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ABSTRACT OF DISSERTATION 

 

SEGMENTATION STRATEGIES FOR ROAD SAFETY ANALYSIS 
 

This dissertation addresses the relationship between roadway segment length 

and roadway attributes and their relationship to the efficacy of Safety Performance 

Function (SPF) models. This research focuses on three aspects of segmentation: 

segment length, roadway attributes, and combinations of the two. First, it is shown that 

choice of average roadway segment length can result in markedly different priority lists. 

This leads to an investigation of the effect of segment length on the development of 

SPFs and identifies average lengths that produce the best-fitting SPF. Secondly, roadway 

attributes are filtered to test the effect that homogeneity has on SPF development. 

Lastly, a combination of segment length and attributes are examined in the same 

context. 

In the process of conducting this research a tool was developed that provides 

objective goodness-of-fit measures as well as visual depictions of the model. This 

information can be used to avoid things like omitted variable bias by allowing the user 

to include other variables or filter the database. This dissertation also discusses and 

offers examples of ways to improve the models by employing alternate model forms. 

This research revealed that SPF development is sensitive to a variety of factors 

related to segment length and attributes. It is clear that strict base condition filters 

based on the most predominant roadway attributes provide the best models. The 

preferred functional form was shown to be dependent on the segmentation approach 



 
 

(fixed versus variable length). Overall, an important step in SPF development process is 

evaluation and comparison to determine the ideal length and attributes for the network 

being analyzed (about 2 miles or 3.2 km for Kentucky parkways). As such, a framework is 

provided to help safety professionals employ the findings from this research. 

 

KEYWORDS: Road Safety, Segmentation, Safety Performance Functions, Highway Safety 
Manual, Network Screening 
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Chapter 1. Introduction 

1.1. Problem and Background 

 Data-driven approaches to highway safety have been widely used to identify 

high-risk road segments and intersections through the Highway Safety Improvement 

Program (HSIP) in order to improve highway safety. Wu et al. (2012) found that national 

traffic fatalities declined approximately 7.5 percent following the introduction of the 

HSIP.  Interventions based on data driven-prioritization methods are responsible for 

much of this reduction.  Still, according to the National Highway Traffic Safety 

Administration, motor vehicle crashes resulted in 37,461 deaths in the United States in 

2016 (a rate of 1.18 fatalities per 100 million vehicle miles travelled) (NHTSA, 2017).  

The Highway Safety Manual (HSM) outlines methodologically sophisticated 

techniques to predict the number of crashes for specific facility types. Transportation 

agencies can implement these to predict the potential number of crashes and use their 

findings to develop cost-benefit estimates in order to better allocate funding and 

maximize the benefits of safety improvements. Techniques that had been applied 

before the introduction of these methods generally relied on crash frequencies or crash 

rates. Despite their widespread use, the randomness of crash data could often result in 

inappropriate selections for safety improvements (AASHTO, 2010, Srinivasan et al., 

2011). 

Methods described in the HSM, particularly the Empirical Bayes (EB) method, 

have proven extremely effective. States which have prioritized hazardous sites through 

the use of detailed roadway inventory data and the EB method have experienced the 

most significant crash reductions (Wu et al., 2012). Elvik (2008) demonstrated that an EB 

technique performs better at identifying hazardous locations as compared to four other 

methods; including counts, crash rates, and critical counts. 

The HSM describes a network screening approach for prioritizing roadway 

segments for safety analysis (AASHTO, 2010). Network screening is a technique that 
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analyzes homogeneous roadway segments (i.e., segments with similar geometric and 

traffic characteristics). Crashes are assigned to each segment and a Safety Performance 

Function (SPF), Crash Modification Factors (CMFs), and calibration identify the number 

of crashes expected for the section. An SPF is a negative binomial regression model that 

is used to predict crash frequency typically using traffic volume and segment length as 

predictors. EB adjusts the expected number of crashes based on historical data for a 

better estimate. Research has shown that segment length can affect the outcome of 

safety prioritization using methodologies predating the HSM (Cook et al., 2011, Green et 

al. 2017). Research based on the HSM methodologies has demonstrated this effect using 

SPFs (Srinivasan et al., 2011) but there is currently no guidance as to what segment 

length to use for network screening to identify and prioritize hazardous locations. The 

research presented here investigates the effect of segment length on safety analysis in 

the context of network screening. Transportation professionals can benefit from this 

research with guidance as to what segment length is most appropriate and beneficial for 

particular safety analyses. 

The development of SPFs requires a data set of roadway segments or 

intersections that are homogeneous; that is, with similar roadway characteristics. A 

common way to create a dataset of homogeneous roadway segments is to begin with 

roadway inventory data. The HSM offers guidance as to what roadway characteristics 

could be used for creating homogeneous segments (AASHTO, 2010). In the U.S., state 

transportation agencies benefit from a uniform set of roadway elements developed by 

the Federal Highway Administrations (FHWA) known as the Model Inventory of 

Roadway Elements (MIRE) (FHWA, 2010). Many of these inventories were created at 

different times, by different groups within an agency, and, most importantly, using a 

variety of segmentation techniques. In the context of roadway segments, segmentation 

is usually defined by beginning and ending milepoint. This facilitates the use of a linear 

reference system – encouraging the use of a Geographic Information System (GIS). The 

decision of where to start and stop a given segment depends on the presence of 

inventory attributes. For instance, traffic volumes will change at major intersections, 
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whereas, the width of a right shoulder might change due to terrain or the availability of 

right of way. Segments may also be defined at the beginning and end locations of 

vertical or horizontal curves. Consider the following roadway segment in Figure 1 that 

depicts the changes of seven attributes and the resulting segmentation that would be 

required for homogeneity (at the bottom). 

 

Figure 1. Typical Segmentation Resulting from Varying Roadway Attributes 
 

 The combination of these seven attributes results in 10 homogeneous segments, 

some shorter in length compared to others. This network segmentation method results 

in the creation of segments of varying lengths and, in some cases, based on arbitrary 

break points (such as county boundaries1). This type of segmentation is based solely on 

the roadway attributes. 

 While it is necessary to use the attributes to create a roadway network for safety 

analysis, it is important to consider the length of the segment. In Kentucky, a network 

was segmented using a fixed length, a variable length, and a modified variable length to 

produce three distinct segmentation schemes (described in detail later). A network 

screening approach was used to analyze each network and each produced remarkably 

different ranking lists based on the safety performance of each segment. It is important 

                                                       
1 While these break points are necessary for political or for funding reasons, sometimes the breaks are 
meaningless with respect to the safety of the roadway.  
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to realize that one of the segmentation approaches is the most likely to produce a 

priority list that, when improved, will lead to a greater reduction in crashes.  

 Whether choosing attributes or changing segment length, the start- and end-

points of segments are likely to change. Therefore, the results of an analysis can be 

affected simply by changing the spatial domain of the network. This concept is well 

known in other disciplines. Geographers refer to this phenomenon as the Modifiable 

Areal Unit Problem (MAUP) (Openshaw, 1984). The concept is also exemplified in 

political boundary modification (gerrymandering). The same concept is also referred to 

as the scale effect by GIS software such as ESRI’s ArcGIS which describes “The scale 

effect exhibits different results when the same analysis is applied to the same data, but 

changes the scale of the aggregation units.” (ESRI, 2017). 

This concept is discussed by transportation engineers in recent research that 

examines macro-level safety level analysis (Lee et al., 2014). At the macro-level, Traffic 

Analysis Zones (TAZs) are used as the spatial unit for analysis. These zones are formed 

from census blocks and are therefore typically smaller than county boundaries. Census 

blocks are the smallest geographical unit collected by the US Census Bureau. 

In contrast, when performing network screening, it is beneficial to analyze data 

at the segment level as opposed to points in space as in TAZs (consider the difference 

between a line and a polygon). At the segment level, it is helpful to employ a linear 

reference system to integrate roadway and crash data. The FHWA has identified the 

need for increased use of GIS for safety analysis as many agencies still rely on legacy, 

non-spatial data storage or face administrative or technical obstacles (FHWA, 2013). 

Due to the nature of linear networks, this research relied on experience in both highway 

safety and spatial analysis.  

The network screening approach in the HSM requires that a roadway should be 

divided into homogeneous segments based on engineering judgment and using certain 

roadway attributes. The HSM suggests a minimum length of 0.10 miles (0.16 km), but 

the manual does not offer further guidance or statistical techniques to help researchers 
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decide what length to use (AASHTO, 2010). This work explores the problem of 

identifying the most important variables when considering roadway segmentation for 

safety analysis. The research also provides guidance on selecting a segment size and 

what attributes should be used to create segments.  

1.2. Research Objectives 

 Traffic safety professionals should be given guidance as to how roadways should 

be segmented to maximize the quality of safety performance functions and the network 

screening process. A primary objective of this dissertation is to develop guidance for 

specification of roadway segmentation in safety analysis. A key aspect is to explore the 

trade-offs between homogeneity and segment length.  

 This research seeks to explore three main aspects related to roadway 

homogeneity, segment length, and safety modeling when performing safety analysis: 

• What are the statistical implications of segment length when performing safety 
analysis? 

• What are the implications of roadway homogeneity on safety analysis? 
• What are the trade-offs between homogeneity and segment length on safety 

analysis? 
 
 The outcome of this research offers a better understanding of how the 

segmentation and homogeneity of a network affect highway safety. This information 

provides guidance to safety practitioners as to which segmentation should be used in 

safety analysis depending on user perspective. The resulting methodology offers safety 

practitioners a set of guidelines and tools to help improve network screening 

techniques. These methods can be extended to other states’ data and needs. 

1.3. Paper Organization 

 This research is organized to address the three main aspects discussed in the 

previous section. Following this introduction is a literature review (0) with two primary 

focuses: segment length and roadway attributes. The next four chapters are described 

below. 
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 0 explores the impact that changing segment length has on the quality of safety 

performance functions. A network of rural parkways was used in an effort to isolate the 

effect of segment length without introducing the effect of changing attributes. Parkways 

in Kentucky are functionally similar to interstates as they tend to be flat and straight 

with consistent roadway geometrics making them mostly homogeneous.  

Chapter 4 tests changes in roadway attributes on Kentucky roadway data. In 

contrast to 0, segment length is not specified; instead, the length is defined by the 

selected roadway attributes (recall the resulting segmentation from Figure 1). A by-

product of this exploration was the creation of a tool that automates the development 

of SPFs. A key advantage to this method of SPF development is the near-immediate 

feedback. The geometric attributes of a roadway network can be adjusted and the 

resulting SPFs can be quickly evaluated using a variety of metrics. These metrics also 

help identify data errors that can easily go unnoticed using more passive techniques. 

 Chapter 5 combines the efforts of two previous chapters by changing both 

length and roadway attributes while evaluating the resulting SPFs. The automation tool 

provides a visualization technique for this analysis allowing SPFs to be evaluated along 

two dimensions: length and attributes. 

 Finally, Chapter 6 summarizes the findings related to length and attributes in the 

context of highway safety. Recommendations are provided along with a framework for 

helping to develop an ideal SPF. 

  



8 
 

Chapter 2. Literature Review 

 The following sections describe the current state of the art related to roadway 

segmentation. Two primary areas of research for this analysis are segment length and 

roadway attributes. The first section pertains to the length of a segment and its impact 

on safety – generally these are fixed length segmentation techniques. The other section 

discusses how the selection of attributes relates to safety. These segmentation 

techniques are mostly variable length where the attributes of the road (or crashes) 

control the start and endpoints (and therefore the length) of the segment. 

2.1. Segment Length 

 Previous work on roadways in the state of Iowa has demonstrated that the 

choice of segment length significantly influences the identification of high-crash 

locations (Cook et al., 2011). Geyer et al. (2008), summarizing California’s data, found 

that segment length could affect the consistency of high crash identification. Segment 

length can also affect the outcomes of safety analysis for both extreme long and short 

roadway segments (Lu et al., 2013). For example, if segment lengths are chosen based 

on roadway attributes, on limited access roadways this may result in very long segments 

because there is little variation in attributes over long distances. Yet, using long 

segments for analysis may be inappropriate for two reasons: it would be economically 

impractical to improve them due to their long lengths, and only a small portion of the 

segment may, in fact, require improvements.  

On the other hand, using shorter segments can result in higher crash variations, 

and these fluctuations can introduce more uncertainty into SPF development. Srinivasan 

et al. (2011) showed that the EB method performs better with longer segments. 

Previous work has indicated that segment length can affect SPF development, the 

identification of high-crash locations, and feasibility of improvements, however, there is 

little guidance on setting optimal segment lengths, or if there should be statistical 

methods to define segment lengths. The Guide for Producing usRAP Star Ratings and 

Safer Roads Investment Plans suggests a minimum length of 2 miles (3.2 Km) for rural 
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areas, 1 mile (1.6 Km) for semi-urban, and 0.5 miles (805 m) for urban areas. However, 

the guide specifies no upper limit for length (usRAP, 2012). 

The accuracy of recorded crash location is also a factor to consider when 

identifying segment length. Green and Agent (2011) found that up to 8 percent of 

crashes may be incorrectly located by over 500 feet (152 m). Further, safety analysis 

based on data coded to very short segments will be more sensitive to errors in location 

(Ogle et al., 2011, Qin and Wellner, 2012). 

When developing homogeneous segment lengths, other important 

considerations are roadway attributes and factors relevant to the safety study (e.g., 

traffic volume, shoulder width, number of lanes). As the number of roadway attributes 

increases, the length of homogeneous segments declines. This reduction can be quite 

significant. Shorter segments typically reduce the statistical robustness of SPFs 

(Souleyrette et al., 2007). Due to the costs associated with constructability and 

mobilization, shorter segment length also diminishes the practicality of applying a 

treatment. 

Engineering countermeasures are applied to a specific roadway type based on 

roadway attributes and factors. Some countermeasures might only be applied over a 

short distance, such as the installation of a guardrail to prevent run-off-road crashes or 

shield a roadside from hazards. Other countermeasures, such as centerline rumble 

stripes, may be applied over much longer sections of roadways (Qin and Wellner, 2012). 

Crash analysis or pre-selected countermeasures can dictate the roadway data necessary 

to build a homogeneous network. As Koorey (2009) explained, the segmentation 

approach is often based on data availability. 

In addition to potential countermeasures, another critical factor for determining 

what roadway data are required is a user’s application. For instance, a state highway 

authority may segment a network based on highway district boundaries to more 

equitably allocate funding to each district. A list of hazardous locations, therefore, might 
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need to be stratified by district despite the fact that there may be more hazardous 

locations in one district compared to another.   

While a particular segmentation scheme may be appropriate for highway agency 

use, it could be inappropriate to disseminate that information to the public, which may 

view state transportation agency segmentations as arbitrary. This is a primary 

consideration of risk mapping, which is one of the protocols the Unites States Road 

Assessment Program (usRAP) uses to create thematic maps that inform motorists about 

the crash risk associated with different roadway segments (Harwood et al., 2015).  

2.2. Segment Attributes 

 Segmentation of the roadway is often dictated by the attributes chosen based on 

the analysis performed (Cafiso et al., 2008; Borso et al., 2014). The pattern revealed 

here is that the attributes of the roadway often control the segmentation used. Ideally, 

safety professionals could be offered guidance as to the segmentation length and 

technique based on the safety analysis to be performed. For example, a specific 

segmentation technique and length might be recommended for the implementation of 

cable barriers whereas another technique and segment length might be more 

appropriate for rumble strip installations. For each recommendation, the segment 

length, roadway characteristics needed, and crash type could be clearly defined.  

 Network screening requires segmentation of a road network so that each 

segment can be analyzed. The roadway geometrics and traffic characteristics are 

typically defined as line events along a route. These events are typically divided when 

more than one roadway attribute is used. For example, a two-lane roadway segment 

with constant roadway geometrics (e.g. shoulder width, presence of a median) but with 

a change in the traffic volume somewhere along the segment would be treated as two 

segments separated at the point of the traffic volume change.  

 There are many network screening techniques described in the literature that 

are used to identify roadway segments. Sliding Moving Window, Peak Searching, 

Continuous Risk Profile, and Latent Class Clustering are among the most referenced 
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techniques. In each technique, a quantitative comparison is made to determine the start 

and end points to be used in the safety analysis. Much of the research determines an 

ideal segmentation technique based on the roadway data used. For instance, Borsos et 

al. (2014) based their segmentation technique on data from AADT, road width, shoulder 

width, horizontal curves, and speed limit. Cafiso et al. (2008) determined that a fixed 

length segmentation technique having two curves and two tangents in each segment 

provided the best results. A data-intensive collection process was used to obtain 

horizontal and vertical curvature of the roadway and a review process to assess 

roadside hazard. The authors underscore that there are a variety of methods to create 

segmentation yet there is no widely used method. Table 1 summarizes recent research 

related to segmentation techniques as well as the data used to create segments. 

Table 1. Summary of Network Screening Techniques Including Year and Author 
Segmentation 
Technique 

Data Used to Create Segment 
Endpoints 

Reference Year 

Continuous Risk Profile traffic volume, collision data,  
safety performance function 

Kwon et 
al. 

2013 

Sliding Moving 
Window 

traffic volume, collision data,  
safety performance function 

Kwon et 
al. 

2013 

Peak Searching traffic volume, collision data,  
safety performance function 

Kwon et 
al. 

2013 

Fisher’s Clustering Crash data Lu et al. 2014 
Change in roadway 
data 

Road width, radius of curvature, 
shoulder width, number of lanes, 
traffic volume, posted speed limit 

Borsos et 
al. 

2014 

5 different 
segmentation 
techniques 

Volume, radius of curvature, vertical 
gradient, type of section, roadside 
attributes 

Cafiso et 
al. 

2012 

Latent class clustering Crash data Depaire et 
al. 

2008 

Variable length Volume, roadway geometrics, driveway 
density, roadside hazard, curves, etc. 

Koorey 2009 

Fixed length Volume, roadway geometrics, driveway 
density, roadside hazard, curves, etc. 

Koorey 2009 

Sliding window Window size, crash data Qin and 
Wellner 

2012 
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 The segmentation technique used has also been shown to impact safety analysis. 

Five segmentation approaches were compared and the goodness of fit of the SPF was 

used to evaluate each approach (Cafiso et al., 2008). Their evaluation determined that a 

fixed length segment with two tangents and two curves resulted in the best fitting SPF. 

Consistent with the studies described in the previous section, the segmentation 

technique resulting in the shortest segments performed the worst. In contrast, a New 

Zealand study showed that a variable length segmentation is preferred over fixed length 

(Koorey, 2009). The author contends that such an approach is computationally simpler 

when dealing with raw attribute data as compared to fixed length segmentation, which 

requires weighting of the attributes to fit predetermined lengths. Koorey (2009) also 

points out that despite the need for such a step in network screening, the guidance on 

segmentation is very limited. Qin and Wellner (2012) agree that a sliding window 

(variable) method works better than fixed length, and adds that with the prevalence of 

the EB method and the use of the HSM there is a need to understand the effect that 

segmentation has on safety analysis. Moreover, Qin and Wellner (2012) caution that 

segments based on changes in roadway data could introduce bias into the safety 

analysis. 

 Kwon et al. (2013) compared three network screening procedures and two 

segment sizes to determine which method performed the best at hot spot identification. 

