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ABSTRACT OF THESIS 

 

 

THE EFFECT OF CHOLESTEROL ON THE OSTEOBLAST RESPONSIVENESS TO 

HYDRODYNAMIC PRESSURE STIMULATION 

 

 Hypercholesterolemia is a risk factor for osteoporosis but the underlying 

mechanism is unknown. Previous evidence suggests that osteoporosis results from an 

impaired regulation of osteoblasts by fluid pressure fluctuations in the bone matrix. 

Recently, our laboratory showed that enhanced cholesterol in the cell membrane, due to 

hypercholesterolemia, alters leukocyte mechanosensitivity. We predict a similar link 

between osteoblasts and hypercholesterolemia leading to osteoporosis. Specifically, we 

hypothesize that extracellular cholesterol modifies the osteoblast sensitivity to pressure. 

MC3T3-E1 cells were exposed to hydrodynamic pressures regimes (mean=40mmHg, 

amplitude=0-20mmHg, frequency=1Hz) for 1-12 hours. To assess the impact of 

membrane cholesterol enrichment, cells were pre-treated with 0-50 µg/mL 

cyclodextran:cholesterol conjugates. We assessed the pressure effects on mitosis and F-

actin stress fiber formation (SFF) of cells. Exposure of cells to 50/30 mmHg pressure 

transiently increased the number of cells in the S- and G2M-phases of mitosis after 6 and 

12 hours, respectively. Relative to controls, osteoblast-like cells exposed to all pressures 

exhibited significantly (p<0.05) enhanced SFF. The degree of SFF depended on the 

pressure amplitude and concentration of cyclodextran:cholesterol conjugates. Thus, 

enhanced membrane cholesterol alters the pressure sensitivity of osteoblasts. These data 

have implications as it relates to the negative impacts of hypercholesterolemia on bone 

physiology. 

KEYWORDS: Osteoporosis, MC3T3, Hypercholesterolemia, Pressure, 

Mechanotransduction 
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Introduction 

 Background of Osteoporosis 

 According to the National Osteoporosis Foundation and the National Institutes of 

Health, osteoporosis afflicts over 54 million Americans and is responsible for over 2 

million broken bones per year [2, 3]. It is estimated that osteoporosis costs over $19 

billion per year [2, 3]. By 2025, it is estimated that over 3 million osteoporotic fractures 

will occur, costing over $25 billion per year [2, 4]. An estimated 48 million people have 

low bone density, meaning 60% of adults over 50 are at risk of traumatic fractures [2, 4]. 

 Osteoporosis is a silent disease of the bones caused by either increased bone 

resorption or reduced bone formation. These causes gradually reduce bone strength and 

quality leading to traumatic fractures. Recently, osteoporotic fractures have been shown 

to be the most common causes of disability and major medical costs in parts of the 

world[5]. Among osteoporotic patients, the hip and shoulder are the most common 

fractures [4]. Approximately 20% of older people who break a hip, die within one year 

from complications related to the fracture itself or the surgery to repair it [6]. Of those 

older people who survive osteoporotic fractures, many will need long-term nursing home 

care. Age is a significant risk factor of osteoporosis that is hard to treat which includes 

gender, ethnicity, family history, and a history of previous fractures [7, 8]. Also, there are 

many risk factors that can be improved through lifestyle choices which include physical 

activity, smoking, medications, body weight, and diet [7, 9, 10]. 
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 Dietary risks for osteoporosis have been largely attributed to a combination of 

lack of calcium and vitamin D deficiency [11]. Recently, however, human and animal 

studies have shown that high blood cholesterol is another risk factor for osteoporosis [12-

16]. The link between elevated blood cholesterol levels and osteoporotic risk was 

suggested from observations of hypercholesterolemic patients who had been treated with 

statins, a cholesterol-lowering agent [17]. Once statin-use was implemented to reduce 

blood cholesterol levels in patients, osteoporosis risk was seen to be reduced [18]. In fact, 

statin-use increased the bone mass of hypercholesterolemic women and rats by increasing 

the bone metabolism [19-21]. Later studies [19-22] further supported the link between 

high blood cholesterol levels and osteoporosis. 

 Background of Hypercholesterolemia 

 Normal total cholesterol range for blood is between 140 and 200 mg/dL.  High 

blood cholesterol levels, known as hypercholesterolemia, is a dominant risk factor for 

cardiovascular diseases that is largely attributed to the resultant development of chronic 

inflammation in the circulation [23, 24]. Hypercholesterolemia is characterized by blood 

plasma cholesterol concentrations greater than 240 mg/dL (6.2 mmol/L) [25].  

Cholesterol is a fat-like substance stored in every cell in the human body. 

Cholesterol, in its free form, is most abundant in the cell membrane where it plays an 

important role in cell signaling processes including those of bone cells [26]. Notably, 

cholesterol levels in the cell membrane influence its fluidity and organization. Thus 

changes in membrane cholesterol content has been shown to influence signaling 

pathways in cells by its action on the fluidity of the lipid bilayer. In this way, altered 
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membrane cholesterol in cells such as the blood cells have been proposed to drive disease 

states. 

 The human body makes cholesterol naturally. Additional cholesterol comes from 

food that, when consumed in large quantities, evokes blood cholesterol elevations. This 

can lead to problems.  For example, the traditional view is that elevated blood cholesterol 

causes fatty (atherosclerotic) plaque deposition along artery walls in the circulation which 

can eventually mature into large fatty lesions that may rupture resulting in the 

development of clots along the vessel wall. These clots can break off from the diseased 

vessel wall and turn into emboli that float downstream and block smaller vessels. In 

general, these blockages in coronary arteries lead to heart attacks or in the brain 

vasculature lead to stroke. In this way, hypercholesterolemia is thought to contribute to 

both cardiovascular disease and metabolic syndrome (obesity, type 2 diabetes, high blood 

pressure) [27-29].  

 But it is also possible that cholesterol causes cardiovascular disease by 

influencing the regulation of white blood cells by fluid shear stress mechanotransduction. 

Previously in our laboratory, it has been shown that hypercholesterolemia alters the 

mechanosensitivity of leukocytes, white blood cells, by altering the cholesterol related 

fluidity of the cell membrane [30]. This effect of hypercholesterolemia on leukocytes is 

thought to be associated with the pathogenesis of chronic inflammation in the blood that 

leads to cardiovascular disease. A similar mechanism with osteoblasts could possibly link 

osteoporosis and hypercholesterolemia.  



4 

 

 Linking Osteoporotic Bone Remodeling and Hypercholesterolemia 

 Recently, hypercholesterolemia has been identified as a dominant risk factor for 

osteoporosis [31]. According to the National Health and Nutrition Examination Survey, 

63% of osteoporotic patients have hyperlipidemia, i.e. a blood cholesterol concentration 

greater than 200 mg/dL [32]. The American Heart Association estimates that 34 million 

Americans have hypercholesterolemia, similar to the amount of people with low bone 

density [33]. It has been shown that hypercholesterolemic animals exhibit low bone 

density supposedly by blocking the differentiation of osteoblast progenitor cells and, in 

doing so, reducing bone mineralization [14, 16]. There is also evidence that osteoporosis 

due to high cholesterol diets results from an impairment of bone formation during the 

bone remodeling processes [15-19]. 

 Cellular Basis for Mechanosensitivity Bone Remodeling 

 Physiological bone remodeling represents a balance between bone formation by 

osteoblasts and resorption by osteoclasts. As seen in Figure 1, normal bone remodeling is 

depicted with the osteoblasts, osteoclasts, and osteocytes.  

 Osteoblasts are the bone-forming cells, osteoclasts are the bone-resorbing cells, 

and osteocytes are the interconnected network of cell residing in the bone matrix (Figure 

1). Osteocytes account for 90-95 % of bone cells and thus are thought to serve as the 

mechanosensory system for bone [34]. Typically, osteocytes are thought to be 

responsible for sensing changes of mechanical loading [35] in the bone which direct 

osteoclast and osteoblast movement and action. But, all three bone cell types have been 

shown to exhibit sensitivity to mechanical loading [34, 36]. 
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Figure 1: The Bone Remodeling Process with Osteoclasts, 

Osteoblasts, and Osteocytes. Three types of bone cells contribute to the 

bone remodeling process; osteoclasts are the bone-forming cells, 

osteoblasts are the bone-resorbing cells, and osteocytes line the bone 

matrix (adapted from [1]) . 
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 A key principle that describes the regulation of the bone remodeling process is 

Wolff's law, which states that bone remodels its mineral content and structure in response 

to the imposed mechanical loading condition [37]. Reduced mechanical loading favors 

bone resorption leading to decreased bone density, whereas, enhanced loading favors 

bone formation leading to increased bone density. Osteoporosis is thought to result from 

an impairment in the mechanoregulation of the bone cells that leads to an imbalance 

between bone formation (osteoblasts) and resorption (osteoclasts). 

