of information of interest to this study.

The first limitation of classical scheduling theory is the assumption that each machine

can process at most one job, processing speeds do not change in time, and process

12

times are fixed and known [83]. With a Navy cargo ship, there are distinct options

for handling a connector, which do not require the same process time, and multiple

connectors may be able to interact at the same time. For example, an LMSR may be

able to use its starboard ramp and rear ramp deck at the same time.

Evaluation using optimization is limited to deterministic or handling uncertainty

through the use of limited scenario based evaluation. Changes in the number of

nodes or network structure would require developing new constraint equations. The

incorporation of a heterogeneous fleet is limited to deferring to the most profitable

option first and solving for each type independently. There would be no interactions

between types of connectors, which is unrealistic since connectors would need to use

the same cargo transfer options.

One additional limitation, which is unique to the Sea Base construct is that the

location of the storage facilities may not be fixed. The cargo ships of the Sea Base

would start at some prepositioned location and travel into theater. In this, they are

acting as both a transport and cargo supply asset, a scenario that can not be handled

by traditional methods of vehicle routing and supply chain analysis.

2.2 Simulation Based Methods

Mathematical methods are not flexible enough for this large scale system, since ana-

lytical solutions of dynamic systems often require simplifying assumptions [90]. This

inability to model the increased complexity needed for realistic studies using mathe-

matical tools has lead to a growth in simulation, defined as [100]:

the practice of building models to represent the existing real-world sys-

tems, or hypothetical future systems, and of experimenting with these

models to explain system behavior, improve system performance, or de-

sign new systems with desirable performances.

13

Three simulation techniques commonly used for logistics modeling are examined for

applicability to this problem. The investigation is not meant to be an exhaustive

description of simulation, but a highlight of techniques used for large scale systems.

2.2.1 Expected Value

The concept of expected value is the time to complete an operation can be estimated

using a series of movements and estimated queues. One such model is the Joint Expe-

ditionary Logistics Operations (JELO) model, developed at the Naval Postgraduate

School (NPS) , which calculated an expected value estimation of total operation time

including close, transfer, and deployment [42]. This Excel-based model allows for

development of scenarios defining the troop and equipment movement to reach the

Sea Base. Each scenario is a series of movements between locations and waiting pe-

riods for equipment to arrive, mate, load, or unload. The time required to complete

a movement is calculated using the distance covered and the transit speed. The de-

ployment time is calculated by a separate movement model which calculates the time

needed to move a set number of units of a type of cargo, which is dependent on the

type of cargo, number of connectors available, number of operational spots available,

and the distance cargo is transported. The time is for a single type of connector and

cargo thus the overall deployment schedule must be developed by the user knowing

the mix of commodities and the schedule for deployment. The total deployment time

and any necessary operational pause time are added to the transit and assembly time

to yield an overall mission time.

Expected value models are useful in their simplicity and the ability to examine a

wide variety of scenarios and ease of use. Unfortunately, it only calculates a single

type of connector and cargo type so scheduling must be computed separately. The

loading queue calculations are estimated based on usage factors and other queues,

such as unloading, are not considered. This modeling technique does not provide the

14

needed degree of detail.

2.2.2 Agent Based

Agent Based Models (ABM) are ideal when modeling interaction between autonomous,

decision making entities with the following characteristics [43]:

• Individual behavior is nonlinear and can be characterized by discrete decisions,

thresholds, if-then rules,or nonlinear coupling.

• Describing discontinuity in individual behavior is difficult with differential equa-

tions. For example, if a logistics officer orders parts in batches, he may have

a threshold for making parts requests (rather than continuously demanding

replacements for parts used).

• History matters. Path-dependence, lagging responses, non-Markovian behavior,

or temporal correlations including learning and adaptation are applicable to the

system.

• Averages are not good enough. Under certain conditions, small fluctuations in

a complex system can be amplified, so that the system is stable for incremental

changes but unstable to large perturbations.

ABM have been used for force-on-force simulations and Tripp expands its use for

military logistics when the logistics domains are distributed and have decentralized or-

ganization and control [182]. Roorda, et al. developed a conceptual framework to in-

corporate multiple levels of decision making including fundamental business changes,

supply chain management, market interactions, and logistics with agents representing

the shipper, receivers, and carriers [154]. This framework is conceptual and would

require a great deal of effort and further development to become an operational model.

ABM is not suitable for the system of interest and the type of answers desired. The

individual behavior of the connectors is well defined and the decision making does not

15

need to be autonomous. ABM would be a good investment if detailed analysis of the

onshore demand is of interest and could be used to monitor supply levels and make

logistics requests. In this case, ABM is not matching the nature of the problem in

that individual behavior is not as interesting and the objects actions can be described

as a process instead of a set of decisions [44].

2.2.3 Discrete Event Simulation

Discrete Event Simulation (DES) has a strong track record in improvements of pro-

duction processes [166]. A discrete system refers to the nature of the changes in be-

havior with respect to time, where discrete changes occur in finite quanta or jumps,

and continuous systems change continuously over time. This type of simulation can

give variances, extremes, and time series in addition to performance averages [147].

The underlying idea comes from everyday experience where system states and events

are discrete, and includes queuing models such as requiring some sort of service, which

is restricted in a way that not all concurrent requests can be answered at the same

time, for example, waiting for an available teller at a bank, a seat in a cafeteria, or

to cross the street [202]. DES problems embody the following concepts [77]:

1. Work - items, jobs, or customers seeking service

2. Resources - provider of service

3. Routing - collection of required services

4. Buffers - waiting area for work awaiting service

5. Scheduling - pattern of resource availability

6. Sequencing - order resources provide service (e.g. first come first serve)

7. Performance - overall system measure

16

The Sea Base embodies these seven concepts, with the connectors as the work, seek-

ing to interface for cargo as resources. They are routing between pick-up and drop-off

locations for cargo and the number of completed trips and total cargo delivered can

be measured. Queuing models are able to describe systems with resource allocation

and sequences of operations on a much higher level [202], especially when compared

to agent based or mathematical methods without loosing information about the in-

dividual objects.

2.2.4 Existing DES Models

DES is a conceptual framework with many types of applications and the development

of the application determines the capabilities of the model. A handful of models exist

using discrete event simulation to model a Sea Base type operation, demonstrating

the variety of types of application. The development, advantages, and disadvantages

of each simulation are discussed below.

2.2.4.1 NPS Model

This model was developed as part of a year long class project in the Wayne E. Meyer

Institute of Systems Engineering (WEMISE) at the NPS focusing on expeditionary

warfare [141]. This DES was developed in Extend and accounts for accumulating,

assembling, deploying, and sustaining expeditionary forces. A Marine Expeditionary

Brigade (MEB)-sized force is built from CONUS and forward-deployed forces and

assembled at a set location. Once assembled the forces are moved to the launching

areas and deployed in scheduled waves of air and surface connectors. This flow of

ships and material is illustrated in Figure 3.

Sustainment has connectors moving cargo to shore as well as bringing additional

supplies from offshore bases. This model also includes a probability of the connector

failing to reach the shore with the load lost and the probability of the asset needing

repair which includes modeling down time.

17

Figure 3: NPS Model Flow

Advantages

• Includes many types of ships and air assets

• Includes possibility of connector vessels needing repairs but requires a good

estimate of the probability of failure for system

• Provides time plots for supplies on shore

• Includes constant consumption model which allows for calculation of sustain-

ment needs

Drawbacks

• With the large number of assets, the model becomes computationally complex

and lacks transparency

• Adding a vessel requires modifying many sub-process to duplicate model steps

• Limited loading options are pre-set and must be prioritized with no check that

the loading schedule is realistic

• Sea Base and Shore are resource pools, individual vessels are not tracked as to

loading spots or cargo on board

• Changing scenario would require redevelopment of model

18

2.2.4.2 T-LoaDS/C-LoaDS

Tactical Logistics and Distribution System (TLOADS) is an in-depth model built

in Extend and SDI Industry Pro to model of the transportation of supplies from

the Sea Base to end use nodes [144]. A scenario is defined by selecting and placing

standard force compositions, forming a series of distributed nodes. TLOADS provides

a detailed analysis of consumption of supplies at the nodes, which order supplies

from supplier node. The node to supply the materials is determined along with

the appropriate containers and vehicles to use for the shipment and the time to

make the shipment [143]. In depth data needed includes vehicle load capabilities,

vehicle maintenance profiles and material handling equipment distribution between

nodes and capabilities. C-LoaDS add the analyses of movement of material within

a ship, including the distribution of stock in the stowage areas, assignment of spots

for incoming transports and the flow of material between the transports and the

stowage areas [143]. The problem is that any modification of the included test case

led to software failure and many key elements were not implemented according to the

model support files.

2.2.4.3 CDM Humanitarian

CDM Technologies, Inc. developed a set of in depth humanitarian missions of the

T-Craft and generated data using a set of candidate solutions [58]. These T-Craft

solutions were compared to the performance of a larger number of ship to shore

connectors (SSCs) and cargo helicopter. In their work, the schedule was developed

by a separate algorithm and serves as an input to the DES. The algorithm starts

with vessel 1 and schedule until operating time is reached, then move on to the next

until the maximum number of vessels is reached. Landing zone 1 must be fulfilled

before starting landing zone 2 and so on, which can cause queuing at landing zones.

If a demand is not met within the time period, it expires and is not transported

19

on sequential day (aka each day is considered independently). In addition, the Sea

Base was assumed not to limit operations so vessels are loaded immediately upon

arrival. Vessels are loaded until the area in the maximum number of containers or

the payload capacity for that concept (including movers and trailers) is met In this

case Medium Tactical Vehicle Replacements (MTVRs) , Logistics Vehicle Systems

(LVSs) with containers, and tractor-trailers with containers were considered in three

different analysis. It was assumed types of cargo can be mixed within a container.

The limitations of this model are that variations on two scenarios were considered

and the scenario can not be easily changed because scenario definition requires a

large amount of detailed information. Each vessel was analyzed separately, so a

heterogeneous fleet was not considered. Queuing to unload was considered in the

scheduling algorithm, but the transfer of cargo at sea was not incorporated.

2.2.4.4 CLF Scenario Analysis Tool

This model was developed by Morgan to measure the impact of adding a high speed

vessel (HSV) to current Combat Logistics Force (CLF) assets [130]. Two scenarios

based on Major Combat Operation (MCO) were analyzed but the scenario is flexible

and is defined by a set of nodes and arcs representing shipping points and usable

connections. The ship performance information is an input as well as the location,

commodities capability, and use rates. Customer ships are generators of logistics

requirements, which are fulfilled by shuttles such as the HSV. Ports serve as supply

points but strategic resupply to ports is not handled. This model contains many

important aspects, such as dynamic scenarios defined by nodes and arcs and ship

starting points, but is not broad enough for application to the Sea Base.

2.2.4.5 RAND Sea Base Model

The Assessment Division of the Office of the Chief of Naval Operations (OPNAV

N81) asked the RAND Corporations National Defense Research Institute to examine

20

the capabilities of the Sea Base concept [52]. This model has a set architecture and

vessel definition. Adding additional vessels, even of the same type, would require code

modification. Three analysis cases were run including air assets and some consider-

ations for Landing Craft Air Cushion (LCAC) and Joint High Speed Vessel (JHSV)

. Queuing at the Sea Base is considered but there is no considerations of reliability.

Cargo delivered is in terms of vehicles, supplies, and number of personnel and mixed

cargoes are not allowed, with the model written so any surplus sustainment capabil-

ity going to dry stores. This answers the questions, can the operation in question

be sustained in a certain amount of time? The time periods are independent and no

sorties are carried over. This model has the queuing needed but lacks the flexibility

in the scenario, including varying the number of vessels present.

2.2.4.6 JWARS

The Navy Warfare Development Command used JWARS, the Joint Warfare System,

developed by MITRE Corp, to examine the logistical demands of supporting a MCO

from a Sea Base [17]. JWARS is a constructive simulation that includes 1) an explicit

three dimensional battlespace, 2) the effects of terrain and weather, 3) logistically

constrained force performance, 4) explicit representation of key information flows,

and 5) perception based command and control [125]. It requires detailed data input

and forces decision makers to choose the exact force structure and scenario. A variety

of types of assets can be used and the characteristics, interaction, and performance

of these assets must be fully defined, including attrition probabilities.

2.3 Hybrid Methods

Discrete Event Simulation provides a useful framework for modeling the Sea Base

but leaves unanswered some of the issues, such as selecting routing and loading con-

nectors. Klemmt, et al. [103], suggests creating a hybrid of object-based simulation

models and mathematical optimization, wrapping processes, such as job scheduling,

21

in an optimizer. Schlegel, et al. [166], recognizes the challenge of using optimiza-

tion of a full model but suggests using mathematical optimization for sub-problems.

This technique distinguishes between process and operational design problems and

the scenario variables become inputs to the optimization. DES tends to focus on

the sequential issues such as deadlock and blocking, while optimization, such as as-

signment or dispatching, focus on performance assessment, assuming the absence of

conflict [87].

Optimization and simulation can be used in a hybrid method bringing together

the strengths of each. Optimization can solve subproblems involving selection and

dispatching while overall flow can be controlled by the simulation. The optimizers

can use current model state to make routing and sequencing selections such as cargo

to load from what location and where to bring it to.

2.4 Need for a New Method

The field of vehicle routing and supply chain management is a well developed field

with over fifty years of research. Elements from this field are key to developing

a usable analysis method for measuring a new connectors impact on the operation

of the Sea Base. The discrete event simulation framework will be able to provide

a basic foundation for the queuing and processes associated with a Sea Base type

operation. Mathematical methods can provide a formulation for solving sub-problems

not traditionally handled by DES. The breakdown into component problems that can

be solving using known and documented techniques as been lacking.

There are limited applications of the needed components of the Sea Base model,

but gaps in the application and methods remain which will serve as the basis for the

work presented in this thesis. Previous work has demonstrated one or a few of these

concepts but fail to generalize the models to a level where all these concepts can be

incorporated into a single analysis. These gaps are:

22

• Breakdown of modeling problem into component

• Parametric scenarios

• Heterogeneous, interacting fleet

• Dynamic loading

• Dynamic routing

• Analyzing design requirements across multiple scenarios

In general, a specific scenario or a handful of scenarios are developed to serve as

an input to the analysis model. There is a need for parametric scenarios including

not only different area in the world, handled in the CLF Scenario Analysis Tool, but

different types of operations. Most of the tools in existence have a preset, hard coded

fleet. The performance and interactions of the vessels and other assets were preset

and part of the structure of the code. This includes pre-sets of what the vessels and

other assets can carry and in what combination. There is no mechanism for changing

the cargo load-outs on connectors based in the scenario of interest. The cargo needed

and location of resupply does not effect the processes completed by the connectors,

so their routing is set in advance and not dynamic with changes in the current state

of the operation.

The needs observed in the previous chapter can not be fulfilled by existing models

and methods so new techniques for incorporating these elements are needed. The

specific questions deriving from these observations and the proposed work needed are

discussed in the next chapter.

23

CHAPTER III

PROBLEM DEFINITION

The observations and research questions are broken down into six topics that de-

fine the gaps in current methods and models, listed in 2.4. The first gap involves

the breakdown of the modeling problem into elements that can be solved through

modeling and mathematical approaches. The overall problem is large and can not

be solved by existing methods but elements can be decomposed and addressed. One

such element to be addresses is the need for parametric scenarios, including the need

for dynamic loading. The need for a heterogeneous, interacting fleet demands a new

data handling method. The routing must be based on the vessels and cargo available

and not pre-set. By closing these gaps, the design requirements for a new connector

can be analyzed across multiple scenarios.

3.1 Problem Decomposition

Observation: The complexity of systems demands a decomposition of the task into a

set of smaller, more manageable design problems

Research Questions:

1. Different types of vehicles will complete different processes but are there com-

mon elements that can be abstracted?

2. Which sub-problems are abstractable and can be dealt with as separate prob-

lems?

3. Can the sub-processes discussed be treated as individual problems?

4. Will abstracting sub-processes decrease the effort required to integrate a new

24

asset?

Assertion: Interface selection, loading, and routing sub-problems are abstractable

Experiments: Experiments will be posed for each sub-problem

3.2 Parametric Scenarios

Observation: Model must capture multiple scenarios

Research Questions:

1. What is the minimum amount of information needed to define a scenario?

2. Can this information be defined by a set of variables allowing a single model for

several scenarios?

Assertion: Scenarios can be fully defined by a scheduled set of demands, distances

between locations, and physical characteristics that can be treated as input variables

3.3 Fleet Size and Interactions

Observations:

• A system-of-systems focus must consider interfaces between assets and fleet mix

in addition to traditional asset performance

• Treating vessels as cargo objects will require new methods in data handling and

modeling

Research Questions:

1. How can the interfaces between assets be treated as design variables and not a

pre-set option?

2. How can changing the fleet mix not involve changing the structure of the model?

25

3. Can cargo nodes be treated as objects including the ability to track cargo and

interface use?

Hypothesis: Introducing matrix formulation into Discrete Event Simulations will en-

able the abstraction of sub-processes at an object level and reduce the effort required

to integrate new assets

3.4 Loading Problem

Observation: Dynamic cargo loading enables parametric scenarios

Research Questions:

1. Can mathematical optimization techniques be used for local level decisions?

Hypothesis: Knapsack loading is an efficient and robust approach for solving the

loading sub-problem

3.5 Routing Problem

Observation: Routing is needed so the supply chain is a product of the assets present

Research Questions:

1. Can routing decision be made using parameters tracked in the model?

2. Can the logistics chain formulation be a byproduct of the selected mix of assets?

Hypothesis: Matrix based predictive queuing and cargo algorithms can accurately

predict queue times for dynamic routing

3.6 Analysis to Identify Design Drivers

Observation: An approach is needed that facilitates design in a cross scenario, system-

of-systems framework

Research Questions:

26

1. What design parameters of a new connector are key to improving the overall

performance of the heterogeneous system?

2. Does a common set of parameters exist across multiple scenarios?

3. Should scenarios be defined using continuous variables or as a discrete selection?

Is this a necessary model design choice?

4. How can these parameters be identified when scenarios are uncertain?

Hypothesis: Feasible scenario robust analysis identifies the design drivers for a range

of scenarios

3.7 Proposed Contributions

1. Incorporating linear algebra into DES will establish a more flexible construct

(a) Enable the addition of new assets without changing the structure of the

model or existing assets

(b) Routing, loading, and cargo selection will be abstracted as seperate prob-

lems, removing them from the asset process

(c) Abstracting subproblems will reduce the amount of effort required to mod-

ify these choices or to add assets

2. Flexibility to define a variety of scenarios

(a) Model structure is not modified by changing scenario

(b) Dynamic routing allows the logistics network to be a product of the sce-

nario and available assets, not established by the model formulation

3. Apply robustness principles across feasible scenarios to identify design drivers

for systems that will be used in a variety of mission types

27

CHAPTER IV

CHALLENGES OF HYPOTHESES

This chapter details the challenges and needs associated with each hypothesis identi-

fied in the previous chapter.

4.1 Scenario Definition

This work asserts: Scenarios can be fully defined by a scheduled set of demands,

distances between locations, and physical characteristics that can be treated as input

variables

It is necessary to be able to define scenarios in such a way that changing the

scenario does not change the formulation of the model. The goal is to be able to define

a scenario based on a set of parameters. This is enabled by the incorporation of the

matrix manipulation. The scenario should be left as broad as possible to represent a

wide range of possible future scenarios including user inputs for the number of vessels

and vehicles involved. Where these assets start and are resupplied further defines the

scenarios. Landing zones are treated as objects, so their number and properties must

be set. For this model, it is assumed that the Sea Base, or at least the vessels modeled

here, are at the same general distance from the shore. A key aspect to defining the

scenario is to define the needs onshore with a day by day schedule. A generic cargo

vector of minimally transportable units must be defined and the need is mapped to

this vector as well as the priority for transport.

4.2 Augmenting DES for Large Models

Expansion of hypothesis: Introducing matrix manipulation into Discrete Event Sim-

ulations will enable the abstraction of sub-processes at an object level and reduce the

28

effort required to integrate new assets

4.2.1 Limitations of Traditional Resource Management

Limited resources within a DES model are managed as a set number of a resource.

For example, a factory may have a limited number of processing machines, so when

a product reaches that step in the process, it must wait until a resource is available,

reserve a set number of that resource and after a set amount of time, release those

resources. The difficulty with this model is that there are multiple options to interface

and transfer cargo. To select an interface option, all possible options must be explored

and the fastest option should be selected. This construct creates a series of if-then

statements to find open options, followed by selecting the one with the minimal wait

time. This if-then construct had to be created for each type of vessel, since the possible

connections and times are different for each type of connector. An additional challenge

of modeling this large scale system is that the resources are not in a central pool. The

resources exist on individual objects and are not independent. For example, a LMSR

has a side ramp and stern ramp, which may or may not be used at the same time. In

order to consider the cargo aboard individual ships and other vehicles, it is necessary

to treat them as individual objects and to know which cargo object the connector

chooses to interface with. Thus, cargo selection must be a component of resource

selection. The introduction of linear algebra principles enable resource management

for individual elements and will speed selection of an interface connection as well as

speeding the addition of new types of connector, cargo objects, and supply ports.

4.2.2 Incorporating Marix Manipulation

4.2.2.1 Petri Nets

There are several ways to model discrete event systems including queuing models

and petri nets. Queuing models are a system of inputs, queues, and limited services

while a petri net is a bipartite directed graph [92]. Petri Nets have been recognized

29

for their ability to model discrete event systems and have been expanded through

the use of colored petri nets to support the information aspects needed for DES

[89, 135]. Matrices have been used in coordination with discrete event modeling in

the form of abstracting Petri Nets to matrix manipulation [175]. The transitions

within the Petri Nets are controlled using matrices [128, 196, 112]. The matrices

are used to describe the state spaces [54] as well as the transition rules. Giordano

establishes that matrices can be used as a controller including tracking where and

which material handling equipments should be dispatched in a section of a factory.

This dispatch controller is important where in-advance planning is inapplicable. The

dispatch controller can be implemented at a supervisory and operational level where

rules can be established with associated costs [88]. The operational level control

includes route selection and conflict resolution [87]. Giordano goes on to discuss that

if tasking can be described as a set of if-then rules based on the current perception

of the environment, then a matrix-based controller can rigorously represent these

rules [86]. In addition to material handling equipment, matrix based controllers have

been used in mobile robotics control. DiPaola identifies a matrix based controller as

modular and easily reconfigurable for changes in mission or hardware configurations

while being fast and intuitive [68].

Matrix control theory has been expanded beyond petri nets to vector discrete

event systems (VDES). Li and Wonham [114] developed VDES to model systems

using vector addition where the states of the system are maintained in a vector and

the transitions form matrices. This framework can be visualized as a petri net except

in the most generalized case. VDES is used to develop state feedback controllers for a

manufacturing plant. The concept has been applied to a limited number of situations

including operational safety in [164] for a reactive controller.

30

4.2.2.2 Application to DES

Turk identifies that DES may be too slow to model complex networks since the

complexity grows superlinearly, and prefers system dynamics since capabilities are

calculated through matrix manipulations [185]. By using linear algebra to replace

traditional if-then constructs, DES will be able to handle complex large scale system

models without sacrificing evaluation time. The traditional construct builds if state-

ments, repeated for each type of interface usable by a connector, then the selection

of the fastest interface. Instead, the interface options are stored as a matrix with

the options available to a connector stored as a vector. Using row comparison, the

available connections are identified and when this resulting matrix is multiplied by

the wait times, the minimum of the matrix identifies the fastest available loading

time. In addition, this identifies which ship or other cargo object has the interface

available.

4.2.2.3 Additional Capabilities Enabled by Linear Algebra

This construct is flexible enough to handle a variable number of assets in the simula-

tion and changes in asset properties. One purpose of this simulation is to be able to

vary the fleet mix present, which would change the number of assets overall. This is a

strength of linear algebra in that the sizes of the matrices and vectors can be dynam-

ically sized and the process would be unchanged and the calculation time is minimal.

The only constraint is that the sizes of the matrices must be consistent if dealing with

several. The flexibility to change object properties during the simulation, such as role

enables assets to change function. For example, a cargo ship may serve as a connector

traveling from a supply point, but becomes a cargo object upon arrival at the Sea

Base. In traditional resource management, the resource would have to be added to

a specific pool at that location where this framework will handle this automatically.

This also allows for modeling objects that become available over time and functions

31

that modify objects. How this formulation is used in the DES is detailed in the next

chapter.

4.3 Challenges of Loading Problem

Development of the hypothesis: Mixed Integer Linear Programming is the most effi-

cient and robust approach for solving the loading sub-problem

Realistic loading of vessels and other assets is needed to capture the cargo delivery

capability of the modeled mission. Maximum cargo delivery could easily be calculated

by tracking the total number of trips completed by each type of connector. But, in

reality, connectors will not carry their maximum weight and area since individual

loads will cube out (volume limited) or weigh out. The Sea Base should not be

considered a generic source for cargo since each individual cargo ship has its own

cargo and interface options. The use of matrices solves the handling of cargo assets

as individual assets, leaving the subproblem of selecting the cargo to load on an

individual connector.

The idea of preset loadings, as seen in [141], was dismissed because of the desire to

be able to handle multiple scenarios without changing the structure of the model. The

matrix manipulation described above is expandable to include which cargo objects

have the cargo needed by the connector. If the cargo needed can be expressed as

a vector, this vector can be compared to the cargo available vectors for each cargo

objects. The resulting matrix is compared to the interfaces available, identifying

which interfaces are available on cargo objects that have the cargo needed. This

expansion of the matrix manipulation solves the selection of a connection point with

cargo but does not handle the identification of what cargo needs to be brought.

The cargo to be loaded needs to be selected based on some priority and would

be loaded until the maximum weight or area constraint was met for the connector

in question. Carroll and Isaacson discuss dynamically route cargo to theater by

32

prioritizing the cargo using different prioritization methods and determining shipment

until total air and sea capability are surpassed [55]. This idea that cargo could be

prioritized by the user is combined with the weight and area constraints to determine

the cargo to be loaded in the next connector.

The cargo to be transported is defined in terms of minimally transportable units

with associated weights and areas. The weights and areas form vectors of information

about each type of unit. It was assumed that the user could provide a cargo schedule

based on the order these units should be delivered to shore. Using the order, weights,

and areas along with the weight and area constraints of the connector determine

what should be carried on that connector. An example mathematical construct will

be presented in Section 8.1.1.

This method had several shortcomings, which will be shown in Section 8.2. If the

next unit that needs to be carried is too large to fit on connectors available, these

connectors will not be dispatched until a connector large enough to carry this unit

arrives. In addition, item mixing is minimal because similar units are listed together

and this does not load the connectors efficiently as a smaller unit may have fit on

board, but would not be loaded since it is not next on the list.

4.3.1 Loading as a Knapsack Problem

Karabuk suggests using mathematical optimization for a portion of the problem and

uses the example of treating the loading of individual trucks in a transportation

system model as a knapsack problem [98]. The objective of a knapsack problem is to

find the most valuable selection of possible items that satisfy the weight constraint

[200]. There are two types of problems, linear where a fraction of an item can be

packed in the knapsack and integer, where an item is either completely packed or not

at all [53]. Since the cargo is expressed as minimally transportable units, an entire

unit must be carried, defining the problem as an integer knapsack. The application

33

of a knapsack algorithm to ship loading is suggested by Dano [66].

The loading problem will be formulated as a mixed integer linear program (MILP).

The MILP to be solved follows where Pi is a prioritization of the cargo units, weighti

is the weight of the unit, and areai is the area required to transport that unit. The

maxlift and maxarea are the constraints for the connector of interest. Neededi is the

total number of a type of unit to be delivered so the total load does not exceed the

maximum demand.

Maximize
∑

i
Pixi

subject to:

∑
i
weightixi ≤ maxlift∑
i
areaixi ≤ maxarea

xi ≥ 0 for all i

xi ≤ neededi for all i

4.4 Challenges of Routing Problem

Reasoning behind the selection of hypothesis: Matrix based predictive queuing and

cargo algorithms can accurately predict queue times for dynamic routing

Supply chain configuration is the selection of which units (suppliers) to include

and the links among units, in this case which cargo supply points (cargo ships or

supply ports) and which connectors to use. Dynamic routing would allow for a re-

configurable supply chain to maintain a robust and flexible operation in response to

changing customer demands and operating environment [59]. Chandra and Grabis

define robustness as the ability to handle a loss of supplier and flexibility to choose

transportation channels. The dynamic routing scheme must be able to handle the loss

34

or gain or a supplier or connectors and be able to choose the connector or to choose

which route the connector should travel. This will allow the model to not have a pre-

set logistics flow but be represented as a network of possible nodes and connections.

Stradtler calls this process orientation, involving the allocation of activities to mem-

bers by using key performance indicators to reveal weaknesses, especially at interfaces

between members, which may lead to reallocation of activities [170]. The difference

is illustrated in Figure 4 and Figure 5. The first figure shows each connector having

a fixed pair or load and unload locations, aside from initial positioning. The second

figure shows the supply chain as a network where the connection selected depends on

the demand and current status of the model.

Figure 4: Routing without Dynamic Algorithm

The key performance parameter of interest here is the forecasted time to complete

a resupply mission. This incorporates the travel time to reach a location as well as

the expected queue time. Once a connector completes a delivery, it must select its

35

Figure 5: Routing with Dynamic Algorithm

next set of cargo load and unload locations. This selection is performed by estimating

the time it would take to complete the potential missions. For each potential unload

point, for example, the conceptual connectors could bring cargo to the shore or reload

the Sea Base, the model predicts the cargo to be carried, which interface would be

selected for reload and the load time is added to the predicted queue. The location

and destination pair that has the shortest travel and queuing time is selected as the

next reload point. Since this is predicted and does not include uncertainties, such as

required repairs, the connectors join the first in first out queue when they arrive at

the cargo load point.

4.5 Robustness and Sensitivity Analysis

Genesis of the ideas behind the hypothesis of: Feasible scenario robust analysis iden-

tifies the design drivers for a range of scenarios

36

Any Navy asset will have to operate in a variety of types of operations across the

Range of Military Operations (ROMO) . The variety of scenarios can be modeled

with the proposed process, but the question remains, how can the design be analyzed

across the scenarios of interest? Sensitivity analysis can identify driving parameters

in a single scenario, using the Pareto plot, developed by Dr. Joseph M. Juran to

identify the driving factors that effect quality [33]. The key design factors may not

be the same for every scenario, so a method is needed to analyze at least a family

of scenarios. In the case of design, this analysis is key since the designer will have

to live with the choice of design and be judged against its future performance [23].

Optimization techniques have been used with discrete event simulations models [174],

but how can the design be optimized for several scenarios?

Where sensitivity analysis identifies the sensitivity of a solution to changes in

input data, robust design formulates designs that are less sensitive to model data

[133]. In this case, it is desirable to find a design that is less sensitive to changes in

scenario. Dr Taguchi defines robustness as [176]:

the state where the technology, product, or process performance is mini-

mally sensitive to factors causing variability (either in the manufacturing

or user’s environment) and aging at the lowest unit manufacturing cost

Taguchi measured robustness in terms of a signal-to-noise ratio and used a loss func-

tion to capture deviations from a target value. In this case, robustness will be related

to the ability of the fleet to deliver the cargo needed in a timely fashion. Robust design

is not a new technique and has been paired with discrete event simulations. Sanchez

details a method for trading off performance mean and variability by examining the

expected loss function [161]:

E(loss) = c[σ2 + (µ− τ)2]

Where c is a scaling constant and τ is a target state. An experimental design is

37

selected incorporating the decision and noise factors. Metamodels can be created to

represent the mean and standard deviation, which are combined into the expected

loss function to identify robust configurations. This process has been used even for

queuing systems and is highlighted as being flexible and efficient. The framework for

a robust design that follows is detailed by Sanchez [162, 160]:

1. Select the performance measures

2. Specify a loss function

3. Identify the factors

4. Plan the experiment

5. Analyze the results

6. Refine the metamodels

7. Select the best process design

This process was used by Scheibe [165], with decision factors including T-Craft design

parameters and the number of connectors present. Within a humanitarian scenario

modeled in ARENA, the noise variables included deck use, number of shore spots,

probability of hit and sink,and attrition rate. The outputs used were time to complete,

percent cargo delivered, and portion of craft destroyed. This lead to recommendations

on the number of T-Craft and lift capability. Cason [56] used robust design for the

design of a Vertical Takeoff and Landing Unmanned Aerial Vehicle (VTUAV) using an

agent based model of an infantry platoon conducting patrolling operations in an urban

environment. The noise variables focused on the unknown enemy characteristics and

the design variables were at the vehicle level, including sweep and speed.

Applying robust design to the problem examined in this thesis will require mixing

level or variables not seen in the example work. A limited number of vessel design

38

variables and scenario variables were included in Scheibe’s work. Building on Scheibe’s

work, Cason included many more vessel level variables. The design variables would

be the design parameters of the MEC including size and speed as well as design

choices such as which interfaces the MEC can use. The noise variables would include

the scenario definition variables such as cargo to deliver, distances, other vessels and

vehicles that would be present, and number of beach spots.

4.5.1 Feasible Scenario Robust Analysis

As discussed in 2.2.4, most current models examine a single or limited number of

scenarios, and this could be used to analyze the scenarios of interest. Each relevant

scenario would be fully defined and serve as a single evaluation point. The robust de-

sign would be completed using the scenario as a categorical variable to switch between

selected inputs. There are variable that are a combination of design and scenario,

such as the number of landing spots. This depends on the area of operation, including

the geographical quality of the shore, local populace, and degree of distribution, yet

this is also coupled to the craft climbing ability. More beach may be accessible to

craft that can climb a beach with a higher angle if the geographic characteristics are

the limiting factor. The impact of variables that may indicate scenario and vehicle

impacts would be lost with categorical scenarios.

On the other hand, the scenarios could be fully parametric. Each variable that

serves to define the scenario is treated as an independent continuous or discrete vari-

able. This would completely cover any possible scenario but it would also lead to

unrealistic scenarios, such as bringing in only tanks and tents. This may lead to a

biasing of the results based on unrealistic scenarios. The feasible design space can

not be expected to be regular and some techniques for identifying the feasible region

is detailed by Bates, et al [36].

It is necessary to sample enough of the scenario space to encompass the uncertainty

39

in future operations without sampling unrealistic space. The scenario space is a large

hyperspace with one dimension for each scenario variable, but there are correlations

between the dimensions. For example, a tank company would not be deployed without

some support units. It is proposed that feasible scenarios will be closely related to

current scenarios. This is illustrated in Figure 6, where the gray area represents the

entire design space and four traditional scenarios are represented by black circles.

The light boxes are the feasible scenario space. The size of the feasibility box in each

dimension would vary with the type of variable. Variables such as the amount of

each type of cargo to be delivered are bounded and other variables, such as number

of landing location, cover the entire design space. The sampling for generating data

should fall in the feasible scenario space, so an advanced sampling method is necessary.

Sampling techniques will be examined for applicability to a segmented design space.

Figure 6: Feasible Scenario Sampling

40

Methods have been developed for dealing with robustness across multiple scenar-

ios. Vommi and Seetala [192] suggest using a weighted robustness factor, proportional

to the liklihood of the scenario, to examine multiple scenarios. Linderman and Choo

suggest that there is a diminishing return on adding additional scenarios, where be-

yond an ’optimal’ number, additional scenarios will not improve the results [118].

This work proposes experimenting to identify if the solutions differ when analizing

a handful of scenarios, feasible portions of the design space, and the entire design

space.

There are variables that are not equally possible within the design range, which

could be replaced with realistic distributions. Work is being performed by Hyun Seop

Lee at the Aerospace Systems Design Laboratory to develop distributions of the dis-

tances from current US supply bases to locations around the world. He randomly

samples location onshore and identifies the closest supply base, developing a distribu-

tion for the distance to travel. These distances can be weighed by instability factors,

such as political freedom and likelihood of natural disasters, resulting in a weighted

distribution of distances to travel. These distance distributions could be used as a

sampling bases in the robustness analysis.

The next chapter will go into further detail and develop the experiments to address

the challenges of these hypotheses.

41

CHAPTER V

RESEARCH PLAN

The observations and research questions are broken down into six topics that define

the gaps in current methods and models.

1. Breakdown of modeling problem into component

2. Parametric scenarios

3. Heterogeneous, interacting fleet

4. Dynamic loading

5. Dynamic routing

6. Analyzing design requirements across multiple scenarios

This results in the following assertions and hypotheses:

Assertions:

1. Interface selection, loading, and routing sub-problems are abstractable

2. Scenarios can be fully defined by a scheduled set of demands, distances between

locations, and physical characteristics that can be treated as input variables

Hypotheses:

1. Introducing matrix formulation into Discrete Event Simulations will enable the

abstraction of sub-processes at an object level and reduce the effort required to

integrate new assets

42

2. Knapsack loading is an efficient and robust approach for solving the loading

sub-problem

3. Matrix based predictive queuing and cargo algorithms can accurately predict

queue times for dynamic routing

4. Feasible scenario robust analysis identifies the design drivers for a range of

scenarios

The assertion requirements for the first assertion are decomposed into the sub-

problem hypotheses. The remaining assertion and hypothesis are furthered in Chapter

4, resulting in the experiments detailed in this chapter.

5.1 Parametric Scenarios

A small number of representative scenarios have been developed to represent military

and humanitarian missions. It is important to include the full range of military

operations as the Sea Base is seen by the US Marine Corp to have a wide range of

applications [18]. The Range of Military Operations (ROMOs) include combat and

non-combat elements as seen in Figure 7. It is necessary to define a cargo vector

generic enough to capture this range of operations.

5.1.1 Assertion Requirements

1. Identify and quantify scenarios relevant to MEC design

2. Develop generic cargo vector including minimally transportable units

5.2 Model Development

The inclusion of matrix manipulation has been incorporated as demonstrated in the

model description as well as using integer programming for the loading problem. The

dynamic routing problem must be incorporated into the matrix formulation through

43

Figure 7: Range of Military Operations [5]

the introduction of predictive matrices. These matrices should enable the addition

of different types of nodes, such as an intermediary port, without compromising the

speed of the model.

The ease of adding types of connectors and nodes will be tested by incorporating

Army assets as would be seen in Joint Logistics Over the Shore (JLOTS) , as seen

in Figure 8. JLOTS exercises today include Navy and Army assets conducting cargo

discharge operations, and include the interfacing of transportation modes in the surf

zone, seaward of the surf line, and on the beach [13]. These operations include the

transfer of Marine cargo between Navy and Army asset, as seen in Figure 9 as well as

some unique capabilities. This includes the use of mobile piers to form austere ports,

accessible by non-amphibious vessels [101]. The systems of JLOTS will serve as the

foundation of the Sea Base, with the aim of overcoming the difficulties of current

44

JLOTS, such as the limited operations is increased sea state [81].

Figure 8: Additional Army Assets for JLOTS Assessment

5.2.1 Experiments

1. Runtime penalty for adding additional assets and cargo nodes

2. Validate and verify model results

5.2.2 Validation and Verification

It is impossible to validate a Sea Base model against real data because of the large

scale of the operation modeled and the use of future assets. In the absence of phys-

ical data, the model can be validated by gaining feedback and buy-in from subject

matter experts on the processes completed and the resulting trends. In addition,

partial model results can be compared to accepted models. In this case, the processes

and trends will be examined by research sponsors with the Office of Naval Research

45

Figure 9: Participation in JLOTS [3]

(ONR). Specific cases will be documented and compared to released results from

accepted models. The humanitarian scenarios generated by CDM [58] are well doc-

umented and can be recreated as specific cases to validate the results of this model.

While this will only validate specific vessels, it will also provide an understanding

that the method successfully represents processes. Additional vessels and assets will

have to rely on the quality of data used to describe the process.

5.3 Dynamic Loading

A method was needed to load connectors dynamically based on the cargo needed

and the size and lift capability. Two algorithms were suggested, a loading based on

a prioritized list and using mathematical optimization and the knapsack was shown

to be more robust. There are some shortcomings that will have to be researched

46

including the consideration of the location of cargo when selecting a load out.

5.3.1 Experiments

1. Compare algorithms such that selection of cargo minimizes introduction of ad-

ditional wait time in delivery schedule

2. Document ability to match cargo desired and cargo delivered

5.4 Dynamic Routing

Dynamic routing allows decision making to occur at the connector level based on the

current conditions of the operation. This results in the connector to be given options

on loading and unloading locations. This will be necessary for the incorporation of

intermediary ports and austere ports. For example, during the simulation, the MEC

could have the option to choose between loading at the Sea Base, an intermediary port,

or a primary supply location. To accomplish this decision, an accurate prediction of

the queue time, loading/unloading time, and travel time. Since the load/unloading

time is based on the interface used and the travel time is based on distances and

vessel speed, the model must be able to predict the queuing time. The quality of this

prediction is of interest.

5.4.1 Experiments

1. Level of effort to incorporate a change in possible locations

2. Quantify the trade-off between accuracy and run time

3. Compare accuracy of queue prediction, selection of cargo object and interface

for different algorithms

47

5.5 Robust Design

Once the Sea Base model is developed and validated, it is necessary to facilitates

real-time design in a cross scenario, system-of-systems analysis. This will be done

using the robust design process described in Chapter 10. The performance measures

of interest will be selected that are representative of military operations of different

types. One possible measure of performance (MoP) is total time to complete the

operation or shortfall, which is a function of the difference between cargo needed and

cargo delivered over the time of the operation. The concept of shortfall is illustrated

in Figure 10 where the total shortfall is the sum of the area between the shortfall and

demand curves, seen in blue. The size of the time unit can be set to an interval of

interest, for example, every day or every eight hours, and in the conceptual diagram

is selected as every two time units. These MoPs will come with the associated goals,

Figure 10: Concept of Shortfall

be it to match a target operation delivery time or to minimize the total shortfall.

This goal will define the loss function of interest. The noise and design factors to be

48

considered will be selected with an initial possible list of factors is given in Table 1.

The Design of Experiments (DoE) must be carefully selected to incorporate the use

Table 1: Potential Design and Noise Factors

Design Factors Noise Factors
SES Speed Cargo to deliver
Max Lift Stand off distance

Interfaces available Distances to supply bases
Time to load Distances to intermediary ports

Time to beach and unload Cargo on prepositioned ships

of feasible scenarios. A range of feasible scenarios is developed from the family of

scenarios detailed in the previous section and the segmented design space is sampled.

Once the design is selected, the model will be executed and appropriate metamodels

developed to investigate the impact of the design and noise variables. This may

require iteration on the variables selected and the loss function of interest. The

results will be compared to identify the design drivers in individual scenarios and

compare those to the design drivers across multiple scenarios.

5.5.1 Experiments

1. Identify measure of performance (MoPs) that are relevant to range of operations

2. Identify sampling methods for segmented spaces

3. Compare the feasibility of the sampling methods to complete coverage

4. Compare robustness results for complete coverage, and feasible scenario options

5. Identify the design drivers for the MEC

5.6 Research Objectives

The objective of this thesis is to formulate an approach to modeling a large scale

operation, using the Sea Base as an operational example. This approach aims to

49

include the ability to capture the system-of-system interactions present, including

the treatment of interfaces between vessels and other assets as design variables. The

method formulation must be able to handle variations in the number and type of as-

sets modeled. In addition, the method must be able to capture a variety of scenarios

to represent the range of operations where Sea Base assets would deploy, detailed in

Chapter 6. It is proposed that a hybrid method incorporating principles from matrix

controllers and mathematical optimization into discrete event simulation fulfills these

requirements, demonstrated in Chapter 7. By abstracting the loading, the cargo nec-

essary cargo can be dynamically loaded to meet the demand with the connectors and

cargo sources present, shown in Chapter 8. Chapter 9 works to make the supply chain

a product of the connectors, cargo sources, and cargo available, with the introduc-

tion of dynamic routing. The Sea Base model allows for the design of a future Sea

Base connector, such as the MEC, in the context of the future navy fleet. Through

the principles of robust design across applicable scenarios, the design variables and

choices that drive the performance are identified in Chapter 13 through 15. This

thesis uses large scale system-of-system models in the design of future assets.

50

CHAPTER VI

SCENARIO DEFINITION

This chapter will present the reasoning behind the assertion that scenarios can be

fully defined by a scheduled set of demands, distances between locations, and phys-

ical characteristics that can be treated as input variables. Example scenarios are

developed to show their definition within the model framework to demonstrate the

assertion requirements to:

1. Identify and quantify scenarios relevant to conceptual connector (MEC) design

2. Develop generic cargo vector including minimally transportable units

6.1 Use of Scenarios

Scenarios are a widespread technique to aid in decision making by considering uncer-

tainty in the future [191]. These techniques have been used by military strategists

throughout history but the modern application is attributed to Herman Kahn [45].

The goal of developing scenarios is not to try to predict the future but to stimulate

discussion and insight into what the future could bring [155]. It is impossible to en-

compass all possible occurrences and the selected scenarios can always be faulted and

found lacking [186]. But the use of scenarios enables the decomposition of complex

phenomena into coherent, analyzable subsystems [167].

6.1.1 Military Application

Military planners have long dealt with uncertainty through the use of scenarios, look-

ing at world futures as well as breaking it down to regional threats [93]. War gaming

51

has been used to explore these scenarios and these war games have spread from tradi-

tional combat to medical and cultural scenarios [127]. The variety and complexity of

challenges the military faces is highlighted in the National Security Strategy [95] and

was given in Figure 7, which showed the Range of Military Operations. The military

can not simply plan for traditional operations but must balance those requirements

with the capabilities needed for future operating concepts [10]. Operations have be-

come more complex and can now include disarmament, demobilization, reintegration

of combatants, community policing, diplomacy, conflict prevention, conflict resolu-

tion, and post conflict reconstruction [156]. Feist highlights the peril of ignoring

either end of the spectrum, from conventional wars to nation building [75]. Scenarios

are needed that balance the analysis of capabilities across traditional operations and

broader range of potential operations.

6.2 Scenario Development

Before defining scenarios, it is necessary to detail the type of scenario to select and

the information needed. Urwin, et al., require that a scenario satisfies the following

criteria [189]:

1. Include multiple stakeholders requirements

2. Be applicable in multiple timeframes

3. Be sufficiently straightforward to be easily understood by non-experts, but at

the same time sufficiently rich to be informative to domain and subject matter

experts

4. Be plausible, in the sense of representing a possible future

Frankis, et al., work to identify military requirements for nonwarfighting oper-

ations, by using ’rule of thumb’ expressions in the form of mathematical relations.

These first-order approximations use situational factors, such as terrain and weather,

52

to select units and calculate the requirements [78]. Udeanu describes the necessary

elements for a scenario including [187]:

1. The general theme of the exercise

2. The general objective

3. The performance period of the exercise

4. The exercises stages (sequences)

5. The themes of the exercises stages (sequences)

6. The stages (sequences) sub-objectives

7. The exercises managing and evaluation system

8. The subunit, unit, large unit or the commandment participating in the complex

exercise, as well as real or hypothetical, support or enforcing forces and means

9. The hypothetical and real space for the exercises performance

10. Any kind of resource (hypothetical and real)

11. The hypothetical and real infrastructure

12. The operational context

13. The performance plan of the complex exercise

For this work, scenarios will be selected based on plausible future operations.

These operations are defined based on the following characteristics:

1. Operation objective

2. Performance period

3. Participating units

53

4. Geographical layout - real or hypothetical

5. Performance plan

• Including required resources

6.2.1 Scenario Selection

To capture all possible future scenarios would be impossible, so the scope is limited

to possible applications of the system of interest, as was assumed by Thal and Heuck

[179]. The goal of this work will not be to develop an exhaustive list of scenarios,

but to present a small selection of plausible scenarios to demonstrate the models

ability to capture the diverse aspects of the scenarios. The remainder of this chapter

identifies and describes the scenarios that will be used for the robust design process.

The selected scenarios are:

1. Large Scale Military Operation

2. Small Military Operation

3. Humanitarian Mission

4. Sustainment Operation

6.2.1.1 Large Scale Military Operation

The Marine Expeditionary Force is the primary Marine Corp organization, but the

Marine Expeditionary Brigade (MEB) is a middleweight force that is light enough to

use amphibious ships, but large enough to accomplish the mission [49, 50]. The MEB

sized force, approximately 15,000 Marines, was reconstructed in 1999 [99] and is capa-

ble of responding to a large spectrum of conflicts, from humanitarian to warfighting

- from assaulting an enemy beachhead to bringing ashore supplies to a hurricane-

ravaged nation [76, 24]. Although traditionally the MEB phases ashore all of its

54

Table 2: Future Marine Expeditionary Brigade (MEB(F))
Category Description MEB(F)
Marine Platoon 36 Marines 78
EFV Personnel Carried Internally 47
LAV-25 Personnel Carried Internally 27
M1A2 Personnel Carried Internally 47
EFSS Element 2 HMMWVs, EFSS, Ammo Trailer, 16 personnel 6
CEB Element 7 personnel, 1 modified M1A2 48
Arty Element 155mm HOW(T) and 11 personnel 21
HIMARS Element HIMARS luncher and personnel 6

elements, the Sea Base allows the combat support, combat service support, and com-

mand elements to remain at sea [194]. Moving only the combat element ashore

reduces the ship-to-shore movement requirements. The military is looking to be able

to deliver two brigades as the assault echelon from amphibious ships [181]. The MEB

would be delivered from 33 amphibious ships, 11 each of LHAs/LHDs, LSDs, and

LPDs [140].

For this work, a large scale operation will be the ship-to-shore movement of two

MEBs. Gen. James Amos laid down the goal of having a MEB be able to fit in

15 amphibious warships [73], forming the cargo delivery group. Based on figures in

Strock’s presentation [172], the MEB composition is given in Figure 11. The ground

combat element will be delivered to shore and was decomposed to the minimal size

that would be transported as a single unit. These cargo categories and the number to

be transported for one MEB are given in Table 2 and are the minimally transportable

cargo elements that will help form the generic cargo vector.

