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ABSTRACT 

This thesis examines the role of rainfall variability and uncertainties on the spatial 

scaling structure of peak flows using the Whitewater River basin in Kansas, and Iowa 

River basin in Iowa as illustrations.  We illustrate why considering individual 

hydrographs at the outlet of a basin can lead to misleading interpretations of the effects of 

rainfall variability.  The variability of rainfall is characterized in terms of storm intensity, 

duration, advection velocity, zero-rain intermittency, variance and spatial correlation 

structure.  We begin with the simple scenario of a basin receiving spatially uniform 

rainfall of varying intensities and durations, and advection velocities.  We then use a 

realistic space-time rainfall field obtained from a popular rainfall model that can 

reproduce desired storm variability and spatial structure.  We employ a recent 

formulation of flow velocity for a network of channels and calculate peak flow scaling 

exponents, which are then compared to the scaling exponent of the channel network 

width function maxima.  The study then investigates the role of hillslope characteristics 

on the peak flow scaling structure.  The basin response at the smaller scales is driven by 

the rainfall intensities (and spatial variability), while the larger scale response is 

dominated by the rainfall volume as the river network aggregates the variability at the 

smaller scales.  The results obtained from simulation scenarios can be used to make 

rigorous interpretations of the peak flow scaling structure obtained from actual space-

time model, and actual radar-rainfall events measured by the NEXRAD weather radar 

network. 

An ensemble of probable rainfall fields conditioned on the given radar-rainfall 

field is then generated using a radar-rainfall error model and probable rainfall generator.  

The statistical structure of ensemble fields is then compared with that of given radar-

rainfall field to quantify the impact of radar-rainfall errors on 1) spatial characterization 

of the rainfall events and 2) scaling structure of the peak flows.  The effect of radar-
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rainfall errors is to introduce spurious correlations in the radar-rainfall fields, particularly 

at the smaller scales.  However, preliminary results indicated that the radar-rainfall errors 

do not significantly affect the peak flow scaling exponents. 
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ABSTRACT 

This thesis examines the role of rainfall variability and uncertainties on the spatial 

scaling structure of peak flows using the Whitewater River basin in Kansas, and Iowa 

River basin in Iowa as illustrations.  We illustrate why considering individual 

hydrographs at the outlet of a basin can lead to misleading interpretations of the effects of 

rainfall variability.  The variability of rainfall is characterized in terms of storm intensity, 

duration, advection velocity, zero-rain intermittency, variance and spatial correlation 

structure.  We begin with the simple scenario of a basin receiving spatially uniform 

rainfall of varying intensities and durations, and advection velocities.  We then use a 

realistic space-time rainfall field obtained from a popular rainfall model that can 

reproduce desired storm variability and spatial structure.  We employ a recent 

formulation of flow velocity for a network of channels and calculate peak flow scaling 

exponents, which are then compared to the scaling exponent of the channel network 

width function maxima.  The study then investigates the role of hillslope characteristics 

on the peak flow scaling structure.  The basin response at the smaller scales is driven by 

the rainfall intensities (and spatial variability), while the larger scale response is 

dominated by the rainfall volume as the river network aggregates the variability at the 

smaller scales.  The results obtained from simulation scenarios can be used to make 

rigorous interpretations of the peak flow scaling structure obtained from actual space-

time model, and actual radar-rainfall events measured by the NEXRAD weather radar 

network. 

An ensemble of probable rainfall fields conditioned on the given radar-rainfall 

field is then generated using a radar-rainfall error model and probable rainfall generator.  

The statistical structure of ensemble fields is then compared with that of given radar-

rainfall field to quantify the impact of radar-rainfall errors on 1) spatial characterization 

of the rainfall events and 2) scaling structure of the peak flows.  The effect of radar-
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rainfall errors is to introduce spurious correlations in the radar-rainfall fields, particularly 

at the smaller scales.  However, preliminary results indicated that the radar-rainfall errors 

do not significantly affect the peak flow scaling exponents. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Floods are one of the deadliest natural hazards.  Recent examples are Cedar River 

and Iowa River floods in June 2008, which caused unprecedented damage.  According to 

the 1997 International Red Cross report on world disasters, across the globe, more than 

318,000 people were killed due to floods in the 25-year period from 1972 to 1997 

[IFRCRCS 1997].  Ashley and Ashley [2008] reported a total of 4586 flood related 

fatalities in contiguous United States during 47-year period from 1959 to 2005.  The 

Fourth Assessment Report (2007) of the Intergovernmental Panel on Climate Change 

(IPCC) predicts that ‘heavy precipitation events, which are very likely to increase in 

frequency, will augment flood risk’.  Floods result from complex interaction of rainfall 

with various aspects of landscape such as topography, land cover, and antecedent 

moisture.  In addition, the changing climate and man-made changes to the landscape 

make the flood prediction, a very complex problem. 

Based on historical streamflow records, the U.S. Geological Survey (USGS) 

developed the regional quantile regression approach in the 1960s for predicting annual 

flood frequencies [e.g., Dawdy, 1961; Benson, 1962].  The regression relations expressed 

flood quantiles as power laws involving one or more explanatory variables such as 

drainage area, basin geomorphology, and climatic characteristics.  Drainage area is 

usually the most important explanatory variable, and many times the only variable, used 

[e.g., Riggs, 1973; Jennings et al., 1994].  The quantile regression method was 

extensively employed to obtain flood frequencies for several basins including ungauged 

locations.  Many have supported the above statistical relations and showed that despite all 

the complexity of floods at the hillslope scale, their aggregated behavior is a power-law 

(scale-invariant) with respect to the drainage areas [e.g., Smith, 1992; Gupta et al., 1994; 
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Goodrich et al., 1997; Vogel and Sankarasubramanian, 2000; Eaton et al., 2002; Ogden 

and Dawdy, 2003; Furey and Gupta, 2005].  This provides us with an opportunity to 

develop a unified geophysical framework for studying the hydrologic response of a basin 

across a wide range of scales.  Such a framework would be invaluable for prediction of 

flood peaks particularly in ungauged basins [e.g., Sivapalan et al., 2003].  However, a 

comprehensive understanding of the role of physical processes in the statistical scaling 

relations is crucial for building and implementing such a framework [e.g., Gupta et al. 

2007]. 

In parallel to developing the statistical regression equations for flood quantiles, 

hydrologic community also developed models to predict hydrographs at the outlet or at 

specific locations [e.g., Crawford and Linsley, 1962; Freeze and Harlan, 1969; Burnash 

et al., 1973; Beven and Kirby, 1979; Abbott et al., 1986a,b; Beven, 2001; Singh and 

Frevert, 2002a,b].  Several studies have used these models for understanding the effect of 

variability in processes such as rainfall, antecedent moisture, and soil infiltration capacity 

on the hydrologic response of the basin [e.g., Dawdy and Bergmann, 1969; Beven and 

Hornberger, 1982; Milly and Eagleson, 1988; Krajewski et al., 1991; Obled et al., 1994; 

Shah et al., 1996; Finnerty et al., 1997; Singh, 1997; Koren et al., 1999; Arnaud et al., 

2002; Brath and Montaniri, 2003; Brath et al., 2004; Smith et al., 2004b; Tetzlaff and 

Uhlenbrook, 2005; Morin et al., 2006; Fenicia et al., 2008; Saulnier and Le Lay, 2009].  

One can draw upon this large and growing pool of (deterministic) hydrologic modeling 

studies to understand the physics behind the statistical scaling behavior of peak flows. 

However, one fundamental problem with most hydrologic models is that the 

governing equations used to describe the physical processes in hydrologic models are 

sensitive to the scale [e.g., Klemes, 1983; Beven, 1985; Beven, 1989; Bhaskar, 1989; 

Grayson et al., 1992; Bloschl and Sivapalan, 1995; Beven, 2001; Kirchner, 2006].  For 

example, the Darcy’s law (subsurface flow) and the Richard’s equation (unsaturated 

flow) with “effective” parameters are usually employed by hydrologic models to 
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represent the corresponding processes.  Although physically-based, their applicability 

was debated even for a laboratory column scale [e.g., Hornberger et al., 1991], and 

therefore they are certainly not valid at the model grid scale.  With huge number of 

parameters (particularly for distributed models), estimating their values from local 

measurements continues to be a major problem [e.g., Gupta et al., 2004].  Therefore 

hydrologic models usually resort to calibration strategies often leading to unrealistic 

values for the parameters.  Further, the calibration is carried out with over emphasis on 

the outlet hydrographs, which do not provide adequate information regarding the 

hydrologic response of a basin [e.g., Hooper et al., 1988; Jakeman and Hornberger, 

1993]. 

The scale issue in hydrological modeling is partially responsible for the lack of 

consensus regarding the effect of spatial variability in processes such as rainfall and 

infiltration on the streamflow prediction.  For instance, based on simulations on a 287 

km2 Friends Creek watershed, Beven and Hornberger [1982] suggested that correct 

representation of spatial variability of rainfall is important for accurate prediction of 

streamflow hydrographs.  Using a semi-distributed model on a 71 km2 watershed in 

southeast France, Obled et al. [1994] concluded that the hydrographs are not very 

sensitive to the spatial variability in rainfall.  Based on simulations on a 10.5 km2 Wye 

River basin, Shah et al. [1996] reported that spatially averaged rainfall could result in 

streamflow predictions with reasonable accuracy under wet antecedent moisture 

conditions.  Arnaud et al. [2002] used hydrologic model with three different runoff 

generation mechanisms on fictitious basins of sizes ranging from 20 km2 to 1500 km2 and 

concluded that runoff response varies significantly between spatially uniform and 

spatially distributed rainfall.  Based on the results from the Distributed Model 

Intercomparison Project (DMIP) [Smith et al., 2004a], Smith et al. [2004b] suggested that 

distributed models are amenable only when the basins cannot effectively filter the rainfall 

variability.  For basins of size ranging from 50 km2 to 2240 km2, Saulnier and Le Lay 
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[2009] concluded that the accurate estimation of rainfall intensity distribution and 

localization is more important than the areal rainfall. 

Due to the aforementioned scale and calibration issues, we avoid the use of 

popular distributed models based on sub-basin or grid-based discretization for our 

investigations on the peak flow scaling behavior.  Instead, we adopt a systematic 

diagnostic framework to further understand the role of rainfall variability and hillslope 

characteristics in the scaling structure of peak flows from river basins in Iowa and 

Kansas.  In the next section, we describe the basic concepts in the scaling theory of 

floods.  A brief review of the relevant literature is presented in Section 1.3 followed by 

statement of objectives in Section 1.4.  Section 1.5 outlines the methodology followed in 

this thesis. 

1.2 Basic Concepts 

Herein, we give a brief overview of the basic concepts in scaling-based analyses 

that we encounter at various points in this thesis.  The Horton ratio RX is defined as a ratio 

of the averages E[Xω+1]/E[Xω], where Xω is a generic random field indexed by Horton 

order ω, a stream ordering system developed by Horton [1945] and later modified by 

Strahler [1952,1957].  For instance, the field X can be the upstream areas or width 

function maxima or peak flows.  For more details on the Horton order and the Horton 

ratios, please see Rodriguez-Iturbe and Rinaldo [1997] and Peckham and Gupta [1999]. 

The width function of a river network is a measure of the river network branching 

structure.  There are basically two types of width functions: topologic and geometric.  

Throughout this study, we employ the topologic width function, which is defined as the 

number of links which are s links upstream of the outlet of the basin as a function of s 

[e.g., Veitzer and Gupta, 2001].  Under idealized conditions of runoff generation and 

constant flow velocity, the width function represents the response of the river network to 

spatially uniform instantaneous rainfall.  The statistical structure of the width function 
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and its relation to the hydrologic response of the basin has been the object of several 

recent studies [e.g., Veitzer and Gupta, 2001; Lashermes and Foufoula-Georgiou, 2007; 

Moussa, 2008; DiLazarro, 2009].  Veitzer and Gupta [2001] showed that the width 

function maxima of the simulated random self-similar channel networks follow 

distributional simple scaling.  That is, the generalized Horton law in terms of probability 

distributions [e.g., Peckham and Gupta, 1999] holds for the width function maxima, and 

the Horton ratios of width function maxima RΘ and upstream areas RA are related by a 

power law of the form. 

RΘ = RA
β  (1.1) 

where β is the scaling exponent of the width function maxima.  Similarly, the Horton 

ratios for the peak flow RQ and upstream areas RA are related by a power law 

RQ = RA
φ

 (1.2) 

when peak flow distributions exhibit statistical self-similarity, which has been shown to 

be the case under certain conditions of flow and rainfall [e.g., Mantilla, 2006].  The 

exponent Ф in equation 2 is referred to as the peak flow scaling exponent.  A scale break 

is defined in this work as a transition point in the log-log plot of peak flows vs. drainage 

areas. 

1.3 Brief Review of Literature 

In the past two decades, numerous simulation and data-based studies were 

conducted to determine the physical basis of scale-invariance [e.g., Gupta and Dawdy, 

1995; Robinson et al., 1995; Gupta et al., 1996; Bloschl and Sivapalan, 1997; Robinson 

and Sivapalan, 1997; Menabde et al., 2001; Menabde and Sivapalan, 2001; Ogden and 

Dawdy, 2003; Furey and Gupta, 2005; Furey and Gupta, 2007].  A general consensus 

emerging from these studies is that the rainfall, channel network topology, hydraulic 

geometry of the channels and the hillslope runoff generation mechanisms play key roles 
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in determining the scaling exponents of the power laws in peak flows.  While most of the 

research on peak flow scaling behavior was related to the annual peak flows, there has 

been a recent shift towards investigating single-event peak flows [e.g., Gupta et al., 1996; 

Ogden and Dawdy, 2003; Furey and Gupta, 2005; Mantilla et al., 2006; Furey and 

Gupta, 2007].  Understanding scale-invariance of the peak flows in terms of physical 

processes is easiest at the scales of single events.  Recent studies also suggested that the 

scaling exponents of annual peak flows are related to those of single-event peak flows 

[e.g., Ogden and Dawdy, 2003; Gupta et al., 2007].  In the following subsections, we 

give a brief description of key results in the literature related to the statistical structure of 

single event peak flows.  We first discuss basic concepts and then proceed to simulation-

based and data-based studies. 

1.3.1 Simulation-Based Studies 

Gupta et al. [1996] was the first study to focus on the effect of rainfall and 

channel network on the scale-invariance of single-event peak flows from a deterministic 

Peano network.  Using a numerical simulation framework, they showed that peak flows 

exhibit simple scaling for uniform rainfall, with the scaling exponent dependent on the 

fractal dimension of the channel network width function maxima.  For spatially variable 

rainfall, they reported that the peak flows display multi-scaling, with the exponent being 

a function of the channel network characteristics and the spatial variability of the rainfall.  

Troutman and Over [2001] derived analytical expressions for channel networks and 

rainfall mass exponents for the general class of recursive replacement trees and 

instantaneous multifractal rainfall.  Menabde et al. [2001] focused on the attenuation due 

to storage in channel networks and its effect on the scaling exponents of peak flows from 

deterministic (Mandelbrot-Viscek and Peano networks) and random self-similar networks 

with linear routing and for spatially uniform rainfall.  For the deterministic self-similar 

networks (SSNs), the scaling exponent of peak flows is smaller than the one predicted for 
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the width function maxima (i.e., ignoring the attenuation due to storage in channel 

networks).  Menabde et al. [2001] also showed that for random SSN with smaller 

bifurcation ratios, the peak flows scale asymptotically. 

To better understand and predict the scaling behavior of peak flows, Menabde and 

Sivapalan [2001] introduced a dynamic and spatially distributed hillslope-link rainfall-

runoff model based on representative elementary watershed (REW) consisting of three 

main components: a space-time model of rainfall, a hillslope model and a channel 

network model.  The rainfall model can generate storms whose spatial structure is 

characterized by a discrete random cascade.  The hillslope model partitions the rainfall 

into Hortonian runoff, subsurface flow and evaporation, which are assumed to be zero 

during periods of rainfall.  They further assumed that all of the surface runoff reaches the 

channel instantaneously.  The channel network is a deterministic Mandelbrot-Viscek 

network in which the hydraulic geometry properties at every link are obtained from 

observed empirical relationships.  They investigated the effect of rainfall on the scaling 

structure of the peak flows, starting from a spatially uniform rainfall scenario and moving 

to the individual storms based on discrete random cascade.  They also extended the study 

to include continuous rainfall and annual flood peaks.  The results from event-based 

simulations with spatially uniform rainfall and the rainfall based on the random cascade 

model demonstrated that the interplay between the catchment response time and the 

storm duration controls the scaling exponent of peak flows. 

Mantilla et al. [2006] discussed the difficulties in generalizing the scaling theory 

to the real networks and tested whether the random spatial variability of the real channel 

networks and their hydraulic geometry properties, coupled with flow dynamics, produce 

Hortonian scaling in peak flows.  Based on the results from Veitzer and Gupta [2001], the 

value of the scaling exponent of the network width function was computed for the 149 

km2 Walnut Gulch basin in Arizona [e.g., Goodrich et al., 2008].  The runoff rates were 

estimated from two very small gauged sub-basins within the Walnut Gulch, assuming 
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that rainfall was spatially uniform.  For an instantaneously applied runoff rate, the system 

of ordinary differential equations describing the runoff dynamics was solved for three 

different scenarios: (a) constant velocity (b) constant Chezy and (c) spatially varying 

Chezy constant.  They showed that the scaling exponent of peak flows is larger than the 

exponent of the width function maxima, which contradicted the results from the studies 

performed on the idealized basins, where the flow scaling exponent is always smaller 

than the exponent of the width function maxima.  The contradiction is explained in terms 

of the relative roles of flow attenuation and flow aggregation in the river networks that 

were considered. 

1.3.2 Data-based studies 

Ogden and Dawdy [2003] investigated the single-event and annual peak flows 

from the 21.2 km2 Goodwin Creek watershed in Mississippi [e.g., Alonso and Bingner, 

2000], where the Hortonian mechanism of runoff generation is dominant.  They 

considered 279 events for which flows were recorded at several interior gauging stations.  

The results showed that the peak flows follow simple scaling but the exponents vary from 

event to event and depend on the runoff production efficiency.  The mean of scaling 

exponents is 0.831 with a standard error of 0.10.  Some events are then filtered out with a 

threshold on correlation coefficient (0.93) between logarithm of peak flows and the 

upstream areas.  The mean of scaling exponents from 226 remaining events is equal to 

0.826, with a standard error of 0.047 and a mean correlation coefficient of 0.98. 

Furey and Gupta [2005] explained this event-to-event variability in the peak flow 

power laws in Goodwin Creek watershed in terms of variability in the rainfall’s excess 

depth and the duration.  To understand the physical origin of the observed peak flow 

scaling, Furey and Gupta [2007] proposed and applied a 5-step framework on the 

Goodwin Creek watershed.  Gupta et al. [2007] provided further observational evidence 

on scaling in single-event peak flows for the Walnut Gulch basin, Arizona.  They 
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reported two different sets of scaling exponents for smaller and larger scales with a scale 

break at around 1 km2.  They also noticed that for the events that cover almost the entire 

basin, the single-event scaling exponents are quite close to the scaling exponents of the 

annual flood quantiles.  

All the studies discussed in this section focused on the fundamental question, 

“How is the peak flow scaling exponent linked to the channel network characteristics 

such as width function maxima and variability in the rainfall?”  In the studies that 

addressed this question using numerical simulations under idealized conditions, the 

complexity in the simulations increased from Gupta et al. [1996] to Mantilla et al. 

[2006].  The rainfall varied from spatially uniform to the complex cascade-based case, 

and the networks ranged from deterministic self-similar to random self-similar and actual 

river networks with linear and nonlinear routing mechanisms [e.g., Gupta et al., 1996; 

Veitzer and Gupta, 2001; Troutman and Over, 2001; Menabde et al., 2001; Menabde and 

Sivapalan, 2001; Mantilla et al., 2006].  In the data-based analyses [e.g., Ogden and 

Dawdy, 2003; Furey and Gupta, 2005; Gupta et al., 2007; Furey and Gupta, 2007], the 

variability in the scaling exponents were explained in terms of variability in antecedent 

conditions and storm characteristics.  However, the smaller size of the basins (21.2 km2 

Goodwin Creek and the 149 km2 Walnut Gulch basins) limited the range of scales 

available to explore the effect of rainfall variability on the peak flow scaling structure.  

Regardless of the approach followed, these studies enhanced our understanding of the 

relationship between the statistical structure of flood peaks and the characteristics of 

rainfall and channel network.  However, there is further need to understand and 

generalize the role that rainfall plays in the statistical structure of peak flows from actual 

river basins across a range of scales. 
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1.4 Objectives 

The broad motive of this study is to contribute towards the development of a 

comprehensive geophysical theory of floods.  The specific goal is to investigate the 

sensitivity of the spatial scaling structure of peak flows to the variability of rainfall for 

different routing and hillslope characteristics.  We investigate the effect of rainfall 

variability on the scatter, the scale break and the regression exponent for the power law 

fitted to the peak flows vs. upstream areas on the higher side of the scale break.  

Remotely sensed rainfall products (e.g., radar-rainfall products) are being increasingly 

employed to study the spatial structure of floods due to their large area coverage and high 

resolution.  Another objective of this study is to investigate the effect of rainfall 

estimation errors, which are inherent in the remotely sensed rainfall products, on the 

spatial characterization of rainfall and peak flows.  Rigorous understanding of the role of 

rainfall on the scaling structure of peak flows provides the basis for the scaling based 

framework to predict the peak flows from real basins.  The current study represents a step 

forward and improves our understanding of the relative roles of rainfall and the channel 

network on the scale-invariance of peak flows. 

1.5 Methodology 

We follow systematic simulation-based framework for most of the study.  We 

perform a series of simulation experiments to investigate the sensitivity of the scaling 

behavior to the rainfall characteristics.  We also investigate the sensitivity of the scaling 

behavior to linear and nonlinear channel routing mechanisms.  We selected the 

simulation framework instead of a data-based analysis since it allows complete freedom 

to systematically explore various aspects of scale-invariance.  Also, there are very few 

basins in the United States where streamflow data necessary for rigorous scaling analyses 

are available.  Our simulation covers a range of scale from ~0.1-7250 km2, thus 

addressing the peak flow scaling for basin response times ranging from minutes to days.  
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Throughout the thesis, we employ CUENCAS [e.g., Mantilla et al. 2005], a distributed 

hydrologic model with a hillslope-link discretization scheme.  In the latter part of the 

thesis, we employ rainfall datasets from Iowa and Kansas and perform data-based 

analysis. 

In Chapter 2, we briefly describe the hydrological model and illustrate why 

considering individual hydrographs at the outlet of a basin can lead to misleading 

interpretations of the effects of rainfall variability.  We then investigate the hydrologic 

response of a basin to the simple scenario of spatially uniform rainfall of varying 

intensities, durations and storm advection velocities.  In Chapter 3, we investigate the role 

of storm variability characterized by variance, spatial correlation and intermittency.  We 

employ realistic space-time rainfall fields obtained from a popular rainfall model that 

combines the aforementioned features.  All the simulation experiments in Chapters 2 and 

3 are performed on ~1100 km2 Whitewater River basin in Kansas. 

In Chapter 4, we change the river network to Iowa River basin, which is an order 

of magnitude larger than the Whitewater River basin, and repeat the analysis with 

spatially uniform and realistic rainfall fields.  Besides the role of rainfall variability, 

Chapter 4 also focuses on the effect of channel network extraction, and the hillslope 

characteristics on the scaling behavior of peak flows.  For all the scenarios, a recent 

formulation of flow velocity for a network of channels is utilized to obtain the peak flows 

and the scaling exponents.  The exponents are in turn compared to the scaling exponent 

of the width function maxima.  The results obtained from simple scenarios are used to 

make rigorous interpretations of the peak flow scaling structure obtained from rainfall 

simulated from the space-time rainfall model. 

It is well known that the variability in the remotely sensed precipitation fields is a 

combination of natural variability and the rainfall estimation errors.  Therefore, it is 

equally important to quantify how the rainfall estimation errors affect the spatial 

characterization of rainfall fields and then propagate into the peak flow scaling 
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exponents.  Chapter 5 presents a theoretical framework for estimating the radar-rainfall 

error spatial correlation (ESC) using data from relatively dense rain gauge networks.  The 

method is analogous to the error variance separation that corrects the error variance of a 

radar-rainfall product for gauge representativeness errors.  We then apply the method to 

estimate the ESC of the National Weather Service’s standard hourly radar-rainfall 

products, known as digital precipitation arrays (DPA).  However, to quantify the effect of 

errors, we need a comprehensive error model capable of characterizing not only the first 

and second-order statistics of errors, but also their conditional distributions. 

In Chapter 6, we employ an in-house radar-rainfall error model developed by 

Ciach et al. [2007] and study the impact of radar-rainfall estimation errors on the spatial 

characterization of ten warm season rainfall events over Wichita, Kansas.  We then 

propagate the ensemble of probable rainfall fields through the hydrologic model and 

obtain the peak flow scaling structure.  Chapter 7 presents preliminary results regarding 

the effect of radar-rainfall errors on the statistical structure of peak flows.  In Chapter 8, 

we summarize the thesis and present concluding remarks including a discussion on the 

implications of this study with respect to developing scaling-based geophysical flood 

forecasting tool.  In the Appendix A, we quantified the effects of sampling on the 

estimation of spatial correlation, the statistic, which is used throughout the study. 
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CHAPTER 2 

EFFECT OF RAINFALL INTENSITY AND DURATION: 

SIMULATIONS WITH SPATIALLY UNIFORM RAINFALL* 

2.1 Introduction 

In this chapter, our goal is to clarify the role of basic characteristics of rainfall 

such as storm intensity, duration and advection velocity on the scaling structure of peak 

flows.  The chapter is organized as follows.  Section 2.3 provides a brief description of 

the study area.  In Section 2.3, we present the rainfall-runoff model based on 

decomposition of the landscape into hillslopes and channel links.  Section 2.4 lists the 

assumptions in the hydrologic model.  In Section ∗2.5, we illustrate with a simple 

simulation experiment, how examining the basin response in terms of outlet hydrograph 

can be misleading.  Section 2.6 describes the simulation results related to the sensitivity 

of the peak flow scaling behavior to the basic characteristics of rainfall.  In the Section 

2.7, we present an analysis of scatter seen in the scaling structure of peak flows, followed 

by our conclusions in Section 2.8. 

2.2 Study Area - Whitewater River basin 

The Whitewater River basin (Figure 2.1), with an area of 1100 km2, stretches 

between latitudes 37° 46’E and 38° 09’E and longitudes 96° 51’W and 97° 18’W.  The 

river network extraction was based on the maximum gradient method, also known as the 

D8 algorithm [e.g., O’Callaghan and Mark, 1984].  Mantilla and Gupta [2005] compared 

the network extracted from CUENCAS with those extracted from popular GIS software 

such as ArcInfo, GRASS and RiverTools and found no major differences when high 

resolution DEMs were used.  They showed that a 30m resolution DEM is sufficient to 

                                                 
∗Adapted from Mandapaka, P.V., W.F. Krajewski, R. Mantilla, and V. K. Gupta (2009), 

Dissecting the effect of rainfall variability on the statistical structure of peak flows, Advances in 
Water Resources, 32, 1508-1525. 
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extract the drainage network that is close to the terrain’s actual network.  We use the one 

arc-second resolution (~30m) digital elevation model (DEM) from USGS to extract the 

channel network.  This results in some 20,000 hillslopes and, thus, channel links for this 

basin.  In Figure 2.1, we show the extracted channel network with links of Horton orders 

4 to 7. 