The osteoblastic cellular response to mechanical stimuli such as fluid shear stress 

has been shown in previous studies [38]. But another way bone cells may sense dynamic 

loading is by the hydrodynamic pressures generated in the interstitial fluid of the bone 

matrix as a result of the force application [39-42]. Previous studies have shown that 

mechanical loading stimulates enhanced bone formation of osteoblasts in chick femurs 

and play an important role in the remodeling process in vivo [43]. 

 Mechanosensitive Bone Remodeling 

 The mechanical stimuli induced on bone cells include strain, stress, pressure, 

interstitial fluid flow, and hydraulic pressure [38, 44-46]. Previous studies showed that 

bone cells can sense dynamic loading by hydrodynamic pressures transmitted to the 

interstitial fluid of the bone matrix [47-49]. The dynamic loading induces pressure 

fluctuations in the bone [38, 47-50]. Hydrodynamic pressures that mimic daily activities 

of cyclic loading (standing, walking, jogging) inhibit osteoclast  activity [51-53] and 

stimulate osteoblast recruitment [39, 40, 42, 52, 54]. 
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 As shown in Figure 2, the mechanotransduction by osteoblasts involves a 

mechanical stimulus on the surface components (e.g. IGF, integrins, Wnt, and many more 

protein receptors) [37, 55]. In response to the changes in fluid stress levels from 

mechanical loading, cell surface components/mechanosensors are thought to undergo 

structural shifts which trigger downstream cell signaling pathways and functions (Figure 

2) [37, 55]. Cytoskeletal changes and altered rates of mitosis [56, 57] represent some of 

the responses of osteoblasts to mechanical forces (Figure 2A). Fluid shear exposure of 

MC3T3 cells causes reorganization of their actin filaments and formation of parallel 

stress fibers [46, 58, 59]. Osteoblastic cells exposed to cyclic pressures also exhibit 

reorganization of f-actin networks [46]. Conceivably, the responses of osteoblasts to 

mechanical stresses such as hydrodynamic pressures derive from structural shifts of 

protein mechanosensors that span the cell membrane. It thus likely that through its 

influence on membrane fluidity, cholesterol may influence mechanosensitive osteoblast 

activity by affecting the ability of cell surface mechanosensors to undergo such 

conformational shifts (Figure 2B). 
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Figure 2: A Schematic Representing the Process of a Mechanical Stimulus Causing 

Changes in the Cell Membrane Through Mechanosensors Signaling Structural 

Shifts. [A] represents pressure stimulation on the cell membrane leading to an altered cell 

signaling pathway which alters the cell cytoskeleton and mitosis. [B] represents pressure 

stimulation on the cell membrane with additional cholesterol added which decreases cell 

signaling leading to decreased stress fiber formation (SFF). CH represents cholesterol 

conjugate. (Adapted from [60]). 
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 Cholesterol Effects on Pressure-Sensitive Osteoblasts 

 Reportedly, cholesterol has been associated with the responses of osteoblasts to 

pressure since removal of this molecule from their membranes dampened pressure-related 

signaling  [61]. It, however, is not known whether enrichment of the cell membrane with 

cholesterol, which may occur due to hypercholesterolemia, would also retard osteoblast 

responses. For example, it is possible that membrane cholesterol enrichment reduces the 

cell membrane fluidity, and in doing so, alters the pressure sensitivity of osteoblasts 

leading to altered bone formation activity, assuming deformation of mechanosensors on 

the cell surface drives pressure mechanotransduction. We propose such a pathogenic 

mechanism; specifically, an impaired mechanosensitivity of the osteoblasts to pressure 

stimuli is what underlies the link between osteoporosis and hypercholesterolemia. To 

establish this, we will to test the effects of membrane cholesterol enrichment and its 

impact on the membrane fluidity on the responsiveness of osteoblasts to pressure.  
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Rationale 

 Hypercholesterolemia has been identified as a risk factor for osteoporosis, a bone 

disease that afflicts millions of people. Osteoporosis results from deregulated bone 

remodeling consisting of an imbalance between the bone formation activity of osteoblasts 

and bone resorption by osteoclasts.  

In healthy individuals, bone remodeling is widely accepted to be governed by 

Wolff’s law that states bone remodels its microstructure and mineral content depending 

on its mechanical loading condition. This adaptive response at the tissue level is thought 

to arise from the bone cells whose activity has been shown to exhibit sensitivity to 

mechanical loading. One way that bone loading may influence the functions of bone cells 

is by inducing pressure fluctuations in their surrounding matrix. Previous studies have 

shown that bone cells are influenced by dynamic loading at the tissue level by the 

resulting hydrodynamic pressures generated in the interstitial fluid of the bone matrix 

[39-42, 51-54]. For example, it has been shown that exposure to osteoblastic cells to 

pressures up to 500 mmHg induce F-actin stress fiber formation [38].  

Reportedly, osteoblast mechanotransduction of sustained hydrostatic pressure has 

been shown to depend on cholesterol compartments in the cell membrane [61]. Thus, 

changes in membrane cholesterol, such as during hypercholesterolemia, may contribute 

to an impairment in osteoblast mechanosensitivity that leads to their dysfunction. 

Recently, our laboratory showed for white blood cells that hypercholesterolemia alters 

their sensitivity to fluid stress stimulation by enhancing membrane cholesterol abundance 

[30]. We think hypercholesterolemia may also impair the pressure responses of 

osteoblasts. This may provide an explanation, at least in part, for the link between 
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hypercholesterolemia and osteoporosis. To address this possibility, we ran a series of 

pilot experiments to see if there is a connection between the responsiveness of osteoblasts 

to pressure and cholesterol enrichment of their cell membrane, which may occur due to 

hypercholesterolemia. Specifically, we tested the hypothesis that extracellular cholesterol 

levels influence the osteoblast mechanosensitivity to fluid pressure via its impact on the 

cell membrane. The goal of this study is to shed novel insight on a new potential link that 

could explain the relationship between hypercholesterolemia and osteoporosis. To 

address the hypothesis, we completed the three aims as follows. 

1. Develop a MC3T3 cell culture model 

2. Establish a hydrodynamic pressure system that imposes static and cyclic pressures 

on the MC3T3 cells 

3. Identify the impact of cholesterol on hydrodynamic pressure responses in MC3T3 

cells 
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Methods and Materials 

 Cell Culture Substrates 

 The two-dimensional polystyrene culture surfaces of individual wells of 12-well 

tissue culture plates or 100x20 mm tissue culture petridishes were overlaid with sterile 

0.2% gelatin (Sigma-Aldrich) in aqueous solution and incubated for at least 15 minutes. 

Prior to cell seeding, the gelatin solution was aspirated from the tissue culture surfaces 

and allowed to dry. 

 Preparation of Glass Coverslips 

 Borosilicate glass coverslips (No. 1; Fisher Scientific®) were soaked in acetone 

for 10 minutes followed by sonication for 10 minutes. The coverslips were then rinsed of 

residual acetone by three washes in de-ionized water for 3-4 minutes each. They were 

then soaked in 70% ethanol for 10 minutes followed by sonication for 10 minutes. 

Residual ethanol was washed off the coverslips by three rinses in deionized water for 3-4 

minutes each. Finally, the coverslips were pre-etched in 1M NaOH in de-ionized water 

for 1 hour. The coverslips were then thoroughly washed in de-ionized water for 3-4 

minutes for at least three times. In preparation for sterilization, each coverslip was 

washed in de-ionized water individually before being placed in a glass petri-dish with 

Kim-wipe tissues (Kimberly Clark Professional) separating them from one another. The 

petri-dish with coverslips was subjected to steam autoclaving conditions (121
o
C, 15 PSI) 

and then placed in a drying oven prior to use. 
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 Cell Lines, Culture Conditions, and Passaging 

 MC3T3-E1 pre-osteoblastic cells were kindly provided by Dr. David Puleo from 

the Department of Biomedical Engineering at the University of Kentucky (Lexington, 

KY). MC3T3-E1 cells were cultured on gelatin-coated polystyrene surfaces in MEM 

Alpha Modification 1X Medium (HyClone®) supplemented with 10% v/v fetal bovine 

serum (FBS) (HyClone®) and 1% v/v penicillin/streptomycin/L-glutamine solution 

(HyClone®) under a humidified 5% carbon dioxide/95% air environment maintained at 

37°C, i.e. standard incubator conditions.  

