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ABSTRACT OF THESIS 

 

THE EFFECTS OF HYDROSTATIC PRESSURE ON EARLY ENDOTHELIAL 
TUBULOGENIC PROCESSES 

The effects of mechanical forces on endothelial cell function and behavior are 
well documented, but have not been fully characterized. Specifically, fluid pressure has 
been shown to elicit physical and chemical responses known to be involved in the 
initiation and progression of endothelial cell-mediated vascularization. Central to the 
process of vascularization is the formation of tube-like structures. This process—
tubulogenesis—is essential to both the physiological and pathological growth of tissues. 
Given the known effects of pressure on endothelial cells and its ubiquitous presence in 
the vasculature, we investigated pressure as a magnitude-dependent parameter for the 
regulation of endothelial tubulogenic activity. To accomplish this, we exposed two- and 
three-dimensional bovine aortic endothelial cell (BAEC) cultures to static pressures of 0, 
20, and 40 mmHg for 3 and 4 days. The most significant findings were: (1) cells in two-
dimensional culture exposed to 20, but not 40, mmHg exhibited significantly (p < 0.05) 
increased expression of both VEGF-C and VEGFR-3, and (2) cells in three-dimensional 
culture exposed to 20, but not 40, mmHg exhibited significant (p > 0.05) increases in 
endothelial sprouting. These findings evince the utility of pressure as a selective 
modulator of tissue microvascularization in vitro and implicate pressure as factor in 
pathological tubulogenesis in vivo. 

KEYWORDS:  angiogenesis, lymphangiogenesis, pressure, mechanotransduction, tissue-
engineering 

 

_______________________________ 

_______________________________ 

 

 



	  

 
 

 

 

 

 

 

THE EFFECTS OF HYDROSTATIC PRESSURE ON EARLY ENDOTHELIAL 
TUBULOGENIC PROCESSES 

 
by 
 

Ryan Underwood 
 

Master of Science in Biomedical Engineering 
in the College of Engineering at the University of Kentucky 

 

 

_________________________________________ 
    Dr. Hainsworth Shin, Director of Thesis 
 

_________________________________________ 
    Dr. Abhijit Patwardhan, Director of Graduate Studies 
 
    _________________________________________ 
    Date 
 

 



	  iii 

Acknowledgements 

 I would like to acknowledge Dr. Hainsworth Shin for his consistent support, 
patience, and enthusiasm throughout the research discussed herein. I would also like to 
thank Dr. David Puleo (University of Kentucky) and Dr. Thomas Dziubla (University of 
Kentucky) for serving on my thesis committee and their thoughtful comments. 
 
 Furthermore, I would like to thank Dr. Steven Lai-Fook (University of Kentucky) 
for his assistance with and providing equipment for the pressure system. 
 
 I would like to thank Dr. Xiaoyan Zhang for her assistance with the flow 
cytometry experiments. I would also like to thank Xingjian Lei for completing extra 
experiment replicates where needed. 
	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



 

iv 

Table of Contents 
	  

	  

List of Figures viii 

 

List of Tables xi 

 

1. Introduction 1 

 1.1 Fundamentals of Tissue Engineering 2 

 1.2 The Vasculature: Structure and Hemodynamics 4 

  Blood Vessels 4 

  Endothelial Cells 5 

  Mechanoenvironment of Endothelial Cells 8 

 1.3 Tubulogenesis 9 

  Tubulogenesis In Vivo 9 

  Tubulogenesis In Vitro 12 

  Clinical Implications 14 

 1.4 Tubulogenic Growth Factor Signaling 14 

  Vascular Endothelial Growth Factors (VEGFs) 15 

  Fibroblast Growth Factors (FGFs) 18 

  FGF and VEGF Synergy in Angiogenesis and Lymphangiogenesis 19 

 1.5 Effects of Pressure on Endothelial Cells 20 

 

2. Rationale 22 



 

v 

 

3. Materials and Methods 24 

 3.1 Cell Substrates 24 

 3.2 Cell Lines, Culture Conditions, and Passaging 25 

 3.3 Cell Storage 26 

 3.4 Cell Seeding 27 

  Two-Dimensional Substrates: Seeding in Multi-well Tissue Culture Plates 27 

  Three-Dimensional Substrates: Seeding on Cytodex3TM Microcarrier 
  Beads 27 

 3.5 Pressure System 28 

 3.6 Proliferation Assay 32 

  Seeding and Pressure Exposure 32 

  Fixation, Labeling, and Quantification 33 

 3.7 Flow Cytometric Analysis of VEGFR-3 and VEGF-C Expression 34 

  Seeding and Pressure Exposure 34 

  Immunofluorescence Labeling of Cells 34 

 3.8 Three-Dimensional Collagen Gel Assays 35 

  Preparation of Endothelialized Beads 35 

  Collagen Gel Formulation 36 

  Gel Polymerization 37 

  Two-Layer Gel Polymerization 38 

  Single-Layer Gel Polymerization 39 

 3.9 Imaging 40 

 3.10 Migration/Invasion Assay Analysis 41 

 3.11 Tube Formation Assay Analysis 43 



 

vi 

 

 3.12 Statistical Analysis 44 

 

4. Results 45 

 4.1 BAEC Culture on Two-Dimensional Substrates 45 

 4.2 Crystal Violet Uptake by BAEC 46  

 4.3 BAEC Seeding on Cytodex3TM Microcarrier Beads 46 

 4.4 Generation of Sustained Hydrostatic Pressures 47 

 4.5 Increase of BAEC Cell Density by Stimulation with Basic Fibroblast  
  Growth Factor 50 

 4.6 Effect of Sustained Hydrostatic Pressure on BAEC Population Growth 51 

 4.7 Effect of Sustained Hydrostatic Pressure on BAEC Morphology 54 

 4.8 Role of VEGFR-3 in the Mediation of Pressure-Induced Endothelial 
  Proliferation 55 

 4.9 Effects of Pressure on VEGF-C and VEGFR-3 Expression 56 

 4.10 Effects of Pressures on BAEC Migration and Invasion of a Three-
Dimensional Collagen Matrix 57 

 
 4.11 Effects of Local Growth Factor Concentrations on BAEC Tubulogenesis 60 

 4.12 Effects of a 20 mmHg Sustained Hydrostatic Pressure on BAEC 
Tubulogenesis 65 

 
 4.13 Effects of a 40 mmHg Sustained Hydrostatic Pressure on BAEC 

Tubulogenesis 69 
 

5. Discussion 74 

 5.1 Physiological Relevance of the Hydrostatic Pressures Used 74 

 5.2 Selection of Cell Type and Three-Dimensional Matrix Composition 75 

 5.3 Experimental Setup for Pressure Experiments 77 

 5.4 Confirmation of Cellular Responses of BAEC Grown in Two-Dimensional 



 

vii 

 

  Culture to Sustained Hydrostatic Pressures 79 

  Pressure Upregulates Proliferation at 20 mmHg, but not 40 mmHg, after 
  Three Days of Exposure 79 

  Pressure Induces Morphological Changes in Endothelial Cells 82 

  MAZ-51 Inhibitor Blocks Increased Proliferation in Response to Pressure 82 

  Increased VEGF-C and VEGFR-3 Expression to Sustained Pressure 
  Exposure 85 

 5.5 Investigation of the Effects of Sustained Pressure on Endothelial Migration 
  and Invasion 85 

 5.6 Investigation of the Effect of Sustained Pressures on Endothelial Tube 
  Formation 90 

 5.7 Concluding Remarks 97 

 

References 100 

 

Vita  104 

 

 

 

 

 

 

 

 

 

 



 

viii 

List of Figures 
 

Figure 1.2a – Progression of Sprouting Angiogenesis 10 
 
Figure 3.5a – Three-Dimensional Model of Pressure Chambers 30 
 
Figure 3.5b – Schematic Representation of the Pressure System 31 
 
Figure 3.8b – 2-Layer Gel Polymerization 39 
 
Figure 3.8c – Single-Layer Gel Polymerization 40 
 
Figure 3.10a – InvasiQuant ImageJ Macro Code 42 
 
Figure 4.1a – BAEC Cultured on Two-Dimensional Surface 45 
 
Figure 4.2a – BAEC Stained with Crystal Violet 46 
 
Figure 4.3a – BAEC Seeded on Cytodex3TM Microcarrier Bead 47 
 
Figure 4.4a – Pressure Measurement Methods 48 
 
Figure 4.4b – Pulsatile Pressure Measurement 49 
 
Figure 4.5a – Effect of Exogenous FGF-2 on Cell Density 50 
 
Figure 4.6a – Effects of 20 and 40 mmHg Pressures on Cell Density (72 hours) 51 
 
Figure 4.6b –  Comparison of Effects of 20 and 40 mmHg Pressures on Cell  
  Density (72 hours) 53 
 
Figure 4.7a –  Morphological Effect of Pressure on Cells Grown on Two-Dimensional 
  Tissue Culture Surfaces 54 
 
Figure 4.8a –  Pressure Response-Blocking Effect of MAZ51 55 
 
Figure 4.9a –  Pressure Up-regulation of VEGF-C and VEGFR-3 Expression 56 
 
Figure 4.10a – Migration Assay Images Processed Using InvasiQuant ImageJ Macro 57 
 
Figure 4.10b – Effect of Exogenous Growth Factors on Endothelial Migration After 
  72and 96 Hours 58 
 
Figure 4.10c – Effect of 20 and 40 mmHg Hydrostatic Pressures on Endothelial 

Migration After 72 and 96 Hours 59 



 

ix 

 
Figure 4.11a – Example Image of Tubulogenic Sprouting and Measurement 61 
 
Figure 4.11b – Representative Images of Tubulogenic Sprouting under Control  
 Pressure Under Various Growth Factor Conditions 61 
 
Figure 4.11c – Effects of FGF-2, VEGF-A, and FGF-2+VEGF-A on BAEC Sprouting 63 
 
Figure 4.11d – Effects of FGF-2, VEGF-A, and FGF-2+VEGF-A on BAEC Sprout  
 Length 64 
 
Figure 4.12a – Representative Images of the Effect of 20 mmHg on Tubulogenic 
 Sprouting (72 Hours) 65 
 
Figure 4.12b – Representative Images of the Effect of 20 mmHg on Tubulogenic 
 Sprouting (96 Hours) 66 
 
Figure 4.12c – Effect of 20 mmHg Hydrostatic Pressure on the Total Number of  
 Sprouts Formed per Bead (72/96 Hours) 66 
 
Figure 4.12d – Effect of 20 mmHg Hydrostatic Pressure on the Number of Sprouts 
 per Bead of Length Greater than 75 µm (72/96 Hours) 67 
 
Figure 4.12e – Effect of 20 mmHg Hydrostatic Pressure on the Number of Sprouts 
 per Bead of Length Greater than 150 µm (72/96 Hours) 68 
 
Figure 4.12f – Effect of 20 mmHg Hydrostatic Pressure on the Mean Sprout Length  

per Bead (72/96 Hours) 69 
 
Figure 4.13a – Representative Images of the Effect of 40 mmHg on Tubulogenic 
 Sprouting (72 Hours) 70 
 
Figure 4.13b – Representative Images of the Effect of 40 mmHg on Tubulogenic 
 Sprouting (96 Hours) 71 
 
Figure 4.13c – Effect of 40 mmHg Hydrostatic Pressure on the Total Number of  
 Sprouts Formed per Bead (72/96 Hours) 71 
 
Figure 4.13d – Effect of 40 mmHg Hydrostatic Pressure on the Number of Sprouts 
 per Bead of Length Greater than 75 µm (72/96 Hours) 72 
 
Figure 4.13e –Effect of 40 mmHg Hydrostatic Pressure on the Number of Sprouts 
 per Bead of Length Greater than 150 µm (72/96 Hours) 73 
 
Figure 4.13f – Effect of 20 mmHg Hydrostatic Pressure on the Mean Sprout Length  

 per Bead (72/96 Hours) 73 



 

x 

 

 
 
Figure 5.1a – Local Blood Pressure Levels Throughout the Circulatory System 74 
 
Figure 5.5a – Representative Images of Migration Assay Image Processing 86 
 
Figure 5.6a – Growth Factor Signaling Pathway Diagram and Pressure Effect 94 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 

List of Tables 

 

Table 1.4a – Table of Known Pro-Tubulogenic Effects of VEGF-A 16 
 
Table 1.4b – Table of Known Pro-Tubulogenic Effects of VEGF-C 17 
 
Table 1.4c – Table of Known Pro-Tubulogenic Effects of FGF-2 18 
 
Table 3.8a – Collagen Gel Formulation 36 
 
Table 5.6a – Summary of Significant (p > 0.05) Differences between Pressure 
 and Control Cultures 93 
 

 

 

 

 

 

 

 

 

 

 



 

1 

1. Introduction 

 

Vascularization and blood flow are critical elements of any viable, living tissue 

whether the tissue is grown in vitro or in vivo. Blood vessels are the first organ developed 

during embryogenesis and eventually becomes the largest organ in the human body [1]. 

The most important function of the vascular system is the delivery of oxygen and 

nutrients to and the removal of waste products from peripheral tissues [2]. Mammalian 

cells require a constant supply of oxygen and blood-borne nutrients for survival [3]. The 

most predominant limiting factor in the clinical application of tissue engineering is the 

inability to generate microvasculature de novo [3]. Tissue constructs greater than one to 

two millimeters thick require a capillary network for the maintenance and function of 

cells within them [3]. Below this threshold thickness, cells receive oxygen by simple 

diffusion. In tissues thicker than one to two millimeters, the lack of a capillary network 

connected to the host tissue limits the generation of synthetic tissue constructs to 

thicknesses that are generally too thin for clinical applications [3]. Except for cartilage, 

tissues in the body can overcome insufficient perfusion by constructing capillary 

networks that provide conduits for convective transport of nutrients, dissolved gases, and 

waste products to and from tissues [3]. Inducing and controlling this process in tissue-

engineered constructs presents a unique challenge in mass transport that must be 

overcome in order to produce clinically viable tissues beyond the one-to-two millimeter 

thickness limitation, such as large tissue masses and whole organs [3]. In addition to the 

challenges it presents in the tissue engineering context, abnormal or insufficient vessel 

growth plays a major role in human health and the pathogenesis of many congenital (e.g. 
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vascular malformations, DiGeorge syndrome) and non-congenital disorders (e.g., 

atherosclerosis, cancer, macular degeneration, Compartment Syndrome) [1]. 

1.1. Fundamentals of Tissue Engineering 

Tissue engineering is a multidisciplinary field in which significant advances in 

biochemistry, cell biology, genetics, biomedical engineering and materials science have 

made possible the use of synthetic or naturally derived, engineered biomaterials to 

replace damaged or defective tissues, such as bone, skin, and even organs [4].	  

Tissue engineering involves the culture of mammalian cells (e.g., skin, muscle, 

cartilage, bone, endothelial, and stem cells) on a large scale in order to create new tissues 

and functional organs [4]. A typical tissue engineering application may consist of a 

biological or synthetic “scaffold” that when implanted in the body—as a temporary 

structure—provides a template that allows the body’s own cells to grow and form new 

tissues while the scaffold is gradually absorbed [4]. Currently, there are three approaches 

to optimize nutrient transport in these scaffolds: (1) stimulating rapid vessel growth in 

avascular implants with angiogenic factors; (2) seeding biodegradable polymer scaffolds, 

which provide bulk, with endothelial cells and angiogenic factors; and (3) pre-

vascularizing the artificial tissue before implantation [5]. Each of these approaches has 

exhibited promising results, but only the third approach—pre-vascularization with the 

expectation that the new microvessel network will rapidly integrate with the host 

microcirculation—eliminates the need for vascularization in situ post-implantation [5]. 

Implanting pre-vascularized tissues is, thus, anticipated to ensure uninterrupted fluid 

transport and long-term survival of cells at the center of the tissue [5].	  
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Initiation of the self-assembly of blood vessels when pre-vascularizing tissues is a 

complex endeavor. Schechner et al. (2000) have shown that endothelial cells will form 

“cords”—non-luminal cell-cell structural connections—in fibronectin gels in vitro that 

will integrate with the host’s vascular system after implantation in vivo [6]. Nehls and 

Drenkhan (1995) showed that endothelial cells grown on microcarrier beads embedded in 

collagen will form “capillary-like” structures when co-cultured with supporting cell types 

that express pro-angiogenic growth factors [7]. Dietrich and Lelkes (2005) showed that 

endothelial cells are also capable of forming the same “capillary-like” structures when 

co-cultured with angiogenesis-supporting cell types in collagen matrices [8]. However, 

thick tissues will require fully formed capillaries containing lumens and these structures 

do not, or rarely do, form and cannot be sustained in collagen matrices [5]. Thus, the 

formation of fully functioning, sustainable microvasculature will require a matrix 

composed of a multi-component extracellular matrix containing cells types that support 

angiogenesis.  

To this point, tissue engineering applications have been severely limited to 

constructs that are two millimeters in thickness or less due to the difficulty in generating 

native vascular networks in tissue-engineered constructs [5]. Current tissue-engineered 

constructs are predominantly avascular, with the delivery of nutrients and removal of 

waste occurring by diffusion [9]. Because the diffusion distance of oxygen is 100-200 

microns, avascular tissues grown in vitro are limited to this thickness range [3]. 

Mammalian cells must be located within the oxygen diffusion range (100-200 microns) 

of a blood vessel in vivo so as to satisfy their nutritional needs for proper functioning [3]. 

Growing larger, more complex structures in vitro will require a vascular network that 
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supports cellular viability and function with vessels furnishing overlapping regions of 

tissues with the essential gas and nutrient supply [3]. 

The limitations imposed by the inability of current strategies to successfully 

prevascularize tissue-engineered constructs must be overcome as the current organ 

transplant waitlist stands at over 100,000 patients [9]. Currently, approximately 2,000 

patients die per year while waiting on a donor organ transplants, as current capacity only 

allows roughly 50% of patients to receive the vital organ transplants they need to survive 

[9].  In vitro grown organs, though a distant goal, is nonetheless one significant way that 

deaths from donor organ shortages can be eliminated. Furthermore, tissue-engineered 

replacement organs can avoid many of the problems that patients face upon receiving 

donor tissues. By using a patient’s own cells to cultivate tissues to replace those that are 

damaged and diseased, the risk of rejection is significantly attenuated and the need for 

immunosuppressive drugs may be eliminated [4]. These combined effects reduce both the 

cost of medical treatment as well as patient mortality rates. The ultimate goal is totally 

replacing the need for donor organs with tissue-engineered organs, but technical obstacles 

must first be overcome [4]. All in all, it is estimated that tissue-engineering solutions 

potentially could address diseases and disorders accounting for about half of the nation’s 

total healthcare costs [4]. 

 

1.2 The Vasculature:  Structure and Hemodynamics 

Blood Vessels 

Blood vessel is a term that encompasses, generally, every type of blood-carrying 

conduit within an organism. Their primary function is the efficient transport of blood to 
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downstream tisues so as to promote the exchange of oxygen and nutrients for carbon 

dioxide and cellular waste within the tissues that they infiltrate [2, 10]. Blood vessels 

typically extend throughout an organism in a branched network wherein large, thick-

walled vessels empty into incrementally smaller, thinner-walled vessels ultimately 

culminating in capillaries which are comprised of only a single layer of endothelial cells 

wrapped with a monolayer of perivascular cells [2, 10]. In humans, the morphology of 

the circulatory network consists of a branching of arteries into smaller arterioles from 

which a dense network of capillaries branch. The capillaries then coalesce into venules 

and then larger veins responsible for returning blood back to the heart [10].  

