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ABSTRACT

This thesis examines the role of rainfall variability and uncertainties on the spatial
scaling structure of peak flows using the Whitewater River basin in Kansas, and lowa
River basin in lowa as illustrations. =~ We illustrate why considering individual
hydrographs at the outlet of a basin can lead to misleading interpretations of the effects of
rainfall variability. The variability of rainfall is characterized in terms of storm intensity,
duration, advection velocity, zero-rain intermittency, variance and spatial correlation
structure. We begin with the simple scenario of a basin receiving spatially uniform
rainfall of varying intensities and durations, and advection velocities. We then use a
realistic space-time rainfall field obtained from a popular rainfall model that can
reproduce desired storm variability and spatial structure. We employ a recent
formulation of flow velocity for a network of channels and calculate peak flow scaling
exponents, which are then compared to the scaling exponent of the channel network
width function maxima. The study then investigates the role of hillslope characteristics
on the peak flow scaling structure. The basin response at the smaller scales is driven by
the rainfall intensities (and spatial variability), while the larger scale response is
dominated by the rainfall volume as the river network aggregates the variability at the
smaller scales. The results obtained from simulation scenarios can be used to make
rigorous interpretations of the peak flow scaling structure obtained from actual space-
time model, and actual radar-rainfall events measured by the NEXRAD weather radar
network.

An ensemble of probable rainfall fields conditioned on the given radar-rainfall
field is then generated using a radar-rainfall error model and probable rainfall generator.
The statistical structure of ensemble fields is then compared with that of given radar-
rainfall field to quantify the impact of radar-rainfall errors on 1) spatial characterization

of the rainfall events and 2) scaling structure of the peak flows. The effect of radar-



rainfall errors is to introduce spurious correlations in the radar-rainfall fields, particularly
at the smaller scales. However, preliminary results indicated that the radar-rainfall errors

do not significantly affect the peak flow scaling exponents.
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ABSTRACT

This thesis examines the role of rainfall variability and uncertainties on the spatial
scaling structure of peak flows using the Whitewater River basin in Kansas, and lowa
River basin in lowa as illustrations. =~ We illustrate why considering individual
hydrographs at the outlet of a basin can lead to misleading interpretations of the effects of
rainfall variability. The variability of rainfall is characterized in terms of storm intensity,
duration, advection velocity, zero-rain intermittency, variance and spatial correlation
structure. We begin with the simple scenario of a basin receiving spatially uniform
rainfall of varying intensities and durations, and advection velocities. We then use a
realistic space-time rainfall field obtained from a popular rainfall model that can
reproduce desired storm variability and spatial structure. We employ a recent
formulation of flow velocity for a network of channels and calculate peak flow scaling
exponents, which are then compared to the scaling exponent of the channel network
width function maxima. The study then investigates the role of hillslope characteristics
on the peak flow scaling structure. The basin response at the smaller scales is driven by
the rainfall intensities (and spatial variability), while the larger scale response is
dominated by the rainfall volume as the river network aggregates the variability at the
smaller scales. The results obtained from simulation scenarios can be used to make
rigorous interpretations of the peak flow scaling structure obtained from actual space-
time model, and actual radar-rainfall events measured by the NEXRAD weather radar
network.

An ensemble of probable rainfall fields conditioned on the given radar-rainfall
field is then generated using a radar-rainfall error model and probable rainfall generator.
The statistical structure of ensemble fields is then compared with that of given radar-
rainfall field to quantify the impact of radar-rainfall errors on 1) spatial characterization

of the rainfall events and 2) scaling structure of the peak flows. The effect of radar-



rainfall errors is to introduce spurious correlations in the radar-rainfall fields, particularly
at the smaller scales. However, preliminary results indicated that the radar-rainfall errors

do not significantly affect the peak flow scaling exponents.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Floods are one of the deadliest natural hazards. Recent examples are Cedar River
and Iowa River floods in June 2008, which caused unprecedented damage. According to
the 1997 International Red Cross report on world disasters, across the globe, more than
318,000 people were killed due to floods in the 25-year period from 1972 to 1997
[IFRCRCS 1997]. Ashley and Ashley [2008] reported a total of 4586 flood related
fatalities in contiguous United States during 47-year period from 1959 to 2005. The
Fourth Assessment Report (2007) of the Intergovernmental Panel on Climate Change
(IPCC) predicts that ‘heavy precipitation events, which are very likely to increase in
frequency, will augment flood risk’. Floods result from complex interaction of rainfall
with various aspects of landscape such as topography, land cover, and antecedent
moisture. In addition, the changing climate and man-made changes to the landscape
make the flood prediction, a very complex problem.

Based on historical streamflow records, the U.S. Geological Survey (USGS)
developed the regional quantile regression approach in the 1960s for predicting annual
flood frequencies [e.g., Dawdy, 1961; Benson, 1962]. The regression relations expressed
flood quantiles as power laws involving one or more explanatory variables such as
drainage area, basin geomorphology, and climatic characteristics. Drainage area is
usually the most important explanatory variable, and many times the only variable, used
[e.g., Riggs, 1973; Jennings et al., 1994]. The quantile regression method was
extensively employed to obtain flood frequencies for several basins including ungauged
locations. Many have supported the above statistical relations and showed that despite all
the complexity of floods at the hillslope scale, their aggregated behavior is a power-law

(scale-invariant) with respect to the drainage areas [e.g., Smith, 1992; Gupta et al., 1994;



Goodrich et al., 1997; Vogel and Sankarasubramanian, 2000; Eaton et al., 2002; Ogden
and Dawdy, 2003; Furey and Gupta, 2005]. This provides us with an opportunity to
develop a unified geophysical framework for studying the hydrologic response of a basin
across a wide range of scales. Such a framework would be invaluable for prediction of
flood peaks particularly in ungauged basins [e.g., Sivapalan et al., 2003]. However, a
comprehensive understanding of the role of physical processes in the statistical scaling
relations is crucial for building and implementing such a framework [e.g., Gupta et al.
2007].

In parallel to developing the statistical regression equations for flood quantiles,
hydrologic community also developed models to predict hydrographs at the outlet or at
specific locations [e.g., Crawford and Linsley, 1962; Freeze and Harlan, 1969; Burnash
et al., 1973; Beven and Kirby, 1979; Abbott et al., 1986a,b; Beven, 2001; Singh and
Frevert, 2002a,b]. Several studies have used these models for understanding the effect of
variability in processes such as rainfall, antecedent moisture, and soil infiltration capacity
on the hydrologic response of the basin [e.g., Dawdy and Bergmann, 1969; Beven and
Hornberger, 1982; Milly and Eagleson, 1988; Krajewski et al., 1991; Obled et al., 1994;
Shah et al., 1996; Finnerty et al., 1997; Singh, 1997; Koren et al., 1999; Arnaud et al.,
2002; Brath and Montaniri, 2003; Brath et al., 2004; Smith et al., 2004b; Tetzlaff and
Uhlenbrook, 2005; Morin et al., 2006; Fenicia et al., 2008; Saulnier and Le Lay, 2009].
One can draw upon this large and growing pool of (deterministic) hydrologic modeling
studies to understand the physics behind the statistical scaling behavior of peak flows.

However, one fundamental problem with most hydrologic models is that the
governing equations used to describe the physical processes in hydrologic models are
sensitive to the scale [e.g., Klemes, 1983; Beven, 1985; Beven, 1989; Bhaskar, 1989;
Grayson et al., 1992; Bloschl and Sivapalan, 1995; Beven, 2001; Kirchner, 2006]. For
example, the Darcy’s law (subsurface flow) and the Richard’s equation (unsaturated

flow) with “effective” parameters are usually employed by hydrologic models to



represent the corresponding processes. Although physically-based, their applicability
was debated even for a laboratory column scale [e.g., Hornberger et al., 1991], and
therefore they are certainly not valid at the model grid scale. With huge number of
parameters (particularly for distributed models), estimating their values from local
measurements continues to be a major problem [e.g., Gupta et al., 2004]. Therefore
hydrologic models usually resort to calibration strategies often leading to unrealistic
values for the parameters. Further, the calibration is carried out with over emphasis on
the outlet hydrographs, which do not provide adequate information regarding the
hydrologic response of a basin [e.g., Hooper et al., 1988; Jakeman and Hornberger,
1993].

The scale issue in hydrological modeling is partially responsible for the lack of
consensus regarding the effect of spatial variability in processes such as rainfall and
infiltration on the streamflow prediction. For instance, based on simulations on a 287
km® Friends Creek watershed, Beven and Hornberger [1982] suggested that correct
representation of spatial variability of rainfall is important for accurate prediction of
streamflow hydrographs. Using a semi-distributed model on a 71 km® watershed in
southeast France, Obled et al. [1994] concluded that the hydrographs are not very
sensitive to the spatial variability in rainfall. Based on simulations on a 10.5 km® Wye
River basin, Shah et al. [1996] reported that spatially averaged rainfall could result in
streamflow predictions with reasonable accuracy under wet antecedent moisture
conditions. Arnaud et al. [2002] used hydrologic model with three different runoff
generation mechanisms on fictitious basins of sizes ranging from 20 km” to 1500 km?” and
concluded that runoff response varies significantly between spatially uniform and
spatially distributed rainfall. ~Based on the results from the Distributed Model
Intercomparison Project (DMIP) [Smith et al., 2004a], Smith et al. [2004b] suggested that
distributed models are amenable only when the basins cannot effectively filter the rainfall

variability. For basins of size ranging from 50 km® to 2240 km®, Saulnier and Le Lay



[2009] concluded that the accurate estimation of rainfall intensity distribution and
localization is more important than the areal rainfall.

Due to the aforementioned scale and calibration issues, we avoid the use of
popular distributed models based on sub-basin or grid-based discretization for our
investigations on the peak flow scaling behavior. Instead, we adopt a systematic
diagnostic framework to further understand the role of rainfall variability and hillslope
characteristics in the scaling structure of peak flows from river basins in lowa and
Kansas. In the next section, we describe the basic concepts in the scaling theory of
floods. A brief review of the relevant literature is presented in Section 1.3 followed by
statement of objectives in Section 1.4. Section 1.5 outlines the methodology followed in

this thesis.

1.2 Basic Concepts

Herein, we give a brief overview of the basic concepts in scaling-based analyses
that we encounter at various points in this thesis. The Horton ratio Ry is defined as a ratio
of the averages E/X,,+1]/E[X,], where X, is a generic random field indexed by Horton
order ®, a stream ordering system developed by Horfon [1945] and later modified by
Strahler [1952,1957]. For instance, the field X can be the upstream areas or width
function maxima or peak flows. For more details on the Horton order and the Horton
ratios, please see Rodriguez-Iturbe and Rinaldo [1997] and Peckham and Gupta [1999].

The width function of a river network is a measure of the river network branching
structure. There are basically two types of width functions: topologic and geometric.
Throughout this study, we employ the topologic width function, which is defined as the
number of links which are s links upstream of the outlet of the basin as a function of s
[e.g., Veitzer and Gupta, 2001]. Under idealized conditions of runoff generation and
constant flow velocity, the width function represents the response of the river network to

spatially uniform instantaneous rainfall. The statistical structure of the width function



and its relation to the hydrologic response of the basin has been the object of several
recent studies [e.g., Veitzer and Gupta, 2001; Lashermes and Foufoula-Georgiou, 2007;
Moussa, 2008; DiLazarro, 2009]. Veitzer and Gupta [2001] showed that the width
function maxima of the simulated random self-similar channel networks follow
distributional simple scaling. That is, the generalized Horton law in terms of probability
distributions [e.g., Peckham and Gupta, 1999] holds for the width function maxima, and
the Horton ratios of width function maxima Re and upstream areas R4 are related by a

power law of the form.

— phB
R, =R (L1)
where £ is the scaling exponent of the width function maxima. Similarly, the Horton

ratios for the peak flow Ry and upstream areas R, are related by a power law

R, =R] (12)
when peak flow distributions exhibit statistical self-similarity, which has been shown to
be the case under certain conditions of flow and rainfall [e.g., Mantilla, 2006]. The
exponent @ in equation 2 is referred to as the peak flow scaling exponent. A scale break
is defined in this work as a transition point in the log-log plot of peak flows vs. drainage

arcas.

1.3 Brief Review of Literature

In the past two decades, numerous simulation and data-based studies were
conducted to determine the physical basis of scale-invariance [e.g., Gupta and Dawdy,
1995; Robinson et al., 1995; Gupta et al., 1996; Bloschl and Sivapalan, 1997; Robinson
and Sivapalan, 1997; Menabde et al., 2001; Menabde and Sivapalan, 2001; Ogden and
Dawdy, 2003; Furey and Gupta, 2005; Furey and Gupta, 2007]. A general consensus
emerging from these studies is that the rainfall, channel network topology, hydraulic

geometry of the channels and the hillslope runoff generation mechanisms play key roles



in determining the scaling exponents of the power laws in peak flows. While most of the
research on peak flow scaling behavior was related to the annual peak flows, there has
been a recent shift towards investigating single-event peak flows [e.g., Gupta et al., 1996;
Ogden and Dawdy, 2003; Furey and Gupta, 2005; Mantilla et al., 2006; Furey and
Gupta, 2007]. Understanding scale-invariance of the peak flows in terms of physical
processes is easiest at the scales of single events. Recent studies also suggested that the
scaling exponents of annual peak flows are related to those of single-event peak flows
[e.g., Ogden and Dawdy, 2003; Gupta et al., 2007]. In the following subsections, we
give a brief description of key results in the literature related to the statistical structure of
single event peak flows. We first discuss basic concepts and then proceed to simulation-

based and data-based studies.

1.3.1 Simulation-Based Studies

Gupta et al. [1996] was the first study to focus on the effect of rainfall and
channel network on the scale-invariance of single-event peak flows from a deterministic
Peano network. Using a numerical simulation framework, they showed that peak flows
exhibit simple scaling for uniform rainfall, with the scaling exponent dependent on the
fractal dimension of the channel network width function maxima. For spatially variable
rainfall, they reported that the peak flows display multi-scaling, with the exponent being
a function of the channel network characteristics and the spatial variability of the rainfall.
Troutman and Over [2001] derived analytical expressions for channel networks and
rainfall mass exponents for the general class of recursive replacement trees and
instantaneous multifractal rainfall. Menabde et al. [2001] focused on the attenuation due
to storage in channel networks and its effect on the scaling exponents of peak flows from
deterministic (Mandelbrot-Viscek and Peano networks) and random self-similar networks
with linear routing and for spatially uniform rainfall. For the deterministic self-similar

networks (SSNs), the scaling exponent of peak flows is smaller than the one predicted for



the width function maxima (i.e., ignoring the attenuation due to storage in channel
networks). Menabde et al. [2001] also showed that for random SSN with smaller
bifurcation ratios, the peak flows scale asymptotically.