The performance of each was rated based on metrics that revealed how well the 

method identified previously known hot spot locations. A method scored higher, for 

instance, if it was able to identify more of the previously known hot spots in the same 

number of ranked sites. Other metrics included how many miles of roadway needed to 

be reviewed to identify the previously known hotspots and a measure of hotspot 

detection efficiency. These metrics also translate into more effective use of a safety 

engineer’s time as they would have fewer sites to review. The study also points out that 

the different guidelines (as defined by a state transportation agency) used to create the 

segmentation can result in different SPF models. The study found that the Continuous 

Risk Profile (CRP) screening method out-performed the Sliding Moving Window and 
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Peak Searching methods. The CRP method uses a weighted moving average to filter out 

noise in the data and then a corresponding SPF to determine which segments have 

excess crashes. Additionally, it was found that a smaller segment size increased the 

number of sites that required review in order to identify previously known hotspots. 

 Crash data have also been exclusively used to determine segmentation. 

Clustering techniques have been applied to crash data to identify roadway segments 

that reduce the heterogeneity of the crash distribution (Lu et al., 2013; Depaire et al., 

2008). In these studies, the segments are defined by the locations of crashes based on 

similarities in the crash data. Lu et al. (2013) compare the goodness of fit of SPFs 

developed by three screening methods: fixed length, variable length, and Fisher’s 

clustering. Fisher’s clustering is a technique that creates a segmentation based on 

sections with similar crash distributions, and it produces the model with the highest 

predictive performance of the three. The authors indicate that Fisher’s clustering may 

also identify roadway segments where changes in geometry could be the cause for a 

high crash location. For example, a change in speed limit or in the number of lanes may 

contribute to the safety performance of a segment such as in a transition zone. Using 

traditional screening techniques, such changes would result in dividing the roadway 

segment in favor of roadway homogeneity; however, a clustering technique could 

identify these segments (Lu et al., 2013). Admittedly, they explain that this technique 

was only applied to freeways and should be further studied for other highway facilities 

and should be expanded to include multiple variables during the calibration process.  

 Another advantage to clustering techniques is that using a specific crash type for 

analysis may mask an underlying contributing factor. For instance, an increase in injury 

risk may exist for truck crashes on Sundays and holidays, however, research has shown 

that an analysis of all crashes (not just truck crashes) can hide the injury risk observed in 

truck crashes (Valent et al., 2002).  
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2.3. Summary 

 There are various methods applied to segmentation, yet there is no apparent 

preferred one (Cafiso et al., 2013). The significant amount of work which has been 

completed recently trying to identify the ideal segmentation shows the level of interest 

in improving this aspect of safety analysis. The research reviewed does not indicate 

consensus regarding the best way to create a network screening that allows for 

economic and precise roadway crash data analysis. Cafiso et al. (2008) and Borsos et al. 

(2014) agree that there are various methods available yet there is currently no 

consensus on the best method to utilize. Researchers have looked at factors such as 

segmentation technique and length, but all recognize that these variables have some 

uncertainty when applied to safety analysis. Qin et al. (2012) demonstrate that while 

segment size has influence over safety analysis, it is not the only factor. The authors 

continue that segment length is a complex subject and other factors can influence 

segment length (e.g. the countermeasure or geographic extent). Koorey (2009) points 

out that the advantages of variable over fixed segmentation length diminish when 

segment sizes are small, but it is not clear what the minimum length should be.  

 Previous research has conclusively demonstrated that segment length can 

significantly affect both SPF development and network prioritization screening. 

Research that uses segment lengths that are inappropriately or casually selected 

without proper justification may generate inaccurate models — just as models based on 

poorly chosen statistical techniques may produce dubious results. This research 

addresses this issue and identifies potential segment lengths, and attributes which 

should inform the establishment of segment lengths, in order to improve SPF prediction 

and network screening procedures.  
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Chapter 3. Optimizing Segment Length  

 This chapter explores the effect that segment length has in the context of 

highway safety using network screening. The chapter begins with a primer on safety 

performance functions, which is the basis for the HSM’s network screening approach. 

Next, it is demonstrated that a road network can be split using three different segment 

lengths to produce three separate network screening analyses. This is followed by the 

methodology and results of two scenarios, each testing various segment lengths. Lastly, 

the effect that segment length has on network screening is discussed.  

3.1. Safety Performance Function: A Primer 

 The HSM has facilitated the adoption of new approaches by safety professionals 

to address highway safety since its release (AASHTO, 2010). Highway safety has 

traditionally been measured using number of crashes, crash rates, crash costs, or a 

combination of those metrics. High-crash locations are selected based on somewhat 

arbitrary ranking or by comparison of crash rates to a critical rate factor. All methods 

have demonstrable disadvantages, particularly in network screening (Wu et al., 2012). 

Most notably, none of these methods account for regression-to-the-mean or selection 

bias (AASHTO, 2010; Persaud, 1984). When observed in crash data, these biases can 

produce misleading results when not corrected for. Traditional crash analysis relies on 

crashes normalized by exposure—typically traffic volume—to create a rate. However, 

the use of rates erroneously assumes a linear relationship between crashes and volume 

(Srinivasan et al., 2011). Most SPFs exhibit an exponential relationship between crashes 

and exposure (only when the exponent equals 1, a constant rate is observed across the 

volume spectrum). In general, segment length is treated as an offset in that it is directly 

proportional to the crash prediction. Equation 1 describes the relationship between 

crash prediction, traffic volume, and segment length.  
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𝑦𝑦 = 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏  (1) 

where: 

y=estimated crashes 
L=segment length (miles)               
ADT=traffic volume (AADT) 
And a and b are coefficients that describe the interaction among length, AADT, and the 
estimated number of crashes.  
 
 SPFs are models used to predict crashes based on traffic volume and other 

factors. A common modeling technique is to fit a statistical distribution to crash data 

(Zhang et al., 2007). A Poisson distribution is an ideal description for a specific roadway 

segment. In this case, the variance is equal to the mean. However, at the network level 

(i.e., across several of roadway segments) crashes exhibit a large variance and a small 

mean (i.e., the variance is greater than the mean). This is known as overdispersion. A 

more appropriate distribution is the Poisson Gamma or negative binomial distribution, 

which produces two parameters: the mean and the overdispersion (or shape) 

parameter. In this research, overdispersion is referred to as either theta or the inverse 

dispersion parameter k, where k=1/theta.  

 Figure 2 compares two SPF scatter plots: one with an SPF based on rural 

parkways (top) and one based on rural 4-lane divided (non-interstate and parkway) 

roads (bottom). 
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Figure 2. Comparison of Overdispersion for Two SPFs 
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 The rural parkway model has an overdispersion (theta) about 8 times as high as 

overdispersion for the rural 4-lane divided model. In this context, a higher theta 

indicates less overdispersion and, hence, a better model fit.2 This is expected, as rural 

parkways are generally homogeneous with respect to roadway geometrics. In contrast, 

other 4-lane divided roadways vary in design attributes and lack the homogeneity of the 

parkways. This design heterogeneity contributes to the overdispersion, as these changes 

in geometry are excluded from the model. This omission is typically detectable using 

cumulative residual (CURE) plots. 

 A CURE Plot is graph of the cumulative residuals versus an independent variable 

(typically traffic volume) (Srinivasan and Bauer, 2013a). Residuals are the difference 

between actual crashes and the SPF prediction at a given site. Plotting the residuals (not 

cumulative) versus a variable such as traffic volume produces a graph as shown Figure 3. 

 

Figure 3.  Residuals Versus Traffic Volume (AADT) 
 

                                                       
2 It is likely that this is the reason some references prefer the use of k, the inverse dispersion parameter. It is 
perhaps more intuitive to relate an increase in overdispersion with an increase in the parameter.  
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 The farther the point is from the x-axis, the greater the residual (i.e., the worse 

the model’s prediction). In some cases, the actual crashes are more than the SPF 

predicted (positive residual) and sometimes below (negative residual).  There can be 

more than one residual with the same AADT (but this is not easily shown in Figure 3).  

 The cumulative residuals, however, offer a better indication of when several 

residuals are stacked at the same traffic volume. Using typical network screening 

techniques, it is very common to have a long stretch of road with the same traffic 

volume, which could result in several segments with identical AADT. The cumulative 

residuals are computed by adding the residuals from a roadway segment to that of the 

previous site's cumulative residual. This cumulative summation is computed with the 

segments ordered by traffic volume (or in some cases segment length). Plotting the 

cumulative residuals versus traffic volume results in a CURE plot as shown in Figure 4. 

 

Figure 4.  Cumulative Residuals Versus Traffic Volume (AADT) 
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 Statistically, oscillation about the x-axis is expected due to random error – 

approximately following a normal distribution3 (Hauer, 2015). Anything that is not 

random error will deviate from the oscillation and can indicate a bad model fit or 

omitted variable bias (discussed in more detail in Section 4.2.1). The overdispersion 

parameter is useful in CURE plots too as it helps define confidence boundaries (Hauer 

and Bamfo, 1997). The boundaries are defined by two standard deviations (positive and 

negative). The data points in the CURE plot within these boundaries are more likely to 

be explained by random walk. 

 The assessment of CURE plots, while somewhat subjective, can provide high-

level screening to the SPF development process. When evaluating CURE plots, there are 

several aspects that indicate a good model (each demonstrated below). 

• Oscillating around the x-axis indicate; ending near zero. 
• Free of outliers as they can adversely affect the model parameters. 
• The cumulative residuals should rarely transgress the confidence bands. 
• Minimal drifting; either upward or downward. 
 
 Despite the subjectivity of these metrics, there are a few key advantages to this 

method of assessment. This evaluation is graphical and therefore can be performed 

quickly, especially when comparing several CURE plots at once. Figure 5 shows an 

example of a comparison of several CURE plots using Windows Explorer’s thumbnail 

images. 

                                                       
3 It should be noted that the approximately normal distribution is applied to the residuals and not the actual 
crash data. It is well known that a normally-distributed error term is typically not observed in crash count 
data (Zhang et al, 2009). 
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Figure 5. Comparing CURE Plots using Thumbnail Images 
 
 Another advantage to this assessment is that most of the aspects in a CURE plot 

that lead to a good model are mutually beneficial. That is, oscillation around the x-axis 

tends to produce a CURE plot without drifting. Likewise, the lack of large outliers tends 

to produce CURE plots with residuals within the confidence bands. Similarly, other 

combinations of these aspects lead to the same relationships.  

 The following figures provide examples of CURE plots that exhibit indicators of 

both desirable and undesirable models. In each figure, the red dots represent the 
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cumulative residuals with the blue and green dots representing the upper and lower 

confidence boundaries, respectively. 

 

Figure 6. A CURE Plot with Good Oscillation and Outside of the Confidence Bands 
 

 

 

Figure 7. A CURE Plot with Poor Oscillation and Outside of the Confidence Bands 
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Figure 8. A CURE Plot with a Likely Outlier and Inside of the Confidence Bands 
 

 

Figure 9. A CURE Plot with Significant Drift, no Oscillation, and Outside of the 
Confidence Bands 
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Figure 10. A CURE Plot with All Desirable Aspects 
 
 In addition to improving the models, CURE plots can also helpful in detecting 

data errors. An unexpected result was observed when comparing two models. The 

exclusion of very short segments had a dramatic effect on model performance – 

specifically with regard to omitted variable bias. In this application, this effect was 

counterintuitive. These segments varied in length between near zero and 0.7 miles. 

Consider the two CURE plots in Figure 11, with and without short segments. 

 

Figure 11. CURE Plots for a Rural 2-Lane with (left) and without Short Segments 
(right) 
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 Further inspection revealed that short segments are not actually contributing to 

this bias but rather were suggestive of a data error. The segments were plotted on a 

map in an effort to better understand why the short segments (referred to as 

remainders in Figure 12 below) were sensitive to omitted variable bias. 

 

Figure 12. Segments with and without Short Segments Around Fayette County 
Kentucky 
 
 The plot quickly revealed that urban segments were erroneously included in the 

model. A high concentration of short segments (green segments) were clustered in 

downtown Lexington. These segments should have been filtered out as they were not 

rural. The inclusion of urban segments introduced significant heterogeneity in the 

network. Urban segments are also typically shorter than rural segments (city streets 

have more breakpoints with changes in volume or changes in geometrics being more 

frequent). Because of this, the length filter likely excluded more urban than rural 

segments resulting in model improvement.  
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 As stated, the assessment of CURE plots can provide a high-level screening when 

comparing or improving models. Further refinement is achieved through comparing 

other goodness-of-fit metrics (discussed in 3.3.3). Once a model is selected, the 

parameters can be used to predict crashes for similar roadway types in the network 

screening process. Network screening using the HSM’s methodologies addresses many 

of the disadvantages of the traditional methods. SPFs are developed to better 

characterize the relationship between crashes and traffic volumes as well as other 

variables. Empirical Bayes (EB) addresses regression-to-the-mean bias by using actual 

crash data and the overdispersion parameter to adjust the expected crash experience at 

a site. This adjusted value is a more realistic measure of a site’s safety performance. 

More importantly, it describes the magnitude of crash reduction that could potentially 

be achieved. In Kentucky, this is referred to as “Potential for Crash Reduction” (PCR). 

Other states use the term “potential for safety improvement” synonymously.  

3.2. Demonstration of the Problem 

 A case study was conducted to demonstrate how segment length influences 

safety planning and to investigate appropriate procedures for defining segment length. 

Data from Kentucky’s HSIP were used to underscore the critical role that segment length 

plays in network screening. Each year, as part of the HSIP, a priority list of candidate 

locations for High Friction Surface Treatment (HFST) is prepared. HFST is typically used 

on horizontal curves to enhance vehicle grip and traction during wet conditions and 

therefore reduce roadway departure crashes. 

Using a single dataset of rural parkways (4-lane divided highways), the HSM’s 

network screening process was used to divide roadways into three distinct segment 

lengths. The following segmentation models were used (depicted in Figure 13): 

• Model 1:  A fixed length of 0.3 miles (480 m) 
• Model 2:  Variable segment length —adjacent segments with the same AADT were 

combined 
• Model 3:  Segments from Model 2 bisected at their respective midpoints. 
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Figure 13. Segmentation Models Compared 
 
 SPFs were developed for each of the models using lane departure crashes (all 

severity levels). The results were used to conduct network screening and develop 

network prioritizations based on PCR as described above. In practice, the resulting 

priority lists would be used to identify candidate locations for HFST installations. 

Preliminary analysis generated three priority lists — one for each model specified above. 

Table 2 lists SPF and overdispersion parameters for each model (details on these 

parameters are given in the results section). 

Table 2. Comparison of SPF Parameters and Overdispersion for All Three Models 

Analysis 

SPF Parameter4 
Overdispersion 
Parameter (k) a b 

Model 1 (0.3 miles) -4.6*** 0.6*** 1.82 

Model 2 (Combined) -5.2* 0.7** 0.66 

Model 3 (Midpoint) -4.8** 0.6** 1.01 

*95% significance level 
**99% significance level 

***99.9% significance level 
 

The SPFs are plotted against a range of traffic volume values for each model 

(Figure 14). 

                                                       
4 Based on Equation 1for a 5-year period 
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Figure 14. Safety Performance Functions 
 
 The top 100 miles (161 km) of the priority lists from each model were compared. 

The segments identified by each model varied. In some cases, two or all three of the 

models identified parts or all of the same roadway segments. In other cases, the models 

identified nearly exclusive segments. Figure 15 shows a map of the roadway segments 

identified by each model. An offset was used to plot the segments so that viewers can 

identify where overlap is present along the same routes.   
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Figure 15. Comparison of the locations of the highest PCRs for all three models 
(offset used for clarity). 
 
 Segment length influenced the priority lists created by the HSM-based network 

screening process (Figure 15). While each method generated models that overlap with 

one another to some extent, each produced discrete networks. The overlap (areas 

where both models identify the same segments) between Model 1 and Model 2 was 18 

percent. For Model 1 and Model 3 this was 17 percent. There was significantly more 

agreement between Model 2 and Model 3 — approximately 85 percent overlap, which 

is expected as they were based on similar segments. The real implication here is that 

because all three models produce different results there is a need to evaluate the 

arbitrary nature of segmentation. Another aspect is that this analysis only considers the 

first 100 miles of the network screening list. In most cases, states deploy systemic 

improvements across a much larger number of roadway miles. A key point here is that 

this analysis was performed on a specific crash type, for a specific countermeasure 
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application. It is suspected that other specifications would result in even more differing 

priority lists.   

3.3. Methodology 

 A database of Kentucky’s rural parkways was developed for the work to be 

completed in this research by combining Highway Information System (HIS) layers. 

Parkways are similar to the interstate system in Kentucky. Representative street images 

obtained from Kentucky’s Photolog5 are shown in Appendix A. The layers used were 

Traffic Flow (TF), Functional Classification (FS), and Median Type (MD). Along with the 

route ID, these layers were used to filter out segments that lacked traffic flow data, 

included ramp segments, large urbanized areas, and undivided parkway segments 

(there are very few miles of undivided parkways in Kentucky). The resulting network 

contained 961 segments representing 480 miles (772 Km) of parkways. For this analysis, 

other geometric attributes were not included such as lane and shoulder widths. These 

attributes are similar for rural parkways in Kentucky and therefore result in a 

homogeneous network that is ideal for this analysis – changes in roadway attributes can 

adversely affect model development. 

The following sections describe the two segmentation scenarios that were used.  

3.3.1. Scenario 1 – Rural Parkways with Fixed Length 

 The parkway network was matched to the crash database file. This analysis used 

all crash types and crash severities. A program was developed that produced a new 

segmentation of the network. Roadways were segmented using 16 predefined length 

categories. The segments were created starting at the beginning of a route and 

continued until either the route ended, AADT changed, or the length category was 

achieved. The following length categories were used: 

  

                                                       
5 Images obtained from http://maps.kytc.ky.gov/photolog/  

http://maps.kytc.ky.gov/photolog/
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• 0.10 miles (161 meters) 
• 0.20 miles (322 meters) 
• 0.30 miles (483 meters) 
• 0.40 miles (644 meters) 
• 0.50 miles (805 meters) 
• 0.60 miles (966 meters) 
• 0.70 miles (1127 meters) 
• 0.80 miles (1287 meters) 

• 0.90 miles (1448 meters) 
• 1.00 miles (1609 meters) 
• 1.50 miles (2414 meters) 
• 2.00 miles (3219 meters) 
• 2.50 miles (4023 meters) 
• 3.00 miles (4828 meters) 
• 3.50 miles (5633 meters) 
• 5.00 miles (8047 meters) 

 
 Each record included the route, start and end milepoints, and total number of 

crashes. The segment was discarded if the resulting length was less than the target 

length. This was typically the case at the end of route or where a change in AADT 

occurred. These segments were discarded as they were less than the length category 

and therefore would affect the segment length. The result was 16 new road networks 

that represented the same roadway and crash data but each with different lengths. 

An SPF was developed for each dataset for use in network screening. An SPF was 

used to predict crashes based on segment length and AADT for each segment following 

the form in Equation 1. The SPF predicts crashes over a five-year period while using a 

single year’s AADT. While this did not affect regression results, it impacted the scale of 

the regression parameters, which is important to recall when comparing the results to 

other SPFs. Kentucky does not collect AADT every year for all roadway segments. 

Therefore, a single AADT value was used to represent the five-year period. Previous 

research has demonstrated that AADT values in Kentucky for one year vary by under a 

half a percentage point when compared to the previous four years (Green et al., 2015). 