In the larger vessels, the endothelial monolayer is supported by two thick outer 

layers of connective tissue capable of sustaining the large, pulsatile pressures 

characteristic of the macrocirculation. The outermost layer, the tunica adventitia, is a 

zone of connective tissue composed of collagenous and elastic fibers that enable a 

vessel’s elasticity [2]. The layer in between the outermost and innermost layers, onto 

which the endothelial cells attach, is the tunica media, which is composed of alternating 

layers of elastic fibers and smooth muscle cells (SMCs) [2]. 

Endothelial Cells 

The average adult human body contains approximately 1×1013 endothelial cells 

[11] Endothelial cells comprise the non-thrombogenic cellular monolayer that lines the 

interior surface of all blood and lymphatic vessels [2]. The endothelium is versatile and 

multifunctional and has many synthetic and metabolic roles, including the regulation of 

thrombosis and thrombolysis, platelet adherence, modulation of vascular tone and blood 

flow, and regulation of immune and inflammatory responses by controlling leukocyte and 
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platelet interactions with the vessel wall [11]. These functions are modulated by 

endothelial cells themselves in response to the continually changing chemical 

environment as well as the forces generated by the circulation of blood (or lymph in the 

lymphatic system) [2, 12]. 

Endothelial cells all derive from the same endothelial progenitor cell, but they 

may terminally differentiate into different phenotypes. For example, endothelial cells can 

differentiate into either arterial or venous endothelial cells during embryonic 

development and display remarkable phenotypic plasticity depending on their location in 

the body [1, 11]. Reportedly, it is possible that there might be as many different 

endothelial cell types as there are organs in the body [1,11]. For example, it has been 

shown that the expression and activity of Angiopoietin-1 (Ang-1) and vascular 

endothelial growth factor-A (VEGF-A), two potent angiogenic factors, vary greatly in 

different tissues depending on their vascularity [1, 11]. As another example of the 

phenotypic diversity of endothelial cells, the ability of Ang-1 to promote endothelial cell 

proliferation and survival is also organ- or tissue-specific [1, 13]. Notably, it has been 

shown that Ang-1 stimulates angiogenesis in the skin, but exerts the opposite effect in the 

heart where it suppresses vascular growth [13]. Such a difference is likely due to the fact 

that blood vessel remodeling and reconstruction is much more prevalent in epidermal 

tissues than cardiac tissues. The realization of such location-specific endothelial 

phenotypes provides opportunities for specialized angiogenic and vasculogenic therapies 

[1]. 

In addition to providing mechanical strength, the endothelial monolayer serves as 

a permeability barrier between the blood circulating in the vascular system and the 
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surrounding extravascular tissues [1]. The intercellular junctions between cells enable the 

mechanical strength and selective permeability properties of the endothelial cell 

monolayer. In quiescent vessels, the presence of adherens and tight junctions determine 

the mechanical strength and barrier properties of the endothelium [1]. Moreover, 

intercellular junctions not only create the structural barrier between the blood and the 

tissues, but also transmit signals critical for endothelial cell survival and intercellular 

signaling [1]. These junctions also dissolve during vessel spouting to allow individual 

cells to migrate, but are then reestablished during vessel construction [1]. Generally, 

VEGF signaling results in a “loosening” of these intercellular junctions and Ang-1 

signaling results in “tightening” of these junctions [1]. 

Endothelial cells also engage in both autocrine and paracrine cell signaling with 

the smooth muscle cells to regulate vascular tone during blood flow control [11]. They 

also communicate through inflammatory mediators with the circulating white blood cells 

and platelets to modulate the immune response and the blood coagulation cascade [11]. 

But one of the most vital roles of endothelial cells is neovascularization and vascular 

remodeling. Endothelial cells are largely responsible for the initiation of angiogenic and 

lymphangiogenic processes. Despite the fact that endothelial cells are elongated, thin, and 

fragile cells, they are able to construct conduits capable of withstanding the mechanical 

forces generated as the heart drives blood throughout the vascular network [11]. And 

though the formation of large blood and lymphatic vessels also requires the actions of 

other cell types such as pericytes, fibroblasts, and smooth muscle cells (SMCs), the 

formation of the smallest blood vessels, capillaries, is mediated by endothelial cells [2, 

11]. 
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Mechanoenvironment of Endothelial Cells 

Endothelial cells exist as a thin monolayer on a deformable substrate and are in 

contact with a dynamic, incompressible, flowing fluid [12]. External forces applied to 

endothelial cells are caused by the hydrodynamic and hydrostatic forces applied by blood 

and lymph and extrinsic stresses and strains caused by muscle contraction or vessel 

compliance [2]. These physiological conditions result in the exposure of endothelial cells 

to three predominant external mechanical forces:  hydrodynamic pressure, fluid shear 

stress, and tensile stress [2, 14]. 

The effect of hemodynamic stresses—those resulting from the flow of blood or 

lymph—in modulating both normal and pathological endothelial functions is supported 

by ample evidence [2]. Studies of the effects of mechanical forces on vascular 

remodeling have been focused primarily on shear stress and substrate strain. Shear stress 

(i.e., wall shear stress) results from the frictional drag imparted on endothelial cells as 

blood flows over the monolayer surface [2]. Substrate strain (also, substrate tension or 

substrate stretch) is the circumferential stretch of the vessel wall, to which the endothelial 

monolayer is attached, caused by the pressure gradient between the blood vessel lumen 

and the vessel exterior [2]. Both shear stress and substrate strain have been the subject of 

both in vitro and in vivo studies. In vivo studies have demonstrated that each of the 

aforementioned mechanical stimuli promotes different types of angiogenesis [2]. 

Substrate tension initiates or upregulates sprouting angiogenesis and shear stress initiates 

or upregulates intussusceptive angiogenesis [2]. The discovery of different angiogenic 

responses to different mechanical stimuli could indicate that these mechanical signals are 

transduced through different biochemical pathways [2]. Such a possibility lends credence 
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to proposition that the endothelial response to hydrostatic pressure, in isolation from the 

other hemodynamic forces, could involve a unique intracellular mechanotransduction 

pathway. 

 

1.3. Tubulogenesis 

Tubulogenesis In Vivo 

Tubulogenesis encompasses the process by which endothelial tubes are formed 

and stabilized with the eventual development into a microvascular network. The three 

types of tubulogenic processes mediated by endothelium include: angiogenesis, 

lymphangiogenesis, and vasculogenesis. Angiogenesis, generally, is the vascular process 

by which new blood vessels are formed from preexisting blood vessels [2]. 

Lymphangiogenesis is a process analogous to angiogenesis, but describes the process as 

it occurs for lymphatic vessels [15]. Vasculogenesis is defined as the process by which 

endothelial precursor cells called angioblasts differentiate into endothelial cells and form 

a primitive vascular network de novo [16]. Angiogenesis and vasculogenesis were 

initially considered discrete and independent events; however, it is now recognized that 

neovascularization is a more complex process that may involve both types of vessel 

formation within a single microenvironment [17]. 

With respect to angiogenesis (and lymphangiogenesis), there are two sub-types of 

vessel formation: sprouting angiogenesis and intussusceptive angiogenesis [2, 18]. The 

process of  
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sprouting tubulogenesis is shown in Figure 1.2a. In both angiogenesis and 

lymphangiogenesis, endothelial cells are predominantly responsible for the initiation and 

progression of tube formation [2, 18]. The type of angiogenesis of interest in this study is 

sprouting angiogenesis, a process that consists of five sequential steps: 

(1) dissolution of the basement membrane and detachment of pericytes at the site 

of branching; 

(2) migration of endothelial cells toward the extracellular space and formation of 

a multicellular sprout; 

(3) proliferation of endothelial cells (“trunk cells”) behind a leading cell (“tip 

cell”); 

(4) morphological differentiation and formation of a lumen in the endothelial 

sprout; 

Figure 1.2a – Progression of sprouting angiogenesis. (A) Endothelial cell (EC) is stimulated by pro-
angiogenic growth factors, (B) EC (“tip cell”) degrades local extracellular matrix (ECM) elongates 
and migrates into the surrounding tissue space, (C) Other ECs (“trunk cells”) follow the “tip cell” in 
invasion of the ECM, (D) ECs form multi-cellular sprout and begin forming a luminal structure, and 
(E) ECs for a patent lumen, recruit supporting cell types, and anastomose with other capillary 
structures. 
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(5) recruitment of supporting cell types (e.g., pericytes, fibroblasts, smooth 

muscle cells) and formation of the basement membrane around the new vessel 

[2, 18]. 

Steps 1 – 4 constitute what could be defined as “early tubulogenic activity” [2, 18, 19]. 

These early tubulogenic activities are followed by the arrest of proliferation and vessel 

stabilization with the formation of a basement membrane around the new tube and the 

recruitment of pericytes [2, 18]. The stabilization phase is essential to vessel 

development, as early-stage endothelial tubes will rapidly undergo apoptosis and 

regression without stabilization. [2, 18]. 

 The role that the extracellular matrix (ECM) plays in both the direction of vessel 

growth and the preservation of new vessels cannot be understated. The ECM regulates 

the formation of new vessel sprouts and, when vascular cells migrate to form new 

sprouts, this matrix network is proteolytically broken down and its composition altered. 

[1]. Prior to vessel stabilization, the provisional extracellular matrix composed of 

fibronectin, fibrin, and other components provides a support scaffold, guiding endothelial 

cells to their targets [1]. Vessel stabilization is greatly enabled by supporting interstitial 

cells types (e.g., pericytes, fibroblasts, SMCs) and extracellular matrix (ECM) proteins 

[1]. The ECM provides the necessary contacts between endothelial cells and the 

surrounding tissue that prevent vessels from collapsing [1, 2]. Quiescent, stable vessels 

are encased by a basement membrane comprised of Type IV collagen, laminin, and other 

proteins [1, 2]. Surrounding this membrane is an interstitial matrix of Type I collagen and 

elastin, which provides viscoelasticity and strength to the vessel wall [2]. 
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 Tubulogenesis in Vitro 

 Tubulogenesis was first observed in vitro by Judah Folkman and Christian 

Haudenschild in 1980 [20]. Folkman, known as the “Father of Angiogenesis”, and 

Haudenschild demonstrated that microvascular endothelial cells were capable of forming 

capillary-like structures in vitro in the absence of blood flow and supporting cell types [2, 

16]. To date, several different types of in vitro tubulogenic assays have proven capable of 

generating capillary-like structures from the culture of endothelial cells alone. The types 

of in vitro tubulogenesis assays that have been developed can be divided into two 

categories: two-dimensional (2-D) and three-dimensional (3-D). 

 Two-dimensional in vitro tubulogenesis assays are those in which endothelial 

cells are seeded onto the surfaces of hydrogels (e.g., collagen, fibrin, Matrigel) or plastic 

culture-treated dishes on which they form sprouts or capillary-like structures within the 

two-dimensional plane of the culture surface [2]. However, to ensure that the cells form 

an interconnected network of tubes or endothelial cords instead of a confluent monolayer 

on 2-D culture surfaces, endothelial cells must be sparsely seeded on the surface and the 

underlying substrate must consist of select basement membrane proteins—mainly 

laminin and type IV collagen [2]. Earlier studies have shown that endothelial cells grown 

on the surface of a collagen gel form a monolayer on the surface and, absent treatment 

with angiogenic activity-inducing chemicals (e.g., phorbol esters), do not invade the 

underlying matrix [21]. Thus, 2-D assays are not the best model of the essential early 

tubulogenic processes in the absence of artificial stimulation. 

Though 2-D assays have been widely used, they present two issues that raise 

concerns about their accuracy as models of angiogenesis. First, sprouting occurs from 
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individual cells or cell aggregates and not from an endothelial monolayer, as is the case in 

vivo. Second, the endothelial tubes or sprouts are in contact with fluid on the outside and 

any existing lumens contain extracellular matrix material on the inside—the inverse of 

what occurs in vivo [21]. Two-dimensional assays, on the other hand, have several 

benefits such as the ability to easily and quickly culture, image, and quantify tube 

formation [21]. Although 2-D angiogenesis models have greatly contributed to the 

understanding of the role of the extracellular matrix in vascular and lymphatic 

morphogenesis, these models do not encompass all of the steps of physiological 

tubulogenesis [16, 18]. 

 Three-dimensional models of tubulogenesis consist of those assays in which 

individual endothelial cells, endothelial cell aggregates, or endothelial cell-coated 

microcarrier beads are embedded in a gelatinous matrix [2]. These models provide the 

best portrayal of endothelial cell migration and ECM invasion as it occurs in sprouting 

angiogenesis in vivo [2]. The assay that employs the use of endothelial cell-coated 

microcarrier beads, initially developed by Nehls and Drenkhahn in 1995 [7], has become 

one of the most widely used three-dimensional models. Nehls and Drenkhahn (1995) 

recognized that 2-D angiogenesis assays did not accurately reproduce in situ conditions. 

They also recognized that, though 3-D angiogenesis assays consisting of animal aortic 

segments embedded in hydrogels could produce capillary-like structures, it had not been 

shown that these structures were predominantly composed of endothelial cells. [7]. Thus, 

the need to investigate endothelial tubulogenic activity in isolation from other cell types, 

and to do so in an efficient and accurate manner, prompted the development of the 

embedded endothelial cell-coated microcarrier bead assay. By using this assay, Nehls and 
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Drenkhahn were able to show that intercellular adhesion, in addition to proliferation and 

migration, represented an essential step in the tubulogenic process [7]. 

 Clinical Implications 

 Physiologically accurate in vitro models of tubulogenesis have immense clinical 

value. They allow for (1) clinical testing of pro- or anti-tubulogenic drug therapies; (2) 

modeling of pathological conditions such as intimal hyperplasia and intimal injury caused 

by surgical intervention (e.g., angioplasty); (3) studying of the discrete process of 

endothelial cell differentiation, migration, lumen formation, and vascular inoculation; and 

(4) elucidating the molecular and mechanosensitive mechanisms associated with 

tubulogenesis [18]. Much research has gone into the design of in vitro assays that more 

accurately reflect in vivo tubulogenic activity and, indeed, this still remains an important 

goal for the future [16]. 

 

1.4. Tubulogenic Growth Factor Signaling 

Tubulogenesis is controlled by the balance between pro- and anti-tubulogenic 

factors [22]. The presence of greater levels of growth-promoting factors rather than 

growth-inhibiting factors “flips” the physiological “switch” and induces a tubulogenic 

endothelial phenotype [22]. The most potent, well-known, and well-characterized 

tubulogenic growth factors come from the vascular endothelial growth factor (VEGF) 

and fibroblast growth factor (FGF) growth factor families [2, 22]. In the presence of these 

growth factors, endothelial cells engage in proliferation, extracellular proteolytic activity, 

invasion of the extracellular matrix, and formation of capillary-like tubular structures 

[22]. In addition to their general involvement in endothelial tubulogenesis, members of 
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the VEGF and FGF families have been implicated in the transduction of mechanical 

signals (mechanotransduction), which is the subject of the study herein. 

Vascular Endothelial Growth Factors (VEGFs) 

Vascular endothelial growth factors (VEGFs) are mitogenic proteins derived from 

the vascular and lymphatic circulatory systems [23]. Growth factors from the VEGF 

family are unique to vascular and lymphatic endothelial cells in that they do not have any 

appreciable growth-promoting effect on other cell types [23]. The VEGF family includes 

five structurally similar growth factors: VEGF-A, VEGF-B, VEGF-C, VEGF-D, and 

placental growth factor (PlGF) [24]. These molecules differentially interact with and bind 

to a corresponding family of cell surface receptors VEGFR-1, VEGFR-2, and VEGFR-3 

[24]. The two VEGF-related growth factor ligands pertinent to the present study are 

VEGF-A and VEGF-C. 

VEGF-A is a potent mitogenic growth factor that is specific to vascular 

endothelial cells and is involved in both the physiological and pathological growth of 

blood vessels [23]. The potency of VEGF-A as an angiogenic factor and its importance in 

vascular development was demonstrated by two studies showing that a genetic mutation 

resulting in the loss of a single VEGF-A allele results in early lethality in mouse embryos 

[25, 26]. VEGF-A has also been implicated in pathological angiogenesis associated with 

tumor growth and retinal ischemia [23]. The vital role that VEGF-A plays in 

angiogenesis is shown in Table 1.4a. 
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Table 1.4a - Table of Known Pro-Tubulogenic Effects of VEGF-A on Endothelial Cells 

Name Function 

VEGF-A 

Stimulates tubulogenesis in vitro and in vivo [2] 

Increases endothelial cell permeability [2, 24] 

Promotes endothelial cell survival (inhibits apoptosis) [24] 

Stimulates endothelial cell proliferation [22, 24] 

Enhances endothelial cell migration and invasion [2, 22] 

Stimulates endothelial cell production of matrix proteases and protease 
inhibitors [2, 22] 

Stimulates the activity and production of endothelial nitric oxide synthase 
(vasodilation) [2, 23] 

 

The pro-tubulogenic effects of VEGF-A listed in Table 1.4a above are elicited 

when it binds to its high-affinity receptor VEGFR-2, a transmembrane tyrosine kinase 

[2]. Interestingly, cellular expression of VEGF-A and VEGFR-2 are both tied to local 

tissue oxygen concentration [2]. Chronic hypoxia upregulates VEGF-A and VEGFR-2 

expression in parallel [2]. VEGF-A binding to VEGFR-2 causes endothelial cell 

proliferation, extracellular matrix invasion, and tube formation presumably to vascularize 

and oxygenate the hypoxic tissue [2]. The VEGF-A/VEGFR-2 pathway is capable of 

stimulating the entire angiogenic process, and thus, is a key mediator of tissue perfusion 

and the physiologic response to tissue ischemia [2]. 

The other pro-tubulogenic VEGF-family ligand of interest to this study is VEGF-

C. VEGF-C has been primarily implicated in lymphangiogenesis, the formation of new 

lymphatic vessels [27]. However, VEGF-C also plays a role in angiogenesis and the 

formation of new blood vessels [24]. VEGF-C binds to both the VEGFR-2 and VEGFR-3 

receptors [27]. The importance of VEGF-C has been demonstrated by studies 
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investigating its high-affinity receptor, VEGFR-3, and the effect of VEGF-C/VEGFR-3 

binding on angiogenesis in vitro [28, 29]. The results of these studies have shown that 

VEGF-C/VEGFR-3 signaling is essential for both physiological and pathological 

angiogenesis [28]. The known effects of VEGF-C on endothelial tubulogenesis are listed 

in Table 1.4b. 

Table 2.4b - Table of Known Pro-Tubulogenic Effects of VEGF-C on Endothelial Cells 

Name Function 

VEGF-C 

Stimulates tubulogenesis in vitro and in vivo [30] 
Stimulates endothelial cell proliferation [29, 31] 
Enhances endothelial cell migration and invasion [29, 30] 

Stimulates production of matrix proteases [29, 30] 
Promotes endothelial cell survival (inhibits apoptosis) [29] 

	  
 

Much like VEGF-A, previous studies using Vegfr3-gene knockout mouse 

embryos that were unable to express the high-affinity receptor to VEGF-C, VEGFR-3, 

exhibited significant defects in both arterial and venous vascular development and 

remodeling resulting in embryonic lethality [28]. Based on the essential role that VEGF-

C/VEGFR-3 signaling plays in lymphangiogenesis, it is anticipated that lymphatic 

development and remodeling would also be substantially impaired by Vegfr3-gene 

knockout [24]. Indeed, it has been demonstrated that suppression of VEGF-C levels in 

tumor-bearing mice with neutralizing VEGF-C antibodies or a soluble form of VEGFR-3 

elicited a predominantly anti-lymphangiogenic, rather than an anti-angiogenic, effect 

[29]. 