To better understand and predict the scaling behavior of peak flows, Menabde and
Sivapalan [2001] introduced a dynamic and spatially distributed hillslope-link rainfall-
runoff model based on representative elementary watershed (REW) consisting of three
main components: a space-time model of rainfall, a hillslope model and a channel
network model. The rainfall model can generate storms whose spatial structure is
characterized by a discrete random cascade. The hillslope model partitions the rainfall
into Hortonian runoff, subsurface flow and evaporation, which are assumed to be zero
during periods of rainfall. They further assumed that all of the surface runoff reaches the
channel instantaneously. The channel network is a deterministic Mandelbrot-Viscek
network in which the hydraulic geometry properties at every link are obtained from
observed empirical relationships. They investigated the effect of rainfall on the scaling
structure of the peak flows, starting from a spatially uniform rainfall scenario and moving
to the individual storms based on discrete random cascade. They also extended the study
to include continuous rainfall and annual flood peaks. The results from event-based
simulations with spatially uniform rainfall and the rainfall based on the random cascade
model demonstrated that the interplay between the catchment response time and the
storm duration controls the scaling exponent of peak flows.

Mantilla et al. [2006] discussed the difficulties in generalizing the scaling theory
to the real networks and tested whether the random spatial variability of the real channel
networks and their hydraulic geometry properties, coupled with flow dynamics, produce
Hortonian scaling in peak flows. Based on the results from Veitzer and Gupta [2001], the
value of the scaling exponent of the network width function was computed for the 149
km® Walnut Gulch basin in Arizona [e.g., Goodrich et al., 2008]. The runoff rates were

estimated from two very small gauged sub-basins within the Walnut Gulch, assuming



that rainfall was spatially uniform. For an instantaneously applied runoff rate, the system
of ordinary differential equations describing the runoff dynamics was solved for three
different scenarios: (a) constant velocity (b) constant Chezy and (c) spatially varying
Chezy constant. They showed that the scaling exponent of peak flows is larger than the
exponent of the width function maxima, which contradicted the results from the studies
performed on the idealized basins, where the flow scaling exponent is always smaller
than the exponent of the width function maxima. The contradiction is explained in terms
of the relative roles of flow attenuation and flow aggregation in the river networks that

were considered.

1.3.2 Data-based studies

Ogden and Dawdy [2003] investigated the single-event and annual peak flows
from the 21.2 km? Goodwin Creek watershed in Mississippi [e.g., Alonso and Bingner,
2000], where the Hortonian mechanism of runoff generation is dominant. They
considered 279 events for which flows were recorded at several interior gauging stations.
The results showed that the peak flows follow simple scaling but the exponents vary from
event to event and depend on the runoff production efficiency. The mean of scaling
exponents is 0.831 with a standard error of 0.10. Some events are then filtered out with a
threshold on correlation coefficient (0.93) between logarithm of peak flows and the
upstream areas. The mean of scaling exponents from 226 remaining events is equal to
0.826, with a standard error of 0.047 and a mean correlation coefficient of 0.98.

Furey and Gupta [2005] explained this event-to-event variability in the peak flow
power laws in Goodwin Creek watershed in terms of variability in the rainfall’s excess
depth and the duration. To understand the physical origin of the observed peak flow
scaling, Furey and Gupta [2007] proposed and applied a 5-step framework on the
Goodwin Creek watershed. Gupta et al. [2007] provided further observational evidence

on scaling in single-event peak flows for the Walnut Gulch basin, Arizona. They



reported two different sets of scaling exponents for smaller and larger scales with a scale
break at around 1 km®. They also noticed that for the events that cover almost the entire
basin, the single-event scaling exponents are quite close to the scaling exponents of the
annual flood quantiles.

All the studies discussed in this section focused on the fundamental question,
“How is the peak flow scaling exponent linked to the channel network characteristics
such as width function maxima and variability in the rainfall?” In the studies that
addressed this question using numerical simulations under idealized conditions, the
complexity in the simulations increased from Gupta et al. [1996] to Mantilla et al.
[2006]. The rainfall varied from spatially uniform to the complex cascade-based case,
and the networks ranged from deterministic self-similar to random self-similar and actual
river networks with linear and nonlinear routing mechanisms [e.g., Gupta et al., 1996;
Veitzer and Gupta, 2001; Troutman and Over, 2001; Menabde et al., 2001; Menabde and
Sivapalan, 2001; Mantilla et al., 2006]. In the data-based analyses [e.g., Ogden and
Dawdy, 2003; Furey and Gupta, 2005; Gupta et al., 2007; Furey and Gupta, 2007], the
variability in the scaling exponents were explained in terms of variability in antecedent
conditions and storm characteristics. However, the smaller size of the basins (21.2 km®
Goodwin Creek and the 149 km” Walnut Gulch basins) limited the range of scales
available to explore the effect of rainfall variability on the peak flow scaling structure.
Regardless of the approach followed, these studies enhanced our understanding of the
relationship between the statistical structure of flood peaks and the characteristics of
rainfall and channel network. However, there is further need to understand and
generalize the role that rainfall plays in the statistical structure of peak flows from actual

river basins across a range of scales.
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1.4 Objectives

The broad motive of this study is to contribute towards the development of a
comprehensive geophysical theory of floods. The specific goal is to investigate the
sensitivity of the spatial scaling structure of peak flows to the variability of rainfall for
different routing and hillslope characteristics. We investigate the effect of rainfall
variability on the scatter, the scale break and the regression exponent for the power law
fitted to the peak flows vs. upstream areas on the higher side of the scale break.
Remotely sensed rainfall products (e.g., radar-rainfall products) are being increasingly
employed to study the spatial structure of floods due to their large area coverage and high
resolution. Another objective of this study is to investigate the effect of rainfall
estimation errors, which are inherent in the remotely sensed rainfall products, on the
spatial characterization of rainfall and peak flows. Rigorous understanding of the role of
rainfall on the scaling structure of peak flows provides the basis for the scaling based
framework to predict the peak flows from real basins. The current study represents a step
forward and improves our understanding of the relative roles of rainfall and the channel

network on the scale-invariance of peak flows.

1.5 Methodology

We follow systematic simulation-based framework for most of the study. We
perform a series of simulation experiments to investigate the sensitivity of the scaling
behavior to the rainfall characteristics. We also investigate the sensitivity of the scaling
behavior to linear and nonlinear channel routing mechanisms. We selected the
simulation framework instead of a data-based analysis since it allows complete freedom
to systematically explore various aspects of scale-invariance. Also, there are very few
basins in the United States where streamflow data necessary for rigorous scaling analyses
are available. Our simulation covers a range of scale from ~0.1-7250 km?’, thus

addressing the peak flow scaling for basin response times ranging from minutes to days.
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Throughout the thesis, we employ CUENCAS [e.g., Mantilla et al. 2005], a distributed
hydrologic model with a hillslope-link discretization scheme. In the latter part of the
thesis, we employ rainfall datasets from lowa and Kansas and perform data-based
analysis.

In Chapter 2, we briefly describe the hydrological model and illustrate why
considering individual hydrographs at the outlet of a basin can lead to misleading
interpretations of the effects of rainfall variability. We then investigate the hydrologic
response of a basin to the simple scenario of spatially uniform rainfall of varying
intensities, durations and storm advection velocities. In Chapter 3, we investigate the role
of storm variability characterized by variance, spatial correlation and intermittency. We
employ realistic space-time rainfall fields obtained from a popular rainfall model that
combines the aforementioned features. All the simulation experiments in Chapters 2 and
3 are performed on ~1100 km” Whitewater River basin in Kansas.

In Chapter 4, we change the river network to lowa River basin, which is an order
of magnitude larger than the Whitewater River basin, and repeat the analysis with
spatially uniform and realistic rainfall fields. Besides the role of rainfall variability,
Chapter 4 also focuses on the effect of channel network extraction, and the hillslope
characteristics on the scaling behavior of peak flows. For all the scenarios, a recent
formulation of flow velocity for a network of channels is utilized to obtain the peak flows
and the scaling exponents. The exponents are in turn compared to the scaling exponent
of the width function maxima. The results obtained from simple scenarios are used to
make rigorous interpretations of the peak flow scaling structure obtained from rainfall
simulated from the space-time rainfall model.

It is well known that the variability in the remotely sensed precipitation fields is a
combination of natural variability and the rainfall estimation errors. Therefore, it is
equally important to quantify how the rainfall estimation errors affect the spatial

characterization of rainfall fields and then propagate into the peak flow scaling
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exponents. Chapter 5 presents a theoretical framework for estimating the radar-rainfall
error spatial correlation (ESC) using data from relatively dense rain gauge networks. The
method is analogous to the error variance separation that corrects the error variance of a
radar-rainfall product for gauge representativeness errors. We then apply the method to
estimate the ESC of the National Weather Service’s standard hourly radar-rainfall
products, known as digital precipitation arrays (DPA). However, to quantify the effect of
errors, we need a comprehensive error model capable of characterizing not only the first
and second-order statistics of errors, but also their conditional distributions.

In Chapter 6, we employ an in-house radar-rainfall error model developed by
Ciach et al. [2007] and study the impact of radar-rainfall estimation errors on the spatial
characterization of ten warm season rainfall events over Wichita, Kansas. We then
propagate the ensemble of probable rainfall fields through the hydrologic model and
obtain the peak flow scaling structure. Chapter 7 presents preliminary results regarding
the effect of radar-rainfall errors on the statistical structure of peak flows. In Chapter 8,
we summarize the thesis and present concluding remarks including a discussion on the
implications of this study with respect to developing scaling-based geophysical flood
forecasting tool. In the Appendix A, we quantified the effects of sampling on the

estimation of spatial correlation, the statistic, which is used throughout the study.
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CHAPTER 2
EFFECT OF RAINFALL INTENSITY AND DURATION:
SIMULATIONS WITH SPATIALLY UNIFORM RAINFALL"

2.1 Introduction

In this chapter, our goal is to clarify the role of basic characteristics of rainfall
such as storm intensity, duration and advection velocity on the scaling structure of peak
flows. The chapter is organized as follows. Section 2.3 provides a brief description of
the study area. In Section 2.3, we present the rainfall-runoff model based on
decomposition of the landscape into hillslopes and channel links. Section 2.4 lists the
assumptions in the hydrologic model. In Section *2.5, we illustrate with a simple
simulation experiment, how examining the basin response in terms of outlet hydrograph
can be misleading. Section 2.6 describes the simulation results related to the sensitivity
of the peak flow scaling behavior to the basic characteristics of rainfall. In the Section
2.7, we present an analysis of scatter seen in the scaling structure of peak flows, followed

by our conclusions in Section 2.8.

2.2 Study Area - Whitewater River basin

The Whitewater River basin (Figure 2.1), with an area of 1100 km?, stretches
between latitudes 37° 46’E and 38° 09°E and longitudes 96° 51°’W and 97° 18°W. The
river network extraction was based on the maximum gradient method, also known as the
DS algorithm [e.g., O ’Callaghan and Mark, 1984]. Mantilla and Gupta [2005] compared
the network extracted from CUENCAS with those extracted from popular GIS software
such as ArcInfo, GRASS and RiverTools and found no major differences when high

resolution DEMs were used. They showed that a 30m resolution DEM is sufficient to

*Adapted from Mandapaka, P.V., W.F. Krajewski, R. Mantilla, and V. K. Gupta (2009),
Dissecting the effect of rainfall variability on the statistical structure of peak flows, Advances in
Water Resources, 32, 1508-1525.
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extract the drainage network that is close to the terrain’s actual network. We use the one
arc-second resolution (~30m) digital elevation model (DEM) from USGS to extract the
channel network. This results in some 20,000 hillslopes and, thus, channel links for this
basin. In Figure 2.1, we show the extracted channel network with links of Horton orders
4to7.

Section 1.2 indicated that the width function maxima play an important role in
understanding the scaling structure of the peak flows. Figure 2.2 shows the topologic
width function for the outlet of the Whitewater River basin. We estimated the width
functions for each link in the river network and obtained the corresponding maximum
values. Figures 2.3(a) and 2.3(c) show the Horton plots for drainage areas and width
function maxima of links of various orders for the Whitewater River basin, Kansas. If
the channel network is self-similar, the averages of drainage areas and width function
maxima display linearity with respect to the corresponding Horton orders in the log-linear
domain [e.g., Strahler, 1957; Peckham and Gupta, 1999; Furey and Troutman, 2008).
The log-linearity in Figures 2.3(a) and 2.3(c) confirm the statistical self-similarity of the
upstream areas and the width function maxima. In the regression analysis, we use the
areas and width function maxima corresponding to the Horton orders 2 to 6. The order 7
stream is not used in the Horton regression due to sampling reasons: we have only one
point corresponding to the order 7. Although, averages corresponding to order 1 streams
do not suffer from sampling issues, they are usually not considered in the regression [e.g.,
Peckham and Gupta, 1999; Mantilla and Gupta, 2005] as they represent the finest detail
in a stream network, and therefore the corresponding basins do not contain a “network”.
The Horton ratios for the areas and width function maxima are then obtained by
exponentiation of the slopes from the regression analysis. The scaling exponent of width
function maxima obtained through Horton ratios in (1) is 0.49.

If the upstream areas and width function maxima display log-linearity, as shown

in Figures 2.3(a) and 2.3(c), then E/X,,] = E[X;]*(Rx)””, where X is either the upstream
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area or the width function maxima and Ry is the corresponding Horton ratio. The
rescaled upstream areas and width function maxima are obtained by dividing each value
of X,, by E[X;]*(Rx)”". The probability distribution of the quantity X,/JE[X;]*(Rx)""] is
called the rescaled probability distribution. In Figures 2.3(b) and 2.3(d), we show the
statistical self-similarity of areas and width function maxima in terms of their rescaled
probability distributions for orders 1 to 5. Although order 1 basins were not considered
in the regression analysis, it can be seen that their rescaled probability distribution

collapses onto those of orders 2 to 5.

2.3 Hydrologic Model

Because of the fundamental effect of the river network structure on peak flows, it
is necessary to have a distributed hydrologic model that can calculate hydrographs for all
river network links in order to carry out a systematic investigation. In this study, we used
the CUENCAS model, developed by Mantilla and Gupta [2005], which is based on
hillslope-link decomposition of the landscape and mass conservation equations [e.g.,
Gupta and Waymire, 1998]. The model can be run with linear routing with constant flow
velocity throughout the channel network or nonlinear routing with velocity that depends
on the discharge in each link and the corresponding upstream area. For the nonlinear

case, the velocities are estimated using [Mantilla, 2007]

V(t)zv . @ ﬁl. i -
¢ R 0, A, (2.1)

where V() is the velocity in the channel and A4 is the upstream area of the corresponding
channel. The coefficients 4; and 4, are the velocity scaling exponents for discharge and
upstream area, respectively, and vz, Or and Ag, are reference velocity, discharge and area,
whose values are taken in this study to be 1.0 m/s, 200 m*/s and 1100 km®. These values

are obtained from measurements during the rainfall-runoff events in the Whitewater
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River basin. The above equation gives the instantaneous velocity as a function of
discharge ¢(#) in the channel link, which in turn gives rise to a non-linear ordinary
differential equation that represents fluxes coming out of the channel link. Please see
equations (6) and (9) — (11) in Mantilla et al. [2006] for more details.