Section 1.2 indicated that the width function maxima play an important role in 

understanding the scaling structure of the peak flows.  Figure 2.2 shows the topologic 

width function for the outlet of the Whitewater River basin.  We estimated the width 

functions for each link in the river network and obtained the corresponding maximum 

values.  Figures 2.3(a) and 2.3(c) show the Horton plots for drainage areas and width 

function maxima of links of various orders for the Whitewater River basin, Kansas.  If 

the channel network is self-similar, the averages of drainage areas and width function 

maxima display linearity with respect to the corresponding Horton orders in the log-linear 

domain [e.g., Strahler, 1957; Peckham and Gupta, 1999; Furey and Troutman, 2008).  

The log-linearity in Figures 2.3(a) and 2.3(c) confirm the statistical self-similarity of the 

upstream areas and the width function maxima.  In the regression analysis, we use the 

areas and width function maxima corresponding to the Horton orders 2 to 6.  The order 7 

stream is not used in the Horton regression due to sampling reasons: we have only one 

point corresponding to the order 7.  Although, averages corresponding to order 1 streams 

do not suffer from sampling issues, they are usually not considered in the regression [e.g., 

Peckham and Gupta, 1999; Mantilla and Gupta, 2005] as they represent the finest detail 

in a stream network, and therefore the corresponding basins do not contain a “network”.  

The Horton ratios for the areas and width function maxima are then obtained by 

exponentiation of the slopes from the regression analysis.  The scaling exponent of width 

function maxima obtained through Horton ratios in (1) is 0.49.  

If the upstream areas and width function maxima display log-linearity, as shown 

in Figures 2.3(a) and 2.3(c), then E[Xω] = E[X1]•(RX)ω-1, where X is either the upstream 
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area or the width function maxima and RX is the corresponding Horton ratio.  The 

rescaled upstream areas and width function maxima are obtained by dividing each value 

of Xω by E[X1]•(RX)ω-1.  The probability distribution of the quantity Xω/[E[X1]•(RX)ω-1] is 

called the rescaled probability distribution.  In Figures 2.3(b) and 2.3(d), we show the 

statistical self-similarity of areas and width function maxima in terms of their rescaled 

probability distributions for orders 1 to 5.  Although order 1 basins were not considered 

in the regression analysis, it can be seen that their rescaled probability distribution 

collapses onto those of orders 2 to 5. 

2.3 Hydrologic Model 

Because of the fundamental effect of the river network structure on peak flows, it 

is necessary to have a distributed hydrologic model that can calculate hydrographs for all 

river network links in order to carry out a systematic investigation.  In this study, we used 

the CUENCAS model, developed by Mantilla and Gupta [2005], which is based on 

hillslope-link decomposition of the landscape and mass conservation equations [e.g., 

Gupta and Waymire, 1998].  The model can be run with linear routing with constant flow 

velocity throughout the channel network or nonlinear routing with velocity that depends 

on the discharge in each link and the corresponding upstream area.  For the nonlinear 

case, the velocities are estimated using [Mantilla, 2007]  
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where Vc(t) is the velocity in the channel and A is the upstream area of the corresponding 

channel.  The coefficients λ1 and λ2 are the velocity scaling exponents for discharge and 

upstream area, respectively, and vR, QR and AR, are reference velocity, discharge and area, 

whose values are taken in this study to be 1.0 m/s, 200 m3/s and 1100 km2.  These values 

are obtained from measurements during the rainfall-runoff events in the Whitewater 



16 
 

 

River basin.  The above equation gives the instantaneous velocity as a function of 

discharge q(t) in the channel link, which in turn gives rise to a non-linear ordinary 

differential equation that represents fluxes coming out of the channel link.  Please see 

equations (6) and (9) – (11) in Mantilla et al. [2006] for more details. 

Although the nonlinear routing mechanism is closer to reality, we also included 

the linear routing analysis in this study as it is a good starting point to investigate the 

effect of rainfall variability on the peak flow scaling structure.  Throughout this study, we 

use a value of 0.5 m/s for the Vc for the linear routing scenario and λ1 and λ2 of 0.3 and -

0.1 for the nonlinear routing scenario, obtained based on field data from the region.  In 

Figure 2.4, we show the velocity obtained using (3) for the link that corresponds to the 

largest upstream area of each Horton order for the Whitewater River basin.  Throughout 

this chapter, we employed a rainfall grid of size 40 × 40 km2 with a spatial resolution of 1 

km. 

2.4 Assumptions 

In all of our simulation scenarios, we assume (1) negligible evaporation; (2) 

purely surface runoff (i.e. no infiltration and no subsurface runoff); and (3) instantaneous 

flow of runoff into the channel.  Evaporation rate is often an order of magnitude lower 

than storm rainfall rate, and Hortonian runoff generation is one of the main flood 

producing mechanisms.  From the brief review of literature presented in Section 2, one 

can infer that the complexity in the simulation-based studies that were carried out to 

understand the scaling behavior of peak flows have steadily increased since the early 

nineties.  For instance, one of the first studies was based on the deterministic Peano 

network and uniform rainfall [e.g., Gupta et al. 1996].  Some recent studies have used 

random self-similar networks to mimic the river network behavior [e.g., Veitzer and 

Gupta, 2001; Mantilla, 2007].  We continue on this trajectory by introducing complexity 

one step at a time.  Therefore, in this study, the complexity is in terms of rainfall 
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variability and the river network structure, which is why we limited our analysis to the 

Hortonian runoff generation mechanism.  We understand that in reality, other runoff 

producing mechanisms are also possible in the selected study area.  The hydrologic 

model we used can account for the saturation excess mechanism, for instance.  However, 

including it in the study would only add additional variability, and it is difficult to 

separate the role of rainfall variability and the variability introduced by the saturation 

excess mechanism.  The third assumption regarding the instantaneous flow to the channel 

plays a key role in shaping the hydrologic response of smaller basins (< ~ 10 km2) as the 

hillslope travel times are comparable to the time spent in the channel network [e.g., 

D'Odorico and Rigon, 2003].  But the net effect is smoothed out for larger basins.  

Therefore, the assumptions are reasonable in the context of exploring the roles of rainfall 

and channel network on the scaling exponents of peak flows, i.e., floods, for individual 

rainfall-runoff events. 

2.5 Hydrographs vs. Scaling-based Framework 

This section illustrates via simple simulation experiments the advantages of the 

scaling-based analysis of hydrologic response.  The hydrologic model CUENCAS is 

forced with two simple rainfall scenarios of changing intensity (60 mm/h and 10 minutes) 

and duration (5 mm/h and 120 minutes), while keeping the total rainfall volume constant 

(1.1×107 m3).  The simulated rainfall is spatially uniform over the basin for the given 

duration.  We also assumed that the runoff is Hortonian and reaches the channel 

instantaneously.  The discharges are normalized with respect to the peak flow 

corresponding to the rainfall scenario of 60 mm/h for 10 minutes.  The time of occurrence 

is then normalized with the time at which the normalized discharge corresponding to the 

scenario of 60 mm/h and 10 minutes reaches 0.01.  In Figure 2.5, we show the 

normalized hydrographs at six different locations in the Whitewater River basin (Figure 

2.1).  Although we show the normalized hydrographs at only six locations, we simulated 
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hydrographs for all the interior sub-basins as well as for the outlet of the Whitewater 

River basin by solving the mass and momentum equations throughout the river network.  

Figure 2.5 demonstrates that at smaller scales, the values of flow peaks differ greatly 

from each other and occur at different instances.  However, the flow hydrographs are 

indistinguishable as we move to the larger scales. 

We then relax the spatial uniformity assumption and assume that the rainfall is 

randomly distributed in space over the hillslopes of that same basin.  We obtained ten 

realizations of the rainfall following a uniform distribution over the range of 20 to 100 

mm/h with the average intensity equal to 60 mm/h and the duration kept at 10 min.  That 

is, for each rainfall field of size 40 × 40 km2, we generated 1600 random numbers 

following a uniform distribution with a range of [20,100] and a mean of 60 mm/h.  It 

should be noted that these fields do not possess any spatial correlation.  In Figure 2.6, we 

compare the normalized hydrographs obtained with these ten rainfall fields with the one 

obtained for the spatially uniform case of Figure 2.5.  It is clear from Figure 2.6 that for 

spatially random rainfall, the variability in the hydrographs at smaller scales is higher 

compared to those of larger scales.  Therefore, to develop a comprehensive understanding 

of river basin response, it is imperative that we study the hydrographs throughout the 

basin across multiple scales. 

In this context, the results from spatially uniform rainfall (Figure 2.5) can be 

alternatively represented in the form of Figures 2.7(a) and 2.7(b).  Similarly, the results 

from spatially variable rainfall (Figure 2.6) for two of the simulated realizations are 

shown in Figures 2.7(c) and 2.7(d).  This framework allows us to study the basin 

response across multiple scales.  Figure 2.7 illustrates that our simulated peak flows 

display scaling structure with respect to the drainage area, and the scaling regime depends 

on the intensity, duration and variability of the rainfall.  Figure 2.7 also demonstrates that 

the effect of rainfall variability on the basin response is scale-dependent.  While peak 

flows are sensitive to the intensity, duration and spatial distribution of rainfall at small 
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scales (~10 km2), the variability in rainfall is dampened at larger scales (~1000 km2) by 

the river network via aggregation of flows. 

2.6 Simulation Scenarios and Results 

2.6.1 Sensitivity to the Intensity and Duration of Spatially 

Uniform Rainfall 

We start with the simple scenario of a basin receiving spatially uniform rainfall of 

a certain intensity for a certain duration.  Figure 2.8 shows the peak flows versus drainage 

areas for different rainfall intensities and durations with a linear channel routing 

mechanism.  Three important features of the peak flow scaling structure apparent in the 

plots are the scatter, the scale break and the scaling exponent.  For a fixed rainfall 

intensity, the scatter decreases as the duration of the event increases.  For each link, there 

is an upper limit for the peak flow that is not exceeded.  This upper limit corresponds to 

the equilibrium discharge reached when the rainfall duration is larger than the 

concentration time.  With the increase in the duration of rainfall, more hillslopes reach 

saturation, thereby decreasing the scatter.  The peak flows for the links that reached 

steady-state correspond to the well known rational method (Q = c I A).  We obtain the 

scale break by comparing the peak flows obtained from our simulations to those from the 

above rational method equation.  A window of fixed size in the logarithmic domain is 

moved along the upstream area axis of each panel in Figure 2.8.  Within such a window, 

we compute the following ratio 
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where, ratipratip QQQI ≤≤= ,, 9.0 if 1 , Qp,i is the peak flow for the link i, Qrat is the 

corresponding peak flow obtained from the rational method and np is the total number of 

links in the network.  If the ratio χ  is less than 0.75, the scale break is considered to be 
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at the average of the upstream areas within that window.  We realize that this definition 

of scale break is subjective.  However, it serves the purpose of a qualitative comparison 

only.  The scale break is indicated by a red line in Figure 2.8.  As the duration of the 

rainfall increases, more links reach saturation and the scale break moves towards the 

larger areas.  Because of the large scatter, we do not estimate the scale break for the 

shortest duration of 5 minutes. 

Figure 2.8 shows that for a fixed duration, the scale break and scatter in the peak 

flow scaling structure remain unchanged with intensity.  Similar to the Section 2.3, we fit 

these peak flows in the Hortonian framework using equation 1.2.  In Figure 2.9, we show 

the Horton plots of peak flows for all the intensities and durations.  The Horton ratio of 

peak flows is estimated considering only the orders that lie on the higher side of the scale 

break.  Since the scale break is not obvious in the Horton plots, we select the orders for 

regression based on Figure 2.8.  Horton ratio of peak flows obtained by exponentiation of 

the regression slope is shown in each panel of Figure 2.9.  We obtained ordinary least 

squares fit to the peak flows, but in the Hortonian regression framework, similar to the 

width function analysis presented in the previous section.  The Horton ratio of peak flows 

and the upstream area are plugged into equation 1.2 to obtain the scaling exponent of the 

peak flows.  That is, instead of obtaining the scaling exponent by regression of peak 

flows with upstream areas, we use equation 1.2 to obtain the scaling exponent.  The 

coefficient of the power law is obtained so that the regression line passes through the 

average of the peak flows corresponding to the top three orders (Figure 2.8).  The 

regression equations in Figure 2.8 allow us to conclude that, for a fixed duration, the peak 

flows are linearly related to the rainfall intensities when the routing mechanism in the 

channels is linear.  This result is similar to the one observed by Furey and Gupta [2005] 

over the Goodwin Creek Watershed.  For a fixed intensity, the scaling exponents range 

from 0.50 to 0.56 as the duration changes from 5 to 360 minutes.  We have also noticed 

that the peak flow at the outlet of the basin changes linearly with the duration.  The 
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scaling exponents for all the cases are larger than the width function scaling exponent of 

0.49, which confirms the result of Mantilla et al. [2006] for the Walnut Gulch watershed. 

Figure 2.10 shows the effect of the intensity and duration of spatially uniform 

rainfall when the channel routing mechanism is nonlinear.  The parameters selected in 

this study for the nonlinear routing mechanism result in different velocities in different 

links, and a straightforward panel to panel comparison between Figures 2.8 and 2.10 is 

therefore not meaningful.  We do not obtain the scale break for the shortest duration 

simulations for the same reason mentioned in the linear routing case.  Regression is not 

performed for the longest duration of 360 minutes, as most of the links have reached 

saturation and the scale break is not well defined.  For the 120 minute duration, the fitted 

regression equations reveal that the scaling exponent decreases as the rainfall intensity 

decreases.  It is also clear from Figure 2.10 that the relationship between flow peaks and 

rainfall intensities is nonlinear.  The peak flow scaling exponents for all the cases of 

nonlinear routing are larger than the exponent of the width function maxima.  They range 

from 0.55 for the shortest duration of 5 minutes to 0.66 when the rainfall intensity is 50 

mm/h and the duration is 120 minutes.  For the longest duration of 360 minutes, the 

scaling exponent is close to 1.0. 

2.6.2 Sensitivity to the Advection Velocity of Spatially 

Uniform Rainfall 

A spatially uniform rainfall of intensity 30 mm/h and approximately half the size 

of the basin (40×20 km2) is moved from west to east at five different velocities (4, 8, 16, 

32 and 64 km/h).  The peak flows are fitted in the Hortonian framework and the 

regression equations are obtained.  Figure 2.11 plots the scaling exponents versus 

advection velocities for linear and nonlinear routing mechanisms.  As expected from the 

results shown in Figure 2.10, there is no scale break for smallest advection velocity of 4 

km/h for the nonlinear routing mechanism, and thus we did not perform any regression 
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analysis.  For both channel routing mechanisms, the scaling exponent decreases with the 

increase in advection velocity.  Our motive for plotting linear and nonlinear routing 

mechanisms in the same figure is not to compare them point-to-point but to compare how 

the exponents decrease with advection velocity.  Figure 2.11 also shows the power law fit 

for both routing mechanisms.  The fitted equations reveal that the trend is the same for 

both routing mechanisms.  The decreasing trend can be explained in terms of the effect of 

duration discussed in the previous subsection.  With the increase in advection velocity, 

the duration for which the block of rainfall stays over the basin decreases, and therefore 

the scaling exponent also decreases.   

2.6.3 Sensitivity to the Spatio-Temporal Variability 

We have thus far assumed that the rainfall is spatially uniform throughout the 

basin.  In this subsection, we investigate the effect of spatio-temporal variability on the 

scaling exponents of peak flows.  We relax the spatial uniformity of rainfall over the 

basin by breaking it into two components: a block of uniform rainfall with an intensity of 

25 mm/h for a duration of 30 minutes on the western half of the basin and a rainfall of 50 

mm/h for a duration of 120 minutes over the eastern half of the basin.  The channel 

network routing is assumed to be linear with a velocity of 0.5 m/s throughout the 

network.  Figure 2.12 shows the scaling structure of peak flows for this scenario.  The 

banded structure apparent in Figure 2.12 is a direct manifestation of the different rainfall 

intensities received by western and eastern regions of the basin.  The scale break for these 

two bands also occurs at different locations because of the different durations for which 

the rainfall lasts over the western and eastern parts of the basin.  We noticed a similar 

trend for the nonlinear routing in channels. 

2.7 Analysis of Scatter 

The scatter in the peak flow scaling structure for the lower order basins can be 

explained in terms of peak flows reaching equilibrium (basins reaching saturation), while 
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the scatter for the higher order basins can be explained in terms of aggregation and 

attenuation of flows.  We illustrate this by analyzing the peak flows for two of the rainfall 

scenarios in Section 2.6.1 and Figure 2.8.  Specifically, we compare the probability 

distributions of the rescaled peak flows corresponding to spatially uniform rainfall of 5 

mm/h and durations of 5 and 120 minutes with the probability distributions of rescaled 

areas and width function maxima.  It can be seen from the Figure 2.13(a) that for a 

spatially uniform rainfall intensity of 5 mm/h and duration of 120 minutes, the order 1 

probability distributions of rescaled peak flows and areas are indistinguishable (negligible 

scatter in Figure 2.8) but for shorter duration of 5 minutes, the probability distributions 

are very different (large scatter in Figure 2.8).  Since the width function has the signature 

of the aggregation of flows in the channel network, we compare the order 5 probability 

distributions of rescaled peak flows and width function maxima in Figure 2.13(b).  We 

intended to compare the probability distribution of peak flows with that of width function 

maxima for higher order basins.  However, for orders 6 and 7, there are not enough points 

to obtain the probability distributions.  Therefore, we limit the comparison to order 5 

basins.  Unlike the order 1 distribution, the order 5 distribution is not very sensitive to the 

duration of the rainfall event.  For both the rainfall scenarios, the distribution of rescaled 

peak flows match reasonably well with that of width function maxima (Figure 2.13b). 

2.8 Summary and Conclusions 

In this chapter, we discussed the advantages of the studying the hydrologic 

response of a basin in a scaling-based framework. We carried out a systematic 

investigation to understand the role of rainfall on the spatial structure of peak flows.  Due 

to the lack of adequate field data, i.e. numerous stream gauges as well as highly accurate 

rainfall maps, we used simulations.  Our simulation experiments consisted of simple 

scenarios aimed at dissecting the effects of rainfall variability on peak flows scaling 
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structure.  We demonstrated that rainfall variability has a different impact on the 

magnitude of peak flows for basins of different scales. 

While our results are subject to the usual limitations of a simulation study, our 

experiments contain many realistic aspects.  First, our river basin has a size (scale) 

substantially larger than many small experimental basins that are the basis for many 

hydrologic studies.  Second, our assumptions regarding the runoff generation mechanism 

represent a realistic yet limited subset of actual hydrologic conditions.  They are 

particularly realistic for flood-prone conditions, which are clearly the motivation of our 

study.  We selected the Whitewater River basin in Kansas for this study and a distributed 

hillslope-link based hydrological model to obtain the peak flows for each link within the 

basin.  The channel network extracted is characterized in terms of width function 

maxima.  The width function maxima of the Whitewater River basin displayed scaling 

behavior with respect to the Horton orders.  The scaling exponent of width function 

maxima was estimated to be 0.49. 

We focused on three aspects of the peak flow scaling structure for all the 

scenarios: scatter, scale break and the scaling exponents.  The results showed that the 

peak flow scaling exponents for all the scenarios considered in this study are greater than 

the width function scaling exponent.  This result is in agreement with the hypothesis of 

Mantilla et al. [2006] that in the river networks, the peak flow scaling exponent is 

governed by the competition between attenuation and aggregation of the flows.  For a 

fixed intensity, the scaling exponent increases with an increase in the rainfall duration, 

and for a fixed duration, the scaling exponent does not change with intensity for linear 

channel routing and decreases with intensity for nonlinear channel routing.  For the two 

hour duration, the fitted regression equations reveal that the scaling exponent decreases 

as the rainfall intensity decreases.  Based on simulations with spatially uniform rainfall of 

varying depths and a fixed duration of 10 minutes on a deterministic Mandelbrot-Viscek 

network, Menabde and Sivapalan [2001] reported that the scaling exponent increases as 
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the rainfall depth decreases.  For the Whitewater River basin, and therefore a real river 

network, we did not notice such a trend for 30 and 5 minute duration simulations and 

noticed a reverse trend when the duration is 120 minutes.  The results obtained from the 

simple scenarios contribute to a rigorous understanding of the peak flow scaling structure 

obtained from actual space-time variable rainfall, which we address in the following 

chapter. 
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Figure 2.1 A shaded relief map of the Whitewater River basin showing the hillslope and 
channel link structure of the CUANCAS model.  The channel network with 
links of order 4 to 7 is shown. 
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Figure 2.2 Topologic width function at the outlet of the Whitewater River basin, Kansas 
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Figure 2.3 Statistical self-similarity of upstream areas and width function maxima in 
terms of Horton plots (left panels) and rescaled distributions (right panels).  
The ordinary least square regression is used to obtain the corresponding 
Horton ratios.  The first order and seventh order links are not considered in 
fitting. 
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Figure 2.4 Sensitivity of the channel velocity (m/s) to the λ1 and λ2 in equation 2.1.  The 
velocities are shown only for the channels that correspond to the largest are 
(displayed on each panel in km2) for the Horton orders 2 to 7.  
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Figure 2.5 Hydrographs at six locations in the Whitewater River basin obtained from a 
distributed hydrologic model for a spatially uniform rainfall. 
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Figure 2.6 Hydrographs at six locations in the Whitewater River basin obtained from a 
distributed hydrologic model.  The gray lines are the hydrographs for each of 
the 10 rainfall realizations assumed to be random in space with the intensities 
following the uniform distribution U[20,100] mm/h for a duration of 10 
minutes.  The solid line represents hydrographs for the spatially uniform 
rainfall of 60 mm/h for 10 minutes. 
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Figure 2.7 Scaling of peak flows with respect to the upstream areas of all the subbasins in 
the Whitewater River basin.  For (a) and (b), the rainfall is spatially uniform 
with intensity and duration indicated on the panels.  For (c) and (d), the 
rainfall is random in space with the intensities following the uniform 
distribution U[20,100] mm/h and the duration is equal to 10 minutes. 
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Figure 2.8 Sensitivity of peak flow scaling structure to intensity and duration of spatially 
uniform rainfall and linear channel routing with a velocity of 0.5 m/s.  The 
solid black line represents the ordinary least squares fit (equation on each 
panel) obtained in the Hortonian framework.  The solid red line indicates the 
scale break.  The color scheme is same as Figure 2.7 
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Figure 2.9 Horton plots of peak flows for different combinations of intensity and duration 
of spatially uniform rainfall applied throughout the basin.  The solid line 
indicates the ordinary least squares regression fit.  The corresponding Horton 
ratios are also indicated on each panel. 
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Figure 2.10 Sensitivity of peak flow scaling structure to intensity and duration of spatially 
uniform rainfall and nonlinear channel routing.  The solid black line 
represents the ordinary least squares fit (equation on each panel) performed in 
the Hortonian framework.  The solid red line indicates the scale break.  The 
color scheme is same as Figure 2.7. 
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Figure 2.11 Sensitivity of scaling exponent of peak flows to the advection velocity of 
spatially uniform rainfall of intensity 30 mm/h and linear and nonlinear 
channel routing mechanisms. 
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Figure 2.12 Effect of space-time variability of rainfall on the peak flow scaling structure.  
The rainfall is taken to be spatially uniform with the intensity of 25 mm/h for 
30 minutes over western half of the basin.  For the eastern half of the basin, 
the rainfall is 50 mm/h for 120 minutes.  The color scheme is same as Figure 
2.7 
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Figure 2.13 Probability distributions of rescaled areas, width function maxima and peak 
flows for order 1 and order 5 basins. 
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CHAPTER 3 

EFFECT OF RAINFALL VARIABILITY: SIMULATIONS WITH 

SPACE-TIME VARIABLE RAINFALL* 

3.1 Introduction 

In the previous chapter, we investigated the sensitivity of the peak flow scaling 

structure to the basic characteristics of rainfall such as intensity, duration, and advection 

velocity employing idealistic spatially uniform rainfall scenarios.  However, it is well 

known that rainfall is extremely variable both in space and time.  Several studies 

analyzed the effect of spatial variability of rainfall on the output hydrographs from either 

lumped or distributed hydrological models [e.g., Beven and Hornberger, 1982; Milly and 

Eagleson, 1988; Naden, 1992; Pessoa et al., 1993; Obled et al., 1994; Shah et al., 1996; 

Finnerty et al., 1997; Singh, 1997; Koren et al., 1999; Smith et al., 2004b; Morin et al., 

2006; Saulnier and Le Lay, 2009].  Nevertheless,∗ the results did not give a complete 

picture of the effect of rainfall variability sensitivity as the analyses were based on the 

hydrographs at the outlet or at specific locations.  Instead of outlet hydrographs, we focus 

on the spatial scaling structure of the peak flows, and therefore shed more light on the 

sensitivity of the hydrologic response to the variability in the rainfall. 

To investigate the statistical structure of peak flows for space-time variable 

rainfall, it is necessary to have information on spatial-temporal distribution of rainfall 

events.  Such information can be conveniently provided by the ground-based weather 

radar network.  We obtained radar estimates of three rainfall events that occurred in 2007 

over Whitewater River basin, Kansas.  We forced the hydrologic model CUENCAS with 

radar-rainfall estimates and obtained the hydrographs for all the interior sub-basins and 

                                                 
∗Adapted from Mandapaka, P.V., W.F. Krajewski, R. Mantilla, and V. K. Gupta (2009), 

Dissecting the effect of rainfall variability on the statistical structure of peak flows, Advances in 
Water Resources, 32, 1508-1525. 
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outlet of the Whitewater River basin.  The simulation framework in terms of the study 

area, hydrologic model parameters and the assumptions are essentially the same as in the 

previous chapter.  We also assumed that flow in the channels is constant throughout the 

river network.  Figure 3.1 shows the peak flow structure for the 6th of May 2007 event 

that lasted for approximately 25 hours.  Figure 3.1 reveals that peak flows display scaling 

with a scaling exponent of 0.70.  The scaling exponent of 0.70 is larger than the scaling 

exponent of the width function maxima.  For the other two 2007 events that we analyzed, 

the scaling exponents were 0.68 and 0.77. 

From the studies discussed in Section 2.6 of previous chapter, we know that when 

a spatially uniform rainfall is applied instantaneously, the peak flow scaling exponent is 

very close to that of the width function maxima.  A real rainfall event is far from being 

spatially uniform and lasts for a certain duration.  Therefore, the scaling exponent in 

Figure 3.1 is very different from that of the width function maxima.  Figure 3.1 also 

shows that the scatter at small scales is different from that of simple scenarios considered 

in the previous chapter.  Another conspicuous feature in Figure 3.1 is that the scale break 

is not well defined, possibly because of the inherent space-time variability of the rainfall 

event such as zero-rain intermittency and its spatio-temporal correlation structure.  It is 

well known that radar-rainfall estimates are subject to considerable uncertainties [e.g. 

Bras and Rodriguez-Iturbe, 1993; Krajewski and Smith, 2002; Ciach et al., 2007].  The 

errors propagate through the hydrologic models and contribute to the variability of the 

predicted peak flows across scales.  However, we do not attempt to separate the effects of 

rainfall estimation uncertainties from the effects of natural variability of rainfall on the 

peak flow scaling structure.  The natural variability of rainfall itself has a great impact on 

the statistical structure of peak flows, and understanding its role is the main goal of this 

study. 