Studies have also demonstrated the pro-angiogenic effect of VEGF-C/VEGFR-3 

binding in vitro. Blocking VEGFR-2, the high-affinity receptor for VEGF-A and low-
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affinity receptor for VEGF-C, while stimulating endothelial cells cultured on the surface 

of three-dimensional collagen gels with VEGF-C, did not completely extinguish the in 

vitro angiogenic response [29]. As shown in the study by Persaud et al. (2004), VEGF-C 

was capable of eliciting an angiogenic response in vascular endothelial cells in the 

absence of VEGF-A/VEGFR-2 and VEGF-C/VEGFR-2 binding, thus advocating for the 

role of VEGF-C in angiogenesis [29]. These previous reports substantiate the essential 

role that VEGF-C/VEGFR-3 signaling plays in both forms of tubulogenesis—

angiogenesis and lymphangiogenesis. 

Fibroblast Growth Factors (FGFs) 

The FGF ligand family was among the first discovered pro-angiogenic factors [2]. 

Though FGFs are similar to VEGFs in that they promote endothelial cell activity crucial 

to in vivo angiogenesis and the formation of capillary-like structures in vitro, they are 

unlike VEGFs in that they do not exclusively act on endothelial cells [2]. The effects of 

FGF-2, also known as basic fibroblast growth factor (bFGF), on endothelial cells are 

shown in Table 1.4c below. 

 

Table 3.6c - Table of Known Pro-Tubulogenic Effects of FGF-2 on Endothelial Cells 

 

The effects of FGF-family growth factors are elicited through binding to four 

receptor tyrosine kinases: FGFR-1, FGFR-2, FGFR-3, and FGFR-4. FGF-2 binds to 

Name Function 

FGF-2 

Stimulates tubulogenesis in vitro and in vivo [2, 22, 32] 
Stimulates endothelial cell proliferation [2, 14, 22]  
Enhances endothelial cell migration and invasion [2, 22] 

Stimulates the production of matrix proteases in endothelial cells [2, 22] 

Promotes endothelial cell survival (inhibits apoptosis) [33] 
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FGFR-1, which induces both proliferation and migration [34, 35]. Previous studies have 

also shown that FGF-2/FGFR-1 binding, alone, is capable of eliciting angiogenic and 

lymphangiogenic sprouting [34, 35]. FGF-2 also binds to FGFR-2 and induces several of 

the essential early endothelial tubulogenic activities (e.g., migration, proliferation, matrix 

protease production).	  [36]. Though redundant receptor-ligand specificity is characteristic 

of the FGF/FGFR signaling pathways, blockade of either FGFR-1 or FGFR-2 inhibits 

vascular development and results in death during early embryonic development [33, 36]. 

FGF and VEGF Synergy in Angiogenesis and Lymphangiogenesis 

 Though it has been shown that FGF-2, VEGF-A, and VEGF-C are each capable 

of inducing tubulogenesis on their own, the combined tubulogenic effects of FGF-2 and 

VEGF-A or FGF-2 and VEGF-C have shown to be greater than the sum of their 

individual effects [35, 37]. Studies have shown both interdependency and synergism 

between FGF-2 and either VEGF-A or VEGF-C. Mandriota and Pepper (1997) showed 

that sequestration of FGF-2 prevented VEGF-A-induced angiogenesis in vitro [37]. 

Furthermore, it has been shown that VEGF-A and FGF-2 elicit a synergistic angiogenic 

response both in vitro and in vivo, and it has been surmised that this results from FGF-2-

induced upregulation of VEGFR-2, the high-affinity VEGF-A receptor. 

Cao et al. (2012) recently demonstrated that, although FGF-2 is capable of inducing 

lymphatic endothelial cell proliferation and migration in vitro, FGF-2 stimulation in the 

absence of VEGF-C/VEGFR-3 signaling was unable to induce lymphangiogenic 

sprouting in vivo [35]. It must also be noted that VEGF-A/VEGFR-2 signaling is not 

restricted to angiogenesis and VEGF-C/VEGFR-3 signaling is not restricted to 
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lymphangiogenesis. VEGF-A and VEGF-C have been shown to be involved in both 

angiogenesis and lymphangiogenesis [29, 38]. 

 

1.5. Effects of Pressure on Endothelial Cells 

Several previous studies have suggested that endothelial cell responses to 

hydrostatic pressure are distinct from other hemodynamic forces to which endothelial 

cells are exposed in vivo [39]. The known effects of pressure on endothelial cells, to this 

point, have primarily implicated the FGF-2/FGFR-1/2 and VEGF-C/VEGFR-3 pathways. 

Acevedo et al. (1994) demonstrated that sustained pressures induced the release of 

nuclear and cytosolic stores of FGF-2 [14]. This release resulted in increased 

proliferation and morphological restructuring of endothelial cells in two-dimensional 

culture [14]. In a later study, Shin et al. (2004) demonstrated that cyclic pressure-induced 

increases in endothelial cell proliferation were also mediated by FGF-2/FGFR-2 signaling 

[40]. This later study, however, found that the endothelial response to the applied 

pulsatile pressure was not FGF-2 dependent, but rather, somehow tied to FGFR-2 

activity. The exact function of the FGF-2/FGFR-2 pathway in the transduction of 

pressure is still unclear. 

Pressure has also been shown to upregulate the expression of VEGF-C. Shin et al. 

(2002) showed that VEGF-C gene transcription (Vegfc) was upregulated in endothelial 

cells exposed to pressure [31]. This increase in VEGF-C transcription resulted in 

increased VEGF-C expression and, concomitantly, increased endothelial cell proliferation 

[31]. A similar study showed alterations of intercellular connectivity and modulation of 

the endothelial barrier function in response to cyclic pressure exposure [39]. 
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These previous studies and results involve endothelial functions and growth 

factors that have been implicated in both angiogenesis and lymphangiogenesis. Thus, 

early evidence suggests that pressure may have an effect on endothelial tubulogenesis and 

such effect may be transduced through the mechanosensitive growth factor signaling 

pathways related to FGF-2 and VEGF-C.  
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2. Rationale 

	  
	  

To date, studies of the effects of mechanical forces on endothelial tubulogenesis 

have been confined to those resulting from shear stress and substrate tension. The 

literature has generally neglected to investigate the effects of hydrostatic pressure in 

isolation on endothelial tubulogenesis in comparison to the effects of the other 

hemodynamic mechanical forces, despite the fact that endothelial cells are constantly 

exposed to varying levels of pressure under normal and pathological conditions. The 

demonstrated relationship between hydrostatic pressure exposure and the expression, 

upregulation, or release of certain pro-angiogenic and pro-lymphangiogenic growth 

factors begs the question of whether hydrostatic pressure has an effect on endothelial 

tubulogenic processes. 

The present Master’s thesis-related research exposed bovine aortic endothelial 

cells to sustained hydrostatic pressures known to stimulate the pro-tubulogenic activity of 

endothelial cells. The goal was to substantiate the hypothesis that pressure is a 

magnitude-dependent modulator of early endothelial tube formation processes. Along this 

line, the objectives of the present study were to develop a method for subjecting 

endothelial cells in three-dimensional culture to sustained hydrostatic pressures and 

evaluate the in vitro tubulogenic responses of endothelial cells. For this purpose, a system 

for subjecting endothelial cells in 2-D and 3-D cell cultures was developed and employed 

to verify the effects of pressure on endothelial proliferation and morphology established 

by previous studies and to assess the effects of pressure on the early endothelial 

tubulogenic processes (e.g., migration, tube formation). Using this system, the present 
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study also aimed to elucidate a novel VEGFR-3-mediated pathway that links pressure 

exposure encountered in the physiological mechanoenvironment of the endothelial cell to 

capillary-like tube formation. 

By using a combined biomedical engineering and experimental biological 

approach, the present study addressed key issues regarding the angiogenic response of 

vascular endothelial cells to sustained hydrostatic pressure and laid the groundwork for 

future studies investigating the effects of various pressure regimes and growth factors on 

endothelial tube formation. The knowledge gained from this study not only expounds 

upon endothelial mechanical signal transduction and the effects of pressure on 

endothelial cells, but also provides new information that could eventually lead to 

improvements in the generation of pre-vascularized tissues in vitro and the treatment of 

pressure-related pathological conditions. 
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3. Materials and Methods 

	  

3.1 Cell Substrates 

The two-dimensional substrates used in the present study consisted of polystyrene 

tissue culture substrates in the form of multi-well tissue culture plates.  Prior to seeding, 

tissue culture surfaces, on which cells were grown, were coated with sterile 0.2% gelatin 

(Sigma-Aldrich) in aqueous solution and incubated for a minimum of fifteen minutes.  

The gelatin solution was removed prior to cell seeding. 

For three-dimensional cultures, commercially available Cytodex3TM microcarrier 

beads (GE Healthcare®) were used.  Cytodex3TM beads are spherical cross-linked 

polystyrene beads with diameters ranging from 141-211 microns that have a layer of 

denatured collagen chemically bonded to their surfaces. The beads were prepared for cell 

culture by submerging them in Phosphate Buffered Solution (PBS) in a siliconized glass 

bottle at a concentration of 100 g/mL in PBS. Cytodex3TM beads were allowed to remain 

in PBS for three hours permitting them to swell and hydrate.  To ensure proper saturation 

of the beads, two drops of Tween 80 were added per 100 mL of PBS during this first 

hydration rinse to overcome the effect of surface tension that would prevent the beads 

from hydrating. After three hours in the initial PBS rinse, the supernatant was removed 

and 50 mL of fresh PBS per gram of beads was added. The bead solution was then 

sterilized by steam autoclave at 115°C and 15 psi for 15 minutes.  After autoclaving, the 

bead solution was stored at 4°C. Beads prepared in this fashion are stable for up to 1 year. 
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3.2 Cell Lines, Culture Conditions, and Passaging 

Bovine aortic endothelial cells (BAEC) were generously provided by Dr. Shu 

Chien and Dr. Jason Haga from the Department of Bioengineering at the University of 

California – San Diego (La Jolla, CA) or were purchased from a commercial source 

(Invitrogen®). BAEC were subcultured on the gelatin-coated polystyrene tissue culture 

surfaces of either 25 cm2 (T-25) or 75 cm2  (T-75) vented cell culture flasks (BD 

Falcon®) in Dulbecco’s Modified Eagle Medium (DMEM) (HyClone®) supplemented 

with 10% v/v fetal bovine serum (FBS) (HyClone®), 1% v/v penicillin/streptomycin/L-

glutamine solution (HyClone®), and 5 U/mL heparan (Sigma®). Cells were maintained 

under standard tissue culture incubator conditions—humidified, 37oC, 5% carbon 

dioxide/95% air environment.  During routine cell culture, the media was replaced every 

2 to 3 days. Upon reaching confluence, BAEC cultures in T-25 or T-75 flasks were split 

(1:2 or 1:3 ratio) into new flasks. To do so, cell monolayers were rinsed once with PBS 

for 5 minutes. The PBS was then removed and 1 mL of 0.25% trypsin/1 mM EDTA 

(Sigma®) was added to flasks, which were then incubated for 1 to 2 minutes. After gentle 

agitation, cells would detach from the tissue culture surface of the flask and be suspended 

in fresh complete media. To remove the tripsyn/EDTA solution, cells suspended in 

complete media were centrifuged at 200G for 5 minutes at 25oC. After centrifugation, the 

supernatant solution was aspirated and the resulting cell pellet was resuspended in 

complete media and added to new T-25 or T-75 flasks. For every confluent population of 

cells within a single flask, two to three flasks of passaged cells were generated. Cells 

from passages 7 to 15 were used in all experiments in the present study. 
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3.3 Cell Storage 

Confluent or near-confluent BAEC monolayers from T-75 cell culture flasks were 

cryopreserved for later use following standard cell culture procedures. Briefly, after 

rinsing BAEC monolayers in PBS for 5 minutes, cells were dissociated from tissue 

culture flask surfaces by incubation with 1 mL of 0.25% trypsin/1 mM EDTA for 1 to 2 

minutes followed by gentle agitation and subsequent resuspension in complete culture. 

The resulting cell suspensions were then transferred to 15 mL centrifuge tubes (BD 

Falcon®) and pelleted by centrifugation at 200G for 5 minutes at 25oC.  The cell pellet 

was then resuspended in 1.5 mL of freezing solution consisting of 10% dimethyl 

sulfoxide (DMSO) (Sigma®) in FBS and transferred to 2-mL cryogenic vials (BD 

Falcon), and stored at -80oC until needed or transferred to liquid-nitrogen cryogenic 

storage. 

As needed, frozen cell suspensions in cryogenic vials were rapidly thawed by 

submersion in a 37oC water bath. Thawed cell solutions were then transferred to sterile 

15-mL centrifuge tubes containing 5 mL of warm complete media, pelleted at 200G for 5 

minutes at 25oC, resuspended in 5 mL of complete media. Cells suspended in complete 

media, now with freezing solution removed, were transferred to a T-75 cell culture flask 

containing 10 mL of complete media and cultured under standard cell culture conditions 

(as detailed in Section 3.2). 
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3.4 Cell Seeding 

Two-Dimensional Substrates: Seeding in Multi-Well Tissue Culture Plates 

For proliferation assays and analyses of VEGF-C and VEGFR-3 expression, cells 

were seeded in 10 cm2 petridishes or individual wells of 6-well, 12-well or 96-well tissue 

culture polystyrene plates (BD Falcon®) that had been pre-coated with gelatin as 

described previously. Confluent or near-confluent BAEC were lifted, centrifuged, and 

resuspended in 10 mL of fresh media. The numbers of cells contained in two 10-µL 

aliquots of this suspension were then counted using a hemacytometer to determine the 

concentration of cells in a particular cell solution. Cell solutions were diluted with 

complete media such that an average of 20-50 cells would be counted per grid-square of 

the hemacytometer to ensure an accurate determination of concentration. After the 

concentration of cells in solution was determined, aliquots of cell solution were added to 

wells containing heparan-free complete media in order to obtain the desired number of 

cells per unit surface area in each well depending on the seeding density designated for 

each assay. For proliferation assays, cells were seeded at 5,000 cells/cm2. After 16-24 

hours, BAEC attached to the cell culture surfaces of the multi-well plates and media was 

replaced with fresh heparan-free media, with the addition of supplements (i.e., FGF-2, 

VEGF-A, MAZ51, DMSO) as needed for each experiment. 

Three-Dimensional Substrates: Seeding on Cytodex3TM Beads 

Prior to cell seeding, the concentration of beads in a stock solution of Cytodex3TM 

microcarrier beads in PBS was determined by counting and averaging the number of 

beads in three 10-µL droplets. The volume of stock solution containing the desired 

amount of beads was then determined and combined with 2 mL of warm serum-free 
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media. The tube was agitated briefly and then the beads were allowed to settle to the 

bottom so the PBS in solution could be aspirated for rinsing with fresh buffer. The beads 

were then rinsed one additional time in complete cell culture media. 

To seed BAEC onto Cytodex3TM microcarrier beads, cells were first lifted, 

pelleted, and resuspended in warm complete medium.  The concentration of cells in 

solution was determined with a hemacytometer as described previously. A volume of this 

cell suspension was then added to the microbead solution to yield a ratio of 1×106 cells 

per 2,500 beads and incubated under standard cell culture conditions in an upright 

position. During this incubation, the cell-microbead suspension underwent periodic (i.e., 

once every 20 minutes) gentle agitation for an initial 4-hour duration to ensure uniform 

coverage of the bead surface with cells. After this initial 4-hour seeding period, the bead-

cell solution was then carefully transferred to a T-25 flask containing 3 mL of cell culture 

media. The solution was then incubated for 24 hours in an upright position (vented cap 

facing upward) to prevent coated beads from adhering to the tissue culture-treated surface 

of the flask. After an overnight incubation, the beads were entirely covered in a confluent 

or nearly confluent layer of BAEC. During this time, some of the coated beads would 

become adhered to the inner surfaces of the flask. To address this, flask surfaces were 

gently agitated and rinsed with complete media to disassociate the beads from the plastic 

surfaces. 

 

3.5 Pressure System 

Cells grown on two-dimensional substrates and polymeric beads embedded in 

three-dimensional collagen gels were exposed to pressures above atmospheric using a 
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custom-designed pressure system capable of exposing cells grown in tissue culture plates 

to either static or pulsatile pressure stimuli.  The system consisted of custom-fabricated 

polycarbonate chambers that were designed and fabricated to accommodate a multi-well 

cell culture plate or multiple chamber slides while minimizing the volume within the 

chamber. The chamber volume was minimized so that the change in volume required to 

generate a pressure pulse within the chamber would be minimized. As shown in the 

Equation 3.5 below, as the volume of the chamber (Vchamber) governs the change in 

volume (ΔV) required to produce a pressure pulse within the chamber defined by a 

minimum (P0) and maximum (PE) pressure level.  

 

This change in volume (ΔV) can be either the volume of gas needed to bring the chamber 

pressure from 0 mmHg to the experimental pressure (i.e., 20 mmHg or 40 mmHg) or 

represents the change in volume required to oscillate the chamber pressure between two 

pressures (P0 and PE) for generating pulsatile pressures. Therefore, minimizing the 

chamber volume allows for the use of less gas to generate sustained pressures and lower 

stroke volumes to generate pulsatile pressures. 

For pressure experiments, cell culture plates or dishes were placed between the 

two interlocking halves (shown in Figure 3.5a) and sealed by tightening six fasteners (not  

shown) that surround the perimeter of the chamber. Tightening the fasteners compresses 

an O-ring that forms an airtight seal between the inner compartment and the outside 

environment. 
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Three ports on the sides of the chamber allow for connections to the supply gas mixture, 

instrumentation, a second chamber (in series or parallel), and relief valves. 

 The hydrodynamic pressure system is capable of exposing one plate to a 

sustained, static pressure or pulsatile pressure regime while maintaining a second 

downstream chamber at atmospheric pressure. For this configuration, a compressed gas 

tank supplies a pressurized 5% carbon dioxide, 95% air mixture through a humidifier and 

into a sealed polycarbonate chamber.  The second downstream chamber (Chamber 2) 

passively receives a 5% carbon dioxide, 95% air gas mixture from the pressurized 

chamber; this gas is allowed to escape from the second chamber via a pressure port that is 

open to the atmosphere. 