Although the nonlinear routing mechanism is closer to reality, we also included
the linear routing analysis in this study as it is a good starting point to investigate the
effect of rainfall variability on the peak flow scaling structure. Throughout this study, we
use a value of 0.5 m/s for the V. for the linear routing scenario and 4; and 4, of 0.3 and -
0.1 for the nonlinear routing scenario, obtained based on field data from the region. In
Figure 2.4, we show the velocity obtained using (3) for the link that corresponds to the
largest upstream area of each Horton order for the Whitewater River basin. Throughout

this chapter, we employed a rainfall grid of size 40 x 40 km® with a spatial resolution of 1

km.

2.4 Assumptions

In all of our simulation scenarios, we assume (1) negligible evaporation; (2)
purely surface runoff (i.e. no infiltration and no subsurface runoff); and (3) instantaneous
flow of runoff into the channel. Evaporation rate is often an order of magnitude lower
than storm rainfall rate, and Hortonian runoff generation is one of the main flood
producing mechanisms. From the brief review of literature presented in Section 2, one
can infer that the complexity in the simulation-based studies that were carried out to
understand the scaling behavior of peak flows have steadily increased since the early
nineties. For instance, one of the first studies was based on the deterministic Peano
network and uniform rainfall [e.g., Gupta et al. 1996]. Some recent studies have used
random self-similar networks to mimic the river network behavior [e.g., Veitzer and
Gupta, 2001; Mantilla, 2007]. We continue on this trajectory by introducing complexity

one step at a time. Therefore, in this study, the complexity is in terms of rainfall
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variability and the river network structure, which is why we limited our analysis to the
Hortonian runoff generation mechanism. We understand that in reality, other runoff
producing mechanisms are also possible in the selected study area. The hydrologic
model we used can account for the saturation excess mechanism, for instance. However,
including it in the study would only add additional variability, and it is difficult to
separate the role of rainfall variability and the variability introduced by the saturation
excess mechanism. The third assumption regarding the instantaneous flow to the channel
plays a key role in shaping the hydrologic response of smaller basins (< ~ 10 km®) as the
hillslope travel times are comparable to the time spent in the channel network [e.g.,
D'Odorico and Rigon, 2003]. But the net effect is smoothed out for larger basins.
Therefore, the assumptions are reasonable in the context of exploring the roles of rainfall
and channel network on the scaling exponents of peak flows, i.e., floods, for individual

rainfall-runoff events.

2.5 Hydrographs vs. Scaling-based Framework

This section illustrates via simple simulation experiments the advantages of the
scaling-based analysis of hydrologic response. The hydrologic model CUENCAS is
forced with two simple rainfall scenarios of changing intensity (60 mm/h and 10 minutes)
and duration (5 mm/h and 120 minutes), while keeping the total rainfall volume constant
(1.1x107 m’). The simulated rainfall is spatially uniform over the basin for the given
duration. We also assumed that the runoff is Hortonian and reaches the channel
instantaneously.  The discharges are normalized with respect to the peak flow
corresponding to the rainfall scenario of 60 mm/h for 10 minutes. The time of occurrence
is then normalized with the time at which the normalized discharge corresponding to the
scenario of 60 mm/h and 10 minutes reaches 0.01. In Figure 2.5, we show the
normalized hydrographs at six different locations in the Whitewater River basin (Figure

2.1). Although we show the normalized hydrographs at only six locations, we simulated
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hydrographs for all the interior sub-basins as well as for the outlet of the Whitewater
River basin by solving the mass and momentum equations throughout the river network.
Figure 2.5 demonstrates that at smaller scales, the values of flow peaks differ greatly
from each other and occur at different instances. However, the flow hydrographs are
indistinguishable as we move to the larger scales.

We then relax the spatial uniformity assumption and assume that the rainfall is
randomly distributed in space over the hillslopes of that same basin. We obtained ten
realizations of the rainfall following a uniform distribution over the range of 20 to 100
mm/h with the average intensity equal to 60 mm/h and the duration kept at 10 min. That
is, for each rainfall field of size 40 x 40 km?, we generated 1600 random numbers
following a uniform distribution with a range of [20,100] and a mean of 60 mm/h. It
should be noted that these fields do not possess any spatial correlation. In Figure 2.6, we
compare the normalized hydrographs obtained with these ten rainfall fields with the one
obtained for the spatially uniform case of Figure 2.5. It is clear from Figure 2.6 that for
spatially random rainfall, the variability in the hydrographs at smaller scales is higher
compared to those of larger scales. Therefore, to develop a comprehensive understanding
of river basin response, it is imperative that we study the hydrographs throughout the
basin across multiple scales.

In this context, the results from spatially uniform rainfall (Figure 2.5) can be
alternatively represented in the form of Figures 2.7(a) and 2.7(b). Similarly, the results
from spatially variable rainfall (Figure 2.6) for two of the simulated realizations are
shown in Figures 2.7(c) and 2.7(d). This framework allows us to study the basin
response across multiple scales. Figure 2.7 illustrates that our simulated peak flows
display scaling structure with respect to the drainage area, and the scaling regime depends
on the intensity, duration and variability of the rainfall. Figure 2.7 also demonstrates that
the effect of rainfall variability on the basin response is scale-dependent. While peak

flows are sensitive to the intensity, duration and spatial distribution of rainfall at small
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scales (~10 km?), the variability in rainfall is dampened at larger scales (~1000 km?) by

the river network via aggregation of flows.

2.6 Simulation Scenarios and Results

2.6.1 Sensitivity to the Intensity and Duration of Spatially

Uniform Rainfall

We start with the simple scenario of a basin receiving spatially uniform rainfall of
a certain intensity for a certain duration. Figure 2.8 shows the peak flows versus drainage
areas for different rainfall intensities and durations with a linear channel routing
mechanism. Three important features of the peak flow scaling structure apparent in the
plots are the scatter, the scale break and the scaling exponent. For a fixed rainfall
intensity, the scatter decreases as the duration of the event increases. For each link, there
is an upper limit for the peak flow that is not exceeded. This upper limit corresponds to
the equilibrium discharge reached when the rainfall duration is larger than the
concentration time. With the increase in the duration of rainfall, more hillslopes reach
saturation, thereby decreasing the scatter. The peak flows for the links that reached
steady-state correspond to the well known rational method (Q = ¢ I 4). We obtain the
scale break by comparing the peak flows obtained from our simulations to those from the
above rational method equation. A window of fixed size in the logarithmic domain is
moved along the upstream area axis of each panel in Figure 2.8. Within such a window,

we compute the following ratio

(2.2)

where, /,, =1if0.90,,<0,,<0,,, O, is the peak flow for the link i, O,y is the
corresponding peak flow obtained from the rational method and #, is the total number of

links in the network. If the ratio } is less than 0.75, the scale break is considered to be



20

at the average of the upstream areas within that window. We realize that this definition
of scale break is subjective. However, it serves the purpose of a qualitative comparison
only. The scale break is indicated by a red line in Figure 2.8. As the duration of the
rainfall increases, more links reach saturation and the scale break moves towards the
larger areas. Because of the large scatter, we do not estimate the scale break for the
shortest duration of 5 minutes.

Figure 2.8 shows that for a fixed duration, the scale break and scatter in the peak
flow scaling structure remain unchanged with intensity. Similar to the Section 2.3, we fit
these peak flows in the Hortonian framework using equation 1.2. In Figure 2.9, we show
the Horton plots of peak flows for all the intensities and durations. The Horton ratio of
peak flows is estimated considering only the orders that lie on the higher side of the scale
break. Since the scale break is not obvious in the Horton plots, we select the orders for
regression based on Figure 2.8. Horton ratio of peak flows obtained by exponentiation of
the regression slope is shown in each panel of Figure 2.9. We obtained ordinary least
squares fit to the peak flows, but in the Hortonian regression framework, similar to the
width function analysis presented in the previous section. The Horton ratio of peak flows
and the upstream area are plugged into equation 1.2 to obtain the scaling exponent of the
peak flows. That is, instead of obtaining the scaling exponent by regression of peak
flows with upstream areas, we use equation 1.2 to obtain the scaling exponent. The
coefficient of the power law is obtained so that the regression line passes through the
average of the peak flows corresponding to the top three orders (Figure 2.8). The
regression equations in Figure 2.8 allow us to conclude that, for a fixed duration, the peak
flows are linearly related to the rainfall intensities when the routing mechanism in the
channels is linear. This result is similar to the one observed by Furey and Gupta [2005]
over the Goodwin Creek Watershed. For a fixed intensity, the scaling exponents range
from 0.50 to 0.56 as the duration changes from 5 to 360 minutes. We have also noticed

that the peak flow at the outlet of the basin changes linearly with the duration. The
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scaling exponents for all the cases are larger than the width function scaling exponent of
0.49, which confirms the result of Mantilla et al. [2006] for the Walnut Gulch watershed.
Figure 2.10 shows the effect of the intensity and duration of spatially uniform
rainfall when the channel routing mechanism is nonlinear. The parameters selected in
this study for the nonlinear routing mechanism result in different velocities in different
links, and a straightforward panel to panel comparison between Figures 2.8 and 2.10 is
therefore not meaningful. We do not obtain the scale break for the shortest duration
simulations for the same reason mentioned in the linear routing case. Regression is not
performed for the longest duration of 360 minutes, as most of the links have reached
saturation and the scale break is not well defined. For the 120 minute duration, the fitted
regression equations reveal that the scaling exponent decreases as the rainfall intensity
decreases. It is also clear from Figure 2.10 that the relationship between flow peaks and
rainfall intensities is nonlinear. The peak flow scaling exponents for all the cases of
nonlinear routing are larger than the exponent of the width function maxima. They range
from 0.55 for the shortest duration of 5 minutes to 0.66 when the rainfall intensity is 50
mm/h and the duration is 120 minutes. For the longest duration of 360 minutes, the

scaling exponent is close to 1.0.

2.6.2 Sensitivity to the Advection Velocity of Spatially
Uniform Rainfall
A spatially uniform rainfall of intensity 30 mm/h and approximately half the size
of the basin (40x20 kmz) is moved from west to east at five different velocities (4, 8, 16,
32 and 64 km/h). The peak flows are fitted in the Hortonian framework and the
regression equations are obtained. Figure 2.11 plots the scaling exponents versus
advection velocities for linear and nonlinear routing mechanisms. As expected from the
results shown in Figure 2.10, there is no scale break for smallest advection velocity of 4

km/h for the nonlinear routing mechanism, and thus we did not perform any regression
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analysis. For both channel routing mechanisms, the scaling exponent decreases with the
increase in advection velocity. Our motive for plotting linear and nonlinear routing
mechanisms in the same figure is not to compare them point-to-point but to compare how
the exponents decrease with advection velocity. Figure 2.11 also shows the power law fit
for both routing mechanisms. The fitted equations reveal that the trend is the same for
both routing mechanisms. The decreasing trend can be explained in terms of the effect of
duration discussed in the previous subsection. With the increase in advection velocity,
the duration for which the block of rainfall stays over the basin decreases, and therefore

the scaling exponent also decreases.

2.6.3 Sensitivity to the Spatio-Temporal Variability

We have thus far assumed that the rainfall is spatially uniform throughout the
basin. In this subsection, we investigate the effect of spatio-temporal variability on the
scaling exponents of peak flows. We relax the spatial uniformity of rainfall over the
basin by breaking it into two components: a block of uniform rainfall with an intensity of
25 mm/h for a duration of 30 minutes on the western half of the basin and a rainfall of 50
mm/h for a duration of 120 minutes over the eastern half of the basin. The channel
network routing is assumed to be linear with a velocity of 0.5 m/s throughout the
network. Figure 2.12 shows the scaling structure of peak flows for this scenario. The
banded structure apparent in Figure 2.12 is a direct manifestation of the different rainfall
intensities received by western and eastern regions of the basin. The scale break for these
two bands also occurs at different locations because of the different durations for which
the rainfall lasts over the western and eastern parts of the basin. We noticed a similar

trend for the nonlinear routing in channels.

2.7 Analysis of Scatter

The scatter in the peak flow scaling structure for the lower order basins can be

explained in terms of peak flows reaching equilibrium (basins reaching saturation), while
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the scatter for the higher order basins can be explained in terms of aggregation and
attenuation of flows. We illustrate this by analyzing the peak flows for two of the rainfall
scenarios in Section 2.6.1 and Figure 2.8. Specifically, we compare the probability
distributions of the rescaled peak flows corresponding to spatially uniform rainfall of 5
mm/h and durations of 5 and 120 minutes with the probability distributions of rescaled
areas and width function maxima. It can be seen from the Figure 2.13(a) that for a
spatially uniform rainfall intensity of 5 mm/h and duration of 120 minutes, the order 1
probability distributions of rescaled peak flows and areas are indistinguishable (negligible
scatter in Figure 2.8) but for shorter duration of 5 minutes, the probability distributions
are very different (large scatter in Figure 2.8). Since the width function has the signature
of the aggregation of flows in the channel network, we compare the order 5 probability
distributions of rescaled peak flows and width function maxima in Figure 2.13(b). We
intended to compare the probability distribution of peak flows with that of width function
maxima for higher order basins. However, for orders 6 and 7, there are not enough points
to obtain the probability distributions. Therefore, we limit the comparison to order 5
basins. Unlike the order 1 distribution, the order 5 distribution is not very sensitive to the
duration of the rainfall event. For both the rainfall scenarios, the distribution of rescaled

peak flows match reasonably well with that of width function maxima (Figure 2.13b).

2.8 Summary and Conclusions

In this chapter, we discussed the advantages of the studying the hydrologic
response of a basin in a scaling-based framework. We carried out a systematic
investigation to understand the role of rainfall on the spatial structure of peak flows. Due
to the lack of adequate field data, i.e. numerous stream gauges as well as highly accurate
rainfall maps, we used simulations. Our simulation experiments consisted of simple

scenarios aimed at dissecting the effects of rainfall variability on peak flows scaling
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structure. We demonstrated that rainfall variability has a different impact on the
magnitude of peak flows for basins of different scales.

While our results are subject to the usual limitations of a simulation study, our
experiments contain many realistic aspects. First, our river basin has a size (scale)
substantially larger than many small experimental basins that are the basis for many
hydrologic studies. Second, our assumptions regarding the runoff generation mechanism
represent a realistic yet limited subset of actual hydrologic conditions. They are
particularly realistic for flood-prone conditions, which are clearly the motivation of our
study. We selected the Whitewater River basin in Kansas for this study and a distributed
hillslope-link based hydrological model to obtain the peak flows for each link within the
basin. The channel network extracted is characterized in terms of width function
maxima. The width function maxima of the Whitewater River basin displayed scaling
behavior with respect to the Horton orders. The scaling exponent of width function
maxima was estimated to be 0.49.