For routine culture, the culture media was replaced every 2 to 3 days until cells 

reached confluence. At that time, MC3T3-E1 cultures were split (1:3 ratio) into new 

culture dishes. Briefly, cells were rinsed with PBS for 3 minutes and lifted by treatment 

with 0.5% trypsin/1 mM EDTA (Sigma) for 2 - 5 minutes. Following gentle agitation, 

cells were checked under the microscope to confirm their detachment from the culture 

dish. To remove the trypsin/EDTA solution, the detached cells were suspended in fresh 

media with serum and centrifuged at 200xG for 5 minutes at 25°C. After centrifugation, 

the supernatant solution was aspirated, and the resulting cell pellet was resuspended in 

fresh media and seeded in new tissue culture dishes. MC3T3-E1 cells of passages 8 to 20 

were used in all experiments in the present study. 

 Cell Storage 

 Cryopreservation was used to store confluent MC3T3-E1 populations. MC3T3-E1 

cells were washed with PBS for 5 minutes and lifted with 0.5% trypsin/1mM EDTA. The 

resulting cell suspension was combined with fresh media in a 15 mL centrifuge tube (BD 

Falcon®) and centrifuged at 200xG for 5 minutes at 25°C. The supernatant was aspirated, 
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and the resulting cell pellet was resuspended in 2 mL of freezing solution consisting of 

10% dimethyl sulfoxide (DMSO) (Sigma®) in FBS, transferred to 2-mL cryogenic vials 

(BD Falcon), and stored in a -80°C freezer until needed or transferred to liquid-nitrogen 

for cryogenic storage. 

 When needed, frozen cells were rapidly thawed in a 37°C water bath. The thawed 

cell suspension was mixed with 5 mL of warm complete media in a 15-mL centrifuge 

tube and pelleted at 200xG for 5 minutes at 25°C. The cell pellet was resuspended in 10 

mL complete media, transferred to a tissue culture dish, and cultured under standard cell 

culture conditions. 

 Cell Seeding 

 Seeding in Multi-Well Tissue Culture Plates 

 For analyses related to the pressure and cholesterol effects on the osteoblast 

cytoskeleton MC3T3-E1 cells were seeded on glass coverslips that had been placed in 

individual wells of a 12-well tissue culture polystyrene plate (BD Falcon®).  Briefly, 

MC3T3-E1 cells were lifted using trypsin, centrifuged at 200xG for 5 minutes at 25°C, 

and resuspended in 5 mL of complete media. Using a hemacytometer, the number of cells 

were counted in two 10-µL aliquots to determine the concentration of cells within each 

suspension. The cells were then diluted to a cell density of 250,000 cells/mL. For each 

individual well, 0.5 mL of the cell suspension was placed directly on the glass coverslip 

for 2 hours at which time the wells were filled with 1 mL of fresh media and allowed to 

culture for 2 days prior to pressure experiments. 
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 Membrane Cholesterol Modifying Treatments 

 For some experiments, cholesterol/cyclodextran conjugates (CH) were added to 

the cell preparations, 24 hours after initial seeding. Cells were incubated with 0, 2, 5, 

12.5, 25, or 50 µg/mL CH. For each concentration of CH used, 15-mL centrifuge tubes 

were filled with 7 mL of complete media and the appropriate volume of stock solution 

(?? µg/mL) of CH (10 µg/mL) was added to achieve the desired concentrations to be used 

on the cells. The cells were incubated in the desired CH concentrations for an additional 

24 hours prior to the start of the pressure experiments or membrane cholesterol 

quantification procedures (see Membrane Cholesterol Measurements section below). 

 Pressure System 

 MC3T3-E1 cell populations (prepared as described above) on glass slides residing 

in 12-well plates or on gelatin-coated surfaces of tissue culture flasks were exposed to 

pressure levels above atmospheric using a custom-designed hydrodynamic pressure 

system (Figure 3) as described previously [62]. This system consisted of a compressed 

gas tank that delivered pressurized gas mixture (5% carbon dioxide, 95% air gas mixture) 

to a pressure chamber downstream of a hydrostatic fluid column and humidifying 

chamber. The desired static pressure was maintained in the pressure chamber by 

controlling the depth of the tubing in the hydrostatic fluid column. The flow rate of gas 

from the gas tank (5% carbon dioxide, 95% air gas mixture) and the pressure head on the 

hydrostatic fluid column were positioned to minimize the amount of gas flow into the 

pressure chambers while maintaining the experimental pressure regimes and cell 

viability. The flow rate into the pressure chamber was adjusted using the pressure 

regulator attached to the 5% carbon dioxide/ 95% air mixture gas tank. The pressure in 
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the chamber was maintained  above the atmospheric pressure in the control chamber 

using resistive tubing interconnected between them. The outlet of the control chamber 

was left open to atmosphere to allow gas to vent from the upstream pressure chamber. 

Thus, the control chamber was maintained at atmospheric pressure, but otherwise, similar 

experimental gas conditions.  Pressures in both chambers were monitored with a Statham 

blood pressure transducer interfaced to a multi-channel analog to digital converter. The 

digital output was acquired using Signal Express LabVIEW software on a computer PC, 

which allowed for continuous, real-time monitoring of the experimental pressures in the 

chambers to be examined. The pressure and control chambers were maintained at 37°C 

using a temperature-controlled oven.  

 For pulsatile pressures, the static pressure set by the hydrostatic fluid column 

setup served as the mean pressure. Sinusoidal pressures were generated in the pressure 

chamber with pulse  amplitudes ranging from 0 to 20 mmHg at frequencies from 0 to 1 

Hz using a bellows pump connected to a linear motor. The linear motor was powered by 

a DC power supply interfaced to a function generator.  

It should be noted that the pulse pressure amplitude achievable by our system 

depends on the volume of the pressure chamber used to stimulate cells as dictated by the 

ideal gas law represented in Equation 1. 

 
 

Equation 1  

 Based on this law, the change in volume ( ) needed to oscillate the pressure 

between the maximum pressure (    ) and the minimum pressure (    ) is governed by 
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the volume of the chamber, . into our chamber was provided by the stroke volume 

of our bellows. The limited stroke volume of our bellows is what restricted the achievable 

pressure amplitudes for our device. By adjusting the chamber volume, we could achieve 

the desired pulse amplitudes of pressure, albeit at the expense of the number of cells we 

can test. 

 To expose cells to the pressure regimes of interest to the present study, we 

developed custom pressure chamber setups depending on our experimental objectives 

(shown in Figures 4-6). These chambers were connected downstream of the hydrostatic 

pressure column shown in the Figure 3. The first pressure chamber setup consisted  of 

using 5-wells of a 12-well plate. One of the wells was designed to be used as a humidifier 

(shown in Figure 6). Downstream of the humidifying chamber, 4-wells were capped with 

rubber stoppers to create air-tight seals. These 4-wells were connected in series through 

ports in the rubber stoppers. By using uniform-sized tubing between wells and resistive 

tubing serving as the outlet for the last well, each well would be pressurized to the same 

extent.  
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Figure 3: Custom-Designed Pressure System (Adapted via [63]). 
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Figure 4: Frontal View of the 12-Well Plate Redesigned Pressure Chamber Used in 

the Custom-Designed Pressure System Model. 