This very minor change is insufficient to justify using different AADT values for each 

year, especially considering that this might complicate the segmentation process. 

Regression parameters were derived using the statistical program R, which fits 

the model using negative binomial regression. The resulting SPF and overdispersion 

parameter were used to conduct a network screening process on the roadway network. 

The overdispersion parameter measures the degree to which the variance exceeds the 

mean (AASHTO, 2010). PCR was calculated for each segment using the EB Method, as 
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recommended by the HSM. The Empirical Bayes Estimate (EBE) was calculated with 

Equation 2: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = 𝑊𝑊𝑒𝑒𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑖𝑖 ∗  𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + (1 −𝑊𝑊𝑒𝑒𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑖𝑖) ∗ 𝑂𝑂𝑂𝑂𝑖𝑖  (2) 

where: 

𝑊𝑊𝑒𝑒𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑖𝑖 =  1

1+𝑘𝑘∗
SPF𝑖𝑖
𝐿𝐿𝑖𝑖

                  

SPFi = predicted crashes at site i using SPF (for 5-year period)6 
k = overdispersion parameter (or 1/theta) 
Li = Length of site i in miles 
OCi = Observed crashes at site i 
 

The PCR at site i was calculated by subtracting the predicted crashes (from SPF) 

at site i from the EBE at site i: 

𝑆𝑆𝑂𝑂𝑃𝑃𝑖𝑖 =  𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 −  𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 (3)  

This is represented, graphically, in Figure 16. The green line represents an SPF 

with E[N] representing SPFi at site i. Similarly, N represents the observed crashes at site i 

(OCi) and EB[N] represents EBEi. 

                                                       
6 The year term is omitted from this equation since the data are for a 5-year period and is justifiable for the 
reasons discussed above.  
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Figure 16.  Graphical representation of potential for crash reduction. 
 
 The PCR represents the likely number of crashes that could be eliminated with 

appropriate improvements. Each site can be prioritized by its PCR value. Typically, this 

list is sorted in descending order, with the top sites having the most potential for safety 

improvements. In addition to the SPFs, several metrics and descriptive statistics were 

calculated to evaluate the models as well as CURE Plots (discussed earlier) and scatter 

plots. It should be noted that the cumulative residuals are plotted versus traffic volume 

and not length since, in this analysis, length is constant. 

3.3.2. Scenario 2 – Rural Parkways with Lower AADT 

 This scenario used the same procedure to establish segment lengths. However, 

any segment with an AADT over 15,000 was omitted from further analysis. This decision 

was motivated by an examination of the CURE Plots from Scenario 1. The CURE Plots 

tended to stop oscillating about the x-axis above an AADT of 15,000, which is indicative 

of model bias when the AADT approaches that range. This is discussed in more detail in 

the results section. 
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3.3.3. Safety Performance Function Metrics 

Each scenario resulted in 16 SPFs. Formulas from an Excel-based SPF analysis 

tool — FHWA’s The Calibrator — were used to generate metrics and compare them. The 

Calibrator User Guide was referenced for the following metrics in an effort to evaluate 

the SPFs (Lyon et al., 2016). 

• Modified R2   
o Measures the amount of variation explained by the SPF. Higher values are 

optimal. Values over one indicate overfitting, which is not optimal. 
o This is a pseudo R2 — negative binomial regression does not generate a 

metric strictly analogous to R2.  
• Mean Absolute Deviation (MAD) 

o Measures the average absolute variation between the predicted and 
observed crashes at each site. Lower values are optimal. 

• Akaike Information Criterion (AIC) 
o A measure that considers both goodness-of-fit and model complexity. Lower 

values are optimal.7 
• CURE Plot   

o A unique assessment tool for SPF; unlike the other metrics, they provide a 
measure of the SPF’s functional form (Srinivasan and Bauer, 2013a). 

o CURE plots that oscillate around the x-axis indicate the absence of model 
bias, which is ideal. 

o Outliers can be identified as large vertical jumps. 
o The cumulative residuals should rarely transgress the confidence bands  

• Percentage CURE Deviation (PCD) 
o A more objective measure of bias in the SPF model. Values under 5% are 

statistically significant at the 95% confidence level. 
• Maximum Absolute CURE Deviation 

o A measure that represents the largest — positive or negative — deviation 
(cumulative residual) from the CURE Plot. Lower values are optimal. 

 
3.3.4. Evaluation of Potential for Crash Reduction 

 In addition to comparing goodness-of-fit metrics for the various length 

categories, it was also meaningful to compare the resulting segments with the highest 

potential for crash reduction. A comparison was performed similar to the analysis in 

                                                       
7 AIC is generally best for comparing different model forms from the same dataset with the same sample 
size (Geedipally et al., 2008). This measure is therefore inappropriate for comparing different length 
categories as the sample sizes change. AIC will be meaningful in the next chapter. 
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section 3.2 to demonstrate how changing the length can affect the resulting priority 

lists. The PCR was calculated for all segments and the top ten PCRs were mapped and 

compared to the top ten lists from all other length categories. 

3.4. Results 

In this section SPF metrics and CURE plots are used to evaluate ideal 

segmentation lengths with the goal of providing guidance to practitioners on roadway 

network segmentation. 

3.4.1.  Scenario 1 Results 

Results from Scenario 1 were used as a starting point to evaluate segmentation 

length categories. The SPF parameters for the 16 SPFs ranged from -5.84 to -5.06 for a 

and around 0.86 for b. Values for the metrics discussed in the previous section informed 

this assessment. Table 17 displays these values for each length category. Total crashes, 

overdispersion, and sample size are included as well. The least optimal values are in 

dark grey with more optimal values indicated by lighter shading. The CURE Plots were 

examined and interpreted to derive information about outliers and oscillation.  
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Table 3. SPF Metrics and Descriptive Statics for Scenario 1 by Length Category 

 
Length Category (Miles) 

 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.50 2.00 2.50 3.00 3.50 5.00 

Segments 4652 2318 1532 1138 895 738 629 543 472 472 263 189 144 107 91 52 

k 0.6 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

Crashes 5488 5453 5408 5328 5257 5213 5183 5042 4946 4946 4485 4214 4074 3627 3559 2800 

AIC 13716 9152 6991 5692 4769 4155 3690 3262 2944 2944 1783 1349 1080 844 730 442 

Mod. R2 0.07 0.09 0.09 0.11 0.11 0.12 0.13 0.15 0.13 0.15 0.25 0.33 0.31 0.31 0.34 0.32 

PCD 9.20% 9.58% 8.16% 8.44% 8.60% 7.99% 7.15% 10.13% 8.26% 10.40% 20.91% 5.29% 11.81% 7.48% 1.10% 1.92% 

MACD 100.7 101.0 101.7 96.4 94.3 97.0 93.6 92.7 97.6 114.7 110.4 87.8 112.8 91.3 82.0 78.9 

MAD 1 1.6 2.2 2.6 3.1 3.5 4 4.1 4.6 4.9 5.9 7 8.1 9.4 10.3 13 
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The length categories which stand out are 0.7 and 2.00 miles. Among all the 

categories, these offer the best trade-offs among all metrics. A desirable length should 

have a high Modified R2, a PCD ideally under 5 percent, a low MAD, a low MACD. The 

2.00 length has better Modified R2 but a less optimal MAD when compared to other 

lengths. The data show a few general trends: 1) MAD improves as segment length 

decreases and, 2) Modified R2 improves as segment length increases. The 

overdispersion parameter increases when segment length declines. The HSM suggests 

that models with a lower overdispersion parameter, k, are more statistically reliable 

(AASHTO, 2010). This suggests that longer segment lengths produce better models; 

however, this runs counter to the results of the MAD metric. Length-based 

overdispersion will be discussed later which can help explain this discrepancy. Also, 

recall that AIC comparisons are better suited when the sample size is constant (e.g. 

when comparing model forms). Example CURE Plots are shown in Figure 17Appendix B 

and Figure 18 as representatives of Scenario 1.  

 

 
Figure 17. CURE Plot for Scenario 1 at 1.0 mile. 
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Figure 18.  CURE Plot for Scenario 1 at 5.0 miles. 
 

Both CURE plots exhibit the indicators of a good model — values oscillate about 

the x-axis while staying within the confidence bands. Figure 18 has fewer data points 

due to the longer segment length. The lack of drift on both plots also suggests little 

model bias – confirmation of roadway homogeneity for network. All CURE plots for 

Scenario 1 are shown in Appendix B. As a rule, PCD should be under 5% and it is 

suspected that it could be lowered by filtering out heterogeneous segments (e.g. 

curvature, exit/entrance ramps); however, PCD is fairly consistent among the length 

categories with the exception of the two longest categories. For these categories, it is 

likely that the segments are so long and many of the small, heterogeneous segments 

that have short changes in geometry or traffic volume (such as near interchanges) are 

excluded. Such filtering will be explored in the next chapter.   

3.4.2.  Scenario 2 Results 

The same analysis was repeated for Scenario 2. Recall, this scenario excluded 

segments with AADT over 15,000. This threshold was based on some CURE plot 

deviation at higher traffic volumes observed in Scenario 1. This resulted in the omission 

of about 25 miles of segments. Table 4 summarizes the results of this analysis, and 

includes the same greyscale shading scheme as in Table 1 (lighter values indicate more 

optimal results).
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Table 4. SPF Metrics and Descriptive Statics for Scenario 2 by Length Category 

  Length Category (Miles) 

 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.50 2.00 2.50 3.00 3.50 5.00 

Segments 4400 2193 1449 1076 847 698 596 514 447 400 249 178 136 101 87 49 

k 0.6 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

Crashes 5362 5329 5285 5204 5136 5097 5074 4932 4835 4849 4389 4105 3982 3545 3492 2731 

AIC 13226 8802 6718 5458 4574 3985 3546 3131 2824 2588 1709 1288 1030 805 703 419 

Mod. R2 0.05 0.06 0.07 0.08 0.08 0.09 0.10 0.11 0.10 0.11 0.19 0.28 0.25 0.25 0.29 0.24 

PCD 9.5% 3.3% 3.4% 6.0% 3.9% 2.7% 0.8% 1.8% 5.1% 5.8% 8.0% 1.7% 2.9% 1.0% 1.1% 2.0% 

MACD 133.7 112.2 126.6 133.0 132.6 135.8 125.7 121.8 137.9 139.9 100.5 75.3 78.3 95.2 94.8 58.9 

MAD 1.1 1.7 2.2 2.7 3.1 3.6 4.1 4.3 4.8 5.1 6.0 7.3 8.2 9.7 10.4 13.0 
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The patterns among MAD and Modified R2 are comparable to Scenario 1. 

However, the PCD has improved for nearly all length categories; many below the 5% 

threshold. This is likely due to removing heterogeneous segments with high traffic 

volumes. The CURE plots were similar to those from Scenario 1, although less deviation 

was observed. As before, CURE Plots for Scenario 2 are presented in Appendix C. 

3.4.3. Evaluation of the Top 10 Segments from All Length Categories 

A network screening process was performed on the segments used to develop 

the SPF for Scenario 1. A PCR was calculated for each segment using EB as described 

earlier. The segments with the top ten highest PCR were mapped for each length 

category. These segments are compared using maps in Appendix D. As observed in 

section 3.2, changing length had a dramatic effect on the locations of segments with the 

highest PCR. In practical terms, this means that changing the size of a fixed length 

analysis zone can directly affect the appropriation of safety funds. 

The same top ten lists were reviewed and the resulting segments were examined 

using Kentucky's Photolog. The idea here was to develop a subjective rating of the 

roadway character throughout the segment. In some cases, a segment was only 

identified in one or two of the priority lists, while in other case a segment appeared in 

all priority lists. This inconsistency suggests that roadway attributes may play a larger 

role in PCR even on Kentucky parkways (which are generally homogeneous). Segments 

that repeatedly appeared on top ten lists were reviewed and representative images are 

presented in Appendix E. The key takeaway from these segments is the existence of 

roadway attributes that likely adversely affect safety. These attributes are not controlled 

for when considering segment length alone. 

3.5. Conclusions and Discussion 

 Analysis indicates a clear relationship between well-established measures of 

goodness-of-fit and segment length. While there was not an optimal segment length 

that included best values across all of the metrics, some patterns clearly emerge. 
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Increasing segment length improves Modified R2 while MAD values become less 

optimal. 

In all likelihood, there is redundancy between what these metrics evaluate. 

These patterns are consistent across both scenarios. The most likely explanation for the 

decrease in MAD with decreasing length is the increase in sample size. Results also 

showed a clear pattern of decreasing overdispersion as segment length increased. The 

HSM states that as the overdispersion parameter approaches zero a model’s statistical 

reliability increases (AASHTO, 2010). However, as k values declined in the models 

described here, the values of other metrics indicated the SPFs performed less well (as 

noted by MAD and MACD in Scenario 1). Overdispersion and Modified R2 all seem to 

follow the same trend of improving as roadway segments lengthen.  

The HSM does address the need for a length-based overdispersion for specific 

highway types (chapters 10 and 11) (AASHTO, 2010). Research has shown that by 

assuming a constant overdispersion for a set of data can lead to inconstancies in the 

way that safety is estimated when short and long segments are in the same dataset 

(Hauer, 2001). The data in this chapter suggest that increasing length leads to an 

improved model when considering overdispersion (k closer to zero). In the context of 

this chapter, length is varied to examine the goodness-of-fit of the models. The effect of 

length-based overdispersion will be considered when length is not controlled for in the 

next chapters.  

 Based on the values of each metric and evaluations of the CURE plots, the ideal 

segment length for Kentucky rural parkways is 2.0 miles (3.2 Km).  While 2 miles is not 

likely to be the optimal length for all analyses, the process demonstrated here could be 

duplicated to identify appropriate lengths for other road categories and allow for the 

determination of the optimal segment length. It is possible that a different segment 

length could be identified for each roadway category and this could also vary from state 

to state.  As noted above, in setting segment length, one needs to strike a balance 

between ability to discern changes and countermeasure implementation. As such, some 
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engineering judgment is needed when evaluating data similar to those shown in Table 1 

and Table 4 in order to determine the optimal segment length. The removal of low 

traffic volumes in Scenario 2 also shows AADT’s impact on SPF development. Much less 

PCD was observed when low volume segments were removed. This is an indication that 

some systematic error was removed likely due to the fact that AADT is a proxy for 

omitted variables contributing to heterogeneity of the segments. This is explored in the 

next chapter.  

 Additional work may be needed to further refine the segment used here. For 

example, removing curves and interchanges could improve the Scenario 1 model 

because doing so would increase the road network’s homogeneity. Another option is to 

filter the road network to exclude small urban areas. However, this may reduce sample 

sizes to below the minimum thresholds the HSM recommends for SPF development. If 

this were to occur, curvature and urban area could be introduced as additional variables 

in the SPF model to address omitted variable bias. These improvements are the subject 

of the next chapter. 

 Finally, it should be underscored that the optimal segment length is sensitive to 

a variety of variables. For instance, in Section 3.2 the priority lists changed based on the 

segmentation techniques (each with different lengths). Furthermore, goodness-of-fit 

measures from Scenarios 1 and 2 suggest different optimal lengths. In this case, the 

traffic volume range was the only distinction between the two. The conclusion drawn 

here is that there is no globally uniform length that leads to the best SPFs, but rather 

analysis tools should be used to evaluate model development. Moreover, roadway 

homogeneity plays a large role in model development even for roadways designed fairly 

consistently like Kentucky parkways. 
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Chapter 4. Optimizing Attribute Specification and Aggregation  

4.1. Introduction 

 The next step in this research was the investigation of the effect that changes in 

roadway attributes during the segmentation process have on highway safety. For 

example, is the effect on highway safety more sensitive to a change in shoulder width or 

to the change in number of lanes? A network can be filtered based on attributes and the 

effect on the resulting SPFs (in terms of goodness-of-fit and predictive power) can be 

observed. Guidance is provided based on the sensitivity each attribute has on the SPF's 

goodness of fit. This will give safety practitioners a better idea of what attributes help 

define homogeneity. 

Despite the fact that filtering by attributes makes the roadway network more 

homogeneous, there are disadvantages as well. An obvious downside is that filtering 

reduces the sample size (segments or intersections) used to develop a model. 

Depending on the extent of the filter, this can reduce the network to such a small size 

that model development is not feasible. For example, the HSM recommends 100-200 

intersections or miles for SPF development (AASHTO, 2010). It is demonstrated however 

that a careful assessment during the development process can help improve SPF 

development, even below these limits. Another trade-off is that the filtering process 

alters the base conditions of the SPF and therefore introduces the need for Crash 

Modification Factors or functions for segments that are dissimilar to the base 

conditions.  

 In contrast to the segment length analysis performed in the previous chapter, a 

more interactive SPF development process was required. Previously, SPFs were 

developed for the same network using different length categories. In this analysis, filters 

are applied to the network to explore the effect of attribute range specification and 

aggregation on SPF quality. As such, a less cumbersome SPF development process was 

desired.  
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4.2. Model Assessment 

The objective of this section is to describe how the use of analytical tools can 

improve the SPF development process. In the previous chapter, a relatively 

homogeneous network was used to isolate the effect of segment length alone on SPFs. 

In this chapter, the effect of roadway attribute specification is analyzed, therefore, 

homogeneity is required only at the segment level.  

The specification of attributes complicates the modeling process as it introduces 

the potential for omitted variable bias. This bias occurs when a regression is used to 

predict a dependent variable while influential independent variable(s) is (are) not 

included. However, analytical tools and metrics can be used to detect and minimize such 

biases leading to improved models. 

Another complication of this methodology is the number of steps required to 

produce SPFs based on attributes. In the previous chapter, the same network was used 

to produce networks at various segment length. This process was easily accomplished in 

Excel and using a simple R script. In order to test the effect that attributes have on SPFs, 

various filters were needed and much larger databases were required (including a 

variety of roadway attributes for a very heterogeneous network of roads). It became 

apparent that the previous methodology was too time-consuming to reliably produce 

and compare outputs. Moreover, in some cases the datasets were too large to work in 

Excel. As such, there was a need to automate the SPF development process. This would 

enable several SPFs to be compared quickly and the effect of small changes could be 

examined. For instance, an agency can develop a statewide SPF for a specific set of 

geometric conditions that mirror the HSM’s base conditions for two-lane rural roads. 

However, the agency may not have a preponderance of shoulders that are 6 feet wide 

(as recommended in the HSM for rural two-lane roads). Instead, SPFs can be developed 

for shoulder widths of two and three feet. The corresponding SPFs can be compared and 

evaluated to determine the best model for the agency. Previously, the development and 
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comparison of SPFs has been a lengthy and laborious task requiring the use of several 

software packages (Excel, R, and SQL Server). 

The development of SPFs at the state level is growing in the United States 

(FHWA, 2016). According to the CMF Clearinghouse website’s resources page, 12 states 

have developed their own SPFs and seven states have calibrated existing SPFs. In 

Kentucky, SPFs have been developed with state-specific data since 2013. The Federal 

Highway Administration (FHWA) has produced tools and documents to facilitate SPF 

development (such as The Calibrator and Safety Performance Function Development 

Guide: Developing Jurisdiction Specific SPFs). Helpful resources are listed at the end of 

Appendix F. These resources offer insights on how to evaluate SPF models. Tools like 

The Calibrator provide goodness-of-fit measures such as modified R2 and CURE Plots. 