The simulation experiments discussed in previous chapter can only partially 

explain the effect of various characteristics of rainfall that resulted in Figure 3.1.  To 
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investigate the effect of spatial variability of rainfall on the peak flow scaling structure, 

we extend the simulation framework of the previous chapter with spatially variable 

rainfall fields.  Though there are many ways in which spatial variability can be 

characterized, we explore it in terms of variance, correlation structure and zero-rainfall 

intermittency of Gaussian random fields and intermittent lognormal random fields.  Our 

experiments are designed so that we depart from the uniform rainfall scenarios in a 

gradual, simple manner to keep from losing the benefits of the previously gained 

understanding of the effects of the uniform intensity and duration.  We start with 

Gaussian uncorrelated fields, and then proceed to Gaussian and lognormal correlated 

fields with varying degrees of intermittency.  We employ a well-known space-time 

rainfall model developed by Bell [1987] to obtain lognormal rainfall fields with desired 

spatial correlation and intermittency. 

This chapter is organized as follows.  Following the introduction, Section 3.2 

describes the peak flow scaling structure for Gaussian uncorrelated fields with changing 

variance.  The effect of rainfall correlation structure on the peak flows is discussed in 

Section 3.3.  The peak flow scaling structure obtained using the rainfall from the space-

time model is discussed in Section 3.4. 

3.2 Effect of Spatial Variability 

3.2.1 Gaussian Uncorrelated Fields 

In this scenario, we simulate Gaussian random fields with a mean of 25.0 mm/h 

and the standard deviation ranging from 0.1 mm/h to 6 mm/h.  By gradually varying the 

variance, we gently depart from the well-understood case of uniform intensity.  The 

duration of the rainfall is fixed at 120 minutes.  The peak flow scaling structure for four 

different cases of standard deviation and linear routing mechanism is shown in Figure 

3.2.  In the Hortonian regression, we used the orders 3 to 7.  Table 3.1 lists the average 

rainfall, intercept, scaling exponent and the peak flow at the outlet of the basin for all the 
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cases and for both routing mechanisms.  Figure 3.2 and Table 1 reveal that the increasing 

variance has no significant effect on the fitted regression equations.  The main effect of 

the variance is to increase the scatter in the peak flow scaling structure.  The scatter is 

averaged out by the basin at the larger scales, as seen from the peak flow values at the 

outlet (Table 3.1).  The slight variation in the intercepts and outlet peak flows is expected 

given that we are using realizations of a random process.  This is further evident from the 

estimated values of the mean, which are different from the theoretical value of 25 mm/h. 

3.2.2 Gaussian Correlated Fields 

To investigate the effect of spatial correlation of the rainfall field on the scaling 

exponents, we obtain Gaussian fields with a mean of 25 mm/h and a standard deviation of 

2 mm/h and that is characterized by an exponential correlation structure 
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where d is the distance between any two points in the field, θ1 is the correlation distance 

defined as the distance at which the correlation drops to 1/e and θ2 is the shape parameter 

that controls the shape of the correlation function at the origin.  We fixed the shape factor 

at one and generated the random fields with the correlation distances varying from 5 km 

to 50 km.  Each field is then applied for 120 minutes over the basin, and the peak flows 

are estimated for linear and nonlinear routing mechanisms.  Figure 3.3 shows the scaling 

structure of peak flows for two extreme cases of correlation distances and a linear routing 

mechanism.  The effect of increasing correlation is to decrease the scatter in the scaling 

structure (Figure 3.3).  Table 3.2 shows that the larger scale basin response is almost 

independent of the correlation structure, although there is some variability in the 

intercepts and outlet peak flows, which is mainly due to the fact that we are using 

realizations of a random process. 
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3.2.3 Zero-Rain Intermittency: Uncorrelated Fields 

To investigate the effect of zero-rainfall intermittency, we simulated random 

rainfall with varying degrees of zero-rainfall intermittency and a duration of 120 minutes.  

The value of rainfall over each pixel was drawn from uniform distribution U[10,30], and 

intermittency is introduced randomly but maintains an overall mean fixed at 20 mm/h.  

We considered four values of intermittencies: 0.0, 0.05, 0.25 and 0.50 (corresponding 

rainy area fractions are 1.0, 0.95, 0.75 and 0.50).  These rainfall scenarios were supplied 

as input to the CUENCAS model, and the peak flow scaling structure was obtained for 

linear routing mechanisms.  The sensitivity of the peak flow scaling to the intermittent 

random fields is shown in Figure 3.4.  With the increase in intermittency (or decrease in 

rainy area), the scatter for the smaller scale basin peak flows increased.  However, the 

effect of intermittency is reduced for the larger scale basins, as evidenced by the linear 

regression equations shown in each panel of Figure 3.4 and also from the outlet peak flow 

values shown in Table 3.3.  The simulations are repeated for the nonlinear routing 

mechanism, and we found a similar pattern to the pattern found in linear routing, 

although the intercepts and scaling exponents differed (Table 3.3). 

3.2.4 Zero-Rain Intermittency: Correlated fields 

To study the effect of intermittency in a more realistic manner, we selected the spatial 

component of the rainfall model developed by Bell [1987].  The model belongs to the 

class of meta-Gaussian models [e.g., Mejia and Rodriguez-Iturbe, 1974; Bell, 1987; 

Guillot and Lebel, 1999] and generates a two-dimensional isotropic, correlated random 

field using spectral analysis.  A non-linear transformation and an external threshold are 

then applied to obtain a rainfall field with desired intermittency, average intensity and 

correlation structure.  In Bell [1987], the use of exponential transformation resulted in 

lognormally distributed rainfall.  The parameters for the model are the log-transformed 

(Gaussian) mean and variance of the rainy area, the zero-rainfall intermittency factor and 
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the spatial correlation structure.  The parameters we selected are 0 and 0.5 for the log-

transformed mean and variance of the rainy area and exponential correlation structure 

with a correlation distance of 20 km.  We observed that the realizations from the model, 

besides having the desired spatial correlation structure, also displayed spatial scaling 

behavior.  The duration of the event is fixed at 120 minutes.  To keep the volume 

constant with changing intermittency, we simulated a single realization with a given 

correlation structure on a large (256×256) domain and selected the portion that yielded 

the desired intermittency and volume.  The spatial structure of the field thus obtained will 

remain the same as the larger one.  Figure 3.5 shows the scaling structure of peak flows 

for four different intermittency factors starting from 0 to 0.50 for the linear channel 

routing mechanism.  Unlike in Figure 3.4, significant scatter was observed even for 

higher order basins (particularly for the bottom panels of Figure 3.5) when the pixels are 

correlated.  The large scatter is due to the high probability of concentrated intermittent 

pixels present in correlated intermittent fields.  Whereas, for uncorrelated intermittent 

fields, the river network efficiently aggregates the randomness in the fields.  However, 

the overall behavior - of increasing scatter with increasing intermittency - is similar for 

both scenarios. 

3.3 Simulations from Space-Time Rainfall Model 

The scenarios investigated so far have offered insight into the effects of different 

characteristics of rainfall on the spatial scaling structure of peak flows.  We will now 

investigate the basin’s response to more realistic space-time rainfall events.  Therefore, 

we have simulated a space-time rainfall event from a model developed by Bell [1987] and 

applied it over the basin.  The spatial component of the model is described in the previous 

section.  The temporal evolution of the rainfall is modeled as an autoregressive process 

with parameters based on the correlation time of area-averaged rainfall.  The parameters 

for the model are obtained by analyzing several storms over the Midwest.  In this study, 
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we simulate two different storm events with characteristics listed in Table 3.4.  Storm 2 is 

more variable than storm 1, as seen from the values of the coefficient of variation and 

correlation distance.  Another important difference is that storm 1 lasts longer and has 

larger values of mean and rainy fraction compared to storm 2.  The values of the shape 

factor suggest that storm 2 is more correlated at very small scales than storm 1. 

Figure 3.6 shows the basin response to the two storms for the linear routing 

mechanism.  The peak flow scaling structure for this complex scenario can now be 

explained using the results from idealized scenarios.  Although the scale break is sharp 

and evident for the simulation scenarios of Section 2.6 under idealized conditions, it is 

not clearly seen in the peak flow scaling structure resulting from the simulated realistic 

space-time rainfall event.  Since the scaling exponent is not close to 1.0, basin saturation 

(for instance, top panels of Figure 2.7) is not the reason for the absence of scale break.  

The lack of sharp scale break for realistic rainfall scenarios can be best explained by 

revisiting the idealized scenarios in Section 2.6.  For instance, a combination of just two 

different intensities and durations has diffused the scale break in Figure 2.11.  The space-

time rainfall fields are characterized by different intensities, durations, correlations and 

intermittencies and move with a certain advection velocity.  In a way, these fields are a 

combination of all of the scenarios considered in Section 2.6.  This explains the absence 

of scale break for storm 1. 

The scatter for storm 1 is smaller than that of storm 2.  Two main factors 

responsible for the reduced scatter are the duration of the storm and zero-rain 

intermittency.  Results from Section 2.6.1 indicate that one consequence of longer 

duration events is the decreased scatter that is most pronounced at smaller scales.  Also, 

from Sections 3.2.3 and 3.2.4 that pertain to the effect of zero-rain intermittency, we note 

that the scatter in the peak flow structure increases rapidly as the area of rainfall 

decreases.  Though the rainy fraction of storm 1 is 46 %, the advection of the storm 

eventually increases the effective wetted area of the basin, thereby decreasing the scatter 
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seen at smaller scales.  For the second storm, the large scatter is due to the increased 

intermittency combined with the shorter duration and large coefficient of variation. 

The regression equation seen for storm 1 is obtained in a Hortonian framework 

using the orders 2 to 7.  For storm 2, peak flows corresponding to the Horton orders of 4 

to 7 are used in this storm’s regression.  The scaling exponent for both storms is larger 

than the scaling exponent of the width function maxima.  For the nonlinear routing 

scenario (not shown), we noticed a similar pattern with larger scatter and higher values 

for scaling exponents than in the linear routing case. 

3.5 Conclusions 

In Chapter 2, we investigated the sensitivity role of spatial structure of peak flows 

to the basic characteristics of rainfall such as intensity, duration and storm advection 

velocity using simple scenarios of uniform rainfall.  This chapter extended the framework 

by systematically introducing variability in the rainfall fields.  The variability was 

characterized in terms of variance, space-time correlation functions, and zero-rainfall 

intermittency.  We started with Gaussian uncorrelated rainfall fields and proceeded to 

complex rainfall fields obtained from a space-time rainfall model.  Our rainfall variability 

cases and range of values, though simple, captured the key aspects of natural rain 

systems.  The main effect of variability, as characterized by variance, spatial correlation 

and the spatial intermittency, is to increase the scatter in the scaling structure of the peak 

flows.  At larger scales, the effect of variability decreases, as seen from peak discharges 

at the outlet of the basin.  For homogeneous rainfall fields and under idealized conditions 

of flow routing on hillslopes and in channels, we observed that the smaller scale basin 

response was dominated by the rainfall intensity (and spatial distribution), while the 

hydrologic response of larger scale basins was driven by rainfall volume, river network 

topology and flow dynamics.  Based on the simulations on a deterministic Mandelbrot-

Viscek network, Menabde and Sivapalan [2001] reported that the variability in the 
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rainfall decreases the scaling exponent of peak flows on both sides of the scale break.  

We did not observe such behavior in our simulations. 

The results obtained from the simple scenarios in Chapter 2 and Section 3.2 

enhanced our understanding of the peak flow scaling structure obtained from simulated 

space-time variable rainfall.  Storm duration and advection are the key factors that control 

the effective zero-rain intermittency, which in turn affects the scatter in the peak flows.  

The peak flow scaling structure for the realistic space-time rainfall scenarios did not 

present a clear and sharp scale break.  The scale break was masked due to the inherent 

space-time variability in the realistic rainfall fields. 
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Table 3.1 Sensitivity of intercepts, scaling exponents and outlet peak flows to the 
variance of the Gaussian rainfall field with a mean intensity of 25 mm/h. 

( )2,σμN  Mean 
[mm/h] 

Linear Routing Nonlinear Routing 

Intercept Slope Outlet Peak 
Flow [m3/s] 

Intercept Slope Outlet Peak 
Flow [m3/s] 

N(25,0.1) 24.99 12.02 0.54 587.54 12.79 0.63 1246.87 

N(25,1.0) 24.98 12.00 0.54 587.13 12.73 0.63 1245.98 

N(25,4.0) 25.02 12.00 0.54 587.01 12.74 0.63 1246.65 

N(25,9.0) 24.93 12.08 0.54 588.67 12.85 0.63 1228.01 

N(25,16.0) 25.09 11.95 0.54 580.44 12.70 0.64 1249.81 

N(25,25.0) 24.88 11.93 0.54 587.15 12.70 0.63 1243.16 

N(25,36.0) 24.88 11.97 0.54 589.58 12.64 0.64 1252.31 
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Table 3.2∗ Sensitivity of intercepts and scaling exponents to the spatial correlation 
structure of the rainfall field. 

Correlation 
Distance 

[km] 

Mean 
[mm/h] 

Linear Routing Nonlinear Routing 

Intercept Slope Outlet Peak 
Flow [m3/s] 

Intercept Slope Outlet Peak 
Flow [m3/s] 

5.0 25.06 12.19 0.54 581.92 12.99 0.63 1232.85 

10.0 24.41 11.92 0.54 566.09 12.67 0.63 1192.25 

20.0 24.83 11.86 0.54 582.06 12.62 0.64 1222.65 

30.0 26.49 12.54 0.54 619.69 13.44 0.64 1340.37 

40.0 25.48 12.33 0.54 597.79 13.17 0.63 1279.25 

50.0 23.46 11.29 0.54 545.59 11.88 0.63 1120.85 

                                                 
∗The rainfall field is assumed to be Gaussian with a mean intensity of 25 mm/h and a 

variance of 2.0 mm/h and is characterized by an exponential correlation function with the 
correlation distances indicated in the Table. 
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Table 3.3∗ Sensitivity of intercepts and scaling exponents to the intermittency in the 
uncorrelated random fields. 

Intermittency 
[%] 

Mean 
[mm/h] 

Linear Routing Nonlinear Routing 

Intercept Slope Outlet Peak 
Flow [m3/s] 

Intercept Slope Outlet Peak 
Flow [m3/s] 

0 19.88 11.45 0.50 464.66 12.26 0.58 898.48 

5 20.04 11.73 0.50 473.95 12.23 0.58 907.88 

25 20.05 11.23 0.50 469.37 11.58 0.58 907.24 

50 19.84 11.91 0.50 485.78 12.41 0.58 942.22 

                                                 
∗The value of rainfall over each pixel was drawn from a Uniform distribution U[10,30], 

and the duration of the event is 120 minutes.  The mean of the field is kept constant for different 
intermittencies. 
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Table 3.4∗ Characteristics of rainfall events simulated from the space-time rainfall model. 

Storm 
 

Mean 
[mm/h] 

Standard 
Deviation 
[mm/h] 

Coefficient of 
Variation 
[mm/h] 

Correlation 
Distance [km]

Shape 
Factor 

Rainy 
Area 
[%] 

Duration 
[hr] 

1 3.97 10.37 2.61 15.40 0.73 45.84 20 

2 1.41 5.97 4.23 5.52 0.92 17.51 4 

                                                 
∗A two parameter exponential correlation function is used to characterize the spatial 

dependence. 
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Figure 3.1 Scaling of peak flows with respect to the upstream areas of all the sub-basins 
in the Whitewater River basin, Kansas.  The rainfall data is obtained from the 
KICT NEXRAD weather radar at Wichita, Kansas.  The color scheme 
indicates the Horton orders as in Figure 2.7. 
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Figure 3.2 Sensitivity of peak flow scaling structure to the variance of the rainfall field.  
The rainfall field is assumed to be Gaussian with a mean of 25 mm/h and 
variance indicated on each panel. The color scheme indicates the Horton 
orders as in Figure 2.7. 
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Figure 3.3 Sensitivity of peak flow scaling structure to the spatial correlation of the 
rainfall field.  The rainfall field is assumed to be Gaussian with a mean of 25 
mm/h, standard deviation of 2.0 mm/h. The spatial structure of the rainfall 
field is characterized by an exponential correlation structure with the 
correlation distance indicated on each panel. The color scheme indicates the 
Horton orders as in Figure 2.7. 
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Figure 3.4 Sensitivity of the peak flow scaling structure to the spatial zero-rainfall 
intermittency in rainfall fields.  The rainfall fields are distributed randomly in 
space with the value at each pixel drawn from uniform distribution U[10,30] 
with a mean of 20 mm/h and a duration of 120 minutes. 
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Figure 3.5 Sensitivity of the peak flow scaling structure to the spatial zero-rainfall 
intermittency of rainfall field.  The rainy portion of the field is assumed to 
follow lognormal distribution.  The color scheme indicates the Horton orders 
as in Figure 2.7. 
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Figure 3.6 Response of the watershed to the simulated space-time rainfall events.  The 
characteristics of the storms are listed in Table 3.3.  The color scheme 
indicates the Horton orders as in Figure 2.7. 
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CHAPTER 4 

EFFECT OF RAINFALL AND HILLSLOPE VARIABILITY: 

INTRODUCING HILLSLOPE DELAY 

4.1 Introduction 

The effect of space-time variability of rainfall on the peak flow scaling structure 

has been investigated in Chapters 2 and 3 using ~1200 km2 Whitewater River basin as an 

illustration.  The results have improved our understanding on the role of rainfall 

variability and the river network structure on the scale-invariance of peak flows.  

However, it is very important to check the validity of the results for different basins with 

different geomorphologic characteristics.  One of the key results from the previous 

chapters was that the variability in rainfall seen at smaller scales was averaged out by the 

river network as one moved to larger scales.  However, we did not have sufficient large 

scale basins to strongly support the above statement.  In this chapter, we extend the 

analysis to ~ 7250 km2 Iowa River basin up to Marengo, Iowa.  By moving to a larger 

basin, we will have a better perspective of the attenuation and aggregation of flows by the 

river network. 

In the previous chapters, we did not consider the role of hillslope travel time on 

the peak flow scaling structure.  We assumed that the runoff generation mechanism was 

Hortonian and that the flow reached the channel instantaneously.  The hillslope 

hydrology is characterized by variety of processes such as interactions between soil and 

atmosphere, vegetation and soil moisture, rainfall and soil moisture, surface and 

subsurface flows, leading to a complex system of runoff generation at very small scales 

[e.g., Kirkby, 1978; Kirkby, 1988; Anderson and Burt, 1990].  Several studies have 

investigated the role of hillslopes in shaping the catchment hydrologic response [e.g., 

Robinson et al., 1995; Ritsema et al., 1996; Ogden and Watts, 2000; D’Odorico and 

Rigon, 2003; Ridolfi et al., 2003; Weiler and McDonnell, 2004].  Particularly in small 
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catchments, where channels are relatively short, the travel time in the hillslope is 

comparable to the travel time in the channels [e.g., D'Odorico and Rigon, 2003].  

Although such studies have greatly improved our understanding of the hillslope 

hydrology, we still lack a coherent framework to systematically investigate the effect of 

hillslope processes across a wide range of scales.  Therefore in this study, instead of 

focusing on each hillslope process, we account for the net effect of hillslopes in terms of 

hillslope travel time by incorporating hillslope velocity.  It should be noted that the 

assumptions of zero-infiltration and zero-evaporation are still in place. 

So far in this thesis, the river network has been extracted from 30 m resolution 

DEM.  Current computational resources limit the use of high resolution DEMS and 

hillslope-link based hydrologic modeling for large basins such as Mississippi River basin.  

Another goal of this chapter is to explore the role of the river network extraction on the 

statistical structure of peak flows. 

4.2 Description of the Study Area 

The Iowa River basin (Figure 4.1) stretches between latitudes 37° 46’E and 38° 

09’E and longitudes 96° 51’W and 97° 18’W.  In this chapter, we considered Iowa River 

basin up to Marengo (Figure 4.1) with an area of approximately 7250 km2 and highest 

Horton order of eight, when a 30 m DEM is used to extract the river network.  This 

results in about 100,000 hillslopes and, thus, channel links for this basin.  In Figure 4.1, 

we also show the extracted channel network with links of Horton orders 5 to 9.  Figure 

4.2 shows the topologic width function for the Iowa River basin at Marengo.  We 

estimated the width functions for each link in the river network and obtained the 

corresponding maximum values. 

Figures 4.3(a) and 4.3(c) show the Horton plots for drainage areas and width 

function maxima of links of various orders for the Whitewater River basin, Kansas.  The 

log-linearity in Figures 4.3(a) and 4.3(c) confirm the statistical self-similarity of the 
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upstream areas and the width function maxima [e.g., Strahler, 1957; Peckham and Gupta, 

1999; Furey and Troutman, 2008].  In the regression analysis, we used the areas and 

width function maxima corresponding to the Horton orders 2 to 7.  The order 8 stream is 

not used in the Horton regression due to sampling reasons: we have only one point 

corresponding to the order 8.  Although, averages corresponding to order 1 streams do 

not suffer from sampling issues, they are usually not considered in the regression [e.g., 

Peckham and Gupta, 1999; Mantilla and Gupta, 2005] as they represent the finest detail 

in a stream network, and therefore the corresponding basins do not contain a “network”.  

The Horton ratios for the areas and width function maxima are then obtained by 

exponentiation of the slopes from the regression analysis.  The scaling exponent of width 

function maxima obtained through Horton ratios in (1) is 0.46.  

If the upstream areas and width function maxima display log-linearity, as shown 

in Figures 4.3(a) and 4.3(c), then E[Xω] = E[X1]•(RX)ω-1, where X is either the upstream 

area or the width function maxima and RX is the corresponding Horton ratio.  The 

rescaled upstream areas and width function maxima are obtained by dividing each value 

of Xω by E[X1]•(RX)ω-1.  The probability distribution of the quantity Xω/[E[X1]•(RX)ω-1] is 

called the rescaled probability distribution.  In Figures 4.3(b) and 4.3(d), we show the 

statistical self-similarity of areas and width function maxima in terms of their rescaled 

probability distributions for orders 1 to 7.  Although order 1 basins were not considered 

in the regression analysis, it can be seen that their rescaled probability distribution 

collapses onto those of orders 2 to 7. 

4.3 Sensitivity to the Intensity and Duration of Spatially 

Uniform Rainfall 

4.3.1 Without Hillslope Delay 

Spatially uniform rainfall of different intensities was imposed on the study area 

for different durations.  The assumptions in the hydrologic model were same as in 
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chapters 2 and 3; i.e. 1) negligible evapotraspiration, 2) purely surface runoff, and 3) 

instantaneous flow to the channels (no hillslope effect).  The channel routing was 

assumed to be nonlinear with velocity that depends on the discharge in each link and the 

corresponding upstream area (equation 2.1).  For all the rainfall scenarios in this chapter, 

we obtained peak flow regression equations (Figure 4.4) in Hortonian framework 

described in Sections 2.3 and 2.6.  That is, instead of obtaining the scaling exponent by 

regression of peak flows with upstream areas, we use equation 1.2 to obtain the scaling 

exponent.  And the coefficient of the power law is obtained so that the regression line 

passes through the average of the peak flows corresponding to the top three orders 

(Figure 4.4).  We noticed that the scaling exponent was always greater than the scaling 

exponent of the width function maxima (Figure 4.4), which is in confirmation with 

Whitewater River basin results discussed in Chapter 2 and with Mantilla et al [2006] for 

the Walnut Gulch basin. 

For the durations of 5 min and 60 min, the scaling exponent was equal to 0.58 for 

all three rainfall intensities, and when the duration was changed to 240 min, the scaling 

exponent was found to decrease with the decrease in rainfall intensity (Figure 4.4).  

Similar behavior was reported in Chapter 2 for the Whitewater River basin.  The scale 

break (solid red line in Figure 4.4) was estimated using the methodology presented in 

Chapter 2 (equation 2.2).  We did not estimate the scale break for the shorter duration of 

5 min due to large scatter at smaller scales.  With the increase in rainfall duration, more 

number of small scale links reached steady state, and the scale break moved towards 

larger scale basins (Figure 4.4).  We noticed similar behavior with an increase in the 

rainfall intensity; the scale break moved towards larger scale basins (Figure 4.4).  

Overall, the response of the Iowa River basin to the spatially uniform rainfall was similar 

to that of Whitewater River basin.  In the next subsection, we relax the assumption of 

instantaneous flow to the channel to study the role of hillslope characteristics. 
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4.3.2 With Hillslope Delay 

The scenario with the instantaneous flow to the channel can be considered as 

equivalent to the very high value for the hillslope velocity.  We gradually decreased the 

velocity to 1.0 m/s and then to 0.1 m/s to study the net effect of hillslopes on the 

hydrologic response of a basin.  It should be noted that the value of 1.0 m/s was still high 

for a hillslope flow velocity and was comparable to the instantaneous flow situation.  

However, it already started to play a role in determining the peak flows at smaller scales, 

particularly for the shorter duration of 5 min (Figure 4.5).  The scatter in the peak flows 

was reduced as the hillslope velocity was decreased from very high value (instantaneous 

flow) to 1.0 m/s (Figure 4.5).  With further reduction in the hillslope velocity to 0.1 m/s, 

the scatter in the peak flows decreased, but with formation of a curve shaped envelope 

towards the smaller scale basins.  The behavior can be observed particularly for the 

shorter duration of 5 min (Figure 4.6).  However, the overall sensitivity of the peak flow 

scaling structure to the rainfall intensity and duration remained same as the instantaneous 

flow scenario.  That is, more number of links reached steady state with the increase in 

rainfall duration and intensity, resulting in the reduction in the scatter and movement of 

the scale break towards higher order basins (Figures 4.5 and 4.6).  Table 4.1 lists the scale 

breaks for each combination of rainfall intensity, duration and hillslope velocity.  In 

general, the scale break moved towards smaller scales with the decrease in hillslope 

velocity; i.e. lesser number of links reached steady state with the introduction of the 

hillslope delay (Table 4.1). 

The scaling of peak flows was much more sensitive for the hillslope velocities 

between 1.0 m/s and 0.1 m/s than those between instantaneous flow velocities and 1.0 

m/s (Figures 4.4, 4.5, 4.6, and Table 4.1).  The changes in the small-scale scatter and the 

location of the scale break did not significantly affect the fitted regression equations.  

While the scaling exponents remained exactly same for the velocity corresponding to 

instantaneous flow and velocity of 1.0 m/s, they changed only slightly (except for the 
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case of 50 mm/h and 240 min duration) as the hillslope velocity reduced to 0.1 m/s 

(Figures 4.4, 4.5, and 4.6).  

4.4 Spatially Correlated Rainfall Fields 

In the previous section, we studied the sensitivity of peak flows to the spatially 

uniform rainfall of varying intensities and duration under different scenarios of hillslope 

routing.  Here, we consider the effect of rainfall spatial variability on the peak flows by 

systematically increasing the smoothness in the rainfall fields.  The rainfall intensity 

distribution was assumed to be Gaussian with a mean of 25 mm/h and standard deviation 

of 6 mm/h.  The rainfall fields were characterized by exponential correlation structure 

(equation 3.1), with correlation distances of 5, and 50 km.  The rainfall fields were 

applied over the Iowa River basin for durations of 60 min and 240 min.  Figure 4.7 shows 

the peak flow scaling structure for different correlation distances, rainfall durations, and 

with and without hillslope delay.  For the correlation distance of 5 km, the river network 

effectively integrated the variability in the rainfall fields (Top panels of Figure 4.7).  

However, when the correlation distance increased to 50 km, larger local variability 

combined with increased smoothness hampered the efficiency of the river network in 

integrating the flows (Bottom panels of Figure 4.7).  