  



20 

 

 

 

 

Figure 5: Lateral View of the 12-Well Plate Redesigned Pressure Chamber Used in 

the Custom-Designed Pressure System Model. 
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Figure 6: Custom-Designed Humidifier in the 12-Well Plate Used in the Custom-

Designed Pressure Chamber. 
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 The second custom-designed chamber was a modified 75 cm² tissue culture flask 

connected downstream of the humidifier of our hydrodynamic pressure system (Figure 

7). This setup was used for analyses that required large numbers of cells such as our cell 

cycle analysis. The flask was sealed with a rubber stopper with two ports. One port 

served as the inlet for the compressed air mixture to enter the flask chamber. The second 

port served as the outlet to which resistive tubing was used to connect to a downstream 

control chamber. A front view of the custom-designed flask chamber is shown in Figure 

7. A close-up view of the custom-designed flask chamber is shown in Figure 8. 

 For experiments, cell preparations were exposed to 40 mmHg static pressure as 

well as pulsatile pressures with a mean of 40 mmHg and amplitudes of either 10 (i.e., 

45/35) or 20 mmHg (i.e., 50/30). Controls for all experiments were cells maintained 

under atmospheric pressure, but otherwise similar experimental gas, conditions. These 

pressure regimes were estimated to mimic that which would be generated in bone during 

single bouts of elevated loading (i.e., impact exercises)[64-68]. Previously, we had shown 

that there were no differences in the behavior cells maintained in standard incubator 

conditions and those cultured under atmospheric pressure conditions using our 

hydrodynamic pressure system [63]. Thus for some experiments, controls were 

maintained in a standard tissue culture incubator under atmospheric pressures. 
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Figure 7: Custom-Designed Pressurized Flask Chamber (Frontal View). 
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Figure 8: Custom-Designed Pressurized Flask Chamber (Zoomed-In View of Figure 

7). 
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 Analysis of Cytoskeletal F-Actin Stress Fiber Formation 

 Visualization of Cytoskeletal F-actin Stress Fibers 

 After experiments, the cells were fixed with 4% paraformaldehyde for 20 minutes 

followed by rinsing three times with PBS for 2 minutes each. The cells were then 

permeabilized with 0.1% triton X-100 in 1% BSA in PBS for 3 minutes and subsequently 

washed 3 times with 1% BSA in PBS for 2 minutes each. In preparation for fluorescence 

staining, the cells were blocked with 1% BSA in PBS for 30 minutes. Next, the cells were 

fluorescently stained for 1 hour with 7.75 µg/mL Alexa568-red phalloidin (F-actin label) 

and 1.1667 µg/mL blue-fluorescent DAPI nucleic acid stain. Following three rinses with 

1% BSA in PBS for 2 minutes each, the stained cells on coverslips were mounted on 

glass-slides using Vecta-Shield mounting solution (Vector Laboratories). The coverslips 

were secured and sealed to the glass slide using nail-polish (i.e., acrylic-based sealant).  

 Stained cells were visualized using an Olympus (Model IX-70) inverted light 

microscope interfaced to a high resolution Hammamatsu camera. Images of monolayered 

cell populations were acquired using 400x magnification in conjunction with brightfield, 

rhodamine red (excitation/emission wavelength: 570/590 nm), and ultraviolet 

(excitation/emission wavelength: 358/461 nm) optics. SimplePCI software was used to 

acquire five random images per well for each treatment group. 

 To quantify the stress fiber responses of cells, we used ImageJ software to 

visually analyze our images of fluorescently stained cells. Two main features of the 

stained cells were analyzed: F-actin stress fiber formation and cell density. F-actin stress 

fiber positive cells are those within a population with at least one stress fiber running 

through the center of the cell. For example, in Figure 9, the cell on the left would be 
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considered stress fiber negative while the cell on the right would be considered stress 

fiber positive due to the prevalence of linear F-actin stress fibers that navigated through 

the central region of the cytoplasm. Finally, the cell density was quantified as the number 

of cells within a microscopic field.  

 Flow Cytometric Analysis of Cell Cycle 

 For cell cycle analyses, MC3T3-E1 osteoblastic cells were serum-starved in 

serum-free MEM Alpha Modification with 1% L-glutamine for 24 hours to synchronize 

their mitotic activity. At that time, the osteoblast-like cells were exposed to either a 6-

hour or 12-hour exposure to a 50/30 mmHg sinusoidal pressure at a frequency of 1 Hz. 

Controls were parallel cultures maintained at 0 mmHg above atmospheric pressure.   

 Immediately after experiments, MC3T3-E1 cells were lifted using 0.05 % trypsin, 

centrifuged at 200xG for 5 minutes at 25°C, and resuspended in 10 mL of ice-cold PBS. 

The cells were then centrifuged at 200xG for 5 minutes at 25°C and resuspended in 70% 

ice-cold ethanol overnight. The next day, the cells were washed three times in ice-cold 

PBS. During these rinses, cells were pelleted by 600xG centrifugation for 8 minutes at 25 

°C. After these rinses, the cells were blocked in filtered 1% BSA in PBS to minimize 

non-specific binding of fluorescent stain and subsequently labeled with 1.1667 µg/mL of 

DAPI under gentle agitation for 2 hours. Finally, the cells were washed three times with 

filtered 1% BSA in PBS and resuspended in fresh PBS prior to flow cytometric analyses. 

An LSR II flow cytometry (Becton-Dickinson) with FacsDIVA (Becton-Dickinson) 

software was used to analyze cell samples. 
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Figure 9: F-actin Stress Fiber Formation of MC3T3 cells. [A] MC3T3 cell with no 

SFF. [B] MC3T3 cell exhibiting SFF. 
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 Membrane Cholesterol Measurements 

 Procedures for membrane cholesterol extraction of MC3T3-E1 monolayers were 

based on the method of Bligh and Dyer [69]. Briefly, MC3T3-E1 cells were lifted using 

trypsin, centrifuged at 200xG for 5 minutes at 25°C and resuspended in 10 mL of fresh 

medium. Then the cells were centrifuged at 200xG for 5 minutes at 25°C and 

resuspended in ice-cold PBS. After vortexing, a 1:3 (v/v) chloroform/methanol solution 

was added, and the samples were incubated under constant agitation and periodic 

vortexing for 10 minutes at room temperature. At that time, chloroform and water were 

added to the mixture for 30 seconds and the entire mixture was centrifuged at 1900xG for 

10 minutes at room temperature. The top layer of the supernatant was aspirated off to 

allow the underlying alcohol layer to be exposed to the atmosphere. The tubes were 

incubated in a water bath between 40-50°C to evaporate off the remaining layers. After 

evaporation, the dried cholesterol was reconstituted with 10% triton X-100 in isopropyl-

alcohol and stored at -20°C until measurement. 

 To quantify cholesterol amounts extracted from cells, the reconstituted cholesterol 

solution was mixed with the color reagent of a Free Cholesterol E kit (Wako) and 

incubated at 37°C for 5 minutes. A BioTek spectrophotometer was then used to measure 

the absorbance of these solutions at 600nm (µQuant). The absorbance readings were 

fitted to a standard curve according to the manufacturer's instructions to determine the 

concentration of free cholesterol in each sample. 

 Membrane Fluidity Measurements 

 Membrane cholesterol was measured based on the methods of Celedon [70]. 

Briefly, MC3T3-E1 cells were lifted using trypsin, centrifuged at 200xG for 5 minutes at 
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25°C, and resuspended in pre-warmed PBS. Cells were incubated with 2.5 µM pyrene 

decanoic acid (PDA; Molecular Probes) in PBS at 37°C under gentle agitation for 1 hour. 

The cell suspensions were then washed twice with PBS using centrifugation at 600xG for 

5 minutes at room temperature. Finally, fluorescence emissions were measured with the 

cells suspended in PBS. A fluorescence spectrophotometer (Hitachi; F-2500) was used to 

emit PDA fluorophore at 375 nm and 470 nm wavelengths. The fluorescence emission at 

375 nm was used to quantify monomer emissions ( ), where as the emission at a 

wavelength at 470 nm represented the excimer emissions ( ) under 344 nm excitation 

[30].The ratio of monomer/excimer emissions (Ie/Im) was used as a quantitative measure 

of membrane fluidity. 

 Statistical Analysis 

 Data was expressed as mean ± standard error. The experimental treatment means 

were compared using a Student's t-test with Bonferroni adjustment with p < 0.05 

indicating a significant difference. Sigma Plot software was used to conduct Pearson's 

Correlation Coefficient (r) analysis to measure the strength of association between two 

variables with positive (+) and negative (-) correlations. 
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Results 

 Generating Hydrostatic & Cyclic Pressures 

 LabVIEW Signal Express software interfaced to a pressure transducer was used to 

monitor the hydrostatic or cyclic pressures generated in the pressure chambers.  Figure 10 

shows representative computer outputs used to ensure the osteoblastic cells were exposed 

to the pressure of interest to the present study. These include a static 40 mmHg pressure 

level and two different 1-Hz sinusoidal pressure regimes with a mean of 40 mmHg and 

amplitudes of either 10 or 20 mmHg. 