6.2.1.2 Small Military Operation

The Marine Expeditionary Unit Special Operations Capable (MEU(SOC)) is a spe-

cially trained unit to provide a capability to rapidly execute Amphibious Operation

[94]. The ability to conduct ship-to-shore movement is part of the SOC qualification

55

Figure 11: Future Marine Expeditionary Brigade (MEB(F))

56

Figure 12: Marine Expeditionary Unit (MEU(SOC))

[110]. These units provide a sea-based, forward presence to respond to multiple mis-

sion types, including Amphibious Operations, Maritime Special Operations, Military

Operations Other Than War, and Supporting Operations [7]. MEU (SOC) are a key

forward presence and were used during the Gulf War [198], but are also prepared for

other mission such as noncombatant evacuation operation (NEO) [173].

The small military operation scenario will be the delivery of a MEU(SOC) to shore

from the three ships of an Amphibious Ready Group (ARG) [94]. Figure 12 shows

the elements of a MEU (SOC) based on Hagan’s thesis [91]. The ground combat

element was decomposed to minimally transportable elements, listed in Table 3.

6.2.1.3 Humanitarian Scenario

It is important that the scenario definition process is broad enough to capture hu-

manitarian scenarios. The Congressional Budget Office has identified the increased

57

Table 3: Marine Expeditionary Unit (MEU(SOC))
Category Description MEU(SOC)
Marine Platoon 36 Marines 26
EFV Personnel Carried Internally 14
LAV-25 Personnel Carried Internally 4
HMMWV Personnel Carried Internally 12
M1A2 Personnel Carried Internally 4
EFSS Element 2 HMMWVs, EFSS, Ammo Trailer, 16 personnel 6
CEB Element 7 personnel, 1 modified M1A2 6

frequency of operations other than war, including humanitarian and questions if the

U.S. forces are prepared to meet the requirements of carrying out these missions since

they require a different mix of forces and equipment from conventional warfare [6].

The United States Department of State states that in 2009, 335 natural disasters were

reported causing 11,000 deaths, impacting the lives of more than 120 million people,

and causing more than 41 billion dollars in economic damage around the world [20].

According to the Inter-Agency Standing Committee called for by the United Nations

General Assembly to strengthen coordination of humanitarian assistance, military as-

sets can be used when they provide a unique capability and when the operation is time

limited [11]. Bessler identifies that in many cases humanitarian organizations have no

option but to rely on military assets to deliver aid [40] and USAID acknowledges the

criticality of the Department of Defense’s transportation, logistics, and engineering

capabilities in assisting in large scale disasters [20]. This criticality has been seen in

disaster response, which is time sensitive and there are few options for delivery such

as in Haiti where in January 2010, an earthquake killed more than 200,000 people

[20]. A medical relief team from the International Medical Corps identified the im-

portance of the military response not only in performing security but in providing

tents, stretchers, medications, food, water, and other critical equipment and supplies

[32].

58

Two example humanitarian scenarios were developed based on information pro-

vided by CDM Technologies, Inc, a continental United States (CONUS) and an in-

ternational humanitarian aid situations. The CONUS scenario, based on a disaster

occurring somewhere similar to the Gulf Coast, is represented by four population cen-

ters of 25 thousand refugees. The population centers are distributed along the coast

and three Large Medium-Speed Roll-on/Roll-off (LMSR) ships serve as the source

of the cargo. Initially two days of supply and shelter materials are delivered for the

refugees at each location. Each refugee receives two MREs and 1.5 gallons of drinking

water per day and it is assumed that ten percent of the population will require shelter.

The follow-on day is to deliver one day of supply and construction materials, weighing

a total of 9110 lbs per beach. The international scenario, representing a Haiti type

situation, is based on five population centers of ten thousand refugees, supported by

three LMSRs. The initial and follow on day requirements are the same but instead

of MREs, refugees receive 460 g maize and 80 g beans per day and 25 percent of the

population requires shelter.

M931 tractor trucks with M1076 trailers, each carrying an 8820 ISO container also

called a twenty-foot equivalent unit (TEU), were assumed to be used in this analysis.

It is assumed that a single container must carry one type of cargo, so the number

of containers to supply the necessary cargo will be rounded up to the next complete

container. The containers were assumed to be loaded with cases of water and MREs

and 90 kg bags of maize or beans. The containers were loaded until cubed out by

volume and the total cargo weight plus the tare weight of the trailer and container

becomes the minimum loadable unit weight.

The connectors can be loaded with containers of different cargo, but are limited

to a single type of containerization, in this case a TEU on M1076 trailers. The

connectors are loaded based on the inputted cargo footprint area and lift capability,

filled until adding the next container would exceed the weight or area limit. The

59

Table 4: Humanitarian Cargo Assumptions
Container Type Domestic

Day 1
Domestic
Day 2

International
Day 1

International
Day 2

Water 19 10 8 4
MRE 9 5 0 0
Beans 0 0 1 1
Shelter 5 0 5 0
Construction 0 1 0 1

MEC will carry three prime movers and the SSC carries one, with the type of prime

mover dependent on the type of container carried. The calculated weights, footprints,

and number to be delivered are given in Table 4.

6.2.1.4 Sustainment Operation

The job of the Sea Base does not end with the delivery of forces, as the Navy and

Marine cooperation extends to logistics [48]. The Navy plays a role in develop-

ing, deploying, employing, and sustaining the task force [47]. With the shift toward

seabasing, the Marines will increasingly rely on support from the sea for fires, logistic,

command and control and force projection [105].

The supply of troops is a challenge for the Navy, as was seen during Opera-

tions Enduring Freedom and Noble Eagle [27]. Operational Maneuver From the Sea

(OMFTS) is especially challenging with the transportation of bulk fuel and water,

currently supplied in 500 gallon pods [47]. There are many approaches to improving

supply for OMFTS, including investigating civilian helicopters [80] and developing

new vessels, such as the High Speed Vessel (HSV) [8]. The supply mission is common

and a stresses the logistical chain, thus warrants incorporation as a distinct scenario.

The military provides a variety of resupply missions. The Military Sealift Com-

mand (MSC) transported 95 percent of the combat and military cargo needs of US

warfighters [26]. In fiscal year 2009, this required the transportation of more than

4 million square feet of combat cargo and 2.5 billion gallons of petroleum products

60

[21]. Resupply is not limited to military operations as the military also resupplies the

Antarctic research base with 84,000 square feet of food, household goods and research

equipment and 5.5 million gallons of crucial diesel, gasoline and jet fuel [22].

Unlike the previous scenarios, resupply is a cyclic demand with a goal of meeting

that demand with the least cost. The demand is based on the type of operation

supplied but will always contain food, water, medical, and petroleum products. In

a military resupply, replacement parts and ammunitions are also critical. The dry

supplies could be transported in TEUs or on pallets. The petroleum would be trans-

ported in pods, such as the 500 gallon pod, assuming a commercially available bladder

[2].

6.3 Necessary Information

The information that describes the scenario forms the inputs to the model. The

geographical information defines the distances between locations, including the stand-

off distance of assets and the distances to supply points. The units selected define

the assets to incorporate including the number and types of ships, helicopters, and

other vessels. The units of interest also play a role in the resources to be delivered.

These resources are defined as a demand over time. This demand is listed in terms

of a generic cargo vector. The generic cargo vector must encompass the demand for

all scenarios.

6.3.1 Generic Cargo Vector

The generic cargo vector encompasses the cargo that would be necessary to deliver

for any scenario. The Military Airlift Command in Airlift Deployment Analysis Sys-

tem classifies cargo types in terms of weight, volume, and square foot (foot print)

measurement [152]. This information about the cargo will form the basic information

that will be used to load vessels, as will be seen in the development of the loading

algorithm in Chapter 8. The vector developed to encompass the scenarios in the

61

Table 5: Generic Cargo Vector
CargoType Weight (LT) Foot Print (sqft)
Marine Platoon 3.96 216
EFV 33.93 420
LAV - 25 12.59 172
HMMWV 2.63 106
M1A2 60.36 384
EFSS Element 9.43 400.7
CEB Element 61.14 426.2
Arty Element 7.03 112.8
Mortar Element 2.26 113.1
Antiarmor Element 5.54 212.4
HIMARS Element 10.71 182
Pallet 1.8 16
TEU - Water 17.08 160
TEU - MRE 9.53 160
TEU - beans 20.33 160
TEU - shelter 0.84 160
TEU - Eng Co 20.33 160
TEU - max size 21 160
Petroleum Pod (500 gal) 1.66 10

chapter, as well as having the potential to describe other scenarios is given in Table

5. The information used to develop these vectors was collected from many sources,

government [131] and commercial, resulting in a minimally transportable unit, its

gross weight in long tons and foot print aboard a transport.

62

CHAPTER VII

MATRIX FORMULATION

This chapter explores the hypothesis that introducing matrix manipulation into Dis-

crete Event Simulations will enable the abstraction of sub-processes at an object level

and reduces the effort required to integrate new assets. A comparison will be per-

formed for a traditional DES formulation and a matrix based formulation. Then the

following experiments will be performed:

1. Runtime penalty for adding additional assets and cargo nodes

2. Validate and verify model results

7.1 Traditional vs Matrix Formulation

The model was initially formulated as a traditional DES using limited resources. The

SimPy code for this implementation is given in Appendix A. The selection of loading

spots was formulated as selecting the minimum time connection that had a spot

available. The options for cargo transfer are using the starboard ramp (side), using

the stern ramp (rear) or transferring cargo through an intermediary loading platform

(through MLP):

rear connection = min(number of open rear spots,
1

time to rear load
)

side connection = min(number of open side spots,
1

time to side load
)

using MLP connection = min(Can MEC load through MLP?,

number of open MLP spots,
1

time to rear load
)

connection to use = max(rear connection, side connection, using MLP connection)

63

The equations must be edited for each type of connection and any special conditions,

such as the possibility of not being physically able to use an interface. The selected

spot is then dealt with using a series of if-else statements to reserve that type of

resource. Adding an interface option requires adding or modifying seven lines within

the connector process and five additional lines throughout the code. This was unac-

ceptable for building a flexible supply chain as the number of if-else statements to

capture each case would be impractical.

The shift to matrix based considerations removes these if-else statements, and

abstracts the selection of loading spot to use. This reduces the number of lines

needed to define a connectors process. A majority of the code remains the same as

the connector process steps have not changed, only the selection of the cargo interface.

The results of these two methods were compared to check the processes abstracted to

matrices. A basic example with six connectors, three cargo reloading spots each with

two connection options, and two cargo unloading spots was run for 50 operational

hours for each formulation. The investigation of matrix formulation was partially

driven by the need to handle cargo better, so cargo was not considered here and the

connectors simply choose the interface to use based on which is fastest. Figure 13

shows that both formulation capture an almost identical trend of unloading at the

beach. This demonstrated that these methods perform the same for small problems

so the selection is made based on ease of use.

7.1.1 Difference in Formulation

The incorporation of matrix based selection greatly reduces the number of lines of

code required to define a vessel process. For a basic connector, this is a reduction

from 31 to 18 lines of code. A description of the steps required in the processes

follows. It is key to notice the matrix formulation uses the same process for loading

and unloading so both segments do not need to be coded separately, as is done with

64

Figure 13: Traditional vs Matrix Resources

traditional resource pools.

Traditional formulation:

• Hold time to travel from Sea Base to transition distance

• Hold transition time

• Request shore spot from resource pool

• Wait time to travel to shore, beach, and unload

• Release shore resource

• Wait time to transition and return to Sea Base

• Request Sea Base spot from resource pool

• Identify load interface to use

65

– Calculate minimum of spots in resource pool and inverse of travel time

– Identify minimum of this minimum

• Request interface from resource pool based on calculations

• Hold for time to load, based on spot selected

• Release interface resource

• Repeat

Matrix Formulation:

• Hold time to travel and transition

• Identify cargo objects at location

• Identify interface spots on cargo supply ships with desired cargo

• Identify shortest interface and its associated wait time

• Hold wait time

• Release interface spot

• Change mission

• Repeat

The incorporation of matrix formulation does incur a time penalty, as seen in

Table 6. This penalty was assessed for 3 LMSRs and varying number of connectors.

The matrix formulation is moderately more complex as it includes the cargo requested

to be loading in selecting a LMSR to use. The difference in run time may seem large

but is still less than a third of a second so this penalty is acceptable. The run time

will be further explored as the code complexity is increased.

66

Table 6: Run Time Comparison - Traditional vs Matrix
Connectors Traditional (sec) Matrix (sec)

6 0.005 0.049
12 0.011 0.164
18 0.012 0.257
24 0.015 0.308

7.2 Use of SimPy

SimPy is an object oriented, open source package originally developed by Klaus G.

Müller [132]. It solves the platform dependency issue of older process-oriented soft-

ware by developing a package within Python [124]. Python is a platform indepen-

dent, open source scripting framework and a wide variety of Python-based projects

are available [85], which take advantage of Python’s elegant language and ability to

perform complex operations [34]. The use of SimPy will enable the incorporation of

other Python modules as needed for sub-processes within the model. This thesis uses

SimPy 2.2, which is available along with examples on the SimPy website [4].

SimPy offers the additional advantage of allowing modular development [57]. This

enables the abstraction of the subprocesses within the model and the reuse of common

code, such as the spot selection algorithm described previously. The use of Python

classes allows for vessels and vehicles with similar properties to share the definition

of their process. This reduced with coding difficulty to add new vessels that share

the same type of process as an existing asset.

7.3 Penalty for Expansion

The penalty for expansion of the model is tested by adding Army assets that would

be seen in Joint Logistics Over the Shore (JLOTS) operations, as was discussed in

5.2 and shown in Figure 8. The Army assets include logistics support vessels, landing

craft, and lighterage [121]. Some of the vessels fit into existing classes, connector in

the case of the LCU 200, JHSV, and LSV. The INLS is carried into theater, but self

67

deploys from the Sea Base. An austere port represents an additional landing option

at the beach and will have the same instantiation as beach heads. The code penalty

will be discussed for the two options, where the process exactly matches an existing

vessel and where a process must be modified.

7.3.1 Vessel Matching Existing Class

If a new vessels process exactly matches an existing class, it is very simple to add the

new vessel type. The key attributes of that type of vessel are defined as inputs and

added to the input file. Within the model, the vessel type must be initialized and the

class defined, as included below. The example given here is for the LSV which serves

as a surface connector, which is the defined category for the Supply Ship class.

class LSV(SupplyShip):

list = []

def __init__(self, name, spots, wait, max_lift, lift_eff,\

max_area, area_eff, MTBF, MTTR, compatibility, speed,\

push_locs, pull_locs, fuel_usage):

SupplyShip.__init__(self, name, spots, wait, max_lift, lift_eff,\

max_area, area_eff, MTBF, MTTR, compatibility, speed,\

push_locs, pull_locs, fuel_usage)

LSV.list.append(self)

self.deploy(LSV.list)

7.3.2 Vessel Requiring New Class

The INLS is carried into theater and then self deployable from the Sea Base, which

is not an existing class. Once the INLS is assembled at the Sea Base, it follows the

same process of a surface connector, so it is possible to create a new process or create

an option within the existing processes. Since the only difference is the need to be

carried into theater, a class was created for an organic connector and the flag below

68

added to the general connector process. This subclass is initiated when the INLS

is called, creating an organic connector. The information to define this vessel is the

same as the general connector and these values must be added to the input file.

if isinstance(self, Organic):

yield put, self, store, [self]

yield waitevent, self, self.SBSignal

The INLS must be carried within another vessel, so its deployment modifies the

process for that vessel as well. As it will be carried aboard one or more of the Sea

Base cargo ships, the general process for the Sea Base cargo ship was modified. An

input was included for the maximum number of INLS that can be carried. When the

cargo ship is first instantiated, it determines the number of organic assets that will be

carried aboard and a check for the INLS was added, as seen below. Once the cargo

ship reaches the Sea Base, the INLS are reactivated using a SimPy event, and proceeds

as a general connector. A SimPy Event is used to maintain the properties and status

of the vessels carried on the cargo ship and this construct is used throughout the

vessel processes when one vessel is transported by another.

Before departure:

for r in range(self.Num_carriedINLS):

yield get, self, ISBINLS, 1

self.INLSid.append(self.got[0])

After arrival:

for s in range(self.Num_carriedINLS):

whichINLS = self.INLSid.pop()

whichINLS.SBSignal.signal()

yield hold, self, INLSTimeToOffload

69

7.3.3 Run Time Penalty

Since classes are only activated with the presence of that vessel in the simulation, the

addition of types of vessels does not impact the run time of the model. Instead, the

speed of the model is determined by the number of vessels and possible nodes. The

run time for additional nodes is a consideration of the routing algorithm, so only the

number of vessels will be considered here.

A set of basic cases was established to test the relative run time. This case will

be a single type of Sea Base ship and connector, in this case the LMSR and MEC

will be used. The demand will remain the same, at 3000 pallets. The unloading

spots and cargo available at the Sea Base will be great enough to not impact the

simulation results, so all simulations will carry out the same number of trips to shore.

The number of LMSRs and MEC will be varied and the total run time tracked in

Table 7. The run time increases as the number of vessels increases with the number

of vessels. For the same number of vessels, connectors add more time than supply

ships, which can be attributed to the greater complexity of the connector algorithm.

The connector calls the algorithms to select cargo at the Sea Base and to select the

interface spot to use at the Sea Base and the Beach.

Table 7: Run Time Comparison
Number LMSR Number MEC Run Time (sec) Per Vessel (sec/vessel)

1 1 4.65 2.32
1 10 8.10 0.74
10 1 5.02 0.46
10 10 5.80 0.29
10 100 16.65 0.15
100 10 10.28 0.09
100 100 22.74 0.11

Since the connector is the more complex type of vessel, the trend of run time

was further analyzed. The cases were repeated for 3 LMSRs and increasing number

of connectors. Figure 14 shows the growth for 1 to 100 connectors. The growth is

70

Figure 14: Run Time per Connector

slightly greater than linear, with a quadratic term of 0.0073, but the trend is very

close to 0.8 sec increase in the run time per connector added. The growth in run time

is acceptable and demonstrates the expandability of this DES formulation. The run

time of the model increases with the number of vessels incorporated and the relative

complexity of their processes.

7.4 Validation and Verification

Comparison of this formulation, as well as the dynamic loading, to the results of an

existing model will be discussed in Chapter 11. Verification of the behavior of the

model was performed by having Naval experts give insight into the processes used in

a logistics operation. The vessel processes are described in Chapter 10. The resulting

trends and interactions were reviewed by experts courtesy of ONR.

71

CHAPTER VIII

DYNAMIC LOADING

The hypothesis that knapsack loading is an efficient and robust approach for solving

the loading sub-problem, was developed in section 4.3. The following experiments

will be run and discussed.

1. Compare algorithms such that selection of cargo minimizes introduction of ad-

ditional wait time in delivery schedule

2. Document ability to match cargo desired and cargo delivered

8.1 Algorithms to Address Loading

As was discussed in Section 4.3, a knapsack type formulation is theorized to be able

to solve the loading problem. The knapsack formulation and prioritized loading algo-

rithms will be implemented and compared. The implementation of the formulations

are given in the following sections.

8.1.1 Prioritized Loading

Prioritized loading is based on the user providing a prioritized list of cargo to be

delivered. This prioritized list is a full list compiled in order of desired delivery to

the shore. An example mathematical formulation follows:

Identify cargo that needs to be brought to shore and will fit on connector. The

72

connector is looking to load cargo so its mission is to pull cargo from cargo objects

Cargo Schedule:



0

0

1

1

2

2


Cargo Schedule should already be prioritized by order to arrive to shore Weight

vector [10 15 20] (in LT)

Area vector [50 100 120] (in sqft)

Compatibility Vector of [1 1 1], so the connector can carry any type of cargo that will

fit aboard. If any type is not compatible, the value in the weight of that cargo type

becomes 106.

Form Weight and Area vectors:

Weight

10

10

15

15

20

20



Area

50

50

100

100

120

120



Calculate cumulative sums and identify where the maximum weight and area are

exceeded. For this example, maximum weight is 60 LT and Maximum area is 500

73

sqft.
Weight

10

20

35

50

70

90



Area

50

100

200

300

420

540


The first four units of cargo can be carried on this trip. The cargo want vector

becomes [2 2 0], a desire to load two of type 0 and two of type 1. There will be 50

LT and 300 sqft of cargo space used during the trip. These values are tracked to

determine the average lift and area used.

8.1.2 Mixed Integer Linear Program (MILP)

The knapsack formulation takes the form of a MILP. If all of the cargo categories are

categorical, that it is in Integer Program, but the general form is maintained. Using

an MILP does not exclude continual variables, such as bulk water and fuel in holds.

The user inputs a total demand for each cargo category and the priority of delivering

that type of cargo. The formulation of this problem is:

Maximize
∑

i
Pixi

subject to:

∑
i
weightixi ≤ maxlift∑
i
areaixi ≤ maxarea

xi ≥ 0 for all i

xi ≤ neededi for all i

74

Where weighti is weight of one item of category i, areai is area needed to transport

one item of category i, and neededi is demand for that cargo category.

Prioritization as the value vector does not work directly because prioritization is

defined as one being the most important, so maximizing

∑
i
Pixi

would cause the lower priority to be taken first. Using the inverse of the prioritization

vector as the value of carrying that cargo leads to a bias toward smaller and lighter

cargo items. To unbias this, the value function was normalized for priority by weight

and area. The priority can be interpretted as a relative priority per unit weight and

area. A zero priority is not possible, so one is added to the numerator to prevent an

unsolvable linear programming problem.

New Priority (Pi):
Cargoweighti
Avgweight

+ Cargoareai
Avgarea

+ 1

Priorityi

8.1.2.1 Implementation of MILP

It is necessary to solve the MILP each time the cargo selection algorithm is run so it

must be incorporated into the discrete event simulation. Linderoth and Ralph discuss

several open source solvers and LPSolve was identified as a branch and bound solver

that serves as a callable library [119]. This library can be interfaced with a large

number of languages, including Python. Version 5.5 will be used for this thesis and

is available online [37].

8.2 Prioritized Loading vs Knapsack

Prioritized loading is the first formulation that incorporates loading of cargo onto the

connectors. This cargo formulation is described in 4.3 where a prioritized list of cargo

forms an input to the model. The goal here will be to deliver 3000 pallets to shore

as soon as possible. If each cargo ship is assumed to carry 1500 pallets each, once

75

all the pallets aboard the two ships are delivered, no more cargo is available. The

shortcoming of this method will be demonstrated by adding one large piece of cargo,

which exceeds the lift capability of the connector, after 1000 pallets. This causes the

delivery of cargo to stop once this item is reached because the cargo selection can not

progress until this item is brought to shore. This problem was solved by treating the

loading as a knapsack problem. The time history results of the cargo unloaded at

the final destination calculated in these experiments are depicted in Figure 15 where

the prioritized, knapsack, and knapsack with large item added align, so the knapsack

does not suffer the same problem as the prioritized.

Figure 15: Prioritized vs Knapsack Loading

8.3 Shortcoming of MILP

The knapsack algorithm, as well as the prioritized loading, have a problem with

the locational distribution of cargo. In the example above, the amount available

was exactly the demand but the plots in Figure 15 show that the percent of cargo

76

delivered fails to reach 100 percent. This occurs when the demand for cargo is larger

than the amount of cargo at one location. In this case, each connector can carry

111 pallets, and when the simulation terminates, each cargo source has 57 pallets

remaining, matching the 114 needed on shore. There is no source that can provide

all 111, so the connectors stop. If there is extra cargo available, the delivered cargo

reaches 100 percent, seen in Figure 16, but it is not realistic to expect to have extra

cargo. This problem expands as mixes of cargo are needed, where the cargo is needed

and can fit on one connector but is not located at or on one cargo source. The

knapsack algorithm needs to be enhanced to incorporate the location of the cargo

when selecting the load out.

Figure 16: Knapsack With and Without Extra Cargo

8.4 Incorporating Cargo Locations

The existing MILP formulation does not account for the cargo available at cargo

supply nodes. It is thus possible to have the simulation stall because the prioritized

77

load is not available at all. The selection of cargo is done separately with the amount

of cargo available only being considered when selecting the load point to use. If the

desired cargo is not available at any point, all the connectors will continue to attempt

to load the same cargo without being able to move forward. The solution to the

simulation stalling issue is to incorporate the cargo available at each loading point

within the cargo selection algorithm. Thus it is known that the cargo combination

exists on or at some load point. This will keep the simulation from stalling as was

seen in Figure 16.

In essence, this is adding an assignment problem to the knapsack formulation. An

assignment problem is selecting exactly one person to do each job [169, 134], or in

this case, one job is assigned. Assignment problems are solvable for as many as 500

binary variables [137], so this optimization should be solvable for any realistically sized

problem, especially since it is a simplified assignment of only one task. Assignment

problems can be easily combined with other constraints, such as overtime as performed

by Nauss [136]. Incorporating an assignment problem adds constraints for each cargo

load option, of the form given below. These variables will be added to the cargo

category decision variables, so the decision variables are divided into cargo to load

(xi) and load point to use (yj).

yj =

 0 if not using load point j

1 if using load point j

8.4.1 Formulation of MILP

Adding the assignment problem constraints to the knapsack constraints, creates the

following formulation:

Maximize
∑

i
Pixi

78

subject to:

∑
i
weightixi ≤ maxlift∑
i
areaixi ≤ maxarea

xi −
∑

j
cargoj,iyj ≤ 0 for all i∑

j
yj = 1

xi ≥ 0 for all i

xi ≤ neededi for all i

Where cargoi,j is the amount of cargo category i available on or at load point

j. The former constraints remain the same with weighti as weight of one item of

category i, areai as area needed to transport one item of category i, and neededi as

demand for that cargo category.

This formulation is compared to the basic knapsack formulation in Figure 17. The

simulation no longer stalls when the cargo selected is the remaining demand, but the

available cargo is distributed between multiple load points. The algorithm can now

match the available cargo and complete the delivery.

The additional constraints makes the MILP a more difficult problem to find an

optimal solution. To test for additional computational demand, the cases run in

Section 7.3.3 were repeated for the two formulations of the MILP, seen in 8. The run

time is slightly greater for the MILP with additional location constraints, except for

the first case. The increase in run time is not of large significance.

8.5 Selection of Loading Algorithm

The experiment addressed in this chapter are to select the loading algorithm based

on matching the cargo demand and not introducing additional wait time. This wait

time was seen in this example as the stalling of the simulation and failing to complete

79

Table 8: Run Time Comparison - MILP
Number of Vessels Run Time (sec)
LMSR MEC MILP With Location

1 1 4.75 4.65
1 10 6.47 8.10
10 1 4.90 5.02
10 10 5.54 5.80
10 100 13.90 16.65
100 10 9.57 10.28
100 100 20.21 22.74

Figure 17: Knapsack with Additional Constraints

80

the delivery. Combining an assignment problem with the knapsack loading yields an

algorithm that can overcome this stalling and match the delivery of cargo. The addi-

tional constraints do not cause the MILP solver, LPSolve55 in this case, to slow. This

combination algorithm is an efficient and robust MILP formulation for the solving of

the loading problem.

81

CHAPTER IX

DYNAMIC ROUTING

The need for and challenges of dynamic routing were detailed in section 4.4, with the

hypothesis that matrix based predictive queuing and cargo algorithms can accurately

predict queue times for dynamic routing. To show this hypothesis, the following

experiments were selected:

1. Quantify the trade-off between accuracy and run time

2. Compare accuracy of queue prediction, selection of cargo object and interface

for different algorithms

3. Robustness of algorithm to disturbances

This chapter will detail existing methods of routing vehicles within a simulation,

deriving concepts from traditional vehicle routing and computer science applications.

These methods will be distilled to concepts that can be applied for this thesis. These

concepts will then be tested using the model construct.

9.1 Dynamic Routing in Traditional Vehicle Routing

Traditional vehicle routing problems have been expanded to incorporate stochastic

optimization techniques to optimize the selection of routes and loading points. Ac-

cording to Arellano-Garcia and Wozny, the stochastic properties due to consideration

of uncertainties/disturbances is necessary [29] since dynamic demand can introduce

queuing phenomena [145].

The need to break down the problem into multiple stages has been called reopti-

mization in many sources [107, 70, 39, 69, 168]. In reoptimization, routing decisions

82

are based on the current system state, which is updated upon arrival at a location

[138]. This reoptimization is considered in various degree with the most basic consid-

eration involving the original paths being followed unless a route fails and the most

complex with reoptimization at every location [70]. Reoptimization is a better option

when the demand is known at the start of the route [39] and it is expected to reduce

average cost but at the expense of computational power [35].

The routing decision can be formulated as a Markov decision process model

(MDPM), but the solution is difficult due to the large size of the state space [69].

Several ways to solve this type of model are investigated in the literature includ-

ing approximation algorithms [38]. One approximation, chance constrained models,

works to minimize expected cost based on decision variables using bounded penalty

models [108, 151]. The chance constrained optimization problem has the following

general form [113]:

minf(x, u, ξ), s.t.g(ẋ, x, u, ξ) = 0, x(t0) = x0, h(ẋ, x, u, ξ) ≥ 0

where f is the objective function, in this case to minimize total trip time. The vectors

g and h represent the equality (model equations) and inequality constraints. x, u

and ξ are the vectors of state, control and uncertain variables. These problems

are traditionally relaxed and solved as a non-linear program. This approach has

been applied to traditional vehicle routing problems with uncertainty in travel time

between locations and was solved using a genetic algorithm [82].

9.1.1 Critical Routing Considerations

By investigating algorithms and techniques used in traditional vehicle routing, key

concerns about dynamic routing have emerged. The goal of any dynamic routing algo-

rithm is to minimize the expected cost of a route [138]. Rollout algorithms have used

simulation and function approximation to estimate the expected cost [168]. Dynamic

routing to account for stochastic demand, in order to develop a robust algorithm, have

83

been incorporated into a discrete model by Pavone, et. al., with the system state de-

fined by the departure times and vehicle loads where demand requests are seen as

disturbances [145]. This work highlights the importance of any routing algorithm

being robust to system changes.

Psaraftis raises an important question on how close to optimal a routing algo-

rithm can be based on information only currently available rather than including

future information [151]. If the demand in the problem is not stochastic, this future

information is available. Technology has introduced benefits and complication to real-

time routing as the amount of real time information available has greatly increased

as well as the ability to predict information such as traffic condition [115].

9.2 Routing from Computer Science Perspective

As was discussed in Chapter 2.1, the problem considered in this work does not map

directly to a traditional vehicle routing problem thus routing was examined from a

computer science perspective. In the field of computer science, real-time routing is

necessary for call centers, routing of packets in wireless internet, and network-on-chip

systems. The development of routing algorithms for these fields has lead to many

recent publications and provides insight into key components of a dynamic routing

algorithm.

9.2.1 Call Centers

The objective of a call center is to minimize queue length and the waiting time spent

by customers. In a heterogeneous call center, where servers do not service customers

at the same rate, it has been proven that queuing the faster servers first can give

better results even if a slower server is open [30]. Lin proved that for two servers

with a common queue there exists a computable threshold above which customers

should be routed to the slower server [117]. This work was expanded for multiple

servers and a computable threshold was proven [120, 157]. Luh and Viniotis went

84

on to prove that for a system with N heterogeneous servers, threshold routing is the

optimal customer allocation policy [120].

The literature reviewed has all related to input queued centers, where there is a

common queue, but the model in this work has geographically distributed queues,

so a common queue is not applicable. Stolyar expanded the threshold method for

output-queued version [171]. In an output-queued model, each customer is assigned

to a server upon arrival, also called immediate routing. Stolyar recommends queue

assignment based on estimated unfinished work or using estimated average values.

9.2.2 Packet Routing

Packet delays for internet protocols consist of a propagation delay, transmission delay,

slot synchronization delay and queuing delay, all of which must be considered when

designing a routing algorithm [163]. Existing routers are often based on shortest path

preferred algorithms, but work has been done to balance loads by incorporating a link

utilization cost into the path selection [72]. Traffic efficiency was also increased by

delivering along the path the minimum product of sum degree of nodes and neighbor

nodes queue length [201].

Information packets are also transfered in wireless sensor networks. Previous

control algorithms throttled incoming traffic to limit packet loss, but Ren, et. al.,

suggests a traffic-aware algorithm. Their work suggests developing a virtual potential

field using a combination of a shortest path field and a queue length field to select

the path [153].

9.2.3 Network-on-Chip

Dynamic, also called adaptive, routing is necessary in network-on-ship systems to

meet the dead-lock free and real-time optimization decision making requirements.

Mak, et. al. [122], suggests methods for routing algorithms in this network to build

on previous approaches that exploit only local traffic information. To further improve

85

traffic balancing, the number of packets in a buffer is included in the calculation of

the shortest path. To reduce computational requirements, the algorithm looks k

steps ahead in the routing between nodes and can effectively avoid hot spots or faulty

components. This avoidance increases the reliability, one of the key objectives in

on-chip networks [190].

9.3 Routing Algorithms

Based on the computer science and vehicle routing considerations, two objectives were

selected to measure the performance of a dynamic routing algorithm:

1. Minimize the wait time

2. Robustness to network disturbance

For this model, the wait time can be measured in terms of the time spent by each

vehicle in the queues, waiting to load and unload cargo. Of more concern to the

scenario is how much wait time is introduced in delivering to the final location. This

will be captured in comparing the cargo arrival curves at the final destination. The

robustness to network performance is key for this model as the logistical train would

need to continue if a vessel is disabled or destroyed. The impact of a disturbance will

be measured by its impact on the time to deliver cargo to shore.

Concepts and algorithms introduced in the literature discussed are applied and

categorized in to the follow concepts:

1. No dynamic routing

2. Current states

3. Predicted states

4. Predicted states with retesting

5. Predicted states with current state corrections

86

These concept will be further detailed and then experiments performed to measure

the impact on wait time and robustness to disturbance.

9.3.1 No Dynamic Routing

In this case, the connectors will have predetermined nodes to connect and will only

travel between a single set of nodes. The connectors will simply travel from one

location to an unload point and back, repeating the same process until no cargo

remains to be delivered or the cargo needed does not exist at the load location. Only

the location of the node, not the exact interface is selected. The interface is selected

upon arrival.

9.3.2 Routing with Current States

In reality, connectors could travel between several cargo supply locations, such as

staging base or intermediary port. This requires a process for selecting the loading

and unloading nodes to use for the next trip. The selection should be based on the

state of the simulation including the amount of cargo at a location and the queues.

The selection algorithm will have to considered each possible combination of load

and unload nodes because the cargo demand could be different. For example, the

demand for an intermediary port depends on what is needed at the ultimate goal,

what is already at intermediate locations and what is in route. For this example,

intermediary ports and Sea Base resupply will not be considered for simplicity, re-

sulting in a single demand. The queues will be approximated based on how many

connectors are at a loading node compared to the number of load points. The current

queue will be approximated as:

Queue =
Number of connectors

Number of load points
∗ Average load time

The loading location and the cargo selected will be determined when departing after

unloading based on the travel time, load time, available cargo, and predicted queue.

87

The amount of cargo selected is tracked so a connector would not be routing to a

location which would have no cargo upon arrival. Since each interface at an option

would have the same predicted queue, the interface to use is not selected until arrive

at the loading node.

9.3.3 Routing with Predicted States

Based on the concept of a threshold, this algorithm predicts the workload on a load

interface and routes according to this. Because the routing must occur upon leaving

the unloading point, this algorithm must also account for the time spent traveling, so

an exact threshold algorithm can not be implemented. It is proposed that improving

the routing algorithm will increase the accuracy that it predicts the queues and reduce

the overall queue time. By tracking where connectors have been routed, the queues

at locations can be predicted into the future to improve the estimations. The detailed

process on predicting queues at locations will be discussed in Chapter 10. The basic

process is:

1. For each load (pull) and unload (push) location, repeat steps 2 through 8

2. Identify cargo needed at the push location

3. Calculate what can be carried on connector - if no cargo is available or compat-

ible, the push location is removed from possibles

4. Identify possible spots to use based on cargo objects at location - this calculation

does not use the current spots, but all spots

5. Identify the fastest predicted wait from the possible spots, add loading time for

this connector to the selected spots predicted wait

6. Calculate expected wait time at pull location using predicted waits at possible

spots

88

7. Calculate travel time for current location to pull location then push location

8. Calculate total trip time, travel, waiting, and load/unloading where travel time

is subtracted from wait time

9. Identify best pull/push pair which define the next mission

10. Update global predicted wait matrices based on selected push/pull pair

The best pull/push pair is defined as that which maximizes the number of demands

serviced per unit time [151]. This will be inverted to a minimization of total trip time

to cargo delivered, seen below. The selection of route thus favors shorter trip times

and larger cargo load.

total trip time∑
iPixi

9.3.3.1 Calculation of Predicted Waits

The calculation of expected wait time is based on the equations below. This cal-

culation is based on using the estimated waits for each load and unload point and

subtracting off the estimated time to reach that location.

time to pull = pull distance/speed ∗ 60

time to pull+ = max(pullwaittime− time to pull, 0)

time to push = time to pull + pull loading time + push distance/speed ∗ 60

time to push+ = max(push waittime− time to push, 0)

total time = time to push + push loading time

9.3.4 Routing with Predicted States and Retesting

The previous formulation selected the exact interface upon leaving the unloading

location, but there may be cases where using a different interface would be an im-

provement. For example, a loading point could become unavailable or a connector

89

could not reach the anticipated location, such as in the case of necessary repairs. This

is captured by allowing the connector to reconsider its cargo to load and interface

selection upon arrival at its loading location. This will not change the routing, but

may change the cargo loaded and interface.

9.3.5 Predicted States with Current State Corrections

Incorporating reconsideration causes the vessels to no longer queue for a specific spot,

which could impact the predicted queue for the original load interface. To model the

impact of this effect on the predictive ability, the previous algorithm was combined

with the routing with current states algorithm. The vessels on route have predicted

waits for specific load interfaces but the vessels at a location are in a common queue

and these two waits are combined to form the predicted waits used for routing. The

interface option to use at that location is determined based on the actual queue and

cargo conditions at the load point.

9.4 Comparison of Routing Algorithm

The comparisons will be based on a formulation including one type of connector,

one type of cargo ship at the Sea Base, one type of beach landing spot, and one

stationary cargo supply node. In this case, the number of connectors and number of

beach spots will be equal so that queuing at the beach does not impact the results.

The supply node and the cargo ships will each have one interface with the stationary

node requiring one hour to load and the cargo ships requiring 90 minutes to interface

and load. The cargo ships will be located 100 nmi from shore and the cargo supply

node 200 nmi. The cargo at each Sea Base ship is 1500 pallets and the cargo supply

point has 3000 with the total beach demand of 3000 pallets.

To compare the waiting time for each algorithm, one cargo ship, one supply point,

and two connectors are considered. The basic formulation is shown in Figure 18

with one connector starting at the supply base and one at the cargo ship. A third

90

connector is added to see how queuing impacts the routing, starting at the cargo ship.

The dashed section of the figure is the addition to test the robustness to disturbance.

A second cargo ship is added that is available for the first 12.5 hours of operations

and then unavailable for 12.5 hours. Three connector will be used to maintain the

number of load interface equal to the number of connectors with the possibility of

queuing. For each comparison, the algorithms will be run for 10 simulation days.

The forth and fifth comparison will be to see the impact of the ratio of travel to

load time. First, the distance to the Sea Base is increased to 250 nmi and the supply

point to 1000 nmi. The loading time is 2.5 hours for the supply point and 5 hours

for the Sea Base cargo ship. Two cargo ships are included and three connectors, to

make reconsideration of interface a possibility. The Sea Base ships are then moved

to 50 nmi taking 10 hours to load and the supply point set to 200 nmi, taking five

hours to load.

9.4.1 Basis for Comparison

The routing algorithms will be compared based on comparing total time to deliver as

well as ability to predict trip times. This will include comparing time histories of the

cargo delivered and the total shortfall. The concept of shortfall was introduced in sec-

tion 5.5 and for this example will be calculated for every hour, in essence representing

the integral between the cargo delivered and the cargo demanded. A lower value is

desirable. The final plot will present the time history of the cumulative difference

between the predicted trip time and actual trip time.

9.4.2 Comparison 1

This scenario is the most basic formulation with two connector, one cargo ship at the

Sea Base and one supply point. This scenario was run for the five routing algorithms.

The time to complete is given in Table 9 with the No Routing algorithm failing to

complete within 10 days. Figure 19 shows the amount of cargo, in the percentage

91

Figure 18: Example Problem Formulation

Table 9: Summary Comparison Results - Time to Complete
Time To Complete (days)

Algorithm Comp 1 Comp 2 Comp 3 Comp 4 Comp 5
No routing 9.63 9.63 3.67 9.71 5.92
Basic Routing 7.25 5.00 3.29 8.46 6.63
Predictive Routing 7.25 5.00 3.42 8.46 5.92
Pred with Reconsider-
ation

7.25 5.00 3.29 8.46 5.92

Corrected Pred with
Reconsideration

8.04 5.46 4.29 - 6.21

92

of pallets delivered. This gives more detailed information that the time to complete

as it shows the basic routing, predictive routing and predicted with reconsideration

all yield the same time history. This overlay of results is also seen in Figure 20.

Figure 21 plots the cumulative difference between the actual trip time and predicted

trip time. A positive value represents higher actual trip times than predicted. The

no routing algorithm predicts the trip time perfectly, which is understandable since

with each connector traveling between a load point and unload point, no queuing

would occur and thus no additional waiting. The predicted and predicted with re-

consideration perform the same in this example as there is only one load point at

each location. These algorithms are very close in estimation, although the estimate is

slightly low near the beginning of the simulation. The basic routing algorithm greatly

overestimated the total trip time, although not as poorly as the corrected predictive

algorithm. This over prediction is due to the algorithm not considering vessels being

loaded during the time the vessel is traveling to the destination. The predictive with

correction further overestimates because it adds the vessels in transit to the wait time,

increasing the time estimate.

9.4.3 Comparison 2

Adding an additional connector improves the performance except for the no routing

case as seen in Figure 22. The no routing algorithm is not improved because it can

not take advantage of the additional connector since it is set to travel between the

Sea Base and shore, and its prediction is off by the queue time of one ship, after

which the two connectors at the Sea Base are separated by enough time and distance

that they do not queue again. One connector continues to travel to the supply point

even after cargo runs out at the Sea Base. This impact is also seen in Figure 23,

with the no routing shortfall greatly exceeding the other algorithms. Once again, the

other algorithms perform generally the same, with the corrected predicted algorithm

93

Figure 19: Comparison 1: Time History

Figure 20: Comparison 1: Shortfall

94

Figure 21: Comparison 1: Difference between Predicted and Actual Trip Times

lagging slightly. In Figure 24, the no routing is again seen to predict best since it does

not have any queuing in its formulation. The remaining algorithms over predict the

total trip time with the predicted routing and predicted with reconsideration yielding

the best estimation.

9.4.4 Comparison 3

This comparison adds a disruption in the loading at the Sea Base with the unavail-

ability of an additional cargo ship. This ship is only unavailable for a short amount

of time and doubles the amount of cargo available at the Sea Base so the time to

complete is faster in all cases as seen in Figure 25. The weakness of the basic routing

and corrected predicted routing is seen in the prediction of the trip time in Figure 27.

No routing still predicts well as queuing only occurs when one ship is unavailable and

this queuing spaces out the two connectors so it does not occur again as the travel

and unload time are greater than the time to load. Predicting with reconsideration

95

Figure 22: Comparison 2: Time History

Figure 23: Comparison 2: Shortfall

96

Figure 24: Comparison 2: Difference between Predicted and Actual Trip Times

does slightly better than only predictive because the predictive algorithm could not

adjust to the missing connector as quickly since it could not change the load point to

use once the ship left the beach, seen in the gap in the shortfall level in Figure 26.

If a connector departed the beach while the ship was present but arrived during its

unavailability, this connector would be unable to be loaded at the other ship even if

it was available, creating additional queuing and driving up the error in prediction of

total trip time. The basic queuing also included reconsideration, in that the actual

connection point is not selected until arrival at the load point, thus it is not surprising

this algorithm performs well with a disturbance.

9.4.5 Comparison 4

The fourth comparison moves the ships and supply point further from the delivery

point to test the algorithms performance when travel time is much greater than

loading and unloading time. This slows down the delivery as seen in Figure 28 and

97

Figure 25: Comparison 3: Time History

Figure 26: Comparison 3: Shortfall

98

Figure 27: Comparison 3: Difference between Predicted and Actual Trip Times

gives further insight into the algorithms weaknesses. The corrected prediction with

reconsideration seems to make a poor selection, separating itself from the basic routing

by sending all the connectors to the supply point. This is most likely due to its poor

prediction of trip time as seen in Figure 30. This algorithm does not complete delivery

during the simulation time and the shortfall would continue to increase, exceeding

the shortfall of the no routing algorithm, as seen in Figure 29.

9.4.6 Comparison 5

Decreasing the distance to the Sea Base and load point makes the total travel time

less than the loading time at the Sea Base. Figure 31 illustrates the predictive routing

algorithms and no routing perform the best and the basic routing algorithm has the

greatest time to complete delivery. This performance is mirrored in the shortfall,

Figure 32. Figure 33 shows the basic routing underestimates the total time because

it does no account for the vessels in travel and corrected prediction continues to

99

Figure 28: Comparison 4: Time History

Figure 29: Comparison 4: Shortfall

100

Figure 30: Comparison 4: Difference between Predicted and Actual Trip Times

overestimate the total trip time.

9.4.7 Stochastic Tests

Thus far, all of the comparisons have been for deterministic, but in reality, the load

times would not be a single number. Although not widely considered in this thesis,

the algorithms will be compared using the formulation for Comparison 4 and 5, but

with a distribution on the wait time. The average wait time will be used for the

routing algorithm, but the actual wait time will be a triangular distribution varying

20 percent in both directions.

9.4.7.1 Comparison 4

Running 250 repetitions of the Comparison 4 scenario, the distributions for the time

to deliver and total error in prediction of trip time are plotted in Figure 34, Figure

35 and 36; showing the stability and quality of the algorithms. Note the corrected

predicted routing does not complete the delivery for any case so it is not included in

101

Figure 31: Comparison 5: Time History

Figure 32: Comparison 5: Shortfall

102

Figure 33: Comparison 5: Difference between Predicted and Actual Trip Times

Figure 34. The shortfall for this algorithm would continue to increase if the simulation

time was expanded, while the other algorithms have reached the demanded cargo

level so no additional shortfall would accumulate with additional simulation time. No

routing incurs the least total error but takes the longest to complete for all cases. The

distribution for basic routing and predictive routing with and without reconsideration

perform with the same general range. Without reconsideration is shifted slightly to

the right with a slightly longer time to complete. All three of these algorithms have

a small range, so the algorithms are stable.

9.4.7.2 Comparison 5

Two hundred and fifty repetitions were run for the scenario in Comparison 5 and the

distributions are shown in Figure 37, Figure 38 and Figure 39. The predicted routing

with and without reconsideration are the most consistent in their prediction time

error and the time to complete. With reconsideration preforms slightly better than

103

Figure 34: Distribution of Time to Complete

Figure 35: Distribution of Shortfall

104

Figure 36: Distribution of Difference between Predicted and Actual Trip Times

without, but both are better than the basic routing and corrected prediction, which

incorporates the basic routing calculations. No routing performs the best because the

case selected was simple to manually route the vessels. In a larger case, it would be

impossible to select the routes that gave the best results, but in this case it provides

a good comparison to examine the variability introduced with a dynamic algorithm,

as seen in the increase in spread of the time to complete.

9.5 Scalability

To demonstrate their routing capabilities, each algorithm was modeled for a simple

case, but it is important that the algorithm is scalable to a large scale model. The

challenge here is the increase in nodes and connectors. As was discussed in the

motivation, no routing is not a viable option as it is undesirable to have to determine

in advance the connection to make. Specifically, this algorithm would perform very

poorly if a limited amount of cargo was available at one node.

105

Figure 37: Distribution of Time to Complete

Figure 38: Distribution of Shortfall

106

Figure 39: Distribution of Difference between Predicted and Actual Trip Times

The use of the current state of the model is not a scalable option. As different

types of interfaces are included, the question would arise as to how to calculate the

current queue. Should the interface times for each type of interface be averaged?

This is further complicated when it is considered that some interfaces on a single

cargo object could be incompatible and this not usable at the same time. While the

estimation of this average queue length is still possible, it becomes computationally

intensive as the number of types of vessels and cargo locations is increased. Each time

a route is selected, it is necessary to calculate the number of connectors and cargo

objects at each geographic location. This would need to be repeated for every type of

connector as the wait times for different types could vary. This further complicates

the calculation of the estimated queue as different types of connectors could use the

same interface and the algorithm would have to be expanded to incorporate each

type of vessel and their relative wait time. The calculation for this algorithm would

grow proportional to the number of vessels multiplied by the number of geographical

107

locations.

The use of predicted states does not have the algorithm development issues seen

with current state algorithms. Each interface is handled separately, so the ability

to use different interfaces and the use of an interface by different connectors does

not require additional computations. This method does require the maintenance of

a global matrix of size n x m , where n is the total number of connectors and cargo

nodes and m is the number of interface options in the model. The matrix does not

grow with the number of geographical locations, as the location of each object is an

existing array in the model.

Overall, the use of a predicted state algorithm is more scalable as the calculation

method does not have to be modified with the modification of the vessels included

in the model. The predicted state algorithm more fully meets the initial goals of a

dynamic routing algorithm in order to have the routing be able to incorporate changes

in the architectural structure of the model without modification.

9.6 Selection of Routing Algorithm

It is desired to select a routing algorithm that does not introduce additional wait

time into the performance of the simulation. A series of simulations were performed

to compare five possible algorithms by tracking the overall performance and compare

the estimated trip time compared to the actual trip time. While the baseline case

of preset routings could accurately predict the trip times, it introduced lag into the

overall performance and does not create a flexible algorithm that can be expanded

to a real size problem. The expandability and trip prediction capability are lacking

with the use of current states as the algorithm or to correct the predictions. Taking

into consideration all of the comparisons, the predictive algorithms performed the

most consistently and the predictive algorithm with reconsideration is most able to

handle and estimate in the case of disruptions. The inclusion of a distribution on the

108

wait times identified the strength including reconsideration with taking advantage

of changes that can speed the loading process. Additional probabilistics, such as

repairs, would further improve the performance of the predictive with reconsideration

algorithm. This algorithm is scalable to a heterogeneous mix of vessels of any size

and number of supply nodes.