When developing state-specific SPFs, these measures can be used to identify ways of 

improving SPF model development. One way to improve these models is to detect and 

avoid omitted variable bias (Srinivasan et al., 2013b). 
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4.2.1. Omitted Variable Bias 

Omitted variable bias occurs when a variable that contributes to crash prediction 

is not included in a regression model8. Model development based on heterogeneous 

roadway geometry can be one cause of this bias. For example, a dataset may include 

roadways with varying geometrics such as wide lanes and shoulders in some segments 

and narrow lanes and no shoulders in others. Heterogeneity contributes to omitted 

variable bias if the variation in geometrics is not part of the model. Adding more 

independent variables to a model can minimize omitted variable bias; however, 

depending on number of varying geometrics, this can lead to overfitting (Srinivasan and 

Bauer, 2013a). Overfitting can result in goodness-of-fit measures that improve when 

adding variables, but these improved measures may result from modeling “noise” or 

correlation of different variables (e.g., more than one variable is modeling the same 

effect) (Srinivasan and Bauer, 2013a, Hauer and Bamfo, 1997). Another way to address 

omitted variable bias is to filter the dataset to a more homogeneous network (i.e., base 

conditions) provided the sample is large enough. The HSM and the Safety Performance 

Function Decision Guide offer sample size guidance for SPF development (AASHTO, 

2010, Srinivasan et al., 2013b). For example, the SPF Decision Guide suggests 100-200 

sites and 300 crashes per year for SPF development for network screening.  

Recall that CURE Plots provide a visual method of detecting omitted variable 

bias, and, as discussed below, model form and outliers. These plots graph cumulative 

residuals against another variable (such as traffic volume or length) in a scatter plot. 

Residuals are computed by subtracting the crash prediction at a site (based on the SPF) 

from the number of crashes recorded for that site. Residuals are sorted by the variable 

being compared (often AADT) and the residuals are cumulated (the residuals from site i 

are added to site i+1 and so on). Residuals are positive if the model predicts fewer 

crashes than were recorded. Ideally, the magnitude of residuals should balance out. This 

                                                       
8 In fact, a strength of the negative binomial regression is that it allows for some variation by variables not 
included in the model (Tegge et al, 2010). 
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manifests in a CURE plot by steady oscillation around the x-axis. Large jumps in the 

CURE plot are indicative of outliers, poor modeling, or data errors (large residuals).  

Steadily increasing or decreasing residuals, however, can indicate omitted 

variable bias. Upper and lower limits are typically plotted along with the residuals to 

identify if the residuals stay within two standard deviations (Hauer and Bamfo, 1997). 

These confidence limits are plotted along with the residuals, and the residuals should 

only rarely go outside of the limits. In fact, the CURE plot should end near zero 

indicating that the model does not over- or under-predict crashes. Confidence limits are 

used to discern the difference between the expected random error and undesired 

systemic bias (Hauer and Bamfo, 1997). Hauer and Bamfo derived an equation for 

confidence bands based on the probability density of the random walk (oscillation) of 

the CURE plot.  This drift can be demonstrated easily using a roadway network filtered in 

the three following ways: 

• Scenario 1 – All Rural two-lane roads in Kentucky with nine-foot lanes 

• Scenario 2 – Scenario 1 with no median, shoulder width of two feet, and no curvature  

• Scenario 3 – Scenario 2 and traffic volume less than 500 

 The following tables list segment lengths (in miles) by the parameters from 

Scenario 2 (Table 5) and then filtered by AADT for Scenario 3 (Table 6). Notice that the 

column and row total of 9855.8 miles (15861.4 km) represents the total length of Scenario 

1, and the underlined total of 1712.6 miles (2756.2 km) is the total for Scenario 2. 
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Table 5. Segment Lengths for Scenarios 1 and 2 
Length Curve 

 

Median No Yes Grand Total 
No 

   

Other Shoulder 4,525.4 2,315.0 6,840.4 
Shoulder=2ft 1,712.6 1,301.0 3,013.6 

Yes 
   

Other Shoulder 0.7 0.6 1.4 
Shoulder=2ft 0.2 0.2 0.4 

Grand Total 6,239.0 3,616.8 9,855.8 
 
Table 6. Length of Segments for Scenario 3 

Length Curve 
 

Median No Yes Grand Total 
No 

   

Other Shoulder 2,483.2 1,028.8 3,512.0 
Shoulder=2ft 935.7 624.7 1,560.4 

Yes 
   

Other Shoulder 
 

0.1 0.1 
Grand Total 3,418.9 1,653.6 5,072.5 

 

CURE Plots are used to compare the SPFs from the three Scenarios. Figure 19 

shows three CURE Plots, one for each scenario. 
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Figure 19.  CURE Plots for Rural 2-Lane Roads in Kentucky for Scenarios 1, 2, and 3 
(top-left to bottom). 
 

There is a clear downward drift in the residuals in Scenario 1, which is an indication 

of omitted variable bias. Scenario 2 partially addresses this bias by limiting the roadway 

geometry, resulting in a more homogeneous network. Residuals for Scenario 2 move 

outside the confidence bands for AADT values between approximately 750 and 1,500. For 

this scenario, the residuals have a larger absolute value than what is expected due to 

random error. Notice, however, that the large residuals occur at higher AADT. Scenario 3 

corrects for the large residual by limiting the network to sites with AADT under 500. This 



 

50 
 

final plot indicates good oscillation, with the residuals remaining within the confidence 

bands and approach zero at the end of the plot. 

The CURE plot for Scenario 3, along with other goodness-of-fit measures, suggests 

that of the three scenarios it is the most desirable model. However, without the aid of the 

CURE plots or goodness-of-fit measures, there is little evidence to suggest that Scenarios 

1 and 2 are undesirable SPFs. Figure 20 compares the scatter plots for the same three 

scenarios. The number of crashes at each site is plotted against the site’s traffic volume. 

 

 
 

 

Figure 20.  Scatter plots for Scenarios 1, 2, and 3 (top-left to bottom). 
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 The scatter plots offer little insight into which scenario offers the best SPF. Table 

7 shows varying regression parameters (which the next section discusses in detail) and 

overdispersion for each scenario.  

Table 7. Regression Parameters and Overdispersion for Three Scenarios 
 Scenario 1 Scenario 2 Scenario 3 
Theta* 1.313776 1.556977 1.50734 
Alpha -5.23151 -5.24279 -4.01983 
Beta 0.97871 0.97832 0.760655 

*RStudio reports the overdispersion parameter as theta, which is the reciprocal of k. 

 

The overdispersion parameter (theta9, defined as 1/k) is directly proportional to 

EB estimate as outlined in the HSM (AASHTO, 2010). A larger theta suggests a better SPF 

model when accounting for the EB estimate. The parameters listed in Table 7, if taken 

alone, would provide misleading evidence in favor of Scenario 2 because they do not 

detect omitted variable bias. Even employing a length-based overdispersion would be 

unlikely to change this outcome as all three scenarios have an average length of about 

0.14 miles (225 m). Interpolation based on this table alone stands in contrast to results 

derived from comparing CURE Plots. CURE Plots along with goodness-of-fit measures are 

critical when comparing SPFs. For comparison, Alpha and Beta are the regression 

coefficients associated with each scenario (as defined in Equation 1). 

While the point here is to illustrate the usefulness of CURE Plots in detecting 

omitted variables, this data demonstrates the well-known relationship between 

homogeneity and crash prediction (AASHTO, 2010). The sensitivity of this effect is tested 

in this chapter by filtering the network by roadway attributes (a measure of homogeneity) 

and comparing the SPFs. In the next chapter, both length and homogeneity will be tested 

simultaneously and in the same manner. 

It is worth noting that, while the CURE plots described above are compared to 

AADT, other variables can be used. Site specific variables can be used to make 

                                                       
9 Many documents, including the HSM, refer to this parameter as k, which is the reciprocal of theta. In this 
case, the relationship of the parameter and the model will be inverted.  
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improvements to an SPF by plotting them with cumulative residuals as discussed in this 

chapter. Ranges of AADT can be isolated and used to improve the model. Segment length 

can also be used in the same manner. In the previous chapter, this was unnecessary as 

length was, in general, held constant. In this and the next chapter, this comparison 

becomes more meaningful. 

4.2.2. Outliers And Data Errors 

 CURE Plots and residuals can also be very helpful in identifying data errors in the 

form of outliers. Hauer (2004) has proposed that large jumps in these plots can indicate 

the presence of an outlier. While an outlier may be a data point an unusually high or low 

value, it also might be indicative of a data error. Depending on the magnitude of error, 

the removal of data errors can greatly improve the CURE plot and have a dramatic effect 

on the model parameters. Figure 21 shows examples CURE plots for rural, 2-lane roadway 

before and after the removal of two data errors (very large residuals). 
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Figure 21.  CURE plot before (top) and after (bottom) the removal of data errors. 
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The large vertical discontinuity in the plot on the top of Figure 21 is an indication 

of a data quality issue. The discontinuity is a result of a relatively large residual at one site 

(as compared to neighboring residuals). That is, the model is either largely over- or under-

predicting when compared to the observed number of crashes at a site. Further 

inspection reveals that the abrupt shift in this example is the result of over 100 crashes 

incorrectly assigned to a rural, two-lane segment located in the far western portion of 

Daviess County, Kentucky.  In this case, the incorrect assignment of crashes was due to 

the re-designation of routes in downtown Owensboro. A section of US 60 was re-routed 

to bypass the city but the base map in the crash collection tool has not been updated, 

resulting in the assignment of an incorrect milepoint. Removal of this segment 

dramatically improved the CURE Plot, as shown on the lower plot in Figure 21. 

 Many agencies use county, route, and milepoint (CRMP) for crash analysis as it 

can be more unambiguously matched to roadway information as compared to 

coordinate data – especially in urban areas or at intersections. This method is more 

useful to data users as the location is easier to communicate without the aid of a map. 

In Kentucky, the CRMP data is dynamically assigned when a police officer codes the 

location using a GIS-based map called MapIt (Green and Agent, 2011). While most 

location errors in Kentucky have been mitigated by use of the MapIt system, basemap 

errors are still possible and in many cases they are systematically detectable. An error 

such as the one described above may likely result in a site with a very high PCR value 

(the data quality error results in a large number of observed crashes while the low AADT 

would generate a much lower model prediction). These errors may go unnoticed until 

further study is conducted.  CURE plots can be used to easily identify such errors before 

time is wasted studying locations that are ultimately not of interest. 

4.2.3. Safety Performance Function Development Process 

 A generalized linear model using negative binomial regression is typically used to 

create an equation that relates predicted crashes to traffic volume and length (as well as 

other independent variables, if desired). As described earlier in Equation 1, a commonly 

used variation is: 
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𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 

Where, 

L = Length of segment in miles 
AADT = traffic volume of the segment 
a = regression parameter for intercept 
b = regression parameter for AADT 
 

It should be noted that the model form may be adjusted and the values of the 

regression parameters will change based on the highway type used in the regression. 

For example, the HSM recommends this model form for rural multilane and for urban 

and suburban arterials10.  

Statistical packages such as SPSS, Stata, SAS, and RStudio perform this regression 

easily with built-in tools. SPFs can also be developed in Microsoft Excel using solver or 

custom functions.  The above-mentioned tools are simple enough to generate an SPF 

manually, but attempting to improve model development manually can be 

cumbersome. Model improvement requires several iterations and the filtering of the 

roadway dataset. Moreover, creating CURE Plots requires several steps and can be time-

consuming, particularly for a large database. FHWA’s Calibrator tool readily generates 

CURE Plots but is separate from the SPF development.  This separation necessitates 

several intermediate and repetitive steps. 

 In an effort to aid in the assessment of several models an automated process 

was developed. A tool was produced that consolidates SPF development and 

assessment, including the generation of CURE plots, into one streamlined process.  

Work previously done using a combination of R, Excel, and the Calibrator tool is now 

accomplished with a single source code run in the program RStudio and accordingly 

named “SPF-R.”  The use of other software, such as Excel, has been reduced to 

organizing the input and output. 

                                                       
10 The HSM defines equations 11-7 and 12-13 using a slightly different notation but they 
are mathematically equivalent to the form used in 
 

𝑦𝑦 = 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏  (1. 
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 This tool was used in this and the subsequent chapter to produce fast and 

consistent results so that SPFs can be compared and analyzed. A detailed user’s guide is 

included in Appendix F with examples. The source code is available on GitHub11. GitHub 

is an online, collaborative tool that allows anyone to download the source code and 

contribute to its improvement. The code can be modified as needed and meaningful 

changes may be committed to the GitHub repository so that other safety professionals 

will benefit from the enhancements. The code is also presented in Appendix G.  

4.3. Methodology 

 The Kentucky Transportation Cabinet maintains roadway planning (e.g. 

rural/urban, traffic volume) and geometric data (e.g. shoulder width, curvature) in 

individual shapefiles, each segmented based on a particular asset. Generally, segments 

are split when an attribute changes. For example, the Lane asset (LN) describes 

segments in Kentucky with the same number of lanes and the same lane width. A new 

segment is created when either the number of lanes or lane width changes. All of the 

attributes are tied to Kentucky’s roadway centerline shapefile using a unique route 

identifier (RT_Unique) and the starting and ending milepoints (typically stored to the 

nearest thousandth of a mile). 

 These attributes can be combined using a GIS tool called Route Overlay. The 

overlay process creates a new segmentation that splits at every breakpoint from all 

combined attributes. Consider a section of roadway from mile marker zero to mile 

marker two where the number of lanes changes from two to four lanes at mile marker 

one. Further, consider that the route changes from rural to urban at mile marker 1.5. 

The resulting segmentation would create three segments: 

• From 0 to 1 – Rural, 2-lane 

• From 1 to 1.5 – Rural, 4-lane 

• From 1.5 to 2 – Urban, 4-lane 

                                                       
11 http://github.com/irkgreen/SPF-R  

http://github.com/irkgreen/SPF-R
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 Recall this was described earlier in Figure 1. 

 Route Overlay was used to combine nine attributes that are most likely related 

to highway safety performance: 

• Horizontal curvature – the direction and degree of curvature (CU). 

• Functional classification – the functional classification of the road including whether 

it is rural or urban (FS). 

• Vertical curvature – the direction and percent grade (GR). This asset has limited 

coverage. 

• Lanes – the number of lanes and lane width (LN). 

• Median – the presence, type, and width of a median (MD). 

• Shoulder – the presence, type, and width of a shoulder (SH). These attributes are 

reported in both directions however only the cardinal direction was used for 

simplicity. There is rarely a difference between the cardinal and non-cardinal 

shoulder. 

• Traffic flow – the traffic volume of a segment (TF). 

• Speed limit – the posted speed limit for the segment (SL). 

• Intersection – Kentucky maintains an intersection database that was used to flag 

segments that were near intersections (Green et al., 2016). 

The resulting segmentation was then linked to Kentucky’s crash database. The 

number of crashes was obtained for each segment. A crash was included if the crash 

occurred between the start and end mile points of the segment. If a crash occurred 

exactly at one of the segment’s edges, then the crash was assigned to the segment with 

the lower endpoint.  

 Each segment included the number of crashes, traffic volume, and the segment 

length – as well as all of the other attributes resulting from the Route Overlay. Negative 

binomial regression was used to develop SPFs that relate crashes to the length and 

traffic volume using the model form described in Equation 1. It is unrealistic to develop 

an SPF for all of the segments in the database as the segments change from rural to 
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urban, divided to undivided, and vary in number of lanes – in addition to other changes 

in roadway homogeneity. Therefore, the following analysis was limited to rural, 2-lane 

roadways in an effort to explore the effect of roadway attributes on the quality of SPFs. 

The RStudio code, SPF-R, described earlier, was used to develop a variety of SPFs. Two 

approaches were used to examine the effect of attributes on SPF development: 1) 

filtering the database based on attributes, and 2) adding additional variables to the SPF 

model. CURE plots served as the primary means for SPF assessment. A more complete 

assessment included comparing other goodness-of-fit measures. 

4.3.1. Database Filters 

The first approach used filters to exclude segments from the SPF development 

process. A base filter was applied that limited the database to rural, 2-lane segments. 

This filter was used for the remainder of the analysis in addition to other filters. The 

following attributes were used in the filtering process: 

• Horizontal curvature 

• Vertical curvature 

• Presence of a median 

• Presence of an intersections 

• Segments with known data errors12 

• Lane width 

• Shoulder width 

• AADT ranges 

• Speed limit 

 For the first five filters listed above, segments were excluded based on the 

presence of a curve, median, intersection, or known data errors. Very flat curves were 

not excluded, as this would adversely affect the sample size of segments. The last four 

filters were used to include a specific number or a range of values. For instance, lane 

                                                       
12 Known data errors were included in the dataset to both illustrate and to test the effect on the SPF 
development process. 
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width could be limited to 9 feet or shoulder widths could be limited to between 1 and 3 

feet. Table 8 was used to help guide the selection of filters for lane and shoulder widths.



 

 
 

60 

Table 8. Total Length (miles) of Rural, 2-Lane Roads by Shoulder and Lane Width in Kentucky13 
 

Lane Width 
(feet) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total 

6                 
7 0 31 68 17 4           0         121 

8 0 26 362 261 26 4 3                 681 

9 2 69 1687 1454 197 35 7 0 2   0         3452 

10 5 140 3089 4581 1597 303 118 3 13 1 6 0 0     9857 

11 21 42 1638 2251 993 196 173 11 87 1 30 1 0 1   5444 

12 18 11 216 295 440 99 110 3 93 13 134 22 4 2 1 1461 

13 24 4 83 59 129 41 114 7 150 45 718 160 137 0 14 1684 

14 6 1 8 1 5 1 7   2   5   3     38 

15 5 2 1 1 0 0 0   6 0 2   1     18 

16 4 1 1 1 1   0   1   1   0     9 

17 1 0 2 1     0 0 0   2         6 

18 2 1 1 0 0   0                 4 

19 1 0 7 0 0                     9 

20 0   0               0         1 

21 1   2 0     0       0         2 

Total                     0         0 

 89 328 7166 8921 3391 680 533 25 352 61 899 183 145 3 14 22790 

 

                                                       
13 Length of zero indicates that the segments are under 0.05 miles (0.08 km) likely a result of the Route Overlay process. 
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The HSM recommends 100 to 200 miles of segments for SPF development 

(AASHTO, 2010). As such, many of the shoulder-lane combinations are likely unsuitable 

for SPF development. That is not to say that a filter producing less than 100 miles would 

result in a poor model, but rather other filters are likely to produce better models. It is 

clear, however, that many of the combinations are unrealistic for model development 

(e.g. combinations resulting in under 100 miles). Table 8 does provide an indication that 

lane widths between 8 and 10 feet and shoulder widths between 2 and 4 feet are 

among the most prominent configurations on rural, 2-lane roads in Kentucky.   

 A filtering process was used starting with the base filter of rural, 2-lane roads 

and progressing through a variety of attribute filter combinations. The automation tool 

was used to evaluate the 9 attributes (listed above) and CURE plots were compared in 

an effort to identify which attributes had the strongest effect on model improvement. 