 Pressurize-Sensitive Stress Fiber Formation 

 SFF by MC3T3 osteoblast-like cells exposed to the pressure regimes tested in the 

present study are displayed visually (Figure 11).  As shown in  Figure 11, cells that had 

been maintained under control pressure conditions (CTL) displayed the least amount of 

SFF formation in comparison to those exposed to either 40 mmHg static pressure as well 

as either 45/35 or 50/30 mmHg cyclic pressures at 1 Hz for 2 hours. 

 Quantitatively, MC3T3 cells exposed to all pressure conditions exhibited 

significantly (p< 0.05) enhanced SFF compared to control cells (Figure 12). According to 

Figure 12, cyclic pressure with a mean of 40 mmHg and amplitude of 20 mmHg at a 

frequency of 1 Hz showed the greatest amount of SFF compared to all exposed pressure 

conditions. In this regard, the amount of stress fiber formation by the cells depended on 

the amplitude of pressure with cyclic pressures inducing the greatest amount of SFF by 

MC3T3-E1 osteoblastic cells (Figure 11 & 12). 
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Figure 10: LabVIEW Signal Express Sinusoidal Waveforms of Static (SP) and 

Cyclic Pressures (CP 10 & CP 20). Static pressure (SP) was held at 40mmHg, (CP 10) 

cyclic pressure with a mean pressure of 40mmHg and amplitude of 10mmHg at a 

frequency of 1 Hz, and (CP 20) Cyclic Pressure with a mean pressure of 40mmHg and 

amplitude of 20mmHg at a frequency of 1 Hz. 
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Figure 11: Stress Fiber Formation by MC3T3-E1 Cells is Dependent on the 

Amplitude of the Applied Pressure Regime. Three representative images of  cells that 

had been fluorescently stained using phalloidin (actin stain; red) and DAPI (nuclear stain; 

blue) after exposure to 0 mmHg (CTL), 40 mmHg (SP), 45/35 mmHg (CP 10) or 50/30 

(CP 20) at a frequency of 1 Hz for 1 hour. Images were taken at 400X magnification. 
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Figure 12: Stress Fiber Formation by MC3T3-E1 Cells is Dependent on the 

Amplitude of the Applied Pressure Regime. Pressure conditions shown are control 

(CTL) of 0 mmHg, static pressure (SP) of 40 mmHg, cyclic pressure (CP 10) with a mean 

of 40 mmHg and amplitude of 10 mmHg, and cyclic pressure (CP 20) with a mean of 40 

mmHg and amplitude of 20 mmHg. All vertical bars in are mean values ± SEM with 

horizontal lines depicting p<0.05 using paired Student’s t-test with Bonferroni's multiple 

comparisons tests (n=8). 
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 Effects of Pressure on Cell Density 

 The average MC3T3 cells per field used in analyzing the stress fiber formation 

data were recorded. As indicated in Figure 13, the cell density levels of all pressure 

conditions were similar to those of controls. Therefore, changes in SFF occurred without 

any changes in cell density.  

Effects of Pressure Stimulation on the Mitotic Activity of MC3T3-E1 

Osteoblastic Cells 

 In order to determine if pressure plays a role in the mitotic activity of osteoblast-

like cells, a cell cycle analysis was conducted for MC3T3-E1 cells exposed to 40 mmHg 

static pressure for  6 (Figure 14 & Table 1) and 12 (Figure 16 & Table 2) hours. 

Compared to controls, the numbers of cells in the S-phase after exposure to 40 mmHg for 

6 hours were significantly (p<0.05) elevated relative to non-pressurized cells (Figures 14 

& Table 1).  

 After 12 hours, the numbers of pressurized cells in the G2m, but not in the G1 and 

S, phases was significantly (p<0.05) elevated (Figure 15 & Table 2). Combined, these 

data suggested that exposure to 40 mmHg pressure has a transient effect on osteoblastic 

cell mitotic activity. 
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Figure 13: Stress Fiber Formation by MC3T3-E1 Cells is Independent of Cell 

Density. The pressure conditions shown are control (CTL) of 0 mmHg, static pressure 

(SP) of 40 mmHg, cyclic pressure (CP 10) with a mean of 40 mmHg and amplitude of 10 

mmHg, and cyclic pressure (CP 20) with a mean of 40 mmHg and amplitude of 20 

mmHg. All vertical bars are mean ± SEM with horizontal lines depicting p<0.05 using 

paired Student’s t-test; n=8. 
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Figure 14: Pressure Exposure Alters the Mitotic Activity of MC3T3 Cells in the S-

Phase After 6 hours. The percentage of MC3T3 cells during each mitotic phase exposed 

to either 0 mmHg (CTL) or 50/30 mmHg (CP 20) at a frequency of 1 Hz for 6 hours. All 

vertical bars are mean values ± SEM with horizontal lines depicting p<0.05 using paired 

Student's t-test; n=4. 
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Table 1: Pressure Exposure Alters the Mitotic Activity of MC3T3 Cells in the S-

Phase After 6 hours. The average percentage plus or minus the standard deviation of 

MC3T3 cells during each mitotic phase after exposure to either 0 mmHg (CTL) or 50/30 

mmHg (CP 20) at a frequency of 1 Hz for 6 hours. Values are mean ± SEM 

 

 
 

 

CTL CP 20

G0 63.6 ± 19.74 63.4 ± 18.40

S 4.3 ± 0.93 5.4 ± 1.18 

G2m 16.7 ± 2.21 17.9 ± 3.85
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Figure 15: Pressure Exposure Alters the Mitotic Activity of MC3T3 Cells in the 

G2m-Phase After 12 hours. The percentage of MC3T3 cells during each mitotic phase 

after exposure to either 0 mmHg (CTL) or 50/30 mmHg (CP 20) at a frequency of 1 Hz 

for 12 hours. All vertical bars are mean values ± SEM with horizontal lines depicting 

p<0.05 using paired Student's t-test; n=4. 
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Table 2: Pressure Exposure Alters the Mitotic Activity of MC3T3 Cells in the G2m-

Phase After 12 hours. The average percentage plus or minus the standard deviation of 

MC3T3 cells during each mitotic phase exposed to either 0 mmHg (CTL) or 50/30 

mmHg (CP 20) at a frequency of 1 Hz for 12 hours. Values are mean ± SEM. 
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 Effects of Exogenous Cholesterol 

 Effects of Exogenous Cholesterol on Stress Fiber Formation 

 Stress fiber formation exhibited by MC3T3-E1 cells pretreated with 0 - 50 µg/mL  

cholesterol-cyclodextrin conjugates and subsequently maintained under control (0 

mmHg) conditions or exposed to different pressure regimes (mean of 40 mmHg with 

amplitudes between 0-20 mmHg, frequency 1 Hz) is shown visually (Figure 16) and 

quantitatively (Figure 17). Control cells (Figure 16, CTL) visibly have the least amount 

of SFF than pressurized cells (Figure 17, SP and CP20). Moreover, cells exposed to 

either static or cyclic pressure appeared to have the highest numbers of SFF cells. 

 MC3T3 cells pretreated with 0 – 12.5 µg/mL cholesterol-cyclodextrin conjugates 

prior to cyclic pressure (CP20) exposure exhibited significantly (p<0.05) more SFF than 

control (CTL) cells (Figure 17). The amount of SFF by the cells pretreated with 0 – 12.5 

µg/mL cholesterol-cyclodextrin depended on the amplitude of pressure. In contrast, at 

cholesterol-cyclodextrin conjugates from 25 and 50 µg/mL, MC3T3 SFF did not depend 

on the amplitude of the applied pressure (Figure 17).  