9.7 Special Case - Multiple Unload Points

As the size of the logistics craft increases, a single load of cargo may be more than a

single beach requires. In this case, hopping between beaches may be advantageous,

fulfilling the cargo requirements at two or more beaches in a single trip. Selecting

the hops is difficult because the trip will take longer but would have a fuller vessel

and the number of hops to make depends on the cargo demand. To select the route

between shore nodes, a traveling salesman problem (TSP) will be combined with the

existing dynamic loading algorithm.

The traveling salesman problem is a classical formulation for routing by selecting

nodes to visit. One TSP is prize collecting, where only profitable nodes are visiting

with an edge cost incurred for traveling between nodes [123]. The goal is to leave a

home location, visit a sequence of locations and return to the home location while

incurring the lowest cost [46]. It is not necessary to visit all of the available locations,

so this is a traveling salesman subtour problem, which is still shown to be NP-hard

[197]. To capture this problem, n(n-1) variables, where n is the number of locations

to visit, are needed to represent the connections between the locations in addition to

the n variables for the locations to visit [142]. This problem has been shown to be

solvable using branch and bound for up to 300 verticies [84] so the complexity will

not be an issue for scenarios of realistic size for this problem.

The general requirements for setting up a knapsack constrained TSP was described

by Tang and Wang [177] and has been modified from a penalty paid for unvisited

109

customers formulation. The objective is to minimize the travel costs while maximizing

the profit. This is subject to the assignment problem of locations to visit and a

constraint that each location can be visited at most, once. Additional constraints

require the depot to be included in the route and eliminates subtours. Knapsack-like

constraints enforce a minimal profit and the maximum capacity of the salesman. This

formulation leads to the conclusion that the TSP formulation can be added to the

knapsack and assignments problem used in the dynamic loading algorithm.

9.7.1 Objective Function

The objective function must balance the profit of the cargo delivered with the travel

cost of the trip. To use a branch and bound formulation, the objective function is a

linear combination of the variables [84] or ones of the objectives can be constrained

with a specific bound [74]. Both of these works suggests a weighted linear combination

of the form below where M is sufficiently large, pkxk is the profit of the verticies visited

and cij is the cost of the traveled leg xij.

Maximize

M
∑

k
pkxk −

∑
i,j
cijxij

For this work, the priority, pk, it already normalized and cij is in minutes. To make

these two values compatible in one equation, the total time cost will be normalized for

the shortest possible delivery trip. This compares the relative priority to the relative

trip time:

Maximize ∑
k
pkxk −

∑
i,j

cijxij
min(cij)

9.7.2 Formulation of Linear Program

This formulation combines the dynamic loading algorithm with the traveling salesman

constraints. The demand constraint used in the loading will be modified for the total

110

demand to a demand constraint based on the beach unload locations to visit. The

decision variables are:

xi amount of cargo type i loaded

yj =

 0 if not using load point j

1 if using load point j

zk =

 0 if not using beach k

1 if using beach k

nm,p =

 0 if not traveling from m to p

1 if traveling from m to p

cm,p cost of traveling from m to p

To form the objective function, the priority of the cargo is weighted against the

time to complete the trip. The cost of travel includes an estimated wait time for

each beach location added to the time to unload at that location. The complete LP

formulation becomes:

Maximize

M
∑

i
Pixi −

∑
m

∑
pcm,pnm,p

minimum(cm,p)

111

subject to:

∑
i
weightixi ≤ maxlift∑
i
areaixi ≤ maxarea

xi ≥ 0 for all i

xi −
∑

j
cargoj,iyj ≤ 0 for all i∑

j
yj = 1

xi −
∑

k
demandi,kzk ≤ 0 for all i∑

m
nm,p ≤ 1 for all p∑

p
nm,p ≤ 1 for all m∑

m
nm,0 = 1∑

p
n0,p = 1∑

p
nm,p −

∑
m
nm,p = 0 for all m,p

nm=p = 0 for all m,p

nm,p + np,m ≤ 1 for m,p ≥ 1

zk −
∑

m
nm,p = 0 for all p

Where the first three equations are the knapsack problem. The next two are the

load assignment problem. The next equation is the demand based on the beaches

selected. The last eight constraints are the traveling salesman, where not all the

beaches must be visited, but the trip must start and end at beach 0, which is a

dummy depot. The connector can not return to the same beach and may not have

subtours. The last equation resolves the trips selected to beaches visited.

112

9.7.3 Small Example

To demonstrate the execution of this LP, a small example that is solvable by hand

is executed. A single type of cargo must be delivered to three beaches. The demand

for beach 1 is 1, beach 2 is 4 and beach 3 is 3. It is desired to solve which of these

beaches should be visited and how much cargo is loaded from one of the two available

supply ships. The cargo ships each have 5 units of cargo available. The cargo weights

10 LT and requires 5 sqft to transport with the connector having a capacity of 100

LT and 100 sqft.

cm,p combines the time to travel between the locations, estimated queues, and the

time to unload at that beach.

cm,p = max(travel time, predicted queue) + time to unload

For this example, no additional queue time is added

cm,p =

Travel Time

0 0 0 0

0 0 10 20

0 10 0 15

0 20 15 0


+

Unload Time

0 0 0 0

0 10 10 10

0 15 15 15

0 18 18 18


=

Total Time

0 0 0 0

0 10 20 30

0 25 15 30

0 38 33 18


This results in transporting 5 cargo items and visiting beach 1 to deliver 1 and

beach 2 to deliver 4. The order is inferred from the traveling to row to column. The

dummy beach 0 requires the journey to start at stop at that location, so nm,p is read

starting in the first row:

113

cm,p =



Beach0 Beach1 Beach2 Beach3

Beach0 0 1 0 0

Beach1 0 0 1 0

Beach2 1 0 0 0

Beach3 0 0 0 0


The demand for beach 1 was increased to beyond the maximum capacity of the

connector and the supply at each ship increased to 15 units, the algorithm selects

to only visit beach 1, delivering a full load. Returning to the original set-up, the

algorithm was repeated for larger time penalties, having the beaches require 100 min

to travel between, but keeping the same loading times. This resulted in only beach

2 receiving a delivery of 4 cargo items, due to the large travel times outweighing the

cargo that would have been delivered to more beaches. These simple tests have shown

the hopping algorithm makes logical decision on the selection of cargo to load based

on the relative trip lengths and the amount of cargo that can be carried.

9.7.4 Modification to Overall Routing Algorithm

Incorporating multiple unload locations will have minimal impact on the routing

algorithm structure and will not change the trade-offs already performed. If hopping

is available for a connector, the cargo selection algorithm will be replaced, adding to

the total travel time in addition to outputting the cargo to load. The total travel

time will be based on the predicted queue to the first beach location and the total

trip time to complete the hops and unload times at selected locations. The option

to visit multiple unload locations incorporated a traveling salesman problem into the

dynamic loading algorithm and can be incorporated without changing the process for

the dynamic routing algorithm.

114

CHAPTER X

DETAILED MODEL DESCRIPTION

This chapter details the application of the concepts that have been developed thus

far into an operating model of the Sea Base. The description demonstrates the appli-

cation of DES to the Sea Base. Following the general considerations of using DES, a

detailed description of the incorporation of the scenario, loading, and routing prob-

lems steps through the matrix formulation.

10.1 Notes about Modeling using DES

To formulate a model as a discrete event simulation, each agent must go through

a process of waiting and queuing. Each waiting step in the process takes a certain

amount of time, determining when the next event will occur. For example, when the

MEC is traveling from the Sea Base to shore, it must cover a certain distance and

the speed is known so time between the events of leaving the Sea Base and arriving

at shore is calculated from the known information and no additional calculations are

made for that MEC during that time. For queues, when an event occurs, the queue

is reexamined to see if the object can be moved forward. For example, vessels queue

waiting for an open beach landing spot and when a vessel leaves a landing spot, it

triggers the next vessel to move to the next step of beaching and unloading.

SimPy was selected as the framework for constructing this simulation because it

is free and open source. The python based construct allows for the incorporation of

additional modules, such as NumPy and LPSolve55, used in this model for matrix

manipulation. There are no limits in the size of imported or exported data through

the use of comma delimited files. SimPy is an object oriented, text based framework

that enables object oriented programming and the development of common scripts as

115

modules that can be used for different types of objects.

10.2 Object Properties

The connector, supply vessels, resupply points, and beaches are initialized as indi-

vidual objects and undergo a number of common processes as was discussed in the

previous chapter. These processes were abstracted in the model so a single section

of code could be used for all types of objects. To use these general scripts, each

object must have a common set of attributes defined. Individual characteristics of

the objects are stored as properties of the object that are continually updated in a

global matrix. The spots vector tracks the types of interfaces that the object can use

and has available while the wait vector tracks the time required to load or unload

using that interface. The cargo on board or ashore is tracked as a vector, using the

generic cargo vector as a base. The cargo wanted vector is the cargo a vessel needs

for its next mission or cargo desired by an on-shore location. The cargo to be carried

is determined by a subroutine using the lift capability and available area as well as

the efficiencies. A cargo capability vector identifies what types of cargo can not be

carried on an object.

The location is where the object starts and the goal is the endpoint of the mis-

sion. Each object has a type, for example, a resupply point, beachhead, and cargo

ships when stationary are ’cargo’ objects that supply cargo while a ’connector’ object

transfer cargo between cargo points. It is probable, but not necessary for a vessel to

remain as a single type of object throughout the simulation. For example, a cargo

ship leaving a port would be a connector but once it is on station at the Sea Base, it

would be a cargo object. When an object is in motion, it must have a purpose, either

to pull cargo to meet a cargo desired or to push its cargo on board to a destination.

The fuel usage of an object must be included for different levels of effort such as

full power and idling. More detailed fuel equations can be incorporated, but currently

116

an average or best guess fuel usage is an input to the analysis. Repair requirements

are modeled as a necessary wait after the mean time between failures is exceeded and

the object reaches a location where repair can be completed. This requires the input

of a mean time between failures and a mean time to repair.

For some types of objects, these properties are not applicable but a placeholder

must be used since these properties will be used to develop matrices and the place-

holders assure alignment of rows. Matrices are compiled for location, spots, cargo

have, cargo want and type and as these variables are edited as individual properties

of the object, they must also be updated in the overall matrices.

10.3 Generic Process

The most generic process used in this model is for a basic connector. This process is:

1. Identify mission to set the cargo load point and unloading point- this will be

described as a separate procedure

2. If needed, travel to load point

3. Identify cargo vessels or objects at load location

4. Identify cargo to load

5. Down select cargo vessels based on cargo available

6. Select quickest interface to load cargo on down selected cargo vessels, remove

this interface and incompatible interface from those available

7. Remove cargo from cargo available on cargo vessel

8. Wait loading time and cargo is added to connector

9. Free up used and incompatible interfaces

10. Travel to unloading point

117

11. Identify cargo objects at unload location

12. Down select based on which object needs the cargo on the connector

13. From these cargo objects, select quickest interface

14. Remove this interface and incompatible ones

15. Wait time to unload

16. Cargo is now available at unload location

17. Release interface and incompatible spots

18. Identify next mission

The process to identify the mission is listed below and summarized in Figure 40:

1. For each load (pull) and unload (push) location, repeat steps 2 through 8

2. Identify cargo needed at the push location

3. Calculate what can be carried on connector and is available at pull location

4. Identify possible spots to use based on cargo objects at location - this calculation

does not use the current spots, but all spots

5. Identify the fastest predicted wait from the possible spots, add loading time for

this connector to the selected spots predicted wait

6. Calculate expected wait time at pull location using predicted waits at possible

spots

7. Calculate travel time for current location to pull location then push location

8. Calculate total trip time, travel, waiting, and load/unloading where travel time

is subtracted from wait time

118

9. Identify best pull/push pair which define the next mission

10. Update global predicted wait matrices based on selected push/pull pair

10.4 Abstracted Processes

Whenever possible within the model, the concepts were abstracted to a more gener-

alized script allowing the reuse of large sections of the code by every object. These

code section are modular and represent one step in the calculations, so the section

can be rearranged as needed for a class of objects. A brief overview of the scripts are

provided here and an example execution of the mathematical construct follows.

Given a location and a goal, the distance calculating script calculates the distance

to be traveled by the object. This uses a look-up table provided by the user. Addi-

tional locations and goals may be added but must be included in the distance look-up

table.

Once a connector object arrives at a location, it will need to find the cargo to

load (if loading), a cargo object that has the cargo it needs or that needs the cargo

the connector is carrying. This process was broken down into several separate scripts

so the scripts can be used individually or as a complete process, depending on the

information needed. The first section performs two comparisons, the first finds the

objects, which include other vessels and beach landing zones, with locations that

match the goal of the connector. The second finds which of those objects are cargo

sources/sinks. If the connector is looking to load cargo, it must select the cargo to

load. This is based off a prioritized list of cargo that needs transport and the lift and

area inputs, along with the efficiencies of the connector.

The next section finds the objects that have the desired cargo or want the cargo

carried. If the connector is a ”pull” then the compiled ”cargo have” matrix is com-

pared row by row to the vector of ”cargo want” for the connector. In the case of

”push”, the connectors ”cargo have” is compared to the compiled ”cargo want”. A

119

F
ig

u
re

4
0
:

M
is

si
on

S
el

ec
ti

on
P

ro
ce

ss

120

vector is developed that identifies which objects match the desired cargo needs of the

connector. It is also necessary to see which objects have interface options available

that are usable by the connector. The cargo and interface compatibility are com-

bined with the location and type vectors previously calculated and are applied to

the combined spots matrix. This yields a matrix which identifies only the objects

that have the correct object type, location, and cargo as well as compatible interface

capabilities.

The next step is to identify which of these identified objects and interface types

would be the quickest. The wait vector for the connector is applied and the minimum

interface time selected. The script has now identified the object that the connector

can interface with, the type of interface to be used and the amount of time it will

require. The value in the compiled spots matrix for this spot is changed to zero

and is no longer available for another asset. The different interface methods on a

single object may not be compatible as they may require the use of the same physical

equipment or manpower. The next step is to identify these incompatible interfaces

and remove those options from the compiled spots matrix as well. The interface

type and the incompatible interfaces are stored and are restored in the spots matrix

once the loading or unloading is completed. The connectors ”cargo want” and ”cargo

have” variables are updated to reflect the action as well as the rows for the connector

and the cargo object in the compiled cargo have and cargo want matrices.

The next step is to calculate the queuing, loading/unloading and travel times.

A global matrix is used to track the queuing times based on which connectors are

waiting to use each spot. This includes connectors waiting at, and traveling to, the

spot. The loading/unloading times are given by the initial input for each connector

type. These queuing and loading/unloading times are summed to create a resultant

matrix. Then the spot with the shortest time is extracted. Next, the travel time is

calculated using the distance to the destination and the speed of the calculation. All

121

of the times are summed together while keeping in consideration the fact that the

queuing time will be reduced over the course of travel. Lastly, these calculations are

repeated for every possible pair of push and pull locations and the pair associated

with the shortest total time is extracted. The connector’s new goal is then set to

the pull location. The corresponding push location is recorded and will become the

connector’s goal after it has picked up cargo.

In order for the dynamic goal setting function to work, two global matrices called

Predicted waits and Predicted cargo are used to keep track of predicted queuing time

and cargo use, respectively. After a connector selects a new goal, it decides which

interface it will use and the associated loading/unloading time. A matrix called wait

time is created to hold this predicted loading/unloading time. Next, if the connector’s

mission is ”pull”, it decides what cargo it wants using the previously defined choose

cargo function. A matrix called predicted cargo is created to hold this predicted

cargo use. Then, the wait time and predicted cargo matrices are added to the global

matrices, Predicted waits and Predicted cargo, respectively. These global matrices

are available for use by all connectors when they decide on a new goal. Finally, when

a connector is done loading/unloading, it removes its wait time and predicted cargo

matrices from the respective global matrices.

10.5 Example Mathematical Construct

A connector has arrived at the Sea Base and wants to load for its next trip to shore,

then travels to shore.

Name Matrix =



ISB

Cargo

Connector

Beach



122

Connection Options: Cargo ship (side and rear) and connector landing on beach

Step 1: Identify cargo objects at Sea Base

Location

ISB

SeaBase

SeaBase

Beach


== SeaBase→

Location Vector

0

1

1

0


Type

Cargo

Cargo

Connector

Cargo


== Cargo→

Type Vector

1

1

0

1



Min



Location Vector

0

1

1

0


,

Type Vector

1

1

0

1




=

Cargo at Location

0

1

0

0


Step 2: Identify cargo that needs to be brought to shore and will fit on connector.

The connector is looking to load cargo so its mission is to ”pull” cargo from cargo

objects.

Cargo Schedule: [10 0 30 40] Need to deliver 10 of cargo category 0, 30 of category 2

and 40 of category 4.

Cargo Priority: [1 1 2 2] Categories 0 and 1 should be delivered before 2 and 3.

Weight vector:[10 15 20 25] (in LT) and Area vector: [50 100 120 80] (in sqft)

Compatibility Vector: [1 1 1 1], so the connector can carry any type of cargo that will

fit aboard. Implemented by multiplying the cargo schedule element by element with

the compatibility vector to form the maximum number of that type of cargo carried

123

on board (Needed vector in LP formulation).

Linear Program formulation: New Priority (Pi):

Cargoweighti
Avgweight

+ Cargoareai
Avgarea

+ 1

Priorityi

Maximize
∑

i
Pixi

subject to: subject to:

∑
i
weightixi ≤ maxlift∑
i
areaixi ≤ maxarea

xi −
∑

j
cargoj,i ∗ yj ≤ 0 for all i :∑

j
yj = 1

xi ≥ 0 for all i

xi ≤ neededi for all i

For max lift of 400 LT and max area of 5000 sqft, the solution of this LP gives a

loadout of 10 from category 0 and 15 from category 2 which is 400 LT and 2300 sqft.

This load-out is weight limited.

Note: This formulation is for a connector without the option for multiple unload

locations. For that case, this LP formulation would be replaced as described in

section 9.7.2.

Step 3: Find a cargo object that has needed cargo and available interface usable

by MEC
Cargo Have

20 8 24 10

24 6 20 5

0 0 0 0

12 4 30 10


≥

Cargo want(
10 0 15 0

)
→

Needed Cargo

1

1

0

1



124

Min



Needed Cargo

1

1

0

1


,

Cargo at Location

0

1

0

0




=

Needed at Location

0

1

0

0



Min



Spots

1 0 0 0

0 1 1 0

1 1 0 1

0 0 0 1


,

Connector Spots(
1 1 0 1

)


=

Usable Spots

1 0 0 0

0 1 0 0

1 1 0 1

0 0 0 1



Min



Usable Spots

1 0 0 0

0 1 0 0

1 1 0 1

0 0 0 1


,

Needed at Location

0

1

0

0




=

Available Spots

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


Note: If no cargo object exists with the needed cargo and an available interface, the

connector will queue and restart at Step 1.

Step 4: Select quickest interface, remove it and incompatible interfaces from those

available
Available Spots

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


∗

Wait Times(
10 60 0 45

)
=

Wait for Spots

0 0 0 0

0 60 0 0

0 0 0 0

0 0 0 0


The connector will take 60 min to load, using the side connection of the cargo ship.

Incompatible spots are spots that can be used at the same time for load and/or

unloading. When one of these spots are selected, it removes the incompatible spots

125

as well.

Incompatible

pier side rear beach

pier 1 0 0 0

side 0 1 1 0

rear 0 1 1 0

beach 0 0 0 0


∗

Selected Spot(
0 1 0 0

)
=

Spots to Remove(
0 1 1 0

)

Spots

1 0 0 0

0 1 1 0

0 1 0 1

0 0 0 1


−

Spots to Remove

0 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0


=

Spots

1 0 0 0

0 0 0 0

1 1 0 1

0 0 0 1


Step 5: Reserve cargo on cargo object and load cargo

At start of loading, cargo is no longer available on cargo ship:

Cargo Have

20 8 24 10

24 6 20 5

0 0 0 0

12 4 30 10


−

Cargo want(
10 0 15 0

)
=

Cargo Have

20 8 24 10

14 6 5 5

0 0 0 0

12 4 30 10


After waiting the loading time (60 min in this example), the cargo is now on board

the connector

Cargo want(
10 0 15 0

)
→

Cargo want(
0 0 0 0

)
and

Cargo Have

20 8 24 10

14 6 5 5

10 0 15 0

12 4 30 10



126

Step 6: Free up interface option(s)

Spots

1 0 0 0

0 0 0 0

1 1 0 1

0 0 0 1


+

Spots Released

0 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0


=

Spots

1 0 0 0

0 1 1 0

1 1 0 1

0 0 0 1


Step 7: Change mission and travel to shore. At this point, the connector’s goal

becomes to push cargo to a cargo object. In this example, the location of the goal is

Beach. The connector must travel from its current location, Sea Base, to Beach by

looking up the distance between the locations.

Distances

ISB SeaBase Beach

ISB 0 200 300

SeaBase 200 0 100

Beach 300 100 0


Step 8: (Step 1 for beach) Identify cargo object at beach

Min



Location Vector

0

0

1

1


,

Type Vector

1

1

0

1




=

Cargo at Location

0

0

0

1


Step 9: (Step 3 for push) Find a cargo object that needs cargo on connector and has

an available interface usable by connector

Cargo Want

0 0 0 0

0 0 0 0

0 0 0 0

10 0 30 40


>=

Cargo have(
10 0 15 0

)
→

Desire Cargo

0

0

0

1


127

Min



Desire Cargo

0

0

0

1


,

Cargo at Location

0

0

0

1




=

Needed at Location

0

0

0

1



Min



Spots

1 0 0 0

0 1 1 0

1 1 0 1

0 0 0 1


,

Connector Spots(
1 1 0 1

)


=

Usable Spots

1 0 0 0

0 1 0 0

1 1 0 1

0 0 0 1



Min



Usable Spots

1 0 0 0

0 1 0 0

1 1 0 1

0 0 0 1


,

Needed at Location

0

0

0

1




=

Available Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


Step 10: (Step 4) Select quickest interface, remove it and incompatible interfaces from

those available

Available Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


∗

Wait Times(
10 60 0 45

)
=

Wait for Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 45


The connector will be unloaded at the beach in 45 min.

128

Incompatible interfaces are determined as seen above, for this case there are no in-

compatible interfaces for the beach.

Spots

1 0 0 0

0 1 1 0

1 1 0 1

0 0 0 1


−

Spots to Remove

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


=

Spots

1 0 0 0

0 1 1 0

1 1 0 1

0 0 0 0


Step 11: (Step 5 in reverse) Unload cargo

After the cargo is unloaded, there is no cargo on the connector and the cargo is now

on the beach

Cargo Have

20 8 24 10

4 6 5 5

10 0 15 0

12 4 30 10


+

Cargo have(
10 0 15 0

)
=

Cargo Have

20 8 24 10

4 6 5 5

10 0 15 0

22 4 45 10


Cargo have(

10 0 15 0

)
→

Cargo have(
0 0 0 0

)
Step 12: (Step 6) Free up interface option(s)

Spots

1 0 0 0

0 1 1 0

1 1 0 1

0 0 0 0


+

Spots Released

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


=

Spots

1 0 0 0

0 1 1 0

1 1 0 1

0 0 0 1


Note: If multiple unload points are possible, the connector would change its goal

to its next beach option, such as an austere port, and repeat steps 7 - 12.

Step 13: Change mission

The connector has completed it ”push” mission and now much be given a new mission

129

and goal. The connector will choose a pair of pull and push locations.

Possible pull locations: Sea Base and Intermediate Staging Base

Possible push locations: Beach

Step 14: Select compatible pull locations for the Beach

Both the Sea Base and Intermediate Staging Base are compatible pull locations to

push at the Beach.

Step 15 : : Calculate expected wait times at Beach Identify cargo that needs to be

brought to Beach and will fit on connector. (Step 2)

Cargo want(
0 0 15 5

)
Identify cargo object at Beach (Step 8)

Min



Location Vector

0

0

1

1


,

Type Vector

1

1

0

1




=

Cargo at Location

0

0

0

1


Find a cargo object that needs the cargo that is expected to be on the connector

and has an available interface usable by connector. The interface is not restricted by

current availability. (Step 9)

Cargo Want

0 0 0 0

0 0 0 0

0 0 0 0

0 0 15 40


>=

Cargo want(
0 0 15 5

)
→

Desire Cargo

0

0

0

1



130

Min



Desire Cargo

0

0

0

1


,

Cargo at Location

0

0

0

1




=

Needed at Location

0

0

0

1



Min



All Spots

1 0 0 0

0 1 1 0

1 1 0 1

0 0 0 1


,

Connector Spots(
1 1 0 1

)


=

Usable Spots

1 0 0 0

0 1 0 0

1 1 0 1

0 0 0 1



Min



Usable Spots

1 0 0 0

0 1 0 0

1 1 0 1

0 0 0 1


,

Needed at Location

0

0

0

1




=

Available Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


Note: ”Cargo want” is used instead of ”Cargo have” since it is the cargo that the

connector is expected to have. Additionally, ”All Spots” is used instead of ”Spots”

in order to account for the interfaces that are currently occupied.

Find the expected wait for all possible interfaces. First the expected loading times

are calculated (Step 10) and then the expected queuing times are added. In this

example, there are two similar connectors queued at the beach.

Possible Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


∗

Wait Times(
10 60 0 45

)
=

Loading Time for Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 45



131

Possible Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


∗

Predicted Waits

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 45


=

Predicted Wait for Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 90


Loading Time for Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 45


+

Predicted Wait for Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 90


=

Wait for Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 135


Select the quickest interface. The loading time (45 min) and expected wait (90

min) are recorded for this interface. The incompatible interfaces are determined

and recorded (there are not incompatible interfaces for the beach).

Step 16: Calculate expected wait times at Sea Base (Step 14)

Loading Time for Spots

60 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


+

Predicted Wait for Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


=

Wait for Spots

60 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Select the quickest interface. The loading time (60 min) and expected wait (0 min) are

recorded for this interface. The incompatible interfaces are determined and recorded

as was done in step 4.

Step 17: Calculate total time for Beach, Sea Base pair

Calculate travel time from current location to pull location to push location

Distance from current location (Beach) to pull location (Sea Base) to push location

(Beach) = 200 nmi

Travel time =
Distance

Speed
=

200nmi

20knts
∗ 60 = 600min

132

Combine loading time, wait time, and travel time:

Total time = 45min+ 600min = 645min

In this example, the expected wait time (90 min) is less than the travel time (600

min), so it is not included. This is because the other connectors in the Beach queue

will have finished unloading by the time the connector has returned to the Beach.

Step 18: Calculate expected wait times at Intermediate Staging Base (Step 16)

Loading Time for Spots

10 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


+

Predicted Wait for Spots

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


=

Wait for Spots

10 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Select the quickest interface. The loading time (10 min) and expected wait (0 min) are

recorded for this interface. The incompatible interfaces are determined and recorded

(there are not incompatible interfaces for the pier).

Step 19: Calculate total time for Beach, ISB pair (Step 17)

With a similar method, the total time is calculated to be:

Total time = 10min+
600nmi

20kts
∗ 60 = 1810min

Step 20: Select the best pull/push pair

Goodness of pair =
total trip time∑

iPixi

Since the same cargo is available at both locations, the connector will pull at the

Sea Base and push at the Beach since the total time is less. If no pair is found, the

connector will wait at location and intermittently recheck for a new mission.

Step 21: Update the global matrices

133

Store predicted loading times at pull and push locations.

Pull Loading Time

0 0 0 0

0 60 0 0

0 0 0 0

0 0 0 0


∗

Spots to remove(
0 1 1 0

)
=

Pull Predicted Wait

0 0 0 0

0 60 60 0

0 0 0 0

0 0 0 0


Push Loading Time

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 45


∗

Spots to remove(
0 0 0 1

)
=

Push Predicted Wait

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 45


Predicted Wait

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 90


+

Pull Predicted Wait

0 0 0 0

0 60 60 0

0 0 0 0

0 0 0 0


+

Push Predicted Wait

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 45


=

Predicted Wait

0 0 0 0

0 60 60 0

0 0 0 0

0 0 0 135


Store predicted cargo pickup from pull location and add to global matrix.

Predicted Cargo

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


+

Predicted Cargo Usage

0 0 0 0

0 0 15 30

0 0 0 0

0 0 0 0


=

Predicted Cargo

0 0 0 0

0 0 15 30

0 0 0 0

0 0 0 0


Step 22: The goal is changed to the chosen pull location and the push location is

stored as the following goal (used in Step 7). The entire process is repeated.

10.6 Processes for Different Types of Vessels

When generating DES in SimPy, it is important to note that calculation may be

completed in common scripts, such as those described above, but all queues and

134

waits must be executed in the object’s process. For example, the minimum wait

time to reload can be found using the same script for the MEC and LCAC but the

hold statement to model that wait must be in the individual object process. The

process for connector objects will resemble the example process detailed above and

all the mathematical constructs remain the same, although some may be removed and

the order changed as determined by the connector type. Since many of the vessels/

vehicles go through similar processes, a hierarchy was created so similar objects inherit

common properties and processes.

Connector

• Supply Ship (Surface)

– Medium Exploratory Connector (MEC)

– Joint High Speed Vessel (JHSV)

– Dry Cargo/Ammunition Ships (T-AKE)

– Logistics Support Vessel(LSV)

– Landing Craft Utility 2000 class(LCU-2000)

• MV-22 Osprey (Aerial)

• Carried to Theater Connector (Organic, Surface)

– Improved Navy Lighterage System (INLS)

– Landing Craft Utility 1600 class (LCU-1600)

• Helicopter (Organic)

– CH-46 Sea Knight

– CH-53 Sea Stallion

• Air Cushion Vehicle

135

– Landing Craft Air Cushion (LCAC)

– Landing Craft Air Cushion - Replacement (LCAC-R)

SB Cargo Ship

• Large, Medium-Speed, Roll-on/roll-off ship (LMSR)

• Landing Helicopter Deck (LHD)

• Landing Platform Dock (LPD)

• Landing Ship, Dock (LSD)

Mobile Landing Platform (MLP)

Shore

• Staging Base

• Port

• Austere Port

• Beach Landing Zones

These vessels and locations are currently implemented in the model. The processes

developed and the baseline properties implemented in the model were based on the

Amphibious Ships and Landing Craft Data Book [188], open source information on

the internet [1], and iteration with subject matter experts from ONR.

10.6.1 Connector

All of these ships serve as connectors moving cargo to meet a demand. First, a mission

is selected, establishing locations to pick up and drop of cargo. The connector travels

to the pick-up location and identifies a spot on a ship, at a port, or at a supply

base to load cargo. After traveling to the push goal, a spot is selected and the cargo

136

offloaded. At this point, the connector identified its next mission and travels to a

cargo supply point to load again. The process to return to the cargo point and reload

is the same process as traveling to shore but instead of pushing cargo, it is pulling,

so the process is not duplicated twice in the connector class. This process is depicted

in Figure 41. The onload and offload locations are properties of the individual ships.

These connectors are assumed to start equally distributed between the Intermediate

Staging Bases (ISB) with no cargo on board.

There are different types of connectors in involved in this group. The most basic

is the surface connector. This differs from the aerial connector because the surface

connector can repair as a self contained unit while the aerial connector can only repair

once landed. This is a flag within the connector process so it is only necessary to

include surface versus aerial as a property of the vessel class. The other property

included in the class is if the vessel is organic. In this case, it is not self deployed and

must be ferried into theater by another vessel. The loading and unloading is handled

on the connector side but must be added to the SB Cargo Ship, described later.

10.6.1.1 Supply ship

MEC, JHSV, TAKE, LSV and LCU-2000

All of the supply ships are surface connectors. These ships have a flag for the

ability to unload at multiple locations. The MEC is the only class that must change

the general process.

MEC

The MEC process is that of a basic connector. Since the MEC must transition

before reaching the shore the travel time algorithm is replaced in this class, but the

general process is inherited from the connector class. The distance at which transition

occurs is removed from the total travel distance. The time to travel to the transition

distance, transition, and travel to shore are calculated using time equals distance

137

divided by speed.

10.6.1.2 MV-22

The MV-22 is handled the same as an aerial connector, as it is assumed it can queue

in the air. If it is determined to act more like a helicopter, where landing is a priority,

not matching cargo, then the process can be switched to that of the helicopter class.

10.6.1.3 Connectors Carried into Theater

INLS and LCU-1600

These connectors must be carried into theater on designated connectors. Once the

ferrying ship arrives in theater, these connectors are offloaded first. These connectors

then become independent vessels that travel between set points. These will include

the SB and shore, but may also include a nearby port, determined by the inputted

vessel properties.

10.6.1.4 Helicopters

CH-46 and CH-53

Helicopters must be carried aboard another vessel to reach the Sea Base. Once

deployed, they follow a slightly modified procedure because they can not queue as an

individual asset. This process is depicted in Figure 42. If a landing spot can not be

identified that has the cargo the helicopter would like to carry or drop off, depending

on the mission, the helicopter will land at the first available spot. This is to minimize

the time in the air. Any repairs needed are completed once the helicopter lands.

Once the helicopter has landed, it will wait until the cargo becomes available at that

source and will not change cargo supply locations to match its cargo needs. Since

this process is significantly different from the general connector process, the entire

process is overwritten within the connector class.

138

Table 10: Run Time Comparison - With and without Helicopters
Case Without Helos (sec) With 2 Helos (sec)

1 2.3 9.2
2 2.7 3.9
3 14.7 24.2
4 9.6 7.6
5 5.3 11.0
6 8.8 17.9
7 4.6 13.0
8 13.0 30.8

Note: Helicopters are much more computationally intensive than aurface connec-

tors. To demonstrate this, eight cases were run without helicoptors and repeated with

one helicopter of each type. Table 10 shows that for most cases that is an increase in

run time by introducing helicopters.

10.6.1.5 Air-Cushion Connector

LCAC and LCAC-R/SSC

Air-cushioned vessels are another special case of connector and required the de-

velopment of a process that overwrites the general connector process for these vessels.

This difference is due to the MLP being an option to ferry the ACVs closer to shore

if the SB Cargo Ships are outside their range. This process is visualized in Figure 43.

The ACVs start at the ISB with no cargo and are transported to the Sea Base aboard

another vessel, such as the MLP. If the Sea Base is positioned within the range of

the ACV then the ACV serves as a basic connector, following the general procedure

for a connector. It travels to its goal and then must queue for a loading spot with

the correct available cargo or an unloading spot that requires the cargo onboard. It

would then load or unload and move on to its next mission. If the Sea Base is posi-

tioned beyond the range of the ACV, the MLP must be used to ferry the ACVs to

some standoff distance. Instead of calculating the distance to travel and waiting that

amount of time, the ACVs must wait for an MLP to carry them, forming a queue.

139

Once the MLP reaches the standoff distance, it offloads and the ACVs travel the

remaining distance to shore and find a landing zone on the beach. Once unloaded,

the ACVs repeat the same process with the ACVs queuing to be ferried by the MLP

and unloaded upon arrival at the Sea Base, joining the loading queue.

10.6.2 Sea Base Cargo Ships

LMSR, LHD, LPD, LSD

Cargo ships, including the LMSR, act as cargo objects that serve to interface

with connectors and hold cargo. They must start at some initial starting location

and travel to the Sea Base or other cargo spot, such as a nearby port. While a cargo

object is stationary, no process definition is needed beyond the definition of the initial

properties. The type of object can be changed to connector, and movement processes

defined, if the cargo object needs to move from one location to another.

These ships can be used to carry helicopters and smaller vessels in its well deck.

The ship ferries the helicopters and smaller vessels, such as a LCU-1600 and INLS

to the SB, where they become individual connectors and the cargo ship serves as a

resupply point. The number of each typeof helicopter and smaller shisp that can be

carried are set as vessel properties, but only a single type is selected.

10.6.3 Mobile Landing Platform

The MLP is a special case as it serves as a cargo transfer enabler as well as having

the potential to disconnect from the LMSR and travel as an independent object [25].

In the case where the MLP stays attached to the LMSR and does not ferry LCACs,

the MLP simply serves to enable a loading connection on the LMSR. The MLP starts

at the ISB and ferries connectors as needed. These connectors are released when

the MLP reached the Sea Base and full connectors loaded, if available. Otherwise,

the MLP identifies an available LMSR and the connection made. Once the MLP is

attached, the through MLP loading interface is enabled in the LMSRs properties. In

140

this way, the MLP becomes a part of the LMSR and is not considered a separate

object. When the MLP is used to ferry LCACs or LCACRs, it is assumed to starts

unattached and it immediately looks for connectors to load from the queue of loaded

objects at the Sea Base. Once the connectors are on board, the MLP finds the distance

to shore, less its standoff distance, and travels for that amount of time. Once it arrives,

it triggers the reactivation of the connectors so they can travel to shore and unload.

The MLP waits at the standoff distance for the return of the connectors, and once

they are on board, returns to the Sea Base. Once again, it triggers the reactivation

of the connector process when it releases them at the Sea Base. The process repeats

with the MLP looking for loaded LCACs or LCACRs and if not enough are present,

identifying an LMSR to connect with. This process is summarized in Figure 44.

10.6.4 Shore

Beach Landing Zone and Austere Port

Beaches are established as a stationary object by defining the initial properties and

no additional process definition is needed. The different types of landing zones are

identified by the interfaces available and those must match the designated connector

type.

Staging Base

The intermediary staging base (ISB) is a base where the assets are pre-positioned

and a point of resupply. These bases are at a set distance from the theater with

an inputted amount of cargo available. These bases can have up to three piers for

resupply.

Port

This represents a port near the theater of interest that can be used as a throughput

point. This port does not have any cargo at the start of the simulation but serves as

a pier where cargo can be offloaded from larger ships that are either faster to offload

141

at a pier or can not transfer cargo at sea. This cargo is then loaded onto smaller

connectors that transfer it directly to the beach.

142

F
ig

u
re

4
1
:

C
on

n
ec

to
r

P
ro

ce
ss

143

F
ig

u
re

4
2
:

H
el

ic
op

te
r

P
ro

ce
ss

144

F
ig

u
re

4
3
:

A
ir

C
u
sh

io
n

V
eh

ic
le

P
ro

ce
ss

145

F
ig

u
re

4
4
:

M
L

P
P

ro
ce

ss

146

CHAPTER XI

COMPARISON TO EXISTING MODEL

This chapter details the comparison of results generated by CDM Inc. and provided

by Ms Kelly Cooper. The scenarios and vessels modeled by CDM Inc. will be repeated

using the model developed in this thesis, called the DELAS (Discrete Event Logistics

Advanced Simulation) model, with a comparison of assumptions and description of

discrepancies. The work by CDM Inc. was based on the T-Craft, but the conceptual

connector (MEC) explored in this thesis is flexible enough to capture the concept of

the T-Craft. For this chapter, the conceptual connector will be label T-Craft to ease

comparison between the models.

11.1 Description of CDM Work

CDM completed a study of six T-Craft concepts and compared their performance to

that of a SSC. Three loading options were presenting for the T-Craft options. These

options are listed below. In Figure 45, two of these load-outs are presented for the

same T-Craft concept. The T-Craft will carry three movers, type determined by

cargo type selected while the SSC will carry one mover.

1. Medium Tactical Vehicle Replacements (MTVRs)

• MK23 Standard MTVRs each carrying up to 6 pallets

2. Logistics Vehicle Systems (LVSs) with Containers

• MK48 LVS Front Power Unit with MK18 Rear Body Units each carrying

1 8820 ISO container

3. Tractor-Trailers with Containers

147

• M931 Tractor Truck with M1076 Trailers each carrying 1 8820 ISO con-

tainer

Figure 45: Example Load-Outs

11.1.1 Scenarios

The focus of this study was humanitarian missions to demonstrate the potential

use of the T-Craft as a humanitarian connector. Two scenarios were analyzed, a

CONUS scenario (e.g., Gulf Coast) and an international scenario (e.g., Haiti). For

the CONUS scenario, the Sea Base is 25 to 30 nmi from the four population centers,

which are 5 to 10 nmi apart along the coast. Each population center has 25 thousand

refugees each receiving two MREs and 1.5 gallons of drinking water per day. Tents

are provided for ten percent of the refugees. The operation is two days, with the

first delivering two days of supply and the shelter. The follow-on day is one day of

supply and an engineer support company personnel and construction materials. For

the international scenario. the Sea base is 25 to 40 nmi from five population centers

148

10 nmi apart on the coast. Each population center has ten thousand refugees, with

each refugee receiving 460 g maize and 80 g beans per day and 1.5 gpd drinking water.

Shelter is needed for 25 percent of the refugees. The first operational day is to deliver

two days of supply and the shelter with the follow-on day of one day of supply and an

engineer support company personnel and construction materials. Both scenarios are

assumed to include three LMSRS and three T-Craft of the same variant and this is

compared to a fleet of nine SSCs. LVS and tractor-trailer loading will be considered,

but the MTVR is not considered for the humanitarian scenarios.

11.1.2 Timing Assumptions

To model the cargo delivery process, it is necessary to make several timing assump-

tions. These timing assumption were made based on LCAC planning factors. The

timing assumptions are detailed before and the variant depending timings are given

in Table 11.

• Enter critical landing zone = 20 minutes

• Connect to LMSR = 20 minutes

• Load Time = Depends on variant and cargo type

– MTVRs: Number of Rows × 30 mins

– LVSs: (Number of Trailer Rows × 40 mins) + 30 mins for the prime movers

– Tractor-Trailers: (Number of Trailer Rows × 40 mins) + 30 mins for the

prime movers

– Rows logic assumes loading and securing a row can be near-simultaneous

– 5 percent Penalty to Load Time Due to complexities of the side port ramp,

turntable, and narrow form factor of the payload area

• Offload Time = 1/3 Load Time

149

T
a
b
le

1
1
:

T
im

in
g

A
ss

u
m

p
ti

on
s

O
p
ti

on
1

O
p
ti

on
2

O
p
ti

on
3

O
p
ti

on
4

O
p
ti

on
5

O
p
ti

on
6

S
S
C

L
oa

d
in

g
lo

ca
ti

on
S
id

e
S
id

e
S
te

rn
S
te

rn
S
te

rn
S
te

rn
M

L
P

(s
id

e)

M
T

V
R

S
id

e
lo

ad
ti

m
e

24
5

32
0

0
0

0
0

70
S
te

rn
lo

ad
ti

m
e

0
0

17
0

17
0

20
0

26
0

0
B

ea
ch

u
n
lo

ad
ti

m
e

80
10

0
70

70
80

10
0

30

L
V

S
S
id

e
lo

ad
ti

m
e

40
8

55
8

0
0

0
0

70
S
te

rn
lo

ad
ti

m
e

0
0

25
0

25
0

29
0

32
0

0
B

ea
ch

u
n
lo

ad
ti

m
e

12
3

16
3

97
97

11
0

12
0

30

T
ra

ct
or

T
ra

il
er

S
id

e
lo

ad
ti

m
e

30
8

45
8

0
0

0
0

70
S
te

rn
lo

ad
ti

m
e

0
0

21
0

19
0

25
0

33
0

0
B

ea
ch

u
n
lo

ad
ti

m
e

97
15

7
83

83
97

12
3

30
C

ru
is

in
g

S
p

ee
d
(k

ts
)

41
41

48
.3

42
40

40
35

T
C

S
p

ee
d

A
C

V
(k

ts
)

5
5

5
5

5
5

-
T

ra
n
si

ti
on

ti
m

e
(m

in
)

25
25

20
20

10
10

-
P

ay
lo

ad
ca

p
ac

it
y

(L
T

)
30

5
70

0
35

2
63

9
30

0
75

0
74

P
ay

lo
ad

A
re

a
(s

q
ft

)
75

00
12

38
0

73
27

73
27

65
60

13
39

5
25

00

150

11.1.3 Loading Assumptions

Loading and unload times are based on the assumption that a row of movers can be

loaded/unloaded simultaneously. For example, the CDM calculations assume that it

takes the same amount of time to unload one row of 2 MTVRs as it would to unload

one row of 4 MTVRs. This causes results to favor wider designs. A vessel is loaded

until the area in the maximum number of containers or the payload capacity for that

concept (including movers and trailers) is met. The maximum number of containers

is calculated in advance for each concept and each cargo type. Types of cargo can

be mixed within a container. Vessel can hop between landing zones to bring a fuller

load, but individual containers can not be split between beaches.

11.1.4 Scheduling Assumptions

CDM schedules starts with vessel 1 and schedules until operating time is reached,

then moves on to the next vessel until maximum number of vessels is reached. The

algorithm requires landing zone 1 is fulfilled before starting landing zone 2 and so

on. This can cause queuing at landing zones since each landing zone can unload one

vessel at a time so vessel 1 and 2 can be sent to landing zone 1 at the same time, as

seen in Figure 46. Each day of operation is considered separations so if a demand is

not met within the time period, it expires and is not transported on sequential day.

The Sea base was assumed not to limit operations so vessels are loaded immediately

upon arrival.

Figure 46: Scheduling Shortcoming

151

11.2 Comparison of Assumptions

Due to the differences in the formulation of the CDM model and the model developed

in this work, there are some differences in assumptions. When considering the loading

of the vessels, CDM individually loads the containers on the connector to the exact

amount needed on shore. This loading is done outside the discrete event simulation

and was not detailed beyond loading diagrams, such as Figure 45.

In contrast, this thesis assumes a container may only contain one type of material

and must be transferred as a single unit. The container must be transfered completely

full even if only a partial container is needed. A vessel can carry only one type of

loading, an LVS system or tractor-trailers, but can carry containers of different types

of supplies. The capability of of an 8820 ISO container was calculated using volume

for cases of water, cases of MREs, etc. and are given in Table 12. The assumed

weight for each of these items is given in Table 13. CDM supplied the assumptions

for the engineering company supplies of 9110 lb and 230 ft2 per beach.

In this work, the total weight of a container was calculated using this weight

multiplied by the capacity, asses to the tare weight of the trailer and container. The

area for the container is based on the footprint of the trailer. This weight and area are

used with the dynamic loading algorithm described in Chapter 8 to load the vessels.

The weight and area required for the movers is subtracted from the vessels capabilities

before the dynamic algorithm is applied. The required number of containers of each

type of supply was calculated based on the demand and capacity of the containers,

given in Table 14. This requirement was rounded up to the nest whole container

because it was assumed containers would not be broken down.

Handling the demand is different between the two models. When simulating for

48 hours, the model for this work assumes the fleet must complete day 1 before going

on to day 2. The CDM work treats each day individually. This assumption difference

can be worked around and the impact of analyzing the days separately versus together

152

is examined.

Table 12: Carrying Capacity per Container

ISO Container
Cases of Water 700
Cases of MREs 800
Tents 65
90 kg Bulk Food 170

Table 13: Assumed Weights

Weight (lbs)
Case of Water 45
Case of MREs 22
Tent 353
90 kg Bulk Food 198

Table 14: Demand per Population Center

Day Domestic International
Water MRE Bulk Tents Water MRE Bulk Tents

Day 1 23 11 0 5 10 0 1 5
Day 2 12 6 0 0 5 0 1 0

CDM schedules ship by ship and must complete one landing zone before moving

on to the next. This can cause the queuing seen in Figure 46 and no queuing is

considered at the Sea Base. This model considers queuing at the beaches and at the

Sea Base. The schedule is based on the most full load that can be sent. This results in

the schedule in Figure 47. The dynamic loading algorithm generates load-outs based

on the demand at each landing zone and selects based on the greatest priority load.

The amount of cargo delivered will be greater because an additional trip is made.

The operational time constraint is dealt with very different where the CDM model

does not send a connector if the mission will exceed the operational time limit. This

153

Figure 47: Scheduling Contrast Between Models

model takes a mandatory break after the vessel operates a number of hours. This is

treating the operational limit as a repair requirement where once an operational time

is exceeded, a maintenance period is required. This assumption difference impacts

the consideration of the days as independent or grouped. In the case of the two days

considered together, the rest period will continue into the second day by the amount

of time the operational limit was exceeded. If the two days are considered separately,

the vessel operations start immediately at the start of day 2.

11.3 Results Comparison

The CDM study examined the total amount of cargo delivered, based on a percent of

the total demand as well as the tracking of the individual assets given in the schedules.

CDM treats the days separately so the data presented here will be individual days and

the results are given in Table 16. The days could be handled sequentially within the

model and these results were analyzed, but not included here to keep the assumptions

as close as possible.

The results are plotted in Figure 48 through Figure 51. The percent of cargo

delivered is compared with the size of the bubbles representing the number of vessels

unloaded at the shore.

154

T
a
b
le

1
5
:

C
D

M
R

es
u
lt

s

L
o
ca

ti
on

C
ar

go
T

y
p

e
S
h
ip

D
ay

1
U

n
lo

ad
ed

D
ay

2
U

n
lo

ad
ed

D
ay

1
%

V
ol

D
ay

2
%

V
ol

D
om

es
ti

c

L
V

S

O
p
ti

on
1

5
6

43
.2

75
O

p
ti

on
2

3
3

65
.2

10
0

O
p
ti

on
3

9
6

75
96

.4
O

p
ti

on
4

6
4

10
0

10
0

O
p
ti

on
5

6
6

50
.8

81
.3

O
p
ti

on
6

5
3

10
0

10
0

S
S
C

27
27

45
.0

4
10

0

T
ra

ct
or

-T
ra

il
er

O
p
ti

on
1

6
6

62
.4

97
.6

O
p
ti

on
2

3
3

55
.1

87
.2

O
p
ti

on
3

8
6

10
0

10
0

O
p
ti

on
4

6
4

10
0

10
0

O
p
ti

on
5

9
6

75
97

.6
O

p
ti

on
6

4
4

10
0

10
0

S
S
C

27
27

53
.4

6
84

.9
4

In
te

rn
at

io
n
al

L
V

S

O
p
ti

on
1

6
3

74
.5

60
.8

O
p
ti

on
2

3
2

10
0

10
0

O
p
ti

on
3

5
5

10
0

10
0

O
p
ti

on
4

3
3

10
0

10
0

O
p
ti

on
5

6
5

10
0

10
0

O
p
ti

on
6

S
S
C

16
14

90
.2

2
10

0

T
ra

ct
or

-T
ra

il
er

O
p
ti

on
1

5
5

10
0

10
0

O
p
ti

on
2

3
3

10
0

10
0

O
p
ti

on
3

5
4

10
0

10
0

O
p
ti

on
4

3
3

10
0

10
0

O
p
ti

on
5

5
5

10
0

10
0

O
p
ti

on
6

S
S
C

16
14

10
0

10
0

155

T
a
b
le

1
6
:

D
E

L
A

S
R

es
u
lt

s

L
o
ca

ti
on

C
ar

go
T

y
p

e
S
h
ip

U
n
lo

ad
ed

D
ay

1
U

n
lo

ad
ed

D
ay

2
D

ay
1

%
V

ol
D

ay
2

%
V

ol

D
om

L
V

S

O
p
ti

on
1

6
6

42
.3

78
.9

O
p
ti

on
2

3
3

55
.8

75
.0

O
p
ti

on
3

9
8

76
.9

10
0.