Keep in mind that CURE plots were used as a screening tool and other goodness-of-fit 

measures are still considered. It was unnecessary to compare every conceivable 

combination of the 9 attributes. Some attributes had little effect while other attributes 

showed an effect when in combination with other attributes. This process resulted in 18 

database filters made up of various attribute filter combinations. These filters were 

compared with respect to the goodness-of-fit measures and CURE plots.  

4.3.2. Additional Model Parameters 

In another comparison, additional variables were added to the model. The 

addition of model parameters increases the sample size of sites. That is, instead of 

filtering the database to only include segments with a lane width of 9 feet, lane width 

could be added to SPF as a variable. As argued earlier, this makes the network more 

heterogeneous as some segments have narrow lanes and others have wide lanes. This 

heterogeneity can be accounted for by adding width to the model. 

Models were developed including lane and shoulder widths as parameters under 

a variety of configurations. The models were compared to a base model from the 

previous section as a basis for improvement. The following models were developed. 
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• Base Model 

• 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 

• Model 1 – including shoulder and lane width variables 

• 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏1𝑒𝑒𝑆𝑆𝑆𝑆∗𝑏𝑏2𝑒𝑒𝐿𝐿𝑆𝑆∗𝑏𝑏3 

• Model 2 – including shoulder width as a variable and filtering lane width to 9 feet 

• 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏1𝑒𝑒𝑆𝑆𝑆𝑆∗𝑏𝑏2 

• Model 3  – including lane width as a variable and filtering shoulder width to 3 feet 

• 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏1𝑒𝑒𝐿𝐿𝑆𝑆∗𝑏𝑏2 

• Model 4  – including roadway width as a variable (shoulder plus lane width)14 

• 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏1𝑒𝑒(𝑆𝑆𝑆𝑆+𝐿𝐿𝑆𝑆)∗𝑏𝑏2 

• Model 5  – including shoulder and lane widths as variables and adding an interaction 
term 

• 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏1𝑒𝑒𝑆𝑆𝑆𝑆∗𝑏𝑏2𝑒𝑒𝐿𝐿𝑆𝑆∗𝑏𝑏3𝑒𝑒𝑆𝑆𝑆𝑆∗𝐿𝐿𝑆𝑆∗𝑏𝑏4 

Model 5 includes an interaction term that describes any dependence shoulder 

width might have on lane width. In SPF development, interaction among independent 

variables can be difficult to detect unless there is an intuition for the interaction 

(Srinivasan and Bauer, 2013). The code used for the models above is shown in Table F-1 

in Appendix F. 

All five models were used to develop SPFs using the rural, 2-lane database with 

the following filters: no Vertical Curves, no Horizontal Curves, no intersections, speed 

limit of 50 miles per hour or more, no median, and no known data errors (in addition to 

any filters defined above). This filter provided a homogeneous network to help isolate 

model form improvements. Homogeneity lessens the potential for unexpected omitted 

variable bias. It should be noted that not all independent variables were tested as it was 

not feasible. Lane and shoulder widths were included based on their influence as 

discussed below. 

  

                                                       
14 While this may seem to duplicate the regression in model 1, there are two key distinctions: model 1 is 
able to independently adjust the weighting of shoulder and lane widths, and model 4 makes the assumption 
that a 9 foot lane with a 3 foot shoulder is comparable to a 10 foot lane with a 2 foot shoulder. 
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4.4. Results 

 The data used in the following sections was comprised of a database that 

contained over 407,600 roadway segments. Each segment included roadway attribute 

data, traffic volumes, length, and the associated crash data. The segments total to 

approximately 22,790 miles (36,677 km) of rural, 2-lane roadways. This analysis was 

limited to rural, 2-lane roadways to simplify the variety of attributes as urban roadways 

have a more complex array of geometrics. 

4.4.1. Database Filters 

 The SPF development tool, SPF-R, was used to perform the comparisons in this 

section. A great advantage to this approach is the efficiency in which attributes can be 

changed and the results compared. As a baseline, an SPF was developed for all rural, 2-

lane roads with no other filters applied. As expected, the CURE plot demonstrated 

significant omitted variable bias (shown below in Figure 22). 

 

Figure 22. CURE Plot for All Rural, 2-Lane Roads in Kentucky (no other filters) 
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 As filters were introduced, the bias reduced. Initially, the following filters were 

individually applied: 

Filter 1. No filter 

Filter 2. No horizontal curvature 

Filter 3. No vertical curvature 

Filter 4. Lane width of 9 feet 

Filter 5. Shoulder width of 3 feet 

 Based on the CURE plots, none of these filters significantly addressed omitted 

variable bias, however lane width (Filter 4) exhibited the lowest magnitude of drift 

followed closely by shoulder width (Filter 5). This is expected as lane and shoulder 

widths are likely proxies for other variables that explain homogeneity (such as land use 

or topography). Median and speed limit filters were observed to have no meaningful 

effect. This is likely due to the few number of records excluded by these filters. 

Next, combinations of filters were applied. These filters are listed below (following 

the same numbering scheme). 

Filter 6. Shoulder Width=2, Lane Width=9 

Filter 7. No Vertical Curves, no Horizontal Curves 

Filter 8. Shoulder Width=2, Lane Width=9, no Vertical Curves, no Horizontal Curve 

Filter 9. Shoulder Width=2, Lane Width=9, no Vertical Curves, no Horizontal 

Curve, no known data errors 

Filter 10. Shoulder Width=2, Lane Width=9, no Vertical Curves, no Horizontal 

Curve, no known data errors, no intersections 

 CURE plots for all ten filters are shown in Appendix H. The goodness-of-fit 

metrics are shown in Table 9 (shading is used as before to indicate preference).
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Table 9. SPF Metrics for all Filters 

 
1 2 3 4 5 6 7 8 9 10 

Segments 407608 283707 39778 163675 149717 71612 31760 4112 4106 2911 

k 1.5 1.3 1.6 1.2 1.1 1.1 1.5 2.0 0.9 0.6 

Total Crashes 111002 88776 16916 31742 35929 13702 14695 1057 866 721 

Modified R2 -0.08 -0.04 -0.08 0.27 0.28 0.23 -0.06 0.09 0.39 0.48 

PCD 76.4% 62.5% 75.4% 80.6% 55.4% 51.0% 60.3% 23.9% 17.7% 6.9% 

MACD 23687.1 19146.9 4688.8 2318.1 3242.2 896.2 4090.2 128.8 45.5 37.6 

MAD 0.4 0.4 0.6 0.3 0.3 0.3 0.6 0.4 0.3 0.3 
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Filter 10 has a clear improvement among all metrics, which is consistent with 

comparing the CURE plots. This is logical as this filter produced the most homogeneous 

network.  

 In addition to the filters above, ranges of attributes were also considered. The 

idea here is that small changes in an attribute such as lane or shoulder widths might not 

impact safety significantly differently, yet including ranges would increase the sample 

size used to develop the SPF. Attributes that are binary (i.e. cannot be used in ranges) 

that seemed to improve the model based on the previous filtering process were used as 

a starting point (no vertical curves, no horizontal curves, no intersections, and no known 

data errors). Using Table 8 as a guide, ranges of widths were modeled as described 

below. 

Filter 11. Lane Width=9, Shoulder Width 2-3 

Filter 12. Lane Width=9, Shoulder Width 2-4 

Filter 13. Lane Width 9-10, Shoulder Width=3 

Filter 14. Lane Width 8-10, Shoulder Width=3 

Filter 15. Lane Width 9-10, Shoulder Width 2-3 

Filter 16. Traffic volume below 500 

Filter 17. Traffic volume below 2000 

Filter 18. Traffic volume below 2500 

 Once again, the CURE plots were used to identify ranges of traffic volumes where 

the model performed best. The resulting CURE plots from all ranged filters are shown in 

Appendix H. None of the CURE plots suggested an improvement from Filter 10 using 

attribute ranges, however, a 500 AADT filter did show improvement. These results are 

consistent with the HSM’s based condition methodology where single values, not 

ranges, are listed for most attributes. The HSM has a worksheet for rural, 2-lane SPFs 

with the following base conditions. 
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Figure 23. Worksheet 10A from the Highway Safety Manual For Rural 2-Lane Roads 
 It should be noted that these base conditions are not universally ideal for all 

agencies. For instance, in Kentucky, there are only about 114 miles (183 km) for 12 foot 

lanes/6 foot shoulders on the rural, 2-lane system. The CURE plot from such a low 

sample size is shown below (left) along with the CURE plot including filters for curvature 

and intersections as well (right). 
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Figure 24. CURE Plots for 12 foot Lanes and 6 Foot Shoulders (Left) and Including 
Other Filters (Right) 
 
 Neither model would be adequate for SPF development. Moreover, alternative 

lane and shoulder widths such as those used in Filter 10 produce a much better model.  

 Other attributes shown in the HSM’s base conditions are dependent on data 

availability. Kentucky does not maintain some of the base conditions suggested. It is 

suspected that if some of these attributes were very influential there would be more 

omitted variable bias observed. Additionally, it is possible that some other variables are 

performing as a proxy for some of the missing variables. For instance, the low volume 

filter is likely also filtering out sections with two-way left turn lanes. Table 10 below 

compares all eight filters plus Filter 10 using the same shading scheme as before. 
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Table 10. SPF Metrics for all Ranged Filters 

 10 11 12 13 14 15 16 17 18 
Segments 2911 4551 5347 9472 6055 5775 809 2541 2635 

k 0.6 0.7 0.7 0.6 0.6 0.6 0.9 0.8 0.8 

Total Crashes 721 1156 1513 3659 2485 2461 68 520 567 

Modified R2 0.48 0.43 0.46 0.47 0.47 0.46 0.42 0.28 0.30 

PCD 6.9% 7.4% 9.9% 14.4% 15.4% 16.9% 2.5% 10.6% 9.4% 

MACD 37.6 48.7 56.2 160.7 120.1 121.5 8.3 37.6 36.6 

MAD 0.3 0.3 0.4 0.4 0.5 0.5 0.1 0.3 0.3 

 
The metrics shown above are consistent with the CURE plots in that no 

improvement is observed when using ranged values. The metrics for Filter 10 are 

comparable or better than those listed above (shown for comparison). Filter 16 shows 

the lowest percent CURE deviation, however, this model was limited to very low volume 

roads resulting in a small sample size and limited applicability. It is suspected that the 

low volume is a proxy for other variables as discussed earlier.  

 Maps showing the spatial distribution of rural, 2-lane roads by shoulder and lane 

widths are shown in Appendix I and Appendix K, respectively. The map of shoulder 

width shows a clear pattern of the topography in Kentucky. Eastern Kentucky segments 

have less right-of-way than the rest of Kentucky. This pattern suggests that a 

geographical region filter might improve the modeling process. In fact, it might be more 

meaningful to calibrate SPFs based on region, but this was beyond the scope of this 

research. 

4.4.2. Additional Model Variables 

 This analysis compared the effect of adding attributes as variables to the model. 

The intention is to increase the sample of the network yet avoid omitted variable bias. 

Changes in an attribute can be modeled against crashes by including the attribute in the 

model. This is in contrast to filtering the network by that attribute. The network was 

filtered similar to Filter 10 (no vertical curves, no horizontal curves, no intersections, 

speed limit of 50 or more, no median, and no known data errors) from the previous 

section. The following models were compared: 
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• Base model (used for comparison) – 9 foot lanes and 3 foot shoulders filter 

• Model 1 (shoulder and lane widths as model variables) – no additional filter 

• Model 2 (shoulder width as model variable) – 9 foot lanes filter 

• Model 3 (lane width as model variable) – 3 foot shoulder filter 

• Model 4 (roadway width as model variable) – no additional filter 

• Model 5 (shoulder and lane widths as model variables, with interaction term) – no 

additional filter 

 The metrics for each model were compared using the same convention where 

darker cells are less optimal. The comparison is shown in Table 11. 

Table 11. SPF Metrics Compared for Various Models 
 Base Model 1 Model 2 Model 3 Model 4 Model 5 
Sample 708 4829 1396 1573 4829 4829 
Length 127.1 970.2 255.2 294.8 970.2 970.2 
Crashes 405 5287 937 1514 5287 5287 
R2 0.34 0.39 0.39 0.50 0.39 0.39 
PCD 3.0 9.1 17.1 2.2 9.1 7.9 
MACD 23.92 203.47 36.16 45.46 200.95 205.67 
MAD 0.66 0.96 0.71 0.86 0.96 0.96 
Theta 1.48 1.88 1.73 1.92 1.88 1.88 
Alpha -4.08 -4.09 -4.59 -4.09 -4.00 -4.47 
Beta 0.76 0.88 0.84 0.86 0.89 0.88 
SW*  -0.08 0.01     0.01 
LW*   -0.06   -0.06   -0.02 
RW*         -0.07   
SWxLW*           -0.01 
AIC 1380.90 12503.66 2889.04 3777.85 12501.93 12504.71 

*These values represent the coefficients of a specific variable 

 Four of the models show no improvement in any of the metrics (models 1, 2, 4, 

and 5). Model 3, however, shows improvements in modified R2 and CURE Deviation 

Percentage yet worse MACD, MAD, and AIC. MACD and MAD measure the maximum 

and average deviation for the residuals. It is expected that all models would have higher 

deviation when compared to the base model as it is the most homogeneous network (9 

foot lanes and 3 foot shoulders). This heterogeneity could lead to omitted variable bias 
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and outliers (as shown earlier). Furthermore, AIC penalizes models with the addition of 

variables to discourage overfitting. All of the models have one or more variables as 

compared to the base. This also explains the magnitude of AIC for models 1, 4, and 5 

(each of these had more than one additional variable). CURE plots for all models are 

shown in Appendix L and are consistent with the PCD. As before, it is worthwhile to 

consider the geographical distribution of the attributes, therefore a map of roadway 

width (used in Model 4) is shown in Appendix M. 

4.5. Conclusions and Discussion 

 As demonstrated, it is important to examine SPF models during their 

development. CURE plots can be an essential analytic tool in detecting outliers, omitted 

variable bias, and they indicate over what range the SPF performs well (e.g. cumulative 

residuals vs. AADT). These plots along with other goodness-of-fit measures can be used 

to improve the predictive power of the SPFs.  

 An advantage of the SPF automation tool developed as part of this research is 

that it enables nearly instant feedback when changes are made to the underlying 

network. This efficiency can lead to better SPFs, which will likely produce better crash 

predictions. Not only can SPFs be developed more quickly, which will reduce the cost, 

but they can be generated more easily, which can diversify the SPFs available to 

practitioners. This can lead to a better understanding of interaction terms, which can be 

difficult to identify. As the process of creating SPFs continues to improve, so too will 

safety professionals’ ability to predict crashes and better identify more appropriate 

safety treatments.  

 Database filters were easy to apply using the automation tool. It was initially 

obvious that filtering by a single attribute did little to improve the models (all attributes 

were filtered individually but only the 4 that had a meaningful effect shown in Appendix 

H). Rather, filtering by a combination of attributes was required to eliminate most of the 

omitted variable bias. This corroborates the HSM’s base condition approach. Moreover, 

ranges of attributes (such as lane widths from 8 to 10 feet), while increasing the sample 
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size, produced poorer models. This observation supports the lack of ranges for many of 

the base conditions in the HSM. Unlike in the previous chapter, ranges of traffic volumes 

were not found to improve the models on rural, 2-lane roadways. This may be caused by 

traffic volume serving as a proxy for some other variable not modeled for rural 

parkways. 

 The automation tool greatly aided in comparing the addition of model variables 

as well. Variables were added to a model from the previous section and the results were 

compared. The addition of variables created poorer models in four of the five models 

tested. Model 3 showed improvements in many of the metrics including a better CURE 

plot. This model filtered for 3 foot shoulders and added lane width as a variable. It is 

possible that some of this improvement could be attributed to 3 foot shoulders serving 

as a proxy for a geographic region (see Appendix J). There is an apparent clustering of 3 

foot shoulders in eastern Kentucky and that coupled with the narrower lane widths (see 

Appendix K) in eastern Kentucky might help model a regional driver behavior or 

environmental effect.  

 Consideration should also be given to the magnitude and the range of variables 

used. Many of the variables estimated for shoulder and lane widths shown in Table 11 

are near-zero. When coupled with a small value (such as a shoulder of 0 or 1 feet) this 

effectively has no impact on the model. Recall that the term is in the form: 𝑒𝑒𝑏𝑏∗𝑆𝑆𝑆𝑆 and 

the resultant nearly equates to one. That is, a shoulder width of 1 would be modeled to 

have no impact on crashes. In the other extreme, a shoulder width of 6 feet would 

produce a 30% reduction in crashes based on Model 1 (𝑒𝑒−0.06∗6 = 0.7). For pavement 

width, this impact translated to a 70% reduction for a 17 foot roadway width, using 

Model 4 (𝑒𝑒−0.07∗17 = 0.3). It is important to consider the length of segments by 

shoulder and lane width combinations that were used to create these models (recall 

Table 8). The small samples resulting from some of the combinations are likely 

contributing to the poor improvement in modeling. Finally, as noted, interaction can be 

difficult to anticipate. Model 5 suggests that there is little interaction observed with lane 

and shoulder widths as there was no model improvement, however, that is not to say 
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that there is no interaction among variables. The automation tool can provide an 

efficient way to test for interaction. The CMF Clearinghouse could also be used to help 

guide the selection of variables modeled as well as likely interaction terms. The 

magnitude of CMFs or CMFunctions can potentially help identify the most influential 

variables for a given facility type or crash type. 
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Chapter 5. Optimizing Segment Length and Roadway Attribute 

Specification and Aggregation 

5.1. Introduction 

 In this chapter, both attributes and segment length were considered in SPF 

development. When observed on their own, length and attributes have been shown to 

impact the development of SPFs. It is reasonable to assume that when considered 

together there is likely to be some interaction.  

5.2. Methodology 

 Observations from the previous two chapters were used to guide the evaluation 

of relationship between length and attributes. In this analysis, length filters were 

applied similarly to the way attribute filters were applied in the previous chapter. Length 

categories were used in conjunction with attribute filters to test the impact on SPF 

development. Various model forms were also tested with respect to how length is 

modeled and the resulting SPFs were compared. Lastly, length-based overdispersion 

was tested in the context in SPF development.  

5.2.1. Length Filter 

 As discussed earlier, the database used to create segments in the previous 

chapter created a break whenever one of the attributes changes. As pointed out, this 

can create very small segments, and due to rounding, some resulting segments can be 

small. A length filter was applied to remove very small segments and to set a minimum 

length for SPF development. The following length filters were applied using the filters 

from Filter 10: 

• No length filter (for comparison) 

• Length > 0.001 miles 

• Length > 0.01 miles 

• Length > 0.1 miles 
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 CURE plots and other metrics were compared for each model. CURE plots can 

also be used to test with which segment lengths the model performs best (similar to 

traffic volume). Modifications were made to SPF-R to create a CURE plot versus length 

(see Appendix F for details on this modification). 

5.2.2. Length Categories 

 Analysis was performed on the rural, 2-lane dataset combining the 

methodologies from the two previous chapters. The rural, 2-lane dataset was re-

segmented to create various length categories (fixed length) between 0.1 miles (160 m) 

and 1 mile (1610 m). These categories were compared to a version of the network 

where the length was based on changes in attributes (variable length). This is referred to 

as the “Raw” category as the network was segmented in its original form.  