It is well known that the rainfall intensity distribution is skewed.  Therefore our 

next step was to change the distribution from Gaussian to lognormal.  We subjected the 

Iowa River basin to lognormally distributed, spatially correlated fields of varying 

correlation distances.  The mean of the rainfall field is 5 mm/h and the standard deviation 

is equal to 8 mm/h.  In general, the sensitivity of the peak flow scaling to the lognormal 

rainfall scenario is similar to that of Gaussian fields.  The reduced efficiency of the river 

network in handling the rainfall with high local variability and the increased correlation 

distance can be particularly observed for lognormally distributed rainfall fields (Bottom 
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panels of Figure 4.8).  This behavior partially explains the lack of clear scale break for 

the peak flows corresponding to the NEXRAD radar-rainfall events. 

4.5 Sensitivity to Channel Network Extraction 

Throughout the thesis, we extracted the river network from the digital elevation 

models with 30 m resolution.  Mantilla and Gupta [2005] showed that the network 

extracted from the 30 m resolution DEM reasonably matched the terrain’s actual 

network.  With 30 m resolution DEM, Iowa River basin had approximately 100,000 

hillslopes.  It is computationally expensive to perform simulations for larger basins such 

as Mississippi River basin with millions of hillslopes.  In this section, we explored the 

tradeoffs between the channel network extraction and the peak flow scaling structure by 

repeating the experiments with spatially uniform rainfall on river network extracted from 

30 m and 90 m DEMs.  As expected, the decrease in DEM resolution from 30 m to 90 m 

reduced the number of hillslopes from ~ 100,000 to ~29,000.  Since the low resolution 

DEM results in lower drainage density, the Horton orders for the corresponding streams 

was also affected, particularly for the lower order streams.  For example, a third order 

stream in the network extracted from a 30 m DEM could be first order stream in the 

network extracted from a 90 m resolution DEM.  The peak flow scaling behavior for a 

spatially uniform rainfall of 25 mm/h, and duration of 60 min and 240 min for two 

different DEM resolutions is shown in Figure 4.9. 

It can be seen that the channel network extraction has a huge impact on the scale-

invariant behavior of peak flows.  It affects not only the basin response at smaller scales 

but also towards the larger scales, as noticed from the regression equations and the 

scaling exponents. 

4.6 Summary and Conclusions 

In this chapter, we extended the simulation framework described in Chapters 2 

and 3 to the Iowa River basin up to Marengo, Iowa.  The study area is different from 
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Whitewater River basin in many aspects.  First, it is approximately six times larger than 

the Whitewater River basin thus allowing us to minimize the sampling effects at large 

scales and explore the scaling behavior.  Secondly, the shape of Iowa River basin is very 

different from the square shaped White water River basin, and therefore the role of river 

network would be different.  We also studied the effect of hillslope characteristics and 

channel network extraction on the scale-invariance of peak flows.  The results suggested 

that the variability at the smaller scales, either from rainfall or from the hillslopes, will be 

averaged out by the river network.  However, the efficiency of the river network in 

attenuating the variability depends on the intensity distribution and smoothness of the 

rainfall fields.  The results also suggested that the DEM resolution and the corresponding 

channel network plays a major role in the statistical structure of peak flows. 

Chapters 2, 3, and 4 foster development of a scaling based predictive framework 

for peak flows using remotely sensed rainfall products over basins ranging from very 

small to very large scales.  A key question there is, “What is the scale at which remote 

sensing products provide meaningful predictions?”  Our results suggest that the 

variability contributed by random errors of remote sensing sensors, such as weather 

radars and satellites, are filtered out by the drainage structure of river basins at some 

scales.  To investigate further into this problem, we need a model for radar-rainfall 

uncertainties.  The next chapter is a step forward in that direction as we present a 

framework to estimate spatial correlation of radar-rainfall errors. 
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Table 4.1 Sensitivity of scale break (in km2) to the rainfall intensity and duration for three 
different scenarios of hillslope velocity: 1) No hillslope delay (NHD), 2) 
hillslope velocity of 1.0 m/s, and 3) hillslope velocity of 0.1 m/s.   

Intensity 50 mm/h 25 mm/h 5 mm/h 

Duration NHD 1.0 0.1 NHD 1.0 0.1 NHD 1.0 0.1 

240 min 54.73 49.52 30.01 30.01 30.01 20.10 16.45 16.45 11.01 

60 min 1.77 1.44 0.13 1.44 1.06 0.11 0.56 0.50 0.06 
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Figure 4.1 Map showing the topography and the river network for the Iowa River basin 
up to Marengo, Iowa. 
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Figure 4.2 Topologic width function for the outlet of the Iowa River basin at Marengo, 
Iowa 



69 
 

 

 

Figure 4.3 Statistical self-similarity of upstream areas and width function maxima in 
terms of Horton plots (left panels) and rescaled distributions (right panels).  
The ordinary least square regression is used to obtain the corresponding 
Horton ratios.  The first order and seventh order links are not considered in 
fitting. 
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Figure 4.4 Sensitivity of peak flow scaling structure to intensity and duration of spatially 
uniform rainfall with no hillslope delay (instantaneous flow to the channels), 
and nonlinear channel routing.  The solid black line represents the ordinary 
least squares fit (equation on each panel) performed in the Hortonian 
framework.  The solid red line indicates the scale break. 
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Figure 4.5 Sensitivity of peak flow scaling structure to intensity and duration of spatially 
uniform rainfall, hillslope velocity of 1.0 m/s, and nonlinear channel routing.  
The solid black line represents the ordinary least squares fit (equation on each 
panel) performed in the Hortonian framework.  The solid red line indicates the 
scale break. 
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Figure 4.6 Sensitivity of peak flow scaling structure to intensity and duration of spatially 
uniform rainfall, hillslope velocity of 0.1 m/s, and nonlinear channel routing.  
The solid black line represents the ordinary least squares fit (equation on each 
panel) performed in the Hortonian framework.  The scale break is indicated 
with the solid red line. 
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Figure 4.7 Sensitivity of peak flow scaling structure to the smoothness of Gaussian fields.  
The rainfall field is Gaussian with a mean of 25 mm/h and standard deviation 
of 6 mm/hr.  The correlation function is assumed to be exponential with a 
correlation distance indicated in the figure.  For the right panels, the velocity 
on hillslopes is equal to 0.1 m/s.  For the color scheme, please refer to Figure 
4.6. 
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Figure 4.8 Sensitivity of peak flow scaling structure to the lognormal correlated fields.  
The mean of the rainfall field is 5 mm/h and the standard deviation is 8 
mm/hr.  The correlation function is assumed to be exponential with a 
correlation distance indicated in the figure.  For the right panels, the velocity 
on hillslopes is equal to 0.1 m/s.  For the color scheme, please refer to the 
Figure 4.6. 
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Figure 4.9 Sensitivity of the peak flow scaling structure to the channel network 
extraction.  For the left panels, a 30 m resolution DEM was used to extract the 
river network, whereas, for the left panels, a 90 m DEM was used.  The 
rainfall field is spatially uniform with an intensity of 25 mm/h for duration 
mentioned in the figure.  The color scheme is same as Figure 4.6. 
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CHAPTER 5 

ESTIMATION OF RADAR-RAINFALL ERROR SPATIAL 

CORRELATION* 

5.1 Introduction 

It is widely acknowledged that radar-rainfall estimates, which serve as an input to 

hydrometeorological and water resource applications, are corrupted by high uncertainties 

that originate from many sources [e.g., Zawadzki, 1984; Austin, 1987; Fabry et al. 1992; 

Kitchen and Jackson, 1993; Hunter, 1996; Smith et al., 1996; Steiner et al., 1999; Young 

et al., 1999; Young et al., 2000; Krajewski and Smith, 2002; Borga, 2002].  Given the 

current state of technology, it is practically impossible to accurately measure the true 

area-averaged rainfall.  Therefore, the quantification of radar-rainfall∗ uncertainties 

(including their spatiotemporal structure) must be executed by approximating the true 

areal rainfall with point rainfall measurements from rain gauges.  The problems 

associated with this approximation are well recognized [e.g., Zawadzki, 1975; Austin, 

1987; Kitchen and Blackall, 1992; Ciach and Krajewski, 1999a,b; Villarini and 

Krajewski, 2008; Villarini et al., 2008), but are difficult to overcome [e.g., Ciach et al. , 

2003; Habib et al., 2004; Ciach and Krajewski, 2006].  A reliable methodology for the 

comprehensive characterization of the radar-rainfall uncertainties must start with the 

identification and estimation of the joint probability distribution of radar-estimated 

rainfall and the corresponding true rainfall over a broad range of conditions [Ciach et al., 

2007].  These conditions include different space and time scales, different distances from 

radar and rainfall regimes, and different radar systems and rainfall estimation algorithms.  

From the joint distribution, one can derive different synthetic characteristics of the radar 

                                                 
∗Adapted from Mandapaka, P.V., W.F. Krajewski, G.J. Ciach, G. Villarini, and J.A. 

Smith (2009), Estimation of radar-rainfall error spatial correlation, Advances in Water Resources, 
32, 1020-1030. 
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rainfall errors, from the simple performance criteria (such as the root mean squared error) 

to the error distributional properties and its spatiotemporal dependences.  Clearly, 

establishing such a comprehensive methodology poses a challenge.  We are confident 

that this challenge is surmountable, though only through many years of collaborative 

research.  The present study constitutes another small but significant step in this 

direction. 

A complete statistical characterization of radar-rainfall uncertainties must include 

the biases [e.g., Smith and Krajewski, 1991; Anagnostou et al., 1998; Seo et al., 1999; 

Ciach et al., 2000; Borga and Tonelli, 2000], the error variance [e.g., Ciach and 

Krajewski, 1999; Anagnostou et al., 1999; Chumchean et al., 2003], conditional 

distributions of the errors [Ciach et al., 2007], and a description of the error dependences 

in space and time.  Because correlation functions are simple expressions of these 

spatiotemporal error dependences, they provide a good starting point. 

In their study on probabilistic quantitative precipitation estimation, Ciach et al. 

[2007] developed a model for radar-rainfall errors, in which the relation between true 

rainfall and radar-rainfall is described by two elements, a deterministic distortion function 

and a random component.  In addition to estimating the frequency distribution of the 

random component, they showed empirically that this component is correlated in space 

and time.  Other radar-rainfall and satellite-rainfall error models that have been 

commonly used in the error propagation studies assumed either uncorrelated errors [e.g., 

Sharif et al., 2002; Georgakakos and Carpenter, 2003; Carpenter and Georgakakos, 

2004] or considered arbitrary models of the error correlation structure [e.g., Nijssen and 

Lettenmaier, 2003; Gebremichael and Krajewski, 2004; Hossain et al., 2004; Carpenter 

and Georgakakos, 2006; Villarini et al., 2007a].  However, many researchers realize that 

more accurate knowledge of the error correlations is crucial to the successful application 

of any rainfall estimate. 
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For example, Nijssen and Lettenmaier [2003] conducted a Monte Carlo 

simulation experiment to assess the effects that spatial sampling errors in precipitation 

have on hydrological predictions.  They perturbed gauge-based interpolated rainfall 

estimates with synthetically generated uncorrelated and correlated error fields.  The 

perturbed rainfall fields were then used as an input to a macroscale hydrologic model.  

Nijssen and Lettenmaier [2003] concluded that spatial correlations in the errors strongly 

affect predictions of hydrological fluxes and states.  Hossain et al. [2004], in their study 

on the effect of satellite-rainfall uncertainties on the flood prediction uncertainty, 

employed a simple multiplicative error model with temporal error correlation modeled as 

a lag-one autocorrelation function.  While they showed that the effect of temporal error 

correlation is insignificant for 3-h and 6-h sampling intervals, they indicated that it might 

be significant at the hourly sampling interval.  Carpenter and Georgakakos [2006] also 

studied the sensitivity of ensemble flow predictions to input uncertainties.  In their radar-

rainfall error model, they assumed a linear spatial correlation function for the errors and 

concluded that the radar-rainfall error structure affects the mean areal precipitation 

uncertainties at the sub-catchment and watershed scales.  Villarini et al. [2007a] studied 

the effects of radar-rainfall errors on the spatial scaling properties estimated from the 

radar-based rainfall maps.  They perturbed the radar-rainfall fields with lognormally 

distributed multiplicative errors, assuming different levels of their spatial correlation.  

The study showed that the error itself has a strong effect on the scaling function of the 

perturbed radar-rainfall fields.  However, they found that increasing the correlation level 

results in a decrease of the distortions in the scaling function.  Based on the 

aforementioned literature, we argue that it is important to verify whether the radar-

rainfall uncertainties are correlated in space and, if they are, to quantify this correlation as 

a function of the separation distance.   

The main objective of this chapter is to present a practical method for estimating 

the radar-rainfall error spatial correlation (ESC), accounting for the area-point differences 
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inherent in any radar-gauge comparisons.  In their preliminary error correlation estimates, 

Ciach et al. [2007] simply ignored the gauge representativeness errors.  The method 

discussed here is conceptually analogous to the error variance separation (EVS) method 

proposed by Ciach and Krajewski [1999a].  In estimating the radar-rainfall error 

variance, use of the EVS procedure can account for the gauge representativeness errors.  

Defining the radar-rainfall error as the difference between the true areal rainfall and 

corresponding grid-averaged gauge rainfall, the EVS-corrected error variance is obtained 

by subtracting the area-point difference variance from the variance of the difference 

between the grid-averaged radar-rainfall and the corresponding rain gauge rainfall.  The 

EVS method is based on the assumption that the radar and gauge errors are uncorrelated.  

Although in practice this zero-correlation assumption can be not fully satisfied, the EVS-

corrected radar-rainfall error variance is considerably more accurate than the uncorrected 

error variance obtained directly from the radar-gauge pairs [Ciach et al., 2003].  Many 

studies have employed the EVS method to characterize the variance of the radar and 

satellite derived rainfall products [e.g., Young et al., 1999; Krajewski et al., 2000; Habib 

and Krajewski, 2002; Seo and Breidenbach, 2002; Gebremichael et al., 2003, 

Chumchean et al., 2003; Gebremichael and Krajewski, 2004; Zhang et al., 2007].  In the 

method for radar-rainfall ESC estimation presented here, we also account for the area-

point differences. 

The radar-rainfall uncertainties can be represented as either multiplicative or 

additive errors.  The EVS method was originally proposed by Ciach and Krajewski 

[1999a] for the additive errors only.  For this error representation, the underlying 

assumptions of the EVS scheme are systematically discussed in Ciach et al. [2003].  For 

the multiplicative errors, the EVS method can be used in the logarithmic domain 

[Anagnostou et al., 1999].  However, the possible adverse consequences of the 

logarithmic transformation remain unverified, which prompted us to follow the additive 

definition of radar-rainfall errors as in Ciach and Krajewski [1999a]. 
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This chapter is organized as follows: in Section 5.2, we derive the expression for 

the estimation of the radar-rainfall ESC.  Section 5.3 describes the procedure to estimate 

various terms in the expression for ESC.  In Section 5.4, we test our method for removing 

the area-point effects from the ESC estimates using a simulation framework.  In Section 

5.5, we apply the method to estimate ESC in the National Weather Service’s operational 

radar-rainfall products that are provided by the precipitation processing system (PPS) of 

the NEXRAD in the form of the hourly digital precipitation arrays (DPA).  As a ground 

reference for these estimates, we use the data from an experimental rain gauge network in 

Oklahoma known as the ARS Micronet, which is operated by the Agricultural Research 

Service of the United Stated Department of Agriculture.  Section 5.6 summarizes the 

results and concludes this study. 

5.2 ESC Derivation 

The formula for error spatial correlation can be derived using an extension of the 

EVS method since we start by partitioning the variogram of the radar-rainfall.  Let the 

radar estimates over the two pixels 1 and 2 (Figure 5.1) be R1 and R2, respectively.  The 

variance of the difference R1-R2 can be partitioned to incorporate radar-rainfall error 

terms as follows: 

1 2 1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2

1 1 1 2

2 2 1 2
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                     { } { } { }
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= − + − + −
− − −
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− − −

 (5.1) 

where 1R  and 2R  are radar-rainfall estimates and 1T  and 2T  are true area-averaged 

rainfall accumulations over the pixels 1 and 2, and operators }{⋅Var  and }{⋅Cov  are the 

variance and the correlation of the corresponding random variables.  Equation 4.1 

contains three variance terms and the three covariance terms.  }{ 11 TRVar −  and 
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}{ 22 TRVar −  are the variances of radar-rainfall errors over pixels 1 and 2, respectively, 

and }{ 21 TTVar −  is the variogram of the true rainfall.  The three covariance terms are: 

1. },{ 2211 TRTRCov −−  is the covariance between the radar-rainfall errors 11 TR −  

and 22 TR − , i.e., the error spatial covariance.  

2. },{ 2111 TTTRCov −−  is the covariance between the radar-rainfall error over grid 1 

and the difference 21 TT − . 

3. },{ 2122 TTTRCov −−  is the covariance between the radar-rainfall error over grid 

point 2 and the difference 21 TT − .  

We assume that the covariances (2) and (3) above are equal, and hence the sum 

},{2},{2 21222111 TTTRCovTTTRCov −−−−−  in the equation 4.1 is equal to zero.  With 

this assumption, equation 1 is rearranged to obtain the error spatial covariance as follows: 

[ ]

[ ]}{}{
2
1

}{}{
2
1},{

2121

22112211

RRVarTTVar

TRVarTRVarTRTRCov

−−−+

−+−=−−
 (5.2) 

The radar-rainfall error spatial covariance can be obtained by adding the 

following two terms: a) average of error variances at locations 1 and 2 (Figure 5.1) and b) 

difference of semivariograms of the true areal rainfall and the radar-rainfall.  The error 

correlation can be obtained by normalizing the covariance with the product of the square 

root of the error variances. 

5.3 ESC Estimation 

Once we derived the governing formulae, we needed to estimate the terms in 

equation 5.2.  All four terms on the right-hand side of the equation 5.2 for the ESC can be 

estimated directly from data. 
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5.3.1 Estimation of Error Variance 

We employed the EVS method proposed by Ciach and Krajewski [1999a] to 

estimate the terms }{ 11 TRVar −  and }{ 22 TRVar −  in equation 4.2.  According to this 

method, 

},{}{}{ iiiiii TGVarGRVarTRVar −−−=−  (5.3) 

i.e., the variance of the radar-rainfall error is obtained by separating the gauge-sampling 

error, { }ii TGVar − , from the overall radar-gauge variability, }{ ii GRVar − .  The latter can 

be obtained directly from the data: 

[ ]
2

1
)()(1}{ ∑

=

−=−
N

t
iiii tGtR

N
GRVar  (5.4) 

where )(tRi  and )(tGi , respectively, are radar- and gauge-rainfall estimates for the pixel 

i at the time step t.  Equation 5.3 assumes that the radar-rainfall errors ( ii TR − ) are 

uncorrelated with the rain gauge errors ( ii TG − ).  This zero-correlation assumption and 

its validity have been discussed in the Introduction.  In equation 5.4, temporal stationarity 

is assumed only to increase the sample size for the estimation of the }{ ii GRVar − .  If the 

rain gauge network is dense enough, the proposed method can be slightly modified and 

applied at each time step.  It should also be noted that if there is more than one gauge in a 

pixel, then )(tGi  represents average rainfall from all the gauges in the pixel i at the time 

step t.  With the current computational resources, simple averaging of gauge 

measurements can be replaced with the block kriging.  However, we used simple 

averages for the reasons laid out in the next paragraph. 

Assuming the second-order stationarity and isotropy within the areal domain and 

following Morrissey et al [1995], the gauge-sampling error { }ii TGVar −  is obtained as 

{ } { } ,iii VRFGVarTGVar ⋅=−  (5.5) 

where }{GVar  is the variance of the point-rainfall and iVRF  is the variance reduction 

factor for the pixel i  containing the rain gauge(s), and it is obtained as follows: 
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The VRF is a statistic that quantifies the spatial sampling error we make in 

approximating an areal value with an average of a specified number of point 

measurements in that area [Morrissey et al., 1995].  Such a theoretical framework does 

not exist if the areal value is estimated from block kriging.  For this reason we used 

simple averages in estimating )(tGi  in the equation 5.4.  The sampling domain is divided 

into K grid boxes, over which the rainfall is estimated as the arithmetic mean of n gauges.  

The Kronecker delta function )( jδ  denotes whether box j  contains a rain gauge.  The 

term )( ,kjdρ  represents the rainfall spatial correlation, where kjd ,  is the distance 

between boxes j  and k .  A detailed description of equation 5.6 is given in Morrissey et 

al. [1995] and Krajewski et al. [2000]. 

5.3.2 Estimation of Variogram of True Areal Rainfall 

The third term on the right hand side of equation 4.2 denotes the variogram of the 

true rainfall, and for a second-order stationary process it can be shown that [e.g., Cressie, 

1993] 

[ ],)()0(2)(2}{ hCovCovhTTVar TTTji −=Γ=−  (5.7) 

where )(hCovT  is the covariance of the true areal rainfall over grids i  and j  separated 

by distance h , and )0(TCov  is the variance of the true rainfall.  Section 6.4 of 

Vanmarcke [1983] gives the following expression to obtain the covariance function of the 

local averages of a homogeneous two-dimensional random field over square areas with 

sides L , from the corresponding point variance and covariance function: 
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where Ti and Tj respectively are true areal rainfall over pixels i and j (of sides L) 

separated by distance lag h.  To achieve lags smaller than the pixel size, the pixels i and j 

need to be overlapping, in which case, the equation 5.8 can be simplified to: 

{ } ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0 0 0 1 0 2
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 (5.9) 

In the equations 5.8 and 5.9, )( 00 yx LL  is the distance from the end of the first 

grid to the beginning of the second grid along x (y) direction; )( 11 yx LL is the distance 

from the beginning of the first grid to the beginning of the second grid along x (y) 

direction; )( 22 yx LL  is the distance from the beginning of the first grid to the end of the 

second grid along x (y) direction; and 3 3( )x yL L  is the distance from the end of the first 

grid to the end of the second grid along x (y) direction.  The ( ),Δ ⋅ ⋅  function in the 

equation 5a is obtained as ( ) ( ) ( )2
, ,x y x y x yL L L L L LγΔ = ⋅ , where 

0 0

4( , ) 1 1 ( ) ,
yx LL

yx
x y x y
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∫ ∫  (5.10) 

where lx and ly are the separation distances in x and y directions, with ( )1/ 22 2
x yl l l= + .  

The variance of the areal values can be obtained from the point variance using the 

relation: 

{ } ( ) { } ( )0 , ,TVar T Cov Var G L Lγ= = ⋅  (5.11) 

For further information on equations 5.8 through 5.11, the reader is pointed to 

Section 6.4 of Vanmarcke [1983].  The covariance and the variance of the true areal 

process are then plugged in equation 5.7 to obtain the variogram of the true areal rainfall.  

Equations 5.6-5.11 demonstrate that the correlation function of the point rainfall ( ρ ) 

plays an important role in estimating the ESC.  In this study, we employ Pearson’s 

correlation coefficient and justify its use in Section 5.5, where the correlation structure of 

point rainfall is estimated using rain gauges from the Oklahoma Micronet. 
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5.3.3 Estimation of Variogram of Radar-Rainfall 

The fourth term within the brackets on the right hand side of equation 2 denotes 

variogram of the radar-rainfall, which we estimate using the classical method-of-

moments estimator [e.g., Cressie, 1983]. 

{ } ( ) [ ]∑ −=Γ=−
)(
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2 ,
)(

12
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ji
jiRji RR

hn
hRRVar  (5.12) 

where )(hn is the number of data pairs separated by lag h.  We realize that there are 

estimators which are more robust to the outliers in the data than the method-of-moments 

estimator.  The estimator proposed by Cressie and Hawkins [1980] ( ˆCHγ ) is among the 

widely used.  However, we did not use it in this study as it is valid only when the 

distribution of differences, ( ) ( )Z x Z x h− + , for a particular lag h is Gaussian (Lark, 

2000).  Lark [2000a] compared the robustness and efficiency of ˆCHγ along with two other 

robust estimators, which also assume contaminated normal model, i.e., normal 

distribution in the presence of outliers.  The study concluded that all the three robust 

estimators are influenced by any departure from the assumption of normality of 

differences [Lark, 2000a].  The study also concluded that for the skewed data which has 

no outliers, the classical method-of-moments estimator performed better than the three 

robust estimators. 

5.3.4 Summary of Assumptions in ESC Methodology 

Before we apply the method on the simulated fields and on the radar-rainfall data, 

we summarize here, all the assumptions involved. 

a) The rainfall is second-order stationary in space and time. 

b) The rainfall is isotropic.  If the rainfall is anisotropic, the spatial correlation 

function is directional and therefore the proposed methodology has to be 

applied for each direction resulting in different error spatial correlation 

functions for different directions. 
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c) Radar-rainfall estimates and the rain gauge measurements are unbiased. 

d) The rain gauge representativeness error is not correlated with radar-rainfall 

error.  The assumptions (c) and (d) are required by the EVS method.   

5.4 ESC Testing Using Monte Carlo Simulation 

We begin with a Monte Carlo simulation experiment to assess the method for the 

error spatial correlation and the estimation procedure discussed in the previous section.  

The simulation framework provides us with full control over the things that real data 

cannot.  In the simulation experiment, we can compare the error correlations retrieved 

from our methodology with the true error correlations known a priori.  A good 

performance here implies that the assumptions in our methodology are reasonable and 

gives us the confidence to apply the ESC methodology on the real radar-rainfall data.  On 

a square grid of 100×100 (arbitrary units), high resolution (0.4×0.4) two-dimensional, 

stationary, Gaussian and lognormal processes with an exponential correlation function 

are generated using the circulant embedding technique [e.g., Dietrich and Newsam, 1993; 

Wood and Chan, 1994].  The exponential correlation function used in the study is same 

as the one given by equation 3.1 in Section 3.3. 

A total of 325 stations with inter-station spacing of 4 units in the x-direction and 8 

units in the y-direction (Figure 5.2) sample the process from the simulated high resolution 

fields, which is similar to the sampling of rainfall process by the rain gauges.  The high 

resolution fields are then averaged to obtain fields at a resolution of 4×4 as it is the most 

commonly used resolution for radar-rainfall data in many hydrological applications.  

These average fields are analogous to the true areal rainfall fields at a particular 

resolution.  Hereafter, the high resolution and corresponding average fields are referred to 

as HR and true areal (TA) processes, respectively. 

We do not interpret the simulated Gaussian and lognormal fields as rainfall fields.  

Our objective in the simulation experiment is to evaluate the methodology on simple case 
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of Gaussian realizations and on a complex case of lognormal fields.  The ESC approach 

can be applied to any remotely sensed physical process that meets the criteria such as 

second-order stationarity and isotropy and where there are inherent area-to-point errors in 

the evaluation.  That’s the reason we labeled the process from where we sample the 

“point data” as high resolution (HR) process and the corresponding area averaged process 

as true areal (TA) process and the error corrupted fields as areal-with-error (AE) process. 

The next step in the simulation framework is to generate the error process at a 

resolution of 4×4, assuming that they are Gaussian with zero mean, unit variance and 

following an exponential correlation function (equation 5.13) with a correlation distance 

of 20 distance units.  Since the method is derived for additive errors, we add the error 

fields to the TA fields to obtain the “areal with error” (AE) process.  Addition of 

Gaussian errors to the Gaussian (or lognormal) process results in some negative values in 

the AE process, which is not realistic for rainfall fields.  However, this would not affect 

our results because our aim in this section is solely to test the method.  The above 

procedure is repeated to obtain multiple realizations of AE fields. 

We then applied the method on the simulated fields to estimate the error spatial 

correlation.  Because the spatial correlation of the errors is known, the accuracy of our 

framework can be assessed by comparing the estimated and true ESC.  We also compare 

them with spatial correlations of the difference between the 325 sampling points and 

corresponding AE pixels (analogous to radar-gauge difference), which we call “radar-

gauge (RG)” error spatial correlation. 