Sustained pressures were controlled (in the range of 0 to 100 mmHg) within the 

pressure chamber by controlling the depth of the pressure head tube in the column of  

Figure 3.5a – Three-dimensional SolidWorks® model of the pressure chamber.  
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water (Ps in Figure 3.2b), which creates an upper limit on the pressure allowing for stable 

sustained pressures for long periods of time. The inflow rate of gas into the pressure 

chamber was controlled by adjusting the pressure regulator on the 5% carbon dioxide 

supply tank while the outflow rate was adjusted by modulating the resistance to gas flow 

between the pressure and control chambers using an adjustable valve. The resistance to 

gas flow between the two polycarbonate chambers ensured the generation of a static 

pressure level in the upstream chamber. The pressure in the control chamber (Chamber 2) 

was maintained at atmospheric pressure (0 mmHg) by adjusting the flow rate into the 

chamber from the pressurized chamber (Chamber 1) as well as the outflow from the 

Figure 3.5b - Schematic representation of the pressure system designed for the present study. As 
diagrammed in the figure, the system consists of a pressurized chamber (Chamber 1) in series with 
the control chamber (Chamber 2), which is maintained at 0 mmHg while Chamber 1 is maintained at 
an elevated, sustained pressure. The pulsatile component (bellows, linear actuator, voltage source, 
function generator) were not used in the present study. 
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control chamber via a relief valve. The flow rate of gas from the 5% CO2/95% air tank 

and the pressure head control were set so as to minimize the gas flow required to 

maintain the desired pressures and CO2-content of each chamber. Each chamber was 

connected to a pressure transducer interfaced with a multi-channel digital output that 

allowed for continuous, real-time monitoring of the pressure in both chambers. A CO2 

gas analyzer was connected downstream from the control chamber to continuously 

monitor the gas mixture and ensure a 5% carbon dioxide content inside both chambers. 

Both chambers were maintained at 37oC using a temperature-controlled incubator. 

The pressure system was also set up with the capability to generate pulsatile 

pressures with pulse pressures ranging from  0 to 20 mmHg and frequencies of 0 to 2 Hz. 

Pulsatile pressures are generated using a bellows pump connected to a digitally controlled 

linear actuator driven by a DC power supply and function generator. This setup allowed 

for adjustment of the bellows displacement amplitude and frequency, which in turn 

controlled the pulse pressure and frequency of the applied pressure regime in the 

upstream polycarbonate chamber. 

 

3.6 Proliferation Assay 

Seeding and Pressure Exposure 

Cells were enzymatically dissociated from culture surfaces and resuspended in 

media containing 10% FBS and 1% Pen/Strep/L-glutamine solution and seeded at 

densities of 5,000 cells/cm2 in the wells of 96-well plates.1 For these experiments, two 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 5,000 cells/cm2 was determined to be the cell density at which cells would not reach 100% confluence by 
the end of the 72-hour experiment duration. Permitting the cells the reach confluence before the end of the 
72-hour period would prevent observation or detection of differences in cell densities between cultures 
maintained under different culture conditions (i.e., pressure or growth factor supplementation). 
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identically seeded plates of cells were generated: one for a control and one for a pressure 

experiment. After an overnight incubation, the culture media in each of the wells 

containing cells was gently aspirated and replaced with 200 microliters of fresh complete 

media with or without 1 ng/mL FGF-2. Six wells were seeded per treatment per 

independent experiment. This yielded six wells for each of four different treatments that 

were prepared for control and pressure plates per independent experiment.  Cell 

preparations were either maintained under atmospheric pressure in the control chamber or 

exposed to elevated hydrostatic pressures (20 or 40 mmHg) for 72 hours. 

Fixation, Labeling, and Quantification of Cell Density 

After experiments, the experimental cell preparations were immediately fixed 

with 2% paraformaldehyde/0.5% glutaraldehyde for 2 hours. The fixative was then 

removed and the cell monolayers were rinsed once with PBS. A Crystal Violet solution 

(0.5% w/w Crystal Violet and 20% methanol in PBS; a nuclear stain) was then added to 

each well and incubated for one hour at room temperature. The cell layers were then 

rinsed five times with PBS for five minutes each to remove excess, unbound dye.  

Finally, PBS at a volume of 100 µL was added to each well in preparation for quantifying 

dye uptake. Crystal violet uptake by BAEC layers was then quantified using a 

spectrophotometric microplate reader (Biotek® uQuant) at an absorbance wavelength of 

570 nm. Experiments to assess the effects of pressure on BAEC proliferation were 

repeated five separate times (N = 5) for each condition tested. 
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3.7 Flow Cytometric Analysis of VEGFR-3 and VEGF-C Expression 

Seeding and Pressure Exposure 

Cells were enzymatically dissociated from culture surfaces and resuspended in 

media containing 10% FBS and 1% Pen/Strep/L-glutamine solution and seeded at 1/3 

confluence in gelatin-coated, 10 cm2 tissue culture plates and allowed to culture for 24 – 

48 hours.  Prior to experiments, the culture media in each plate was replaced with fresh 

complete media.  These cell preparations were then either maintained under control (i.e., 

atmospheric) pressure conditions or exposed to the sustained hydrostatic pressures of 

interest (either 20 or 40 mmHg) for 72 hours using the custom pressure system (see 

section 3.5). 

At the end of experiments, the cells were enzymatically released from substrates, 

rinsed with ice-cold PBS and immediately fixed with 0.25% p-formaldehyde in 0.1 M 

sodium phosphate.  

Immunofluorescence Labeling of Cells 

Fixed cells were washed 3 times in ice-cold PBS prior to labeling with 

fluorescence antibodies to either VEGFR-3 or VEGF-C.  For VEGFR-3 staining, cells 

were labeled with mouse monoclonal antibodies to human VEGFR-3 (Millipore; cross-

reactivity with bovine antigen) in 1% bovine serum albumin (BSA; blocking buffer; 

Sigma-Aldrich) at room temperature for 1 h. Cells bound with this antibody was 

fluorescently-labeled with goat anti-mouse IgG secondary antibodies conjugated to 

Alexa-Fluor®488 for 45 minutes.  
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Cellular VEGF-C on the fixed cells was labeled with goat anti-human VEGF-C 

(Santa Cruz Biotechnologies; cross-reactivity with bovine antigen) in 1% BSA in PBS 

supplemented with 0.1% saponin (a compound used to permeabilize the cells and allow 

cytosolic staining of the antigen of interest).  The cells were then rinsed three times and 

stained with donkey anti-goat IgG conjugated to Alexa-Fluor® 488 in blocking buffer 

with 0.1% saponin for 45 minutes.  

After fluorescent labeling for VEGFR-3 or VEGF-C, cells were rinsed of excess 

unbound antibodies in their respective blocking buffers and resuspended in 0.5% BSA. 

Binding of fluorescent antibodies to cells was quantified with an LSR II flow cytometer 

(Becton-Dickinson). For each sample, at least 10,000 cells were analyzed using 

FACsDiva (Becton-Dickinson). Histograms of fluorescence intensity (reflecting the 

numbers of antibodies bound to cells) were recorded for each sample and the mean 

fluorescence intensity was determined as a measure of antigen expression levels.  

 

3.8 Three-Dimensional Collagen Gel Assays 

Tube formation and invasion assays were conducted in the following chronology:  

preparation of cellularized beads, gel formulation, and gel polymerization.  After these 

steps, endothelial tubulogenic activity under pressure was examined. 

Preparation of Endothelialized Beads 

BAEC were seeded on Cytodex3TM microcarrier beads as described in Section 3.4 

– Cell Seeding.  Cellularized beads were removed from T-25 tissue culture flasks, 

transferred to a 15-mL centrifuge tube, and allowed to settle to the bottom of the tube for 
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up to 10 min. At that time, the supernatant media was aspirated, and the beads were 

rinsed once in 2 mL of heparin-free complete media.  

 

Collagen Gel Formulation 

Since live BAEC were to be embedded into the collagen gels, the gel formulation 

had to consist of a precise balance of reagents in order to yield a three-dimensional 

environment in which the cells could survive and carry out the cellular processes of 

interest in the present study.  The gel acidity, osmolarity, metabolite availability, and 

collagen concentration were taken into account when developing the gel formulation used 

in this experiment. Gel reagents and their respective ratios to the final solution volume 

are listed in Table 3.8a (on the following page) 

Table 3.8a – Collagen Gel Formulation. Reagents and their respective ratios to the final solution (Ratio – 
X:1000). Reagents were added such that the concentrations of reagent were 1X DMEM, 2 mM L-
glutamine, and 2.0 – 2.5 mg/mL Type I Collagen (rat tail). 

Reagent X:1000 
Deionized Water (diH2O) 527 
200 mM L-glutamine 10 
HC Collagen Type I (8-11 mg/mL) 291 
0.1 N Sodium Hydroxide (aq.) 40 
0.53 N Sodium Bicarbonate (aq.) 32 
10X DMEM 100 

 
Prior to and throughout the mixing process, all stock solutions and gel mixtures 

were maintained at 0° - 2° C in an ice bath. The gel solution was then generated 

according to the following procedure. 

1. 10X DMEM (Sigma®), sterile distilled water (diH2O), and L-glutamine 

(Sigma®) were added to a sterile 15-mL centrifuge tube. 
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2. Type I Collagen solution (8-11 mg/mL Type I collagen from rat tail tendon 

dissolved in 0.02 N acetic acid) (BD Biosciences®) was then added to the 

centrifuge tube and the solution was mixed thoroughly. Since the concentration of 

collagen in the commercially-available stock collagen solution varied between 8 

and 11 mg/mL, it was necessary to adjust the ratios of gel reagents to yield the 

appropriate collagen concentration (2.0 – 2.5 mg/mL) and solution pH.  

3. The 0.1 N sodium hydroxide solution and 0.53 N sodium bicarbonate solution 

were then added to the tube and the solution was thoroughly mixed by pipet 

aspiration and using a vortexer set at a low speed. The tube was then returned to 

the ice bath.  

4. A volume of the solution of endothelialized Cytodex3TM beads (containing 

approximately 2,500 beads) in complete media (top layers) or an equivalent 

volume of heparan-free complete media containing no beads (to generate a 

bottom, acellular layer; see Gel Polymerization section below) was then added to 

and thoroughly mixed with the gel solution. If cellularized beads were added to 

the gel solution (top layers), the contents of the tube were mixed gently to 

distribute the cells throughout the gel solution without shearing them off of the 

bead surface. 

Gel Polymerization 

 Gel polymerization was allowed to progress by raising the temperature and the pH 

of the gel solution since the collagen will remain in a viscous liquid state when 

maintained at 0-4°C (i.e., ice bath). The sodium hydroxide solution (0.1 N) and sodium 

bicarbonate solution (0.53 N), the final two reagents added to the collagen gel solution, 
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were used to neutralize the acidity of the gel solution. When maintained in an ice bath, 

the collagen gel solution would not polymerize. When the temperature of the solution 

was elevated to 37°C, the gel rapidly polymerized. By controlling the duration, location, 

and sequence of heat application, the polymerization of the gels within the tissue culture 

plate wells was precisely timed to guide gelation. Two gel polymerization protocols were 

used to yield two different gels. To ensure that the beads would not sink to the bottom of 

gels prior to polymerization, an acellular (not containing cells or beads) layer of gel was 

polymerized in each well and the gel solution containing BAEC-coated beads were 

overlaid on top of this acellular layer. It was determined in the current study that if the 

beads are allowed to sink to the bottom of the well, the cells will migrate off of the bead 

and onto the bottom of the well (the tissue-culture treated surface) and form a monolayer. 

The following procedures were, thus, designed to prevent this from happening. 

Two-Layer Gel Polymerization 

For the Migration Assay depicted in Figure 3.4a, an acellular gel solution (of the 

exact same formulation as the top layer, but not containing BAEC-coated Cytodex© 

beads) was added to the each well and allowed to completely polymerize by incubation at 

37°C for ten to fifteen minutes. A top layer of gel containing cellularized beads was then 

added to each well and polymerized by incubation at 37°C for another fifteen minutes. 

After polymerization of the top layer, heparan-free complete media was added. Figure 

3.8b on the following page displays the chronology of bi-layer gel polymerization. 
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 As shown in Figure 3.8b, once the bottom gel layer was polymerized, it adhered 

to the bottom of the well allowing the top layer gel to be overlaid on top. Once 

polymerized, a “seam” was created between the two gel layers on which beads from the 

top layer rested and on which endothelial cells migrated off the bead during our migration 

assays. 

 Single-Layer Gel Polymerization 

 The gel polymerization sequence for the tube formation assay (shown in Figure 

3.8c on the following page) creates a single, continuous gel layer within which the 

BAEC-coated CytodexTM beads are suspended. A volume (0.250 mL) of acellular bottom 

layer gel solution was added to each well of a 24-well plate. The plate was then placed on 

a heating plate set to 37 deg. C and allowed to rest for one to two minutes. After addition 

of the bead-containing top layer of gel, the well plate was returned to the heating plate. 

The continuous application of heat to the bottom of the plate allowed the gel to  

Figure 3.8b – 2-layer gel polymerization sequence. The top and bottom gel layers are added and 
allowed to polymerize independently by 10-15 minute incubation at 37 deg. C for each layer. The 
result is a non-continuous, dual-layer gel structure. 
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progressively polymerize from the bottom to the top of the gel. This progressive 

polymerization from the bottom surface upward prevented beads from descending to the 

bottom of the well and allowed the sequentially added gel layers to form a continuous 

and homogenous gel layer. Figure 3.8c above shows how this process was carried out. 

 

3.9 Imaging 

High-resolution, bright field images of beads and their associated cells were 

captured digitally using an Olympus (Model IX-70) inverted light microscope equipped 

with a Hammamatsu camera, relief contrast, and a range of high-magnification (100X – 

600X) objectives. Images of cell populations in three dimensional gel cultures were 

captured after 72 hours and 96 hours in culture. For the migration assay, images were 

captured at 100X magnification with the focal plane positioned at the interface between 

the two get layers. For the tube formation assay, images were captured at 100X 

Figure 3.8c – Single-layer gel polymerization sequence. The acellular bottom layer gel is added to 
each well and the plate is placed on a heating plate at 37 deg. C. The bottom layer is allowed to 
partially polymerize, then the bead-containing top layer is added. The plate is then returned to the 
heating plate, causing top and bottom layers to completely polymerize. The result is a continuous, 
single-layer gel structure. 
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magnification with the focal plane positioned at the mid-plane of the bead.  If cells or 

cellular structures formed out of the midplane of the bead (as was common in the tube 

formation assay), additional images would be captured on different focal planes in order 

to visualize these structures. 

 

 3.10 Migration/Invasion Assay Analysis 

The migration and invasion assay images were analyzed using an image 

processing macro developed for the NIH ImageJ software. The program applied a high 

pass filter to gray-scale images of single beads with migrating cells to create a new black-

and-white image based on a threshold frequency below which all low-frequency image 

components were converted to white and all high-frequency image components were 

converted to black. This conversion was accomplished using the ImageJ macro code  

shown in Figure 3.9a on the following page. After applying this procedure, the 

“Migration Index” was determined.  
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Specifically, the Migration Index represented the ratio of the number of black 

pixels to white pixels within the processed image. In the processed image, high contrast 

elements (i.e., the outer edges or borders of cells) are filtered out and converted to black 

pixels. Image elements not meeting the preset threshold contrast are converted to white 

pixels. Accordingly, as the number and dispersion of cells increases the amount of cell 

borders in each image increases. An increase in the amount and dispersion of the cell 

borders in an image is represented by an increase in black pixels in the processed image. 

Theoretically, the number of black pixels in an image is directly related to the number 

and dispersion of cells in an image. An image containing a larger number and dispersion 

of cells as compared with an image having a smaller number will necessarily have a 

Figure 3.10a – InvasiQuant ImageJ macro code. When the macro is run, a gray-scale 
image is converted to a binary (black and white) image wherein high-contrast areas of 
the image (i.e., cell borders) are converted to black and low-contrast areas (i.e., 
background noise, bead interior, out-of-focus elements) are converted to white pixels. 
The macro returns a numeric value that corresponds to the ratio of black pixels to white 
pixels (“Migration Index”). 
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greater number of black pixels and, correspondingly, a higher “Migration Index”. A 

migration index was determined for 5 beads from each well of an experimental treatment 

and averaged as one independent measurement. 

 

3.11 Tube Formation Assay Analysis 

Images from the tube formation assay were analyzed by counting the number of 

tubes per bead and measuring the length of each tube counted. Tube length measurements 

were calibrated against features of known lengths at the same magnification as the tube 

formation assay images.  For this purpose, a hemacytometer grid was used to calibrate 

length measurements. 

A sprout or tube was classified as any multicellular projection, at least 50 µm in 

length, originating from the bead surface and consisting of multiple contiguous cells. 

Lengths of sprouts or tubes were measured from the bead surface to the tip of the sprout. 

Occasionally tubes with bifurcations were observed and in such instances a measurement 

of the length of the longest continuous cellular projection was made. An example the 

image analysis performed for the tube formation assay is shown on the following page in 

Figure 3.11a. 

Sprouts (i.e., “tubes”), once counted and measured, were categorized such that the 

number of tubes greater than or equal to 50 µm, 75 µm, or 150 µm could be compared 

between treatment groups. The number of sprouts greater than 50 µm constitutes the total 

number of sprouts, as cellular projections not greater than or equal to 50 µm in length 

were not considered “sprouts”. The average sprout length per bead was also calculated 

and used as a basis for comparison between treatment groups. 
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 3.12 Statistical Analysis 

 Data were expressed as mean ± standard error. Activity of BAEC in the absence 

or presence of growth factor stimulation or small molecule inhibition under control 

(atmospheric) pressures was assessed using raw values to ascertain the baseline behavior. 

The means of these experimental treatments were compared using a Student’s t-test with 

p < 0.05 delineating significant differences. Bonferroni adjustments were used to correct 

p-values when multiple comparisons were performed. Responses of BAEC to pressure 

were normalized to those of matched controls (i.e., cells under control pressure, but 

otherwise similar experimental conditions) and expressed as fold change to account for 

any affects due to the influence of exogenous chemicals on baseline activity. Significant 

fold changes were determined with a one-sample t-test. Fold-change values for control 

samples was 1.0 with p < 0.05 denoting a significant difference from this threshold value. 

Different pressure treatments were compared using Student’s t-test with Bonferroni’s 

adjustment for multiple comparisons, again with p < 0.05 denoting a significant 

difference. 
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4.    Results 

	  
	  

4.1. BAEC Culture on Two-Dimensional Substrates 

Bovine aortic endothelial cells (BAEC) seeded sparsely (5,000 cells/cm2) and 

cultured on two-dimensional tissue culture-treated polystyrene surfaces reached 

confluence within 2 to 3 days and exhibited a typical “cobblestone” morphology [12, 14].  

Figure 4.1a shows BAEC after a 24-hour overnight incubation (left) and BAEC after 

three days in culture (right). 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Figure 4.1a – BAEC shortly after 24 hour (left) and after 48 – 72 hour time periods in culture (right). 
Magnification 20X. 
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4.2. Crystal Violet Uptake by BAEC	  

For proliferation experiments with BAE cells grown on two-dimensional 

substrates, cell layers labeled with Crystal Violet nuclear stain exhibited uniform uptake 

of crystal violet dye immediately upon removal from incubation. Figure 4.2a (below) 

shows fixed and stained BAE cells cultured on a two-dimensional substrate with crystal 

violet localized predominantly to the nucleus. Crystal violet uptake was quantified by 

spectrophotometry at a wavelength of 570 nm. 

	  

4.3. BAEC Seeding on Cytodex3TM Microcarrier Beads 

BAEC were seeded on Cytodex3TM microcarrier beads according to the procedure 

described in Section 3.4. Endothelialization of the Cytodex3TM beads used in the present 

study was confirmed by bright field and fluorescence microscopy as shown below in 

Figure 4.3a. 

Figure 4.2a – Bovine aortic endothelial cell (BAEC) monolayer stained with 
Crystal Violet nuclear stain and rinsed with phosphate buffer solution 
(PBS). Magnification 20X. 
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The left panel of Figure 4.3a displays a representative bead whose outer surface 

has bean coated with a layer of BAE cells. The bright-field image on the left is focused 

on the top half of the bead and shows a near-confluent monolayer of cells on its surface. 