 Several goodness-of-fit measures and various plots were used to compare 

combinations of the length categories and attribute filters. An output structure was 

defined to include length category, attributes (filter definition), CURE plot, scatter plot, 

descriptive statistics, SPF metrics, box plots, and a map. These outputs were produced 

for each model.  

 Previously, segments were discarded if they were less than the desired length 

category. That is, if the target length category was 0.7 miles (1.1 km), then any segment 

less than 0.7 was discarded (recall from 0, scenario 1). For this analysis, these segments 

were flagged as “remainders.” The idea behind this approach was twofold. First, 

including these segment remainders increased the sample size due to the inclusion of 

previously omitted segments. Second, including remainders reduced average segment 

length. For example, a 1.5-mile segment in 0.2 segmentation length would result in only 

seven segments with the last 0.1 miles (remainder) dropped from consideration. Model 

comparisons were made with and without remainders in the network. 

 The following filters were applied to further restrict the database of rural, 2-lane 

roads with 9 foot lanes and 3 foot shoulders for each length category.  



 

76 
 

• Length filter 

• AADT filter 

• Horizontal curve filter 

• Known data errors filters 

• Speed limit filter 

• Functional classification filter 

 The length filter was used to exclude “short” remainders from the analysis.  The 

other filters were applied as before. Minor collectors are the most predominate 

functional classification in this dataset, however, in Kentucky, functional classification is 

generally not found to represent homogeneity. 

5.2.3. Comparing Model Forms 

Another way to improve prediction models is to alter the model’s functional 

form. Hauer et al. (2002) implement a functional form as described in Equation 1. This is 

referred to as Model A. The HSM implements a similar form with a key distinction. 

Equation 10-6 in the HSM describes an SPF for rural, 2-lane as follows: 

𝑌𝑌 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝐿𝐿 ∗ 365 ∗ 10−6 ∗ 𝑒𝑒𝑎𝑎 (Model B)  (4) 

It should be noted that traffic volume (AADT) is treated as an offset, similar to 

length in that there is no exponential term. This is referred to as Model B. Equation 1 

can be rewritten similarly to Equation 4 for comparison: 

𝑌𝑌 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 ∗ 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎 (Model A) 

Notice that the two forms are similar with the exception of the exponential term 

for traffic volume (unless b = 1). Model B also includes a term commonly used in crash 

rates to normalize crashes per 100 million vehicle-miles traveled. This is term is 

unnecessary as the magnitude of a can reflect the same conversion during regression. It 

should also be pointed out that Equation 4 assumes a linear relationship between traffic 

volume and crashes – if the volume doubles, the crash prediction doubles. As pointed 

out in section 3.1, this is often not the case. Incidentally, the latest version of the 
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Interactive Highway Safety Design Model (IHSDM), which is a companion to the HSM, 

lacks the option to add a parameter to traffic volume, which forces it to follow Model 

B’s form. Both functional forms were used on the same rural, 2-lane dataset with filters 

similar to Filter 10 and the models were compared.  

Additionally, one other functional form was considered that adjusted how length 

is modeled. In both Models A and B, length is treated as an offset. It is likely that 

upcoming versions of the HSM will include a model form that treats length similarly to 

traffic volume in that it is not necessarily linearly related to the crash prediction. An 

exponential term can be added to Model A to produce a new form (Model C, Equation 

5). 

𝑌𝑌 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 ∗ 𝐿𝐿𝑐𝑐 ∗ 𝑒𝑒𝑎𝑎 (Model C)  (5) 
 
 Similar to traffic volume in the previous models, length has a non-linear 

relationship with crashes in this model. It is possible that length can be a proxy for some 

other aspects of safety not accounted for in the model; therefore, an advantage to this 

model form is that the magnitude of the parameter c might account for the missing 

variables (e.g. driveway density is likely to be higher on longer segments). Examples of 

how to implement these model forms in SPF-R are shown in Appendix F. 

5.2.4. Length-Based Overdispersion 

 The HSM suggests a length-based overdispersion for specific models. The 

distinction here is that overdispersion is estimated as a function of length. The 

motivation for this distinction is that overdispersion has been observed to be higher in 

shorter segments than in longer ones (Hauer, 2001). Cafiso et al. (2010) use Equation 6 

for overdispersion: 

𝑘𝑘 = 𝐴𝐴 ∗ 𝐿𝐿𝐵𝐵 (6) 

Where, 
k=variable overdispersion 
A and B are constants estimated during negative binomial regression 
L=Length in miles 
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 Notice that overdispersion is a function of length and that the sign of parameter 

B will dictate the relationship (positive or negative). Parameters A and B are estimated 

during the negative binomial regression. Once again, modifications were made to SPF-R 

to add this functionality (see Appendix F). This methodology produces a variable 

overdispersion that can be calculated for each segment. Recall that this methodology 

was unnecessary in 0 as length was constant. Recall that Filter 10 is based on the 

database filter from Chapter 4. This was used with the functional form from Model C to 

compare models with and without a variable dispersion. 

5.3. Results 

 The following sections discuss the results from each analysis. 

5.3.1. Length Filter 

 Three length filters were applied to a base model (Filter 10) and the models were 

compared. Similar to previous comparisons, goodness-of-fit measures were compared. 

These metrics are shown in Table 12. 
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Table 12. SPF Metrics for all Length Filters 
 Base Model Length > 0.001 Length > 0.01 Length > 0.1 
Sample 2911 2898 2596 718 
Length 225.782 225.769 224.00 129.87 
Crashes 721 721 716 407 
R2 0.48 0.48 0.46 0.35 
PCD 6.87 6.83 6.78 2.65 
MACD 37.65 37.64 36.48 22.56 
MAD 0.32 0.33 0.36 0.65 
Theta 1.56 1.56 1.56 1.48 
Alpha -4.81 -4.81 -4.82 -4.22 
Beta 0.86 0.86 0.87 0.78 

 
 The two smaller filters had little effect on improving the model. The metrics 

were unchanged or worsened. The last filter (0.1 miles), however, while reducing the 

sample size, improved PCD and MACD. MAD did worsen but this is expected as the 

average deviation is likely to increase when removing smaller segments (crashes are 

directly proportional to length). CURE plots for the base condition are compared to the 

0.1 miles length filter below. 

 

Figure 25. CURE Plots for Filter 10 (left) and with a Filter of Length > 0.1 Miles (right) 
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 A CURE plot was created for the base condition based on length instead of traffic 

volume to observe if length contributed to deviation in some ranges. This plot is shown 

below. 

 

Figure 26. CURE Plot Based on Length for Filter 10 
 
 While there is a some devaiation outside of the confidance bands, there is no 

indication of drifting (dramatically shown in Figure 22). Instead, this devation is likely 

realted to the vertical jump around 0.25 miles. This CURE plot suggests that there is little 

bias related to segment length.  

5.3.2. Length Categories 

 For each length, a variety of attribute filters were applied (listed in section 5.2.2). 

The following visualization was created for each length-attribute combination. 
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Figure 27. Example Visualization for Length-Attribute Combination 
 
 Because of the numerous combinations it was more feasible to manually 

evaluate small changes between combinations instead of comparing metrics in a single 

table. Several combinations of length and attribute filters are shown in Appendix N. 

Each visualization includes a list of filters, length category, CURE and scatter plots, SPF 

metrics, descriptive statistics, box plots, and a map.  

 In reviewing the visualizations, a few patterns emerge. The speed limit and 

functional classification (for rural, 2-lane roads) filters offer no model improvement. This 

is consistent with the previous finding that most rural, 2-lane segments have a speed 

limit of 50 mph and, therefore, the filter is unnecessary. As for functional classification, 

there is evidence that suggests that the existing classification does little to characterize 

the geometric context of the roadway (Stamatiadis et al., 2016). Therefore, it is 

understandable that this filter does little to improve homogeneity. Other consistent 

patterns are that remainders and traffic volume filters do not improve the model. Recall 

that traffic volume filters improved the models in 0 (scenario 1 compared to scenario 2). 

This implies there is less correlation between homogeneity and traffic volume for rural 2 

lane roadways than for rural parkways.  
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 Longer lengths appear to create the best models. Lengths longer than 0.7 miles 

have diminishing improvements. While not all length categories are shown in the 

appendix, there appear to be trade-offs with a length over 0.7. Table 13 compares these 

categories in more detail.
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Table 13. SPF Metrics for Longer Length Categories 

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

Sample 4488 2999 2140 1609 1222 979 782 646 534 

Length 1345.974 1199.196 1069.78 965.28 855.298 783.097 703.762 645.982 587.351 

Crashes 3214 2819 2624 2419 2148 1962 1815 1671 1551 

R2 0.42 0.44 0.49 0.50 0.54 0.55 0.58 0.53 0.56 

CDP 3.3 2.1 0.3 0.2 0.2 0.3 0.1 0.3 1.1 

MACD 72.5 65.8 53.7 53.5 53.1 38.4 37.5 38.0 30.9 

MAD 0.7 0.9 1.0 1.2 1.2 1.3 1.5 1.6 1.7 

Theta 2.13 2.31 2.59 2.64 3.18 3.70 3.97 3.59 3.80 

Alpha -5.08 -5.33 -5.17 -5.24 -5.18 -5.47 -5.30 -5.28 -5.36 

Beta 0.93 0.97 0.95 0.96 0.95 0.99 0.97 0.97 0.98 

StdErr 0.20 0.23 0.28 0.29 0.40 0.52 0.59 0.54 0.60 
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  Notice that for categories above 0.7 miles, some metrics improve yet there is 

little consistency and the effective difference is insignificant (the PCD is well below 5%, 

MAD indicates that the model prediction is on average between 1.3 and 1.7 from the 

actual crash experience). A key point in this comparison is that the regression 

parameters (alpha and beta) change very little. Recall that the SPF equation is: 

𝑦𝑦 = 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 

The difference between a for 0.7 miles (-5.18) and for 0.8 miles (-5.47) may seem 

significant, however, when evaluated using the above equation, the crash predictions 

are nearly identical (4.05 and 4.06, respectively) when evaluated with an AADT of 1000 

and a length of 1 mile. Furthermore, the fact that beta is nearly one suggests that ADT 

could be modeled as an offset (discussed in the next section), which reduces the 

number of regression parameters.  

 Appendix N demonstrates that all length categories perform better than the 

“Raw” segmentation. Recall that “Raw” represents a variable length based on 

homogeneity attributes. This suggests there is an advantage to using a fixed length 

segmentation over variable length for this dataset. 

5.3.3. Comparing Model Forms 

 A set of filters resulting in little omitted variable bias was used to test different 

functional forms (Filter 10). The metrics generated from Models A, B, and C are shown 

below. 
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Table 14. Model Form Comparison of Three Safety Performance Functions 
Metric Model A Model B Model C Notes 

R2 0.34 0.29 0.34 Higher values preferred 

PCD 2.97% 9.60% 0.42% Less than 5% 

MACD 23.92 31.19 18.93 Lower values preferred 

MAD 0.66 0.66 0.65 Lower values preferred 

Theta 1.48 1.39 1.56 Higher values preferred 

AIC 1380.90 1385.36 1377.16 Lower values preferred 

 
 It should be noted, in contrast to the previous finding, that parameter b (beta) is 

less than one. The implication here is that there is a non-linear relationship between 

crashes and AADT. Moreover, Model C suggests that this is also true with length. The 

distinction between this analysis and the previous analysis is fixed versus variable 

length. Based on these metrics, Model C outperforms the others in all aspects. The 

associated CURE plots are shown Figure 28. 

 

Figure 28. CURE Plots from Three Models Compared (A, B, and C, left to right) 
 
 It should be noted that Model C is just as easy to implement as the other two 

models. For this dataset, there is seemingly no reason not to use Model C’s form. 

Another consideration when selecting a model form is the model prediction. Predictions 

using realistic values for AADT and length can be computed using the models based on 

the resulting regression parameters. Consider two predictions: 
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• Prediction 1 with an AADT of 1,000 at 0.5 miles. 

• Prediction 2 with an AADT of 2,000 at 1.8 miles. 

Table 15. Model Form Comparison of Prediction Results 
Parameter Model A Model B Model C 
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 ∗ 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎 AADT ∗ L ∗ 365 ∗ 10−6 ∗ ea 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 ∗ 𝐿𝐿𝑐𝑐 ∗ 𝑒𝑒𝑎𝑎 

a -4.08 2.19 -4.46 

b 0.76 n/a 0.74 

c n/a n/a 0.68 
    

Prediction 1 1.6 1.6 1.2 

Prediction 2 9.8 11.7 4.8 

 
 Table 15 compares the resulting predictions in crashes per mile for each model. 

Notice for prediction 1, the model predictions are similar yet Models A and B over-

predict slightly when compared to Model C. At a higher AADT and a longer length (1.8 

miles is the maximum length for this dataset), the over-prediction worsens. The 

implication here is that while Model C might only seem marginally better than the other 

two models when comparing goodness-of-fit measures, however, the predictions vary 

wildly.  

5.3.4. Length-Based Overdispersion 

 In contrast to the other comparisons thus far, overdispersion has a different 

implication on the modeling process. Two different regression model packages within R 

(discussed in detail in Appendix F) were used to compare variable and fixed dispersion 

for the same dataset. The reported regression parameters differed slightly, however, 

the difference was so nominal that the parameters were equal to two decimals places. 

As shown previously, such a small difference in regression parameter values has little 
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influence on the model prediction15. Therefore, it was determined that this difference 

was negligible.  

The only other implication that overdispersion has in the modeling process is in 

the weight calculation (recall the weight component from Equation 2)16. When using 

variable dispersion, the weight equation becomes: 

𝑊𝑊𝑒𝑒𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑖𝑖 =  1

1+𝐴𝐴∗𝐿𝐿𝐵𝐵∗
SPF𝑖𝑖
𝐿𝐿𝑖𝑖

  (7) 

 
 When combined with Equation 3, PCR at site i becomes a function of 

overdispersion as such: 

𝑆𝑆𝑂𝑂𝑃𝑃𝑖𝑖 =  1

1+𝐴𝐴∗𝐿𝐿𝐵𝐵∗
SPF𝑖𝑖
𝐿𝐿𝑖𝑖

∗  𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + �1 − 1

1+𝐴𝐴∗𝐿𝐿𝐵𝐵∗
SPF𝑖𝑖
𝐿𝐿𝑖𝑖

� ∗ 𝑂𝑂𝑂𝑂𝑖𝑖    (8) 

 
 While it was determined that length-based dispersion has no impact on the SPF 

development process (as described above), it could have implications on the PCR 

calculations. The filter process from Filter 10 and the functional form of Model C were 

used to compare constant and variable dispersion. Recall the functional form and 

dispersion formula used: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 ∗ 𝐿𝐿𝑐𝑐 ∗ 𝑒𝑒𝑎𝑎 

𝑘𝑘 = 𝐴𝐴 ∗ 𝐿𝐿𝐸𝐸 

 The overdispersion and the resulting regression parameters are shown in 0. 

  

                                                       
15 The difference between a=-5.53 and -5.54 would equate to 0.04 crashes (compared with an AADT of 
1000 and a length of 1 mile). 
16 Overdispersion also has an effect on the confidence boundaries in CURE plots but this influence was 
beyond the scope of this analysis. 
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Table 16. Constant and Variable Dispersion Parameters Compared 

 
Constant 

Dispersion 
Variable 

Dispersion  
 

1.57 
0.73 (average) 

Theta 0.46 (min) 
 1.15 (max) 
a -4.83 -4.83  
b 0.86 0.86  
c 0.98 0.98  
A  n/a 0.50  
B  n/a -0.12  
  

 Two important points should be made about the dispersion parameters A and B. 

First, A is reported by both Stata and R as the ln(A), therefore, exponential 

transformation is required (i.e. 𝐴𝐴 = 𝑒𝑒ln (𝐴𝐴)). Furthermore, the gnlr library used in R 

mistakenly reports A and B as -A and -B. For this analysis; Stata was used to verify the 

parameters. More discussion on this issue is in Appendix F. 

 The above parameters were used to calculate PCR for each segment and for each 

model. The PCRs were ranked and Pearson’s correlation and Spearman’s Rho were 

calculated to compare the resulting lists. The values of PCRs are also compared below. 

Table 17. PCRs For Constant and Variable Dispersion Compared  
PCR Constant 

Dispersion 
Variable 

Dispersion 
Average 0.00 -0.04 
Min -2.33 -3.12 
Max 5.89 5.83 

 
Remarkably, the PCR rankings were nearly identical with a Pearson’s Correlation 

of 0.996 and a Spearman’s Rho of 0.994. This implies that for rural, 2-lane roads there is 

seemingly no advantage to variable dispersion. Even the maximum PCR magnitudes 

were fairly comparable.  

5.4. Conclusions 

 This chapter examined both length and attributes in the context of SPF 

development. The interaction between both factors uncovered aspects that can be used 
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to improve modeling. When considering fixed-length segments there seemed to be little 

need to parametrize AADT (i.e. AADTb) as b was near one. There is a definitive 

advantage to reducing model complexity as the addition of variables can lead to 

overfitting (Srinivasan and Bauer, 2013a). In contrast, when comparing model forms 

using a variable length, not only did a parametrized AADT produce a better model, but 

length is better modeled when parametrized too. When a fixed length is used it is 

intuitive to expect no advantage to adding a parameter (all segments have the same 

length). The key point here, however, is that the functional form of an SPF may be 

sensitive to the segmentation of the network.  

  Another aspect of this analysis is the importance of checking for data errors. The 

advantages of an automated development process come at the price of undetected data 

errors. It is worth emphasizing that a variety of cross-checks can help detect such errors. 

Descriptive statistics and CURE plots can offer quantitative comparisons but mapping 

data can help cross-check geographical distributions. Furthermore, CURE plots can be 

helpful for detecting where modeling performs best either with respect to AADT, length, 

or other variables. It should be noted that it is more feasible to use a variable that has a 

wide range of values such as length or AADT as opposed to a narrow range like shoulder 

or lane widths. A CURE plot with shoulder width on the x-axis would be too coarse as to 

provide a meaningful assessment of model fit as shoulder width would only be 

comprised of about a dozen values. 

 Lastly, this analysis found no advantage to variable dispersion in terms of SPF 

development and the lists generated based on PCR. It is important to point out that this 

does not imply that length-based dispersion is unhelpful as others have found it to be 

(Hauer, 2001, Cafiso et al., 2010, Geedipally, 2008), rather, it was found unnecessary for 

the data analyzed.  
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Chapter 6. Conclusions 

6.1. Summary 

  Experience in Kentucky and a consensus in the body of knowledge suggest that a 

science-based approach employing EB is more effective than traditional methods. The 

HSM suggests EB along with the predictive methods of SPFs for network screening. This 

research addressed three questions in the context network screening as a means to 

identify hazardous locations. 

What are the statistical implications of segment length when performing safety 

analysis? 

  There are trade-offs between segment lengths when applied to near 

homogeneous rural parkways (multi-lane divided facilities similar to interstates) in 

Kentucky. Many of the goodness-of-fit metrics improve with increasing segment length, 

however, the applicability of the models is reduced as sample sizes become lower than 

HSM recommendations. Inversely, average deviation improves (lowers) with shorter 

segment lengths. For this application, a segment length of 2 miles seems to produce a 

segment length where the metrics are ideal. 