5.4.1 Gaussian Realizations 

We start by simulating correlated Gaussian realizations with mean zero and 

variance equal to 1 and we consider two correlation distances of 10.0 and 40.0 (arbitrary 

distance units).  For both cases, the correlation functions of HR, TA, error, and the AE 

fields are estimated using the 325 sampled points (Figure 5.3).  Figure 5.3 illustrates that 
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the correlation structure of the high resolution process and the error process is quite 

accurate, which gives us confidence in the simulated fields.  The variogram of the TA 

process obtained using the procedure described in Section 5.3 and that of the AE process 

obtained using the classical method-of-moments estimator are shown in Figure 5.4 for the 

two point correlation functions considered.  From the TA variograms (particularly for the 

correlation distance of 10), one sees that the variance (half the sill) is smaller than the 

variance of the corresponding HR process (which is equal to 1.0).  This is expected, as 

the TA process is obtained as an average of the HR process.  From Figure 5.4, it is also 

apparent that an addition of correlated errors to the TA process increases its variance. 

The error correlations obtained using our method is fitted with a three-parameter 

exponential function using the Levenberg-Marquardt algorithm and is compared with the 

spatial correlation of RG differences and that of true errors in Figure 5.5.  It can be seen 

from the Figure 5.5 that our method can retrieve the error correlation structure quite 

accurately for both of the considered correlation functions.  Though the correlation 

structure of RG differences is close to the true one, there is a consistent bias, which is 

quite evident for a smaller correlation distance of 10.0.  This bias is due to the fact that 

RG differences have inherent area-point errors. 

5.4.2 Lognormal Realizations 

In testing our method on the simulated lognormal realizations, we considered the 

same correlation functions that are used in the Gaussian case.  In addition to the 

correlation distances, we also varied the coefficient of variation (CV) of the lognormal 

realizations.  Therefore, for simulations with lognormal realizations, we have four 

different combinations of variability, as indicated in Table 5.1.  The number of 

realizations used for each case is also shown in Table 5.1. 

We obtain the lognormal process by transforming a simulated Gaussian process.  

However, the transformation results in the alteration of the parameters of the lognormal 
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realizations.  As our aim is to obtain lognormal process with a certain mean, variance, 

and correlation structure, we selected the parameters of the simulated Gaussian fields 

such that the transformation will lead to lognormal fields with the desired parameters.  

The procedure is explained in detail in Appendix A. 

The correlation functions of the HR, TA, error, and AE fields estimated using 325 

sampling locations are plotted in Figure 5.6.  The HR correlation functions estimated 

from the simulations closely match the theoretical correlation functions.  The figure also 

reveals that as the CV increases and correlation distance decreases, the addition of the 

error field has little impact on the correlation function of the true areal process.  Figure 

5.7 illustrates the variograms of TA and the AE process for all combinations of 

correlation functions and CVs.  The behavior of the TA and AE variograms for all four 

cases is similar to that of the Gaussian simulations with the variance of the TA process 

being smaller than the corresponding HR process.  The ESC technique is applied on all 

four cases (Table 5.1) and is shown in Figure 5.8 along with the fitted three parameter 

exponential correlation function and correlation of RG differences.  Comparing the 

correlations of RG differences with the true one, a systematic underestimation can be 

seen from the Figure 5.8.  This bias increases as the lognormal field becomes more 

variable (a high CV and small correlation distance).  As in the Gaussian case, the biased 

RG correlations result from area-point errors.  Unlike in the Gaussian case, the ESC 

results in a consistent bias for a larger CV and smaller correlation distance (Figure 5.8).  

Further investigation into case 4 of lognormal simulations revealed that bias in the 

estimation of variance reduction factor is the main reason for the systematic 

underestimation in ESC and, hereafter, all the results in this section are for case 4. 

As mentioned in Section 5.3, the VRF is a theoretical framework to quantify the 

spatial sampling error involved in approximating an areal value with an average of point 

measurements within the area.  For the VRF to be strictly applicable in the simulation 

framework, the areal values need to be obtained by averaging infinite number of point 
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values.  For the Gaussian simulations, this is not an issue as the TA value (4.0×4.0) - 

obtained as an average of 100 pixels of HR process (0.4×0.4) - is reasonably closer to the 

true areal process.  Case 4 in the lognormal simulations, with a high CV and small 

correlation distance, is highly variable, and the 100 HR pixels are inadequate to obtain 

the TA process.  Therefore, the VRF estimated as in equation 5.6 overcorrects the area-

point discrepancies leading to underestimation of error correlation (Figure 5.8d).  For the 

lognormal simulations, we repeat case 4 (Table 5.1 and Figure 5.8d) with the TA process 

obtained by averaging the HR process simulated on 0.1×0.1 grids and Figure 5.9 shows 

that the bias in ESC reduces with an increase in the resolution.  Therefore, our method’s 

systematic underestimation of error spatial correlation for lognormal realizations is 

largely an artifact of the simulation experiment, and the ESC method performs well in a 

simulation framework. 

5.5 Application to the Oklahoma ARS Micronet Dataset 

After testing the method in the simulation framework, we applied it to estimate 

the ESC of NEXRAD hourly digital product (DPA) from the Oklahoma City NEXRAD 

(KTLX) radar site (Fulton et al., 1998).  We used a high density and high quality rain 

gauge network, the Oklahoma Micronet, established by the Agricultural Research Service 

in Little Washita experimental watershed, Oklahoma [e.g., Allen and Naney, 1991; Young 

et al., 2000; Ciach et al., 2003].  Figure 5.10 shows the network and the hydrologic 

rainfall analysis project (HRAP) radar grid, which is a quasi-rectangular grid with the 

size of the cell ranging from 3.5 km in the southern U.S. to 4.5 km in the northern U.S. 

[e.g., Reed and Maidment, 1999].  The rain gauge network covering an area of 

approximately 1200 km2, consists of 41 gauges on a fairly regular grid with intergauge 

distances ranging from around 3 to 40 km and the average nearest-neighbor distance of 

approximately 5 km.  In our analysis, we considered a square radar domain with sides of 
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60 km, covering the rain gauge network, for a 36-month period (April-September data for 

six years 1998-2003), thereby reducing any seasonal effects.   

The first step in applying the ESC method is to estimate the point correlation 

function of rainfall.  Though Pearson’s estimator is widely used to estimate the 

correlation, it has been shown in the literature that for highly skewed distributions, it 

results in biased estimates [e.g., Hutchinson, 1997; Habib et al., 2001].  Assuming that 

the data come from the mixed lognormal distribution, Habib et al. [2001] proposed an 

alternative unbiased approach to estimate the correlation.  To check if the lognormality 

assumption is valid for the Oklahoma Micronet, the rainfall data measured by the rain 

gauges is binned into intervals of 0.5, and a mixed lognormal distribution is fitted to this 

binned data.  The gauge-rainfall had a lighter tail with respect to a mixed lognormal 

distribution.  Therefore, we stick to the Pearson’s estimator to obtain the point correlation 

function of the rainfall.  Figure 5.11 portrays the correlation function of the rainfall 

measured by the rain gauges and the fitted three-parameter exponential function 

(Equation 3.1 with an additional nugget parameter).  We used this parametric form of the 

correlation structure to obtain the error variance and the variogram of the true areal 

rainfall (equations 5.3 through 5.11).  The radar pixel is nine orders of magnitude larger 

than the sampling area of rain gauge.  Therefore, artifacts introduced by equation 5.6 in 

the estimation of VRF and subsequently the spatial correlation of errors are negligible. 

The next step in the ESC method is the estimation of the variogram of the radar-

rainfall.  Its estimation is performed by using a classical method-of-moments estimator 

(equation 5.12) and binning the moments into 4 km distance classes.  All the pixels 

covering 60×60 km2 are used in the estimation process.  The size of the estimation 

domain and number of realizations play an important role in the estimation of variance 

and covariance leading to their severe underestimation.  We did a systematic sensitivity 

study on this aspect and found that the bias decreases rapidly with the number of 

independent realizations.  We explain the results of that study in detail in Appendix A.  
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For example, if the estimation domain is half the decorrelation distance, we found that as 

few as 50 independent fields would suffice to give us an unbiased estimate of variance 

and covariance.  Since we used six years of hourly data, underestimation of variance and 

covariance is not an issue. 

Figure 5.12 shows the estimated and fitted radar estimates along with the 

variogram of the true areal rainfall obtained using equation 5.7.  The error variances and 

the variograms of the true areal and radar-rainfall are then used in the ESC method 

(equation 5.2) to estimate the spatial covariance of errors, which when normalized with 

error variances, results in an error spatial correlation structure (Figure 5.13).  The spatial 

correlation of the RG differences is also plotted in the same figure for comparison.  From 

Figure 5.13, one notices that our method results in tighter (less scatter) correlation 

estimates than those obtained directly from the radar-gauge pairs that neglect the area-

point errors.  The decreased scatter is due to the use of parametric point correlation 

functions in equations 4.3 through 4.11.  However, for both cases, we can infer that radar-

rainfall errors are significantly correlated with a correlation distance of approximately 20 

km (Figure 5.13).  This is an important result as in most of the error propagation studies, 

the errors are assumed to be uncorrelated. 

Further, one can observe in Figure 5.13 that ignoring the area-point differences 

results in underestimation of the ESC at the shorter distances.  Though this bias is not 

significant at the daily and, to an extent, hourly scales for stratiform rainfall, it might be 

significant at the sub-hourly time scales and for the tropical regime as the rainfall 

becomes more variable.  Before we conclude, we would like to mention that the overall 

mean of the Micronet gauge estimates over 36 months is equal to 0.083 mm and that of 

collocated radar pixels for the same time period is 0.116 mm.  The bias can be treated in 

an additive or multiplicative manner.  The former approach would result in unrealistic 

negative rainfall values for the radar pixels.  When the latter approach is used, the 

variogram of the DPA estimates would be almost the same as the variogram of true areal 
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rainfall.  Our methodology (equation 5.2) applied in such a situation leads to the error 

covariance being constant and equal to the error variance.  The result is in contrast to the 

RG error correlations estimated from multiplicatively corrected radar fields as they are 

decreasing with distance.  Therefore, we applied the ESC approach directly on the 

uncorrected radar data.  To make sure that the proposed methodology is robust to handle 

such bias we ran a simulation experiment similar to Section 5.4 but with uncorrelated 

errors and a bias of 0.5 to the AE fields.  Despite the bias in the AE fields, the proposed 

methodology correctly identified the zero error correlations. 

5.6 Summary and Conclusions 

Defining the radar-rainfall error as the difference between the radar-estimated 

rainfall and the corresponding true areal rainfall, we propose a method to estimate the 

error spatial correlation (ESC) that accounts for the rain gauge representativeness errors.  

The required information on the area-point difference structure was obtained from 

relatively dense rain gauge networks.  Although this study considered only the additive 

error definition, it can be applied to the multiplicative errors by transforming the 

variables into the logarithmic domain.  Conceptually, our ESC estimation method is an 

extension of the error variance separation method proposed by Ciach and Krajewski 

[1999].  After formal derivation of the method, it was tested on simulated Gaussian and 

lognormal fields with known ESC.  It performed very well in estimating the ESC for 

Gaussian fields and for lognormal fields with lower coefficients of variation (CV).  

However, as the CV of the lognormal fields increased, our test results tended to 

underestimate the ESC.  The fact that this specific underestimation decreases 

systematically with increasing the resolution of the simulated fields shows that this effect 

is an artifact of the simulation caused by the finite resolution of the simulated fields.  The 

ESC obtained using our method was also compared with the ESC obtained directly from 

the simulated “radar-gauge” differences.  This comparison showed that ignoring the area-
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point errors can result in considerable underestimation of the error spatial correlation 

structure, especially at small separation distances. 

After the computer simulation tests, the ESC method was applied to the DPA 

products that are the standard outcomes of the PPS in the NEXRAD.  This application 

was based on six years of warm season (April to September) KTLX radar data, and the 

corresponding data from a relatively dense experimental rain gauge network (Oklahoma 

ARS Micronet).  These results show that the radar-rainfall errors are spatially correlated 

and that their correlation distance is approximately 20 km.  Although this application has 

been limited to the central Oklahoma region, it offers insight into the spatial correlation 

of DPA radar-rainfall errors in any region where the rainfall is mostly of stratiform and 

mixed form.  The results in this study can be helpful for new radar-rainfall error 

propagation studies that account for the ESC in the radar-rainfall data.  It is worth 

mentioning that the radar errors are dependent on location and range from the radar.  

However we are applying the ESC method within the 60 × 60 km2 pixel assuming 

stationarity and isotropy.  If we can have dense networks such as Micronet in different 

zones (distances from radar), we can estimate the error spatial correlation for each zone 

and for each direction using the proposed methodology.  We would also like to mention 

that the proposed method is not conditioned on the intensity and type of precipitation. 

The ESC method presented here can be extended by regarding the ESC as a 

dynamically varying random function for which state estimation procedures are derived.  

The simplest way of implementing such an extension is by treating the correlation 

distance of the radar-rainfall error field as a random process in time.  One can include this 

state variable as an element of the ESC estimation problem where the updating of the 

state is based on the currently observed radar-rainfall fields and the corresponding rain 

gauge data.  This extension would eliminate the need for the data to be stratified into 

several “seasons.”  It would also reflect the fact that even during the peak of the warm 

season, the large extratropical cyclones with prevailing areas of stratiform rainfall regime 
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can be mixed with highly variable convective cells embedded within the stratiform 

rainfall fields. 
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Table 5.1∗ Parameters used in the four simulation scenarios with lognormal HR field. 

2
Gσ  LNμ  

2
LNσ  CV  

Correlation distance n 

40 10 

0.5 1.28 1.07 0.80 CASE 1 CASE 2 5000 

1.0 1.65 4.67 1.31 CASE 3 CASE 4 25000 

                                                 
∗The error field (Err) is Gaussian with zero mean and standard deviation equal to 1.0 and 

with the correlation distance equal to 20.  The distance units are related to the size of the 
simulation area that is assumed to be 100 by 100 arbitrary units.  The number of realizations is 
shown in the last column. 
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Figure 5.1 A schematic example of radar-rainfall grid with two pixels containing rain 
gauges (the hatched squares).  The gauges are located randomly within the 
radar pixels. 
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Figure 5.2 Example realization of four random fields: high resolution field (HR), true 
area averaged field (TA), error field (Err), and the areal with error (AE) field.  
The correlation distance of HR is dHR=40, and its marginal distribution is 
lognormal with the mean equal to 1.65 and the coefficient of variation equal to 
1.31.  The HR panel also shows the sampling gauge network consisting of 
325 (25 by 13) gauges.  The error field (Err) is Gaussian with zero mean and 
a standard deviation equal to 1.0 and with the correlation distance of dErr=20.  
The distance units are related to the size of the simulation area that is assumed 
to be 100 by 100 arbitrary units.  The resolution of the HR field is equal to 
0.4, and it is 4.0 for the remaining fields. 
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Figure 5.3 Correlation functions of the simulated high resolution (HR) Gaussian process, 
true areal (TA), error (Err), and areal with error (AE) processes estimated 
using the sampling network shown in Figure 2.2.  The distance units and the 
parameters of the Err field are the same as in Figure 5.2. 
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Figure 5.4 True areal (TA) and areal with errors (AE) variograms of the simulated 
Gaussian processes.  The AE variogram is estimated using all the pixels 
available, and the TA variogram is obtained by integrating the variogram of 
the HR field.  The distance units and the parameters of the Err field are the 
same as in Figure 5.2. 
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Figure 5.5 Comparison of three functions: 1) the estimated error spatial correlation (ESC) 
for Gaussian realizations corrected using our method, 2) the true ESC (with a 
correlation distance of 20) and 3) the spatial correlation structure of radar-
gauge (RG) differences.  The distance units and the parameters of the Err 
field are the same as in Figure 5.2. 
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Figure 5.6 Correlation functions of the lognormal HR fields simulated with the 
parameters given in Table 2.1 and estimated using the sampling network 
shown in Figure 2.2.  The distance units and the parameters of the Err field 
are the same as in Figure 5.2. 
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Figure 5.7 True areal (TA) and areal with errors (AE) variograms of the simulated 
lognormal processes of Table 2.1.  In each panel, upper and lower curves are 
AE and TA variograms, respectively.  The AE variogram is estimated using 
all the pixels available, and the TA variogram is obtained by integrating the 
point variogram.  The distance units and the parameters of the Err field are 
the same as in Figure 5.2. 
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Figure 5.8 Comparison of error spatial correlation (ESC) for lognormal realizations 
retrieved using our correction method with the true ESC and with the spatial 
correlation structure of radar-gauge (RG) differences.  The distance units and 
the parameters of the Err field are the same as in Figure 5.2. 
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Figure 5.9 Sensitivity of the ESC method to the resolution (Res) of the simulation grid.  
The distance units and the parameters of the Err field are the same as in 
Figure 5.2. 
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Figure 5.10 Map showing the location of the Oklahoma City NEXRAD (KTLX) radar 
site, Oklahoma Micronet, and HRAP grid. 
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Figure 5.11 Pearson’s correlation function of gauge-rainfall obtained using six years of 
warm season (April to September) rainfall data from Oklahoma Micronet. 



108 
 

 

 

Figure 5.12 Radar-rainfall variogram for the National Weather Service’s hourly digital 
product over the Oklahoma Micronet.  The variogram of true areal rainfall is 
obtained by integrating the gauge-rainfall correlation function over the 4 km 
pixel. 
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Figure 5.13 Comparison of error spatial correlation of the National Weather Service’s 
hourly digital product with the spatial correlation structure of radar-gauge 
(RG) differences. 
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CHAPTER 6 

EFFECT OF RADAR-RAINFALL UNCERTAINTIES ON THE SPACE-

TIME CHARACERIZATION OF RAINFALL EVENTS 

6.1 Introduction 

In chapters 2, 3, and 4 we investigated the statistical structure of the peak flows 

employing simulation scenarios with only the natural variability of the rainfall.  However, 

it is equally important to quantify the effect of rainfall estimation errors [e.g., Austin, 

1987; Krajewski and Smith, 2002; Ciach et al., 2007] on the scaling of peak flows.  In 

this chapter we investigate the effect of radar-rainfall estimation errors on the statistical 

characterization of rainfall fields.  The chapter serves as an intermediate step between 

characterizing the rainfall estimation error and propagating them through the distributed 

hydrologic model to investigate their impact on the peak flow scaling structure. 

Several studies have characterized the spatial variability of rainfall by employing 

a variety of techniques ranging from correlation functions and variograms [e.g., Sumner, 

1982; Nicholson, 1986; Berndtsson, 1988; Bacchi and Kottegoda, 1995; Ricciardulli and 

Sardeshmukh, 2002; Krajewski et al., 2003; Gebremichael and Krajewski, 2004; Ciach 

and Krajewski, 2006; Villarini et al., 2008] to multiscaling analysis tools such as moment 

scaling and structure functions [e.g., Schertzer and Lovejoy, 1987; Tessier et al., 1993a; 

Gupta and Waymire, 1993; Menabde et al., 1997; Nykannen and Harris, 2003; Lovejoy 

and Schertzer, 2006; Gebremichael et al., 2008; Lovejoy et al., 2008; Morales and 

Poveda, 2009; Mandapaka et al., 2009b].  The spatial scales in the aforementioned 

studies ranged from a few meters to continental scales [e.g., Lovejoy and Schertzer, 2006; 

Gebremichael et al., 2008; Lovejoy et al., 2008; Mandapaka et al., 2009b]. 

While some early studies employed rain gauge networks to characterize the 

spatial variability of rainfall, use of remotely sensed data from radars and satellites has 

increased due to their wide spatial coverage.  However, it is well known that rainfall 
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products based on remotely sensed data contain random and systematic errors from 

various sources [e.g., Bell et al., 1990; Bell and Kundu, 1996; Smith et al., 1996; 

Krajewski and Smith, 2002; McCollum et al., 2002; Gebremichael et al., 2005; Smith et 

al., 2006; Ciach et al., 2007; Germann et al., 2009; Mandapaka et al., 2009a; Villarini et 

al., 2009b; Villarini and Krajewski, 2009a].  Due to the lack of information on the 

rainfall estimation error structure, the majority of studies on the spatial characterization 

of rainfall have not accounted for the errors.  Very few works [e.g., Krajewski et al., 

1996; Villarini et al., 2007a; Villarini et al., 2007b; Villarini and Krajewski, 2009b] have 

investigated the impact of rainfall estimation errors on the spatial characterization of 

rainfall. 

Krajewski et al. [1996] investigated the impacts of radar beam averaging, the 

reflectivity-rainfall relationship, and polar-Cartesian grid transformation on the spatial 

characteristics of radar-rainfall (RR) fields by employing a space-time rainfall model 

capable of reproducing the observed spatial characteristics to generate an ensemble of 

rainfall fields.  Since these synthetic fields are devoid of any observation errors, they can 

be considered “error-free rainfall” fields.  The radar observation process was simulated 

by converting rainfall into reflectivity values, imposing Gaussian error fields with zero 

mean and 1 dBZ standard deviation, converting the reflectivity back to rainfall, and 

performing a coordinate transformation.  The spatial characteristics of the resulting 

“radar-rainfall” fields were compared with those of “error-free” fields to assess the 

impact of the radar observation process.  They reported that the errors have a significant 

impact on the spatial characteristics, leading to the underestimation of the coefficient of 

variation and an overestimation of the spatial correlations.  They also showed that the 

radar observation process results in the underestimation of a random cascade scaling 

parameter. 

Villarini et al. [2007a] analyzed the effect of systematic and random errors on the 

spatial multifractal properties of rainfall.  The systematic effects that they investigated 
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observed included zero-rain threshold, distance from the radar (range effect), and the 

parameters of the Z-R equation (Z = aRb, where Z is the radar-reflectivity and R is the 

rainfall in mm/h) on the scaling behavior of the estimated statistical moments.  They 

reported that the zero-rain threshold and distance from the radar have negligible effects 

on the estimated scaling functions.  However, they also suggested that the range effect 

could be significant if a larger distance range were investigated in their study.  The 

scaling of statistical moments was most sensitive to the exponent b in the Z-R relation.  

When the moments against the scale parameter in the log-log domain, they found that the 

regression line fitted to the moments was steeper for the lower values of the exponent b.  

To investigate the impact of random errors, they assumed that the RR fields were error-

free and convoluted them with uncorrelated and correlated lognormal error fields.  They 

showed that the presence of random errors would lead to the overestimation of the 

moment scaling functions.  Villarini et al. [2007b] showed how non-meteorological 

returns (ground clutter) in RR estimates could affect the estimation of the scaling 

function. 

Although the approach of imposing error fields on the “true” rainfall fields to 

study the impact of errors is widely used in error propagation studies [e.g., Sharif et al., 

2002; Carpenter and Georgakakos, 2006; Vivoni et al., 2007], the main limitation in the 

earlier two studies [Krajewski et al., 1996; Villarini et al., 2007a] was the arbitrary 

assumptions regarding the statistical structure of the RR error fields. 

Villarini and Krajewski [2009b] used a generator of probable true rainfall fields 

developed by Villarini et al. [2009a] (based on the data-driven RR error model in Ciach 

et al. [2007]) to study the impact of rainfall estimation errors on the generalized structure 

function of rainfall events.  For a given RR field, they generated an ensemble of probable 

rainfall fields and showed that the presence of RR estimation errors results in the 

overestimation of the structure functions for all of the 15 events considered in their study. 
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  Here we extend the analysis of Villarini and Krajewski [2009b] by investigating the 

effect of errors on the estimates of the spatial structure of rainfall fields.  Specifically, we 

quantify the impact of RR errors on the spatial correlation function, power spectrum, 

moment scaling function, and the breakdown coefficients.  We employed the error model 

developed by Ciach et al. [2007] and the generator developed by Villarini et al. [2009a]. 

This chapter is organized as follows: In Section 6.2, we describe the RR data used 

in this study.  A short description of the RR error model and the probable rainfall 

generator is presented in Section 6.3.  Section 6.4 briefly describes the analysis tools 

employed to characterize the rainfall events.  The results are discussed in Section 6.5, 

followed by conclusions in Section 6.6. 

6.2 Radar-Rainfall Data 

Customized high resolution RR data with a spatial resolution of 1×1 km2 and a 

temporal resolution of 15 minutes were obtained from the Pseudo Precipitation 

Processing System (PPPS) and Hi-Fi algorithms of the Hydro-NEXRAD system of data 

distribution [e.g., Krajewski et al., 2009] at The University of Iowa.  Krajewski et al. 

[2009] provide an overview of the Hydro-NEXRAD system and the algorithms used to 

create the RR products.  Radar-rainfall products obtained from the Hydro-NEXRAD 

system have been used in previous studies published in the literature [e.g., Ntelekos et al., 

2008; Ntelekos et al., 2009; Villarini and Krajewski, 2009d].  Here, we give a brief 

description of the PPPS and Hi-Fi algorithms. 

PPPS is the Hydro-NEXRAD implementation of the National Weather Service’s 

(NWS) Precipitation Processing System algorithm [e.g., Fulton et al., 1998] that enables 

us to obtain PPPS RR products at higher spatial and temporal resolutions (1×1 km2 and 

15 min) than the operational products.  We refer to it as pseudo-PPS since, despite using 

the same logic and major algorithmic steps, it does not reproduce exactly the official 
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NWS products that account for predefined site-specific information such as clutter and 

terrain occultation maps. 

In the Hi-Fi products, corrections are performed to mitigate the errors due to 

anomalous propagation, range effect, and storm advection.  The procedure for 

constructing the hybrid scan is different for the PPPS and Hi-Fi products.  While PPPS 

takes reflectivity values from the angle that corresponds to 1.0 km above radar altitude, 

Hi-Fi uses kernel smoothing to alleviate a discontinuity problem in the rainfall maps and 

to suppress no-rain echoes around the radar [e.g., Seo et al., 2009].  The zero-rainfall 

threshold for the reflectivity values is also different for the PPPS and Hi-Fi rainfall 

products.  It is equal to 18 dBZ for the former and 10 dBZ for the latter.  These factors 

mentioned above may result in differences in rainfall amounts at the level of final 

products.  In addition to looking at the impact of radar-rainfall uncertainties, we also 

compare the spatial characteristics of these two RR products. 

We selected ten rainfall events measured by Weather Surveillance Radar-88 

Doppler (WSR-88D) [e.g., Crum and Alberty, 1993; Klazura and Imy, 1993] radar in 

Wichita, Kansas (KICT) and obtained the high resolution rainfall products using the 

aforementioned algorithms for a square domain of 256×256 km2 with the radar at its 

center.  Table 1 lists the time of occurrence, duration, and the storm total accumulation 

for the PPPS and Hi-Fi products of the ten rainfall events.  We have selected only warm 

season (May – August) events to avoid seasonal effects.  The events KICT-05 and KICT-

06 are shorter duration events lasting for less than a day, while KICT-08 and KICT-09 

are longer events lasting for more than 4 days (Table 6.1).  The storm total varies from 

about 7 mm to 90 mm.  Table 1 illustrates that the storm accumulation for the products 

based on two algorithms does not vary greatly.  
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6.3 Radar-Rainfall Error Model 

Ciach et al. [2007] developed a product-error-driven model for RR errors, in 

which the relation between true areal rainfall and radar-rainfall was described by two 

components: a systematic distortion function and a stochastic component.  Both 

components were conditioned on the RR values.  While the systematic function accounts 

for biases conditional on the RR values, the stochastic component accounts for the 

remaining random errors.  The results in Ciach et al. [2007] were based on a large sample 

(six years) of hourly accumulation fields (Digital Precipitation Arrays; Fulton et al., 

1998) from the Oklahoma City radar, averaged over 4-km pixels, and generated with the 

Precipitation Processing System (PPS; Fulton et al. 1998).  Radar-rainfall estimates were 

complemented with rain gauge measurements, which were used as an approximation of 

the true ground rainfall.  Ciach et al. [2007] showed how the systematic distortion 

function could be approximated by a power law function, while the random component 

was parameterized by a Gaussian distribution, with mean equal to 1, standard deviation 

that was a hyperbolic function of rainfall, and with significant correlation both in space 

and time. 