We focused on three aspects of the peak flow scaling structure for all the
scenarios: scatter, scale break and the scaling exponents. The results showed that the
peak flow scaling exponents for all the scenarios considered in this study are greater than
the width function scaling exponent. This result is in agreement with the hypothesis of
Mantilla et al. [2006] that in the river networks, the peak flow scaling exponent is
governed by the competition between attenuation and aggregation of the flows. For a
fixed intensity, the scaling exponent increases with an increase in the rainfall duration,
and for a fixed duration, the scaling exponent does not change with intensity for linear
channel routing and decreases with intensity for nonlinear channel routing. For the two
hour duration, the fitted regression equations reveal that the scaling exponent decreases
as the rainfall intensity decreases. Based on simulations with spatially uniform rainfall of
varying depths and a fixed duration of 10 minutes on a deterministic Mandelbrot-Viscek

network, Menabde and Sivapalan [2001] reported that the scaling exponent increases as



25

the rainfall depth decreases. For the Whitewater River basin, and therefore a real river
network, we did not notice such a trend for 30 and 5 minute duration simulations and
noticed a reverse trend when the duration is 120 minutes. The results obtained from the
simple scenarios contribute to a rigorous understanding of the peak flow scaling structure
obtained from actual space-time variable rainfall, which we address in the following

chapter.
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Figure 2.1 A shaded relief map of the Whitewater River basin showing the hillslope and
channel link structure of the CUANCAS model. The channel network with
links of order 4 to 7 is shown.
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Figure 2.2 Topologic width function at the outlet of the Whitewater River basin, Kansas
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Figure 2.5 Hydrographs at six locations in the Whitewater River basin obtained from a

distributed hydrologic model for a spatially uniform rainfall.
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Figure 2.6 Hydrographs at six locations in the Whitewater River basin obtained from a
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the 10 rainfall realizations assumed to be random in space with the intensities
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Figure 2.8 Sensitivity of peak flow scaling structure to intensity and duration of spatially

uniform rainfall and linear channel routing with a velocity of 0.5 m/s. The
solid black line represents the ordinary least squares fit (equation on each

panel) obtained in the Hortonian framework. The solid red line indicates the
scale break. The color scheme is same as Figure 2.7
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Figure 2.9 Horton plots of peak flows for different combinations of intensity and duration
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CHAPTER 3
EFFECT OF RAINFALL VARIABILITY: SIMULATIONS WITH
SPACE-TIME VARIABLE RAINFALL"

3.1 Introduction

In the previous chapter, we investigated the sensitivity of the peak flow scaling
structure to the basic characteristics of rainfall such as intensity, duration, and advection
velocity employing idealistic spatially uniform rainfall scenarios. However, it is well
known that rainfall is extremely variable both in space and time. Several studies
analyzed the effect of spatial variability of rainfall on the output hydrographs from either
lumped or distributed hydrological models [e.g., Beven and Hornberger, 1982; Milly and
Eagleson, 1988; Naden, 1992; Pessoa et al., 1993; Obled et al., 1994; Shah et al., 1996;
Finnerty et al., 1997; Singh, 1997; Koren et al., 1999; Smith et al., 2004b; Morin et al.,
2006; Saulnier and Le Lay, 2009]. Nevertheless,* the results did not give a complete
picture of the effect of rainfall variability sensitivity as the analyses were based on the
hydrographs at the outlet or at specific locations. Instead of outlet hydrographs, we focus
on the spatial scaling structure of the peak flows, and therefore shed more light on the
sensitivity of the hydrologic response to the variability in the rainfall.

To investigate the statistical structure of peak flows for space-time variable
rainfall, it is necessary to have information on spatial-temporal distribution of rainfall
events. Such information can be conveniently provided by the ground-based weather
radar network. We obtained radar estimates of three rainfall events that occurred in 2007
over Whitewater River basin, Kansas. We forced the hydrologic model CUENCAS with

radar-rainfall estimates and obtained the hydrographs for all the interior sub-basins and

*Adapted from Mandapaka, P.V., W.F. Krajewski, R. Mantilla, and V. K. Gupta (2009),
Dissecting the effect of rainfall variability on the statistical structure of peak flows, Advances in
Water Resources, 32, 1508-1525.
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outlet of the Whitewater River basin. The simulation framework in terms of the study
area, hydrologic model parameters and the assumptions are essentially the same as in the
previous chapter. We also assumed that flow in the channels is constant throughout the
river network. Figure 3.1 shows the peak flow structure for the 6™ of May 2007 event
that lasted for approximately 25 hours. Figure 3.1 reveals that peak flows display scaling
with a scaling exponent of 0.70. The scaling exponent of 0.70 is larger than the scaling
exponent of the width function maxima. For the other two 2007 events that we analyzed,
the scaling exponents were 0.68 and 0.77.

From the studies discussed in Section 2.6 of previous chapter, we know that when
a spatially uniform rainfall is applied instantaneously, the peak flow scaling exponent is
very close to that of the width function maxima. A real rainfall event is far from being
spatially uniform and lasts for a certain duration. Therefore, the scaling exponent in
Figure 3.1 is very different from that of the width function maxima. Figure 3.1 also
shows that the scatter at small scales is different from that of simple scenarios considered
in the previous chapter. Another conspicuous feature in Figure 3.1 is that the scale break
is not well defined, possibly because of the inherent space-time variability of the rainfall
event such as zero-rain intermittency and its spatio-temporal correlation structure. It is
well known that radar-rainfall estimates are subject to considerable uncertainties [e.g.
Bras and Rodriguez-Iturbe, 1993; Krajewski and Smith, 2002; Ciach et al., 2007]. The
errors propagate through the hydrologic models and contribute to the variability of the
predicted peak flows across scales. However, we do not attempt to separate the effects of
rainfall estimation uncertainties from the effects of natural variability of rainfall on the
peak flow scaling structure. The natural variability of rainfall itself has a great impact on
the statistical structure of peak flows, and understanding its role is the main goal of this
study.

The simulation experiments discussed in previous chapter can only partially

explain the effect of various characteristics of rainfall that resulted in Figure 3.1. To



41

investigate the effect of spatial variability of rainfall on the peak flow scaling structure,
we extend the simulation framework of the previous chapter with spatially variable
rainfall fields. Though there are many ways in which spatial variability can be
characterized, we explore it in terms of variance, correlation structure and zero-rainfall
intermittency of Gaussian random fields and intermittent lognormal random fields. Our
experiments are designed so that we depart from the uniform rainfall scenarios in a
gradual, simple manner to keep from losing the benefits of the previously gained
understanding of the effects of the uniform intensity and duration. We start with
Gaussian uncorrelated fields, and then proceed to Gaussian and lognormal correlated
fields with varying degrees of intermittency. We employ a well-known space-time
rainfall model developed by Bell [1987] to obtain lognormal rainfall fields with desired
spatial correlation and intermittency.

This chapter is organized as follows. Following the introduction, Section 3.2
describes the peak flow scaling structure for Gaussian uncorrelated fields with changing
variance. The effect of rainfall correlation structure on the peak flows is discussed in
Section 3.3. The peak flow scaling structure obtained using the rainfall from the space-

time model is discussed in Section 3.4.

3.2 Effect of Spatial Variability

3.2.1 Gaussian Uncorrelated Fields
In this scenario, we simulate Gaussian random fields with a mean of 25.0 mm/h
and the standard deviation ranging from 0.1 mm/h to 6 mm/h. By gradually varying the
variance, we gently depart from the well-understood case of uniform intensity. The
duration of the rainfall is fixed at 120 minutes. The peak flow scaling structure for four
different cases of standard deviation and linear routing mechanism is shown in Figure
3.2. In the Hortonian regression, we used the orders 3 to 7. Table 3.1 lists the average

rainfall, intercept, scaling exponent and the peak flow at the outlet of the basin for all the
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cases and for both routing mechanisms. Figure 3.2 and Table 1 reveal that the increasing
variance has no significant effect on the fitted regression equations. The main effect of
the variance is to increase the scatter in the peak flow scaling structure. The scatter is
averaged out by the basin at the larger scales, as seen from the peak flow values at the
outlet (Table 3.1). The slight variation in the intercepts and outlet peak flows is expected
given that we are using realizations of a random process. This is further evident from the

estimated values of the mean, which are different from the theoretical value of 25 mm/h.

3.2.2 Gaussian Correlated Fields
To investigate the effect of spatial correlation of the rainfall field on the scaling
exponents, we obtain Gaussian fields with a mean of 25 mm/h and a standard deviation of

2 mm/h and that is characterized by an exponential correlation structure

0,

d
p(d)zexp g (91 >0,0<6, S2), (3.1

1

where d is the distance between any two points in the field, 8, is the correlation distance
defined as the distance at which the correlation drops to 1/e and 8; is the shape parameter
that controls the shape of the correlation function at the origin. We fixed the shape factor
at one and generated the random fields with the correlation distances varying from 5 km
to 50 km. Each field is then applied for 120 minutes over the basin, and the peak flows
are estimated for linear and nonlinear routing mechanisms. Figure 3.3 shows the scaling
structure of peak flows for two extreme cases of correlation distances and a linear routing
mechanism. The effect of increasing correlation is to decrease the scatter in the scaling
structure (Figure 3.3). Table 3.2 shows that the larger scale basin response is almost
independent of the correlation structure, although there is some variability in the
intercepts and outlet peak flows, which is mainly due to the fact that we are using

realizations of a random process.
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3.2.3 Zero-Rain Intermittency: Uncorrelated Fields

To investigate the effect of zero-rainfall intermittency, we simulated random
rainfall with varying degrees of zero-rainfall intermittency and a duration of 120 minutes.
The value of rainfall over each pixel was drawn from uniform distribution U[10,30], and
intermittency is introduced randomly but maintains an overall mean fixed at 20 mm/h.
We considered four values of intermittencies: 0.0, 0.05, 0.25 and 0.50 (corresponding
rainy area fractions are 1.0, 0.95, 0.75 and 0.50). These rainfall scenarios were supplied
as input to the CUENCAS model, and the peak flow scaling structure was obtained for
linear routing mechanisms. The sensitivity of the peak flow scaling to the intermittent
random fields is shown in Figure 3.4. With the increase in intermittency (or decrease in
rainy area), the scatter for the smaller scale basin peak flows increased. However, the
effect of intermittency is reduced for the larger scale basins, as evidenced by the linear
regression equations shown in each panel of Figure 3.4 and also from the outlet peak flow
values shown in Table 3.3. The simulations are repeated for the nonlinear routing
mechanism, and we found a similar pattern to the pattern found in linear routing,

although the intercepts and scaling exponents differed (Table 3.3).

3.2.4 Zero-Rain Intermittency: Correlated fields
To study the effect of intermittency in a more realistic manner, we selected the spatial
component of the rainfall model developed by Bell [1987]. The model belongs to the
class of meta-Gaussian models [e.g., Mejia and Rodriguez-Iturbe, 1974; Bell, 1987,
Guillot and Lebel, 1999] and generates a two-dimensional isotropic, correlated random
field using spectral analysis. A non-linear transformation and an external threshold are
then applied to obtain a rainfall field with desired intermittency, average intensity and
correlation structure. In Bell [1987], the use of exponential transformation resulted in
lognormally distributed rainfall. The parameters for the model are the log-transformed

(Gaussian) mean and variance of the rainy area, the zero-rainfall intermittency factor and
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the spatial correlation structure. The parameters we selected are 0 and 0.5 for the log-
transformed mean and variance of the rainy area and exponential correlation structure
with a correlation distance of 20 km. We observed that the realizations from the model,
besides having the desired spatial correlation structure, also displayed spatial scaling
behavior. The duration of the event is fixed at 120 minutes. To keep the volume
constant with changing intermittency, we simulated a single realization with a given
correlation structure on a large (256%256) domain and selected the portion that yielded
the desired intermittency and volume. The spatial structure of the field thus obtained will
remain the same as the larger one. Figure 3.5 shows the scaling structure of peak flows
for four different intermittency factors starting from 0 to 0.50 for the linear channel
routing mechanism. Unlike in Figure 3.4, significant scatter was observed even for
higher order basins (particularly for the bottom panels of Figure 3.5) when the pixels are
correlated. The large scatter is due to the high probability of concentrated intermittent
pixels present in correlated intermittent fields. Whereas, for uncorrelated intermittent
fields, the river network efficiently aggregates the randomness in the fields. However,
the overall behavior - of increasing scatter with increasing intermittency - is similar for

both scenarios.

3.3 Simulations from Space-Time Rainfall Model

The scenarios investigated so far have offered insight into the effects of different
characteristics of rainfall on the spatial scaling structure of peak flows. We will now
investigate the basin’s response to more realistic space-time rainfall events. Therefore,
we have simulated a space-time rainfall event from a model developed by Bel/ [1987] and
applied it over the basin. The spatial component of the model is described in the previous
section. The temporal evolution of the rainfall is modeled as an autoregressive process
with parameters based on the correlation time of area-averaged rainfall. The parameters

for the model are obtained by analyzing several storms over the Midwest. In this study,
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we simulate two different storm events with characteristics listed in Table 3.4. Storm 2 is
more variable than storm 1, as seen from the values of the coefficient of variation and
correlation distance. Another important difference is that storm 1 lasts longer and has
larger values of mean and rainy fraction compared to storm 2. The values of the shape
factor suggest that storm 2 is more correlated at very small scales than storm 1.

Figure 3.6 shows the basin response to the two storms for the linear routing
mechanism. The peak flow scaling structure for this complex scenario can now be
explained using the results from idealized scenarios. Although the scale break is sharp
and evident for the simulation scenarios of Section 2.6 under idealized conditions, it is
not clearly seen in the peak flow scaling structure resulting from the simulated realistic
space-time rainfall event. Since the scaling exponent is not close to 1.0, basin saturation
(for instance, top panels of Figure 2.7) is not the reason for the absence of scale break.
The lack of sharp scale break for realistic rainfall scenarios can be best explained by
revisiting the idealized scenarios in Section 2.6. For instance, a combination of just two
different intensities and durations has diffused the scale break in Figure 2.11. The space-
time rainfall fields are characterized by different intensities, durations, correlations and
intermittencies and move with a certain advection velocity. In a way, these fields are a
combination of all of the scenarios considered in Section 2.6. This explains the absence
of scale break for storm 1.

The scatter for storm 1 is smaller than that of storm 2. Two main factors
responsible for the reduced scatter are the duration of the storm and zero-rain
intermittency. Results from Section 2.6.1 indicate that one consequence of longer
duration events is the decreased scatter that is most pronounced at smaller scales. Also,
from Sections 3.2.3 and 3.2.4 that pertain to the effect of zero-rain intermittency, we note
that the scatter in the peak flow structure increases rapidly as the area of rainfall
decreases. Though the rainy fraction of storm 1 is 46 %, the advection of the storm

eventually increases the effective wetted area of the basin, thereby decreasing the scatter
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seen at smaller scales. For the second storm, the large scatter is due to the increased
intermittency combined with the shorter duration and large coefficient of variation.

The regression equation seen for storm 1 is obtained in a Hortonian framework
using the orders 2 to 7. For storm 2, peak flows corresponding to the Horton orders of 4
to 7 are used in this storm’s regression. The scaling exponent for both storms is larger
than the scaling exponent of the width function maxima. For the nonlinear routing
scenario (not shown), we noticed a similar pattern with larger scatter and higher values

for scaling exponents than in the linear routing case.