0
O

p
ti

on
4

8
4

10
0.

0
10

0.
0

O
p
ti

on
5

6
6

42
.3

78
.9

O
p
ti

on
6

6
4

91
.0

10
0.

0
S
S
C

46
36

61
.5

10
0.

0

T
ra

ct
or

-T
ra

il
er

O
p
ti

on
1

6
6

51
.5

84
.4

O
p
ti

on
2

3
3

68
.2

75
.0

O
p
ti

on
3

9
8

86
.4

10
0.

0
O

p
ti

on
4

8
4

10
0.

0
10

0.
0

O
p
ti

on
5

9
8

72
.7

10
0.

0
O

p
ti

on
6

4
4

10
0.

0
10

0.
0

S
S
C

46
28

78
.8

10
0.

0

In
t

L
V

S

O
p
ti

on
1

6
5

75
.0

10
0.

0
O

p
ti

on
2

3
3

60
.0

60
.0

O
p
ti

on
3

9
5

97
.5

10
0.

0
O

p
ti

on
4

5
5

10
0.

0
10

0.
0

O
p
ti

on
5

6
5

75
.0

10
0.

0
O

p
ti

on
6

5
5

10
0.

0
10

0.
0

S
S
C

35
15

10
0.

0
10

0.
0

T
ra

ct
or

-T
ra

il
er

O
p
ti

on
1

6
5

88
.6

10
0.

0
O

p
ti

on
2

3
3

60
.0

60
.0

O
p
ti

on
3

5
5

10
0.

0
10

0.
0

O
p
ti

on
4

5
5

10
0.

0
10

0.
0

O
p
ti

on
5

9
5

97
.1

10
0.

0
O

p
ti

on
6

5
5

10
0.

0
10

0.
0

S
S
C

30
15

10
0.

0
10

0.
0

156

(a) Day 1 (b) Day 2

Figure 48: CONUS with LVS

(a) Day 1 (b) Day 2

Figure 49: CONUS with Tractor-Trailer

157

(a) Day 1 (b) Day 2

Figure 50: International with LVS

(a) Day 1 (b) Day 2

Figure 51: International with Tractor Trailer

158

11.4 Discussion of Results

Overall, the results generated by this model and by CDM were comparable. There

were a few discrepancies, which will be discussed, but overall, it is decided that

this model demonstrated the same results and trends of the commercially developed

CDM tool. In general, the CDM results have a slightly higher percentage, which can

be attributed to CDMs use of partial containers. The total demand for this model

is greater because it was rounded up to full containers. The percent delivered is

calculated as the percentage of each type of container.

One interesting results is the scheduling conflict presented in Figure 46 was re-

solved in that Option 1 for CONUS with LVS has six completed trips instead of five

given in the schedule. Figure 48 shows this with the size of the bubble for Option 1

being larger, but the overall performance is not significantly different. Option 1 has

the most variance in results because the sensitivity to the schedule.

The largest discrepancy is with Option 1 and 2, with the trends flipping between

the data generated with this works model and CDMs data. These differences are due

to the difference in scheduling, seen in Figure 52 which impacts Figure 50(b). The

other discrepancies with these two option are due to cargo selection, with the same

number of connector being unloaded, but the amount of cargo differing significantly.

These two options have more complex geometries than the other four. It is impossible

to further explain the loading discrepancies without knowledge of the algorithm used

by CDM to load the ships.

Figure 52: Additional Scheduling Shortcoming

159

Where schedule formulation does not drive the number of trips completed, the

schedules can be matched. Figure 53 and 54 show the movement matches for the

two models when option 3 is studied in more depth. The slight variation in the

cargo delivered is due to the selection of beach to visit. This choice is based on the

cargo selection algorithm and the distance to travel. The exact distances were not

provided, only a range of distances. The variation in beach selected also impacts the

cargo delivered since the first two trips to all beaches are now included and only one

third trip as opposed to three of each trip for the CDM schedule.

Figure 53: CDM Scheduling Option 2

Figure 54: DELAS Scheduling Option 2

The discrepancies between CDM’s results and the model developed for this the-

sis have been discussed and rationalized. This chapter documented the assumptions

made by CDM for this study and how those differed from this models implementation.

Details of the cargo selection algorithm for CDM were not available, but this results

160

in some variation. The scheduling algorithm is external for CDM and internal for

DELAS, but the movements matched except in cases when the CDM algorithm in-

troduced additional queuing. This comparison validates the connector process within

the DELAS model.

161

CHAPTER XII

CAPABILITIES SUMMARY

The purpose of this chapter is to highlight the capabilities of a model incorporating the

techniques discussed thus far in this thesis and to compare those to the gaps described

in section 2.4. From here forward, the model will be known as DELAS (Discrete

Event Logistics Advanced Simulation), representing the final model incorporating

the formulations described in Chapters 6 through 10.

12.1 Addressing Gaps in Previous Models

Chapter 2 detailed existing logistics models which were limited applications of the

needed components of the Sea Base model, but gaps in the application and methods

remained which will serve as the basis for the work presented in this thesis. Previous

work has demonstrated one or a few of these concepts but fail to generalize the models

to a level where all these concepts can be incorporated into a single analysis. These

gaps are:

• Breakdown of modeling problem into component

• Parametric scenarios

• Heterogeneous, interacting fleet

• Dynamic loading

• Dynamic routing

• Analyzing design requirements across multiple scenarios

162

The DELAS model addresses the first five gaps and will be applied in the re-

mainder of the thesis to demonstrate the last gap. The model is broken down into

the scenario, loading, and routing sub-problems. The scenario is inputted as a set of

inputs and vectors. The use of vectors and matrices to handle information enabled

the scenarios and the incorporation of the heterogeneous fleet. The fleet properties

are monitored through matrices instead of describing the individual vessels behaviors

within the discrete event process. The loading and routing subproblems are callable

subroutines, enabled by the use of SimPy. The dynamic loading subroutine features

an assignment problem added to a knapsack algorithm to intelligently select the cargo

to load. The dynamic routing algorithm predicts the queues at the load and unload

locations to determine the best load and unload locations to use on the next trip.

The cargo to load is considered in this algorithm but reconsidered, as well as recon-

sidering the interface to use to load cargo, upon arrival at the load location. The case

of multiple unload location, or hopping between beaches, is a special routing case.

A traveling salesman problem is added to the cargo selection algorithm to determine

if it is advantageous to unload at multiple locations. This algorithm replaces the

cargo selection within the routing algorithm. The complete DELAS model is able to

capture a variety of operations with a heterogeneous fleet. The complete code for the

DELAS model is given in Appendix B.

12.2 Increased Capabilities

Addressing the existing gaps increases the capabilities that can now be modeled and

many trade-offs become possible. The traditional design parameters of any vessel

can now be evaluated at a system-of-systems level. These trade-offs now include

the design choices of interface capabilities, which could not be addressed by existing

models. Fleet level parameters can now be varied as well, including the fleet mix. The

geographical parameters are now inputs, including the number of landing spots and

163

possibility of an intermediary port. The distances between points, such as staging

bases are now inputs, as well as the properties of these bases. The locations of cargo

objects can be specified, such as having multiple Sea Base groups. The impact of

these parameters can now be analyzed for a variety of scenarios.

In this thesis, the focus is on overall system-of-systems metrics, but intermedi-

ary results can be extracted and analyzed. Such results include and utilization of

individual or types of vessels, times in queues, and cargo load out weights and area.

The next example will show intermediary results including routes and cargo selection.

Having extractable information at various levels provides greater clarity into the ac-

tions within the simulation as well as supporting decision making at various levels,

from vessel design to operation planning.

The following sections summarize the capabilities gained by incorporating each of

the techniques described in Chapters 6 through 9. As the capabilities increase, an

example scenario is developed to demonstrate these additions. The impact on the

results as well as what type of results can be abstracted are detailed.

12.2.1 Matrix Formulation

The incorporation of matrices as a data handling formation allows for cargo objects

to be treated as individual objects. In addition, the matrix formulation creates a

more scalable model formulation and allows for the abstraction of sub-problems. By

changing the formulation, the cargo aboard the individual assets can be tracked. The

cargo transfer interface properties are now design variables to study the impact of

incorporating additional interfaces. Figure 13 showed the impact of shifting from

hard-coded if-then statements to matrix decisions. Note that these formulations can

only be compared for the number of connectors unloaded at the shore. The matrix

formulation results allow the cargo unloaded, it terms of weight, volume or type to

be tracked. Loadings must be specified for each type of connector.

164

Figure 55: Matrix without and With Loading

12.2.2 Dynamic Loading

Dynamic loading allows for the investigation of different cargo demands. This enables

the investigation of scenarios by varying the cargo demand, in addition to the geo-

graphical properties, i.e. distances and beach landing spots. Dynamic loading gives

a more realistic delivery profile. Figure 55 compares the results for the matrix based

formulation and incorporating dynamic loading. For the matrix formulation, it was

assumed that the cargo was evenly divided between the 15 trips required for deliv-

ery. The dynamic loading loads the Marine Expeditionary Brigade (MEB) based on

the weight and area constraints. Although the unloads occur at the same time, seen

by the corresponding jumps, the loading makes the raise in percent weight delivered

vary between the loads. The greatest advantage in incorporating the loading is the

internal determination of the loading, without having to provide information beyond

the cargo demand and physical characteristics of the connector.

165

Figure 56: Set Routing vs Predictive Routing

12.2.3 Dynamic Routing

Dynamic routing allows the supply chain to be a function of the assets and cargo

supply nodes. Figure 56 shows the improvement in the performance with the incor-

poration of dynamic routing. This comparison is for the delivery of a MEB from two

LMSRs and one ISB, where the set routing sends one of the three MECs back and

forth to the ISB. In addition to a performance improvement, dynamic routing enable

a number of trade-offs. The number of cargo ships can be traded with the location

and number of ISBs. Operational decisions can be investigated, including the use of

in intermediary port as a cargo transfer node.

12.2.3.1 Multiple Unload Points

The option to unload at multiple cargo points, or hop between beached is an oper-

ational decision. Including this option introduces the capability for investigation of

operational decision and rules. The scenario used is detailed further in Section 12.4

166

Figure 57: One vs Multiple Unload Points

as it is used in the full scale application example. Figure 57 compares the results

with and without hopping. While the hopping results lag the single unload point

through the middle portion of the simulation, it completes the delivery two hours

earlier. The gain of hopping is seen when the cargo demand for each beach is less

than the carrying capability of a single MEC.

12.3 Scalability

Section 7.3 described the scalability of the matrix formulation, which is only limited

by run time. The general matrix formulation does not limit the size of the operation

to model with the possible exception of if the matrix became so large the minimum

value could not be found. The more limiting element is the MILP for the dynamic

loading and routing with multiple unload points. The dynamic routing algorithm run

time increases with the number of cargo supply objects and cargo types. As described

in Section 9.7, the number of variables in the multiple unload point algorithm grows

167

Table 17: Vessels and Vehicles
Vessel/ Vehicle Total Number
MEC 3
MLP 2
LCAC 4
LMSR 3
LHD 3
CH46 4
CH53 6

O(n(n+1)), limiting the number of beach groups. If the run time for this MILP

becomes unacceptable using the brand and bound algorithm in LPSolve55 or the exact

solution is no longer identifiable, heuristics can be implemented to find acceptable

solutions in a reasonable run time. The major obstacle to expanding the operation

modeled is the increase in run time.

12.4 Full Scale Application Example

Thus far, the examples executed by the model have been small scale with a subset of

the models capabilities to test and demonstrate algorithms within the model. This

section will present a basic example on the full capability of the DELAS model.

Section 6.2.1.1 describes a large scale military operation. The vessels and vehicles

involved are given in Table 17 and initially distributed between two ISBs. Initially

the infantry is delivered to shore to secure two beachheads with landing zones given

in Table 18. The MEC is the only vessel that has the option to unload at multiple

beachheads. The next day begins the delivery of tanks and heavy artillery. Day 3

brings the resupply of food and water on pallets. This leads to the cargo demand

schedule, for each beach group, in Table 19. The distances between the locations is

given in Table 20. The LHDs are located closer to the shore than the rest of the Sea

Base to deploy the helicopters, called the SB close distance in the input table.

DELAS was run for 20 days, requiring 2.5 minutes, and results in the time history

168

Table 18: Beach Landing Zones
Beach Type Group 1 Group 2
MEC 3 3
LCAC 2 2
Helo 2 2
Austere Port 1 1

Table 19: Demand Schedule per Beach Group
Cargo Category Initial Day 1 Day 2
Marine Platoon 78
EFV 47
LAV-25 27
M1A2 47
Arty Element 21
Mortar Element 12
Antiarmor Element 12
Pallet 3000

Table 20: Vessels and Vehicles
Distances (nmi) SB SB close BeachGroup1 BeachGroup2 ISB00 ISB01
SB 0 25 100 120 500 750
SB close 25 0 75 80 500 750
BeachGroup1 100 75 0 20 600 850
BeachGroup2 120 80 20 0 620 870
ISB00 500 500 600 620 0 0
ISB01 750 750 850 870 0 0

169

Figure 58: Time History Results

in Figure 58, showing the demand versus cargo delivered over time. The knee in the

curve between Day 6 and 7 results from the cargo requirements. At this point, the

helicopters have brought to shore everything they can fit and lift, with the remaining

cargo requiring movement by surface connectors. The discrete arrivals of surface

connectors is visible in the flatter portion of the curve. Figure 59 shows the time

history for shortfall, which accumulated every 8 hours for this example. This time

period translates to a penalty if the demanded cargo is not delivered within 8 hours

of the demand signal.

To give an idea of the movement within the model, a selection of the routing

decisions, including predicted cargo to carry, made within the model are presented

in Table 22. In total, there are 606 predicted missions. A sample of the actual

routing of the connectors is given in Table 23. There are 1197 total routes, when the

connector travels from one location to another. The delivery of the troop by MEC

is seen initially as they are the only connectors that deploy from the ISBs. Once the

170

Figure 59: Shortfall Results

Table 21: Total Trips per Type of Asset
Connector Number of Trips
MEC 85
LCAC 14
CH46 180
CH53 313

LMSRs, MLPs, and LHD have arrived at the Sea Base, the MEC are joined by the

LCACs and helicopters to deliver cargo. The total number of trips by each type of

asset are given in Table 21. The total number of unloaded is smaller than the number

of predicted missions, indicating not all missions could or needed to be completed.

12.5 Performance Comparison and Trade-offs

To capture some of the trade-offs capable with this model, a basic design trade-off is

explored in this section. For the four scenarios described in Chapter 6, five candidate

designs were selected and DELAS model run. These runs were repeated for one and

ten MECs available. The properties of the designs selected are given in Table 24.

171

T
a
b
le

2
2
:

P
re

d
ic

te
d

R
ou

ti
n
g

R
es

u
lt

s

V
es

se
l

T
im

e
(m

in
)

S
ta

rt
L

oa
d

U
n
lo

ad
P

la
to

on
E

F
V

L
A

V
-

25
M

1A
2

A
rt

y
M

or
ta

r
A

n
ti

ar
m

or
P

al
le

t
M

E
C

00
1

st
ar

t0
0

IS
B

00
B

ea
ch

1
23

0
0

0
0

0
0

0
M

E
C

01
1

st
ar

t0
1

IS
B

01
B

ea
ch

1
23

0
0

0
0

0
0

0
M

E
C

02
1

st
ar

t0
0

IS
B

00
B

ea
ch

2
23

0
0

0
0

0
0

0
M

E
C

00
10

19
.5

B
ea

ch
1

IS
B

00
B

ea
ch

2
23

0
0

0
0

0
0

0
M

E
C

02
10

19
.5

B
ea

ch
1

IS
B

00
B

ea
ch

2
23

0
0

0
0

0
0

0
M

E
C

01
13

94
.5

B
ea

ch
1

IS
B

00
B

ea
ch

2
23

0
0

0
0

0
0

0
C

H
46

00
30

05
S
B

st
ar

t
S
B

cl
os

e
B

ea
ch

1
0

0
0

0
0

1
0

0
C

H
46

01
30

05
S
B

st
ar

t
S
B

cl
os

e
B

ea
ch

1
0

0
0

0
0

1
0

0
C

H
46

02
30

05
S
B

st
ar

t
S
B

cl
os

e
B

ea
ch

2
0

0
0

0
0

1
0

0
C

H
46

03
30

05
S
B

st
ar

t
S
B

cl
os

e
B

ea
ch

2
0

0
0

0
0

1
0

0
C

H
53

00
30

05
S
B

st
ar

t
S
B

cl
os

e
B

ea
ch

1
0

0
1

0
0

0
0

0
C

H
53

03
30

05
S
B

st
ar

t
S
B

cl
os

e
B

ea
ch

1
0

0
1

0
0

0
0

0
C

H
53

05
30

05
S
B

st
ar

t
S
B

cl
os

e
B

ea
ch

2
0

0
1

0
0

0
0

0
C

H
53

02
30

05
S
B

st
ar

t
S
B

cl
os

e
B

ea
ch

2
0

0
1

0
0

0
0

0
C

H
53

04
30

05
S
B

st
ar

t
S
B

cl
os

e
B

ea
ch

1
0

0
1

0
0

0
0

0
C

H
53

01
30

05
S
B

st
ar

t
S
B

cl
os

e
B

ea
ch

1
0

0
1

0
0

0
0

0
M

E
C

00
30

56
.5

B
ea

ch
2

S
B

B
ea

ch
1,

B
ea

ch
2

3
0

1
0

19
16

1
0

M
E

C
02

30
56

.5
B

ea
ch

2
S
B

B
ea

ch
1,

B
ea

ch
2

6
0

0
0

20
1

6
0

172

T
a
b
le

2
3
:

A
ct

u
al

R
ou

ti
n
g

R
es

u
lt

s
V

es
se

l
T

im
e

(m
in

)
S
ta

rt
E

n
d

P
la

to
on

E
F

V
L

A
V

-
25

M
1A

2
A

rt
y

M
or

ta
r

A
n
ti

ar
m

or
P

al
le

t
M

E
C

00
1

st
ar

t0
0

IS
B

00
0

0
0

0
0

0
0

0
M

E
C

01
1

st
ar

t0
1

IS
B

01
0

0
0

0
0

0
0

0
M

E
C

02
1

st
ar

t0
0

IS
B

00
0

0
0

0
0

0
0

0
M

E
C

00
98

9.
5

IS
B

00
B

ea
ch

1
23

0
0

0
0

0
0

0
M

E
C

02
98

9.
5

IS
B

00
B

ea
ch

1
23

0
0

0
0

0
0

0
M

E
C

01
13

64
.5

IS
B

01
B

ea
ch

1
23

0
0

0
0

0
0

0
M

E
C

00
20

08
B

ea
ch

1
IS

B
00

0
0

0
0

0
0

0
0

M
E

C
02

20
08

B
ea

ch
1

IS
B

00
0

0
0

0
0

0
0

0
M

E
C

01
23

83
B

ea
ch

1
IS

B
00

0
0

0
0

0
0

0
0

C
H

46
00

30
05

S
B

st
ar

t
S
B

cl
os

e
0

0
0

0
0

0
0

0
C

H
46

01
30

05
S
B

st
ar

t
S
B

cl
os

e
0

0
0

0
0

0
0

0
C

H
46

02
30

05
S
B

st
ar

t
S
B

cl
os

e
0

0
0

0
0

0
0

0
C

H
46

03
30

05
S
B

st
ar

t
S
B

cl
os

e
0

0
0

0
0

0
0

0
C

H
53

00
30

05
S
B

st
ar

t
S
B

cl
os

e
0

0
0

0
0

0
0

0
C

H
53

03
30

05
S
B

st
ar

t
S
B

cl
os

e
0

0
0

0
0

0
0

0
C

H
53

05
30

25
S
B

st
ar

t
S
B

cl
os

e
0

0
0

0
0

0
0

0
C

H
53

01
30

25
S
B

st
ar

t
S
B

cl
os

e
0

0
0

0
0

0
0

0
C

H
53

02
30

25
S
B

st
ar

t
S
B

cl
os

e
0

0
0

0
0

0
0

0
C

H
53

04
30

25
S
B

st
ar

t
S
B

cl
os

e
0

0
0

0
0

0
0

0
M

E
C

00
30

26
.5

IS
B

00
B

ea
ch

2
23

0
0

0
0

0
0

0
M

E
C

02
30

26
.5

IS
B

00
B

ea
ch

2
23

0
0

0
0

0
0

0
C

H
53

00
30

55
S
B

cl
os

e
B

ea
ch

1
0

0
1

0
0

0
0

0
C

H
53

03
30

55
S
B

cl
os

e
B

ea
ch

1
0

0
1

0
0

0
0

0
C

H
46

02
30

61
.9

23
S
B

cl
os

e
B

ea
ch

2
0

0
0

0
0

1
0

0
C

H
46

03
30

61
.9

23
S
B

cl
os

e
B

ea
ch

2
0

0
0

0
0

1
0

0
C

H
46

01
30

65
S
B

cl
os

e
B

ea
ch

1
0

0
0

0
0

1
0

0
C

H
46

00
30

65
S
B

cl
os

e
B

ea
ch

1
0

0
0

0
0

1
0

0
C

H
53

04
30

75
S
B

cl
os

e
B

ea
ch

1
0

0
1

0
0

0
0

0
C

H
53

01
30

75
S
B

cl
os

e
B

ea
ch

1
0

0
1

0
0

0
0

0
C

H
53

05
30

77
S
B

cl
os

e
B

ea
ch

2
0

0
1

0
0

0
0

0
C

H
53

02
30

77
S
B

cl
os

e
B

ea
ch

2
0

0
1

0
0

0
0

0

173

Table 24: MEC Candidate Designs

Vessel Name Large Large, Fast Medium Small Small, Slow
SES speed (kts) 25 45 35 45 25
ACV speed (kts) 2 2 5 10 10
Transition time (min) 45 45 30 15 15
Transition distance (nmi) 2 2 2 2 2
Max lift (LT) 800 800 550 300 300
Max area (sqft) 14000 14000 8000 2000 2000
Range (nmi) 6000 6000 6000 6000 6000
Mean time between failure (min) 1440 1440 720 360 360
Mean time to repair (min) 300 300 200 100 100
Use Port Ramp? 1 1 1 0 0
Time to load (min) 450 450 450 450 450
Use Stern Ramp? 1 1 1 1 1
Time to load (min) 300 300 300 300 300
Use Crane? 1 1 0 0 0
Time to load (min) 600 600 600 600 600
Use Austere Port? 1 1 0 0 0
Time to unload (min) 120 120 0 0 0
Beach time to unload (min) 180 180 180 180 180

These five designs approximate realistic design trades, while investigating the impact

of speed and size. The large connector has a greater transition and loading times,

but has more interface options.

Figure 60 and 61 show radar plots of the performance of the five connectors across

the four scenarios. The designs that maximize the area perform better across all of the

scenarios. The smaller the shortfall, the better the performance, with zero shortfall

on the outer edge of the radar plot. The smaller difference in the shortfall values for

the small military and humanitarian scenarios indicate the MEC design does not have

a large effect on the operational performance. The design of the MEC has a greater

impact on the performance in the major combat and sustainment operations. Figure

60 shows the sustainment operation is better served by a slower ship, with a slight

improvement with a larger ship. This effect is caused by the MEC out cruising the

rest of the fleet. Since recurring demand does not occur until 24 hours after the first

174

Figure 60: Radar Plot for 1 MEC

delivery, the demand occurs faster if the MEC is faster. The operational assumption

was made to simulate the phases of the operation, for example, the resupply demand

for a MCO would not occur if the first wave of troops were not on shore yet. The

fast MEC leads the cargo supply ships and the second delivery is more challenging.

The closeness of the results for MCO indicates a single MEC does not have a large

impact on the overall performance. Figure 61 shows the impact of including a large

number of MECs into the scenarios. Very little performance is gained with additional

MECs for the small combat and humanitarian scenarios. The impact of the larger

MEC is exaggerated when more are included, seen in the MCO results. Based on

these assumptions, ten large, slow MECs should be incorporated into the future fleet.

To visualize the impact of changing just one assumption, the assumption that

demand does not start until the first arrival was modified. The first recurring demand

now occurs 24 hours after the start of simulation time, instead of 24 hours after first

connector arrival. The results with one MEC collapse to a much larger shortfall in

the sustainment operation due to the much higher cargo demand. Figure 62 shows

the results with 10 MECs. The results are closer to what is intuitive with the large,

175

Figure 61: Radar Plot for 10 MECs

fast MEC providing the greatest benefit.

One set of trade-offs was explored here but the dependence on assumptions was

also highlighted. Based on these four scenarios and the five candidate scenarios, ini-

tially ten large, slow MECs were recommended. This is based on the assumption

of the vessels capabilities and the fleet mix present. The large vessel provides more

flexibility in the interface options. Although taking longer to load and unload, this

vessel delivers more cargo in a single trip. Modifying the demand generation assump-

tion changes the recommendation to large, fast ships. These recommendations are

based on a set of assumptions, including the usage of maximum speed during the

long distance transits and not traveling with the fleet. The selection of underlaying

assumptions is important in the exploration of design alternatives.

176

Figure 62: Radar Plot for 10 MECs - Scenario Definition Change

177

CHAPTER XIII

ROBUST DESIGN PROCESS

The previous chapters focused on the development of the DELAS model. The next

section will apply that model for a robust ship design application. The next three

chapters focus on the hypothesis that feasible scenario robust analysis can identify

the design drivers for a range of scenarios. This chapter focuses on the background

and process of robust design. Chapter 14 discusses the concept and formulation of

feasible scenario analysis. Last, the results of the robust design analysis are discussed.

Included in these chapter are the following experiments:

1. Identify measure of performance (MoPs) that are relevant to range of operations

2. Identify sampling methods for segmented spaces

3. Compare the feasibility of the sampling methods to complete coverage

4. Compare robustness results for complete coverage, and feasible scenario options

5. Identify the design drivers for the conceptual connector - MEC

13.1 Concept of Robust Design

The goal of robust design is to find the best values of the parameters that minimize

the performance variability while keeping mean performance on a target [193]. There

are three types of variability, or noise, that can be considered in robust design [146]:

1. External - environment of operation

2. Unit-to-unit - manufacturing variation

178

3. Deterioration - degradation of individual components

Since this thesis is focused on the design and analysis, the only noise that will

be considered is external, due to the environment in which the conceptual vessel will

operate. The noise factors will be identified in a later section.

Robust design can be traced back to Taguchi’s work in the 1950s and 1960s, but

has been criticized and expanded to address these concerns. The new focus is on

understanding rather than solution driven analysis by varying control and factors in

the same experiment to capture interactions [31]. Orthogonal arrays are the basis

of Taguchi’s method but are criticized for ignoring interaction effects, but design of

experiments considering control and noise factors resolve this issue [60]. Combined

arrays, such as modified central composite designs, have been shown to be more effi-

cient [129]. Computer experiments have different demands than physical experiments

leading to different experiment designs, such as latin hypercube [158]. Instead of

minimizing a signal-to-noise ratio, the mean and variation are considered separately

through the integration of response surface methodology [61]. This allows the mean

and variation to be investigated seperately as well as combined into a loss function.

It is difficult to optimize multi-responses in complex process since the equation per-

taining to summing of weighted S/N ratio is difficult to explain from the vantage of

Taguchis quality loss function [28].

13.1.1 Use of Robustness in Ship Design

Robust design was used in a ship design application by Scheibe [165], with decision

factors including MEC design parameters and the number of MEC present. Within

a humanitarian scenario modeled in ARENA, the noise variables included deck use,

number of shore spots, probability of hit and sink, and attrition rate. The outputs

used were time to complete, percent cargo delivered, and portion of craft destroyed.

This lead to recommendations on the number of MEC and lift capability. Applying

179

robust design to this problem will require mixing level or variables not seen in the

example work. A limited number of vessel design variables and scenario variables

were included in Scheibe’s work. Building on Scheibe’s work, Cason [56] included

many more vessel level variables.

13.2 Robust Design Process

The process of robust design for this work will use the process executed by Schiebe

and documented by Sanchez [162, 160]. The framework for a robust design:

1. Select the performance measures

2. Specify a loss function

3. Identify the factors

4. Plan the experiment

5. Analyze the results

6. Select the design drivers

The next six sections will further develop the work necessary for each step in the

robust design framework. This includes the information necessary for application for

this thesis using the DELAS model.

13.2.1 Select the Performance Measures

The performance measures of interest that will be selected are representative of mil-

itary operations of different types. The selected measure of performance (MoP) is

shortfall, which is a function of the difference between cargo needed and cargo deliv-

ered over the time of the operation. The concept of shortfall is illustrated in Figure

10 where the total shortfall is the sum of the area between the shortfall and demand

curves. The size of the time unit can be set to an interval of interest, for example,

180

Figure 63: Loss Function

every day or every eight hours. In reality, cost must be considered, so the estimated

fuel usage, a cost metric, is captured. The fuel usage is only that used by the sea

and air connectors, not Sea Base supply ships and estimated based on inputted fuel

usage in the modes of operation for each connector.

13.2.2 Specify Loss Function

Sanchez details a method for trading off performance mean and variability by exam-

ining the expected loss function, where c is a scaling constant and τ is a target state.

[161]:

E(loss) = c[σ2 + (µ− τ)2]

A quadratic loss function was selected for this project because a tolerance window

does not exist. If a specific tolerance was selected, a step function or combination

of quadratic and step could be used. As seen in Figure 63, a step function does

not penalize if within tolerance were the quadratic loss penalizes any deviation from

target.

For shortcoming and fuel usage, the goal is to minimize the metrics. The loss

181

Figure 64: Loss Function Minimization

function then becomes:

E(loss) = c[σ2 + µ2]

The quadratic loss is applied over the mean and deviation with the goal to minimize

total loss, as seen in Figure 64. This leads to a trade-off in performance and variation

in performance.

It is important to note that the units for shortcoming and fuel usage are not

compatible for linear combination. The magnitudes are significantly different, so

the loss function would be dominated by the fuel consumption. To correct the unit

issue, the outputs will be normalized by the smallest value to non-dimensionalize the

loss function components. This correction is only made when shortcoming and fuel

consumption are combined into a single loss function. A weight can also be applied

to each output based on the relative importance.

182

Table 25: Control Variables and Ranges
Vessel Variables Min Max
Number available 1 10
SES speed (kts) 25 50
ACV speed (kts) 2 10
Transition time (min) 10 45
Transition distance (nmi) 1 10
Max lift (LT) 250 800
Max area (sqft) 600 14000
Range (nmi) 2000 60000
Mean time between failure (min) 60 1440
Mean time to repair (min) 15 300
Use Port Ramp? no yes
Time to load (min) 60 600
Use Stern Ramp? no yes
Time to load (min) 60 600
Use Crane? no yes
Time to load (min) 120 1200
Use Austere Port? no yes
Time to unload (min) 20 300
Beach time to unload (min) 30 600

13.2.3 Identify the Factors

The factors selected for the robust design will focus on the MEC design and the

operational scenarios. This will utilize a subset of the variables included in DELAS.

The remaining parameters will be set to values representing a best guess of current

and projected capabilities.

The control factors focus on the design and procurement options for the MEC.

These include vessel design decisions and operational decisions. If the design decision

would require the modification of an existing asset, it is assumed the change is pos-

sible, i.e. the use of the LMSRs side ramp to load cargo would require advances in

the ramp system and would be included in the MEC design process if this interface

is desired. The 18 control variables are listed in Table 25 with the ranges to be used

in this study.

183

Figure 65: Distribution of Distances to ISB

The noise factors capture the variety of operational scenarios in which the MEC

would participate. These factors are listed in Table 26. The distance to the ISB range

was determined from work completed by Hyun Seop Lee in determining locations

of potential conflicts. Five hundred random point were selected around the world

and the distance from the nearest US base calculated based on usable seas, such as

commerical shipping lanes. The distribution of distances is given in Figure 65 and

form the range for this variable. The number of other vessesl present is an estimate

of the maximum number of Navy assets that would be deployed to a single operation.

The ranges for the cargo demand were derived from the scenarios discussed in Chapter

6 and represent the minimum and maximum values from the described scenarios. The

pallet and petroleum pod demand will be a repeated demand, with the set number

of pallets nad pods being demanded every 24 hours.

13.2.4 Plan the Experiment

As discussed in 4.5.1, the scenarios could be fully parametric with each variable

that serves to define the scenario is treated as an independent continuous or discrete

variable. The design of experiments would completely cover any possible scenario

and serves as the basis for comparison. This full coverage option would lead to some

unrealistic scenarios, such as bringing in only tanks and tents. This may lead to a

biasing of the results based on unrealistic scenarios. The design space encompassing

184

Table 26: Noise Variables and Ranges
Variable Min Max
Distance to ISB (nmi) 200 5000
Sea Base distance (nmi) 25 200
Number of landing spots 1 5
Other vessels present:
LMSR 0 3
LHD 0 11
LSD 0 11
LPD 0 11
MLP 0 6
LCACR 0 36
JHSV 0 4
MV22 0 5
CH46 0 11
CH53 0 11
Cargo damand:
Marine Platoon 0 156
EFV 0 94
LAV - 25 0 54
HMMWV 0 12
M1A2 0 94
EFSS Element 0 6
CEB Element 0 48
Arty Element 0 42
Mortar Element 0 24
Antiarmor Element 0 24
HIMARS Element 0 6
Pallet 0 3000
TEU - Water 0 76
TEU - MRE 0 36
TEU - beans 0 5
TEU - shelter 0 25
TEU - Eng Co 0 5
Petroleum Pod (500 gal) 0 1000

185

the feasible scenarios can not be expected to be regular shaped. It is necessary to

sample enough of the scenario space to encompass the uncertainty in future operations

without sampling unrealistic space. The concept of feasible design space and the

sampling of the design space compared to a tradition Design of Experiments (DoE)

will be further discussed in the next chapter. The design of experiments would include

section of the design space around the selected scenarios.

13.2.5 Analyze the Results and Select the Design Drivers

The analysis of results from the experiments planned in Chapter 14 will be discussed

in Chapter 15. The results will include examination of model behavior, relative

importance of control and noise variables and interactions, derived from the computer

experiment [62]. Sensitivity analysis is important because there is uncertainty in the

computer model [111]. Response Surface Methodology (RSM) models will be built to

provide insight into trade-offs and sensitivities.

The results will be analyzed for the full coverage of the design space option and

the feasible space option. The differences in the results will also lend insight into the

number of scenarios that must be included in robust analysis. If the feasible space

results approach or correspond to the full coverage results, it can be deduced that it

is not necessary to exclude infeasible regions.

186

CHAPTER XIV

FEASIBLE SPACE DEFINITION

This chapter discusses different design space samplings that will be used in the robust

design process. The experiments to run will be developed in this chapter and the

results compared in the next chapter.

14.1 Theory of Feasible Space

The concept of feasible space arises from the inclusion of scenarios that are not pos-

sible when considering the scenario variables as fully parametric. The full coverage

of the design space equally samples all regions of the noise space. Feasible coverage

excludes the regions that do not represent realistic scenarios. Some literature exists

on the treatment of multiple scenarios in robust design. Vommi and Seetala [192]

suggest using a weighted robustness factor, proportional to the likelihood of the sce-

nario. The weighted expected loss (η) is expressed as a function of the normalized

frequency (wj) and the expected loss for that scenario:

η =
∑
j

wjE(Loss)j

To perform the robust design across the scenarios, η is minimized.

Chapter 6 defined four scenario but there is uncertainty in these scenario. The

amount of supplies needed for a humanitarian mission is not known and even the

number of units that compose a Marine Expeditionary Brigade are in flux. It is

necessary to include this uncertainty in the robust design process. The feasible design

space is defined as the segments of the design space covered by the uncertainty around

selected scenarios.

187

14.2 Experimental Designs

It is of interest to see how changes in the amount of the design space sampled impact

the sensitivity analysis and key performance parameters. To examine this impact,

four sets of sampling will be run and the results compared in the next chapter. These

experiments are:

1. Single scenario

2. Discrete scenarios

3. Full coverage of noise space

4. Feasible design space

The relative amount of noise space covered by these experiments are seen in Figure

66. Case 1 design around the blue star. Case 2 covers the entire gray box. Case 3

covers the black dots in addition to the blue star. Case 4 covers the tan blocks,

selecting space that is close to the scenarios, but includes uncertainty in the exact

requirements of that scenario.

The next four sections will present the generation of the experiments. This will

be used in addition to the 19 design variable listed in Table 25.

14.2.1 Control Factors Design of Experiments

Kleijnen et al., [102] reviewed several types of designs for computer experiments

and recommends the use of a latin hypercube for problems with many factors and

where assumptions of the result are not desired. The design needed in this thesis

has many factors that may experience non-linear behavior. Latin hypercube designs

have many desirable features that are attractive, but falls short in orthogonality and

space-filling criteria [41]. These shortcoming were addressed with the development

of nearly orthogonal latin hypercube (NOLH) designs. These designs include space

filling criteria and have a maximum correlation between any two columns [116].

188

Figure 66: Design Space Coverage

189

Cioppa et al., [63] describes an algorithm for developing nearly NOLH designs

with pairwise correlation less than 0.03 and maximizing space-filling properties. This

process was executed for 7, 11, 16, 22, and 29 factor and is available online [159], but

the process hold true for larger numbers of variables. For designs of less variables,

columns can be removed without loss of space-filling or orthogonality. The design

for 22 variables will be used as the basic DoE for the design variables. If more cases

are needed, the columns of this design can be rotated without compromising the

orthogonality or space-filling properties.

14.2.2 Single Scenario

The robust design using a single scenario is just a consideration of the 19 design

variables. Traditionally, Navy vessels are designed for major combat operations, so

the large scale military operation scenario is used for this experiment set. The DoE

for the design variables is run, requiring 129 cases.

14.2.3 Discrete Scenarios

To measure the performance across the four discrete scenarios, the design DoE is

repeated for each of the scenarios. The input values used for each scenario are listed

in Table 27.

14.2.4 Full Coverage

The inclusion of the entire noise design space could be done by creating a combined

DoE or crossing the design variable DoE with a DoE for the noise variables. Combined

DoEs complicate the calculation of the variance for use in the loss function and is

suggested only for cases where the runs are very costly [162]. In this cases, the runs

are not costly so the DoEs will be crossed for ease of calculation.

A DoE is needed for the 32 noise variables, which exceeds the developed NOLH

designs. An algorithm that develops NOLH designs is available through the SEED

190

Table 27: Scenario Based Noise Variable Settings
Variable MCO MEU Humanitarian Sustainment
Distance to ISB (nmi) 3000 3000 1000 3000
Sea Base distance (nmi) 200 200 25 100
Number of landing spots 3 3 2 5
Number of austere ports 0 0 1 0
Other vessels present:
LMSR 3 1 2 2
LHD 11 3 0 0
LSD 11 3 0 0
LPD 11 3 0 0
MLP 6 1 1 1
LCACR 36 4 4 4
JHSV 4 1 1 0
MV22 5 1 0 0
CH46 11 6 0 0
CH53 11 6 0 0
Cargo damand:
Marine Platoon 156 26 0 0
EFV 94 14 0 0
LAV - 25 54 4 0 0
HMMWV 0 12 0 0
M1A2 94 4 0 0
EFSS Element 0 6 0 0
CEB Element 0 6 0 0
Arty Element 42 0 0 0
Mortar Element 24 0 0 0
Antiarmor Element 24 0 0 0
HIMARS Element 0 0 0 0
Pallet 0 0 0 3000
TEU - Water 0 0 116 0
TEU - MRE 0 0 56 0
TEU - beans 0 0 0 0
TEU - shelter 0 0 20 0
TEU - Eng Co 0 0 4 0

191

center [159] and generates designs based on the number of variables inputted and the

ranges. Independent designs can be generated and appended to reduce multicollinear-

ity among the columns. This design is limited to integer values, but the noise variables

are either integers or have large ranges, i.e. range values, so this limitation is not an

issue. Two independent designs, 64 total cases, were generated using the ranges in

Table 26 and the noise space coverage is pictured for a subset of variables in Figure 67.

This figure shows the coverage compared to the four scenarios, the MCO highlighted

in red and the other three in green.

14.2.5 Feasible Design Space

To test across the feasible space, DoEs are generated for each individual scenario.

Latin Hypercube designs were generated for each scenario. The same number of

points are run for each scenario as not to bias the testing and any weighing of interest

can be applied to the loss function. The ranges used in the generation of these DoEs

are listed in Table 28. The coverage of the distances is conplete for each scenario,

but the design space coverage for the other variables is shown in Figure 68. The

sampling around the scenarios is seen with the discrete scnearios included in red and

green points. The empty space represents infeasible regions of the design space and

the coverage can be compared to the full coverage seen in Figure 67.

192

Figure 67: Complete Design Space Coverage

193

Table 28: Scenario Based Noise Variable Ranges
MCO MEU Humanitarian Sustainment

Variable min max min max min max min max
Distance to ISB (nmi) 200 5000 200 5000 200 5000 200 5000
Sea Base distance (nmi) 25 200 25 200 25 200 25 200
Number of landing spots 1 5 1 5 1 5 1 5
Number of austere ports 0 2 0 2 0 2 0 2
Other vessels present:
LMSR 0 3 0 1 1 2 1 3
LHD 7 11 1 3 0 0 0 0
LSD 7 11 1 3 0 0 0 0
LPD 7 11 1 3 0 0 0 0
MLP 3 6 0 1 1 2 0 2
LCACR 12 36 0 4 0 4 0 8
JHSV 2 4 0 1 0 1 0 0
MV22 2 5 0 1 0 0 0 0
CH46 3 11 0 6 0 0 0 0
CH53 3 11 0 6 0 0 0 0
Cargo damand:
Marine Platoon 100 180 20 30 0 0 0 0
EFV 60 120 10 18 0 0 0 0
LAV - 25 40 60 3 6 0 0 0 0
HMMWV 0 0 8 16 0 0 0 0
M1A2 50 120 3 6 0 0 0 0
EFSS Element 0 0 4 8 0 0 0 0
CEB Element 0 0 4 8 0 0 0 0
Arty Element 30 50 0 0 0 0 0 0
Mortar Element 15 30 0 0 0 0 0 0
Antiarmor Element 15 30 0 0 0 0 0 0
HIMARS Element 0 0 0 0 0 0 0 0
Pallet 0 0 0 0 0 0 1000 3000
TEU - Water 0 0 0 0 100 200 0 0
TEU - MRE 0 0 0 0 20 100 0 0
TEU - beans 0 0 0 0 3 10 0 0
TEU - shelter 0 0 0 0 10 50 0 0
TEU - Eng Co 0 0 0 0 0 6 0 0
Petroleum Pod (500 gal) 500 1000 100 300 0 0 300 1000

194

Figure 68: Design Space Coverage

195

CHAPTER XV

ROBUST DESIGN RESULTS

Taking the four design of experiments discussed in the previous chapter, the model

results will be compared. Results for each sampling method will be given, including

filtering of the design parameters using a screening test and further analysis through

a second order response surface equation. The results are followed by a discussion of

the impact of the sampling methods. All of the analysis and graphics were generated

using JMP Statistical Software.

15.1 Single Scenario

The first set of results presented are for the major combat operation. The normalized

mean of the shortfall and the loss are examined. Since a single scenario is presented,

the loss function becomes:

Loss = w1 ∗ µ2
shortfall + w2 ∗ µ2

fuelusage

The shortfall with be weighted twice as much as the fuel loss, indicating the per-

formance is more important than that cost. A screening test is performed for both

responses and the results are seen in Figure 69 and 70. Incorporating the fuel usages

increases the number of design drivers, demonstrating the importance of incorpo-

rating a cost metric. Table 29 shows the selected design driver based on the two

responses. Since the drivers for shortfall only are also in the factors selected based

on loss, the larger number of factors will be carried through for further analysis. It

is important to note that if the loss function was modified, the order and magnitude

of the design drivers could change.

196

Figure 69: Pareto Plot for Shortfall - MCO

Figure 70: Pareto Plot for Loss - MCO

197

Table 29: Design Driver Comparison - MCO
Shortfall Loss

Number available Max lift (LT)
Max lift (LT) Max area (sqft)

Max area (sqft) Transition time (min)
Mean time between failure (min) Mean time between failure (min)

SES speed (kts) Number available
Mean time to repair (min) SES speed (kts)

Use Stern Ramp?
Mean time to repair (min)

Use Port Ramp?

Based on the down-selected design drivers, a second order response surface equa-

tion (RSE) is developed. The exception to this second order model are the use of

the interfaces because these are are yes-no variables and the second order term does

not gain additional information. The prediction of shortfall with this model is good

having an R2 of 0.92. The prediction of loss is not as good with an R2 of 0.75, but

predicts well enough to provide insight into trends. These RSEs are to increase knowl-

edge about the model, not predict, so the shape of the trend is of more importance.

There are cases where the predicted value will be less than zero, especially at the

edges of the design space, because a subset of the factors are being used, with the

other defaulted.

Using a prediction profiler, the sensitivity to variation in the individual parameters

are explored, seen in Figure 71. The trends are very similar for shortfall and loss.

For best performance, a large number of fast craft are needed. The design factors

that directly impact cycle time, such as speeds, transition time, mean time between

failures, and mean time to repair are pushed toward their minimal value. It is more

interesting that the maximum area has diminishing returns as it is increased and

reaches a plateau. The location of this plateau remains the same even with variations

in the other design variables. For this scenario, it is the lift that is more important

above a certain area threshold. The option to be able to use both the port and stern

198

ramps are also an important driver. If the number of MECs is decreased below 4,

the importance of use of the stern ramp become negligible, with the trend switching

direction below three. The trend reversal can be attributed to queuing at the Sea

Base.

Figure 72 shows the change of trends at very low number available. Note the

flattening of the speed trend as well, with low speeds now decreasing loss and shortfall.

This indicates the more ships you have, the faster they should be able to travel. But

with a very slow ship that can only use the port ramp, the increased fuel usage

actually outweighs the decrease in shortfall and the loss indicates it would be better

to have fewer MECs. This increase in fuel usage is because the inputted fuel burns

are in gallons per hour so a slower ship takes longer to travel and thus burns more

fuel. To increase the accuracy of these trends, a relationship between speed and fuel

burn could be incorporated into the DELAS model.

Sizing the MEC for a major combat operation pushes the design of the ship

to a large, fast ship. The primary drivers are the lift and area, but the area has

diminishing returns. Key second order terms appear above transition time in the

Pareto plot, including the number available and the use of the ramps and SES Speed2.

It is important these ships can remain operational for long periods of time and be

repaired quickly. The more ships present, the more important it is to have interface

options at the Sea Base.

15.2 Discrete Scenarios

The analysis of mean shortfall and loss are repeated for the testing of four discrete

scenarios. The results for each of the four scenarios are normalized by the minimum

results of that scenario. If not normalized, the magnitude of the shortfall ranges from

200 to 190000 due to the large differences in cargo demanded. If the unnormalized

values are used, the loss function is dominated by the variation in shortfall. For the

199

F
ig

u
re

7
1
:

P
re

d
ic

ti
on

P
ro

fi
le

r
-

M
C

O

F
ig

u
re

7
2
:

P
re

d
ic

ti
on

P
ro

fi
le

r
2

-
M

C
O

200

Table 30: Design Driver Comparison - Scenarios
Shortfall Loss

Number available Max area (sqft)
Max area (sqft) Number available
Max lift (LT) Max lift (LT)

Beach time to unload (min) SES speed (kts)
Use Port Ramp? Use Port Ramp?
SES speed (kts) Mean time to repair (min)

Mean time to repair (min) Time to load - port (min)
Range (nmi) Use Crane?
Use Crane? Beach time to unload (min)

Use Stern Ramp?
ACV speed (kts)

loss function, the shortfall is again weighted twice as much as the fuel:

Loss = 2 ∗ (σ2
shortfall ∗ µ2

shortfall) + (σ2
fuelusage + µ2

fuelusage)

The Pareto plots for the shortfall and loss responses are given in Figure 73 and

74. Screening the two response options results in the drivers in Table 30. Many

of the same factors are identified as with the major combat operation, including

number available and life and area of the ship. But factors such as beach time to

unload and time to load using the port ramp have emerged as important. The most

interesting drop is the mean time between failures, indicating when shorter operations

are considered the reliability is not as important. Transition time has also dropped

significantly indicating it is no longer a driving component of the total travel time.

The major difference between the two responses screening tests are the incorpo-

ration of range. Since it is fairly low on the shortfall screening test, the same second

order model variables will be used for both responses, including the variables listed

for loss. This model provides a fairly good estimation of both responses with an R2

of 0.83 for shortfall and 0.84 for loss.

Figure 75 shows many similar trends to the analysis of just the MCO, such as

wanting many MECs and having a diminishing return on increasing area. The plateau

201

Figure 73: Pareto Plot for Shortfall - Scenarios

Figure 74: Pareto Plot for Loss - Scenarios

202

in area occurs with a smaller ship for shortfall than loss. The curvature of the speed

is an over fit and should be flat, indicating that if enough ships are preset, the speed

is not important. Figure 76 show the increasing importance of speed as the number

of ships is decreased.