The results in Ciach et al. [2007] were then used by Villarini et al. [2009a] to 

develop a generator of probable true rainfall fields conditioned on hourly radar-rainfall 

maps.  As discussed in Villarini et al. [2009a], the generator accounts for the conditional 

and unconditional biases, non-stationarity in variance, and spatial correlation of the 

random component but not for the temporal dependencies.  In this study, we assumed that 

the parameters of the systematic and random components for the Oklahoma City radar 

[Ciach et al., 2007] can be used to describe the uncertainties in the RR products 

generated from the KICT radar.  There is no guarantee that the parameters for the 

Oklahoma City radar are valid for the KICT radar, even though there is evidence that the 

overall model structure should be valid [Villarini and Krajewski, 2009c].  The 

transferability of the results in Ciach et al. [2007] to other radars should be investigated 
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in future studies.  Moreover, the differences in the parameters of the error model obtained 

using PPS or Pseudo-PPS are not significant [Villarini and Krajewski, 2009d]. 

We performed our analyses for the products aggregated to 4×4 km2 and hourly 

scales since these are the scales used in Ciach et al. [2007].  The time series of hourly 

accumulations for the ten events are shown in Figure 1. 

6.4 Analysis Tools 

This section briefly describes the analysis techniques as applied to the selected 

rainfall events.  We start with the description of how the spatial correlation functions 

were estimated for each rainfall event and then proceed to an estimation of scaling 

analysis tools such as the power spectrum, the moment scaling function, and the 

distribution of breakdown coefficients.  For all of the analysis tools, we assumed that the 

RR accumulation fields are temporally independent.  We checked this assumption by 

aggregating individual accumulation fields to various spatial scales and estimating the 

temporal correlation for each spatial aggregation level.  The temporal correlations 

dropped rapidly, making this assumption reasonable. 

6.4.1 Spatial Correlation Function 

The correlation is a normalized measure of the linear association between the two 

random vectors.  We used the Pearson’s product moment estimator to obtain the 

correlation of the process }Ru :u)({ 2∈Z  for all ui and uj in an n × n grid such that {ui – 

uj = d; i,j = 1,2,…n2} 
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where ⋅  represents the expectation operator and ρ(d) is the correlation for a distance lag 

d.  As the accumulation fields were assumed to be independent in time, the averages in 

equation 1 were estimated by pooling together the pixel values that correspond to the 
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distance lag d in all of the rainfall fields.  In this study, d varied from 0 to approximately 

48 km.  The estimated correlations, when plotted against the distance lag, represent the 

spatial correlation function.  If the correlation drops rapidly with distance, then the 

process is considered highly variable in space.  The correlation functions were 

parameterized by fitting a two-parameter power exponential function (equation 3.1 with 

θ0 = 1.0) using Levenberg-Marquardt algorithm.  The two parameters are the correlation 

distance and the shape factor, which are described in detail in Section 3.3.  

6.4.2 Power Spectrum 

A physical process is said to be scale-invariant or scaling if large scale and small 

scale structures are related by a scale-changing operation that involves only the scale 

ratio and an exponent [e.g., Schertzer and Lovejoy, 1987].  If different exponents are 

required to describe the scaling behavior of different moments, then the process is said to 

be multiscaling.  In addition to understanding the rainfall process across multiple scales, 

other attractive features of the multiscaling framework are that parsimonious models can 

be developed to generate synthetic rainfall fields at a given resolution and statistical 

downscaling techniques can be developed to obtain rainfall fields at much higher 

resolution. 

The Fourier power spectrum is one of the most widely used tools to detect the 

presence of scale-invariance in rainfall.  The power spectrum of the rainfall event was 

obtained as follows: 

1) Each rainfall accumulation image is Fourier transformed and the amplitudes 

are modulus squared to obtain the 2D power spectrum. 

2) The two-dimensional power spectrum, which is conjugate symmetric, is 

folded about the Nyquist frequency. 

3) Assuming isotropy, the folded spectrum is radially averaged about the 

corner. 
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4) The individual spectra estimated at each time instant were then averaged to 

obtain the average spatial spectrum. 

A process is said to be scale-invariant if the power spectrum displays log-log 

linearity (power law) within a finite range of frequencies.  If E(f) is the power for the 

frequency f, then the scale-invariant field will have a power spectrum of the form: 

( ) β−= ffE  (6.2) 

where β is the negative slope of the spectrum in the log-log domain.  The power spectrum 

slope is an indicator of the spatial organization of the field.  The higher the value of β, the 

smoother and more organized the rainfall field [e.g., Purdy et al., 2001; Nykanen and 

Harris, 2003].  It should be noted that for the fields with a fixed resolution, the power 

spectrum is distributed in uniform frequency bins.  When such spectrum is plotted in a 

double logarithmic plot, most of the spectrum is concentrated towards higher frequencies.  

To avoid excess weighting on the higher frequencies, we estimated β by performing 

ordinary least squares regression on the octave binned power spectrum [e.g., Harris et al., 

1997] in the double-logarithmic domain.  The log-log linearity was checked based on the 

R2 value in linear regression. 

6.4.3 Spatial Moment Scaling Analysis 

The next tool we used in this study is the moment scaling analysis to investigate 

the presence of multifractality.  For a multifractal process, it has been shown [e.g., 

Menabde et al., 1997] that the spectral slope β is always less than the dimension (D) of 

the field.  If β > D, which is often the case with geophysical phenomena including 

rainfall, moment scaling analysis has to be performed on either the fractionally 

differentiated field [e.g., Schertzer and Lovejoy, 1987; Nykanen and Harris, 2003] or on 

the small-scale fluctuations (gradient) of the original field [e.g., Tessier et al., 1993a; 

Menabde et al., 1997]. 
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In this study, we adopted the latter approach and obtained small-scale fluctuations 

as the difference between the value at the given pixel and the mean of the four nearest 

neighbors (three for edge pixels and two for the ones on the corner).  For each rainfall 

event, the gradient fields of resolution r (= 4 km) and size L (=256 km) were then 

averaged over a range of scales l(n).  The value of n varies from 0 to 6, with l(0) equal to 

4 km and l(6) equal to 256 km.  The averaged fields are referred to as φλ, where λ is the 

ratio of the size of the field L to the averaging scale l(n).  Assuming that the fluctuation 

fields within the rainfall event were time-independent, the average values in the φλ fields 

at all of the time steps were pooled together, and the trace moments Mq(λ) of various 

moment orders q were estimated for each scale ratio λ. The higher the value of λ, the 

larger the sample size available to estimate the moments. 

The gradient field is multifractal if there is a scaling relationship of the form 

( ) ( ) )(~, qKq
q txM −= λϕλ λ  (6.3) 

where, K(q) (the slope of Mq(λ) versus λ in the log-log domain) is a nonlinear function of 

the moment order q.  Theoretically, K(q) is required for q values ranging from 0 to ∞ to 

fully characterize the multifractality in the rainfall fluctuation fields.  However, Tessier et 

al. [1993a] proposed a universal multifractal (UM) model for K(q) based on 

multiplicative cascades consisting of parameters α and C1. 

( ) ( ) 21   and   10             
1

1 ≤<<≤−
−

= αα
α

α qqCqK  (6.4) 

( ) 1                    log1 == αqqCqK  (6.5) 

The parameter α is the Levy-stable (or multifractality) index that characterizes the 

spikiness and indicates the probability distribution from which the weights are generated 

in the cascading process.  The case 0 < α < 2 ( ) corresponds to log(Levy) multifractals, 

and if α = 1 the multifractal process is log(Cauchy) [e.g., Tessier et al., 1993a].  The case 

with α = 2 corresponds to lognormal multifractals.  C1 is the intermittency parameter that 
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characterizes the sparseness of the mean.  It should be noted that the above model 

(equations 6.5 and 6.6) is for the multiscaling conservative cascades for which β < D.  

However, rainfall fields often display a non-conservative, multi-affine nature with a 

power spectrum slope greater than the dimension of the process.  The degree of non-

conservation is quantified in terms of the Hurst exponent H, estimated as 

[ ](2)
2

D k
H

β − +
=  (6.6) 

where K(2) is the scaling exponent corresponding to the second moment order.  The 

Hurst exponent is also an indicator of the smoothness of the field [e.g., Harris et al., 

2003]. 

In this study, the parameters C1 and α were obtained using the double trace 

moments (DTM) technique [e.g., Tessier et al., 1993a].  In the DTM technique, we take 

various powers η of the rainfall fluctuations at their highest resolution, average the 

powered fluctuations to various spatial scales with scale ratio λ and estimate the statistical 

moments (referred to as double trace moments) of various orders q. 

( ) ( )q
q yxM λ

η
η ϕλ ),(, =  (6.7) 

In the case of universality, the double trace moments will depend on the scale 

ratio as [e.g., Tessier et al., 1993a]: 

( ) ),(
, ~ η

η λλ qK
qM  (6.8) 

and 

)(),( qKqK ⋅=
α

ηη  (6.9) 

Therefore, α is the slope of K(q,η) versus η in a double logarithmic plot for a fixed 

q.  The value of C1 can be obtained by plugging α in equation 6.5 for a fixed q.  For a 

detailed description of the DTM technique, the reader is referred to Tessier et al. [1993a].  

Several studies have applied the UM model over the last 15 years to describe a variety of 
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geophysical phenomena such as wind and atmospheric temperature [e.g., Schmitt et al., 

1994; Lazarev et al., 1994; Schmitt et al., 1996], rain and clouds [Tessier et al., 1993a; 

Hubert et al., 1993; Naud et al., 1996; Marsan et al., 1996], ocean surface [Tessier et al., 

1993b], hydraulic conductivity [e.g., Liu and Molz, 1997], and topography [e.g., Lavallee 

et al., 1993; Tchiguirinskaia et al., 2000; Gagnon et al., 2006]. 

6.4.4 Breakdown Coefficients 

There are many ways to perform the multiscaling analysis.  One such approach - 

the moment scaling analysis – was discussed in the previous subsection.  Another 

technique considered in this study is the behavior of the breakdown coefficients, which 

was originally applied in the field of hydrodynamical turbulence (Novikov [1990] and 

references therein).  Unlike other analysis methods used in this study, the theory of 

breakdown coefficients has not been extensively employed in the rainfall literature.  

Menabde et al. [1997] demonstrated the self-similarity of the logarithm of breakdown 

coefficients of rainfall fluctuations and proposed a self-similar random cascade model for 

rainfall.  Harris et al. [1998] proposed parameter estimation techniques for the 

distribution of breakdown coefficients.  They also demonstrated that the scaling behavior 

of the breakdown coefficients and the trace moments in the moment scaling analysis were 

quite close for large sample sizes.  In this study, we followed the methodology of 

Menabde et al. [1997] and Harris et al. [1998] to estimate the breakdown coefficients. 

The rainfall gradient fields were integrated at various scales l(n), and the 

logarithm of breakdown coefficients were estimated as follows. 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

+ )1(

)(ln
nl

nl
nX

ψ
ψ

 (6.10) 

where, ψl(n) is the pixel value for the integrated field at scale l(n), Xn is the breakdown 

coefficient at scale l(n), and the value of n ranges from 0 to 3.  Larger scales were not 

considered as there were insufficient data to obtain the probability distribution.  The pixel 
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value at scale l(n+1) will always be greater than the four individual pixels at the scale 

l(n).  Therefore, the breakdown coefficients will always be non-negative.  As the rainfall 

fields were assumed to be independent in time, the breakdown coefficients were pooled 

together for all the fields within the rainfall event, and the probability distribution was 

obtained.  We employed breakdown coefficients only to demonstrate the statistical self-

similarity of the rainfall gradient fields.  We did not attempt to link the characteristics of 

the probability distribution (such as shape and peak) to the spatial structure (such as 

smoothness). 

6.5 Results and Discussion 

We obtained each of the aforementioned spatial characterization estimates for the 

PPPS and Hi-Fi radar-rainfall products as well as for the rainfall events generated using 

the rainfall generator (Section 6.3) and conditioned on the PPPS storm data (for each 

event, we generated an ensemble of 200 probable true events).  First, we compared the 

estimates for both products to see if corrections involved during the generation of Hi-Fi 

products altered the estimated spatial structure.  Then, we compared the estimates for the 

PPPS product with those of probable rainfall events to assess the impact that the rainfall 

estimation errors in the PPPS product had on the spatial characterization of rainfall 

events. We obtained each of the aforementioned spatial characterization estimates for the 

PPPS and Hi-Fi radar-rainfall products as well as for the rainfall events generated using 

the rainfall generator (Section 6.3) and conditioned on the PPPS storm data (for each 

event, we generated an ensemble of 200 probable true events).  First, we compared the 

estimates for both products to see if corrections involved during the generation of Hi-Fi 

products altered the estimated spatial structure.  Then, we compared the estimates for the 

PPPS product with those of probable rainfall events to assess the impact that the rainfall 

estimation errors in the PPPS product had on the spatial characterization of rainfall 

events. 
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6.5.1 Effect on Spatial Correlation Function 

The spatial correlations were estimated for the radar-rainfall data using Pearson’s 

product moment estimator (equation 6.1).  However, we found that correlation estimates 

for both algorithms were quite close, meaning that the spatial correlation structure was 

not sensitive to the corrections performed during the creation of Hi-Fi rainfall products.  

The dark solid line in Figure 6.2 represents the correlation estimates plotted against the 

distance lag for the rainfall products obtained using the Pseudo-PPS algorithm.  For the 

sake of clarity, we did not plot the corresponding estimates for the Hi-Fi product.  The 

correlation estimates were fitted using the two-parameter exponential function (equation 

6.2), and the parameters (correlation distance and shape parameter) are given in Table 6.2 

for both radar-rainfall algorithms.  The correlation distance varied from a minimum value 

of around 18 km for the storm KICT-09 to a maximum value of about 48 km for the 

storm KICT-10 (Table 6.2).  The shape parameter ranged between 0.74 and 1.20.  If the 

shape parameter is smaller than 1.0, the decay in correlations is faster than exponential, 

while if it is greater than 1.0, the small-scale correlation decays at a much slower rate, 

leading to smoother fields.  From the values of correlation distances and shape 

parameters, we can infer that the storms KICT-03, KICT-06, and KICT-09 are more 

variable than the others.  Similarly, the storms KICT-04, KICT-05, and KICT-10 are 

smoother than the other events considered. 

The gray lines in Figure 6.2 represent the spatial correlation functions estimated 

from each of the 200 probable rainfall events.  The effect of RR errors varies with each 

storm.  The bias in the estimation of the spatial correlation function was clearly evident 

for storms KICT-05 and KICT-10, whereas the bias was not noticeable for the storms 

KICT-06 and KICT-09 (Figure 6.2).  The mean, 5th, and 95th percentiles for the 

parameters of the exponential correlation function (equation 3.1) fitted to the gray lines in 

Figure 6.2 are listed in Table 2.  The correlation distance for the PPPS product is greater 

than the average correlation distance from the ensemble of probable rainfall events for all 
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the storms (Table 6.2).  Nonetheless, the correlation distance always lies within the 90% 

confidence interval obtained from the probable rainfall events (Table 6.2), indicating that 

there is not enough statistical evidence to say that they are different at the 10% 

significance level.  The impact of RR errors was more pronounced for the shape 

parameter.  The estimates of the shape parameter for the PPPS product were always 

greater than the average shape parameter from the probable rainfall fields (Table 6.2).  

Moreover, they are always larger than the 95th percentile.  Therefore, the presence of 

errors induces spurious correlations in the RR fields at smaller scales. 

6.5.2 Effect on Power Spectrum 

Although the spatial correlation function provides information on the variability 

of the rainfall fields, it does not tell us how the small scale and large scale structures in 

rainfall interact with each other.  This information can be obtained by estimating the 

power spectrum.  We estimated the power spectrum for all of the ten rainfall events using 

the algorithm discussed in Section 6.4.2.  Similar to the correlation estimates, the power 

spectrum was also unaffected by the corrections performed in the Hi-Fi rainfall products.  

Figure 6.3 (dark lines) shows the power spectrum for the rainfall products generated 

using the PPPS algorithm.  Except for the slight departure towards the lower frequencies 

(for example, event KICT-02 in Figure 6.3), caused mainly by sampling effects, the 

power spectrum displayed log-log linearity for most of the frequency domain.  The 

negative slope β was then estimated for RR events using the octave binning technique 

discussed in Section 6.4.2.  Since linear regression was performed on the octave binned 

spectrum, the sampling issue does not significantly affect the estimation of the slope β.  

The R2 value in the linear regression was always greater than 0.97, confirming log-log 

linearity of the spectrum.  The spectral exponents for all of the events are listed in Table 

6.3.  The values of β ranged from 2.05 to 2.88, with lower values for the storms KICT-06 

and KICT-09 and higher values for KICT-04 and KICT-10.  The highest value of β for 
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KICT-10 indicates a smoother and more organized rainfall event, which is in agreement 

with the results from the correlation analysis that reported high values of correlation 

distance and shape parameter for that particular event. 

The power spectra estimated for an ensemble of probable rainfall fields (gray 

lines in Figure 6.3) also displayed log-log linearity for most of the frequency domain.  

Comparing the spectrum obtained from PPPS RR products with those of the probable 

rainfall events (Figure 6.3), the errors have a larger impact towards higher frequencies 

(small scales).  The effect of errors is to smooth the rainfall fields at small scales, thereby 

decreasing the contribution of higher frequencies and increasing the value of β.  The β 

value for the PPPS RR product was greater than the average β from the probable rainfall 

events for all of the storms (Table 6.3).  Except for the storms KICT-06 and KICT-09, the 

β value falls outside the 90% confidence interval obtained for the probable rainfall events 

(Table 6.3).  The events KICT-06 and KICT-09 also happen to be the most variable of all 

the events considered in the study (Tables 6.2 and 6.3).  Even in the correlation analysis, 

the bias in shape parameter is smaller for storms KICT-06 and KICT-09.  With the 

exception of these two storms, the RR errors result in the overestimation of the power 

spectrum slope (the value is larger than the 95th percentile).  The small scale smoothing 

effect of the RR errors is consistent with the results from the correlation analysis.  In 

Figure 6.4, we compared the results from correlation and power spectrum analysis for the 

events KICT-06 and KICT-08.  KICT-06 is shown because it is one of the shortest 

duration events recording the smallest rainfall accumulation, whereas KICT-08 was the 

longest event recording one of the highest rainfall accumulations.  The results are similar 

for other events. 

6.5.3 Effect on Moment Scaling Function 

The value of β from the power spectrum analysis was always greater than the 

dimension of the field for all the rainfall events.  Therefore, as mentioned in Section 
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6.4.3, moment scaling analysis has to be performed on the gradient of rainfall fields.  We 

obtained the gradient fields following the methodology proposed by Menabde et al. 

[1997], which was briefly described in Section 6.4.3.  The gradient fields were averaged 

to various spatial scales, and the trace moments (equation 6.3) were estimated for 

moment orders ranging from 0.1 to 4.0.  The trace moments of various orders estimated 

for all the rainfall events are shown in Figure 6.5.  The slopes of the moments were 

obtained by performing ordinary least squares linear regression.  However, to avoid 

sampling effects, the trace moment value corresponding to the smallest scale (λ = 1) was 

not included in the regression analysis.  The R2 value in the regression was always greater 

than 0.98, confirming the log-log linearity of moments.  For all the rainfall events, the 

slopes varied with the moment order, indicating that the rainfall gradients were not 

simple scaling (Figure 6.5).  The dark lines in Figure 6.6 represent the moment scaling or 

K(q) functions (slopes against the moment order) for the PPPS RR product.  From the 

nonlinearity of the K(q) function (Figure 6.6), we can infer that the rainfall gradient fields 

were multiscaling. 

We parameterized the K(q) functions with the universal multifractal model 

(equations 6.4 and 6.5) using the double trace moment technique described in Section 

6.4.3.  In Figure 6.7, the DTM analysis was shown for the PPPS products of the rainfall 

events KICT-06 and KICT-08.  The top panels of Figure 6.7 show the double trace 

moments (estimated using equation 6.7) plotted against the scale ratio λ for different 

moment orders η and for a fixed q value of 1.6.  The double trace moments displayed log-

log linearity with the scale ratio λ for various η values (top panels of Figure 6.7).  We 

obtained the slopes K(q,η) in equation 6.8 by performing ordinary least squares 

regression, excluding the moment value corresponding to the lowest value of λ.  The 

slope of K(q,η) plotted against η in the double logarithmic plot (bottom panels of Figure 

6.7) gives the value of the multifractality index α.  The intermittency parameter C1 was 

obtained by using equations 5 and 10 for a fixed q of 1.6.  In this study, we carried out 
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the DTM analysis for different q (equal to 1.2, 1.6, 2.0, and 2.4) and estimated the 

average UM model parameters α and C1. 

Figure 6.8 shows the moment scaling exponents (from Figure 6.6) and the DTM-

fitted moment scaling functions for the PPPS RR products of all ten rainfall events.  The 

average parameters for all ten rainfall events and for both the algorithms (PPPS and Hi-

Fi) are listed in Table 6.4.  Similar to the correlation and power spectrum analysis, the 

UM model parameters were not significantly different for the PPPS and Hi-Fi products 

(Table 6.4).  The intermittency parameter for the PPPS product ranged from 0.21 for the 

event KICT-10 to 0.40 for KICT-09, whereas the multifractality index varied from 0.99 

for KICT-01 to 1.39 for KICT-08 (Table 6.4).  From the low value of C1 and the 

relatively high value of α for the storm KICT-10 (Table 6.4), we can say that the storm is 

more space-filling and has relatively fewer spikes than the other storms; the result is 

consistent with correlation and power spectrum analysis.  Similarly, the high value of C1 

and relatively low value of α for the KICT-09 suggest that the storm is spikier and less 

space-filling than other storms. 

We repeated the trace moment estimation and obtained the slopes for all of the 

200 probable rainfall events (gray lines in Figure 6.6).  The effect of RR errors varied for 

each storm, with noticeable bias for the storms KICT-01, KICT-08, and KICT-10 and 

small bias for the storms KICT-02, KICT-04, and KICT-07 (Figure 6.6).  We performed 

the DTM analysis for all 200 probable rainfall fields and compared the UM model 

parameters with those of the PPPS product to assess the impact of RR errors (Table 6.4).  

In general (except C1 for KICT-02 and α for KICT-07), the UM model parameters for the 

PPPS product are greater than the corresponding average values estimated from probable 

rainfall events (Table 6.4).  The higher value of C1 for the PPPS product meant an 

increase in the intermittency or a decrease in the smoothness of the field, which is 

contradictory to the result obtained from the correlation and power spectrum analysis.  

However, it can be explained by focusing on the behavior of α.  Table 6.4 illustrates that 
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the value of α for the PPPS product is greater than the average α from probable rainfall 

events, which means fewer spikes and smoother fields.  The net effect is the smoothing of 

the field and is therefore consistent with the correlation and power spectrum analysis. 

The explanation provided in the previous paragraph must be taken with caution as 

C1 and α for the PPPS product lie within the 90% confidence interval for some of the 

selected storms.  For example, although C1 and α for storms KICT-03, and KICT-06 are 

greater than corresponding average values from probable rainfall events, they lie within 

the 5th and 95th percentile of the distribution obtained from the probable rainfall events 

(Table 6.4).  At the 10% significance level, there is not enough evidence that the UM 

parameters are overestimated for KICT-03 and KICT-06  We then estimated the Hurst 

exponent H using equation 6.6 for the RR products as well as the probable rainfall events 

(Table 6.5).  The Hurst exponent for the PPPS products is larger than the 95th percentile 

for all of the storms.  As the Hurst exponent characterizes the degree of smoothness, the 

effect of RR errors is to increase the smoothness of the rainfall fields.  Since the power 

spectrum slope is used in the computation of the Hurst exponent, any impact of errors on 

β will propagate into the estimation of the Hurst exponent.  The histograms of the UM 

model parameters and the Hurst exponent for events KICT-06 and KICT-08 are shown in 

Figure 6.9. 

6.5.4 Effect on Breakdown Coefficients 

As mentioned in Section 6.4.4, we employed breakdown coefficients mainly to 

demonstrate the self-similarity of the gradient of the rainfall fields.  We estimated the 

breakdown coefficients using equation 6.10 for all ten rainfall events.  Figure 6.10 shows 

the probability distribution of the negative logarithm of breakdown coefficients at four 

successive scales as well as the average probability distribution for each rainfall event.  

From Figure 6.10, we can infer with reasonable confidence that the breakdown 

coefficients at successive scales are from the same probability distribution, confirming 
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that the rainfall gradient fields are self-similar.  We refrained from fitting the probability 

distribution of breakdown coefficients with a parametric form as it is not a trivial task to 

generate four random weights at each cascade step from a particular function keeping 

their sum equal to one [e.g., Menabde et al., 1997].  Menabde et al. [1997] and Harris et 

al. [1998] proposed iterative techniques to obtain the weights whose distribution follows 

the empirical distribution of breakdown coefficients.  However, we did not employ those 

techniques in this study and limit ourselves to a preliminary assessment of the impact of 

the errors. 

We then estimated the breakdown coefficients for the 200 probable rainfall 

events.  Figure 6.10 shows the distribution of breakdown coefficients for the probable 

rainfall events along with that of the PPPS RR product.  Unlike other analysis techniques 

used in this study, the effect of RR errors on the distribution of breakdown coefficients is 

not consistent for all rainfall events.  For example, RR errors led to underestimation of 

the peak of the distribution for KICT-07 and KICT-10 and overestimation for the events 

KICT-08 and KICT-09.  This inconsistent behavior could be attributed to the storm-to-

storm variability.  However, more research is needed to relate the biases to the specific 

characteristics of the storms. 

6.6 Summary and Conclusions 

Remotely sensed rainfall products, which are widely used for the spatial and 

temporal characterization of rainfall events, are affected by errors from various sources.  

Therefore, it is imperative to quantify the effect of errors on the estimated rainfall 

characteristics.  In this study, we investigated the impact of radar-rainfall (RR) estimation 

errors on the spatial characterization of RR products for warm season rainfall events over 

Wichita, Kansas.  For each storm, we generated 200 probable rainfall events using the 

rainfall generator developed by Villarini et al. [2009a] that was based on a recent RR 

error model of Ciach et al. [2007].  We assessed the effect of errors on different spatial 
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characterization tools such as the spatial correlation function, power spectrum, moment 

scaling function, and the breakdown coefficients.  Besides performing qualitative 

analysis, we also quantified the impact of errors by parameterizing the aforementioned 

functions with models widely used in the rainfall literature. 

From the spatial correlation analysis, we found that the shape parameter, which 

characterizes the behavior of the spatial correlation function at the small separation lags, 

was significantly overestimated for the RR products of all of the storms.  In general, there 

was a tendency for the correlation distance (defined as the distance at which the 

correlation drops to 1/e) to be also overestimated for the RR products.  The power 

spectrum analysis revealed that the presence of RR errors will smooth the fields at higher 

frequencies, leading to the overestimation of the negative power spectrum slope for eight 

out of ten rainfall events.  The correlation and power spectrum analysis also showed that 

the effect of RR errors was the smallest for the more variable events.  Moment scaling 

analysis was then carried out to see the effect of errors on the scaling of statistical 

moments of various orders.  The moment scaling functions were fitted with a universal 

multifractal model using the double trace moment (DTM) technique.  The results from 

the DTM analysis also suggested smoothing of rainfall fields by the RR errors.  However, 

the results were not as conclusive as the correlation and power spectrum analysis for 

some of the rainfall events.  The Hurst exponent, which characterizes the degree of non-

conservation or smoothness in the rainfall fields, was also significantly overestimated for 

all of the storm events.  We then estimated the breakdown coefficients for all of the 

storms as well as the probable rainfall events.  We used breakdown coefficient 

distributions only to demonstrate the self-similarity of the rainfall fields.  Radar-rainfall 

errors altered the shape of the breakdown coefficient distributions.  However, we did not 

attempt to relate the bias to the synoptic characteristics of the precipitation systems. 