The image in the right panel of Figure 3.4 shows a bead coated with BAEC labeled with 

DAPI nuclear stain. In line with bright-field images, endothelialized beads exhibited 

punctate staining of cell nuclei uniformly distributed along the bead surface. 

 

4.4. Generation of Sustained Hydrostatic Pressures	  

Sustained hydrostatic pressures ranging from 0 to 120 mmHg were achieved for a 

single pressurized chamber.  Moreover, when two chambers were connected in parallel, 

the system was also capable of achieving sustained hydrostatic pressures up to 40 mmHg. 

The images in Figure 4.4a show two pressure transducer digital outputs (20 and 40 

mmHg) and the corresponding readings of a mercury barometer connected 

simultaneously to the same pressure chamber as the transducers. 

Figure 4.3a - Cytodex3TM microcarrier bead coated in BAE cells under bright-field 
view (left) and bead with cells labeled with nuclear stain, DAPI, and viewed under 
ultraviolet illumination (right). Magnification 100X. 
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Though no cyclic pressure experiments were conducted as part of this study, the 

properties of the cyclic pressure profiles that the system was capable of generating were 

determined. The maximum pulse pressure of the system, with the components used in 

this study, was 20 mmHg at a mean pressure of 40 mmHg at 1 Hz pulse frequency.  At 1 

Hz, it was determined that the system was capable of generating a sinusoidal pressure 

profile with an upper limit pressure of 50 mmHg and a lower limit pressure of 30 mmHg. 

At mean pressures below 40 mmHg, the system was capable of generating sinusoidal 

pressure waves with frequencies between 0.5 and 2.5 Hz and pulse pressures up to 20 

mmHg.  

Shown in Figure 4.4b is an image of a pressure transducer strip chart readout of a 

1 Hz sinusoidal pressure wave with a mean pressure of 40 mmHg and a pulse pressure of 

20 mmHg. 

Figure 4.4a – Pressure transducer digital readouts (left) of 20 and 40 mmHg with 
corresponding, simultaneous mercury barometer readings (right). 
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The pressure system proved to be capable of generating and sustaining pulsatile 

pressures for several days with a maximum pressure of 50 mmHg, maximum pulse 

pressure of 20 mmHg, and a maximum pulse frequency of 2 Hz. 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Figure 4.4b – Pressure transducer strip chart readout depicting a 1 Hz 
sinusoidal pressure wave with a mean pressure of 40 mmHg and a pulse 
pressure of 20 mmHg, which alternates between high and low pressures of 50 
mmHg and 30 mmHg, respectively. 
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4.5. Increase of BAEC Cell Density By Stimulation with Basic Fibroblast 

Growth Factor 

The present study confirmed that a submaximal dose of 2.5 ng/mL FGF-2 

significantly enhanced the proliferation rates of BAE cells. Figure 4.5a displays the 

average absorbance of light at 570 nm, which corresponds to cell density, of cultures 

maintained in cell culture media with and without either 1 or 2.5 ng/mL FGF-2 for 72  

 

hours. As shown in Figure 4.5a, BAEC cultured in DMEM containing 10% FBS and 

supplemented with 2.5 ng/mL but not 1 ng/mL FGF-2 exhibited a significantly (p < 0.01) 

increased level of crystal violet uptake compared to untreated cells. 

 

 

Figure 4.5a – Endothelial cell growth is dependent on the presence of local concentrations of 
fibroblast growth factor-2 (FGF-2) within a certain range of concentrations. Crystal violet light 
absorption at 570 nm (measure of cell density) of two-dimensional BAEC cultures was measured for 
cultures maintained in media alone (white bar) or in the presence of 1 and 2.5 ng/mL FGF-2 (gray 
bar). Bars in the figure are mean absorbance units ±  standard error; n=3 independent experiments 
compared to control levels using a paired t-test with Bonferroni’s correction (*p < 0.01; N = 3). 
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4.6.  Effect of Sustained Hydrostatic Pressure on BAEC Population Growth 

BAEC were seeded on two-dimensional substrates at a cell density of 5,000 

cells/cm2 and exposed to sustained pressures of 20 mmHg or 40 mmHg for a period of 72 

hours. The results of this experiment are shown in Figure 4.6a. After exposure to 20 

mmHg sustained pressure for 72 hours, BAEC populations exhibited significant increases  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6a – Endothelial cell proliferation is responsive to both local hydrostatic pressures and local 
levels of FGF-2 (labeled as bFGF) in the supernatant media. Cell density was determined by 
measuring crystal violet light absorbance at 570 nm of two-dimensional BAEC cultures. 
Comparisons were made between cultures maintained at 0 mmHg (white bars) and an experimental 
hydrostatic pressure (gray bars). The graphs above depict comparisons between (A) 0 mmHg 
(control) and 20 mmHg pressures, each in standard media (no growth factor supplement); (B) 
0mmHg (control) and 20 mmHg pressures, each in media supplemented with 1 ng/mL FGF-2; (C) 0 
mmHg (control) and 40 mmHg pressures, each in standard media; (D) 0 mmHg (control) and 40 
mmHg, each in media supplemented with 1 ng/mL FGF-2. Crystal violet uptake of pressurized cell 
cultures was normalized to those of cell cultures maintained under atmospheric (control) pressure, 
but otherwise similar experimental (i.e., with or without FGF-2) conditions, and expressed as fold 
change. Bars in each panel are mean fold change ± standard error; n=5 independent experiments 
compared to control levels assigned a value of 1 (dashed line) using one-sample t-test (*p < 0.05). 

B	  A	  

D	  C	  
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(*p < 0.05) in cell density compared to cells maintained under control pressure (0 mmHg 

above atmospheric), but otherwise similar experimental conditions.  Figure 4.6a (on the 

following page) displays two figures that show the effect of a 20 mmHg sustained 

pressure on BAEC proliferation in media that does not contain FGF-2 (left) and media 

that does contain FGF-2 (right) at a concentration 1 ng/mL. In both cases, cultures 

exposed to a 20 mmHg pressure exhibited a statistically significant increase in cell 

density with p-values of 0.018 and 0.049, respectively. 

The same experiment was conducted with BAEC being exposed to a sustained 

hydrostatic pressure of 40 mmHg for 72 hours; this experiment was also repeated four 

times (N = 4).  Figure 4.6a displays two figures that show the effect of a 40 mmHg 

sustained pressure on BAEC proliferation in media that does not contain FGF-2 (Panel C) 

and media that contains FGF-2 (Panel D) at a concentration 1 ng/mL. Pressurization 

elicited significant increases in cell density of cultures maintained in media containing 1 

ng/mL FGF-2 but not in cultures containing no FGF-2 with p-values of 0.042 and 0.077, 

respectively. 
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The results presented in Figure 4.6b summarize the results shown in Figure 4.6a 

(on the previous page) but displayed in a manner that allows for comparison of the 

responses to 20 and 40 mmHg pressure and the effect of FGF-2 supplementation.  

Comparing the response at 20 mmHg (Figure 4.6a, Panel A/B) and experiments 

conducted at 40 mmHg (Figure 4.6a, Panel C/D) in Figure 4.6b reveals that a 20 mmHg 

sustained hydrostatic pressure appears to have a more potent proliferative effect. 

 
 
 

Figure 4.6b - Endothelial growth is a function of local hydrostatic pressure levels and extracellular 
levels of fibroblast growth factor-2 (FGF-2). Endothelial cell populations were maintained under 
atmospheric (control) pressure conditions as well as exposed to 20- and 40-mmHg hydrostatic 
pressures above atmospheric in the absence (white bars) and presence (gray bars) of 1 ng/mL FGF-2 
for 3 days. Crystal violet uptake of pressurized cell cultures was normalized to those of cell cultures 
maintained under atmospheric (control) pressure, but otherwise similar experimental (i.e., with or 
without FGF-2) conditions, and expressed as fold change. Bars are mean fold change ± standard 
error; n=5 independent experiments compared to control levels assigned a value of 1 (dashed line) 
using one-sample t-test (#p < 0.05). 
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4.7. Effect of Sustained Hydrostatic Pressure on BAEC Morphology 

Compared to cells maintained under control pressure conditions, BAEC cultures 

exposed to 40 mmHg for 72 hours appeared to exhibit cell elongation. This effect was 

also observed for BAEC populations exposed to 40 mmHg in culture media 

supplemented with 5 ng/mL FGF-2 for 72 hours, as shown in Figure 4.7 below.	  

 

 

 

 

	  

 

Figure 4.7a - Images of BAEC cultures after 72 hours of exposure to pressure in the absence of 
presence of FGF-2 (labeled as bFGF). The two images to the left show cultures exposed to 40 mmHg 
for 72 hours and the cells in both images appear to be elongated without any predominant 
orientation and tightly-packed whereas the images to the right (controls) show cells that are more 
rounded. 
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4.8.   Role of VEGFR-3 in the Mediation of Pressure-Induced Endothelial 

Proliferation 

The involvement of VEGF-C-related signaling in the proliferative responses of 

BAEC cultures to pressure stimulation was explored using MAZ51, a VEGFR-3 

inhibitor. Under control (i.e., atmospheric pressure) conditions, BAEC cell density 

decreased linearly as a function of increasing MAZ51 concentration (Figure 4.7a). 

Figure 4.7a (Panel B) shows the effects of MAZ51 on BAEC population growth in 

response to exposure to 20 mmHg sustained pressure. As shown in the figure, MAZ51 at 

concentrations greater than 1 µM and up to 20 µm attenuated and eventually blocked the 

proliferative responses of BAEC cultures subjected to 20mmHg for 72 hours.  

 

 

 

4.9   

 

 

 

Figure 4.8a - Pressure-sensitive endothelial proliferative responses depend on VEGFR-3 activity. (A) 
We defined the relationship between MAZ51 and baseline endothelial proliferation under 
atmospheric pressures using linear regression analyses. Points in (A) are cell densities (reflected by 
absorbance of crystal violet at 570 nm) – standard error. MAZ51 concentration dependence of cell 
densities was assessed by linear regression. (B) We also examined the influence of 0–20 µM MAZ51 
on the growth response of BAEC to 20-mmHg-pressure exposure. Crystal violet uptake of 
pressurized cells was normalized to those of cells maintained under atmospheric (control) pressure, 
but otherwise similar experimental (i.e., MAZ51) conditions, and expressed as fold change. Bars in 
(B) are mean ± standard error; n = 5. #p < 0.05 compared to levels of matched control assigned a 
value of 1 (dashed line) using one-sample t-test. 
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4.9. Effects of Pressure on VEGF-C and VEGFR-3 Expression 

 To further explore a potential role of the VEGF-C/VEGFR-3 pathway, the 

expression of VEGF-C and VEGFR-3 by BAEC exposed to either 20 or 40 mmHg 

pressure were compared to those of cells maintained under control (atmospheric) pressure 

conditions. As shown in Panel A and Panel B, increases in the number of cells expressing 

VEGF-C and the number of cells expressing VEGFR-3, for one sample, were observed in 

BAEC exposed to 20 mmHg for three days. Repeating this experiment four to six more 

Figure 4.9a - Pressure upregulates cellular levels of VEGF-C and membrane expression of its high-
affinity receptor, VEGFR-3 (Panel A/B). Histograms of fluorescence intensity for either VEGF-C 
(Panel A) or VEGFR-3 (Panel B), were plotted for unlabeled BAEC (no- stain, filled curve) and cells 
labeled only with the appropriate species-specific secondary antibodies, AlexaTM 488 conjugates 
(dotted line), as well as for control cells (thin black line) and cells exposed to 20 mmHg (thick black 
line) for 3 days and detected with antigen-specific primary antibodies. Mean fluorescence intensities 
reflecting bound antibodies for either VEGF- C (Panel C) or VEGFR-3 (Panel D) on BAEC exposed 
to either 20 or 40mmHg (20 or 40, respectively) were normalized to those of matched controls 
(dashed line) and expressed as fold change. Bars in Panel C and Panel D are mean ± standard error; 
n=4 to 6. #p<0.05 compared to control levels (dashed line) assigned a value of 1 (dashed line) using a 
one-sample t-test. *p<0.05 compared using Student’s t-test. (Shin et al., 2012). 
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times (n = 4 – 6) for both 20 mmHg and 40 mmHg revealed some significant (#p < 0.05) 

differences as compared with control samples maintained at atmospheric (0 mmHg) 

pressure. As shown in Figure 4.7b, exposure of BAEC to 20 mmHg, but not 40 mmHg, 

sustained hydrostatic pressure for 72 hours significantly increased the expression of 

VEGF-C, as compared to controls. Significant increases (#p < 0.05) in response to 

pressure exposure were also observed in VEGFR-3 expression, the high-affinity VEGF-C 

receptor. Specifically, the number of cells expressing VEGFR-3 significantly increased 

after exposure to either a 20 or 40 mmHg sustained pressure for 3 days relative to time-

matched controls. 

 

4.10. Effects of Pressure on BAEC Migration and Invasion of Three-

Dimensional Collagen Matrix 

The effect of hydrostatic pressure on cell invasiveness, the characteristic 

representative of cell migration and invasion into the extracellular matrix, of BAEC was  

 

 

Figure 4.10a - Example of binary images filtered by the InvasiQuant macro written for the ImageJ 
software package. The image in Panel A (Migration Index = 9.371) displays a culture exhibiting less 
invasive activity than the image of the culture in Panel B (Migration Index = 14.256). 

A B 
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investigated using a two-layer gel format (see Section 3.8 on Materials and Methods).   

Figure 4.10a (on previous page) displays two representative images, each of a single 

cellularized bead, embedded in a two-layer collagen gel, after 72 hours in culture. These 

images were used to quantify Migration Indices (see Section 3.9 of Materials and 

Methods).  The Migration Index of the image on the left is 9.371 and the same quantity 

for the image on the right is 14.256.  

 Figure 4.10b displays the Migration Indices for BAEC populations on 

Cytodex3TM beads that had been cultured under atmospheric pressure for 72 hours in the 

absence of the presence of either FGF-2 or VEGF-A. BAEC maintained in media 

supplemented with 2.5 mg/mL FGF-2 exhibited a significant increase (p = 0.048) in 

average Migration Index compared to untreated cells. In contrast, although BAEC 

cultures stimulated with 2.5 mg/mL VEGF-A exhibited an overall average increase in 

Migration Index over untreated cells, this effect did not result in a statistically significant  

 

 

 

 

 

 

	  Figure 4.10b – Endothelial cell motility is affected by the local concentration of pro-angiogenic 
growth factors such as FGF-2 (labeled as bFGF) and VEGF-A. The migratory activity of BAEC were 
measured using the image processing technique and computation of the InvasiQuant ImageJ macro 
developed herein. All cultures were maintained at atmospheric (control) pressure conditions for 72-
hour (left) and 96-hour (right) durations. The Average Migration Indices of cultures in media 
supplemented with FGF-2 and VEGF-A were normalized to and compared with cultures containing 
no added growth factor. The effect of each growth factor on migration was compared mathematically 
using paired Student’s t-test in conjunction with Bonferroni’s adjustment for multiple comparisons 
(*p < 0.05). 
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difference. Finally, after a 96-hour incubation period, BAEC populations cultured in the 

presence of FGF-2 and VEGF-A exhibited significant increases (p = 0.025 and p = 0.022, 

respectively) in their respective Average Migration Indices compared with paired 

controls (no growth factor). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10c – Exposure to 20- and 40-mmHg hydrostatic pressures did not significantly enhance the 
invasive activity of BAEC. BAEC seeded on Cytodex3TM beads and suspended in bi-layer collagen 
gels for 72 and 96 hours were assessed for their ability to exhibit invasive activity (i.e., migration). 
The effect of pressure was compared across multiple pressures, experiment durations, and growth 
factor supplementation. Each experiment contained two growth factor treatment groups, 2.5 mg/mL 
FGF-2 (labeled as bFGF) and 2.5 mg/mL VEGF-A, and one untreated group (no growth factor). 3-D 
cultures were exposed to 20 mmHg for (A) 72 hours and (B) 96 hours and 40 mmHg for (C) 72 hours 
and (D) 96 hours. Bars in (A) and (B) represent comparisons within each growth factor group of 
mean fold-change in migration index ± standard error of cultures maintained at control (0 mmHg) 
pressure and 20 mmHg; n=3. #p > 0.05 using paired t-test. The same comparisons were performed 
for exposures to 40 mmHg in (C) and (D) (*p < 0.05, #p > 0.05). 

	  

A	   B	  

C	   D	  
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In terms of pressure experiments, BAEC either exposed to a 20 mmHg or 

maintained at control (atmospheric) pressure for 72 and 96 hours exhibited similar levels 

of migration in between gel layers. As shown in Figure 4.10c, when exposed to 40 

mmHg, BAEC migration indices were significantly (p<0.05) reduced only after 96 hours 

in the absence of growth factors. Cells exposed to 40 mmHg in the presence of either 2.5 

ng/mL FGF-2 or VEGF-A for either 72 or 96 hours displayed migration indices that were 

similar to time-matched controls (i.e., cells maintained under atmospheric pressure 

conditions in the absence of growth factor).  

	  

4.11.   Effects of Local Growth Factor Concentrations on BAEC 

Tubulogenesis 

The results in this section describe the effects of elevated hydrostatic pressures 

and local growth factor concentrations on BAEC tubulogenesis. The tube formation assay 

was conducted using the single-layer gel configuration obtained by following the 

protocol described in Section 3.8 of the Materials and Methods section. Images were 

analyzed using the image processing method described in Section 3.10 – 

Migration/Invasion Assay Analysis. 

In these experiments, BAEC were seeded on Cytodex3TM microcarrier beads that 

were embedded in a single-layer collagen gel and maintained in media containing either 

FGF-2, VEGF-A, FGF-2 + VEGF-A, or no growth factors. During experiments, cells 

were expected to initiate the process of tube formation by engaging in cellular activities 

such as matrix degradation, migration, intercellular connection, and morphogenesis. 

A visual example of how sprouts (or tubes) were measured, counted, and analyzed 

is shown in Figure 4.8a. Tube formation was quantified by counting the number of tubes 
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per bead and measuring the length of all tubes emanating from a bead. The number of 

tubes per bead was further categorized into the average number of tubes per bead of 

length greater than 50, 75, and 150 micrometers. 

 
 

 

 

To verify the effects of the growth factors with known pro-tubulogenic influences 

used in this study, comparison of tubulogenic activity between groups maintained in 

media containing no growth factors and media supplemented with FGF-2, VEGF-A, or 

FGF-2 + VEGF-A. Figure 4.11b shows images of one bead from each of these growth 

factor treatments. 

Figure 4.11a – Visual example of the sprout/tube counting and measurement process. The figure 
contains two identical images of a bead embedded in a 3-D single-layer collagen gel. After incubation 
for 3-4 days, BAEC would form cellular processes (i.e., tubes or sprouts) emanating from the bead 
surface. These processes would be counted and their length measured linearly from the bead surface 
to the end of the process. Lines (yellow) that demonstrate how tubes were measured overlay the 
image on the right. Magnification 60X. 