Effects of Exogenous Cholesterol and Pressure on Cell Density 

 According to Figure 18, cholesterol-cyclodextrin conjugates have no effect on cell 

density. As a result, changes in stress fiber formation for all membrane cholesterol 

concentrations occurred without any changes in cell density. 
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Figure 16: Exogenous Cholesterol Enrichment Alters the Stress Fiber Formation 

Responses of MC3T3 Osteoblast-like Cells. MC3T3 cells depicting the effects of 0, 2, 

5, 12.5, 25, and 50 µg/mL cholesterol/cyclodextran conjugates on pressure-sensitive 

stress fiber formation (n=8) exhibited by MC3T3-E1 cells exposed to either 0 mmHg 

(CTL), 40mmHg (SP), or 50/30 mmHg (CP20) at a frequency of 1 Hz for 1 hour. The 

cells were fluorescently stained using phalloidin (actin stain; red) and DAPI (nuclear 

stain; blue) to exhibit stress fiber formation. Images were taken at 400X magnification. 
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Figure 17: Exogenous Cholesterol Enrichment Alters the Stress Fiber Formation 

Responses of MC3T3 Osteoblast-like Cells. MC3T3 cells depicting the effects of 0, 2, 

5, 12.5, 25, and 50 µg/mL cholesterol/cyclodextran conjugates on pressure-sensitive 

stress fiber formation exhibited by MC3T3-E1 cells exposed to either 0 mmHg (CTL), 

40mmHg (SP), or 50/30 mmHg (CP20) at a frequency of 1 Hz for 1 hour. Vertical bars 

are mean ± SEM. Horizontal lines indicate significant (p<0.05) differences using 

Student’s t-test with Bonferroni’s multiple comparison tests; n=8. 
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Figure 18: Exogenous Cholesterol Enrichment Alters the Stress Fiber Formation 

Responses of MC3T3 Osteoblast-like Cells Independent of Cell Density. MC3T3 cells 

depicting the effects of 0, 2, 5, 12.5, 25, and 50 µg/mL cholesterol/cyclodextran 

conjugates on the cell density levels exhibited by MC3T3-E1 cells exposed to either 0 

mmHg (CTL), 40mmHg (SP), or 50/30 mmHg (CP20) at a frequency of 1 Hz for 1 hour. 

Bars are mean ± SEM; n=8. 
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 Effects of Exogenous Cholesterol on the Membrane Fluidity and 

Membrane Cholesterol of MC3T3 Cells 

 Membrane cholesterol participates in the cellular signaling through its impact on 

membrane fluidity. According to Figure 19, MC3T3 cells treated with increasing 

concentrations of extracellular cholesterol complexes (between 0 to 50 µg/mL) resulted 

in gradual increases in membrane cholesterol levels. According to Figure 20, the average 

membrane fluidity gradually decreased as a function of cholesterol-cyclodextrin 

conjugate concentration up to 12.5 µg/mL. Beyond this concentration and up to 50 

µg/mL cholesterol-cyclodextrin conjugation, membrane fluidity appeared to have 

plateaued. Based on this data, extracellular cholesterol concentrations altered the 

membrane cholesterol levels in MC3T3 cells (Figure 19) with a possible impact on 

membrane fluidity (Figure 20).   

 According to our previous data, exogenous cholesterol conjugates alter the 

membrane cholesterol of MC3T3 cells (Figure 19) and altered membrane fluidity (Figure 

20). A correlation analysis was conducted to test inter-dependence between exogenous 

cholesterol concentrations, membrane cholesterol, and membrane fluidity shown in Table 

3. The concentration of cholesterol conjugates used to treat cells positively correlated (r = 

0.902, p = 0.0139) with membrane cholesterol amounts (Table 3). In addition, the 

membrane cholesterol amounts negatively correlated (r = -0.896, p = 0.0156) with 

membrane fluidity (Table 3). These results indicate evidence that the amount of 

cholesterol cyclodextran conjugate altered the membrane fluidity via an impact on 

membrane cholesterol abundance within MC3T3 cells. 
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Figure 19: Exogenous Cholesterol Enrichment Alters the Average Membrane 

Cholesterol of MC3T3 Osteoblast-like Cells. Depicts the effects of 0, 2, 5, 12.5, 25, 

and 50 µg/mL cholesterol/cyclodextran conjugates on the averaged membrane cholesterol 

of MC3T3 cells. Vertical bars are mean ± SEM; n=3. 
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Figure 20: Exogenous Cholesterol Enrichment Alters the Average Membrane 

Fluidity of MC3T3 Osteoblast-like Cells. Depicts the effects of 0, 2, 5, 12.5, 25, and 50 

µg/mL cholesterol/cyclodextran conjugates on the averaged membrane fluidity of 

MC3T3 cells. The vertical lines above the data points indicates one standard deviation 

from the average membrane fluidity; n=8. 
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Table 3: Exogenous Cholesterol Enrichment Alters the Membrane Cholesterol and 

Membrane Fluidity Responses of MC3T3 Osteoblast-like Cells. A correlation analysis 

depicting a Pearson r-value coefficient (top number) and a two-tailed p-value (bottom 

number).  



48 

 

Discussion 

 This study explored the possibility that extracellular cholesterol levels influence 

the osteoblast mechanosensitivity to fluid pressure via an impact on the cell membrane. 

Osteoblasts are mechanoreceptive cells that respond to forces such as compression, 

strain, and shear stress [71]. During normal bone remodeling, osteoblasts have been 

shown to be mechanosensitive to stresses typical of those generated in the bone matrix 

environment due to mechanical loading at the tissue level. Mechanical stimuli, such as 

hydrodynamic pressure, has been shown to stimulate SFF in MC3T3-E1 cells indicating a 

pressure response [38]. The present study also showed that static and cyclic pressures 

promote SFF formation relative to cells under control (atmospheric) pressure conditions.  

  To model cholesterol elevations in the bone matrix environment in the in vitro 

setting, exogenous cholesterol, in the form of cholesterol-loaded cyclodextrin, was added 

to MC3T3-E1 cultures at various concentrations up to 50 µg/mL. These studies supported 

the possibility that a cholesterol overabundance in the bone cell environment is capable 

of altering the responsiveness of osteoblastic cells to pressure stimulation possibly 

through an effect on the cell membrane chemistry. 

 Hydrostatic & Cyclic Pressure Responsiveness of Osteoblasts 

 There is an accumulation of data supporting the likelihood that mechanical 

loading on bone due to daily physical activities, such as walking, running, and exercising, 

stimulates bone cells in the mineralized matrix and, in doing so, plays an important role 

in bone health [26, 72, 73]. Conceivably, as the ability of osteoblasts to sense forces is 

altered, a progression of bone disease may develop, such as osteoporosis. Previous 
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studies have shown that osteoblastic cells (e.g., osteocytes) serve as mechanosensor cells 

for bone [46]. By monitoring the formation of f-actin stress fibers by osteoblastic cells in 

response to a pressure, the present study assessed their mechanosensitivity to this 

stimulus. In this regard, the focus of this study was to provide insight into how MC3T3-

E1 osteoblastic cells respond to dynamic pressure loading and how membrane cholesterol 

enrichment affects their responsiveness. 

 Notably, the osteoblastic cells tested in this study exhibited a higher sensitivity to 

cyclic pressures in comparison to an equivalent static pressure level. Notably, the cyclic 

pressures (30-50 mmHg) and frequencies (1 Hz) used in this study were in the range 

predicted to occur in the bone matrix, i.e. 8.6 kPa (65 mmHg) [74] and up to 3 MPa 

(22,500 mmHg) [48, 51]. Previous theoretical models estimated that fluid pressures in 

Haversian canals, where osteoblastic cells may reside, would be around 19% of the 

applied stress with the local pressures reaching a maximum of over 3.4 MPa (25,500 

mmHg) or a 18 MPa (135,000 mmHg) in cortical bone [75]. Previous in vitro studies 

exposed osteoblasts to peak hydraulic pressures varying between 8.6 kPa (65 mmHg) to 3 

MPa (22,500 mmHg) [54, 74] compared to our study using a pressure regime of 30 to 50 

mmHg (4 to 7 kPa). The approximate stride frequency for human walking is around 0.7-

1.2 Hz, therefore this study used a frequency of 1 Hz [76]. In response to mechanical 

loadings, actin monomers polymerize into stress fibers in bone cells [34]. Stress fiber 

formation, by osteoblast-like cells has been shown to be a robust marker of their 

mechanoresponsiveness to mechanical loading [77]. 
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 Cytoskeleton Response 

 Previous studies have shown that MC3T3 cells exhibit f-actin SFF in response to 

cyclic pressures as high as 5MPa (37,500 mmHg) at a frequency of 1Hz [78]. F-actin SFF 

is one of the typical responses of cells to mechanical stresses [79] including pressures. 

We therefore used F-actin stress fiber formation as a way to measure the pressure 

sensitivity of cells. The highest degree of SFF was seen for osteoblastic cells exposed to 

cyclic pressures (Figure 12). Therefore, MC3T3 cells appear to be mechanosensitive to 

pressure, showing the strongest sensitivity to dynamic loadings. 