A trade-off is present between mean time to repair and beach time to unload. If it

takes more than 5 hours to unload the connector, then it is desirable to have a short

mean time to repair, but with a quick unload time, a longer mean time to repair is

better. This indicates that the bottle neck occurs at the Sea Base so it is desirable to

space out the returning connectors. Yet, a greater load time using the port ramp is

desirable, plateauing at 7.5 hours. This trend is related to the maximum lift. If it is

a small ship, a quick load time is needed but with a larger ship, a larger load time is

fine. With a larger ship, less trips are needed to less queuing would occur. Although

having load options is good, including a crane option is not, due to the range for the

load time using the crane being larger than for the other two load options. Since the

model is built to use the fastest available interface, this shows that it is better to wait

for a quicker interface then to use the slower crane.

The incorporation of more scenarios into the loss analysis has raised an important

trade-off between speed and number available. There is a choice here to have more

ships or fewer fast ships. But this is coupled with the impact of increasing lift, which

is of greater importance with fewer ships. The importance of interface option is

demonstrated but also highlights the negative impact of a significantly slower option.

The speed of the interface is more closely coupled with the maximum lift than the

number available, a surprising result in that the total number of trips needed is more

important than the queuing at the Sea Base.

203

F
ig

u
re

7
5
:

P
re

d
ic

ti
on

P
ro

fi
le

r
-

S
ce

n
ar

io
s

F
ig

u
re

7
6
:

P
re

d
ic

ti
on

P
ro

fi
le

r
2

-
S
ce

n
ar

io
s

204

15.3 Full Coverage

This set of results represents the first where the noise space is sampled beyond a small

set of scenarios. The DoE generated for the noise space covers the entire ranges. Once

again, the shortfall is weighted twice as much as the fuel usage in generating the loss

function. Looking at the individual results, the variation in the performance metric

is not great, but the difference in fuel usage varies greatly. Since the values are

normalized within each case, this large variation can not be attributed to differences

in the scenario, instead it is clear that different MEC designs and numbers cause great

differences in how the response operation is formulated and the usage of assets.

The Pareto plots for shortfall and loss are given in Figure 77 and 78. The design

drivers are listed in Table 31 and the drivers for shortfall and loss vary for the first

time. Main drivers do appear again, such as the number available and SES speed.

The drivers for shortfall remain similar, including the lift and area capabilities of the

ship, interface options and repair criteria. It is interesting that the lift and area have

dropped significantly for the loss. As expected, fuel variation appears to be driving

the loss with the emergence of SES speed and range. If the range is not large enough

for the MEC to travel from the ISB to the destination, the operation would have to

rely on other connectors. This fuel variation could also explain the emergence of the

load and unload time as the longer an MEC has to queue, the more fuel it burns.

Since the design drivers varied, two separate RSEs will be developed incorporating

different variables. The mean shortfall model has a very good fit with an R2 of 0.96.

Figure 79 shows the prediction profiler for shortfall, which again trends toward many,

large ships. Again a plateau is seen in the max area, occurring near 12000 sqft. The

speed is not as important, again indicating that having a large number of ships makes

the speed not as important. With a slow ship, the penalty for increasing beach time

to unload is not as great. This highlights the relationship between the speed of the

ship and penalty for load or unload time as additional advantage is not gained with

205

Figure 77: Pareto Plot for Shortfall - Full Space

Figure 78: Pareto Plot for Loss - Full Space

206

Table 31: Design Driver Comparison - Full Space
Shortfall Loss

Number available Number available
Max lift (LT) SES speed (kts)

Max area (sqft) Range (nmi)
SES speed (kts) Time to load - port (min)
Use Port Ramp? Beach time to unload (min)

Mean time to repair (min) Time to unload - austere (min)
Beach time to unload (min) Time to load - crane (min)

Use Austere Port? Max area (sqft)
Mean time between failure (min)

a fast ship if the time gained in arriving at the beach faster is spent queuing for the

beach.

The RSE for loss has a good fit with an R2 of 0.90 and the prediction profiler in

Figure 80. The trends demonstrated here are clearly driven by the variation in fuel

usage. The desirability is pushing toward no MECs. If any are included, they should

have a large area and be able to load quickly. The push to no range is related to

the number available. If the operation range exceeds the MEC range, then the MEC

is not deployed, having the same effect as no MECs present. There are countering

trends for unload time, with unloading at the austere port requiring less than 3 hours

but the beach unloading being pushed to longer times. The push to longer beach

unloading is a reversal between shortfall and loss, with this push resulting from a

desire to reduce the variability by penalizing additional MECs by not being able to

unload them. Overall, these trends are pushing toward fewer vessels and minimizing

queuing.

207

F
ig

u
re

7
9
:

S
h
or

tf
al

l
P

re
d
ic

ti
on

P
ro

fi
le

r
-

F
u
ll

S
p
ac

e

F
ig

u
re

8
0
:

L
os

s
P

re
d
ic

ti
on

P
ro

fi
le

r
-

F
u
ll

S
p
ac

e

208

15.4 Feasible Design Space

For the feasible design space, the loss functions can be calculated for each scenario

DoE, thus it is possible to weigh the loss of each scenario in addition to each response:

η =
∑
j

wjE(Loss)j

For this study, the four scenarios will be weighted evenly to demonstrate this evalu-

ation concept. Again, the shortfall will be weighted twice as much as the fuel usage.

The variance in shortfall and fuel usage is much greater with this sampling, especially

in the humanitarian and sustainment operations. The differences in the fuel usage

are about five fold greater than the shortfall. The fuel values are similar to those

for the full coverage, but the shortfall values are six to ten times greater. The in-

crease in shortfall mean indicates the areas sampled are more challenging to the fleet

composition used. The increase in variance indicate the noise parameters are causing

a greater variance in the results. The overall larger differences between the designs

highlight the potential for a greater improvement with changes in the MEC design.

Figure 81 shows the Pareto for shortfall, which has many of the same drivers seen

previously. The max lift has dropped relative to max area, indicating the feasible

space is not as weight constrained as the previous DoEs. As with the full coverage,

the fuel usage variation is large. The variance in the shortfall has increased, driven

by shortfalls near zero that do not normalize well, but remains less than half the

fuel usage variation. As seen in Figure 82, the loss is again driven by the number of

MECs present, indicating that the loss function is driven more by the variation then

the performance.

Using the design drivers listed in Table 32, RSEs were developed. The shortfall

RSE has an R2 of 0.85. Figure 83 and 84 show the coupling between lift and area

constraints. A small lift capability causes the maximum area minimum to be much

smaller than previously seen and drives the need for more MECs. Increasing the max

209

Figure 81: Pareto Plot for Shortfall - Feasible Space

Figure 82: Pareto Plot for Loss - Feasible Space

210

Table 32: Design Driver Comparison - Feasible Space
Shortfall Loss

Beach time to unload (min) Number available
Number available Max area (sqft)
Max area (sqft) Max lift (LT)

Transition distance (nmi) Range (nmi)
Mean time to repair (min) Time to load - port (min)

SES speed (kts) Use Austere Port?
ACV speed (kts) Mean time to repair (min)

Time to load - crane (min) SES speed (kts)
Max lift (LT) Beach time to unload (min)

Time to load - port (min)

lift moves the area minimum, with the increase at large areas due to over fit of the

2nd order RSE. The larger, heavier lift ship reduces the need for additional MECs.

The sampling for the feasible space is focused more on the lighter scenarios - where

the total weight and area are not great and if the ship is large enough, the operation

can be completed with one or two MECs. Adding additional MECs does not improve

the performance, as was seen in Section 12.5. The trend reversal present for time to

load - port is surprising. If the MEC is small or the beach load time is large, there

is no impact or a negative impact in shortening time to load, but with a larger ship

that can be unloaded faster, the load time should be reduced below five hours.

The RSE for the loss has an R2 of 0.92 and results in the trends shown in Figure

85. Once again, the loss pushes the results to fewer ships, driven by the variation more

than the performance. The increased impact of the lighter missions pushes toward

a larger ships. The larger ship reduces the variability cause by having more MECs.

This variability is further reduced by requiring a long time to unload at the beach.

Overall, the loss is reduced by design variables that reduce the number of MEC trips

required or able to be completed. This trend is also seen in the speed, with the speed

minimum location increasing as the other variables are tuned to minimize loss. The

option to use the austere port decreases the loss and is more important as the beach

211

unload time increases, due to reducing the variability in the shortfall by reducing

beach queuing.

15.5 Selection of Design Drivers

This chapter presented the results for four separate methods of sampling the noise

space in a robust design process, ranging from one scenario to full experimentation

in the noise space. Considering the performance, captured in the shortfall metric,

many design drivers remained the same over all of the testing methods. The number

available, maximum lift, maximum area, and SES speed were consistently design

drivers. There was a trade-off in the number available and size along with speed.

The difference in the trade-off between full coverage and feasible coverage of the

design space is illustrated in the difference between Figure 86 and 87. The shortfall

contours are in red and for the full coverage are almost horizontal, indicating a need

for more MECs, where in the feasible coverage, those ships also need to be faster.

The blue contours are overall loss, which push toward fewer ships with the feasible

space and fewer, slower ships for full coverage.

The secondary design impacts come from factors that directly impacted the time

per trip, such as the time between repairs and time to repair. As the noise sampling

moved from four scenario to full coverage to feasible space, the option to use interfaces

were replaced with the time to load at these locations and the time to unload at the

beach gained importance. The change in impact can be attributed to the reduction

in the number of needed trips with the feasible space. The four scenarios were at the

higher demand than the feasible space, so more trips would be needed for those than

most of the feasible space cases, leading to loading options being more important.

The four scenarios also had a medium value for unloading spots at the beach and the

variation in the number of unloading spots made the loading and unloading times

more important.

212

F
ig

u
re

8
3
:

S
h
or

tf
al

l
P

re
d
ic

ti
on

P
ro

fi
le

r
-

F
ea

si
b
le

S
p
ac

e

F
ig

u
re

8
4
:

S
h
or

tf
al

l
P

re
d
ic

ti
on

P
ro

fi
le

r
2

-
F

ea
si

b
le

S
p
ac

e

F
ig

u
re

8
5
:

L
os

s
P

re
d
ic

ti
on

P
ro

fi
le

r
-

F
ea

si
b
le

S
p
ac

e

213

Figure 86: Contour Profiler - Full Coverage

Figure 87: Contour Profiler - Feasible Coverage

214

The drivers of loss varied greatly through the four sampling methods. This can be

attributed to the increased amount of variation. In the initial sampling, there is not

variation since only one case is considered, but with the feasible space, the variability

was large. The increased variation is mostly driven by the number of MECs present,

which is a logical driver. The attributes of the MEC do no create as much variability

as the number present. In reality, the variation is not as important as the performance

across the scenarios. In cases where there is large variation within a design case, loss

as it has been presented in this work may not be the best selection criteria.

15.5.1 Additional Analysis

Due to the loss function being dominated by the variability, additional analysis will

be performed considering only the result values of the shortfall and fuel usage. An

additional goal of this section is to see how the noise impact compare to those of the

design drivers. The full coverage of the noise space and the feasible space sampling

will be compared throughout.

Figures 88 through 91 are sensitivities for all design and noise variables. The first

two figures are for full coverage and the second two for feasible space. For shortfall, in

both cases, the first factor is the number of pallets, which is a recurring demand and

shapes the shortfall curve after the initial demand. For full coverage, landing spots

follows number of M1A2 units, but is closely followed by the other heavy and large

cargo items. This is very different from the feasible space results, which is more driven

by the other assets present, particularly the LMSR and other connectors. Here the

number available is more important than the number of landing spots. The relative

importance of the number of landing spots highlights this variable should be moved

to a design choice in setting the climb angle capabilities of the MEC.

Comparing full and feasible space results, the feasible space reduces the coverage of

the noise variables, especially the cargo requirements, resulting in a decrease in their

215

relative importance. In the case of full coverage, the SB distance is a larger driver

than the ISB distance, which reverses for feasible coverage. This can be attributed

to fewer return trips to the Sea Base for additional cargo making that distance less

important. Looking at just the design criteria, by moving to just the feasible space,

the top five design drivers do not change, but the options to use interfaces becomes

more important than the times to load.

Looking at the fuel usage drivers, the reduction of the design space had a large

impact. For the full coverage, the first driver is number of MECs available, followed

by the major connectors. A few of the cargo units are interspersed with design choices

such as range and time to unload at the beach. The feasible space sampling has the

number of LHDs presents as the main driver, followed by the number of pallets. This

is followed by the number available and distance to the ISB, highlighting that the

large fuel burn for these cases are on the ISB legs of the trip.

The feasible space tests cut down on many of the large, heavy cargo items, trans-

lating to fewer trips needed for initial delivery. The other cargo units and ships

present are intermixed along with the lift and area of the MEC. The size of the MEC

is more important then the presence of some other vessels. Queuing does not seem to

be a driver as the interface options and times to load and unload are of lower impor-

tance. The reduction to feasible space reduced the impact of cargo units because the

reduced space largely occurred at higher demands for large, heavy objects, such as

M1A2 units. In terms of the design factors, increasing the number available increases

the fuel usage, but increasing the max lift and area reduces it. The higher demand

present in the full coverage creates more queuing as more trips are needed, so this

queuing increases fuel usage. With the feasible cases, higher speed is more important

because it can decrease fuel usage, since fuel usage is based on time.

216

Figure 88: Pareto Plot for Shortfall - Full Coverage, All Variables

217

Figure 89: Pareto Plot for Fuel - Full Coverage, All Variables

218

Figure 90: Pareto Plot for Shortfall - Feasible Space, All Variables

219

Figure 91: Pareto Plot for Fuel - Feasible Space, All Variables

220

15.5.2 Robust Design Conclusions

The focus of this chapter was to present the results of using the DELAS model in

a robust design framework and compare those results across four sampling methods.

The results of the robust design process were presented for a single scenario, a handful

of scenarios, complete coverage of the noise space, and feasible scenario coverage.

Although many of the design drivers remained the same throughout when considering

performance, the loss drivers changed considerable. The magnitude of the variations

drove the loss function instead of the performance and cost metrics. In future work,

the calculation of the loss function could be modified to gain more insight. As a

demonstration, this chapter showed the importance of considering the feasible noise

space instead of the complete space.

In reality, there are many considerations that could be included in the robust

design and this chapter only presents one example loss function. The cost of the ship

itself would provide further insight into the trade-off between number available and

maximum lift and area. The fuel usage cost should be further refined to include fuel

usage based on speed and size of the ship. The fuel usages were estimates and need

expert refinement as well as the possibility of making the fuel usage dependent on

the amount of cargo loaded. The DELAS model does not include any consideration

of exposure or possibility of the MEC being damaged or sunk while traveling. The

robust analysis presented here is to serve as an example process which provides insight

and could be expanded to incorporate other responses of interest.

The previous three chapters have worked to address the following experiments:

1. Identify measure of performance (MoPs) that are relevant to range of operations

2. Identify sampling methods for segmented spaces

3. Compare the feasibility of the sampling methods to complete coverage

4. Compare robustness results for complete coverage and feasible scenario options

221

5. Identify the design drivers for the MEC

Chapter 13 developed shortfall as a cross-scenario MoP paired with fuel usage as a

cost metric. The challenge was to develop MoPs that were meaningful across the range

of military operations. Chapter 14 compared four sampling methods, including the

concept of feasible space, which samples a segmented area within the overall noise

space. These sampling methods were executed and the robust results compared.

Across all the sampling options, the number of conceptual connectors, as well as the

speed, lift, and area capabilities of the MEC drove the performance. When the focus

is on longer operations, the interface options are important, but with the inclusion of

smaller operations, the total trip time is the driver. Selecting the sampling method

for the noise space is key in determining the design drivers.

222

CHAPTER XVI

CONCLUSIONS

16.1 Summary of Work and Contributions

The objective of this work is a process that can quantitatively assess the impacts of

new capabilities and vessels at the systems-of-systems level. This process addresses

the need for the design of future naval platforms to account for the interoperability

of a variety of heterogeneous systems and their role in a larger system-of-systems

context. This new methodology must be able to handle diverse, disruptive technolo-

gies acting on multiple elements within the system-of-systems architecture. It must

also be capable of capturing the complex interactions between elements or the archi-

tecture and must be able to assess the impacts of new systems such as the Medium

Exploratory Connector (MEC). The method address the following gaps in existing

methods:

• Breakdown of modeling problem into component

• Parametric scenarios

• Heterogeneous, interacting fleet

• Dynamic loading

• Dynamic routing

• Analyzing design requirements across multiple scenarios

These gaps lead to the following assertions and hypotheses through the consider-

ation of the research questions developed in Chapter 3:

Assertions:

223

1. Interface selection, loading, and routing sub-problems are abstractable

2. Scenarios can be fully defined by a scheduled set of demands, distances between

locations, and physical characteristics that can be treated as input variables

Hypotheses:

1. Introducing matrix formulation into Discrete Event Simulations will enable the

abstraction of sub-processes at an object level and reduce the effort required to

integrate new assets

2. Knapsack loading is an efficient and robust approach for solving the loading

sub-problem

3. Matrix based predictive queuing and cargo algorithms can accurately predict

queue times for dynamic routing

4. Feasible scenario robust analysis identifies the design drivers for a range of

scenarios

The following sections summarize the results of investigating these assertions and

hypotheses. The research questions are revisited to show how the experiment results

have been able to answer the research questions. The observations, research questions,

hypotheses, experiments, and conclusions are summarized in Table 33.

16.1.1 Sub-Problem Abstraction

The challenges of the Sea Basing problem could not be addressed by an existing

vehicle routing or simulation method. There are portion of the problem that have

been solved using existing methods and these techniques were brought together to

address the overall, total problem. The following research questions described the

gap:

224

T
a
b
le

3
3
:

S
u
m

m
ar

y
of

K
ey

T
h
es

is
P

oi
n
ts

O
b

se
rv

a
ti

o
n

R
e
se

a
rc

h
Q

u
e
s-

ti
o
n

s
H

y
p

o
th

e
si

s
/

A
s-

se
rt

io
n

E
x
p

e
ri

m
e
n
ts

C
o
n
cl

u
si

o
n
s

T
h
e

co
m

p
le

x
it

y
d
em

an
d
s

d
ec

om
p

o-
si

ti
on

of
th

e
ta

sk
in

to
a

se
t

of
m

or
e

m
an

ag
ea

b
le

d
es

ig
n

p
ro

b
le

m
s

W
h
ic

h
su

b
-p

ro
b
le

m
s

ar
e

ab
st

ra
ct

ab
le

an
d

ca
n

b
e

d
ea

lt
w

it
h

as
se

p
ar

at
e

p
ro

b
le

m
s?

In
te

rf
ac

e
se

le
ct

io
n
,

lo
ad

in
g,

an
d

ro
u
ti

n
g

su
b
-p

ro
b
le

m
s

ar
e

ab
st

ra
ct

ab
le

E
x
p

er
im

en
ts

w
il
l

b
e

p
os

ed
fo

r
ea

ch
su

b
-

p
ro

b
le

m

L
oa

d
in

g
an

d
ro

u
ti

n
g

an
d

ab
st

ra
ct

ed

M
o
d
el

m
u
st

ca
p
tu

re
m

u
lt

ip
le

sc
en

ar
io

s
M

in
im

u
m

am
ou

n
t

of
in

fo
rm

at
io

n
to

d
efi

n
e

a
sc

en
ar

io
?

C
an

th
is

in
fo

rm
at

io
n

b
e

d
e-

fi
n
ed

b
y

a
se

t
of

in
-

p
u
t

va
ri

ab
le

s?

S
ce

n
ar

io
s

ca
n

b
e

fu
ll
y

d
efi

n
ed

b
y

a
sc

h
ed

u
le

d
se

t
of

d
em

an
d
s,

d
is

ta
n
ce

s
b

et
w

ee
n

lo
ca

ti
on

s,
an

d
p
h
y
si

ca
l

ch
ar

-
ac

te
ri

st
ic

s
th

at
ca

n
b

e
tr

ea
te

d
as

in
p
u
t

va
ri

ab
le

s

Id
en

ti
fy

an
d

q
u
an

ti
fy

sc
e-

n
ar

io
s

re
le

va
n
t

to
M

E
C

d
es

ig
n

D
ev

el
op

ge
n
er

ic
ca

rg
o

ve
ct

or
in

cl
u
d
in

g
m

in
im

al
ly

tr
an

sp
or

ta
b
le

u
n
it

s

F
ou

r
ex

am
p
le

sc
en

ar
-

io
s

d
ev

el
op

ed
:

m
a

jo
r

co
m

b
at

op
er

at
io

n
,

sm
al

l
m

il
it

ar
y

op
er

at
io

n
,

h
u
-

m
an

it
ar

ia
n

m
is

si
on

,
an

d
su

st
ai

n
m

en
t

op
er

at
io

n
,

G
en

er
ic

ca
rg

o
ve

ct
or

d
ev

el
op

ed

A
sy

st
em

-o
f-

sy
st

em
s

fo
cu

s
m

u
st

co
n
si

d
er

in
te

rf
ac

es
b

et
w

ee
n

as
se

ts
an

d
fl
ee

t
m

ix
,

T
re

at
in

g
ve

ss
el

s
as

ca
rg

o
ob

je
ct

s
w

il
l

re
q
u
ir

e
n
ew

m
et

h
o
d
s

in
d
at

a
h
an

d
li
n
g

an
d

m
o
d
el

in
g

H
ow

ca
n

th
e

in
te

r-
fa

ce
s

b
et

w
ee

n
as

se
ts

b
e

tr
ea

te
d

as
d
es

ig
n

va
ri

ab
le

s?
H

ow
ca

n
ch

an
gi

n
g

th
e

fl
ee

t
m

ix
n
ot

ch
an

ge
st

ru
ct

u
re

of
th

e
m

o
d
el

?
C

an
ca

rg
o

n
o
d
es

b
e

tr
ea

te
d

as
ob

je
ct

s
-

ab
il
it

y
to

tr
ac

k
ca

rg
o

an
d

in
te

rf
ac

e
u
se

?

In
tr

o
d
u
ci

n
g

m
at

ri
x

fo
rm

u
la

ti
on

in
to

D
is

cr
et

e
E

ve
n
t

S
im

-
u
la

ti
on

s
w

il
l

en
ab

le
th

e
ab

st
ra

ct
io

n
of

su
b
-p

ro
ce

ss
es

at
an

ob
je

ct
le

ve
l

an
d

re
d
u
ce

th
e

eff
or

t
re

q
u
ir

ed
to

in
te

gr
at

e
n
ew

as
se

ts

R
u
n
ti

m
e

p
en

al
ty

fo
r

ad
d
in

g
ad

d
it

io
n
al

as
se

ts
an

d
ca

rg
o

n
o
d
es

,
V

al
i-

d
at

e
an

d
ve

ri
fy

m
o
d
el

re
su

lt
s

M
at

ri
x

fo
rm

u
la

ti
on

al
-

lo
w

s
ab

st
ra

ct
io

n
of

su
b
-

p
ro

ce
ss

an
d

re
d
u
ce

s
le

ve
l

of
eff

or
t

to
in

tr
o
d
u
ce

n
ew

as
se

ts
w

it
h

m
in

im
al

ru
n
-

ti
m

e
p

en
al

ty
,

M
o
d
el

re
-

su
lt

s
co

m
p
ar

ed
an

d
ex

-
p
la

in
ed

225

O
b

se
rv

a
ti

o
n

R
e
se

a
rc

h
Q

u
e
s-

ti
o
n

s
H

y
p

o
th

e
si

s
/

A
s-

se
rt

io
n

E
x
p

e
ri

m
e
n
ts

C
o
n
cl

u
si

o
n
s

D
y
n
am

ic
ca

rg
o

lo
ad

-
in

g
en

ab
le

s
p
ar

am
et

-
ri

c
sc

en
ar

io
s

C
an

m
at

h
em

at
ic

al
op

ti
m

iz
at

io
n

te
ch

-
n
iq

u
es

b
e

u
se

d
fo

r
lo

ca
l

le
ve

l
d
ec

is
io

n
s?

K
n
ap

sa
ck

lo
ad

in
g

is
an

effi
ci

en
t

an
d

ro
-

b
u
st

ap
p
ro

ac
h

fo
r

so
lv

in
g

th
e

lo
ad

in
g

su
b
-p

ro
b
le

m

C
om

p
ar

e
al

go
ri

th
m

s
to

m
in

im
iz

es
in

tr
o
d
u
ct

io
n

of
ad

d
it

io
n
al

w
ai

t
ti

m
e

D
o
cu

m
en

t
ab

il
it

y
to

m
at

ch
ca

rg
o

d
es

ir
ed

an
d

ca
rg

o
d
el

iv
er

ed

H
y
p

ot
h
es

is
re

fi
n
ed

-
k
n
ap

sa
ck

an
d

as
si

gn
-

m
en

t
fo

rm
u
la

ti
on

is
effi

ci
en

t
an

d
d
o
es

n
ot

in
tr

o
d
u
ce

ad
d
it

io
n
al

w
ai

t
ti

m
e

R
ou

ti
n
g

is
n
ee

d
ed

so
th

e
su

p
p
ly

ch
ai

n
is

a
p
ro

d
u
ct

of
th

e
as

se
ts

p
re

se
n
t

C
an

ro
u
ti

n
g

d
ec

i-
si

on
b

e
m

ad
e

u
si

n
g

p
ar

am
et

er
s

tr
ac

ke
d

in
th

e
m

o
d
el

?
C

an
th

e
lo

gi
st

ic
s

ch
ai

n
fo

rm
u
la

ti
on

b
e

a
b
y
p
ro

d
u
ct

of
th

e
se

le
ct

ed
m

ix
of

as
se

ts
?

M
at

ri
x

b
as

ed
p
re

-
d
ic

ti
ve

q
u
eu

in
g

an
d

ca
rg

o
al

go
ri

th
m

s
ca

n
ac

cu
ra

te
ly

p
re

d
ic

t
q
u
eu

e
ti

m
es

fo
r

d
y
n
am

ic
ro

u
ti

n
g

L
ev

el
of

eff
or

t
to

in
co

rp
o-

ra
te

a
ch

an
ge

,
C

om
p
ar

e
ac

cu
ra

cy
of

q
u
eu

e
p
re

d
ic

-
ti

on
,

se
le

ct
io

n
of

ca
rg

o
ob

je
ct

an
d

in
te

rf
ac

e
fo

r
d
iff

er
en

t
al

go
ri

th
m

s

F
ou

r
al

go
ri

th
m

s
co

m
-

p
ar

ed
ag

ai
n
st

b
as

el
in

e
of

p
re

-s
et

ro
u
ti

n
g,

P
re

-
d
ic

ti
ve

ro
u
ti

n
g

w
it

h
re

co
n
si

d
er

at
io

n
u
p

on
ar

ri
va

l
at

d
es

ti
n
at

io
n

se
le

ct
ed

,
M

u
lt

ip
le

u
n
lo

ad
p

oi
n
ts

as
tr

av
el

in
g

sa
le

s-
m

an
ad

d
ed

to
d
y
n
am

ic
lo

ad
in

g
A

n
ap

p
ro

ac
h

is
n
ee

d
ed

th
at

fa
-

ci
li
ta

te
s

d
es

ig
n

in
a

cr
os

s
sc

en
ar

io
,

sy
st

em
-o

f-
sy

st
em

s
fr

am
ew

or
k

W
h
at

d
es

ig
n

p
ar

am
-

et
er

s
of

a
n
ew

co
n
-

n
ec

to
r

ar
e

ke
y

to
im

-
p
ro

v
in

g
S
oS

p
er

fo
r-

m
an

ce
?

C
om

m
on

se
t

of
p
ar

am
et

er
s

ac
ro

ss
sc

en
ar

io
s?

C
on

ti
n
u
-

ou
s

or
d
is

cr
et

e
sc

e-
n
ar

io
s?

H
ow

ca
n

th
es

e
p
ar

am
et

er
s

b
e

id
en

ti
fi
ed

w
h
en

sc
e-

n
ar

io
s

ar
e

u
n
ce

rt
ai

n
?

F
ea

si
b
le

sc
en

ar
io

ro
b
u
st

an
al

y
si

s
id

en
ti

fi
es

th
e

d
es

ig
n

d
ri

ve
rs

fo
r

a
ra

n
ge

of
sc

en
ar

io
s

Id
en

ti
fy

m
ea

su
re

s
of

p
er

fo
rm

an
ce

,
Id

en
ti

fy
sa

m
p
li
n
g

of
se

gm
en

te
d

sp
ac

es
,

C
om

p
ar

e
th

e
fe

a-
si

b
il
it

y
of

th
e

sa
m

p
li
n
g

m
et

h
o
d
s

to
co

m
p
le

te
co

ve
ra

ge
,

C
om

p
ar

e
ro

b
u
st

n
es

s
re

su
lt

s
fo

r
co

m
p
le

te
co

ve
ra

ge
,

an
d

fe
as

ib
le

sc
en

ar
io

op
-

ti
on

s,
Id

en
ti

fy
th

e
d
es

ig
n

d
ri

ve
rs

fo
r

th
e

M
E

C

S
h
or

tf
al

l
an

d
fu

el
u
sa

ge
as

M
oP

s,
N

ea
rl

y
or

th
og

-
on

al
la

ti
n

h
y
p

er
cu

b
e

sa
m

p
li
n
g,

S
en

si
ti

v
it

ie
s

co
m

p
ar

ed
fo

r
si

n
gl

e
sc

e-
n
ar

io
,

fo
u
r

sc
en

ar
io

s,
fu

ll
co

ve
ra

ge
,

an
d

fe
as

ib
le

sp
ac

e,
R

es
u
lt

s
d
iff

er
en

t,
n
oi

se
sa

m
p
li
n
g

im
p
ac

ts
ke

y
p
ar

am
et

er
s,

N
oi

se
p
ar

am
et

er
s

ar
e

la
rg

e
d
ri

ve
rs

226

1. Different types of vehicles will complete different processes but are there com-

mon elements that can be abstracted?

2. Which sub-problems are abstractable and can be dealt with as separate prob-

lems?

3. Can the sub-processes discussed be treated as individual problems?

4. Will abstracting sub-processes decrease the effort required to integrate a new

asset?

This thesis demonstrated the incorporation of the matrix formulation allowed the

common process elements to be abstracted. The loading and routing sub-problem

are abstracted and have separate research questions and hypotheses. The abstraction

does reduce the effort required to integrate new assets, as was described in Section

7.3.

16.1.2 Scenario Definition

The need for parametric scenarios led to the following research questions:

1. What is the minimum amount of information needed to define a scenario?

2. Can this information be defined by a set of variables allowing a single model for

several scenarios?

It hypothesis that scenarios can be fully defined by a scheduled set of demands,

distances between locations, and physical characteristics that can be treated as input

variables was demonstrated. Scenarios within this framework are defined in terms of:

1. Operation objective

2. Performance period

3. Participating units

227

4. Geographical layout - real or hypothetical

5. Performance plan - including required resources

These characteristics form the inputs to the DELAS model. The operation ob-

jective and required resources form the demand vector, quantified using the generic

cargo vector. The generic cargo vector defines minimally transportable units that

serve as the basic unit in the dynamic loading. The performance period is the length

of the model run. Participating units are defined as inputs including the number and

characteristics, such as speed and lift capabilities. The geographical layout of the

scenario determines the distances, including Sea Base stand-off distance and distance

to supply bases. Additional geographical information includes the potential for an

intermediary port and the number and grouping of beach landing zones. By building

the model using the scenario variables as inputs, instead of part of the model formula-

tion, DELAS is able to capture and model a variety of operational scenarios. Generic

cargo vector defines minimally transportable units that serve as the basic unit in the

dynamic loading. The performance period is the length of the model run. Partici-

pating units are defined as inputs including the number and characteristics, such as

speed and lift capabilities. The geographical layout of the scenario determines the

distances, including Sea Base stand-off distance and distance to supply bases. Addi-

tional geographical information includes the potential for an intermediary port and

the number and grouping of beach landing zones. By building the model using the

scenario variables as inputs, instead of part of the model formulation, DELAS is able

to capture and model a variety of operational scenarios.

16.1.3 Matrix Formulation

The gaps in current capabilities highlighted the need for a heterogeneous, interacting

fleet highlights the need to model vessel interfaces as well as fleet mix in addition to

traditional asset performance. The need to treat cargo vessels as objects with cargo

228

properties require a methods in data handling. These operations led to the following

questions:

1. How can the interfaces between assets be treated as design variables and not a

pre-set option?

2. How can changing the fleet mix not involve changing the structure of the model?

3. Can cargo nodes be treated as objects including the ability to track cargo and

interface use?

Introducing matrix manipulation into Discrete Event Simulations enables the ab-

straction of sub-processes at an object level and reduces the effort required to integrate

new assets. Matrix based decision making extracts the selection of loading and un-

loading interfaces from the vessel processes. Abstracting the interface selection also

enable the modification of the interfaces available for a vessel to use without modi-

fication of the vessel process. Although increasing the run time slightly, the matrix

based formulation greatly reduces the effort to introduce new assets. This formula-

tion also allows the modification of decision making processes without the modifying

each individual vessel process, which in turn enables the dynamic loading and routing

algorithms. Matrix formulation incorporated into discrete event simulation creates a

flexible and expandable framework.

16.1.4 Dynamic Loading

The need for parametric scenarios highlighted the need for dynamic loading as a single

type of cargo or pre-set loadings can not capture the variety of scenarios of interest.

This problem was identified as abstractable and led to the following question:

1. Can mathematical optimization techniques be used for local level decisions?

The use of matrices solves the handling of cargo assets as individual assets, leav-

ing the subproblem of selecting the cargo to load on an individual connector. The

229

experimentation of loading algorithms was based on matching the cargo demand and

not introducing additional wait time. A knapsack formulation alone did not match

the cargo delivered to the cargo demanded. Combining an assignment problem with

a knapsack loading formulation yields an algorithm that can overcome stalling of

cargo selection and match the delivery of cargo. The hypothesis was disproven, but

was demonstrated when modified to include an assignment formulation: A combined

knapsack loading and assignment problem is an efficient and robust approach for

solving the loading sub-problem. Realistic loading of vessels and other assets capture

the cargo delivery capability of the modeled operation. Dynamic loading allows the

scenario to be varied as well as the lift capabilities of the connectors.

16.1.5 Dynamic Routing

Dynamic routing is needed to allow for a reconfigurable supply chain to maintain a

robust and flexible operation. This need led to the following questions:

1. Can routing decision be made using parameters tracked in the model?

2. Can the logistics chain formulation be a byproduct of the selected mix of assets?

The dynamic routing scheme can handle the loss or gain or a supplier or connectors

and be able to choose the connector or to choose which route the connector should

travel. This allows the model to not have a preset logistics flow but be represented as

a network of possible nodes and connections. Four dynamic routing algorithms, based

on concepts from traditional vehicle routing and computer science, were compared to

a baseline of set routes. Routing based on predicted queue time but including the

reconsideration of available interfaces upon arrival at the loading and unloading loca-

tions demonstrated its ability to route across a variety of test cases. The inclusion of

a distribution on the wait times identified the strength of including reconsideration

by taking advantage of changes that can speed the loading process. One probabilis-

tic variable was tested and additional probabilistics, such as repairs, would further

230

improve the performance of the predictive with reconsideration algorithm. This algo-

rithm is scalable to a heterogeneous mix of vessels of any size and number of supply

nodes.

The possibilities of unloading at multiple beach groups is considered a special case.

A traveling salesman type problem is added to the dynamic loading algorithm, so in

addition to selecting the loading vessel, the unloading beach groups are selected as well

as the total cargo to load on the connector. If hopping is available for a connector, the

cargo selection algorithm will be replaced, adding to the total travel time in addition

to outputting the cargo to load. The total travel time will be based on the predicted

queue to the first beach location and the total trip time to complete the hops and

unload times at selected locations. The option to visit multiple unload locations

incorporated a traveling salesman problem into the dynamic loading algorithm and

can be incorporated without changing the process for the dynamic routing algorithm.

16.1.6 Modeling Contribution

Incorporating the techniques investigated, results in the DELAS model and addresses

the first five gaps highlighted from existing modeling techniques. The incorporation

of matrix formulation into DES gives a more flexible way to handle large scale mod-

els. Matrices are an effective was of tracking properties across a heterogeneous fleet

without making assumptions about the characteristics of the vessels. The global con-

sideration of these properties allows for the abstraction of subproblems. The matrix

formulation would be applicable for any large, heterogeneous system that requires

decisions to be made during the object processes.

While more specific to the problem of focus for this thesis, the testing of dynamic

loading and routing algorithms provides insight into the type of information and level

of detail required to make decisions. The dynamic loading algorithm demonstrates

the ability to incorporate traditional optimization techniques as a decision making

231

formulation within a DES. The testing of dynamic routing algorithms illustrated the

capability to include algorithms from different fields of study into the decision making

formulation. The testing and incorporation of these decision making algorithms shows

that DES decision making is not limited to if-then statements but can be expanded

to include techniques borrowed from other areas of expertise.

16.1.7 Robust Design

The need for an approach to facilitates design in a cross scenario, system-of-systems

framework led to the following questions:

1. What design parameters of a new connector are key to improving the overall

performance of the heterogeneous system?

2. Does a common set of parameters exist across multiple scenarios?

3. Should scenarios be defined using continuous variables or as a discrete selection?

Is this a necessary model design choice?

4. How can these parameters be identified when scenarios are uncertain?

Section 12.5 highlighted the difficulty of identifying important trade-offs in a one-

on-one off structure. The number of design parameters is great and inter-dependent

so all combinations can not be explored in this manor. Section 15.1 and 15.2 demon-

strated that the design drivers change with the scenarios of interest.

Exercising the DELAS model through the process of robust design fulfills the need

of analyzing design requirements across multiple scenarios. To capture the impact

of incorporating multiple scenarios, four experiments plans were carried through the

robust design process. The first was based only on vessel design parameters for

the conceptual new connector, analyzed for a singe scenario. This was compared to

complete coverage of the noise space, which included scenario variables such as the

number of other vessels present and the demanded cargo. A set of scenarios were

232

also considered as well as the concept of feasible noise space, where the noise space

sampled was based on the scenarios of interest.

The performance metric of shortfall had number available, maximum lift, maxi-

mum area, and SES speed as design drivers. There was a trade-off in the number

available and size or speed. When looking at the feasible space, the relationship be-

tween size and number available was strong enough to reverse the number available,

to desiring fewer ships, if the ship was large enough. These design drivers remained

constant across the sampling schemes but the secondary drivers changed. The change

in factors was even greater when considering loss, a combination of the shortfall and

fuel usage. In the full coverage and feasible space test, the variance in the responses

ended up dominating the loss function. This lead to the exploration of the combined

space, which highlighted the importance of the cargo units to deliver and the other

vessels and vehicles present. The combined analysis provided the most obvious differ-

ence between the full and feasible coverage, highlighting the importance of sampling

feasible regions.

16.1.8 Design Recommendations

Exploring the results of the robust design process, some design recommendations can

be made for the MEC. It is important to note that these recommendation are based

on the assumption developed throughout this thesis, especially the selection of the

vessels and vehicles present for different scenarios, and are only based on considering

shortfall and fuel usage. For the MCO operation, many, fast MECs are recommended

with a maximum lift of at least 700 LT and max cargo deck area of 10000 sqft.

It is important that the MEC has interface options and is reliable, not requiring

maintenance more than once a day. When looking across the four scenarios, the lift

and area capabilities are more importance than the number. There is a diminishing

return on incorporating more MECs, especially over 7. The speed of interface is now

233

more important than options, so a single quick interface design that can quickly load

at the Sea Base and unload at the beach would be be a better design choice. The

full coverage of the design space indicated that more MECs introduce more variation

in the performance, but having more available is important to the performance. The

MEC needs to be able to carry at least 650 LT and 9000 sqft of cargo. For the wide

variety of scenarios sampled here, it is important that an austere port can be used if

one is present. The sensitivity to all variables indicated that the MEC needs to be able

to climb a high enough beach slope to have multiple loading spots. Looking at the

feasible space, the speed becomes more important than the number available, as long

as the MEC can carry 750 LT and more than 9000 sqft. Again, it is more important

to be able to quickly load and unload cargo rather than have loading options, but

multiple unloading spots is important.

Looking across all of the results, common trends indicate that the design require-

ment is important independent of the sampling method selected. Decision makers

can use the resultant trends to set design requirements for a robust MEC design and

make acquisition decisions. Based on the work of this thesis, the MEC must be able to

carry 700 LT and more than 9000 sqft of cargo. The recommendation toward a large

MEC aligns with the candidate design explored in Section 12.5. The MEC should be

able to travel quickly, but must also be able to travel with the fleet for long distance

deployments. Unless the MEC will only be involved in MCO type scenarios, the

improvement of the single type of interface is more important than having multiple

interface options. The interface should be designed so the total time to interface, load,

and separate is less than 3 hours. The time to beach, unload, and get off the beach

should be minimized. Combining this need for quick beaching and the importance of

the number of beach spots highlights the importance of the MECs climb ability. The

unload challenge can be assisted with the option to unload at an austere port. The

MEC must be reliable enough to be self-deployed for long distances and be able to

234

make multiple shorter trips between repairs. Overall, the MEC is recommended to

be a larger ship that can quickly load and unload.

16.2 Future Work

The techniques included in the DELAS model have made considerable progress in the

modeling of large scale logistics operations from a Sea Base. The user can capture a

variety of scenarios and considerable an interacting, heterogeneous fleet. But, there

is always improvements that could be made in modeling operations as they would

be conducted by actual decision makers. The dynamic routing algorithm could be

improved by including the possibility of reneging missions. This would include not

dispatching a mission from a loading point or aborting the mission upon arrival at an

unloading point. Reneging captures the possibility that a landing group or port is no

longer available or no longer requires the cargo on board the connector. The dynamic

loading algorithm could be expanded to include cubic considerations in addition to

footprint and weight constraints. The cargo selection algorithm could be expanded

so the loading times are dependent on the cargo to load in addition to the type of

connector and interface selected.

The DELAS model only considers the movement of cargo toward the shore and

ignores the return of cargo from the beach groups. This returned cargo could include

injured personnel returning to a treatment ship or the return of broken or un-needed

equipment for repair or storage. The returning cargo may not be delivered to the

same ship or location as the next cargo loading. The ability to only visit a single

asset at the Sea Base or staging bases exposes another weakness, the requirement

that cargo must be loaded from a single location. In reality, connectors could visit

multiple loading locations. Another interesting consideration would be the ability to

transfer cargo between Sea Base elements.

There are many other factors that could be of interest and are not included in

235

the DELAS model. Currently repair is the only operational break for connectors,

but manning considerations could be included for operational windows. It is assumed

that repair can be done is a specific time frame, but in reality repair depends on the

availability of spare parts. The tracking of spare parts available at location within

the model could be tracked and incorporated into the routing decision algorithm.

As was seen in Section 12.5, there are operational decision not included in the

analysis in the thesis. For example, the MEC does not have to travel with the rest

of the fleet. This is an operation decision that may need to be investigated - is per-

formance gained with the MEC traveling ahead? Are there security considerations?

The fuel usage is currently a rough estimate but could be paired to ship design tools

for basic sizing, fuel storage constraints, and costing. The MEC is a surface effect

ship which has complex fuel and design considerations [104].

The DELAS model constructs a framework that is flexible and extensible. The

next steps are possible within the existing framework by modifying existing decisions

processes or adding new decision steps. That these decision would not change the

overall framework of the model demonstrates the strengths of this formulation tech-

nique. The analysis completed in this thesis represents one use of the DELAS model

to identify design drives for a potential new connector. The applications for this

model are varied and range from investigating the fleet mix needed to complete an

operation to identifying scenarios that challenge current capabilities.

16.3 Recommendations and Lessons Learned

This thesis presents a framework from improving operational level simulation and

analysis. The key is establishing a framework that allows sub-problems to be ab-

stracted and solved using mathematical and simulation techniques suited to those

individual problems. Testing can be done at the sub-problem level to determine

the best solution, but consideration must be given to the overall impact. While the

236

framework was applied to a Sea Base example, a similar decomposition can be ap-

plied to other large scale problems. Matrix formulation can be implemented when

large amount of data must be maintained and used in decision making processes.

The dynamic loading algorithm demonstrated how existing techniques for smaller

scale problems can be used as decision algorithms in a larger framework. Local and

predicted information is easily maintained in the matrices for decision support, i.e.

calculations in the dynamic routing algorithm.

The concept of feasible robust design, where infeasible region of the design space

are not included in the robust design process, can be applied to any scenario based

problem. Cross scenario analysis will play an important role in future designs where

a system must be able to perform in multiple scenarios. It is no longer possible to

design a specific system for each scenario and a design that performs well across

scenarios will be more highly valued than one that performs the best in one scenario.

Overall, the methods and experiments explored in this thesis represent a process

for developing large scale modeling and exercising them for robust design across sce-

narios. The goal of the model must be determined as well as the scenarios of interest.

The key scenario variables and design parameters are identified to determine the

level or detail. The identification of decisions within the operation determine the ab-

stractable processes, which can now be approached with separate solution algorithms.

The complete operation model can then be used to make design or operational deci-

sions with cross-scenario considerations.

237

APPENDIX A

TRADITIONAL SIMPY FORMULATION

This appendix is the traditional if-then decision process and resources management

model. The traditional formulation is contrasted with the matrix formulation in

Chapter 7. The traditional formulation starts with a list of inputs, in this case con-

nector characteristics. The next section are general calculation and activation of the

vessel processes. The vessel processes represent the operational steps of the con-

nectors. The simulation section defines limited resources, representing the interface

options.

from SimPy.Simulation import *

Input data ————————-

maxTime = 3200 # minutes

ARRint = 1.0 # time between MEC departures

sbdist = 150.00 # nmi

stddist = 150.00 # nmi initial stand off distance

NumMEC = 6 # Num MEC

NumMLP = 0

NumLMSR = 3

MEC

SESspeed = 30.00 # kts

238

trandist = 1.00 # nmi

trantime = 30.00 # minutes

ACVspeed = 40.00 # kts

landingspot = 2

unloadtime = 45.00 # minutes

fromtrantime = 30.00 # minutes

MEC interface with Sea Base

rearloadspot = NumLMSR

sideloadspot = NumLMSR

mlploadspot = 0 # set to zero if can not mlp reload

reartimereload = 120 # minutes

sidetimereload = 120 # minutes

mlptimereload = 1200 # minutes

MLP

MLPspeed = 20.00 # kts

MLPstdoff = 25.00 # nmi

MLPballastdown = 30.00 # minutes

offloadLCAC = 30.00 # minutes

onloadLCAC = 30.00 # minutes

MLPballastup = 30.00 # minutes

MLPconnSB = 10.00 # minutes

MLPdisconnSB = 10.00 # minutes

LCAC

LCACspeed = 50.00 # kts

LCACunload = 45 # minutes

239

LCAClandingspot = 3

LCACreload = 60.00 # minutes

Constants

LCACperMLP = 4

Calculations ————————-

stdtotrantime=(stddist-trandist)/SESspeed*60+trandist/ACVspeed*60 # minutes

sbtotrantime=(sbdist-trandist)/SESspeed*60 # minutes

timeonshore = unloadtime# minutes

MECtosb = trantime + (sbdist-trandist)/SESspeed*60 +trandist/ACVspeed*60 #

minutes

stdtoshore = (stddist-MLPstdoff)/MLPspeed*60 # minutes

sbtoshoretime = (sbdist-MLPstdoff)/MLPspeed*60 # minutes

shoretosb = (sbdist-MLPstdoff)/MLPspeed*60 # minutes

LCACtimetoshore= MLPstdoff/LCACspeed*60 # minutes

Model components ————————

class Source(Process):

def generate(self,number, number2,TBA,resource, resource1, resource2, resource3,

resource4, resource5):

for i in range(number):

c = MEC(name = ”‘MEC%02d”’%(i,),sim=self.sim)

self.sim.activate(c,c.MEC(shorespot=resource, rearspot=resource1, sidespot

= resource2, SBspot = resource3, MLPspot=resource5))

240

yield hold,self,TBA

for i in range(number2):

c = MLP(name = ”M%02d”%(i,),sim=self.sim)

self.sim.activate(c,c.MLP(LCACshorespot=resource4, sidespot = resource2,

SBspot = resource3, MLPspot=resource5))

yield hold,self,TBA

class MEC(Process):

def MEC(self, shorespot, rearspot, sidespot, SBspot, MLPspot):

yield hold,self,stdtotrantime

while True:

yield hold,self,trantime

arrive = self.sim.now()

yield request,self,shorespot

wait = self.sim.now()-arrive

MEC.wait +=wait

yield hold,self,timeonshore

yield release,self,shorespot

MEC.numunloaded += 1

yield hold,self,fromtrantime

yield hold,self,MECtosb

arrive1 = self.sim.now()

yield request, self, SBspot,1

rrear=min(rearspot.n,1.00/reartimereload)

rside=min(sidespot.n, 1.00/sidetimereload)

241

rmlp=min(mlploadspot,MLPspot.n,1.00/mlptimereload)

rmax=max(rside,rrear,rmlp)

if rmax==rrear:

yield request,self,rearspot

wait1 = self.sim.now()-arrive1

yield hold,self,reartimereload

yield release,self,rearspot

elif rmax==rside:

yield request,self,sidespot,1

wait2 = self.sim.now()-arrive1

yield hold,self,sidetimereload

yield release,self,sidespot

elif rmax==rmlp:

yield request,self,MLPspot,1

wait2 = self.sim.now()-arrive1

yield hold,self,mlptimereload

yield release,self,MLPspot

else:

print ”no spot selected - problem”

yield release, self,SBspot

yield hold,self,sbtotrantime

class MLP(Process):

def MLP(self,LCACshorespot, sidespot, SBspot,MLPspot):

yield request,self,MLPspot

if stddist>MLPstdoff:

242

yield hold,self,stdtoshore

yield hold,self,MLPballastdown

yield hold,self,offloadLCAC

else:

yield hold,self,0

while True: # Generate LCACs

for i in range(LCACperMLP):

c = LCAC(name = ”L%02d”%(i,),sim=self.sim)

self.sim.activate(c,c.LCAC(LCACshorespot=LCACshorespot))

yield get,self,self.sim.waitingLCAC,LCACperMLP

yield hold,self,onloadLCAC

yield hold,self,MLPballastdown

yield hold,self,shoretosb

arrive1 = self.sim.now()

yield request, self, sidespot,2

yield request, self, SBspot,2

wait2 = self.sim.now()-arrive1

MLP.wait+=wait2

yield hold,self,MLPconnSB

yield release,self,MLPspot

yield release,self,SBspot

IF MEC is waiting, load it first

yield request, self,MLPspot,2

yield request, self,SBspot,2

yield hold,self,LCACreload

yield hold,self,MLPdisconnSB

243

yield release,self,sidespot

yield release,self,SBspot

if stddist>MLPstdoff:

yield hold,self,stdtoshore

yield hold,self,MLPballastdown

yield hold,self,offloadLCAC

else:

yield hold,self,0

class LCAC(Process):

def LCAC(self, LCACshorespot):

yield hold,self,LCACtimetoshore

arrive = self.sim.now()

yield request,self,LCACshorespot

wait3 = self.sim.now()-arrive

MLP.wait2+=wait3

yield hold,self,LCACunload

yield release,self,LCACshorespot

MLP.numunloaded += 1

yield hold,self,LCACtimetoshore

yield put,self,self.sim.waitingLCAC,[self]

Model ———————————–

class SeaBaseModel(Simulation):

def run(self):

self.initialize()

244

self.k = Resource(capacity=landingspot, name=”Shore”, unitName=”Spot”,

sim=self)

self.rear = Resource(capacity=rearloadspot, name=”Rear”, unitName=”Spot”,

sim=self, monitored=True)

self.side = Resource(capacity=sideloadspot, name=”Side”, unitName=”Spot”,

sim=self, monitored=True)

self.SBspot = Resource(capacity=sideloadspot+rearloadspot, name=”Side”,

unitName=”Spot”, sim=self, monitored=True)

self.LCACspot = Resource(capacity=LCAClandingspot, name=”Side”, unit-

Name=”Spot”, sim=self, monitored=True)

self.MLPspot = Resource(capacity=NumMLP, name=”Side”, unitName=”Spot”,

sim=self, monitored=True)

s = Source(sim=self)

waiting=[]

self.waitingLCAC=Store(capacity=100,initialBuffered=waiting,sim=self)

self.activate(s,s.generate(number=NumMEC, number2=NumMLP, TBA=ARRint,

resource=self.k, resource1=self.rear, resource2=self.side, resource3=self.SBspot, re-

source4=self.LCACspot, resource5=self.MLPspot),at=0.0)

self.simulate(until=maxTime)

Experiment ——————————

MEC.numunloaded = 0

MEC.wait = 0

MEC.numatsb = 0

MLP.numunloaded = 0

MLP.wait = 0

MLP.wait2 = 0

245

MLP.numatsb = 0

MLP.MLParrive = 0

SeaBaseModel().run()

246

APPENDIX B

DELAS MODEL

The Discrete Event Logistics Advanced Simulation (DELAS) model represents the

application of the concepts and techniques explored in Chapters 6 through 10. The

inputs are read in a separate script as the inputs have been moved to comma delimited

files. The input files include a listing of the vessel and vehicle attributes, such as

speed and fuel burn. A distance file creates a python diction of distances between

any two geographic location as well as the number of landing zones per beach group

for each type of connector. The interface file lists the time requires to interface, load

(or unload), and leave the interface option as well as the compatibilities between

interface options. The final input file details the cargo, including the weights, areas,

and priorities for each cargo item in the generic cargo vector. The cargo demand

is broken down by demand period for each cargo item and each beach group. The

initial load-outs of the cargo items, such as the cargo vessels and ISBs, are described

in this file as well as the compatibility between the cargo items and the connectors.