3.5 Conclusions

In Chapter 2, we investigated the sensitivity role of spatial structure of peak flows
to the basic characteristics of rainfall such as intensity, duration and storm advection
velocity using simple scenarios of uniform rainfall. This chapter extended the framework
by systematically introducing variability in the rainfall fields. The variability was
characterized in terms of variance, space-time correlation functions, and zero-rainfall
intermittency. We started with Gaussian uncorrelated rainfall fields and proceeded to
complex rainfall fields obtained from a space-time rainfall model. Our rainfall variability
cases and range of values, though simple, captured the key aspects of natural rain
systems. The main effect of variability, as characterized by variance, spatial correlation
and the spatial intermittency, is to increase the scatter in the scaling structure of the peak
flows. At larger scales, the effect of variability decreases, as seen from peak discharges
at the outlet of the basin. For homogeneous rainfall fields and under idealized conditions
of flow routing on hillslopes and in channels, we observed that the smaller scale basin
response was dominated by the rainfall intensity (and spatial distribution), while the
hydrologic response of larger scale basins was driven by rainfall volume, river network
topology and flow dynamics. Based on the simulations on a deterministic Mandelbrot-

Viscek network, Menabde and Sivapalan [2001] reported that the variability in the



47

rainfall decreases the scaling exponent of peak flows on both sides of the scale break.
We did not observe such behavior in our simulations.

The results obtained from the simple scenarios in Chapter 2 and Section 3.2
enhanced our understanding of the peak flow scaling structure obtained from simulated
space-time variable rainfall. Storm duration and advection are the key factors that control
the effective zero-rain intermittency, which in turn affects the scatter in the peak flows.
The peak flow scaling structure for the realistic space-time rainfall scenarios did not
present a clear and sharp scale break. The scale break was masked due to the inherent

space-time variability in the realistic rainfall fields.
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Table 3.1 Sensitivity of intercepts, scaling exponents and outlet peak flows to the
variance of the Gaussian rainfall field with a mean intensity of 25 mm/h.

N(,U, o2 ) Mean Linear Routing Nonlinear Routing
[mm/h] Intercept | Slope | Outlet Peak | Intercept | Slope | Outlet Peak
Flow [m’/s] Flow [m’/s]
N(25,0.1) 24.99 12.02 0.54 587.54 12.79 0.63 1246.87
N(25,1.0) 24.98 12.00 0.54 587.13 12.73 0.63 1245.98
N(25,4.0) 25.02 12.00 0.54 587.01 12.74 0.63 1246.65
N(25,9.0) 24.93 12.08 0.54 588.67 12.85 0.63 1228.01
N(25,16.0) | 25.09 11.95 0.54 580.44 12.70 0.64 1249.81
N(25,25.0) | 24.88 11.93 0.54 587.15 12.70 0.63 1243.16
N(25,36.0) 24.88 11.97 0.54 589.58 12.64 0.64 1252.31
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Table 3.2* Sensitivity of intercepts and scaling exponents to the spatial correlation
structure of the rainfall field.

Correlation | Mean Linear Routing Nonlinear Routing
Distance [mm/h] Intercept | Slope | Outlet Peak | Intercept | Slope | Outlet Peak
[km] Flow [m’/s] Flow [m®/s]
5.0 25.06 12.19 0.54 581.92 12.99 0.63 1232.85
10.0 24.41 11.92 0.54 566.09 12.67 0.63 1192.25
20.0 24.83 11.86 0.54 582.06 12.62 0.64 1222.65
30.0 26.49 12.54 0.54 619.69 13.44 0.64 1340.37
40.0 25.48 12.33 0.54 597.79 13.17 0.63 1279.25
50.0 23.46 11.29 0.54 545.59 11.88 0.63 1120.85

*The rainfall field is assumed to be Gaussian with a mean intensity of 25 mm/h and a
variance of 2.0 mm/h and is characterized by an exponential correlation function with the
correlation distances indicated in the Table.
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Table 3.3* Sensitivity of intercepts and scaling exponents to the intermittency in the
uncorrelated random fields.

Intermittency | Mean Linear Routing Nonlinear Routing
[V] [mm/h] Intercept | Slope | Outlet Peak | Intercept | Slope | Outlet Peak
Flow [m®/s] Flow [m’/s]
0 19.88 11.45 0.50 464.66 12.26 0.58 898.48
5 20.04 11.73 0.50 473.95 12.23 0.58 907.88
25 20.05 11.23 0.50 469.37 11.58 0.58 907.24
50 19.84 11.91 0.50 485.78 12.41 0.58 942.22

*The value of rainfall over each pixel was drawn from a Uniform distribution U[10,30],
and the duration of the event is 120 minutes. The mean of the field is kept constant for different
intermittencies.
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Table 3.4* Characteristics of rainfall events simulated from the space-time rainfall model.

Storm | Mean Standard | Coefficient of | Correlation | Shape | Rainy | Duration
[mm/h] | Deviation Variation  |Distance [km]| Factor | Area [hr]
[mm/h] [mm/h] [%]
1 3.97 10.37 2.61 15.40 0.73 45.84 20
2 1.41 5.97 4.23 5.52 0.92 17.51 4

dependence.

*A two parameter exponential correlation function is used to characterize the spatial
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Figure 3.1 Scaling of peak flows with respect to the upstream areas of all the sub-basins
in the Whitewater River basin, Kansas. The rainfall data is obtained from the
KICT NEXRAD weather radar at Wichita, Kansas. The color scheme
indicates the Horton orders as in Figure 2.7.
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Figure 3.2 Sensitivity of peak flow scaling structure to the variance of the rainfall field.

The rainfall field is assumed to be Gaussian with a mean of 25 mm/h and
variance indicated on each panel. The color scheme indicates the Horton
orders as in Figure 2.7.
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Figure 3.3 Sensitivity of peak flow scaling structure to the spatial correlation of the
rainfall field. The rainfall field is assumed to be Gaussian with a mean of 25
mm/h, standard deviation of 2.0 mm/h. The spatial structure of the rainfall
field is characterized by an exponential correlation structure with the
correlation distance indicated on each panel. The color scheme indicates the

Horton orders as in Figure 2.7.
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Figure 3.4 Sensitivity of the peak flow scaling structure to the spatial zero-rainfall
intermittency in rainfall fields. The rainfall fields are distributed randomly in
space with the value at each pixel drawn from uniform distribution U[10,30]
with a mean of 20 mm/h and a duration of 120 minutes.
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Figure 3.5 Sensitivity of the peak flow scaling structure to the spatial zero-rainfall
intermittency of rainfall field. The rainy portion of the field is assumed to
follow lognormal distribution. The color scheme indicates the Horton orders
as in Figure 2.7.
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Figure 3.6 Response of the watershed to the simulated space-time rainfall events. The
characteristics of the storms are listed in Table 3.3. The color scheme
indicates the Horton orders as in Figure 2.7.
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CHAPTER 4
EFFECT OF RAINFALL AND HILLSLOPE VARIABILITY:
INTRODUCING HILLSLOPE DELAY

4.1 Introduction

The effect of space-time variability of rainfall on the peak flow scaling structure
has been investigated in Chapters 2 and 3 using ~1200 km* Whitewater River basin as an
illustration. The results have improved our understanding on the role of rainfall
variability and the river network structure on the scale-invariance of peak flows.
However, it is very important to check the validity of the results for different basins with
different geomorphologic characteristics. One of the key results from the previous
chapters was that the variability in rainfall seen at smaller scales was averaged out by the
river network as one moved to larger scales. However, we did not have sufficient large
scale basins to strongly support the above statement. In this chapter, we extend the
analysis to ~ 7250 km” Iowa River basin up to Marengo, Iowa. By moving to a larger
basin, we will have a better perspective of the attenuation and aggregation of flows by the
river network.

In the previous chapters, we did not consider the role of hillslope travel time on
the peak flow scaling structure. We assumed that the runoff generation mechanism was
Hortonian and that the flow reached the channel instantaneously. The hillslope
hydrology is characterized by variety of processes such as interactions between soil and
atmosphere, vegetation and soil moisture, rainfall and soil moisture, surface and
subsurface flows, leading to a complex system of runoff generation at very small scales
[e.g., Kirkby, 1978; Kirkby, 1988; Anderson and Burt, 1990]. Several studies have
investigated the role of hillslopes in shaping the catchment hydrologic response [e.g.,
Robinson et al., 1995; Ritsema et al., 1996; Ogden and Watts, 2000; D’Odorico and
Rigon, 2003; Ridolfi et al., 2003; Weiler and McDonnell, 2004]. Particularly in small
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catchments, where channels are relatively short, the travel time in the hillslope is
comparable to the travel time in the channels [e.g., D'Odorico and Rigon, 2003].
Although such studies have greatly improved our understanding of the hillslope
hydrology, we still lack a coherent framework to systematically investigate the effect of
hillslope processes across a wide range of scales. Therefore in this study, instead of
focusing on each hillslope process, we account for the net effect of hillslopes in terms of
hillslope travel time by incorporating hillslope velocity. It should be noted that the
assumptions of zero-infiltration and zero-evaporation are still in place.

So far in this thesis, the river network has been extracted from 30 m resolution
DEM. Current computational resources limit the use of high resolution DEMS and
hillslope-link based hydrologic modeling for large basins such as Mississippi River basin.
Another goal of this chapter is to explore the role of the river network extraction on the

statistical structure of peak flows.

4.2 Description of the Study Area

The Iowa River basin (Figure 4.1) stretches between latitudes 37° 46’E and 38°
09’E and longitudes 96° 51°’W and 97° 18’W. In this chapter, we considered Iowa River
basin up to Marengo (Figure 4.1) with an area of approximately 7250 km” and highest
Horton order of eight, when a 30 m DEM is used to extract the river network. This
results in about 100,000 hillslopes and, thus, channel links for this basin. In Figure 4.1,
we also show the extracted channel network with links of Horton orders 5 to 9. Figure
4.2 shows the topologic width function for the Iowa River basin at Marengo. We
estimated the width functions for each link in the river network and obtained the
corresponding maximum values.

Figures 4.3(a) and 4.3(c) show the Horton plots for drainage areas and width
function maxima of links of various orders for the Whitewater River basin, Kansas. The

log-linearity in Figures 4.3(a) and 4.3(c) confirm the statistical self-similarity of the
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upstream areas and the width function maxima [e.g., Strahler, 1957; Peckham and Gupta,
1999; Furey and Troutman, 2008]. In the regression analysis, we used the areas and
width function maxima corresponding to the Horton orders 2 to 7. The order 8 stream is
not used in the Horton regression due to sampling reasons: we have only one point
corresponding to the order 8. Although, averages corresponding to order 1 streams do
not suffer from sampling issues, they are usually not considered in the regression [e.g.,
Peckham and Gupta, 1999; Mantilla and Gupta, 2005] as they represent the finest detail
in a stream network, and therefore the corresponding basins do not contain a “network”.
The Horton ratios for the areas and width function maxima are then obtained by
exponentiation of the slopes from the regression analysis. The scaling exponent of width
function maxima obtained through Horton ratios in (1) is 0.46.

If the upstream areas and width function maxima display log-linearity, as shown
in Figures 4.3(a) and 4.3(c), then E/X,,] = E[X;]*(Rx)””, where X is either the upstream
area or the width function maxima and Ry is the corresponding Horton ratio. The
rescaled upstream areas and width function maxima are obtained by dividing each value
of X,, by E[X;]*(Rx)”". The probability distribution of the quantity X,/JE[X;]*(Rx)""] is
called the rescaled probability distribution. In Figures 4.3(b) and 4.3(d), we show the
statistical self-similarity of areas and width function maxima in terms of their rescaled
probability distributions for orders 1 to 7. Although order 1 basins were not considered
in the regression analysis, it can be seen that their rescaled probability distribution

collapses onto those of orders 2 to 7.

4.3 Sensitivity to the Intensity and Duration of Spatially

Uniform Rainfall

4.3.1 Without Hillslope Delay
Spatially uniform rainfall of different intensities was imposed on the study area

for different durations. The assumptions in the hydrologic model were same as in
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chapters 2 and 3; i.e. 1) negligible evapotraspiration, 2) purely surface runoff, and 3)
instantaneous flow to the channels (no hillslope effect). The channel routing was
assumed to be nonlinear with velocity that depends on the discharge in each link and the
corresponding upstream area (equation 2.1). For all the rainfall scenarios in this chapter,
we obtained peak flow regression equations (Figure 4.4) in Hortonian framework
described in Sections 2.3 and 2.6. That is, instead of obtaining the scaling exponent by
regression of peak flows with upstream areas, we use equation 1.2 to obtain the scaling
exponent. And the coefficient of the power law is obtained so that the regression line
passes through the average of the peak flows corresponding to the top three orders
(Figure 4.4). We noticed that the scaling exponent was always greater than the scaling
exponent of the width function maxima (Figure 4.4), which is in confirmation with
Whitewater River basin results discussed in Chapter 2 and with Mantilla et al [2006] for
the Walnut Gulch basin.

For the durations of 5 min and 60 min, the scaling exponent was equal to 0.58 for
all three rainfall intensities, and when the duration was changed to 240 min, the scaling
exponent was found to decrease with the decrease in rainfall intensity (Figure 4.4).
Similar behavior was reported in Chapter 2 for the Whitewater River basin. The scale
break (solid red line in Figure 4.4) was estimated using the methodology presented in
Chapter 2 (equation 2.2). We did not estimate the scale break for the shorter duration of
5 min due to large scatter at smaller scales. With the increase in rainfall duration, more
number of small scale links reached steady state, and the scale break moved towards
larger scale basins (Figure 4.4). We noticed similar behavior with an increase in the
rainfall intensity; the scale break moved towards larger scale basins (Figure 4.4).
Overall, the response of the lowa River basin to the spatially uniform rainfall was similar
to that of Whitewater River basin. In the next subsection, we relax the assumption of

instantaneous flow to the channel to study the role of hillslope characteristics.
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4.3.2 With Hillslope Delay

The scenario with the instantaneous flow to the channel can be considered as
equivalent to the very high value for the hillslope velocity. We gradually decreased the
velocity to 1.0 m/s and then to 0.1 m/s to study the net effect of hillslopes on the
hydrologic response of a basin. It should be noted that the value of 1.0 m/s was still high
for a hillslope flow velocity and was comparable to the instantaneous flow situation.
However, it already started to play a role in determining the peak flows at smaller scales,
particularly for the shorter duration of 5 min (Figure 4.5). The scatter in the peak flows
was reduced as the hillslope velocity was decreased from very high value (instantaneous
flow) to 1.0 m/s (Figure 4.5). With further reduction in the hillslope velocity to 0.1 m/s,
the scatter in the peak flows decreased, but with formation of a curve shaped envelope
towards the smaller scale basins. The behavior can be observed particularly for the
shorter duration of 5 min (Figure 4.6). However, the overall sensitivity of the peak flow
scaling structure to the rainfall intensity and duration remained same as the instantaneous
flow scenario. That is, more number of links reached steady state with the increase in
rainfall duration and intensity, resulting in the reduction in the scatter and movement of
the scale break towards higher order basins (Figures 4.5 and 4.6). Table 4.1 lists the scale
breaks for each combination of rainfall intensity, duration and hillslope velocity. In
general, the scale break moved towards smaller scales with the decrease in hillslope
velocity; i.e. lesser number of links reached steady state with the introduction of the
hillslope delay (Table 4.1).