Overall, the results from our study indicate that RR errors induce spurious 

correlations in the RR products at the smaller scales.  The results are in agreement with 
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previous studies, which utilized arbitrary error models.  Although the impact is 

significant for characterizing the spatial structure of RR products, the real impact of the 

errors will depend on where these products are applied.  In particular, propagation of 

these errors through hydrologic models would provide significant insight into the impact 

of radar-rainfall uncertainties on streamflow predictions.   

As mentioned above, we have focused on the spatial characterization of rainfall 

events.  The investigation of the effect of radar-rainfall errors on the space-time 

characteristics of rainfall would require including the temporal dependencies of the 

random errors into the generator developed by Villarini et al. [2009a], which is beyond 

the scope of this study. 
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Table 6.1∗ List of the selected rainfall events indicating the beginning, end, duration, and 
the overall accumulation. 

Storm ID Begin mm/dd/yyyy End mm/dd/yyyy N 
[hr] 

Accumulation [mm] 

PPPS Hi-Fi 

KICT-01 06/30/2004 15:15 07/03/2004 03:00 60 32.58 30.92 

KICT-02 07/26/2005 02:15 07/27/2005 10:00 32 7.97 7.13 

KICT-03 08/12/2005 15:15 08/14/2005 12:00 45 36.89 36.78 

KICT-04 08/24/2005 02:15 08/25/2005 21:00 43 58.36 53.95 

KICT-05 06/21/2006 20:15 06/22/2006 16:00 20 22.45 21.31 

KICT-06 07/26/2006 20:15 07/27/2006 19:00 23 11.31 11.30 

KICT-07 05/05/2007 20:15 05/07/2007 11:00 39 94.32 86.18 

KICT-08 06/26/2007 12:15 07/01/2007 00:00 108 84.37 80.02 

KICT-09 07/27/2007 15:15 07/31/2007 17:00 98 26.68 26.10 

KICT-10 05/07/2008 00:15 05/08/2008 03:00 27 45.11 42.42 

                                                 
∗The accumulation value is shown for the rainfall events obtained from Pseudo-PPS 

(PPPS) and Hi-Fi algorithms.  The size of the domain is 256 × 256 km2 with the KICT radar at its 
center.  The spatial resolution of the data is 4 km. 
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Table 6.2∗ Parameters of spatial correlation function estimated from the radar-rainfall 
data obtained from Pseudo-PPS (PPPS) and Hi-Fi algorithms. 

Storm ID 

Correlation Distance [km] Shape Factor 

PPPS Hi-Fi 
Probable Rainfall 

PPPS Hi-Fi 
Probable Rainfall 

Q0.05 Mean Q0.95 Q0.05 Mean Q0.95 

KICT-01 28.61 28.23 20.81 25.49 29.62 1.07 1.07 0.83 0.90 0.96 

KICT-02 27.90 28.20 18.76 23.52 27.95 1.18 1.19 0.79 0.90 1.01 

KICT-03 20.44 20.39 16.00 18.93 21.78 0.93 0.92 0.78 0.82 0.87 

KICT-04 37.59 36.53 29.66 34.54 39.54 1.09 1.10 0.83 0.89 0.94 

KICT-05 47.24 46.40 35.84 43.84 52.16 1.04 1.06 0.77 0.84 0.93 

KICT-06 21.55 22.71 14.57 19.66 25.13 0.74 0.75 0.58 0.65 0.72 

KICT-07 33.25 32.60 29.45 32.90 36.10 1.16 1.16 0.86 0.93 0.99 

KICT-08 37.53 38.02 24.09 30.84 38.03 0.90 0.91 0.66 0.71 0.77 

KICT-09 18.39 18.10 13.93 17.38 21.10 0.80 0.78 0.70 0.73 0.77 

KICT-10 48.03 50.73 38.27 46.12 52.21 1.11 1.13 0.74 0.82 0.90 

                                                 
∗The table also shows the mean, 5th, and 95th percentiles of the corresponding parameters 

for the probable rainfall fields.  All of the parameters are estimated for hourly accumulations 
averaged over a 4-km grid. 
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Table 6.3∗ The power spectrum slope estimated using ordinary least squares regression 
for the radar-rainfall data obtained from Pseudo-PPS (PPPS) and Hi-Fi 
algorithms. 

Storm ID 

Power Spectrum Exponent β 

PPPS Hi-Fi 
Probable Rainfall 

Q0.05 Mean Q0.95 

KICT-01 2.53 2.53 2.15 2.29 2.41 

KICT-02 2.71 2.73 2.17 2.35 2.51 

KICT-03 2.25 2.25 2.01 2.11 2.21 

KICT-04 2.76 2.77 2.33 2.46 2.57 

KICT-05 2.71 2.72 2.30 2.44 2.58 

KICT-06 2.05 2.10 1.80 1.94 2.09 

KICT-07 2.75 2.75 2.37 2.48 2.58 

KICT-08 2.57 2.60 2.10 2.25 2.40 

KICT-09 2.07 2.05 1.86 1.99 2.09 

KICT-10 2.88 2.94 2.36 2.49 2.61 

                                                 
∗The table also shows the mean, 5th, and 95th percentiles of the corresponding parameters 

for the probable rainfall fields.  All of the parameters are estimated for hourly accumulations 
averaged over a 4-km grid. 
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Table 6.4∗ Parameters of the universal multifractal model estimated using the Double 
Trace Moment technique from the radar-rainfall data obtained from Pseudo-
PPS (PPPS) and Hi-Fi algorithms. 

Storm ID 

Intermittency Parameter C1 
Multifractality Exponent α 

PPPS Hi-Fi 
Probable Rainfall 

PPPS Hi-Fi 
Probable Rainfall 

Q0.05 Mean Q0.95 Q0.05 Mean Q0.95 

KICT-01 0.36 0.37 0.31 0.32 0.35 0.99 0.99 0.80 0.89 0.96 

KICT-02 0.27 0.28 0.25 0.28 0.32 1.09 1.07 0.86 0.98 1.08 

KICT-03 0.32 0.32 0.28 0.31 0.34 1.07 1.05 0.93 1.02 1.09 

KICT-04 0.25 0.26 0.22 0.23 0.25 1.02 1.03 0.94 1.01 1.06 

KICT-05 0.25 0.25 0.20 0.21 0.23 1.18 1.17 1.07 1.15 1.22 

KICT-06 0.32 0.33 0.26 0.29 0.33 1.12 1.11 1.00 1.11 1.20 

KICT-07 0.24 0.26 0.21 0.22 0.23 1.12 1.11 1.13 1.19 1.25 

KICT-08 0.27 0.28 0.21 0.23 0.27 1.39 1.39 1.03 1.15 1.25 

KICT-09 0.40 0.42 0.34 0.37 0.40 1.07 1.02 0.94 1.03 1.11 

KICT-10 0.21 0.21 0.16 0.18 0.19 1.33 1.31 1.13 1.24 1.33 

                                                 
∗The table also shows the mean, 5th, and 95th percentiles of the corresponding parameters 

for the probable rainfall fields.  All of the parameters are estimated for hourly accumulations with 
the spatial resolution 4-km. 
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Table 6.5∗ Hurst exponent estimated using equation 6.6 for the radar-rainfall data 
obtained from Pseudo-PPS (PPPS) and Hi-Fi algorithms. 

Storm ID 

Hurst Exponent H 

PPPS Hi-Fi 
Probable Rainfall 

Q0.05 Mean Q0.95 

KICT-01 0.50 0.51 0.28 0.35 0.40 

KICT-02 0.56 0.57 0.28 0.36 0.43 

KICT-03 0.35 0.35 0.21 0.26 0.30 

KICT-04 0.55 0.56 0.32 0.38 0.43 

KICT-05 0.54 0.55 0.31 0.37 0.43 

KICT-06 0.27 0.30 0.11 0.17 0.23 

KICT-07 0.55 0.56 0.35 0.40 0.44 

KICT-08 0.50 0.52 0.22 0.28 0.35 

KICT-09 0.33 0.32 0.19 0.24 0.29 

KICT-10 0.61 0.63 0.31 0.37 0.43 

                                                 
∗The table also shows the mean, 5th, and 95th percentiles of the corresponding parameters 

for the probable rainfall fields.  All the parameters are estimated for hourly accumulations with 
the spatial resolution 4-km. 
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Figure 6.1 Time series of hourly accumulations for the selected storms.  The radar-
rainfall fields are generated using the Pseudo-PPS algorithms.  The storm IDs 
are indicated on each panel.  The maximum accumulation for KICT-07 is 5.5 
mm.  However, we truncated the axis at 4.5 mm for clarity. 
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Figure 6.2 Effect of radar-rainfall errors on the spatial correlation function.  The solid 
dark line represents the correlation function obtained from the Pseudo-PPS 
rainfall product, whereas the gray lines are the correlation functions for the 
ensemble of probable rainfall fields generated using Villarini et al. [2009a]. 
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Figure 6.3 Same as Figure 6.2 but for the power spectrum. 
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Figure 6.4 Histograms of the parameters of the spatial correlation function (top four 
panels) and slope of the power spectrum for two rainfall events (KICT-06 and 
KICT-08) after accounting for radar-rainfall estimation errors.  The solid line 
represents the corresponding estimate obtained from radar-rainfall. 
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Figure 6.5 Scaling of trace moments of different moment orders q for the PPPS products 
of ten selected rainfall events in Table 1.  The solid lines represent the 
ordinary least square regression fits. 
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Figure 6.6 Same as Figure 6.2 but for the moment scaling exponents. 
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Figure 6.7 Top panels: Scaling of normalized double trace moments (DTM) with respect 
to the scale ratio for the two rainfall events.  The solid lines show the ordinary 
least squares regression fit, where the first point is not considered in 
regression.  Bottom panels: Scaling of the DTM exponents with respect to the 
moment order η.  The solid lines show the ordinary least squares regression 
fit, where the first five and last six points are not considered in regression. 
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Figure 6.8 Moment scaling functions (solid lines) fitted to the scaling exponents (dots) 
using the Double Trace Moment technique. 
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Figure 6.9 Histograms of the universal multifractal model parameters (top four panels) 
and the Hurst exponent for the two rainfall events (KICT-06 and KICT-08) 
after accounting for radar-rainfall estimation errors.  The solid line represents 
the corresponding estimate obtained from radar-rainfall data. 



146 
 

 

 

Figure 6.10 Probability distribution of the logarithm of breakdown coefficients for 
gradient fields of the selected ten rainfall events at different spatial scales l(n). 



147 
 

 

 

Figure 6.11 Impact of radar-rainfall estimation errors on the average probability 
distribution of the logarithm of breakdown coefficients for the gradient fields.  
The dark solid line and the gray lines represent the scaling exponents 
estimated for radar-rainfall and probable rainfall fields (after accounting for 
radar-rainfall errors), respectively. 
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CHAPTER 7 

EFFECT OF RADAR-RAINFALL UNCERTAINTIES ON THE PEAK 

FLOW SCALING EXPONENTS: PRELIMINARY RESULTS 

7.1 Introduction 

The variability observed in the radar-rainfall fields is a combination of natural 

variability in rainfall and the variability induced by the radar-rainfall errors.  In the 

previous chapter, we investigated the role of radar-rainfall uncertainties on the spatial 

characterization of rainfall events.  This chapter takes a step forward by propagating the 

errors through the distributed hydrologic model and quantifies the effect of uncertainties 

on the statistical structure of peak flows. 

7.2 Methodology 

We selected a radar-rainfall event over the Whitewater River basin and obtained 

the peak flows for the event from the hydrologic model CUENCAS.  We then generated 

100 probable rainfall events employing Ciach et al. [2007] and Villarini et al. [2009a].  

These probable rainfall fields are conditioned on the selected radar-rainfall event but 

account for the radar-rainfall uncertainties.  It should be noted that the uncertainty model 

[Ciach et al., 2007] and rainfall generator [Villarini et al., 2009a] were developed for the 

Oklahoma region for the radar-rainfall products at hourly time scales and spatial 

resolution of 4 km.  In this study, we not only transferred the error model and its 

parameters to a different geographical region, but also assumed the parameters to be valid 

for spatial resolution of 1 km and temporal scale of 15 min.  We selected Whitewater 

River basin as the Monte Carlo simulation framework is computationally expensive for 

the larger basins such as Iowa River or Cedar River basins.  We estimated the peak flow 

scaling exponents for the NEXRAD radar-rainfall event and for the probable rainfall 

events.  The effect of radar-rainfall uncertainties can be quantified by comparing the 

scaling exponents for real event and the error-free probable rainfall events.  Quantifying 
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the impact of radar-rainfall uncertainties on peak flows by comparing the peak flows 

from radar-rainfall fields with those of probable rainfall fields 

7.3 Results and Discussion 

We selected rainfall event that occurred from 26th to 27th July 2006 and lasted for 

~ 23 hours.  We assumed that the runoff generation is Hortonian, and flow to the 

channels is instantaneous.  Figure 7.1 shows the peak flow scaling structure obtained for 

the rainfall measured by the KICT, Wichita, NEXRAD radar, and one of the probable 

rainfall events generated using Villarini et al. [2009a].  The scaling structure is typical of 

the realistic rainfall fields, i.e. large variability at smaller scales, absence of sharp scale 

break, and less variability towards the large scale basins (Figure 7.1).  We then estimated 

the scaling exponents and coefficients in Hortonian framework.  It can be seen from the 

Figure 7.1 that the scaling exponents and the intercepts are different for radar-rainfall and 

probable rainfall.  However, it should be noted that here we are only comparing with one 

of the 100 realizations of probable rainfall events.  We estimated the scaling exponents 

for the peak flows corresponding to all 100 probable rainfall events.  Figure 7.2 compares 

the histograms of the intercepts and scaling exponents for the 100 probable rainfall fields 

with those of the radar-rainfall event.  Radar-rainfall errors do not seem to significantly 

affect the scaling exponents and the intercepts (Figure 7.2).  However, this is only a 

preliminary result and must be taken with caution before generalizing it to larger basins. 

It should be noted that in this chapter we presented the framework and some early 

results.  Research needs to be carried out particularly in the area of radar-rainfall error 

structure at very high space-time resolutions for different radars, before we perform a 

thorough investigation of the effect of radar-rainfall errors on the peak flow scaling 

structure. 
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Figure 7.1 Scaling of peak flows from the Whitewater River basin for (left panel) the 
rainfall event measured by KICT weather radar at Wichita, Kansas, and (right 
panel) the one of the probable rainfall events generated using Villarini et al. 
[2009a]. 
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Figure 7.2 Comparison of the regression equations (intercept and exponent) for the peak 
flow scaling behavior corresponding to the radar-rainfall events measured by 
the KICT weather radar at Wichita, Kansas with the histograms of intercepts 
and scaling exponents obtained for probable rainfall events generated using 
Villarini et al. [2009a].  
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

The complex interaction of the rainfall with the landscape together with the lack 

of measurement techniques to obtain spatially distributed parameters makes the problem 

of flood prediction quite challenging.  Scale-invariance behavior of peak flows offers us 

an alternative framework to predict the peak flows.  However, a physical understanding 

of mechanisms behind the observed scaling behavior is necessary before we implement 

scaling-based hydrologic models in a predictive framework.  In the last two decades, 

several studies have focused on scale-invariant behavior of rainfall and the physical 

mechanisms behind such power-laws.  While some of them were data-based, others were 

based on simulations under idealized conditions such as spatially uniform or cascade-

based rainfall on deterministic or random self-similar river networks.  Furey and Gupta 

[2007] presented a five-step framework for diagnosing the observed scale-invariance in 

single-event peak flows.  However, such a framework can be applied only for a basins 

having large number of rainfall and streamflow gauges operating concurrently, which is 

the case only for small research based watersheds such as Goodwin Creek Basin in 

Arizona.  For this reason, we resorted to simulation framework starting from idealized 

rainfall scenarios to complex space-time rainfall events on river basins in Iowa and 

Kansas with maximum area of ~7250 km2.  Instead of a grid-based structure, we 

employed hillslope-link decomposition of the landscape in our distributed hydrologic 

model. 

It is important to understand the relative roles of all the factors such as rainfall, 

runoff generation on hillslopes, channel network topology, and channel routing on the 

scaling exponents.  Space-time rainfall variability itself is a very complex feature 

especially with the presence of estimation errors and therefore, we studied only the effect 

of rainfall on scaling exponents.  One could always make the study more complex by 
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including different hillslope runoff generation mechanisms, channel network topologies 

and hydraulic geometries, but such an analysis would not provide an insight into relative 

roles of each component on the scaling exponent.  For this reason, we assumed Hortonian 

runoff mechanism with instantaneous flow into the channels and restricted this study to 

two watersheds in Iowa and Kansas. 

We focused on three aspects of the peak flow scaling structure for all the 

scenarios: scatter, scale break and the scaling exponents.  The results showed that the 

peak flow scaling exponents for all the scenarios considered in this study are greater than 

the width function scaling exponent.  In Chapter 2, we studied the effect of basic 

characteristics of rainfall such as storm intensity, duration and advection on the scaling 

structure of peak flows.  For a fixed intensity, the scaling exponent increased with an 

increase in the rainfall duration, and for a fixed duration, the scaling exponent decreased 

with intensity, but only for nonlinear channel routing scenario.  We also found that as the 

storm advection velocity increased, the scaling exponent decreased exponentially.   

We then introduced variability in the rainfall fields in Chapter 3 and investigated 

its effect on the peak flow scaling structure.  The main effect of storm variability, as 

characterized by variance, spatial correlation and the spatial intermittency, was to 

increase the scatter in the scaling structure of the peak flows.  However, at larger spatial 

scales, the effect of variability decreases, as seen from peak discharges at the outlet of the 

basin.  The analyses in Chapters 2 and 3 were carried out on ~1200 km2 Whitewater 

River basin in Kansas.  In Chapter 4, we repeated our simulation experiments but on 

~7250 km2 Iowa River basin up to Marengo, Iowa.  The results for the Whitewater and 

Iowa River basins strongly indicated that under idealized conditions of runoff generation, 

flow routing on hillslopes and in channels, the smaller scale basin response was 

dominated by the rainfall intensity (and spatial distribution), while the hydrologic 

response of larger scale basins was driven by rainfall volume, river network topology and 

flow dynamics.  In general, we conclude that the effect of rainfall variability on the peak 
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flow scaling behavior is larger for smaller scale basins.  As we moved towards the larger 

basins, the river network effectively integrated the variability noticed at smaller scales.  

However, the efficiency of the river network in averaging the variability also depends on 

the rainfall intensity distribution, localization and correlation structure. 

In Chapter 4, we also relaxed the assumption of instantaneous flow to the channel 

to study the effect of hillslopes on the scaling structure of peak flows.  We incorporated 

hillslope velocity into the CUENCAS hydrologic model.  Three different hillslope 

velocities were considered: 1) velocity corresponding to instantaneous flow to the 

channel, 2) velocity of 1.0 m/s, and 3) velocity of 0.1 m/s.  Results suggested that the 

hillslope velocities strongly affect the scatter in the peak flow scaling structure at small 

scales, and the location of the scale break.  However, their impact on the scaling 

exponents was not found to be significant.  Besides the role of hillslopes, we also 

analyzed the effect of channel network extraction on the peak flow scaling behavior.  We 

considered digital elevation models with a resolution of 30 m and 90 m, extracted the 

channel networks, and imposed spatially uniform rainfall for different durations.  The 

results showed that channel network extraction had huge impact on the peak flows across 

the full range of scales considered.  It not only affected the scatter at the smaller scales 

but also significantly altered the scaling exponents. 

Throughout the thesis, we modeled rainfall space-time variability in terms of 

stationary random fields with a certain intermittency and correlation structure in space 

and time.  Although the emphasis of this approach is more on generation of space-time 

random fields and lacks a direct link to the physical aspects of the rainfall process, one 

can qualitatively relate the statistical parameters to the meteorological aspects such as 

back-building thunderstorms, squall lines and convective systems.  For instance, the size 

of the convective system with respect to the size of the basin is an important 

characteristic that controls the basin response.  This information is embedded in the 

correlation distance and shape factor in equation 4.  There are other ways of 
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characterizing the space-time variability of rainfall fields such as modeling of rainfall 

based on spatial cluster processes for rain cells, dynamic modeling of rainfall based on 

partial differential equations for mass and momentum conservation and scaling-based 

modeling of rainfall space-time structure.  It would be interesting to employ these models 

and relate the parameters of rainfall models to the characteristics of peak flow scaling 

structure. 

Anthropogenic alteration of the landscape will have an impact on the extracted 

drainage network and subsequently on the aggregation of the flows affecting the larger 

scale basin response.  The hydraulic geometry of the channels is another key factor which 

is strongly related to the channel-floodplain interactions and influences the storage zones, 

movement of the flood waves and the travel time within the channel.  Therefore, it is 

expected to have an influence on the peak flow scaling structure.  The CUENCAS 

hydrologic modeling framework allows for the inclusion of this feature by modifying the 

local velocity law.  However, investigation of this factor is beyond the scope of this work, 

and our strategy is to avoid any aspects in the dynamics that can obscure the effect of 

rainfall variability. 

Throughout this study, we have estimated the Horton ratios by ordinary least 

squares regression of logarithms of arithmetic averages with the Horton order (See Figure 

2).  Based on a simulation study, Furey and Troutman [2008] suggested the use of 

individual quantities (for example, areas or peak flows) instead of arithmetic averages.  

Since the main focus of the study is on the role that rainfall variability plays in the scaling 

structure of peak flows, our use of arithmetic averages instead of individual quantities in 

the Horton analysis would not affect the results.  Also, in this study, we have assumed 

that the runoff generation is Hortonian with no infiltration so that we can focus on the 

role that rainfall plays in the statistical structure of peak flows.  The key issue is how to 

specify the infiltration threshold for each of 100,000 hillslopes in CUENCAS, which 

differ due to spatial variability in soil and vegetation properties.  This problem of 
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“dynamic parametric complexity” is a major research problem [e.g., Gupta, 2004; Furey 

and Gupta, 2007] and not addressed in this study.   

To investigate the effect of radar-rainfall errors on the peak flows, we need 

characteristics of RR errors.  In chapter 5, we developed a framework to estimate the RR 

error spatial correlation structure (ESC).  We applied the framework to estimate the ESC 

of hourly NEXRAD rainfall products over Oklahoma.  The errors were found to be 

significantly correlated with a correlation distance of about 20 km.  In chapter 6, we 

investigated the impact of errors on the spatial characterization of rainfall.  The results 

indicated that the errors induce spurious correlations in the radar-rainfall fields, 

particularly for small scales.  We then propagated the rainfall estimation uncertainties in a 

Monte Carlo framework through our distributed hydrologic framework to study their 

impact on the peak flow scaling behavior.  Preliminary results indicated that although 

radar-rainfall errors affect spatial characterization of rainfall events, their impact on the 

peak flows was not significant. 

Most of the hydrologic models in the past were developed with a short term goal 

of predicting the hydrographs in the basin.  Therefore, many hydrological modeling 

studies were carried out without strong theoretical basis and relying heavily on 

calibration.  And they did predict the hydrographs with reasonable accuracy.  In an 

operational setup, the forecasters have a responsibility to forecast the outflows from a 

basin.  Therefore they are compelled to employ such models.  However, there is a strong 

need for parallel research to thoroughly understand the hydrological processes across 

wide range of scales, and develop a robust theoretical framework which is scale-

independent.  We believe that a framework based on hillslope-link landscape 

decomposition and conservation of mass and momentum in the basin is a way forward 

instead of ad hoc grid based or sub-basin based landscape partitioning.  We understand 

that this approach does suffer from the same fundamental problem as the traditional grid 

based hydrologic models, which is lack of clear understanding of the hillslope hydrology.  
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However, it is physically meaningful to incorporate the new developments in the field of 

hillslope hydrology into the hillslope-link based framework.  In a systematic and 

diagnostic manner, we analyzed the role of rainfall variability and the river network in 

the statistical self-similarity of peak flows.  By incorporating latest developments in 

hillslope hydrology, and moving closer to the reality, a comprehensive geophysical 

theory for floods can be developed. 
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APPENDIX A 

SIMULATION BASED QUANTIFICATION OF THE EFFECTS OF 

SAMPLING ON THE ESTIMATION OF SPATIAL CORRELATION 

STRUCTURE 

A.1 Introduction 

Spatial phenomena (e.g., soil moisture, hydraulic conductivity or rainfall) are 

often modeled as realizations of a stationary stochastic process, where their spatial 

variability is characterized in terms of second-order statistics such as the semivariogram 

and the correlation structure [e.g., Lebel et al., 1987; Bras and Rodriguez-Iturbe, 1993; 

Mohanty et al., 1994; Baachi and Kottegoda, 1995; Western et al., 1999; Lark, 2000b; 

Germann and Joss, 2001; Gebremichael and Krajewski, 2004; Ciach and Krajewski, 

2006; Villarini et al., 2008].  The semivariogram is a measure of dissimilarity in the 

process and is defined for an intrinsically stationary process.  A stochastic process ( )uZ  

( ( )∈≡ x,yu  Ω ) is considered intrinsically stationary and isotropic if the mean is 

constant, and the semivariogram, defined as 

{ } { } ( )hZZVar γγ =−=−⋅ 2121 uu)u()u(
2
1  (A.1) 

is a function of distance lag h = u1 – u2.  On the other hand, the correlation function is a 

measure of similarity in the process and is defined for a second-order stationary process, 

where the mean and variance are constant and covariance is a function of distance lag 

{ } { } ( )1 2 1 2(u ), (u ) u uCov Z Z C C h= − =  (A.2) 

A second-order stationary process will always be intrinsically stationary, but the 

converse need not always be true.  The advantages of the semivariogram over correlation 

structure are that the former does not require the estimation of the mean or an assumption 

about population variance [e.g., Cressie, 1993].  However, the correlation structure has 

been widely used to characterize the spatial dependency and is required by many 
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applications [e.g., Bras and Rodriguez-Iturbe, 1993; Morrissey et al., 1995; Ciach and 

Krajewski, 1999; Habib et al., 2004].  The two most important properties that can be 

obtained from a correlation function are the correlation length and the behavior of the 

function at the origin.  The former is a measure of the distance over which the process is 

correlated; it can be on the order of hundreds of meters for processes such as soil 

moisture or subsurface properties and on the order of hundreds of kilometers for 

atmospheric processes [e.g., Rea and Knight, 1998; Western et al., 1999; Michalak et al., 

2004].  The behavior of the function at the origin provides information about 

measurement errors and the smoothness of the process. 

The correlation structure of a process has traditionally been estimated from data 

collected from a network of sampling stations.  With the advent of radar and satellite 

remote sensing products, the sampling network consists of a regular two-dimensional grid 

of pixels.  In both cases, the network available for estimation is governed by geographic, 

economic and technological criteria.  Also, in such fields as rainfall and soil moisture, 

multiple realizations of the process are available to estimate the correlation structure, 

whereas in others (e.g., ground water hydrology), only a single or few realizations are 

available.  In the following two paragraphs, we briefly review the literature pertaining to 

sampling problems in the estimation of the correlation structure and the semivariogram. 