The input files were created so that a change, such as the addition of a cargo item,

can be made in one file without modifying the model script.

Below is the main script for the DELAS model. Comments that describe the

purpose of each process follow the definition of that process name. The discussion of

these subroutines and vessel processes are discussed in Chapter 10.

import sys

from SimPy.Simulation import *

import numpy as num

import csv as csv

247

from lpsolve55 import *

if sys.modules.haskey(’inputreader’):

reload(inputreader)

else:

import inputreader

from inputreader import *

outputfile = open(’results.csv’,’wb’) #Writes to one file

w = csv.writer(outputfile)

doefile = open(’doe.csv’, ’r’)

doereader = csv.reader(doefile)

try:

headers = doereader.next()

hasdoe = True

except:

hasdoe = False

if hasdoe:

scalarvar = []

vectorvar = []

vectorvarname = []

vectorvarindex = []

matrixvar = []

matrixvarname = []

matrixvarfirstindex = []

matrixvarsecondindex = []

248

for headerindex, header in enumerate(headers):

numbracket = header.count(’[’)

isscalar = (numbracket == 0)

isvector = (numbracket == 1)

ismatrix = (numbracket == 2)

if numbracket > 2:

print ”[WARN] Can’t handle a matrix with more than two dimensions”

if isscalar:

scalarvar.append(headerindex)

elif isvector:

vectorvar.append(headerindex)

bracketindex = header.find(’[’)

vectorvarname.append(header[:bracketindex])

vectorvarindex.append(int(header[bracketindex + 1]))

elif ismatrix:

matrixvar.append(headerindex)

bracketindex = header.find(’[’)

matrixvarname.append(header[:bracketindex])

matrixvarfirstindex.append(int(header[bracketindex + 1]))

secondbracketindex = header.find(’[’, bracketindex + 1)

matrixvarsecondindex.append(int(header[secondbracketindex + 1]))

def initglobalvars():

global Names, Location, Goal, Predictedwaits2, Predictedcargo2, Spots2,

Cargohave2, Cargowant2, Type2, Testloc, SBschedule,

249

SBcargowant, PredictedSBschedule, Portcargowant,

PredictedPortcargowant

Names = []

Location = []

Goal = []

Predictedwaits2 = []

Predictedcargo2 = []

Spots2 = []

Cargohave2 = []

Cargowant2 = []

Type2 = []

Testloc = []

SBschedule = num.zeros(numcargo)

SBcargowant = num.zeros(numcargo)

PredictedSBschedule = num.zeros(numcargo)

Portcargowant = num.zeros(numcargo)

PredictedPortcargowant = num.zeros(numcargo)

numships = 0

for beach in beaches:

globals()[beach+’CargoHave’] = num.zeros(numcargo)

globals()[’Predicted’ + beach + ’schedule’] = num.zeros(numcargo)

hascase = True

while hascase:

if hasdoe:

250

try:

doecase = doereader.next()

except:

hascase = False

break

initglobalvars()

for var in scalarvar:

convert all variables start with ’num’ to integer

if headers[var].startswith(’num’):

vars()[headers[var]] = int(doecase[var])

else:

vars()[headers[var]] = float(doecase[var])

for var, name, index in zip(vectorvar, vectorvarname, vectorvarindex):

vars()[name][index] = float(doecase[var])

for var, name, firstindex, secondindex in zip(matrixvar, matrixvarname, ma-

trixvarfirstindex, matrixvarsecondindex):

if name == ”Distances”:

vars()[name][names[firstindex]][names[secondindex]] = float(doecase[var])

elif name == ”BeachTypes”:

TotalBeaches -= vars()[name][BeachTypeList[secondindex]][beaches[firstindex]]

TotalBeaches += float(doecase[var])

vars()[name][BeachTypeList[secondindex]][beaches[firstindex]] = float(doecase[var])

else:

vars()[name][firstindex][secondindex] = float(doecase[var])

251

else:

hascase = False

checkvessel = SimEvent(”Change Occured”)

Model components ————————

class Source(Process):

”””Creates instances of Simpy Processes and activates them.

Arguments are the respective number of each type of object in the simula-

tion.

”””

def generate(self, number1, number2, number3, number5,

number7, number8, number9, number12, number13,

number14, number15, number18, number19, number20,

number21, number22, number24, number25, number26, MLPloadcon-

trol):

j = 0

yield hold, self, 0

c = writer(name = ”write”%())

activate(c, c.write1())

c = writer2()

activate(c, c.write2())

c = CargoGenerator()

activate(c, c.run())

#Connectors - Supply Ships

252

for i in range(number1):

c = MEC(”MEC%02d”%i, MECspots, MECwait,

MECmaxlift, MEClifteff, MECmaxarea,

MECareaeff, MECMTBF, MECMTTR,

MECcompatibility, MECSESspeed,

MECpushlocs, MECpulllocs,

[MECfuelidle, MECfuelSES, MECfuelACV], MECrange, MEChop-

ping)

activate(c, c.run(j))

Source.assets += 1

j += 1

for i in range(number7):

c = JHSV(”JHSV%02d”%i, JHSVspots, JHSVwait, JHSVmaxlift,

JHSVlifteff, JHSVmaxarea, JHSVareaeff, JHSVMTBF,

JHSVMTTR, JHSVcompatibility, JHSVspeed,

JHSVpushlocs, JHSVpulllocs,

[JHSVfuelidle, JHSVfuelusage], [], [])

activate(c, c.run(j))

Source.assets += 1

j += 1

for i in range(number21):

c = TAKE(”TAKE%02d”%i, TAKEspots, TAKEwait, TAKEmaxlift,

TAKElifteff, TAKEmaxarea, TAKEareaeff, TAKEMTBF,

TAKEMTTR, TAKEcompatibility, TAKEspeed,

TAKEpushlocs, TAKEpulllocs,

[TAKEfuelidle, TAKEfuelusage], [], [])

activate(c, c.run(j))

253

Source.assets += 1

j += 1

for i in range(number19):

c = LSV(”LSV%02d”%i, LSVspots, LSVwait, LSVmaxlift,

LSVlifteff, LSVmaxarea, LSVareaeff, LSVMTBF,

LSVMTTR, LSVcompatibility, LSVspeed, LSVpushlocs,

LSVpulllocs, [LSVfuelidle, LSVfuelusage], [], [])

activate(c, c.run(j))

Source.assets += 1

j += 1

for i in range(number18):

c = LCU2000(”LCU2000%02d”%i, LCU2000spots, LCU2000wait,

LCU2000maxlift, LCU2000lifteff, LCU2000maxarea,

LCU2000areaeff, LCU2000MTBF, LCU2000MTTR,

LCU2000compatibility, LCU2000speed,

LCU2000pushlocs, LCU2000pulllocs,

[LCU2000fuelidle, LCU2000fuelusage],[], [])

activate(c, c.run(j))

Source.assets += 1

j += 1

#Connectors - Aerial

for i in range(number13):

c = MV22(”MV22%02d”%i, MV22spots, MV22wait, MV22maxlift,

MV22lifteff, MV22maxarea, MV22areaeff, MV22MTBF,

MV22MTTR, MV22compatibility, MV22speed,

MV22pushlocs, MV22pulllocs,

[MV22fuelidle, MV22fuelusage], MV22range, [])

254

activate(c, c.run(j))

Source.assets += 1

j += 1

#Connectors - Carried into theater

for i in range(number22):

c = INLS(”INLS%02d”%i, INLSspots, INLSwait, INLSmaxlift,

INLSlifteff, INLSmaxarea, INLSareaeff, INLSMTBF,

INLSMTTR, INLScompatibility, INLSspeed,

INLSpushlocs, INLSpulllocs,

[INLSfuelidle, INLSfuelusage], INLSrange, [])

activate(c, c.run(j, ISBINLS))

Source.assets += 1

j += 1

for i in range(number26):

c = LCU1600(”LCU1600%02d”%i, LCU1600spots, LCU1600wait, LCU1600maxlift,

LCU1600lifteff, LCU1600maxarea, LCU1600areaeff, LCU1600MTBF,

LCU1600MTTR, LCU1600compatibility, LCU1600speed,

LCU1600pushlocs, LCU1600pulllocs,

[LCU1600fuelidle, LCU1600fuelusage], [], [])

activate(c, c.run(j, ISBLCU1600))

Source.assets += 1

j += 1

#Connectors - Helicopter

for i in range(number14):

c = CH46(”CH46%02d”%i, CH46spots, CH46wait,

CH46maxliftinternal, CH46maxliftsling,

CH46lifteff, CH46maxareainternal,

255

CH46maxareasling, CH46areaeff, CH46MTBF,

CH46MTTR, CH46compatibility, [CH46cleanspeed, CH46slingspeed],

CH46pushlocs, CH46pulllocs,

[CH46fuelidle, CH46fuelclean, CH46fuelsling],

CH46waitinternal, CH46waitsling, CH46range, [])

activate(c, c.run(j, ISBCH46))

Source.assets += 1

j += 1

for i in range(number15):

c = CH53(”CH53%02d”%i, CH53spots, CH53wait,

CH53maxliftinternal, CH53maxliftsling,

CH53lifteff, CH53maxareainternal,

CH53maxareasling, CH53areaeff, CH53MTBF,

CH53MTTR, CH53compatibility, [CH53cleanspeed, CH53slingspeed],

CH53pushlocs, CH53pulllocs,

[CH53fuelidle, CH53fuelclean, CH53fuelsling],

CH53waitinternal, CH53waitsling, CH53range, [])

activate(c, c.run(j, ISBCH53))

Source.assets += 1

j += 1

#Connectors - Air Cushion Vehicle

for i in range(number5):

c = LCAC(”LCAC%02d”%i, LCACspots, LCACwait, LCACmaxlift,

LCAClifteff, LCACmaxarea, LCACareaeff, LCACMTBF,

LCACMTTR, LCACcompatibility, LCACspeed, LCACpushlocs,

LCACpulllocs, LCACrange,[LCACfuelidle, LCACfuelACV], [])

activate(c, c.run(j, ISBLCAC, SBLCAC, beachemptyLCAC))

256

Source.assets += 1

j += 1

for i in range(number9):

c = LCACR(”LCACR%02d”%i, LCACRspots, LCACRwait,

LCACRmaxlift, LCACRlifteff, LCACRmaxarea,

LCACRareaeff, LCACRMTBF, LCACRMTTR,

LCACRcompatibility, LCACRspeed, LCACRpushlocs,

LCACRpulllocs, LCACRrange, [LCACfuelidle, LCACfuelACV],

[])

activate(c, c.run(j, ISBLCACR, SBLCACR, beachemptyLCACR))

Source.assets += 1

j += 1

#Sea Base Cargo Ships

for i in range(number3):

c = LMSR(”LMSR%02d”%i, LMSRspots, LMSRcargo, LMSRspeed,

[LMSRsmallhelospots, LMSRlargehelospots],

[LMSRsmallLCspots, LMSRlargeLCspots])

activate(c, c.run(j))

Source.assets += 1

j += 1

for i in range(number12):

c = LHD(”LHD%02d”%i, LHDspots, LHDcargo, LHDspeed,

[LHDsmallhelospots, LHDlargehelospots],

[LHDsmallLCspots, LHDlargeLCspots])

activate(c, c.run(j))

Source.assets += 1

j += 1

257

for i in range(number24):

c = LPD(”LPD%02d”%i, LPDspots, LPDcargo, LPDspeed,

[LPDsmallhelospots, LPDlargehelospots],

[LPDsmallLCspots, LPDlargeLCspots])

activate(c, c.run(j))

Source.assets += 1

j += 1

for i in range(number25):

c = LSD(”LSD%02d”%i, LSDspots, LSDcargo, LSDspeed,

[LSDsmallhelospots, LSDlargehelospots],

[LSDsmallLCspots, LSDlargeLCspots])

activate(c, c.run(j))

Source.assets += 1

j += 1

#MLP

for i in range(number2):

c = MLP(”M%02d”%i)

activate(c, c.MLP(j, MLPloadcontrol))

Source.assets += 1

j += 1

#Shore

for i in range(number8):

c = ISB(name = ”ISB%02d”%i)

activate(c, c.run())

Source.assets += 1

j += 1

for i in range(number20):

258

c = Port(name = ”Port%02d”%i)

activate(c, c.run(j))

Source.assets += 1

j += 1

c = ShoreBeach([], [], [], [])

activate(c, c.run())

Source.assets += TotalBeaches

j += TotalBeaches

global numships

numships= j

class writer(Process):

”””Calculations for results.

write1 is the PEM.

”””

def write1(self):

item2 = []

global TotalShortfall

global CargoNeededOverall

TotalShortfall = 0

global Cargodelivered

yield hold, self, Timebetween - 2

while True:

Shorecargohave = num.zeros(numcargo)

for beach in beaches:

259

cargohavetemp = globals()[beach+’CargoHave’]

Shorecargohave += cargohavetemp

translate = num.multiply(cargomatrix, Shorecargohave)

Cargo = num.sum(translate, axis = 1)

Cargodelivered = num.sum(Cargo, axis = 0)

Shortfall = num.maximum(CargoNeededOverall - Cargodelivered, 0)

TotalShortfall += Shortfall

Percentdelivered = Cargodelivered/CargoNeededTotal

yield hold, self, Timebetween

class writer2(Process):

”””Calculates and writes results to csv outfile.

write2 is the PEM.

”””

def init(self):

Process.init(self)

item = (’Time’, ’MEC.numunloaded’, ’MEC.travel’, ’MEC.unloadqueue’,

’MEC.loadqueue’, ’MEC.load’, ’LCAC.numunloaded’, ’LCACR.numunloaded’,

’CH46.numunloaded’, ’CH53.numunloaded’, ’Cargo[0]’,

’Cargo[1]’, ’Cargo[2]’, ’Cargo[3]’, ’Cargo[4]’,

’Cargo[5]’, ’Cargo[6]’, ’Cargo[7]’,’Cargo[8]’,

’Cargo[9]’,’Cargo[10]’, ’CPItotal’, ’num.average(MEC.loadwts)’,

’num.average(MEC.loadareas)’, ’num.average(LCAC.loadwts)’,’num.average(LCAC.loadareas)’,

’num.average(LCACR.loadwts)’, ’num.average(LCACR.loadareas)’,

’num.average(CH46.loadwts)’,

’num.average(CH46.loadareas)’, ’num.average(CH53.loadwts)’,’num.average(CH53.loadareas)’,

260

’deliverytime’, ’TotalShortfall’, ’Percentdelivered’, ’Seafuel + Air-

fuel’)

#w.writerow(item)

def write2(self):

def average(array):

if array:

return num.average(array)

else:

return 0

global deliverytime

deliverytime = maxTime

deliverycount = 0

global Cargodelivered

while True:

yield hold, self, 60

Shorecargohave = num.zeros(numcargo)

for beach in beaches:

cargohavetemp = globals()[beach+’CargoHave’]

Shorecargohave += cargohavetemp

translate = num.multiply(cargomatrix, Shorecargohave)

Cargo = num.sum(translate, axis = 1)

Cargodelivered = num.sum(Cargo, axis = 0)

CPItotal = num.sum(Shorecargohave * CPI)

Percentdelivered = Cargodelivered / CargoNeededTotal

if Percentdelivered > .99 and deliverycount == 0: #identify time when

all cargo has been delivered (overall, not day by day)

261

deliverytime = now()

deliverycount = 1

MEC.fuel = sum([mec.fuel for mec in MEC.roster])

MEC.numunloaded = sum([mec.numunloaded for mec in MEC.roster])

MEC.travel = sum([mec.travel for mec in MEC.roster])

MEC.unloadqueue = sum([mec.unloadqueue for mec in MEC.roster])

MEC.loadqueue = sum([mec.loadqueue for mec in MEC.roster])

MEC.load = sum([mec.load for mec in MEC.roster])

for mec in MEC.roster:

MEC.loadwts.extend(mec.loadwts)

MEC.loadareas.extend(mec.loadareas)

LCAC.fuel = sum([lcac.fuel for lcac in LCAC.roster])

LCAC.numunloaded = sum([lcac.numunloaded for lcac in LCAC.roster])

for lcac in LCAC.roster:

LCAC.loadwts.extend(lcac.loadwts)

LCAC.loadareas.extend(lcac.loadareas)

LCACR.fuel = sum([lcacr.fuel for lcacr in LCACR.roster])

LCACR.numunloaded = sum([lcacr.numunloaded for lcacr in LCACR.roster])

for lcacr in LCACR.roster:

LCACR.loadwts.extend(lcacr.loadwts)

LCACR.loadareas.extend(lcacr.loadareas)

CH46.fuel = sum([ch46.fuel for ch46 in CH46.roster])

CH46.numunloaded = sum([ch46.numunloaded for ch46 in CH46.roster])

262

for ch46 in CH46.roster:

CH46.loadwts.extend(ch46.loadwts)

CH46.loadareas.extend(ch46.loadareas)

CH53.fuel = sum([ch53.fuel for ch53 in CH53.roster])

CH53.numunloaded = sum([ch53.numunloaded for ch53 in CH53.roster])

for ch53 in CH53.roster:

CH53.loadwts.extend(ch53.loadwts)

CH53.loadareas.extend(ch53.loadareas)

JHSV.fuel = sum([jhsv.fuel for jhsv in JHSV.roster])

LSV.fuel = sum([lsv.fuel for lsv in LSV.roster])

LCU2000.fuel = sum([lcu2000.fuel for lcu2000 in LCU2000.roster])

TAKE.fuel = sum([take.fuel for take in TAKE.roster])

INLS.fuel = sum([inls.fuel for inls in INLS.roster])

MV22.fuel = sum([mv22.fuel for mv22 in MV22.roster])

LCU1600.fuel = sum([lcu1600.fuel for lcu1600 in LCU1600.roster])

Seafuel = (MEC.fuel + LCAC.fuel + LCACR.fuel + MLP.fuel + JHSV.fuel

+

LSV.fuel + LCU2000.fuel + TAKE.fuel + INLS.fuel + LCU1600.fuel)

Airfuel = MV22.fuel + CH46.fuel + CH53.fuel

item = (now(), MEC.numunloaded, MEC.travel, MEC.unloadqueue,

MEC.loadqueue, MEC.load, LCAC.numunloaded, LCACR.numunloaded,

CH46.numunloaded, CH53.numunloaded, Cargo[0], Cargo[1], Cargo[2],

Cargo[3], Cargo[4], Cargo[5], Cargo[6], Cargo[7], Cargo[8],

Cargo[9], Cargo[10], CPItotal, average(MEC.loadwts),

263

average(MEC.loadareas), average(LCAC.loadwts), average(LCAC.loadareas),

average(LCACR.loadwts), average(LCACR.loadareas), average(CH46.loadwts),

average(CH46.loadareas), average(CH53.loadwts), average(CH53.loadareas),

deliverytime, TotalShortfall, Percentdelivered, Seafuel + Airfuel)

#w.writerow(item)

if self.sim.now() == maxTime-1:

w.writerow(item)

#Properties of connectors

class Organic:

”””Property to designate an organic connector.

An organic connector is not self deployed and must be ferried into theater

by another vessel.

Implemented by: CarriedToTheaterConnector and Helicopter.

”””

pass

class Aerial:

”””Property to designate an aerial connector.

An aerial connector can only repair once landed.

Implemented by: MV22.

”””

pass

class Surface:

264

”””Property to designate a surface connector.

A surface connector can repair as a self contained unit.

Implemented by: SupplyShip, MEC, CarriedToTheaterConnector.

”””

pass

class Connector(Process):

”””Generic process for a connector.

Connectors move cargo to meet a demand. The PEM is run.

These connectors are assumed to start equally distributed between the Inter-

mediate Staging Bases (ISB) with no cargo on board.

”””

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping):

Process.init(self)

self.name = name

self.fuel = 0

self.load = 0

self.trip = 0

self.travel = 0

self.numunloaded = 0

self.repaircount = 0

self.unloadqueue = 0

self.loadqueue = 0

265

self.cargohave = num.zeros(numcargo)

self.cargowant = num.zeros(numcargo)

self.pullwaittime = num.array([])

self.pushwaittime = num.array([])

self.predictedcargo = num.array([])

self.spots = spots

self.wait = wait

self.lift = maxlift*lifteff

self.area = maxarea*areaeff

self.MTBF = MTBF

self.MTTR = MTTR

self.compatibility = compatibility

self.speed = speed

self.fuelusage = fuelusage

self.pushlocs = pushlocs

self.pulllocs = pulllocs

self.range = vehiclerange

self.hopping = hopping

self.nexthop = []

self.nexthop2 = []

self.cargohavehop = num.zeros(numcargo)

self.arrivedSignal = SimEvent()

self.unloadedSignal = SimEvent()

self.SBSignal = SimEvent()

self.loadwts = []

self.loadareas =[]

266

def run(self, j, store=[]):

”””The PEM for connectors.

Steps:

1. A mission is selected, establishing locations to pick up and drop of cargo.

2. The connector travels to the pick-up location and identifies a spot on a

ship, at a port, or at a supply base to load cargo.

3. After traveling to the push goal, a spot is selected and the cargo of-

floaded. At this point, the connector identifies its

next mission and travels to a cargo supply point to load again.

4. Switch between pushing/pulling cargo and repeat steps.

”””

namematrix(self)

yield hold, self, 1

if isinstance(self, Organic):

yield put, self, store, [self]

yield waitevent, self, checkvessel

hasgoal = choosegoal(self)

if self.hopping == 1 and len(self.nexthop)>0:

self.definehop()

while not hasgoal:

yield waitevent, self, checkvessel

hasgoal = choosegoal(self)

if self.hopping == 1 and len(self.nexthop)>0:

self.definehop()

267

while True:

time1 = now()

if isinstance(self, Surface):

If the connector needs repair at SB or ISB, wait until fixed

if self.goal.strip(”0123456789”) in [”SB”, ”ISB”]:

if self.repaircount >= self.MTBF:

yield hold, self, self.MTTR

self.repaircount = 0

choose cargo and find a compatible interface

hascargoandinterface = False

while not hascargoandinterface:

if self.purpose == ”pull”:

if self.hopping == 0:

[schedule, priority] = idschedule(self, self.nextpush)

self.cargowant, loadoutarea, loadoutwt, relativepriority = choose-

cargo(self, schedule, priority, self.goal)

else:

#self.nexthop2 = [self.nextpush, self.nexthop]

self.cargowant, loadoutarea, loadoutwt, relativepriority, bea-

chorder, beachnames, totaltriptime = choosehops(self, self.goal, False)

self.definehop2(beachnames)

cargoatlocation = calcloc(self, self.goal)

spotswithcargo = checkspotcargo(self, cargoatlocation)

hascargoandinterface = num.amax(spotswithcargo)

if not hascargoandinterface:

268

yield waitevent, self, checkvessel

row, col, wait, incomp = findspot(self, spotswithcargo, j)

time2 = now() - time1

self.repaircount += time2

self.fuel += self.getspentfuel([time2], [self.fuelusage[0]])

if self.location.strip(”0123456789”) in self.pulllocs:

self.loadqueue += time2

else:

self.unloadqueue += time2

if self.purpose == ”pull”:

self.loadareas.append(loadoutarea)

self.loadwts.append(loadoutwt)

updateschedule(self)

if isinstance(self, Aerial):

If the needs repair at SB or ISB, wait until fixed

if self.goal.strip(”0123456789”) in [”SB”, ”ISB”]:

if self.repaircount >= self.MTBF:

yield hold, self, self.MTTR

self.repaircount = 0

yield hold, self, wait

self.load += wait

self.trip += 1

269

Spots[row, col] = 1

Spots[row] = Spots[row] + incomp

hasgoal = self.changemission(row, j)

if self.location.strip(”0123456789”) in self.pushlocs or self.location in

self.pushlocs:

self.numunloaded += 1

while hasgoal == 0:

yield waitevent, self, checkvessel

hasgoal = choosegoal(self)

if self.hopping == 1 and len(self.nexthop)>0:

self.definehop()

checkvessel.signal()

yield hold, self, 0

traveltime = self.gettraveltime()

totaltraveltime = sum(traveltime)

yield hold, self, totaltraveltime

self.repaircount += totaltraveltime

self.travel += totaltraveltime

self.fuel += self.getspentfuel(traveltime, self.fuelusage)

def gettraveltime(self):

270

”””Calculate travel time.”””

dist = Distances[self.location][self.goal]

traveltime = dist / self.speed * 60

return [traveltime]

def getspentfuel(self, time, usagerate):

”””Calculate fuel usage.”””

return sum([t*rate for t, rate in zip(time, usagerate)])

def changemission(self, row, j):

”””Modify object properties for the next mission.”””

global Predictedwaits

global Predictedcargo

global PredictedSBschedule

global PredictedPortcargowant

if self.purpose == ”pull”:

self.location = self.goal

self.purpose = ”push”

if self.pullwaittime.size != 0:

Predictedwaits = Predictedwaits - self.pullwaittime

if self.predictedcargo.size != 0:

Predictedcargo = Predictedcargo - self.predictedcargo

else:

if self.hopping == 1 and len(self.nexthop) >0:

self.location = self.goal

self.definehop()

271

Cargowant[row] = Cargowant[row] - globals()[’cargowant’ + self.location

+ self.name]

Cargohave[row] = Cargohave[row] + globals()[’cargowant’ + self.location

+ self.name]

self.cargohavehop = self.cargohavehop - globals()[’cargowant’ + self.location

+ self.name]

else:

Cargowant[row] = Cargowant[row] - num.array(self.cargohave)

Cargohave[row] = Cargohave[row] + num.array(self.cargohave)

self.location = self.goal

self.purpose = ”pull”

self.cargowant = num.zeros(numcargo)

self.cargohave = num.zeros(numcargo)

if self.pushwaittime.size != 0:

Predictedwaits = Predictedwaits - self.pushwaittime

#remove cargo from the predicted schedule since the actual transaction

has occured

if self.predictedcargo.size != 0:

locstripped = self.location.strip(”0123456789”)

if(locstripped == ”SB”):

PredictedSBschedule -= num.sum(self.predictedcargo, 0)

elif(locstripped == ”Port”):

PredictedPortcargowant -= num.sum(self.predictedcargo, 0)

else:

globals()[’Predicted’ + self.location +’schedule’] -= globals()[’cargowant’

272

+ self.location + self.name]

#choose new goal if next mission is not already decided

if(self.purpose == ”push”):

self.goal = self.nextpush

hasgoal = True

else:

hasgoal = choosegoal(self)

if self.hopping == 1 and len(self.nexthop)>0:

self.definehop()

replacematrix(self, j)

return hasgoal

def deploy(self, vehiclelist):

”””Initial assignment of vessels to start locations.”””

vehicleid = len(vehiclelist) - 1

if vehicleid % numISB == 0:

locationid = 0

else:

vehicle = vehiclelist[-2]

previousid = vehicle.location[-2:]

locationid = int(previousid) + 1

self.location = ”start%02d”%locationid

def definehop(self):

”””Cycle through hop schedule”””

273

self.nextpush = self.nexthop[0]

self.nexthop.pop(0)

self.cargohave = globals()[’cargowant’ + self.nextpush + self.name]

def definehop2(self, beachnames):

”””Updated predicted values based on hop re-evaluation at load loca-

tion”””

cargowantcalc = self.cargowant

for beach in beaches:

globals()[’Predicted’ + beach +’schedule’] -= globals()[’cargowant’ +

beach + self.name]

globals()[’cargowant’ + beach + self.name] = num.zeros(numcargo)

for beach in beachnames:

globals()[’cargowant’ + beach + self.name] = num.minimum(cargowantcalc,

globals()[beach + ’schedule’])

cargowantcalc = cargowantcalc - globals()[’cargowant’ + beach + self.name]

globals()[’Predicted’ + beach +’schedule’] += globals()[’cargowant’ +

beach + self.name]

self.nexthop = beachnames

self.definehop()

class SupplyShip(Surface, Connector):

”””Subclass of Connector and has Surface properties.

All of the supply ships are surface connectors. The MEC is the only class

274

that must change the general process.

Implemented by MEC, JHSV, TAKE, LSV, LCU-2000.

”””

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping):

Connector.init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fu-

elusage, vehiclerange, hopping)

self.location = ”start”

self.goal = ”ISB00”

self.purpose = ”pull”

self.type = ”connector”

class MEC(SupplyShip):

”””Subclass of SupplyShip for the MEC connector.

Overrides the Connector gettraveltime method to account for change in oper-

ational mode.

”””

roster = []

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping):

SupplyShip.init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping)

275

MEC.roster.append(self)

self.deploy(MEC.roster)

def gettraveltime(self):

”””Calculate travel time.

Overrides the connector travel time routine since MEC has different travel

time.”””

dist = Distances[self.location][self.goal]

transitiontime = MECtranstime

traveltimeSES = (dist - MECtransdist) / MECSESspeed * 60

traveltimeACV = MECtransdist / MECACVspeed * 60

return [transitiontime, traveltimeSES, traveltimeACV]

class JHSV(SupplyShip):

”””Subclass of SupplyShip for the JHSV.”””

roster = []

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping):

SupplyShip.init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs,

fuelusage,

vehiclerange, hopping)

JHSV.roster.append(self)

self.deploy(JHSV.roster)

276

class TAKE(SupplyShip):

”””Subclass of SupplyShip for the TAKE.”””

roster = []

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping):

SupplyShip.init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs,

fuelusage,

vehiclerange, hopping)

TAKE.roster.append(self)

self.deploy(TAKE.roster)

class LSV(SupplyShip):

”””Subclass of SupplyShip for the LSV.”””

roster = []

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping):

SupplyShip.init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs,

fuelusage,

vehiclerange, hopping)

LSV.roster.append(self)

self.deploy(LSV.roster)

277

class LCU2000(SupplyShip):

”””Subclass of SupplyShip for the LCU2000.”””

roster = []

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping):

SupplyShip.init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs,

fuelusage,

vehiclerange, hopping)

LCU2000.roster.append(self)

self.deploy(LCU2000.roster)

class MV22(Aerial, Connector):

”””Subclass of Connector with Aerial properties.

The MV-22 is handled as an aerial connector, as it is assumed it can queue in

the air.

If it is determined to act more like a helicopter, where landing is a priority,

not matching cargo,

then the process can be switched to that of the helicopter class.

”””

roster = []

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping):

Connector.init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

278

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fu-

elusage, vehiclerange, hopping)

self.goal = ”ISB00”

self.purpose = ”pull”

self.type = ”connector”

MV22.roster.append(self)

self.deploy(MV22.roster)

class CarriedToTheaterConnector(Organic, Surface, Connector):

”””Subclass of Connector with Organic and Surface properties.

These connectors must be carried into theater on designated connectors.

Once the ferrying ship arrives in theater, these connectors are offloaded first.

These connectors then become independent vessels that travel between set

points.

Implemented by INLS, LCU1600

”””

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping):

Connector.init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fu-

elusage, vehiclerange, hopping)

self.location = ”SBstart”

self.goal = ”SB”

self.purpose = ”pull”

279

self.type = ”connector”

class INLS(CarriedToTheaterConnector):

”””Subclass of CarriedToTheaterConnector for the INLS.”””

roster = []

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

vehiclerange, hopping):

CarriedToTheaterConnector.init(self, name, spots, wait, maxlift, lifteff,

maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs,

pulllocs, fuelusage, vehiclerange, hopping)

INLS.roster.append(self)

class LCU1600(CarriedToTheaterConnector):

”””Subclass of CarriedToTheaterConnector for the LCU1600.”””

roster = []

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

hopping):

CarriedToTheaterConnector.init(self, name, spots, wait, maxlift, lifteff,

maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs,

pulllocs, fuelusage, vehiclerange, hopping)

LCU1600.roster.append(self)

class Helicopter(Organic, Connector):

280

”””Subclass of Connector with Organic properties.

Helicopters must be carried aboard another vessel to reach the Sea Base.

Once deployed, they follow a slightly modified procedure because they can not

queue as an individual asset.

Priority is placed on landing not matching cargo.

Implemented by CH-46, CH-53.

”””

def init(self, name, spots, wait, maxliftinternal,

maxliftsling, lifteff, maxareainternal,

maxareasling, areaeff, MTBF, MTTR, compatibility,

speed, pushlocs, pulllocs, fuelusage, waitinternal,

waitsling, vehiclerange, hopping):

Connector.init(self, name, spots, wait, 0, 0, 0, 0, MTBF, MTTR,

compatibility, speed, pushlocs, pulllocs, [], vehiclerange, hopping)

self.unloadqueue = 0

self.loadqueue = 0

self.location = ”SBstart”

self.goal = ”SB”

self.purpose = ”pull”

self.type = ”connector”

self.cargotype = ””

self.liftinternal = maxliftinternal*lifteff

self.liftsling = maxliftsling*lifteff

self.areainternal = maxareainternal*areaeff

self.areasling = maxareasling*areaeff

281

self.lift = 0

self.area = 0

self.speedoptions = speed

self.waitinternal = waitinternal

self.waitsling = waitsling

self.fuelidle = fuelusage[0]

self.fuelclean = fuelusage[1]

self.fuelsling = fuelusage[2]

def run(self, j, store):

”””The PEM for Helicopters. This method overrides the Connector run

method.

If a landing spot can not be identified that has the cargo the helicopter

would like to carry or drop off,

depending on the mission, the helicopter will land at the first available

spot.

This is to minimize the time in the air. Any repairs needed are completed

once the helicopter lands.

Once the helicopter has landed, it will wait until the cargo becomes avail-

able at that source and will not

change cargo supply locations to match its cargo needs.

”””

namematrix(self)

yield hold, self, 1

yield put, self, store, [self]

yield waitevent, self, self.SBSignal

282

hasgoal = choosegoal(self)

while not hasgoal:

yield waitevent, self, checkvessel

hasgoal = choosegoal(self)

while True:

time1 = now()

Since wait, row, col, and incomp are inside the if loop, without ini-

tialization

’yield hold, self, wait + waitload’ causes an error.

wait = 0

row = 0

col = 0

incomp = 0

waitload = 0

self.cargotype = ””

if self.purpose == ”pull”:

[waitload, loadoutarea, loadoutwt, self.cargowant, relativepriority]

= self.choosehelocargo(False)

cargoatlocation = calcloc(self, self.goal)

spotswithcargo = checkspotcargo(self, cargoatlocation)

hasspotwithcargo = num.amax(spotswithcargo)

Helo should land if available spot, not hover waiting for cargo

if self.purpose == ”pull” and not hasspotwithcargo:

spotexists = False

while not spotexists:

283

self.cargowant = num.zeros(numcargo)

cargoatlocation = calcloc(self, self.goal)

spotswithcargo = checkspotcargo(self, cargoatlocation)

spotexists = num.amax(spotswithcargo)

if spotexists > 0 and hasspotwithcargo == 0:

row, col, wait, incomp = findspot(self, spotswithcargo, j)

checkcargo = 0

goalstripped = self.goal.strip(”0123456789”)

if goalstripped in [”SB”, ”ISB”]:

if self.repaircount >= self.MTBF:

yield hold, self, self.MTTR

self.repaircount = 0

while checkcargo == 0 and hasspotwithcargo == 0:

#check if can take internal load

self.lift = self.liftinternal

self.area = self.areainternal

[schedule, priority] = idschedule(self, self.nextpush)

self.cargowant, loadoutarea, loadoutwt, relativepriority =

choosecargo(self, schedule, priority, self.goal)

cargotest1 = Cargohave[row,:] - self.cargowant

if num.min(cargotest1) >= 0:

Cargohave[row,:] = Cargohave[row,:] - self.cargowant

Cargowant[row] = Cargowant[row] + num.array(self.cargowant)

self.cargohave = self.cargowant

284

self.cargowant = num.zeros(numcargo)

replacematrix(self, j)

self.cargotype = ”Internal”

waitload = self.waitinternal

checkcargo = 1

else:

#check if can take sling load

self.lift = self.liftsling

self.area = self.areasling

self.cargowant, loadoutarea, loadoutwt, relativeprior-

ity = choosecargo(self, schedule, priority, self.goal)

cargotest1 = Cargohave[row,:] - self.cargowant

if num.min(cargotest1) >= 0:

Cargohave[row,:] = Cargohave[row,:] - self.cargowant

Cargowant[row] = Cargowant[row] + num.array(self.cargowant)

self.cargohave = self.cargowant

self.cargowant = num.zeros(numcargo)

replacematrix(self, j)

self.cargotype = ”Sling”

waitload = self.waitsling

checkcargo = 1

if checkcargo == 0:

yield waitevent, self, checkvessel

else:

yield waitevent, self, checkvessel

self.cargotype = ””

285

if self.purpose == ”pull”: #Recalculate cargo to load

[waitload, loadoutarea, loadoutwt, self.cargowant, rela-

tivepriority] = self.choosehelocargo(False)

cargoatlocation = calcloc(self,self.goal)

spotswithcargo = checkspotcargo(self,cargoatlocation)

hasspotwithcargo = num.amax(spotswithcargo)

if hasspotwithcargo > 0:

spotexists = 1

row, col, wait, incomp = findspot(self, spotswithcargo, j)

time2 = now() - time1

else:

while hasspotwithcargo == 0:

yield waitevent, self, checkvessel

cargoatlocation = calcloc(self, self.goal)

spotswithcargo = checkspotcargo(self, cargoatlocation)

hasspotwithcargo = num.amax(spotswithcargo)

row, col, wait, incomp = findspot(self, spotswithcargo, j)

time2 = now() - time1

if self.purpose == ”pull”:

self.loadareas.append(loadoutarea)

self.loadwts.append(loadoutwt)

updateschedule(self)

goalstripped = self.goal.strip(”0123456789”)

if goalstripped in [”SB”, ”ISB”]:

286

if self.repaircount >= self.MTBF:

yield hold, self, self.MTTR

self.repaircount = 0

self.fuel += time2*self.fuelidle

yield hold, self, wait + waitload

self.load += wait + waitload

if self.location.strip(”0123456789”) in self.pushlocs or self.location in

self.pushlocs:

self.numunloaded += 1

self.unloadqueue += time2

self.repaircount += time2

self.cargotype = ””

else:

self.loadqueue += time2

self.repaircount += time2

Spots[row, col] = 1

Spots[row] = Spots[row] + incomp

checkvessel.signal()

yield hold, self, 0

hasgoal = self.changemission(row, j)

while not hasgoal:

yield waitevent, self, checkvessel

287

hasgoal = choosegoal(self)

if self.purpose == ”pull”: #travels to pull location in clean mode

self.speed = self.speedoptions[0]

dist = Distances[self.location][self.goal]

traveltime1 = dist/self.speed*60

yield hold, self, traveltime1

if self.cargotype == ”Sling”:

self.fuel += traveltime1*self.fuelsling

else:

self.fuel += traveltime1*self.fuelclean

self.travel += traveltime1

self.repaircount += traveltime1

def choosehelocargo(self, Predictive):

”””Choose cargo to load by checking internal loading then sling loading.

Method changes self.lift, self.area, self.cargowant, self.cargotype.

Returns:

wait - loading time based on choice of internal/sling loading

loadoutarea - area of cargo chosen

loadoutwt - weight of cargo chosen

”””

self.cargotype = ”Internal”

288

wait = self.waitinternal

self.lift = self.liftinternal

self.area = self.areainternal

self.speed = self.speedoptions[0]

if Predictive == True:

schedule, priority = idpredictedschedule(self, self.nextpush)

else:

[schedule, priority] = idschedule(self, self.nextpush)

self.cargowant, loadoutarea, loadoutwt, relativepriority = choosecargo(self,

schedule, priority, self.goal)

if num.min(self.cargowant) > 100000:

self.cargotype = ”Sling”

wait = self.waitsling

self.lift = self.liftsling

self.area = self.areasling

self.speed = self.speedoptions[1]

self.cargowant, loadoutarea, loadoutwt, relativepriority = choosecargo(self,

schedule, priority, self.goal)

return [wait, loadoutarea, loadoutwt, self.cargowant, relativepriority]

class CH46(Helicopter):

”””Subclass of Helicopter for the CH-46.”””

roster = []

def init(self, name, spots, wait, maxliftinternal, maxliftsling,

lifteff, maxareainternal, maxareasling, areaeff, MTBF,

289

MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage, waitin-

ternal, waitsling, vehiclerange, hopping):

Helicopter.init(self, name, spots, wait, maxliftinternal, maxliftsling,

lifteff, maxareainternal, maxareasling, areaeff, MTBF,

MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

waitinternal, waitsling, vehiclerange, hopping)

CH46.roster.append(self)

class CH53(Helicopter):

”””Subclass of Helicopter for the CH-53.”””

roster = []

def init(self, name, spots, wait, maxliftinternal, maxliftsling,

lifteff, maxareainternal, maxareasling, areaeff, MTBF,

MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage, waitin-

ternal, waitsling, vehiclerange, hopping):

Helicopter.init(self, name, spots, wait, maxliftinternal, maxliftsling,

lifteff, maxareainternal, maxareasling, areaeff, MTBF,

MTTR, compatibility, speed, pushlocs, pulllocs, fuelusage,

waitinternal, waitsling, vehiclerange, hopping)

CH53.roster.append(self)

class AirCushionVehicle(Connector):

”””Subclass of Connector.

The main distinction from the general connector is the MLP have the op-

tion

to ferry the ACVs closer to shore if the SB Cargo Ships are outside their range.

290

Implemented by LCAC, LCAC-R

”””

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, vehiclerange,

fuelusage, range2, hopping):

Connector.init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, fu-

elusage, [], hopping)

self.loadqueue = 0

self.unloadqueue = 0

self.MLPqueueSB = 0

self.MLPqueuebeach = 0

self.location = ”ISB00”

self.goal = ”SB”

self.purpose = ”pull”

self.type = ”connector”

self.vehiclerange = vehiclerange #can be ferried so different from self.range

usage for general connector

self.fuelidle = fuelusage[0]

self.fuelACV = fuelusage[1]

def run(self, j, ISBstores, SBstores, beachemptystores):

”””The PEM for AirCushionVehicles. This method overrides the Connec-

tor run method.

The ACVs start at the ISB with no cargo and are transported to the Sea

291

Base

aboard another vessel, such as the MLP. If the Sea Base is positioned within

the range of the ACV then the ACV serves as a basic connector, following

the

general procedure for a connector.

If the Sea Base is positioned beyond the range of the ACV, the MLP must

be

used to ferry the ACVs to some standoff distance. Instead of calculating

the

distance to travel and waiting that amount of time, the ACVs must wait

for an

MLP to carry them, forming a queue. Once the MLP reaches the standoff

distance,

it offloads and the ACVs travel the remaining distance to shore and find a

landing zone on the beach. Once unloaded, the ACVs repeat the same

process with

the ACVs queuing to be ferried by the MLP and unloaded upon arrival at

the Sea Base,

joining the loading queue.

”””

namematrix(self)

yield hold, self, .25

##Put self into queue to be carried from ISB

yield put, self, ISBstores, [self]

yield waitevent, self, self.SBSignal

292

self.location = ”SBstart”

hasgoal = choosegoal(self)

while not hasgoal:

yield waitevent,self,checkvessel

hasgoal = choosegoal(self)

while True:

time1 = now()

hascargoandinterface = False

while not hascargoandinterface:

if self.purpose == ”pull”:

[schedule, priority] = idschedule(self, self.nextpush)

self.cargowant, loadoutarea, loadoutwt, relativepriority = choose-

cargo(self, schedule, priority, self.goal)

cargoatlocation = calcloc(self, self.goal)

spotswithcargo = checkspotcargo(self, cargoatlocation)

hascargoandinterface = num.amax(spotswithcargo)

if not hascargoandinterface:

yield waitevent,self,checkvessel

row, col, wait, incomp = findspot(self, spotswithcargo, j)

if self.purpose == ”pull”:

self.loadareas.append(loadoutarea)

self.loadwts.append(loadoutwt)

updateschedule(self)

293

timequeued = now() - time1

self.repaircount += timequeued

self.fuel += timequeued * self.fuelidle

if self.goal.startswith(”SB”):

self.loadqueue += timequeued

if self.repaircount >= self.MTBF:

yield hold, self, self.MTTR

self.repaircount = 0

else:

self.unloadqueue += timequeued

yield hold, self, wait

self.load += wait

if self.goal.strip(”0123456789”) in self.pushlocs or self.goal in self.pushlocs:

self.numunloaded += 1

Spots[row, col] = 1

Spots[row] = Spots[row] + incomp

hasgoal = self.changemission(row, j)

while not hasgoal:

yield waitevent,self,checkvessel

hasgoal = choosegoal(self)

294

checkvessel.signal()

yield hold, self, 0

dist = Distances[self.location][self.goal]

strippedname = self.name.strip(”0123456789”)

if self.vehiclerange < dist: #if ACV can not travel to shore on its own,

it must wait and be ferried closer to shore

if self.location.startswith(”SB”): #going to beach

time2 = now()

yield put, self, globals()[self.goal+’SB’+strippedname], [self]

yield waitevent, self, self.arrivedSignal

self.MLPqueueSB += now() - time2

self.fuel += (now() - time2) * self.fuelidle

yield hold, self, self.vehiclerange / self.speed * 60

self.travel += self.vehiclerange / self.speed * 60

self.repaircount += self.vehiclerange / self.speed * 60

self.fuel += self.vehiclerange / self.speed * 60 * self.fuelACV

else:

yield hold, self, self.vehiclerange / self.speed * 60

self.travel += self.vehiclerange / self.speed * 60

self.repaircount += self.vehiclerange / self.speed * 60

self.fuel += self.vehiclerange / self.speed * 60 * self.fuelACV

time2 = now()

yield put, self, globals()[self.location+’empty’+strippedname], [self]

yield waitevent, self, self.unloadedSignal

295

self.MLPqueuebeach += now() - time2

self.fuel += (now() - time2) * self.fuelidle

else: #if within its range, ACV will travel on its own

dist = Distances[self.location][self.goal]

yield hold, self, (dist / self.speed * 60)

self.travel += dist / self.speed * 60

self.repaircount += dist / self.speed * 60

self.fuel += dist / self.speed * 60 * self.fuelACV

class LCAC(AirCushionVehicle):

”””Subclass of AirCushionVehicle for the LCAC.”””

roster = []

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, vehiclerange,

fuelusage, hopping):

AirCushionVehicle.init(self, name, spots, wait, maxlift, lifteff, maxarea,

areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, vehiclerange,

fuelusage,[], hopping)

LCAC.roster.append(self)

class LCACR(AirCushionVehicle):

”””Subclass of AirCushionVehicle for the LCAC-R.”””

roster = []

def init(self, name, spots, wait, maxlift, lifteff, maxarea, areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, vehiclerange,

296

fuelusage, hopping):

AirCushionVehicle.init(self, name, spots, wait, maxlift, lifteff, maxarea,

areaeff,

MTBF, MTTR, compatibility, speed, pushlocs, pulllocs, vehiclerange,

fuelusage,[], hopping)

LCACR.roster.append(self)

class SBCargoShip(Process):

”””General Process for Sea Base cargo ships.