 Cell Cycle Analysis 

 Previous research has indicated that the cell cytoskeleton plays a role in cell 

mitosis [80]. In order to determine if pressure sensitive changes in osteoblast activity 

manifests as a functional response, a cell cycle analysis was conducted for MC3T3 cells 

exposed to  6- and 12- hour pressure to assess its effects on cell proliferation/mitotic 

activity. Based on our results (Figures 14 & 15), exposure to pressure appears to promote 

a transient up-regulation of MC3T3 cell passage through the cell cycle that lasts between 

6 and 12 hours. This transient increase in cell cycle progression in MC3T3-E1 cells is 

similar to how a mechanical stimulus stimulates cell cycle progression of other cells, e.g. 

cancer cells [81]. The transient increase in proliferation of MC3T3-E1 cells supports the 

possibility that pressure induces a mitotic effect. Previous studies have shown that 

hypercholesterolemia is linked to decreased proliferation rates in bone cells [16]. 

Enhanced cholesterol in the microenvironment of osteoblasts may affect their 

proliferative capacity by influencing the mechanoregulation of the osteoblasts.  



51 

 

 Cholesterol-Related Stress Fiber Formation Response of Osteoblasts to 

Pressure 

 Cholesterol is an important regulator of cellular membrane fluidity [82]. This 

study addresses the possibility that the changes in the membrane fluidity due to 

elevations in extracellular cholesterol alters the ability of the bone cells to sense a 

pressure change. One way that mechanotransduction plays a role in osteoblast function is 

proposed to involve structural shifts in the mechanosensors that are embedded in the cell 

membrane [83]. The deformation behavior and flexibility of the mechanosensors may 

depend upon the fluidity of the cell membrane. Since cholesterol regulates this fluidity, it 

is possible that changes in membrane cholesterol content can alter the ability of bone 

cells to sense pressure changes.  

 Exogenous cholesterol appears to dose-dependently alter the osteoblast stress 

fiber responses to the pressure stimuli used in this study. For each cholesterol-

cyclodextrin conjugate concentration, MC3T3 cells under control pressures (0 mmHg) 

displayed the least amount of SFF compared to cells exposed to static (40 mmHg) or 

cyclic pressures (50/30 mmHg), except at a cholesterol conjugate concentrations of 25 

and 50 µg/mL (Figures 16 & 17). Exogenous cholesterol thus appears to play a role in 

altering the bone cell SFF response to pressure. 
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 Membrane Cholesterol & Fluidity Response 

 Cholesterol plays a major role in the interaction between the bone cell membrane 

and the bone cell stress fiber formation [84]. In addition, cholesterol has been shown to 

affect membrane fluidity and cell proliferation [85]. According to this study, the amount 

of membrane fluidity decreases as the amount of membrane cholesterol increases until it 

reaches a plateau between 12.5 to 50 µg/mL of cholesterol (Figures 19 & 20). Since the 

membrane fluidity of the cell changes the signaling pathway on the cell membrane, this 

plateau result may explain the membrane cholesterol blockade of the SFF responses of 

MC3T3-E1 cells to pressure that occurred when the cells were treated with extracellular 

cholesterol at concentrations between 25 to 50 µg/mL. As expected, there is a significant 

correlation between the membrane cholesterol and amount of cholesterol conjugate added 

to the MC3T3-E1 cells (Table 3). Also, there is a significant correlation (p< 0.05) 

between membrane cholesterol and membrane fluidity (Table 3). Thus, the attenuating 

effects of exogenous cholesterol on the MC3T3-E1 osteoblast cell response to pressure 

may involve changes in membrane fluidity. 

Taken together, the results of the present study implicate membrane cholesterol 

levels as a determinant of the mechanosensitivity of osteoblasts to pressure via its  effect 

on the cell membrane.  
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Conclusions 

 In summary, the present study provided evidence that extracellular cholesterol 

elevations influence the mechanosensitivity of MC3T3-E1 cells to pressure stimuli . The 

degree of SFF formation was dependent upon the amplitude of the applied cyclic 

pressure. The results of the present study also suggest that the osteoblast sensitivity to 

pressure is subject to modification by extracellular cholesterol levels potentially via an 

impact on the cholesterol abundance in the cell membrane. These results lay a foundation 

for an explanation related to the negative impacts of hypercholesterolemia on 

osteoporosis for future collaborative research efforts to develop novel diagnostic, clinical, 

and/or dietary strategies 
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Future Directions 

 While we provided indirect evidence that cholesterol modification of the cell 

membrane and its impact on membrane fluidity alters osteoblast sensitivity to pressure, 

future studies should be conducted to provide more direct evidence. This includes the 

possibility of using biochemical approaches such as membrane fluidizers (benzyl alcohol) 

to counteract the membrane rigifying actions of cholesterol and its impact on osteoblast 

pressure responses (e.g., SFF). In addition, it has yet to be determined whether the effects 

of membrane cholesterol on osteoblast SFF in response to pressure translates to a 

detrimental effect on pressure-sensitive regulation of MC3T3-E1 cell proliferation. 

Finally,  it is necessary to translate this data from an in vitro study into an in vivo 

environment. This can be accomplished using hypercholesterolemic animal models to 

support the possibility that dysregulated osteoblast mechanotransduction may explain the 

link between hypercholesterolemia and osteoporosis.   
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Appendix 

 Background and Rationale 

 Recent studies [86] showed that hypercholesterolemia is associated with the 

onset/progression of osteoporosis but the underlying mechanism is unknown. 

Osteoporosis develops from dysregulated bone remodeling involving an imbalance 

between the rate of bone formation by osteoblasts, the bone forming cells, and the 

activity levels of osteoclasts, the bone resorbing cells. Bone cells of the osteoblastic 

lineage (particularly the osteocytes) have been shown to be responsible for directing the 

bone remodeling process. Since a large population of osteoblastic cells reside in the bone 

matrix in close proximity to the highly vascularized marrow spaces and cortical bone 

blood supply in the Haversian canal, cholesterol in the blood may conceivably diffuse 

into the microenvironment of the osteoblasts where it is taken up by their cell membranes 

[87]. In this pilot study, we set out to determine whether we could use a murine model of 

hypercholesterolemia for future in vivo investigations regarding a potential relationship 

between hypercholesterolemia, impaired bone remodeling, and impaired pressure 

sensitive regulation of osteoblast activity. 

 For this study, we used femurs collected from lipoprotein receptor-deficient 

(LDLR-/-) that had been fed either a high fat (HFD) or normal (ND) diet. The bones used 

in this pilot study were harvested from mice that had been used for a prior study [30]. 

These mice exhibited elevated blood cholesterol levels after 2, 4, and 8 weeks compared 

to normal diet types [30]. The main objective of this study was to show that the time-
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dependent onset and progression of hypercholesterolemia in the circulation due to high 

fat dieting for up to 8 weeks is sufficient to enhance free cholesterol levels in bone. 

 Methods 

 Mice Cholesterol Quantification 

 Femurs were extracted from anesthetized LDLR-/- mice that had been stored at -

80
o
C after being subjected to non-invasive blood flow measurements and subsequently 

euthanized by thoracotomy and exsanguinations for another study [30]. Prior to 

euthanasia, the LDLr-deficient mice (LDLr-/-) (male; 7-week; Jackson Laboratories; Cat. 

# 2207) had been fed either normal mice chow diet (ND) or a saturated fat diet (HFD) 

(21% wt/wt fat and 0.15% wt/wt cholesterol; Harlan Teklad; Cat. # TD88137) for 2, 4, 

and 8 weeks to induce hypercholesterolemia, which was confirmed as reported [30]. As a 

basis of comparison, an equivalent number of age-matched LDLR-/- mice were fed ND. 

Femurs from these mice served as our normocholesterolemic controls. After being 

euthanatized, mice were weighed (values reported previously[30]) and the femurs from 

the right and left hind limbs were dissected out and immediately frozen, as is, at -80
o
C. 

 During a previously described investigation using the same mice from which 

femurs were collected, blood (approximately 500 µL) had been harvested by thoracotomy 

followed by cardiac puncture. As part of these earlier studies, plasma levels of total and 

free blood cholesterol levels were measured and shown to be affected by diet type (HFD 

vs. ND) and duration (2, 4, or 8 weeks), as expected[30]. Table 4 summarizes the blood 

cholesterol concentrations of the LDLr-deficient mice subjected to ND or HFD for 2, 4, 

and 8 weeks [30]. Raw values for these cholesterol levels were used to assess correlations 
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between blood plasma cholesterol levels and our indices of bone cholesterol content and 

density.  

 For our analyses, the left femurs were thawed, cleaned of soft tissues, dried in an 

oven at 100
o
C for 2 days, and placed on a scale to measure their dry weight. The dried 

femur bones were then crushed into powder form using a mortar and pestle and 

subsequently weighed for their powder weight. This powder was used to measure bone 

matrix cholesterol content. 