Figure 4.11b– Representative images of Cytodex3TM beads maintained in media containing no growth 
factor (Panel A), 2.5 ng/mL FGF-2 (Panel B), 2.5 ng/mL VEGF-A (Panel C), and 2.5 ng/mL of both 
FGF-2 and VEGF-A (Panel D). Bright field, magnification 60X. 
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The images in Figure 4.11b display representative BAEC bead cultures 

maintained under atmospheric pressure condition in the absence (untreated controls) or 

presence of either 2.5 ng/mL FGF-2, 2.5 ng/mL VEGF-A, or both FGF-2 and VEGF-A in 

combination (2.5 ng/mL of each). Under all conditions tested, BAEC exhibited 

tubulogenic activity consistent with the formation of sprouts. Comparisons were 

performed for mean tube length per bead to determine whether the known pro-angiogenic 

properties of FGF-2 and VEGF-A have a detectable effect on tube length after 72 and 96 

hours. Figure 4.11c on the following page displays the average total number of tubes 

above each length threshold (50, 75, 150 µm) formed within each growth factor treatment 

group after 72 hours (left, Panels A/C/E) and 96 hours (right, Panels B/D/F) under 

atmospheric pressure 

As shown in Figure 4.11c, BAEC populations stimulated with either 2.5 ng/mL 

VEGF-A or 2.5 ng/mL of VEGF-A plus 2.5 ng/ml FGF-2, but not 2.5 ng/mL FGF-2 

alone, exhibited a significant increase (*p < 0.05) in the mean number of sprouts per bead 

greater than 50 µm compared to untreated cells (no growth factor). After 96 hours of 

culture, BAE cells under all growth factor conditions (Figure 4.9b; Panel A) exhibited 

significantly increased numbers of tubes greater than 50 µm in length.  

When examining the effects of growth factor concentrations on the formation of sprouts 

greater than 75 µm, only bead cultures maintained under atmospheric pressure conditions 

in VEGF-A for 96 hours failed to show a significant increase in the number of tubes. 

Compared to untreated cells, BAEC bead populations stimulated with FGF-2, VEGF-A, 

and FGF-2+VEGF-A) for 72 hours showed significant increases in the number of tubes 

greater than 75 µm in length, relative to controls.  Furthermore, stimulation with  
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Figure 4.11c – Graphs displaying a comparison of the number of tubes present of length greater than 
0 µm (Panels A/B), 75 µm (Panels C/D), and 150 µm (Panels E/F) after maintenance in media 
containing no growth factor, 2.5 mg/mL FGF-2 (labeled as bFGF), 2.5 mg/mL VEGF-A (VEGF), 2.5 
mg/mL of both FGF-2 and VEGF-A. Measurements were taken after both 72 hours (Panels A/C/E) 
and 96 hours (Panels B/D/F) of incubation under standard cell culture conditions. Bars in each graph 
represent the mean-fold change in the number of sprouts (i.e., tubes) counted greater than each 
threshold length (0, 75, or 150 µm) ± standard error of cultures maintained under each growth factor 
treatment; N=4. *p > 0.05 and #p > 0.05 using a paired Student’s t-test with Bonferroni adjustment. 
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VEGF-A and FGF-2 for 96 hours also induced significant increases the in the formation 

of tubes greater than 75 µm in length. 

As shown in Figure 4.11c on the previous page, Panels E and F, BAEC 

stimulated with either FGF-2, VEGF-A, or both FGF-2 and VEGF-A for 72 hours 

exhibited significant increases (*p < 0.05) in the formation of sprouts per bead that were 

greater than 150 µm in length compared to untreated controls (no growth factor). 

Interestingly, the number of sprouts greater than 150 µm in length that were formed by 

BAEC bead cultures treated with either FGF-2, VEGF-A, or FGF-2 + VEGF-A for 96 

hours were similar to those of untreated cells.  

 

Collectively, these results confirmed the utility of the Cytodex3TM bead cultures 

tested in the present study to detect changes in the tubulogenic activity of BAEC. 

Figure 4.11d – Graphs displaying a comparison of the mean tube (i.e., sprout) length per bead 
between growth factor treatment groups after 72 hours (Panel A) and 96 hours (Panel B) of 
incubation. Bars in each graph above represents the fold change in mean tube length per bead ± 
standard error of cultures maintained under each growth factor treatment; N=4. *p > 0.05 using a 
paired Student’s t-test with Bonferroni adjustment. 

	  



 

65 

4.12. Effects of a 20 mmHg Sustained Hydrostatic Pressure on BAEC 

Tubulogenesis 

The results in this section describe the effects of exposure to 20 mmHg 

hydrostatic pressure levels in the absence and presence of the pro-tubulogenic growth 

factors FGF-2 and VEGF-A on BAEC tubulogenesis. Figure 4.12a and Figure 4.12b 

display representative images of beads with BAEC either maintained under control 

conditions or exposed to 20 mmHg hydrostatic pressures in the absence or presence of 

either FGF-2, VEGF-A or both FGF-2 + VEGF-A for 72 and 96 hours, respectively. As 

shown in the figures, endothelial sprouts or tubes formed under all media treatments and 

pressure conditions. 

 

Figure 4.12a - Representative images of BAEC on Cytodex3TM beads suspended in collagen gels and 
maintained under atmospheric (control) or 20 mmHg pressure conditions for 3 days. One 
representative image is provided for each growth factor treatment at either the control (0 mmHg) or 
20 mmHg pressure condition. Images were acquired under 60X magnification. 
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  To examine the role of pressure on endothelial tubulogenic activity, mean tube 

length as well as the numbers of sprouts formed by bead cultures that were greater than 

50, 75, and 150 µm in length were quantified and compared between treatments. 

Comparisons were made between control and pressure treatments for each growth factor 

tested (no growth factor, 2.5 ng/mL FGF-2, 2.5 ng/mL VEGF-A, and 2.5 ng/mL FGF-

2+VEGF-A). In doing so, the effect of pressure on endothelial tubulogenesis under each 

set of conditions was examined. 

 
When examining the numbers of sprouts formed by BAEC cultures, apparent 

differences were observed between those formed by either cells maintained under control 

conditions or exposed to pressure. Specifically, exposure to 

 

Figure 4.12c – Graphs displaying the comparison of the mean number of tubes (i.e., sprouts) greater 
than 0 µm between control (0 mmHg) and 20 mmHg pressure-exposed cultures within each 
treatment group after 72 hours (Panel A) and 96 hours (Panel B) of incubation. Bars in each graph 
above represent the mean-fold change in the number of tubes greater than 0 µm per bead ± standard 
error of cultures maintained under each treatment; N=4. Comparisons were made using a paired 
Student’s t-test (*p > 0.05, #p > 0.05). 

	  

A	   B	  

Figure 4.12b - Representative images of BAEC on Cytodex3TM beads suspended in collagen gels and 
maintained under atmospheric (control) or 20 mmHg pressure conditions for 4 days. One 
representative image is provided for each growth factor treatment at either the control (0 mmHg) or 
20 mmHg pressure condition. Images were acquired under 60X magnification. 
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20 mmHg sustained hydrostatic pressure stimulated significant increases in the number of 

tubes greater than 0 µm (total number of tubes/sprouts) under the “no growth factor” and 

FGF-2 treatment groups after 72 hours of incubation. (Figure 4.12c, Panel A) All 

significant differences in tube formation between cells exposed to pressure or maintained 

under control conditions disappeared after 96 hours of incubation (Figure 4.12c, Panel 

B). 

 

 
 

Exposure to 20 mmHg sustained hydrostatic pressure for 72 hour also elicited 

significant increases in the number of tubes greater than 75 µm under the “no growth 

factor” (No GF) and FGF-2 treatment groups (Figure 4.12d). However, after 96 hours of 

exposure, pressurization produced no effect on the formation of sprouts greater than 75 

µm for all conditions tested in the present study (Figure 4.12d).  

A	   B	  

Figure 4.12d – Graphs displaying the comparison of the mean number of tubes (i.e., sprouts) greater 
than 75 µm between control (0 mmHg) and 20 mmHg pressure-exposed cultures within each 
treatment group after 72 hours (Panel A) and 96 hours (Panel B) of incubation. Bars in each graph 
above represent the mean-fold change in the number of tubes greater than 75 µm per bead ± 
standard error of cultures maintained under each treatment; N=4. Comparisons were made using a 
paired Student’s t-test (*p < 0.05). 
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As shown in Figure 4.12e, exposure to 20 mmHg pressure for 72 hours had no 

significant effect on the formation of sprouts greater than 150 µm in length compared to 

cells maintained under control pressure conditions. After 96 hours, significant (p < 0.05) 

reductions in the number of tubes greater than 150 µm in length were observed for BAE 

bead cultures in the absence or presence of VEGF-A (Figure 4.12e). There were no 

significant differences observed when cells were either exposed to pressure or maintained 

under control conditions in the presence of either the FGF-2 or FGF2 + VEGF-A group 

(see Figure 4.12e).  

Figure 4.12f shows the results obtained when measuring mean sprout (or tube) 

length per bead. Only BAEC cultures stimulated with FGF-2 + VEGF-A exhibited a 

significant change (p = 0.019) in mean tube length (Figure 4.12d, Panel A). After 96 

hours, significant (p < 0.05) changes in mean tube length were observed between cells 

either exposed to pressure or maintained under control condition in the presence of FGF-

2 and VEGF-A (see Figure 4.12d, Panel B). 

Figure 4.12e – Graphs displaying the comparison of the mean number of tubes (i.e., sprouts) greater 
than 150 µm between control (0 mmHg) and 20 mmHg pressure-exposed cultures within each 
treatment group after 72 hours (Panel A) and 96 hours (Panel B) of incubation. Bars in each graph 
above represent the mean-fold change in the number of tubes greater than 150 µm per bead ±	  
standard error of cultures maintained under each treatment; N=4. Comparisons were made using a 
paired Student’s t-test (*p > 0.05). 

	  

A	   B	  
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Thus, it appeared that pressure had a modest effect on the mean length of sprouts 

formed by BAE bead cultures in both the absence and presence of growth factors. 

 

4.13. Effects of a 40 mmHg Sustained Hydrostatic Pressure on BAEC 

Tubulogenesis 

The results in this section display the effects of exposure to 40 mmHg hydrostatic 

pressure levels in the absence and presence of the pro-tubulogenic growth factors FGF-2 

and VEGF-A on BAEC tubulogenesis.  Figure 4.11e and Figure 4.11f display 

representative images of beads with BAE cells either maintained under control conditions 

or exposed to 40 mmHg hydrostatic pressures in the absence or presence of either FGF-2, 

VEGF-A or both FGF-2 + VEGF-A for 72 and 96 hours, respectively. 

 

 

 

Figure 4.12f -	  Graphs displaying the comparison of mean tube (i.e., sprout) length between control (0 
mmHg) and 20 mmHg pressure-exposed cultures within each treatment group after 72 hours (Panel 
A) and 96 hours (Panel B) of incubation. Bars in each graph above represent the mean-fold change in 
the mean tube length per bead ± standard error of cultures maintained under each treatment; N=4. 
Comparisons were made using a paired Student’s t-test (*p > 0.05).	  

	  

A	   B	  
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As shown in Figure 4.13a and Figure 4.13b (following page), sprout formation 

was observed under every media and pressure condition tested, both after 72 and 96 

hours in culture. The figures that follow in the next page display the results of the tube 

formation assay using a 40 mmHg pressure.  

 

 

	  

Figure 4.13a -	  Representative images of BAEC on Cytodex3TM beads suspended in collagen gels and 
maintained under atmospheric (control) or 40 mmHg pressure conditions for 3 days. One 
representative image is provided for each growth factor treatment at either the control (0 mmHg) or 
40 mmHg pressure condition. Images were acquired under 100X magnification. No significant 
differences were observed after 3-day exposure to 40 mmHg. 
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Figure 4.13c - Graphs displaying the comparison of the mean number of tubes (i.e., sprouts) greater 
than 50 µm between control (0 mmHg) and 40 mmHg pressure-exposed cultures within each 
treatment group after 72 hours (Panel A) and 96 hours (Panel B) of incubation. Bars in each graph 
above represent the mean-fold change in the number of tubes greater than 50 µm per bead ± 
standard error of cultures maintained under each treatment; N=4. Comparisons were made using a 
paired Student’s t-test (*p > 0.05). 

 

B	  A	  

Figure 4.13b -	  Representative images of BAEC on CytodexTM beads suspended in collagen gels and 
maintained under atmospheric (control) or 40 mmHg pressure conditions for 4 days. One 
representative image is provided for each growth factor treatment at either the control (0 mmHg) or 
40 mmHg pressure condition. Images were acquired under 100X magnification. The only significant 
difference between cultures maintained under control pressure and cultures exposed to 40 mmHg 
for 96 hours was the total number of sprouts (greater than 50 µm) in cultures maintained in media 
containing 2.5 ng/mL FGF-2 + 2.5 ng/mL VEGF-A (Panel D/H). 
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Figure 4.13c (previous page) displays the results when cultures were exposed to a 

40 mmHg sustained hydrostatic pressure and the total number of tubes was counted. In 

this case, only BAEC bead cultures exposed to pressure in the presence of FGF-2 for 72 

hours or FGF-2 + VEGF-A for 96 hours exhibited significant increases in total sprout 

numbers. When only counting tubes or sprouts greater than 75 µm in length, there was no 

statistically significant effect of pressure on sprout formation for all growth factor 

conditions. 

 Similarly, no significant differences in the number of tubes greater than 150 µm 

were elicited by subjecting cultures to a 40 mmHg sustained hydrostatic pressure (Figure 

4.13e). 

A	   B	  

Figure 4.13d - Graphs displaying the comparison of the mean number of tubes (i.e., sprouts) greater 
than 75 µm between control (0 mmHg) and 40 mmHg pressure-exposed cultures within each 
treatment group after 72 hours (Panel A) and 96 hours (Panel B) of incubation. Bars in each graph 
above represent the mean-fold change in the number of tubes greater than 75 µm per bead ± 
standard error of cultures maintained under each treatment; N=4. Comparisons were made using a 
paired Student’s t-test (*p > 0.05). 
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Combined, these results provided evidence that exposure to BAEC tubulogenic 

activity is relatively insensitive to a 40 mmHg pressure stimulus. Figure 4.13f on the 

following page shows the results when mean tube lengths per bead were compared within 

growth factor treatment groups. No significant differences in mean tube length were 

detected for bead cultures either maintained under control conditions or exposed to 40 

mmHg pressure for 72 or 96 hours for all media conditions tested. 

 
 

 
 
 

 
 
 

Figure 4.13e - Graphs displaying the comparison of the mean number of tubes (i.e., sprouts) greater 
than 150 µm between control (0 mmHg) and 40 mmHg pressure-exposed cultures within each 
treatment group after 72 hours (Panel A) and 96 hours (Panel B) of incubation. Bars in each graph 
above represent the mean-fold change in the number of tubes greater than 150 µm per bead ± 
standard error of cultures maintained under each treatment; N=4. Comparisons were made using a 
paired Student’s t-test (*p > 0.05). 

 

B	  A	  

Figure 4.13f -	  Graphs displaying the comparison of mean tube (i.e., sprout) length between control (0 
mmHg) and 40 mmHg pressure-exposed cultures within each treatment group after 72 hours (Panel 
A) and 96 hours (Panel B) of incubation. Bars in each graph above represent the mean-fold change in 
the mean tube length per bead ± standard error of cultures maintained under each treatment; N=4. 
Comparisons were made using a paired Student’s t-test (*p > 0.05).	  

 

B	  A	  
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5.    Discussion 

	  

The research presented in this thesis is the first in vitro investigation of the 

hypothesis that sustained hydrostatic pressure exposure is a magnitude-dependent 

modulator of early endothelial sprout formation. The foundations of this study were the 

known effects of pressure on endothelial cell proliferation and morphology suggestive of 

a pro-tubulogenic phenotype. Based on the established links between pressure and 2-D 

cultures of endothelial cells, this study elucidates the effects of pressure on endothelial 

cells in a 3-D environment. 

	  

5.1. Physiological Relevance of the Hydrostatic Pressures Used 

	   Within the human body, endothelial cells may be exposed to sustained hydrostatic 

blood pressures or pulsatile pressures that exhibit complex waveforms that vary in 

Figure 5.1a – Blood pressure levels throughout the circulatory system. As shown in the figure, 
capillary blood pressure ranges from approximately 18 mmHg to 38 mmHg. (available at 
http://classes.midlandstech.edu/carterp/Courses/bio211/chap19/chap19.html) 



 

75 

amplitude and frequency depending on a particular cell’s location in the vascular tree. 

The pressures used in this study, however, were consistent with the physiological 

pressures to which microvascular endothelial cells are exposed.2 As shown in Figure 5.1a 

on the previous page, capillary pressures vary between approximately 18 mmHg and 38 

mmHg. Figure 5.1a also shows that the pulsatile component of circulatory blood pressure 

found in the aorta and large arteries is largely eliminated by the time blood reaches the 

capillaries.  

The two pressures examined in this thesis were 20 mmHg and 40 mmHg 

hydrostatic pressures—pressures similar to those that microvascular endothelial cells 

would be exposed in vivo. The 40 mmHg is slightly above that which would be 

encountered in the microcirculation under normal physiological conditions, however, 

pressures at this level or greater may be present under pathological conditions such as in 

the tumor interstitium, due to traumatic soft tissue injury, and during intraocular 

hypertension. These pressures are also similar to pressures used in previous studies3 [12, 

14], which allowed for comparison of results to verify the experimental setup used in this 

study. 

	   	  
 5.2. Selection of Cell Type and Three-Dimensional Matrix Composition 
  
 The cell type selected for the experiments conducted herein was the bovine aortic 

endothelial cell (BAEC). This cell type was selected as it is a well-characterized, stable 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Capillary endothelial cells are exposed to pressures in the range of 18 mmHg to 40 mmHg under normal 
conditions. By the time blood reaches the capillaries, however, all or nearly all pulsatility in pressure has 
ceased. (available at http://classes.midlandstech.edu/carterp/Courses/bio211/chap19/chap19.html) 
3 Sumpio et al. (1994) used pressures 40-120 mmHg to investigate the effects of sustained hydrostatic 
pressures on endothelial cell proliferation and morphology. Acevedo et al. (1993) also explored endothelial 
cell responses to pressures of 1.1 and 7.4 mmHg. Both previous studies used pressures that are considered 
physiologically similar to the pressures studied in this section. 
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cell type that has been used in similar experiments in previous studies [8, 12, 29, 41]. The 

study by Sumpio et al. (1994) showed up-regulation of BAEC proliferation in response to 

sustained hydrostatic pressures, with possible implication of FGF-2 as the growth factor 

that transduced this effect [12]. The implication of FGF-2 as a modulating factor for 

endothelial cell proliferation is also supported by the study by Acevedo et al. (1993), 

which identified the pressure-induced release of FGF-2 by bovine pulmonary artery 

endothelial cells from intracellular stores with a concomitant increase in cell proliferative 

proliferation rates [14]. Both the individual and combined effects of FGF-2 and sustained 

hydrostatic pressures were examined in this study and are discussed further in Section 

5.4. 

 BAEC were also selected for their efficacy in 3-D microcarrier cultures. Though 

2-D assays are effective for studying certain tubulogenesis-related cellular activities in 

isolation, such as proliferation or migration, they do not mimic the in vivo 3-D 

configuration associated with tube formation [7, 8]. BAEC have proven to be particularly 

useful for such studies. For 3-D studies employing microcarrier bead endothelial cell 

cultures, complete bead coverage is essential to create an accurate model of in vivo 

sprouting angiogenesis in a microcarrier-based in vitro angiogenesis assay [8]. This is 

necessary to ensure that tubulogenic sprouting originates from confluent endothelial 

monolayers, similar to that which occurs in the in vivo tissue environment [8]. 