Cargo ships act as cargo objects that serve to interface with connectors and

hold cargo.

They must start at some initial starting location and travel to the Sea Base or

other

cargo spot, such as a nearby port. While a cargo object is stationary, no pro-

cess

definition is needed beyond the definition of the initial properties.

Implemented by AmphibiousShip.

”””

def init(self, name, spots, cargo, speed):

Process.init(self)

self.name = name

self.spots = spots

self.cargohave = cargo

self.speed = speed

self.cargowant = num.zeros(numcargo)

297

self.goal = ”SB”

self.purpose = ””

self.type = ”in transport”

self.wait = num.zeros(numinterfaces)

def deploy(self, vehiclelist):

”””Initial assignment of vessels to start locations. Overrides Connector

deploy method.”””

vehicleid = len(vehiclelist) - 1

if vehicleid%numISB == 0:

locationid = 0

else:

vehicle = vehiclelist[-2]

previousid = vehicle.location[-2:]

locationid = int(previousid) + 1

self.location = ”ISB%02d” %locationid

class AmphibiousShip(SBCargoShip):

”””Subclass of SBCargoShip for amphibious warfare ships.

Distinguished by its ability to carry helicopters and smaller vessels in its well

deck.

This ship ferries these objects to the SB, where they become individual con-

nectors and

then becomes a resupply point.

Implemented by LMSR, LHD, LPD, LSD

298

”””

def init(self, name, spots, cargo, speed, helospots, LCspots, INLSspots):

SBCargoShip.init(self, name, spots, cargo, speed)

self.Heloid = []

self.LCid = []

self.INLSid = []

self.LCspots = LCspots

self.helospots = helospots

self.INLSspots = INLSspots

def run(self, j):

”””The PEM for AmphibiousShip. This method overrides the Connector

run method.

This ship ferries these objects to the SB, where they become individual

connectors and

then becomes a resupply point. The number of each of helicopter and

smaller ship that

can be carried are set as properties, but only a single type is selected.

”””

namematrix(self)

#Travel to ISB

yield hold, self, 5

#Load helos

self.NumcarriedHelo = min(ISBCH46.nrBuffered, self.helospots[0])

self.NumcarriedHelo2 = min(ISBCH53.nrBuffered, self.helospots[1])

if self.NumcarriedHelo > self.NumcarriedHelo2: #Select helos to carry by

299

selecting max number

Helochoice = 1

else:

Helochoice = 2

if Helochoice == 1: #Load selected helos

for r in range(self.NumcarriedHelo):

yield get, self, ISBCH46, 1

whichHelo = self.got[0]

self.Heloid.append(whichHelo)

if Helochoice == 2:

for r in range(self.NumcarriedHelo2):

yield get, self, ISBCH53, 1

whichHelo = self.got[0]

self.Heloid.append(whichHelo)

#Load landing craft

self.NumcarriedLCAC = min(ISBLCAC.nrBuffered, self.LCspots[0])

self.NumcarriedLCACR = min(ISBLCACR.nrBuffered, self.LCspots[0])

self.NumcarriedLCU1600 = min(ISBLCU1600.nrBuffered, self.LCspots[1])

templist = [self.NumcarriedLCAC,self.NumcarriedLCACR,self.NumcarriedLCU1600]

LCchoice = templist.index(max(templist))

if LCchoice == 0:

for r in range(self.NumcarriedLCAC): #reserve loaded LCACs till have

max can carry

yield get, self, ISBLCAC, 1

whichLCAC = self.got[0]

self.LCid.append(whichLCAC)

elif LCchoice == 1:

300

for r in range(self.NumcarriedLCACR): #reserve loaded LCACRs till

have max can carry

yield get, self, ISBLCACR, 1

whichLCACR = self.got[0]

self.LCid.append(whichLCACR)

elif LCchoice == 2:

for r in range(self.NumcarriedLCU1600): #reserve loaded LCU1600s

till have max can carry

yield get, self, ISBLCU1600, 1

whichLCU1600 = self.got[0]

self.LCid.append(whichLCU1600)

#Load INLS

self.NumcarriedINLS = min(ISBINLS.nrBuffered, INLSspots)

for r in range(self.NumcarriedINLS): #load INLS

yield get, self, ISBINLS, 1

whichINLS = self.got[0]

self.INLSid.append(whichINLS)

#Travel to Sea Base

dist = Distances[self.location][self.goal]

traveltime = dist/self.speed*60

yield hold, self, traveltime

self.location = self.goal

#Release helos, landing craft, INLS

if Helochoice == 1: #Release helos

for s in range(self.NumcarriedHelo):

whichHelo = self.Heloid.pop()

301

whichHelo.SBSignal.signal()

yield hold, self, 0

elif Helochoice == 2:

for s in range(self.NumcarriedHelo2):

whichHelo = self.Heloid.pop()

whichHelo.SBSignal.signal()

yield hold, self, 0

if LCchoice == 0: #Release landing craft

for s in range(self.NumcarriedLCAC):

whichLCAC = self.LCid.pop()

whichLCAC.SBSignal.signal()

yield hold, self, 0

elif LCchoice == 1:

for s in range(self.NumcarriedLCACR):

whichLCACR = self.LCid.pop()

whichLCACR.SBSignal.signal()

yield hold, self, 0

elif LCchoice == 2:

for s in range(self.NumcarriedLCU1600):

whichLCU1600 = self.LCid.pop()

whichLCU1600.SBSignal.signal()

yield hold, self, 0

for s in range(self.NumcarriedINLS): #release INLS

whichINLS = self.INLSid.pop()

whichINLS.SBSignal.signal()

yield hold, self, INLSTimeToOffload

self.goal = ””

302

self.purpose = ””

self.type = ”cargo”

replacematrixcargoship(self, j) #Becomes a cargo ship at Sea Base

checkvessel.signal()

yield hold, self, 0

class LMSR(AmphibiousShip):

”””Subclass of AmphibiousShip for the LMSR.”””

roster = []

def init(self, name, spots, cargo, speed, helospots, LCspots):

AmphibiousShip.init(self, name, spots, cargo, speed, helospots, LCspots,

INLSspots = 0)

LMSR.roster.append(self)

self.deploy(LMSR.roster)

class LHD(AmphibiousShip):

”””Subclass of AmphibiousShip for the LHD.”””

roster = []

def init(self, name, spots, cargo, speed, helospots, LCspots):

AmphibiousShip.init(self, name, spots, cargo, speed, helospots, LCspots,

INLSspots = 1)

LHD.roster.append(self)

self.deploy(LHD.roster)

self.goal = ”SB”#”SBclose”

class LPD(AmphibiousShip):

”””Subclass of AmphibiousShip for the LPD.”””

303

roster = []

def init(self, name, spots, cargo, speed, helospots, LCspots):

AmphibiousShip.init(self, name, spots, cargo, speed, helospots, LCspots,

INLSspots = 1)

LPD.roster.append(self)

self.deploy(LPD.roster)

class LSD(AmphibiousShip):

”””Subclass of AmphibiousShip for the LSD.”””

roster = []

def init(self, name, spots, cargo, speed, helospots, LCspots):

AmphibiousShip.init(self, name, spots, cargo, speed, helospots, LCspots,

INLSspots = 1)

LSD.roster.append(self)

self.deploy(LSD.roster)

class MLP(Process):

”””Generic process for MLP. Completely separate from the Connector process.

The MLP is a special case as it serves as a cargo transfer enabler as well

as

having the potential to disconnect from the LMSR and travel as an indepen-

dent

object. In the case where the MLP stays attached to the LMSR and does not

ferry

ACVs, the MLP simply serves to enable a loading connection on the LMSR.

”””

304

roster = []

def init(self, name):

Process.init(self)

self.name = name

self.cargohave = num.zeros(numcargo)

self.cargowant = num.zeros(numcargo)

self.goal = ”SB”

self.purpose = ”pull”

self.type = ”MLP”

self.shipid = []

self.carry = ””

MLP.roster.append(self)

self.deploy(MLP.roster)

def MLP(self, j, MLPloading):

”””The PEM for MLP.

The MLP starts at the ISB and travels to the Sea Base.

If there are no ACVs, the MLP identifies an available LMSR and the makes

a connection.

In this way, the MLP becomes a part of the LMSR and is not considered

a separate object.

On the other hand, when the MLP is used to ferry ACVs, it starts unattached

and

immediately looks for ACVs to load from the queue of loaded objects at

305

the Sea Base.

Once the connectors are on board, the MLP travels to the standoff distance

from

the shore. On arrival, it triggers the reactivation of the ACVs so they can

travel to shore and unload. The MLP waits at the standoff distance for the

return of the ACVs, and once they are on board, returns to the Sea Base.

”””

def checkready():

shipwaiting = False

for beach in beaches:

if globals()[beach+’SBLCAC’].nrBuffered>= LCACperMLP or glob-

als()[beach+’SBLCACR’].nrBuffered >= LCACRperMLP:

shipwaiting = True

return shipwaiting

self.spots = MLPspots

self.wait = MLPconn

namematrix(self)

yield hold, self, 2

##ISB to SB, load ACVs

self.Numcarried = min(ISBLCAC.nrBuffered, LCACperMLP)

self.NumcarriedR = min(ISBLCACR.nrBuffered, LCACRperMLP)

if ISBLCAC.nrBuffered >= 1:

for r in range(self.Numcarried): #reserve loaded LCACs till have max

can carry

yield get, self, ISBLCAC, 1

306

whichLCAC = self.got[0]

self.shipid.append(whichLCAC)

self.carry = ”LCAC”

MLPonload = MLPonloadLCAC

elif ISBLCACR.nrBuffered >= 1:

for r in range(self.NumcarriedR): #reserve loaded LCACRs till have

max can carry

yield get, self, ISBLCACR, 1

whichLCACR = self.got[0]

self.shipid.append(whichLCACR)

self.carry = ”LCACR”

MLPonload = MLPonloadLCACR

else:

MLPonload = 0

self.carry = ””

if either of nrBuffered is non-zero, hold the process.

if ISBLCAC.nrBuffered + ISBLCACR.nrBuffered:

yield hold, self, MLPonload

MLP.fuel += MLPonload*MLPfuelidle

dist = Distances[self.location][self.goal] #Travel to Sea Base

traveltime = dist/MLPspeed*60

yield hold, self, traveltime

MLP.travel += traveltime

307

MLP.fuel += traveltime*MLPfuelusage

self.location = ”SB”

if self.carry == ”LCAC”: #Release ACVs

MLPoffload = MLPoffloadLCAC

numcarried = self.Numcarried

vehiclelist = self.shipid

elif self.carry == ”LCACR”:

MLPoffload = MLPoffloadLCACR

numcarried = self.NumcarriedR

vehiclelist = self.shipid

elif self.carry == ””:

MLPoffload = 0

numcarried = 0

if self.carry != ””:

yield hold, self, MLPoffload

MLP.fuel += MLPoffload*MLPfuelidle

for s in range(numcarried):

vehicle = self.getvehicle(vehiclelist)

vehicle.SBSignal.signal()

yield hold, self, 1

self.carry = ””

replacematrixcargoship(self, j)

308

while True:

yield request, self, MLPloading

conntoload = checkready()

if conntoload ==True:

beachtoload, shiptype = self.choosebeach()

for r in range(eval(shiptype+’perMLP’)):

yield get, self, globals()[beachtoload+’SB’+ shiptype], 1

whichship = self.got[0]

self.shipid.append(whichship)

self.carry = shiptype

self.goal = beachtoload

else:

yield release, self, MLPloading

self.goal = ”SB”

time3 = now()

hascargoandinterface = False

while not hascargoandinterface:

cargoatlocation = calcloc(self, self.goal)

spotswithcargo = checkspotcargo(self, cargoatlocation)

hascargoandinterface = num.amax(spotswithcargo)

if not hascargoandinterface:

yield waitevent, self, checkvessel

row, col, wait, incomp = findspot(self, spotswithcargo, j)

time4 = now() - time3

MLP.SBqueue += time4

MLP.fuel += time4*MLPfuelidle

309

yield hold, self, wait

Spots[row, mlpspot] = 1

allSpots[row, mlpspot] = 1

time5 = now()

checkvessel.signal()

yield hold, self, 0

##take lcac or lcacR?

yield waitevent, self, checkvessel

yield request, self, MLPloading #want to load LCACs onto 1 MLP

to it can leave

conntoload = checkready()

while conntoload == False:

yield release, self, MLPloading

yield waitevent, self, checkvessel

yield request, self, MLPloading #want to load LCACs onto 1

MLP to it can leave

conntoload = checkready()

beachtoload, shiptype = self.choosebeach()

for r in range(eval(shiptype+’perMLP’)):

yield get, self, globals()[beachtoload+’SB’+ shiptype], 1

whichship = self.got[0]

self.shipid.append(whichship)

self.carry = shiptype

self.goal = beachtoload

310

yield release, self, MLPloading

time6 = now() - time5

#MLP.SBqueue += time6

Spots[row, mlpspot] = 0

yield hold, self, MLPdisconn

Spots[row, col] = 1

Spots[row] = Spots[row] + incomp

#create for LCAC and LCACR

if self.carry == ”LCAC”:

MLPonload = MLPonloadLCAC

vehiclerange = LCACrange

MLPoffload = MLPoffloadLCAC

vehicleperMLP = LCACperMLP

vehiclelist = self.shipid

elif self.carry == ”LCACR”:

MLPonload = MLPonloadLCACR

vehiclerange = LCACRrange

MLPoffload = MLPoffloadLCACR

vehicleperMLP = LCACRperMLP

vehiclelist = self.shipid

elif self.carry == ””:

MLPonload = 0

if self.carry != ””:

311

yield hold, self, MLPonload

MLP.fuel += MLPonload*MLPfuelidle

self.location = ”SB”

time1 = now()

yield hold, self, (Distances[self.location][self.goal] - vehiclerange)/MLPspeed*60

MLP.fuel += (Distances[self.location][self.goal] - vehiclerange)/MLPspeed*60*MLPfuelusage

yield hold, self, MLPoffload

MLP.fuel += MLPoffload*MLPfuelidle

##process to transport LCACs

time2 = now() - time1

if self.carry == ”LCAC”:

LCAC.MLPqueueSB = sum([lcac.MLPqueueSB for lcac in LCAC.roster])

LCAC.MLPqueueSB -= time2*LCACperMLP

else:

LCACR.MLPqueueSB = sum([lcacr.MLPqueueSB for lcacr in LCACR.roster])

LCACR.MLPqueueSB -= time2*LCACRperMLP

self.location = self.goal

self.goal = ”SB”

for s in range(vehicleperMLP):

vehicle = self.getvehicle(vehiclelist)

vehicle.arrivedSignal.signal()

yield hold, self, 0

time5 = now()

for r in range(vehicleperMLP):

yield get, self, globals()[self.location+’empty’+self.carry], 1

312

vehicle = self.got[0]

self.putvehicle(vehiclelist, vehicle)

time6 = now() - time5

MLP.beachqueue += time6

MLP.fuel += time6*MLPfuelidle

time1 = now()

yield hold, self, MLPonloadLCAC #time to onload LCAC

MLP.fuel += MLPonloadLCAC*MLPfuelidle

dist = Distances[self.location][self.goal]

yield hold, self, (dist - vehiclerange)/MLPspeed*60

MLP.fuel += (dist - vehiclerange)/MLPspeed*60*MLPfuelusage

yield hold, self, MLPoffload

MLP.fuel += MLPoffload*MLPfuelidle

time2 = now() - time1

if self.carry == ”LCAC”:

LCAC.MLPqueuebeach = sum([lcac.MLPqueuebeach for lcac in LCAC.roster])

LCAC.MLPqueuebeach -= time2*LCACperMLP

else:

LCACR.MLPqueuebeach = sum([lcacr.MLPqueuebeach for lcacr in

LCACR.roster])

LCACR.MLPqueuebeach -= time2*LCACRperMLP

for s in range(vehicleperMLP):

vehicle = self.getvehicle(vehiclelist)

vehicle.unloadedSignal.signal()

yield hold, self, 0

313

def getvehicle(self, array):

”””Remove and return the last item of the given array.”””

return array.pop()

def putvehicle(self, array, vehicle):

”””Append the given item to the end of the given array.”””

array.append(vehicle)

def deploy(self, vehiclelist):

”””Initial assignment of vessels to start locations.”””

vehicleid = len(vehiclelist) - 1

if vehicleid%numISB == 0:

locationid = 0

else:

vehicle = vehiclelist[-2]

previousid = vehicle.location[-2:]

locationid = int(previousid) + 1

self.location = ”ISB%02d” %locationid

def choosebeach(self):

beachtoload = []

for beach in beaches:

if globals()[beach+’SBLCAC’].nrBuffered >= LCACperMLP:

beachtoload = beach

shiptype = ”LCAC”

elif globals()[beach+’SBLCACR’].nrBuffered >= LCACRperMLP:

314

beachtoload = beach

shiptype = ”LCACR”

return beachtoload, shiptype

class ISB(Process):

”””Generic process for the intermediary staging base.

The intermediary staging base (ISB) is a base where the assets are pre-positioned

and a

point of resupply. These bases are at a set distance from the theater with an

inputted

amount of cargo available. These bases can have up to three piers for resupply.

”””

def init(self, name):

Process.init(self)

self.name = name

ISBcargohave = eval(self.name + ’cargohave’)

ISBspots= eval(self.name + ’spots’)

self.spots = ISBspots

self.cargohave = ISBcargohave

self.cargowant = num.zeros(numcargo)

self.location = self.name

self.goal =””

self.purpose=””

self.type = ”cargo”

315

self.wait = num.zeros(numinterfaces)

def run(self):

namematrix(self)

yield hold, self, 0

class Port(Process):

”””Generic process for the Port.

This represents a port near the theater of interest that can be used as a

throughput point.

This port does not have any cargo at the start of the simulation but serves as

a pier where

cargo can be offloaded from larger ships that are either faster to offload at a

pier or can

not transfer cargo at sea. This cargo is then loaded onto smaller connectors

that transfer

it directly to the beach.

”””

def init(self, name):

Process.init(self)

self.name = name

global Portcargowant

self.spots = Portspots

self.cargohave = num.zeros(numcargo)

self.cargowant = num.zeros(numcargo)

self.location = self.name

316

self.goal =””

self.purpose=””

self.type = ”cargo”

self.wait = num.zeros(numinterfaces)

def run(self, j):

namematrix(self)

replacematrix(self, j)

yield hold, self, 0

class Shore(Process):

”””Generic process for the Shore.

Beaches are established as a stationary object by defining the initial prop-

erties and

no additional process definition is needed. The different types of landing zones

are

identified by the interfaces available and those must match the designated con-

nector type.

”””

def init(self, name, spots, cargowant, location):

Process.init(self)

self.name = name

self.wait = num.zeros(numinterfaces)

self.cargohave = num.zeros(numcargo)

self.spots = spots

self.cargowant = cargowant

317

self.goal = ””

self.purpose = ””

self.type = ”cargo”

self.location = location

def run(self):

namematrix(self)

yield hold, self, 0

class ShoreBeach(Shore):

”””Subclass of Shore for beaches.”””

def run(self):

for beach in BeachTypes:

for beachtype in beaches:

for n in range(BeachTypes[beach][beachtype]):

name = beach +’%02d’%n

location = beachtype

spots = eval(beach + ’spots’)

cargowant = eval(beach + ’cargowant’)

c = Shore(name, spots, cargowant, location)

activate(c, c.run())

yield hold, self, 0

General scripts ——————

def namematrix(self):

”””Add properties of an object to the overall matrices.”””

318

Names.append(self.name)

Location.append(self.location)

Goal.append(self.goal)

Spots2.append(self.spots)

global Spots

Spots = num.array(Spots2)

global allSpots

allSpots = num.array(Spots2)

Predictedwaits2.append(num.zeros(numinterfaces))

global Predictedwaits

Predictedwaits = num.array(Predictedwaits2)

Predictedcargo2.append(num.zeros(numcargo))

global Predictedcargo

Predictedcargo = num.array(Predictedcargo2)

Cargohave2.append(self.cargohave)

global Cargohave

Cargohave = num.array(Cargohave2)

Cargowant2.append(self.cargowant)

global Cargowant

Cargowant = num.array(Cargowant2)

Type2.append(self.type)

global Type

Type = num.array(Type2)

def calcloc(self, location):

”””Identify which cargo objects are at the given location.

319

Returns an array with entries of one or zero for each object:

-one signifies a cargo object that is at the given location

-zero signifies not a cargo object or not at the given location.

”””

locationvector = num.array([int(L == location) for L in Location])

typevector = num.array([int(T == ”cargo”) for T in Type])

cargoatlocation = locationvector*typevector

return cargoatlocation

def calcgoal(self, goal):

”””Identify connector objects with a given goal, i.e. traveling to a given loca-

tion.

Returns an array with entries of one or zero for each object:

-one signifies a connector object with the given goal

-zero signifies not a connector object or doesn’t have the given goal.

”””

goalvector = num.array([int(G == goal) for G in Goal])

typevector = num.array([int(T == ”connector”) for T in Type])

connectorwithgoal = goalvector*typevector

return connectorwithgoal

def Portcargoneeds(self):

”””Returns the port cargo schedule with non-negative values.”””

return [max(ps, 0) for ps in Portcargowant]

def choosecargo(self, Schedule, Priority, pulllocation):

320

”””Identify cargo to load using given schedule and priority arrays.

Creates and solves the linear programming problem:

-maximize the value of cargo carried, value = (normalizedweight + normal-

izedarea+1) / priority

-linear constraints are the lift and weight of each cargo item

-side contraints are lift and weight capacity of the connector object

-Additional side constraints for limiting cargo selection to one cargo supply

point/ vessel

-lower bound is an array of no cargo

-upper bound is an array of the desired cargo

Returns:

-cargowant: an array with entries for each cargo item designating amount to

carry

-loadoutarea: a float for the total area of the cargo

-loadoutwt: a float for the total weight of the cargo

-relativepriority: a float for the total value of prioritized cargo

”””

global Cargohave

global numships

Cargo = [i+1 for i in range(numcargo)]

cargovalue = num.zeros(numcargo)

avgwt = num.average(cargowts)

avgarea = num.average(cargoarea)

normalizedwtarea = cargowts/avgwt + cargoarea/avgarea

#Prioritization of cargo... if smaller things are as important, it

321

#will be sent first, so weighted by area and weight of cargo item

cargovalue = [(nwa + 1)/p for nwa, p in zip(normalizedwtarea, Priority)]

f = num.array(num.concatenate((cargovalue, num.zeros(numships)), axis=1))

cargodesired = Schedule * self.compatibility

cargowts2 = num.concatenate((cargowts, num.zeros(numships)), axis=1)

cargoarea2 = num.concatenate((cargoarea, num.zeros(numships)), axis=1)

cargolocation = calcloc(self, pulllocation)

cargoloc2 = []

for m in range(numcargo):

cargoloc2.append(cargolocation)

cargoavail = Cargohave * num.transpose(cargoloc2)

cargoinput = num.concatenate((num.identity(numcargo), - num.transpose(cargoavail)),

axis=1)

selectvessel = num.concatenate((num.zeros(numcargo), num.ones(numships)))

a = num.concatenate(([cargowts2, cargoarea2, selectvessel], cargoinput))

b = num.concatenate(([self.lift, self.area,1], num.zeros(numcargo)), axis=0)

vlb = num.concatenate((num.zeros(numcargo), num.zeros(numships)), axis=0)

vub = num.concatenate((cargodesired, num.ones(numships)), axis=0)

totalnumvar = numcargo + numships

allvariables = num.zeros(totalnumvar)

for i in range(totalnumvar):

allvariables[i] = i + 1

xint = allvariables

322

e = num.concatenate(([-1,-1,0], -1*num.ones(numcargo)), axis=0)

[obj, x, duals] = lpsolve(f, a, b, e, vlb, vub, xint)

cargowant1=num.array(x)

cargowant=cargowant1[0:numcargo]

loadoutwt = num.sum(cargowts * cargowant)

loadoutarea = num.sum(cargoarea * cargowant)

if num.max(cargowant) == 0: #if no cargo is selected, set to infinate so the

connector does not move forward

cargowant = num.inf * num.ones(numcargo)

relativepriority = num.sum(cargovalue * cargowant)

return cargowant, loadoutarea, loadoutwt, relativepriority

def choosehops(self, pulllocation, Predictive):

”””Identify cargo to load and beaches to visit if multiple unloads (hopping) is

an option.

Creates and solves the linear programming problem:

-maximize the value of cargo carried, value = (normalizedweight + normal-

izedarea+1) / priority

While minimizing total trip time, normalized by shortest possible trip

-linear constraints are the lift and weight of each cargo item

-side contraints are lift and weight capacity of the connector object

-Assignment side constraints for limiting cargo selection to one cargo supply

point/ vessel

-Traveling salesman side constraints to determine beaches to visit

323

-Must start and stop at beach 0, a dummy placeholder

-No subtours

-max cargo based on demand at beaches selected

Returns:

-cargowant: an array with entries for each cargo item designating amount to

carry

-loadoutarea: a float for the total area of the cargo

-loadoutwt: a float for the total weight of the cargo

-relativepriority: a float for the total value of prioritized cargo

-beachorder: order of beaches to visit (numerical)

-beachnames: order of beaches to visit (names)

-totaltriptime: a float for the predicted total trip time

-travel, wait, load, travel, unload, travel if more than 1 beach...

”””

global Cargohave

global numships

#Calculate Demand matrix

cargolocation = calcloc(self, pulllocation)

cargodesired = num.zeros((numcargo))

numbeaches = 1 + len(beaches) #beach 0 is placeholder

traveltimecalc = num.zeros(numbeaches)

beachcount = 1

for beach in beaches:

if Predictive == True:

tempschedule, Priority = idpredictedschedule(self,beach)

324

self.cargowant = num.zeros(numcargo)

findtraveltime = Distances[pulllocation][beach]/ self.speed * 60

traveltimecalc[beachcount] = findtraveltime

beachcount +=1

else:

tempschedule, Priority = idschedule(self,beach)

cargodesired = num.vstack((cargodesired,tempschedule))

cargodesired = cargodesired * self.compatibility

#Identify push spot queue times

beachcostwait = num.zeros((len(beaches)+1, len(beaches)+1))

beachcostunload = num.zeros((len(beaches)+1, len(beaches)+1))

beachcosttravel = num.zeros((len(beaches)+1, len(beaches)+1))

beachnum = 0

cargoatlocation = calcloc(self, pulllocation)

for beach in beaches:

beachnum += 1

cargoatlocation = calcloc(self, beach)

pushcompatiblespots = checkallspots(self, cargoatlocation, ”push”)

loadingtimes = pushcompatiblespots * self.wait

queueingtimes = pushcompatiblespots * Predictedwaits

waits = loadingtimes + queueingtimes

waits[waits <= 0] = num.inf # zeros are replaced with infinity before at-

tempting to find the minimum waiting time

shortestrow, shortestcol = num.unravelindex(waits.argmin(), waits.shape)

325

pushloadingtime = waits[shortestrow, shortestcol]

pushwaittime = queueingtimes[shortestrow, shortestcol]

#store push data

globals()[’shortestcol’+beach] = shortestcol

globals()[’shortestrow’+beach] = shortestrow

globals()[’loadingtimes’+beach] = loadingtimes

#apply compatibility

Taken = num.zeros(numinterfaces)

Taken[shortestcol] = 1

Incspots = Incompatible * Taken

globals()[’incrow’+beach] = Incspots.sum(1)

beachnum1 = 0

for beach1 in beaches:

beachnum1 += 1

beachcostunload[:,beachnum] = pushloadingtime

beachcostwait[beachnum1,beachnum] = pushwaittime

beachcosttravel[beachnum1,beachnum] = Distances[beach][beach1]/ self.speed

* 60

beachcosttravel[0, beachnum1] = traveltimecalc[beachnum1]

beachcostcalc = num.maximum(beachcosttravel, beachcostwait) + beachcos-

tunload

Cargo = [i+1 for i in range(numcargo)]

cargovalue = num.zeros(numcargo)

326

avgwt = num.average(cargowts)

avgarea = num.average(cargoarea)

normalizedwtarea = cargowts/avgwt + cargoarea/avgarea

#Prioritization of cargo... if smaller things are as important, it

#will be sent first, so weighted by area and weight of cargo item

cargovalue = [1*(nwa + 1)/p for nwa, p in zip(normalizedwtarea, Priority)]

beachcosts2 = num.array([item for innerlist in beachcostcalc for item in in-

nerlist])

beachcosts2[beachcosts2 <= 0] = num.amax(beachcosts2) # zeros are replaced

with infinity before attempting to find the minimum waiting time

mincost = num.average(beachcosts2)

beachcosts = [-1*item/mincost for innerlist in beachcostcalc for item in in-

nerlist]

f = num.array(num.concatenate((cargovalue, num.zeros(numships), num.zeros(numbeaches),

beachcosts), axis=1))

cargowts2 = num.concatenate((cargowts, num.zeros(numships + (numbeaches*(numbeaches+1)))),

axis=1)

cargoarea2 = num.concatenate((cargoarea, num.zeros(numships+ (numbeaches*(numbeaches+1)))),

axis=1)

cargoloc2 = []

for m in range(numcargo):

cargoloc2.append(cargolocation)

327

cargoavail = Cargohave * num.transpose(cargoloc2)

cargoinput2 = num.concatenate((num.identity(numcargo), - num.transpose(cargoavail)),

axis=1)

cargoinput = num.concatenate((cargoinput2, num.zeros([numcargo, numbeaches*(numbeaches+1)])),

axis=1)

selectvessel2 = num.concatenate((num.zeros(numcargo), num.ones(numships)))

selectvessel = num.concatenate((selectvessel2,num.zeros(numbeaches + (num-

beaches*numbeaches))))

#set demand

demandinput4 = num.concatenate((num.identity(numcargo), num.zeros([numcargo,numships])),

axis=1)

demandinput3 = num.concatenate((-num.transpose(cargodesired), num.zeros([numcargo,numbeaches*numbeaches])),

axis=1)

demandinput = num.concatenate((demandinput4, demandinput3),axis=1)

#set route selection

beachidentity = num.identity(numbeaches)

beachmatrix=beachidentity

for n in range(numbeaches-1):

beachmatrix = num.concatenate((beachmatrix,beachidentity),axis=1)

beachmatrix = num.concatenate((num.zeros([numbeaches, numcargo + numships+

numbeaches]), beachmatrix), axis=1)

#must visit each beach at most once

beachmatrix1=num.zeros([numbeaches,numbeaches*numbeaches])

for m in range(numbeaches):

for p in range(numbeaches*numbeaches):

328

if (p-(m+1)*numbeaches)<=-1 and (p-(m)*numbeaches)>=0:

beachmatrix1[m,p] = 1

beachmatrix2 = num.concatenate((num.zeros([numbeaches, numcargo + numships+

numbeaches]), beachmatrix1), axis=1)

#Diagonal of nm,p must be 0

beachmatrix3 = num.zeros([numbeaches,numbeaches*numbeaches])

for m in range(numbeaches):

for p in range(numbeaches*numbeaches):

if (p-m*numbeaches)==m:

beachmatrix3[m,p] = 1

beachmatrix3 = num.concatenate((num.zeros([numbeaches, numcargo + numships+

numbeaches]), beachmatrix3), axis=1)

subtour1 = num.tri(numbeaches, numbeaches, k=0)

subtour4 = num.zeros((numbeaches, numbeaches))

for r in range(numbeaches):

for m in range(numbeaches):

if r != 0 and m == 0:

subtour4[r,m] = 1

subtour5 = subtour1 - subtour4 - num.identity(numbeaches)

subtour = num.array([item for innerlist in subtour5 for item in innerlist])

beachmatrix4 = num.zeros([((numbeaches - 2)*(numbeaches - 1))/2, num-

beaches*numbeaches])

for m in range((((numbeaches - 2)*(numbeaches - 1))/2)):

matrixform = num.zeros((numbeaches,numbeaches))

329

check = subtour

vector = num.zeros(num.shape(subtour))

for p in range(numbeaches*numbeaches):

if check[p] ==1:

vector[p] = 1

matrix1 = num.reshape(vector, (numbeaches,-1))

for r in range(numbeaches):

for q in range(numbeaches):

if matrix1[r,q] == 1:

matrixform[q,r]=1

matrixform = matrixform + matrix1

subtour[p] = 0

check = num.zeros(num.shape(subtour))

beachmatrix4[m:] = num.array([item for innerlist in matrixform for item

in innerlist])

beachmatrix4 = num.concatenate((num.zeros([((numbeaches - 2)*(numbeaches

- 1))/2, numcargo + numships+ numbeaches]), beachmatrix4), axis=1)

#set start and end at dummy beach (beach 0)

startmatrix = num.vstack((beachmatrix[0,],beachmatrix2[0,]))

#start and end must be from active beaches

beachmatrix5 = num.zeros((numbeaches - 1, numbeaches*numbeaches))

for r in range(numbeaches - 1):

matrixform = num.zeros((numbeaches,numbeaches))

for s in range(numbeaches):

matrixform[s,r+1] = -1

330

matrixform[r+1] = num.ones(numbeaches)

beachmatrix5[r] = num.array([item for innerlist in matrixform for item in

innerlist])

beachmatrix5 = num.concatenate((num.zeros([numbeaches - 1, numcargo +

numships+ numbeaches]), beachmatrix5), axis=1)

#choose locations to visit

chooselocation2 = num.concatenate((num.zeros([numbeaches, numcargo+ numships

]), beachidentity), axis =1)

chooselocation = num.concatenate((chooselocation2, -beachmatrix1), axis =

1)

cargoinfo = num.vstack((cargowts2, cargoarea2, selectvessel))

a = num.vstack((cargoinfo, cargoinput, demandinput, beachmatrix, beachma-

trix2, startmatrix, chooselocation, beachmatrix3, beachmatrix4, beachmatrix5))

cargooutput = [self.lift, self.area, 1]

b = num.concatenate((cargooutput, num.zeros(numcargo), num.zeros(numcargo),

num.ones(2*numbeaches+2), num.zeros(2*numbeaches), num.ones(((numbeaches - 2)*(num-

beaches - 1))/2), num.zeros(numbeaches-1)),axis=0)

totalnumvar = numcargo + numships + numbeaches + numbeaches * num-

beaches

vlb = num.zeros(totalnumvar)

vub = 10000000000*num.ones(totalnumvar)

allvariables = num.zeros(totalnumvar)

for i in range(totalnumvar):

331

allvariables[i] = i + 1

xint = allvariables

e = num.concatenate(([-1,-1,0], -1*num.ones(numcargo), -1*num.ones(numcargo),

-1*num.ones(2*numbeaches), num.zeros(2), num.zeros(2*numbeaches), -1*num.ones(((numbeaches

- 2)*(numbeaches - 1))/2), num.zeros(numbeaches-1)), axis=0)

[obj, x, duals] = lpsolve(f, a, b, e, vlb, vub, xint)

cargowant1=num.array(x)

cargowant=cargowant1[0:numcargo]

loaditem = cargowant1[numcargo:numcargo+numships]

beachtovisit = cargowant1[numcargo+numships:numcargo+numships+numbeaches]

beachorder = cargowant1[numcargo+numships+numbeaches:]

loadoutwt = num.sum(cargowts * cargowant)

loadoutarea = num.sum(cargoarea * cargowant)

totaltriptime = num.sum(beachcosts2 * beachorder)

beachorder = num.reshape(beachorder, (numbeaches,-1))

beachorder = num.argmax(beachorder, axis=1)

beachorder2 = num.zeros(num.size(beachorder))

beachnames = []

for i in range(numbeaches):

p = beachorder2[i-1]

if i >=1 and p == 0:

beachorder2[i] = 0

else:

beachorder2[i] = beachorder[p]

beaches2 = [’none’] + beaches

332

beachnames.append(beaches2[num.int(beachorder[p])])

while beachnames[-1] == ’none’:

beachnames.pop()

relativepriority = num.sum(cargovalue * cargowant)

if num.max(cargowant) == 0: #if no cargo is selected, set to infinate so the

connector does not move forward

cargowant = num.inf * num.ones(numcargo)

return cargowant, loadoutarea, loadoutwt, relativepriority, beachorder2, beach-

names, totaltriptime

def checkspotcargo(self, objectsatlocation):

”””Find which given cargo objects (at location) have desired cargo and an

available interface.

Returns an array with entries of one or zero for each object:

-one signifies a cargo object at the given location with desired cargo and an

available interface.

-zero signifies not a cargo object, not at the given location, or doesn’t have

desired cargo and an available interface.

”””

#Identify objects with cargo desired

if self.purpose == ”pull”:

cargotest = num.greaterequal(Cargohave, self.cargowant)

else:

cargotest = num.greaterequal(Cargowant, self.cargohave)

333

objectswithcargo = [num.prod(row) for row in cargotest]

#Identify spots at location with an available interace

compspots = num.array([self.spots for k in range(Source.assets)])

availablespots = num.minimum(Spots, compspots)

spotsatlocation = num.minimum(num.transpose(availablespots), objectsatlo-

cation)

spotswithcargo = num.transpose(num.minimum(spotsatlocation, objectswith-

cargo))

return spotswithcargo

def findspot(self, spotcargotest, j):

”””Find the spot at one of the given cargo objects with the shortest loading

time.

Returns:

-shortestrow: The cargo object with the best spot

-shortestcol: The interface of the best spot

-shortestwaittime: The wait time for this spot

-incdiff: An array with entries of zero or one for each interface.

-one signifies an incompatible interface

-zero signifies a compatible interface

”””

#Identify the spot with the shortest waittime

waits = spotcargotest*self.wait

334

waits[waits <= 0] = num.inf # zeros are replaced with infinity before attempt-

ing to find the minimum waiting time

shortestrow, shortestcol = num.unravelindex(waits.argmin(), waits.shape)

shortestwaittime = waits[shortestrow, shortestcol]

##Remove the spot being used and apply compatibility

Taken = num.zeros(numinterfaces)

Taken[shortestcol] = 1

Incspots = Incompatible * Taken

incrow = Incspots.sum(1)

removinginc = num.maximum(num.zeros(num.shape(incrow)), Spots[shortestrow]

- incrow)

removinginc2 = num.minimum(removinginc, Spots[shortestrow])

incdiff = Spots[shortestrow] - removinginc2

Spots[shortestrow] = removinginc

Spots[shortestrow, shortestcol] = -1

##Remove or add cargo to selected location

if self.purpose == ”pull”:

Cargohave[shortestrow] = Cargohave[shortestrow]-num.array(self.cargowant)

Cargowant[shortestrow] = Cargowant[shortestrow] + num.array(self.cargowant)

self.cargohave = self.cargowant

self.cargowant = num.zeros(numcargo)

replacematrix(self, j)

return shortestrow, shortestcol, shortestwaittime, incdiff

def getcargohave(self, location):

335

”””Identify the cargo items that are at that location:

Returns a 2D array with objects down the rows and cargo items across the

columns.

-Values signify an amound of a specific cargo item on an object

-A row of zeros signifies an object that is not at location or has no cargo

”””

cargoatlocation = calcloc(self, location)

locationcargohave = num.transpose([col * cargoatlocation for col in num.transpose(Cargohave)])

return locationcargohave

def replacematrix(self, j):

”””Track overall cargo delivered and update matrices, demand.”””

Goal[j] = self.goal

Location[j] = self.location

Cargohave[j] = self.cargohave

Cargowant[j] = self.cargowant

for beach in beaches:

vars()[beach+’cargohave’] = getcargohave(self, beach)

globals()[beach + ’CargoHave’] = num.sum(eval(beach+’cargohave’), 0)

if numPort > 0: #Update port demand schedule based on cargo delivered

and cargo in route

Testgoaltype = calcgoal(self, ”beachMEC”) + calcgoal(self, ”beachLCAC”)

+ calcgoal(self, ”beachLCACR”) + calcgoal(self, ”beachhelo”)

for p in range(numPort):

336

Testgoaltype = Testgoaltype + calcgoal(self, ”Port%02d”%(p,))

y, x = num.shape(Cargowant)

Testgoal2 = num.transpose([Testgoaltype for n in range(x)])

cargoonconnectors = Cargohave*Testgoal2

Testloctype = num.zeros(len(Names))

for p in range(numPort):

Testloctype = Testloctype + calcloc(self, ”Port%02d”%(p,))

y, x = num.shape(Cargowant)

Testloc2 = num.transpose([Testloctype for n in range(x)])

cargoatport = Cargohave*Testloc2

global Portcargowant

portcargowant = - cargoonconnectors - cargoatport

beachschedule = num.zeros(numcargo)

for beach in beaches:

beachschedule+= globals()[beach + ’schedule’]

Portcargowant = beachschedule + num.sum(portcargowant, 0)

Portcargowant2 = beachschedule - num.sum(cargoatport, 0)

for p in range(numPort):

Cargowant[Names.index(’Port%02d’%(p,))] = Portcargowant2

def replacematrixcargoship(self, j):

”””Update matrices when cargo ship properties change”””

Location[j] = self.location

Type[j] = self.type

337

class CargoGenerator(Process):

”””Cargo Generator

Creates the cargo demand schedule based on the inputted demand.

Initial demand is set immediately, but additional demand is not generated

until the set time after the first arrival of a connector on the beach.

”””

def init(self):

Process.init(self)

global CargoNeededOverall

Daynow = 0

for beach in beaches:

Cargowantedall = eval(beach + ’Needed’)

Cargowanted = Cargowantedall[Daynow]

Cargowanted[11] = Palletdemand

Cargowanted[24] = Petrodemand

globals()[beach + ’schedule’] = Cargowanted

CargoNeededOverall = num.sum(Cargowanted*cargowts)

def run(self):

”””The PEM for generating cargo.

Following the first arrival of a connector to the beach, additional demand

is generated every 24 hours for each day in the input file.

”””

global CargoNeededOverall

338

yield waituntil, self, self.firstarrival

Daynow = 0

yield hold, self, 24*60

while True:

Daynow += 1

if Daynow<(Days):

for beach in beaches:

Cargowantedall = eval(beach + ’Needed’)

Cargowanted = Cargowantedall[Daynow]

Cargowanted[11] = Palletdemand

Cargowanted[24] = Petrodemand

globals()[beach + ’schedule’] = globals()[beach + ’schedule’] +

Cargowanted

CargoNeededOverall += num.sum(Cargowanted*cargowts)

#reactivate(myruntest)

checkvessel.signal()

yield hold, self, 0

else:

for beach in beaches:

Cargowanted = num.zeros(numcargo)

Cargowanted[11] = Palletdemand

Cargowanted[24] = Petrodemand

globals()[beach + ’schedule’] = globals()[beach + ’schedule’] +

Cargowanted

CargoNeededOverall += num.sum(Cargowanted*cargowts)

339

#reactivate(myruntest)

checkvessel.signal()

yield hold, self, 0

yield hold, self, demandinterval #interval between demand periods

def firstarrival(self):

”””Triggers cargo demand based on the arrival of the first connector.”””

MEC.numunloaded = sum([mec.numunloaded for mec in MEC.roster])

LCAC.numunloaded = sum([lcac.numunloaded for lcac in LCAC.roster])

LCACR.numunloaded = sum([lcacr.numunloaded for lcacr in LCACR.roster])

CH46.numunloaded = sum([ch46.numunloaded for ch46 in CH46.roster])

CH53.numunloaded = sum([ch53.numunloaded for ch53 in CH53.roster])

arrivals = MEC.numunloaded + LCAC.numunloaded + LCACR.numunloaded

+ CH46.numunloaded + CH53.numunloaded

if arrivals >= 1:

return True

else:

return False

def checkallspots(self, objectsatlocation, purpose):

”””Find which given cargo objects (at location) have predicted cargo desired

and usable interface.

Returns an array with entries of one or zero for each object:

-one signifies a cargo object at the given location with cargo desired and usable

340

interface

-zero signifies not a cargo object, not at the given location, or doesn’t have

cargo desired and usable interface.

”””

global Predictedcargo, allSpots

Cargohavepredicted = Cargohave - Predictedcargo

#Identify objects with predicted cargo desired

if purpose == ”pull”:

cargotest = num.greaterequal(Cargohavepredicted, self.cargowant)

else:

””” At this point in the simulation, the connector is empty so self.cargohave

is zero.

self.cargowant is used as a prediction for the future cargo that the con-

nector will have. ”””

cargotest = num.greaterequal(Cargowant, self.cargowant)

objectswithcargo = [num.prod(row) for row in cargotest]

#Identify objects at location with a usable (not necessarily available) interace

usablespots = num.minimum(allSpots, self.spots)

spotsatlocation = num.minimum(num.transpose(usablespots), objectsatloca-

tion)

spotswithcargo = num.transpose(num.minimum(spotsatlocation, objectswith-

cargo))

return spotswithcargo

def choosegoal(self):

”””Select a pair of push-pull locations with the minimum travel, queueing, and

loading times.

341

A double nested for loop is used to cycle through every possible push-pull

pair.

1. Select push location.

2. Filter pull locations from all possible based on current location and push

location.

3. Select cargo to load based on push demand and cargo available at pull

point/ vessel

4. Select the push and pull spots with the shortest combined loading and

queueing time.

5. Store corresponding data: interface, cargo object, incompatibility vector,

loading times vector.

6. Add up queue, loading, and travel times. Record time and data if less than

minimum time.

7. Repeat steps 3-6 for all pull locations

8. Repeat steps 1-7 for all push locations

9. Record push and pull data in global predicted arrays (Wait, Cargo, Sched-

ule)

10. Record pull location and push location for connector object

Returns true if a pair was successfully found.