The scaling of peak flows was much more sensitive for the hillslope velocities
between 1.0 m/s and 0.1 m/s than those between instantaneous flow velocities and 1.0
m/s (Figures 4.4, 4.5, 4.6, and Table 4.1). The changes in the small-scale scatter and the
location of the scale break did not significantly affect the fitted regression equations.
While the scaling exponents remained exactly same for the velocity corresponding to

instantaneous flow and velocity of 1.0 m/s, they changed only slightly (except for the
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case of 50 mm/h and 240 min duration) as the hillslope velocity reduced to 0.1 m/s

(Figures 4.4, 4.5, and 4.6).

4.4 Spatially Correlated Rainfall Fields

In the previous section, we studied the sensitivity of peak flows to the spatially
uniform rainfall of varying intensities and duration under different scenarios of hillslope
routing. Here, we consider the effect of rainfall spatial variability on the peak flows by
systematically increasing the smoothness in the rainfall fields. The rainfall intensity
distribution was assumed to be Gaussian with a mean of 25 mm/h and standard deviation
of 6 mm/h. The rainfall fields were characterized by exponential correlation structure
(equation 3.1), with correlation distances of 5, and 50 km. The rainfall fields were
applied over the lowa River basin for durations of 60 min and 240 min. Figure 4.7 shows
the peak flow scaling structure for different correlation distances, rainfall durations, and
with and without hillslope delay. For the correlation distance of 5 km, the river network
effectively integrated the variability in the rainfall fields (Top panels of Figure 4.7).
However, when the correlation distance increased to 50 km, larger local variability
combined with increased smoothness hampered the efficiency of the river network in
integrating the flows (Bottom panels of Figure 4.7).

It is well known that the rainfall intensity distribution is skewed. Therefore our
next step was to change the distribution from Gaussian to lognormal. We subjected the
Iowa River basin to lognormally distributed, spatially correlated fields of varying
correlation distances. The mean of the rainfall field is 5 mm/h and the standard deviation
is equal to 8 mm/h. In general, the sensitivity of the peak flow scaling to the lognormal
rainfall scenario is similar to that of Gaussian fields. The reduced efficiency of the river
network in handling the rainfall with high local variability and the increased correlation

distance can be particularly observed for lognormally distributed rainfall fields (Bottom
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panels of Figure 4.8). This behavior partially explains the lack of clear scale break for

the peak flows corresponding to the NEXRAD radar-rainfall events.

4.5 Sensitivity to Channel Network Extraction

Throughout the thesis, we extracted the river network from the digital elevation
models with 30 m resolution. Mantilla and Gupta [2005] showed that the network
extracted from the 30 m resolution DEM reasonably matched the terrain’s actual
network. With 30 m resolution DEM, lowa River basin had approximately 100,000
hillslopes. It is computationally expensive to perform simulations for larger basins such
as Mississippi River basin with millions of hillslopes. In this section, we explored the
tradeoffs between the channel network extraction and the peak flow scaling structure by
repeating the experiments with spatially uniform rainfall on river network extracted from
30 m and 90 m DEMs. As expected, the decrease in DEM resolution from 30 m to 90 m
reduced the number of hillslopes from ~ 100,000 to ~29,000. Since the low resolution
DEM results in lower drainage density, the Horton orders for the corresponding streams
was also affected, particularly for the lower order streams. For example, a third order
stream in the network extracted from a 30 m DEM could be first order stream in the
network extracted from a 90 m resolution DEM. The peak flow scaling behavior for a
spatially uniform rainfall of 25 mm/h, and duration of 60 min and 240 min for two
different DEM resolutions is shown in Figure 4.9.

It can be seen that the channel network extraction has a huge impact on the scale-
invariant behavior of peak flows. It affects not only the basin response at smaller scales
but also towards the larger scales, as noticed from the regression equations and the

scaling exponents.

4.6 Summary and Conclusions

In this chapter, we extended the simulation framework described in Chapters 2

and 3 to the lowa River basin up to Marengo, lowa. The study area is different from
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Whitewater River basin in many aspects. First, it is approximately six times larger than
the Whitewater River basin thus allowing us to minimize the sampling effects at large
scales and explore the scaling behavior. Secondly, the shape of lowa River basin is very
different from the square shaped White water River basin, and therefore the role of river
network would be different. We also studied the effect of hillslope characteristics and
channel network extraction on the scale-invariance of peak flows. The results suggested
that the variability at the smaller scales, either from rainfall or from the hillslopes, will be
averaged out by the river network. However, the efficiency of the river network in
attenuating the variability depends on the intensity distribution and smoothness of the
rainfall fields. The results also suggested that the DEM resolution and the corresponding
channel network plays a major role in the statistical structure of peak flows.

Chapters 2, 3, and 4 foster development of a scaling based predictive framework
for peak flows using remotely sensed rainfall products over basins ranging from very
small to very large scales. A key question there is, “What is the scale at which remote
sensing products provide meaningful predictions?” Our results suggest that the
variability contributed by random errors of remote sensing sensors, such as weather
radars and satellites, are filtered out by the drainage structure of river basins at some
scales. To investigate further into this problem, we need a model for radar-rainfall
uncertainties. The next chapter is a step forward in that direction as we present a

framework to estimate spatial correlation of radar-rainfall errors.
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Table 4.1 Sensitivity of scale break (in km?) to the rainfall intensity and duration for three
different scenarios of hillslope velocity: 1) No hillslope delay (NHD), 2)
hillslope velocity of 1.0 m/s, and 3) hillslope velocity of 0.1 m/s.

Intensity 50 mm/h 25 mm/h 5 mm/h

Duration | NHD 1.0 0.1 NHD 1.0 0.1 NHD 1.0 0.1
240 min | 54.73 | 49.52 | 30.01 | 30.01 | 30.01 | 20.10 | 16.45 | 16.45 | 11.01

60 min 1.77 1.44 0.13 1.44 1.06 0.11 0.56 0.50 0.06




Figure 4.1 Map showing the topography and the river network for the lowa River basin
up to Marengo, lowa.
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Figure 4.5 Sensitivity of peak flow scaling structure to intensity and duration of spatially
uniform rainfall, hillslope velocity of 1.0 m/s, and nonlinear channel routing.
The solid black line represents the ordinary least squares fit (equation on each
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Figure 4.7 Sensitivity of peak flow scaling structure to the smoothness of Gaussian fields.
The rainfall field is Gaussian with a mean of 25 mm/h and standard deviation
of 6 mm/hr. The correlation function is assumed to be exponential with a
correlation distance indicated in the figure. For the right panels, the velocity
on hillslopes is equal to 0.1 m/s. For the color scheme, please refer to Figure
4.6.
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CHAPTER 5
ESTIMATION OF RADAR-RAINFALL ERROR SPATIAL
CORRELATION"

5.1 Introduction

It is widely acknowledged that radar-rainfall estimates, which serve as an input to
hydrometeorological and water resource applications, are corrupted by high uncertainties
that originate from many sources [e.g., Zawadzki, 1984; Austin, 1987; Fabry et al. 1992;
Kitchen and Jackson, 1993; Hunter, 1996; Smith et al., 1996; Steiner et al., 1999; Young
et al., 1999; Young et al., 2000; Krajewski and Smith, 2002; Borga, 2002]. Given the
current state of technology, it is practically impossible to accurately measure the true
arca-averaged rainfall. Therefore, the quantification of radar-rainfall® uncertainties
(including their spatiotemporal structure) must be executed by approximating the true
areal rainfall with point rainfall measurements from rain gauges. The problems
associated with this approximation are well recognized [e.g., Zawadzki, 1975; Austin,
1987; Kitchen and Blackall, 1992; Ciach and Krajewski, 1999a,b; Villarini and
Krajewski, 2008; Villarini et al., 2008), but are difficult to overcome [e.g., Ciach et al. ,
2003; Habib et al., 2004; Ciach and Krajewski, 2006]. A reliable methodology for the
comprehensive characterization of the radar-rainfall uncertainties must start with the
identification and estimation of the joint probability distribution of radar-estimated
rainfall and the corresponding true rainfall over a broad range of conditions [Ciach et al.,
2007]. These conditions include different space and time scales, different distances from
radar and rainfall regimes, and different radar systems and rainfall estimation algorithms.

From the joint distribution, one can derive different synthetic characteristics of the radar

*Adapted from Mandapaka, P.V., W.F. Krajewski, G.J. Ciach, G. Villarini, and J.A.
Smith (2009), Estimation of radar-rainfall error spatial correlation, Advances in Water Resources,
32,1020-1030.
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rainfall errors, from the simple performance criteria (such as the root mean squared error)
to the error distributional properties and its spatiotemporal dependences. Clearly,
establishing such a comprehensive methodology poses a challenge. We are confident
that this challenge is surmountable, though only through many years of collaborative
research. The present study constitutes another small but significant step in this
direction.

A complete statistical characterization of radar-rainfall uncertainties must include
the biases [e.g., Smith and Krajewski, 1991; Anagnostou et al., 1998; Seo et al., 1999;
Ciach et al., 2000; Borga and Tonelli, 2000], the error variance [e.g., Ciach and
Krajewski, 1999; Anagnostou et al., 1999; Chumchean et al., 2003], conditional
distributions of the errors [Ciach et al., 2007], and a description of the error dependences
in space and time. Because correlation functions are simple expressions of these
spatiotemporal error dependences, they provide a good starting point.

In their study on probabilistic quantitative precipitation estimation, Ciach et al.
[2007] developed a model for radar-rainfall errors, in which the relation between true
rainfall and radar-rainfall is described by two elements, a deterministic distortion function
and a random component. In addition to estimating the frequency distribution of the
random component, they showed empirically that this component is correlated in space
and time. Other radar-rainfall and satellite-rainfall error models that have been
commonly used in the error propagation studies assumed either uncorrelated errors [e.g.,
Sharif et al., 2002; Georgakakos and Carpenter, 2003; Carpenter and Georgakakos,
2004] or considered arbitrary models of the error correlation structure [e.g., Nijssen and
Lettenmaier, 2003; Gebremichael and Krajewski, 2004; Hossain et al., 2004; Carpenter
and Georgakakos, 2006; Villarini et al., 2007a]. However, many researchers realize that
more accurate knowledge of the error correlations is crucial to the successful application

of any rainfall estimate.
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For example, Nijssen and Lettenmaier [2003] conducted a Monte Carlo
simulation experiment to assess the effects that spatial sampling errors in precipitation
have on hydrological predictions. They perturbed gauge-based interpolated rainfall
estimates with synthetically generated uncorrelated and correlated error fields. The
perturbed rainfall fields were then used as an input to a macroscale hydrologic model.
Nijssen and Lettenmaier [2003] concluded that spatial correlations in the errors strongly
affect predictions of hydrological fluxes and states. Hossain et al. [2004], in their study
on the effect of satellite-rainfall uncertainties on the flood prediction uncertainty,
employed a simple multiplicative error model with temporal error correlation modeled as
a lag-one autocorrelation function. While they showed that the effect of temporal error
correlation is insignificant for 3-h and 6-h sampling intervals, they indicated that it might
be significant at the hourly sampling interval. Carpenter and Georgakakos [2006] also
studied the sensitivity of ensemble flow predictions to input uncertainties. In their radar-
rainfall error model, they assumed a linear spatial correlation function for the errors and
concluded that the radar-rainfall error structure affects the mean areal precipitation
uncertainties at the sub-catchment and watershed scales. Villarini et al. [2007a] studied
the effects of radar-rainfall errors on the spatial scaling properties estimated from the
radar-based rainfall maps. They perturbed the radar-rainfall fields with lognormally
distributed multiplicative errors, assuming different levels of their spatial correlation.
The study showed that the error itself has a strong effect on the scaling function of the
perturbed radar-rainfall fields. However, they found that increasing the correlation level
results in a decrease of the distortions in the scaling function. Based on the
aforementioned literature, we argue that it is important to verify whether the radar-
rainfall uncertainties are correlated in space and, if they are, to quantify this correlation as
a function of the separation distance.

The main objective of this chapter is to present a practical method for estimating

the radar-rainfall error spatial correlation (ESC), accounting for the area-point differences
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inherent in any radar-gauge comparisons. In their preliminary error correlation estimates,
Ciach et al. [2007] simply ignored the gauge representativeness errors. The method
discussed here is conceptually analogous to the error variance separation (EVS) method
proposed by Ciach and Krajewski [1999a]. In estimating the radar-rainfall error
variance, use of the EVS procedure can account for the gauge representativeness errors.
Defining the radar-rainfall error as the difference between the true areal rainfall and
corresponding grid-averaged gauge rainfall, the EVS-corrected error variance is obtained
by subtracting the area-point difference variance from the variance of the difference
between the grid-averaged radar-rainfall and the corresponding rain gauge rainfall. The
EVS method is based on the assumption that the radar and gauge errors are uncorrelated.
Although in practice this zero-correlation assumption can be not fully satisfied, the EVS-
corrected radar-rainfall error variance is considerably more accurate than the uncorrected
error variance obtained directly from the radar-gauge pairs [Ciach et al., 2003]. Many
studies have employed the EVS method to characterize the variance of the radar and
satellite derived rainfall products [e.g., Young et al., 1999; Krajewski et al., 2000; Habib
and Krajewski, 2002; Seo and Breidenbach, 2002; Gebremichael et al., 2003,
Chumchean et al., 2003; Gebremichael and Krajewski, 2004; Zhang et al., 2007]. In the
method for radar-rainfall ESC estimation presented here, we also account for the area-
point differences.

The radar-rainfall uncertainties can be represented as either multiplicative or
additive errors. The EVS method was originally proposed by Ciach and Krajewski
[1999a] for the additive errors only. For this error representation, the underlying
assumptions of the EVS scheme are systematically discussed in Ciach et al. [2003]. For
the multiplicative errors, the EVS method can be used in the logarithmic domain
[Anagnostou et al., 1999]. However, the possible adverse consequences of the
logarithmic transformation remain unverified, which prompted us to follow the additive

definition of radar-rainfall errors as in Ciach and Krajewski [1999a].
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This chapter is organized as follows: in Section 5.2, we derive the expression for
the estimation of the radar-rainfall ESC. Section 5.3 describes the procedure to estimate
various terms in the expression for ESC. In Section 5.4, we test our method for removing
the area-point effects from the ESC estimates using a simulation framework. In Section
5.5, we apply the method to estimate ESC in the National Weather Service’s operational
radar-rainfall products that are provided by the precipitation processing system (PPS) of
the NEXRAD in the form of the hourly digital precipitation arrays (DPA). As a ground
reference for these estimates, we use the data from an experimental rain gauge network in
Oklahoma known as the ARS Micronet, which is operated by the Agricultural Research
Service of the United Stated Department of Agriculture. Section 5.6 summarizes the

results and concludes this study.