Several studies have described the problems associated with estimation of the 

covariogram or correlation function from a network of sampling points [e.g., Journel and 

Huijbregts, 1978; Krajewski and Duffy, 1988; Cressie and Grondona, 1992; Dubin, 

1994].  Journel and Huijbregts [1978] suggested that a minimum of 30 pairs be used at 

each lag to estimate the covariogram and variogram.  They also show that non-centered 

covariogram estimates are unbiased, and the bias in the centered covariogram estimates 

vanishes when the dimension of the field is much larger than the correlation range.  

Krajewski and Duffy [1988] conducted a simulation experiment to investigate the effect 

of the number of sampling points and the ratio of correlation length to the domain size on 
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the estimated mean and variance of the Gaussian random fields characterized by 

exponential, Bessel and Gaussian correlation functions.  They showed that when the ratio 

is greater than 0.20, the bias in the estimated variance is large even when a large number 

of sampling points (1000) are used.  However, the bias drops rapidly when the ratio is 

less than 0.20 for even a small number of sampling points (25 -100).  For a one-

dimensional linear model with a polynomial trend, Cressie and Grondona [1992] derived 

analytical expressions for the bias in the covariogram and variogram estimates for 

situations where both measures exist.  They concluded that bias in the variogram is an 

order of magnitude less than the corresponding covariogram estimate.  Dubin [1994] 

investigated the performance of three different methods to estimate the parameters of the 

correlation function: 1) Ordinary least squares (OLS) fit to the experimental correlogram, 

2) Maximum likelihood (ML) method and 3) Generalized least squares (GLS) method, 

using simulated two-dimensional fields (with a size of 100 units) with correlation lengths 

of 10 and 20 units.  The study concluded that both the OLS and GLS techniques 

underestimate the parameters, and the bias is higher for the higher degree of spatial 

dependence.  It further concluded that the ML method performs best in estimating the 

parameters and is independent of the degree of spatial dependence of the underlying 

process. 

The effects of sampling on the estimation of the semivariogram were reported by 

many studies [e.g., Journel and Huijbregts, 1978; Warrick and Myers 1987; Russo and 

Jury, 1987; Morris, 1991; Zimmerman and Zimmerman, 1991; Cressie and Grondona, 

1992; Lark, 2000; Zheng and Silliman, 2000].  Warrick and Myers [1987], based on a 

series of constraints, developed a method for the reliable estimation of the semivariogram 

by optimizing the number of points and their locations in a network.  Based on a 

simulation study, Russo and Jury [1987] suggested that the number of points should 

exceed 100 and that the minimum distance between the sampled points should be smaller 

than half the range of the underlying process for the estimated correlation length to 
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approach the correlation length of the phenomenon under study.  Russo and Jury [1987] 

also reported that as the correlation range increases with respect to the size of the domain, 

the bias in its estimation decreases while the estimation variance increases.  Morris 

[1991] argued that for correlated data, the number of pairs is not a satisfactory measure of 

estimation accuracy, and he derived an expression for the maximum equivalent 

uncorrelated pairs separated by any given distance in a Gaussian stationary process 

characterized by a non-increasing convex correlation function.  Zimmerman and 

Zimmerman [1991] conducted a simulation study to compare semivariogram estimators 

for different semivariogram models with varying degrees of spatial dependence.  They 

concluded that the ML estimator is superior to others, particularly for the exponential 

semivariogram (with a correlation range spanning from 0.1 to 0.9 units on a 4-unit 

simulated field) and that the estimates are severely biased when the spatial dependence is 

strong.  Based on a simulation study involving a 300-unit two-dimensional field with a 

correlation range spanning from 2 to 6 units, Lark [2000] compared the ML estimators 

with an OLS fit to the method-of-moments estimator and reported that the performance 

of the ML estimator is significantly better when the spatial dependence in the data is 

weaker.  Zheng and Silliman [2000] analytically demonstrated that the variance 

associated with the estimates of the semivariogram depends not only on the sampling 

network but also on the correlation among the data pairs. 

The essence of the aforementioned studies is that for the estimation error to be 

within certain limits, an estimator of spatial dependence requires a certain minimum 

effective number of independent pairs at each distance lag, which depends on the strength 

of spatial dependence of the process.  For the correlation function, which is the main 

focus of the study, the spatial dependence, and therefore the effective number of pairs, is 

controlled by the correlation length and the behavior of the function at the origin.  If only 

one realization of the process is available, the number of pairs is limited by the density 

and spatial extent of the sampling network.  In the case of remote sensing (2D fields), 
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where multiple independent realizations are possible, the resolution, size of the domain 

and number of fields govern the number of independent pairs. 

Based on the above discussion, we classify the sampling effects on the estimation 

of correlation structure into three cases: a) effect of size of the domain used, b) effect of 

smoothness of the process and c) effect of the number of realizations.  The main objective 

of this simulation study is to systematically quantify the above three effects on the 

estimation of correlation structures typically observed in water resources and related 

fields.  The simulated stationary random fields are characterized by a two-parameter 

power-exponential correlation structure of the form: 

( )
( ) ( ){ } 20 ,0       /-exp
0

)( 211
2 ≤≤>== θθθρ θd

C
dCd  (A.3) 

where, ( )dC  is the covariance for a distance lag d, 1θ  is the correlation distance defined 

as the distance for which the correlation coefficient is equal to 1/e and 2θ  is the shape 

parameter that controls the shape of the correlation function near the origin.  We selected 

this correlation model because it is widely used to model such spatial processes as 

hydraulic conductivity and rainfall [e.g., Ciach and Krajewski, 1999; Gebremichael and 

Krajewski, 2004; Stauffer, 2005; Ciach and Krajewski, 2006].  Hereafter, we refer to the 

ratio of the correlation distance to the size of the estimation domain as the scale factor 

(SF).  The simulation experiments are designed such that, unlike studies discussed in the 

previous paragraphs, we have a broad spectrum of SF and shape parameters. 

We first focus our attention on the case of the spatially correlated Gaussian 

random fields (RF), and then we extend the analysis to the case of lognormally 

distributed RF, as it is a close approximation to such geophysical phenomena as hydraulic 

conductivity and rainfall [e.g., Kedem and Chiu, 1987; Kedem et al., 1990; Xian-Huan, 

1994; Loáiciga et al., 2006].  Instead of employing parametric estimation techniques 

(e.g., ML, REML and GLS), which involve apriori selection of an underlying correlation 
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model, we present the correlations that are estimated using Pearson’s product moment 

estimator and quantify the bias in a non-parametric manner. 

This chapter is organized as follows.  Following the Introduction, Section 2 

describes the approach used to simulate Gaussian and lognormal RF.  The procedure used 

to estimate their spatial correlation structure is described in Section 3.  We present the 

results in Section 4, and Section 5 concludes the chapter. 

A.2 Simulation of Random Fields 

This section describes the procedure used to simulate stationary, isotropic, 

Gaussian and lognormal RF characterized by the correlation structure given in Equation 

(3).  Note that in Equation (3), when 12 =θ , the function is the simple exponential 

correlation function, and when 22 =θ , the function reduces to the Gaussian correlation 

function.  In this study, the correlation distance ranges from 5 to 250, and the shape 

parameter ranges from 0.1 to 2.0. 

A.2.1 Gaussian fields 

Many methods have been proposed to simulate stationary, isotropic and correlated 

Gaussian random fields.  The choice among them depends on the desired correlation 

structure, the resolution and the computational resources available [Gneiting et al., 2005].  

We consider matrix factorization, spectral turning bands and circulant embedding 

techniques and investigate which one is most suitable for our study.  

In the matrix factorization technique [e.g., Davis, 1987], the variance-covariance 

matrix is factorized using the Cholesky decomposition method and requires at least 

( )5nO  floating point operations for simulations on an n×n grid [Dietrich, 1993].  Though 

the method is asymptotically exact, resulting in an ensemble of realizations with exactly 

the desired correlation structure, the technique is computationally intensive to simulate 

large two-dimensional fields.  In the spectral turning bands method [e.g. Mantoglou and 

Wilson, 1982], the two-dimensional RF is obtained by summing a series of uniformly 
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distributed, equivalent one-dimensional processes generated on intersecting lines using a 

spectral approach.  This method is computationally efficient, but the correlation structure 

of the simulated process will converge to that of the true process only for a number of 

lines tending to infinity.   In Equation (A.3), when 12 ≠θ  or 22 ≠θ , the closed form 

expressions for the spectral density do not exist [Yaglom, 1987].  Hence, this method 

cannot be used in this study.  

Dietrich and Newsam [1993] and Wood and Chan [1994] proposed a new 

approach to simulate multi-dimensional stationary Gaussian RF that is based on 

embedding the random field correlation matrix in a matrix with circulant structure.  This 

technique, called circulant embedding, is fast and exact, but one of the main conditions 

for its validity is that the embedding matrix should be non-negative definite [Dietrich and 

Newsam, 1993; Dietrich and Newsam, 1997].  Dietrich and Newsam [1997] showed that 

for two-dimensional simulations, the embedding matrix is always non-negative definite if 

the correlation function is bounded (e.g., spherical or power models) and if it is 

completely sampled by the simulation grid.  However, for correlation functions with 

infinite support, such as the one used in this study, they concluded that the condition of 

non-negativity is satisfied if the simulation domain is sufficiently larger than the 

correlation distance.  For exponential and Gaussian correlation functions, they derived 

analytical expressions for the size of the domain required for the embedding matrix to be 

non-negative definite but also acknowledged that these bounds are pessimistic. 

Gneiting et al. [2005] proposed two methods, termed cut-off and intrinsic 

embedding, which are variants of the circulant embedding method.  These methods 

outperform the circulant embedding method in ensuring the non-negativity of the 

embedding matrix.  This is achieved by approximating the desired correlation function 

with a class of functions that are compactly supported [Gneiting, 2002].  While cut-off 

embedding is for simulating a second order stationary process, the intrinsic embedding 

method can only be used to simulate fields that are intrinsically stationary.  Gneiting et 
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al. [2005] also explored numerically the computational limits of standard circulant 

embedding, cutoff embedding and intrinsic embedding methods with three different 

correlation functions, including the two-parameter exponential function used in this 

study. 

Based on the above discussion, we used the circulant embedding technique to 

simulate stationary, two-dimensional correlated Gaussian fields, and we used the cutoff 

embedding technique when this technique failed.  However, as mentioned in the previous 

paragraph, the cut-off embedding method is used by approximating the exponential 

correlation function with a class of compactly supported functions.  Furthermore, to 

ensure non-negativity of the embedding matrix, we simulated random fields on a 

100×100 domain, though we used a 50×50 domain for estimation (SF therefore ranges 

from 0.1 to 5.0).  We simulated 1000 realizations for each case with the ensemble mean 

and the variance equal to 0 and 1, respectively.  The sample Gaussian simulations for 

varying correlation distances and shape factors are shown in Figures A.1 and A.2, 

respectively.   

A.2.2 Lognormal fields 

The lognormal fields are obtained by simulating the Gaussian fields and then 

applying the exponential transformation.  However, in the transformation process, we had 

to ensure that the lognormal fields had the desired correlation structure.  For a particular 

distance lag, the correlation in the Gaussian random field that would result in the desired 

correlation in the lognormal field after the transformation is obtained as follows: Let 1X  

and 2X  be the correlated Gaussian random vectors with mean Gμ , variance 2
Gσ  and a 

correlation coefficient Gρ ; the lognormal random vectors 1Y  and 2Y  were obtained by 

taking )exp( 11 XY =  and )exp( 22 XY = .  Then the lognormal mean, LNμ , variance, 2
LNσ , 

and the correlation coefficient, LNρ , were related to the corresponding Gaussian 

parameters as follows [Mejía and Rodríguez-Iturbe, 1974] 
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Given the lognormal mean, LNμ , variance, 2
LNσ , and correlations, LNρ , Equations 

4-6 can be solved for the corresponding Gaussian parameters.  However, for simulations 

using circulant embedding, the Gaussian correlations obtained from Equation (A.6) have 

to be expressed in a parametric form given by Equation (A.3).  This is accomplished by 

performing a systematic two-dimensional search of the parameter space, minimizing the 

root mean squared error between the correlations from Equation (A.6) and the fitted 

function.  For each lognormal correlation structure characterized by a certain combination 

of correlation distance and a shape parameter, we repeated the above procedure to obtain 

the corresponding Gaussian parameters, which are always larger than the lognormal ones 

(Table 1).  For example, to obtain a lognormal field with a correlation distance of 40 and 

a shape parameter of 1.0, we simulated the Gaussian field with a correlation distance of 

89.5 and a shape parameter of 1.24, and the field was exponentiated.  For lognormal 

fields with correlation distances beyond 100, the corresponding Gaussian fields are too 

highly correlated to be simulated using either the circulant or cut-off embedding methods.  

For this reason, we limited the lognormal simulations to a correlation distance ranging 

from 5 to 100 with the simple exponential correlation structure (i.e., 12 =θ ), and the SF 

for the lognormal case consequently ranges from 0.1 to 2.0.  We set the Gaussian mean 

and variance equal to 0.0 and 3.0, respectively.  The corresponding lognormal mean and 

variance are 4.48 and 383.34.  We simulated 2500 Gaussian fields for each scenario using 

the circulant/cutoff embedding technique and transformed them into lognormal fields. 
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A.3 Estimation of Spatial Correlation Structure 

We used the Pearson’s product moment estimator to obtain the correlation of the 

process { }2Ru :u)( ∈Z  for all ui and uj such that { }2,....,1,  ; u - u njidtji ==  
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where the angular brackets represent the sample average.  In this study, dt varied from 0 

to approximately 50 units separated by 0.8 units (a total of 62 lags).  Depending on the 

manner in which the sample averages in Equation (A.7) are estimated, we classified the 

resulting correlations as single-field and ensemble correlations. 

Let )( tdn  be the number of distinct pairs separated by distance lag dt in a single 

field.  The single-field correlation coefficient )(ˆ tk dr  for kth field at a certain distance lag 

dt is obtained as 
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where 10001 ≤≤ k  for the Gaussian case and 25001 ≤≤ k  for the lognormal case.  The 

average single-field correlation (henceforth referred to as the average correlation) 

)(ˆ tavg dr  at a distance lag dt is then obtained as: 

∑
=

=
N

k
tktavg dr

N
dr

1

)(ˆ1)(ˆ  (A.9) 

Instead of a single realization, one can also estimate correlation at a distance lag dt 

by using all the N available fields to compute the sample averages in Equation (A.7).  We 

refer to such correlations as ensemble correlations.  Since the simulations are on a regular 

two-dimensional grid, we obtained the ensemble correlations by replacing the term )( tdn  

in Equation (A.8) with )( tdnN ⋅ . 
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The single-field, average and ensemble correlations are estimated for varying 

distance lags to obtain the corresponding correlation functions.  The mean error between 

the true and the estimated correlation functions is computed for each combination of SF 

and 2θ  as follows 

∑
=

−=
62

1
)(ˆ)(

62
1

t
testttrue drdrMAE  (A.10) 

where )( ttrue dr is the true correlation at lag dt and )(ˆ test dr  is either an average or an 

ensemble correlation coefficient for the lag dt. 

In the next section, in addition to quantifying the bias resulting from the Pearson’s 

estimator for various SF and 2θ , we compare correlation estimates with the 

semivariogram estimates obtained using the classical method-of-moments estimator 

[Cressie, 1993] 
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where ( )tk dγ̂  is the semivariogram estimate for the kth field at a certain distance lag dt 

and 10001 ≤≤ k  for the Gaussian case and 25001 ≤≤ k  for the lognormal case.  The 

average and ensemble semivariogram estimates for lag dt are then obtained in the same 

manner as their correlation counterparts.  Upon repeating the process for varying dt, we 

obtain the single-field, average and ensemble semivariograms. 

A.4 Results and Discussion 

A.4.1 Gaussian simulations 

We begin this section with the estimation results for a simple exponential 

correlation function ( 2θ  = 1.0) with varying SF.  In Figure A.3, we show the single-field, 

the average and the true correlation structures for four different SF of 0.1, 0.5, 1.0 and 

2.0.  There is a clear systematic bias in the estimation of the single-field correlation 
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structure.  The spread in the single-field correlation estimates, shown in Figure A.3 in 

terms of the 5th and 95th quantiles, increases with increasing distance.  We also noticed 

that the bias in the estimation of the ensemble correlation function (not shown in the 

Figure A.3) is negligible compared to the bias in the single-field correlation function.  

The estimation bias and the quantiles for a particular lag cannot be obtained using 

Fisher’s exact sampling distribution theory [Johnson et al., 1995] of correlations as the 

pairs of pixels that correspond to dt are not mutually independent due to the presence of 

spatial correlation. 

The estimation bias quantified in terms of MAE (Equation 9) is plotted in Figure 

A.4 for all of the SF.  It increases rapidly for the SF between 0.1 and 1.0, and its rate of 

increase with the scale factor is very small beyond an SF of 4.0.  Therefore, the size of 

the domain has a significant impact on the estimation of the correlation structure.  The 

domain size should be at least 5 times or larger (SF less than 0.2 in Figure A.4) than the 

correlation distance of the underlying process for the sampling effects to be within 

reasonable limits.  To further investigate the effect of SF on the estimation of the 

correlation structure, we computed the mean error (ME) separately for each of the terms 

in Equation 7 (Figure A.5).  We selected the ME for the error budget analysis as the signs 

are preserved in the arithmetic operations.  From Figure A.5, it is apparent that the non-

centered covariance is unbiased.  Both the numerator (which is the centered covariance) 

and the denominator in Equation 7 are biased and dependent on the SF.  It is also 

apparent from Figure A.5 that bias is due to the behavior of the product of means, 

( ) ( )21 uu ZZ  in the covariance term and ( ) ( )11 uu ZZ and ( ) ( )22 uu ZZ  in the 

denominator of Equation 7.  This result is further justified by Figure A.6, which shows 

the mean and variance from each of 1000 realizations for an SF of 0.1 and 2.0 and 2θ  

equal to 1.0.  Even if the sample mean is unbiased, its scatter around the true value 

increases with the scale factor, resulting in the biased ( ) 2uZ  and, subsequently, the 
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biased variance (Figure A.6).  It should be noted that the bias discussed so far is for the 

simple exponential correlation function ( 2θ = 1.0). 

The bias resulting from varying SF (0.3, 0.6, 1.0 and 2.0) and 2θ (0.1 to 2.0) is 

summarized in Figure A.7.  However, for the scale factor of 2.0, we have the ME only for 

the shape parameter up to 1.0 because realizations cannot be simulated using the 

circulant/cut-off embedding method.  For an SF equal to 0.3, its relative contribution to 

the overall bias is small, and the MAE is mainly due to the effect of smoothness of the 

process; it decreases with increasing 2θ .  As the SF increases, it dominates the estimation 

bias, resulting in a bulge in the MAE function that can be noticed clearly for SF equal to 

1.0 and 2.0.  Again, the reason for the dependence of MAE on the shape parameter is the 

same as that of the aforementioned SF. 

A.4.2 Lognormal simulations 

Figure A.7 summarizes the effect of SF on the estimation of the correlation 

structure for lognormal RF.  As mentioned earlier, the SF is limited to 2.0, and the 

number of realizations is 2500.  A comparison of Figures A.4 and A.8 reveals that the 

bias for the lognormal case is similar to and even slightly smaller than the bias for the 

Gaussian case.  Because of the skewness, one would expect that the bias in the case of 

lognormal simulations is larger than that for the Gaussian simulations.  This contradiction 

can be explained from the results of Habib and Krajewski [2001].  Based on simulations 

from a bivariate mixed lognormal distribution, they reported that Pearson’s correlation 

coefficient is overestimated, and that the bias depends on the skewness of the lognormal 

distribution.  Figure A.9 shows the effect of skewness, which is in terms of the variance 

of the underlying Gaussian variable, on the estimation of Pearson’s correlation 

coefficient.  For the lognormal 2D simulations (with the Gaussian variance of 3.0), the 

bias in the Pearson’s estimate is sometimes as large as 0.25 for true correlation equal to 
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0.4.  Due to the limited domain size, this overestimation might have compensated for the 

bias. 

A.4.3 Sensitivity to the number of realizations 

We performed a sensitivity analysis to investigate the behavior of the bias as a 

function of the number of realizations available for the estimation of the ensemble 

correlation structure.  From Figure A.10(a), it is clear that the bias for the Gaussian fields 

drops rapidly and is negligible for approximately N=50.  That is, about 50 realizations are 

sufficient to estimate the product ( ) ( )21 uu ZZ  correctly, resulting in unbiased 

correlation estimates.  Even for the lognormal simulations, the bias drops rapidly after 

few realizations (Figure A.10(b)).  However, the convergence for lognormal simulations 

is slower than in the Gaussian case. 

A.4.4 Estimation of semivariogram 

In . A11, we show the semivariogram estimates for the four cases considered in 

Figure A.3.  Comparing the average semivariogram estimates with that of the true 

semivariogram, the size of the estimation domain has no effect on the single-field 

semivariogram estimates in terms of bias.  The unbiasedness is expected because, unlike 

the correlation function, the semivariogram does not require the estimation of mean.  

Comparing Figure A.11 with Figure A.3, the distribution of single-field semivariogram 

estimates for a particular lag is skewed compared to that of correlation estimates. 

Since the semivariogram estimates are unbiased, one might be tempted to use the 

following one-one relationship to obtain the covariance and, subsequently, the 

correlations. 

( ) ( ) ( ){ }hCCh −= 0γ  (A12) 

However, this is strictly a theoretical relationship and is not valid for the 

estimators.  Cressie [1993] suggests that the relationship can be extended to the 
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estimators if the ratio of the number of pairs for a distance lag to the total number tends to 

1.  We nevertheless obtained correlations from the semivariogram using the above 

relation, and they would still be biased as the variance used in the normalization is 

biased.  Figure A.12 shows the correlations obtained from semivariogram estimates, and 

it is apparent that not only are the correlations biased, but they are also not bounded 

between -1 and 1.  On the other hand, the correlations estimated by Pearson’s product 

moment estimator are by definition always bounded between -1 and 1. 

A.5. Summary and Conclusions 

In this study, we focused on the bias in the estimation of the spatial correlation 

structure of Gaussian and lognormal processes for a fixed domain size.  Selection of a 

smaller domain size results in severe underestimation, and this bias increases as the 

correlation distance increases relative to the domain size.  Our results confirm earlier 

findings of Krajewski and Duffy [1988] and Dubin [1994].  We assert that one should 

exercise caution when estimating the correlation structure from a single realization, and 

as a rule of thumb, the domain size should be at least 5 times larger than the correlation 

distance for the sampling problems to be within the reasonable limits.  The study also 

showed that the higher the variability of the process at the small scales, the higher the 

bias in the estimation of correlation structure.   

If multiple realizations are used in the estimation, a sample size of around 50 is 

sufficient to have a negligible bias for both normal and lognormal fields.  This 

requirement can be easily met in such fields as radar hydrology and meteorology, given 

the availability of remotely sensed observation of frequently reoccurring processes of 

interest, e.g. rainfall.  However, in such areas as ground water hydrology, obtaining 50 

independent realizations may not be feasible.  In that case, our results provide 

information about the bias that would affect the estimation of correlation structure.  The 

study showed that the bias we see in the estimation of correlation structure comes from 
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the bias in the estimation of the product of means.  Though it is well documented that the 

biasedness in correlation comes from the estimation of the mean, this study gives a 

quantitative idea of the size of the two-dimensional domain, the role of the small scale 

variability of the process and the number of realizations required to obtain an unbiased 

correlation function.  The study also shows that the size of the estimation domain has no 

effect on the estimation of the semivariogram.  However, the correlations obtained by 

transforming the semivariogram estimates are still biased and tend to go beyond -1, 

which is unrealistic. 
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Table A.1∗ Parameters of the correlation function (Equation 3.1) of Gaussian random 
fields required to obtain lognormal random fields with correlation distance 
indicated in column 1 for a fixed shape parameter of 1.0. 

Correlation 
Distance 

Lognormal 

Correlation 
Distance 
Gaussian 

Shape 
Parameter 
Gaussian 

RMSE 

5 11.0 1.26 0.0105 

10 22.5 1.23 0.0087 

15 33.5 1.24 0.0087 

20 45.0 1.23 0.0087 

25 56.0 1.24 0.0085 

30 67.0 1.24 0.0087 

35 78.5 1.24 0.0086 

40 89.5 1.24 0.0086 

45 101.0 1.24 0.0085 

50 112.0 1.24 0.0085 

60 134.5 1.24 0.0086 

70 157.0 1.24 0.0086 

75 168.0 1.24 0.0085 

80 179.0 1.24 0.0086 

90 201.5 1.24 0.0085 

100 224.0 1.24 0.0085 

                                                 
∗The parameters are obtained by a systematic search of the parametric space minimizing 

the RMSE. 
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Figure A.1 Sample realizations simulated using the circulant embedding technique with 
the exponential correlation function (Equation A.3).  The shape parameter (θ2) 
is fixed at 1.0, and the correlation distance (θi) is indicated on each field.  The 
size of the simulation domain is 100 (arbitrary length units), and the resolution 
is 0.4.  The corresponding correlation functions are shown in the insets. 
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Figure A.2 Sample realizations simulated using the circulant embedding technique with 
the exponential correlation function (Equation A.3).  The shape parameter (θ2) 
is fixed at 1.0, and the correlation distance (θi) is indicated on each field.  The 
size of the simulation domain is 100 (arbitrary length units), and the resolution 
is 0.4.  The corresponding correlation functions are shown in the insets. 
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Figure A.3 Comparison of correlation estimates of Gaussian random fields for various 
scale factors.  The shape parameter (θ2 in Equation A.3) is equal to 1.0, and 
the number of realizations is 1000.  The shaded area represents two-standard 
deviation of the correlation function. 
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Figure A.4 Effect of scale factor on the estimation of the correlation structure using 
Pearson’s estimator (Equation A.7). 
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Figure A.5 Effect of the scale factor on the estimation of each component of Equation 
A.7 in terms of mean error.  Angular brackets indicate the sample average for 
each realization. 
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Figure A.6 Estimates of mean and variance for each realization of the Gaussian random 
fields with the correlation distances of 5 and 100 and the shape parameter of 
1.0.  Corresponding scale factors are indicated on the Figure. 

.
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Figure A.7 Effect of shape parameter on the estimation of the correlation structure of 
Gaussian random fields with a fixed correlation distance (Corresponding scale 
factor is shown on each curve).  The missing points for the scale factor of 2.0 
are because the realizations cannot be simulated using the circulant/cut-off 
embedding method.  Number of realizations for each case is equal to 1000. 
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Figure A.8 Effect of the scale factor on the estimation of the correlation structure for the 
lognormal random fields.  The shape parameter is fixed at 1.0. 
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Figure A.9 Bias (left panel) and standard deviation (right panel) in the estimation of 
Pearson’s correlation coefficient for the lognormal data.  The size of the 
sample is equal to 1000, and the number of simulations is equal to 5000. 

.
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Figure A.10 Mean error in the estimation of the ensemble correlation structure as a 
function of number of realizations for the a) Gaussian and b) lognormal 
realizations.  The scale and shape parameters are fixed at 1.0. 
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Figure A.11 Comparison of semivariogram estimates of Gaussian random fields for 
various scale factors.  The correlation structure is the same as the one used in 
Figure A.3, and the number of realizations is 1000. 
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Figure A.12 Comparison of correlations obtained from Pearson’s estimator and from a 
one-to-one relation between variogram and covariance for Gaussian random 
fields with an exponential correlation structure.  The top panels are for the 
scale factor of 0.1, and the bottom panels are for the scale factor of 1.0. 
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