 This research focused on a specific crash type on a specific facility. It is 

recommended that the methodologies outlined in this research are applied to other 

facility and crash types as the results may differ. Specific crash types can be modeled to 

help prioritize where to apply a specific countermeasure. The optimal segment length is 

likely to change based on the countermeasure. Furthermore, these results suggest the 

need to analyze attributes with respect to roadway homogeneity.  

What are the implications of roadway homogeneity on safety analysis? 

 Rural, 2-lane roadways were used to evaluate the role of attributes in network 

screening. A single attribute was understandably unable to adequately explain crash 

variation in the form of an SPF. Rather, combinations of attributes were needed to 

develop meaningful SPFs. Ranges of attributes offered no improvement to the modeling 
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process. In Kentucky, a set of attribute filters were identified as the ideal filter that 

produced the best model while maintaining practical real-world applications. Recall that 

too many filters limit the applicability of the SPF in that they require too many 

adjustments (in the form of CMFs) to apply to other segments. 

 Base conditions from the HSM can be used but it is more logical to determine 

base conditions based on the most predominate attributes for a given facility type 

utilizing local data. Analytical tools such as CURE plots, maps, and goodness-of-fit 

metrics should be utilized during this exploration in an effort to find the ideal 

composition of attributes. This step can also help identify data errors in either the crash 

or roadway databases. Interaction, while difficult to detect, can be considered during 

this process too. Models can be improved by including interaction terms that help 

explain variation caused by the combination of more than one attribute. 

What are the trade-offs between homogeneity and segment length on safety analysis? 

 Both length and attributes can be evaluated together and, their interaction 

might produce different results compared to the separate analyses. The ideal model 

form suggested a linear relationship between traffic volume and crashes when applied 

to fixed length segmentation (consistent with Cafiso et al., 2013). In contrast, a non-

linear relationship was found ideal when applied to variable lengths (consistent with 

Srinivasan et al., 2011). A key point here is that there may not be a single ideal model 

form. Also, shorter segments might be more sensitive to boundary effects, especially 

when considering the accuracy of the crash data. A non-linear length term could help 

account for boundary effects in short versus long segments.  

 The use of overdispersion as a function of length is recommended in the HSM for 

both rural, 2-lane and rural multilane facilities (see HSM’s equations 10-7, 11-8, and 11-

10). In contrast, a constant overdispersion is recommended for urban and suburban 

arterials. In this research, length-based overdispersion showed no effect on the SPF 

development or the resulting network screening. Although, other recent research 

(Hauer, 2001, Cafiso et al., 2010, Geedipally, 2008) does find an impact. While this step 
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does add some complexity, there is seemingly no downside to employing variable 

overdispersion. It is therefore recommended as step in the SPF development process. 

6.2. Discussion 

 While there are a variety of segmentation techniques, this research focused on 

network-based approach in contrast to a crash-based approach. Crash-based 

segmentation, while likely to identify optimal segments for safety analysis (Lu et al., 

2013; Depaire et al., 2008) is less practical than a fixed segment based on roadway data 

(Cafiso et al., 2013). Moreover, crash location data may not be accurate enough to 

warrant such segmentation techniques (Green and Agent, 2011, Ogle et al., 2011). A 

crash-based approach would also require the weighting of changing attributes within a 

segment. As shown above, safety analysis can be very sensitive to attributes, even 

ranges of attributes. The network-based approach is also very applicable for a network-

wide countermeasure prioritization especially if the countermeasure applies to a 

specific geometric attribute combination (e.g. high friction surface on curves, or 

centerline rumble stripes on undivided roads). 

 The modeling process seems to be more nuanced than traditional crash analysis 

such as critical rate factors. When modeling, it is important to consider a variety of 

implications. Segmentation, model form, and attribute filters are just some of the 

considerations. As Hauer suggests in his title, The Art of Regression Modeling in Road 

Safety, there is “art” to the process. SPF development tools are essential to the 

exploratory nature of modeling. A less optimal model could be developed, for example, 

without an efficient way to test for interaction or omitted variable bias. Tools like The 

Calibrator, IHSDM, and SPF-R can offer improvements over a manual process for SPF 

assessment and development.  

6.3. Limitations 

  While this research followed the recommendation to explore other fixed length 

sizes, future research in this area could employ other evaluation techniques used by 

Cafiso et al. (2013). Sensitivity, specificity, and QIC were used to compare models and 
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segmentation techniques. These same tools could be applied to this research and they 

might help to further refine the recommendations. Researchers have also used variable 

significance tests to determine the effect of variables while this research used CURE 

plots and other metrics as a proxy for significance. 

 This research was conducted on roadway segments particularly as length was an 

important factor. However, many of the tools and methods could be applied to 

intersections as well. Moreover, this research focused on rural roadways, yet the same 

principles could also be applied to urban facilities. Urban segments are typically shorter 

and have more complex attributes when compared to rural segments. These factors 

may influence the effect that segment length and length-based overdispersion may 

have on model development. As stated, there is likely no optimal length that applies to 

all facility types.  

As SPF development continues to grow in the United States the demand for SPF 

development tools will increase as well. At the time of this writing there are many ways 

to develop SPFs. Excel tools have been created that use Solver to perform regression to 

develop SFPs. Advanced knowledge of Excel and familiarity with the SPF worksheet is 

helpful in developing SPFs. Workshops can also help SPF developers with the 

implementation of such tools. These tools offer a lot more control over SPF 

development, but can represent a barrier to entry for a novice at SPF development. 

Statisticians and programmers may be more comfortable using SAS, R, or SPSS. These 

solutions typically require knowledge of the software. Moreover, without advanced 

programming, data must be exported from a crash database, then imported into the 

statistics program, and finally exported into a solution such as The Calibrator to 

adequately evaluate SPFs. This multistep process can hinder the development process 

by adding complications and slowing down model development. 

The model forms in this research were limited to the power function. Research 

has shown that other functional forms may provide a better model fit, such as the 
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sigmoid functional form (Kononov, 2011). Such models are not as easily implemented as 

they require the use of Neural Network methodologies.  

 The use of calibration was not employed in this research, but could easily be 

used to apply models to other datasets. While the site-specific SPFs are certainly ideal, 

many agencies lack the resources to develop SPFs. In this case calibration is very 

desirable alternative.  

6.4. Recommendations 

  The research presented here was distilled down to produce a decision diagram 

to help with the SPF development process (Figure 29).  
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Figure 29. Framework for Analysis of Proper Segmentation for SPF Development 
 
 In each step, it is recommended to use CURE plots and goodness-of-fit metrics to 

evaluate the sensitivity of the decision step. For instance, the decision to select variable 

versus fixed length might have a strong impact on model quality. The other decisions 

might require more evaluation steps. Several filters can be applied and tested during the 

attribute filter step. As shown above in the form of green arrows, reevaluation should 

be considered at each step. In this context, CURE plots and other metrics should be used 
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to test the effect of a decision point. For example, when considering model form, 

several forms should be evaluated for a given dataset and the one producing the best 

metrics should be selected. 

 The research within, while developed for Kentucky data, can be applied to other 

data sources. This is especially true as the framework outlined includes evaluation with 

each step. These evaluation steps will help identify the optimal segmentation length and 

attribute filters which may likely differ for other data sources. 
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Appendix A – Representative Images of Parkways From Kentucky’s Photolog 
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Appendix B – CURE Plots for Scenario 1 
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Appendix C – CURE Plots for Scenario 2 
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Appendix D – Top Ten PCR Segments  by Segment Length 
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Appendix E – Photolog Images of Frequently Occurring Top Ten PCRs 

Warren County: 
114-WN-9007-000 
Mile: 0 – 1 
Beginning of Route: (Approx. Mile: 0) 

 

Right Curve: 1 Occurrences 
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Exit Ramp: 1 Occurrences 
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Christian County: 
024-EB-9004-000  
Mile: 0.0 – 8.5 
On Ramp (Approx. Mile: 0.0) 

 

Merge: 5 Occurrences 
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Bridge Entrance: 7 Occurrences 

 

Bridge: 7 Occurrences 
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Overpass: 3 Occurrences 

 

Guardrail: Right Shoulder: 4 Occurrences 
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Exit Ramp: 3 Occurrences 

 

Curve/Guardrail: Median: 1 Occurrences 
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Powell County: 
099-KY-9000-000 
Mile: 32.5 – 35.8 
Beginning of Route: (Approx. Mile: 32.5) 

 

Exit Ramp: 1 Occurrences  
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Bridge: 2 Occurrences 

 

Merge: 1 Occurrences  

 

 

 

 

 



 

 
 

122 

Right Curve with Guardrail: 4 Occurrences 

 

Overpass: 2 Occurrences 
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Right Guardrail: 3 Occurrences 

 

Left Curve: 1 Occurrence 
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Nelson County: 
090-BG-9002-000 
Mile: 25.0 – 31.0 
Beginning of Route: (Approx. Mile: 25.0) 

 

Guardrail-Right Shoulder: 10 Occurrences 

 

 

 

 



 

 
 

125 

Right Curve: 2 Occurrences 

 

Left Curve: 1 Occurrences 
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Overpass: 1 Occurrences 
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Graves County: 
042-JC-9003 -000 
Mile: 11.0 – 16.0 
Beginning of Route: (Approx. Mile: 11.0) 

 

Guardrail - Right Shoulder: 12 Occurrences 
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Overpass: 3 Occurrences 

 

Bridge Entrance: 1 Occurrences 
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Bridge: 1 Occurrences 

 

Overpass with On and Off Ramp: 1 Occurrences 
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Appendix F – SPF-R User’s Guide 

Introduction 

 The following guide describes an automation tool that helps to develop and 

assess Safety Performance Functions (SPFs). SPFs can be straightforward to develop. The 

process requires a database of roadway segments (or intersections) containing segment 

length, number of crashes, and traffic volumes for each site. A generalized linear model 

using negative binomial regression is used to create an equation that relates observed 

crashes to traffic volume and length (as well as other independent variables, if desired). 

Statistical packages such as SPSS, SAS, Stata, and R Studio perform this regression easily 

with built-in tools. The process can also be achieved in Microsoft Excel using solver or 

custom functions.  

The above-mentioned tools are simple enough to generate an SPF manually but 

can be cumbersome when trying to improve model development, which requires 

several iterations while filtering the roadway dataset. Moreover, the creation of CURE 

Plots requires several steps and considerable amount of overhead for large database. 

FHWA’s Calibrator tool readily generates CURE Plots but is separate from the SPF 

development.  This separation necessitates several intermediate and repetitive steps. 

The program “R Studio” can be used to simplify and streamline the SPF 

development and assessment process for large datasets, and code was written to 

automate the entire process. The following sections describe each section of the R Code 

– named “SPF-R.” The source code is available on GitHub at: 

http://github.com/irkgreen/SPF-R. The code can be modified as needed and meaningful 

changes may be committed to the GitHub repository so that other safety professionals 

can benefit from the enhancements. GitHub is an online, collaborative tool that allows 

anyone to download the source code and contribute.  

The code requires an input file in CSV-format containing roadway segments or 

intersections. Each record must contain, at a minimum, traffic volume (major and minor 

http://github.com/irkgreen/SPF-R
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for intersections), length (for roadway segments), and crashes. Optionally, the input file 

can contain data about the roadway (shoulder width, lane width, curvature, etc.) and 

crash counts by severity. 

By default, SPF-R develops an SPF based on the input file using the model form 

shown in Equation 1. A CURE Plot, scatter plot, and an Excel document containing the 

model parameters and data are all saved to folder defined by the user. The following 

sections describe how to use and modify SPF-R. 

SPF-R Prerequisites 

 The above referenced source code was intended for use with R Studio. However, 

it may work with other installations of R. A separate installation of Rtools as well four R 

Packages are required. The following list describes the required tools: 

• R Studio - https://www.rstudio.com/products/rstudio/download/ 
• Rtools - https://cran.r-project.org/bin/windows/Rtools/ 17 
• Required packages: knitr, ggplot2, openxls, installr 

 An analyst may download and install both R Studio and Rtools from the links 

provided. To install the required packages, the user will choose run Tools>Packages 

from the R Studio menu and enter the comma-separated list of packages described 

above. R Studio provides sufficient error messaging to help with most installation errors. 

SPR-R Code Description 

 The following describes the purpose of each section of R-code and provides 

advice on modification of code for other uses. Line numbers from the February 15, 2017 

“commit” on GitHub will be used as references. A “commit” is an upload to the 

repository. It is likely that the repository will be modified after the release of this 

document; therefore, please refer to the SHA hash 

b376201f1765f3fe3b0adadbbdd794db267c2cde. 

                                                       
17 When installing Rtools, make sure that the box is checked to have the installer edit your PATH. 

https://www.rstudio.com/products/rstudio/download/
https://cran.r-project.org/bin/windows/Rtools/
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Lines 1-17 

The first few lines disable echo, clear the workspace, load libraries, and store the 

version number. The workspace is cleared to simplify debugging as the previous 

workspace memory can make it difficult to isolate errors. That said, this line can be 

removed if the user intends to use previously stored data (warning – clearing the 

workspace will delete R Studio’s stored data). Edit the version number as needed; 

however, the other lines should stay unchanged. Editing the version is important so that 

results are tied to a specific version of SPF-R if changes are made. 

Lines 19-27 

This code is used to specify an alternate location for the Windows User’s folder. 

For most users, the default is sufficient. However, an alternate user folder can be 

hardcoded using the computer’s computer name as shown in lines 21 and 23. This 

folder is a base folder for input data as described below.  

Lines 29-50 

 This section is used to map the data columns (from the input file – discussed 

below) to the variables used to develop an SPF. You must specify a data column for 

TotalColumn, AADTColumn, and LengthColumn. These columns represent the total 

crashes, traffic volume, and length, respectively, for each site. The total crashes at each 

site could be for all crashes or a specific crash type. TotalColumn must be used if only 

one specific crash severity is being analyzed (e.g. fatal only crashes). However, if SPFs 

are to be developed for more than one severity type then the KABCO columns can be 

used to simply the SPF development process. In this case, the input dataset must include 

a column for each severity type. For example, you can develop SPFs for five severity 

types by using the following mappings: 

• TotalColumn = "Total" #The title of the column containing All Crashes (KABCO) 
• KABCColumn = "KABC" #The title of the column containing KABC Crashes 
• KABColumn = "KAB" #The title of the column containing KAB Crashes 
• KAColumn = "KA" #The title of the column containing KA Crashes 
• KColumn = "Fatal" #The title of the column containing K Only Crashes 
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Spaces should be avoided in all column names, however, you can replace spaces with a 

period: "Total.Crashes" 

Classes can be used if your dataset contains more than one group of roadway 

segments or intersection types. For example, the dataset may contain several districts 

across a state. SPF-R can be used to build a separate SPF for each district. The mapped 

ClassColumn must contain a positive integer (e.g. district number). The lowest and 

highest integers must be defined with ClassStart and ClassEnd. Gaps in the range should 

be avoided. For instance, a dataset might include data for two highway types: rural, 2-

lane roads and urban 4-lane divided roads. In this dataset, all of the rural, 2-lane roads 

could be coded as HighwayType = 1 and the others as HighwayType =2. ClassColumn 

would be set to “HighwayType” with ClassStart = 1 and ClassEnd = 2. 

The CSVPath variable is used to set the location of the input CSV file. This file 

must contain all of the fields mapped above. The CSV must have a title row. The location 

is relative to the folder set in line 26. Notice that R uses forward slashes (“/”) for file 

paths. 

 The OutputProject_Base is used to define the name of the output folder. The 

myFilter_Base is used to apply a global filter to the data. Generally, it is good practice to 

specify that traffic volume and length are both greater than zero to avoid errors in the 

regression. You can reference a field in two ways: 

• Directly – data$FieldName where FieldName is the name of the field in the input CSV 
• Using pre-defined variables – data[[VariableName]] where VariableName is 

TotalColumn or another previously defined field (ideal for dynamic assignment of a 
variable throughout the code) 

 It is important to change the OutputProject_Base anytime the myFilter_Base is 

changed. This will ensure that the modified SPF is saved to another folder instead of 

overwriting the previous analysis. There is no warning about overwriting folders or files.  

The InputData_Base is used to uniquely identify the analysis type. It is 

recommended that the crash time period and crash type are described in this text 
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string. This description will be included in the output file. Lastly, initTheta is used to 

specify a starting point for the overdispersion parameter. This can be adjusted if the 

regression model is not able to converge. R Code uses Theta as opposed to k for the 

overdispersion parameter. Theta is the reciprocal of k. 

Lines 52-55 

These comments simply show examples of advanced filters using AND (&) and 

OR (|) operators. Notice that the presence of parenthesizes is important in developing 

filters. Text string filters require the use of a single quote (apostrophe). R uses a single 

equal sign (=) to set a variable, but double equal signs (==) to set a filter to an exact 

match (as opposed to an inequality such as greater than). 

Lines 57-92 

These lines simply check for the input dataset and attempt to bind the data. A 

flag is set to TRUE, if successful. 

Lines 94-193 

This section represents the main function to develop the model – RunSPF. These 

statements are not actually executed until called upon later in the code. This may seem 

a bit counterintuitive, but these lines will be explained in a later section. 

Line 196 

This line merely checks that the input dataset (CSV) was bound successfully. The 

following lines will not execute if unsuccessful. 

Lines 198-213 

This section checks if the user has defined a column of classes. If a class column 

is set, then the remaining code will loop through each class. In each loop, the base filter 

is limited to class i where i is the current class. If no class is defined, then no filter is 

applied and the loop is only executed once. 
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Lines 215-222 

This section represents the primary SPF initialization. Three variables are 

temporarily assigned to identify the crash column, the input dataset description, the 

output folder. The RunSPF function is executed using the temporally assigned variables. 

Lastly, a message is printed indicating that this code has completed. 

Lines 227-272 

This section executes the same code as in the previous section however the 

variables are changed to reference the predefined severity columns, if enabled. The 

same three variables are used but this time the crash columns are assigned accordingly. 

Similarly, the severity type is indicated in the description variables. 

Lines 94-193 (revisited) 

This section develops the SPF and creates the output files. It should be more 

intuitive now that the other sections have been explained. This function uses temporary 

variables such that it can be called several times throughout the code. Care has been 

taken to make all of the inputs and outputs generic. Line numbers are indicated where 

appropriate below. 

A filter is applied using data from the base filter (line 43) and using a defined 

class (line 208), if applicable (line 97). This new data table is then sorted by the traffic 

volume column (line 100). The crash column is set to a variable to be used negative 

binomial model development (line 103). A generalized linear model is used to compute 

the regression parameters. The natural log is used to generalize the functional form of 

the SPF so that the parameters are coefficients instead of exponents. As such, the 

natural log of traffic volume and length are computed (lines 104-105). Optionally, length 

can be calculated directly from beginning and ending points; however, segments with a 

length of zero will cause an error in the SPF function. It is therefore recommended that 

length is included in the input file so that a simple filter can be applied. Theta is 

initialized on line 45. An effort was made to group all user-defined settings into a few 

sections of the code.  
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Line 112 executes regression based on the SPF model form. This code can be altered to 

support other model forms. A few notes about the syntax: 

• The variable to the left of the tilde (~) is the dependent variable – crashes. 
• The plus sign is used to separate the independent variables. These are variables that 

are affected by regression parameter as an exponent (e.g. AADTb or eSW*b). 
• Any additional independent variable need to be added to lines 104-105 so that the 

column titles are mapped to variables to be used in the glm.nb function. 
• A natural log transformation must be computed for any variables lacking the 

exponent (Euler’s number, e). Traffic volume (AADT) typically requires this 
transformation as shown in Equation 1. Variable names that have been transformed 
should start with “ln” to indicate the transformation. 