5.2 ESC Derivation

The formula for error spatial correlation can be derived using an extension of the
EVS method since we start by partitioning the variogram of the radar-rainfall. Let the
radar estimates over the two pixels 1 and 2 (Figure 5.1) be R, and R», respectively. The
variance of the difference R;-R, can be partitioned to incorporate radar-rainfall error
terms as follows:
VariR =R,y =Var{(R —T))= (R, ~T,) +(T, - T,)}
=Var{R -T}+Var{R, —T,} +Var{l, - T,}
—2Cov{R, -T1,R,-T,} (5.1)

+2Cov{R, ~T,.T, - T,}
~2Cov{R, T, T, - Ty}

where R, and R, are radar-rainfall estimates and 7, and 7, are true area-averaged
rainfall accumulations over the pixels 1 and 2, and operators Var{} and Cov{} are the
variance and the correlation of the corresponding random variables. Equation 4.1

contains three variance terms and the three covariance terms. Var{R, —1,} and
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Var{R, —T,} are the variances of radar-rainfall errors over pixels 1 and 2, respectively,
and Var{T, —T,} is the variogram of the true rainfall. The three covariance terms are:
1. Cov{R, -T,,R, —T,} is the covariance between the radar-rainfall errors R, —T,
and R, —T, , i.e., the error spatial covariance.
2. Cov{R, -T,,T, —T,} is the covariance between the radar-rainfall error over grid 1

and the difference 7, —7,.

3. Cov{R,-T,,T,-T,} is the covariance between the radar-rainfall error over grid

point 2 and the difference 7} -7, .

We assume that the covariances (2) and (3) above are equal, and hence the sum
2Cov{R, -T,,T, -T,} - 2Cov{R, —T,,T, = T,} in the equation 4.1 is equal to zero. With
this assumption, equation 1 is rearranged to obtain the error spatial covariance as follows:

CoviR —T,,R, —T,}= %[Var{Rl ~T,}+Var{R, - T,}]
: (5.2)
+5[Var{T1 ~T,} = Var{R, - R,}]

The radar-rainfall error spatial covariance can be obtained by adding the
following two terms: a) average of error variances at locations 1 and 2 (Figure 5.1) and b)
difference of semivariograms of the true areal rainfall and the radar-rainfall. The error
correlation can be obtained by normalizing the covariance with the product of the square

root of the error variances.

5.3 ESC Estimation

Once we derived the governing formulae, we needed to estimate the terms in
equation 5.2. All four terms on the right-hand side of the equation 5.2 for the ESC can be

estimated directly from data.
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5.3.1 Estimation of Error Variance
We employed the EVS method proposed by Ciach and Krajewski [1999a] to
estimate the terms Var{R, —T,} and Var{R, —T,} in equation 4.2. According to this

method,

Var{R, =T} =Var{R, — G,} =Var{G, - T,}, (5.3)
i.e., the variance of the radar-rainfall error is obtained by separating the gauge-sampling
error, Var{Gi -T }, from the overall radar-gauge variability, Var{R.—G,}. The latter can

be obtained directly from the data:

Var{R, - G,} = — ﬁR(z) G.(1)] (5.4)

where R (¢) and G,(¢), respectively, are radar- and gauge-rainfall estimates for the pixel
i at the time step £. Equation 5.3 assumes that the radar-rainfall errors (R, —7;) are
uncorrelated with the rain gauge errors (G, —T;). This zero-correlation assumption and
its validity have been discussed in the Introduction. In equation 5.4, temporal stationarity
is assumed only to increase the sample size for the estimation of the Var{R, —G,}. If the
rain gauge network is dense enough, the proposed method can be slightly modified and
applied at each time step. It should also be noted that if there is more than one gauge in a
pixel, then G,(¢) represents average rainfall from all the gauges in the pixel i at the time
step ¢t.  With the current computational resources, simple averaging of gauge
measurements can be replaced with the block kriging. However, we used simple
averages for the reasons laid out in the next paragraph.

Assuming the second-order stationarity and isotropy within the areal domain and

following Morrissey et al [1995], the gauge-sampling error Var{G, —T,} is obtained as

Var{G, — T }=Var{G} - VRF,, (5.5)
where Var{G} is the variance of the point-rainfall and VRF, is the variance reduction

factor for the pixel i containing the rain gauge(s), and it is obtained as follows:
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VRE, =373 pld, )OS0 -3 3 p(d, W+ 3, 3P, (56)

i=1 k=1 {0 AN =1 k=j+1

~.

The VRF is a statistic that quantifies the spatial sampling error we make in
approximating an areal value with an average of a specified number of point
measurements in that area [Morrissey et al., 1995]. Such a theoretical framework does
not exist if the areal value is estimated from block kriging. For this reason we used
simple averages in estimating G,(¢) in the equation 5.4. The sampling domain is divided
into K grid boxes, over which the rainfall is estimated as the arithmetic mean of n gauges.
The Kronecker delta function (/) denotes whether box j contains a rain gauge. The
term p(d,,) represents the rainfall spatial correlation, where d,, 1is the distance
between boxes j and k. A detailed description of equation 5.6 is given in Morrissey et

al. [1995] and Krajewski et al. [2000].

5.3.2 Estimation of Variogram of True Areal Rainfall
The third term on the right hand side of equation 4.2 denotes the variogram of the
true rainfall, and for a second-order stationary process it can be shown that [e.g., Cressie,

1993]

Var{T,—T,} = 2T’ (h) = 2[Cov, (0) — Cov, (h)] (5.7)
where Cov,(h) is the covariance of the true areal rainfall over grids i and j separated
by distance %, and Cov,(0) is the variance of the true rainfall. Section 6.4 of
Vanmarcke [1983] gives the following expression to obtain the covariance function of the

local averages of a homogeneous two-dimensional random field over square areas with

sides L, from the corresponding point variance and covariance function:

Cov{T. T/} = Cov, (h) = L4 1G {ii(—l)“( 1) AL, L, )}, (5.8)
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where 7; and T7; respectively are true areal rainfall over pixels i and j (of sides L)
separated by distance lag 4. To achieve lags smaller than the pixel size, the pixels i and j

need to be overlapping, in which case, the equation 5.8 can be simplified to:

A(Ly,Lyo)=2A(Lyy, L, )+ A(Ly,L,,)

x0° x0°

Var{G}

Cov{T,, T} =Cov, (h)= —2A(L,, L,y )+4A(L,, L, )-2A(L,.L,,) |, (5.9)

+A (L, L,y )=2A(L,y, Ly, )+ A(L,, Ly )

In the equations 5.8 and 5.9, L, (L,,) is the distance from the end of the first
grid to the beginning of the second grid along x (y) direction; L, (L,,)1is the distance
from the beginning of the first grid to the beginning of the second grid along x (y)
direction; L, (L,,) is the distance from the beginning of the first grid to the end of the
second grid along x (y) direction; and L, (L,;) is the distance from the end of the first
grid to the end of the second grid along x (y) direction. The A(-,-) function in the
equation 5a is obtained as A(Lx,Ly) = (LxLy )2 : 7/(LX,Ly ) , Where
nlL ,Ly):iLkT(l—l—"](l—ILJp(l)dl dl., (5.10)

* LL, %% L L, Y

x—y 0 x

. . . . . . 1/2

where [, and /, are the separation distances in xand y directions, with l=(lf +Z}2,) .
The variance of the areal values can be obtained from the point variance using the

relation:

Var{T} = Cov, (0)=Var{G} - y(L,L), (5.11)

For further information on equations 5.8 through 5.11, the reader is pointed to
Section 6.4 of Vanmarcke [1983]. The covariance and the variance of the true areal
process are then plugged in equation 5.7 to obtain the variogram of the true areal rainfall.
Equations 5.6-5.11 demonstrate that the correlation function of the point rainfall (o)
plays an important role in estimating the ESC. In this study, we employ Pearson’s
correlation coefficient and justify its use in Section 5.5, where the correlation structure of

point rainfall is estimated using rain gauges from the Oklahoma Micronet.
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5.3.3 Estimation of Variogram of Radar-Rainfall
The fourth term within the brackets on the right hand side of equation 2 denotes
variogram of the radar-rainfall, which we estimate using the classical method-of-

moments estimator [e.g., Cressie, 1983].

1w ,
Var{Rl.—Rj}zer(h)zﬁw R, -R ], (5.12)
where n(h)is the number of data pairs separated by lag 4. We realize that there are
estimators which are more robust to the outliers in the data than the method-of-moments
estimator. The estimator proposed by Cressie and Hawkins [1980] (7., ) is among the
widely used. However, we did not use it in this study as it is valid only when the
distribution of differences, Z(x)—Z(x+h), for a particular lag 4 is Gaussian (Lark,
2000). Lark [2000a] compared the robustness and efficiency of 7, along with two other
robust estimators, which also assume contaminated normal model, i.e., normal
distribution in the presence of outliers. The study concluded that all the three robust
estimators are influenced by any departure from the assumption of normality of
differences [Lark, 2000a]. The study also concluded that for the skewed data which has

no outliers, the classical method-of-moments estimator performed better than the three

robust estimators.

5.3.4 Summary of Assumptions in ESC Methodology
Before we apply the method on the simulated fields and on the radar-rainfall data,
we summarize here, all the assumptions involved.
a)  The rainfall is second-order stationary in space and time.
b)  The rainfall is isotropic. If the rainfall is anisotropic, the spatial correlation
function is directional and therefore the proposed methodology has to be
applied for each direction resulting in different error spatial correlation

functions for different directions.
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c) Radar-rainfall estimates and the rain gauge measurements are unbiased.
d) The rain gauge representativeness error is not correlated with radar-rainfall

error. The assumptions (¢) and (d) are required by the EVS method.

5.4 ESC Testing Using Monte Carlo Simulation

We begin with a Monte Carlo simulation experiment to assess the method for the
error spatial correlation and the estimation procedure discussed in the previous section.
The simulation framework provides us with full control over the things that real data
cannot. In the simulation experiment, we can compare the error correlations retrieved
from our methodology with the true error correlations known a priori. A good
performance here implies that the assumptions in our methodology are reasonable and
gives us the confidence to apply the ESC methodology on the real radar-rainfall data. On
a square grid of 100x100 (arbitrary units), high resolution (0.4x0.4) two-dimensional,
stationary, Gaussian and lognormal processes with an exponential correlation function
are generated using the circulant embedding technique [e.g., Dietrich and Newsam, 1993;
Wood and Chan, 1994]. The exponential correlation function used in the study is same
as the one given by equation 3.1 in Section 3.3.

A total of 325 stations with inter-station spacing of 4 units in the x-direction and 8
units in the y-direction (Figure 5.2) sample the process from the simulated high resolution
fields, which is similar to the sampling of rainfall process by the rain gauges. The high
resolution fields are then averaged to obtain fields at a resolution of 4x4 as it is the most
commonly used resolution for radar-rainfall data in many hydrological applications.
These average fields are analogous to the true areal rainfall fields at a particular
resolution. Hereafter, the high resolution and corresponding average fields are referred to
as HR and true areal (TA) processes, respectively.

We do not interpret the simulated Gaussian and lognormal fields as rainfall fields.

Our objective in the simulation experiment is to evaluate the methodology on simple case
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of Gaussian realizations and on a complex case of lognormal fields. The ESC approach
can be applied to any remotely sensed physical process that meets the criteria such as
second-order stationarity and isotropy and where there are inherent area-to-point errors in
the evaluation. That’s the reason we labeled the process from where we sample the
“point data” as high resolution (HR) process and the corresponding area averaged process
as true areal (TA) process and the error corrupted fields as areal-with-error (AE) process.

The next step in the simulation framework is to generate the error process at a
resolution of 4x4, assuming that they are Gaussian with zero mean, unit variance and
following an exponential correlation function (equation 5.13) with a correlation distance
of 20 distance units. Since the method is derived for additive errors, we add the error
fields to the TA fields to obtain the “areal with error” (AE) process. Addition of
Gaussian errors to the Gaussian (or lognormal) process results in some negative values in
the AE process, which is not realistic for rainfall fields. However, this would not affect
our results because our aim in this section is solely to test the method. The above
procedure is repeated to obtain multiple realizations of AE fields.

We then applied the method on the simulated fields to estimate the error spatial
correlation. Because the spatial correlation of the errors is known, the accuracy of our
framework can be assessed by comparing the estimated and true ESC. We also compare
them with spatial correlations of the difference between the 325 sampling points and
corresponding AE pixels (analogous to radar-gauge difference), which we call “radar-

gauge (RG)” error spatial correlation.

5.4.1 Gaussian Realizations
We start by simulating correlated Gaussian realizations with mean zero and
variance equal to 1 and we consider two correlation distances of 10.0 and 40.0 (arbitrary
distance units). For both cases, the correlation functions of HR, TA, error, and the AE

fields are estimated using the 325 sampled points (Figure 5.3). Figure 5.3 illustrates that
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the correlation structure of the high resolution process and the error process is quite
accurate, which gives us confidence in the simulated fields. The variogram of the TA
process obtained using the procedure described in Section 5.3 and that of the AE process
obtained using the classical method-of-moments estimator are shown in Figure 5.4 for the
two point correlation functions considered. From the TA variograms (particularly for the
correlation distance of 10), one sees that the variance (half the sill) is smaller than the
variance of the corresponding HR process (which is equal to 1.0). This is expected, as
the TA process is obtained as an average of the HR process. From Figure 5.4, it is also
apparent that an addition of correlated errors to the TA process increases its variance.

The error correlations obtained using our method is fitted with a three-parameter
exponential function using the Levenberg-Marquardt algorithm and is compared with the
spatial correlation of RG differences and that of true errors in Figure 5.5. It can be seen
from the Figure 5.5 that our method can retrieve the error correlation structure quite
accurately for both of the considered correlation functions. Though the correlation
structure of RG differences is close to the true one, there is a consistent bias, which is
quite evident for a smaller correlation distance of 10.0. This bias is due to the fact that

RG differences have inherent area-point errors.

5.4.2 Lognormal Realizations

In testing our method on the simulated lognormal realizations, we considered the
same correlation functions that are used in the Gaussian case. In addition to the
correlation distances, we also varied the coefficient of variation (CV) of the lognormal
realizations. Therefore, for simulations with lognormal realizations, we have four
different combinations of variability, as indicated in Table 5.1. The number of
realizations used for each case is also shown in Table 5.1.

We obtain the lognormal process by transforming a simulated Gaussian process.

However, the transformation results in the alteration of the parameters of the lognormal
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realizations. As our aim is to obtain lognormal process with a certain mean, variance,
and correlation structure, we selected the parameters of the simulated Gaussian fields
such that the transformation will lead to lognormal fields with the desired parameters.
The procedure is explained in detail in Appendix A.

The correlation functions of the HR, TA, error, and AE fields estimated using 325
sampling locations are plotted in Figure 5.6. The HR correlation functions estimated
from the simulations closely match the theoretical correlation functions. The figure also
reveals that as the CV increases and correlation distance decreases, the addition of the
error field has little impact on the correlation function of the true areal process. Figure
5.7 illustrates the variograms of TA and the AE process for all combinations of
correlation functions and CVs. The behavior of the TA and AE variograms for all four
cases is similar to that of the Gaussian simulations with the variance of the TA process
being smaller than the corresponding HR process. The ESC technique is applied on all
four cases (Table 5.1) and is shown in Figure 5.8 along with the fitted three parameter
exponential correlation function and correlation of RG differences. Comparing the
correlations of RG differences with the true one, a systematic underestimation can be
seen from the Figure 5.8. This bias increases as the lognormal field becomes more
variable (a high CV and small correlation distance). As in the Gaussian case, the biased
RG correlations result from area-point errors. Unlike in the Gaussian case, the ESC
results in a consistent bias for a larger CV and smaller correlation distance (Figure 5.8).
Further investigation into case 4 of lognormal simulations revealed that bias in the
estimation of variance reduction factor is the main reason for the systematic
underestimation in ESC and, hereafter, all the results in this section are for case 4.