As described in the study by Dietrich and Lelkes (2006), BAEC both consistently 

exhibited high attachment rates to Cytodex3TM microcarrier beads and were the only cell 

type, out of those tested (e.g., human aortic endothelial cells (HAEC), transformed 

human microvascular endothelial cells (HMEC-1), human microvascular endothelial cells 
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(HMVEC)), to form a confluent monolayer on bead surfaces within two to four days [8]. 

Specifically, with constant agitation during cell seeding (dynamic seeding), it has been 

shown that BAEC consistently form confluent monolayers on Cytodex3TM microcarrier 

beads [8, 42]. As shown in Figure 4.3a in Section 4.3, the protocol used herein 

consistently produced confluent BAEC monolayers on Cytodex3TM microcarrier beads. 

 Though the ability of BAEC to form monolayers on microcarrier beads is robust, 

the usefulness of large-vessel endothelial cells in modeling angiogenesis has been 

indeterminate [8]. However, BAEC, even though derived from the bovine aorta, have 

been shown to form capillary-like structures in vitro [8]. BAEC tube formation can be 

enabled by using the appropriate experimental setup, as demonstrated by several studies 

[8, 29, 43]. The ability of BAEC to form capillary-like tubular structures is also 

demonstrated by the present study as shown in Section 4.11. 

 The 3-D matrices for the migration and tube formation studies conducted herein 

were comprised of Type I collagen hydrogels. Two extracellular matrix materials are 

predominantly used in 3-D tubulogenic assays: collagen and fibrin. Collagen was selected 

as the extracellular matrix of choice as cells embedded in this type of gel tend to exhibit a 

phenotype typical of that found in vivo while cells maintained in fibrin tend to exhibit 

cellular activity associated with tubulogenesis that is a technical artifact of their exposure 

to fibrin [8]. Moreover, fibrin matrices intuitively model clotted tissues during wound 

healing processes. 

	  

5.3. Experimental Setup for Pressure Experiments 

The experimental setup used in the present study was adapted from those used in 

previous studies by Shin et al. (2002) [31] and Acevedo et al. (1993) [14]. The pressure 
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system used in the present study was designed and calibrated to expose endothelial cells 

grown in standard multi-well tissue culture plates in either two- or 3-D configurations 

(described in Section 3.8) to hydrostatic pressures above atmospheric while maintaining 

a parallel culture of cells under standard pressure (i.e., 0 mmHg above atmospheric), but 

otherwise, similar experimental conditions. Whether cells were grown on a 2-D rigid 

polystyrene substrate or on the surface of a Cytodex3TM bead embedded in collagen gel, 

the cells were directly exposed to a pressure level of 20 mmHg or 40 mmHg pressure in 

the absence of pressure-induced fluid flow. The only source of pressure variation was the 

depth to which Cytodex3TM beads were submerged in the culture media, which was 

minimal (between 1 – 2 mmHg).  

The system was capable of maintaining cultures under pressure and standard cell 

culture conditions for up to 6 days.4 In the experiments conducted herein, however, 

pressurized and control cultures were maintained in humidified 37 degree C, 5% 

CO2/95% air environments for up to 4 days. The pressurized and control chambers were 

maintained in parallel with each chamber located in the same incubator and receiving the 

same constant supply of humidified 5% CO2 gas mixture. The combination of the 

resistance valve and relief valve described in Section 3.5 allowed the control chamber to 

be maintained at atmospheric pressure (0 mmHg) while still receiving a constant supply 

of 5% CO2/95% air gas mixture. The pressurized chambers were maintained at either 20 

mmHg or 40 mmHg sustained hydrostatic pressures by using the variable resistance valve 

on the 5% CO2 gas supply tank and the water column pressure head source to set the 

pressure for each experiment. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 The system is capable of maintaining cultures under pressure for longer periods of time, but 4 days was 
the longest that any experiment conducted as a part of this study was run. 
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The system employed for the research discussed herein is also capable of 

generating pulsatile pressures within a certain limits of pulse pressure magnitude and 

frequency. However, there is an upper limit to pulsatile pressure magnitudes to which cell 

cultures are exposed. The limitation on the magnitude of the pulse pressure is due to the 

maximum output force of the linear actuator that drives the bellows. If a more powerful 

linear motor were implemented, the system would be able to generate greater pulse 

pressures. The need for such measures will be addressed in the future when studies that 

expose cells to pulsatile pressures are conducted. 

In each study performed, BAEC maintained under either pressurized or control 

conditions remained viable throughout the entirety of the study and exhibited normal 

cellular functions such as proliferation and morphological changes. Based on these 

observations, the experimental system and pressures used in this study neither killed nor 

damaged the cells over the duration of the experiments performed. 

 

5.4. Confirmation of Cellular Responses of BAEC Grown in Two-

Dimensional Culture to Sustained Hydrostatic Pressures 

Pressure Upregulates Proliferation at 20 mmHg, but not 40 mmHg, After Three 

Days of Exposure 

 BAEC were cultured on 2-D tissue culture-treated polystyrene surfaces in cell 

culture flasks and multi-well cell culture plates.  Microscopic imaging revealed that the 

cells attached and proliferated in the same manner demonstrated by other studies [44]. 

Figure 4.1a in Section 4.1 – Culture of BAEC on Two-Dimensional Substrates shows 

BAEC attached to the culture surface after seeding and overnight incubation (left image) 
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as well as after several days in culture (right image). The same process that yielded the 

images in Figure 4.1a was used each time BAEC were cultured on 2-D surfaces with 

similar results being observed. 

Experiments were performed to verify the ability of the pressure exposure to elicit 

a proliferative response by the BAEC tested in the present study. Acevedo et al. (1993) 

showed that as little as 1 ng/mL exogenous basic fibroblast growth factor (FGF-2 or 

bFGF) upregulates bovine pulmonary artery endothelial cell (BPAE) proliferation and 

causes cytoskeletal reorganization [14, 40]. An experiment was performed as a part of 

this study to determine if exogenous FGF-2 would produce the expected increase in cell 

density when cells were grown under control conditions in the pressure system chambers. 

As shown in Figure 4.6b, cells grown in media supplemented with 2.5, but not 1, ng/mL 

FGF-2 also elicited a significant (p = 0.017) increase in cell density. The average fold-

change observed in cells grown in media containing 2.5 ng/mL exogenous FGF-2 was 

approximately 2.0 times the density of controls. This is consistent with the results shown 

in the study by Acevedo et al. (1993), which showed comparable increases in cell density5  

[14]. It should, however, be noted that BAEC exposed to 1 ng/mL did not exhibit a 

statistically significant increase in proliferation. This discrepancy between the results of 

the present study and those of Acevedo et al. (1993) [14], however, may have been due to 

cell type differences (bovine aortic versus pulmonary artery endothelium). 

The present study also verified that the pressure system used to assess the 

tubulogenic activity of BAEC was capable of eliciting a proliferative responses in these 

cells which were similar to those reported by previous studies. Sumpio et al. (1994) 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  The experiment conducted in the study by Acevedo et al. (1993) showed an approximate fold-change of 
1.8-2.0 times that of cells grown under control conditions (no FGF-2). It should be noted that their study 
employed bovine pulmonary endothelial cells (BPAEC) maintained in media containing 20% FBS. 
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showed that cells exposed to a 40 mmHg sustained pressure showed a significant increase 

in cell number after 9 days in culture; cells exposed to an 80 mmHg sustained pressure 

showed a significant increase in cell number after 7 days in culture; and cells exposed 

120 mmHg showed a significant increase in cell number after 3 days [12].6 In another 

similar experiment, Acevedo et al. (1993) showed significant increases in the cell 

numbers of BPAE grown under both 5 cmH2O (1.1 mmHg) and 10 cmH2O (7.4 mmHg) 

sustained hydrostatic pressures after 3, 5, and 7 days in culture. As shown in Figure 4.6b, 

cells maintained under a 20 mmHg, but not 40 mmHg, sustained pressure for 3 days 

showed a significant (p = 0.018 and p = 0.077, respectively) increase in cell density. The 

same experiment was performed with the addition of 1 ng/mL FGF-2 to the supernatant 

media for both control and pressurized cultures. With the addition of FGF-2, significant 

increases in cell density were observed for both 20 mmHg and 40 mmHg sustained 

pressures after 72 hours (p = 0.049 and p = 0.042, respectively). Interestingly, a pressure-

induced proliferative response to 40 mmHg sustained pressure was not observed in the 

absence of FGF-2. In the study by Sumpio et al. (1994), exposure of BAEC to 40 mmHg 

did not exhibit a significant increase in cell number until after 9 days in culture. In the 

present study, cells were exposed to a 40 mmHg sustained pressure for only 3 days. Thus, 

the effect of a 40 mmHg pressure may take longer than 3 days to become apparent. It is 

clear, though, that exposure to 40 mmHg for 3 days does not appear to suppress the pro-

proliferative effect of FGF-2. As shown in Figure 4.6a in Section 4.6, cells exposed to 40 

mmHg and maintained in media containing 1 ng/mL FGF-2 exhibited a significant (p = 

0.042) increase in cell density as compared with controls maintained under atmospheric 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  The study by Sumpio et al. (1994) also showed that changes in cell number were not due to changes in pH 
or pCO2. 
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(0 mmHg) pressure. Thus pressure stimulation may serve to sensitize BAEC to FGF-2 

stimulation. This is consistent with the report of Shin et al. (2002) proposing that 

exposure to pressure facilitates FGF-2/FGFR-2 interactions [45]. 

Pressure Induces Morphological Changes in Endothelial Cells 

It has been shown in several previous studies that exposure of endothelial cells to 

sustained hydrostatic pressure results in morphological changes and cytoskeletal 

reorganization [12, 14]. Sumpio et al. (1994) showed that endothelial cells exposed to 

static pressures became “more elongated and ellipsoidal in shape, but their long axes 

were randomly oriented” after exposure [12]. Acevedo et al. (1993) showed that pressure 

exposure induced “morphological, proliferative, and bi-layering responses” in endothelial 

cells, which consisted of a transformation from “a polygonal, ‘cobblestone’ arrangement 

to an elongated, randomly oriented cell cluster morphology” [14]. Microscopy results of 

the present study also indicate that cells exposed to pressure exhibit morphological 

changes (i.e., cell elongation) similar to those observed in previous studies. In the 

representative images in Figure 4.6c in Section 4.6, cells exposed to a 40 mmHg 

sustained pressure for 3 days appeared to elongate in randomly oriented directions as 

described in earlier studies. This response was also observed in BAEC cultures exposed 

to 20 mmHg (data not shown), but it is interesting to note that, even though exposure to 

40 mmHg for 72 hours did not elicit a significant increase in cell density, it did elicit 

morphological changes. 

 MAZ-51 Inhibitor Blocks Increased Proliferation in Response to Pressure 

 It has been difficult to ascertain the role of VEGFR-3 expression in vascular 

endothelial tubulogenic processes because its ligand, VEGF-C, also binds strongly to 
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VEGFR-2 [29]. However, BAEC have been shown to express both VEGFR-2 and 

VEGFR-3. [29]. It has been shown that BAEC cultures uniformly express VEGFR-2, for 

which autophosphorylation is induced by binding of the VEGF-A, VEGF-C, VEGF-D, or 

VEGF-E ligands [29]. In contrast, studies have shown that expression of VEGFR-3 by 

vascular endothelial cells (specifically BAEC) is not uniform, but rather, heterogeneous 

[29]. Persaud et al. conducted a study similar to the one discussed herein in which BAEC 

were grown in 3-D collagen gels and exposed to exogenous growth factors and inhibitors 

[29]. They reported that BAEC gel invasion and tube formation could be induced using a 

proteolytically-modified VEGF-C analog, which was established as a ligand for both 

VEGFR-2 and VEGFR-3 (Joukov et al., 1997; Tille et al., 2003) [29, 46]. It was observed 

that invasive and tubulogenic responses of BAEC could be completely inhibited by 

antagonistic antibodies to VEGFR-2 when the inducing-agent was VEGF-A, which is not 

a ligand for VEGFR-3 [29]. When the exogenous inducing-agent was the VEGF-C 

analog, which binds to both VEGFR-2 and VEGFR-3, the response “could only be 

inhibited by a maximum of 67% by antagonizing VEGFR-2 [29, 46]. Therefore, the 

response must have been elicited through the VEGFR-3 pathway, indicating that some 

BAEC expressed VEGFR-3. Persaud et al. (2004) also analyzed BAEC VEGFR-3 

expression using fluorescence-activated cell sorting (FACS) to determine VEGFR-3 

expression levels in BAEC populations and determined that VEGFR-3-positive and 

VEGFR-2-negative BAEC subpopulations were approximately equal (i.e., VEGFR-3 

expression will be observed in 50% of any given BAEC population) [29]. 

 Having established that BAEC do express VEGFR-3, the present study 

determined whether its ligand, VEGF-C, plays a role in transducing pressures. It has been 
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shown that exposure of human vascular endothelial cells to cyclic pressure result in 

significant increases in proliferation that is mediated by VEGF-C [31]. In fact, Shin et al. 

(2002) showed that the VEGF-C gene in human umbilical vein endothelial cells 

(HUVEC) maintained under a 60/20 mmHg pulsatile pressure was the most highly 

upregulated gene [31]. Notably, it was established that HUVEC proliferation was 

upregulated in response to a 60/20 mmHg pulsatile pressure, but when HUVEC were 

incubated with mouse monoclonal VEGF-C antibody, this response was completely 

blocked [31]. Thus, VEGF-C appeared to serve as an autocrine signaling factor in the 

proliferative responses of endothelial cells to pressure stimulation. 

 In the present study, BAEC were incubated with varying concentrations of MAZ-

51 and exposed to a 20 mmHg sustained hydrostatic pressure that had been shown to 

stimulate a statistically significant increase in BAEC proliferation (See Section 4.6). 

MAZ-51 is an indolinone, a class of molecules that have the ability to inhibit the activity 

of receptor tyrosine kinases, that potently blocks ligand-induced autophosphorylation of 

VEGFR-3 [47]. MAZ-51 also inhibits VEGFR-2 autophosphorylation, although less 

strongly [47]. Based on these properties, MAZ51 was used to explore the possibility that 

VEGFR-3 plays a role in the proliferative responses of endothelial cells to pressure. 

As expected, exposure of BAEC to 20 mmHg sustained pressure produced a 

statistically significant (N=5, p < 0.05) increase in cell density as compared with controls 

(0 mmHg) in the absence of MAZ-51. Interestingly, exposure to 20 mmHg on average 

enhanced BAEC densities in the presence of both 1 µM and 5 µM concentrations of 

MAZ-51, although these effects were not statistically significant. However, pressure-

dependent increases in cell density was completely blocked at concentrations of 10 µM 
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MAZ-51 or greater. Notably, VEGFR-2 blockade requires concentrations MAZ51 greater 

than 50 µM [47]. Thus, it would appear that VEGFR-3 is involved in the transduction of 

the bovine aortic endothelial cell response to sustained hydrostatic pressure. 

Increased VEGF-C and VEGFR-3 Expression in Response to Sustained 

Pressure Exposure 

 To explore the possibility that pressure influences endothelial proliferation via the 

autocrine actions of VEGF-C, the present study assessed VEGF-C and VEGFR-3 

expression by BAEC in response to exposure to sustained pressure. As shown in Figure 

4.7b in Section 4.7, a significant increase was observed in BAEC expression of VEGF-C 

after exposure to 20 mmHg for 3 days. Exposure to both 20- and 40-mmHg sustained 

pressures produced significant increases in VEGFR-3 membrane expression after 3 days 

as compared with controls. These results further implicated VEGF-C and VEGFR-3 in 

the transduction of endothelial responses to sustained hydrostatic pressures. Since VEGF-

C and VEGFR-3 have been implicated in vascular cell tubulogenesis [29, 30, 33, 38] and 

because the proliferative responses of endothelial cells to pressure appears to signal 

through the VEGF-C/VEGFR-3 pathway, it follows that pressure may stimulate 

endothelial tubulogenic activity. Thus, the present study examined the effects of pressure 

on two early tubulogenic processes: migration/matrix invasion and tube/sprout formation. 

 

 5.5. Investigation of the Effects of Sustained Pressure on Endothelial 

Migration and Invasion 

 The bi-layer gel study described in Section 3.8 was employed to determine the 

effect of sustained hydrostatic pressures on the migratory and invasive behavior of 
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endothelial cells. Migration and invasion are but two cellular activities comprising the 

angiogenic cascade [22]. A scientific contribution of the present study was the 

development of a two-layer gel assay to assess the effects of pressure on endothelial 

migration in a 3-D format. Along this line, it was determined that endothelial cells grown 

on Cytodex3TM tended to migrate from the bead into the surrounding gel within the plane 

between two distinct gel layers co-planer with the mid-plane of the bead as shown in 

Figure 5.4a. 

	  

Using this method, migratory and invasive activity of endothelial cells was 

compared between various pressures and growth factor treatments. To confirm the utility 

of this approach to assess endothelial migratory responses to pro-tubulogenic stimuli, the 

effect of FGF-2 and VEGF-A on endothelial migration and invasion into the extracellular 

space was assessed. Both of these molecules have been previously shown to enhance 

endothelial migration [7, 22]. Using a novel two-layer configuration and analysis method 

(see Section 3.8), the present study showed that both FGF-2 and VEGF-A induced 

Figure 5.5a – Representative images of BAEC migrating from a CytodexTM bead in the bi-layer gel 
configuration. Shown are a phase-contrast image of a single bead with invading cells (Panel A) and 
the same image after processing using the InvasiQuant ImageJ macro. Cells migrated from the 
surface of the bead on the plane between the top and bottom gel layer, which is co-planar with the 
mid-plane of the bead. This allowed for all cellular activity to be captured on one microscopic focal 
plane and consistent image transformation using the InvasiQuant ImageJ macro. Images were 
captured at 100X magnification. 

 

A	   B	  
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significant increases (p < 0.05) in BAEC migration and invasion between the two 

collagen gel layers.  It should be noted that the effect of VEGF-A, however, was not 

observed until after 96 hours in culture (see Figure 4.8b) suggesting that FGF-2 was a 

more potent migratory stimulus. Nonetheless, these results collectively indicated the 

utility of the two-layer gel assay developed in the present study to assess the effects of 

pro-tubulogenic stimuli in modulating BAEC migration. 

 Interestingly, the only significant difference (p < 0.05) in migratory activity of 

BAEC in response to pressure observed in the present study was a decrease in the 

migration of cells maintained without growth factor supplementation under 40 mmHg for 

96 hours. In other words, exposure to 20 or 40 mmHg sustained pressure for up to 96 

hours did not enhance BAEC migration. It is possible that the image analysis method 

used to quantify the migration of BAEC populations was not sensitive enough to detect 

an effect of pressure on endothelial migration. A similar quantitative method has been 

used in previous studies to quantify angiogenesis [48]. Boettcher et al. (2010) developed 

a method for quantifying tube formation in mouse aortic ring experiments in which, after 

image processing, capillary-like sprouts are displayed in black pixels, which represent the 

area covered by invading cells that can be quantified easily by counting the number of 

black pixels [48]. Gray-scale images were processed by applying a high-pass filter to 

remove low frequency artifacts (e.g., structures out of focus or background 

inhomogeneities) and preserve high frequency gradients (i.e., capillary-like structures), 

then converting the image to a thresholded, binary-encoded image to allow for pixel-

counting [48]. The method used herein to analyze images of BAEC invasion was adapted 

from this approach, as described in Section 3.11. 
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Since previous studies suggested that pressure sensitizes endothelial proliferative 

responses to growth factor (e.g., FGF-2) stimulation, endothelial migration responses to 

pressure were also examined in the presence of pro-tubulogenic growth factors. Though 

FGF-2 (bFGF) and VEGF-A operate through independent pathways, both have been 

implicated in the stimulation of endothelial migration [33]. FGF-2 and VEGF-A, in 

isolation, enable similar cellular functions including migration and each factor is essential 

for endothelial tubulogenesis. However, they likely affect tubulogenesis at different times 

during the process [22]. In combination, FGF-2 and VEGF-A have a synergistic affect on 

cell invasion and tube formation [22].  