• Advanced users can modify the code to include interaction terms 

• Offset() is used to isolate variables that are not affected by a regression parameter 
(e.g. Length). These variables should also be transformed using the natural log. 
Although the current edition of the HSM (AAHSTO, 2010) treats length this way, 
there is some recent evidence that Length should be modeled similar to AADT. In 
this case offset() can simply be removed from the R code. 

The following table lists three common SPF models and their R Code syntax. 

Table F-1. Various SPF Forms and the Corresponding R Code Syntax 

Descriptio

n 

Functional Form** R Code 

Typical 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 SPF=glm.nb(crash~lnADT+offset(lnL)) 

Alternate 𝐿𝐿𝑐𝑐 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 SPF=glm.nb(crash~lnADT+lnL) 

HSM 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝐿𝐿 ∗ 365 ∗ 10−6 ∗ 𝑒𝑒𝑎𝑎 SPF=glm.nb(crash~offset(HSM*)) 

Intersectio

n 

𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑀𝑀𝑊𝑊𝑀𝑀𝑏𝑏2 SPF=glm.nb(crash~lnADT1+lnADT2) 

Shoulder 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏1𝑒𝑒𝑆𝑆𝑆𝑆∗𝑏𝑏2 SPF=glm.nb(crash~lnADT+SW+offset(lnL)) 

Interaction 𝐿𝐿

∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏1𝑒𝑒𝑆𝑆𝑆𝑆∗𝑏𝑏2+𝐿𝐿𝑆𝑆∗𝑏𝑏3+𝐿𝐿𝑆𝑆∗𝑆𝑆𝑆𝑆∗𝑏𝑏4 

SPF=glm.nb(crash~lnADT+SW+LW+SW*LW+offset(l

nL)) 

*HSM = log(data2[[AADTColumn]]*data2[[LengthColumn]]*365*10^-6) 

**LW = lane width, SW = shoulder width 

Terms that are in exponential functional form (such as eb and eSW*b2) do not 

require a transformation; however, length, power functions (such as AADTa), and any 
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other terms require a natural log transformation. Transformation is required so that the 

exponents (a, b, b2) can be treated as coefficients and computed using linear regression. 

Consider the following transformation: 

𝑌𝑌 = 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 
ln(𝑌𝑌) = ln(𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏) 
ln(𝑌𝑌) = ln(𝐿𝐿) + ln(𝑒𝑒𝑎𝑎) + ln (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏)* 
ln(𝑌𝑌) = ln(𝐿𝐿) + 𝑀𝑀 + 𝑏𝑏 ∗ ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) 
where, 
ln(𝑒𝑒𝑎𝑎) = 𝑀𝑀 ∗ ln(𝑒𝑒1) 
ln (𝑒𝑒1) = 1 
*natural log identity 
 

Notice that a and b can now be computed using linear regression with ln(L) as an 

offset. In this model form a is the intercept and b is the regression coefficient for AADT. 

The same transformation can be applied to other model forms using the same natural 

log identities. All natural log transformations must be computed in the section of code 

starting at line 104. Moreover, additional parameters (such as b1 and b2) must be 

referenced in the output section near line 167 as discussed later. 

More complicated model forms can also be used. In this case, it is advisable to 

check the R-code syntax using Excel. This is easily accomplished by calculating the 

prediction using the intended model form from within Excel. From here, the 

independent variables and model parameters can be referenced directly. The resulting 

prediction can be compared to the fitted result provided by R – conveniently stored in 

Excel as well. A perfect match (to several decimals) confirms that the model form was 

properly converted. For example, consider the fatal and injury SPF for two-lane rural 

road by Bauer and Harwood as described in the SPF Development Guide: 

𝑁𝑁𝐹𝐹𝐹𝐹 = 𝑒𝑒𝑏𝑏0+𝑏𝑏1∗ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)+𝑏𝑏2∗𝐺𝐺+𝑏𝑏3∗ln�2∗
5730
𝑅𝑅 �∗𝐹𝐹𝐻𝐻𝐻𝐻+𝑏𝑏4�

1
𝑅𝑅��

1
𝐿𝐿𝑐𝑐
�∗𝐹𝐹𝐻𝐻𝐻𝐻 

The equivalent R syntax for this model is: 
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   #Point to variables 
  crash=data2[[CrashColumn]] 
  lnADT=log(data2[[AADTColumn]]) 
  IHC=data2$IHC 
  ln2CD=ifelse(data2$CURVEDEG == 0 ,0,log(2*data2$CURVEDEG)*data2$IHC) # omit if DegreeOfCurve is zero** 
  G=data2$G 
  CD_L=data2$CURVEDEG*data2$IHC/(5730*data2[[LengthColumn]]) 
   
  init.theta = initTheta   
   
################################################################# 
  SPF=glm.nb(crash~lnADT+G+ln2CD+CD_L) 
################################################################# 
 
(Recall that CurveDegree=5730/R) 
 

A variable dispersion can also be used but it requires an additional library. This 

library will require significant modifications to the remainder of the code, however. The 

creation of CURE plots, scatter plots, and SPFs metrics are all based on the glm output 

format. While some of the code might work, much of it will require adjustments. As an 

alternative, these lines can be commented out and a manually summary can be used to 

view the model results. The following code shows the essential lines required to employ 

a variable dispersion. 

library(gnlm) 
 
#Point to variables 
crash=data2[[CrashColumn]] 
lnADT=log(data2[[AADTColumn]]) 
lnL=log(data2[[LengthColumn]]) 
 
SPF = gnlr(crash, dist="negative binomial", mu=~exp(a+b*lnADT+c*lnL), shape=~(const+b1*lnL), pmu=list(a=0,b=0,c=0), 
pshape=c(0,0)) 

 
It should be noted that the results of this methodology have been compared to 

another statistical package (Stata) and there are some discrepancies. The resulting 

parameters differ slightly (likely variations in the way they are estimated) but not 

enough to change the predictions. More importantly, the sign of the parameters are 

opposite. This may imply there is a bug in R’s gnlm library (the results from Stata are 

more intuitive and are likely correct). Validation should be used with other statistical 

packages before employing this feature. This was observed when both reported 

parameters were found to be negative in Stata. While this was consistent, it was not 

exhaustively tested and may not apply in all cases. 



 

139 
 

Line 116 adds the SPF predictions, residuals, and cumulative residuals to the 

recently sorted table. The SPF prediction is simply the predicted crashes using the fitted 

SPF for each record in the dataset. The residuals are the difference between the actual 

crash experience and the prediction. 

The next section (lines 118-146) calculates the information needed to create the 

CURE Plot. The CURE Plot is a scatter plot of the cumulative residuals versus a sorted 

variable (typically traffic volume). A standard deviation computation is used to create 

upper and lower bounds for residuals exceeding 95% confidence boundaries. This 

section also flags road segments that are outside of the bounds so that the Percent 

CURE Deviation (PCD) can be computed. The ggplot2 library is used to generate the 

CURE plot and add labels. The resulting graph is saved as a PNG file to the output folder. 

CURE plots can also be generated for other variables. To accomplish this, the 

data must be sorted by the variable of choice. It is common for length to be used in 

CURE plots as well as traffic volume. The following code shows how to implement this 

change (underlined statements can be changed to reference a variable other than 

length). 
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  #sort by Length 
  data3 <- dataout[ order(dataout[[LengthColumn]]),] 
  #add new cumul 
  dataout2 <- cbind(data3,CumulRes2=cumsum(data3$Residuals)) 
   
  #calculate data for CURE plot 
  datalimits2 <- data.frame(dataout2$Residuals) 
  datalimits2["Length"] <- NA 
  datalimits2$Length <- dataout2[[LengthColumn]] 
  datalimits2["CumulRes"] <- NA 
  datalimits2$CumulRes <- dataout2$CumulRes2 
  datalimits2["Squared_Res"] <- NA 
  datalimits2$Squared_Res <- datalimits2$dataout2.Residuals^2 
  datalimits2["CumulSqRes"] <- NA 
  datalimits2$CumulSqRes <- cumsum(datalimits2$Squared_Res) 
  datalimits2["SigmaSum"] <- NA 
  datalimits2$SigmaSum <- sqrt(datalimits2$CumulSqRes) 
  datalimits2["StdDev"] <- NA 
  datalimits2$StdDev <- datalimits2$SigmaSum*sqrt(1-datalimits2$CumulSqRes/sum(datalimits2$Squared_Res)) 
  datalimits2["UpperLimit"] <- NA 
  datalimits2$UpperLimit <- datalimits2$StdDev * 1.96 
  datalimits2["LowerLimit"] <- NA 
  datalimits2$LowerLimit <- datalimits2$StdDev * (-1.96) 
  datalimits2["Per_CURE"] <- NA 
  datalimits2$Per_CURE <- 
ifelse(datalimits2$CumulRes<=datalimits2$UpperLimit,ifelse(datalimits2$CumulRes>=datalimits2$LowerLimit,1,0),0) 
   
  #create CURE plot 
  CUREPlot2 <- ggplot(datalimits2, aes(datalimits2$Length, y = value, color = variable)) +  
    geom_point(aes(y = UpperLimit, col = "Upper")) +  
    geom_point(aes(y = LowerLimit, col = "Lower")) +  
    geom_point(aes(y = CumulRes, col = "CumulRes")) +  
    ggtitle("CURE Plot") + 
    labs(x="Length",y="Cumulative Residuals") 
  ggsave(file=paste0(OutPath,OutputProject,"_CURE_L.png")) 

 
The same library is used to plot traffic volume versus crashes (actual) per mile 

(lines 148-154). The SPF predictions are also divided by segment length and plotted to 

visualize the SPF model. This plot indicates the relative amount of dispersion in the data 

and is saved to the output folder as a PNG. The scatter plot will include a curve 

represented by points that describes the shape of the SPF normalized by length. When 

additional variables are added to the SPF, this curve is obfuscated as each point is 

affected by more than just AADT (such as lane or shoulder width). In this case it would 

be more appropriate to plot the SPF at various combinations of the additional variables 

(e.g. SPFs for lane width of 9 feet, 10 feet, and 11 feet); each with a slightly different 

shape. This can be added to the output but was beyond the scope of this guide.  

 The next section (lines 156-170) calculates basic descriptive statistics about the 

data such as total crashes, mileage, and number of records. Goodness-of-fit measures 

are also calculated so that similar models can be compared and improved: 
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• An equivalent analog to R-squared does not exist for negative binomial regression; 
however, a pseudo-R-squared can be computed.  

• PCD is calculated by computing the percentage of segments that are outside of the 
upper and lower confidence bands from the CURE Plot.  

• The Maximum Absolute CURE Deviation is simply the largest (positive or negative) 
cumulative residual. As described earlier, this can be useful in outlier and data error 
detection.  

• Lastly, the Mean Absolute Deviation (MAD) is computed as the average of the 
absolute values of the residuals.  

 These metrics are stored into three arrays including the metric name, the value, 

and a description. The descriptions, in many cases, include helpful comments such as if 

higher or lower values are preferred or if there are recommended limits. For instance, 

the HSM has recommendations for the number of crashes per year and miles in a 

network for SPF development. It is important to note that these arrays must be altered 

if there are any changes to the SPF functional form (as described in Table F-1). That is, if 

a minor AADT is added to the SPF then the corresponding regression coefficient must 

also be added to the three arrays. The coefficient is referenced using the following code: 

coef(summary(SPF))["VariableName","Estimate"] 

The term “VariableName” must be replaced with the variable used in line 112 

that corresponds to the coefficient. For instance, the following three lines of code would 

be used to report the five regression coefficients described in Equation 2 (the altered 

and added code is underlined). 

datametrics <- data.frame(Values = c(Sample,Mileage,Crashes,RSquared,PCD,MACD,MAD,SPF$theta 

,coef(summary(SPF))["(Intercept)","Estimate"],coef(summary(SPF))["lnADT","Estimate"],coef(summary(SPF))["G","Estimate"], 

coef(summary(SPF))["ln2CD","Estimate"],coef(summary(SPF))["CD_L","Estimate"], SPF$SE.theta, SPF$aic, "", "", "")) 

  datametrics$Notes <- c("100-200 intersections*","100-200 miles*","300 crashes per year*","Higher values preferred","Less than 

5%","Smaller values preferred","Smaller values preferred","Higher values preferred","(b0)","(b1)","(b2)","(b3)","(b4)", "", "", 

myFilter, InputData,"*As recommended by FHWA-SA-14-004") 

  attr(datametrics, "row.names") <- 

c("Sample","Length","Crashes","R2","PCD","MACD","MAD","Theta","Intercept","lnADT","G","ln2CD","CD_L","StdErr","AIC", 

"Filter","Input Data","") 

Care must be taken to ensure that each line is altered similarly such that each 

array reports the data in the same order. 
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The next section (lines 172-180) calculates the Potential for Crash Reduction 

(PCR) using the Empirical Bayes (EB) method as outlined in the HSM.  The equation for 

the Empirical Bayes estimate is:  

EB[N] = w * E[N] + (1 - w) N 

where:   

EB[N] = EB estimate for site N 
E[N]= predicted number of crashes for site N based on SPF 
N = number of observed crashes at site N 
w = weight equation defined as:  1 / [1 + (E[N]/θ)] 
θ = over-dispersion parameter (reciprocal of k) 
 

It should be noted that R terminology and the above methodology differs slightly 

from the HSM. R reports the over-dispersion parameter as theta which is the reciprocal 

of k as designated by the HSM and most other statistical packages (SPSS, SAS, etc.) Also, 

the input files used for SPF development are typically created for a five-year period. 

That is, there is one record per segment with a single traffic volume and an aggregated 

total of crashes for the entire period. As such, there is no need to total the predicted 

number of crashes as shown in the HSM in equation 3-10. 

The EB estimate is a critical step in the network screening process as it addresses 

regression-to-the-mean bias. An analyst may be tempted to compare the observed 

crashes (N) to the prediction from the SPF (E[N]); however, this can potentially be 

misleading if the observed crashes are uncharacteristically high or low. The EB estimate 

estimates the magnitude of expected crashes by using the above weight equation. 

PCR is then calculated by the following equation: 

PCR = EB[N] - E[N] 

This number represents the potential benefit that can be expected if the target 

crash type is addressed such that the segment of roadway (or intersection) is to become 

more like the average segment in the road type. That is, if an SPF was developed for 
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lane departure crashes and a PCR at a site was calculated to be 20.6 crashes, then 

installing rumble stripes could be expected to eliminate nearly 21 crashes over 5-year 

period. A Crash Modification Factor (CMF) could be used to quantify this reduction in 

crashes based on a specific countermeasure. 

The final section (lines 182-192) creates an Excel file with the metrics and 

goodness-of-fit information. Original input data along with all site-specific data (e.g. 

PCR, weight, SPF prediction, etc.) are also written out to the same Excel document in a 

separate sheet.  

Configuring and Running SPF-R 

The SPF development tool can easily be configured to work for a variety of SPF models. 

Filters can be applied to develop SPFs for specific crash types or to change the roadway 

geometry. In addition, classes can be used to develop SPFs for several subsets of data. 

The following is a summary of the lines that are typically changed: 

• Line 17 – Version number – It is good practice update this number to indicate 
significant changes to the code base (please consider sharing any advancements on 
GitHub as well). 

• Line 26 – User folder – This variable is based on the current Windows User’s folder. 
This is helpful as this path is different for every user. 

• Lines 30-45 – Main Settings – As discussed earlier, these settings specify column 
names, classes, severity outputs, main filter, and the input path (line 41). The input 
path can be hard coded and will ignore the User Folder if convenient (e.g. CSVpath = 
"C/Temp/Input.csv"). 

• Line 112 – SPF Model Form – This line allows the user to specify a different model 
form. Be sure to add statements under line 102 if any additional variables are added 
to the model. For instance, a variable for the natural log of traffic volume on the 
minor approach would need to be added if you were developing an intersection SPF. 

Generally, all other sections of the code should remain unchanged. 

Once configured, a user simply executes the script using Code>Run Region>Run 

All (or using the hotkey Ctrl+Alt+R). The code includes several printed statements that 

will appear in the Console that can help with debugging. The following figure shows a 

typical R Studio layout. 



 

144 
 

 

SPF-R Output 

After a successful execution, a folder called “R_SPFs” will be created in the 

designated output folder (a warning that this folder already exists will appear after the 

successive executions). In this folder, a project folder will be created containing three 

files: and Excel workbook with two worksheets, an image of a crash scatter plot, and an 

image of the CURE Plot. Windows Explorer provides an easy way to view the output 

quickly if the thumbnails are enlarged as shown below. 

 

R Studio is able to process a large database with several classes (recall that 

classes are groups of roadway segments or intersections) resulting in several SPFs in just 
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a few minutes (on a modern computer at the time of writing this dissertation). In fact, 

typical SPF development takes only a few seconds. 

Conclusions 

 This SPF development tool presented above is useful when trying to improve SPF 

development. The effect that the roadway network’s heterogeneity has on SPF 

development can be quickly explored by simply adjusting the output folder (line 42) and 

the base filter (line 43). Consider the following example: 

• Base condition #1 
o OutputProject_Base = "BC1-SW_2_LW_9" 
o myFilter = "data$SHLDWID == 2 & data$LANEWID == 9 

• Base condition #2 
o OutputProject_Base = "BC1-SW_3_LW_10" 
o myFilter = "data$SHLDWID == 3 & data$LANEWID == 10 

In the above example, two SPFs can quickly be developed for the same roadway 

network but for different specifications for shoulder and lane widths. Each SPF will be 

saved to separate folders, named accordingly. The CURE Plots can be compared and 

further assessment can be performed by opening the respective Excel files. Sample sizes 

and goodness-of-fit measures can be compared as well to decide which SPF is more 

appropriate for the dataset. The CURE plots provide a quick and visual screening process 

while other goodness-of-fit measures allow the user to objectively compare SPFs. 

Resources 

The following resources offer information on SPF development and calibration. 
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• The Highway Safety Manual, First Edition 
• NCHRP Project 20-7 (Task 332): User’s Guide to Develop Highway Safety Manual 

Safety Performance Function (SPF) Calibration Factors. 
• SPF Decision Guide: SPF Calibration vs. SPF Development. 

o https://safety.fhwa.dot.gov/rsdp/downloads/spf_decision_guide_final.p
df 

• SPF Development Guide: Developing Jurisdiction-Specific SPFs. 
o https://safety.fhwa.dot.gov/rsdp/downloads/spf_development_guide_fi

nal.pdf 
• The Art of Regression Modeling in Road Safety by Ezra Hauer 

o http://www.springer.com/us/book/9783319125282  
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Appendix G – SPF-R RStudio Code 
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Appendix H – CURE Plots with Increasing Homogeneity 
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Appendix I – CURE Plots with Increasing Homogeneity with Ranges 
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Appendix J – Map of Rural 2-Lane by Shoulder Widths 
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Appendix K – Map of Rural 2-Lane by Lane Widths 
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Appendix L – CURE Plots For Comparing Models 
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Appendix M – Map of Rural 2-Lane by Roadway Widths 
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Appendix N – Visualization Comparing Changes in Length and Attributes
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