As mentioned in Section 5.3, the VRF is a theoretical framework to quantify the
spatial sampling error involved in approximating an areal value with an average of point
measurements within the area. For the VRF to be strictly applicable in the simulation

framework, the areal values need to be obtained by averaging infinite number of point
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values. For the Gaussian simulations, this is not an issue as the TA value (4.0x4.0) -
obtained as an average of 100 pixels of HR process (0.4%x0.4) - is reasonably closer to the
true areal process. Case 4 in the lognormal simulations, with a high CV and small
correlation distance, is highly variable, and the 100 HR pixels are inadequate to obtain
the TA process. Therefore, the VRF estimated as in equation 5.6 overcorrects the area-
point discrepancies leading to underestimation of error correlation (Figure 5.8d). For the
lognormal simulations, we repeat case 4 (Table 5.1 and Figure 5.8d) with the TA process
obtained by averaging the HR process simulated on 0.1x0.1 grids and Figure 5.9 shows
that the bias in ESC reduces with an increase in the resolution. Therefore, our method’s
systematic underestimation of error spatial correlation for lognormal realizations is
largely an artifact of the simulation experiment, and the ESC method performs well in a

simulation framework.

5.5 Application to the Oklahoma ARS Micronet Dataset

After testing the method in the simulation framework, we applied it to estimate
the ESC of NEXRAD hourly digital product (DPA) from the Oklahoma City NEXRAD
(KTLX) radar site (Fulton et al., 1998). We used a high density and high quality rain
gauge network, the Oklahoma Micronet, established by the Agricultural Research Service
in Little Washita experimental watershed, Oklahoma [e.g., Allen and Naney, 1991; Young
et al., 2000; Ciach et al., 2003]. Figure 5.10 shows the network and the hydrologic
rainfall analysis project (HRAP) radar grid, which is a quasi-rectangular grid with the
size of the cell ranging from 3.5 km in the southern U.S. to 4.5 km in the northern U.S.
[e.g., Reed and Maidment, 1999]. The rain gauge network covering an area of
approximately 1200 km?®, consists of 41 gauges on a fairly regular grid with intergauge
distances ranging from around 3 to 40 km and the average nearest-neighbor distance of

approximately 5 km. In our analysis, we considered a square radar domain with sides of
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60 km, covering the rain gauge network, for a 36-month period (April-September data for
six years 1998-2003), thereby reducing any seasonal effects.

The first step in applying the ESC method is to estimate the point correlation
function of rainfall. Though Pearson’s estimator is widely used to estimate the
correlation, it has been shown in the literature that for highly skewed distributions, it
results in biased estimates [e.g., Hutchinson, 1997; Habib et al., 2001]. Assuming that
the data come from the mixed lognormal distribution, Habib et al. [2001] proposed an
alternative unbiased approach to estimate the correlation. To check if the lognormality
assumption is valid for the Oklahoma Micronet, the rainfall data measured by the rain
gauges is binned into intervals of 0.5, and a mixed lognormal distribution is fitted to this
binned data. The gauge-rainfall had a lighter tail with respect to a mixed lognormal
distribution. Therefore, we stick to the Pearson’s estimator to obtain the point correlation
function of the rainfall. Figure 5.11 portrays the correlation function of the rainfall
measured by the rain gauges and the fitted three-parameter exponential function
(Equation 3.1 with an additional nugget parameter). We used this parametric form of the
correlation structure to obtain the error variance and the variogram of the true areal
rainfall (equations 5.3 through 5.11). The radar pixel is nine orders of magnitude larger
than the sampling area of rain gauge. Therefore, artifacts introduced by equation 5.6 in
the estimation of VRF and subsequently the spatial correlation of errors are negligible.

The next step in the ESC method is the estimation of the variogram of the radar-
rainfall. Its estimation is performed by using a classical method-of-moments estimator
(equation 5.12) and binning the moments into 4 km distance classes. All the pixels
covering 60x60 km® are used in the estimation process. The size of the estimation
domain and number of realizations play an important role in the estimation of variance
and covariance leading to their severe underestimation. We did a systematic sensitivity
study on this aspect and found that the bias decreases rapidly with the number of

independent realizations. We explain the results of that study in detail in Appendix A.
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For example, if the estimation domain is half the decorrelation distance, we found that as
few as 50 independent fields would suffice to give us an unbiased estimate of variance
and covariance. Since we used six years of hourly data, underestimation of variance and
covariance is not an issue.

Figure 5.12 shows the estimated and fitted radar estimates along with the
variogram of the true areal rainfall obtained using equation 5.7. The error variances and
the variograms of the true areal and radar-rainfall are then used in the ESC method
(equation 5.2) to estimate the spatial covariance of errors, which when normalized with
error variances, results in an error spatial correlation structure (Figure 5.13). The spatial
correlation of the RG differences is also plotted in the same figure for comparison. From
Figure 5.13, one notices that our method results in tighter (less scatter) correlation
estimates than those obtained directly from the radar-gauge pairs that neglect the area-
point errors. The decreased scatter is due to the use of parametric point correlation
functions in equations 4.3 through 4.11. However, for both cases, we can infer that radar-
rainfall errors are significantly correlated with a correlation distance of approximately 20
km (Figure 5.13). This is an important result as in most of the error propagation studies,
the errors are assumed to be uncorrelated.

Further, one can observe in Figure 5.13 that ignoring the area-point differences
results in underestimation of the ESC at the shorter distances. Though this bias is not
significant at the daily and, to an extent, hourly scales for stratiform rainfall, it might be
significant at the sub-hourly time scales and for the tropical regime as the rainfall
becomes more variable. Before we conclude, we would like to mention that the overall
mean of the Micronet gauge estimates over 36 months is equal to 0.083 mm and that of
collocated radar pixels for the same time period is 0.116 mm. The bias can be treated in
an additive or multiplicative manner. The former approach would result in unrealistic
negative rainfall values for the radar pixels. When the latter approach is used, the

variogram of the DPA estimates would be almost the same as the variogram of true areal
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rainfall. Our methodology (equation 5.2) applied in such a situation leads to the error
covariance being constant and equal to the error variance. The result is in contrast to the
RG error correlations estimated from multiplicatively corrected radar fields as they are
decreasing with distance. Therefore, we applied the ESC approach directly on the
uncorrected radar data. To make sure that the proposed methodology is robust to handle
such bias we ran a simulation experiment similar to Section 5.4 but with uncorrelated
errors and a bias of 0.5 to the AE fields. Despite the bias in the AE fields, the proposed

methodology correctly identified the zero error correlations.

5.6 Summary and Conclusions

Defining the radar-rainfall error as the difference between the radar-estimated
rainfall and the corresponding true areal rainfall, we propose a method to estimate the
error spatial correlation (ESC) that accounts for the rain gauge representativeness errors.
The required information on the area-point difference structure was obtained from
relatively dense rain gauge networks. Although this study considered only the additive
error definition, it can be applied to the multiplicative errors by transforming the
variables into the logarithmic domain. Conceptually, our ESC estimation method is an
extension of the error variance separation method proposed by Ciach and Krajewski
[1999]. After formal derivation of the method, it was tested on simulated Gaussian and
lognormal fields with known ESC. It performed very well in estimating the ESC for
Gaussian fields and for lognormal fields with lower coefficients of variation (CV).
However, as the CV of the lognormal fields increased, our test results tended to
underestimate the ESC. The fact that this specific underestimation decreases
systematically with increasing the resolution of the simulated fields shows that this effect
is an artifact of the simulation caused by the finite resolution of the simulated fields. The
ESC obtained using our method was also compared with the ESC obtained directly from

the simulated “radar-gauge” differences. This comparison showed that ignoring the area-
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point errors can result in considerable underestimation of the error spatial correlation
structure, especially at small separation distances.

After the computer simulation tests, the ESC method was applied to the DPA
products that are the standard outcomes of the PPS in the NEXRAD. This application
was based on six years of warm season (April to September) KTLX radar data, and the
corresponding data from a relatively dense experimental rain gauge network (Oklahoma
ARS Micronet). These results show that the radar-rainfall errors are spatially correlated
and that their correlation distance is approximately 20 km. Although this application has
been limited to the central Oklahoma region, it offers insight into the spatial correlation
of DPA radar-rainfall errors in any region where the rainfall is mostly of stratiform and
mixed form. The results in this study can be helpful for new radar-rainfall error
propagation studies that account for the ESC in the radar-rainfall data. It is worth
mentioning that the radar errors are dependent on location and range from the radar.
However we are applying the ESC method within the 60 % 60 km? pixel assuming
stationarity and isotropy. If we can have dense networks such as Micronet in different
zones (distances from radar), we can estimate the error spatial correlation for each zone
and for each direction using the proposed methodology. We would also like to mention
that the proposed method is not conditioned on the intensity and type of precipitation.

The ESC method presented here can be extended by regarding the ESC as a
dynamically varying random function for which state estimation procedures are derived.
The simplest way of implementing such an extension is by treating the correlation
distance of the radar-rainfall error field as a random process in time. One can include this
state variable as an element of the ESC estimation problem where the updating of the
state is based on the currently observed radar-rainfall fields and the corresponding rain
gauge data. This extension would eliminate the need for the data to be stratified into
several “seasons.” It would also reflect the fact that even during the peak of the warm

season, the large extratropical cyclones with prevailing areas of stratiform rainfall regime
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can be mixed with highly variable convective cells embedded within the stratiform

rainfall fields.



Table 5.1* Parameters used in the four simulation scenarios with lognormal HR field.

Correlation distance n
o Hiy O v 40 10
0.5 1.28 1.07 0.80 CASE 1 CASE 2 5000
1.0 1.65 4.67 1.31 CASE 3 CASE 4 25000

*The error field (Err) is Gaussian with zero mean and standard deviation equal to 1.0 and
with the correlation distance equal to 20. The distance units are related to the size of the

simulation area that is assumed to be 100 by 100 arbitrary units. The number of realizations is
shown in the last column.
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Figure 5.1 A schematic example of radar-rainfall grid with two pixels containing rain
gauges (the hatched squares). The gauges are located randomly within the
radar pixels.
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Figure 5.2 Example realization of four random fields: high resolution field (HR), true
area averaged field (TA), error field (Err), and the areal with error (AE) field.
The correlation distance of HR is dyr=40, and its marginal distribution is
lognormal with the mean equal to 1.65 and the coefficient of variation equal to
1.31. The HR panel also shows the sampling gauge network consisting of
325 (25 by 13) gauges. The error field (Err) is Gaussian with zero mean and
a standard deviation equal to 1.0 and with the correlation distance of dg,=20.
The distance units are related to the size of the simulation area that is assumed
to be 100 by 100 arbitrary units. The resolution of the HR field is equal to
0.4, and it is 4.0 for the remaining fields.
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Figure 5.3 Correlation functions of the simulated high resolution (HR) Gaussian process,
true areal (TA), error (Err), and areal with error (AE) processes estimated
using the sampling network shown in Figure 2.2. The distance units and the
parameters of the Err field are the same as in Figure 5.2.
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Figure 5.4 True areal (TA) and areal with errors (AE) variograms of the simulated
Gaussian processes. The AE variogram is estimated using all the pixels
available, and the TA variogram is obtained by integrating the variogram of
the HR field. The distance units and the parameters of the Err field are the
same as in Figure 5.2.
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Figure 5.5 Comparison of three functions: 1) the estimated error spatial correlation (ESC)
for Gaussian realizations corrected using our method, 2) the true ESC (with a
correlation distance of 20) and 3) the spatial correlation structure of radar-
gauge (RG) differences. The distance units and the parameters of the Err
field are the same as in Figure 5.2.
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Figure 5.6 Correlation functions of the lognormal HR fields simulated with the
parameters given in Table 2.1 and estimated using the sampling network
shown in Figure 2.2. The distance units and the parameters of the Err field
are the same as in Figure 5.2.
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Figure 5.7 True areal (TA) and areal with errors (AE) variograms of the simulated
lognormal processes of Table 2.1. In each panel, upper and lower curves are
AE and TA variograms, respectively. The AE variogram is estimated using
all the pixels available, and the TA variogram is obtained by integrating the
point variogram. The distance units and the parameters of the Err field are
the same as in Figure 5.2.



Error Correlation

1.0

d

HR

40

0.8 4

0.6 4

0.4

0.2

0.0

(a)

® ESC Method
—— Fitted ESC 1
True
- - -RG \

1.0

0.8 4

0.6

0.4 4

0.2 4

0.0

40 O

Distance

Figure 5.8 Comparison of error spatial correlation (ESC) for lognormal realizations
retrieved using our correction method with the true ESC and with the spatial
correlation structure of radar-gauge (RG) differences. The distance units and

the parameters of the Err field are the same as in Figure 5.2.
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Figure 5.9 Sensitivity of the ESC method to the resolution (Res) of the simulation grid.
The distance units and the parameters of the Err field are the same as in
Figure 5.2.
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Figure 5.10 Map showing the location of the Oklahoma City NEXRAD (KTLX) radar
site, Oklahoma Micronet, and HRAP grid.
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Figure 5.11 Pearson’s correlation function of gauge-rainfall obtained using six years of
warm season (April to September) rainfall data from Oklahoma Micronet.
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Figure 5.12 Radar-rainfall variogram for the National Weather Service’s hourly digital
product over the Oklahoma Micronet. The variogram of true areal rainfall is
obtained by integrating the gauge-rainfall correlation function over the 4 km
pixel.
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Figure 5.13 Comparison of error spatial correlation of the National Weather Service’s
hourly digital product with the spatial correlation structure of radar-gauge
(RG) differences.
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CHAPTER 6
EFFECT OF RADAR-RAINFALL UNCERTAINTIES ON THE SPACE-
TIME CHARACERIZATION OF RAINFALL EVENTS

6.1 Introduction

In chapters 2, 3, and 4 we investigated the statistical structure of the peak flows
employing simulation scenarios with only the natural variability of the rainfall. However,
it is equally important to quantify the effect of rainfall estimation errors [e.g., Austin,
1987; Krajewski and Smith, 2002; Ciach et al., 2007] on the scaling of peak flows. In
this chapter we investigate the effect of radar-rainfall estimation errors on the statistical
characterization of rainfall fields. The chapter serves as an intermediate step between
characterizing the rainfall estimation error and propagating them through the distributed
hydrologic model to investigate their impact on the peak flow scaling structure.

Several studies have characterized the spatial variability of rainfall by employing
a variety of techniques ranging from correlation functions and variograms [e.g., Sumner,
1982; Nicholson, 1986; Berndtsson, 1988; Bacchi and Kottegoda, 1995; Ricciardulli and
Sardeshmukh, 2002; Krajewski et al., 2003; Gebremichael and Krajewski, 2004; Ciach
and Krajewski, 2006; Villarini et al., 2008] to multiscaling analysis tools such as moment
scaling and structure functions [e.g., Schertzer and Lovejoy, 1987; Tessier et al., 1993a;
Gupta and Waymire, 1993; Menabde et al., 1997; Nykannen and Harris, 2003; Lovejoy
and Schertzer, 2006; Gebremichael et al., 2008; Lovejoy et