Previous studies have shown that FGF-2 is capable of inducing both cell 

mitogenesis and cell mobility [34]. FGF-2 binding activates a dual transduction pathway, 

with one pathway leading to a migratory phenotype and the other pathway leading to cell 

proliferation [34]. FGF-2 has been implicated in chemotactic endothelial cell migration 

[49]. Specifically, FGF-2 has been shown to drive endothelial invasion into collagen 

matrices by upregulating the expression of the plasminogen activators and matrix 

proteases necessary for dissolution of the basement membrane prior to migration and 

sprouting [32]. 

VEGF-A (also referred to as VEGF) is the pro-angiogenic monomer that binds to 

the VEGFR-1 and VEGFR-2 receptors. VEGF-A is a potent angiogenic agent that 

regulates all of the keys steps of the angiogenic process, including endothelial cell 

proliferation and migration [49]. Though VEGFR-1 is the high-affinity receptor for 

VEGF-A, the migratory response of endothelial cells is regulated by the binding of 

VEGF-A to VEGFR-2 [49]. 
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It has also been reported that VEGF-C, which binds to both VEGFR-2 (low 

affinity) and VEGFR-3 (high affinity) in BAEC, induces endothelial migration in 

collagen matrices [29, 50]. Moreover, BAEC migration induced by exogenous VEGF-C 

can be completely blocked by the inhibition of VEGFR-3 [29]. Interestingly, Persaud et 

al. (2004) showed that BAEC migrated towards localized concentrations of a VEGF-C 

analog; a response that was abrogated in a dose-dependent manner by addition of a 

VEGFR-3 antagonistic antibody (mAb hF4-3C5) [29]. However, the study by Persaud et 

al. (2004) also revealed that the migratory response to VEGF-C could not be completely 

blocked by inhibition of binding to VEGFR-2, the low-affinity receptor for VEGF-C 

[29]. As explained in the study, the most obvious explanation for the increased migratory 

response of VEGFR-3-expressing BAEC is that the affinity of VEGF-C for VEGFR-3 is 

about fivefold higher than for VEGFR-2. [29]. Thus, stimulation of VEGFR-3 by VEGF-

C is likely to be stronger and more sustained than that of VEGFR-2 [29]. Even though the 

expression of VEGFR-3 in normal cultures of BAEC is approximately 50% [29], the 

high-affinity binding of VEGF-C to VEGFR-3 is strongly indicative that the VEGF-

C/VEGFR-3 pathway plays a role in BAEC migration and tube formation. 

In summary, the methods used herein to quantify migration and invasion were 

able to detect increases in migration in response to FGF-2 and to VEGF-A under control 

conditions. As shown in Figure 4.8b, after 72 hours, significantly increased (p > 0.05) 

migration was observed in cultures exposed to 2.5 ng/mL FGF-2 as compared with 

cultures maintained under complete media without added growth factors. After 96 hours 

under atmospheric pressure (0 mmHg), significant increases in migration were observed 

in both the FGF-supplemented and VEGF-supplemented cultures as compared with 
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controls without added growth factor. This provides some evidence that the migration 

assay and method of analysis are capable of detecting expected changes in endothelial 

migration. The same methods and analysis were also applied to determine whether 20 or 

40 mmHg sustained pressures affect endothelial migration. The only significant 

difference observed was a decrease in endothelial migration after 96-hour exposure to a 

40 mmHg sustained pressure in the absence of added growth factors. Considering that a 

40 mmHg sustained pressure was shown as having no significant effect on cellular levels 

of VEGF-C, the mechanism through which a 40 mmHg sustained pressure suppresses 

BAEC migration, if at all. It is likely that a more refined experiment and method of 

analysis may be required to detect subtle changes in endothelial migration. 

	  

5.6. Investigation of the Effects of Sustained Pressures on Endothelial 

Tube Formation 

	   Tube formation experiments were performed according to the protocol in Section 

3.8 through Section 3.12 in order to confirm the effects of known pro-tubulogenic growth 

factors on tube formation and to determine the effect, if any, of physiologic sustained 

pressures on tube formation. Many growth factors have been implicated in endothelial 

tube formation, however, none more so than those of the FGF and VEGF families. FGF-2 

is one of the more studied pro-angiogenic factors and has been shown to be a potent 

mitogen and chemotactic factor capable of inducing endothelial cells to invade 

extracellular matrices and form capillary-like structures in vitro [17, 32]. FGF-2 has been 

shown to promote tubulogenesis by eliciting a variety of cellular activities such as cell 

elongation, proliferation, migration, and protease production and release [14, 22, 29, 32, 

33, 49]. FGF-2 release has also been shown to be involved in the responses of endothelial 
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cells to pressure [14]. Additionally, exposure of endothelial cells to exogenous FGF-2 has 

been shown to induce autocrine expression of VEGF-A [29]. 

 VEGF-A is also a potent mitogenic factor that is highly-specific to vascular and 

lymphatic endothelial cells and plays a multifunctional role in both angiogenesis and 

lymphangiogenesis [38, 51]. The role of VEGF-A in angiogenesis is central as it affects 

and regulates all of the key steps of the angiogenic (and lymphangiogenic) process [49]. 

VEGF-A has been shown to induce cell proliferation in both vascular and lymphatic 

endothelial cells [38, 49]. VEGF-A has also been implicated in the induction of cell 

survival, cytoskeletal reorganization, migration, tube formation, and branching 

morphogenesis [38, 49, 51]. Though VEGF-A is functionally essential for endothelial 

tubulogenesis, its release or expression, however, has not been shown to be affected by 

pressure exposure. 

 FGF-2 and VEGF-A were also used in combination in the tube formation 

experiments as it has been shown that “VEGF-A and FGF-2 synergize in the induction of 

endothelial cell invasion and tube formation in collagen gels [22]. It has been proposed 

that VEGF-A may promote early tubulogenic activity whereas FGF-2 might be involved 

in the later morphogenic and cellular remodeling activities [22]. Cavallaro et al. (2001) 

hypothesized that FGF-2 “triggers” tubulogenesis when VEGF-A is already present in the 

pericellular environment [22, 37]. Mandriota and Pepper (1997) showed that exogenous 

FGF-2 upregulates membrane expression of VEGFR-2 in BAEC [37]. However, as 

previously mentioned, basal levels of VEGFR-2 expression are not affected by blocking 

FGF-2 [37]. Combined, these findings support the possibility that FGF-2 may influence 
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the activities of endothelial cells under pressure hydrostatic pressures independent of 

VEGF-A. 

 Unlike for VEGF-A, VEGF-C expression has been shown to be upregulated by 

exposure of endothelial cells to pressure stimulation. In fact, the present study showed for 

the first time that exposure of BAEC to hydrostatic pressures selectively upregulated 

expression of VEGF-C and its high-affinity receptor for VEGFR-3. VEGF-C has been 

implicated in the stimulation of both angiogenesis and lymphangiogenesis through the 

enhancement of endothelial cell proliferation, migration, and tube formation [29, 38]. 

Interestingly, VEGFR-3 is associated predominantly with lymphangiogenesis, 

particularly in the developing embryo. Moreover, it has also been shown that both FGF-2 

and VEGF-A plays an upstream role in VEGF-C expression by cultured vascular 

endothelial cells [15]. These factors, taken together, support the notion that the pro-

tubulogenic effect of pressure on endothelial cells involves VEGF-C/VEGFR-3 

interactions. 
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Table 5.6a – Summary of Significant (p < 0.05) Differences between Pressure and Control Cultures. 
Summary table of the significant differences in the various tube formation measures between pressure-
exposed and control cultures within each growth factor treatment group. Differences in which the measured 
value of the pressure-exposed group was significantly greater than that of the control group are marked 
with a plus (+) symbol and those where the pressure-exposed group was significantly less than the control 
group with a minus (-) symbol. Significant differences were determined by paired Student’s t-test where p 
< 0.05 indicated a significant difference. 

Summary of Significant Pressure/Control Differences 

  72 Hours 96 Hours 

  No GF FGF-2 VEGF FGF+ 
VEGF 

No GF FGF-2 VEGF FGF+ 
VEGF 

20
 m

m
H

g 

Total (> 50 

µm) 

+ +       

> 75 µm + +       

> 150 µm   -    -  

Mean Length   - -   -  

40
 m

m
H

g 

Total (> 50 
µm)  +      + 

> 75 µm         

> 150 µm         

Mean Length         
 

As summarized in Table 5.6a, the number of sprouts greater than 50 µm (total) 

and 75 µm increased after 72-hour exposure to 20 mmHg. Interestingly, exposure to a 20 

mmHg sustained pressure for 72 hours increased VEGF-C expression (Figure 4.9), 

VEGFR-3 expression (Figure 4.9), and proliferation (Figure 4.6a, Figure 4.6b) by 

BAEC. Previous studies have shown that the endothelial responses to pressure may also 

involve the upregulation of FGF-2 expression or release [14, 45], which may potentially 

cause an increase in VEGFR-2 expression. It also possible that pressure-sensitive tube 

formation involved the sensitivity of endothelial cells to FGF-2 stimulation. As shown in 

Figure 4.10a and Figure 4.10b, significant increases were observed in both the untreated 

and FGF-2 treatment groups after exposure to 20 mmHg for 72 hours as compared to 
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paired cultures maintained under control (0 mmHg) pressure but otherwise similar 

growth factor conditions. Notably, the FGF-2 group exhibited, on average, a greater mean 

fold-change in the number of tubes than the untreated group. This indicates that FGF-2 

modulates the intensity of tubulogenic pressure response. The potential pathways by 

which pressure may influence endothelial tube formation is summarized in Figure 5.6a 

on the following page shows various pathways through which pressure transduction may 

occur. 

The mechanisms by which pressure elicits these effects on tubulogenic growth 

factors and receptors are varied. Previous studies have shown that endothelial cells 

synthesize intracellular FGF-2 under normal culture conditions [14]. These intracellular 

stores, located in the nuclei and cytoplasm, were diminished by pressure exposure, 

VEGFR-2 é VEGFR-3 é FGFR-2 

VEGF-A 

VEGF-C é FGF-2 é 

PRESSURE 

(proliferation, 
migration, 

differentiation, 
cytoskeletal 
remodeling) 

(proliferation, 
migration, tube 

formation) 

(proliferation, 
migration, tube 

formation) 

Figure 5.6a – The cumulative effects of pressure and growth factors on various other growth factors, 
growth factor receptors, and tubulogenic processes. Arrows indicate the effect that pressure has on 
the expression or release of each molecule. Up arrows next to growth factors or receptors indicate 
increases in that molecule. As shown, pressure causes increases (green) in FGF-2, VEGF-C, and 
VEGFR-3. Pressure also may, through the increases in FGF-2 expression or release (blue), increase 
VEGFR-2 expression.  Dashed-line arrows indicate low-affinity interactions. 
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indicating cellular release of cytosolic FGF-2 stores in response to pressure [14]. 

Pressure-induced FGF-2 release increases the concentration of exogenous FGF-2, which 

acts in an autocrine and/or paracrine manner and elicits the morphological, proliferative, 

and tubulogenic effects associated with FGF-2/FGFR-1 binding. It has also been shown 

that pressure causes increases in VEGF-C transcription [31]. Increased transcription may 

also be the mechanism by which pressure increases membrane expression of VEGFR-3, 

the high affinity VEGF-C receptor. 

A significant increase in sprouting was also observed after exposure of BAEC to 

40 mmHg in the presence of FGF-2 for 72 hours. This also supports the hypothesis that 

FGF-2 “sensitizes” endothelial cells to pressure or is the “trigger” for tubulogenesis in 

response to pressure-induced VEGF-C expression since exposure to 40 mmHg pressure 

alone was not shown to induce increased proliferation (Figure 4.6a and Figure 4.6b). 

FGF-2 is a known mitogenic growth factor and its release has been shown to be induced 

by select pressure regimes [14]. Because increased proliferation was not observed in 

response to 72-hour exposure to a 40 mmHg sustained pressure, it is likely that a 40 

mmHg sustained pressure does not elicit an effective increase in FGF-2 expression or 

signaling. This could explain why no significant difference in the total number of sprouts 

was observed in the untreated group (“No GF”) after 72 hours of exposure to 40 mmHg, 

but a significant increase was observed when cultures were supplemented with 2.5 ng/mL 

of FGF-2.  

Moreover, after 96 hours in culture, the combined effects of 40 mmHg pressure 

exposure and FGF-2 stimulation disappeared. In this regard, it is possible that BAEC 

cultures consumed the full doses of exogenous FGF-2 within the 96-hour duration of the 
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pressure experiments with the previously increased tubulogenic activity returning to basal 

levels. Prior studies have reported that the local microenvironmental concentration of 

growth factors and not the total dose is governs the resultant microvascular structure [17]. 

Therefore, it is possible that persistent increases in tubulogenic activity would be 

expected if FGF-2 levels in culture media were constantly replenished. Interestingly, 

Ozawa et al. (2003) reported that high initial doses of angiogenic factors, such as VEGF-

A, result in aberrant blood vessels and abnormal tube formation [52]. Thus, it is also 

possible that low (optimal) levels of growth factors stimulate a persistent and normal 

microvascular response as compared to high (abnormal) levels [17]. Therefore, pressure 

may play a role in maintaining vascular development at a physiologic level. 

It was also shown in the current study that BAEC stimulated with 2.5 ng/mL 

VEGF-A exhibited significant decreases in the number of tubes greater than 150 µm in 

length and a significant decrease in the mean tube length per bead after both 72- and 96-

hour exposure to a 20 mmHg sustained pressure (Figure 4.12e). Ozawa et al. (2003) 

provided evidence that a threshold level of VEGF-A that supports physiologic levels of 

angiogenesis exists, and that exposure to levels of this growth factor in excess of this 

threshold concentration results in aberrant tube formation and are likely to result in 

capillary-like vessels displaying morphological and functional abnormalities [52]. As 

mentioned previously, it has been shown in this study that a 20 mmHg sustained pressure 

elicits significant increases in VEGF-C expression, which, in addition to promoting 

tubulogenic activity, has been shown to increase membrane expression of VEGFR-2 (the 

high-affinity receptor for VEGF-A) (Figure 4.9). Notably, a 72-hour exposure to 20 

mmHg was also shown to increase membrane expression of the high-affinity VEGF-C 
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receptor, VEGFR-3. Taken together, these findings support the hypothesis that pressure, 

in combination with exogenous VEGF-A supplementation, may have caused a supra-

physiologic expression level of vascular endothelial growth factor activity. This could 

explain why cultures supplemented with VEGF-A were unable to support sustained tube 

growth for 72 or 96 hours, which is in agreement with the results reported by Ozawa et 

al. (2003) [52]. 

 

5.7 Concluding Remarks 

The results of the present study, combined with data from prior studies, suggest 

that hydrostatic pressure may play a role in endothelial tubulogenesis in vivo and be used 

as a modulating factor for neovascularization of tissues grown in vitro. This study 

suggests that the pressure modulation is actuated through a coupling of the FGF-2/FGFR-

2 and VEGF- C/VEGFR-3 pathways.  

Both FGF-2 and VEGF-C play significant roles in tubulogenesis in both vascular 

and lymphatic networks. It has been shown in this study as well as previous studies that 

exogenous FGF-2 and VEGF-family growth factors, specifically VEGF-A and VEGF-C, 

synergistically enhance in vitro BAEC tubulogenesis [37, 38, 53]. The present study 

presents evidence, consistent with previous studies [37], that FGF-2 signaling is a 

precursor to VEGF-C-mediated tubulogenesis. This finding is consistent with reports [37] 

that FGF-2 “triggers” the endothelial response to VEGF-family growth factors. Thus, 

pressure may be an effective modulator of vascular and lymphatic growth for its reported 

ability to upregulate the local activity levels of both FGF-2 and VEGF-C [2, 14, 19, 31, 

45]. Thus, it is possible that FGF-2 “sensitizes” endothelial cells to pressure. 
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 The current study also examined the effects of pressure on endothelial 

tubulogenesis defined in terms of a discrete set of endothelial activities: proliferation, 

migration into the extracellular matrix, and the assembly of capillary-like sprouts/tube. In 

this regard, BAEC seeded on polymeric microcarrier beads and embedded in collagenous 

matrices were capable of forming sprouts and doing so under a variety of conditions. 

Specifically, linear, multicellular sprout-like structures extended from the Cytodex3TM 

bead surfaces. It should be noted that the present study did not investigate whether 

endothelial sprouts formed lumens in vitro.  However, previous studies [54] have shown 

that endothelial sprouts typically do not form lumens after two to three days in culture 

and require other cell types such as pericytes or fibroblasts. Future studies should thus 

incorporate the use of other cell types to investigate lumen formation in a more 

physiological setting. 

Despite this limitation, the observed robust tubulogenic response of BAEC to the 

20 mmHg pressure stimulus was consistent with the magnitude-dependent effects of 

hydrostatic pressure on cell proliferation as well as on VEGF-C and VEGFR-3 

expression reported in this and previous studies [31]. Also, the observations that FGF-2 

promoted a detectable pressure-sensitive increase in endothelial sprouting under 40 

mmHg is consistent with the effect of FGF-2 in the 40 mmHg cell proliferation 

experiments [12]. 

Taken together, this study focused on elucidating the effects of hydrostatic 

pressure on endothelial tube formation in the context of the potential use of this 

mechanical stimulus as an approach to modulate microvascular formation in synthetic or 

in vitro-grown tissue constructs. Given the known effects of fluid flow and substrate 
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strain on endothelial cells [2], it is important to point out that the hydrostatic pressure 

regimes used in these experiments were applied in the absence of fluid flow to the 

incompressible supernatant layer. BAEC responses also occurred in the absence of 

substrate strain, since the ability of the applied pressure to deform the porous, fully 

hydrated collagen gel matrix to significant levels is unlikely. Based on these, the present 

study suggests a role for pressure in early endothelial tubulogenic activity of bovine 

endothelial cells. Future work, however, is needed to validate human endothelial cells 

respond to pressure in a similar way, considering that the end application is the 

engineering of replacement human tissues. 

In summary, the salient finding of the present Master’s dissertation-related 

research is that early endothelial tubulogenic activity exhibits pressure sensitivity. It 

remains to be determined whether pressure-sensitive sprouting leads to the eventual 

establishment of lumen-containing tubular networks. However, our results provide new 

evidence substantiating pressure as a tubulogenic stimulus. The findings in this study 

have implications in a variety of areas. First, these findings add to those of previous 

studies in elucidating the pressure transduction mechanism of endothelial cells. Second, it 

has implications in pathological conditions where supraphysiologic pressures may cause 

erratic and abnormal vascular formation (e.g., glaucoma, cancer, and wound healing). 

And finally, this study advocates for the use of pressure to modulate neovascularization 

of tissues and synthetic tissue constructs in vitro so as to promote their ability to integrate 

and survive in vivo. 
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