Bone Cholesterol Extraction/Quantification 

  The extraction of cholesterol from the mice femurs was based on the methods of 

Bligh and Dyer [69]. Cholesterol was extracted from the bone powder of each femur in a 

solution containing 1.5mL of a 1:2 (v/v) mixture of  chloroform and methanol. After a 10 

minute incubation with agitation at room temperature, an additional 750 µL of 

chloroform and 750 µL of water were added to the mixture. This mixture was centrifuged 

at 1900xG for 10 minutes at room temperature. The top supernatant layer was then 

aspirated and the remaining alcoholic layer was allowed to completely evaporate at 40-

50°C using a water bath. After complete evaporation, the extracted cholesterol was 

solubilized in 10% triton X-100 in isopropyl-alcohol and stored at -20°C until needed for 

measurement. 

 The reconstituted cholesterol for each bone sample was mixed with the color 

reagent of the Free Cholesterol E kit (Wako) and incubated at 37°C for 5 minutes. A 

BioTek (µQuant) spectrophotometer was used to measure the absorbance at 600nm. The 

absorbance readings were fitted to a standard curve according to the manufacturer's 

instructions to determine the concentration of free cholesterol in each sample. 
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 Results & Discussion 

 We carried out our analyses to determine if hypercholesterolemia in these animals 

due to high fat dieting had an influence on body weight, dry bone weight, and bone 

powder weight as well as blood free cholesterol, blood total cholesterol, and bone free 

cholesterol levels. 

 Hypercholesterolemia and Body Weight 

 As shown in Figure 21, there is a significant difference (p <0.05) in body weight 

displayed by mice on either HFD or ND for 4 and 8 weeks. This result agrees with 

previous data [88] considering hypercholesterolemia in these animals have been 

associated with obesity [89].  

 Hypercholesterolemia and Femur Dry Weight 

 A comparison between the dry weights of femurs harvested from mice fed either a 

HFD or ND is shown in Figure 22. There was no significant difference in dry weights of 

femurs from mice fed a HFD or ND for all diet durations tested (i.e., up to 8 weeks). 

Since dry weight is an indicator of the amount of bone mineral content obtained, these 

data suggested that hypercholesterolemia resulting from high fat dieting for 2, 4, or 8 

weeks has no impact on the mineralized weight of bone. Similarly, we did not detect any 

significant difference in the powder weights of femurs harvested from mice fed either a 

HFD or ND for up to 8 weeks (Figure 23). It should be noted that hypercholesterolemic 

diets in mice have not indicated any osteoporotic effects before 8 weeks [14]. Thus, 
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future investigations are needed that involve mice on hypercholesterolemic diets for more 

than 8 weeks. 

 Hypercholesterolemia and Free Bone Cholesterol  

 The powdered bone was used to measure the free cholesterol levels in HFD and 

ND mice. A comparison between bone free cholesterol levels for femurs harvested from 

mice on either HFD or ND is shown in Figure 29.  We did not detect any significant 

difference between bone free cholesterol levels in mice from either HFD or ND for all 

diet durations tested (Figure 26). 

 Pearson Analyses to link Blood Cholesterol with Changes in Bone Free 

Cholesterol Levels 

Pearson correlation analyses between all measurements were conducted. The 

analysis assessed inter-relationships between the following measurements: length of diet, 

body weight, dry weight, blood free cholesterol, blood total cholesterol, and bone free 

cholesterol normalized to powder weight. These analyses were conducted in order to 

determine a link between blood cholesterol levels and bone cholesterol levels in HFD and 

ND mice.  

Based on our analysis shown in Table 5, we only detected significant correlations 

between diet duration vs. body weight and for bone dry weight vs. bone free cholesterol 

levels for NFD mice. There was also a link between the diet duration and the body weight 

in the mice, as expected. Also, the significant difference between dry weight and bone 

free cholesterol that is normalized to powder weight is due to the fact that the powder 



60 

 

weight is correlated to the dry weight (Table 5). No other correlations were detected for 

ND mice (Table 5). 

There were two significant correlations detected for high-fat diet type mice; 

length of diet vs. blood total cholesterol, as expected, and blood free cholesterol vs. blood 

total cholesterol (Table 6). The correlation between total cholesterol and blood free 

cholesterol agrees with report from previous studies [30]. Notably, we did not detect a 

significant correlation between bone free cholesterol levels and blood total or free 

cholesterol levels in HFD mice (Table 6). 

 It appears from these pilot results that hypercholesterolemic dieting did not cause 

any changes in the interstitial concentrations of cholesterol in bone for the up to 8-week 

diet durations tested (Figure 26 & Tables 5-6). These data suggest that the link between 

hypercholesterolemia and osteoporosis may not, in fact, be explained by the effects of 

cholesterol elevations in the bone microenvironment on the pressure-sensitive regulation 

of bone formation by osteoblasts.  It should be noted, however, that the accumulated 

evidence in the literature have not shown hypercholesterolemic dieting to promote 

osteoporosis in animals for diet durations less than 12 weeks [14]. Thus, in future studies, 

we plan to conduct additional studies using mice subjected to hypercholesterolemic diets 

for periods longer than 8 weeks.  
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Table 4: Total and Free Blood Cholesterol Concentrations of LDLr-deficient Mice. 

Data indicates mean ± SEM of cholesterol concentrations after 2, 4, and 8 weeks of 

normal (ND) and high-fat (HFD) diets in LDLr-deficient mice. All data was collected in 

a previous study [30].  

 

  

2-week 4-week 8-week

ND 125 ± 11 207 ± 20 281 ± 43

HFD 642 ± 33 852 ± 72 1215 ± 228

ND 59 ± 3 62 ± 3 71 ± 4

HFD 289 ± 21 374 ± 26 449 ± 56

Total

Free

Diet
Cholesterol 

Type

Cholesterol Concentration 

(mg/dL)
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Figure 21: Hypercholesterolemic Diets have an Effect on Body Weight of Mice. 

Body weight (in grams) is compared between high-fat (HFD) and normal (ND) diets of 

mice after 2 [Panel A], 4 [Panel B], and 8 [Panel C] weeks. The vertical lines indicate one 

standard deviation above the average body weight indicated by the bar. Horizontal line 

indicates a significant (p<0.01) difference based on Student’s t-test; n=28. 

 

A 

B 

C 
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Figure 22: Hypercholesterolemic Diets have no Effect on Dry Bone Weight of Mice. 

Dry bone weight (in mgrams) is compared between high-fat (HFD) and normal (ND) 

diets of mice after 2 [Panel A], 4 [Panel B], and 8 [Panel C] weeks. The vertical lines 

indicate one standard deviation above the average femur dry weight (bars); n=28. 

A 

B 

C 
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Figure 23: Hypercholesterolemic Diets have no Effect on Powder Bone Weight of 

Mice. Powder bone weight (in mgrams) is compared between high-fat (HFD) and normal 

(ND) diets of mice after 2 [Panel A], 4 [Panel B], and 8 [Panel C] weeks. The vertical 

lines indicate one standard deviation above the average femur powder weight (bar) ; 

n=28. 

 

  

A 

B 

C 
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Figure 24: Hypercholesterolemic Diets have no Effect on Bone Free Cholesterol of 

Mice. Bone free cholesterol (in mg/dL) is compared between high-fat (HFD) and normal 

(ND) diets of mice after 2 [Panel A], 4 [Panel B], and 8 [Panel C] weeks. The vertical 

lines indicate one standard deviation above the average values (bars) ; n=28. 

 

A 

B 

C 
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Table 5: Normal-Fat Diets Between Length of Diet, Body Weight, Dry Bone Weight, 

Blood Free Cholesterol, Blood Total Cholesterol, and Bone Free Cholesterol have no 

Correlation. A correlation analysis depicting a Pearson r-value coefficient (top number) 

and a two-tailed p-value (bottom number). An asterisk indicates a significant correlation 

(p<0.05); n=14. 
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Table 6: High-Fat Diets Between Length of Diet, Body Weight, Dry Bone Weight, 

Blood Free Cholesterol, Blood Total Cholesterol, and Bone Free Cholesterol have no 

Correlation. A correlation analysis depicting a Pearson r-value coefficient (top number) 

and a two-tailed p-value (bottom number). An asterisk indicates a significant correlation 

(p<0.05); n=14. 
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