”””

global Predictedwaits

global Predictedcargo

global PredictedSBschedule

global PredictedPortcargowant

#global PredictedBeachschedule

342

besttime = num.inf

pushlocs = list(self.pushlocs)

currentloc = self.location

currentlocstripped = currentloc.strip(”0123456789”)

pushlocs2 = []

if self.hopping == 1:

pulllocs = [loc for loc in self.pulllocs if loc.strip(”0123456789”) not in [cur-

rentlocstripped]]

for pullloc in pulllocs:

#Identify pull spot with the shortest combined loading and queue time

cargoatlocation = calcloc(self, pullloc)

self.cargowant = num.zeros(numcargo)

pullcompatiblespots = checkallspots(self, cargoatlocation, ”pull”)

loadingtimes = pullcompatiblespots * self.wait

queueingtimes = pullcompatiblespots * Predictedwaits

waits = loadingtimes + queueingtimes

waits[waits <= 0] = num.inf # zeros are replaced with infinity before

attempting to find the minimum waiting time

shortestrow, shortestcol = num.unravelindex(waits.argmin(), waits.shape)

pullloadingtime = waits[shortestrow, shortestcol]

pullwaittime = queueingtimes[shortestrow, shortestcol]

#apply compatibility

Taken = num.zeros(numinterfaces)

Taken[shortestcol] = 1

Incspots = Incompatible*Taken

343

incrow = Incspots.sum(1)

#store pull data

pulldata = shortestcol, shortestrow, incrow, loadingtimes

cargodesired = num.zeros((numcargo))

for beach in beaches:

tempschedule, Priority = idpredictedschedule(self,beach)

cargodesired = num.vstack((cargodesired,tempschedule))

globals()[’cargowant’ + beach + self.name] = num.zeros(numcargo)

cargocheck = num.sum(num.sum(cargodesired)) + pullloadingtime +

pullwaittime

if cargocheck > 0 and cargocheck < num.inf: #Speed up by not running

LP if no cargo is demanded

self.cargowant, loadoutarea, loadoutwt, relativepriority, beachorder,

beachnames, totaltriptime = choosehops(self, pullloc, True)

Timetopullload = num.maximum(Distances[self.location][pullloc]/

self.speed * 60, pullwaittime) + pullloadingtime

Timetopullload = Timetopullload + Distances[pullloc][beachnames[0]]/

self.speed * 60

totaltriptime = totaltriptime + Timetopullload

else:

self.cargowant = num.inf * num.ones(numcargo)

loadoutarea, loadoutwt, relativepriority, beachorder, beachnames,

totaltriptime = 0, 0, 1, [], [], num.inf

weightedtotaltime = totaltriptime/ relativepriority

344

#compare to shortest recorded total time

if weightedtotaltime < besttime:

besttime = weightedtotaltime

bestpushloc = beachorder

bestpushnames = beachnames

bestpullloc = pullloc

pullcargowant = self.cargowant

pullinterface, pullcargoobject, pullinc, pullloadingtimes = pulldata

for beach in beaches:

globals()[’pushinterface’+beach], globals()[’pushcargoobject’+beach],

globals()[’pushinc’+beach], globals()[’pushloadingtimes’+beach] = globals()[’shortestcol’+beach],

globals()[’shortestrow’+beach], globals()[’incrow’+beach], globals()[’loadingtimes’+beach]

for pushtype in pushlocs:

if pushtype in beaches:

continue

else:

pushlocs2.append(pushtype)

else:

pushlocs2 = pushlocs

for pushloc in pushlocs2:

pushlocstripped = pushloc.strip(”0123456789”)

[schedule, priority] = idpredictedschedule(self, pushloc) #use a different

cargo schedule for each push location

#limit pull locations from being at current location or at push location

345

pulllocs = [loc for loc in self.pulllocs if loc.strip(”0123456789”) not in

[pushlocstripped, currentlocstripped]]

if pushlocstripped in [”ISB”, ”SB”]:

pulllocs = [loc for loc in self.pulllocs if loc.strip(”0123456789”) not in

[”Port”]]

for pullloc in pulllocs:

if self.name.startswith(”CH”):

self.nextpush = pushloc

[wait, loadoutarea, loadoutwt, self.cargowant, relativepriority] = He-

licopter.choosehelocargo(self, True)

else:

self.cargowant, loadoutarea, loadoutwt, relativepriority = choose-

cargo(self, schedule, priority, pullloc)

if self.range < Distances[pullloc][pushloc] or self.range <

Distances[self.location][pullloc]:

self.cargowant = num.inf*num.ones(numcargo)

#Identify push spot with the shortest combined loading and queue time

cargoatlocation = calcloc(self, pushloc)

pushcompatiblespots = checkallspots(self, cargoatlocation, ”push”)

loadingtimes = pushcompatiblespots * self.wait

queueingtimes = pushcompatiblespots * Predictedwaits

waits = loadingtimes + queueingtimes

waits[waits <= 0] = num.inf # zeros are replaced with infinity before

attempting to find the minimum waiting time

shortestrow, shortestcol = num.unravelindex(waits.argmin(), waits.shape)

346

pushloadingtime = waits[shortestrow, shortestcol]

pushwaittime = queueingtimes[shortestrow, shortestcol]

#apply compatibility

Taken = num.zeros(numinterfaces)

Taken[shortestcol] = 1

Incspots = Incompatible * Taken

incrow = Incspots.sum(1)

#store push data

pushdata = shortestcol, shortestrow, incrow, loadingtimes

#Identify pull spot with the shortest combined loading and queue time

cargoatlocation = calcloc(self, pullloc)

pullcompatiblespots = checkallspots(self, cargoatlocation, ”pull”)

loadingtimes = pullcompatiblespots * self.wait

queueingtimes = pullcompatiblespots * Predictedwaits

waits = loadingtimes + queueingtimes

waits[waits <= 0] = num.inf # zeros are replaced with infinity before

attempting to find the minimum waiting time

shortestrow, shortestcol = num.unravelindex(waits.argmin(), waits.shape)

pullloadingtime = waits[shortestrow, shortestcol]

pullwaittime = queueingtimes[shortestrow, shortestcol]

#apply compatibility

Taken = num.zeros(numinterfaces)

347

Taken[shortestcol] = 1

Incspots = Incompatible*Taken

incrow = Incspots.sum(1)

#store pull data

pulldata = shortestcol, shortestrow, incrow, loadingtimes

#calculate total time (travel + queue + loading)

pulldistance = Distances[currentloc][pullloc]

pushdistance = Distances[pullloc][pushloc]

timetopull = pulldistance/self.speed*60

timetopull += max(pullwaittime-timetopull, 0)

timetopush = timetopull + pullloadingtime + pushdistance/self.speed*60

timetopush += max(pushwaittime-timetopush, 0)

alttotaltime = timetopush + pushloadingtime

if(pushlocstripped == ”Port” and isinstance(self, MEC)):

alttotaltime = alttotaltime + 2*self.wait[portpierspot] #add penalty

for Port

weightedtotaltime = alttotaltime/ relativepriority

#compare to shortest recorded total time

if weightedtotaltime < besttime:

besttime = weightedtotaltime

bestpushloc = pushloc

bestpullloc = pullloc

pullcargowant = self.cargowant

pullinterface, pullcargoobject, pullinc, pullloadingtimes = pulldata

348

pushinterface, pushcargoobject, pushinc, pushloadingtimes = push-

data

if besttime == num.nan or besttime == num.inf: #no push-pull location

found

return False

#create new wait time array at pull location along with incompatibility con-

siderations

self.pullwaittime = num.zeros(Predictedwaits.shape)

self.pullwaittime[pullcargoobject, pullinterface] = pullloadingtimes[pullcargoobject,

pullinterface]

self.pullwaittime[pullcargoobject] += (pullinc*pullloadingtimes[pullcargoobject,

pullinterface])

#create new wait time array at push location along with incompatibility con-

siderations

self.pushwaittime = num.zeros(Predictedwaits.shape)

bestpushloc2 = num.array(bestpushloc)

if num.shape(bestpushloc2)!=():

for beach in bestpushnames:

self.pushwaittime[globals()[’pushcargoobject’+beach], globals()[’pushinterface’+beach]]

= globals()[’pushloadingtimes’+beach] [globals()[’pushcargoobject’+beach], globals()[’pushinterface’+beach]]

self.pushwaittime[globals()[’pushcargoobject’+beach]] +=

(globals()[’pushinc’+beach]*globals()[’pushloadingtimes’+beach] [globals()[’pushcargoobject’+beach],

globals()[’pushinterface’+beach]])

else:

self.pushwaittime[pushcargoobject, pushinterface] = pushloadingtimes[pushcargoobject,

349

pushinterface]

self.pushwaittime[pushcargoobject] += (pushinc*pushloadingtimes[pushcargoobject,

pushinterface])

#create predicted cargo use array and add to Predictedcargo

self.predictedcargo = num.zeros(Predictedcargo.shape)

self.predictedcargo[pullcargoobject] = pullcargowant

Predictedcargo = Predictedcargo + self.predictedcargo

#add to global array

Predictedwaits = Predictedwaits + self.pullwaittime + self.pushwaittime

#add predicted cargo to the predicted schedule where the connector is going

to push

if num.shape(bestpushloc2)!=():

cargowantcalc = pullcargowant

for beach in bestpushnames:

globals()[’cargowant’ + beach + self.name] = num.minimum(cargowantcalc,

globals()[beach + ’schedule’])

cargowantcalc = cargowantcalc - globals()[’cargowant’ + beach + self.name]

globals()[’Predicted’+ beach +’schedule’] += globals()[’cargowant’ +

beach + self.name]

bestpushloc = bestpushnames

self.nexthop = beachnames

else:

for beach in beaches:

350

if beach == bestpushloc:

globals()[’cargowant’ + beach + self.name] = pullcargowant

else:

globals()[’cargowant’ + beach + self.name] = num.zeros(numcargo)

locstripped = bestpushloc.strip(”0123456789”)

if(locstripped == ”SB”):

PredictedSBschedule += pullcargowant

elif(locstripped == ”Port”):

PredictedPortcargowant += pullcargowant

else:

globals()[’Predicted’+ bestpushloc +’schedule’] += pullcargowant

self.goal = bestpullloc

self.nextpush = bestpushloc

self.cargowant = pullcargowant

return True

def idschedule(self,location):

”””Identify which cargo schedule to use based on given location.”””

locstripped = location.strip(”0123456789”)

if(locstripped == ”SB”):

schedule = SBschedule

priority = SBcargopriority

elif(locstripped == ”Port”):

schedule = Portcargoneeds(self)

351

priority = Portcargopriority

else:

schedule = globals()[location + ’schedule’]

priority = Beachcargopriority

return [schedule, priority]

def idpredictedschedule(self,location):

”””Identify which predicted cargo schedule to use based on given location.”””

locstripped = location.strip(”0123456789”)

if(locstripped == ”SB”):

schedule = SBschedule - PredictedSBschedule

priority = SBcargopriority

elif(locstripped == ”Port”):

schedule = Portcargoneeds(self) - PredictedPortcargowant

priority = Portcargopriority

else:

schedule = globals()[location + ’schedule’] - globals()[’Predicted’ + loca-

tion +’schedule’]

priority = Beachcargopriority

schedule = [max(s, 0) for s in schedule]

return [schedule, priority]

def updateschedule(self):

”””Update cargo schedule based on push location.”””

global SBschedule

352

global Portcargowant

#global Beachschedule

locstripped = self.nextpush.strip(”0123456789”)

if(locstripped == ”SB”):

SBschedule = SBschedule - self.cargohave

elif(locstripped == ”Port”):

Portcargowant = Portcargowant - self.cargohave

else:

if self.hopping == 1:

for beach in beaches:

globals()[beach + ’schedule’] = globals()[beach + ’schedule’] - glob-

als()[’cargowant’ + beach + self.name]

else:

globals()[self.nextpush + ’schedule’] = globals()[self.nextpush + ’sched-

ule’] - self.cargohave

priority = Beachcargopriority

if self.goal.startswith(”SB”): #add demand to SB schedule if pulled from SB

SBschedule = SBschedule + self.cargohave

def lpsolve(f = None, a = None, b = None, e = None, vlb = None, vub = None,

xint = None, scalemode = None, keep = None):

”””LPSOLVE Solves mixed integer linear programming problems.

Open source PEM available at: http://lpsolve.sourceforge.net/5.5/Python.htm

SYNOPSIS: [obj, x, duals, stat] = lpsolve(f, a, b, e, vlb, vub, xint, scalemode,

keep)

solves the MILP problem

353

max v = f’*x

a*x <> b

vlb <= x <= vub

x(int) are integer

ARGUMENTS: The first four arguments are required:

f: n vector of coefficients for a linear objective function.

a: m by n matrix representing linear constraints.

b: m vector of right sides for the inequality constraints.

e: m vector that determines the sense of the inequalities:

e(i) = -1 ==> Less Than

e(i) = 0 ==> Equals

e(i) = 1 ==> Greater Than

vlb: n vector of lower bounds. If empty or omitted,

then the lower bounds are set to zero.

vub: n vector of upper bounds. May be omitted or empty.

xint: vector of integer variables. May be omitted or empty.

scalemode: scale flag. Off when 0 or omitted.

keep: Flag for keeping the lp problem after it’s been solved.

If omitted, the lp will be deleted when solved.

OUTPUT: A nonempty output is returned if a solution is found:

obj: Optimal value of the objective function.

x: Optimal value of the decision variables.

duals: solution of the dual problem.”””

if f == None:

help(lpsolve)

return

354

m = len(a)

n = len(a[0])

lp = lpsolve(’makelp’, m, n)

lpsolve(’setverbose’, lp, IMPORTANT)

lpsolve(’setmat’, lp, a)

lpsolve(’setrhvec’, lp, b)

lpsolve(’setobjfn’, lp, f)

lpsolve(’setmaxim’, lp) # default is solving minimum lp.

for i in range(m):

if e[i] < 0:

contype = LE

elif e[i] == 0:

contype = EQ

else:

contype = GE

lpsolve(’setconstrtype’, lp, i + 1, contype)

if vlb != None:

for i in range(n):

lpsolve(’setlowbo’, lp, i + 1, vlb[i])

if vub != None:

for i in range(n):

lpsolve(’setupbo’, lp, i + 1, vub[i])

355

if xint != None:

for i in range(len(xint)):

lpsolve(’setint’, lp, xint[i], 1)

if scalemode != None:

if scalemode != 0:

lpsolve(’setscaling’, lp, scalemode)

result = lpsolve(’solve’, lp)

if result == 0 or result == 1 or result == 11 or result == 12:

[obj, x, duals, ret] = lpsolve(’getsolution’, lp)

stat = result

else:

obj = []

x = []

duals = []

stat = result

if keep == None and keep != 0:

lpsolve(’deletelp’, lp)

return [obj, x, duals]

Model ———————————–

Source.assets = 0

MEC.loadwts = []

MEC.loadareas = []

356

LCAC.loadwts = []

LCAC.loadareas = []

LCACR.loadwts = []

LCACR.loadareas = []

MLP.SBqueue = 0

MLP.beachqueue = 0

MLP.travel = 0

MLP.fuel = 0

CH46.loadwts = []

CH46.loadareas = []

CH53.loadwts = []

CH53.loadareas = []

initialize()

waiting = []

#myruntest = RunTest(”my run test”)

#activate(myruntest, myruntest.run())

beachemptyLCAC = []

beachemptyLCACR = []

SBLCAC = []

SBLCACR = []

for beach in beaches:

globals()[beach+’emptyLCAC’] = Store(capacity = 1000, initialBuffered =

waiting)

beachemptyLCAC = beachemptyLCAC + [beach+’emptyLCAC’]

globals()[beach+’SBLCAC’] = Store(capacity = 1000, initialBuffered = wait-

ing)

357

SBLCAC = SBLCAC + [beach+’SBLCAC’]

globals()[beach+’emptyLCACR’] = Store(capacity = 1000, initialBuffered =

waiting)

beachemptyLCACR = beachemptyLCACR + [beach+’emptyLCACR’]

globals()[beach+’SBLCACR’] = Store(capacity = 1000, initialBuffered = wait-

ing)

SBLCACR = SBLCACR + [beach+’SBLCACR’]

ISBLCAC = Store(capacity = 1000, initialBuffered = waiting)

ISBLCACR = Store(capacity = 1000, initialBuffered = waiting)

ISBCH46 = Store(capacity = 1000, initialBuffered = waiting)

ISBCH53 = Store(capacity = 1000, initialBuffered = waiting)

ISBINLS = Store(capacity = 1000, initialBuffered = waiting)

ISBLCU1600 = Store(capacity = 1000, initialBuffered = waiting)

MLPload = Resource(capacity = 1, name = ”MLP”,unitName = ”Spot”)

s = Source()

activate(s, s.generate(number1 = NumMEC, number2 = NumMLP, number3 =

NumLMSR, number5 = NumLCAC, number7 = numJHSV, number8 = numISB,

number9 = NumLCACR, number12 = NumLHD, number13 = numMV22, num-

ber14 = numCH46, number15 = numCH53, number18 = numLCU2000, number19

= numLSV, number20 = numPort, number21 = numTAKE, number22 = numINLS,

number24 = NumLPD, number25 = NumLSD, number26 = NumLCU1600, MLPload-

control = MLPload),at = 0.0)

simulate(until = maxTime)

outputfile.close()

358

REFERENCES

[1] “Global security.” www.globalsecurity.org.

[2] “Interstate products, inc.” www.interstateproducts.com.

[3] “Military sealift command 2000 in review.”
www.msc.navy.mil/annualreport/2000/exercise.htm.

[4] “Simpy simulation package homepage.” simpy.sourceforge.net.

[5] “Joint pub 3-07 joint doctrine for military operations other than war.” Joint
Chiefs of Staff, June 16 1995.

[6] “Making peace while staying ready for war: The challenges of u.s. military par-
ticipation in peace operations.” Congressional Budget Office, December 1999.

[7] “Marine corps order 3120.9b, policy for marine expeditionary unit (special op-
erations capable (meu (soc)),” September 2001.

[8] “Navy test vessel may yield new warfare concepts,” Pentagon Brief, pp. 8–8,
Jan 15 2002.

[9] “Defense science board task force on seabasing.” Office of the Under Secretary
of Defense for Acquisition, Technology, and Logistics, Aug 2003.

[10] “Transformation planning guidance,” April 2003.

[11] “Civil-military relationship in complex emergencies - an iasc reference paper.”
Inter-Agency Standing Committee, June 2004.

[12] “The role of experimentation in building future naval forces.” Committee for
the Role of Experimentation in Building Future Naval Forces, 2004.

[13] “Joint publication 4-01.6: Joint logistics over-the-shore (jlots).” Joint Chiefs of
Staff, August 5 2005.

[14] “Onr baa announcement 05-020, sea base connector transformable-craft (t-
craft) prototype demonstrator.” Office of Naval Research, 2005.

[15] “Sea basing: Ensuring joint force access from the sea.” Committee on Sea
Basing: Ensuring Joint Force Access from the Sea, 2005.

[16] “Sea basing joint integrating concept, version 1.0.” Department of Defense,
August 2005.

359

[17] “Unified course 2005 seabasing analysis final report.” Navy Warfare Develop-
ment Command, 2006.

[18] “Seabasing of the range of military operations.” United States Marine Corps,
March 26 2009.

[19] “Defense acquisition guidebook.” dag.dau.mil, February 19 2010.

[20] “The first quadrennial diplomacy and development review: Leading through
civilian power.” U.S. Department of State, December 2010.

[21] “Military sealift command ships.,” Sea Power, vol. 53, no. 1, p. 42, 2010.

[22] “Military sealift command completes annual resupply mission to antarctica.”
Military Sealift Command Public Affairs, February 14 2011.

[23] Afonso, P. M. and da Conceição Cunha, M., “Robust optimal design of
activated sludge bioreactors,” Journal of Environmental Engineering, vol. 133,
no. 1, pp. 44–52, 2007.

[24] Agostini, H., “1st marine expeditionary brigade departs for dawn blitz,” tech.
rep., Federal Information & News Dispatch, Inc, Sep 28 2011.

[25] Annati, M., “Naval support for combat and supply.,” Military Technology,
vol. 33, no. 7, pp. 73 – 81, 2009.

[26] Anonymous, “Military sealift command,” Defense Transportation Journal,
vol. 55, no. 2, pp. 30–30–31, 1999.

[27] Anonymous, “Supplying the operating forces,” Newsletter - United
States.Navy Supply Corps, vol. 65, no. 5, pp. 2–2, 2002.

[28] Antony, J., Anand, R. B., Kumar, M., and Tiwari, M., “Multiple re-
sponse optimization using taguchi methodology and neuro-fuzzy based model,”
Journal of Manufacturing Technology Management, vol. 17, no. 7, pp. 908–925,
2006.

[29] Arellano-Garcia, H. and Wozny, G., “Chance constrained optimization
of process systems under uncertainty: I. strict monotonicity,” Computers and
Chemical Engineering, vol. 33, no. 10, pp. 1568 – 1583, 2009. Selected Papers
from the 18th European Symposium on Computer Aided Process Engineering
(ESCAPE-18).

[30] Armony, M., “Dynamic routing in large-scale service systems with heteroge-
neous servers,” Queueing Systems, vol. 51, no. 3-4, pp. 287–287–329, 2005.

[31] Arvidsson, M. and Gremyr, I., “Principles of robust design methodology.,”
Quality & Reliability Engineering International, vol. 24, no. 1, pp. 23 – 35, 2008.

360

[32] Auerbach, P. S., Norris, R. L., Menon, A. S., Brown, I. P., and et al.,
“Civil-military collaboration in the initial medical response to the earthquake
in haiti,” The New England Journal of Medicine, vol. 362, p. e32, Mar 11 2010.

[33] Badiru, A. B. and Ayeni, B. J., Practitioner’s Guide to Quality and Process
Improvement. Chapman and Hall, 1993.

[34] Bahouth, A., Crites, S., Matloff, N., and Williamson, T., “Revisiting
the issue of performance enhancement of discrete event simulation software,”
in Simulation Symposium, 2007. ANSS ’07. 40th Annual, pp. 114 –122, march
2007.

[35] Bastian, C. and Kan, A. H. G. R., “The stochastic vehicle routing problem
revisited,” European Journal of Operational Research, vol. 56, no. 3, pp. 407 –
412, 1992.

[36] Bates, R. A., Wynn, H. P., and Fraga, E. S., “Feasible region approxi-
mation: a comparison of search cone and convex hull methods.,” Engineering
Optimization, vol. 39, no. 5, pp. 513 – 527, 2007.

[37] Berkelaar, M., Eikland, K., and Notebaert, P., “lp solve reference
guide.” http://lpsolve.sourceforge.net/5.5/, April 2011.

[38] Bertsimas, D. and Chryssikou, T., “Bounds and policies for dynamic rout-
ing in loss networks,” Operations Research, vol. 47, no. 3, pp. pp. 379–394,
1999.

[39] Bertsimas, D. J., “A vehicle routing problem with stochastic demand.,” Op-
erations Research, vol. 40, no. 3, p. 574, 1992.

[40] Bessler, M. and Seki, K., “Civil-military relations in armed conflicts: A
humanitarian perspective,” Liaison, vol. III, no. 3, pp. 4–10, 2006.

[41] Bingham, D., Sitter, R. R., and Tang, B., “Orthogonal and nearly or-
thogonal designs for computer experiments.,” Biometrika, vol. 96, no. 1, p. 51,
2009.

[42] Boensel, M. and Schrady, D., “Jelo: A model of joint expeditionary logis-
tics operations.” Naval Postgraduate School, October 2004.

[43] Bonabeau, E., “Agent-based modeling: Methods and techniques for simu-
lating human systems,” in Proceedings of the National Academy of Sciences,
vol. 99 (suppl. 3), 2002.

[44] Borshchev, A. and Filippov, A., “From system dynamics and discrete event
to practical agent based modeling: Reasons, techniques, tools,” in The 22nd
International Conference of the System Dynamics Society, July 25-29 2004.

361

[45] Bradfield, R., Wright, G., Burt, G., Cairns, G., and Heijden, K.
V. D., “The origins and evolution of scenario techniques in long range business
planning,” Futures, vol. 37, no. 8, pp. 795 – 812, 2005.

[46] Bradley, S. P., Hax, A. C., and Magnanti, T. L., Applied Mathematical
Programming. Addison-Wesley, 1977.

[47] Buckingham, R. H., “Navy mh-53es can support the marines,” United States
Naval Institute.Proceedings, vol. 128, no. 7, pp. 76–76–77, 2002.

[48] Buckingham, R. H., “Navy mh-53s can support the marines,” Marine Corps
Gazette, vol. 87, no. 3, pp. 29–29–30, 2003.

[49] Buckwalter, B., “1st marine expeditionary brigade exercises rapid response
capability,” tech. rep., Federal Information & News Dispatch, Inc, Jul 22 2011.

[50] Buckwalter, B., “What is a marine expeditionary brigade?,” tech. rep., Fed-
eral Information & News Dispatch, Inc, Jul 25 2011.

[51] Button, R., Blickstein, I., Gordon, J., Wilson, P., and Riposo, J., A
Preliminary Investigation of Ship Acquisition Options for Joint Forcible Entry
Operations. RAND Corporation, 2005.

[52] Button, R. W., IV, J. G., Riposo, J., Blickstein, I., and Wilson,
P. A., “Warfighting and logistic support of joint forces from the joint sea base.”
RAND, 2007.

[53] Calvin, J. M. and Leung, J. Y. T., “Average-case analysis of a greedy
algorithm for the 0/1 knapsack problem,” Operations Research Letters, vol. 31,
no. 3, pp. 202 – 210, 2003.

[54] Capkovic, F., “A solution of deds control synthesis problems.,” Systems Anal-
ysis Modelling Simulation, vol. 42, no. 3, pp. 405 – 414, 2002.

[55] Carroll, S. J. and Isaacson, K., “The potential effects of alternative con-
cepts for managing the distribution of resupply cargo.” RAND, 1992.

[56] Cason, R. K., Analysis of the Vertical Rakeoff and Landing Unmanned Aerial
Vehicle (VTUAV) in Small UNit Urban Operations. PhD thesis, Naval Post-
graduate School, September 2004.

[57] Castillo, V., “Parallel simulations of manufacturing processing using simpy,
a python-based discrete event simulation tool,” in Simulation Conference, 2006.
WSC 06. Proceedings of the Winter, p. 2294, dec. 2006.

[58] CDM Technologies, I., “T-craft for humanitarian aid assessment effort an-
notated brief.” July 21 2010.

[59] Chandra, C. and Grabis, J., Supply Chain Configuration: Concepts, Solu-
tions, and Applications. Springer, 2007.

362

[60] Chen, L.-H. and Chen, Y.-H., “A computer-simulation-oriented design pro-
cedure for a robust and feasible job shop manufacturing system,” Journal of
Manufacturing Systems, vol. 14, no. 1, pp. 1–1, 1995.

[61] Chen, W., Allen, J. K., Tsui, K.-L., and Mistree, F., “A procedure
for robust design: Minimizing variations caused by noise factors and control
factors,” Journal of Mechanical Design, vol. 118, no. 4, pp. 478–485, 1996.

[62] Chen, W., Jin, R., and Sudjianto, A., “Analytical global sensitivity anal-
ysis and uncertainty propagation for robust design,” Journal of Quality Tech-
nology, vol. 38, no. 4, pp. 333–348, 2006.

[63] Cioppa, T. M. and Lucas, T. W., “Efficient nearly orthogonal and space-
filling latin hypercubes,” Technometrics, vol. 49, no. 1, pp. 45–55, 2007.

[64] Clark, A. V., “Seapower 21: Projecting decisive joint capabilities,” in Pro-
ceedings of the U.S. Naval Institute, October 2002.

[65] Cooper, K., “Seabasing enabler inp program.” Naval S&T Partnership Con-
ference, 2006.

[66] Dano, S., Nonlinear and Dynamic Programming. Spring-Verlag, 1975.

[67] Dantzig, G. B. and Ramser, J. H., “The truck dispatching problem,” Man-
agement Science, vol. 6, no. 1, pp. 80–91, 1959.

[68] Di Paola, D., Naso, D., Turchiano, B., Cicirelli, G., and Distante,
A., “Matrix-based discrete event control for surveillance mobile robotics,” Jour-
nal of Intelligent and Robotic Systems, vol. 56, pp. 513–541, 2009.

[69] Dror, M., “Modeling vehicle routing with uncertain demands as a stochas-
tic program: Properties of the corresponding solution,” European Journal of
Operational Research, vol. 64, no. 3, pp. 432 – 441, 1993.

[70] Dror, M., Laporte, G., and Trudeau, P., “Vehicle routing with stochastic
demands: Properties and solution frameworks,” Transportation Science, vol. 23,
no. 3, pp. 166–176, 1989.

[71] Du, L., Wu, J., and Hu, F., “Logistics network design and optimization
of closed-loop supply chain based on mixed integer nonlinear programming
model,” in ISECS International Colloquium on Computing, Communication,
Control, and Management, 2009.

[72] Elsayed, K. and Elokda, A., “Augmented integrated routing scheme for
routing bandwidth-guaranteed connections in internet protocol/multi-protocol
label switching over wavelength division multiplexing networks,” Communica-
tions, IET, vol. 5, pp. 1351 –1360, 1 2011.

363

[73] Erwin, S. I., “Weighed down by heavy hardware, marine go on a diet.,” Na-
tional Defense, vol. 95, no. 686, pp. 24 – 25, 2011.

[74] Feillet, D., Dejax, P., and Gendreau, M., “Traveling salesman problems
with profits.,” Transportation Science, vol. 39, no. 2, pp. 188 – 205, 2005.

[75] Feist, T., “Transformation has limits,” United States Naval Institute Proceed-
ings, vol. 131, no. 4, pp. 65–65–69, 2005.

[76] Fisher, C., “West coast marine expeditionary brigade reestablished,” Leath-
erneck, vol. 83, no. 2, pp. 42–42–43, 2000.

[77] Fishman, G. S., Discrete-Event Simulation: Modeling, Programming, and
Analysis. Springer, 2001.

[78] Frankis, D., Corrigan, N., and Bailey, R., “Modelling military require-
ments for non-warfighting operations,” in Simulation Conference Proceedings,
1999 Winter, vol. 2, pp. 1125 –1130 vol.2, 1999.

[79] Fratarangelo, P., Gale, P., Hancock, W., Katz, D., Kohn, E., Neal,
W., Ness, R., Polmar, N., Tozzi, J. T., Webber, G., Weldon, W. F.,
and Winston, P., “Sea basing,” 2005.

[80] Fulghum, D. A., “Pentagon again requests civil helos for resupply,” Aviation
Week & Space Technology, vol. 145, pp. 25–25, Oct 28 1996.

[81] Galloway, C. C., “Seabasing: A transcom perspective,” October 2005.

[82] Gao, J., “Optimization of distribution routing problem based on travel time
reliability,” in Information Management, Innovation Management and Indus-
trial Engineering, 2009 International Conference on, vol. 1, pp. 19 –22, dec.
2009.

[83] Gawiejnowicz, S., Time-Dependent Scheduling. Springer-Verlag Berlin Hei-
delberg, 2008.

[84] Gendreau, M., Laporte, G., and Semet, F., “A branch-and-cut algorithm
for the undirected selective traveling salesman problem,” Networks, vol. 32,
p. 263273, 1998.

[85] Gibbs, M., “Python wrap-up,” Network World, vol. 20, pp. 34–34, Jun 16
2003.

[86] Giordano, V., Ballal, P., Lewis, F., Turchiano, B., and Zhang, J. B.,
“Supervisory control of mobile sensor networks: math formulation, simulation,
and implementation,” Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, vol. 36, pp. 806 –819, Aug 2006.

364

[87] Giordano, V., Zhang, J., Naso, D., Wong, M., Lewis, F., and Car-
botti, A., “Matrix-based discrete event control of automated material han-
dling systems,” in Decision and Control, 2006 45th IEEE Conference on,
pp. 6074 –6079, December 2006.

[88] Giordano, V., Zhang, J. B., Naso, D., and Lewis, F., “Integrated super-
visory and operational control of a warehouse with a matrix-based approach,”
Automation Science and Engineering, IEEE Transactions on, vol. 5, pp. 53 –70,
January 2008.

[89] Giua, A., Petri Nets as Discrete Event Models for Supervisory Control. PhD
thesis, Rensselaer Polytechnic Institute, July 1992.

[90] Graybeal, W. J. and Pooch, U. W., Simulation: Principles and Methods.
Winthrop Publishers, Inc., 1980.

[91] Hagan, R. M., “Modeling sea-based containment of marine expeditionary
unit (special operations capable) (meu(soc)) operations ashore,” Master’s the-
sis, Naval Postgraduate School, September 1998.

[92] Hamid, U., “Petri net versus queuing theory for evaluation of flexible manufac-
turing systems,” Advances in Production Engineering and Management, vol. 5,
no. 2, pp. 93–100, 2010.

[93] Hammond, A., “3 global scenarios: Choosing the world we want,” The Futur-
ist, vol. 33, no. 4, pp. 38–38–43, 1999.

[94] Henderson, K. T., “Army special operations forces and marine expeditionary
unit (special operations capable) integration: Something a joint task force com-
mander should consider.” School of Advanced Military Studies United States
Army Command and General Staff College, May 2004.

[95] House, T. W., “National security strategy,” May 2010.

[96] Joint Publication 1-02, DOD Dictionary of Military and Associated Terms, 08
November 2010.

[97] Kaku, B. K., Assad, A. A., and Wang, C., Models for Tool Management
in Flexible Manufacturing Systems, ch. 19, pp. 393–358. Quorum Books, 1998.

[98] Karabuk, S. and Grant, F. H., “A common medium for programming
operations-research models,” IEEE Software, vol. Sept/Oct 2007, pp. 39–47,
2007.

[99] Keeter, H., “Marines to revive expeditionary brigade,” Defense Daily,
vol. 204, pp. 1–1, Nov 02 1999.

[100] Khoshnevis, B., Discrete Systems Simulation. McGraw-Hill, Inc., 1994.

365

[101] Kime, P., “The army’s navy,” Sea Power, vol. 50, no. 4, pp. 33–33–34,36, 2007.

[102] Kleijnen, J. P. C., Sanchez, S. M., Lucas, T. W., and Cioppa, T. M.,
“A users guide to the brave new world of designing simulation experiments,”
INFORMS Journal on Computing, vol. 17, no. 3, pp. 263–289, 2005.

[103] Klemmt, A., Horn, S., Weigert, G., and Wolter, K.-J., “Simulation-
based optimization vs mathematical programming: A hybrid approach for op-
timizing scheduling problems,” Robotics and Computer-Integrated Manufactur-
ing, vol. 25, pp. 917–925, 2009.

[104] Koullias, S., Balestrini-Robinson, S., and Mavris, D., “Surface effect
ship sizing and synthesis: A nonlinear programming approach,” in 11th In-
ternational Conference on Fast Sea Transportation, (Honolulu, Hawaii), Sept
2011.

[105] Krulak, C., “Within striking distance & ready to act.,” U.S. Naval Institute
Proceedings, vol. 125, no. 5, p. 50, 1999.

[106] Laporte, G., “Fifty years of vehicle routing,” Transportation Science, vol. 43,
pp. 408–416, November 2009.

[107] Laporte, G., Louveaux, F. V., and Hamme, L. V., “An integer l-shaped
algorithm for the capacitated vehicle routing problem with stochastic demands,”
Operations Research, vol. 50, pp. 415–423, May/June 2002.

[108] Laporte, G., Louveaux, F., and Mercure, H., “Models and exact solu-
tions for a class of stochastic location-routing problems,” European Journal of
Operational Research, vol. 39, no. 1, pp. 71 – 78, 1989.

[109] Larsen, A., The Dynamic Vehicle Routing Problem. PhD thesis, Technical
University of Denmark, June 2000.

[110] Lasica, K. A., “31st meu earning special operations capability,” Leatherneck,
vol. 82, no. 10, pp. 26–26–27+, 1999.

[111] Lenderink, E. and Stehouwer, P., “Optimization, sensitivity analysis, and
robust design using response surface modeling,” in Proc. of SPIE Vol. 7103,
2008.

[112] Lewis, F., Bogdan, S., Gurel, A., and Pastravanu, O., “Analysis of
deadlocks and circular waits using a matrix model for discrete event systems,”
in Decision and Control, 1997., Proceedings of the 36th IEEE Conference on,
vol. 4, pp. 4080 –4085 vol.4, Dec. 1997.

[113] Li, P., Arellano-Garcia, H., and Wozny, G., “Chance constrained pro-
gramming approach to process optimization under uncertainty,” Computers and
Chemical Engineering, vol. 32, no. 1-2, pp. 25 – 45, 2008.

366

[114] Li, Y. and Wonham, W., “Control of vector discrete-event systems. i. the base
model,” Automatic Control, IEEE Transactions on, vol. 38, pp. 1214 –1227, aug
1993.

[115] Liao, T.-Y. and Hu, T.-Y., “An object-oriented evaluation framework for
dynamic vehicle routing problems under real-time information,” Expert Systems
with Applications, vol. 38, no. 10, pp. 12548 – 12558, 2011.

[116] Lin, C. D., Mukerjee, R., and Tang, B., “Construction of orthogonal and
nearly orthogonal latin hypercubes.,” Biometrika, vol. 96, no. 1, p. 243, 2009.

[117] Lin, W. and Kumar, P., “Optimal control of a queueing system with two het-
erogeneous servers,” Automatic Control, IEEE Transactions on, vol. 29, pp. 696
– 703, aug 1984.

[118] Linderman, K. and Choo, A. S., “Robust economic control chart design,”
IIE Transactions, vol. 34, pp. 1069–1078, 2002.

[119] Linderoth, J. T. and Ralphs, T. K., Integer Programming: Theory and
Practice, ch. Noncommercial Software for Mixed-Integer Linear Programming,
pp. 253–303. Taylor & Francis, 2006.

[120] Luh, H. P. and Viniotis, I., “Threshold control policies for heteroge-
neous server systems,” Mathematical Methods of Operations Research, vol. 55,
pp. 121–142, 2002.

[121] MacCarley, MarkColeman, B. F., “The 8th theater sustainment com-
mand leads the way during operation pacific strike 2008.,” Army Logistician,
vol. 41, no. 2, p. 24, 2009.

[122] Mak, T., Cheung, P., Lam, K.-P., and Luk, W., “Adaptive routing in
network-on-chips using a dynamic-programming network,” Industrial Electron-
ics, IEEE Transactions on, vol. 58, pp. 3701 –3716, Aug 2011.

[123] Mak, V. and Thomadsen, T., “Facets for the cardinality constrained
quadratic knapsack problem and the quadratic selective travelling salesman
problem,” tech. rep., Informatics and Mathematical Modelling, Technical Uni-
versity of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800
Kgs. Lyngby, nov 2004.

[124] Matloff, N., “Introduction to discrete-event simulation and the simpy lan-
guage,” Feb 2008.

[125] Maxwell, D. T., “An overview of the joint warfare system (jwars),” Phalanx,
July 2000.

[126] McCarthy, J., ed., Seabasing Logistics Enabling Concept. 2000 Navy Pen-
tagon, Washington, DC 20350-2000: Department of the Navy, December 2006.

367

[127] McLeroy, C., “History of military gaming,” Soldiers, vol. 63, no. 9, pp. 4–4–6,
2008.

[128] Mireles, J., J. and Lewis, F., “Intelligent material handling: development
and implementation of a matrix-based discrete-event controller,” Industrial
Electronics, IEEE Transactions on, vol. 48, pp. 1087 –1097, Dec. 2001.

[129] Montgomery, D. C., “Experimental design for product and process de-
sign and development,” Journal of the Royal Statistical Society. Series D (The
Statistician), vol. 48, no. 2, pp. pp. 159–177, 1999.

[130] Morgan, E. A., “Analysis of high-speed vessels for seventh fleet logistics
support,” Master’s thesis, Naval Postgrtaduate School, 2005.

[131] Motor Transport (PMM 151),, Quantico, VA, Principal Technical Character-
istics Of U.S. Marine Corps Motor Transport Equipment, tm 11240-od ed.,
August 2007.

[132] Müller, K. G., “Advanced systems simulation capabilities in simpy.”

[133] Mulvey, S. M. and Vanderbei, R. J., “Robust optimization of large-scale
systems.,” Operations Research, vol. 43, no. 2, p. 264, 1995.

[134] Murty, K. G., “Optimization models for decision making: Volume 1.” Uni-
versity of Michigan, Ann Arbor, 2003.

[135] Narciso, M., Piera, M. A., and Guasch, A., “A methodology for solving
logistic optimization problems through simulation,” SIMULATION, vol. 86,
no. 5-6, pp. 369–389, May/June 2010.

[136] Nauss, R. M., “The elastic generalized assignment problem,” The Journal of
the Operational Research Society, vol. 55, no. 12, pp. pp. 1333–1341, 2004.

[137] Nauss, R. M., Integer Programming: Theory and Practice, ch. The General-
ized Assignment Problem, pp. 39–55. Taylor & Francis, 2006.

[138] Novoa, C. and Storer, R., “An approximate dynamic programming ap-
proach for the vehicle routing problem with stochastic demands,” European
Journal of Operational Research, vol. 196, no. 2, pp. 509 – 515, 2009.

[139] Office of the Deputy Under Secretary of Defense for Acquisition and Technology,
Systems and Software Engineering, Systems Engineering Guide for Systems of
Systems Version 1.0, washington, dc ed., August 2008.

[140] O’Rourke, R., “Navy lpd-17 amphibious ship procurement: Background, is-
sues, and options for congress.” Congressional Research Service, March 16 2011.

368

[141] Osmundson, J. S., Gottfried, R., Kum, C. Y., Boon, L. H., Lian,
L. W., Patrick, P. S. W., and Thye, T. C., “Process modeling: A systems
engineering tool for analyzing complex systems,” Systems Engineering, vol. 7,
June 2004.

[142] Padberg, M. and Rinaldi, G., “A branch-and-cut approach to a traveling
salesman problem with side constraints,” Management Science, vol. 35, no. 11,
pp. pp. 1393–1412, 1989.

[143] Parson, D., TLoaDS gen5 Reference Manual. Simulation Dynamics, Inc.,
2001.

[144] Parsons, D. and Krause, L., “Tactical logistics and distribution system
(tloads) simulation,” in Simulation Conference Proceedings, vol. 2, pp. 1174–
1178, Dec 1999.

[145] Pavone, M., Frazzoli, E., and Bullo, F., “Adaptive and distributed algo-
rithms for vehicle routing in a stochastic and dynamic environment,” Automatic
Control, IEEE Transactions on, vol. 56, pp. 1259 –1274, june 2011.

[146] Phadke, M. S., Quality Engineering Using Robust Design. Prentice Hall,
1989.

[147] Pooch, U. W. and Wall, J. A., Discrete Event Simulation: A Practical
Approach. CRC Press, 1993.

[148] Potvin, J.-Y., “Evolutionary algorithms for vehicle routing,” Journal on
Computing, vol. 21, pp. 518–548, Fall 2009.

[149] Psaraftis, H., Vehicle Routing: Methods and Studies, ch. Dynamic Vehicle
Routing Problems, pp. 223–248. Elsevier Science Publishers B.V., 1988.

[150] Psaraftis, H., Orlin, J., Bienstock, D., and Thompson, P., “Analy-
sis and solution algorithms of sealift routing and scheduleing problems: Final
report,” tech. rep., Sloan School of Management, M.I.T., August 1985.

[151] Psaraftis, H. N., “Dynamic vehicle routing: Status and prospects.,” Annals
of Operations Research, vol. 61, no. 1-4, pp. 143 – 164, 1995.

[152] Rappoport, H. K., Levy, L. S., Golden, B. L., and Toussaint, K. J.,
“A planning heuristic for military airlift,” Interfaces, vol. 22, no. 3, pp. pp.
73–87, 1992.

[153] Ren, F., He, T., Das, S. K., and Lin, C., “Traffic-aware dynamic routing
to alleviate congestion in wireless sensor networks,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 22, pp. 1585 –1599, sept. 2011.

[154] Roorda, M. J., Cavalcante, R., McCabe, S., and Kwan, H., “A concep-
tual framework for agent-based modelling of logistics services,” Transportation
Research Part E, vol. 46, pp. 18–31, 2010.

369

[155] Rounsevell, M. D. A. and Metzger, M. J., “Developing qualitative sce-
nario storylines for environmental change assessment,” Wiley Interdisciplinary
Reviews: Climate Change, vol. 1, no. 4, pp. 606–619, 2010.

[156] Rudderham, M. A., “Canada and united nations peace operations,” Inter-
national Journal, vol. 63, no. 2, pp. 359–359–384, 2008.

[157] Rykov, V., “Monotone control of queueing systems with heterogeneous
servers,” Queueing Systems, vol. 37, pp. 391–403, 2001.

[158] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., “Design
and analysis of computer experiments,” Statistical Science, vol. 4, no. 4, pp. pp.
409–423, 1989.

[159] Sanchez, S. M., “Nolhdesigns spreadsheet version 4.”
http://diana.cs.nps.navy.mil/SeedLab/, 2005. accessed 12/21/2011.

[160] Sanchez, S. M., “A robust design tutorial,” in Proceedings of the 1994 Winter
Simulation Conference (Tew, J. D., Manivannan, S., Sadowski, D. A.,
and Seila, A. F., eds.), 1994.

[161] Sanchez, S. M., “Design of experiments: robust design: seeking the best of
all possible worlds,” in WSC ’00: Proceedings of the 32nd conference on Winter
simulation, (San Diego, CA, USA), pp. 69–76, Society for Computer Simulation
International, 2000.

[162] Sanchez, S. M., Sanchez, P. J., Ramberg, J. S., and Moeeni, F., “Ef-
fective engineering design through simulation,” International Transactions on
Operational Research, vol. 3, pp. 169–185, 1996.

[163] Sarkar, S., Yen, H.-H., Dixit, S., and Mukherjee, B., “A novel delay-
aware routing algorithm (dara) for a hybrid wireless-optical broadband access
network (woban),” Network, IEEE, vol. 22, pp. 20 –28, may-june 2008.

[164] Sarri, P., Ait Hssain, A., and Niel, E., “Control of vector discrete-event
systems in the context of operational safety,” in Emerging Technologies and Fac-
tory Automation Proceedings, 1997. ETFA ’97., 1997 6th International Confer-
ence on, pp. 263 –268, sep 1997.

[165] Scheibe, S., “Assessment of the operational requirements for the trans-
dormable craft in seabasing mission,” Master’s thesis, Naval Postgraduate
School, June 2010.

[166] Schlegel, M., Brosig, G., Eckert, A., Engelke, K., Jung, M., Polt,
A., Sonnenschein, M., and Vogt, C., “Integration of discrete-event sim-
ulation and optimization for the design of value networks,” in 16th European
Symposium on Computer Aided Process Engineering (Marquardt, W. and
Pantelides, C., eds.), pp. 1955–1960, 2006.

370

[167] Schoemaker, P. J. H., “Multiple scenario development: Its conceptual and
behavioral foundation,” Strategic Management Journal, vol. 14, no. 3, pp. pp.
193–213, 1993.

[168] Secomandi, N., “A rollout policy for the vehicle routing problem with stochas-
tic demands,” Operations Research, vol. 49, pp. 796–802, September/October
2001.

[169] Sierksma, G., Linear and Integer Programming: Theory and Practice. Marcel
Dekker, Inc, 1996.

[170] Stadtler, H., Supply Chain Management - An Overview, ch. 1, pp. 7–28.
Springer, 2000.

[171] Stolyar, A. L., “Optimal routing in output-queued flexible server systems,”
Probability in the Engineering and Informational Sciences, vol. 19, no. 2,
pp. 141–189, 2005.

[172] Strock, J., “Seabasing: A joint force enabler in area-denial and anti-access
environments.” Presentation.

[173] Sullivan, S. M., “Forward presence: Meu(soc)s in action today and tomor-
row,” Marine Corps Gazette, vol. 79, no. 8, pp. 38–38–39, 1995.

[174] Swisher, J. R., Hyden, P. D., Jacobson, S. H., and Schruben, L. W.,
“A survey of recent advanced in discrete input parameter discrete-event simu-
lation optimization,” IIE Transactions, vol. 26, pp. 591–600, 2004.

[175] Tacconi, D. and Lewis, F., “A new matrix model for discrete event systems:
application to simulation,” Control Systems Magazine, IEEE, vol. 17, pp. 62
–71, Oct. 1997.

[176] Taguchi, G., Chowdhury, S., and Taguchi, S., Robust Engineering.
McGraw-Hill, Inc., 2000.

[177] Tang, L. and Wang, X., “An iterated local search heuristic for the capacitated
prize-collecting travelling salesman problem,” The Journal of the Operational
Research Society, vol. 59, no. 5, pp. 590–599, 2008.

[178] Teypaz, N., Schrenk, S., and Cung, V.-D., “A decomposition scheme
for large-scale service network design with asset management,” Transportation
Research Part E, vol. 46, pp. 156–170, 2010.

[179] Thal, A. E. and Heuck, W. D., “Military technology development: a future-
based approach using scenarios,” Foresight : the Journal of Futures Studies,
Strategic Thinking and Policy, vol. 12, no. 2, pp. 49–49–65, 2010.

[180] Till, G., “Naval transformation, ground forces, and the expeditionary impulse:
The sea-basing debate.” Strategic Studies Institute, U.S. Army War College,
December 2006.

371

[181] Tiron, R., “Striking a balance.,” Sea Power, vol. 51, no. 9, p. 22, 2008.

[182] Tripp, R. S., Amouzegar, M. A., McGarvey, R. G., Bereit, R.,
George, D., and Cornuet, J., “Sense and respond logistics integrating pre-
diction, responsiveness, and control capabilities.” RAND, 2006.

[183] Truver, S., “’sea power 21’ ... for the common good,” NATO’s Nations and
Partners for Peace, no. 1, pp. 118–118–124, 2004.

[184] Tsiakis, P., Shah, N., and Pantelides, C. C., “Design of multi-echelon
supply chain networks under demand uncertainty,” Indistrial and Engineering
Chemisty Research, vol. 40, pp. 3585–3604, 2001.

[185] Turk, T., “System dynamics simulation of computer networks: Price-
controlled qos framework,” Mathematics and Computers in Simulation, vol. 78,
no. 1, pp. 27 – 39, 2008.

[186] Tyler, J. T., “Reality check: The trouble with scenario-based military plan-
ning,” The Brookings review, vol. 12, no. 4, pp. 30–30, 1994.

[187] Udeanu, G., “Tactical scenarios – means of objectifying the battle field real-
ity.,” Buletin Stiintific, vol. 15, no. 1, pp. 64 – 82, 2011.

[188] United States Marine Corps, Washington, DC, Amphibious Ships and Landing
Craft Data Book, August 2001. MCRP 3-31B.

[189] Urwin, E. N., Gunton, D. J., Atkinson, S. R., Daw, A. J., and deC
Henshaw, M. J., “Through-life nec scenario development,” Systems Journal,
IEEE, vol. 5, pp. 342 –351, sept. 2011.

[190] Valinataj, M., Mohammadi, S., Plosila, J., Liljeberg, P., and Ten-
hunen, H., “A reconfigurable and adaptive routing method for fault-tolerant
mesh-based networks-on-chip,” AEU - International Journal of Electronics and
Communications, vol. 65, no. 7, pp. 630 – 640, 2011.

[191] Varum, C. A. and Melo, C., “Directions in scenario planning literature
a review of the past decades,” Futures, vol. 42, no. 4, pp. 355 – 369, 2010.
¡ce:title¿Learning the Future Faster¡/ce:title¿.

[192] Vommi, V., Murty, and Seetala, S., “A simple approach for robust eco-
nomic design of control charts,” Computers and Operations Research, vol. 34,
no. 7, pp. 2001 – 2009, 2007.

[193] Vuchkov, I. N. and Boyadjieva, L. N., Quality Improvement with Design
of Experiments. Kluwer, 2001.

[194] Wallace, T. R., “Marine expeditionary brigade: Centerpiece of the future.”
School of Advanced Military Studies United States Army Command and Gen-
eral Staff College, May 2005.

372

[195] Wang, Y. M., Yin, H. L., and Wang, J., “Genetic algorithm with new
encoding scheme for job shop scheduling,” International Journal of Advanced
Manufacturing Technology, vol. 44, pp. 977–984, 2009.

[196] Warrington, L. and Jones, J., “Representing complex systems within dis-
crete event simulation for reliability assessment,” in Reliability and Maintain-
ability Symposium, 2003. Annual, pp. 487 – 492, 2003.

[197] Westerlund, A., Gthe-Lundgren, M., and Larsson, T., “A stabilized
column generation scheme for the traveling salesman subtour problem,” Discrete
Applied Mathematics, vol. 154, no. 15, pp. 2212 – 2238, 2006.

[198] Williams, T. W., “Meu(soc): The jewel in the crown of our corps,” Marine
Corps Gazette, vol. 78, no. 3, pp. 30–30–32, 1994.

[199] Zegordi, S. H. and Nia, M. A. B., “Integrating production and transporta-
tion scheduling in a two-stage supply chain considering order assignment,” In-
ternational Journal of Advanced Manufacturing Technology, vol. 44, pp. 928–
939, 2009.

[200] Zhang, L. and Zhang, Y., “Approximation for knapsack problems with multi-
ple constraints,” Journal of Computer Science and Technology, vol. 14, pp. 289–
297, 1999.

[201] Zhuang, Y., Shi, D.-M., Du, W.-B., Zhang, H.-F., and Wang, B.-H.,
“Integrating local dynamic and global static information for routing traffic on
networks,” International Journal of Modern Physics C, vol. 22, no. 6, pp. 649–
659, 2011.

[202] Zimmermann, A., Stochastic Discrete Event Systems: Modeling, Evaluation,
Applications. Springer, 2008.

373

